prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
# pip install panel pandas matplotlib import numpy as np import pandas as pd from matplotlib.figure import Figure data_url = "https://cdn.jsdelivr.net/gh/holoviz/panel@master/examples/assets/occupancy.csv" data = pd.read_csv(data_url, parse_dates=["date"]).set_index("date") primary_color = "#0072B5" secondary_color = "#94EA84" def mpl_plot(avg, highlight): fig = Figure(figsize=(10,5)) ax = fig.add_subplot() avg.plot(ax=ax, c=primary_color) if len(highlight): highlight.plot(style="o", ax=ax, c=secondary_color) return fig def find_outliers(variable="Temperature", window=20, sigma=10, view_fn=mpl_plot): avg = data[variable].rolling(window=window).mean() residual = data[variable] - avg std = residual.rolling(window=window).std() outliers =
np.abs(residual)
numpy.abs
""" This code is attributed to <NAME> (@YingtongDou) and UIC BDSC Lab DGFraud (A Deep Graph-based Toolbox for Fraud Detection in TensorFlow 2.X) https://github.com/safe-graph/DGFraud-TF2 """ from typing import Tuple, Union import scipy.sparse as sp import numpy as np def sparse_to_tuple(sparse_mx: sp.coo_matrix) -> Tuple[np.array, np.array, np.array]: """ Convert sparse matrix to tuple representation. :param sparse_mx: the graph adjacency matrix in scipy sparse matrix format """ def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx def normalize_adj(adj: np.array) -> sp.coo_matrix: """ Symmetrically normalize adjacency matrix Parts of this code file were originally forked from https://github.com/tkipf/gcn :param adj: the graph adjacency matrix """ adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def preprocess_adj(adj: np.array, to_tuple: bool = True) -> \ Union[Tuple[np.array, np.array, np.array], sp.coo_matrix]: """ Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation. Parts of this code file were originally forked from https://github.com/tkipf/gcn :param adj: the graph adjacency matrix """ adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0])) if to_tuple: return sparse_to_tuple(adj_normalized) else: return adj_normalized def preprocess_feature(features: np.array, to_tuple: bool = True) -> \ Union[Tuple[np.array, np.array, np.array], sp.csr_matrix]: """ Row-normalize feature matrix and convert to tuple representation Parts of this code file were originally forked from https://github.com/tkipf/gcn :param features: the node feature matrix :param to_tuple: whether cast the feature matrix to scipy sparse tuple """ features = sp.lil_matrix(features) rowsum = np.array(features.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) features = r_mat_inv.dot(features) if to_tuple: return sparse_to_tuple(features) else: return features def sample_mask(idx: np.array, n_class: int) -> np.array: """ Create mask for GCN. Parts of this code file were originally forked from https://github.com/tkipf/gcn :param idx: the train/val/test indices :param n_class: the number of classes for the data """ mask = np.zeros(n_class) mask[idx] = 1 return np.array(mask, dtype=np.bool) def pad_adjlist(x_data): # Get lengths of each row of data lens = np.array([len(x_data[i]) for i in range(len(x_data))]) # Mask of valid places in each row mask = np.arange(lens.max()) < lens[:, None] # Setup output array and put elements from data into masked positions padded = np.zeros(mask.shape) for i in range(mask.shape[0]): padded[i] = np.random.choice(x_data[i], mask.shape[1]) padded[mask] = np.hstack((x_data[:])) return padded def matrix_to_adjlist(M, pad=True): adjlist = [] for i in range(len(M)): adjline = [i] for j in range(len(M[i])): if M[i][j] == 1: adjline.append(j) adjlist.append(adjline) if pad: adjlist = pad_adjlist(adjlist) return adjlist def pairs_to_matrix(pairs, nodes): M = np.zeros((nodes, nodes)) for i, j in pairs: M[i][j] = 1 return M # Random walk on graph def generate_random_walk(adjlist, start, walklength): t = 1 walk_path = np.array([start]) while t <= walklength: neighbors = adjlist[start] current = np.random.choice(neighbors) walk_path = np.append(walk_path, current) start = current t += 1 return walk_path # sample multiple times for each node def random_walks(adjlist, numerate, walklength): nodes = range(0, len(adjlist)) # node index starts from zero walks = [] for n in range(numerate): for node in nodes: walks.append(generate_random_walk(adjlist, node, walklength)) pairs = [] for i in range(len(walks)): for j in range(1, len(walks[i])): pair = [walks[i][0], walks[i][j]] pairs.append(pair) return pairs def negative_sampling(adj_nodelist): degree = [len(neighbors) for neighbors in adj_nodelist] node_negative_distribution = np.power(np.array(degree, dtype=np.float32), 0.75) node_negative_distribution /= np.sum(node_negative_distribution) node_sampling = AliasSampling(prob=node_negative_distribution) return node_negative_distribution, node_sampling def get_negative_sampling(pairs, adj_nodelist, Q=3, node_sampling='atlas'): num_of_nodes = len(adj_nodelist) # 8 u_i = [] u_j = [] graph_label = [] node_negative_distribution, nodesampling = negative_sampling(adj_nodelist) for index in range(0, num_of_nodes): u_i.append(pairs[index][0]) u_j.append(pairs[index][1]) graph_label.append(1) for i in range(Q): while True: if node_sampling == 'numpy': negative_node = np.random. \ choice(num_of_nodes, node_negative_distribution) if negative_node not in adj_nodelist[pairs[index][0]]: break elif node_sampling == 'atlas': negative_node = nodesampling.sampling() if negative_node not in adj_nodelist[pairs[index][0]]: break elif node_sampling == 'uniform': negative_node =
np.random.randint(0, num_of_nodes)
numpy.random.randint
# -*- coding: utf-8 -*- """ Created on Fri Dec 21 14:36:49 2018 @author: Zymieth """ import numpy as np def merge_sort(num_list): ''' Implementation of vanilla merge sort, O(nlogn) ''' if len(num_list) == 1: return num_list l = len(num_list)//2 l1 = merge_sort(num_list[:l]) l2 = merge_sort(num_list[l:]) v = [] i = 0 j = 0 # merging subroutine, break from loop when one of the pointers falls off for k in range(len(l1)+len(l2)): if j == len(l2) or i == len(l1): break if l1[i] <= l2[j]: v.append(l1[i]) i += 1 else: v.append(l2[j]) j += 1 # handling final remaining elements in either l1 or l2 while(i < len(l1)): v.append(l1[i]) i += 1 while(j < len(l2)): v.append(l2[j]) j += 1 return v def count_inversions(num_list, count = 0): ''' Counts number of inversions in array of numbers num_list ''' if len(num_list) == 1: return num_list, count l = len(num_list)//2 l1, count = count_inversions(num_list[:l], count) l2, count = count_inversions(num_list[l:], count) v = [] i = 0 j = 0 # merging subroutine, break from loop when one of the pointers falls off for k in range(len(l1)+len(l2)): if j == len(l2) or i == len(l1): break if l1[i] <= l2[j]: v.append(l1[i]) i += 1 else: v.append(l2[j]) j += 1 count += len(l1)-i # handling final remaining elements in either l1 or l2 while(i < len(l1)): v.append(l1[i]) i += 1 while(j < len(l2)): v.append(l2[j]) j += 1 return v, count ###################################################### TESTS: merge_sort n = np.array([2,5,1,3,4]) n = merge_sort(n) assert np.all([n[i] <= n[i+1] for i in range(len(n)-1)]) n = np.array([6,3,6,8,3,2,-40,20,4.2,4,0,3,215]) n = merge_sort(n) assert np.all([n[i] <= n[i+1] for i in range(len(n)-1)]) n = np.random.rand(100) n = merge_sort(n) assert np.all([n[i] <= n[i+1] for i in range(len(n)-1)]) n = np.loadtxt("L:\Algorithms\tests-merge.txt") n = merge_sort(
np.array(n)
numpy.array
# -*- coding: utf-8 -*- """ Created on Tue Mar 4 10:33:40 2014 Copyright (c) 2013-2017, CEA/DSV/I2BM/Neurospin. All rights reserved. @author: <NAME> @email: <EMAIL> @license: BSD 3-clause. """ from nose.tools import assert_less, assert_equal, assert_almost_equal import numpy as np import parsimony.utils.consts as consts try: from .tests import TestCase # When imported as a package. except: from tests import TestCase # When run as a program. # TODO: Test penalty_start. # TODO: Test total variation. class TestLogisticRegression(TestCase): def test_logistic_regression(self): # Spams: http://spams-devel.gforge.inria.fr/doc-python/html/doc_spams006.html#toc23 import numpy as np import parsimony.functions.losses as losses import parsimony.functions.nesterov.tv as tv import parsimony.algorithms.gradient as gradient import parsimony.algorithms.proximal as proximal import parsimony.utils.weights as weights import parsimony.utils.maths as maths import parsimony.estimators as estimators np.random.seed(42) start_vector = weights.RandomUniformWeights(normalise=True) px = 4 py = 4 pz = 4 shape = (pz, py, px) n, p = 50, np.prod(shape) A = tv.linear_operator_from_shape(shape) alpha = 0.9 Sigma = alpha * np.eye(p, p) \ + (1.0 - alpha) * np.random.randn(p, p) mean = np.zeros(p) X = np.random.multivariate_normal(mean, Sigma, n) y = np.array(np.random.randint(0, 2, (n, 1)), dtype=X.dtype) eps = 1e-8 max_iter = 2500 gd = gradient.GradientDescent(eps=eps, max_iter=max_iter) lr = losses.LogisticRegression(X, y, mean=True) beta_start = start_vector.get_weights(p) beta = gd.run(lr, beta_start) try: import spams params = { "loss": "logistic", "regul": "l2", "lambda1": 0.0, "max_it": max_iter, "tol": eps, "ista": True, "numThreads": -1, "intercept": False, } y_ = y.copy() y_[y_ == 0.0] = -1.0 beta_spams, optim_info = \ spams.fistaFlat(Y=np.asfortranarray(y_), X=np.asfortranarray(X), W0=np.asfortranarray(beta_start), return_optim_info=True, **params) # print beta_spams except ImportError: beta_spams = np.asarray( [[0.52689775], [-2.21446548], [-1.68294898], [-1.22239288], [0.47106769], [-0.10104761], [0.54922885], [-0.50684862], [0.01819947], [-0.41118406], [-0.01530228], [0.64481785], [3.5877543], [0.50909281], [0.52942673], [1.11978225], [-1.58908044], [-1.19893318], [0.14065587], [0.82819336], [0.3968046], [0.26822936], [0.25214453], [1.84717067], [1.66235707], [0.38522443], [0.63089985], [-1.25171818], [0.17358699], [-0.47456136], [-1.89701774], [1.06870497], [-0.44173062], [-0.67056484], [-1.89417281], [1.61253148], [1.509571], [-0.38479991], [-0.7179952], [-2.62763962], [-1.27630807], [0.63975966], [1.42323595], [1.1770713], [-2.69662968], [1.05365595], [0.90026447], [-0.68251909], [0.01953592], [-0.55014376], [1.26436814], [0.04729847], [0.85184395], [0.85604811], [1.76795929], [1.08078563], [-0.13504478], [-0.36605844], [-0.40414262], [-2.38631966], [-1.94121299], [0.23513673], [1.17573164], [1.69009136]]) mu = None logreg_est = estimators.LogisticRegressionL1L2TV(0.0, 0.0, 0.0, A=A, mu=mu, class_weight=None, algorithm=proximal.ISTA(), algorithm_params=dict(eps=eps, max_iter=max_iter), mean=True) logreg_est.fit(X, y) re = maths.norm(beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_almost_equal(re, 0.058501, msg="The found regression vector is not correct.", places=5) re = maths.norm(logreg_est.beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_almost_equal(re, 0.090917, msg="The found regression vector is not correct.", places=5) f_spams = lr.f(beta_spams) f_parsimony = lr.f(beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_parsimony - f_spams) / f_spams else: err = abs(f_parsimony - f_spams) # print "err:", err assert_almost_equal(err, 0.265056, msg="The found regression vector does not give " \ "the correct function value.", places=5) f_logreg = lr.f(logreg_est.beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_logreg - f_spams) / f_spams else: err = abs(f_logreg - f_spams) # print "err:", err assert_almost_equal(err, 0.265555, msg="The found regression vector does not give " \ "the correct function value.", places=5) def test_l1(self): # Spams: http://spams-devel.gforge.inria.fr/doc-python/html/doc_spams006.html#toc23 from parsimony.functions import CombinedFunction import parsimony.functions.losses as losses import parsimony.functions.penalties as penalties import parsimony.algorithms.proximal as proximal import parsimony.utils.weights as weights import parsimony.utils.maths as maths import parsimony.estimators as estimators import parsimony.functions.nesterov.tv as tv np.random.seed(42) start_vector = weights.RandomUniformWeights(normalise=True) px = 4 py = 4 pz = 4 shape = (pz, py, px) n, p = 50, np.prod(shape) A = tv.linear_operator_from_shape(shape) alpha = 0.9 Sigma = alpha * np.eye(p, p) \ + (1.0 - alpha) * np.random.randn(p, p) mean = np.zeros(p) X = np.random.multivariate_normal(mean, Sigma, n) y = np.array(np.random.randint(0, 2, (n, 1)), dtype=X.dtype) eps = 1e-8 max_iter = 5000 l = 0.001 k = 0.0 g = 0.0 algorithm = proximal.ISTA(eps=eps, max_iter=max_iter) function = CombinedFunction() function.add_loss(losses.LogisticRegression(X, y, mean=True)) function.add_prox(penalties.L1(l)) beta_start = start_vector.get_weights(p) beta = algorithm.run(function, beta_start) try: import spams params = {"loss": "logistic", "regul": "l1", "lambda1": l, "max_it": max_iter, "tol": eps, "ista": True, "numThreads": -1, "intercept": False, } y_ = y.copy() y_[y_ == 0.0] = -1.0 beta_spams, optim_info = \ spams.fistaFlat(Y=np.asfortranarray(y_), X=np.asfortranarray(X), W0=np.asfortranarray(beta_start), return_optim_info=True, **params) # print beta_spams except ImportError: beta_spams = np.asarray( [[0.], [-2.88026664], [-1.75569266], [-0.10270371], [0.], [0.], [0.80004525], [0.], [0.], [-0.53624278], [0.], [0.], [3.43963221], [0.], [0.], [0.13833778], [-1.08009022], [-0.12296525], [0.], [0.79860615], [0.], [0.], [0.], [0.99982627], [0.79121183], [0.], [0.23196695], [0.], [0.], [0.], [-1.83907578], [0.08524181], [0.], [-0.34237679], [-1.47977854], [2.04629155], [0.12090069], [0.], [-0.05009145], [-1.89909595], [-1.62591414], [0.], [0.61486582], [0.], [-2.26199047], [0.57935073], [0.], [0.], [0.], [-0.23379695], [0.67479097], [0.], [0.], [0.], [1.03600365], [0.4471462], [0.0916708], [0.], [0.], [-1.97299116], [-2.17942795], [0.], [0.10224431], [0.15781433]]) mu = None logreg_est = estimators.LogisticRegressionL1L2TV(l, k, g, A=A, mu=mu, algorithm=proximal.ISTA(), algorithm_params=dict(eps=eps, max_iter=max_iter), class_weight=None) logreg_est.fit(X, y) re = maths.norm(beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_less(re, 0.05, msg="The found regression vector is not correct.") re = maths.norm(logreg_est.beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_less(re, 0.04, msg="The found regression vector is not correct.") f_spams = function.f(beta_spams) f_parsimony = function.f(beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_parsimony - f_spams) / f_spams else: err = abs(f_parsimony - f_spams) # print "err:", err assert_less(err, 0.002, msg="The found regression vector does not give " "the correct function value.") f_logreg = function.f(logreg_est.beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_logreg - f_spams) / f_spams else: err = abs(f_logreg - f_spams) # print "err:", err assert_less(err, 0.002, msg="The found regression vector does not give " "the correct function value.") def test_l1_intercept(self): # Spams: http://spams-devel.gforge.inria.fr/doc-python/html/doc_spams006.html#toc23 from parsimony.functions import CombinedFunction import parsimony.functions.losses as losses import parsimony.functions.penalties as penalties import parsimony.algorithms.proximal as proximal import parsimony.utils.weights as weights import parsimony.utils.maths as maths import parsimony.estimators as estimators import parsimony.functions.nesterov.tv as tv np.random.seed(42) start_vector = weights.RandomUniformWeights(normalise=True) px = 4 py = 4 pz = 4 shape = (pz, py, px) n, p = 50, np.prod(shape) + 1 A = tv.linear_operator_from_shape(shape) alpha = 0.9 Sigma = alpha * np.eye(p - 1, p - 1) \ + (1.0 - alpha) * np.random.randn(p - 1, p - 1) mean = np.zeros(p - 1) X0 = np.random.multivariate_normal(mean, Sigma, n) X_parsimony = np.hstack((np.ones((n, 1)), X0)) X_spams = np.hstack((X0, np.ones((n, 1)))) y = np.array(np.random.randint(0, 2, (n, 1)), dtype=X0.dtype) eps = 1e-8 max_iter = 5000 l = 0.001 k = 0.0 g = 0.0 algorithm = proximal.ISTA(eps=eps, max_iter=max_iter) function = CombinedFunction() function.add_loss(losses.LogisticRegression(X_parsimony, y, mean=True)) function.add_prox(penalties.L1(l, penalty_start=1)) beta_start = start_vector.get_weights(p) beta = algorithm.run(function, beta_start) try: import spams params = {"loss": "logistic", "regul": "l1", "lambda1": l, "max_it": max_iter, "tol": eps, "ista": True, "numThreads": -1, "intercept": True, } y_ = y.copy() y_[y_ == 0.0] = -1.0 beta_spams, optim_info = \ spams.fistaFlat(Y=np.asfortranarray(y_), X=np.asfortranarray(X_spams), W0=np.asfortranarray(beta_start), return_optim_info=True, **params) # print beta_spams except ImportError: beta_spams = np.asarray( [[0.], [-2.84363846], [-1.76319723], [-0.08899283], [0.], [0.], [0.82070549], [0.], [0.], [-0.55865068], [0.], [0.], [3.42071574], [0.], [0.], [0.16652413], [-1.0945443], [-0.10645896], [0.], [0.81766639], [0.], [0.], [0.], [0.98030827], [0.79143542], [0.], [0.24412592], [0.], [0.], [0.], [-1.82650966], [0.06380246], [0.], [-0.33460657], [-1.45350214], [2.04841906], [0.09839289], [0.], [-0.04710919], [-1.89327998], [-1.6531038], [0.], [0.59239045], [0.], [-2.29161034], [0.57808221], [0.], [0.], [0.], [-0.24979285], [0.668358], [0.], [0.], [0.], [1.00250306], [0.44168083], [0.09592583], [0.], [0.], [-1.97492771], [-2.21610942], [0.], [0.10819641], [0.17640387], [0.0920676]]) beta_spams = np.vstack((beta_spams[p - 1, :], beta_spams[0:p - 1, :])) mu = None logreg_est = estimators.LogisticRegressionL1L2TV(l, k, g, A=A, mu=mu, algorithm=proximal.ISTA(), algorithm_params=dict(eps=eps, max_iter=max_iter), penalty_start=1, class_weight=None) logreg_est.fit(X_parsimony, y) re = maths.norm(beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_less(re, 0.039952, msg="The found regression vector is not correct.") re = maths.norm(logreg_est.beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_less(re, 0.040015, msg="The found regression vector is not correct.") f_spams = function.f(beta_spams) f_parsimony = function.f(beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_parsimony - f_spams) / f_spams else: err = abs(f_parsimony - f_spams) # print "err:", err assert_less(err, 5e-3, msg="The found regression vector does not " \ "give the correct function value.") f_logreg = function.f(logreg_est.beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_logreg - f_spams) / f_spams else: err = abs(f_logreg - f_spams) # print "err:", err assert_less(err, 5e-3, msg="The found regression vector does not " \ "give the correct function value.") def test_l2(self): # Spams: http://spams-devel.gforge.inria.fr/doc-python/html/doc_spams006.html#toc23 from parsimony.functions import CombinedFunction import parsimony.functions.losses as losses import parsimony.functions.penalties as penalties import parsimony.algorithms.proximal as proximal import parsimony.algorithms.gradient as gradient import parsimony.utils.weights as weights import parsimony.utils.maths as maths import parsimony.estimators as estimators import parsimony.functions.nesterov.tv as tv np.random.seed(42) start_vector = weights.RandomUniformWeights(normalise=True) px = 4 py = 4 pz = 4 shape = (pz, py, px) n, p = 50, np.prod(shape) A = tv.linear_operator_from_shape(shape) alpha = 0.9 Sigma = alpha * np.eye(p, p) \ + (1.0 - alpha) * np.random.randn(p, p) mean = np.zeros(p) X = np.random.multivariate_normal(mean, Sigma, n) y = np.array(np.random.randint(0, 2, (n, 1)), dtype=X.dtype) eps = 1e-8 max_iter = 1000 l = 0.0 k = 0.618 g = 0.0 gd = gradient.GradientDescent(eps=eps, max_iter=max_iter) function = CombinedFunction() function.add_loss(losses.LogisticRegression(X, y, mean=True)) function.add_penalty(penalties.L2Squared(k)) beta_start = start_vector.get_weights(p) beta = gd.run(function, beta_start) try: import spams params = {"loss": "logistic", "regul": "l2", "lambda1": k, "max_it": max_iter, "tol": eps, "ista": True, "numThreads": -1, "intercept": False, } y_ = y.copy() y_[y_ == 0.0] = -1.0 beta_spams, optim_info = \ spams.fistaFlat(Y=np.asfortranarray(y_), X=np.asfortranarray(X), W0=np.asfortranarray(beta_start), return_optim_info=True, **params) # print beta_spams except ImportError: beta_spams = np.asarray( [[5.33853917e-02], [-1.42699512e-01], [-8.72668527e-02], [-3.65487726e-02], [2.83354831e-02], [1.13264613e-02], [8.15039993e-03], [-2.37846195e-02], [-2.19065128e-03], [-5.16555341e-02], [-3.15120681e-02], [-4.22206985e-02], [1.34004557e-01], [8.44413972e-02], [1.69872397e-02], [7.28223134e-02], [-1.37888694e-01], [-8.35291457e-02], [5.83353207e-02], [5.89209520e-02], [3.30824577e-02], [-1.73109060e-05], [1.48936475e-02], [8.74385474e-02], [1.00948985e-01], [1.08614513e-02], [6.51250680e-03], [-1.13890284e-01], [5.54004534e-02], [-9.89017587e-02], [-5.43921421e-02], [5.83618885e-02], [8.52661577e-03], [-3.61046922e-02], [-1.22802849e-01], [9.65240799e-02], [6.63903145e-02], [-7.17642493e-02], [-1.04853964e-02], [-1.23097313e-01], [-6.13912331e-02], [8.97501765e-03], [6.78529451e-02], [4.33676933e-02], [-1.06618077e-01], [3.40561568e-02], [2.59810765e-02], [1.66312745e-02], [-1.60401993e-02], [-3.82916547e-02], [1.59030182e-02], [4.43776091e-02], [-2.76431899e-02], [3.59701032e-03], [7.27998486e-02], [1.41382762e-02], [-1.63489132e-02], [1.24814735e-02], [-3.02671096e-02], [-1.92387219e-01], [-9.46001894e-02], [-2.06080852e-02], [6.72162798e-02], [5.40284401e-02]]) mu = None logreg_est = estimators.LogisticRegressionL1L2TV(l, k, g, A=A, mu=mu, algorithm=proximal.ISTA(), algorithm_params=dict(eps=eps, max_iter=max_iter), class_weight=None) logreg_est.fit(X, y) re = maths.norm(beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_almost_equal(re, 1.188998e-08, msg="The found regression vector is not correct.", places=5) re = maths.norm(logreg_est.beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_almost_equal(re, 3.738028e-08, msg="The found regression vector is not correct.", places=5) f_spams = function.f(beta_spams) f_parsimony = function.f(beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_parsimony - f_spams) / f_spams else: err = abs(f_parsimony - f_spams) # print "err:", err assert_almost_equal(err, 2.046041e-16, msg="The found regression vector does not give " \ "the correct function value.", places=5) f_logreg = function.f(logreg_est.beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_logreg - f_spams) / f_spams else: err = abs(f_logreg - f_spams) # print "err:", err assert_almost_equal(err, 2.046041e-16, msg="The found regression vector does not give " \ "the correct function value.", places=5) # Compare functions import parsimony.functions as functions from parsimony.utils import class_weight_to_sample_weight sample_weight = class_weight_to_sample_weight(None, y) l = 10000.0 function_1 = losses.RidgeLogisticRegression(X, y, l, weights=sample_weight, penalty_start=0, mean=True) function_2 = functions.CombinedFunction() function_2.add_loss(losses.LogisticRegression(X, y, mean=True)) function_2.add_penalty(penalties.L2Squared(l, penalty_start=0)) beta = start_vector.get_weights(p) assert abs(function_1.f(beta) - function_2.f(beta)) < consts.TOLERANCE assert maths.norm(function_1.grad(beta) - function_2.grad(beta)) \ < consts.TOLERANCE def test_l2_intercept(self): # Spams: http://spams-devel.gforge.inria.fr/doc-python/html/doc_spams006.html#toc23 from parsimony.functions import CombinedFunction import parsimony.functions.losses as losses import parsimony.functions.penalties as penalties import parsimony.algorithms.gradient as gradient import parsimony.algorithms.proximal as proximal import parsimony.utils.weights as weights import parsimony.utils.maths as maths import parsimony.estimators as estimators import parsimony.functions.nesterov.tv as tv np.random.seed(42) start_vector = weights.RandomUniformWeights(normalise=True) px = 4 py = 4 pz = 4 shape = (pz, py, px) n, p = 50, np.prod(shape) + 1 A = tv.linear_operator_from_shape(shape) alpha = 0.9 Sigma = alpha * np.eye(p - 1, p - 1) \ + (1.0 - alpha) * np.random.randn(p - 1, p - 1) mean = np.zeros(p - 1) X0 = np.random.multivariate_normal(mean, Sigma, n) X_parsimony = np.hstack((np.ones((n, 1)), X0)) X_spams = np.hstack((X0, np.ones((n, 1)))) y = np.array(np.random.randint(0, 2, (n, 1)), dtype=X0.dtype) eps = 1e-8 max_iter = 60 l = 0.0 k = 0.618 g = 0.0 gd = gradient.GradientDescent(eps=eps, max_iter=max_iter) function = CombinedFunction() function.add_loss(losses.LogisticRegression(X_parsimony, y, mean=True)) function.add_penalty(penalties.L2Squared(k, penalty_start=1)) beta_start = start_vector.get_weights(p) beta = gd.run(function, beta_start) try: import spams params = {"loss": "logistic", "regul": "l2", "lambda1": k, "max_it": max_iter, "tol": eps, "ista": True, "numThreads": -1, "intercept": True, } y_ = y.copy() y_[y_ == 0.0] = -1.0 beta_spams, optim_info = \ spams.fistaFlat(Y=np.asfortranarray(y_), X=np.asfortranarray(X_spams), W0=np.asfortranarray(beta_start), return_optim_info=True, **params) # print beta_spams except ImportError: beta_spams = np.asarray( [[0.05313997], [-0.14296077], [-0.08703832], [-0.03643685], [0.028458], [0.01129562], [0.00812442], [-0.02348346], [-0.00195203], [-0.05122321], [-0.03192026], [-0.04222126], [0.13433481], [0.08448324], [0.01667175], [0.07278472], [-0.1378397], [-0.08352936], [0.05828094], [0.0585371], [0.0332106], [-0.00051077], [0.01486762], [0.08740097], [0.10075053], [0.0109332], [0.00625134], [-0.11434899], [0.05559258], [-0.09866443], [-0.05440752], [0.05850469], [0.00810353], [-0.03600913], [-0.12275238], [0.09644776], [0.06654187], [-0.07197764], [-0.01066], [-0.12312596], [-0.06133673], [0.0088412], [0.06797135], [0.0432135], [-0.1066665], [0.03402393], [0.02572417], [0.01659111], [-0.01602115], [-0.03806548], [0.01591459], [0.04462776], [-0.02769855], [0.00410674], [0.07298038], [0.01383948], [-0.01658243], [0.01240699], [-0.03036137], [-0.19220114], [-0.09440627], [-0.02093642], [0.06733479], [0.05368342], [-0.00686121]]) beta_spams = np.vstack((beta_spams[p - 1, :], beta_spams[0:p - 1, :])) mu = None logreg_est = estimators.LogisticRegressionL1L2TV(l, k, g, A=A, mu=mu, algorithm=proximal.ISTA(), algorithm_params=dict(eps=eps, max_iter=max_iter), penalty_start=1, class_weight=None) logreg_est.fit(X_parsimony, y) re = maths.norm(beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_less(re, 5e-3, msg="The found regression vector is not correct.") re = maths.norm(logreg_est.beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_less(re, 5e-3, msg="The found regression vector is not correct.") f_spams = function.f(beta_spams) f_parsimony = function.f(beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_parsimony - f_spams) / f_spams else: err = abs(f_parsimony - f_spams) # print "err:", err assert_less(err, 5e-6, msg="The found regression vector does not " \ "give the correct function value.") f_logreg = function.f(logreg_est.beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_logreg - f_spams) / f_spams else: err = abs(f_logreg - f_spams) # print "err:", err assert_less(err, 5e-6, msg="The found regression vector does not " \ "give the correct function value.") def test_gl(self): # Spams: http://spams-devel.gforge.inria.fr/doc-python/html/doc_spams006.html#toc23 from parsimony.functions import CombinedFunction import parsimony.functions.losses as losses import parsimony.functions.penalties as penalties import parsimony.algorithms.proximal as proximal import parsimony.utils.weights as weights import parsimony.utils.maths as maths import parsimony.functions.nesterov.gl as gl import parsimony.estimators as estimators np.random.seed(42) start_vector = weights.RandomUniformWeights(normalise=True) # Note that p must be even! n, p = 50, 100 groups = [list(range(0, int(p / 2))), list(range(int(p / 2), p))] # weights = [1.5, 0.5] A = gl.linear_operator_from_groups(p, groups=groups) # , weights=weights) alpha = 0.9 V = np.random.randn(p, p) Sigma = alpha * np.eye(p, p) \ + (1.0 - alpha) * np.dot(V.T, V) mean = np.zeros(p) X = np.random.multivariate_normal(mean, Sigma, n) y = np.array(np.random.randint(0, 2, (n, 1)), dtype=X.dtype) eps = 1e-8 max_iter = 10000 l = 0.0 k = 0.0 g = 0.001 mu = 5e-4 algorithm = proximal.ISTA(eps=eps, max_iter=max_iter) function = CombinedFunction() function.add_loss(losses.LogisticRegression(X, y, mean=True)) function.add_penalty(gl.GroupLassoOverlap(l=g, A=A, mu=mu, penalty_start=0)) beta_start = start_vector.get_weights(p) beta = algorithm.run(function, beta_start) try: import spams params = {"loss": "logistic", "regul": "group-lasso-l2", "groups": np.array([1] * int(p / 2) + [2] * int(p / 2), dtype=np.int32), "lambda1": g, "max_it": max_iter, "tol": eps, "ista": True, "numThreads": -1, "intercept": False, } y_ = y.copy() y_[y_ == 0.0] = -1.0 beta_spams, optim_info = \ spams.fistaFlat(Y=np.asfortranarray(y_), X=np.asfortranarray(X), W0=np.asfortranarray(beta_start), return_optim_info=True, **params) except ImportError: beta_spams = np.asarray( [[4.69125211e-04], [-5.76698788e-02], [-2.40078974e-01], [-6.61532107e-03], [-3.03512327e-01], [-1.83545174e-01], [-2.86425232e-01], [9.25436278e-02], [-3.69882368e-02], [-2.58152199e-01], [-1.57006492e-01], [-2.12059086e-01], [-3.64822932e-01], [-1.77213770e-02], [1.37712226e-01], [1.36983267e-01], [1.21019611e-01], [-1.14300309e-01], [-1.07108453e-01], [2.94683117e-01], [4.62945669e-02], [2.04873107e-01], [1.14232456e-01], [-1.02701573e-01], [-1.66498758e-01], [-3.40062598e-01], [5.78832448e-02], [-3.17271478e-02], [-2.17243625e-01], [7.18038071e-02], [-2.67045631e-01], [-2.09562234e-01], [1.79610439e-01], [-5.40938258e-01], [-5.36039494e-01], [-2.89187125e-02], [4.33817576e-01], [2.67831633e-01], [-1.63875210e-01], [-4.31756685e-01], [2.24698003e-01], [3.49821459e-01], [2.31160454e-01], [-7.42394377e-02], [1.13454429e-01], [2.86104705e-01], [3.23831912e-01], [7.53906314e-02], [2.92770430e-01], [-7.43106086e-02], [3.48688828e-01], [-9.88751796e-02], [3.50475276e-02], [-1.00405317e-01], [-4.16408430e-01], [4.55376777e-02], [2.01379801e-01], [2.05662044e-01], [2.78957686e-01], [-2.66772715e-02], [-5.66780405e-02], [6.13880915e-02], [3.53253584e-02], [2.83592934e-01], [-2.01475234e-01], [7.37472943e-02], [3.38869207e-02], [4.57371333e-01], [2.33202529e-01], [8.48612914e-02], [-1.53078084e-01], [-4.68795061e-02], [2.60334837e-01], [5.34128752e-01], [3.09231961e-01], [6.75427437e-02], [-3.70493876e-01], [-3.85837135e-02], [-1.32100270e-01], [-2.41449544e-01], [1.12424646e-01], [4.00124617e-01], [2.69803273e-01], [1.75762562e-01], [1.24632543e-01], [2.61731447e-01], [2.66625353e-01], [3.10319953e-01], [-2.33788511e-01], [-3.89499749e-01], [-8.00569373e-02], [4.50647251e-01], [3.38820788e-01], [-6.44928333e-02], [2.23326668e-01], [3.05168971e-01], [2.92517617e-01], [-3.49537305e-01], [2.57928416e-02], [-1.42370130e-01]]) re = maths.norm(beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_less(re, 0.25, "The found regression vector is not correct.") # mu = None logreg_est = estimators.LogisticRegressionL1L2GL(l, k, g, A=A, mu=mu, algorithm=proximal.ISTA(), algorithm_params=dict(eps=eps, max_iter=max_iter), penalty_start=0, mean=True, class_weight=None) logreg_est.fit(X, y) re = maths.norm(logreg_est.beta - beta_spams) / maths.norm(beta_spams) # print "re:", res assert_less(re, 0.27, "The found regression vector is not correct.") f_parsimony = function.f(beta) f_spams = function.f(beta_spams) if abs(f_spams) > consts.TOLERANCE: err = abs(f_parsimony - f_spams) / f_spams else: err = abs(f_parsimony - f_spams) # print "err:", err assert_less(re, 0.27, "The found regression vector does not give " "the correct function value.") f_logreg = function.f(logreg_est.beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_logreg - f_spams) / f_spams else: err = abs(f_logreg - f_spams) # print "err:", err assert_less(err, 0.018, "The found regression vector does not give " "the correct function value.") def test_l1_l2(self): # Spams: http://spams-devel.gforge.inria.fr/doc-python/html/doc_spams006.html#toc23 from parsimony.functions import CombinedFunction import parsimony.functions.losses as losses import parsimony.functions.penalties as penalties import parsimony.algorithms.proximal as proximal import parsimony.utils.weights as weights import parsimony.utils.maths as maths import parsimony.estimators as estimators import parsimony.functions.nesterov.tv as tv np.random.seed(42) start_vector = weights.RandomUniformWeights(normalise=True) px = 4 py = 4 pz = 4 shape = (pz, py, px) n, p = 50, np.prod(shape) A = tv.linear_operator_from_shape(shape) alpha = 0.9 Sigma = alpha * np.eye(p, p) \ + (1.0 - alpha) * np.random.randn(p, p) mean = np.zeros(p) X = np.random.multivariate_normal(mean, Sigma, n) y = np.array(np.random.randint(0, 2, (n, 1)), dtype=X.dtype) eps = 1e-8 max_iter = 1000 l = 0.0318 k = 1.0 - l g = 0.0 algorithm = proximal.ISTA(eps=eps, max_iter=max_iter) function = CombinedFunction() function.add_loss(losses.LogisticRegression(X, y, mean=True)) function.add_penalty(penalties.L2Squared(k)) function.add_prox(penalties.L1(l)) beta_start = start_vector.get_weights(p) beta = algorithm.run(function, beta_start) try: import spams params = {"loss": "logistic", "regul": "elastic-net", "lambda1": l, "lambda2": k, "max_it": max_iter, "tol": eps, "ista": True, "numThreads": -1, "intercept": False, } y_ = y.copy() y_[y_ == 0.0] = -1.0 beta_spams, optim_info = \ spams.fistaFlat(Y=np.asfortranarray(y_), X=np.asfortranarray(X), W0=np.asfortranarray(beta_start), return_optim_info=True, **params) # print beta_spams except ImportError: beta_spams = np.asarray( [[0.01865551], [-0.08688886], [-0.03926606], [0.], [0.], [0.], [0.], [0.], [0.], [-0.01936916], [-0.00304969], [-0.01971763], [0.06632631], [0.04543627], [0.], [0.02784156], [-0.08828684], [-0.03966364], [0.01372838], [0.02745133], [0.], [0.], [0.], [0.04458341], [0.05834843], [0.], [0.], [-0.06292223], [0.02541458], [-0.05460034], [-0.0122713], [0.01416604], [0.], [0.], [-0.06551936], [0.04436878], [0.02159705], [-0.0397886], [0.], [-0.06515573], [-0.01723167], [0.], [0.01591231], [0.00780168], [-0.04363237], [0.], [0.], [0.], [0.], [-0.00113133], [0.], [0.01304487], [-0.01113588], [0.], [0.03037163], [0.], [0.], [0.], [0.], [-0.12029642], [-0.03927743], [0.], [0.01994069], [0.00128412]]) mu = None logreg_est = estimators.LogisticRegressionL1L2TV(l, k, g, A=A, mu=mu, algorithm=proximal.ISTA(), algorithm_params=dict(eps=eps, max_iter=max_iter), class_weight=None) logreg_est.fit(X, y) re = maths.norm(beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_almost_equal(re, 1.129260e-09, msg="The found regression vector is not correct.", places=5) re = maths.norm(logreg_est.beta - beta_spams) / maths.norm(beta_spams) # print "re:", re assert_almost_equal(re, 9.893653e-09, msg="The found regression vector is not correct.", places=5) f_spams = function.f(beta_spams) f_parsimony = function.f(beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_parsimony - f_spams) / f_spams else: err = abs(f_parsimony - f_spams) # print "err:", err assert_almost_equal(err, 1.737077e-16, msg="The found regression vector does not give " \ "the correct function value.", places=5) f_logreg = function.f(logreg_est.beta) if abs(f_spams) > consts.TOLERANCE: err = abs(f_logreg - f_spams) / f_spams else: err = abs(f_logreg - f_spams) # print "err:", err assert_almost_equal(err, 1.737077e-16, msg="The found regression vector does not give " \ "the correct function value.", places=5) def test_l1_l2_intercept(self): # Spams: http://spams-devel.gforge.inria.fr/doc-python/html/doc_spams006.html#toc23 from parsimony.functions import CombinedFunction import parsimony.functions.losses as losses import parsimony.functions.penalties as penalties import parsimony.algorithms.proximal as proximal import parsimony.utils.weights as weights import parsimony.utils.maths as maths import parsimony.estimators as estimators import parsimony.functions.nesterov.tv as tv
np.random.seed(42)
numpy.random.seed
""" Script to compare the index retained from the fitted PCA The script train a norm base model with the three following conditions: - human - monkey - human + monkey and compare the most important features kept by the PCA run: python -m tests.NormBase.t05_compare_retained_PCA_index.py """ import numpy as np import tensorflow as tf from utils.load_config import load_config from utils.load_data import load_data from models.NormBase import NormBase np.set_printoptions(precision=3, linewidth=250, suppress=True) # small testing examples test = np.arange(36) n_feature_map = 4 feature_map_size = 3 t = np.reshape(test, (feature_map_size, feature_map_size, n_feature_map)) print(t[:, :, 0]) print(t[:, :, 1]) print(t[:, :, 2]) print(t[:, :, 3]) x, y, z = np.unravel_index(17, (feature_map_size,feature_map_size,n_feature_map)) #x, y, z = get_feature_map_index(17, n_feature_map, feature_map_size) print("({}, {}, {})".format(x, y, z)) # load configuration config_name = "norm_base_investigate_PCA_m0001.json" config = load_config(config_name) # fit models with each condition avatars = ["human_orig", "monkey_orig", "all_orig"] # avatars = ["human_orig"] indexes = [] # pca_threshold = [300, 300, 1500] pca_threshold = [600, 600, 2000] for i, avatar in enumerate(avatars): # modify condition according to loop config['train_avatar'] = avatar # define and train norm base model norm_base = NormBase(config, input_shape=(224, 224, 3)) norm_base.pca.var_threshold = pca_threshold[i] norm_base.fit(load_data(config, train=True), fit_dim_red=True, fit_ref=False, fit_tun=False) # get index from the feature having the most variance predict_v4 = norm_base.v4_predict var_predict = np.std(predict_v4, axis=0) index = np.flip(np.argsort(var_predict))[:config['PCA']] # save index indexes.append(np.array(index)) indexes = np.array(indexes) # get position within feature maps v4_shape = norm_base.shape_v4 print("v4_shape", v4_shape) n_feature_map = v4_shape[-1] feature_map_size = v4_shape[1] print("feature map size: ({}, {}, {})".format(feature_map_size, feature_map_size, n_feature_map)) print() positions = [] for a, avatar in enumerate(avatars): avatar_positions = [] for i in range(len(indexes[a])): index = indexes[a, i] x,y,f = np.unravel_index(index, v4_shape[1:]) #(x, y, f) = get_feature_map_index(index, n_feature_map, feature_map_size) avatar_positions.append((x, y, f)) positions.append(np.array(avatar_positions)) positions = np.array(positions) print("indexes:") print(indexes) # print positions for i in range(np.shape(positions)[1]): print("h: ({}) m: ({}) h+m ({})".format(positions[0, i], positions[1, i], positions[2, i])) # print only features maps index f_map_h = np.sort(positions[0, :, 2]) f_map_m =
np.sort(positions[1, :, 2])
numpy.sort
import sys, os Your_path = '/data/project/yinhuapark/ssl/' sys.path.append(Your_path+'ssl_make_graphs') from PygDocsGraphDataset import PygDocsGraphDataset as PDGD from torch_geometric.data import DataLoader import torch import numpy as np import random import argparse from gensim.models import Word2Vec import pandas as pd from tqdm import tqdm def show_statisctic(train_set, test_set): # min_len = 10000 # aver_len = 0 # max_len = 0 training_sent_num = [] training_vocab = set() training_words = [] training_jisjoint_words = [] for data in tqdm(train_set): training_sent_num.append(data.batch_n[-1].item() + 1) training_words.append(data.x_p.size(0)) training_jisjoint_words.append(data.x_n.size(0)) for word in data.x_n_id.data.numpy().tolist(): training_vocab.add(word) train_cs = pd.DataFrame(train_set.data.y_p.tolist())[0].value_counts().values.tolist() train_p = train_cs[-1] / train_cs[0] test_vocab = set() test_sent_num = [] intersected_vocab = set() test_words = [] test_disjoint_words = [] for data in tqdm(test_set): test_sent_num.append(data.batch_n[-1].item()+1) test_words.append(data.x_p.size(0)) test_disjoint_words.append(data.x_n.size(0)) for word in data.x_n_id.data.numpy().tolist(): test_vocab.add(word) if word in training_vocab: intersected_vocab.add(word) test_cs = pd.DataFrame(test_set.data.y_p.tolist())[0].value_counts().values.tolist() test_p = test_cs[-1] / test_cs[0] avg_trianing_sent_num = np.array(training_sent_num).mean() avg_test_sent_num= np.array(test_sent_num).mean() avg_sent_num = np.array(training_sent_num+test_sent_num).mean() avg_training_words = np.array(training_words).mean() avg_training_disjoint_words =
np.array(training_jisjoint_words)
numpy.array
from __future__ import division from scipy import signal, stats, ndimage from datetime import datetime import os import re from glob import glob import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as colors from matplotlib.patches import Rectangle import matplotlib.transforms as transforms from matplotlib.collections import LineCollection from mpl_toolkits.axes_grid1 import make_axes_locatable import warnings from ephysiopy.dacq2py import axonaIO from ephysiopy.dacq2py.tetrode_dict import TetrodeDict from ephysiopy.common import binning from ephysiopy.common.ephys_generic import FieldCalcs from ephysiopy.dacq2py.spikecalcs import SpikeCalcs from ephysiopy.common.eegcalcs import EEGCalcs from ephysiopy.dacq2py.cluster import Kluster from ephysiopy.dacq2py import tintcolours as tcols from ephysiopy.common.gridcell import SAC from itertools import combinations from mpl_toolkits.axes_grid1 import ImageGrid import skimage, skimage.morphology from skimage import feature from collections import OrderedDict warnings.filterwarnings("ignore", message="divide by zero encountered in int_scalars") warnings.filterwarnings("ignore", message="divide by zero encountered in divide") warnings.filterwarnings("ignore", message="invalid value encountered in divide") warnings.filterwarnings("ignore", message="Casting complex values to real discards the imaginary part") class Trial(axonaIO.IO, SAC, dict): """ Provides methods to plot electrophysiology data acquired using the Axona DACQ recording system and methods to extract some measures from that data The actual loading of the data is done lazily i.e. only when you ask for position data (say plotting the path the animal took in the trial) is the position data actually loaded. The class also uses as attibutes several instances of subpackages (binning.Ratemap for example) so that the code could be made more modular. Parameters ---------- filename_root : str Absolute location on the filesystem of the set of files without a suffix Attributes ---------- filename_root : str Absolute location on the filesystem of the set of files without a suffix basename : str Basename of the set of files without a suffix (everything after the last trailing slash) EEG : dacq2py.axonaIO.EEG Containing data from .eeg file EGF : dacq2py.axonaIO.EEG Containing data from .egf file STM : dacq2py.axonaIO.Stim Contains stimulation data (timestamps mostly) and header + some additions work done below POS : dacq2py.axonaIO.Pos Contains raw and post-processed position data (xy, dir, speed etc) & header TETRODE : extension of Pythons dict Each value is an instance of dacq2py.axonaIO.Tetrode. Contains methods to get cluster spike times, cluster indices etc posFilter : dict Keys are things like 'speed', 'time'; values are n x 2 arrays of range of values *to keep* setheader : dict Corresponds to the .set file for the file set. Keys/ values are all strings _available_files : list All files matching the filename_root + any valid suffix metadata : collections.OrderedDict Some basic info if the file is an "rh" one (see _parseMetaData) ratemap : dacq2py.ephys_generic.binning.Ratemap class instance See Also -------- ephysiopy.common.binning :Basic binning of data, calculation of bin sizes etc ephysiopy.common.eegcalcs : Contains filters, eeg power spectra methods ephysiopy.common.spikecalcs : Temporal measures of spike trains and extracting parameters from waveforms and clusters ephysiopy.common.fieldcalcs : Methods for extracting information from 2D ratemaps Examples -------- >>> from dacq2py.dacq2py_util import Trial >>> T = Trial(r'/media/robin/data/Dropbox/Science/Recordings/M851/M851_140908t1rh') """ def __init__(self, filename_root, **kwargs): # try and intelligently get full filename from just the root filename_root = self.getFullFile(filename_root) self.basename = os.path.basename(filename_root) self.filename_root = filename_root self._EEG = None self._EGF = None self._STM = None self._POS = None if 'volts' in kwargs: useVolts = kwargs['volts'] self.TETRODE = TetrodeDict(filename_root, volts=useVolts) # see TETRODE class above else: self.TETRODE = TetrodeDict(filename_root) self._posFilter = None # a dict used to filter pos self._setheader = None self.ratemap = None #becomes binning.RateMap instance - see POS getter property below self.spikecalcs = SpikeCalcs() self.fieldcalcs = FieldCalcs() self._isinteractive = 1 self._figNum = 1 self._min_spks = 1 self._available_files = None self._getAvailableFiles() self.metadata = OrderedDict() self.tetrodes = None self.clusters = None self.pos_weights = None if 'cm' in kwargs: self.useCm = kwargs['cm'] else: self.useCm = False try: self._parseMetaData() except: self.metadata = {'Contents': 'Not an rhayman file'} try: self.getTsAndCs() except: pass self.eeg_file = 1 def __repr__(self): return '{self.__class__.__name__}({self.filename_root})'.format(self=self) def hasFiles(self): """ Checks for some automated yaml processing """ for i in self.axona_files: if os.path.isfile(self.filename_root + i): self['has_' + i[1:]] = True else: self['has_' + i[1:]] = False def getFullFile(self, filename): """ Used to constuct filename_root in __init__ Parameters ---------- filename : str The absolute path the files being analysed here without any suffix """ if os.path.isdir(r'/home/robin/Dropbox/Science/Recordings'): pname, _ = os.path.split(filename) if len(pname) == 0: defaultDir = r'/home/robin/Dropbox/Science/Recordings' animal = filename.split('_')[0] filename = os.path.join(defaultDir, animal, filename) return filename @property def setheader(self): """ Returns ---------- dict : setheader Matches contents of .set file with keys and values all mapped as strings """ if self._setheader is None: try: self._setheader = self.getHeader(self.filename_root + '.set') except IOError: self._setheader = None return self._setheader @setheader.setter def setheader(self, value): self._setheader = value @property def ppm(self): return self.__ppm @ppm.setter def ppm(self, value): self.__ppm = value # Update POS self.POS.ppm = value # Update Ratemap self.ratemap = binning.RateMap(self.POS.xy, self.POS.dir, self.POS.speed, self.pos_weights, self.POS.ppm, self.useCm) @property def POS(self): """ Returns ------- ephysiopy.dacq2py.axonaIO.POS: Contains raw and post-processed position data """ if self._POS is None: try: self._POS = axonaIO.Pos(self.filename_root, cm=self.useCm) self._POS.postprocesspos() self._xlims = (int(self.POS.xy[0,:].min()), int(self.POS.xy[0,:].max())) self._ylims = (int(self.POS.xy[1,:].min()), int(self.POS.xy[1,:].max())) self.pos_weights = np.ravel(np.ones((1, self.POS.npos), dtype=np.float) / self.POS.pos_sample_rate) self.ratemap = binning.RateMap(self.POS.xy, self.POS.dir, self.POS.speed, self.pos_weights, self.POS.ppm, self.useCm) except IOError: self._POS = None return self._POS @POS.setter def POS(self, value): self._POS = value @property def EEG(self): """ Returns ------- ephysiopy.dacq2py.axonaIO.EEG: eeg data and header """ if self._EEG is None: try: self._EEG = axonaIO.EEG(self.filename_root, eeg_file=self.eeg_file) self.pos2eegScale = int(self.EEG.sample_rate / self.POS.pos_sample_rate) except IOError: self._EEG = None return self._EEG @EEG.setter def EEG(self, value): self._EEG = value @property def EGF(self): """ Returns ------- ephysiopy.dacq2py.axonaIO.EGF: eeg data and header from .egf file """ if self._EGF is None: try: self._EGF = axonaIO.EEG(self.filename_root, eeg_file=self.eeg_file, egf=1) self.pos2egfScale = int(self.EGF.sample_rate / self.POS.pos_sample_rate) except IOError: self._EGF = None return self._EGF @EGF.setter def EGF(self, value): self._EGF = value @property def STM(self): """ Returns ------- ephysiopy.dacq2py.axonaIO.Stim: Stimulation data and header + some extras parsed from pos, eeg and set files """ if self._STM is None: try: self._STM = axonaIO.Stim(self.filename_root) """ update the STM dict with some relevant values from the .set file and the headers of the eeg and pos files """ posHdr = self.getHeader(self.filename_root + '.pos') eegHdr = self.getHeader(self.filename_root + '.eeg') self._STM['posSampRate'] = self.getHeaderVal(posHdr, 'sample_rate') self._STM['eegSampRate'] = self.getHeaderVal(eegHdr, 'sample_rate') try: egfHdr = self.getHeader(self.filename_root + '.egf') self._STM['egfSampRate'] = self.getHeaderVal(egfHdr, 'sample_rate') except: pass stim_pwidth = int(self.setheader['stim_pwidth']) / int(1000) # get into ms self._STM['off'] = self._STM['on'] + int(stim_pwidth) """ There are a set of key / value pairs in the set file that correspond to the patterns/ protocols specified in the Stimulator menu in DACQ. Extract those items now... There are five possibe "patterns" that can be used in a trial. Those patterns consist of either "Pause (no stimulation)" or some user-defined stimulation pattern. Whether or not one of the five was used is specified in "stim_patternmask_n" where n is 1-5. Confusingly in dacqUSB these 5 things are called "Protocols" accessed from the menu Stimulator/Protocols... within that window they are actually called "Phase 1", "Phase 2" etc. To keep everything in order it's best to iterate through using a for loop as a dict is not guaranteed to be ordered and I cba to use an OrderedDict. In dacqUSB nomencalture the pattern is actually the stimulation you want to apply i.e. 10ms pulse every 150ms or whatever. The "pattern" is what is applied within every Phase. """ # phase_info : a dict for each phase that is active phase_info = {'startTime': None, 'duration': None, 'name': None, 'pulseWidth': None, 'pulsePause': None} stim_dict = {} stim_patt_dict = {} for k,v in self.setheader.items(): if k.startswith("stim_patternmask_"): if (int(v) == 1): # get the number of the phase phase_num = k[-1] stim_dict['Phase_' + phase_num] = phase_info.copy() if k.startswith("stim_patt_"): stim_patt_dict[k] = v self.patt_dict = stim_patt_dict for k,v in stim_dict.items(): phase_num = k[-1] stim_dict[k]['duration'] = int(self.setheader['stim_patterntimes_' + phase_num]) phase_name = self.setheader['stim_patternnames_' + phase_num] stim_dict[k]['name'] = phase_name if not (phase_name.startswith("Pause")): # find the matching string in the stim_patt_dict for kk,vv in stim_patt_dict.items(): split_str = vv.split('"') patt_name = split_str[1] if (patt_name == phase_name): ss = split_str[2].split() stim_dict[k]['pulseWidth'] = int(ss[0]) stim_dict[k]['pulsePause'] = int(ss[2]) # make the dict ordered by Phase number self.STM['stim_params'] = OrderedDict(sorted(stim_dict.items())) except IOError: self._STM = None return self._STM @STM.setter def STM(self, value): self._STM = value @property def posFilter(self): """ self.posFilter : dict Keys are strings such as 'speed', 'time' etc. Values are n x 2 arrays of values *to keep* """ return self._posFilter @posFilter.setter def posFilter(self, value): """Filters data depending on the filter specified in the dictionary value Parameters ---------- value : dict Filter dict. Legal keys include: 'time', 'dir', 'speed', 'xrange', 'yrange'. If key is 'time', values must be a n x 2 numpy array that specifies the times to keep in SECONDS. If key is 'dir' values must be a two element list/ array that specifies the directions to keep in DEGREES NB the values can be singular strings of either 'w', 'e', 'n' or 's' which filters for a +/-45 degree range around that cardinal direction. If key is 'speed' values are a 2 element list/ array to keep specified in m/s. If key is 'xrange' or 'yrange' values are a two element list/ array that specify the x or y values to keep in PIXELS. Returns ------- dacq2py_util.Trial : object The Trial object is modified in place and all the relevant variables are filtered and changed to numpy masked arrays Examples -------- >>> import numpy as np >>> T = dacq2py_util.Trial(r'D:\M851\M851_140908t1rh') >>> T.posFilter = {'time': np.array([600,1200])} """ # If masked, remove all masks on all aspects of data if np.ma.is_masked(self.POS.speed): self.POS.speed.mask = np.ma.nomask if np.ma.is_masked(self.POS.dir): self.POS.dir.mask = np.ma.nomask if np.ma.is_masked(self.POS.xy): self.POS.xy.mask = np.ma.nomask if np.ma.is_masked(self.EEG.eeg): self.EEG.eeg.mask = np.ma.nomask if np.ma.is_masked(self.EGF.eeg): self.EGF.eeg.mask = np.ma.nomask if np.any(self.EEG.EEGphase): if np.ma.is_masked(self.EEG.EEGphase): self.EEG.EEGphase.mask = np.ma.nomask if self.TETRODE:#true if TETRODE dict has entries for tet in self.TETRODE.keys(): if np.ma.is_masked(self.TETRODE[tet].waveforms): self.TETRODE[tet].waveforms.mask = np.ma.nomask self.TETRODE[tet].spk_ts.mask = np.ma.nomask if value is None: return idx = self.POS.filterPos(value) if self.TETRODE: for tet in self.TETRODE.keys(): posSamps = self.TETRODE[tet].getPosSamples() common = np.in1d(posSamps, np.nonzero(idx)[1]) # Mask timestamps first as this is a vector, then expand # out the mask array (common) self.TETRODE[tet].spk_ts = np.ma.masked_where(common, self.TETRODE[tet].spk_ts) common = common[:, None, None] common = np.repeat(np.repeat(common, 4, axis=1), 50, axis=-1) self.TETRODE[tet].waveforms = np.ma.masked_where(common, self.TETRODE[tet].waveforms) self.POS.speed = np.squeeze(np.ma.masked_where(idx, np.expand_dims(self.POS.speed,0))) self.POS.dir = np.squeeze(np.ma.masked_where(idx, np.expand_dims(self.POS.dir,0))) posMask = np.squeeze(idx) posMask = np.vstack((posMask, posMask)) self.POS.xy = np.ma.masked_where(posMask, self.POS.xy) self.EEG.eeg = np.ma.masked_where(np.repeat(np.squeeze(idx), self.pos2eegScale), self.EEG.eeg) if self.EGF: self.EGF.eeg = np.ma.masked_where(np.repeat(np.squeeze(idx), self.pos2egfScale), self.EGF.eeg) if np.any(self.EEG.EEGphase): self.EEG.EEGphase = np.ma.masked_where(np.repeat(np.squeeze(idx), self.pos2eegScale), self.EEG.EEGphase) self._posFilter = value def print_stim_dict(self): """ Prints out keys/ values of STM dict """ for k,v in self.STM.items(): print(k, v) def _filterForStm(self, laser=None): """ Cycles through the STM dict and fiters for laser on / off periods and applies the filter to the pos and eeg data NB tetrode data not dealt with yet Parameters ---------- laser : bool Whether to filter for laser stimulation events """ if laser is not None: times = [0] phaseType = [] for k, d in self.STM['stim_params'].items(): for kk, v in d.items(): if 'duration' in kk: times.append(v) if 'name' in kk: phaseType.append(v) periods = np.cumsum(times) period_bounds = dict.fromkeys(set(phaseType), []) for pk in period_bounds.keys(): bounds = [] for k, d in self.STM['stim_params'].items(): if pk == d['name']: idx = int(k.split('_')[1]) bounds.append(periods[idx-1:idx+1]) period_bounds[pk] = bounds for k, v in period_bounds.items(): if laser == 0: if 'Pause' in k: self.posFilter = {'time': np.array(v)} elif laser == 1: if 'Pause' not in k: self.posFilter = {'time': np.array(v)} def _getAvailableFiles(self): self._available_files = glob(self.filename_root + '*') def _getMap(self, tetrode=None, cluster=None, var2bin='pos', binsize=3, smooth_sz=5, smooth=True, **kwargs): """ Returns the ratemap (smoothed or unsmoothed) for a given tetrode and cluster Parameters ---------- tetrode : int the tetrode you want to look at cluster : int, 1xn array/ list a single number or list (or 1xn array) of the clusters to plot binsize : int, optional size of bins. Defaults to 3 smooth_sz : int the width of the smoothing kernel (see **kwargs for more) var2bin : str (Optional) Defaults to 'pos'. Which variable to bin. Can be either 'pos', 'dir' or 'speed'. Works with masked arrays smooth : bool, optional. Defaults to true. Whether to smooth the data or not **kwargs : extra arguments include: 'gaussian' - the smoothing kernel used is gaussian in shape not the default boxcar 'after' - smoothing of the pos and spike maps is done after spikes are divided by pos 'shuffle' - the time in ms by how much to shift the spikes by. Used for generated distributions for null hypothesis testing Returns ------- rmap : np.array The data binned up as requested """ if 'pos' in var2bin: varType = 'xy' else: varType = var2bin if tetrode is None: idx = np.arange(0, self.POS.npos) mapType = 'pos' else: idx = self.TETRODE[tetrode].getClustIdx(cluster) mapType = 'rate' spk_weights = np.bincount(idx, minlength=self.POS.npos) if 'shuffle' in kwargs.keys(): spk_weights = np.roll(spk_weights, int(kwargs['shuffle']) * 50) # * 50 to go from seconds into pos_samples if np.ma.is_masked(self.POS.xy): mask = ~
np.ma.getmask(self.POS.xy[0])
numpy.ma.getmask
# Originated from https://github.com/ellisdg/3DUnetCNN/blob/master/unet3d/utils/patches.py import numpy as np def compute_patch_indices(image_shape, patch_size, overlap, start=None): if isinstance(overlap, int): overlap = np.asarray([overlap] * len(image_shape)) if start is None: n_patches = np.ceil(image_shape / (patch_size - overlap)) overflow = (patch_size - overlap) * n_patches - image_shape + overlap start = -np.ceil(overflow/2) elif isinstance(start, int): start = np.asarray([start] * len(image_shape)) stop = image_shape + start step = patch_size - overlap return get_set_of_patch_indices(start, stop, step) def get_set_of_patch_indices(start, stop, step): return np.asarray(np.mgrid[start[0]:stop[0]:step[0], start[1]:stop[1]:step[1], start[2]:stop[2]:step[2]].reshape(3, -1).T, dtype=np.int) def get_random_patch_index(image_shape, patch_shape): """ Returns a random corner index for a patch. If this is used during training, the middle pixels will be seen by the model way more often than the edge pixels (which is probably a bad thing). :param image_shape: Shape of the image :param patch_shape: Shape of the patch :return: a tuple containing the corner index which can be used to get a patch from an image """ return get_random_nd_index(np.subtract(image_shape, patch_shape)) def get_random_nd_index(index_max): return tuple([np.random.choice(index_max[index] + 1) for index in range(len(index_max))]) def get_patch_from_3d_data(data, patch_shape, patch_index): """ Returns a patch from a numpy array. :param data: numpy array from which to get the patch. :param patch_shape: shape/size of the patch. :param patch_index: corner index of the patch. :return: numpy array take from the data with the patch shape specified. """ patch_index = np.asarray(patch_index, dtype=np.int16) patch_shape = np.asarray(patch_shape) image_shape = data.shape[-3:] if np.any(patch_index < 0) or np.any((patch_index + patch_shape) > image_shape): data, patch_index = fix_out_of_bound_patch_attempt(data, patch_shape, patch_index) return data[..., patch_index[0]:patch_index[0]+patch_shape[0], patch_index[1]:patch_index[1]+patch_shape[1], patch_index[2]:patch_index[2]+patch_shape[2]] def fix_out_of_bound_patch_attempt(data, patch_shape, patch_index, ndim=3): """ Pads the data and alters the patch index so that a patch will be correct. :param data: :param patch_shape: :param patch_index: :return: padded data, fixed patch index """ image_shape = data.shape[-ndim:] pad_before = np.abs((patch_index < 0) * patch_index) pad_after = np.abs(((patch_index + patch_shape) > image_shape) * ((patch_index + patch_shape) - image_shape)) pad_args = np.stack([pad_before, pad_after], axis=1) if pad_args.shape[0] < len(data.shape): pad_args = [[0, 0]] * (len(data.shape) - pad_args.shape[0]) + pad_args.tolist() data = np.pad(data, pad_args, mode="edge") patch_index += pad_before return data, patch_index def reconstruct_from_patches(patches, patch_indices, data_shape, default_value=0): """ Reconstructs an array of the original shape from the lists of patches and corresponding patch indices. Overlapping patches are averaged. :param patches: List of numpy array patches. :param patch_indices: List of indices that corresponds to the list of patches. :param data_shape: Shape of the array from which the patches were extracted. :param default_value: The default value of the resulting data. if the patch coverage is complete, this value will be overwritten. :return: numpy array containing the data reconstructed by the patches. """ data = np.ones(data_shape) * default_value image_shape = data_shape[-3:] count = np.zeros(data_shape, dtype=np.int) for patch, index in zip(patches, patch_indices): image_patch_shape = patch.shape[-3:] if np.any(index < 0): fix_patch = np.asarray((index < 0) * np.abs(index), dtype=np.int) patch = patch[..., fix_patch[0]:, fix_patch[1]:, fix_patch[2]:] index[index < 0] = 0 if np.any((index + image_patch_shape) >= image_shape): fix_patch = np.asarray(image_patch_shape - (((index + image_patch_shape) >= image_shape) * ((index + image_patch_shape) - image_shape)), dtype=np.int) patch = patch[..., :fix_patch[0], :fix_patch[1], :fix_patch[2]] patch_index = np.zeros(data_shape, dtype=np.bool) patch_index[..., index[0]:index[0]+patch.shape[-3], index[1]:index[1]+patch.shape[-2], index[2]:index[2]+patch.shape[-1]] = True patch_data = np.zeros(data_shape) patch_data[patch_index] = patch.flatten() new_data_index = np.logical_and(patch_index,
np.logical_not(count > 0)
numpy.logical_not
from __future__ import division, absolute_import, print_function try: # Accessing collections abstract classes from collections # has been deprecated since Python 3.3 import collections.abc as collections_abc except ImportError: import collections as collections_abc import tempfile import sys import shutil import warnings import operator import io import itertools import functools import ctypes import os import gc import weakref import pytest from contextlib import contextmanager from numpy.core.numeric import pickle if sys.version_info[0] >= 3: import builtins else: import __builtin__ as builtins from decimal import Decimal import numpy as np from numpy.compat import strchar, unicode import numpy.core._multiarray_tests as _multiarray_tests from numpy.testing import ( assert_, assert_raises, assert_warns, assert_equal, assert_almost_equal, assert_array_equal, assert_raises_regex, assert_array_almost_equal, assert_allclose, IS_PYPY, HAS_REFCOUNT, assert_array_less, runstring, temppath, suppress_warnings ) from numpy.core.tests._locales import CommaDecimalPointLocale # Need to test an object that does not fully implement math interface from datetime import timedelta, datetime if sys.version_info[:2] > (3, 2): # In Python 3.3 the representation of empty shape, strides and sub-offsets # is an empty tuple instead of None. # https://docs.python.org/dev/whatsnew/3.3.html#api-changes EMPTY = () else: EMPTY = None def _aligned_zeros(shape, dtype=float, order="C", align=None): """ Allocate a new ndarray with aligned memory. The ndarray is guaranteed *not* aligned to twice the requested alignment. Eg, if align=4, guarantees it is not aligned to 8. If align=None uses dtype.alignment.""" dtype = np.dtype(dtype) if dtype == np.dtype(object): # Can't do this, fall back to standard allocation (which # should always be sufficiently aligned) if align is not None: raise ValueError("object array alignment not supported") return np.zeros(shape, dtype=dtype, order=order) if align is None: align = dtype.alignment if not hasattr(shape, '__len__'): shape = (shape,) size = functools.reduce(operator.mul, shape) * dtype.itemsize buf = np.empty(size + 2*align + 1, np.uint8) ptr = buf.__array_interface__['data'][0] offset = ptr % align if offset != 0: offset = align - offset if (ptr % (2*align)) == 0: offset += align # Note: slices producing 0-size arrays do not necessarily change # data pointer --- so we use and allocate size+1 buf = buf[offset:offset+size+1][:-1] data = np.ndarray(shape, dtype, buf, order=order) data.fill(0) return data class TestFlags(object): def setup(self): self.a = np.arange(10) def test_writeable(self): mydict = locals() self.a.flags.writeable = False assert_raises(ValueError, runstring, 'self.a[0] = 3', mydict) assert_raises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict) self.a.flags.writeable = True self.a[0] = 5 self.a[0] = 0 def test_writeable_from_readonly(self): # gh-9440 - make sure fromstring, from buffer on readonly buffers # set writeable False data = b'\x00' * 100 vals = np.frombuffer(data, 'B') assert_raises(ValueError, vals.setflags, write=True) types = np.dtype( [('vals', 'u1'), ('res3', 'S4')] ) values = np.core.records.fromstring(data, types) vals = values['vals'] assert_raises(ValueError, vals.setflags, write=True) def test_writeable_from_buffer(self): data = bytearray(b'\x00' * 100) vals = np.frombuffer(data, 'B') assert_(vals.flags.writeable) vals.setflags(write=False) assert_(vals.flags.writeable is False) vals.setflags(write=True) assert_(vals.flags.writeable) types = np.dtype( [('vals', 'u1'), ('res3', 'S4')] ) values = np.core.records.fromstring(data, types) vals = values['vals'] assert_(vals.flags.writeable) vals.setflags(write=False) assert_(vals.flags.writeable is False) vals.setflags(write=True) assert_(vals.flags.writeable) @pytest.mark.skipif(sys.version_info[0] < 3, reason="Python 2 always copies") def test_writeable_pickle(self): import pickle # Small arrays will be copied without setting base. # See condition for using PyArray_SetBaseObject in # array_setstate. a = np.arange(1000) for v in range(pickle.HIGHEST_PROTOCOL): vals = pickle.loads(pickle.dumps(a, v)) assert_(vals.flags.writeable) assert_(isinstance(vals.base, bytes)) def test_otherflags(self): assert_equal(self.a.flags.carray, True) assert_equal(self.a.flags['C'], True) assert_equal(self.a.flags.farray, False) assert_equal(self.a.flags.behaved, True) assert_equal(self.a.flags.fnc, False) assert_equal(self.a.flags.forc, True) assert_equal(self.a.flags.owndata, True) assert_equal(self.a.flags.writeable, True) assert_equal(self.a.flags.aligned, True) with assert_warns(DeprecationWarning): assert_equal(self.a.flags.updateifcopy, False) with assert_warns(DeprecationWarning): assert_equal(self.a.flags['U'], False) assert_equal(self.a.flags['UPDATEIFCOPY'], False) assert_equal(self.a.flags.writebackifcopy, False) assert_equal(self.a.flags['X'], False) assert_equal(self.a.flags['WRITEBACKIFCOPY'], False) def test_string_align(self): a = np.zeros(4, dtype=np.dtype('|S4')) assert_(a.flags.aligned) # not power of two are accessed byte-wise and thus considered aligned a = np.zeros(5, dtype=np.dtype('|S4')) assert_(a.flags.aligned) def test_void_align(self): a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")])) assert_(a.flags.aligned) class TestHash(object): # see #3793 def test_int(self): for st, ut, s in [(np.int8, np.uint8, 8), (np.int16, np.uint16, 16), (np.int32, np.uint32, 32), (np.int64, np.uint64, 64)]: for i in range(1, s): assert_equal(hash(st(-2**i)), hash(-2**i), err_msg="%r: -2**%d" % (st, i)) assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (st, i - 1)) assert_equal(hash(st(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (st, i)) i = max(i - 1, 1) assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (ut, i - 1)) assert_equal(hash(ut(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (ut, i)) class TestAttributes(object): def setup(self): self.one = np.arange(10) self.two = np.arange(20).reshape(4, 5) self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6) def test_attributes(self): assert_equal(self.one.shape, (10,)) assert_equal(self.two.shape, (4, 5)) assert_equal(self.three.shape, (2, 5, 6)) self.three.shape = (10, 3, 2) assert_equal(self.three.shape, (10, 3, 2)) self.three.shape = (2, 5, 6) assert_equal(self.one.strides, (self.one.itemsize,)) num = self.two.itemsize assert_equal(self.two.strides, (5*num, num)) num = self.three.itemsize assert_equal(self.three.strides, (30*num, 6*num, num)) assert_equal(self.one.ndim, 1) assert_equal(self.two.ndim, 2) assert_equal(self.three.ndim, 3) num = self.two.itemsize assert_equal(self.two.size, 20) assert_equal(self.two.nbytes, 20*num) assert_equal(self.two.itemsize, self.two.dtype.itemsize) assert_equal(self.two.base, np.arange(20)) def test_dtypeattr(self): assert_equal(self.one.dtype, np.dtype(np.int_)) assert_equal(self.three.dtype, np.dtype(np.float_)) assert_equal(self.one.dtype.char, 'l') assert_equal(self.three.dtype.char, 'd') assert_(self.three.dtype.str[0] in '<>') assert_equal(self.one.dtype.str[1], 'i') assert_equal(self.three.dtype.str[1], 'f') def test_int_subclassing(self): # Regression test for https://github.com/numpy/numpy/pull/3526 numpy_int = np.int_(0) if sys.version_info[0] >= 3: # On Py3k int_ should not inherit from int, because it's not # fixed-width anymore assert_equal(isinstance(numpy_int, int), False) else: # Otherwise, it should inherit from int... assert_equal(isinstance(numpy_int, int), True) # ... and fast-path checks on C-API level should also work from numpy.core._multiarray_tests import test_int_subclass assert_equal(test_int_subclass(numpy_int), True) def test_stridesattr(self): x = self.one def make_array(size, offset, strides): return np.ndarray(size, buffer=x, dtype=int, offset=offset*x.itemsize, strides=strides*x.itemsize) assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) assert_raises(ValueError, make_array, 4, 4, -2) assert_raises(ValueError, make_array, 4, 2, -1) assert_raises(ValueError, make_array, 8, 3, 1) assert_equal(make_array(8, 3, 0), np.array([3]*8)) # Check behavior reported in gh-2503: assert_raises(ValueError, make_array, (2, 3), 5, np.array([-2, -3])) make_array(0, 0, 10) def test_set_stridesattr(self): x = self.one def make_array(size, offset, strides): try: r = np.ndarray([size], dtype=int, buffer=x, offset=offset*x.itemsize) except Exception as e: raise RuntimeError(e) r.strides = strides = strides*x.itemsize return r assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9])) assert_raises(ValueError, make_array, 4, 4, -2) assert_raises(ValueError, make_array, 4, 2, -1) assert_raises(RuntimeError, make_array, 8, 3, 1) # Check that the true extent of the array is used. # Test relies on as_strided base not exposing a buffer. x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0)) def set_strides(arr, strides): arr.strides = strides assert_raises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize)) # Test for offset calculations: x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1], shape=(10,), strides=(-1,)) assert_raises(ValueError, set_strides, x[::-1], -1) a = x[::-1] a.strides = 1 a[::2].strides = 2 def test_fill(self): for t in "?bhilqpBHILQPfdgFDGO": x = np.empty((3, 2, 1), t) y = np.empty((3, 2, 1), t) x.fill(1) y[...] = 1 assert_equal(x, y) def test_fill_max_uint64(self): x = np.empty((3, 2, 1), dtype=np.uint64) y = np.empty((3, 2, 1), dtype=np.uint64) value = 2**64 - 1 y[...] = value x.fill(value) assert_array_equal(x, y) def test_fill_struct_array(self): # Filling from a scalar x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8') x.fill(x[0]) assert_equal(x['f1'][1], x['f1'][0]) # Filling from a tuple that can be converted # to a scalar x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')]) x.fill((3.5, -2)) assert_array_equal(x['a'], [3.5, 3.5]) assert_array_equal(x['b'], [-2, -2]) class TestArrayConstruction(object): def test_array(self): d = np.ones(6) r = np.array([d, d]) assert_equal(r, np.ones((2, 6))) d = np.ones(6) tgt = np.ones((2, 6)) r = np.array([d, d]) assert_equal(r, tgt) tgt[1] = 2 r = np.array([d, d + 1]) assert_equal(r, tgt) d = np.ones(6) r = np.array([[d, d]]) assert_equal(r, np.ones((1, 2, 6))) d = np.ones(6) r = np.array([[d, d], [d, d]]) assert_equal(r, np.ones((2, 2, 6))) d = np.ones((6, 6)) r = np.array([d, d]) assert_equal(r, np.ones((2, 6, 6))) d = np.ones((6, )) r = np.array([[d, d + 1], d + 2]) assert_equal(len(r), 2) assert_equal(r[0], [d, d + 1]) assert_equal(r[1], d + 2) tgt = np.ones((2, 3), dtype=bool) tgt[0, 2] = False tgt[1, 0:2] = False r = np.array([[True, True, False], [False, False, True]]) assert_equal(r, tgt) r = np.array([[True, False], [True, False], [False, True]]) assert_equal(r, tgt.T) def test_array_empty(self): assert_raises(TypeError, np.array) def test_array_copy_false(self): d = np.array([1, 2, 3]) e = np.array(d, copy=False) d[1] = 3 assert_array_equal(e, [1, 3, 3]) e = np.array(d, copy=False, order='F') d[1] = 4 assert_array_equal(e, [1, 4, 3]) e[2] = 7 assert_array_equal(d, [1, 4, 7]) def test_array_copy_true(self): d = np.array([[1,2,3], [1, 2, 3]]) e = np.array(d, copy=True) d[0, 1] = 3 e[0, 2] = -7 assert_array_equal(e, [[1, 2, -7], [1, 2, 3]]) assert_array_equal(d, [[1, 3, 3], [1, 2, 3]]) e = np.array(d, copy=True, order='F') d[0, 1] = 5 e[0, 2] = 7 assert_array_equal(e, [[1, 3, 7], [1, 2, 3]]) assert_array_equal(d, [[1, 5, 3], [1,2,3]]) def test_array_cont(self): d = np.ones(10)[::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.ascontiguousarray(d).flags.f_contiguous) assert_(np.asfortranarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) d = np.ones((10, 10))[::2,::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) class TestAssignment(object): def test_assignment_broadcasting(self): a = np.arange(6).reshape(2, 3) # Broadcasting the input to the output a[...] = np.arange(3) assert_equal(a, [[0, 1, 2], [0, 1, 2]]) a[...] = np.arange(2).reshape(2, 1) assert_equal(a, [[0, 0, 0], [1, 1, 1]]) # For compatibility with <= 1.5, a limited version of broadcasting # the output to the input. # # This behavior is inconsistent with NumPy broadcasting # in general, because it only uses one of the two broadcasting # rules (adding a new "1" dimension to the left of the shape), # applied to the output instead of an input. In NumPy 2.0, this kind # of broadcasting assignment will likely be disallowed. a[...] = np.arange(6)[::-1].reshape(1, 2, 3) assert_equal(a, [[5, 4, 3], [2, 1, 0]]) # The other type of broadcasting would require a reduction operation. def assign(a, b): a[...] = b assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3)) def test_assignment_errors(self): # Address issue #2276 class C: pass a = np.zeros(1) def assign(v): a[0] = v assert_raises((AttributeError, TypeError), assign, C()) assert_raises(ValueError, assign, [1]) def test_unicode_assignment(self): # gh-5049 from numpy.core.numeric import set_string_function @contextmanager def inject_str(s): """ replace ndarray.__str__ temporarily """ set_string_function(lambda x: s, repr=False) try: yield finally: set_string_function(None, repr=False) a1d = np.array([u'test']) a0d = np.array(u'done') with inject_str(u'bad'): a1d[0] = a0d # previously this would invoke __str__ assert_equal(a1d[0], u'done') # this would crash for the same reason np.array([np.array(u'\xe5\xe4\xf6')]) def test_stringlike_empty_list(self): # gh-8902 u = np.array([u'done']) b = np.array([b'done']) class bad_sequence(object): def __getitem__(self): pass def __len__(self): raise RuntimeError assert_raises(ValueError, operator.setitem, u, 0, []) assert_raises(ValueError, operator.setitem, b, 0, []) assert_raises(ValueError, operator.setitem, u, 0, bad_sequence()) assert_raises(ValueError, operator.setitem, b, 0, bad_sequence()) def test_longdouble_assignment(self): # only relevant if longdouble is larger than float # we're looking for loss of precision for dtype in (np.longdouble, np.longcomplex): # gh-8902 tinyb = np.nextafter(np.longdouble(0), 1).astype(dtype) tinya = np.nextafter(np.longdouble(0), -1).astype(dtype) # construction tiny1d = np.array([tinya]) assert_equal(tiny1d[0], tinya) # scalar = scalar tiny1d[0] = tinyb assert_equal(tiny1d[0], tinyb) # 0d = scalar tiny1d[0, ...] = tinya assert_equal(tiny1d[0], tinya) # 0d = 0d tiny1d[0, ...] = tinyb[...] assert_equal(tiny1d[0], tinyb) # scalar = 0d tiny1d[0] = tinyb[...] assert_equal(tiny1d[0], tinyb) arr = np.array([np.array(tinya)]) assert_equal(arr[0], tinya) def test_cast_to_string(self): # cast to str should do "str(scalar)", not "str(scalar.item())" # Example: In python2, str(float) is truncated, so we want to avoid # str(np.float64(...).item()) as this would incorrectly truncate. a = np.zeros(1, dtype='S20') a[:] = np.array(['1.12345678901234567890'], dtype='f8') assert_equal(a[0], b"1.1234567890123457") class TestDtypedescr(object): def test_construction(self): d1 = np.dtype('i4') assert_equal(d1, np.dtype(np.int32)) d2 = np.dtype('f8') assert_equal(d2, np.dtype(np.float64)) def test_byteorders(self): assert_(np.dtype('<i4') != np.dtype('>i4')) assert_(np.dtype([('a', '<i4')]) != np.dtype([('a', '>i4')])) def test_structured_non_void(self): fields = [('a', '<i2'), ('b', '<i2')] dt_int = np.dtype(('i4', fields)) assert_equal(str(dt_int), "(numpy.int32, [('a', '<i2'), ('b', '<i2')])") # gh-9821 arr_int = np.zeros(4, dt_int) assert_equal(repr(arr_int), "array([0, 0, 0, 0], dtype=(numpy.int32, [('a', '<i2'), ('b', '<i2')]))") class TestZeroRank(object): def setup(self): self.d = np.array(0), np.array('x', object) def test_ellipsis_subscript(self): a, b = self.d assert_equal(a[...], 0) assert_equal(b[...], 'x') assert_(a[...].base is a) # `a[...] is a` in numpy <1.9. assert_(b[...].base is b) # `b[...] is b` in numpy <1.9. def test_empty_subscript(self): a, b = self.d assert_equal(a[()], 0) assert_equal(b[()], 'x') assert_(type(a[()]) is a.dtype.type) assert_(type(b[()]) is str) def test_invalid_subscript(self): a, b = self.d assert_raises(IndexError, lambda x: x[0], a) assert_raises(IndexError, lambda x: x[0], b) assert_raises(IndexError, lambda x: x[np.array([], int)], a) assert_raises(IndexError, lambda x: x[np.array([], int)], b) def test_ellipsis_subscript_assignment(self): a, b = self.d a[...] = 42 assert_equal(a, 42) b[...] = '' assert_equal(b.item(), '') def test_empty_subscript_assignment(self): a, b = self.d a[()] = 42 assert_equal(a, 42) b[()] = '' assert_equal(b.item(), '') def test_invalid_subscript_assignment(self): a, b = self.d def assign(x, i, v): x[i] = v assert_raises(IndexError, assign, a, 0, 42) assert_raises(IndexError, assign, b, 0, '') assert_raises(ValueError, assign, a, (), '') def test_newaxis(self): a, b = self.d assert_equal(a[np.newaxis].shape, (1,)) assert_equal(a[..., np.newaxis].shape, (1,)) assert_equal(a[np.newaxis, ...].shape, (1,)) assert_equal(a[..., np.newaxis].shape, (1,)) assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1)) assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) assert_equal(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a, b = self.d def subscript(x, i): x[i] assert_raises(IndexError, subscript, a, (np.newaxis, 0)) assert_raises(IndexError, subscript, a, (np.newaxis,)*50) def test_constructor(self): x = np.ndarray(()) x[()] = 5 assert_equal(x[()], 5) y =
np.ndarray((), buffer=x)
numpy.ndarray
# Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for telluride_decoding.infer_decoder.""" import io import os import sys from absl import flags from absl import logging from absl.testing import absltest from absl.testing import parameterized import matplotlib # pylint: disable=g-import-not-at-top matplotlib.use('Agg') # Needed for plotting to a file, before the next import import matplotlib.pyplot as plt import mock import numpy as np from telluride_decoding import brain_data from telluride_decoding import infer_decoder from telluride_decoding import ingest import tensorflow.compat.v2 as tf flags.DEFINE_string( 'tmp_dir', os.environ.get('TMPDIR') or '/tmp', 'Temporary directory location.') FLAGS = flags.FLAGS @tf.function def _linear_model(input_dict): """The simplest possible linear model for testing. Args: input_dict: A TF dataset, only one field needed (input_1) containing the EEG data from which we predict intensity. Returns: The predicted intensity """ eeg = input_dict['input_1'] return _eeg_to_intensity(eeg) @tf.function def _cca_model(input_dict, cca_dims=2): """The simplest possible CCA model for testing. Args: input_dict: A TF dataset with two fields that are rotated via CCA. cca_dims: How many CCA dimensions to compute. Returns: A concatenated pair of arrays with the best correlation. """ return tf.concat((input_dict['input_1'][:, 0:cca_dims], # EEG data input_dict['input_2'][:, 0:cca_dims]), # Intensity data axis=1) def _eeg_to_intensity(eeg): """Intensity is uniform random between [0, 1], eeg is [-1, 1].""" return eeg/2.0 + 0.5 def _intensity_to_eeg(intensity): """Intensity is uniform random between [0, 1], eeg is [-1, 1].""" return (intensity - 0.5)*2.0 _NUM_TEST_POINTS = 1000 # Arbitrary for testing. class InferDecoderTest(parameterized.TestCase): def setUp(self): """Stores and prepares tf.dataset tests with three kinds of test data. These data are: Plain training data, More training data, but with input and output mixed up for null test, Test data which switches attention periodically. """ super(InferDecoderTest, self).setUp() params = self.get_default_params() attended_speaker = 'intensity1' self._train_filename = self.create_sample_data_file(with_noise=False, with_switches=False) self._train_data = infer_decoder.create_dataset(self._train_filename, params, attended_speaker) self._mixed_data = infer_decoder.create_dataset(self._train_filename, params, attended_speaker, mixup_batch=True) self._test_filename = self.create_sample_data_file(with_noise=False, with_switches=True) self._test_data = infer_decoder.create_dataset(self._test_filename, params, attended_speaker) def create_sample_data_file(self, test_name='test', num_dimensions=4, with_switches=False, with_noise=False): """Create a TFRecord data file with two intensity profiles and EEG data.""" intensity1 = np.random.rand(_NUM_TEST_POINTS, num_dimensions) intensity2 = np.random.rand(_NUM_TEST_POINTS, num_dimensions) speaker_flag = np.zeros((_NUM_TEST_POINTS), dtype=np.int32) if with_switches: # Switch to speaker 2 for second half speaker_flag[_NUM_TEST_POINTS//2:] = 1 eeg = np.zeros((_NUM_TEST_POINTS, num_dimensions)) eeg[speaker_flag == 0, :] = _intensity_to_eeg( intensity1[speaker_flag == 0, :]) eeg[speaker_flag == 1, :] = _intensity_to_eeg( intensity2[speaker_flag == 1, :]) if with_noise: for i in range(num_dimensions): frac = i/float(num_dimensions) eeg[:, i] = (1-frac)*eeg[:, i] + frac*np.random.rand(_NUM_TEST_POINTS,) data_dict = {'intensity1': intensity1, 'intensity2': intensity2, 'attended_speaker': speaker_flag.astype(np.float32), 'eeg': eeg, } brain_trial = ingest.BrainTrial(test_name) brain_trial.model_features = data_dict data_dir = self.create_tempdir().full_path brain_trial.write_data_as_tfrecords(data_dir) return os.path.join(data_dir, test_name + '.tfrecords') def get_default_params(self): return {'input_field': ['eeg'], 'pre_context': 0, 'post_context': 0, 'input2_pre_context': 0, 'input2_post_context': 0, } def test_sample_data_file(self): """Basic test to make sure we can create the data file and it has data.""" num_dimensions = 4 features = brain_data.discover_feature_shapes(self._train_filename) print('sample_data_file features are:', features) self.assertEqual(features['eeg'].shape, [num_dimensions]) self.assertEqual(features['intensity1'].shape, [num_dimensions]) self.assertEqual(features['intensity2'].shape, [num_dimensions]) count, error = brain_data.count_tfrecords(self._train_filename) self.assertEqual(count, _NUM_TEST_POINTS) self.assertFalse(error) def test_conversions(self): """Makes sure that the model mapping is invertable.""" data = np.random.rand(1000) converted = _eeg_to_intensity(_intensity_to_eeg(data)) np.testing.assert_allclose(data, converted, rtol=1e-5) def test_create_dataset(self): """Test to see if we can create the right data file for testing a model.""" num_batches = 0 for input_data, output_data in self._test_data.take(1): predicted_intensity = _eeg_to_intensity(input_data['input_1'].numpy()) print('Types:', predicted_intensity.dtype, output_data.numpy().dtype) print('Shapes:', predicted_intensity.shape, output_data.numpy().shape) np.testing.assert_allclose(predicted_intensity, output_data.numpy(), atol=1e-7, rtol=1e-4) num_batches += 1 self.assertGreater(num_batches, 0) def test_correlation_calculation(self): num_batches = 50 # Arbitrary batch_size = 3400 # Arbitrary total_points = num_batches * batch_size x = np.random.randn(total_points, 3) + 1.2 y = x*3 + 3.1 decoder = infer_decoder.LinearRegressionDecoder(_linear_model) for i in range(num_batches): s = i*batch_size e = s + batch_size decoder.add_data_correlator(x[s:e, :], y[s:e, :]) r = decoder.compute_correlation(x, y) np.testing.assert_allclose(np.mean(r), 1, rtol=1e-5) def test_correlation_save_model(self): num_batches = 50 # Arbitrary batch_size = 340 # Arbitrary total_points = num_batches * batch_size x = np.random.randn(total_points, 3) + 1.2 y = x*3 + 3.1 decoder = infer_decoder.LinearRegressionDecoder(_linear_model) decoder.add_data_correlator(x, y) x_new = np.random.randn(total_points, 3) + 1.2 y_new = x_new*3 + 3.1 r = decoder.compute_correlation(x_new, y_new) tmp_dir = flags.FLAGS.test_tmpdir or '/tmp' corr_save_dir = os.path.join(tmp_dir, 'corr_params.json') decoder.save_parameters(corr_save_dir) decoder_loaded = infer_decoder.LinearRegressionDecoder(_linear_model) decoder_loaded.restore_parameters(corr_save_dir) r_loaded = decoder_loaded.compute_correlation(x_new, y_new) np.testing.assert_equal(r_loaded, r) def test_linear_model(self): """Makes sure our sample TF model performs as expected.""" intensity = np.arange(10) - 5.1 # Arbitrary set of non-positive, non-ints eeg = _intensity_to_eeg(intensity) prediction = _linear_model({'input_1': eeg}) np.testing.assert_allclose(intensity, prediction) def test_cca_data(self): """Checks the data is being loaded into the input_dict correctly for CCA.""" def pearson_correlation(x, y): """Computes the Pearson correlation coefficient between tensors of data. This routine computes a vector correlation (ala cosine distance). Args: x: one of two input arrays. y: second of two input arrays. Returns: scalar correlation coefficient. """ # From: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient x_m = x - tf.math.reduce_mean(x, axis=0) y_m = y - tf.math.reduce_mean(y, axis=0) return tf.divide( tf.math.reduce_sum(tf.multiply(x_m, y_m), axis=0), tf.multiply(tf.math.sqrt(tf.math.reduce_sum(tf.math.square(x_m), axis=0)), tf.math.sqrt(tf.math.reduce_sum(tf.math.square(y_m), axis=0)))) for input_dict, _ in self._test_data.take(1): self.assertGreater(np.mean(np.abs(input_dict['input_1'] - input_dict['input_2'])), 0.1) r = pearson_correlation(input_dict['input_1'], input_dict['input_2']) np.testing.assert_allclose(r, 1.0, rtol=1e-5) @parameterized.named_parameters( ('lda', 'lda'), ('first', 'first'), ('mean', 'mean'), ('mean-squared', 'mean-squared'), ) def test_inference(self, reduction): """Tests the training and inference stages with a linear model.""" # Create the basic decoder class, with a simple TF model. decoder = infer_decoder.LinearRegressionDecoder(_linear_model, reduction=reduction) decoder.train(self._mixed_data, self._train_data) speaker, labels = decoder.test_all(self._test_data) plt.clf() plt.plot(labels) plt.plot(speaker) plt.savefig(os.path.join(os.environ.get('TMPDIR') or '/tmp', 'inference_%s.png' % reduction)) print('test_inference_%s:' % reduction, speaker.shape, labels.shape) self.assertGreater(np.mean(speaker[labels == 0]), 0.5) self.assertLess(np.mean(speaker[labels == 1]), 0.5) @parameterized.named_parameters( ('lda', 'lda', 0.85), ('first', 'first', 0.6), ('mean', 'mean', 0.85), ('mean-squared', 'mean-squared', 0.85), ) def test_windowed_inference(self, reduction, expected_mean): """Tests the training and inference stages with a linear model.""" # Create the basic decoder class, with a simple TF model. decoder = infer_decoder.LinearRegressionDecoder(_linear_model, reduction=reduction) decoder.train(self._mixed_data, self._train_data) speaker, _ = decoder.test_all(self._test_data) window_sizes = [1, 2, 4, 8, 16, 32, 64, 128, 256] windowed_means = np.zeros(len(window_sizes)) windowed_stds = np.zeros(len(window_sizes)) for i, window_size in enumerate(window_sizes): results = [] # Evaluate performance on first half of the training data for window_start in range(0, _NUM_TEST_POINTS//2, window_size): window_end = window_start + window_size results.append(np.mean(speaker[window_start:window_end] > 0.5)) windowed_means[i] = np.mean(results) windowed_stds[i] = np.std(results) plt.clf() plt.errorbar(window_sizes, windowed_means, windowed_stds) plt.gca().set_xscale('log') plt.title('Test_windowed_inference with %s' % reduction) plt.savefig(os.path.join(os.environ.get('TMPDIR') or '/tmp', 'windowed_inference_%s.png' % reduction)) plt.xlabel('Window size (frames)') self.assertAlmostEqual(np.mean(windowed_means), expected_mean, delta=0.05) def test_one_window(self): """Tests the training and inference stages with a linear model.""" # Create the basic decoder class, with a simple TF model. decoder = infer_decoder.LinearRegressionDecoder(_linear_model) decoder.train(self._mixed_data, self._train_data) batch_size = 101 for speaker, label in decoder.test_by_window(self._test_data, batch_size): self.assertEqual(speaker.shape, (batch_size, 1)) self.assertEqual(label.shape, (batch_size, 1)) def test_train_no_switches(self): """Tests the training and inference stages with a linear model.""" # Create the basic decoder class, with a simple TF model. decoder = infer_decoder.LinearRegressionDecoder(_linear_model) empty_dataset = tf.data.Dataset.from_tensor_slices(({'input_1': [], 'input_2': []}, [])) with self.assertRaisesRegex(ValueError, 'No data for class 0'): decoder.train(empty_dataset, self._mixed_data) with self.assertRaisesRegex(ValueError, 'No data for class 1'): decoder.train(self._mixed_data, empty_dataset) def test_windowing(self): data = np.reshape(np.arange(12), (6, 2)) ave = infer_decoder.average_data(data, window_size=3) expected = [[2, 3], [8, 9]] np.testing.assert_array_equal(ave, expected) @parameterized.named_parameters( ('linear_first', 'linear', 'first', 0.1, 1), ('linear_lda', 'linear', 'lda', 0.1, 1), ('linear_mean_squared', 'linear', 'mean-squared', 0.1, 1), ('CCA_first', 'CCA', 'first', 0.1, 1), ('CCA_lda', 'CCA', 'lda', 0.16, 1), ('CCA_mean_squared', 'CCA', 'mean-squared', 0.1, 1), ('linear_first-100', 'linear', 'first', 0.15, 100), ('linear_lda-100', 'linear', 'lda', 0.1, 100), ('linear_mean_squared-100', 'linear', 'mean-squared', 0.1, 100), ('CCA_first-100', 'CCA', 'first', 0.1, 100), ('CCA_lda-100', 'CCA', 'lda', 0.16, 100), ('CCA_mean_squared-100', 'CCA', 'mean-squared', 0.1, 100), ) def test_training_and_inference(self, regressor_name, reduction, tolerance=0.1, window_size=1): """Tests the training and inference stages with a linear model.""" print('Training the %s regressor.' % regressor_name) # Create the desired decoder class. if regressor_name == 'linear': decoder = infer_decoder.LinearRegressionDecoder(_linear_model, reduction=reduction) elif regressor_name == 'CCA': decoder = infer_decoder.CCADecoder(_cca_model, reduction=reduction) else: raise ValueError('Unknown decoder name: %s' % regressor_name) dprime = decoder.train(self._mixed_data, self._train_data, window_size=window_size) logging.info('Infer training of %s data via %s gave a dprime of %g.', regressor_name, reduction, dprime) speaker, _ = decoder.test_all(self._test_data) plt.clf() plt.plot(speaker) plt.savefig(os.path.join(os.environ.get('TMPDIR') or '/tmp', 'inference_train_%s_%s.png' % (regressor_name, reduction))) self.assertGreater(np.mean(speaker[:(_NUM_TEST_POINTS//2)]), 1.0 - tolerance) self.assertLess(np.mean(speaker[(_NUM_TEST_POINTS//2):]), tolerance) # Make sure we can retrieve and save parameters (without errors) decoder.decoding_model_params = decoder.decoding_model_params def test_two_dimensional_data(self): """A copy of the easiest test from scaled_lda_test. Just to verify function. """ num_dims = 2 mean_vectors = np.array([[-2, 12], [2, -1]]) d1 = np.matmul(np.random.randn(_NUM_TEST_POINTS, num_dims), [[2, 0], [0, 0.5]]) + mean_vectors[0, :] d2 = np.matmul(np.random.randn(_NUM_TEST_POINTS, num_dims), [[2, 0], [0, 0.5]]) + mean_vectors[1, :] # Plot the original data. plt.clf() plt.subplot(2, 1, 1) plt.plot(d1[:, 0], d1[:, 1], 'rx') plt.plot(d2[:, 0], d2[:, 1], 'bo') plt.title('Original Data') x = np.concatenate((d1, d2), axis=0) labels = [42, -12] y = np.concatenate((np.ones(d1.shape[0])*labels[0], np.ones(d2.shape[0])*labels[1])) decoder = infer_decoder.Decoder(lambda x: x) # Dummy model for testing dprime = decoder.compute_lda_model(d1, d2) logging.info('test_two_dimensional_data dprime is: %g', dprime) self.assertAlmostEqual(dprime, 26.3253, delta=2.0) x_lda = decoder.reduce_with_lda(x) # Plot the transformed data. plt.subplot(2, 1, 2) plt.plot(x_lda[y == labels[0], 0], x_lda[y == labels[0], 1], 'rx') plt.plot(x_lda[y == labels[1], 0], x_lda[y == labels[1], 1], 'bo') plt.title('Transfomed Data') plt.savefig(os.path.join(os.environ.get('TMPDIR') or '/tmp', 'scaled_lda.png')) # Make sure the transformed centers are symmetric on the first (x) axis. centers = decoder.reduce_with_lda(mean_vectors) logging.info('Transformed centers are: %s', (centers,)) self.assertAlmostEqual(centers[0, 0], 0., delta=0.1) self.assertAlmostEqual(centers[1, 0], 1., delta=0.1) def generate_dprime_data(self): dims = 10 # Create two datasets, with coupled dimensions (decreasing with dim. index) d1 = np.random.randn(_NUM_TEST_POINTS, dims) d2 = np.random.randn(_NUM_TEST_POINTS, dims) for i in range(dims): p = 2**(-i) d2[:, i] = p*d1[:, i] + (1-p)*d2[:, i] d2 += np.ones(d2.shape) return d1, d2 def test_lda(self): d1, d2 = self.generate_dprime_data() # Build and transform the sample data. decoder = infer_decoder.Decoder(lambda x: x) # Dummy model for testing with self.assertRaisesRegex( ValueError, 'Must compute the LDA model before reducing data.'): decoder.reduce_with_lda(24) dprime = decoder.compute_lda_model(d1, d2) self.assertAlmostEqual(dprime, 3.31, delta=.1) all_data = np.concatenate((d1, d2), axis=0) with self.assertRaisesRegex( TypeError, 'Input data must be an numpy array, not'): decoder.reduce_with_lda(24) transformed_data = decoder.reduce_with_lda(all_data) self.assertEqual(transformed_data.shape, (2*_NUM_TEST_POINTS, 2)) dprime = infer_decoder.calculate_dprime(decoder.reduce_with_lda(d1)[:, 0], decoder.reduce_with_lda(d2)[:, 0]) self.assertAlmostEqual(dprime, 3.28, delta=.1) def test_lda_save_model(self): d1, d2 = self.generate_dprime_data() # Build and transform the sample data. decoder = infer_decoder.Decoder(lambda x: x) # Dummy model for testing _ = decoder.compute_lda_model(d1, d2) all_data = np.concatenate((d1, d2), axis=0) transformed_data = decoder.reduce_with_lda(all_data) dprime = infer_decoder.calculate_dprime(decoder.reduce_with_lda(d1)[:, 0], decoder.reduce_with_lda(d2)[:, 0]) print(decoder.model_params) tmp_dir = flags.FLAGS.test_tmpdir or '/tmp' save_lda_dir = os.path.join(tmp_dir, 'lda_params.json') decoder.save_parameters(save_lda_dir) decoder_loaded = infer_decoder.Decoder(lambda x: x) decoder_loaded.restore_parameters(save_lda_dir) transformed_data_loaded = decoder_loaded.reduce_with_lda(all_data) dprime_loaded = infer_decoder.calculate_dprime( decoder_loaded.reduce_with_lda(d1)[:, 0], decoder_loaded.reduce_with_lda(d2)[:, 0]) np.testing.assert_array_equal(transformed_data, transformed_data_loaded) np.testing.assert_array_equal(dprime, dprime_loaded) def test_dprime(self): """Makes sure our d' calculation is correct.""" num = 1000
np.random.seed(0)
numpy.random.seed
#!/usr/bin/env python3 """ usage: put under source folder, required files: evolving_state.txt, calib_state.txt, state.txt After first run, integration_states.txt, vio_states.txt are generated and figures are saved in current dir You can move the figures and state.txt, integration_states.txt, vio_states.txt into a folder Rerun to generate graphs more efficiently by specifying the folder names that has the above three files """ import json import os from os import path as osp import matplotlib.pyplot as plt import numpy as np import progressbar from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import interp1d from scipy.spatial.transform import Rotation from utils.logging import logging from utils.math_utils import * color_vio = "C2" color_ronin = "C3" color_filter = "C0" def set_axes_equal(ax): """Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). """ x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5 * max([x_range, y_range, z_range]) ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) def imu_integrate(gravity, last_R, last_v, last_p, accel, omega, dt): """ Given compensated IMU data and corresponding dt, propagate the previous state in the world frame """ dR = mat_exp(omega * dt) new_R = last_R.dot(dR) new_v = last_v + gravity * dt + last_R.dot(accel * dt) new_p = ( last_p + last_v * dt + 0.5 * gravity * dt * dt + 0.5 * last_R.dot(accel * dt * dt) ) return new_R, new_v, new_p def load_aekf_rotation(attitude_filter_path): # load aekf rotation aekf_data = np.loadtxt(attitude_filter_path, delimiter=",", skiprows=3) # load attitude filter rotation ts_aekf = aekf_data[:, 0] * 1e-6 aekf_r = Rotation.from_quat( np.concatenate( [aekf_data[:, 2:5], np.expand_dims(aekf_data[:, 1], axis=1)], axis=1 ) ) R_aekf = aekf_r.as_matrix() # aekf results with y pointing down, convert them R_wf = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) R_aekf = Rotation.from_matrix(np.matmul(R_wf, R_aekf)) return ts_aekf, R_aekf def load_aekf_calibration(attitude_filter_path): with open(attitude_filter_path, "r") as f: line = f.readline() line = f.readline() init_calib = np.fromstring(line, sep=",") init_accelScaleInv = init_calib[1:10].reshape((3, 3)) init_gyroScaleInv = init_calib[10:19].reshape((3, 3)) init_gyroGSense = init_calib[19:28].reshape((3, 3)) init_accelBias = init_calib[28:31].reshape((3, 1)) init_gyroBias = init_calib[31:34].reshape((3, 1)) return ( init_gyroScaleInv, init_gyroBias, init_gyroGSense, init_accelScaleInv, init_accelBias, ) def plot_state_euclidean( name_plot, name_ref, components_name, ts, state, sigma=None, **kwargs ): assert state.shape[0] == ts.shape[0] assert state.shape[1] == len(components_name) assert sigma.shape == state.shape if sigma is not None else True fig = plt.figure(name_plot) for i, name in enumerate(components_name): plt.subplot(len(components_name), 1, i + 1, label=name_plot + " " + name) plt.plot(ts, state[:, i], label=name_ref, **kwargs) if sigma is not None: plt.plot(ts, state[:, i] + 3 * sigma[:, i], "-r", linewidth=0.5, **kwargs) plt.plot(ts, state[:, i] - 3 * sigma[:, i], "-r", linewidth=0.5, **kwargs) plt.ylabel(name) plt.grid(True) plt.title(name_plot) plt.xlabel("t (s)") plt.legend(loc="upper center") return fig def plot_error_euclidean( name_plot, name_ref, components_name, ts, err, sigma, **kwargs ): assert err.shape[0] == ts.shape[0] assert err.shape[1] == len(components_name) assert sigma.shape == err.shape fig = plt.figure(name_plot) for i, name in enumerate(components_name): plt.subplot(len(components_name), 1, i + 1, label=name_plot + " " + name) plt.plot(ts, err[:, i], label=name_ref, **kwargs) plt.plot(ts, +3 * sigma[:, i], "-r", linewidth=0.5, **kwargs) plt.plot(ts, -3 * sigma[:, i], "-r", linewidth=0.5, **kwargs) plt.ylabel(name) plt.grid(True) plt.title(name_plot) plt.xlabel("t (s)") plt.legend(loc="upper center") return fig # get RPE def compute_rpe(rpe_ns, ps, ps_gt, yaw, yaw_gt): ns = ps_gt.shape[0] print("liger") print(ns) print(rpe_ns) print(ns - rpe_ns) assert ns - rpe_ns > 100 assert ps.shape == ps_gt.shape assert yaw.shape == yaw_gt.shape rpes = [] relative_yaw_errors = [] for i in range(0, ns - rpe_ns, 100): chunk = ps[i : i + rpe_ns, :] chunk_gt = ps_gt[i : i + rpe_ns, :] chunk_yaw = yaw[i : i + rpe_ns, :] chunk_yaw_gt = yaw_gt[i : i + rpe_ns, :] initial_error_yaw = wrap_rpy(chunk_yaw[0, :] - chunk_yaw_gt[0, :]) final_error_p_relative = Rotation.from_euler( "z", initial_error_yaw, degrees=True ).as_matrix().dot((chunk[[-1], :] - chunk[[0], :]).T)[0, :, :].T - ( chunk_gt[[-1], :] - chunk_gt[[0], :] ) final_error_yaw = wrap_rpy(chunk_yaw[[-1], :] - chunk_yaw_gt[[-1], :]) rpes.append(final_error_p_relative) relative_yaw_errors.append(wrap_rpy(final_error_yaw - initial_error_yaw)) rpes = np.concatenate(rpes, axis=0) relative_yaw_errors = np.concatenate(relative_yaw_errors, axis=0) plt.figure("relative yaw error") plt.plot(relative_yaw_errors) plt.figure("rpes list") plt.plot(rpes) ## compute statistics over z separatly rpe_rmse = np.sqrt(np.mean(np.sum(rpes ** 2, axis=1))) rpe_rmse_z = np.sqrt(np.mean(rpes[:, 2] ** 2)) relative_yaw_rmse = np.sqrt(np.mean(relative_yaw_errors ** 2)) return rpe_rmse, rpe_rmse_z, relative_yaw_rmse def compute_rpe_distance(rpe_ns, ps, ps_gt, yaw, yaw_gt): ns = ps_gt.shape[0] print("liger") print(ns) assert ns - rpe_ns > 100 assert ps.shape == ps_gt.shape assert yaw.shape == yaw_gt.shape rpes = [] relative_yaw_errors = [] k = 0 distance_traveled = 0 for i in range(ns): if i == 0: continue distance_traveled += np.linalg.norm(ps[i-1,:] - ps[i,:]) # print(f"Dist: {ps[i,:]}, {ps[k,:]}") # print(f"Distance Traveled: {distance_traveled}") if(distance_traveled) >= 5: chunk = ps[k : i, :] chunk_gt = ps_gt[k : i, :] chunk_yaw = yaw[k : i, :] chunk_yaw_gt = yaw_gt[k : i, :] initial_error_yaw = wrap_rpy(chunk_yaw[0, :] - chunk_yaw_gt[0, :]) final_error_p_relative = Rotation.from_euler( "z", initial_error_yaw, degrees=True ).as_matrix().dot((chunk[[-1], :] - chunk[[0], :]).T)[0, :, :].T - ( chunk_gt[[-1], :] - chunk_gt[[0], :] ) final_error_yaw = wrap_rpy(chunk_yaw[[-1], :] - chunk_yaw_gt[[-1], :]) rpes.append(final_error_p_relative) relative_yaw_errors.append(wrap_rpy(final_error_yaw - initial_error_yaw)) k += 1 distance_traveled -= np.linalg.norm(ps[k-1,:] - ps[k,:]) if distance_traveled < 0: distance_traveled = 0 rpes = np.concatenate(rpes, axis=0) relative_yaw_errors = np.concatenate(relative_yaw_errors, axis=0) plt.figure("relative yaw error") plt.plot(relative_yaw_errors) plt.figure("rpes list") plt.plot(rpes) ## compute statistics over z separatly rpe_rmse = np.sqrt(np.mean(np.sum(rpes ** 2, axis=1))) rpe_rmse_z = np.sqrt(np.mean(rpes[:, 2] ** 2)) relative_yaw_rmse = np.sqrt(np.mean(relative_yaw_errors ** 2)) return rpe_rmse, rpe_rmse_z, relative_yaw_rmse def run(args, dataset): plt.close("all") if args.dir is not None: results_folder = args.dir else: results_folder = os.path.join(args.log_dir, dataset) try: print("here wtf") print(os.path.join(results_folder, args.log_filename + ".npy")) states = np.load(os.path.join(results_folder, args.log_filename + ".npy")) save_vio_states = True # traj is done except: logging.warning( "Relying on .txt file because .npy was not found. Surely means filter did not finish" ) states = np.loadtxt( os.path.join(results_folder, args.log_filename), delimiter="," ) # traj is still processing save_vio_states = False # traj is done R_init = states[0, :9].reshape(-1, 3, 3) r_init = Rotation.from_matrix(R_init) Rs = states[:, :9].reshape(-1, 3, 3) rs = Rotation.from_matrix(Rs) euls = rs.as_euler("xyz", degrees=True) vs = states[:, 9:12] ps = states[:, 12:15] ps_dr = np.cumsum( states[:, 9:12] * np.diff(states[:, 27:28], prepend=states[0, 27], axis=0), axis=0, ) ba = states[:, 15:18] bg = states[:, 18:21] accs = states[:, 21:24] # offline calib compensated, scale+bias gyrs = states[:, 24:27] # offline calib compensated, scale+bias ts = states[:, 27] sigma_r = np.sqrt(states[:, 28:31]) * 180.0 / np.pi sigma_v = np.sqrt(states[:, 31:34]) sigma_p = np.sqrt(states[:, 34:37]) sigma_bg = np.sqrt(states[:, 37:40]) sigma_ba = np.sqrt(states[:, 40:43]) innos = states[:, 43:46] meas = states[:, 46:49] pred = states[:, 49:52] meas_sigma = states[:, 52:55] inno_sigma = states[:, 55:58] nobs_sigma = states[:, 58 : 58 + 16] N = ts.shape[0] # get RoNIN concatenation results if args.ronin_dir is not None: try: ronin = np.loadtxt( osp.join(args.ronin_dir, dataset + ".txt"), delimiter="," ) logging.info( f"Reading ronin data from {osp.join(args.ronin_dir, dataset)}.txt" ) except: ronin = np.loadtxt( osp.join(args.ronin_dir, dataset, "trajectory.txt"), delimiter="," ) logging.info( f"Reading ronin data from {osp.join(args.ronin_dir, dataset, 'trajectory.txt')}" ) ronin_ts = ronin[:, 0] ronin_p = ronin[:, 1:4] if ronin_ts[0] > ts[0]: ronin_ts = np.insert(ronin_ts, 0, ts[0]) ronin_p = np.concatenate([ronin_p[0].reshape(1, 3), ronin_p], axis=0) if ronin_ts[-1] < ts[-1]: ronin_ts = np.insert(ronin_ts, -1, ts[-1]) ronin_p = np.concatenate([ronin_p, ronin_p[-1].reshape(1, 3)], axis=0) ronin_p = interp1d(ronin_ts, ronin_p, axis=0)(ts) # get vio states if args.plot_sim is False: if os.path.exists(os.path.join(results_folder, "vio_states.npy")): vio_states = np.load(os.path.join(results_folder, "vio_states.npy")) vio_euls = vio_states[:, :3] vio_p = vio_states[:, 3:6] vio_v = vio_states[:, 6:9] vio_ba = vio_states[:, 9:12] vio_bg = vio_states[:, 12:15] vio_disp = vio_states[:, 15:18] vio_ba_b = vio_states[:, 18:21] vio_bg_b = vio_states[:, 21:24] vio_accelScaleInv_flat = vio_states[:, 24:33] vio_gyroScaleInv_flat = vio_states[:, 33:42] vio_accelScaleInv = vio_accelScaleInv_flat.reshape((-1, 3, 3)) vio_gyroScaleInv = vio_gyroScaleInv_flat.reshape((-1, 3, 3)) else: vio_states = np.loadtxt( os.path.join(args.root_dir, dataset, "evolving_state.txt"), delimiter=",", ) vio_calibs = np.loadtxt( os.path.join(args.root_dir, dataset, "calib_state.txt"), delimiter="," ) vio_ts = vio_states[:, 0] * 1e-6 vio_rq = vio_states[:, 1:5] vio_p = vio_states[:, 5:8] vio_v = vio_states[:, 8:11] vio_r = Rotation.from_quat( np.concatenate( [vio_rq[:, 1:4], np.expand_dims(vio_rq[:, 0], axis=1)], axis=1 ) ) vio_euls = vio_r.as_euler("xyz", degrees=True) vio_calib_ts = vio_calibs[:, 0] * 1e-6 vio_accelScaleInv = vio_calibs[:, 1:10].reshape((-1, 3, 3)) vio_gyroScaleInv = vio_calibs[:, 10:19].reshape((-1, 3, 3)) vio_gyroGSense = vio_calibs[:, 19:28].reshape((-1, 3, 3)) vio_ba = vio_calibs[:, 28:31] vio_bg = vio_calibs[:, 31:34] vio_pj_idx = np.searchsorted(vio_ts, ts) - 1 vio_pi_idx = np.searchsorted(vio_ts, ts - args.displacement_time) - 1 vio_pj = vio_p[vio_pj_idx, :] vio_pi = vio_p[vio_pi_idx, :] vio_disp = vio_pj - vio_pi vio_Ri = vio_r[vio_pi_idx].as_matrix() ri_z = Rotation.from_matrix(vio_Ri).as_euler("xyz")[:, 2] vio_Riz = Rotation.from_euler("z", ri_z).as_matrix() vio_Rizt = np.transpose(vio_Riz, (0, 2, 1)) vio_disp = np.squeeze( np.matmul(vio_Rizt, np.expand_dims(vio_disp, axis=-1)) ) vio_uw_euls = unwrap_rpy(vio_euls) if vio_ts[0] > ts[0]: vio_ts = np.insert(vio_ts, 0, ts[0]) vio_uw_euls = np.concatenate( [vio_uw_euls[0].reshape(1, 3), vio_uw_euls], axis=0 ) vio_p = np.concatenate([vio_p[0].reshape(1, 3), vio_p], axis=0) vio_v = np.concatenate([vio_v[0].reshape(1, 3), vio_v], axis=0) if vio_ts[-1] < ts[-1]: vio_ts = np.insert(vio_ts, -1, ts[-1]) vio_uw_euls = np.concatenate( [vio_uw_euls, vio_uw_euls[-1].reshape(1, 3)], axis=0 ) vio_p = np.concatenate([vio_p, vio_p[-1].reshape(1, 3)], axis=0) vio_v = np.concatenate([vio_v, vio_v[-1].reshape(1, 3)], axis=0) vio_uw_euls_interp = interp1d(vio_ts, vio_uw_euls, axis=0)(ts) vio_euls = wrap_rpy(vio_uw_euls_interp) vio_p = interp1d(vio_ts, vio_p, axis=0)(ts) vio_v = interp1d(vio_ts, vio_v, axis=0)(ts) # This compute bias in non scaled sensor frame (I think) vio_accelScaleInv_flat = vio_accelScaleInv.reshape((-1, 9)) vio_gyroScaleInv_flat = vio_gyroScaleInv.reshape((-1, 9)) if vio_calib_ts[0] > ts[0]: vio_calib_ts = np.insert(vio_calib_ts, 0, ts[0]) vio_ba = np.concatenate([vio_ba[0].reshape(1, 3), vio_ba], axis=0) vio_bg = np.concatenate([vio_bg[0].reshape(1, 3), vio_bg], axis=0) vio_accelScaleInv_flat = np.concatenate( [vio_accelScaleInv_flat[0].reshape(1, 9), vio_accelScaleInv_flat], axis=0, ) vio_gyroScaleInv_flat = np.concatenate( [vio_gyroScaleInv_flat[0].reshape(1, 9), vio_gyroScaleInv_flat], axis=0, ) if vio_calib_ts[-1] < ts[-1]: vio_calib_ts = np.insert(vio_calib_ts, -1, ts[-1]) vio_ba = np.concatenate([vio_ba, vio_ba[-1].reshape(1, 3)], axis=0) vio_bg = np.concatenate([vio_bg, vio_bg[-1].reshape(1, 3)], axis=0) vio_accelScaleInv_flat = np.concatenate( [vio_accelScaleInv_flat, vio_accelScaleInv_flat[-1].reshape(1, 9)], axis=0, ) vio_gyroScaleInv_flat = np.concatenate( [vio_gyroScaleInv_flat, vio_gyroScaleInv_flat[-1].reshape(1, 9)], axis=0, ) vio_ba = interp1d(vio_calib_ts, vio_ba, axis=0)(ts) vio_bg = interp1d(vio_calib_ts, vio_bg, axis=0)(ts) vio_accelScaleInv_flat = interp1d( vio_calib_ts, vio_accelScaleInv_flat, axis=0 )(ts) vio_gyroScaleInv_flat = interp1d( vio_calib_ts, vio_gyroScaleInv_flat, axis=0 )(ts) vio_accelScaleInv = vio_accelScaleInv_flat.reshape((-1, 3, 3)) vio_gyroScaleInv = vio_gyroScaleInv_flat.reshape((-1, 3, 3)) vio_ba_temp = np.expand_dims(vio_ba, axis=-1) vio_bg_temp = np.expand_dims(vio_bg, axis=-1) vio_ba_b = np.squeeze( np.matmul(np.linalg.inv(vio_accelScaleInv), vio_ba_temp) ) vio_bg_b = np.squeeze( np.matmul(np.linalg.inv(vio_gyroScaleInv), vio_bg_temp) ) if save_vio_states: vio_states = np.concatenate( [ vio_euls, vio_p, vio_v, vio_ba, vio_bg, vio_disp, vio_ba_b, vio_bg_b, vio_accelScaleInv_flat, vio_gyroScaleInv_flat, ], axis=1, ) np.save(os.path.join(results_folder, "vio_states.npy"), vio_states) else: logging.warning( "Not saving vio_states.npy because traj is still processing" ) # get simulation states if args.plot_sim: sim_data = np.loadtxt( args.sim_data_path, delimiter=",", usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16), ) sim_ts = sim_data[:, 0] sim_p = sim_data[:, 1:4] sim_rq = sim_data[:, 4:8] sim_v = sim_data[:, 11:14] # acc_all = sim_data[:,8:11] # gyr_all = sim_data[:,14:17] sim_r = Rotation.from_quat(sim_rq) sim_euls = sim_r.as_euler("xyz", degrees=True) sim_pj_idx = np.searchsorted(sim_ts, ts) - 1 sim_pi_idx = np.searchsorted(sim_ts, ts - args.displacement_time) - 1 sim_pj = sim_p[sim_pj_idx, :] sim_pi = sim_p[sim_pi_idx, :] sim_disp = sim_pj - sim_pi ri_z = sim_r[sim_pi_idx].as_matrix().as_euler("xyz")[:, 2] sim_Riz = Rotation.from_euler("z", ri_z).as_matrix() sim_Rizt = np.transpose(sim_Riz, (0, 2, 1)) sim_disp = np.squeeze(np.matmul(sim_Rizt, np.expand_dims(sim_disp, axis=-1))) sim_uw_euls = unwrap_rpy(sim_euls) if sim_ts[0] > ts[0]: sim_ts = np.insert(sim_ts, 0, ts[0]) sim_uw_euls = np.concatenate( [sim_uw_euls[0].reshape(1, 3), sim_uw_euls], axis=0 ) sim_p = np.concatenate([sim_p[0].reshape(1, 3), sim_p], axis=0) sim_v = np.concatenate([sim_v[0].reshape(1, 3), sim_v], axis=0) if sim_ts[-1] < ts[-1]: sim_ts = np.insert(sim_ts, -1, ts[-1]) sim_uw_euls = np.concatenate( [sim_uw_euls, sim_uw_euls[-1].reshape(1, 3)], axis=0 ) sim_p = np.concatenate([sim_p, sim_p[-1].reshape(1, 3)], axis=0) sim_v = np.concatenate([sim_v, sim_v[-1].reshape(1, 3)], axis=0) sim_uw_euls_interp = interp1d(sim_ts, sim_uw_euls, axis=0)(ts) sim_euls = wrap_rpy(sim_uw_euls_interp) sim_p = interp1d(sim_ts, sim_p, axis=0)(ts) sim_v = interp1d(sim_ts, sim_v, axis=0)(ts) sim_ba = np.zeros((ts.shape[0], 3)) + np.array([0.3, -0.2, 0.4]) sim_bg = np.zeros((ts.shape[0], 3)) + np.array([0.0005, 0.002, -0.001]) if args.plot_sim: ref_type = "sim" ref_p = sim_p ref_v = sim_v ref_bg = sim_bg ref_ba = sim_ba ref_euls = sim_euls ref_disp = sim_disp else: ref_type = "vio" ref_p = vio_p ref_v = vio_v ref_bg = vio_bg ref_ba = vio_ba ref_euls = vio_euls ref_disp = vio_disp # obtain biases in the body frame in the same unit attitude_filter_path = osp.join(args.root_dir, dataset, "calib_state.txt") ( init_gyroScaleInv, init_gyroBias, init_gyroGSense, init_accelScaleInv, init_accelBias, ) = load_aekf_calibration(attitude_filter_path) if args.body_bias: ba_temp = np.expand_dims(ba, axis=-1) bg_temp = np.expand_dims(bg, axis=-1) ba_b = np.squeeze(np.matmul(np.linalg.inv(init_accelScaleInv), ba_temp)) bg_b = np.squeeze(np.matmul(np.linalg.inv(init_gyroScaleInv), bg_temp)) ba = ba_b bg = bg_b # load aekf rotation aekf_ts, aekf_R = load_aekf_rotation(attitude_filter_path) aekf_euls = unwrap_rpy(aekf_R.as_euler("xyz", degrees=True)) # plotting N = ts.shape[0] start_idx = 2000 # 2 s end_idx = N - 1 start_ts = ts[start_idx] end_ts = ts[end_idx] # align diverse trajectory sources ts = ts - start_ts aekf_ts = aekf_ts - start_ts try: # align at start_ts aekf_euls[:, 2] -= ( interp1d(aekf_ts, aekf_euls[:, 2])(ts[start_idx]) - ref_euls[start_idx, 2] ) except: # if we can't align at first aekf timestamp aekf_euls[:, 2] -= aekf_euls[0, 2] - interp1d(ts, ref_euls[:, 2])(aekf_ts[0]) aekf_euls_time_aligned = interp1d(aekf_ts, aekf_euls, axis=0, fill_value=np.nan)(ts) aekf_euls_time_aligned = wrap_rpy(aekf_euls_time_aligned) if args.ronin_dir is not None: ronin_p = ronin_p - (ronin_p[start_idx, :] - ref_p[start_idx, :]) ps = ps - (ps[start_idx, :] - ref_p[start_idx, :]) euls[:, 2] = euls[:, 2] - (euls[start_idx, 2] - ref_euls[start_idx, 2]) euls = wrap_rpy(euls) ps_gt = ref_p[start_idx:end_idx, :] euls_gt = ref_euls[start_idx:end_idx, :] euls_aekf = aekf_euls_time_aligned[start_idx:end_idx, :] # metrics computation metric_map = {"filter": {}, "ronin": {}} # align on first error, WHY IS THAT? ps_filter = ps[start_idx:end_idx, :] euls_filter = euls[start_idx:end_idx, :] ps_filter = ps_filter - (ps_filter[0, :] - ps_gt[0, :]) # get drift and ATE ps_diff = ps_gt[1:, :] - ps_gt[:-1, :] traj_length = np.sum(np.linalg.norm(ps_diff, axis=1)) drift_filter = np.linalg.norm(ps_filter[-1, :] - ps_gt[-1, :]) angular_drift_filter = np.linalg.norm(euls[-1, 2] - ref_euls[-1, 2]) filter_heading_error = wrap_rpy(euls - ref_euls)[:, 2] ate_filter = np.sqrt(np.mean(np.linalg.norm(ps_filter - ps_gt, axis=1) ** 2)) metric_map["filter"]["drift_ratio"] = drift_filter / traj_length metric_map["filter"]["ate"] = ate_filter metric_map["filter"]["mhe"] = np.sqrt( np.nansum(filter_heading_error ** 2) / np.count_nonzero(~(np.isnan(filter_heading_error))) ) metric_map["filter"]["angular_drift_deg_hour"] = ( angular_drift_filter / ts.max() * 3600 ) logging.info(f"drift of filter {metric_map['filter']['drift_ratio']}") logging.info(f"ATE of filter {metric_map['filter']['ate']}") logging.info(f"Mean Heading error of filter {metric_map['filter']['mhe']}") def compute_rpe_filter(ns_rpe): rpe_rmse, rpe_rmse_z, relative_yaw_rmse = compute_rpe_distance( ns_rpe, ps_filter, ps_gt, euls_filter[:, [2]], euls_gt[:, [2]] ) logging.info(f"RPE RMSE of filter over {1e-3*ns_rpe}s: {rpe_rmse}") logging.info(f"RPE RMSE Z of filter over {1e-3*ns_rpe}s: {rpe_rmse_z}") logging.info(f"RPE RMSE Yaw of filter over {1e-3*ns_rpe}s: {relative_yaw_rmse}") metric_map["filter"]["rpe_rmse_" + str(ns_rpe)] = rpe_rmse metric_map["filter"]["rpe_rmse_z_" + str(ns_rpe)] = rpe_rmse_z metric_map["filter"]["relative_yaw_rmse_" + str(ns_rpe)] = relative_yaw_rmse if args.rpe_1 is True: compute_rpe_filter(1000) # 1 s if args.rpe_10 is True: compute_rpe_filter(10000) # 10 s if args.rpe_100 is True: compute_rpe_filter(100000) # 100 s if args.ronin_dir is not None: ps_ronin = ronin_p[start_idx:end_idx, :] ps_ronin = ps_ronin - (ps_ronin[0, :] - ps_gt[0, :]) drift_ronin = np.linalg.norm(ps_ronin[-1, :] - ps_gt[-1, :]) ate_ronin = np.sqrt(np.mean(np.linalg.norm(ps_ronin - ps_gt, axis=1) ** 2)) angular_drift_ronin = np.linalg.norm( aekf_euls_time_aligned[-1, 2] - ref_euls[-1, 2] ) heading_error_ronin = wrap_rpy(aekf_euls_time_aligned - ref_euls)[:, 2] metric_map["ronin"]["drift_ratio"] = drift_ronin / traj_length metric_map["ronin"]["ate"] = ate_ronin metric_map["ronin"]["mhe"] = np.sqrt( np.nansum(heading_error_ronin ** 2) / np.count_nonzero(~(np.isnan(heading_error_ronin))) ) metric_map["ronin"]["angular_drift_deg_hour"] = ( angular_drift_ronin / ts.max() * 3600 ) logging.info(f"drift of ronin {metric_map['ronin']['drift_ratio']}") logging.info(f"ATE of ronin {metric_map['ronin']['ate']}") logging.info(f"Mean Heading error of ronin {metric_map['ronin']['mhe']}") def compute_rpe_ronin(ns_rpe): rpe_rmse, rpe_rmse_z, relative_yaw_rmse = compute_rpe( ns_rpe, ps_ronin, ps_gt, euls_aekf[:, [2]], euls_gt[:, [2]] ) logging.info(f"RPE RMSE of ronin over 1s: {rpe_rmse}") logging.info(f"RPE RMSE Z of ronin over 1s: {rpe_rmse_z}") logging.info(f"RPE RMSE Yaw of ronin over 1s: {relative_yaw_rmse}") metric_map["ronin"]["rpe_rmse_" + str(ns_rpe)] = rpe_rmse metric_map["ronin"]["rpe_rmse_z_" + str(ns_rpe)] = rpe_rmse_z metric_map["ronin"]["relative_yaw_rmse_" + str(ns_rpe)] = relative_yaw_rmse if args.rpe_1 is True: compute_rpe_ronin(1000) if args.rpe_10 is True: compute_rpe_ronin(10000) if args.rpe_100 is True: compute_rpe_ronin(100000) if args.make_plots is False: return metric_map # Plot results idxs = slice(start_idx, end_idx) if not args.plot_sim: plt.figure("Calibration accelerometer vio vs init") plt.plot(ts, vio_accelScaleInv[:, 0, 0], label="1") plt.plot(ts, vio_accelScaleInv[:, 1, 1], label="2") plt.plot(ts, vio_accelScaleInv[:, 2, 2], label="3") plt.plot(ts, vio_accelScaleInv[:, 0, 1], label="12") plt.plot(ts, vio_accelScaleInv[:, 0, 2], label="13") plt.plot(ts, vio_accelScaleInv[:, 1, 2], label="23") plt.plot( ts, np.ones_like(vio_accelScaleInv[:, 0, 0]) * init_accelScaleInv[0, 0], label="1", ) plt.plot( ts, np.ones_like(vio_accelScaleInv[:, 1, 1]) * init_accelScaleInv[1, 1], label="2", ) plt.plot( ts, np.ones_like(vio_accelScaleInv[:, 2, 2]) * init_accelScaleInv[2, 2], label="2", ) plt.plot( ts, np.ones_like(vio_accelScaleInv[:, 0, 1]) * init_accelScaleInv[0, 1], label="12", ) plt.plot( ts,
np.ones_like(vio_accelScaleInv[:, 0, 2])
numpy.ones_like
""" Project: Visual Odometry Name : Heru-05 | M09158023 Date """ import os import numpy as np import cv2 import random import string # draw a list of points with different random colors on a input image def draw_points(img, pts, radius=5): if img.ndim < 3: img = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR) for pt in pts: color = tuple(np.random.randint(0,255,3).tolist()) img = cv2.circle(img,tuple(pt),radius,color,-1) return img # draw corresponding points with the same random color on two separate images def draw_points2(img1, img2, pts1, pts2, radius=5): if img1.ndim < 3: img1 = cv2.cvtColor(img1,cv2.COLOR_GRAY2BGR) if img2.ndim < 3: img2 = cv2.cvtColor(img2,cv2.COLOR_GRAY2BGR) for pt1,pt2 in zip(pts1,pts2): color = tuple(np.random.randint(0,255,3).tolist()) img1 = cv2.circle(img1,tuple(pt1),radius,color,-1) img2 = cv2.circle(img2,tuple(pt2),radius,color,-1) return img1,img2 # draw lines on a image; line_edges is assumed to be a list of 2D img points def draw_lines(img, line_edges, pts=None, radius=5): pt = None for i,l in enumerate(line_edges): color = tuple(np.random.randint(0,255,3).tolist()) x0,y0 = l[0] x1,y1 = l[1] img = cv2.line(img, (int(x0),int(y0)), (int(x1),int(y1)), color,1) if pts is not None: pt = pts[i] img = cv2.circle(img,tuple(pt),radius,color,-1) return img # combine two images horizontally def combine_images_horizontally(img1, img2): if img1.ndim<=2: img1 = cv2.cvtColor(img1,cv2.COLOR_GRAY2RGB) if img2.ndim<=2: img2 = cv2.cvtColor(img2,cv2.COLOR_GRAY2RGB) h1, w1 = img1.shape[:2] h2, w2 = img2.shape[:2] img3 = np.zeros((max(h1, h2), w1+w2,3), np.uint8) img3[:h1, :w1,:3] = img1 img3[:h2, w1:w1+w2,:3] = img2 return img3 # combine two images vertically def combine_images_vertically(img1, img2): if img1.ndim<=2: img1 = cv2.cvtColor(img1,cv2.COLOR_GRAY2RGB) if img2.ndim<=2: img2 = cv2.cvtColor(img2,cv2.COLOR_GRAY2RGB) h1, w1 = img1.shape[:2] h2, w2 = img2.shape[:2] img3 = np.zeros((h1+h2, max(w1, w2),3), np.uint8) img3[:h1, :w1,:3] = img1 img3[h1:h1+h2,:w2,:3] = img2 return img3 # draw features matches (images are combined horizontally) # input: # - kps1 = [Nx2] array of keypoint coordinates # - kps2 = [Nx2] array of keypoint coordinates # - kps1_sizes = [Nx1] array of keypoint sizes # - kps2_sizes = [Nx1] array of keypoint sizes # output: drawn image def draw_feature_matches_horizontally(img1, img2, kps1, kps2, kps1_sizes=None, kps2_sizes=None): img3 = combine_images_horizontally(img1,img2) h1,w1 = img1.shape[:2] N = len(kps1) default_size = 2 if kps1_sizes is None: kps1_sizes = np.ones(N,dtype=np.int32)*default_size if kps2_sizes is None: kps2_sizes = np.ones(N,dtype=np.int32)*default_size for i,pts in enumerate(zip(kps1, kps2)): p1, p2 = np.rint(pts).astype(int) a,b = p1.ravel() c,d = p2.ravel() size1 = kps1_sizes[i] size2 = kps2_sizes[i] color = tuple(np.random.randint(0,255,3).tolist()) #cv2.line(img3, (a,b),(c,d), color, 1) # optic flow style cv2.line(img3, (a,b),(c+w1,d), color, 1) # join corrisponding points cv2.circle(img3,(a,b),2, color,-1) cv2.circle(img3,(a,b), color=(0, 255, 0), radius=int(size1), thickness=1) # draw keypoint size as a circle cv2.circle(img3,(c+w1,d),2, color,-1) cv2.circle(img3,(c+w1,d), color=(0, 255, 0), radius=int(size2), thickness=1) # draw keypoint size as a circle return img3 # draw features matches (images are combined vertically) # input: # - kps1 = [Nx2] array of keypoint coordinates # - kps2 = [Nx2] array of keypoint coordinates # - kps1_sizes = [Nx1] array of keypoint sizes # - kps2_sizes = [Nx1] array of keypoint sizes # output: drawn image def draw_feature_matches_vertically(img1, img2, kps1, kps2, kps1_sizes=None, kps2_sizes=None): img3 = combine_images_vertically(img1,img2) h1,w1 = img1.shape[:2] N = len(kps1) default_size = 2 if kps1_sizes is None: kps1_sizes = np.ones(N,dtype=np.int32)*default_size if kps2_sizes is None: kps2_sizes = np.ones(N,dtype=np.int32)*default_size for i,pts in enumerate(zip(kps1, kps2)): p1, p2 = np.rint(pts).astype(int) a,b = p1.ravel() c,d = p2.ravel() size1 = kps1_sizes[i] size2 = kps2_sizes[i] color = tuple(np.random.randint(0,255,3).tolist()) #cv2.line(img3, (a,b),(c,d), color, 1) # optic flow style cv2.line(img3, (a,b),(c,d+h1), color, 1) # join corrisponding points cv2.circle(img3,(a,b),2, color,-1) cv2.circle(img3,(a,b), color=(0, 255, 0), radius=int(size1), thickness=1) # draw keypoint size as a circle cv2.circle(img3,(c,d+h1),2, color,-1) cv2.circle(img3,(c,d+h1), color=(0, 255, 0), radius=int(size2), thickness=1) # draw keypoint size as a circle return img3 # draw features matches (images are combined horizontally) # input: # - kps1 = [Nx2] array of keypoint coordinates # - kps2 = [Nx2] array of keypoint coordinates # - kps1_sizes = [Nx1] array of keypoint sizes # - kps2_sizes = [Nx1] array of keypoint sizes # output: drawn image def draw_feature_matches(img1, img2, kps1, kps2, kps1_sizes=None, kps2_sizes=None, horizontal=True): if horizontal: return draw_feature_matches_horizontally(img1, img2, kps1, kps2, kps1_sizes, kps2_sizes) else: return draw_feature_matches_vertically(img1, img2, kps1, kps2, kps1_sizes, kps2_sizes) def draw_random_lines(img,N=200): lineType = 8 (h, w) = img.shape[:2] for i in range(N): pt1x, pt2x = np.random.randint( -0.5*w, w*1.5, 2) pt1y, pt2y = np.random.randint( -0.5*h, h*1.5, 2) color = tuple(np.random.randint(0,255,3).tolist()) thickness = np.random.randint(1, 10) cv2.line(img, (pt1x,pt1y), (pt2x,pt2y), color, thickness, lineType) def draw_random_rects(img,N=100): lineType = 8 (h, w) = img.shape[:2] for i in range(N): pt1x, pt2x = np.random.randint( 0, w, 2) pt1y, pt2y = np.random.randint( 0, h, 2) color = tuple(np.random.randint(0,255,3).tolist()) thickness = max(np.random.randint(-3, 10),-1) cv2.rectangle(img, (pt1x,pt1y), (pt2x,pt2y), color, thickness, lineType) def draw_random_ellipses(img, N=100): lineType = 8 (h, w) = img.shape[:2] axis_ext = w*0.1 for i in range(N): cx = np.random.randint( 0, w ) cy = np.random.randint( 0, h ) width, height = np.random.randint(0, axis_ext, 2) angle = np.random.randint(0, 180) color = tuple(
np.random.randint(0,255,3)
numpy.random.randint
# get scores for F1 Threshold(rho) experiments for APIP flavors import re import os import sys import random import argparse import json from datetime import datetime from collections import OrderedDict import msgpack, time from tqdm import tqdm import numpy as np import torch from torch.autograd import Variable from apip import utils from apip.model import DocReaderModel parser = argparse.ArgumentParser( description='Train a Document Reader model.' ) parser = utils.add_arguments(parser) args = parser.parse_args() if not args.drop_nn: args.dropout_rate = 0. # set model dir model_dir = args.model_dir model_dir = os.path.abspath(model_dir) torch.set_printoptions(precision=10) # save model configuration s = "\nParameters:\n" for k in sorted(args.__dict__): s += "{} = {} \n".format(k, args.__dict__[k]) print(s) # set random seed seed = args.seed if args.seed >= 0 else int(random.random()*1000) print ('seed:', seed) random.seed(seed) torch.manual_seed(seed) if args.cuda: torch.cuda.manual_seed(seed) def accuracies_on_ds(data_file, inputs, model, n_ans): train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask = inputs model.opt['interpret'] = False batches = utils.BatchGen(dev, batch_size=args.batch_size, evaluation=True, gpu=args.cuda) predictions = [] pred_answers = {} for i, batch in enumerate(batches): pred = model.predict(batch)[0] predictions.extend(pred) em, f1 = utils.score(predictions, dev_y) print("[EM: {0:.2f} F1: {1:.2f}] on {2}".format(em, f1, data_file)) batches = utils.BatchGen(dev, batch_size=args.batch_size, evaluation=True, gpu=args.cuda, shuffle=True) model.opt['interpret'] = True t_a, t_total_a = {0.1:0, 0.2:0, 0.3:0, 0.4:0, 0.5:0, 0.6:0, 0.7:0, 0.8:0, 0.9:0}, 0 f1s_a = []; ovs_a = [] # evaluate the model for all interpretations and all answers # if f1 score for all GT answers is > p then count answer as correct for i, batch in tqdm(enumerate(batches)): i_predictions = [] truth = np.take(dev_y, batches.indices[i], 0) if args.n_actions>0: for a in range(args.n_actions): latent_a = Variable(torch.ones(batch[0].size(0))*a).long().cuda() pred = model.predict_inter(batch, latent_a=latent_a) i_predictions.append(pred[0]) else: i_predictions = model.predict(batch)[0] for b in range(batch[0].size(0)): f1s = [] for ta in truth[b]: f1_v = [] for a in range(args.n_actions): _, f1_a = utils.score_test_alli([i_predictions[a][b]], [[ta]]) f1_v += [f1_a] if args.n_actions>0: f1s += [max(f1_v)] else: _, f1_v = utils.score_test_alli([i_predictions[b]], [[ta]]) f1s += [f1_v] f1s = np.array(f1s) for p in t_a.keys(): t_a[p] = t_a[p] + int((f1s>p).sum() == n_ans) f1_i = []; ov_i = [] for a in range(args.n_actions): _, f1_a = utils.score_test_alli([i_predictions[a][b]], [truth[b]]) ov_a = utils.overlap([i_predictions[a][b]], [truth[b]]) f1_i += [f1_a]; ov_i += [ov_a] if args.n_actions == 0: _, f1_i = utils.score_test_alli([i_predictions[b]], [truth[b]]) ov_i = utils.overlap([i_predictions[b]], [truth[b]]) f1s_a += [f1_i]; ovs_a += [ov_i] t_total_a += batch[0].size(0) f1s_a = np.array(f1s_a); ovs_a = np.array(ovs_a) return t_total_a, f1s_a, ovs_a, t_a def main(): print('[program starts.]') args.data_file = 'SQuAD/data_a2.msgpack' train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask = utils.load_data(vars(args), args) if args.resume: print('[loading previous model...]') checkpoint = torch.load(os.path.join(model_dir, args.restore_dir, args.resume)) if args.resume_options: opt = checkpoint['config'] state_dict = checkpoint['state_dict'] model = DocReaderModel(opt, embedding, state_dict) else: raise RuntimeError('Include checkpoint of the trained model') if args.cuda: model.cuda() inputs = [train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask] t_total_a2, f1s_a2, ovs_a2, t_a2 = accuracies_on_ds('SQuAD/data_a2.msgpack', inputs, model, 2) args.data_file = 'SQuAD/data_a3.msgpack' train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask = utils.load_data(vars(args), args) inputs = [train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask] t_total_a3, f1s_a3, ovs_a3, t_a3 = accuracies_on_ds('SQuAD/data_a3.msgpack', inputs, model, 3) args.data_file = 'SQuAD/data_a1.msgpack' train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask = utils.load_data(vars(args), args) inputs = [train, dev, dev_y, train_y, embedding, opt, q_labels, ql_mask] t_total_a1, f1s_a1, ovs_a1, t_a1 = accuracies_on_ds('SQuAD/data_a1.msgpack', inputs, model, 1) def toscore(score, total): d = {} for p,s in score.items(): d[p] = round(100.*s/total, 2) td = OrderedDict(sorted(d.items(), key=lambda t: t[0])) return td print("ratio |a|=1: ", toscore(t_a1, t_total_a1), t_total_a1) print("ratio |a|=2: ", toscore(t_a2, t_total_a2), t_total_a2) print("ratio |a|=3: ", toscore(t_a3, t_total_a3), t_total_a3) def toscore2(score): return round(100. * score.sum() / len(score), 2) axis = 1 if args.n_actions > 0: print("[max F1_a1: {} F1_a2: {} F1_a3: {}]".format(json.dumps(toscore2(np.max(f1s_a1, axis)),toscore2(
np.max(f1s_a2, axis)
numpy.max
import math from collections import defaultdict import cv2 import time import argparse import torch from sklearn import preprocessing import numpy as np import posenet import numpy as np from scipy.spatial.distance import cosine, cdist from fastdtw import fastdtw import re import numpy as np EPS=0.000001 PART_NAMES = [ "leftShoulder", "rightShoulder", "leftElbow", "rightElbow", "leftWrist", "rightWrist", "leftHip", "rightHip", "leftKnee", "rightKnee", "leftAnkle", "rightAnkle" ] def normalize(pose_scores, keypoint_scores, keypoint_coords, thresh=0.1): keypoint_scores = keypoint_scores.reshape((17, -1)) keypoint_coords = keypoint_coords.reshape((17, 2)) # Step 1: filter out bad scores mask = (keypoint_scores.ravel() > thresh) if not np.any(mask): return {} # Step 2: Crop min_x = np.min(keypoint_coords[mask, 0]) min_y = np.min(keypoint_coords[mask, 1]) keypoint_coords[:, 0] -= min_x keypoint_coords[:, 1] -= min_y # Step 3: Normalize normalized_coords = preprocessing.normalize(keypoint_coords, norm='l2') # Step 4: Convert to dict output = {} for i in range(17): if mask[i]: output[posenet.PART_NAMES[i]] = (normalized_coords[i, 0], normalized_coords[i, 1]) return output def to_timeseries(dictionaries): # combines list of dictionaries ts = defaultdict(list) # Iterate every part name and combine part values for mini_dict in dictionaries: for k, v in mini_dict.items(): ts[k].append(v) return ts def crop_dict(pose_dict): if pose_dict is None: return None min_x = 10**6 min_y = 10**6 for v in pose_dict.values(): if v[0] <= min_x: min_x = v[0] if v[1] <= min_y: min_y = v[1] for k in pose_dict.keys(): pose_dict[k][0] -= min_x pose_dict[k][1] -= min_y return pose_dict def DTW(dict1, dict2, normalize_user=False): # computes the DTW between two dictionaries & values # outputs distances to dictionary distances distances = {} for key in dict1: if key in posenet.PART_NAMES: if key == 'leftEye' or key == 'rightEye': continue if dict1[key] and dict2[key]: x =
np.array(dict1[key])
numpy.array
""" RocketLogger data file import tests. Copyright (c) 2016-2020, ETH Zurich, Computer Engineering Group All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from rocketlogger.data import ( RocketLoggerData, RocketLoggerDataError, RocketLoggerDataWarning, RocketLoggerFileError, _ROCKETLOGGER_ADC_CLOCK_SCALE, ) import os.path from unittest import TestCase import unittest import numpy as np import rocketlogger.data as rld import os if os.environ.get("MATPLOTLIB_AVAILABLE") == "true": import matplotlib.pyplot as plt if os.environ.get("PANDAS_AVAILABLE") == "true": import pandas as pd _TEST_FILE_DIR = "data" _FULL_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_full.rld") _SINGLE_BLOCK_FILE = os.path.join(_TEST_FILE_DIR, "test_single_block.rld") _MIN_BLOCK_SIZE_FILE = os.path.join(_TEST_FILE_DIR, "test_min_block_size.rld") _ANALOG_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_analog_only.rld") _HIGH_CURRENT_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_high_current.rld") _STEPS_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_steps.rld") _INCOMPATIBLE_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_unsupported.rld") _INEXISTENT_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_inexistent.rld") _SINGLE_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_v3_only.rld") _HEADER_UNALIGNED_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_header_unaligned.rld") _TRUNCATED_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_truncated.rld") _SPLIT_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_split.rld") _SPLIT_TRUNCATED_TEST_FILE = os.path.join(_TEST_FILE_DIR, "test_split_truncated.rld") _TEMP_FILE = os.path.join(_TEST_FILE_DIR, "temp_data.rld") def _file_copy_byte_flipped(file_in, file_out, offset, mask=0xA5): data = np.fromfile(file_in, np.uint8) data[offset] = data[offset] ^ mask data.tofile( file_out, ) class TestDecimation(TestCase): def test_binary_decimation(self): data_in = np.ones((100)) data_in[0:2:100] = 0 data_ref = np.ones((10)) data_out = rld._decimate_binary(data_in, 10) self.assertAlmostEqual(sum(abs(data_out - data_ref)), 0) def test_min_decimation(self): data_in = np.ones((100)) data_in[0:100:10] = 0 data_ref = np.zeros((10)) data_out = rld._decimate_min(data_in, 10) self.assertEqual(sum(abs(data_out - data_ref)), 0) def test_max_decimation(self): data_in = np.zeros((100)) data_in[0:100:10] = 1 data_ref = np.ones((10)) data_out = rld._decimate_max(data_in, 10) self.assertAlmostEqual(sum(abs(data_out - data_ref)), 0) def test_mean_decimation(self): data_in = np.arange(0, 100) data_ref = 4.5 + np.arange(0, 100, 10) data_out = rld._decimate_mean(data_in, 10) self.assertAlmostEqual(sum(abs(data_out - data_ref)), 0) class TestFileImport(TestCase): def test_normal(self): data = RocketLoggerData(_FULL_TEST_FILE) self.assertEqual(data.get_data().shape, (5000, 16)) def test_no_file(self): with self.assertRaisesRegex(NotImplementedError, "data file creation"): RocketLoggerData() def test_inexistent_file(self): with self.assertRaises(FileNotFoundError): RocketLoggerData(_INEXISTENT_TEST_FILE) def test_overload_existing(self): data = RocketLoggerData(_FULL_TEST_FILE) with self.assertRaisesRegex(RocketLoggerDataError, "file is already loaded"): data.load_file(_FULL_TEST_FILE) def test_invalid_header_magic(self): _file_copy_byte_flipped(_FULL_TEST_FILE, _TEMP_FILE, 0x00) with self.assertRaisesRegex(RocketLoggerFileError, "file magic"): RocketLoggerData(_TEMP_FILE) def test_invalid_header_version(self): _file_copy_byte_flipped(_FULL_TEST_FILE, _TEMP_FILE, 0x04) with self.assertRaisesRegex(RocketLoggerFileError, "data file version"): RocketLoggerData(_TEMP_FILE) def test_invalid_header_length(self): _file_copy_byte_flipped(_FULL_TEST_FILE, _TEMP_FILE, 0x06) with self.assertRaisesRegex(RocketLoggerFileError, "header size"): RocketLoggerData(_TEMP_FILE) def test_invalid_header_data_block_size(self): _file_copy_byte_flipped(_FULL_TEST_FILE, _TEMP_FILE, 0x08) with self.assertRaisesRegex(RocketLoggerFileError, "number of samples"): RocketLoggerData(_TEMP_FILE) def test_invalid_header_data_block_count(self): _file_copy_byte_flipped(_FULL_TEST_FILE, _TEMP_FILE, 0x0C) with self.assertRaisesRegex(RocketLoggerFileError, "number of samples"): RocketLoggerData(_TEMP_FILE) def test_invalid_header_data_sample_count(self): _file_copy_byte_flipped(_FULL_TEST_FILE, _TEMP_FILE, 0x10) with self.assertRaisesRegex(RocketLoggerDataError, "corrupt data: file size"): with self.assertWarnsRegex( RocketLoggerDataWarning, "Skipping incomplete data" ): RocketLoggerData(_TEMP_FILE) def test_invalid_header_sample_count_inconsistent(self): _file_copy_byte_flipped(_FULL_TEST_FILE, _TEMP_FILE, 0x10, 0x04) with self.assertRaisesRegex(RocketLoggerFileError, "number of samples"): RocketLoggerData(_TEMP_FILE) def test_invalid_header_comment_length(self): with self.assertWarnsRegex(RocketLoggerDataWarning, "comment length unaligned"): RocketLoggerData(_HEADER_UNALIGNED_TEST_FILE) def test_header_dict(self): data = RocketLoggerData(_FULL_TEST_FILE) header = { "data_block_count": 5, "data_block_size": 1000, "file_version": 2, "mac_address": "12:34:56:78:90:ab", "sample_count": 5000, "sample_rate": 1000, "start_time": np.datetime64("2017-05-10T09:05:17.438817080"), } self.assertDictEqual(data.get_header(), header) def test_header_dict_with_decimation(self): data = RocketLoggerData(_FULL_TEST_FILE, decimation_factor=10) header = { "data_block_count": 5, "data_block_size": 100, "file_version": 2, "mac_address": "12:34:56:78:90:ab", "sample_count": 500, "sample_rate": 100, "start_time": np.datetime64("2017-05-10T09:05:17.438817080"), } self.assertDictEqual(data.get_header(), header) def test_with_decimation(self): data = RocketLoggerData(_FULL_TEST_FILE, decimation_factor=10) self.assertEqual(data._header["data_block_size"], 100) def test_with_invalid_decimation(self): with self.assertRaisesRegex(ValueError, "Decimation factor"): RocketLoggerData(_FULL_TEST_FILE, decimation_factor=3) def test_direct_import(self): data = RocketLoggerData(_FULL_TEST_FILE, memory_mapped=False) self.assertEqual(data.get_data("V1").shape, (5000, 1)) def test_direct_import_with_decimation(self): data = RocketLoggerData( _FULL_TEST_FILE, memory_mapped=False, decimation_factor=10 ) self.assertEqual(data._header["data_block_size"], 100) self.assertEqual(data._header["sample_count"], 500) self.assertEqual(data._header["sample_rate"], 100) self.assertEqual(data.get_data("V1").shape, (500, 1)) def test_direct_vs_memory_mapped(self): data_mm = RocketLoggerData(_FULL_TEST_FILE, memory_mapped=True) data_ff = RocketLoggerData(_FULL_TEST_FILE, memory_mapped=False) self.assertEqual(data_mm._header, data_ff._header) self.assertEqual(len(data_mm._data), len(data_ff._data)) for i in range(len(data_mm._data)): arrays_equal = np.array_equal(data_mm._data[i], data_ff._data[i]) self.assertTrue(arrays_equal) def test_single_block_import(self): data = RocketLoggerData(_SINGLE_BLOCK_FILE, memory_mapped=False) self.assertEqual(data._header["data_block_count"], 1) self.assertEqual(data.get_data("V1").shape, (1000, 1)) def test_min_block_size_import(self): data = RocketLoggerData(_MIN_BLOCK_SIZE_FILE, memory_mapped=False) self.assertEqual(data._header["data_block_size"], 1) self.assertEqual(data.get_data("V1").shape, (5, 1)) @classmethod def tearDownClass(cls): try: os.remove(_TEMP_FILE) except FileNotFoundError: pass class TestFullFile(TestCase): def setUp(self): self.data = RocketLoggerData(_FULL_TEST_FILE) def tearDown(self): del self.data def test_load(self): self.assertIsInstance(self.data, RocketLoggerData) def test_header_field_count(self): self.assertEqual(len(self.data._header), 14) def test_header_channel_count(self): self.assertEqual(len(self.data._header["channels"]), 16) def test_data_size(self): self.assertEqual(self.data.get_data().shape, (5000, 16)) def test_channel_names(self): self.assertEqual( self.data.get_channel_names(), sorted( [ "DI1", "DI2", "DI3", "DI4", "DI5", "DI6", "I1L_valid", "I2L_valid", "V1", "V2", "V3", "V4", "I1L", "I1H", "I2L", "I2H", ] ), ) class TestSingleChannelFile(TestCase): def setUp(self): self.data = RocketLoggerData(_SINGLE_TEST_FILE) def tearDown(self): del self.data def test_load(self): self.assertIsInstance(self.data, RocketLoggerData) def test_header_field_count(self): self.assertEqual(len(self.data._header), 14) def test_header_channel_count(self): self.assertEqual(len(self.data._header["channels"]), 1) def test_data_size(self): self.assertEqual(self.data.get_data().shape, (5000, 1)) def test_channel_names(self): self.assertEqual(self.data.get_channel_names(), ["V3"]) class TestJoinFile(TestCase): def setUp(self): self.data = RocketLoggerData(_SPLIT_TEST_FILE) def tearDown(self): del self.data def test_load(self): self.assertIsInstance(self.data, RocketLoggerData) def test_header_field_count(self): self.assertEqual(len(self.data._header), 14) def test_header_channel_count(self): self.assertEqual(len(self.data._header["channels"]), 16) def test_data_size(self): self.assertEqual(self.data.get_data().shape, (3 * 128000, 16)) def test_channel_names(self): self.assertEqual( self.data.get_channel_names(), sorted( [ "DI1", "DI2", "DI3", "DI4", "DI5", "DI6", "I1L_valid", "I2L_valid", "V1", "V2", "V3", "V4", "I1L", "I1H", "I2L", "I2H", ] ), ) class TestJoinExclude(TestCase): def test_exclude_all(self): with self.assertRaisesRegex(RocketLoggerDataError, "Could not load valid data"): RocketLoggerData(_SPLIT_TEST_FILE, exclude_part=np.arange(0, 3)) def test_exclude_non_join(self): with self.assertRaisesRegex(ValueError, "exclude_part"): RocketLoggerData( _SPLIT_TEST_FILE, join_files=False, exclude_part=np.arange(0, 3) ) class TestJoinExcludeFirst(TestCase): def setUp(self): self.full_reference = RocketLoggerData(_SPLIT_TEST_FILE) self.data = RocketLoggerData(_SPLIT_TEST_FILE, exclude_part=0) def tearDown(self): del self.full_reference del self.data def test_load(self): self.assertIsInstance(self.data, RocketLoggerData) def test_data_values(self): reference_range = np.arange(128000, 3 * 128000) reference = self.full_reference.get_data()[reference_range] self.assertTrue(np.array_equal(self.data.get_data(), reference)) def test_data_timestamp_monotonic(self): reference_range = np.arange(2, 3 * 2) reference = self.full_reference._timestamps_monotonic[reference_range] self.assertTrue(np.array_equal(self.data._timestamps_monotonic, reference)) def test_data_timestamp_realtime(self): reference_range = np.arange(2, 3 * 2) reference = self.full_reference._timestamps_realtime[reference_range] self.assertTrue(np.array_equal(self.data._timestamps_realtime, reference)) class TestJoinExcludeLast(TestCase): def setUp(self): self.full_reference = RocketLoggerData(_SPLIT_TEST_FILE) self.data = RocketLoggerData(_SPLIT_TEST_FILE, exclude_part=2) def tearDown(self): del self.full_reference del self.data def test_load(self): self.assertIsInstance(self.data, RocketLoggerData) def test_data_values(self): reference_range = np.arange(2 * 128000) reference = self.full_reference.get_data()[reference_range] self.assertTrue(np.array_equal(self.data.get_data(), reference)) def test_data_timestamp_monotonic(self): reference_range = np.arange(2 * 2) reference = self.full_reference._timestamps_monotonic[reference_range] self.assertTrue(np.array_equal(self.data._timestamps_monotonic, reference)) def test_data_timestamp_realtime(self): reference_range = np.arange(2 * 2) reference = self.full_reference._timestamps_realtime[reference_range] self.assertTrue(np.array_equal(self.data._timestamps_realtime, reference)) class TestJoinExcludeMultiple(TestCase): def setUp(self): self.full_reference = RocketLoggerData(_SPLIT_TEST_FILE) self.data = RocketLoggerData(_SPLIT_TEST_FILE, exclude_part=[0, 2]) def tearDown(self): del self.full_reference del self.data def test_load(self): self.assertIsInstance(self.data, RocketLoggerData) def test_data_values(self): reference_range = np.arange(128000, 2 * 128000) reference = self.full_reference.get_data()[reference_range] self.assertTrue(np.array_equal(self.data.get_data(), reference)) def test_data_timestamp_monotonic(self): reference_range =
np.arange(2, 2 * 2)
numpy.arange
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """Tests of linear transforms.""" import os import pytest import numpy as np from subprocess import check_call import shutil import h5py import nibabel as nb from nibabel.eulerangles import euler2mat from nibabel.affines import from_matvec from .. import linear as nitl from .utils import assert_affines_by_filename RMSE_TOL = 0.1 APPLY_LINEAR_CMD = { "fsl": """\ flirt -setbackground 0 -interp nearestneighbour -in {moving} -ref {reference} \ -applyxfm -init {transform} -out {resampled}\ """.format, "itk": """\ antsApplyTransforms -d 3 -r {reference} -i {moving} \ -o {resampled} -n NearestNeighbor -t {transform} --float\ """.format, "afni": """\ 3dAllineate -base {reference} -input {moving} \ -prefix {resampled} -1Dmatrix_apply {transform} -final NN\ """.format, "fs": """\ mri_vol2vol --mov {moving} --targ {reference} --lta {transform} \ --o {resampled} --nearest""".format, } @pytest.mark.parametrize("matrix", [[0.0], np.ones((3, 3, 3)), np.ones((3, 4)),]) def test_linear_typeerrors1(matrix): """Exercise errors in Affine creation.""" with pytest.raises(TypeError): nitl.Affine(matrix) def test_linear_typeerrors2(data_path): """Exercise errors in Affine creation.""" with pytest.raises(TypeError): nitl.Affine.from_filename(data_path / "itktflist.tfm", fmt="itk") def test_linear_valueerror(): """Exercise errors in Affine creation.""" with pytest.raises(ValueError): nitl.Affine(np.ones((4, 4))) def test_loadsave_itk(tmp_path, data_path, testdata_path): """Test idempotency.""" ref_file = testdata_path / "someones_anatomy.nii.gz" xfm = nitl.load(data_path / "itktflist2.tfm", fmt="itk") assert isinstance(xfm, nitl.LinearTransformsMapping) xfm.reference = ref_file xfm.to_filename(tmp_path / "transform-mapping.tfm", fmt="itk") assert (data_path / "itktflist2.tfm").read_text() == ( tmp_path / "transform-mapping.tfm" ).read_text() single_xfm = nitl.load(data_path / "affine-LAS.itk.tfm", fmt="itk") assert isinstance(single_xfm, nitl.Affine) assert single_xfm == nitl.Affine.from_filename( data_path / "affine-LAS.itk.tfm", fmt="itk" ) @pytest.mark.parametrize("fmt", ["itk", "fsl", "afni", "lta"]) def test_loadsave(tmp_path, data_path, testdata_path, fmt): """Test idempotency.""" ref_file = testdata_path / "someones_anatomy.nii.gz" xfm = nitl.load(data_path / "itktflist2.tfm", fmt="itk") xfm.reference = ref_file fname = tmp_path / ".".join(("transform-mapping", fmt)) xfm.to_filename(fname, fmt=fmt) if fmt == "fsl": # FSL should not read a transform without reference with pytest.raises(ValueError): nitl.load(fname, fmt=fmt) nitl.load(fname, fmt=fmt, moving=ref_file) with pytest.warns(UserWarning): assert np.allclose( xfm.matrix, nitl.load(fname, fmt=fmt, reference=ref_file).matrix, ) assert np.allclose( xfm.matrix, nitl.load(fname, fmt=fmt, reference=ref_file, moving=ref_file).matrix, ) else: assert xfm == nitl.load(fname, fmt=fmt, reference=ref_file) xfm.to_filename(fname, fmt=fmt, moving=ref_file) if fmt == "fsl": assert np.allclose( xfm.matrix, nitl.load(fname, fmt=fmt, reference=ref_file, moving=ref_file).matrix, rtol=1e-2, # FSL incurs into large errors due to rounding ) else: assert xfm == nitl.load(fname, fmt=fmt, reference=ref_file) ref_file = testdata_path / "someones_anatomy.nii.gz" xfm = nitl.load(data_path / "affine-LAS.itk.tfm", fmt="itk") xfm.reference = ref_file fname = tmp_path / ".".join(("single-transform", fmt)) xfm.to_filename(fname, fmt=fmt) if fmt == "fsl": assert np.allclose( xfm.matrix, nitl.load(fname, fmt=fmt, reference=ref_file, moving=ref_file).matrix, rtol=1e-2, # FSL incurs into large errors due to rounding ) else: assert xfm == nitl.load(fname, fmt=fmt, reference=ref_file) xfm.to_filename(fname, fmt=fmt, moving=ref_file) if fmt == "fsl": assert np.allclose( xfm.matrix, nitl.load(fname, fmt=fmt, reference=ref_file, moving=ref_file).matrix, rtol=1e-2, # FSL incurs into large errors due to rounding ) else: assert xfm == nitl.load(fname, fmt=fmt, reference=ref_file) @pytest.mark.parametrize("image_orientation", ["RAS", "LAS", "LPS", "oblique"]) @pytest.mark.parametrize("sw_tool", ["itk", "fsl", "afni", "fs"]) def test_linear_save(tmpdir, data_path, get_testdata, image_orientation, sw_tool): """Check implementation of exporting affines to formats.""" if (image_orientation, sw_tool) == ("oblique", "afni"): pytest.skip("AFNI Deoblique unsupported.") tmpdir.chdir() img = get_testdata[image_orientation] # Generate test transform T = from_matvec(euler2mat(x=0.9, y=0.001, z=0.001), [4.0, 2.0, -1.0]) if sw_tool == "fs": # Account for the fact that FS defines LTA transforms reversed T = np.linalg.inv(T) xfm = nitl.Affine(T) xfm.reference = img ext = "" if sw_tool == "itk": ext = ".tfm" elif sw_tool == "fs": ext = ".lta" xfm_fname1 = "M.%s%s" % (sw_tool, ext) xfm.to_filename(xfm_fname1, fmt=sw_tool) xfm_fname2 = str(data_path / "affine-%s.%s%s") % (image_orientation, sw_tool, ext) assert_affines_by_filename(xfm_fname1, xfm_fname2) @pytest.mark.parametrize("image_orientation", ["RAS", "LAS", "LPS", ]) # 'oblique', @pytest.mark.parametrize("sw_tool", ["itk", "fsl", "afni", "fs"]) def test_apply_linear_transform(tmpdir, get_testdata, get_testmask, image_orientation, sw_tool): """Check implementation of exporting affines to formats.""" tmpdir.chdir() img = get_testdata[image_orientation] msk = get_testmask[image_orientation] # Generate test transform T = from_matvec(euler2mat(x=0.9, y=0.001, z=0.001), [4.0, 2.0, -1.0]) xfm = nitl.Affine(T) xfm.reference = img ext = "" if sw_tool == "itk": ext = ".tfm" elif sw_tool == "fs": ext = ".lta" img.to_filename("img.nii.gz") msk.to_filename("mask.nii.gz") # Write out transform file (software-dependent) xfm_fname = "M.%s%s" % (sw_tool, ext) xfm.to_filename(xfm_fname, fmt=sw_tool) cmd = APPLY_LINEAR_CMD[sw_tool]( transform=os.path.abspath(xfm_fname), reference=os.path.abspath("mask.nii.gz"), moving=os.path.abspath("mask.nii.gz"), resampled=os.path.abspath("resampled_brainmask.nii.gz"), ) # skip test if command is not available on host exe = cmd.split(" ", 1)[0] if not shutil.which(exe): pytest.skip("Command {} not found on host".format(exe)) # resample mask exit_code = check_call([cmd], shell=True) assert exit_code == 0 sw_moved_mask = nb.load("resampled_brainmask.nii.gz") nt_moved_mask = xfm.apply(msk, order=0) nt_moved_mask.set_data_dtype(msk.get_data_dtype()) diff = np.asanyarray(sw_moved_mask.dataobj) - np.asanyarray(nt_moved_mask.dataobj) assert np.sqrt((diff ** 2).mean()) < RMSE_TOL cmd = APPLY_LINEAR_CMD[sw_tool]( transform=os.path.abspath(xfm_fname), reference=os.path.abspath("img.nii.gz"), moving=os.path.abspath("img.nii.gz"), resampled=os.path.abspath("resampled.nii.gz"), ) brainmask = np.asanyarray(nt_moved_mask.dataobj, dtype=bool) exit_code = check_call([cmd], shell=True) assert exit_code == 0 sw_moved = nb.load("resampled.nii.gz") sw_moved.set_data_dtype(img.get_data_dtype()) nt_moved = xfm.apply(img, order=0) diff = (sw_moved.get_fdata() - nt_moved.get_fdata()) diff[~brainmask] = 0.0 diff[
np.abs(diff)
numpy.abs
import numpy as np import pandas as pd import tensorflow as tf from sklearn.metrics import precision_recall_fscore_support as prf, accuracy_score, roc_auc_score, auc, precision_recall_curve from tqdm import tqdm from imblearn.over_sampling import SMOTE from cuml.cluster import KMeans as cuKMeans from sklearn.cluster import KMeans from prettytable import PrettyTable # define compared algorithms from the Experiments section evaluated_algorithms = [ 'WO_TTA_Baseline', 'Gaussian_TTA_Baseline', 'Euclidean_SMOTE_TTA', 'Siamese_SMOTE_TTA', 'Euclidean_Kmeans_TTA', 'Siamese_Kmeans_TTA' ] # define anomaly detection estimators from the Experiments section evaluated_estimators = [ 'Autoencoder', 'Isolation Forest', 'One-Class SVM', 'Local Outlier Factor' ] def test(X, folded_test_datasets_list, trained_estimators_list, trained_siamese_network, euclidean_nn_model, siamese_nn_model, args): """ Performing test phase on the test set with all of the compared algorithms described in the Experiments section Parameters ---------- X: ndarray of shape (#num_samples, #features). The dataset's features folded_test_datasets_list: list. The test set of each split in the k-fold trained_estimators_list: list. The trained estimator of each split in hte k-fold trained_siamese_network. TF's Model. The trained siamese internal model. used to obtain embedding of each test instance euclidean_nn_model: trained Neareset Neighbors model with euclidean distance metric siamese_nn_model: trained Neareset Neighbors model with Siamese distance metric args: argparse args. The args given to the program """ # define k-fold split's metrics dict # algorithm:estimator:metric:fold algorithms_folds_metrics_dict = {algorithm: {estimator: [] for estimator in evaluated_estimators} for algorithm in evaluated_algorithms} for split_index in range(args.n_folds): # test set-up test_ds = folded_test_datasets_list[split_index] trained_estimator = trained_estimators_list[split_index] ae_test_step_func = ae_test_step() print(f"--- Testing k-fold split index: {split_index+1} ---") # testing current k-fold split current_split_algorithms_metrics = test_loop(X, test_ds, trained_estimator, euclidean_nn_model, siamese_nn_model, trained_siamese_network, ae_test_step_func, args) # update the folds metrics dictionary for algorithm, estimator_metrics in current_split_algorithms_metrics.items(): for estimator, metrics in estimator_metrics.items(): algorithms_folds_metrics_dict[algorithm][estimator].append(metrics) for algorithm, estimator_folds_metrics in algorithms_folds_metrics_dict.items(): for estimator, folds_metrics in estimator_folds_metrics.items(): algorithms_folds_metrics_dict[algorithm][estimator] = np.array(folds_metrics) # presenting results print_test_results(algorithms_folds_metrics_dict, args) def test_loop(X, test_ds, trained_estimator, euclidean_nn_model, siamese_nn_model, trained_siamese_network, ae_test_step_func, args): """ Performing the test loop with every evaluated algorithm. Parameters ---------- X: numpy ndarray of shape (#num_samples, #features). The dataset's features test_ds: TF's Dataset. The test set trained_estimator: A trained anomaly detector. euclidean_nn_model. trained Nearest Neighbors model with euclidean distance metric siamese_nn_model. trained Nearest Neighbors mkodel with siamese distance metric trained_siamese_network: TF's Model. The trained siamese model used for calculating two samples' distance ae_test_step_func: function. The function that is used for performing single test step with AE anomaly detection estimator args: argparse args. The args given to the program """ # loss function - with reduction equals to `NONE` in order to get the loss of every test example loss_func = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE) # extract estimators trained_encoder, trained_decoder = trained_estimator['ae'][0], trained_estimator['ae'][1] trained_if = trained_estimator['if'] trained_ocs = trained_estimator['ocs'] trained_lof = trained_estimator['lof'] num_neighbors = args.num_neighbors num_augmentations = args.num_augmentations algorithms_test_loss = {algorithm: {estimator: [] for estimator in evaluated_estimators} for algorithm in evaluated_algorithms} algorithms_metrics = {algorithm: {estimator: None for estimator in evaluated_estimators} for algorithm in evaluated_algorithms} test_labels = [] tqdm_total_bar = test_ds.cardinality().numpy() for step, (x_batch_test, y_batch_test) in tqdm(enumerate(test_ds), total=tqdm_total_bar): # predicting with each estimator without TTA (first Baseline) ae_reconstruction_loss = ae_test_step_func(x_batch_test, trained_encoder, trained_decoder, loss_func).numpy() if_anomaly_score = if_test_step(x_batch_test, trained_if) ocs_anomaly_score = ocs_test_step(x_batch_test, trained_ocs) lof_anomaly_score = lof_test_step(x_batch_test, trained_lof) # saving first Baseline results for each estimator algorithms_test_loss['WO_TTA_Baseline']['Autoencoder'].append(ae_reconstruction_loss) algorithms_test_loss['WO_TTA_Baseline']['Isolation Forest'].append(if_anomaly_score) algorithms_test_loss['WO_TTA_Baseline']['One-Class SVM'].append(ocs_anomaly_score) algorithms_test_loss['WO_TTA_Baseline']['Local Outlier Factor'].append(lof_anomaly_score) test_labels.append(y_batch_test.numpy()) # calculate euclidean nn indices euclidean_nn_batch_neighbors_indices = euclidean_nn_model.kneighbors(X=x_batch_test.numpy(), n_neighbors=num_neighbors, return_distance=False) # calculate siamese nn indices test_batch_latent_features = trained_siamese_network(x_batch_test).numpy() siamese_nn_batch_neighbors_indices = siamese_nn_model.kneighbors(X=test_batch_latent_features, n_neighbors=num_neighbors, return_distance=False) euclidean_nn_batch_neighbors_features = X[euclidean_nn_batch_neighbors_indices] siamese_nn_batch_neighbors_features = X[siamese_nn_batch_neighbors_indices] algorithms_tta_samples_dict = { 'Gaussian_TTA_Baseline': generate_random_noise_tta_samples(x_batch_test.numpy(), num_augmentations=num_augmentations), 'Euclidean_SMOTE_TTA': generate_oversampling_tta_samples(euclidean_nn_batch_neighbors_features, oversampling_method=SMOTE, num_neighbors=num_neighbors, num_augmentations=num_augmentations), 'Siamese_SMOTE_TTA': generate_oversampling_tta_samples(siamese_nn_batch_neighbors_features, oversampling_method=SMOTE, num_neighbors=num_neighbors, num_augmentations=num_augmentations), 'Euclidean_Kmeans_TTA': generate_kmeans_tta_samples(euclidean_nn_batch_neighbors_features, args.with_cuml, num_augmentations=num_augmentations), 'Siamese_Kmeans_TTA': generate_kmeans_tta_samples(siamese_nn_batch_neighbors_features, args.with_cuml, num_augmentations=num_augmentations) } # making prediction (with the anomaly detection estimator) for every tta sample algorithms_tta_predictions_dict = { algorithm: { 'Autoencoder': ae_test_step_func(tta_samples, trained_encoder, trained_decoder, loss_func).numpy(), 'Isolation Forest': if_test_step(tta_samples, trained_if), 'One-Class SVM': ocs_test_step(tta_samples, trained_ocs), 'Local Outlier Factor': lof_test_step(tta_samples, trained_lof) } for algorithm, tta_samples in algorithms_tta_samples_dict.items() } # merging given test sample's prediction with its tta predictions for algorithm, estimators_predictions in algorithms_tta_predictions_dict.items(): for estimator, tta_preds in estimators_predictions.items(): wo_tta_pred = algorithms_test_loss['WO_TTA_Baseline'][estimator][step] # combine original test samples' predictions with the kmeans regular-NN TTA samples' prediction for wo_tta_single_pred, tta_single_pred in list(zip(wo_tta_pred, tta_preds)): combined_tta_loss = np.concatenate([[wo_tta_single_pred], tta_single_pred]) algorithms_test_loss[algorithm][estimator].append(np.mean(combined_tta_loss)) # flatten w/o tta baseline test loss and the test_labels vectors # algorithms_test_loss['WO_TTA_Baseline'] = np.concatenate(algorithms_test_loss['WO_TTA_Baseline'], axis=0) for estimator, estimator_test_loss in algorithms_test_loss['WO_TTA_Baseline'].items(): algorithms_test_loss['WO_TTA_Baseline'][estimator] = np.concatenate(estimator_test_loss, axis=0) test_labels = np.concatenate(test_labels, axis=0) y_true = np.asarray(test_labels).astype(int) # calculating AUC for algorithm, estimator_final_preds in algorithms_metrics.items(): for estimator in estimator_final_preds.keys(): algorithms_metrics[algorithm][estimator] = (roc_auc_score(y_true, algorithms_test_loss[algorithm][estimator])) return algorithms_metrics def ae_test_step(): # @tf.function def test_one_step(inputs, encoder, decoder, loss_func): latent_var = encoder(inputs) reconstructed = decoder(latent_var) reconstruction_loss = loss_func(inputs, reconstructed) return reconstruction_loss return test_one_step def if_test_step(test_X, trained_if): """ A test phase with Isolation Forest on the given test set Parameters ---------- test_X: numpy ndarray of shape (batch_size, num_augmentations, dataset's features dim) or (batch_size, dataset's features dim). The batch test set trained_if: scikit-learn's IsolationForest. The trained Isolation Forest as anomaly detection estimator """ if len(test_X.shape) == 3: batch_anomaly_score = [] for one_test_tta_samples in test_X: anomaly_score = -1 * trained_if.score_samples(one_test_tta_samples) batch_anomaly_score.append(anomaly_score) anomaly_score = np.array(batch_anomaly_score) else: anomaly_score = -1 * trained_if.score_samples(test_X) return anomaly_score def lof_test_step(test_X, trained_lof): """ A test phase with Local Outlier Factor on the given test set Parameters ---------- test_X: numpy ndarray of shape (batch_size, dataset's features dim). The batch test set trained_lof: scikit-learn's LocalOutlierFactor. The trained Local Outlier Factor as anomaly detection estimator """ if len(test_X.shape) == 3: batch_anomaly_score = [] for one_test_tta_samples in test_X: anomaly_score = -1 * trained_lof.score_samples(one_test_tta_samples) batch_anomaly_score.append(anomaly_score) anomaly_score = np.array(batch_anomaly_score) else: anomaly_score = -1 * trained_lof.score_samples(test_X) return anomaly_score def ocs_test_step(test_X, trained_ocs): """ A test phase with One-Class SVM on the given test set Parameters ---------- test_X: numpy ndarray of shape (batch_size, dataset's features dim). The batch test set trained_ocs: scikit-learn's OneClassSVM. The trained One-Class SVM as anomaly detection estimator """ if len(test_X.shape) == 3: batch_anomaly_score = [] for one_test_tta_samples in test_X: anomaly_score = -1 * trained_ocs.score_samples(one_test_tta_samples) batch_anomaly_score.append(anomaly_score) anomaly_score = np.array(batch_anomaly_score) else: anomaly_score = -1 * trained_ocs.score_samples(test_X) return anomaly_score def generate_random_noise_tta_samples(x_batch_test, num_augmentations): """ Generating TTA with random Gaussian noise Parameters ---------- x_batch_test: ndarray of shape (batch_size, #features). The features of each test sample in the batch num_augmentations: int. The nubmer of augmentations to produce """ # scale = 0.2 random_noise = np.random.normal(size=(x_batch_test.shape[0], num_augmentations, x_batch_test.shape[1])) # adding the noise to the original batch test samples. expanding the middle dim of x_batch_test to make it (batch_size, 1, dataset_features_dim) gaussian_tta_samples = np.expand_dims(x_batch_test, axis=1) + random_noise return gaussian_tta_samples def generate_kmeans_tta_samples(batch_neighbors_features, with_cuML, num_augmentations): """ Generating TTA with trained k-means Parameters ---------- batch_neighbors_features: numpy ndarray of shape (batch_size, num_neighbors, #features). The features of each neighbor of each test sample that is in the batch with_cuML: bool. If True, then using cuML's k-Means model otherwise using scikit-learn's k-Means model num_augmentations: int. The number of augmentations to produce """ batch_tta_samples = [] for neighbors_features in batch_neighbors_features: if with_cuML: kmeans_model = cuKMeans(n_clusters=num_augmentations, random_state=1234) else: kmeans_model = cuKMeans(n_clusters=num_augmentations, random_state=1234) neighbors_features = neighbors_features.astype(np.float32) kmeans_model.fit(X=neighbors_features) tta_samples = kmeans_model.cluster_centers_ # appending to the batch tta samples batch_tta_samples.append(tta_samples) return np.array(batch_tta_samples) def generate_oversampling_tta_samples(oversampling_batch_neighbors_features, num_neighbors, num_augmentations, oversampling_method): """ Generating TTA with oversampling method (SMOTE) Parameters ---------- oversampling_batch_neighbors_features: numpy ndarray of shape (batch_size, num_neighbors, #features). The features of each neighbor of each test sample that is in the batch num_neighbors: int. The number of neighbor each test sample in the batch has num_augmentations: int. The number of augmentations to produce oversampling_meethod: function. SMOTE function """ batch_size, features_dim = oversampling_batch_neighbors_features.shape[0], oversampling_batch_neighbors_features.shape[-1] oversampling_batch_tta_samples =
np.zeros((batch_size, num_augmentations, features_dim))
numpy.zeros
from IB import * import matplotlib.pyplot as plt import os import numpy as np import math def gen_easytest(plot=True): # set name name = "easytest" n = 10 # set generative parameters mu1 = np.array([0,0]) sig1 = np.eye(2) n1 = n mu2 = np.array([math.sqrt(75),5]) sig2 = np.eye(2) n2 = n mu3 = np.array([0,10]) sig3 = np.eye(2) n3 = n param = {'mu1': mu1, 'sig1': sig1, 'n1': n1, 'mu2': mu2, 'sig2': sig2, 'n2': n2, 'mu3': mu3, 'sig3': sig3, 'n3': n3} # make labels labels = np.array([0]*n1+[1]*n2+[2]*n3) # make coordinates coord = np.concatenate((np.random.multivariate_normal(mu1,sig1,n1), np.random.multivariate_normal(mu2,sig2,n2), np.random.multivariate_normal(mu3,sig3,n3))) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name,smoothing_type='u',smoothing_center='d') # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def gen_blob(plot=True): # set name name = "blob" # set generative parameters mu1 = np.array([0,0]) sig1 = np.eye(2) n1 = 90 param = {'mu1': mu1, 'sig1': sig1, 'n1': n1} # make labels labels = np.array([0]*n1) # make coordinates coord = np.random.multivariate_normal(mu1,sig1,n1) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name) # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def gen_3sph_evensamp_evenspacing(plot=True): # set name name = "3sph_evensamp_evenspacing" # set generative parameters mu1 = np.array([0,0]) sig1 = np.eye(2) n1 = 30 mu2 = np.array([math.sqrt(75),5]) sig2 = np.eye(2) n2 = 30 mu3 = np.array([0,10]) sig3 = np.eye(2) n3 = 30 param = {'mu1': mu1, 'sig1': sig1, 'n1': n1, 'mu2': mu2, 'sig2': sig2, 'n2': n2, 'mu3': mu3, 'sig3': sig3, 'n3': n3} # make labels labels = np.array([0]*n1+[1]*n2+[2]*n3) # make coordinates coord = np.concatenate((np.random.multivariate_normal(mu1,sig1,n1), np.random.multivariate_normal(mu2,sig2,n2), np.random.multivariate_normal(mu3,sig3,n3))) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name) # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def gen_3sph_unevensamp_evenspacing(plot=True): # set name name = "3sph_unevensamp_evenspacing" # set generative parameters mu1 = np.array([0,0]) sig1 = np.eye(2) n1 = 10 mu2 = np.array([math.sqrt(75),5]) sig2 = np.eye(2) n2 = 30 mu3 = np.array([0,10]) sig3 = np.eye(2) n3 = 60 param = {'mu1': mu1, 'sig1': sig1, 'n1': n1, 'mu2': mu2, 'sig2': sig2, 'n2': n2, 'mu3': mu3, 'sig3': sig3, 'n3': n3} # make labels labels = np.array([0]*n1+[1]*n2+[2]*n3) # make coordinates coord = np.concatenate((np.random.multivariate_normal(mu1,sig1,n1), np.random.multivariate_normal(mu2,sig2,n2), np.random.multivariate_normal(mu3,sig3,n3))) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name) # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def gen_3sph_evensamp_unevenspacing(plot=True): # set name name = "3sph_evensamp_unevenspacing" # set generative parameters mu1 = np.array([0,2.5]) sig1 = np.eye(2) n1 = 30 mu2 = np.array([0,-2.5]) sig2 = np.eye(2) n2 = 30 mu3 = np.array([15,0]) sig3 = np.eye(2) n3 = 30 param = {'mu1': mu1, 'sig1': sig1, 'n1': n1, 'mu2': mu2, 'sig2': sig2, 'n2': n2, 'mu3': mu3, 'sig3': sig3, 'n3': n3} # make labels labels = np.array([0]*n1+[1]*n2+[2]*n3) # make coordinates coord = np.concatenate((np.random.multivariate_normal(mu1,sig1,n1), np.random.multivariate_normal(mu2,sig2,n2), np.random.multivariate_normal(mu3,sig3,n3))) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name) # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def make_circle(radius,num_points): count = 0 points = np.zeros((num_points,2)) while count<num_points: x1 = 2*radius*np.random.rand()-radius x2 = 2*radius*np.random.rand()-radius x = np.array([x1,x2]) if np.linalg.norm(x)<radius: points[count,:] = x count += 1 return points def gen_mouse(plot=True): # set name name = "mouse" # set generative parameters mu1 = np.array([0,0]) rad1 = 4 n1 = 180 mu2 = np.array([-3.5,5]) rad2 = 1.4 n2 = 25 mu3 = np.array([3.5,5]) rad3 = 1.4 n3 = 25 param = {'mu1': mu1, 'rad1': rad1, 'n1': n1, 'mu2': mu2, 'rad2': rad2, 'n2': n2, 'mu3': mu3, 'rad3': rad3, 'n3': n3} # make labels labels = np.array([0]*n1+[1]*n2+[2]*n3) # make coordinates coord = np.concatenate((make_circle(rad1,n1)+mu1, make_circle(rad2,n2)+mu2, make_circle(rad3,n3)+mu3)) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name) # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def gen_circleandcigar(plot=True): # set name name = "circleandcigar" # set generative parameters mu1 = np.array([5,0]) sig1 = np.eye(2) n1 = 50 mu2 = np.array([-5,0]) sig2 = np.array([[1,0],[0,25]]) n2 = 50 param = {'mu1': mu1, 'sig1': sig1, 'n1': n1, 'mu2': mu2, 'sig2': sig2, 'n2': n2} # make labels labels = np.array([0]*n1+[1]*n2) # make coordinates coord = np.concatenate((np.random.multivariate_normal(mu1,sig1,n1), np.random.multivariate_normal(mu2,sig2,n2))) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name) # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def gen_2cigars(plot=True): # set name name = "2cigars" # set generative parameters mu1 = np.array([0,-4]) sig1 = np.array([[25,0],[0,1]]) n1 = 50 mu2 = np.array([0,4]) sig2 = np.array([[25,0],[0,1]]) n2 = 50 param = {'mu1': mu1, 'sig1': sig1, 'n1': n1, 'mu2': mu2, 'sig2': sig2, 'n2': n2} # make labels labels = np.array([0]*n1+[1]*n2) # make coordinates coord = np.concatenate((np.random.multivariate_normal(mu1,sig1,n1), np.random.multivariate_normal(mu2,sig2,n2))) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name) # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def gen_2over3(plot=True): # set name name = "2over3" # set generative parameters sig = .75 mu1 = np.array([0,0]) sig1 = (sig**2)*np.eye(2) n1 = 20 mu2 = np.array([-4,0]) sig2 = (sig**2)*np.eye(2) n2 = 20 mu3 = np.array([4,0]) sig3 = (sig**2)*np.eye(2) n3 = 20 mu4 = np.array([-2,12]) sig4 = (sig**2)*np.eye(2) n4 = 20 mu5 = np.array([2,12]) sig5 = (sig**2)*np.eye(2) n5 = 20 param = {'mu1': mu1, 'sig1': sig1, 'n1': n1, 'mu2': mu2, 'sig2': sig2, 'n2': n2, 'mu3': mu3, 'sig3': sig3, 'n3': n3, 'mu4': mu4, 'sig4': sig4, 'n4': n4, 'mu5': mu5, 'sig5': sig5, 'n5': n5} # make labels labels = np.array([0]*n1+[1]*n2+[2]*n3+[3]*n4+[4]*n5) # make coordinates coord = np.concatenate((np.random.multivariate_normal(mu1,sig1,n1), np.random.multivariate_normal(mu2,sig2,n2), np.random.multivariate_normal(mu3,sig3,n3), np.random.multivariate_normal(mu4,sig4,n4), np.random.multivariate_normal(mu5,sig5,n5))) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name) # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def gen_halfconcentric(plot=True): # set name name = "halfconcentric" # set generative parameters nt = 80 # number of thetas nd = 1 # number of samples per theta no = nd*nt # number of samples for outer circle ni = 20 # number of samples for inner circle r = 5 # radius of outer loop so = .25 # gaussian noise variance of outer circle si = .25 # gaussian noise variance of inner circle thetas = -np.linspace(0,math.pi,nt) x = [r*math.cos(theta) for theta in thetas] y = [r*math.sin(theta) for theta in thetas] param = {'nt': nt, 'nd': nd, 'no': no, 'ni': ni, 'r': r, 'so': so, 'si': si} # make labels labels = np.array([0]*ni+[1]*no) # make coordinates coord = np.random.multivariate_normal(np.array([0,0]),si*np.eye(2),ni) for i in range(len(x)): coord = np.concatenate((coord,np.random.multivariate_normal(np.array([x[i],y[i]]),so*np.eye(2),nd))) # make dataset ds = dataset(coord = coord, labels = labels, gen_param = param, name = name) # plot coordinates if plot: ds.plot_coord() # normalize ds.normalize_coord() if plot: ds.plot_coord() return ds def gen_concentric(plot=True): # set name name = "concentric" # set generative parameters nt = 80 # number of thetas nd = 1 # number of samples per theta no = nd*nt # number of samples for outer circle ni = 20 # number of samples for inner circle r = 8 # radius of outer loop so = .25 # gaussian noise variance of outer circle si = .25 # gaussian noise variance of inner circle thetas = -np.linspace(0,2*math.pi,nt) x = [r*math.cos(theta) for theta in thetas] y = [r*math.sin(theta) for theta in thetas] param = {'nt': nt, 'nd': nd, 'no': no, 'ni': ni, 'r': r, 'so': so, 'si': si} # make labels labels = np.array([0]*ni+[1]*no) # make coordinates coord = np.random.multivariate_normal(np.array([0,0]),si*
np.eye(2)
numpy.eye
import numpy as np from scipy import signal from scipy.interpolate import splev, splrep class Record: sr = 20000 # Sample Rate - 20 kHz def __init__(self,array): self.array = array ## Instance Variables # Control System Features self.dom_pp = [] self.rec_pp = [] self.dom_bp = [] self.rec_bp = [] self.dom_pt = [] self.rec_pt = [] self.dom_ssv = [] self.rec_ssv = [] self.dom_sse = [] self.rec_sse = [] self.dom_po = [] self.rec_po = [] self.dom_st_s = [] self.rec_st_s = [] self.dom_rt_s = [] self.rec_rt_s = [] self.dom_dt_s = [] self.rec_dt_s = [] # Spectral Analysis Features self.dom_pulse_data = [] self.rec_pulse_data = [] self.dom_sd = [] self.rec_sd = [] self.dom_snr = [] self.rec_snr = [] self.dom_mdfr = [] self.rec_mdfr = [] self.dom_mnfr = [] self.rec_mnfr = [] # Outlier Check Results self.outlier_count = [] ## Instance Methods # Control System Processing self.PeakDetection() self.PeakTime() self.SteadyStateValErr() self.PercentOvershoot() self.SettlingTime() self.RiseTime() self.DelayTime() # Spectral Analysis Processing self.RunSpectralAnalysis() self.total_rec = np.min((len(self.dom_sd), len(self.rec_sd))) # # Outlier Detection and Removal # self.OutlierCount() # self.RemoveOutliers() # # Build Feature Datastructure self.features = self.GenerateFeatures() self.headers = [] self.headers.append('Dom_Peak_Time') self.headers.append('Dom_Steady_State_Value') self.headers.append('Dom_Steady_State_Error') self.headers.append('Dom_Percent_Overshoot') self.headers.append('Dom_Settling_Time') self.headers.append('Dom_Rise_Time') self.headers.append('Dom_Delay_Time') for i in np.arange(len(self.dom_sd[0])): self.headers.append('Dom_Spectral_Bin_%d' % i) self.headers.append('Dom_SNR') self.headers.append('Dom_Mean_Freq') self.headers.append('Dom_Median_Freq') self.headers.append('Rec_Peak_Time') self.headers.append('Rec_Steady_State_Value') self.headers.append('Rec_Steady_State_Error') self.headers.append('Rec_Percent_Overshoot') self.headers.append('Rec_Settling_Time') self.headers.append('Rec_Rise_Time') self.headers.append('Rec_Delay_Time') for i in np.arange(len(self.rec_sd[0])): self.headers.append('Rec_Spectral_Bin_%d' % i) self.headers.append('Rec_SNR') self.headers.append('Rec_Mean_Freq') self.headers.append('Rec_Median_Freq') def PeakDetection(self): ##### PeakDetection # Input: array - raw signal data for record # Output: dom_pp - dominant Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_pp - recessive Pulse Peak index # rec_bp - recessive Before Pulse peak index ### Pulse Peak Detection ### # Calculate difference array arr_diff = np.diff(self.array, prepend=self.array[0]) # Perform moving average filter, width=3, x2 w = 3 arr_diff = np.convolve(arr_diff, np.ones(w), 'valid') / w arr_diff = np.convolve(arr_diff, np.ones(w), 'valid') / w # Prepend zeros to offset processing delay arr_diff = np.insert(arr_diff, 0, np.zeros((w-1)*2), axis=0) # Crossing filter to detect dominant and recessive leading edge zones dom_pp_ts = (arr_diff > 0.2).astype(float) rec_pp_ts = (arr_diff < -0.2).astype(float) # Find peak for each zone (dominant) a = np.where(dom_pp_ts == 1)[0].astype(float) b = np.diff(a, prepend=0) c = np.where(b > 1)[0] dom_pp = a[c].astype(int) # Remove errant peaks (dominant) corr_idx = np.concatenate((np.diff(dom_pp),[np.average(np.diff(dom_pp))])) if np.min(np.diff(corr_idx)) < 100: corr_idx = np.where(corr_idx > np.average(corr_idx/4))[0] dom_pp = dom_pp[corr_idx] # Find peak for each zone (recessive) a = np.where(rec_pp_ts == 1)[0].astype(float) b = np.diff(a, prepend=0) c = np.where(b > 1)[0] rec_pp = a[c].astype(int) # Remove errant peaks (recessive) corr_idx = np.concatenate((np.diff(rec_pp),[np.average(np.diff(rec_pp))])) if np.min(np.diff(corr_idx)) < 15: corr_idx = np.where(corr_idx > np.average(corr_idx/4))[0] rec_pp = rec_pp[corr_idx] # Pair dom and rec indices dom_len = len(dom_pp) rec_len = len(rec_pp) dom_is_larger = [] if dom_len > rec_len + 1: dom_is_larger = 1 elif rec_len > dom_len + 1: dom_is_larger = 0 if not dom_is_larger == []: len_min = np.min((dom_len, rec_len)) len_dif = np.abs(dom_len - rec_len) + 1 dif_amt = [] for i in np.arange(len_dif): if dom_is_larger: temp = dom_pp[0:dom_len] - rec_pp[i:dom_len+i] else: temp = dom_pp[0:dom_len] - rec_pp[i:dom_len+i] temp = np.abs(temp) temp = np.sum(temp) dif_amt.append(temp) dif_loc = np.where(np.min(dif_amt) == dif_amt)[0] if dom_is_larger: dom_pp = dom_pp[dif_loc[0]:rec_len+dif_loc[0]+1] else: rec_pp = rec_pp[dif_loc[0]:dom_len+dif_loc[0]+1] # Create timestamps using indices dom_pp_ts = np.zeros(dom_pp_ts.size) dom_pp_ts[dom_pp] = 1 self.dom_pp = np.where(dom_pp_ts == 1)[0] rec_pp_ts = np.zeros(rec_pp_ts.size) rec_pp_ts[rec_pp] = 1 self.rec_pp = np.where(rec_pp_ts == 1)[0] ### Pre-Peak Detection ### # Crossing filter to detect pre-dominant steady state (Before Leading-edge) dom_bp_ts = np.abs(np.diff(self.array - 2.5, prepend = self.array[0])) w = 5 dom_bp_ts = np.convolve(dom_bp_ts, np.ones(w), 'valid') / w dom_bp_ts = np.insert(dom_bp_ts, 0, np.zeros(w-1), axis=0) dom_bp_ts = 1-(dom_bp_ts > 0.05).astype(float) # Crossing filter to detect pre-recessive steady state (Before Leading-edge) rec_bp_ts = np.abs(np.diff(3.5 - self.array, prepend = self.array[0])) w = 5 rec_bp_ts = np.convolve(rec_bp_ts, np.ones(w), 'valid') / w rec_bp_ts = np.insert(rec_bp_ts, 0, np.zeros(w-1), axis=0) rec_bp_ts = 1-(rec_bp_ts > 0.05).astype(float) ## Find the last instance of steady state prior to dominant peaks jj = np.zeros(dom_pp.size).astype(int) for k in np.arange(0,dom_pp.size): # "Dominant-low steady state" indices before peak j = np.where(dom_bp_ts[0:dom_pp[k]] == 1) j = j[0] # Find nearest index before dominant peak min_idx = j-dom_pp[k] min_idx = min_idx[np.where(np.min(np.abs(min_idx)) == np.abs(min_idx))[0]] jj[k] = ((min_idx + dom_pp[k])[0]) # Dominant prior-to-peak steady-state indices dom_bp_ts2 = np.zeros(dom_bp_ts.size, dtype=int) dom_bp_ts2[jj] = 1 self.dom_bp = jj ## Find the last instance of steady state prior to recessive peaks jj = np.zeros(rec_pp.size).astype(int) for k in np.arange(0,rec_pp.size): # "Recesive-low steady state" indices before peak j = np.where(rec_bp_ts[0:rec_pp[k]] == 1) j = j[0] # Find nearest index before recessive peak min_idx = j-rec_pp[k] min_idx = min_idx[np.where(np.min(np.abs(min_idx)) == np.abs(min_idx))[0]] jj[k] = ((min_idx + rec_pp[k])[0]) # Recessive prior-to-peak steady-state indices rec_bp_ts2 = np.zeros(rec_bp_ts.size, dtype=int) rec_bp_ts2[jj] = 1 self.rec_bp = jj def PeakTime(self): ##### PeakTime # Input: dom_pp - dominant Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_pp - recessive Pulse Peak index # rec_bp - recessive Before Pulse peak index # sr - sample rate of the raw data # Output: dom_pt - dominant Peak Time # rec_pt - recessive Peak Time self.dom_pt = (self.dom_pp-self.dom_bp)/Record.sr self.rec_pt = (self.rec_pp-self.rec_bp)/Record.sr def SteadyStateValErr(self): ##### Steady State Value and Error # Input: array - raw signal data for record # dom_bp - dominant Before Pulse peak index # rec_bp - recessive Before Pulse peak index # Output: dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # dom_sse - dominant Steady State Error # rec_sse - recessive Steady State Error # Perform moving average filter, width=19 w = 19 arr_avg = np.convolve(self.array, np.ones(w), 'valid') / w arr_avg = np.insert(arr_avg, 0, arr_avg[0]*np.ones(w-1), axis=0) # Extract Steady State Value from previous Steady State Index dom_ssv_idx = self.rec_bp rec_ssv_idx = self.dom_bp self.dom_ssv = arr_avg[dom_ssv_idx] self.rec_ssv = arr_avg[rec_ssv_idx] # Calculate Steady State Error self.dom_sse = arr_avg[dom_ssv_idx] - 3.5 self.rec_sse = arr_avg[rec_ssv_idx] - 2.5 def PercentOvershoot(self): ##### Percent Overshoot # Input: array - raw signal data for record # dom_pp - dominant Before Pulse peak index # rec_pp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # Output: dom_po - dominant Percent Overshoot # rec_po - recessive Percent Overshoot dom_pv = self.array[self.dom_pp] rec_pv = self.array[self.rec_pp] try: self.dom_po = 100 * (dom_pv - self.dom_ssv) / self.dom_ssv self.rec_po = 100 * (self.rec_ssv - rec_pv) / self.rec_ssv except: self.dom_po = 100 * (dom_pv - np.average(self.dom_ssv)) / np.average(self.dom_ssv) self.rec_po = 100 * (np.average(self.rec_ssv) - rec_pv) / np.average(self.rec_ssv) def SettlingTime(self): ##### Settling Time # Input: array - raw signal data for record # dom_pp - dominant Before Pulse peak index # rec_pp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # sr - sample rate of the raw data # Output: dom_st_s - dominant Settling Time (s) # rec_st_s - recessive Settling Time (s) ss_rng = 0.05 # 5% Steady State Range of 1V Vpp design # Find index and time of settling point (dominant) w = 3 arr_avg1 = np.convolve(np.abs(self.array-np.average(self.dom_ssv)), np.ones(w), 'valid') / w arr_avg1 = np.insert(arr_avg1, 0, arr_avg1[0]*np.ones(w-1), axis=0) arr_avg11 = np.abs(np.round(arr_avg1,decimals=2)) dom_st_idx = np.where(arr_avg11 <= ss_rng)[0] dom_st = np.zeros(self.dom_pp.size) if dom_st_idx.size != 0: for i in np.arange(self.dom_pp.size): dom_st_idx[dom_st_idx <= self.dom_pp[i]] = -self.array.size j = np.where( np.min(np.abs(dom_st_idx - self.dom_pp[i])) == np.abs(dom_st_idx - self.dom_pp[i]) )[0][-1] dom_st[i] = dom_st_idx[j] dom_st = dom_st.astype(int) else: self.dom_st = np.concatenate((self.dom_pp[1:],[self.array.size])) self.dom_st_s = (dom_st - self.dom_pp)/Record.sr # Find index and time of settling point (dominant) w = 3 arr_avg2 = np.convolve(np.average(self.dom_ssv)-self.array, np.ones(w), 'valid') / w arr_avg2 = np.insert(arr_avg2, 0, arr_avg2[0]*np.ones(w-1), axis=0) arr_avg22 = np.abs(np.round(arr_avg2,decimals=2)) rec_st_idx = np.where(arr_avg22 <= ss_rng)[0] rec_st = np.zeros(self.rec_pp.size) for i in np.arange(self.rec_pp.size): rec_st_idx[rec_st_idx <= self.rec_pp[i]] = -self.array.size j = np.where( np.min(np.abs(rec_st_idx - self.rec_pp[i])) == np.abs(rec_st_idx - self.rec_pp[i]) )[0][-1] rec_st[i] = rec_st_idx[j] rec_st = rec_st.astype(int) self.rec_st_s = (rec_st - self.rec_pp)/Record.sr def RiseTime(self): ##### Rise Time # Input: array - raw signal data for record # dom_pp - dominant Pulse Peak index # rec_pp - recessive Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_bp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # sr - sample rate of the raw data # Output: dom_rt_s - dominant Settling Time (s) # rec_rt_s - recessive Settling Time (s) # Find index and time of rise point (dominant) dom_rt_ts = (self.array.copy() - np.average(self.rec_ssv) <= 1).astype(int) dom_rt_idx = np.where(dom_rt_ts == 1)[0] dom_rt = np.zeros(self.dom_pp.size) for i in np.arange(self.dom_pp.size): j = np.where(np.min(np.abs(dom_rt_idx - self.dom_pp[i])) == np.abs(dom_rt_idx - self.dom_pp[i]))[0][-1] dom_rt[i] = dom_rt_idx[j] dom_rt = dom_rt.astype(int) self.dom_rt_s = (dom_rt - self.dom_bp)/Record.sr # Find index and time of rise point (recessive) rec_rt_ts = (-self.array.copy() + np.average(self.dom_ssv) <= 1).astype(int) rec_rt_idx = np.where(rec_rt_ts == 1)[0] rec_rt = np.zeros(self.rec_pp.size) for i in np.arange(self.rec_pp.size): j = np.where(np.min(np.abs(rec_rt_idx - self.rec_pp[i])) == np.abs(rec_rt_idx - self.rec_pp[i]))[0][-1] rec_rt[i] = rec_rt_idx[j] rec_rt = rec_rt.astype(int) self.rec_rt_s = (rec_rt - self.rec_bp)/Record.sr def DelayTime(self): ##### Delay Time # Input: array - raw signal data for record # dom_pp - dominant Pulse Peak index # rec_pp - recessive Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_bp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # sr - sample rate of the raw data # Output: dom_rt_s - dominant Settling Time (s) # rec_rt_s - recessive Settling Time (s) # Find index and time of delay point (dominant) dom_dt_ts = (self.array.copy() - np.average(self.rec_ssv) <= 0.5).astype(int) dom_dt_idx = np.where(dom_dt_ts == 1)[0] dom_dt = np.zeros(self.dom_pp.size) for i in np.arange(self.dom_pp.size): j = np.where(np.min(np.abs(dom_dt_idx - self.dom_pp[i])) == np.abs(dom_dt_idx - self.dom_pp[i]))[0][-1] dom_dt[i] = dom_dt_idx[j] dom_dt = dom_dt.astype(int) self.dom_dt_s = (dom_dt - self.dom_bp)/Record.sr # Find index and time of delay point (recessive) rec_dt_ts = (-self.array.copy() + np.average(self.dom_ssv) <= 0.5).astype(int) rec_dt_idx = np.where(rec_dt_ts == 1)[0] rec_dt = np.zeros(self.rec_pp.size) for i in np.arange(self.rec_pp.size): j = np.where(np.min(np.abs(rec_dt_idx - self.rec_pp[i])) == np.abs(rec_dt_idx - self.rec_pp[i]))[0][-1] rec_dt[i] = rec_dt_idx[j] rec_dt = rec_dt.astype(int) self.rec_dt_s = (rec_dt - self.rec_bp)/Record.sr def RunSpectralAnalysis(self): ##### Spectral Analysis # Run the following methods: # # + Spectral Density Binning # + Signal-to-Noise Ratio # + Median Frequency # + Mean Frequency # # Features will be processed for both # Dominant and Recessive CAN High bits self.SpectralDensityBinning() self.SignalToNoiseRatio() self.MeanMedianFrequency() def SpectralDensityBinning(self): ##### Bin Spectral Density index_shift = -5 # Include some steady state info from prev pulse dom_pp_sd = self.dom_pp.copy() + index_shift rec_pp_sd = self.rec_pp.copy() + index_shift # Find the start/end pulse indices if self.dom_pp[0] <= self.rec_pp[0]: if len(self.dom_pp) > len(self.rec_pp): dom_pp_sd = dom_pp_sd[0:-1] idx_dom_se = np.array([dom_pp_sd,rec_pp_sd]) idx_rec_se = np.array([rec_pp_sd[0:-1],dom_pp_sd[1:]]) else: if len(self.rec_pp) > len(self.dom_pp): rec_pp_sd = rec_pp_sd[0:-1] idx_rec_se = np.array([rec_pp_sd,dom_pp_sd]) idx_dom_se = np.array([dom_pp_sd[0:-1],rec_pp_sd[1:]]) # Remove pulses that don't provide enough steady-state information from the prev pulse if idx_dom_se[0][0] < -index_shift: idx_dom_se = np.array([idx_dom_se[0][1:],idx_dom_se[1][1:]]) if idx_rec_se[0][0] < -index_shift: idx_rec_se = np.array([idx_rec_se[0][1:],idx_rec_se[1][1:]]) # Check for out-or-order index error if idx_dom_se[0][0] > idx_dom_se[1][0]: temp1 = np.array([idx_dom_se[1],idx_dom_se[0]]) temp2 = np.array([idx_dom_se[0],idx_rec_se[1]]) idx_dom_se = temp2 idx_rec_se = temp1 # Save dom pulse info to parent method variable dom_pulse_data for i in np.arange(idx_dom_se.shape[1]): self.dom_pulse_data.append(self.array[idx_dom_se[0][i]:idx_dom_se[1][i]]) # Save dom pulse info to parent method variable rec_pulse_data for i in np.arange(idx_rec_se.shape[1]): self.rec_pulse_data.append(self.array[idx_rec_se[0][i]:idx_rec_se[1][i]]) # Reset indices idx_dom_se = idx_dom_se - index_shift idx_rec_se = idx_rec_se - index_shift # Bin power densities def binned_sd(Pxx_den, nbins): bs = Pxx_den.size/nbins bs = round(bs) Pxx_hist = [] for i in np.arange(nbins): idx_s = i*bs idx_e = (i+1)*bs if idx_e >= Pxx_den.size: idx_e = Pxx_den.size - 1 Pxx_hist.append(np.average(Pxx_den[idx_s:idx_e])) Pxx_hist = np.nan_to_num(Pxx_hist) return Pxx_hist # Select bin sizes bin_sel = 2 dom_nbin = [15,13,10] # Bin size limited by pulse length # Perform binning of spectral density self.dom_sd = [] for i in np.arange(len(self.dom_pulse_data)): f, pd = signal.welch(self.dom_pulse_data[i], Record.sr, nperseg=len(self.dom_pulse_data[i])); self.dom_sd.append(binned_sd(pd, dom_nbin[bin_sel])) rec_nbin = [10, 8, 5] # Bin size limited by pulse length self.rec_sd = [] for i in np.arange(len(self.rec_pulse_data)): f, pd = signal.welch(self.rec_pulse_data[i], Record.sr, nperseg=len(self.rec_pulse_data[i])); self.rec_sd.append(binned_sd(pd, rec_nbin[bin_sel])) def SignalToNoiseRatio(self): index_shift = -5 self.dom_snr = [] for i in np.arange(len(self.dom_pulse_data)): cur_array = self.dom_pulse_data[i] signl = (np.arange(len(cur_array)) > -index_shift-1).astype(float)*np.average(self.dom_ssv) + \ (np.arange(len(cur_array)) <= -index_shift-1).astype(float)*np.average(self.rec_ssv) noise = signl - cur_array f, s_pd = signal.welch(signl, Record.sr, nperseg=len(signl)); f, n_pd = signal.welch(noise, Record.sr, nperseg=len(noise)); Ps = sum(s_pd) Pn = sum(n_pd) if Pn == 0: self.rec_snr.append(np.nan) continue self.dom_snr.append(10*np.log10(Ps/Pn)) self.rec_snr = [] for i in np.arange(len(self.rec_pulse_data)): cur_array = self.rec_pulse_data[i] signl = (np.arange(len(cur_array)) > -index_shift-2).astype(float)*np.average(self.rec_ssv) + \ (np.arange(len(cur_array)) <= -index_shift-2).astype(float)*np.average(self.dom_ssv) noise = signl - cur_array f, s_pd = signal.welch(signl, Record.sr, nperseg=len(signl)) f, n_pd = signal.welch(noise, Record.sr, nperseg=len(noise)) Ps = sum(s_pd) Pn = sum(n_pd) if Pn == 0: self.rec_snr.append(np.nan) continue self.rec_snr.append(10*np.log10(Ps/Pn)) def MeanMedianFrequency(self): self.dom_mdfr = [] self.rec_mdfr = [] self.dom_mnfr = [] self.rec_mnfr = [] self.dom_mnfr = [] self.dom_mdfr = [] for i in np.arange(len(self.dom_pulse_data)): cur_pulse = self.dom_pulse_data[i] f, pd = signal.welch(cur_pulse, Record.sr, nperseg=len(cur_pulse)) spl = splrep(f, pd, k=1) x2 = np.arange(f[0], f[-1],0.01) y2 = splev(x2, spl) y21 = y2/np.sum(y2) # Normalize spectra y22 = np.cumsum(y21) # Cummulative sum (CDF for SPD) y23 = y22-0.5 # Subtract 50% of energy y24 = abs(y23) # Abs value to create a minima y25 = np.where(np.min(y24) == y24)[0][-1] # Locate minima index self.dom_mdfr.append(x2[y25]) # Retrieve minima frequency self.dom_mnfr.append(np.sum(pd*f)/np.sum(pd)) self.rec_mnfr = [] self.rec_mdfr = [] for i in np.arange(len(self.rec_pulse_data)): cur_pulse = self.rec_pulse_data[i] f, pd = signal.welch(cur_pulse, Record.sr, nperseg=len(cur_pulse)) spl = splrep(f, pd, k=1) x2 = np.arange(f[0], f[-1],0.01) y2 = splev(x2, spl) y21 = y2/np.sum(y2) # Normalize spectra y22 = np.cumsum(y21) # Cummulative sum (CDF for SPD) y23 = y22-0.5 # Subtract 50% of energy y24 = abs(y23) # Abs value to create a minima y25 = np.where(np.min(y24) == y24)[0][-1] # Locate minima index self.rec_mdfr.append(x2[y25]) # Retrieve minima frequency self.rec_mnfr.append(np.sum(pd*f)/np.sum(pd)) def OutlierCount(self): ##### Outlier Count # Calculates the standard deviation for each feature and creates a binary # mask of pulses that exceed the standard deviation threshold # Binary masks are added to determine total number of deviations per pulse # across all features std = 1.5 # Threshold def fix_size_disparity(in1, in2): if in1.size > in2.size: in2 = np.concatenate((in2,np.zeros(in1.size - in2.size))).astype(int) elif in2.size > in1.size: in1 = np.concatenate((in1,np.zeros(in2.size - in1.size))).astype(int) return in1, in2 # Outlier check and size correction self.dom_pp, self.rec_pp = fix_size_disparity(self.dom_pp, self.rec_pp) self.dom_bp, self.rec_bp = fix_size_disparity(self.dom_bp, self.rec_bp) self.dom_pt, self.rec_pt = fix_size_disparity(self.dom_pt, self.rec_pt) dom_pt_out = (np.abs(self.dom_pt-np.average(self.dom_pt)) > std*np.std(self.dom_pt)).astype(int) rec_pt_out = (np.abs(self.rec_pt-np.average(self.rec_pt)) > std*np.std(self.rec_pt)).astype(int) pt_out = dom_pt_out + rec_pt_out self.dom_ssv, self.rec_ssv = fix_size_disparity(self.dom_ssv, self.rec_ssv) dom_ssv_out = (np.abs(self.dom_ssv-np.average(self.dom_ssv)) > std*np.std(self.dom_ssv)).astype(int) rec_ssv_out = (np.abs(self.rec_ssv-np.average(self.rec_ssv)) > std*np.std(self.rec_ssv)).astype(int) ssv_out = dom_ssv_out + rec_ssv_out self.dom_sse, self.rec_sse = fix_size_disparity(self.dom_sse, self.rec_sse) dom_sse_out = (np.abs(self.dom_sse-np.average(self.dom_sse)) > std*np.std(self.dom_sse)).astype(int) rec_sse_out = (np.abs(self.rec_sse-np.average(self.rec_sse)) > std*np.std(self.rec_sse)).astype(int) sse_out = dom_sse_out + rec_sse_out self.dom_po, self.rec_po = fix_size_disparity(self.dom_po, self.rec_po) dom_po_out = (np.abs(self.dom_po-np.average(self.dom_po)) > std*np.std(self.dom_po)).astype(int) rec_po_out = (np.abs(self.rec_po-np.average(self.rec_po)) > std*np.std(self.rec_po)).astype(int) po_out = dom_po_out + rec_po_out self.dom_st_s, self.rec_st_s = fix_size_disparity(self.dom_st_s, self.rec_st_s) dom_st_s_out = (np.abs(self.dom_st_s-np.average(self.dom_st_s)) > std*np.std(self.dom_st_s)).astype(int) rec_st_s_out = (np.abs(self.rec_st_s-np.average(self.rec_st_s)) > std*np.std(self.rec_st_s)).astype(int) st_s_out = dom_st_s_out + rec_st_s_out self.dom_rt_s, self.rec_rt_s = fix_size_disparity(self.dom_rt_s, self.rec_rt_s) dom_rt_s_out = (np.abs(self.dom_rt_s-np.average(self.dom_rt_s)) > std*np.std(self.dom_rt_s)).astype(int) rec_rt_s_out = (np.abs(self.rec_rt_s-np.average(self.rec_rt_s)) > std*np.std(self.rec_rt_s)).astype(int) rt_s_out = dom_rt_s_out + rec_rt_s_out self.dom_dt_s, self.rec_dt_s = fix_size_disparity(self.dom_dt_s, self.rec_dt_s) dom_dt_s_out = (np.abs(self.dom_dt_s-np.average(self.dom_dt_s)) > std*np.std(self.dom_dt_s)).astype(int) rec_dt_s_out = (np.abs(self.rec_dt_s-np.average(self.rec_dt_s)) > std*np.std(self.rec_dt_s)).astype(int) dt_s_out = dom_dt_s_out + rec_dt_s_out self.outlier_count = pt_out + ssv_out + sse_out + \ po_out + st_s_out + rt_s_out + dt_s_out return self.outlier_count def RemoveOutliers(self): ##### Remove Outlier Pulses # Checks outlier count for each pulse and removes pulses that exceed # the deviation threshold dev = 6 noutlier_idx = np.where(self.outlier_count < dev + 1)[0] self.dom_pp = self.dom_pp[noutlier_idx] self.rec_pp = self.rec_pp[noutlier_idx] self.dom_bp = self.dom_bp[noutlier_idx] self.rec_bp = self.rec_bp[noutlier_idx] self.dom_pt = self.dom_pt[noutlier_idx] self.rec_pt = self.rec_pt[noutlier_idx] self.dom_ssv = self.dom_ssv[noutlier_idx] self.rec_ssv = self.rec_ssv[noutlier_idx] self.dom_sse = self.dom_sse[noutlier_idx] self.rec_sse = self.rec_sse[noutlier_idx] self.dom_po = self.dom_po[noutlier_idx] self.rec_po = self.rec_po[noutlier_idx] self.dom_st_s = self.dom_st_s[noutlier_idx] self.rec_st_s = self.rec_st_s[noutlier_idx] self.dom_rt_s = self.dom_rt_s[noutlier_idx] self.rec_rt_s = self.rec_rt_s[noutlier_idx] self.dom_dt_s = self.dom_dt_s[noutlier_idx] self.rec_dt_s = self.rec_dt_s[noutlier_idx] self.OutlierCount() def summary(self): print('Peak Time (s):') print(' dom: ', self.dom_pt) print(' avg: ', np.average(self.dom_pt)) print(' std: ', np.std(self.dom_pt)) print(' dev: ', np.abs(self.dom_pt-np.average(self.dom_pt))) # print(' out: ', dom_pt_out) print(' rec: ', self.rec_pt) print(' avg: ', np.average(self.rec_pt)) print(' std: ',
np.std(self.rec_pt)
numpy.std
import numpy as np from numpy import random from scipy.interpolate import interp1d import pandas as pd msun = 1.9891e30 rsun = 695500000.0 G = 6.67384e-11 AU = 149597870700.0 def component_noise(tessmag, readmod=1, zodimod=1): sys = 59.785 star_mag_level, star_noise_level = np.array( [ [4.3885191347753745, 12.090570910640581], [12.023294509151416, 467.96434635620614], [17.753743760399338, 7779.603209291808], ] ).T star_pars = np.polyfit(star_mag_level, np.log10(star_noise_level), 1) zodi_mag_level, zodi_noise_level = np.array( [ [8.686356073211314, 18.112513551189224], [13.08901830282862, 688.2812796087189], [16.68801996672213, 19493.670323892282], ] ).T zodi_pars = np.polyfit(zodi_mag_level, np.log10(zodi_noise_level), 1) read_mag_level, read_noise_level = np.array( [ [8.476705490848586, 12.31474807751376], [13.019134775374376, 522.4985702369348], [17.841098169717142, 46226.777232915076], ] ).T read_pars = np.polyfit(read_mag_level, np.log10(read_noise_level), 1) c1, c2, c3, c4 = ( 10 ** (tessmag * star_pars[0] + star_pars[1]), 10 ** (tessmag * zodi_pars[0] + zodi_pars[1]), 10 ** (tessmag * read_pars[0] + read_pars[1]), sys, ) return np.sqrt( c1 ** 2 + (readmod * c2) ** 2 + (zodimod * c3) ** 2 + c4 ** 2 ) def rndm(a, b, g, size=1): """Power-law gen for pdf(x)\propto x^{g-1} for a<=x<=b""" r = np.random.random(size=size) ag, bg = a ** g, b ** g return (ag + (bg - ag) * r) ** (1.0 / g) def Fressin13_select_extrap(nselect=1): # create a pot for dressing numbers (balls) balls = np.array([]) # pot 1 contains rp=0.8-0.1.25, p=0.8-2 p1 = np.zeros(180) + 1 # pot 2 contains rp=1.25-2.0, p=0.8-2 p2 = np.zeros(170) + 2 # pot 3 contains rp=2-4, p=0.8-2 p3 = np.zeros(35) + 3 # pot 4 contains rp=4-6, p=0.8-2 p4 = np.zeros(4) + 4 # pot 5 contains rp=6-22, p=0.8-2 p5 = np.zeros(15) + 5 # pot 6 contains rp=0.8-0.1.25, p=2-3.4 p6 = np.zeros(610) + 6 # pot 7 contains rp=1.25-2.0, p=2-3.4 p7 = np.zeros(740) + 7 # pot 8 contains rp=2-4, p=2-3.4 p8 = np.zeros(180) + 8 # pot 9 contains rp=4-6, p=2-3.4 p9 = np.zeros(6) + 9 # pot 10 contains rp=6-22, p=2-3.4 p10 = np.zeros(67) + 10 # pot 11 contains rp=0.8-0.1.25, p=3.4-5.9 p11 = np.zeros(1720) + 11 # pot 12 contains rp=1.25-2.0, p=3.4-5.9 p12 = np.zeros(1490) + 12 # pot 13 contains rp=2-4, p=3.4-5.9 p13 = np.zeros(730) + 13 # pot 14 contains rp=4-6, p=3.4-5.9 p14 = np.zeros(110) + 14 # pot 15 contains rp=6-22, p=3.4-5.9 p15 = np.zeros(170) + 15 # pot 16 contains rp=0.8-0.1.25, p=5.9-10 p16 = np.zeros(2700) + 16 # pot 17 contains rp=1.25-2.0, p=5.9-10 p17 = np.zeros(2900) + 17 # pot 18 contains rp=2-4, p=5.9-10 p18 = np.zeros(1930) + 18 # pot 19 contains rp=4-6, p=5.9-10 p19 = np.zeros(91) + 19 # pot 20 contains rp=6-22, p=5.9-10 p20 = np.zeros(180) + 20 # pot 21 contains rp=0.8-0.1.25, p=10-17 p21 = np.zeros(2700) + 21 # pot 22 contains rp=1.25-2.0, p=10-17 p22 = np.zeros(4300) + 22 # pot 23 contains rp=2-4, p=10-17 p23 = np.zeros(3670) + 23 # pot 24 contains rp=4-6, p=10-17 p24 = np.zeros(290) + 24 # pot 25 contains rp=6-22, p=10-17 p25 = np.zeros(270) + 25 # pot 26 contains rp=0.8-0.1.25, p=17-29 p26 = np.zeros(2930) + 26 # pot 27 contains rp=1.25-2.0, p=17-29 p27 = np.zeros(4490) + 27 # pot 28 contains rp=2-4, p=17-29 p28 = np.zeros(5290) + 28 # pot 29 contains rp=4-6, p=17-29 p29 = np.zeros(320) + 29 # pot 30 contains rp=6-22, p=17-29 p30 = np.zeros(230) + 30 # pot 31 contains rp=0.8-0.1.25, p=29-50 p31 = np.zeros(4080) + 31 # pot 32 contains rp=1.25-2.0, p=29-50 p32 = np.zeros(5290) + 32 # pot 33 contains rp=2-4, p=29-50 p33 = np.zeros(6450) + 33 # pot 34 contains rp=4-6, p=29-50 p34 = np.zeros(490) + 34 # pot 35 contains rp=6-22, p=29-50 p35 = np.zeros(350) + 35 # pot 36 contains rp=0.8-0.1.25, p=50-85 p36 = np.zeros(3460) + 36 # pot 37 contains rp=1.25-2.0, p=50-85 p37 = np.zeros(3660) + 37 # pot 38 contains rp=2-4, p=50-85 p38 = np.zeros(5250) + 38 # pot 39 contains rp=4-6, p=50-85 p39 = np.zeros(660) + 39 # pot 40 contains rp=6-22, p=50-85 p40 = np.zeros(710) + 40 # pot 36 contains rp=0.8-0.1.25, p=50-85 p41 = np.zeros(3460) + 41 # pot 37 contains rp=1.25-2.0, p=50-85 p42 = np.zeros(3660) + 42 # pot 38 contains rp=2-4, p=50-85 p43 = np.zeros(5250) + 43 # pot 39 contains rp=4-6, p=50-85 p44 = np.zeros(660) + 44 # pot 40 contains rp=6-22, p=50-85 p45 = np.zeros(710) + 45 # pot 36 contains rp=0.8-0.1.25, p=50-85 p46 = np.zeros(3460) + 46 # pot 37 contains rp=1.25-2.0, p=50-85 p47 = np.zeros(3660) + 47 # pot 38 contains rp=2-4, p=50-85 p48 = np.zeros(5250) + 48 # pot 39 contains rp=4-6, p=50-85 p49 = np.zeros(660) + 49 # pot 40 contains rp=6-22, p=50-85 p50 = np.zeros(710) + 50 # pot 36 contains rp=0.8-0.1.25, p=50-85 p51 = np.zeros(3460) + 51 # pot 37 contains rp=1.25-2.0, p=50-85 p52 = np.zeros(3660) + 52 # pot 38 contains rp=2-4, p=50-85 p53 = np.zeros(5250) + 53 # pot 39 contains rp=4-6, p=50-85 p54 = np.zeros(660) + 54 # pot 40 contains rp=6-22, p=50-85 p55 = np.zeros(710) + 55 balls = np.r_[ balls, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, ] # lookup for what the balls mean # outputs radlow, radhigh, Plow, Phigh ball_lookup = { 0: [0.0, 0.0, 0.0, 0.0], 1: [0.8, 1.25, 0.8, 2.0], 2: [1.25, 2.0, 0.8, 2.0], 3: [2.0, 4.0, 0.8, 2.0], 4: [4.0, 6.0, 0.8, 2.0], 5: [6.0, 22.0, 0.8, 2.0], 6: [0.8, 1.25, 2.0, 3.4], 7: [1.25, 2.0, 2.0, 3.4], 8: [2.0, 4.0, 2.0, 3.4], 9: [4.0, 6.0, 2.0, 3.4], 10: [6.0, 22.0, 2.0, 3.4], 11: [0.8, 1.25, 3.4, 5.9], 12: [1.25, 2.0, 3.4, 5.9], 13: [2.0, 4.0, 3.4, 5.9], 14: [4.0, 6.0, 3.4, 5.9], 15: [6.0, 22.0, 3.4, 5.9], 16: [0.8, 1.25, 5.9, 10.0], 17: [1.25, 2.0, 5.9, 10.0], 18: [2.0, 4.0, 5.9, 10.0], 19: [4.0, 6.0, 5.9, 10.0], 20: [6.0, 22.0, 5.9, 10.0], 21: [0.8, 1.25, 10.0, 17.0], 22: [1.25, 2.0, 10.0, 17.0], 23: [2.0, 4.0, 10.0, 17.0], 24: [4.0, 6.0, 10.0, 17.0], 25: [6.0, 22.0, 10.0, 17.0], 26: [0.8, 1.25, 17.0, 29.0], 27: [1.25, 2.0, 17.0, 29.0], 28: [2.0, 4.0, 17.0, 29.0], 29: [4.0, 6.0, 17.0, 29.0], 30: [6.0, 22.0, 17.0, 29.0], 31: [0.8, 1.25, 29.0, 50.0], 32: [1.25, 2.0, 29.0, 50.0], 33: [2.0, 4.0, 29.0, 50.0], 34: [4.0, 6.0, 29.0, 50.0], 35: [6.0, 22.0, 29.0, 50.0], 36: [0.8, 1.25, 50.0, 85.0], 37: [1.25, 2.0, 50.0, 85.0], 38: [2.0, 4.0, 50.0, 85.0], 39: [4.0, 6.0, 50.0, 85.0], 40: [6.0, 22.0, 50.0, 85.0], 41: [0.8, 1.25, 50.0, 150.0], 42: [1.25, 2.0, 50.0, 150.0], 43: [2.0, 4.0, 50.0, 150.0], 44: [4.0, 6.0, 50.0, 150.0], 45: [6.0, 22.0, 50.0, 150.0], 46: [0.8, 1.25, 150.0, 270.0], 47: [1.25, 2.0, 150.0, 270.0], 48: [2.0, 4.0, 150.0, 270.0], 49: [4.0, 6.0, 150.0, 270.0], 50: [6.0, 22.0, 150.0, 270.0], 51: [0.8, 1.25, 270.0, 480.0], 52: [1.25, 2.0, 270.0, 480.0], 53: [2.0, 4.0, 270.0, 480.0], 54: [4.0, 6.0, 270.0, 480.0], 55: [6.0, 22.0, 270.0, 480.0], } rsamps = random.choice(balls, size=nselect) radius = np.zeros(nselect) period = np.zeros(nselect) for i, samp in enumerate(rsamps): rl, rh, pl, ph = ball_lookup[samp] if samp in [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]: # check for giant planets # if a giant planet than draw power law radius[i] = rndm(6, 22, -1.7) else: radius[i] = random.uniform(low=rl, high=rh) period[i] = random.uniform(low=pl, high=ph) return radius, period def Dressing15_select_extrap(nselect=1): """ period bins = 0.5, 0.91, 1.66, 3.02, 5.49, 10.0, 18.2, 33.1, 60.3, 110., 200. """ # create a pot for dressing numbers (balls) balls = np.array([]) # pot 1 contains rp=0.5-1.0, p=0.5-0.91 p1 = np.zeros(400) + 1 # pot 2 contains rp=1.0-1.5, p=0.5-0.91 p2 = np.zeros(460) + 2 # pot 3 contains rp=1.5-2.0, p=0.5-0.91 p3 = np.zeros(61) + 3 # pot 4 contains rp=2.0-2.5, p=0.5-0.91 p4 = np.zeros(2) + 4 # pot 5 contains rp=2.5-3.0, p=0.5-0.91 p5 = np.zeros(0) + 5 # pot 6 contains rp=3.0-3.5, p=0.5-0.91 p6 = np.zeros(0) + 6 # pot 7 contains rp=3.5-4.0, p=0.5-0.91 p7 = np.zeros(0) + 7 # pot 1 contains rp=0.5-1.0, p=0.91, 1.66 p8 = np.zeros(1500) + 8 # pot 2 contains rp=1.0-1.5, p=0.91, 1.66 p9 = np.zeros(1400) + 9 # pot 3 contains rp=1.5-2.0, p=0.91, 1.66 p10 = np.zeros(270) + 10 # pot 4 contains rp=2.0-2.5, p=0.91, 1.66 p11 = np.zeros(9) + 11 # pot 5 contains rp=2.5-3.0, p=0.91, 1.66 p12 = np.zeros(4) + 12 # pot 6 contains rp=3.0-3.5, p=0.91, 1.66 p13 = np.zeros(6) + 13 # pot 7 contains rp=3.5-4.0, p=0.91, 1.66 p14 = np.zeros(8) + 14 # pot 1 contains rp=0.5-1.0, p=1.66, 3.02 p15 = np.zeros(4400) + 15 # pot 2 contains rp=1.0-1.5, p=1.66, 3.02 p16 = np.zeros(3500) + 16 # pot 3 contains rp=1.5-2.0, p=1.66, 3.02 p17 = np.zeros(1200) + 17 # pot 4 contains rp=2.0-2.5, p=1.66, 3.02 p18 = np.zeros(420) + 18 # pot 5 contains rp=2.5-3.0, p=1.66, 3.02 p19 = np.zeros(230) + 19 # pot 6 contains rp=3.0-3.5, p=1.66, 3.02 p20 = np.zeros(170) + 20 # pot 7 contains rp=3.5-4.0, p=1.66, 3.02 p21 = np.zeros(180) + 21 # pot 1 contains rp=0.5-1.0, p=3.02, 5.49 p22 = np.zeros(5500) + 22 # pot 2 contains rp=1.0-1.5, p=3.02, 5.49 p23 = np.zeros(5700) + 23 # pot 3 contains rp=1.5-2.0, p=3.02, 5.49 p24 = np.zeros(2500) + 24 # pot 4 contains rp=2.0-2.5, p=3.02, 5.49 p25 = np.zeros(1800) + 25 # pot 5 contains rp=2.5-3.0, p=3.02, 5.49 p26 = np.zeros(960) + 26 # pot 6 contains rp=3.0-3.5, p=3.02, 5.49 p27 = np.zeros(420) + 27 # pot 7 contains rp=3.5-4.0, p=3.02, 5.49 p28 = np.zeros(180) + 28 # pot 1 contains rp=0.5-1.0, p=5.49, 10.0 p29 = np.zeros(10000) + 29 # pot 2 contains rp=1.0-1.5, p=5.49, 10.0 p30 = np.zeros(10000) + 30 # pot 3 contains rp=1.5-2.0, p=5.49, 10.0 p31 = np.zeros(6700) + 31 # pot 4 contains rp=2.0-2.5, p=5.49, 10.0 p32 = np.zeros(6400) + 32 # pot 5 contains rp=2.5-3.0, p=5.49, 10.0 p33 = np.zeros(2700) + 33 # pot 6 contains rp=3.0-3.5, p=5.49, 10.0 p34 = np.zeros(1100) + 34 # pot 7 contains rp=3.5-4.0, p=5.49, 10.0 p35 = np.zeros(360) + 35 # pot 1 contains rp=0.5-1.0, p=10.0, 18.2 p36 = np.zeros(12000) + 36 # pot 2 contains rp=1.0-1.5, p=10.0, 18.2 p37 = np.zeros(13000) + 37 # pot 3 contains rp=1.5-2.0, p=10.0, 18.2 p38 = np.zeros(13000) + 38 # pot 4 contains rp=2.0-2.5, p=10.0, 18.2 p39 = np.zeros(9300) + 39 # pot 5 contains rp=2.5-3.0, p=10.0, 18.2 p40 = np.zeros(3800) + 40 # pot 6 contains rp=3.0-3.5, p=10.0, 18.2 p41 = np.zeros(1400) + 41 # pot 7 contains rp=3.5-4.0, p=10.0, 18.2 p42 = np.zeros(510) + 42 # pot 1 contains rp=0.5-1.0, p=18.2, 33.1 p43 = np.zeros(11000) + 43 # pot 2 contains rp=1.0-1.5, p=18.2, 33.1 p44 = np.zeros(16000) + 44 # pot 3 contains rp=1.5-2.0, p=18.2, 33.1 p45 = np.zeros(14000) + 45 # pot 4 contains rp=2.0-2.5, p=18.2, 33.1 p46 = np.zeros(10000) + 46 # pot 5 contains rp=2.5-3.0, p=18.2, 33.1 p47 = np.zeros(4600) + 47 # pot 6 contains rp=3.0-3.5, p=18.2, 33.1 p48 = np.zeros(810) + 48 # pot 7 contains rp=3.5-4.0, p=18.2, 33.1 p49 = np.zeros(320) + 49 # pot 1 contains rp=0.5-1.0, p=33.1, 60.3 p50 = np.zeros(6400) + 50 # pot 2 contains rp=1.0-1.5, p=33.1, 60.3 p51 = np.zeros(6400) + 51 # pot 3 contains rp=1.5-2.0, p=33.1, 60.3 p52 = np.zeros(12000) + 52 # pot 4 contains rp=2.0-2.5, p=33.1, 60.3 p53 = np.zeros(12000) + 53 # pot 5 contains rp=2.5-3.0, p=33.1, 60.3 p54 = np.zeros(5800) + 54 # pot 6 contains rp=3.0-3.5, p=33.1, 60.3 p55 = np.zeros(1600) + 55 # pot 7 contains rp=3.5-4.0, p=33.1, 60.3 p56 = np.zeros(210) + 56 # pot 1 contains rp=0.5-1.0, p=60.3, 110. p57 = np.zeros(10000) + 57 # pot 2 contains rp=1.0-1.5, p=60.3, 110. p58 = np.zeros(10000) + 58 # pot 3 contains rp=1.5-2.0, p=60.3, 110. p59 = np.zeros(8300) + 59 # pot 4 contains rp=2.0-2.5, p=60.3, 110. p60 = np.zeros(9600) + 60 # pot 5 contains rp=2.5-3.0, p=60.3, 110. p61 = np.zeros(4200) + 61 # pot 6 contains rp=3.0-3.5, p=60.3, 110. p62 = np.zeros(1700) + 62 # pot 7 contains rp=3.5-4.0, p=60.3, 110. p63 = np.zeros(420) + 63 # pot 1 contains rp=0.5-1.0, p=110., 200. p64 = np.zeros(19000) + 64 # pot 2 contains rp=1.0-1.5, p=110., 200. p65 = np.zeros(19000) + 65 # pot 3 contains rp=1.5-2.0, p=110., 200. p66 = np.zeros(10000) + 66 # pot 4 contains rp=2.0-2.5, p=110., 200. p67 = np.zeros(4500) + 67 # pot 5 contains rp=2.5-3.0, p=110., 200. p68 = np.zeros(1100) + 68 # pot 6 contains rp=3.0-3.5, p=110., 200. p69 = np.zeros(160) + 69 # pot 7 contains rp=3.5-4.0, p=110., 200. p70 = np.zeros(80) + 70 # pot 1 contains rp=0.5-1.0, p=110., 200. p71 = np.zeros(19000) + 71 # pot 2 contains rp=1.0-1.5, p=110., 200. p72 = np.zeros(19000) + 72 # pot 3 contains rp=1.5-2.0, p=110., 200. p73 = np.zeros(10000) + 73 # pot 4 contains rp=2.0-2.5, p=110., 200. p74 = np.zeros(4500) + 74 # pot 5 contains rp=2.5-3.0, p=110., 200. p75 = np.zeros(1100) + 75 # pot 6 contains rp=3.0-3.5, p=110., 200. p76 = np.zeros(160) + 76 # pot 7 contains rp=3.5-4.0, p=110., 200. p77 = np.zeros(80) + 77 balls = np.r_[ balls, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p60, p61, p62, p63, p64, p65, p66, p67, p68, p69, p70, p71, p72, p73, p74, p75, p76, p77, ] # lookup for what the balls mean # outputs radlow, radhigh, Plow, Phigh # 0.5, 0.91, 1.66, 3.02, 5.49, 10.0, 18.2, 33.1, 60.3, 110., 200. ball_lookup = { 1: [0.5, 1.0, 0.5, 0.91], 2: [1.0, 1.5, 0.5, 0.91], 3: [1.5, 2.0, 0.5, 0.91], 4: [2.0, 2.5, 0.5, 0.91], 5: [2.5, 3.0, 0.5, 0.91], 6: [3.0, 3.5, 0.5, 0.91], 7: [3.5, 4.0, 0.5, 0.91], 8: [0.5, 1.0, 0.91, 1.66], 9: [1.0, 1.5, 0.91, 1.66], 10: [1.5, 2.0, 0.91, 1.66], 11: [2.0, 2.5, 0.91, 1.66], 12: [2.5, 3.0, 0.91, 1.66], 13: [3.0, 3.5, 0.91, 1.66], 14: [3.5, 4.0, 0.91, 1.66], 15: [0.5, 1.0, 1.66, 3.02], 16: [1.0, 1.5, 1.66, 3.02], 17: [1.5, 2.0, 1.66, 3.02], 18: [2.0, 2.5, 1.66, 3.02], 19: [2.5, 3.0, 1.66, 3.02], 20: [3.0, 3.5, 1.66, 3.02], 21: [3.5, 4.0, 1.66, 3.02], 22: [0.5, 1.0, 3.02, 5.49], 23: [1.0, 1.5, 3.02, 5.49], 24: [1.5, 2.0, 3.02, 5.49], 25: [2.0, 2.5, 3.02, 5.49], 26: [2.5, 3.0, 3.02, 5.49], 27: [3.0, 3.5, 3.02, 5.49], 28: [3.5, 4.0, 3.02, 5.49], 29: [0.5, 1.0, 5.49, 10.0], 30: [1.0, 1.5, 5.49, 10.0], 31: [1.5, 2.0, 5.49, 10.0], 32: [2.0, 2.5, 5.49, 10.0], 33: [2.5, 3.0, 5.49, 10.0], 34: [3.0, 3.5, 5.49, 10.0], 35: [3.5, 4.0, 5.49, 10.0], 36: [0.5, 1.0, 10.0, 18.2], 37: [1.0, 1.5, 10.0, 18.2], 38: [1.5, 2.0, 10.0, 18.2], 39: [2.0, 2.5, 10.0, 18.2], 40: [2.5, 3.0, 10.0, 18.2], 41: [3.0, 3.5, 10.0, 18.2], 42: [3.5, 4.0, 10.0, 18.2], 43: [0.5, 1.0, 18.2, 33.1], 44: [1.0, 1.5, 18.2, 33.1], 45: [1.5, 2.0, 18.2, 33.1], 46: [2.0, 2.5, 18.2, 33.1], 47: [2.5, 3.0, 18.2, 33.1], 48: [3.0, 3.5, 18.2, 33.1], 49: [3.5, 4.0, 18.2, 33.1], 50: [0.5, 1.0, 33.1, 60.3], 51: [1.0, 1.5, 33.1, 60.3], 52: [1.5, 2.0, 33.1, 60.3], 53: [2.0, 2.5, 33.1, 60.3], 54: [2.5, 3.0, 33.1, 60.3], 55: [3.0, 3.5, 33.1, 60.3], 56: [3.5, 4.0, 33.1, 60.3], 57: [0.5, 1.0, 60.3, 110.0], 58: [1.0, 1.5, 60.3, 110.0], 59: [1.5, 2.0, 60.3, 110.0], 60: [2.0, 2.5, 60.3, 110.0], 61: [2.5, 3.0, 60.3, 110.0], 62: [3.0, 3.5, 60.3, 110.0], 63: [3.5, 4.0, 60.3, 110.0], 64: [0.5, 1.0, 110.0, 200.0], 65: [1.0, 1.5, 110.0, 200.0], 66: [1.5, 2.0, 110.0, 200.0], 67: [2.0, 2.5, 110.0, 200.0], 68: [2.5, 3.0, 110.0, 200.0], 69: [3.0, 3.5, 110.0, 200.0], 70: [3.5, 4.0, 110.0, 200.0], 71: [0.5, 1.0, 200.0, 365.0], 72: [1.0, 1.5, 200.0, 365.0], 73: [1.5, 2.0, 200.0, 365.0], 74: [2.0, 2.5, 200.0, 365.0], 75: [2.5, 3.0, 200.0, 365.0], 76: [3.0, 3.5, 200.0, 365.0], 77: [3.5, 4.0, 200.0, 365.0], } rsamps = random.choice(balls, size=nselect) radius = np.zeros(nselect) period = np.zeros(nselect) for i, samp in enumerate(rsamps): rl, rh, pl, ph = ball_lookup[samp] radius[i] = random.uniform(low=rl, high=rh) period[i] = random.uniform(low=pl, high=ph) return radius, period def Petigura18_select(nselect=1): # create a pot for pedigura numbers (balls) balls = np.array([]) p1 = np.zeros(2) + 1 p2 = np.zeros(8) + 2 p3 = np.zeros(21) + 3 p4 = np.zeros(8) + 4 p5 = np.zeros(24) + 5 p6 = np.zeros(52) + 6 p7 = np.zeros(77) + 7 p8 = np.zeros(5) + 8 p9 = np.zeros(26) + 9 p10 = np.zeros(24) + 10 p11 = np.zeros(145) + 11 p12 = np.zeros(259) + 12 p13 = np.zeros(5) + 13 p14 = np.zeros(12) + 14 p15 = np.zeros(18) + 15 p16 = np.zeros(17) + 16 p17 = np.zeros(38) + 17 p18 = np.zeros(168) + 18 p19 = np.zeros(12) + 19 p20 = np.zeros(8) + 20 p21 = np.zeros(25) + 21 p22 = np.zeros(56) + 22 p23 = np.zeros(53) + 23 p24 = np.zeros(78) + 24 p25 = np.zeros(84) + 25 p26 = np.zeros(78) + 26 p27 = np.zeros(6) + 27 p28 = np.zeros(8) + 28 p29 = np.zeros(94) + 29 p30 = np.zeros(180) + 30 p31 = np.zeros(185) + 31 p32 = np.zeros(258) + 32 p33 = np.zeros(275) + 33 p34 = np.zeros(312) + 34 p35 = np.zeros(225) + 35 p36 = np.zeros(8) + 36 p37 = np.zeros(77) + 37 p38 = np.zeros(138) + 38 p39 = np.zeros(423) + 39 p40 = np.zeros(497) + 40 p41 = np.zeros(667) + 41 p42 = np.zeros(475) + 42 p43 = np.zeros(270) + 43 p44 = np.zeros(147) + 44 p45 = np.zeros(8) + 45 p46 = np.zeros(34) + 46 p47 = np.zeros(125) + 47 p48 = np.zeros(202) + 48 p49 = np.zeros(279) + 49 p50 = np.zeros(261) + 50 p51 = np.zeros(251) + 51 p52 = np.zeros(186) + 52 p53 = np.zeros(360) + 53 p54 = np.zeros(393) + 54 p55 = np.zeros(12) + 55 p56 = np.zeros(36) + 56 p57 = np.zeros(141) + 57 p58 = np.zeros(263) + 58 p59 = np.zeros(450) + 59 p60 = np.zeros(350) + 60 p61 = np.zeros(287) + 61 p62 = np.zeros(249) + 62 p63 = np.zeros(12) + 63 p64 = np.zeros(52) + 64 p65 = np.zeros(128) + 65 p66 = np.zeros(315) + 66 p67 = np.zeros(205) + 67 p68 = np.zeros(447) + 68 p69 = np.zeros(8) + 69 p70 = np.zeros(50) + 70 balls = np.r_[ balls, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p60, p61, p62, p63, p64, p65, p66, p67, p68, p69, p70, ] ball_lookup = { 0: [0.0, 0.0, 0.0, 0.0], 1: [11.31, 16.00, 1.00, 1.78], 2: [11.31, 16.00, 1.78, 3.16], 3: [11.31, 16.00, 3.16, 5.62], 4: [11.31, 16.00, 5.62, 10.00], 5: [11.31, 16.00, 31.62, 56.23], 6: [11.31, 16.00, 100.00, 177.83], 7: [11.31, 16.00, 177.83, 316.23], 8: [8.00, 11.31, 3.16, 5.62], 9: [8.00, 11.31, 17.78, 31.62], 10: [8.00, 11.31, 31.62, 56.23], 11: [8.00, 11.31, 100.00, 177.83], 12: [8.00, 11.31, 177.83, 316.23], 13: [5.66, 8.00, 3.16, 5.62], 14: [5.66, 8.00, 5.62, 10.00], 15: [5.66, 8.00, 10.00, 17.78], 16: [5.66, 8.00, 17.78, 31.62], 17: [5.66, 8.00, 31.62, 56.23], 18: [5.66, 8.00, 177.83, 316.23], 19: [4.00, 5.66, 3.16, 5.62], 20: [4.00, 5.66, 5.62, 10.00], 21: [4.00, 5.66, 10.00, 17.78], 22: [4.00, 5.66, 17.78, 31.62], 23: [4.00, 5.66, 31.62, 56.23], 24: [4.00, 5.66, 56.23, 100.00], 25: [4.00, 5.66, 100.00, 177.83], 26: [4.00, 5.66, 177.83, 316.23], 27: [2.83, 4.00, 1.78, 3.16], 28: [2.83, 4.00, 3.16, 5.62], 29: [2.83, 4.00, 5.62, 10.00], 30: [2.83, 4.00, 10.00, 17.78], 31: [2.83, 4.00, 17.78, 31.62], 32: [2.83, 4.00, 31.62, 56.23], 33: [2.83, 4.00, 56.23, 100.00], 34: [2.83, 4.00, 100.00, 177.83], 35: [2.83, 4.00, 177.83, 316.23], 36: [2.00, 2.83, 1.78, 3.16], 37: [2.00, 2.83, 3.16, 5.62], 38: [2.00, 2.83, 5.62, 10.00], 39: [2.00, 2.83, 10.00, 17.78], 40: [2.00, 2.83, 17.78, 31.62], 41: [2.00, 2.83, 31.62, 56.23], 42: [2.00, 2.83, 56.23, 100.00], 43: [2.00, 2.83, 100.00, 177.83], 44: [2.00, 2.83, 177.83, 316.23], 45: [1.41, 2.00, 1.00, 1.78], 46: [1.41, 2.00, 1.78, 3.16], 47: [1.41, 2.00, 3.16, 5.62], 48: [1.41, 2.00, 5.62, 10.00], 49: [1.41, 2.00, 10.00, 17.78], 50: [1.41, 2.00, 17.78, 31.62], 51: [1.41, 2.00, 31.62, 56.23], 52: [1.41, 2.00, 56.23, 100.00], 53: [1.41, 2.00, 100.00, 177.83], 54: [1.41, 2.00, 177.83, 316.23], 55: [1.00, 1.41, 1.00, 1.78], 56: [1.00, 1.41, 1.78, 3.16], 57: [1.00, 1.41, 3.16, 5.62], 58: [1.00, 1.41, 5.62, 10.00], 59: [1.00, 1.41, 10.00, 17.78], 60: [1.00, 1.41, 17.78, 31.62], 61: [1.00, 1.41, 31.62, 56.23], 62: [1.00, 1.41, 56.23, 100.00], 63: [0.71, 1.00, 1.00, 1.78], 64: [0.71, 1.00, 1.78, 3.16], 65: [0.71, 1.00, 3.16, 5.62], 66: [0.71, 1.00, 5.62, 10.00], 67: [0.71, 1.00, 10.00, 17.78], 68: [0.71, 1.00, 17.78, 31.62], 69: [0.50, 0.71, 1.00, 1.78], 70: [0.50, 0.71, 1.78, 3.16], } rsamps = random.choice(balls, size=nselect) radius = np.zeros(nselect) period = np.zeros(nselect) for i, samp in enumerate(rsamps): rl, rh, pl, ph = ball_lookup[samp] if samp in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]: # check for giant planets # if a giant planet than draw power law radius[i] = rndm(8, 16, -1.7) else: radius[i] = random.uniform(low=rl, high=rh) period[i] = random.uniform(low=pl, high=ph) return radius, period def per2ars(per, mstar, rstar): per_SI = per * 86400.0 mass_SI = mstar * msun a3 = per_SI ** 2 * G * mass_SI / (4 * np.pi ** 2) return a3 ** (1.0 / 3.0) / (rstar * rsun) def get_duration(per, ars, cosi=0.0, b=0, rprs=0.0): """ returns the transit duration in days """ part1 = per / np.pi part2 = 1.0 / ars part3 = np.sqrt((1 + rprs) ** 2 - b ** 2) part4 = np.sqrt(1 - cosi ** 2) duration = part1 * np.arcsin(part2 * part3 / part4) return duration def get_transit_depth(Prad, rstar_solar): """ returns transit depth in ppm """ tdep = (Prad * 0.009155 / rstar_solar) ** 2 * 1.0e6 # ppm return tdep def get_rprs(Prad, rstar_solar): return (Prad * 0.009155) / rstar_solar def make_allplanets_df_vec_extrap(df, starid_zp): # lets refector the above code to make it array operations totalRows = df.loc[:, "Nplanets"].sum() df.loc[:, "planetRadius"] = pd.Series() df.loc[:, "planetPeriod"] = pd.Series() df.loc[:, "starID"] = pd.Series() radper_m = Dressing15_select_extrap(totalRows) radper_fgk = Petigura18_select(totalRows) # we need an array of indices rowIdx = np.repeat(np.arange(df.shape[0]),
np.array(df.Nplanets.values)
numpy.array
from scipy.optimize import linear_sum_assignment import numpy as np import copy import math import random class RuleFoundation(): def __init__(self, n_agent, n_thread, space, mcv): self.n_thread = n_thread self.n_agent = n_agent self.handler = [None for _ in range(self.n_thread)] assert n_agent == 10 def interact_with_env(self, team_intel): info = team_intel['Latest-Team-Info'] done = team_intel['Env-Suffered-Reset'] step_cnt = team_intel['Current-Obs-Step'] action_list = [] for thread in range(self.n_thread): act_dict = {'detector_act':None, 'fighter_act':None} if done[thread]: self.handler[thread] = RuleAgent() self.handler[thread].set_map_info(1000, 1000, 0, 10) act_dict['detector_act'], act_dict['fighter_act'] = self.handler[thread].get_action(obs_dict=info[thread], step_cnt=step_cnt[thread]) action_list.append(act_dict) pass # $n_thread.${} return action_list, None class RuleAgent(): def __init__(self): # 初始化接口 self.obs_ind = 'raw' # 状态信息形式 self.tar = 0 self.N = 0 self.angle=0 self.color_flag=True self.formation_flag=4 self.star_back=True self.missile_long = [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0]] self.missile_short = [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0]] # missile_long[i][0]记录的是敌方第i+1个单元身上的远程炮弹数量 # missile_long[i][k]记录的是敌方第i+1个单元身上的第k个远程炮的计时器 self.beyond_flag = False self.leader_id = 4 self.tar_pos = np.full((4,2,2), 0) # red self.tar_pos[0][0][0] = 36 self.tar_pos[0][1][0] = 400 self.tar_pos[1][0][0] = 100 self.tar_pos[1][1][0] = 400 self.tar_pos[2][0][0]= 700 self.tar_pos[2][1][0]= 500 self.tar_pos[3][0][0] = 500 self.tar_pos[3][1][0] = 700 # blue self.tar_pos[0][0][1] = 964 self.tar_pos[0][1][1] = 400 self.tar_pos[1][0][1] = 900 self.tar_pos[1][1][1] = 400 self.tar_pos[2][0][1]= 300 self.tar_pos[2][1][1]= 500 self.tar_pos[3][0][1] = 500 self.tar_pos[3][1][1] = 700 # type_data(攻击距离,发起攻击时要给敌方的索引加几,炮弹类型在self_info[j,?]中的索引) self.long_data = (120, 1, 1) self.short_data = (50, 11, 2) def init_param(self): self.tar = 0 self.N = 0 self.angle=0 self.color_flag=True self.formation_flag=4 self.star_back=True self.missile_long = [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0]] self.missile_short = [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0]] # missile_long[i][0]记录的是敌方第i+1个单元身上的远程炮弹数量 # missile_long[i][k]记录的是敌方第i+1个单元身上的第k个远程炮的计时器 self.beyond_flag = False self.leader_id = 4 def dist(self, obs_dict, i, j): adv_obs = obs_dict['fighter'][0]['adv_obs'] # 计算距离 x = adv_obs[i][2 * j] y = adv_obs[i][2 * j + 1] distance = x ** 2 + y ** 2 distance = math.sqrt(distance) return distance def set_map_info(self, size_x, size_y, detector_num, fighter_num): # 读取地图信息 self.size_x = size_x self.size_y = size_y self.detector_num = detector_num self.fighter_num = fighter_num # 根据需要自行选择函数实现形式 self.leader_id = 4 def _bipartite_min_dists(self, dists): ri, ci = linear_sum_assignment(dists) return ri, ci def tar_judge(self,adv_obs): tar_exist = False for i in range(self.fighter_num): for j in range(self.fighter_num): if adv_obs[i][j*2]!=-1000 and adv_obs[i][j*2+1]!=-1000: tar_exist = True break break return tar_exist def sum_alive(self,alive_status): alive_num = 0 for i in range(self.fighter_num): if alive_status[i]: alive_num+=1 return alive_num def tar_assign(self,alive_status,adv_obs): fighter_action = np.full((self.fighter_num,4),0) for i in range(self.fighter_num): # 判断该攻击单元是否存活 if not alive_status[i]: continue min_dis = 1000 ** 2 + 1000 ** 2 for j in range(self.fighter_num): # 记录离我方单元最近的敌方单位id及pos x = adv_obs[i][2 * j] y = adv_obs[i][2 * j + 1] dis = x ** 2 + y ** 2 if dis < min_dis: min_dis = dis min_id = j theta_start = np.arctan2(adv_obs[i][2*min_id+1], adv_obs[i][2*min_id]) if theta_start < 0: theta_start += 2 * np.pi course = (int)((theta_start / (2 * np.pi)) * 360) fighter_action[i][0] = course return fighter_action def formation(self,alive_status,self_pos,self_info,step_cnt,formation_flag): # 编队 fighter_action = np.full((self.fighter_num, 4), 0) if self.color == 'red': if step_cnt % 8 == 0 or step_cnt % 9 == 0: for i in range(self.fighter_num): fighter_action[i][0] = (self_info[i][0] + 120) % 360 return fighter_action else: if step_cnt % 8 == 0 or step_cnt % 9 == 0: for i in range(self.fighter_num): if self_info[i][0]-120<0: fighter_action[i][0] = self_info[i][0] -120 + 360 else: fighter_action[i][0] = self_info[i][0] - 120 return fighter_action # 挑选领航者 if not alive_status[self.leader_id]: # 领航者死亡 for i in range(self.fighter_num): # 挑选存活单元作为领航者 if alive_status[i]: self.leader_id = i break # 设置默认航向 if self.color == 'red': default_course = 0 else: default_course = 180 start_offset = 100 # 半圆大小3 # 确定领航者的航迹 for y in range(self.fighter_num): if not alive_status[y]: continue if y == self.leader_id: if self.star_back: if self.color == 'red': if self_pos[self.leader_id][0] > 50 : fighter_action[self.leader_id][0] = default_course+180 else : fighter_action[self.leader_id][0] = default_course self.star_back=False else : if self_pos[self.leader_id][0] < 950: fighter_action[self.leader_id][0] = default_course - 180 else: self.star_back = False fighter_action[self.leader_id][0] = default_course else : if self.color=='red' : # 领航者位置到达目标位置 if self_pos[self.leader_id][0] == self.tar_pos[self.tar][0][0] and self_pos[self.leader_id][1] == self.tar_pos[self.tar][1][0]: self.tar = self.tar + 1 else: theta_leader = np.arctan2(self.tar_pos[self.tar][1][0] - self_pos[self.leader_id][1],self.tar_pos[self.tar][0][0] - self_pos[self.leader_id][0]) if theta_leader < 0: theta_leader += 2 * np.pi course = (theta_leader / (2 * np.pi)) * 360 if 90 < course < 180 or 270 < course < 360: course = math.floor(course) else: course = math.ceil(course) fighter_action[self.leader_id][0] = course if self.tar == 4: self.tar = 0 else : if self_pos[self.leader_id][0] == self.tar_pos[self.tar][0][1] and self_pos[self.leader_id][1] == self.tar_pos[self.tar][1][1]: self.tar = self.tar + 1 else: theta_leader = np.arctan2(self.tar_pos[self.tar][1][1] - self_pos[self.leader_id][1],self.tar_pos[self.tar][0][1] - self_pos[self.leader_id][0]) if theta_leader < 0: theta_leader += 2 * np.pi course = (theta_leader / (2 * np.pi)) * 360 if 90 < course < 180 or 270 < course < 360: course = math.floor(course) else: course = math.ceil(course) fighter_action[self.leader_id][0] = course if self.tar == 4 : self.tar = 0 #print(course) # 确定跟随者的航迹 else: if formation_flag == 1: ##圆形编队 fighter_live_num_list = [] for fighter_live_num in range(self.fighter_num): if alive_status[fighter_live_num]: fighter_live_num_list.append(fighter_live_num) angle = (int)(360 / (len(fighter_live_num_list) - 1)) expected_poses_patrol = [] leader_position_patrol = np.array([self_pos[self.leader_id][0], self_pos[self.leader_id][1]]) # 领航者的位置 for i in range(len(fighter_live_num_list)): if fighter_live_num_list[i] != self.leader_id: if fighter_live_num_list[i] > self.leader_id: expected_poses_patrol.append(np.array([leader_position_patrol + start_offset * np.array([np.cos(angle * (i - 1) * np.pi / 180),np.sin(angle * (i - 1) * np.pi / 180)])])) else: expected_poses_patrol.append([leader_position_patrol + start_offset * np.array([np.cos(angle * i * np.pi / 180), np.sin(angle * i * np.pi / 180)])]) dists_patrol = np.array([[np.linalg.norm(np.array([self_pos[i][0], self_pos[i][1]]) - pos) for pos in expected_poses_patrol] for i in range(len(fighter_live_num_list)) if fighter_live_num_list[i] != self.leader_id]) ri, ci = self._bipartite_min_dists(dists_patrol) for i in range(len(fighter_live_num_list)): if y == fighter_live_num_list[i]: if y > self.leader_id: expected_poses_for_it = expected_poses_patrol[ci[i - 1]] else: expected_poses_for_it = expected_poses_patrol[ci[i]] break relative_value_patrol = expected_poses_for_it - np.array([self_pos[y][0], self_pos[y][1]]) theta_patrol = np.arctan2(relative_value_patrol[0][1], relative_value_patrol[0][0]) if theta_patrol < 0: theta_patrol += 2 * np.pi course = (int)((theta_patrol / (2 * np.pi)) * 360) fighter_action[y][0] = course elif formation_flag == 2: ##半圆编队 y_width = 60.0 y_offset = 120 if self.color == 'red': x_offset = -120.0 else: x_offset = 120.0 ##确定期望位置 这个很关键 expected_poses = [] leader_position = np.array([self_pos[self.leader_id][0],self_pos[self.leader_id][1]]) for i in range(self.fighter_num - 1): if i == 0: temp_position = [leader_position + np.array([0.0, y_width])] expected_poses.append(temp_position) elif i == 1: temp_position = [leader_position + np.array([0.0, 2 * y_width])] expected_poses.append(temp_position) elif i == 2: temp_position = [leader_position + np.array([0.0, -y_width])] expected_poses.append(temp_position) elif i == 3: temp_position = [leader_position + np.array([0.0, -2 * y_width])] expected_poses.append(temp_position) elif i == 4: temp_position = [leader_position + np.array( [x_offset * np.cos(60 * np.pi / 180), -y_offset * np.sin(60 * np.pi / 180)])] expected_poses.append(temp_position) elif i == 5: temp_position = [leader_position + np.array( [x_offset * np.cos(30 * np.pi / 180), -y_offset * np.sin(30 * np.pi / 180)])] expected_poses.append(temp_position) elif i == 6: temp_position = [leader_position + np.array( [x_offset * np.cos(0 * np.pi / 180), y_offset * np.sin(0 * np.pi / 180)])] expected_poses.append(temp_position) elif i == 7: temp_position = [leader_position + np.array( [x_offset * np.cos(30 * np.pi / 180), y_offset * np.sin(30 * np.pi / 180)])] expected_poses.append(temp_position) elif i == 8: temp_position = [leader_position + np.array( [x_offset * np.cos(60 * np.pi / 180), y_offset * np.sin(60 * np.pi / 180)])] expected_poses.append(temp_position) dists = np.array([[np.linalg.norm(np.array([self_pos[i][0],self_pos[i][1]]) - pos) for pos in expected_poses] for i in range(self.fighter_num) if i != self.leader_id]) ri, ci = self._bipartite_min_dists(dists) if y <= self.leader_id: ci_v1 = y else: ci_v1 = y - 1 relative_value = expected_poses[ci[ci_v1]] - np.array([self_pos[y][0],self_pos[y][1]]) theta_start =
np.arctan2(relative_value[0][1], relative_value[0][0])
numpy.arctan2
# -*- coding: utf-8 -*- """ cante100 Loader .. admonition:: Dataset Info :class: dropdown The cante100 dataset contains 100 tracks taken from the COFLA corpus. We defined 10 style families of which 10 tracks each are included. Apart from the style family, we manually annotated the sections of the track in which the vocals are present. In addition, we provide a number of low-level descriptors and the fundamental frequency corresponding to the predominant melody for each track. The meta-information includes editoral meta-data and the musicBrainz ID. Total tracks: 100 cante100 audio is only available upon request. To download the audio request access in this link: https://zenodo.org/record/1324183. Then unzip the audio into the cante100 general dataset folder for the rest of annotations and files. Audio specifications: - Sampling frequency: 44.1 kHz - Bit-depth: 16 bit - Audio format: .mp3 cante100 dataset has spectrogram available, in csv format. spectrogram is available to download without request needed, so at first instance, cante100 loader uses the spectrogram of the tracks. The available annotations are: - F0 (predominant melody) - Automatic transcription of notes (of singing voice) CANTE100 LICENSE (COPIED FROM ZENODO PAGE) .. code-block:: latex The provided datasets are offered free of charge for internal non-commercial use. We do not grant any rights for redistribution or modification. All data collections were gathered by the COFLA team. © COFLA 2015. All rights reserved. For more details, please visit: http://www.cofla-project.com/?page_id=134 """ import csv import os import logging import xml.etree.ElementTree as ET import librosa import numpy as np from mirdata import download_utils from mirdata import jams_utils from mirdata import core from mirdata import annotations BIBTEX = """@dataset{nadine_kroher_2018_1322542, author = {<NAME> and <NAME> and <NAME> and <NAME>}, title = {cante100 Metadata}, month = jul, year = 2018, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.1322542}, url = {https://doi.org/10.5281/zenodo.1322542} }, @dataset{nadine_kroher_2018_1324183, author = {<NAME> and <NAME> and <NAME> and <NAME>}, title = {cante100 Audio}, month = jul, year = 2018, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.1324183}, url = {https://doi.org/10.5281/zenodo.1324183} } """ REMOTES = { "spectrogram": download_utils.RemoteFileMetadata( filename="cante100_spectrum.zip", url="https://zenodo.org/record/1322542/files/cante100_spectrum.zip?download=1", checksum="0b81fe0fd7ab2c1adc1ad789edb12981", # the md5 checksum destination_dir="cante100_spectrum", # relative path for where to unzip the data, or None ), "melody": download_utils.RemoteFileMetadata( filename="cante100midi_f0.zip", url="https://zenodo.org/record/1322542/files/cante100midi_f0.zip?download=1", checksum="cce543b5125eda5a984347b55fdcd5e8", # the md5 checksum destination_dir="cante100midi_f0", # relative path for where to unzip the data, or None ), "notes": download_utils.RemoteFileMetadata( filename="cante100_automaticTranscription.zip", url="https://zenodo.org/record/1322542/files/cante100_automaticTranscription.zip?download=1", checksum="47fea64c744f9fe678ae5642a8f0ee8e", # the md5 checksum destination_dir="cante100_automaticTranscription", # relative path for where to unzip the data, or None ), "metadata": download_utils.RemoteFileMetadata( filename="cante100Meta.xml", url="https://zenodo.org/record/1322542/files/cante100Meta.xml?download=1", checksum="6cce186ce77a06541cdb9f0a671afb46", # the md5 checksum destination_dir=None, # relative path for where to unzip the data, or None ), "README": download_utils.RemoteFileMetadata( filename="cante100_README.txt", url="https://zenodo.org/record/1322542/files/cante100_README.txt?download=1", checksum="184209b7e7d816fa603f0c7f481c0aae", # the md5 checksum destination_dir=None, # relative path for where to unzip the data, or None ), } DOWNLOAD_INFO = """ This loader is designed to load the spectrum, as it is available for download. However, the loader supports audio as well. Unfortunately the audio files of the cante100 dataset are not available for free download, but upon request. However, you can request de audio in both links here: ==> http://www.cofla-project.com/?page_id=208 ==> https://zenodo.org/record/1324183 Then, locate the downloaded the cante100audio folder like this: > cante100/ > cante100_spectrum/ ... (rest of the annotation folders) > cante100audio/ Remember to locate the cante100 folder to {} """ LICENSE_INFO = """ The provided datasets are offered free of charge for internal non-commercial use. We do not grant any rights for redistribution or modification. All data collections were gathered by the COFLA team. COFLA 2015. All rights reserved. """ def _load_metadata(data_home): metadata_path = os.path.join(data_home, "cante100Meta.xml") if not os.path.exists(metadata_path): logging.info( "Metadata file {} not found.".format(metadata_path) + "You can download the metadata file for cante100 " + "by running cante100.download()" ) return None tree = ET.parse(metadata_path) root = tree.getroot() # ids indexes = [] for child in root: index = child.attrib.get("id") if len(index) == 1: index = "00" + index indexes.append(index) continue if len(index) == 2: index = "0" + index indexes.append(index) continue else: indexes.append(index) # musicBrainzID identifiers = [] for ident in root.iter("musicBrainzID"): identifiers.append(ident.text) # artist artists = [] for artist in root.iter("artist"): artists.append(artist.text) # titles titles = [] for title in root.iter("title"): titles.append(title.text) # releases releases = [] for release in root.iter("anthology"): releases.append(release.text) # duration durations = [] minutes = [] for minute in root.iter("duration_m"): minutes.append(float(minute.text) * 60) seconds = [] for second in root.iter("duration_s"): seconds.append(float(second.text)) for i in np.arange(len(minutes)): durations.append(minutes[i] + seconds[i]) metadata = dict() metadata["data_home"] = data_home for i, j in zip(indexes, range(len(artists))): metadata[i] = { "musicBrainzID": identifiers[j], "artist": artists[j], "title": titles[j], "release": releases[j], "duration": durations[j], } return metadata DATA = core.LargeData("cante100_index.json", _load_metadata) class Track(core.Track): """cante100 track class Args: track_id (str): track id of the track data_home (str): Local path where the dataset is stored. If `None`, looks for the data in the default directory, `~/mir_datasets/cante100` Attributes: track_id (str): track id identifier (str): musicbrainz id of the track artist (str): performing artists title (str): title of the track song release (str): release where the track can be found duration (str): duration in seconds of the track Cached Properties: melody (F0Data): annotated melody notes (NoteData): annotated notes """ def __init__(self, track_id, data_home): if track_id not in DATA.index["tracks"]: raise ValueError("{} is not a valid track ID in Example".format(track_id)) self.track_id = track_id self._data_home = data_home self._track_paths = DATA.index["tracks"][track_id] self.audio_path = os.path.join(self._data_home, self._track_paths["audio"][0]) self.spectrogram_path = os.path.join( self._data_home, self._track_paths["spectrum"][0] ) self.f0_path = os.path.join(self._data_home, self._track_paths["f0"][0]) self.notes_path = os.path.join(self._data_home, self._track_paths["notes"][0]) metadata = DATA.metadata(data_home=data_home) if metadata is not None and track_id in metadata: self._track_metadata = metadata[track_id] else: self._track_metadata = { "musicBrainzID": None, "artist": None, "title": None, "release": None, "duration": None, } self.identifier = self._track_metadata["musicBrainzID"] self.artist = self._track_metadata["artist"] self.title = self._track_metadata["title"] self.release = self._track_metadata["release"] self.duration = self._track_metadata["duration"] @property def audio(self): """The track's audio Returns: * np.ndarray - audio signal * float - sample rate """ return load_audio(self.audio_path) @property def spectrogram(self): """spectrogram of The track's audio Returns: (np.ndarray): spectrogram """ return load_spectrogram(self.spectrogram_path) @core.cached_property def melody(self): return load_melody(self.f0_path) @core.cached_property def notes(self): return load_notes(self.notes_path) def to_jams(self): """Get the track's data in jams format Returns: jams.JAMS: the track's data in jams format """ return jams_utils.jams_converter( audio_path=self.audio_path, spectrogram_path=self.spectrogram_path, f0_data=[(self.melody, "pitch_contour")], note_data=[(self.notes, "note_hz")], metadata=self._track_metadata, ) def load_spectrogram(spectrogram_path): """Load a cante100 dataset spectrogram file. Args: spectrogram_path (str): path to audio file Returns: np.ndarray: spectrogram """ if not os.path.exists(spectrogram_path): raise IOError("spectrogram_path {} does not exist".format(spectrogram_path)) parsed_spectrogram =
np.genfromtxt(spectrogram_path, delimiter=" ")
numpy.genfromtxt
import numpy as np from scipy.integrate import quad from scipy.linalg import toeplitz from bayes_drt.utils import rel_round, is_loguniform def get_basis_func(basis): "Generate basis function" # y = ln (tau/tau_m) if basis == 'gaussian': def phi(y, epsilon): return np.exp(-(epsilon * y) ** 2) elif basis == 'Cole-Cole': def phi(y, epsilon): return (1 / (2 * np.pi)) * np.sin((1 - epsilon) * np.pi) / ( np.cosh(epsilon * y) - np.cos((1 - epsilon) * np.pi)) elif basis == 'Zic': def phi(y, epsilon): # epsilon unused, included only for compatibility return 2 *
np.exp(y)
numpy.exp
"""Helper classes and functions with RTOG studies. """ import random import pandas as pd import numpy as np import pickle from collections import Counter from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from tqdm import tqdm import pint # Constants defining variable and file parsing from rtog_constants import gcp_baseline_paths, rtog_endpoints, rtog_binary_mapping, rtog_unknown_class_X from rtog_constants import rtog_default_class_y, rtog_text_fields, rtog_field_mapping, rtog_categorical_fields # Functions allowing RTOG data manipulation from rtog_constants import is_categorical, merge, serum_values_to_ng_dl def rtog_from_study_number(study_number, create_endpoints=True, standardize=False): """Helper function. Loads an RTOG object given the study number (str).""" study_path = gcp_baseline_paths[study_number] rtog = RTOG(filename=study_path, study_number=study_number, file_type='excel', create_endpoints=create_endpoints) if standardize: rtog.standardize_rx() rtog.standardize_race() rtog.standardize_gleason_scores() rtog.standardize_tstage() rtog.standardize_pelvic_rt() rtog.standardize_prostate_dose() rtog.standardize_rt_complete() rtog.standardize_biochemical_failure() rtog.standardize_disease_specific_survival() rtog.cause_of_death() # rtog_object.standardize_baseline_serum() # Note: this line takes a long time to run, due to unit conversions. Also Osama said the data is too noisy to use. rtog.standardize_unknown_values_in_predictor_variables() # note: this must be done after standardize_rt_complete, bc that re-sets some unknown vars. This replaces the 'unknown' classes with nans, so that boosting can intelligently impute. print("Loaded RTOG {}, Standardized={}".format(study_number, standardize)) return rtog class RTOG(object): def __init__(self, filename=None, study_number=None, file_type="excel", create_endpoints=True): self.filename = filename self.df = None self.study_number = study_number # Load Endpoints, Default Classes (for y), and Unknown Classes (for X). if self.study_number in rtog_endpoints: self.endpoints = rtog_endpoints[study_number] if self.study_number in rtog_default_class_y: self.default_class_y = rtog_default_class_y[study_number] if self.study_number in rtog_unknown_class_X: self.unknown_class_X = rtog_unknown_class_X[study_number] # Load Data. if self.filename is not None: if file_type == "excel": self.df = pd.read_excel(filename) elif file_type == "csv": self.df = pd.read_csv(filename, index_col=0) self._field_fix() self.table_sort() # Study-specific additional derived endpoints get hardcoded here if study_number == '9202': # Add Radiotherapy info gcp_path = "/export/medical_ai/ucsf/box_data/Aperio Images of NRG GU H&E Slides/NRG Statistics/RTOG 9202/All_RT_Data_9202.xlsx" self.df_rt = pd.read_excel(gcp_path) self.df_rt.columns = self.df_rt.columns.str.lower() self.df_rt.rename({'pelvis_does' : 'pelvis_dose'}, axis='columns', inplace=True) elif study_number == '9413': #note: data lacks disease specific survival pass elif study_number == '9408': pass elif study_number == '9910': # Add Radiotherapy info gcp_path = "/export/medical_ai/ucsf/box_data/Aperio Images of NRG GU H&E Slides/NRG Statistics/RTOG 9910/Radiation_treatment_9910.xlsx" self.df_rt = pd.read_excel(gcp_path) self.df_rt.columns = self.df_rt.columns.str.lower() elif study_number == "0126": # Add Serum info gcp_path = "/export/medical_ai/ucsf/box_data/Aperio Images of NRG GU H&E Slides/NRG Statistics/RTOG 0126/All_serum_testosteron_0126.xlsx" self.df_serum = pd.read_excel(gcp_path) self.df_serum.columns = self.df_serum.columns.str.lower() else: pass # Replace nans with defaults in endpoint fields self.df = self.df.fillna(self.default_class_y) if create_endpoints: for timeframe in [5,10,15,25]: self.add_distant_met_Nyr_endpoint(timeframe) self.add_biochemical_failure_Nyr_endpoint(timeframe) self.add_disease_specific_survival_Nyr_endpoint(timeframe) self.add_survival_Nyr_endpoint(timeframe) def _repr_html_(self): return self.df._repr_html_() def __getitem__(self, columns): if type(columns) == str: columns = [columns] new_rtog = self.copy() new_rtog.df = new_rtog.df[columns] return new_rtog def _field_fix(self): """Fixes field names for uniformity and typos. Determined in rtog_constants.py """ self.df = self.df.rename(columns=str.lower) self.df = self.df.rename(rtog_field_mapping, axis='columns') def table_sort(self): """Sorts rows and columns in ascending order. """ self.df = self.df.sort_index() self.df = self.df.sort_index(axis=1) def add_biochemical_failure_Nyr_endpoint(self, years): """Adds column 'biochemical_failure_Nyr' to self.df Indicates if the cancer metastasized within N years. Args: years(int): the years. Column values: 0: Censored 1: Failure within given years 2: Competing event (death without failure) """ field_name = 'biochemical_failure' if self.study_number == '9202': failure_outside_timeframe_value = 2 # Has a 'competing events' class. new_field = field_name + "_{}year".format(years) elif self.study_number == '9408': failure_outside_timeframe_value = 0 # Does not have a 'competing events' class. new_field = field_name + "_{}year".format(years) elif self.study_number == '9413': failure_outside_timeframe_value = 2 # Has a 'competing events' class. new_field = field_name + "_{}year".format(years) field_name = 'phoenix_biochemical_failure' elif self.study_number == '9910': failure_outside_timeframe_value = 2 # Has a 'competing events' class. new_field = field_name + "_{}year".format(years) field_name = 'phoenix_biochemical_failure' elif self.study_number == "0126": failure_outside_timeframe_value = 2 # Has a 'competing events' class. new_field = field_name + "_{}year".format(years) field_name = 'phoenix_biochemical_failure' else: raise ValueError("The failure value for biochemical_failure is not set for this study: {}".format(self.study_number)) field_name_years = field_name + "_years" assert field_name in self.endpoint_fields(), "{} not in endpoint fields".format(field_name) assert field_name_years in self.endpoint_fields() , "{} not in endpoint fields".format(field_name_years) # Insert new field. If it exists already, re-compute it. if new_field in self.df.columns: self.df = self.df.drop(columns=[new_field]) idx = self.df.columns.get_loc(field_name) + 1 new_column_vals = [] for f, fy in zip(self.df[field_name], self.df[field_name_years]): if f == 0: # Default class for biochemical_failure is 0. Same for biochemical_failure_5yr. new_column_vals.append(0) if f == 2: new_column_vals.append(2) if f == 1: assert ~np.isnan(fy), "Found biochemical_failure=1, with biochemical_failure_years=nan. Impossible. See rtog {}".format( self.study_number) if fy <= years: new_column_vals.append(1) else: new_column_vals.append(failure_outside_timeframe_value) self.df.insert(loc=idx, column=new_field, value=list(map(int, new_column_vals))) self.table_sort() # Update endpoint fields self._add_endpoint_field(new_field, 0) def add_disease_specific_survival_Nyr_endpoint(self, years): """Adds column 'disease_specific_survival_Nyr' to self.df Indicates if the patient has lived free of prostate cancer within N years. Note: Contrast this with disease_free_survival, which means the patient has lived free of any disease. Args: years(int): the years. Column values: 0: Censored 1: Failure within given years 2: Competing event (death from something other than prostate cancer.) """ field_name = 'disease_specific_survival' if self.study_number == '9202': failure_outside_timeframe_value = 2 # field_name_years = "survival_years" # Stephanie confirmed we can use this value. elif self.study_number == '9408': failure_outside_timeframe_value = 2 # field_name_years = "dsm_years" # Osama confirmed we can use this value. elif self.study_number == '9413': failure_outside_timeframe_value = 2 elif self.study_number == '9910': failure_outside_timeframe_value = 2 elif self.study_number == '0126': failure_outside_timeframe_value = 2 else: raise ValueError("The failure_outside_timeframe_value for disease specific survival is not set for this study: {}".format( self.study_number)) field_name_years = field_name + "_years" assert field_name in self.endpoint_fields(), "{} not in endpoint fields".format(field_name) assert field_name_years in self.endpoint_fields() , "{} not in endpoint fields".format(field_name_years) # Insert new field. If it exists already, re-compute it. new_field = field_name + "_{}year".format(years) if new_field in self.df.columns: self.df = self.df.drop(columns=[new_field]) idx = self.df.columns.get_loc(field_name) + 1 new_column_vals = [] for dss, dfsy in zip(self.df[field_name], self.df[field_name_years]): if dss == 0: # Default class for distant_met is 0. Same for distant_met_5yr. new_column_vals.append(0) if dss == 2: new_column_vals.append(2) if dss == 1: if dfsy <= years: new_column_vals.append(1) else: new_column_vals.append(failure_outside_timeframe_value) try: self.df.insert(loc=idx, column=new_field, value=list(map(int, new_column_vals))) except: import IPython IPython.embed() # self.df.insert(loc=idx, column=new_field, value=list(map(int, new_column_vals))) self.table_sort() # Update endpoint fields self._add_endpoint_field(new_field, 0) def add_survival_Nyr_endpoint(self, years): """Adds column 'survival_Nyr' to self.df. Refers to overall survival. Args: years(int): the years. Column values: 0: Alive, within given years. 1: Death, within given years. """ field_name = 'survival' field_name_years = "survival_years" # Note, that for disease_specific_survival=1, we can take the time period from disease_free_surival_years. assert field_name in self.endpoint_fields(), "{} not in endpoint fields".format(field_name) assert field_name_years in self.endpoint_fields() , "{} not in endpoint fields".format(field_name_years) # Insert new field. If it exists already, re-compute it. new_field = field_name + "_{}year".format(years) if new_field in self.df.columns: self.df = self.df.drop(columns=[new_field]) idx = self.df.columns.get_loc(field_name) + 1 new_column_vals = [] for fn, fny in zip(self.df[field_name], self.df[field_name_years]): if fn == 0: # Default class for distant_met is 0. Same for distant_met_5yr. new_column_vals.append(0) if fn == 1: if fny <= years: new_column_vals.append(1) else: new_column_vals.append(0) self.df.insert(loc=idx, column=new_field, value=list(map(int, new_column_vals))) self.table_sort() # Update endpoint fields self._add_endpoint_field(new_field, 0) def add_distant_met_Nyr_endpoint(self, years): """Adds column 'distant_met_Nyr' to self.df Indicates if the cancer metastasized within N years. Args: years(int): the years. Column values: 0: Censored 1: Failure within given years (metastatic prostate cancer) 2: Competing event (death from something other than prostate cancer.) """ field_name = 'distant_met' field_name_years = field_name + "_years" if self.study_number == '9202': failure_outside_timeframe_value = 2 # Has a 'competing events' class. elif self.study_number == '9408': failure_outside_timeframe_value = 0 # Has a 'competing events' class elif self.study_number == '9413': failure_outside_timeframe_value = 2 # Has a 'competing events' class. elif self.study_number == '9910': failure_outside_timeframe_value = 2 # Has a 'competing events' class. elif self.study_number == '0126': failure_outside_timeframe_value = 2 # Has a 'competing events' class. else: raise ValueError("The failure_outside_timeframe_value for disease specific survival is not set for this study: {}".format(self.study_number)) assert field_name in self.endpoint_fields(), "{} not in endpoint fields".format(field_name) assert field_name_years in self.endpoint_fields() , "{} not in endpoint fields".format(field_name_years) # Insert new field. If it exists already, re-compute it. new_field = field_name + "_{}year".format(years) if new_field in self.df.columns: self.df = self.df.drop(columns=[new_field]) idx = self.df.columns.get_loc(field_name) + 1 new_column_vals = [] for dm, dmy in zip(self.df[field_name], self.df[field_name_years]): if dm == 0: # Default class for distant_met is 0. Same for distant_met_5yr. new_column_vals.append(0) if dm == 2: new_column_vals.append(2) if dm == 1: assert ~np.isnan(dmy), "Found distant_met=1, with distant_met_years=nan. Impossible. See rtog {}".format(self.study_number) if dmy <= years: new_column_vals.append(1) else: new_column_vals.append(failure_outside_timeframe_value) self.df.insert(loc=idx, column=new_field, value=list(map(int, new_column_vals))) self.table_sort() # Update endpoint fields self._add_endpoint_field(new_field, 0) def _add_endpoint_field(self, endpoint_field, default_class_y): if endpoint_field in self.endpoints: if self.default_class_y[endpoint_field] != default_class_y: raise ValueError("Endpoint already listed, with different default class: {}. New attempt: {}".format( self.default_class_y[endpoint_field], default_class_y )) return self.endpoints.append(endpoint_field) self.default_class_y[endpoint_field] = default_class_y def printc(self): prev = pd.options.display.max_columns prev_r = pd.options.display.max_rows pd.options.display.max_columns = None pd.options.display.max_rows = 90 display(self.df) pd.options.display.max_columns = prev pd.options.display.max_rows = prev_r def get_fields(self): return self.df.columns def set_study_number(self, number): if number not in rtog_endpoints: raise ValueError('Study number not available: {}. Options: {}'.format(number, rtogendpoints.keys())) self.study_number = number self.endpoints = rtog_endpoints[number] self.default_class_y = rtog_default_class_y[number] def copy(self): new_rtog = RTOG() new_rtog.df = self.df.copy(deep=True) new_rtog.filename = self.filename new_rtog.study_number = self.study_number new_rtog.endpoints = self.endpoints new_rtog.default_class_y = self.default_class_y new_rtog.unknown_class_X = self.unknown_class_X return new_rtog def drop(self, columns=''): new_rtog = self.copy() new_rtog.df = self.df.drop(columns=columns) return new_rtog def clear_columns(self, columns=[""]): """Sets the specified column values to empty. Args: columns(list): the names of the columns to replace. """ N = len(self.df) new_rtog = self.copy() null_columns = {c : [''] * N for c in columns} for c, l in null_columns.items(): new_rtog.df[c] = l return new_rtog def endpoint_fields(self): if not self.study_number: raise ValueError("Study number not set. Cannot select endpoint fields") return self.endpoints def text_fields(self): if not self.study_number: raise ValueError("Study number not set. Cannot select text fields") return rtog_text_fields[self.study_number] def get_Xy(self, y_var=None, make_binary=False): """Returns training/testing data, properly formatted. For each study, see the RTOG XXXX Variable Listings documents for reference. Args: y_var(str): the column of self.df to use as the prediction variable. E.g. y_var='cod' Any rows with nans are removed. make_binary(bool): if True, it returns a binary vector (0,1), using the class mapping defined above, rtog_binary_mapping. """ # Set X. Don't impute. Boosting methods do this better than you can. rtog_X = self.drop(columns=self.endpoint_fields() + self.text_fields()) rtog_X = rtog_X.copy() rtog_meta = self.copy() rtog_meta.df = rtog_meta.df[self.endpoint_fields()] # Set y. Impute to default class. rtog_y = self.copy() rtog_y = rtog_y[rtog_y.endpoint_fields()] if y_var: default_class_y = self.default_class_y[y_var] rtog_y = rtog_y[y_var] rtog_y.df = rtog_y.df.fillna(default_class_y) if make_binary: # Forces y to be binary, using a pre-specified mapping in the parent class. for c in rtog_y.df.columns: mapping = rtog_binary_mapping[self.study_number][c] rtog_y.df[c] = rtog_y.df[c].replace(mapping) return rtog_X, rtog_y, rtog_meta def generate_test_set(self, size=100, seed=None, field_to_balance=""): """Samples a test set, printing the class statistics of each. Args: size(int): the number of entries to sample seed(int): Optional. Random seed for reproducibility. field_to_balance(str): Optional. If set, function tries to return an equal class balance in this field. E.g. disease_free_survival Returns: RTOG object - the sampled test set. """ if seed is not None: random.seed(seed) df = self.df.copy(deep=True) if field_to_balance: classes = df[field_to_balance].unique() indices = {} for c in classes: sub_df = df[df[field_to_balance] == c] indices[c] = list(sub_df.index) m = min([len(v) for _, v in indices.items()]) for c, l in indices.items(): if len(l) > m: random.shuffle(l) indices[c] = l[:m] idx = [elem for _, l in indices.items() for elem in l] else: idx = list(range(len(df))) random.shuffle(idx) idx = idx[:size] new_rtog = self.copy() new_rtog.df = df new_rtog.df = new_rtog.df.loc[idx] return new_rtog def to_csv(self, filename): self.df.to_csv(filename) def standardize_disease_specific_survival(self, drop_prior_columns=True): self.standardize_disease_specific_survival_events(drop_prior_columns=drop_prior_columns) self.standardize_disease_specific_survival_years(drop_prior_columns=drop_prior_columns) # If DSS-years unspecified but DSS censored, set DSS-years to 25 (assume long time). isnan = self.df['disease_specific_survival_years'].isnull().values iszero = (self.df['disease_specific_survival'] == 0).values self.df.loc[np.logical_and(isnan, iszero), 'disease_specific_survival_years'] = 25 def standardize_disease_specific_survival_events(self, drop_prior_columns=True): """Merges variants of DSS, prioritizing phoenix, and naming everything disease_specific_survival Args: drop_prior_columns(bool): If True, drops the original columns. """ bcr_fields = [f for f in self.df.columns if 'disease_specific_survival' in f] e_bcr_fields = np.array([f for f in bcr_fields if 'year' not in f]) idx_sort = [] idx_sort.append(np.where(['phoenix' in e for e in e_bcr_fields])[0]) idx_sort.append(np.where(['disease_specific_survival' == e for e in e_bcr_fields])[0]) idx_sort = np.array([i[0] for i in idx_sort if len(i) > 0]) e_bcr = self.df[e_bcr_fields[idx_sort]] new_values = e_bcr[e_bcr.columns[0]] for i in range(1,len(e_bcr.columns)): next_best = e_bcr[e_bcr.columns[i]][new_values.isnull()].values.copy() new_values = new_values.fillna(pd.Series(next_best)) self.df = self.df.assign(disease_specific_survival=new_values) def standardize_disease_specific_survival_years(self, drop_prior_columns=True): """Merges variants of BCR, prioritizing phoenix, and naming everything disease_specific_survival Args: drop_prior_columns(bool): If True, drops the original columns. """ bcr_fields = [f for f in self.df.columns if 'disease_specific_survival' in f] e_bcr_fields = np.array([f for f in bcr_fields if 'years' in f]) idx_sort = [] idx_sort.append(np.where(['phoenix' in e for e in e_bcr_fields])[0]) idx_sort.append(np.where(['disease_specific_survival_years' == e for e in e_bcr_fields])[0]) idx_sort = np.array([i[0] for i in idx_sort if len(i) > 0]) e_bcr = self.df[e_bcr_fields[idx_sort]] new_values = e_bcr[e_bcr.columns[0]] for i in range(1,len(e_bcr.columns)): next_best = e_bcr[e_bcr.columns[i]][new_values.isnull()].values.copy() new_values = new_values.fillna(pd.Series(next_best)) self.df = self.df.assign(disease_specific_survival_years=new_values) def standardize_biochemical_failure(self, drop_prior_columns=True): self.standardize_biochemical_failure_events(drop_prior_columns=drop_prior_columns) self.standardize_biochemical_failure_years(drop_prior_columns=drop_prior_columns) def standardize_biochemical_failure_events(self, drop_prior_columns=True): """Merges variants of BCR, prioritizing phoenix, and naming everything biochemical_failure Args: drop_prior_columns(bool): If True, drops the original columns. """ bcr_fields = [f for f in self.df.columns if 'biochemical' in f] e_bcr_fields = np.array([f for f in bcr_fields if 'year' not in f]) idx_sort = [] idx_sort.append(np.where(['phoenix' in e for e in e_bcr_fields])[0]) idx_sort.append(np.where(['biochemical_failure' == e for e in e_bcr_fields])[0]) idx_sort.append(np.where(['astro' in e for e in e_bcr_fields])[0]) idx_sort = np.array([i[0] for i in idx_sort if len(i) > 0]) e_bcr = self.df[e_bcr_fields[idx_sort]] new_values = e_bcr[e_bcr.columns[0]] for i in range(1,len(e_bcr.columns)): next_best = e_bcr[e_bcr.columns[i]][new_values.isnull()].values.copy() new_values = new_values.fillna(pd.Series(next_best)) self.df = self.df.assign(biochemical_failure=new_values) def standardize_biochemical_failure_years(self, drop_prior_columns=True): """Merges variants of BCR, prioritizing phoenix, and naming everything biochemical_failure Args: drop_prior_columns(bool): If True, drops the original columns. """ bcr_fields = [f for f in self.df.columns if 'biochemical' in f] e_bcr_fields = np.array([f for f in bcr_fields if 'years' in f]) idx_sort = [] idx_sort.append(np.where(['phoenix' in e for e in e_bcr_fields])[0]) idx_sort.append(np.where(['biochemical_failure_years' == e for e in e_bcr_fields])[0]) idx_sort.append(np.where(['astro' in e for e in e_bcr_fields])[0]) idx_sort = np.array([i[0] for i in idx_sort if len(i) > 0]) e_bcr = self.df[e_bcr_fields[idx_sort]] new_values = e_bcr[e_bcr.columns[0]] for i in range(1,len(e_bcr.columns)): next_best = e_bcr[e_bcr.columns[i]][new_values.isnull()].values.copy() new_values = new_values.fillna(pd.Series(next_best)) self.df = self.df.assign(biochemical_failure_years=new_values) def standardize_baseline_psa(self, drop_prior_columns=True): """Merges variants of 'baseline_psa' together across studies. Args: drop_prior_columns(bool): If True, drops the original columns. """ if self.study_number == '0126': self.df['baseline_psa'] = self.df['psa'] if drop_prior_columns: self.df.drop(columns='psa') def standardize_baseline_serum(self, drop_prior_columns=True): """Merges baseline_serum* values into a single, column: baseline_serum_ng_dl, deleting the original columns. Args: drop_prior_columns(bool): If True, drops the original baseline_serum and baseline_serum_unit (or equivalent) columns. """ baseline_serum_ngdl = [] if self.study_number == "9202": # Has two columns: baseline_serum, and baseline_serum_nmol_l, which are all mixed up # Per Osama: # if the value >100, it's in ng/dl, and belongs to baseline_serum #. if the value <100, it's in nmol_l, and belongs to baseline_serum_nmol_l # After running the code below: # import matplotlib.pyplot as plt # v = list(r9202.df['baseline_serum_nmol_l'].values) + list(r9202.df['baseline_serum']) # v = [val for val in v if not np.isnan(val)] # plt.hist(v, bins='auto') # Is it evident that 75 is a better cutoff cutoff = 75 for index, row in tqdm(self.df.iterrows()): # If there's a conflict between baseline_serum and baseline_serum_nmol_l, we set the value to NaN if not (np.isnan(row['baseline_serum']) or np.isnan(row['baseline_serum_nmol_l'])): print("9202: serum conflict, setting to Nan: index={}, baseline_serum={}, baseline_serum_nmol_l={}".format( index, row['baseline_serum'], row['baseline_serum_nmol_l'] )) baseline_serum_ngdl.append(np.nan) continue # Grab the row's serum value. One column has a nan, the other has a number. if np.isnan(row['baseline_serum']): rowval = row['baseline_serum_nmol_l'] else: rowval = row['baseline_serum'] if rowval < cutoff: baseline_serum_ngdl.append(serum_values_to_ng_dl(rowval, 'nmol/l')) else: baseline_serum_ngdl.append(rowval) if drop_prior_columns: self.df.drop(columns=['baseline_serum', 'baseline_serum_nmol_l'], inplace=True) elif self.study_number == "9408": # Conversion: 1= NMOL/L 2 = NG/DL 3 = NG/ML 4= Unit/NOS for index, row in tqdm(self.df.iterrows()): value = row['baseline_serum'] unit = row['baseline_serum_unit'] if
np.isnan(value)
numpy.isnan
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu May 11 17:56:24 2017 @author: sarah """ import numpy as np from misc import * import world import environment as env import agent as agt import perception as prc import action_selection as asl import itertools import matplotlib.pylab as plt from multiprocessing import Pool from matplotlib.colors import LinearSegmentedColormap import jsonpickle as pickle import jsonpickle.ext.numpy as jsonpickle_numpy import json import seaborn as sns import os import pandas as pd import gc import pickle np.set_printoptions(threshold = 100000, precision = 5) plt.style.use('seaborn-whitegrid') # always pass a list of classes def save_data(file_name, objects): with open(file_name, 'wb') as output_file: pickle.dump(objects, output_file) def load_data(file_name): with open(file_name, 'rb') as file: objects = pickle.load(file) return objects def extract_object(obj): keys = [] obj_dict = obj.__dict__ for key in obj_dict: keys.append(key) return keys, obj_dict """ run function """ save = True data_folder = os.path.join('C:\\Users\\admin\\Desktop\\project\\BalancingControl','data') const = 0#1e-10 trials = 200 #number of trials T = 5 #number of time steps in each trial Lx = 4 #grid length Ly = 5 no = Lx*Ly #number of observations ns = Lx*Ly #number of states na = 3 #number of actions npi = na**(T-1) nr = 2 nc = ns actions = np.array([[0,-1], [1,0], [0,1]]) g1 = 14 g2 = 10 start = 2 print("start", start) print("g2", g2) print("g1", g1) print("nc", nc) print("nr", nr) print("npi", npi) print("na", na) print("ns", ns) print("no", no) print("trials", trials) print("data_folder", data_folder) print("save", save) print('\n\nrunning simulations\n\n') print('-------------------------') def run_agent(par_list, trials=trials, T=T, Lx = Lx, Ly = Ly, ns=ns, na=na,var=0.1,run=0,\ sample_post = False, sample_other = False, prior_start = True): #set parameters: #obs_unc: observation uncertainty condition #state_unc: state transition uncertainty condition #goal_pol: evaluate only policies that lead to the goal #utility: goal prior, preference p(o) # over_actions -> ddm uses prior and likelihood over actions or policies obs_unc, state_unc, goal_pol, selector, context, utility, over_actions, h, q = par_list print("q", q) print("h", h) name_str = selector + '_s'+ str(var)+'_context_' + str(context) + '_over-actions_'+ str(over_actions)+'_h'+str(h) + '_'+str(run) """ create matrices """ vals = np.array([1., 2/3., 1/2., 1./2.]) #generating probability of observations in each state A = np.eye(ns) + const np.fill_diagonal(A, 1-(ns-1)*const) #state transition generative probability (matrix) B = np.zeros((ns, ns, na)) + const cert_arr = np.zeros(ns) for s in range(ns): x = s//Ly y = s%Ly #state uncertainty condition if state_unc: if (x==0) or (y==3): c = vals[0] elif (x==1) or (y==2): c = vals[1] elif (x==2) or (y==1): c = vals[2] else: c = vals[3] condition = 'state' else: c = 1. cert_arr[s] = c for u in range(na): x = s//Ly+actions[u][0] y = s%Ly+actions[u][1] #check if state goes over boundary if x < 0: x = 0 elif x == Lx: x = Lx-1 if y < 0: y = 0 elif y == Ly: y = Ly-1 s_new = Ly*x + y if s_new == s: B[s, s, u] = 1 - (ns-1)*const else: B[s, s, u] = 1-c + const B[s_new, s, u] = c - (ns-1)*const B_c = np.broadcast_to(B[:,:,:,np.newaxis], (ns, ns, na, nc)) """ create environment (grid world) """ Rho = np.zeros((nr,ns)) + const Rho[0,:] = 1 - (nr-1)*const Rho[:,np.argmax(utility)] = [0+const, 1-(nr-1)*const] util = np.array([1-np.amax(utility),
np.amax(utility)
numpy.amax
import numpy as np import pandas as pd import matplotlib.pyplot as plt from gluonts.dataset.artificial import recipe as rcp from sktime.forecasting.model_selection import temporal_train_test_split class SyntheticSeries: def __init__(self, length, test_size, shortname=None): """ TODO function description """ self.length = length self.test_size = test_size self.target = self.shortname = shortname self.components = self.generate_components() if shortname is None: self.target = self.shortname = self.components.columns[-1] def generate_components(self): """ TODO function description """ raise NotImplementedError def get_data(self, generate_new=True, include_oracle=True): """ TODO function description """ if generate_new: self.components = self.generate_components() y_train, y_test = temporal_train_test_split(self.components[self.target], test_size=self.test_size) if include_oracle: return y_train, y_test, self.components['oracle'] else: return y_train, y_test def plot_timeseries(self, **kwargs): """ TODO function description """ ax = self.components['oracle'].plot(marker="o", markersize=5, **kwargs) self.components[self.target].plot(ax=ax, linewidth=2) return ax def plot_components(self, oracle_on_target=True, bins_size=20, histogram_components=['target', 'noise'], scatter_components=['target', 'noise'], show_title=False): """ TODO function description """ fig, axes = plt.subplots(nrows=self.components.shape[1], squeeze=False, figsize=(20, 3*self.components.shape[1])) if show_title: fig.suptitle(self.target, fontsize=14) histogram_components = [self.target if c=='target' else c for c in histogram_components] scatter_components = [self.target if c=='target' else c for c in scatter_components] for ax, label in zip(axes[:, 0], self.components): if label in histogram_components: ax.hist(self.components[label], bins=self.length//bins_size, orientation="horizontal", color='#3333FF55') if label in scatter_components: ax.scatter(x=range(self.components.shape[0]), y=self.components[label], s=5) else: self.components[label].plot(ax=ax, linewidth=2) ax.set_xlim(xmin=0) ax.grid(False) ax.set_ylabel(label) if oracle_on_target: self.components.oracle.plot(ax=axes[-1, 0], linewidth=1) return axes class GluonSyntheticSeries(SyntheticSeries): def __init__(self, length, test_size, **recipe): """ TODO function description """ self.recipe = recipe self.gluonts_recipe = [(label, recipe[label]) for label in recipe] super().__init__(length, test_size, self.gluonts_recipe[-1][0]) def generate_components(self): """ TODO function description """ # generates a dataframe, with timeseries components # the last two columns should be the oracle and the final timeseries components = rcp.evaluate(self.gluonts_recipe, self.length) for label in components: if components[label].shape[0] == 1: components[label] = np.repeat(components[label], self.length) return pd.DataFrame(components, dtype=float) gaussian = GluonSyntheticSeries( length = 1000, test_size = 300, oracle = rcp.RandomUniform(-100, 100, shape=1), Gaussian = rcp.RandomGaussian(rcp.RandomUniform(0.01, 10, shape=1)) + 'oracle' ) uniform = GluonSyntheticSeries( length = 1000, test_size = 300, range = rcp.RandomUniform(0.01, 10, shape=1), oracle = rcp.RandomUniform(-100, 100, shape=1), Uniform = rcp.RandomUniform(rcp.Ref('oracle')-rcp.Ref('range'), rcp.Ref('oracle')+rcp.Ref('range')) ) symdirichlet = GluonSyntheticSeries( length = 1000, test_size = 300, intercept = rcp.RandomUniform(-100, 100, shape=1), alpha = rcp.RandomUniform(0.01, 100, shape=1), oracle = rcp.Add([1/300, 'intercept']), # 1/lengh SymmetricDirichlet = rcp.RandomSymmetricDirichlet('alpha') + 'intercept' ) class GeometricBrownianMotion(SyntheticSeries): def __init__(self, length, test_size): super().__init__(length, test_size, 'Brownian Motion') def generate_components(self): # define initial value of time series initial = np.random.exponential(1000) # define mean and std of underlying normal distributiion mean = np.random.exponential(0.0005) std = np.random.uniform(0.01, 0.03) # x[t] = x[t-1] * lognormal(mean, std) # returns are said to be log-normally distributed. # this means that the latent variable (also known as noise during simulation) # is normally distributed, but suffers an exp() transformation applied to it. #factor = np.exp(np.cumsum(np.log(np.random.lognormal(mean, std, self.length)))) #factor = np.exp(np.cumsum(np.log(np.exp(np.random.normal(mean, std, self.length))))) series = initial * np.exp(np.cumsum(np.random.normal(mean, std, self.length))) #oracle = np.empty(shape=self.length) #oracle[1:] = series[:-1] * np.exp(mean) #oracle[0] = np.nan oracle = initial * np.exp(np.arange(self.length) * mean) return pd.DataFrame({'oracle': oracle, self.shortname: series}) brownian = GeometricBrownianMotion(length=1000, test_size=300) trend_clean = GluonSyntheticSeries( length = 1000, test_size = 300, oracle = rcp.LinearTrend(slope=rcp.RandomUniform(2, 10, shape=1)), Trend = 'oracle' ) trend_small_noise = GluonSyntheticSeries( length = 1000, test_size = 300, noise = rcp.RandomGaussian(stddev=rcp.RandomUniform(0.5, 1, shape=1)), oracle = rcp.LinearTrend(slope=rcp.RandomUniform(3, 10, shape=1)), Trend = rcp.Add(['oracle','noise']) ) trend_big_noise = GluonSyntheticSeries( length = 1000, test_size = 300, noise = rcp.RandomGaussian(stddev=rcp.RandomUniform(3, 5, shape=1)), oracle = rcp.LinearTrend(slope=rcp.RandomUniform(3, 10, shape=1)), Trend = rcp.Add(['oracle','noise']) ) seasonality = GluonSyntheticSeries( length = 1000, test_size = 300, oracle = rcp.SmoothSeasonality(period=rcp.RandomUniform(20, 100, shape=1), phase=0), Seasonality = 'oracle' ) two_seasonalities = GluonSyntheticSeries( length = 1000, test_size = 300, seasonality1 = rcp.SmoothSeasonality(period=rcp.RandomUniform(20, 100, shape=1), phase=0), seasonality2 = rcp.SmoothSeasonality(period=rcp.RandomUniform(100, 200, shape=1), phase=0), oracle = rcp.Add(['seasonality1','seasonality2']), TwoSeasonalities = 'oracle' ) seasonality_noisy = GluonSyntheticSeries( length = 1000, test_size = 300, oracle = rcp.SmoothSeasonality(period=rcp.RandomUniform(20, 200, shape=1), phase=0), noise = rcp.RandomGaussian(stddev=rcp.RandomUniform(0.1, 0.8, shape=1)), SeasonalityNoisy = rcp.Add(['oracle', 'noise']) ) two_seasonalities_noisy = GluonSyntheticSeries( length = 1000, test_size = 300, seasonality1 = rcp.SmoothSeasonality(period=rcp.RandomUniform(20, 100, shape=1), phase=0), seasonality2 = rcp.SmoothSeasonality(period=rcp.RandomUniform(100, 200, shape=1), phase=0), oracle = rcp.Add(['seasonality1','seasonality2']), noise = rcp.RandomGaussian(stddev=rcp.RandomUniform(0.1, 0.8, shape=1)), TwoSeasonalitiesNoisy = rcp.Add(['oracle', 'noise']) ) trend_seasonality = GluonSyntheticSeries( length = 1000, test_size = 300, trend = rcp.LinearTrend(slope=rcp.RandomUniform(1, 10, shape=1)), seasonality = rcp.SmoothSeasonality(period=rcp.RandomUniform(10, 200, shape=1), phase=0), oracle = rcp.Add(['trend', 'seasonality']), TrendSeasonality = 'oracle' ) class WeeklySyntheticSeries(SyntheticSeries): def __init__(self, length, test_size): super().__init__(length, test_size, 'Weekly Patterns') def generate_components(self): # define mean and std to reasonable values mean1 =
np.random.exponential(10)
numpy.random.exponential
import random as rand import numpy as np import multiprocessing as mp from scipy.spatial import HalfspaceIntersection, ConvexHull from scipy.spatial.qhull import QhullError from dataclasses import dataclass from operator import mul, add from functools import reduce from collections import namedtuple from kaa.lputil import minLinProg, maxLinProg, LPUtil from settings import KaaSettings from kaa.trajectory import Traj, TrajCollection from settings import KaaSettings from kaa.log import Output @dataclass class VolumeData: ConvHullVol: float EnvelopBoxVol: float class ChebyCenter: def __init__(self, center, radius): self.center = center self.radius = radius class LinearSystem: def __init__(self, model, A, b, constr_mat=None): self.A = A self.b = b self.model = model self.vars = model.vars self.dim = model.dim self.constr_mat = constr_mat # Pointer to total constraint mat for LPUtil purposes. self.randgen = rand.Random(KaaSettings.RandSeed) """ Computes and returns the Chebyshev center of parallelotope. @returns self.dim point marking the Chebyshev center. """ @property def chebyshev_center(self): 'Initialize objective function for Chebyshev intersection LP routine.' c = [0 for _ in range(self.dim + 1)] c[-1] = 1 row_norm = np.reshape(np.linalg.norm(self.A, axis=1), (self.A.shape[0], 1)) center_A = np.hstack((self.A, row_norm)) center_pt = maxLinProg(self.model, c, center_A, self.b).x return ChebyCenter(center_pt[:-1], center_pt[-1]) """ Volume estimation of system by sampling points and taking ratio. @params samples: number of samples used to estimate volume @returns estimated volume of linear system stored in VolDataTuple """ @property def volume(self): envelop_box_vol = self.calc_vol_envelop_box() conv_hull_vol = self.calc_vol_conv_hull() if self.dim < 4 else None return VolumeData(conv_hull_vol, envelop_box_vol) """ Find vertices of this linear system. """ @property def vertices(self): phase_intersect = np.hstack((self.A, - np.asarray([self.b]).T)) 'Run scipy.spatial.HalfspaceIntersection.' try: center_pt = np.asarray(self.chebyshev_center.center) hs = HalfspaceIntersection(phase_intersect, center_pt) except QhullError: feasible_pt = self.feasible_point() hs = HalfspaceIntersection(phase_intersect, feasible_pt) vertices = np.asarray(hs.intersections) return vertices def feasible_point(self, use_interior_point=True, num_samples=5): if use_interior_point: return minLinProg(self, np.zeros(self.dim), self.A, self.b, method='Interior').x else: sample_mat =
np.random.randn(num_samples, self.dim)
numpy.random.randn
#!/usr/bin/env python # -*- coding: utf-8 -*- """ The basic photometry class for the TASOC Photometry pipeline. All other specific photometric algorithms will inherit from BasePhotometry. .. codeauthor:: <NAME> <<EMAIL>> """ import numpy as np import h5py import sqlite3 import logging import datetime import os.path import glob import contextlib import warnings from copy import deepcopy from astropy._erfa.core import ErfaWarning from astropy.io import fits from astropy.table import Table, Column from astropy import units import astropy.coordinates as coord from astropy.time import Time from astropy.wcs import WCS import enum from bottleneck import nanmedian, nanvar, nanstd, allnan from .image_motion import ImageMovementKernel from .quality import TESSQualityFlags, PixelQualityFlags, CorrectorQualityFlags from .utilities import (find_tpf_files, find_hdf5_files, find_catalog_files, rms_timescale, find_nearest, ListHandler) from .catalog import catalog_sqlite_search_footprint from .plots import plot_image, plt, save_figure from .spice import TESS_SPICE from .version import get_version from . import fixes # Filter out annoying warnings: warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=ErfaWarning, module="astropy") __version__ = get_version() __docformat__ = 'restructuredtext' hdf5_cache = {} #-------------------------------------------------------------------------------------------------- @enum.unique class STATUS(enum.Enum): """ Status indicator of the status of the photometry. """ UNKNOWN = 0 #: The status is unknown. The actual calculation has not started yet. STARTED = 6 #: The calculation has started, but not yet finished. OK = 1 #: Everything has gone well. ERROR = 2 #: Encountered a catastrophic error that I could not recover from. WARNING = 3 #: Something is a bit fishy. Maybe we should try again with a different algorithm? ABORT = 4 #: The calculation was aborted. SKIPPED = 5 #: The target was skipped because the algorithm found that to be the best solution. #-------------------------------------------------------------------------------------------------- class BasePhotometry(object): """ The basic photometry class for the TASOC Photometry pipeline. All other specific photometric algorithms will inherit from this. Attributes: starid (int): TIC number of star being processed. input_folder (str): Root directory where files are loaded from. output_folder (str): Root directory where output files are saved. plot (bool): Indicates wheter plots should be created as part of the output. plot_folder (str): Directory where plots are saved to. method (str): String indication the method of photometry. sector (int): TESS observing sector. camera (int): TESS camera (1-4). ccd (int): TESS CCD (1-4). data_rel (int): Data release number. n_readout (int): Number of frames co-added in each timestamp. header (dict-like): Primary header, either from TPF or HDF5 files. target (dict): Catalog information about the main target. target_mag (float): TESS magnitude of the main target. target_pos_ra (float): Right ascension of the main target at time of observation. target_pos_dec (float): Declination of the main target at time of observation. target_pos_ra_J2000 (float): Right ascension of the main target at J2000. target_pos_dec_J2000 (float): Declination of the main target at J2000. target_pos_column (float): Main target CCD column position. target_pos_row (float): Main target CCD row position. target_pos_column_stamp (float): Main target CCD column position in stamp. target_pos_row_stamp (float): Main target CCD row position in stamp. wcs (:class:`astropy.wcs.WCS`): World Coordinate system solution. lightcurve (:class:`astropy.table.Table`): Table to be filled with an extracted lightcurve. final_phot_mask (numpy.ndarray): Mask indicating which pixels were used in extraction of lightcurve. ``True`` if used, ``False`` otherwise. final_position_mask (numpy.ndarray): Mask indicating which pixels were used in extraction of positions. ``True`` if used, ``False`` otherwise. additional_headers (dict): Additional headers to be included in FITS files. .. codeauthor:: <NAME> <<EMAIL>> """ #---------------------------------------------------------------------------------------------- def __init__(self, starid, input_folder, output_folder, datasource='ffi', sector=None, camera=None, ccd=None, plot=False, cache='basic', version=5): """ Initialize the photometry object. Parameters: starid (int): TIC number of star to be processed. input_folder (string): Root directory where files are loaded from. output_folder (string): Root directory where output files are saved. datasource (string, optional): Source of the data. Options are ``'ffi'`` or ``'tpf'``. Default is ``'ffi'``. plot (boolean, optional): Create plots as part of the output. Default is ``False``. camera (integer, optional): TESS camera (1-4) to load target from (Only used for FFIs). ccd (integer, optional): TESS CCD (1-4) to load target from (Only used for FFIs). cache (string, optional): Optional values are ``'none'``, ``'full'`` or ``'basic'`` (Default). version (integer): Data release number to be added to headers. Default=5. Raises: Exception: If starid could not be found in catalog. FileNotFoundError: If input file (HDF5, TPF, Catalog) could not be found. ValueError: On invalid datasource. ValueError: If ``camera`` and ``ccd`` is not provided together with ``datasource='ffi'``. """ logger = logging.getLogger(__name__) if datasource != 'ffi' and not datasource.startswith('tpf'): raise ValueError("Invalid datasource: '%s'" % datasource) if cache not in ('basic', 'none', 'full'): raise ValueError("Invalid cache: '%s'" % cache) # Store the input: self.starid = starid self.input_folder = os.path.abspath(input_folder) self.output_folder_base = os.path.abspath(output_folder) self.plot = plot self.datasource = datasource self.version = version # Further checks of inputs: if os.path.isfile(self.input_folder): self.input_folder = os.path.dirname(self.input_folder) if not os.path.isdir(self.input_folder): raise FileNotFoundError("Not a valid input directory: '%s'" % self.input_folder) # Extract which photometric method that is being used by checking the # name of the class that is running: self.method = { 'BasePhotometry': 'base', 'AperturePhotometry': 'aperture', 'PSFPhotometry': 'psf', 'LinPSFPhotometry': 'linpsf', 'HaloPhotometry': 'halo' }.get(self.__class__.__name__, None) logger.info('STARID = %d, DATASOURCE = %s, METHOD = %s', self.starid, self.datasource, self.method) self._status = STATUS.UNKNOWN self._details = {} self.tpf = None self.hdf = None self._MovementKernel = None self._images_cube_full = None self._images_err_cube_full = None self._backgrounds_cube_full = None self._pixelflags_cube_full = None self._sumimage_full = None # Add a ListHandler to the logging of the corrections module. # This is needed to catch any errors and warnings made by the correctors # for ultimately storing them in the TODO-file. # https://stackoverflow.com/questions/36408496/python-logging-handler-to-append-to-list self.message_queue = [] handler = ListHandler(message_queue=self.message_queue, level=logging.WARNING) formatter = logging.Formatter('%(levelname)s: %(message)s') handler.setFormatter(formatter) logging.getLogger('photometry').addHandler(handler) # Directory where output files will be saved: self.output_folder = os.path.join( self.output_folder_base, self.datasource[:3], # Only three first characters for cases with "tpf:XXXXXX" '{0:011d}'.format(self.starid)[:5] ) # Set directory where diagnostics plots should be saved to: self.plot_folder = None if self.plot: self.plot_folder = os.path.join(self.output_folder, 'plots', '{0:011d}'.format(self.starid)) os.makedirs(self.plot_folder, exist_ok=True) # Init table that will be filled with lightcurve stuff: self.lightcurve = Table() if self.datasource == 'ffi': # The camera and CCD should also come as input # They will be needed to find the correct input files if sector is None or camera is None or ccd is None: raise ValueError("SECTOR, CAMERA and CCD keywords must be provided for FFI targets.") self.sector = sector # TESS observing sector. self.camera = camera # TESS camera. self.ccd = ccd # TESS CCD. logger.debug('SECTOR = %s', self.sector) logger.debug('CAMERA = %s', self.camera) logger.debug('CCD = %s', self.ccd) # Load stuff from the common HDF5 file: filepath_hdf5 = find_hdf5_files(self.input_folder, sector=self.sector, camera=self.camera, ccd=self.ccd) if len(filepath_hdf5) != 1: raise FileNotFoundError("HDF5 File not found. SECTOR=%d, CAMERA=%d, CCD=%d" % (self.sector, self.camera, self.ccd)) filepath_hdf5 = filepath_hdf5[0] self.filepath_hdf5 = filepath_hdf5 logger.debug("CACHE = %s", cache) load_into_cache = False if cache == 'none': load_into_cache = True else: global hdf5_cache if filepath_hdf5 not in hdf5_cache: hdf5_cache[filepath_hdf5] = {} load_into_cache = True elif cache == 'full' and hdf5_cache[filepath_hdf5].get('_images_cube_full') is None: load_into_cache = True # Open the HDF5 file for reading if we are not holding everything in memory: if load_into_cache or cache != 'full': self.hdf = h5py.File(filepath_hdf5, 'r') if load_into_cache: logger.debug('Loading basic data into cache...') attrs = {} # Just a shorthand for the attributes we use as "headers": hdr = dict(self.hdf['images'].attrs) attrs['header'] = hdr attrs['data_rel'] = hdr['DATA_REL'] # Data release number # Start filling out the basic vectors: self.lightcurve['time'] = Column(self.hdf['time'], description='Time', dtype='float64', unit='TBJD') N = len(self.lightcurve['time']) self.lightcurve['cadenceno'] = Column(self.hdf['cadenceno'], description='Cadence number', dtype='int32') self.lightcurve['quality'] = Column(self.hdf['quality'], description='Quality flags', dtype='int32') if 'timecorr' in self.hdf: self.lightcurve['timecorr'] = Column(self.hdf['timecorr'], description='Barycentric time correction', unit='days', dtype='float32') else: self.lightcurve['timecorr'] = Column(np.zeros(N, dtype='float32'), description='Barycentric time correction', unit='days', dtype='float32') # Correct timestamp offset that was in early data releases: self.lightcurve['time'] = fixes.time_offset(self.lightcurve['time'], hdr, datatype='ffi') attrs['lightcurve'] = self.lightcurve # World Coordinate System solution: if isinstance(self.hdf['wcs'], h5py.Group): refindx = self.hdf['wcs'].attrs['ref_frame'] hdr_string = self.hdf['wcs']['%04d' % refindx][0] else: hdr_string = self.hdf['wcs'][0] if not isinstance(hdr_string, str): hdr_string = hdr_string.decode("utf-8") # For Python 3 self.wcs = WCS(header=fits.Header().fromstring(hdr_string), relax=True) # World Coordinate system solution. attrs['wcs'] = self.wcs # Get shape of sumimage from hdf5 file: attrs['_max_stamp'] = (0, self.hdf['sumimage'].shape[0], 0, self.hdf['sumimage'].shape[1]) attrs['pixel_offset_row'] = hdr.get('PIXEL_OFFSET_ROW', 0) attrs['pixel_offset_col'] = hdr.get('PIXEL_OFFSET_COLUMN', 44) # Default for TESS data # Get info for psf fit Gaussian statistic: attrs['readnoise'] = hdr.get('READNOIS', 10) attrs['gain'] = hdr.get('GAIN', 100) attrs['num_frm'] = hdr.get('NUM_FRM', 900) # Number of frames co-added in each timestamp (Default=TESS). attrs['n_readout'] = hdr.get('NREADOUT', int(attrs['num_frm']*(1-2/hdr.get('CRBLKSZ', np.inf)))) # Number of readouts # Load MovementKernel into memory: attrs['_MovementKernel'] = self.MovementKernel # The full sum-image: attrs['_sumimage_full'] = np.asarray(self.hdf['sumimage']) # Store attr in global variable: hdf5_cache[filepath_hdf5] = deepcopy(attrs) # If we are doing a full cache (everything in memory) load the image cubes as well. # Note that this will take up A LOT of memory! if cache == 'full': logger.warning('Loading full image cubes into cache...') hdf5_cache[filepath_hdf5]['_images_cube_full'] = np.empty((attrs['_max_stamp'][1], attrs['_max_stamp'][3], N), dtype='float32') hdf5_cache[filepath_hdf5]['_images_err_cube_full'] = np.empty((attrs['_max_stamp'][1], attrs['_max_stamp'][3], N), dtype='float32') hdf5_cache[filepath_hdf5]['_backgrounds_cube_full'] =
np.empty((attrs['_max_stamp'][1], attrs['_max_stamp'][3], N), dtype='float32')
numpy.empty
import numpy as np import networkx as nx from astar import AStar ''' to install astar: git clone https://github.com/jrialland/python-astar.git python3 setup.py install ''' def discretize(x, discretization_bins=20, unif_range=(-1, 1)): try: assert type(x) == np.ndarray assert (unif_range[0] < x).all() and (x < unif_range[1]).all() except AssertionError: import ipdb ipdb.set_trace() bins = np.linspace(unif_range[0], unif_range[1], num=discretization_bins) return np.digitize(x, bins) def undiscretize(x, discretization_bins=20, unif_range=(-1, 1)): try: assert type(x) == np.ndarray assert (0 < x).all() and (x < discretization_bins).all() except AssertionError: import ipdb ipdb.set_trace() bins = np.linspace(unif_range[0], unif_range[1], num=discretization_bins) return 0.5 * (bins[x] + bins[x - 1]) class StateObsTuple(): def __init__(self, state, obs): self.state = state.astype(int) self.obs = obs def __eq__(self, other): return np.array_equal(self.state, other.state) def __hash__(self): return hash(tuple(self.state.tolist())) def unpack(self): return (self.state, self.obs) def plan_traj(trans_prob, start_obs, goal_obs, posterior_function): weights = -np.log(trans_prob + 1e-8) # apply cutoff to very low probabilities cutoff = 3 weights[weights > cutoff] = 0 G = nx.DiGraph(weights) c_start = posterior_function(start_obs) c_goal = posterior_function(goal_obs) try: c_traj = nx.shortest_path(G, source=c_start, target=c_goal, weight='weight') except: c_traj = [] # no trajectory found return c_traj class SolverNoPruning(AStar): """ Use astar algorithm. Node is a tuple: (binary state representation of size c_dim, observation vector) transition function : map current state to a sample of next state posterior_function : map observation to state discriminator_function : map two observations to confidence score (that they are from the data) generator_function : map current state, next state, and current observation to a sample of next observation """ def __init__(self, transition_function, generator_function, discriminator_function=None, relaxation=10.0, mc_samples=100): self.transition = transition_function self.generator = generator_function self.mc_samples = mc_samples self.relaxation = relaxation # astar relaxed heuristic self.n_expanded = 0 def heuristic_cost_estimate(self, n1, n2): """Euclidean heuristic""" return self.relaxation * np.linalg.norm(n1.state - n2.state) def distance_between(self, n1, n2): """minimize euclidean distance""" return np.linalg.norm(n1.state - n2.state) def is_goal_reached(self, current, goal): """ returns true when we can consider that 'current' is the goal""" return np.array_equal(current.state, goal.state) def neighbors(self, node): """ Sample next states from current state, and generate corresponding observations. Use discriminator to prune impossible observation transitions """ self.n_expanded += 1 # if self.n_expanded %1 ==0: # print("\tExpanded %d nodes" % self.n_expanded) state, observation = node.unpack() observations =
np.tile(observation, (self.mc_samples, 1))
numpy.tile
""" Beta python scripts for paper "Reaction-drift-diffusion models from master equations: application to material defects" (c) <NAME>, CNRS / CINaM, 2021 tomswinburne.github.io """ import numpy as np import scipy.linalg as spla import matplotlib.pyplot as plt import msmtools.analysis as mana def ordev(M,vec=False,pi=None): """ Wrapper to order and normalize scipy.linalg.eig results M : numpy matrix Square matrix to be diagonalized """ if pi is None: _nu,_w,_v = spla.eig(M,left=True) _nu = -_nu.real _w = _w[:,_nu.argsort()] _v = _v[:,_nu.argsort()] _nu = _nu[_nu.argsort()] _w = [email protected](1.0/np.diag(_w.T@_v)) * _v[:,0].sum() _v /= _v[:,0].sum() if not vec: return _nu else: return _nu,_w,_v else: assert pi.size==M.shape[0],"Dimension Mismatch!" rPi = np.diag(np.sqrt(pi)) riPi = np.diag(1.0/np.sqrt(pi)) nu,tw = np.linalg.eigh(-riPi@M@rPi) tw = tw[:,nu.argsort()] nu = nu[nu.argsort()] if not vec: return nu w = riPi@tw v = rPi@tw return nu,w,v def generate_random_blocks( N=10, mean_bar = [0.1,1.0], std_bar = 0.3, # std_min = 0.0, # gen = np.random.uniform, # seed = 123, # s connectivity=3, # average number of connections sub_basin=False, # sub-super-basins in cell? sub_basin_barrier = 4.0, # inter-sub-basin transitions sub_basin_migration = 0.0, # self migration barrier sub_basin_height = 0.0, # relative heights sub_basin_size=2, # size of "high" basin sub_basin_aniso=False # sub-basin-dependent migration ): """ Helper function to generate random periodic transition rate matricies N : int number of states mean_bar : list, size dim+1 mean barrier for Q(0), Q(x), Q(y)... std_bar : float std dev for barrier energies std_min : float std dev for minima energies gen : numpy.random distribution barrier distribution law seed : int random number seed sub_basin : bool If true, split cell into two sub-super-basins. To produce multiple coarse-grained states """ np.random.seed(seed) """ Detailed balance: C@Pi = (C@Pi).T L@Pi = (R@Pi).T """ dim = len(mean_bar)-1 pi = np.exp(-gen(size=N)*std_min) if sub_basin: pi[-sub_basin_size:] *= np.exp(-sub_basin_height) # scale is small pi /= pi.max() Pi = np.diag(pi) iPi = np.diag(1.0/pi) # intercell CPi = gen(size=(N,N))*std_bar CPi -= CPi.mean() CPi = np.exp(-CPi-mean_bar[0]) + np.exp(-CPi-mean_bar[0]).T if sub_basin: CPi[-sub_basin_size:,:][:,:sub_basin_size] *= np.exp(-sub_basin_barrier) CPi[:sub_basin_size,:][:,-sub_basin_size:] *= np.exp(-sub_basin_barrier) C = CPi@iPi kt = C.sum(axis=0) L,R = [],[] for _dim,mu in enumerate(mean_bar[1:]): _L = gen(size=(N,N))*std_bar _L -= _L.mean() if connectivity<N: _L = np.triu(np.exp(-_L-mu),max(0,N-connectivity)) else: _L = np.exp(-_L-mu) if sub_basin_aniso: if _dim==0: ll = _L[-sub_basin_size:,:][:,-sub_basin_size:].shape sub_basin_k = np.exp(-0.1*
np.random.uniform(size=ll)
numpy.random.uniform
""" Dveloper: vujadeyoon E-mail: <EMAIL> Github: https://github.com/vujadeyoon/vujade Title: vujade_videocv.py Description: A module for video processing with computer vision. """ import os import numpy as np import math import cv2 import ffmpeg import shlex import subprocess import json from vujade import vujade_utils as utils_ from vujade.utils.SceneChangeDetection.InteractiveProcessing import scd as scd_ip_ from vujade.utils.SceneChangeDetection.BatchProcessing import scd as scd_bp_ def encode_vid2vid(_path_video_src, _path_video_dst): os.system('ffmpeg -i {} {}'.format(_path_video_src, _path_video_dst)) class VideoReaderFFmpeg: def __init__(self, _path_video, _channel=3, _pix_fmt='bgr24'): self.path_video = _path_video video_info = self._get_info() self.height = video_info['height'] self.width = video_info['width'] self.channel = _channel self.fps = eval(video_info['avg_frame_rate']) self.time = eval(video_info['duration']) self.num_frames = math.ceil(self.fps * self.time) self.pix_fmt = _pix_fmt self.idx_frame_curr = -1 self.num_frames_remain = self.num_frames self.cap = ( ffmpeg .input(self.path_video) .output('pipe:', format='rawvideo', pix_fmt=self.pix_fmt) .run_async(pipe_stdout=True) ) def imread(self, _num_batch_frames=1, _trans=(0, 3, 1, 2)): if self.num_frames_remain < _num_batch_frames: _num_batch_frames = self.num_frames_remain # equivalent: %= in_bytes = self.cap.stdout.read((self.width * self.height * self.channel) * _num_batch_frames) if not in_bytes: return None frames = ( np .frombuffer(in_bytes, np.uint8) .reshape([-1, self.height, self.width, self.channel]) ) if _trans is not None: frames = frames.transpose(_trans) self.idx_frame_curr += _num_batch_frames self.num_frames_remain -= _num_batch_frames self._cal_eof() return frames def _cal_eof(self): self.is_eof = (self.num_frames_remain == 0) def _get_info(self): probe = ffmpeg.probe(self.path_video) return next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None) class VideoWriterFFmpeg: def __init__(self, _path_video, _resolution=(1080, 1920), _fps=30.0, _qp_val=0, _pix_fmt='bgr24', _codec='libx264'): if _path_video is None: raise ValueError('The parameter, _path_video, should be assigned.') self.path_video = _path_video self.height = int(_resolution[0]) self.width = int(_resolution[1]) self.fps = float(_fps) self.qp_val = _qp_val self.pix_fmt = _pix_fmt self.codec = _codec self.wri = ( ffmpeg .input('pipe:', format='rawvideo', pix_fmt=self.pix_fmt, s='{}x{}'.format(self.width, self.height)) .filter('fps', fps=self.fps, round='up') .output(self.path_video, pix_fmt='yuv420p', **{'c:v': self.codec}, **{'qscale:v': self.qp_val}) .overwrite_output() .run_async(pipe_stdin=True) ) def imwrite(self, _list_img): for idx, img in enumerate(_list_img): self.wri.stdin.write(img) def close(self): self.wri.stdin.close() self.wri.wait() class VideoReaderCV: def __init__(self, _path_video: str, _sec_start: int = None, _sec_end: int = None) -> None: if _path_video is None: raise ValueError('The parameter, _path_video, should be assigned.') if (_sec_start is not None) and (isinstance(_sec_start, int) is False): raise ValueError('The parameter, _sec_start, should be None or integer.') if (_sec_end is not None) and (isinstance(_sec_end, int) is False): raise ValueError('The parameter, _sec_end, should be None or integer.') if (isinstance(_sec_start, int) is True) and (isinstance(_sec_end, int) is True) and (_sec_start >= _sec_end): raise ValueError('The parameter _sec_start should be lower than the parameter _sec_end.') self.path_video = _path_video self._open() self.height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)) self.channel = 3 self.fps = float(self.cap.get(cv2.CAP_PROP_FPS)) self.num_frames_ori = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) self.length_ori = int(self.num_frames_ori / self.fps) self.orientation = self._get_orientation() if (_sec_end is not None) and (self.length_ori <= _sec_end): _sec_end = None if (_sec_start is None) or ((_sec_start is not None) and (_sec_start < 0)): self.frame_start = 0 self.sec_start = 0 else: self.sec_start = _sec_start self.frame_start = int(self.sec_start * self.fps) if (_sec_end is None) or ((_sec_end is not None) and (_sec_end < 0)): self.frame_end = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1 self.sec_end = int(self.frame_end / self.fps) else: self.sec_end = _sec_end self.frame_end = int(self.sec_end * self.fps) self.num_frames = self.frame_end - self.frame_start + 1 self.idx_frame_curr = (self.frame_start - 1) self.num_frames_remain = self.frame_end - self.frame_start + 1 self.frame_timestamps = [] self.is_eof = False self._set(_idx_frame=self.frame_start) def _is_open(self) -> bool: return self.cap.isOpened() def _open(self) -> None: self.cap = cv2.VideoCapture(self.path_video) if self._is_open() is False: raise ValueError('The video capture is not opened.') def _cal_eof(self) -> None: self.is_eof = (self.frame_end <= self.idx_frame_curr) def _set(self, _idx_frame: int) -> None: ''' :param _idx_frame: Interval: [0, self.frame_end-1] ''' if self.frame_end < _idx_frame: raise ValueError('The parameter, _idx_frame, should be lower than self.frame_end.') if self.idx_frame_curr <= _idx_frame: for idx in range((_idx_frame - self.idx_frame_curr) - 1): if self.is_eof is True: break self._read(_is_record_timestamp=False) else: self.cap.set(cv2.CAP_PROP_POS_FRAMES, _idx_frame) self.idx_frame_curr = (_idx_frame - 1) self.num_frames_remain = self._update_num_frames_reamin() self._cal_eof() def _read(self, _is_record_timestamp: bool = True) -> np.ndarray: ret, frame = self.cap.read() if _is_record_timestamp is True: self._timestamps() self.idx_frame_curr += 1 self.num_frames_remain = self._update_num_frames_reamin() self._cal_eof() return frame def _update_num_frames_reamin(self) -> int: return self.frame_end - self.idx_frame_curr def _timestamps(self) -> None: self.frame_timestamps.append(self.cap.get(cv2.CAP_PROP_POS_MSEC)) def _get_orientation(self) -> str: """ Function to get the rotation of the input video file. Adapted from gist.github.com/oldo/dc7ee7f28851922cca09/revisions using the ffprobe comamand by <NAME> from stackoverflow.com/questions/5287603/how-to-extract-orientation-information-from-videos?noredirect=1&lq=1 Returns a rotation None, 90, 180 or 270 """ cmd = "ffprobe -loglevel error -select_streams v:0 -show_entries stream_tags=rotate -of default=nw=1:nk=1" args = shlex.split(cmd) args.append(self.path_video) ffprobe_output = subprocess.check_output(args).decode('utf-8') if len(ffprobe_output) > 0: # Output of cmdis None if it should be 0 ffprobe_output = json.loads(ffprobe_output) rotation = ffprobe_output else: rotation = 0 if (rotation == 0) or (rotation == 180): orientation = 'horizontal' else: # (rotation == 90) or (rotation == 270): orientation = 'vertical' return orientation def imread(self, _num_batch_frames: int = 1, _trans: tuple = None, _set_idx_frame: int = None, _dsize: tuple = None, _color_code: int = None, _interpolation: int = cv2.INTER_LINEAR) -> np.ndarray: if (_dsize is None) or (_dsize == (self.width, self.height)): is_resize = False width = self.width height = self.height else: is_resize = True width = _dsize[0] height = _dsize[1] if _color_code is None: channel = self.channel elif _color_code == cv2.COLOR_BGR2GRAY: channel = 1 else: raise NotImplementedError if (_set_idx_frame is not None) and (0 <= _set_idx_frame): self._set(_set_idx_frame) if _num_batch_frames <= self.num_frames_remain: frames = np.zeros(shape=(_num_batch_frames, height, width, channel), dtype=np.uint8) num_batch_frames = _num_batch_frames else: frames = np.zeros(shape=(self.num_frames_remain, height, width, channel), dtype=np.uint8) num_batch_frames = self.num_frames_remain for idx in range(num_batch_frames): if self.is_eof is True: break if is_resize is False: temp = self._read(_is_record_timestamp=True) else: temp = cv2.resize(src=self._read(_is_record_timestamp=True), dsize=(width, height), interpolation=_interpolation) if _color_code is None: frames[idx, :, :, :] = temp elif channel == 1: frames[idx, :, :, 0] = cv2.cvtColor(temp, code=_color_code) else: raise NotImplementedError if _trans is not None: frames = frames.transpose(_trans) return frames def get_timestamp(self) -> list: while (self.is_eof is False): self.imread(_num_batch_frames=1, _trans=None) return self.frame_timestamps def close(self) -> None: self.cap.release() class VideoWriterCV: def __init__(self, _path_video, _resolution=(1920, 1080), _fps=30.0, _fourcc=cv2.VideoWriter_fourcc(*'MJPG')): if _path_video is None: raise ValueError('The variable, _path_video, should be assigned.') self.path_video = _path_video self.width = int(_resolution[0]) self.height = int(_resolution[1]) self.fps = float(_fps) self.fourcc = _fourcc self.wri = self._open() def imwrite(self, _list_img): for idx, img in enumerate(_list_img): self.wri.write(image=img) def _open(self): return cv2.VideoWriter(self.path_video, self.fourcc, self.fps, (self.width, self.height)) def close(self): self.wri.release() class SceneChangeDetectorFFmpeg: """This class is intended to detect scene change for the given video. The reference is as follows: https://rusty.today/posts/ffmpeg-scene-change-detector. The corresponding FFmpeg is as below. i) ffmpeg -i _path_video -filter:v "select='gt(scene, 0.4)', showinfo" -f null - 2> ffout.log ii) grep showinfo ffout.log | grep pts_time:[0-9.]* -o | grep [0-9.]* -o > ffout_scene_change_detection.log """ def __init__(self, _threshold: float = 0.4): self.threshold = _threshold self.cmd = None self.offset = 9 def get_frame_index(self, _path_video: str) -> list: vid_src = VideoReaderCV(_path_video=_path_video) vid_src_timestamp = self._convert(_list=vid_src.get_timestamp(), _unit=1000, _decimals=4) command = self._get_command(_path_video=_path_video) str_stdout, str_stderr = utils_.run_command_stdout(_command=command) idx_start = utils_.find_substr(_str_src=str_stderr, _str_sub='pts_time:') idx_end = utils_.find_substr(_str_src=str_stderr, _str_sub=' pos:') scd_timestamp = [] for idx, (_idx_start, _idx_end) in enumerate(zip(idx_start, idx_end)): scd_timestamp.append(float(str_stderr[_idx_start + self.offset:_idx_end])) res = utils_.list_matching_idx(_list_1=self._convert(_list=scd_timestamp, _unit=1.0, _decimals=4), _list_2=vid_src_timestamp) return res def _get_command(self, _path_video: str) -> list: return ["ffmpeg", "-i", _path_video, "-filter:v", "select='gt(scene, {})', showinfo".format(self.threshold), "-f", "null", "pipe:1"] def _convert(self, _list, _unit=1.0, _decimals=4): return list(np.round(np.array(_list) / _unit, _decimals)) class SceneChangeDetectorFFmpegInteractiveProcessing: """This class is intended to detect scene change for the given video. The reference is as follows: https://rusty.today/posts/ffmpeg-scene-change-detector. The corresponding FFmpeg is as below. i) ffmpeg -i _path_video -filter:v "select='gt(scene, 0.4)', showinfo" -f null - 2> ffout.log ii) grep showinfo ffout.log | grep pts_time:[0-9.]* -o | grep [0-9.]* -o > ffout_scene_change_detection.log """ def __init__(self, _dsize: tuple = None, _threshold: float = 0.4, _is_cython: bool = True): """ :param tuple _dsize: An image size for computation :param float _threshold: A thershold value to determine wheter the scene change occurs :param bool _is_cython: A boolean variable to decide whether to use cython """ if _dsize is None: raise ValueError('The argument should be tuple, not None.') self.dsize = _dsize self.threshold = _threshold self.is_cython = _is_cython self.width = _dsize[0] self.height = _dsize[1] self.nb_sad = 3 * self.height * self.width self.cnt_call = 0 self.mafd_prev = None self.mafd_curr = None self.diff_curr = None self.scence_change_val = None self.res = None self.ndarr_frame_curr = None self.ndarr_frame_ref = None def get_frame_index(self, _path_video: str) -> list: """ :param str _path_video: A path for the given video file :returns: A list containing the frame index information where the scene change occurs """ res = [] vid_src = VideoReaderCV(_path_video=_path_video) for idx in range(int(vid_src.num_frames)): ndarr_frame = np.squeeze(vid_src.imread(_num_batch_frames=1, _trans=None, _dsize=self.dsize)) is_scene_change = self.run(_ndarr_frame=ndarr_frame, _be_float32=True) if is_scene_change is True: res.append(idx) return res def run(self, _ndarr_frame: np.ndarray, _be_float32: bool = True) -> bool: if _ndarr_frame is None: raise ValueError('The given ndarr_frame should be assigned.') if _be_float32 is True: self.ndarr_frame_curr = _ndarr_frame.astype(np.float32) else: self.ndarr_frame_curr = _ndarr_frame self._get_scene_change_score() self._detect_scene_change() return self.res def _get_scene_change_score(self) -> None: if self.cnt_call == 0: pass elif self.cnt_call == 1: self._check_dimension() self._get_mafd() else: self._check_dimension() self._get_mafd() self._get_diff() self.scence_change_val = self._calculate_scene_change_value() self._update() def _detect_scene_change(self) -> None: if self.scence_change_val is None: self.res = None # Pending else: if self.threshold <= self.scence_change_val: self.res = True # Scene change else: self.res = False # No scene change def _check_dimension(self) -> None: if self.is_cython is True: scd_ip_.check_dimension(_ndarr_1=self.ndarr_frame_curr, _ndarr_2=self.ndarr_frame_ref) else: if self.ndarr_frame_curr.shape != self.ndarr_frame_ref.shape: raise ValueError('The given both frames should have equal shape.') def _get_mafd(self) -> None: if self.is_cython is True: self.mafd_curr = scd_ip_.mafd(_ndarr_1=self.ndarr_frame_curr, _ndarr_2=self.ndarr_frame_ref, _nb_sad=self.nb_sad) else: sad = self._get_sad() if self.nb_sad == 0: self.mafd_curr = 0.0 else: self.mafd_curr = sad / self.nb_sad def _get_diff(self) -> None: if self.is_cython is True: self.diff_curr = scd_ip_.diff(_val_1=self.mafd_curr, _val_2=self.mafd_prev) else: self.diff_curr = abs(self.mafd_curr - self.mafd_prev) def _calculate_scene_change_value(self) -> float: if self.is_cython is True: res = scd_ip_.calculate_scene_change_value(_mafd=self.mafd_curr, _diff=self.diff_curr, _min=0.0, _max=1.0) else: res = self._clip(_val=min(self.mafd_curr, self.diff_curr) / 100.0, _min=0.0, _max=1.0) return res def _get_sad(self) -> np.ndarray: return np.sum(np.fabs(self.ndarr_frame_curr - self.ndarr_frame_ref)) def _clip(self, _val, _min=0.0, _max=1.0) -> float: if _val <= _min: _val = _min if _max <= _val: _val = _max return _val def _update(self) -> None: self.ndarr_frame_ref = self.ndarr_frame_curr self.mafd_prev = self.mafd_curr self.cnt_call += 1 class SceneChangeDetectorFFmpegBatchProcessing: """This class is intended to detect scene change for the given video. The reference is as follows: https://rusty.today/posts/ffmpeg-scene-change-detector. The corresponding FFmpeg is as below. i) ffmpeg -i _path_video -filter:v "select='gt(scene, 0.4)', showinfo" -f null - 2> ffout.log ii) grep showinfo ffout.log | grep pts_time:[0-9.]* -o | grep [0-9.]* -o > ffout_scene_change_detection.log """ def __init__(self, _dsize: tuple = None, _threshold: float = 0.4, _is_gray: bool = True, _unit_computation: int = 1800, _is_cython: bool = True): """ :param tuple _dsize: An image size for computation :param float _threshold: A thershold value to determine wheter the scene change occurs :param bool _is_gray: A boolean variable to decide whether to be applied on grayscale :param bool _unit_computation: A computation unit :param bool _is_cython: A boolean variable to decide whether to use cython """ if _dsize is None: raise ValueError('The argument should be tuple, not None.') self.dsize = _dsize self.threshold = _threshold self.is_gray = _is_gray self.unit_computation = _unit_computation self.is_cython = _is_cython self.width = _dsize[0] self.height = _dsize[1] if self.is_gray is True: self.channel = 1 self.color_code = cv2.COLOR_BGR2GRAY else: self.channel = 3 self.color_code = None self.nb_sad = self.channel * self.height * self.width if self.nb_sad == 0: raise ValueError('The self.nb_sad should be positive.') def get_frame_index(self, _path_video: str) -> list: """ :param str _path_video: A path for the given video file :returns: A list containing the frame index information where the scene change occurs """ res = [] vid_src = VideoReaderCV(_path_video=_path_video) while (vid_src.is_eof is False): offset = (vid_src.idx_frame_curr - 1) if offset < 0: offset = 0 ndarr_frames = vid_src.imread(_num_batch_frames=self.unit_computation, _trans=(0, 3, 1, 2), _set_idx_frame=(vid_src.idx_frame_curr - 1), _dsize=(self.width, self.height), _color_code=self.color_code) mafd = self._get_mafd(_ndarr_frames=ndarr_frames) diff = self._get_diff(_mafd=mafd) scene_change_val = self._calculate_scene_change_value(_mafd=mafd, _diff=diff) idx_sc = self._get_idx_sc(_scene_change_val=scene_change_val, _threshold=self.threshold, _offset=offset) res.extend(list(idx_sc)) return res def _get_mafd(self, _ndarr_frames) -> np.ndarray: if self.is_cython is True: res = scd_bp_.mafd(_ndarr_1=_ndarr_frames[1:, :, :, :].astype(np.int16), _ndarr_2=_ndarr_frames[:-1, :, :, :].astype(np.int16), _nb_sad=self.nb_sad) else: res = (np.sum(np.abs(_ndarr_frames[1:, :, :, :].astype(np.int16) - _ndarr_frames[:-1, :, :, :].astype(np.int16)), axis=(1, 2, 3))) / self.nb_sad return res def _get_diff(self, _mafd) -> np.ndarray: if self.is_cython is True: res = scd_bp_.diff(_mafd_1=_mafd[1:], _mafd_2=_mafd[:-1]) else: res = np.abs(_mafd[1:] - _mafd[:-1]) return res def _calculate_scene_change_value(self, _mafd, _diff) -> np.ndarray: if self.is_cython is True: res = scd_bp_.calculate_scene_change_value(_mafd=_mafd[1:], _diff=_diff, _min=0.0, _max=1.0) else: res = np.clip(
np.minimum(_mafd[1:], _diff)
numpy.minimum
# Copyright 2021 Population Health Sciences and Image Analysis, German Center for Neurodegenerative Diseases(DZNE) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('../') sys.path.append('/../../') sys.path.append('../../../') import numpy as np import os #os.environ['MPLCONFIGDIR'] = "./tmp" #nilearn-0.7.1 def get_cmap(): import matplotlib.colors colors=[[0,0,1],[1,0,0]] cmap = matplotlib.colors.ListedColormap(colors) return cmap def plot_coronal_predictions(images_batch=None,pred_batch=None,img_per_row=4): from skimage import color import matplotlib.pyplot as plt import torch from torchvision import utils plt.ioff() DEFAULT_COLORS= [(0,0,255),(255,0,0)] # 1: blue 2 : red FIGSIZE = 2 FIGDPI = 100 ncols=2 nrows=1 fig, ax = plt.subplots(nrows,ncols) grid_size=(images_batch.shape[0]/img_per_row,img_per_row) # adjust layout fig.set_size_inches([FIGSIZE * ncols * grid_size[1] , FIGSIZE * nrows * grid_size[0]]) fig.set_dpi(FIGDPI) fig.set_facecolor('black') fig.set_tight_layout({'pad': 0}) fig.subplots_adjust(wspace=0,hspace=0) pos=0 images = torch.from_numpy(images_batch.copy()) images = torch.unsqueeze(images,1) grid = utils.make_grid(images.cpu(), nrow=img_per_row,normalize=True) #ax[pos].imshow(grid.numpy().transpose(1, 2, 0), cmap='gray',origin='lower') ax[pos].imshow(np.fliplr(grid.numpy().transpose(1, 2, 0)), cmap='gray', origin='lower') ax[pos].set_axis_off() ax[pos].set_aspect('equal') ax[pos].margins(0, 0) ax[pos].set_title('T2 input image (1 to N)',color='white') pos += 1 pred=torch.from_numpy(pred_batch.copy()) pred = torch.unsqueeze(pred, 1) pred_grid = utils.make_grid(pred.cpu(), nrow=img_per_row)[0] #dont take the channels axis from grid #pred_grid=color.label2rgb(pred_grid.numpy(),grid.numpy().transpose(1, 2, 0),alpha=0.6,bg_label=0,colors=DEFAULT_COLORS) pred_grid = color.label2rgb(pred_grid.numpy(), grid.numpy().transpose(1, 2, 0), alpha=0.6, bg_label=0,bg_color=None, colors=DEFAULT_COLORS) #ax[pos].imshow(pred_grid,origin='lower') ax[pos].imshow(np.fliplr(pred_grid), origin='lower') ax[pos].set_axis_off() ax[pos].set_aspect('equal') ax[pos].margins(0, 0) ax[pos].set_title('Predictions (1 to N). Left OB (blue); Right OB (Red)',color='white') ax[pos].margins(0, 0) return fig def plot_qc_images(save_dir,image,prediction,padd=30): from scipy import ndimage from nilearn import plotting from utils import image_utils qc_dir=os.path.join(save_dir,'QC') plotting.plot_roi(bg_img=image, roi_img=prediction, display_mode='ortho', output_file=os.path.join(qc_dir,'overall_screenshot.png'), draw_cross=False, cmap=get_cmap()) plane = 'coronal' mod_image = image_utils.plane_swap(image.get_fdata(), plane) mod_pred = image_utils.plane_swap(prediction.get_fdata(), plane) idx = np.where(mod_pred > 0) idx =
np.unique(idx[0])
numpy.unique
# # BSD 3-Clause License # # Copyright (c) 2020, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import numpy as np import pandas as pd from sklearn.utils.validation import check_random_state from scipy.special import gammainc def hyperBall(n, d, radius=1.0, center=[], random_state=None): """ Generates a sample from a uniform distribution on the hyperball Parameters ---------- n: int Number of data points. d: int Dimension of the hyperball radius: float Radius of the hyperball center: list, tuple, np.array Center of the hyperball random_state: int, np.random.RandomState instance Random number generator Returns ------- data: np.array, (npoints x ndim) Generated data """ random_state_ = check_random_state(random_state) if center == []: center = np.array([0] * d) r = radius x = random_state_.normal(size=(n, d)) ssq = np.sum(x ** 2, axis=1) fr = r * gammainc(d / 2, ssq / 2) ** (1 / d) / np.sqrt(ssq) frtiled = np.tile(fr.reshape(n, 1), (1, d)) p = center + np.multiply(x, frtiled) return p def hyperSphere(n, d, random_state=None): """ Generates a sample from a uniform distribution on the hypersphere Parameters ---------- n: int Number of data points. d: int Dimension of the hypersphere center: list, tuple, np.array Center of the hypersphere random_state: int, np.random.RandomState instance Random number generator Returns ------- data: np.array, (npoints x ndim) Generated data """ random_state = check_random_state(random_state) vec = random_state.randn(n, d) vec /= np.linalg.norm(vec, axis=1)[:, None] return vec def hyperTwinPeaks(n, d=2, height=1.0, random_state=None): """ Generates a sample from a plane with protruding peaks. Translated from <NAME>'s R package intrinsicDimension Parameters ---------- n: int Number of data points. d: int Dimension of the dataset height: float Height of the peaks random_state: int, np.random.RandomState instance Random number generator Returns ------- data: np.array, (npoints x ndim) Generated data """ random_state = check_random_state(random_state) base_coord = random_state.uniform(size=(n, d)) _height = height * np.prod(np.sin(2 * np.pi * base_coord), axis=1, keepdims=1) return np.hstack((base_coord, _height)) def lineDiskBall(n, random_state=None): """ Generates a sample from a uniform distribution on a line, an oblong disk and an oblong ball Translated from ldbl function in Hideitsu Hino's package Parameters ---------- n: int Number of data points. random_state: int, np.random.RandomState instance Random number generator Returns ------- data: np.array, (npoints x ndim) Generated data """ random_state = check_random_state(random_state) line = np.hstack( ( np.repeat(0, 5 * n)[:, None], np.repeat(0, 5 * n)[:, None], random_state.uniform(-0.5, 0, size=5 * n)[:, None], ) ) disc = np.hstack( (random_state.uniform(-1, 1, (13 * n, 2)), np.zeros(13 * n)[:, None],) ) disc = disc[~(np.sqrt(np.sum(disc ** 2, axis=1)) > 1), :] disc = disc[:, [0, 2, 1]] disc[:, 2] = disc[:, 2] - min(disc[:, 2]) + max(line[:, 2]) fb = random_state.uniform(-0.5, 0.5, size=(n * 100, 3)) rmID = np.where(np.sqrt(np.sum(fb ** 2, axis=1)) > 0.5)[0] if len(rmID) > 0: fb = fb[~(np.sqrt(np.sum(fb ** 2, axis=1)) > 0.5), :] fb = np.hstack((fb[:, :2], fb[:, [2]] + 0.5)) fb[:, 2] = fb[:, 2] - min(fb[:, 2]) + max(disc[:, 2]) # if _sorted: # fb = fb[order(fb[:, 2]),:] line2 = np.hstack( ( np.repeat(0, 5 * n)[:, None], np.repeat(0, 5 * n)[:, None], random_state.uniform(-0.5, 0, size=5 * n)[:, None], ) ) line2[:, 2] = line2[:, 2] - min(line2[:, 2]) + max(fb[:, 2]) lineID = np.repeat(1, len(line)) discID = np.repeat(2, len(disc)) fbID = np.repeat(3, len(fb)) line2ID = np.repeat(1, len(line2)) x = np.vstack((line, disc, fb, line2)) useID = np.sort(random_state.choice(len(x), n, replace=False)) x = x[useID, :] return x, np.concatenate((lineID, discID, fbID, line2ID), axis=0)[useID] def swissRoll3Sph(n_swiss, n_sphere, a=1, b=2, nturn=1.5, h=4, random_state=None): """ Generates a sample from a uniform distribution on a Swiss roll-surface, possibly together with a sample from a uniform distribution on a 3-sphere inside the Swiss roll. Translated from <NAME>'s R package intrinsicDimension Parameters ---------- n_swiss: int Number of data points on the Swiss roll. n_sphere: int Number of data points on the 3-sphere. a: int or float, default=1 Minimal radius of Swiss roll and radius of 3-sphere. b: int or float, default=2 Maximal radius of Swiss roll. nturn: int or float, default=1.5 Number of turns of the surface. h: int or float, default=4 Height of Swiss roll. Returns ------- data: np.array, (npoints x ndim) Generated data """ random_state = check_random_state(random_state) if n_swiss > 0: omega = 2 * np.pi * nturn def dl(r): return np.sqrt(b ** 2 + omega ** 2 * (a + b * r) ** 2) ok = np.zeros(1) while sum(ok) < n_swiss: r_samp = random_state.uniform(size=3 * n_swiss) ok = random_state.uniform(size=3 * n_swiss) < dl(r_samp) / dl(1) r_samp = r_samp[ok][:n_swiss] x = (a + b * r_samp) * np.cos(omega * r_samp) y = (a + b * r_samp) * np.sin(omega * r_samp) z = random_state.uniform(-h, h, size=n_swiss) w = np.zeros(n_swiss) else: x = y = z = w = np.array([]) if n_sphere > 0: sph = hyperSphere(n_sphere, 4, random_state=random_state) * a x = np.concatenate((x, sph[:, 0])) y = np.concatenate((y, sph[:, 1])) z = np.concatenate((z, sph[:, 2])) w = np.concatenate((w, sph[:, 3])) return np.hstack((x[:, None], y[:, None], z[:, None], w[:, None])) class BenchmarkManifolds: """ Generates a commonly used benchmark set of synthetic manifolds with known intrinsic dimension described by Hein et al. and Campadelli et al. [Campadelli2015]_ Parameters ---------- noise_type : str, 'uniform' or 'gaussian' Type of noise to generate """ # class modified and adapted from https://github.com/stat-ml/GeoMLE # Original licence citation: # MIT License # # Copyright (c) 2019 <NAME>, <NAME>, <NAME> and <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. def __init__(self, random_state: int = None, noise_type: str = "uniform"): self.random_state = check_random_state(random_state) self.noise_type = noise_type self._dict_truth = { "M1_Sphere": (10, 11, "10D sphere linearly embedded"), "M2_Affine_3to5": (3, 5, "Affine space"), "M3_Nonlinear_4to6": ( 4, 6, "Concentrated figure, mistakable with a 3D one", ), "M4_Nonlinear": (4, 8, "Nonlinear manifold"), "M5a_Helix1d": (1, 3, "1D helix"), "M5b_Helix2d": (2, 3, "2D helix"), "M6_Nonlinear": (6, 36, "Nonlinear manifold"), "M7_Roll": (2, 3, "Swiss Roll"), "M8_Nonlinear": (12, 72, "Nonlinear (highly curved) manifold"), "M9_Affine": (20, 20, "Affine space"), "M10a_Cubic": (10, 11, "10D hypercube"), "M10b_Cubic": (17, 18, "17D hypercube"), "M10c_Cubic": (24, 25, "24D hypercube"), "M10d_Cubic": (70, 71, "70D hypercube"), "M11_Moebius": (2, 3, "Möebius band 10-times twisted"), "M12_Norm": (20, 20, "Isotropic multivariate Gaussian"), "M13a_Scurve": (2, 3, "2D S-curve"), "M13b_Spiral": (1, 13, "1D helix curve"), "Mbeta": ( 10, 40, "Manifold generated with a smooth nonuniform pdf (see paper for description)", ), "Mn1_Nonlinear": ( 18, 72, "Nonlinearly embedded manifold of high ID (see paper for description)", ), "Mn2_Nonlinear": ( 24, 96, "Nonlinearly embedded manifold of high ID (see paper for description)", ), "Mp1_Paraboloid": ( 3, 12, "3D paraboloid, nonlinearly embedded in (3(3+1))D space, according to a multivariate Burr distribution (alpha=1)", ), "Mp2_Paraboloid": ( 6, 21, "6D paraboloid, nonlinearly embedded in (3*(6+1))D space, according to a multivariate Burr distribution (alpha=1)", ), "Mp3_Paraboloid": ( 9, 30, "9D paraboloid, nonlinearly embedded in (3*(9+1))D space, according to a multivariate Burr distribution (alpha=1)", ), } self.truth = pd.DataFrame( self._dict_truth, index=["Intrinsic Dimension", "Number of variables", "Description"], ).T self.dict_gen = { # synthetic data "M1_Sphere": self._gen_sphere_data, "M2_Affine_3to5": self._gen_affine3_5_data, "M3_Nonlinear_4to6": self._gen_nonlinear4_6_data, "M4_Nonlinear": self._gen_nonlinear_data, "M5a_Helix1d": self._gen_helix1_data, "M5b_Helix2d": self._gen_helix2_data, "M6_Nonlinear": self._gen_nonlinear_data, "M7_Roll": self._gen_roll_data, "M8_Nonlinear": self._gen_nonlinear_data, "M9_Affine": self._gen_affine_data, "M10a_Cubic": self._gen_cubic_data, "M10b_Cubic": self._gen_cubic_data, "M10c_Cubic": self._gen_cubic_data, "M10d_Cubic": self._gen_cubic_data, "M11_Moebius": self._gen_moebius_data, "M12_Norm": self._gen_norm_data, "M13a_Scurve": self._gen_scurve_data, "M13b_Spiral": self._gen_spiral_data, "Mbeta": self._gen_campadelli_beta_data, "Mn1_Nonlinear": self._gen_campadelli_n_data, "Mn2_Nonlinear": self._gen_campadelli_n_data, "Mp1_Paraboloid": self._gen_paraboloid_data, "Mp2_Paraboloid": self._gen_paraboloid_data, "Mp3_Paraboloid": self._gen_paraboloid_data, } def generate( self, name: str = "all", n: int = 2500, dim: int = None, d: int = None, noise: float = 0.0, ): """ Generates all datasets. A ground truth dict of intrinsic dimension and embedding dimension is in BenchmarkManifolds.dict_truth.keys() Parameters ---------- n: int The number of sample points dim: int If generating a single dataset, choose the embedding dimension. Note that some datasets have restrictions on the chosen embedding dimension d: int If generating a single dataset, choose the intrinsic dimension. Note that some datasets have restrictions on the chosen intrinsic dimension noise: float, optional(default=0.0) The value of noise in data Returns ------- data: a dict of np.arrays or a single np.array with shape (n, dim) Generated data """ if self.noise_type == "normal": self.gen_noise = ( lambda n, dim, noise: (self.random_state.randn(n, dim)) * noise ) if self.noise_type == "uniform": self.gen_noise = ( lambda n, dim, noise: (self.random_state.rand(n, dim) - 0.5) * noise ) dict_data = {} if name == "all": for k, (d, dim, _) in self._dict_truth.items(): data = self.dict_gen[k](n=n, dim=dim, d=d) dict_data[k] = data + self.gen_noise(n, dim, noise) return dict_data elif name in self._dict_truth.keys(): if dim is None and d is None: data = self.dict_gen[name](n=n) elif dim is None: data = self.dict_gen[name](n=n, d=d) elif d is None: data = self.dict_gen[name](n=n, dim=dim) data = self.dict_gen[name](n=n, dim=dim, d=d) return data + self.gen_noise(n, dim, noise) def _gen_spiral_data(self, n, dim=3, d=1): assert d < dim assert d == 1 assert dim >= 3 t = 10 * np.pi * self.random_state.rand(n) data = np.vstack( [100 * np.cos(t), 100 * np.sin(t), t, np.zeros((dim - 3, n))] ).T assert data.shape == (n, dim) return data def _gen_helix1_data(self, n, dim=3, d=1): assert d < dim assert d == 1 assert dim >= 3 t = 2 * np.pi / n + self.random_state.rand(n) * 2 * np.pi data = np.vstack( [ (2 + np.cos(8 * t)) * np.cos(t), (2 + np.cos(8 * t)) * np.sin(t), np.sin(8 * t), np.zeros((dim - 3, n)), ] ).T assert data.shape == (n, dim) return data def _gen_helix2_data(self, n, dim=3, d=2): assert d < dim assert d == 2 assert dim >= 3 r = 10 * np.pi * self.random_state.rand(n) p = 10 * np.pi * self.random_state.rand(n) data = np.vstack( [r * np.cos(p), r * np.sin(p), 0.5 * p, np.zeros((dim - 3, n))] ).T assert data.shape == (n, dim) return data def _gen_helicoid_data(self, n, dim=3, d=2): assert d <= dim assert d == 2 assert dim >= 3 u = 2 * np.pi / n + self.random_state.rand(n) * 2 * np.pi v = 5 * np.pi * self.random_state.rand(n) data = np.vstack( [np.cos(v), np.sin(v) * np.cos(v), u, np.zeros((dim - 3, n))] ).T assert data.shape == (n, dim) return data def _gen_roll_data(self, n, dim=3, d=2): assert d < dim assert dim >= 3 assert d == 2 t = 1.5 * np.pi * (1 + 2 * self.random_state.rand(n)) p = 21 * self.random_state.rand(n) data = np.vstack( [t * np.cos(t), p, t * np.sin(t), np.zeros((dim - d - 1, n))] ).T assert data.shape == (n, dim) return data def _gen_scurve_data(self, n, dim=3, d=2): assert d < dim assert dim >= 3 assert d == 2 t = 3 * np.pi * (self.random_state.rand(n) - 0.5) p = 2.0 * self.random_state.rand(n) data = np.vstack( [np.sin(t), p, np.sign(t) * (np.cos(t) - 1), np.zeros((dim - d - 1, n)),] ).T assert data.shape == (n, dim) return data def _gen_sphere_data(self, n, dim, d): assert d < dim V = self.random_state.randn(n, d + 1) data = np.hstack( [V / np.sqrt((V ** 2).sum(axis=1))[:, None], np.zeros((n, dim - d - 1)),] ) assert data.shape == (n, dim) return data def _gen_norm_data(self, n, dim, d): assert d <= dim norm_xyz = self.random_state.multivariate_normal(np.zeros(d), np.identity(d), n) data = np.hstack([norm_xyz, np.zeros((n, dim - d))]) assert data.shape == (n, dim) return data def _gen_uniform_data(self, n, dim, d): assert d <= dim uniform_xyz = self.random_state.uniform(size=(n, d)) data = np.hstack([uniform_xyz, np.zeros((n, dim - d))]) assert data.shape == (n, dim) return data def _gen_cubic_data(self, n, dim, d): assert d < dim cubic_data = np.array([[]] * (d + 1)) for i in range(d + 1): n_once = int(n / (2 * (d + 1)) + 1) # 1st side data_once = self.random_state.rand(d + 1, n_once) data_once[i] = 0 cubic_data = np.hstack([cubic_data, data_once]) # 2nd side data_once = self.random_state.rand(d + 1, n_once) data_once[i] = 1 cubic_data = np.hstack([cubic_data, data_once]) cubic_data = cubic_data.T[:n] data = np.hstack([cubic_data, np.zeros((n, dim - d - 1))]) assert data.shape == (n, dim) return data def _gen_moebius_data(self, n, dim=3, d=2): assert dim == 3 assert d == 2 phi = self.random_state.rand(n) * 2 * np.pi rad = self.random_state.rand(n) * 2 - 1 data = np.vstack( [ (1 + 0.5 * rad * np.cos(5.0 * phi)) * np.cos(phi), (1 + 0.5 * rad * np.cos(5.0 * phi)) * np.sin(phi), 0.5 * rad * np.sin(5.0 * phi), ] ).T assert data.shape == (n, dim) return data def _gen_affine_data(self, n, dim, d): assert dim >= d p = self.random_state.rand(d, n) * 5 - 2.5 v = np.eye(dim, d) # v = np.random.randint(0, 10, (dim, d)) data = v.dot(p).T assert data.shape == (n, dim) return data def _gen_affine3_5_data(self, n, dim=5, d=3): assert dim == 5 assert d == 3 p = 4 * self.random_state.rand(d, n) A = np.array( [ [1.2, -0.5, 0], [0.5, 0.9, 0], [-0.5, -0.2, 1], [0.4, -0.9, -0.1], [1.1, -0.3, 0], ] ) b = np.array([[3, -1, 0, 0, 8]]).T data = A.dot(p) + b data = data.T assert data.shape == (n, dim) return data def _gen_nonlinear4_6_data(self, n, dim=6, d=4): assert dim == 6 assert d == 4 p0, p1, p2, p3 = self.random_state.rand(d, n) data = np.vstack( [ p1 ** 2 * np.cos(2 * np.pi * p0), p2 ** 2 * np.sin(2 * np.pi * p0), p1 + p2 + (p1 - p3) ** 2, p1 - 2 * p2 + (p0 - p3) ** 2, -p1 - 2 * p2 + (p2 - p3) ** 2, p0 ** 2 - p1 ** 2 + p2 ** 2 - p3 ** 2, ] ).T assert data.shape == (n, dim) return data def _gen_nonlinear_data(self, n, dim, d): assert dim >= d m = int(dim / (2 * d)) assert dim == 2 * m * d p = self.random_state.rand(d, n) F = np.zeros((2 * d, n)) F[0::2, :] = np.cos(2 * np.pi * p) F[1::2, :] = np.sin(2 * np.pi * p) R = np.zeros((2 * d, n)) R[0::2, :] = np.vstack([p[1:], p[0]]) R[1::2, :] = np.vstack([p[1:], p[0]]) D = (R * F).T data =
np.hstack([D] * m)
numpy.hstack
# Lint as: python3 # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for `policy_gradients.py`.""" from absl.testing import absltest from absl.testing import parameterized import jax import jax.numpy as jnp from jax.tree_util import tree_map import numpy as np from rlax._src import policy_gradients class DpgLossTest(parameterized.TestCase): def setUp(self): super(DpgLossTest, self).setUp() self.s_t = np.array([[0, 1, 0], [1, 1, 2]], dtype=np.float32) # [B, T] self.w_s = np.ones([3, 2], dtype=np.float32) self.b_s = np.zeros([2], dtype=np.float32) self.w = np.ones([2, 1], dtype=np.float32) self.b = np.zeros([1], dtype=np.float32) self.expected = np.array([0.5, 0.5], dtype=np.float32) @parameterized.named_parameters( ('JitOnp', jax.jit, lambda t: t), ('NoJitOnp', lambda fn: fn, lambda t: t), ('JitJnp', jax.jit, jax.device_put), ('NoJitJnp', lambda fn: fn, jax.device_put)) def test_dpg_loss(self, compile_fn, place_fn): """Tests for a single element.""" # Optionally compile. dpg = compile_fn(policy_gradients.dpg_loss) # Actor and critic function approximators. actor = lambda s_t: jnp.matmul(s_t, self.w_s) + self.b_s critic = lambda a_t: jnp.squeeze(jnp.matmul(a_t, self.w) + self.b) # For each element in the batch. for s_t, expected in zip(self.s_t, self.expected): # Compute loss. a_t = actor(s_t) dqda = jax.grad(critic)(a_t) # Optionally convert to device array. a_t, dqda = tree_map(place_fn, (a_t, dqda)) # Test outputs. actual = np.sum(dpg(a_t, dqda, dqda_clipping=1.)) np.testing.assert_allclose(actual, expected, atol=1e-4) @parameterized.named_parameters( ('JitOnp', jax.jit, lambda t: t), ('NoJitOnp', lambda fn: fn, lambda t: t), ('JitJnp', jax.jit, jax.device_put), ('NoJitJnp', lambda fn: fn, jax.device_put)) def test_dpg_loss_batch(self, compile_fn, place_fn): """Tests for a full batch.""" # Vmap and optionally compile. dpg = compile_fn(jax.vmap(policy_gradients.dpg_loss, in_axes=(0, 0, None))) # Actor and critic function approximators. actor = lambda s_t: jnp.matmul(s_t, self.w_s) + self.b_s critic = lambda a_t: jnp.squeeze(jnp.matmul(a_t, self.w) + self.b) # Compute loss. a_t = actor(self.s_t) dqda = jax.vmap(jax.grad(critic))(a_t) # Optionally convert to device array. a_t, dqda = tree_map(place_fn, (a_t, dqda)) # Test outputs. actual = np.sum(dpg(a_t, dqda, 1.), axis=1)
np.testing.assert_allclose(actual, self.expected, atol=1e-4)
numpy.testing.assert_allclose
# -*- coding: utf-8 -*- __author__ = "<NAME>", "<NAME>" __date__ = "08 Mar 2016" import os, sys; sys.path.append(os.path.join('..', '..', '..')) # analysis:ignore import numpy as np import xrt.backends.raycing as raycing import xrt.backends.raycing.sources as rs #import xrt.backends.raycing.apertures as ra import xrt.backends.raycing.oes as roe import xrt.backends.raycing.run as rr import xrt.backends.raycing.materials as rm import xrt.plotter as xrtp import xrt.runner as xrtr import xrt.backends.raycing.screens as rsc showIn3D = False mGold = rm.Material('Au', rho=19.3) E0 = 9000. L = 1200. W = 10. gap = 0.2 pitchVFM = 4e-3 pVFM = 20000. qVFM = 400000000. pitchHFM = 4e-3 pHFM = 20000. qHFM = 400000000. p = pVFM q = 2000 #Select a case: #case = 'parabolic' case = 'elliptical' def build_beamline(nrays=raycing.nrays): beamLine = raycing.BeamLine(height=0) rs.GeometricSource( beamLine, 'GeometricSource', (0, 0, 0), nrays=nrays, dx=0., dz=0., dxprime=2e-4, dzprime=1e-4, distE='lines', energies=(E0,), polarization='horizontal') if case == 'parabolic': mirrorVFM = roe.BentFlatMirror mirrorHFM = roe.BentFlatMirror RVFM = 2 * p /
np.sin(pitchVFM)
numpy.sin
#coverage:ignore """ Determine costs for sparse decomposition in QC Note this is WIP """ from typing import Tuple import numpy as np from numpy.lib.scimath import arccos, arcsin # has analytc continuation to cplx from openfermion.resource_estimates.utils import QI, power_two def cost_sparse(n: int, lam: float, d: int, dE: float, chi: int, stps: int) -> Tuple[int, int, int]: """ Determine fault-tolerant costs using sparse decomposition in quantum chemistry Args: n (int) - the number of spin-orbitals lam (float) - the lambda-value for the Hamiltonian dE (float) - allowable error in phase estimation L (int) - the rank of the first decomposition Lxi (int) - the total number of eigenvectors chi (int) - equivalent to aleph_1 and aleph_2 in the document, the number of bits for the representation of the coefficients beta (int) - equivalent to beth in the document, the number of bits for the rotations stps (int) - an approximate number of steps to choose the precision of single qubit rotations in preparation of the equal superposition state Returns: step_cost (int) - Toffolis per step total_cost (int) - Total number of Toffolis ancilla_cost (int) - Total ancilla cost """ # I think there is a bug in the mathematica notebook. It does not check if # 2 is a factor first, which it should, cf. the similar function in # costingdf.nb Below is correct using the power_two() function, to give # power of 2 that is a factor of d. eta = power_two(d) nN = np.ceil(np.log2(n // 2)) m = chi + 8 * nN + 4 # Eq (A13) oh = [0] * 20 nM = (np.ceil(np.log2(d)) - eta) / 2 for p in range(2, 22): # JJG note: arccos arg may be > 1 v = np.round(np.power(2,p+1) / (2 * np.pi) * arccos(
np.power(2,nM)
numpy.power
# # Copyright (c) 2019 Nordic Semiconductor ASA # # SPDX-License-Identifier: LicenseRef-BSD-5-Clause-Nordic import time import pyaudio import numpy as np import colorsys import wave import threading import queue from modules.led_stream import MS_PER_SEC from modules.led_stream import Step from modules.led_stream import validate_params from modules.led_stream import fetch_free_steps_buffer_info, led_send_single_step class MusicLedStream(): def __init__(self, dev, DEVICE_CONFIG, led_id, freq, filename): if not validate_params(DEVICE_CONFIG, freq, led_id): raise ValueError("Invalid music LED stream parameters") success, (ready, free) = fetch_free_steps_buffer_info(dev, led_id, DEVICE_CONFIG['stream_led_cnt']) if not success: raise Exception("Device communication problem occurred") if not ready: raise Exception("LEDs are not ready") try: self.file = wave.open(filename, 'rb') except (wave.Error, FileNotFoundError) as e: raise e self.dev_params = { 'max_free' : free, 'dev' : dev, 'stream_led_cnt' : DEVICE_CONFIG['stream_led_cnt'], 'led_id' : led_id, } self.send_error_event = threading.Event() self.queue = queue.Queue() self.p = pyaudio.PyAudio() self.stream = self.p.open(format=self.p.get_format_from_width(self.file.getsampwidth()), channels=self.file.getnchannels(), rate=self.file.getframerate(), output=True, input=False, stream_callback=self.music_callback, frames_per_buffer=self.file.getframerate() // freq, start = False) self.led_effects = { 'BASE_DURATION' : 1 / freq, 'SUBSTEP_CNT' : 10, 'sent_cnt' : 0, 'reminder' : 0, 'duration_increment' : 0, 'start_time' : None, 'out_latency' : self.stream.get_output_latency(), } @staticmethod def peak_to_hue(peak): assert peak >= 0 assert peak <= 1 G = 120 B = 240 HUE_MAX = 360 hue = (B - peak * (B - G)) hue /= HUE_MAX return hue @staticmethod def gen_led_color(data): # Cast to prevent overflow peak = min(1, np.abs(np.int32(np.max(data)) - np.min(data)) /
np.iinfo(np.int16)
numpy.iinfo
""" .. _Segments-api: **Segments** --- Manages groups of line segments. ------------------------------------------------- This module defines the Segments class. """ # system imports import numpy as np import copy # ADMIT imports from admit.util.AdmitLogging import AdmitLogging as logging class Segments(object): """ Class to hold segments and convert them between different types. Segments are defined by a beginning and ending channel (both inclusive). ADMIT gives special meaning to a segment, for example a line can be found within that segment, or a continuum has to be fitted in that segment (or group of segments). Parameters ---------- st : array like Array like object containing either the full segment list (array of two element arrays containing the start and end channel numbers for each segment), or an array of starting channel numbers. Default: None. en : array like An array of the ending channel number corresponding to the starting channel numbers given in st. Leave as None if st contains the full listing. Default: None. nchan : int The number of channels in the spectrum that the segments refer to. This is used to construct the bit mask for tracking all segments. If left as None, no bitmask will be made. Default: None. startchan : int The starting channel number of the spectrum that the segments refer to. Must be >= 0. Default: 0. """ def __init__(self, st=None, en=None, nchan=None, startchan=0): # initialize everything self._segments = [] self._nchan = nchan # error chack the starting channel number self._startchan = int(startchan) if self._startchan < 0: raise Exception("Start channel must be 0 or greater.") # if nchan was specified create the bitmask if nchan: self._chans = np.array([0] * nchan) # determine the maxchan self._maxchan = nchan - 1 + self._startchan else: self._chans = None self._maxchan = 0 if st is None: return if type(st) != type(en) and en is not None: raise Exception("Channel start and end points must be the same type.") # build the list of segments # if en is not given peak = 0 if en is None: # st must be array like if not hasattr(st, '__iter__'): raise Exception("A list must be given for parameter st.") for seg in st: # each one must have length of 2 if len(seg) != 2: raise Exception("Each segment must have a size of 2.") # make sure they are in the right order tempseg = [int(seg[0]), int(seg[1])] tempseg.sort() peak = max(peak, tempseg[1]) self._segments.append(tempseg) else: # if both en and st are given and are ints if not hasattr(st, '__iter__'): tempseg = [int(st), int(en)] tempseg.sort() peak = max(peak, tempseg[1]) self._segments.append(tempseg) else: # if both en ans st are given and both array like # create iterators stit = iter(st) enit = iter(en) if len(st) != len(en): logging.warning("Starting and ending channel ranges do not have the same length, truncating the longer.") # iterate through the lists while True: try: tempseg = [int(stit.next()), int(enit.next())] tempseg.sort() peak = max(peak, tempseg[1]) self._segments.append(tempseg) except StopIteration: break if self._chans is None: self._chans = np.array([0] * (peak + 1)) # determine the maxchan self._maxchan = peak + self._startchan # build the bit mask for seg in self._segments: if seg[1] > self._maxchan or seg[0] < self._startchan: raise Exception("All or part of a segment is beyond the given spectrum. Segment: %s, bounds: [%i, %i]" % (seg, self._startchan, self._maxchan)) self._chans[seg[0] - self._startchan: seg[1] - self._startchan + 1] = 1 def __len__(self): """ Returns the number of segments Parameters ---------- None Returns ------- int containing the number of segments in the class """ return len(self._segments) def __iter__(self): """ Rurns an iterator to the list of segments Parameters ---------- None Returns ------- Iterator to the list of segments """ return iter(self._segments) def __getitem__(self, index): """ Returns the segment at the given index Parameters ---------- index : int The index of the segment to return Returns ------- Two element list (segment) of the starting and ending channel numbers """ if index >= len(self._segments): raise Exception("Index %i is beyond the range of indices (%i)" % (index, len(self._segments))) return self._segments[index] def __add__(self, other): """ Method to add two Segments classes together, without merging he semgents. The bitmask is recalculated. Parameters ---------- other : Segments class instance or array like If a Segments instance is given then the internal segments are added to the current segment list. If an array is given then the items of the array are added to the current segment list. Returns ------- The instance of this class with the new segments incorporated """ new = copy.deepcopy(self) if type(other) == type(new): if new._startchan != other._startchan: raise Exception("Starting channels do not match.") if len(new._chans) != len(other._chans): raise Exception("Number of channels do not match.") for seg in other: new._segments.append(seg) new.recalcmask() elif hasattr(other, "__iter__"): for seg in other: tempseg = [int(seg[0]), int(seg[1])] if tempseg[1] > new._maxchan or tempseg[0] < new._startchan: raise Exception("All or part of a segment is beyond the given spectrum. Segment: %s, bounds: [%i, %i]" % (seg, self._startchan, self._maxchan)) new._segments.append(tempseg) new.recalcmask() return new def __setitem__(self, index, item): """ Method to set the segment at index to a new value Parameters ---------- index : int The location in the segment array to replace item : two element array The new segment to replace the indicated one with Returns ------- None """ if not hasattr(item, "__iter__"): raise Exception("Segments must be ginven as an iteratable object (list, np.array, etc.") if len(item) != 2: raise Exception("Segments must have length 2.") tempseg = [int(item[0]), int(item[1])] tempseg.sort() if tempseg[1] > self._maxchan or tempseg[0] < self._startchan: raise Exception("All or part of a segment is beyond the given spectrum. Segment: %s, bounds: [%i, %i]" % (tempseg, self._startchan, self._maxchan)) self._segments[index] = tempseg self._chans[tempseg[0] - self._startchan: tempseg[1] - self._startchan + 1] = 1 def __contains__(self, chan): """ Method to determine if a given channel is in a segment. This requires the bit mask to be available Parameters ---------- chan : int The channel number to test Returns ------- bool, True if the channel is in a segment, False otherwise """ if self._chans is None: raise Exception("No bitmask has been built, call setnchan to build it.") return bool(self._chans[chan - self._startchan]) def append(self, item): """ Method to append a new segment to the current list Parameters ---------- item : two element array The new segment to append to the list Returns ------- None """ if not hasattr(item, '__iter__'): raise Exception("Segments must be ginven as an iteratable object (list, np.array, etc.") else: if len(item) != 2: raise Exception("Segments must have length 2.") tempseg = [int(item[0]), int(item[1])] tempseg.sort() if tempseg[0] < self._startchan or tempseg[1] > self._maxchan: raise Exception("All or part of a segment is beyond the given spectrum. Segment: %s, bounds: [%i, %i]" % (tempseg, self._startchan, self._maxchan)) self._segments.append(tempseg) self._chans[tempseg[0] - self._startchan: tempseg[1] - self._startchan + 1] = 1 def getmask(self): """ Method to return the current bitmask Parameters ---------- None Returns ------- Array like object containing the bit current bit mask, 1 = in segment, 0 = not in segment """ return self._chans def getchannels(self, invert=False): """ Method to return the current list of channel numbers in the bitmask Parameters ---------- invert : boolean Return the list of channels outside the bitmask instead Returns ------- Array like object containing the (zero based) channel numbers that are in the segments """ if invert: return (np.where(self._chans == 0)[0] + self._startchan).tolist() else: return (np.where(self._chans == 1)[0] + self._startchan).tolist() def remove(self, index): """ Method to remove a segment from the segment list Parameters ---------- index : int The location of the segment to remove Returns ------- None """ del self._segments[index] self.recalcmask() def pop(self): """ Method to pop, or remove and return, the last segment in the list Parameters ---------- None Returns ------- Array like 2 element list of the segment starting and ending channels of the last segment in the list """ seg = self._segments.pop() self.recalcmask() return seg def limits(self): """ Method to return the channel range of the internal channel bit mask Parameters ---------- None Returns ------- Array like 2 element list of the segment starting and ending channels """ return [self._startchan, self._maxchan] def recalcmask(self, test=False): """ Method to recalculate the bit mask based on the current segment list. 1 = in segment 0 = not in segment Parameters ---------- test : bool If True then test each segment to be sure it is in the current allowed channel range. If False the do not test. Returns ------- None """ self._chans = np.array([0] * (self._maxchan + 1 - self._startchan)) for seg in self._segments: if test and (seg[0] < self._startchan or seg[1] >= self._maxchan): raise Exception("All or part of a segment is beyond the given spectrum. Segment: %s, bounds: [%i, %i]" % (seg, self._startchan, self._maxchan)) self._chans[seg[0] - self._startchan: seg[1] - self._startchan + 1] = 1 def setnchan(self, nchan): """ Method to set the number of channels in the internal channel bit mask Parameters ---------- nchan : int The number of channels in the bit mask Returns ------- None """ if nchan - 1 == self._nchan: return self._nchan = nchan self._maxchan = self._startchan + nchan - 1 self.recalcmask(True) def getnchan(self): """ Method to return the number of channels in the current bit mask Parameters ---------- None Returns ------- int giving the number of channels """ return self._maxchan - self._startchan + 1 def setstartchan(self, chan): """ Method to set the starting channels number for the internal bit mask Parameters ---------- chan : int The starting channel number Returns ------- None """ if chan == self._startchan: return self._startchan = chan self._maxchan = self._startchan + self._nchan - 1 self.recalcmask(True) def getstartchan(self): """ Method to get the starting channel number of the current bit mask Parameters ---------- None Returns ------- int containing the starting channel number """ return self._startchan def chans(self, invert=False): """ Method to convert the bit mask into a string of channel ranges in CASA format. e.g. [3,10],[25,50] => "3~10;25~50" Parameters ---------- None Returns ------- string containing the formatted channel ranges """ output = "" if invert: basechan = np.append(1-self._chans, 0) shiftchan =
np.insert(1-self._chans, 0, 0)
numpy.insert
import pandas as pd import numpy as np import sys from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from collections import defaultdict import warnings warnings.filterwarnings("ignore") def get_sentence_vectors(df): """ A method to get convert sentences into bag of words vectors :param df: Dataframe sentences, sense, and labels :return: Array """ df["sentence"] = df.apply(lambda row: remove_mask(row["sentence"], row["form"]), axis=1) df = df[df["sentence"]!=0] all_data = df[["sentence", "form"]].values sentences, Y = all_data[:, 0], np.array(all_data[:, 1], dtype='int64') vectorizor = CountVectorizer(min_df=0.01, ngram_range=(1, 2)) X_fitted = vectorizor.fit_transform(sentences) X = X_fitted.toarray() return X, Y def get_single_feature_vectors(df, feature): df["context"] = df.apply(lambda row: find_context(row['sentence'], row['form']), axis=1) df[feature] = df.apply(lambda row: feature_calc(row["context"], row["word"], feature), axis=1) df = df[df[feature] != 0] all_data = df[[feature, "form"]].values X, Y = all_data[:, 0],
np.array(all_data[:, 1], dtype='int64')
numpy.array
from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import numpy as np import torch from MOC_utils.model import create_inference_model, load_inference_model, convert2flow from MOC_utils.data_parallel import DataParallel from .decode import moc_decode from MOC_utils.utils import flip_tensor class MOCDetector(object): def __init__(self, opt): if opt.gpus[0] >= 0: opt.device = torch.device('cuda') else: opt.device = torch.device('cpu') self.rgb_model_backbone, self.rgb_model_branch = None, None self.flow_model_backbone, self.flow_model_branch = None, None self.num_classes = opt.num_classes self.opt = opt def load_backbone(self): opt = self.opt if opt.rgb_model != '': print('create rgb model') self.rgb_model_backbone, self.rgb_model_branch = create_inference_model(opt.arch, opt.branch_info, opt.head_conv, opt.K, flip_test=opt.flip_test) self.rgb_model_backbone, self.rgb_model_branch = load_inference_model(self.rgb_model_backbone, self.rgb_model_branch, opt.rgb_model) self.rgb_model_backbone = DataParallel( self.rgb_model_backbone, device_ids=opt.gpus, chunk_sizes=opt.chunk_sizes).to(opt.device) self.rgb_model_backbone.eval() if opt.flow_model != '': print('create flow model') self.flow_model_backbone, self.flow_model_branch = create_inference_model(opt.arch, opt.branch_info, opt.head_conv, opt.K, flip_test=opt.flip_test) self.flow_model_backbone = convert2flow(opt.ninput, self.flow_model_backbone) self.flow_model_backbone, self.flow_model_branch = load_inference_model(self.flow_model_backbone, self.flow_model_branch, opt.flow_model) self.flow_model_backbone = DataParallel( self.flow_model_backbone, device_ids=opt.gpus, chunk_sizes=opt.chunk_sizes).to(opt.device) self.flow_model_backbone.eval() def load_branch(self): opt = self.opt if opt.rgb_model != '': print('create rgb model') self.rgb_model_backbone, self.rgb_model_branch = create_inference_model(opt.arch, opt.branch_info, opt.head_conv, opt.K, flip_test=opt.flip_test) self.rgb_model_backbone, self.rgb_model_branch = load_inference_model(self.rgb_model_backbone, self.rgb_model_branch, opt.rgb_model) self.rgb_model_branch = DataParallel( self.rgb_model_branch, device_ids=opt.gpus, chunk_sizes=opt.chunk_sizes).to(opt.device) self.rgb_model_branch.eval() if opt.flow_model != '': print('create flow model') self.flow_model_backbone, self.flow_model_branch = create_inference_model(opt.arch, opt.branch_info, opt.head_conv, opt.K, flip_test=opt.flip_test) self.flow_model_backbone = convert2flow(opt.ninput, self.flow_model_backbone) self.flow_model_backbone, self.flow_model_branch = load_inference_model(self.flow_model_backbone, self.flow_model_branch, opt.flow_model) self.flow_model_branch = DataParallel( self.flow_model_branch, device_ids=opt.gpus, chunk_sizes=opt.chunk_sizes).to(opt.device) self.flow_model_branch.eval() def pre_process(self, images, is_flow=False, ninput=1): images = [cv2.resize(im, (self.opt.resize_height, self.opt.resize_width), interpolation=cv2.INTER_LINEAR) for im in images] if self.opt.flip_test: data = [np.empty((3 * ninput, self.opt.resize_height, self.opt.resize_width), dtype=np.float32) for i in range(2)] else: data = [np.empty((3 * ninput, self.opt.resize_height, self.opt.resize_width), dtype=np.float32)] mean = np.tile(
np.array(self.opt.mean, dtype=np.float32)
numpy.array
import warnings from mpi4py import MPI rank = MPI.COMM_WORLD.rank #warnings.filterwarnings("ignore") if rank!=0: warnings.filterwarnings("ignore") import numpy import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline as interpolate from scipy.interpolate import interp1d from cosmo4d.lab import (UseComplexSpaceOptimizer, NBodyModel, LPTModel, ZAModel, LBFGS, ParticleMesh) #from cosmo4d.lab import mapbias as map from cosmo4d import lab from cosmo4d.lab import report, dg, objectives, mapnoise from abopt.algs.lbfgs import scalar as scalar_diag from nbodykit.cosmology import Planck15, EHPower, Cosmology from nbodykit.algorithms.fof import FOF from nbodykit.lab import FFTPower, BigFileMesh, FieldMesh, BigFileCatalog, ArrayCatalog import sys, os, json, yaml from solve import solve from getbiasparams import getbias, eval_bfit sys.path.append('../') sys.path.append('../utils/') import HImodels #initiatea klin, plin = numpy.loadtxt('../../data/pklin_1.0000.txt', unpack = True) ipk = interpolate(klin, plin) #cosmo = Planck15.clone(Omega_cdm = 0.2685, h = 0.6711, Omega_b = 0.049) cosmodef = {'omegam':0.309167, 'h':0.677, 'omegab':0.048} cosmo = Cosmology.from_dict(cosmodef) ######################################### #Set parameters here ## cfname = sys.argv[1] with open(cfname, 'r') as ymlfile: cfg = yaml.load(ymlfile) for i in cfg['basep'].keys(): locals()[i] = cfg['basep'][i] kmin, angle = cfg['mods']['kmin'], cfg['mods']['angle'] h1model = HImodels.ModelA(aa) zz = 1/aa-1 if angle is None: angle = numpy.round(mapnoise.wedge(zz, att=cfg['mods']['wopt'], angle=True), 0) if rank == 0: print(angle) try: spread except : spread = 1. truth_pm = ParticleMesh(BoxSize=bs, Nmesh=(nc, nc, nc), dtype='f8') comm = truth_pm.comm rank = comm.rank nc2 = nc*2 if numd <= 0: num = -1 else: num = int(bs**3 * numd) if rank == 0: print('Number of objects : ', num) objfunc = getattr(objectives, cfg['mods']['objective']) map = getattr(lab, cfg['mods']['map']) # proj = '/project/projectdirs/m3058/chmodi/m3127/' #proj = '/project/projectdirs/cosmosim/lbl/chmodi/cosmo4d/' if ray: dfolder = '/global/cscratch1/sd/chmodi/m3127/cm_lowres/%dstepT-B%d/%d-%d-9100/'%(nsteps, B, bs, nc) else: dfolder = '/global/cscratch1/sd/chmodi/m3127/cm_lowres/%dstepT-B%d/%d-%d-9100-fixed/'%(nsteps, B, bs, nc) ofolder = '/global/cscratch1/sd/chmodi/m3127/21cm_cleaning/reconlsstv2/fastpm_%0.4f/wedge_kmin%.2f_%s/L%04d-N%04d/'%(aa, kmin, cfg['mods']['wopt'], bs, nc) if ray: ofolder = ofolder[:-1]+'-R/' if stage2 is not None: ofolder += 'thermal-%s/'%stage2 if hex: ofolder = ofolder[:-1] + '-hex/' if spread != 1: ofolder = ofolder[:-1] + '-sp%.1f/'%spread if hirax : ofolder = ofolder[:-1] + '-hirax/' Ndish = 32 else: Ndish = 256 #Dynamics config if pmdisp: ofolder += 'T%02d-B%01d/'%(nsteps, B) else: ofolder += 'ZA/' if lsstwt: prefix += '_ln%04d'%(lsstnumd*1e4) if rsdpos: prefix += "_rsdpos" initseed = 777 fname = 's%d_h1massD%s'%(initseed, "_"+prefix) optfolder = ofolder + 'opt_%s/'%fname #ofolder = '/global/cscratch1/sd/chmodi/m3127/21cm_cleaning/reconlsst/fastpm_0.2000/wedge_kmin0.03_pess/L1024-N0256-R/' if truth_pm.comm.rank == 0: print('Output Folder is %s'%optfolder) ### for folder in [ofolder, optfolder]: try: os.makedirs(folder) except:pass #################################### new_pm = ParticleMesh(BoxSize=truth_pm.BoxSize, Nmesh=truth_pm.Nmesh*2, dtype='f8') lsstnum = int(lsstnumd * bs**3) if rank == 0: print("Lsst number of obj : ", lsstnum) ##### #Data if rsdpos : pp = proj + '/HV10240-R/fastpm_%0.4f/Header/attr-v2'%aa with open(pp) as ff: for line in ff.readlines(): if 'RSDFactor' in line: rsdfaccat = float(line.split()[-2]) else: rsdfaccat = 0. rsdfac = rsdfaccat * 100./aa ##Add hoc factor due to incorrect velocity dimensions in nbody.py if rank == 0: print('RSD factor for catalog is : ', rsdfaccat) if rank == 0: print('RSD factor is : ', rsdfac) noise = None if rank == 0 : print('Noise : ', noise) stages = numpy.linspace(0.01, aa, nsteps, endpoint=True) if pmdisp: dynamic_model = NBodyModel(cosmo, new_pm, B=B, steps=stages) else: dynamic_model = ZAModel(cosmo, new_pm, B=B, steps=stages) if rank == 0: print(dynamic_model) #noise if stage2 is not None: truth_noise_model = mapnoise.ThermalNoise(new_pm, seed=100, aa=aa, att=stage2,spread=spread, hex=hex, limk=2, Ns=Ndish, checkbase=True) else: truth_noise_model = mapnoise.ThermalNoise(new_pm, seed=None, aa=aa, att=stage2,spread=spread, hex=hex, Ns=Ndish) wedge_noise_model = mapnoise.WedgeNoiseModel(pm=new_pm, power=1, seed=100, kmin=kmin, angle=angle) #Create and save data if not found ################# ### ###### ### ###if rsdpos: ### if ray: hmesh = BigFileMesh(proj + '/HV%d-R/fastpm_%0.4f/HImeshz-N%04d/'%(bs*10, aa, nc2), 'ModelD').paint() ### else: hmesh = BigFileMesh(proj + '/HV%d-F/fastpm_%0.4f/HImeshz-N%04d/'%(bs*10, aa, nc2), 'ModelD').paint() ###else: ### if ray: hmesh = BigFileMesh(proj + '/HV%d-R/fastpm_%0.4f/HImesh-N%04d/'%(bs*10, aa, nc2), 'ModelD').paint() ### else: hmesh = BigFileMesh(proj + '/HV%d-F/fastpm_%0.4f/HImesh-N%04d/'%(bs*10, aa, nc2), 'ModelD').paint() ### ###hmesh /= hmesh.cmean() ###hmesh -= 1. ### ###if ray: dnewfolder = '/global/cscratch1/sd/chmodi/m3127/cm_lowres/%dstepT-B%d/%d-%d-9100/'%(nsteps, B, bs, nc*2) ###else: dnewfolder = '/global/cscratch1/sd/chmodi/m3127/cm_lowres/%dstepT-B%d/%d-%d-9100-fixed/'%(nsteps, B, bs, nc*2) ####dnewfolder = '/global/cscratch1/sd/chmodi/m3127/cm_lowres/%dstepT-B%d/%d-%d-9100-fixed/'%(nsteps, B, bs, nc*2) ###s_truth = BigFileMesh(dnewfolder + 'linear', 'LinearDensityK').paint() ###dyn = BigFileCatalog(dnewfolder + 'fastpm_%0.4f/1'%aa) ###dlayout = new_pm.decompose(dyn['Position']) ###d_truth = new_pm.paint(dyn['Position'], layout=dlayout) ### ### ### try: data_p = map.Observable.load(optfolder+'/datap_up') s_truth = data_p.s d_truth = data_p.d hmesh = data_p.mapp lmesh = data_p.mapp2 except Exception as e: #data_p = map.Observable(hmesh, d_truth, s_truth) #data_p.save(optfolder+'datap_up/') print(e) cat = BigFileCatalog(proj + '/HV%d-R/fastpm_%0.4f/LL-M10p5/'%(bs*10, aa)) cat = cat.sort('Length', reverse=False) lsstcat = cat.gslice(start = cat.csize - lsstnum - 1, stop = cat.csize-1) if rank == 0: print("csize : ", lsstcat.csize) lsstmasswt = lsstcat['Mass'].copy().flatten() if not lsstmass: lsstmasswt = lsstmasswt*0 + 1. lsstposition = lsstcat['Position'] + lsstcat['Velocity']*np.array([0, 0, 1])*rsdfaccat llayout = new_pm.decompose(lsstposition) lmesh = new_pm.paint(lsstposition, mass=lsstmasswt, layout=llayout) lmesh /= lmesh.cmean() lmesh -= 1 #llayout = new_pm.decompose(lsstcat['Position']) #lmesh = new_pm.paint(lsstcat['Position'] + lsstcat['Velocity']*np.array([0, 0, 1])*rsdfac, mass=lsstmasswt, layout=llayout) #lmesh /= lmesh.cmean() #lmesh -= 1 if rsdpos: if ray: hmesh = BigFileMesh(proj + '/HV%d-R/fastpm_%0.4f/HImeshz-N%04d/'%(bs*10, aa, nc2), 'ModelD').paint() else: hmesh = BigFileMesh(proj + '/HV%d-F/fastpm_%0.4f/HImeshz-N%04d/'%(bs*10, aa, nc2), 'ModelD').paint() else: if ray: hmesh = BigFileMesh(proj + '/HV%d-R/fastpm_%0.4f/HImesh-N%04d/'%(bs*10, aa, nc2), 'ModelD').paint() else: hmesh = BigFileMesh(proj + '/HV%d-F/fastpm_%0.4f/HImesh-N%04d/'%(bs*10, aa, nc2), 'ModelD').paint() hmesh /= hmesh.cmean() hmesh -= 1. if ray: dnewfolder = '/global/cscratch1/sd/chmodi/m3127/cm_lowres/%dstepT-B%d/%d-%d-9100/'%(nsteps, B, bs, nc*2) else: dnewfolder = '/global/cscratch1/sd/chmodi/m3127/cm_lowres/%dstepT-B%d/%d-%d-9100-fixed/'%(nsteps, B, bs, nc*2) s_truth = BigFileMesh(dnewfolder + 'linear', 'LinearDensityK').paint() s_truth = new_pm.create(mode='real', value=s_truth[...]) dyn = BigFileCatalog(dnewfolder + 'fastpm_%0.4f/1'%aa) dlayout = new_pm.decompose(dyn['Position']) d_truth = new_pm.paint(dyn['Position'], layout=dlayout) hmesh = new_pm.create(mode='real', value=hmesh[...]) data_p = map.Observable(hmesh, d_truth, s_truth, lmesh) data_p.save(optfolder+'datap_up/') try: data_n = map.Observable.load(optfolder+'/datan_up') except: data_n = truth_noise_model.add_noise(data_p) data_n.save(optfolder+'datan_up/') try: data_w = map.Observable.load(optfolder+'/dataw_up') except: data_w = wedge_noise_model.add_noise(data_n) data_w.save(optfolder+'dataw_up/') ## #Model title = None paramsfile = '/paramsup%s.txt' try: params = numpy.loadtxt(optfolder + paramsfile%'') params_lsst = numpy.loadtxt(optfolder + paramsfile%'_lsst') #mock_model = map.MockModel(dynamic_model, params=params, rsdpos=rsdpos, rsdfac=rsdfac) mock_model = map.MockModel(dynamic_model, params=params, params2 = params_lsst, rsdpos=rsdpos, rsdfac=rsdfac) fit_p = map.Observable.load(optfolder+'/fitp_up') # ivarmesh = BigFileMesh(optfolder + 'ivarmesh_up', 'ivar').paint() kerror, perror = numpy.loadtxt(optfolder + '/error_psnup.txt', unpack=True) ipkerror = interp1d(kerror, perror, bounds_error=False, fill_value=(perror[0], perror[-1])) kerror, perror = numpy.loadtxt(optfolder + '/error_psup.txt', unpack=True) ipkmodel = interp1d(kerror, perror, bounds_error=False, fill_value=(perror[0], perror[-1])) kerror_lsst, perror_lsst = numpy.loadtxt(optfolder + '/error_psup_lsst.txt', unpack=True) ipkerror_lsst = interp1d(kerror_lsst, perror_lsst, bounds_error=False, fill_value=(perror_lsst[0], perror_lsst[-1])) except Exception as e: print('Exception occured : ', e) mock_model_setup = map.MockModel(dynamic_model, rsdpos=rsdpos, rsdfac=rsdfac) fpos, linear, linearsq, shear = mock_model_setup.get_code().compute(['xp', 'linear', 'linearsq', 'shear'], init={'parameters': s_truth}) grid = new_pm.generate_uniform_particle_grid(shift=0.0, dtype='f8') #For LSST params_lsst, bmod = getbias(new_pm, lmesh, [linear, linearsq, shear], fpos, grid, fitb2=True) if rank ==0: numpy.savetxt(optfolder + paramsfile%'_lsst', params_lsst, header='b1, b2, bsq') #For HI params, bmod = getbias(new_pm, hmesh, [linear, linearsq, shear], fpos, grid, fitb2=True) #params, bmod = getbias(new_pm, hmesh, [linear, linearsq, shear], fpos, grid) if rank ==0: numpy.savetxt(optfolder + paramsfile%'', params, header='b1, b2, bsq') #Create model and save mock_model = map.MockModel(dynamic_model, params=params, params2 = params_lsst, rsdpos=rsdpos, rsdfac=rsdfac) fit_p = mock_model.make_observable(s_truth) fit_p.save(optfolder+'fitp_up/') #Quantify error kerror, perror = eval_bfit(data_n.mapp, fit_p.mapp, optfolder, noise=noise, title=title, fsize=15, suff='-noiseup') ipkerror = interp1d(kerror, perror, bounds_error=False, fill_value=(perror[0], perror[-1])) if rank ==0: numpy.savetxt(optfolder + '/error_psnup.txt',
numpy.array([kerror, perror])
numpy.array
import logging import sys from functools import partial from pathlib import Path import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter import matplotlib.colors as mcolors from mpl_toolkits.axes_grid1.inset_locator import inset_axes import numpy as np import pandas as pd from tqdm import trange, tqdm import tensorflow as tf import utils import vis import data_utils import preprocessing import backend from synthetic import SyntheticPSF from wavefront import Wavefront from zernike import Zernike logging.basicConfig( stream=sys.stdout, level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) tf.get_logger().setLevel(logging.ERROR) def iterative_eval( model: tf.keras.Model, inputs: np.array, outputs: np.array, batch_size: int, psfargs: dict, iterations: int = 15, desc: str = '', tolerance: float = 1e-2, patience: int = 5, ): predictions = {} corrections = {} gen = SyntheticPSF(**psfargs) errors = pd.DataFrame.from_dict({ 'niter': np.zeros(outputs.shape[0], dtype=int), 'residuals': utils.peak2peak(outputs) }) means = None i = 1 converged = False while not converged: corrections[i] = np.squeeze(inputs[0], axis=-1) predictions[i], stdev = backend.bootstrap_predict( model, inputs, batch_size=batch_size, n_samples=1, desc=desc ) y_pred = pd.DataFrame([utils.peak_aberration(k) for k in predictions[i]], columns=['residuals']) y_true = pd.DataFrame([utils.peak_aberration(k) for k in outputs], columns=['residuals']) err = np.abs(y_true - y_pred) err['niter'] = i errors = pd.concat([errors, err], ignore_index=True) means = errors.groupby(['niter']).mean().reset_index() # check if converged if (i >= 1) and ( i >= iterations or means['residuals'].iloc[-1] + tolerance > means['residuals'].iloc[-2] or np.allclose( means['residuals'].tail(patience).values, means['residuals'].iloc[-1], rtol=tolerance, atol=tolerance )): converged = True # setup next iter res = outputs - predictions[i] g = partial( gen.single_psf, zplanes=0, normed=True, noise=True, augmentation=True, meta=False ) inputs = np.expand_dims(np.stack(gen.batch(g, res), axis=0), -1) outputs = res i += 1 # psf_cmap = 'Spectral_r' # fig, axes = plt.subplots(len(predictions), 4, figsize=(8, 11)) # for i, vol in corrections.items(): # axes[i - 1, 0].bar(range(len(predictions[i][0])), height=predictions[i][0], color='dimgrey') # m = axes[i - 1, 1].imshow(np.max(vol, axis=0) if vol.shape[0] > 3 else vol[0], cmap=psf_cmap) # axes[i - 1, 2].imshow(np.max(vol, axis=1) if vol.shape[0] > 3 else vol[1], cmap=psf_cmap) # axes[i - 1, 3].imshow(np.max(vol, axis=2) if vol.shape[0] > 3 else vol[2], cmap=psf_cmap) # cax = inset_axes(axes[i - 1, 3], width="10%", height="100%", loc='center right', borderpad=-2) # cb = plt.colorbar(m, cax=cax) # cax.yaxis.set_label_position("right") # plt.show() return means def evaluate_psnrs( model: Path, wavelength: float, x_voxel_size: float, y_voxel_size: float, z_voxel_size: float, n_samples: int, batch_size: int, cpu_workers: int, plot=True, metric='peak2peak', ): n_batches = n_samples // batch_size save_path = model / "eval" save_path.mkdir(exist_ok=True, parents=True) model = backend.load(model) model.summary() error = {} peak2peak = [] scales = sorted(set([int(t) for t in np.logspace(1, 3, num=20)])) logger.info(f"PSNRs: {scales}") for snr in scales: psfargs = dict( lam_detection=wavelength, amplitude_ranges=(-.2, .2), psf_shape=model.layers[0].input_shape[0][1:-1], x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, batch_size=batch_size, snr=snr, max_jitter=1, cpu_workers=cpu_workers, ) z = Zernike(0) cols = [f"(n={z.ansi_to_nm(j)[0]}, m={z.ansi_to_nm(j)[1]})" for j in range(model.layers[-1].output_shape[-1])] y_pred = pd.DataFrame([], columns=cols) y_true = pd.DataFrame([], columns=cols) target_psnr = None for i, (psfs, ys, psnrs, zplanes, maxcounts) in zip(range(n_batches), SyntheticPSF(**psfargs).generator(debug=True)): psnr_pct = np.ceil(np.nanquantile(psnrs, .75)) if target_psnr is None: target_psnr = int(psnr_pct) else: target_psnr = int(np.mean([psnr_pct, target_psnr])) preds, stdev = backend.bootstrap_predict( model, psfs, batch_size=batch_size, desc=f"Predictions for PSNR({int(target_psnr)})" ) if plot: dir = save_path / f"psnr_{target_psnr}" dir.mkdir(exist_ok=True, parents=True) paths = [f"{dir}/{(i * batch_size) + n}" for n in range(batch_size)] utils.multiprocess( partial(utils.eval, psfargs=psfargs), list(zip(psfs, ys, preds, paths, psnrs, zplanes, maxcounts)), desc=f"Plotting PSNR({int(target_psnr)})" ) y_pred = y_pred.append(pd.DataFrame(utils.peak2peak(preds), columns=['sample']), ignore_index=True) y_true = y_true.append(pd.DataFrame(utils.peak2peak(ys), columns=['sample']), ignore_index=True) peak2peak.extend(list(y_true['sample'].values)) df = np.abs(y_true - y_pred) df = pd.DataFrame(df, columns=['sample']) error[target_psnr] = df['sample'] df.to_csv(f"{save_path}/psnr_{target_psnr}.csv") error = pd.DataFrame.from_dict(error) error = error.reindex(sorted(error.columns), axis=1) logger.info(error) vis.plot_residuals( error, wavelength=wavelength, nsamples=n_samples, save_path=f"{save_path}/psnr_{metric}", label=r'Peak signal-to-noise ratio' ) plt.figure(figsize=(6, 6)) plt.hist(peak2peak, bins=100) plt.grid() plt.xlabel( 'Peak-to-peak aberration $|P_{95} - P_{5}|$' rf'($\lambda = {int(wavelength*1000)}~nm$)' ) plt.ylabel(rf'Number of samples') plt.savefig(f'{save_path}/dist_peak2peak.png', dpi=300, bbox_inches='tight', pad_inches=.25) def evaluate( model: Path, target: str, wavelength: float, x_voxel_size: float, y_voxel_size: float, z_voxel_size: float, batch_size: int, cpu_workers: int, n_samples: int = 100, dist: str = 'mixed', metric='peak2peak', plot=False, dominant_modes=None ): means, stds = {}, {} if plot: save_path = model / "eval" save_path.mkdir(exist_ok=True, parents=True) for p in sorted(save_path.glob(f'{target}*.csv')): df = pd.read_csv(p, header=0, index_col=0) bits = p.stem.split('_') try: var, snr = round(float(bits[2]), 3), int(bits[4]) except ValueError: var, snr = round(float(bits[3]), 3), int(bits[5]) logger.info(f"PSNR: {snr}, {target}: {var}") if means.get(snr) is None: means[snr] = {var: df[metric].mean()} stds[snr] = {var: df[metric].std()} else: means[snr].update({var: df[metric].mean()}) stds[snr].update({var: df[metric].std()}) else: n_batches = n_samples // batch_size save_path = model / "eval" save_path.mkdir(exist_ok=True, parents=True) model = backend.load(model) model.summary() psnrs = sorted(set([int(t) for t in np.linspace(1, 100, num=10).round(0)])) pconfigs = dict( amplitude_ranges=[ dict( snr=p, amplitude_ranges=a, distribution=dist, lam_detection=wavelength, batch_size=batch_size, x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, max_jitter=0, cpu_workers=cpu_workers, n_modes=model.output_shape[-1], psf_shape=tuple(3 * [model.input_shape[-2]]), ) for p in psnrs for a in np.linspace(0.01, .3, num=7).round(3) ], max_jitter=[ dict( snr=p, max_jitter=j, distribution=dist, lam_detection=wavelength, batch_size=batch_size, x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, amplitude_ranges=(-.3, .3), cpu_workers=cpu_workers, n_modes=model.output_shape[-1], psf_shape=tuple(3 * [model.input_shape[-2]]), ) for p in psnrs for j in np.linspace(0, 2, num=7).round(2) ], z_voxel_size=[ dict( snr=p, distribution=dist, lam_detection=wavelength, batch_size=batch_size, x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=s, amplitude_ranges=(-.3, .3), max_jitter=1, cpu_workers=cpu_workers, n_modes=model.output_shape[-1], psf_shape=tuple(3 * [model.input_shape[-2]]), ) for p in psnrs for s in np.linspace(.1, 1, num=7).round(2) ], ) for psfargs in pconfigs[target]: logger.info(psfargs) y_pred = pd.DataFrame([], columns=['sample']) y_true = pd.DataFrame([], columns=['sample']) for i, (inputs, ys, snrs, zplanes, maxcounts) in zip( range(n_batches), SyntheticPSF(**psfargs).generator(debug=True, otf=False) ): if dominant_modes is not None: # normalized contribution df = pd.DataFrame(np.abs(ys)) df = df.div(df.sum(axis=1), axis=0) # dominant modes dmodes = (df[df > .05]).count(axis=1) dmodes = dmodes >= dominant_modes toi = df[dmodes].index inputs = inputs[toi] ys = ys[toi] if model.name.lower() != 'phasenet': inputs = np.stack(utils.multiprocess( func=partial(preprocessing.embedding, ishape=model.input_shape[-2]), jobs=inputs, desc='Preprocessing', cores=cpu_workers ), axis=0 ) # vol = np.squeeze(inputs[0], axis=-1) # fig, axes = plt.subplots(1, 3, figsize=(6, 6)) # for i in range(3): # m = axes[i].imshow(vol[i], cmap='Spectral_r', vmin=0, vmax=1) # plt.show() preds, stdev = backend.bootstrap_predict( model, inputs, batch_size=batch_size, n_samples=1, desc=f"Predictions for ({(psfargs[target], psfargs['snr'])})" ) y_pred = y_pred.append(pd.DataFrame(utils.peak2peak(preds), columns=['sample']), ignore_index=True) y_true = y_true.append(pd.DataFrame(utils.peak2peak(ys), columns=['sample']), ignore_index=True) error = np.abs(y_true - y_pred) error = pd.DataFrame(error, columns=['sample']) error.to_csv(f"{save_path}/{target}_{psfargs[target]}_snr_{psfargs['snr']}.csv") if target == 'amplitude_ranges': bins = np.arange(0, y_true['sample'].max() + .25, .25) df = pd.DataFrame(zip(y_true['sample'], error['sample']), columns=['aberration', 'error']) df['bins'] = pd.cut(df['aberration'], bins, labels=bins[1:], include_lowest=True) if means.get(psfargs['snr']) is None: means[psfargs['snr']] = df else: means[psfargs['snr']] = means[psfargs['snr']].append(df, ignore_index=True) else: if means.get(psfargs['snr']) is None: means[psfargs['snr']] = {psfargs[target]: error['sample'].mean()} else: means[psfargs['snr']].update({psfargs[target]: error['sample'].mean()}) if target == 'amplitude_ranges': for k, df in means.items(): means[k] = df.groupby('bins').mean() means[k] = means[k]['error'].to_dict() means = pd.DataFrame.from_dict(means) means = means.reindex(sorted(means.columns), axis=1) means = means.sort_index().interpolate() logger.info(means) vis.plot_eval( means, wavelength=wavelength, nsamples=n_samples, save_path=f"{save_path}/{target}_{dist}_{metric}_dmodes{dominant_modes}", label=target ) def compare_models( modelsdir: Path, wavelength: float, x_voxel_size: float, y_voxel_size: float, z_voxel_size: float, psf_shape: tuple, n_samples: int, batch_size: int, cpu_workers: int, metric='peak2peak', iterations: int = 10, ): n_batches = n_samples // batch_size models = [p for p in modelsdir.iterdir() if p.is_dir()] errors = [{m.stem: {} for m in models} for _ in range(iterations)] peak2peak = [] scales = sorted(set([int(t) for t in np.logspace(1, 2, num=3)])) logger.info(f"Models: {models}") logger.info(f"PSNRs: {scales}") modes = backend.load(models[0]).layers[-1].output_shape[-1] eval_distribution = 'mixed' for snr in scales: psfargs = dict( n_modes=modes, distribution=eval_distribution, lam_detection=wavelength, amplitude_ranges=(-.3, .3), psf_shape=psf_shape, x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, batch_size=batch_size, snr=snr, max_jitter=1, cpu_workers=cpu_workers, ) target_psnr = None for _, (psfs, ys, psnrs, zplanes, maxcounts) in zip(range(n_batches), SyntheticPSF(**psfargs).generator(debug=True)): psnr_pct = np.ceil(np.nanquantile(psnrs, .75)) if target_psnr is None: target_psnr = int(psnr_pct) else: target_psnr = int(np.mean([psnr_pct, target_psnr])) for m in models: model = backend.load(m) preds = iterative_eval( model, inputs=psfs, outputs=ys, batch_size=batch_size, psfargs=psfargs, desc=f"{m.stem}, PSNR({int(target_psnr)})", iterations=iterations, ) for i in range(iterations): ps = preds[0] if i == 0 else np.sum([preds[k] for k in range(i + 1)], axis=0) y_pred = pd.DataFrame(utils.peak2peak(ps), columns=['sample']) y_true = pd.DataFrame(utils.peak2peak(ys), columns=['sample']) # drop aberrations below diffraction limit idx = y_true.index[y_true['sample'] >= .5] y_true = y_true.loc[idx] y_pred = y_pred.loc[idx] peak2peak.extend(list(y_true['sample'].values)) if errors[i][m.stem].get(target_psnr) is not None: errors[i][m.stem][target_psnr] = np.mean([ errors[i][m.stem][target_psnr], np.nanmean(np.abs(y_true - y_pred)) ]) else: errors[i][m.stem][target_psnr] = np.nanmean(np.abs(y_true - y_pred)) for i in range(iterations): error = pd.DataFrame(errors[i]) error = error.reindex(sorted(error.columns), axis=1) logger.info(error) vis.plot_models( error, wavelength=wavelength, nsamples=n_samples, save_path=f"{modelsdir}/{eval_distribution}_psnr_{metric}_iter{i + 1}", label=r'Peak signal-to-noise ratio' ) plt.figure(figsize=(6, 6)) plt.hist(peak2peak, bins=100) plt.grid() plt.xlabel( 'Peak-to-peak aberration $|P_{95} - P_{5}|$' rf'($\lambda = {int(wavelength*1000)}~nm$)' ) plt.ylabel(rf'Number of samples') plt.savefig(f'{modelsdir}/{eval_distribution}_peak2peak.png', dpi=300, bbox_inches='tight', pad_inches=.25) def compare_models_and_modes( modelsdir: Path, wavelength: float, x_voxel_size: float, y_voxel_size: float, z_voxel_size: float, psf_shape: tuple, n_samples: int, batch_size: int, cpu_workers: int, iterations: int = 5, psnr: int = 30 ): n_batches = n_samples // batch_size models = [p for p in modelsdir.iterdir() if p.is_dir()] errors = [{m.stem: {} for m in models} for _ in range(iterations)] logger.info(f"Models: {models}") modes = backend.load(models[0]).layers[-1].output_shape[-1] eval_distribution = 'mixed' psfargs = dict( n_modes=modes, distribution=eval_distribution, lam_detection=wavelength, amplitude_ranges=.3, psf_shape=psf_shape, x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, batch_size=batch_size, snr=psnr, max_jitter=1, cpu_workers=cpu_workers, ) for _, (psfs, ys, psnrs, zplanes, maxcounts) in zip( range(n_batches), SyntheticPSF(**psfargs).generator(debug=True) ): for m in models: model = backend.load(m) preds = iterative_eval( model, inputs=psfs, outputs=ys, batch_size=batch_size, psfargs=psfargs, desc=f"{m.stem}, PSNR({int(psnr)})", iterations=iterations, ) for i in range(iterations): ps = preds[0] if i == 0 else np.sum([preds[k] for k in range(i + 1)], axis=0) y_pred = pd.DataFrame(utils.microns2waves(ps, wavelength), columns=[f'Z{i}' for i in range(1, modes + 1)]) y_true = pd.DataFrame(utils.microns2waves(ys, wavelength), columns=[f'Z{i}' for i in range(1, modes + 1)]) residuals = np.abs(y_true - y_pred) residuals['model'] = m.stem errors[i][m.stem] = residuals if errors[i].get(m.stem) is not None: errors[i][m.stem] = pd.concat([errors[i][m.stem], residuals], ignore_index=True) else: errors[i][m.stem] = residuals for i in range(iterations): res = pd.concat(errors[i], ignore_index=True) logger.info(res) vis.plot_residuals_per_mode( res, wavelength=wavelength, nsamples=n_samples, save_path=f"{modelsdir}/{eval_distribution}_modes_iter{i + 1}", ) def synthatic_convergence( modelsdir: Path, wavelength: float, x_voxel_size: float, y_voxel_size: float, z_voxel_size: float, psf_shape: tuple, n_samples: int, batch_size: int, cpu_workers: int, psnr: int = 30, tolerance: float = 1e-2, patience: int = 5, max_iters: int = 15, eval_distribution: str = 'zipf', ): n_batches = n_samples // batch_size models = [p for p in modelsdir.iterdir() if p.is_dir()] logger.info(f"Models: {models}") modes = backend.load(models[0]).layers[-1].output_shape[-1] errors = pd.DataFrame([], columns=['niter', 'model', 'residuals']) avgs = None psfargs = dict( n_modes=modes, distribution=eval_distribution, lam_detection=wavelength, amplitude_ranges=(0, .3), psf_shape=psf_shape, x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, batch_size=batch_size, snr=psnr, max_jitter=1, cpu_workers=cpu_workers, ) gen = SyntheticPSF(**psfargs) for _, (psfs, ys, psnrs, zplanes, maxcounts) in zip(range(n_batches), gen.generator(debug=True)): for m in models: model = backend.load(m) niter = 0 inputs = psfs outputs = ys predictions = {} converged = False while not converged: if model.name.lower() != 'phasenet': inputs = np.stack(utils.multiprocess( func=partial(preprocessing.embedding, ishape=model.input_shape[-2]), jobs=inputs, desc='Preprocessing', cores=cpu_workers ), axis=0 ) predictions[niter], stdev = backend.bootstrap_predict( model, inputs, batch_size=batch_size, desc=f"iter {niter} - {m.stem}, PSNR({int(psnr)})" ) # compute error ps = predictions[0] if niter == 0 else np.sum([predictions[k] for k in range(niter + 1)], axis=0) y_pred = pd.DataFrame(utils.peak2peak(ps), columns=['residuals']) y_true = pd.DataFrame(utils.peak2peak(ys), columns=['residuals']) # drop aberrations below diffraction limit idx = y_true.index[y_true['residuals'] >= .25] y_true = y_true.loc[idx] y_pred = y_pred.loc[idx] err = np.abs(y_true - y_pred) err['model'] = m.stem err['niter'] = niter current_mean = err['residuals'].mean() errors = pd.concat([errors, err], ignore_index=True) avgs = errors.groupby(['niter', 'model']).mean().reset_index() # check if converged if niter >= max_iters \ or current_mean <= .05 \ or avgs[avgs['model'] == m.stem].shape[0] > 1 \ and np.allclose(avgs[avgs['model'] == m.stem]['residuals'].tail(patience).values, current_mean, rtol=tolerance, atol=tolerance): converged = True # setup next iter res = outputs - predictions[niter] g = partial( gen.single_psf, zplanes=0, normed=True, noise=True, ) inputs = np.expand_dims(np.stack(gen.batch(g, res), axis=0), -1) outputs = res niter += 1 logger.info(avgs) errors.to_csv(f"{modelsdir}/{eval_distribution}_iters_residuals.csv", index=False) vis.plot_convergence( avgs, wavelength=wavelength, nsamples=n_samples, save_path=f"{modelsdir}/{eval_distribution}_iters", ) def convergence( modelsdir: Path, datadir: Path, wavelength: float, n_samples: int, batch_size: int, cpu_workers: int, psf_shape: tuple, psnr: int = 50, amplitude: int = 2, max_iters: int = 10, x_voxel_size: float = .15, y_voxel_size: float = .15, z_voxel_size: float = .6, ): classes = sorted([ c for c in Path(datadir).rglob('*/') if c.is_dir() and len(list(c.glob('*.tif'))) > 0 and f'psnr{psnr - 9}-{psnr}' in str(c) and f'p{amplitude - 1}9-p{amplitude}' in str(c) ]) models = [p for p in modelsdir.iterdir() if p.is_dir()] logger.info(f"Models: {models}") modes = backend.load(models[0]).layers[-1].output_shape[-1] errors = pd.DataFrame([], columns=['niter', 'model', 'residuals']) psfargs = dict( n_modes=modes, lam_detection=wavelength, amplitude_ranges=(0, .3), psf_shape=psf_shape, x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, batch_size=batch_size, snr=(psnr - 9, psnr), max_jitter=0, cpu_workers=cpu_workers, ) for m in tqdm(models, desc='Evaluating', unit='model'): model = backend.load(m) for c in tqdm(classes, unit='class'): val = data_utils.load_dataset(c, samplelimit=n_samples) val = val.map(lambda x: tf.py_function(data_utils.get_sample, [x], [tf.float32, tf.float32])) for inputs, ys in val.batch(n_samples): predictions = iterative_eval( model, inputs=inputs, outputs=ys.numpy(), batch_size=n_samples, iterations=max_iters, psfargs=psfargs, desc=f"Predictions for [{m.stem}] ({c})" ) y_pred = pd.DataFrame(predictions, columns=['niter', 'residuals']) y_pred['model'] = m.stem y_pred['class'] = c errors = pd.concat([errors, y_pred], ignore_index=True) logger.info(errors) avgs = errors.groupby(['niter', 'model']).mean().reset_index() logger.info(avgs) errors.to_csv(f"{modelsdir}/iters_residuals_psnr{psnr - 9}-{psnr}_p{amplitude - 1}9-p{amplitude}.csv", index=False) vis.plot_convergence( avgs, wavelength=wavelength, nsamples=n_samples * len(classes), psnr=f'{psnr - 9}-{psnr}', save_path=f"{modelsdir}/iters_psnr{psnr - 9}-{psnr}_p{amplitude - 1}9-p{amplitude}", ) def eval_mode(phi, model, psfargs): gen = SyntheticPSF(**psfargs) model = backend.load(model) input_shape = model.layers[0].output_shape[0][1:-1] w = Wavefront(phi, order='ansi') abr = 0 if np.count_nonzero(phi) == 0 else round(utils.peak_aberration(phi)) if input_shape[0] == 3: inputs = gen.single_otf( w, zplanes=0, normed=True, noise=True, midslice=True, na_mask=True, ratio=True, augmentation=True ) else: inputs = gen.single_psf(w, zplanes=0, normed=True, noise=True, augmentation=True) # fig, axes = plt.subplots(1, 3) # img = inputs # m = axes[0].imshow(np.max(img, axis=0), cmap='Spectral_r', vmin=0, vmax=1) # axes[1].imshow(np.max(img, axis=1), cmap='Spectral_r', vmin=0, vmax=1) # axes[2].imshow(np.max(img, axis=2), cmap='Spectral_r', vmin=0, vmax=1) # cax = inset_axes(axes[2], width="10%", height="100%", loc='center right', borderpad=-3) # cb = plt.colorbar(m, cax=cax) # cax.yaxis.set_label_position("right") # plt.show() inputs = np.expand_dims(np.stack(inputs, axis=0), 0) inputs = np.expand_dims(np.stack(inputs, axis=0), -1) pred, stdev = backend.bootstrap_predict( model, inputs, batch_size=1, n_samples=1, desc=f"P2P({abr}), PSNR({int(psfargs['snr'])})" ) phi = utils.peak_aberration(phi) pred = utils.peak_aberration(pred) residuals = np.abs(phi - pred) return residuals def evaluate_modes( model, wavelength=.605, n_modes=60, psf_shape=64, psnr=30, x_voxel_size=.15, y_voxel_size=.15, z_voxel_size=.6, ): gen = dict( amplitude_ranges=(-1, 1), n_modes=n_modes, lam_detection=wavelength, psf_shape=tuple(3 * [psf_shape]), x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, snr=psnr, max_jitter=0, cpu_workers=-1, ) residuals = {} waves = np.arange(0, .5, step=.05) for i in range(5, n_modes): residuals[i] = {} jobs = np.zeros((len(waves), n_modes)) jobs[:, i] = waves res = utils.multiprocess( partial(eval_mode, model=model, psfargs=gen), jobs=list(jobs), cores=1 ) residuals[i] = {round(utils.peak_aberration(jobs[k, :])): res[k] for k in range(len(waves))} df = pd.DataFrame.from_dict(residuals[i], orient="index") logger.info(df) vis.plot_mode( f'{model}/res_mode_{i}.png', df, mode_index=i, n_modes=n_modes, wavelength=wavelength ) def eval_bin(datapath, modelpath): model = backend.load(modelpath) val = data_utils.load_dataset(datapath) val = val.map(lambda x: tf.py_function(data_utils.get_sample, [x], [tf.float32, tf.float32])) y_pred = pd.DataFrame([], columns=['sample']) y_true = pd.DataFrame([], columns=['sample']) for inputs, ys in val.batch(100): preds, stdev = backend.bootstrap_predict( model, inputs, batch_size=100, n_samples=1, desc=f"Predictions for ({datapath})" ) p = pd.DataFrame([utils.peak_aberration(i) for i in preds], columns=['sample']) y_pred = y_pred.append(p, ignore_index=True) y = pd.DataFrame([utils.peak_aberration(i) for i in ys.numpy()], columns=['sample']) y['snr'] = int(np.mean(list(map(int, datapath.parent.stem.lstrip('psnr_').split('-'))))) y_true = y_true.append(y, ignore_index=True) return (y_pred, y_true) def evalheatmap(modelpath: Path, datadir: Path, distribution: str = '/'): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, 'xtick.major.pad': 10 }) classes = sorted([ c for c in Path(datadir).rglob('*/') if c.is_dir() and len(list(c.glob('*.tif'))) > 0 and distribution in str(c) ]) job = partial(eval_bin, modelpath=modelpath) preds, ys = zip(*utils.multiprocess(job, classes)) y_true = pd.DataFrame([], columns=['sample']).append(ys, ignore_index=True) y_pred = pd.DataFrame([], columns=['sample']).append(preds, ignore_index=True) error =
np.abs(y_true - y_pred)
numpy.abs
#!/usr/bin/env python # coding: utf-8 import os import sys import subprocess from pathlib import Path import csv import numpy as np import itk from itk import TubeTK as tube def scv_is_bundled(): return getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS') def scv_get_perfusion_toolbox_path(): if scv_is_bundled(): return os.path.join(sys._MEIPASS, 'StroCoVess', 'perfusion_toolbox') return os.path.join(os.path.dirname(os.path.realpath(__file__)), 'perfusion_toolbox') ################# ################# ################# ################# ################# def scv_convert_ctp_to_cta(filenames, report_progress=print, debug=False, output_dirname="."): filenames.sort() num_images = len(filenames) base_im = itk.imread(filenames[num_images//2],itk.F) base_spacing = base_im.GetSpacing() progress_percent = 10 report_progress("Reading images",progress_percent) Dimension = 3 PixelType = itk.ctype('float') ImageType = itk.Image[PixelType,Dimension] imdatamax = itk.GetArrayFromImage(base_im) imdatamin = imdatamax if output_dirname!=None and not os.path.exists(output_dirname): os.mkdir(output_dirname) progress_percent = 20 progress_per_file = 70/num_images for imNum in range(num_images): imMoving = itk.imread(filenames[imNum],itk.F) if imMoving.shape != base_im.shape: resample = tube.ResampleImage.New(Input=imMoving) resample.SetMatchImage(base_im) resample.Update() imMovingIso = resample.GetOutput() progress_label = "Resampling "+str(imNum)+" of "+str(num_images) report_progress(progress_label,progress_percent) else: imMovingIso = imMoving imdataTmp = itk.GetArrayFromImage(imMovingIso) imdatamax = np.maximum(imdatamax,imdataTmp) imdataTmp = np.where(imdataTmp==-1024,imdatamin,imdataTmp) imdatamin = np.minimum(imdatamin,imdataTmp) progress_percent += progress_per_file progress_label = "Integrating "+str(imNum)+" of "+str(num_images) report_progress(progress_label,progress_percent) report_progress("Generating CT, CTA, and CTP",90) ct = itk.GetImageFromArray(imdatamin) ct.CopyInformation(base_im) cta = itk.GetImageFromArray(imdatamax) cta.CopyInformation(base_im) diff = imdatamax-imdatamin diff[:4,:,:] = 0 diff[-4:,:,:] = 0 diff[:,:4,:] = 0 diff[:,-4:,:] = 0 diff[:,:,:4] = 0 diff[:,:,-4:] = 0 dsa = itk.GetImageFromArray(diff) dsa.CopyInformation(base_im) report_progress("Done",100) return ct,cta,dsa ################# ################# ################# ################# ################# def scv_segment_brain_from_ct(ct_image, report_progress=print, debug=False): ImageType = itk.Image[itk.F,3] LabelMapType = itk.Image[itk.UC,3] report_progress("Threshold",5) thresh = tube.ImageMath.New(Input=ct_image) thresh.IntensityWindow(-50,6000,0,6000) imgt = thresh.GetOutput() thresh.ReplaceValuesOutsideMaskRange(imgt,1,6000,0) thresh.ReplaceValuesOutsideMaskRange(imgt,0,700,1) tmpimg = thresh.GetOutput() thresh.ReplaceValuesOutsideMaskRange(tmpimg,0,1,2) ct_tmp = thresh.GetOutput() report_progress("Initial Mask",10) maskMath = tube.ImageMath.New(Input=ct_tmp) # remove skin maskMath.Dilate(15,0,1) # shrink brain maskMath.Erode(6,2,0) # restore skull maskMath.ReplaceValueWithinMaskRange(ct_tmp,1,1,0,1) # shrink skull maskMath.Dilate(3,1,0) maskMath.Erode(1,1,0) comboSeed = maskMath.GetOutputUChar() report_progress("Connected Component",20) segmenter = tube.SegmentConnectedComponentsUsingParzenPDFs[ImageType, LabelMapType].New() segmenter.SetFeatureImage( ct_image ) segmenter.SetInputLabelMap( comboSeed ) segmenter.SetObjectId( 2 ) segmenter.AddObjectId( 1 ) segmenter.SetVoidId( 0 ) segmenter.SetErodeDilateRadius( 20 ) segmenter.SetHoleFillIterations( 40 ) segmenter.Update() segmenter.ClassifyImages() brainMaskRaw = segmenter.GetOutputLabelMap() report_progress("Masking",60) maskMath = itk.CastImageFilter[LabelMapType, ImageType].New() maskMath.SetInput(brainMaskRaw) maskMath.Update() brainMaskF = maskMath.GetOutput() maskMath = tube.ImageMath.New(Input = brainMaskF) maskMath.Threshold(2,2,1,0) maskMath.Dilate(2,1,0) maskMath.Erode(3,1,0) brainMaskRaw2 = maskMath.GetOutputUChar() connComp = tube.SegmentConnectedComponents.New(Input=brainMaskRaw2) connComp.SetKeepOnlyLargestComponent(True) connComp.Update() brainMask = connComp.GetOutput() report_progress("Finishing",90) cast = itk.CastImageFilter[LabelMapType,ImageType].New() cast.SetInput(brainMask) cast.Update() brainMaskF = cast.GetOutput() brainMath = tube.ImageMath[ImageType].New(Input=ct_image) brainMath.ReplaceValuesOutsideMaskRange( brainMaskF,1,1,-1024) ct_brain_image = brainMath.GetOutput() report_progress("Done",100) return ct_brain_image, brainMask ################# ################# ################# ################# ################# def scv_enhance_vessels_in_cta(cta_image, cta_roi_image, report_progress=print, debug=False ): ImageType = itk.Image[itk.F,3] LabelMapType = itk.Image[itk.UC,3] report_progress("Masking",5) imMath = tube.ImageMath.New(Input=cta_roi_image) imMath.Threshold( 0.00001,4000,1,0) imMath.Erode(10,1,0) imBrainMaskErode = imMath.GetOutput() imMath.SetInput(cta_roi_image) imMath.IntensityWindow(0,300,0,300) imMath.ReplaceValuesOutsideMaskRange(imBrainMaskErode,0.5,1.5,0) imBrainErode = imMath.GetOutput() spacing = cta_image.GetSpacing()[0] report_progress("Blurring",10) imMath = tube.ImageMath[ImageType].New() imMath.SetInput(imBrainErode) imMath.Blur(1.5*spacing) imBlur = imMath.GetOutput() imBlurArray = itk.GetArrayViewFromImage(imBlur) report_progress("Generating Seeds",20) numSeeds = 15 seedCoverage = 20 seedCoord = np.zeros([numSeeds,3]) for i in range(numSeeds): seedCoord[i] = np.unravel_index(np.argmax(imBlurArray, axis=None),imBlurArray.shape) indx = [int(seedCoord[i][0]),int(seedCoord[i][1]), int(seedCoord[i][2])] minX = max(indx[0]-seedCoverage,0) maxX = max(indx[0]+seedCoverage,imBlurArray.shape[0]) minY = max(indx[1]-seedCoverage,0) maxY = max(indx[1]+seedCoverage,imBlurArray.shape[1]) minZ = max(indx[2]-seedCoverage,0) maxZ = max(indx[2]+seedCoverage,imBlurArray.shape[2]) imBlurArray[minX:maxX,minY:maxY,minZ:maxZ]=0 indx.reverse() seedCoord[:][i] = cta_roi_image.TransformIndexToPhysicalPoint(indx) report_progress("Segmenting Initial Vessels",30) vSeg = tube.SegmentTubes.New(Input=cta_roi_image) vSeg.SetVerbose(debug) vSeg.SetMinRoundness(0.4) vSeg.SetMinCurvature(0.002) vSeg.SetRadiusInObjectSpace( 1 ) for i in range(numSeeds): progress_label = "Vessel "+str(i)+" of "+str(numSeeds) progress_percent = i/numSeeds*20+30 report_progress(progress_label,progress_percent) vSeg.ExtractTubeInObjectSpace( seedCoord[i],i ) tubeMaskImage = vSeg.GetTubeMaskImage() imMath.SetInput(tubeMaskImage) imMath.AddImages(cta_roi_image,200,1) blendIm = imMath.GetOutput() report_progress("Computing Training Mask",50) trMask = tube.ComputeTrainingMask[ImageType,LabelMapType].New() trMask.SetInput( tubeMaskImage ) trMask.SetGap( 4 ) trMask.SetObjectWidth( 1 ) trMask.SetNotObjectWidth( 1 ) trMask.Update() fgMask = trMask.GetOutput() report_progress("Enhancing Image",70) enhancer = tube.EnhanceTubesUsingDiscriminantAnalysis[ImageType, LabelMapType].New() enhancer.AddInput( cta_image ) enhancer.SetLabelMap( fgMask ) enhancer.SetRidgeId( 255 ) enhancer.SetBackgroundId( 128 ) enhancer.SetUnknownId( 0 ) enhancer.SetTrainClassifier(True) enhancer.SetUseIntensityOnly(True) enhancer.SetScales([0.75*spacing,2*spacing,6*spacing]) enhancer.Update() enhancer.ClassifyImages() report_progress("Finalizing",90) imMath = tube.ImageMath[ImageType].New() imMath.SetInput(enhancer.GetClassProbabilityImage(0)) imMath.Blur(0.5*spacing) prob0 = imMath.GetOutput() imMath.SetInput(enhancer.GetClassProbabilityImage(1)) imMath.Blur(0.5*spacing) prob1 = imMath.GetOutput() cta_vess = itk.SubtractImageFilter(Input1=prob0, Input2=prob1) imMath.SetInput(cta_roi_image) imMath.Threshold(0.0000001,2000,1,0) imMath.Erode(2,1,0) imBrainE = imMath.GetOutput() imMath.SetInput(cta_vess) imMath.ReplaceValuesOutsideMaskRange(imBrainE,1,1,-0.001) cta_roi_vess = imMath.GetOutput() report_progress("Done",100) return cta_vess,cta_roi_vess ################# ################# ################# ################# ################# def scv_extract_vessels_from_cta(cta_image, cta_roi_vessels_image, report_progress=print, debug=False, output_dirname="."): if output_dirname!=None and not os.path.exists(output_dirname): os.mkdir(output_dirname) spacing = cta_image.GetSpacing()[0] report_progress("Thresholding",5) imMath = tube.ImageMath.New(cta_roi_vessels_image) imMath.MedianFilter(1) imMath.Threshold(0.00000001,9999,1,0) vess_mask_im = imMath.GetOutputShort() if debug and output_dirname!=None: itk.imwrite(vess_mask_im, output_dirname+"/extract_vessels_mask.mha", compression=True) report_progress("Connecting",10) ccSeg = tube.SegmentConnectedComponents.New(vess_mask_im) ccSeg.SetMinimumVolume(50) ccSeg.Update() vess_mask_cc_im = ccSeg.GetOutput() if debug and output_dirname!=None: itk.imwrite(vess_mask_cc_im, output_dirname+"/extract_vessels_mask_cc.mha", compression=True) imMathSS = tube.ImageMath.New(vess_mask_cc_im) imMathSS.Threshold(0,0,1,0) vess_mask_inv_im = imMathSS.GetOutputFloat() report_progress("Filling in",20) distFilter = itk.DanielssonDistanceMapImageFilter.New(vess_mask_inv_im) distFilter.Update() dist_map_im = distFilter.GetOutput() report_progress("Generating seeds",30) imMath.SetInput(dist_map_im) imMath.Blur(0.5*spacing) tmp = imMath.GetOutput() # Distance map's distances are in index units, not spacing imMath.ReplaceValuesOutsideMaskRange(tmp,0.333,10,0) initial_radius_im = imMath.GetOutput() if debug and output_dirname!=None: itk.imwrite(initial_radius_im, output_dirname+"/vessel_extraction_initial_radius.mha", compression=True) report_progress("Generating input",30) imMath.SetInput(cta_image) imMath.ReplaceValuesOutsideMaskRange(cta_roi_vessels_image,0,1000,0) imMath.Blur(0.4*spacing) imMath.NormalizeMeanStdDev() imMath.IntensityWindow(-4,4,0,1000) input_im = imMath.GetOutput() if debug and output_dirname!=None: itk.imwrite(input_im, output_dirname+"/vessel_extraction_input.mha", compression=True) report_progress("Extracting vessels",40) vSeg = tube.SegmentTubes.New(Input=input_im) vSeg.SetVerbose(debug) vSeg.SetMinCurvature(0.0001) #0 vSeg.SetMinRoundness(0.02) vSeg.SetMinRidgeness(0.5) vSeg.SetMinLevelness(0.0) vSeg.SetRadiusInObjectSpace( 0.8*spacing ) vSeg.SetBorderInIndexSpace(3) vSeg.SetSeedMask( initial_radius_im ) #vSeg.SetSeedRadiusMask( initial_radius_im ) vSeg.SetOptimizeRadius(True) vSeg.SetUseSeedMaskAsProbabilities(True) vSeg.SetSeedExtractionMinimumProbability(0.95) #0.99 vSeg.ProcessSeeds() report_progress("Finalizing",90) tubeMaskImage = vSeg.GetTubeMaskImage() if debug and output_dirname!=None: itk.imwrite(tubeMaskImage, output_dirname+"/vessel_extraction_output.mha", compression=True) report_progress("Done",100) return tubeMaskImage,vSeg.GetTubeGroup() ################# ################# ################# ################# ################# def scv_register_ctp_images(fixed_image_filename, moving_image_filenames, output_dirname, report_progress=print, debug=False): ImageType = itk.Image[itk.F,3] num_images = len(moving_image_filenames) progress_percent = 10 progress_per_file = 70/num_images fixed_im = itk.imread(fixed_image_filename,itk.F) fixed_im_spacing = fixed_im.GetSpacing() if fixed_im_spacing[0] != fixed_im_spacing[1] or \ fixed_im_spacing[1] != fixed_im_spacing[2]: report_progress("Resampling",progress_percent) resample = tube.ResampleImage.New(Input=fixed_im) resample.SetMakeIsotropic(True) resample.Update() fixed_im = resample.GetOutput() if debug: progress_label = "DEBUG: Resampling to "+str( fixed_im.GetSpacing()) report_progress(progress_label,progress_percent) imMath = tube.ImageMath.New(fixed_im) imMath.Threshold(150,800,1,0) imMath.Dilate(10,1,0) mask_im = imMath.GetOutputUChar() mask_array = itk.GetArrayViewFromImage(mask_im) mask_array[:4,:,:] = 0 mask_array[-4:,:,:] = 0 mask_obj = itk.ImageMaskSpatialObject[3].New() mask_obj.SetImage(mask_im) mask_obj.Update() for imNum in range(num_images): progress_percent += progress_per_file progress_label = "Registering "+str(imNum)+" of "+str(num_images) report_progress(progress_label,progress_percent) if moving_image_filenames[imNum] != fixed_image_filename: moving_im = itk.imread(moving_image_filenames[imNum],itk.F) imreg = tube.RegisterImages[ImageType].New() imreg.SetFixedImage(fixed_im) imreg.SetMovingImage(moving_im) imreg.SetRigidMaxIterations(100) imreg.SetRegistration("RIGID") imreg.SetExpectedOffsetMagnitude(5) imreg.SetExpectedRotationMagnitude(0.05) imreg.SetFixedImageMaskObject(mask_obj) imreg.SetUseEvolutionaryOptimization(False) if debug: imreg.SetReportProgress(True) imreg.Update() tfm = imreg.GetCurrentMatrixTransform() moving_reg_im = imreg.ResampleImage("SINC_INTERPOLATION", moving_im,tfm,-1024) if output_dirname!=None: pname,fname = os.path.split(moving_image_filenames[imNum]) rename_file_fname = os.path.splitext(fname) new_fname = str(rename_file_fname[0])+"_reg.nii" new_filename = os.path.join(output_dirname,new_fname) itk.imwrite(moving_reg_im,new_filename,compression=True) elif output_dirname!=None: pname,fname = os.path.split(moving_image_filenames[imNum]) rename_file_fname = os.path.splitext(fname) new_fname = str(rename_file_fname[0])+"_reg.nii" new_filename = os.path.join(output_dirname,new_fname) itk.imwrite(moving_reg_im,new_filename,compression=True) report_progress("Done",100) ################# ################# ################# ################# ################# def scv_register_atlas_to_image(atlas_im, atlas_mask_im, in_im): ImageType = itk.Image[itk.F,3] regAtlasToIn = tube.RegisterImages[ImageType].New(FixedImage=in_im, MovingImage=atlas_im) regAtlasToIn.SetReportProgress(True) regAtlasToIn.SetRegistration("PIPELINE_AFFINE") regAtlasToIn.SetMetric("MATTES_MI_METRIC") regAtlasToIn.SetInitialMethodEnum("INIT_WITH_IMAGE_CENTERS") regAtlasToIn.Update() atlas_reg_im = regAtlasToIn.ResampleImage() atlas_mask_reg_im = regAtlasToIn.ResampleImage("NEAREST_NEIGHBOR", atlas_mask_im) return atlas_reg_im,atlas_mask_reg_im ################# ################# ################# ################# ################# def scv_compute_atlas_region_stats(atlas_im, time_im, vess_im, number_of_time_bins=100, report_progress=print, debug=False): atlas_arr = itk.GetArrayFromImage(atlas_im) time_arr = itk.GetArrayFromImage(time_im) vess_arr = itk.GetArrayFromImage(vess_im) num_regions = int(atlas_arr.max()) time_max = float(time_arr.max()) time_min = float(time_arr.min()) nbins = int(number_of_time_bins) time_factor = (time_max-time_min)/(nbins+1) print("Time range =",time_min,"-",time_max) bin_value = np.zeros([num_regions,nbins]) bin_count = np.zeros([num_regions,nbins]) for atlas_region in range(num_regions): report_progress("Masking",(atlas_region+1)*(100/num_regions)) indx_arr = np.where(atlas_arr==atlas_region) indx_list = list(zip(indx_arr[0],indx_arr[1],indx_arr[2])) for indx in indx_list: time_bin = int((time_arr[indx]-time_min)/time_factor) time_bin = min(max(0,time_bin),nbins-1) if
np.isnan(vess_arr[indx])
numpy.isnan
import pytest import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from scipy.sparse import rand from scipy.sparse.linalg import lsqr from pylops.utils import dottest from pylops.basicoperators import Regression, LinearRegression, MatrixMult, \ Identity, Zero, Flip, Symmetrize, Roll, Sum, Real, Imag, Conj par1 = {'ny': 11, 'nx': 11, 'imag': 0, 'dtype':'float64'} # square real par2 = {'ny': 21, 'nx': 11, 'imag': 0, 'dtype':'float64'} # overdetermined real par1j = {'ny': 11, 'nx': 11, 'imag': 1j, 'dtype':'complex128'} # square complex par2j = {'ny': 21, 'nx': 11, 'imag': 1j, 'dtype':'complex128'} # overdetermined complex par3 = {'ny': 11, 'nx': 21, 'imag': 0, 'dtype':'float64'} # underdetermined real np.random.seed(10) @pytest.mark.parametrize("par", [(par1), (par2)]) def test_Regression(par): """Dot-test, inversion and apply for Regression operator """ np.random.seed(10) order = 4 t = np.arange(par['ny'], dtype=np.float32) LRop = Regression(t, order=order, dtype=par['dtype']) assert dottest(LRop, par['ny'], order+1) x = np.array([1., 2., 0., 3., -1.], dtype=np.float32) xlsqr = lsqr(LRop, LRop*x, damp=1e-10, iter_lim=300, show=0)[0] assert_array_almost_equal(x, xlsqr, decimal=3) y = LRop * x y1 = LRop.apply(t, x) assert_array_almost_equal(y, y1, decimal=3) @pytest.mark.parametrize("par", [(par1), (par2)]) def test_LinearRegression(par): """Dot-test and inversion for LinearRegression operator """ np.random.seed(10) t = np.arange(par['ny'], dtype=np.float32) LRop = LinearRegression(t, dtype=par['dtype']) assert dottest(LRop, par['ny'], 2) x = np.array([1., 2.], dtype=np.float32) xlsqr = lsqr(LRop, LRop*x, damp=1e-10, iter_lim=300, show=0)[0] assert_array_almost_equal(x, xlsqr, decimal=3) y = LRop * x y1 = LRop.apply(t, x) assert_array_almost_equal(y, y1, decimal=3) @pytest.mark.parametrize("par", [(par1), (par2), (par1j), (par2j)]) def test_MatrixMult(par): """Dot-test and inversion for MatrixMult operator """
np.random.seed(10)
numpy.random.seed
from matplotlib import rcParams rcParams["font.family"] = "sans-serif" rcParams["font.sans-serif"] = ["Arial"] rcParams.update({'font.size': 12}) # import matplotlib # matplotlib.use('Agg') from basic.binning import binning, scatter_hist from basic.math_fn import to_1darray, oneD_gaussian, ln_oneD_gaussian, exp_survival, ln_exp_pdf, ln_gau_exp_pdf, exp_gauss_2d import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture from basic.file_io import save_img from lifelines import KaplanMeierFitter import pandas as pd import random ### data: (n,1)-array class EM: def __init__(self, data, dim=1): self.data = data.reshape(-1, dim) self.s_lower = 1 def skGMM(self, n_components, tolerance=10e-5): self.n_components = n_components data = self.data n_sample = len(data) gmm = GaussianMixture(n_components=n_components, tol=tolerance).fit(data) labels = gmm.predict(data) data_cluster = [data[labels == i] for i in range(n_components)] p = gmm.predict_proba(data).T f = np.sum(p, axis=1) / n_sample m = np.matmul(p, data).ravel() / np.sum(p, axis=1) s = np.sqrt(np.matmul(p, data ** 2).ravel() / (np.sum(p, axis=1)) - m ** 2) self.para_progress = [f, m, s] self.para_final = [f[-1], m[-1], s[-1]] return f, m, s, labels, data_cluster def GMM(self, n_components, tolerance=1e-2, rand_init=False): """EM algorithm with pdf=Gaussian (GMM) Parameters ---------- n_components : int Number of components. tolerance : float Convergence criteria data : array (n_samples,1) Returns ------- """ ## (f,m,s) are growing array data = self.data self.n_components = n_components self.tolerance = tolerance ## initialize EM parameters f, m, s, loop, improvement = self.__init_GMM(data, n_components=n_components, rand_init=rand_init) converged = improvement < tolerance while (loop < 20 or ~converged) and loop < 500: prior_prob = self.__weighting(f, m, s, function=ln_oneD_gaussian) f, m, s = self.__update_f_m_s(data, prior_prob, f, m, s) improvement = self.__cal_improvement(f, m, s) converged = improvement < tolerance loop += 1 f, m, s = self.__reshape_all(f, m, s, n_rows=loop+1, n_cols=n_components) self.para_progress = [f, m, s] m_f, f_f, s_f = self.__sort_according(m[-1], f[-1], s[-1]) self.para_final = [f_f, m_f, s_f] para = self.para_final self.__cal_LLE(data, function=ln_oneD_gaussian, para=para) converged = np.array([converged] * n_components) self.converged = converged # labels, data_cluster = self.predict(data, ln_oneD_gaussian, paras=[f.ravel(), m.ravel(), s.ravel()]) return f_f, m_f, s_f, converged def PEM(self, n_components, tolerance=1e-2, rand_init=False): data = self.data self.n_components = n_components self.tolerance = tolerance f, tau, s, loop, improvement = self.__init_PEM(data, n_components=n_components, rand_init=rand_init) converged = improvement < tolerance while (loop < 20 or ~converged) and loop < 500: prior_prob = self.__weighting(f, tau, function=ln_exp_pdf) f, tau, s = self.__update_f_m_s(data, prior_prob, f, tau, s) improvement = self.__cal_improvement(f, tau) converged = improvement < tolerance loop += 1 f, tau, s = self.__reshape_all(f, tau, s, n_rows=loop+1, n_cols=n_components) self.para_progress = [f, tau, s] tau_f, f_f, s_f = self.__sort_according(tau[-1], f[-1], s[-1]) self.para_final = [f_f, tau_f] para = self.para_final ln_likelihood = self.__cal_LLE(data, function=ln_exp_pdf, para=para) converged = np.array([converged] * n_components) self.converged = converged # labels, data_cluster = self.predict(data, ln_exp_pdf, paras=[f.ravel(), tau.ravel()]) return f_f, tau_f, s_f, converged, ln_likelihood def GPEM(self, n_components, tolerance=1e-2, rand_init=False): data = self.data ## (n_samples, 2) x = data[:, 0] ## Gaussian R.V. y = data[:, 1] ## Poisson R.V. self.tolerance = tolerance ## initialize EM parameters f1, m, s1, loop, improvement = self.__init_GMM(data[:,0], n_components=n_components, rand_init=rand_init) f2, tau, s2, loop, improvement = self.__init_PEM(data[:,1], n_components=n_components, rand_init=rand_init) converged = improvement < tolerance while (loop < 20 or ~converged) and loop < 500: prior_prob = self.__weighting(f1, m, s1, tau, function=ln_gau_exp_pdf) f1, m, s1 = self.__update_f_m_s(data[:,0].reshape(-1,1), prior_prob, f1, m, s1) f2, tau, s2 = self.__update_f_m_s(data[:,1].reshape(-1,1), prior_prob, f2, tau, s2) improvement = self.__cal_improvement(f1, m, s1, tau) converged = improvement < tolerance loop += 1 f1, m, s1, tau = self.__reshape_all(f1, m, s1, tau, n_rows=loop+1, n_cols=n_components) self.para_progress = [f1, m, s1, tau] m_f, f_f, s_f, tau_f = self.__sort_according(m[-1], f1[-1], s1[-1], tau[-1]) self.para_final = [f_f, m_f, s_f, tau_f] para = self.para_final ln_likelihood = self.__cal_LLE(data, function=ln_gau_exp_pdf, para=para) converged = np.array([converged] * n_components) self.converged = converged # labels, data_cluster = self.predict(data, function=ln_gau_exp_pdf, paras=para) return f_f, m_f, s_f, tau_f, converged, ln_likelihood ## set given m def GPEM_set(self, n_components, m_set, tolerance=1e-2, rand_init=False): data = self.data ## (n_samples, 2) x = data[:, 0] ## Gaussian R.V. y = data[:, 1] ## Poisson R.V. self.tolerance = tolerance ## initialize EM parameters m_fix = m_set.copy() f1, m, s1, loop, improvement = self.__init_GMM(data[:,0], n_components=n_components, rand_init=rand_init) f2, tau, s2, loop, improvement = self.__init_PEM(data[:,1], n_components=n_components, rand_init=rand_init) converged = improvement < tolerance while (loop < 20 or ~converged) and loop < 500: prior_prob = self.__weighting(f1, m_fix, s1, tau, function=ln_gau_exp_pdf) m_fix = np.append(m_fix, m_set) f1, m1_notuse, s1 = self.__update_f_m_s(data[:,0].reshape(-1,1), prior_prob, f1, m_fix, s1) f2, tau, s2 = self.__update_f_m_s(data[:,1].reshape(-1,1), prior_prob, f2, tau, s2) improvement = self.__cal_improvement(f1, m_fix, s1, tau) converged = improvement < tolerance loop += 1 f1, m_fix, s1, tau = self.__reshape_all(f1, m_fix, s1, tau, n_rows=loop+1, n_cols=n_components) self.para_progress = [f1, m_fix, s1, tau] m_fix_f, f_f, s_f, tau_f = self.__sort_according(m_fix[-1], f1[-1], s1[-1], tau[-1]) self.para_final = [f_f, m_fix_f, s_f, tau_f] para = self.para_final ln_likelihood = self.__cal_LLE(data, function=ln_gau_exp_pdf, para=para) converged = np.array([converged] * n_components) self.converged = converged # labels, data_cluster = self.predict(data, function=ln_gau_exp_pdf, paras=para) return f_f, m_fix_f, s_f, tau_f, converged, ln_likelihood ## iteratively find lowest BIC or AIC value def opt_components_iter(self, iteration=10, tolerance=1e-2, mode='GMM', criteria='BIC', figure=False, figsize=(10, 10)): n_all, c_all = [], [] for i in range(iteration): n = self.opt_components(tolerance=tolerance, mode=mode, criteria=criteria, figure=figure, figsize=figsize) if criteria == 'AIC': c = self.AIC_owns[n - 1] else: c = self.BIC_owns[n - 1] n_all = np.append(n_all, n) c_all = np.append(c_all, c) index = np.argmin(c_all) return int(n_all[index]) def opt_components(self, tolerance=1e-2, mode='GMM', criteria='BIC', figure=False, figsize=(10,10)): self.mode = mode ## find best n_conponents data = self.data BICs, AICs = [], [] BIC_owns, AIC_owns = [], [] LLE = [] n_clusters =
np.arange(1, 6)
numpy.arange
# coding=utf-8 import torch from math import log10 from torch.nn import Parameter, Module, Linear, MSELoss from torch.autograd import Variable, grad import numpy as np from PIL.ImageEnhance import * def gradPenalty(D_net, real, fake, LAMBDA=10, input=None): use_gpu = real.is_cuda() and fake.is_cuda() batch_size = real.size()[0] # Calculate interpolation alpha = torch.rand(batch_size, 1, 1, 1) alpha = alpha.expand_as(real) alpha = alpha.cuda() if use_gpu else alpha interpolates = alpha * real + ((1 - alpha) * fake) if use_gpu: interpolates = interpolates.cuda() interpolates = Variable(interpolates, requires_grad=True) if input is not None: disc_interpolates = D_net(interpolates, input) else: disc_interpolates = D_net(interpolates) gradients = grad( outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size()).cuda() if use_gpu else torch.ones(disc_interpolates.size()), create_graph=True, retain_graph=True, only_inputs=True)[0] gradients = gradients.view(gradients.size(0), -1) gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA return gradient_penalty def jcbClamp(G_net, z, lmbda_max=20, lmbda_min=1, ep=1, use_gpu=False): """ implement of jacobin climping. 'Is Generator Conditioning Causally Related to GAN Performance?' :param G_net: generate model :param z: input :param lmbda_max: default 20 :param lmbda_min: default 1 :param ep: default 1 :param use_gpu: default False :return: """ lmbda_max = lmbda_max * torch.ones(1) lmbda_min = lmbda_min * torch.ones(1) sigma = torch.randn(z.size()) if use_gpu: lmbda_max = lmbda_max.cuda() lmbda_min = lmbda_min.cuda() sigma = sigma.cuda() sigma = sigma / torch.norm(sigma, 2) * ep z_ = z + sigma Q = torch.norm(G_net(z) - G_net(z_), 2) / torch.norm(z - z_, 2) l_max = (torch.max(Q, lmbda_max) - lmbda_max) ** 2 l_min = (torch.min(Q, lmbda_min) - lmbda_min) ** 2 return (l_max + l_min).mean() def VBD(x, z, beta, ic): x_ = 0.5 * (x + z) KL = torch.nn.KLDivLoss() KL = KL(x_, z) vdb = beta * KL - ic return vdb def get_SNR(fake, real): fake_sq = (fake ** 2).sum() mse = ((fake - real) ** 2).sum() if mse < 1e-8: mse = 1e-8 snr = 10 * log10(fake_sq / mse) return snr def get_PSNR(fake, real): fake_sq = (fake ** 2).mean() snr = get_SNR(fake, real) psnr = snr + 10 * log10(255 ** 2 / fake_sq) return psnr class Cutout(object): """Randomly mask out one or more patches from an image. Args: n_holes (int): Number of patches to cut out of each image. length (int): The length (in pixels) of each square patch. """ def __init__(self, n_holes, length, mask_numb=.0): self.n_holes = n_holes self.length = length self.mask_numb = mask_numb def __call__(self, img): """ Args: img (Tensor): Tensor image of size (C, H, W). Returns: Tensor: Image with n_holes of dimension length x length cut out of it. """ h = img.size(1) w = img.size(2) mask = np.ones((h, w), np.float32) for n in range(self.n_holes): y = np.random.randint(h) x =
np.random.randint(w)
numpy.random.randint
# # <EMAIL> # 2017-10-10 # Codigo que faz regressao simples e encontra embeddings # # a ideia aqui e a seguinte: # - carregar dados do movielens # - inicializar o embedding de forma aleatoria # - encontrar os embeddings de filmes e de usuarios que gerem o menor erro possivel # t8: retira os bias de filmes e usuarios e substitui por um unico bias global # t9b: multilayer nn from __future__ import division from __future__ import print_function from time import gmtime, strftime, localtime import math import time import sys import os #from pylab import * from scipy import sparse import numpy as np import pandas as pd import tensorflow as tf import random from tensorflow.python import debug as tf_debug NUM_USERS = 247754 NUM_MOVIES = 151712 SECOND_FEATURES = 32 batch_size = 99999 num_steps = 2000001 base_alpha = 0.0003 count =1 # Regularization lbda = 0.002 decay = 0.9999 num_ratings = 0 TRAIN_INPUT_FILE="train-ratings-3.csv" TEST_INPUT_FILE="validation-ratings-3.csv" use_bias = True use_square = True use_second_layer = True tf.set_random_seed(1) round_ranking = 0 t0 = time.perf_counter() #import tracemalloc #tracemalloc.start() if sys.argv[1].isdigit(): NUM_FEATURES = int(sys.argv[1]) else: raise Exception("parameter NUM_FEATURES is required") if len(sys.argv) < 3: raise Exception("parameter round_ranking is required (y, Y, s, S, 1, T, t means should round down. Anything else means it shouldn't") if sys.argv[2] in ("y", "Y", "s", "S", "1", "T", "t"): round_ranking = 1 else: round_raking = 0 if len(sys.argv) < 4: use_activation = 'linear' # raise Exception('parameter activation is required. It can be "linear", "sigmoid" or "relu"') else: if sys.argv[3] in ("sigmoid" , "linear", "relu"): use_activation = sys.argv[3] if use_activation == 'sigmoid': scale = 6.0 else: scale = 1.0 def loga(msg): now = time.perf_counter() print("%6.2f: %s" % (now - t0, msg)) def load_data(train_fname, test_fname): global NUM_USERS global NUM_MOVIES global round_ranking global num_ratings print("Loading data from {} and {}".format(train_fname, test_fname)) full_train_data = pd.read_csv(train_fname, sep=",").sample(frac=1) full_test_data = pd.read_csv(test_fname, sep=",").sample(frac=1) train_data =
np.array(full_train_data[["userId", "movieId"]])
numpy.array
import bezier import csv # bezier.pyおよびモジュールcsvの読み込み import numpy as np # モジュールnumpyをnpという名前で読み込み import scipy as sp # モジュールscipyをspという名前で読み込み from scipy import optimize # scipy内のoptimizeモジュールを読み込み from scipy import integrate # scipy内のintegrateモジュールを読み込み filename = 'input1' # 制御点座標情報を格納した入力ファイル名 reader = csv.reader(open(filename + '.csv', 'r')) # 入力ファイルの読み込み next(reader) # 先頭行は読み飛ばし row = next(reader)[0:2] n, m = int(row[0]), int(row[1]) # u,v方向の制御点数 next(reader) # 1行読み飛ばし cp = np.zeros([n, m, 3]) for i in range(n): for j in range(m): cpi = next(reader)[0:3] cp[i, j, :] = float(cpi[0]), float(cpi[1]), float(cpi[2]) limit = [
np.min(cp)
numpy.min
import numpy as np from free_energy_clustering.GMM import GaussianMixture from free_energy_clustering.GMM_free_energy import FreeEnergyClustering class GMM2D(GaussianMixture): def __init__(self): GaussianMixture.__init__(self, n_components=9) self.n_dims_ = 2 self._set_parameters() self.name = 'GMM_2D' return def _set_cov(self, x11,x12,x22): tmp_cov = np.zeros((self.n_dims_, self.n_dims_)) tmp_cov[0, 0] = x11 tmp_cov[0, 1] = x12 tmp_cov[1, 0] = x12 tmp_cov[1, 1] = x22 return tmp_cov def _set_parameters(self): self.means_ = np.asarray([ np.asarray([0.8,0.35]), np.asarray([0.45,0.52]), np.asarray([0.2,0.6]), np.asarray([0.05,0.8]), np.asarray([0.5,0.25]), np.asarray([0.5,0.25]), np.asarray([0.5, 0.25]), np.asarray([0.4, 0.34]), np.asarray([0.8,0.5])]) covs = [
np.zeros((2,2))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 5 12:13:33 2018 @author: <NAME> (<EMAIL> / <EMAIL>) """ # Python dependencies from __future__ import division import pandas as pd import numpy as np import mpmath as mp import matplotlib as mpl import seaborn as sns from scipy.constants import codata from pylab import * from lmfit import minimize, report_fit # from scipy.optimize import leastsq pd.options.mode.chained_assignment = None # Plotting mpl.rc("mathtext", fontset="stixsans", default="regular") mpl.rcParams.update({"axes.labelsize": 22}) mpl.rc("xtick", labelsize=16) mpl.rc("ytick", labelsize=16) mpl.rc("legend", fontsize=14) F = codata.physical_constants["Faraday constant"][0] Rg = codata.physical_constants["molar gas constant"][0] ### Importing PyEIS add-ons from .PyEIS_Data_extraction import * from .PyEIS_Lin_KK import * from .PyEIS_Advanced_tools import * ### Frequency generator ## # def freq_gen(f_start, f_stop, pts_decade=7): """ Frequency Generator with logspaced freqencies Inputs ---------- f_start = frequency start [Hz] f_stop = frequency stop [Hz] pts_decade = Points/decade, default 7 [-] Output ---------- [0] = frequency range [Hz] [1] = Angular frequency range [1/s] """ f_decades = np.log10(f_start) - np.log10(f_stop) f_range = np.logspace( np.log10(f_start), np.log10(f_stop), num=np.around(pts_decade * f_decades).astype(int), endpoint=True, ) w_range = 2 * np.pi * f_range return f_range, w_range ### Simulation Element Functions ## # def elem_L(w, L): """ Simulation Function: -L- Returns the impedance of an inductor <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Inductance [ohm * s] """ return 1j * w * L def elem_C(w, C): """ Simulation Function: -C- Inputs ---------- w = Angular frequency [1/s] C = Capacitance [F] """ return 1 / (C * (w * 1j)) def elem_Q(w, Q, n): """ Simulation Function: -Q- Inputs ---------- w = Angular frequency [1/s] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] """ return 1 / (Q * (w * 1j) ** n) ### Simulation Curciuts Functions ## # def cir_RsC(w, Rs, C): """ Simulation Function: -Rs-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] C = Capacitance [F] """ return Rs + 1 / (C * (w * 1j)) def cir_RsQ(w, Rs, Q, n): """ Simulation Function: -Rs-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] """ return Rs + 1 / (Q * (w * 1j) ** n) def cir_RQ(w, R="none", Q="none", n="none", fs="none"): """ Simulation Function: -RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] """ if R == "none": R = 1 / (Q * (2 * np.pi * fs) ** n) elif Q == "none": Q = 1 / (R * (2 * np.pi * fs) ** n) elif n == "none": n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) return R / (1 + R * Q * (w * 1j) ** n) def cir_RsRQ(w, Rs="none", R="none", Q="none", n="none", fs="none"): """ Simulation Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] """ if R == "none": R = 1 / (Q * (2 * np.pi * fs) ** n) elif Q == "none": Q = 1 / (R * (2 * np.pi * fs) ** n) elif n == "none": n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) return Rs + (R / (1 + R * Q * (w * 1j) ** n)) def cir_RC(w, C="none", R="none", fs="none"): """ Simulation Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1. see cir_RQ() for details <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] C = Capacitance [F] fs = Summit frequency of RC circuit [Hz] """ return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RsRQRQ( w, Rs, R="none", Q="none", n="none", fs="none", R2="none", Q2="none", n2="none", fs2="none", ): """ Simulation Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase element exponent [-] fs = Summit frequency of RQ circuit [Hz] R2 = Resistance [Ohm] Q2 = Constant phase element [s^n/ohm] n2 = Constant phase element exponent [-] fs2 = Summit frequency of RQ circuit [Hz] """ if R == "none": R = 1 / (Q * (2 * np.pi * fs) ** n) elif Q == "none": Q = 1 / (R * (2 * np.pi * fs) ** n) elif n == "none": n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if R2 == "none": R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2) elif Q2 == "none": Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n2) elif n2 == "none": n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2)) return ( Rs + (R / (1 + R * Q * (w * 1j) ** n)) + (R2 / (1 + R2 * Q2 * (w * 1j) ** n2)) ) def cir_RsRQQ(w, Rs, Q, n, R1="none", Q1="none", n1="none", fs1="none"): """ Simulation Function: -Rs-RQ-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = Summit frequency of RQ circuit [Hz] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] """ return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_Q(w, Q, n) def cir_RsRQC(w, Rs, C, R1="none", Q1="none", n1="none", fs1="none"): """ Simulation Function: -Rs-RQ-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = summit frequency of RQ circuit [Hz] C = Constant phase element of series Q [s^n/ohm] """ return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_C(w, C=C) def cir_RsRCC(w, Rs, R1, C1, C): """ Simulation Function: -Rs-RC-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] C = Capacitance of series C [s^n/ohm] """ return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_C(w, C=C) def cir_RsRCQ(w, Rs, R1, C1, Q, n): """ Simulation Function: -Rs-RC-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] """ return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_Q(w, Q, n) def Randles_coeff( w, n_electron, A, E="none", E0="none", D_red="none", D_ox="none", C_red="none", C_ox="none", Rg=Rg, F=F, T=298.15, ): """ Returns the Randles coefficient sigma [ohm/s^1/2]. Two cases: a) ox and red are both present in solution here both Cred and Dred are defined, b) In the particular case where initially only Ox species are present in the solution with bulk concentration C*_ox, the surface concentrations may be calculated as function of the electrode potential following Nernst equation. Here C_red and D_red == 'none' Ref.: - Lasia, A.L., ISBN: 978-1-4614-8932-0, "Electrochemical Impedance Spectroscopy and its Applications" - <NAME>., ISBN: 0-471-04372-9, <NAME>. (2001) "Electrochemical methods: Fundamentals and applications". New York: Wiley. <NAME> (<EMAIL> // <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Bulk concetration of oxidized specie [mol/cm3] C_red = Bulk concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = formal potential [V] if reduced specie is absent == 'none' Returns ---------- Randles coefficient [ohm/s^1/2] """ if C_red != "none" and D_red != "none": sigma = ((Rg * T) / ((n_electron ** 2) * A * (F ** 2) * (2 ** (1 / 2)))) * ( (1 / (D_ox ** (1 / 2) * C_ox)) + (1 / (D_red ** (1 / 2) * C_red)) ) elif C_red == "none" and D_red == "none" and E != "none" and E0 != "none": f = F / (Rg * T) x = (n_electron * f * (E - E0)) / 2 func_cosh2 = (np.cosh(2 * x) + 1) / 2 sigma = ( (4 * Rg * T) / ((n_electron ** 2) * A * (F ** 2) * C_ox * ((2 * D_ox) ** (1 / 2))) ) * func_cosh2 else: print("define E and E0") Z_Aw = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5)) return Z_Aw def cir_Randles( w, n_electron, D_red, D_ox, C_red, C_ox, Rs, Rct, n, E, A, Q="none", fs="none", E0=0, F=F, Rg=Rg, T=298.15, ): """ Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with full complity of the warbug constant NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Concetration of oxidized specie [mol/cm3] C_red = Concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = Formal potential [V] if reduced specie is absent == 'none' Rs = Series resistance [ohm] Rct = charge-transfer resistance [ohm] Q = Constant phase element used to model the double-layer capacitance [F] n = expononent of the CPE [-] Returns ---------- The real and imaginary impedance of a Randles circuit [ohm] """ Z_Rct = Rct Z_Q = elem_Q(w, Q, n) Z_w = Randles_coeff( w, n_electron=n_electron, E=E, E0=E0, D_red=D_red, D_ox=D_ox, C_red=C_red, C_ox=C_ox, A=A, T=T, Rg=Rg, F=F, ) return Rs + 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) def cir_Randles_simplified(w, Rs, R, n, sigma, Q="none", fs="none"): """ Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with a simplified NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) """ if R == "none": R = 1 / (Q * (2 * np.pi * fs) ** n) elif Q == "none": Q = 1 / (R * (2 * np.pi * fs) ** n) elif n == "none": n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) Z_Q = 1 / (Q * (w * 1j) ** n) Z_R = R Z_w = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5)) return Rs + 1 / (1 / Z_Q + 1 / (Z_R + Z_w)) # Polymer electrolytes def cir_C_RC_C(w, Ce, Cb="none", Rb="none", fsb="none"): """ Simulation Function: -C-(RC)-C- This circuit is often used for modeling blocking electrodes with a polymeric electrolyte, which exhibts a immobile ionic species in bulk that gives a capacitance contribution to the otherwise resistive electrolyte Ref: - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London, Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Ce = Interfacial capacitance [F] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = summit frequency of bulk (RC) circuit [Hz] """ Z_C = elem_C(w, C=Ce) Z_RC = cir_RC(w, C=Cb, R=Rb, fs=fsb) return Z_C + Z_RC def cir_Q_RQ_Q(w, Qe, ne, Qb="none", Rb="none", fsb="none", nb="none"): """ Simulation Function: -Q-(RQ)-Q- Modified cir_C_RC_C() circuits that can be used if electrodes and bulk are not behaving like ideal capacitors <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Qe = Interfacial capacitance modeled with a CPE [F] ne = Interfacial constant phase element exponent [-] Rb = Bulk/series resistance [Ohm] Qb = Bulk capacitance modeled with a CPE [s^n/ohm] nb = Bulk constant phase element exponent [-] fsb = summit frequency of bulk (RQ) circuit [Hz] """ Z_Q = elem_Q(w, Q=Qe, n=ne) Z_RQ = cir_RQ(w, Q=Qb, R=Rb, fs=fsb, n=nb) return Z_Q + Z_RQ def tanh(x): """ As numpy gives errors when tanh becomes very large, above 10^250, this functions is used for np.tanh """ return (1 - np.exp(-2 * x)) / (1 + np.exp(-2 * x)) def cir_RCRCZD( w, L, D_s, u1, u2, Cb="none", Rb="none", fsb="none", Ce="none", Re="none", fse="none", ): """ Simulation Function: -RC_b-RC_e-Z_D This circuit has been used to study non-blocking electrodes with an ioniocally conducting electrolyte with a mobile and immobile ionic specie in bulk, this is mixed with a ionically conducting salt. This behavior yields in a impedance response, that consists of the interfacial impendaces -(RC_e)-, the ionically conducitng polymer -(RC_e)-, and the diffusional impedance from the dissolved salt. Refs.: - <NAME>. and <NAME>., Electrochimica Acta, 27, 1671-1675, 1982, "Conductivity, Charge Transfer and Transport number - An AC-Investigation of the Polymer Electrolyte LiSCN-Poly(ethyleneoxide)" - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Thickness of electrode [cm] D_s = Diffusion coefficient of dissolved salt [cm2/s] u1 = Mobility of the ion reacting at the electrode interface u2 = Mobility of other ion Re = Interfacial resistance [Ohm] Ce = Interfacial capacitance [F] fse = Summit frequency of the interfacial (RC) circuit [Hz] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = Summit frequency of the bulk (RC) circuit [Hz] """ Z_RCb = cir_RC(w, C=Cb, R=Rb, fs=fsb) Z_RCe = cir_RC(w, C=Ce, R=Re, fs=fse) alpha = ((w * 1j * L ** 2) / D_s) ** (1 / 2) Z_D = Rb * (u2 / u1) * (tanh(x=alpha) / alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ(w, Rs, L, Ri, Q="none", n="none"): """ Simulation Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = exponent for the interfacial capacitance [-] """ Phi = 1 / (Q * (w * 1j) ** n) X1 = Ri # ohm/cm Lam = (Phi / X1) ** (1 / 2) # np.sqrt(Phi/X1) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_TLsQ def cir_RsRQTLsQ(w, Rs, R1, fs1, n1, L, Ri, Q, n, Q1="none"): """ Simulation Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance(Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = Exponent for the interfacial capacitance [-] Output ----------- Impdance of Rs-(RQ)1-TLsQ """ Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = 1 / (Q * (w * 1j) ** n) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j) Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs(w, Rs, L, Ri, R="none", Q="none", n="none", fs="none"): """ Simulation Function: -Rs-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R = Interfacial Charge transfer resistance [ohm*cm] fs = Summit frequency of interfacial RQ circuit [Hz] n = Exponent for interfacial RQ circuit [-] Q = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-TLs(RQ) """ Phi = cir_RQ(w, R, Q, n, fs) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs(w, Rs, L, Ri, R1, n1, fs1, R2, n2, fs2, Q1="none", Q2="none"): """ Simulation Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - B<NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/(ohm * cm)] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R2 = Interfacial Charge transfer resistance [ohm*cm] fs2 = Summit frequency of interfacial RQ circuit [Hz] n2 = Exponent for interfacial RQ circuit [-] Q2 = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-(RQ)1-TLs(RQ)2 """ Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = cir_RQ(w=w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs ### Support function def sinh(x): """ As numpy gives errors when sinh becomes very large, above 10^250, this functions is used instead of np/mp.sinh() """ return (1 - np.exp(-2 * x)) / (2 * np.exp(-x)) def coth(x): """ As numpy gives errors when coth becomes very large, above 10^250, this functions is used instead of np/mp.coth() """ return (1 + np.exp(-2 * x)) / (1 - np.exp(-2 * x)) ### def cir_RsTLQ(w, L, Rs, Q, n, Rel, Ri): """ Simulation Function: -R-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL """ # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ(w, L, Rs, Q, n, Rel, Ri, R1, n1, fs1, Q1="none"): """ Simulation Function: -R-RQ-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL """ # The impedance of the series resistance Z_Rs = Rs # The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL(w, L, Rs, R, fs, n, Rel, Ri, Q="none"): """ Simulation Function: -R-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = Interfacial charge transfer resistance [ohm * cm] fs = Summit frequency for the interfacial RQ element [Hz] n = Exponenet for interfacial RQ element [-] Q = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = Electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = Thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL """ # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R, Q=Q, n=n, fs=fs) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL(w, L, Rs, R1, fs1, n1, R2, fs2, n2, Rel, Ri, Q1="none", Q2="none"): """ Simulation Function: -R-RQ-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] R2 = interfacial charge transfer resistance [ohm * cm] fs2 = Summit frequency for the interfacial RQ element [Hz] n2 = exponenet for interfacial RQ element [-] Q2 = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL """ # The impedance of the series resistance Z_Rs = Rs # The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL # Transmission lines with solid-state transport def cir_RsTL_1Dsolid(w, L, D, radius, Rs, R, Q, n, R_w, n_w, Rel, Ri): """ Simulation Function: -R-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = particle charge transfer resistance [ohm*cm^2] Q = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output -------------- Impedance of Rs-TL(Q(RW)) """ # The impedance of the series resistance Z_Rs = Rs # The impedance of a 1D Warburg Element time_const = (radius ** 2) / D x = (time_const * w * 1j) ** n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) Z_w = R_w * np.array(warburg_coth_mp) / x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w, Q=Q, n=n) Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm # The Impedance of the Transmission Line lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2) x = L / lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid( w, L, D, radius, Rs, R1, fs1, n1, R2, Q2, n2, R_w, n_w, Rel, Ri, Q1="none" ): """ Simulation Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - <NAME>., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = charge transfer resistance of the interfacial RQ element [ohm*cm^2] fs1 = max frequency peak of the interfacial RQ element[Hz] n1 = exponenet for interfacial RQ element R2 = particle charge transfer resistance [ohm*cm^2] Q2 = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n2 = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output ------------------ Impedance of R-RQ-TL(Q(RW)) """ # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The impedance of a 1D Warburg Element time_const = (radius ** 2) / D x = (time_const * w * 1j) ** n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) Z_w = R_w * np.array(warburg_coth_mp) / x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w, Q=Q2, n=n2) Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm # The Impedance of the Transmission Line lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2) x = L / lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ + Z_TL ### Fitting Circuit Functions ## # def elem_C_fit(params, w): """ Fit Function: -C- """ C = params["C"] return 1 / (C * (w * 1j)) def elem_Q_fit(params, w): """ Fit Function: -Q- Constant Phase Element for Fitting """ Q = params["Q"] n = params["n"] return 1 / (Q * (w * 1j) ** n) def cir_RsC_fit(params, w): """ Fit Function: -Rs-C- """ Rs = params["Rs"] C = params["C"] return Rs + 1 / (C * (w * 1j)) def cir_RsQ_fit(params, w): """ Fit Function: -Rs-Q- """ Rs = params["Rs"] Q = params["Q"] n = params["n"] return Rs + 1 / (Q * (w * 1j) ** n) def cir_RC_fit(params, w): """ Fit Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1 """ if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["C"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("C") == -1: # elif Q == 'none': R = params["R"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["C"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] Q = params["C"] return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RQ_fit(params, w): """ Fit Function: -RQ- Return the impedance of an RQ circuit: Z(w) = R / (1+ R*Q * (2w)^n) See Explanation of equations under cir_RQ() The params.keys()[10:] finds the names of the user defined parameters that should be interated over if X == -1, if the paramter is not given, it becomes equal to 'none' <NAME> (<EMAIL> / <EMAIL>) """ if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] n = params["n"] Q = params["Q"] return R / (1 + R * Q * (w * 1j) ** n) def cir_RsRQ_fit(params, w): """ Fit Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RsRQ_fit() <NAME> (<EMAIL> / <EMAIL>) """ if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] Q = params["Q"] n = params["n"] Rs = params["Rs"] return Rs + (R / (1 + R * Q * (w * 1j) ** n)) def cir_RsRQRQ_fit(params, w): """ Fit Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details under cir_RsRQRQ() <NAME> (<EMAIL> / <EMAIL>) """ if str(params.keys())[10:].find("'R'") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("'Q'") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("'n'") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("'fs'") == -1: # elif fs == 'none': R = params["R"] Q = params["Q"] n = params["n"] if str(params.keys())[10:].find("'R2'") == -1: # if R == 'none': Q2 = params["Q2"] n2 = params["n2"] fs2 = params["fs2"] R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2) if str(params.keys())[10:].find("'Q2'") == -1: # elif Q == 'none': R2 = params["R2"] n2 = params["n2"] fs2 = params["fs2"] Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n2) if str(params.keys())[10:].find("'n2'") == -1: # elif n == 'none': R2 = params["R2"] Q2 = params["Q2"] fs2 = params["fs2"] n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2)) if str(params.keys())[10:].find("'fs2'") == -1: # elif fs == 'none': R2 = params["R2"] Q2 = params["Q2"] n2 = params["n2"] Rs = params["Rs"] return ( Rs + (R / (1 + R * Q * (w * 1j) ** n)) + (R2 / (1 + R2 * Q2 * (w * 1j) ** n2)) ) def cir_Randles_simplified_Fit(params, w): """ Fit Function: Randles simplified -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit. See more under cir_Randles_simplified() NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> || <EMAIL>) """ if str(params.keys())[10:].find("'R'") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("'Q'") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("'n'") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("'fs'") == -1: # elif fs == 'none': R = params["R"] Q = params["Q"] n = params["n"] Rs = params["Rs"] sigma = params["sigma"] Z_Q = 1 / (Q * (w * 1j) ** n) Z_R = R Z_w = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5)) return Rs + 1 / (1 / Z_Q + 1 / (Z_R + Z_w)) def cir_RsRQQ_fit(params, w): """ Fit Function: -Rs-RQ-Q- See cir_RsRQQ() for details """ Rs = params["Rs"] Q = params["Q"] n = params["n"] Z_Q = 1 / (Q * (w * 1j) ** n) if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) return Rs + Z_RQ + Z_Q def cir_RsRQC_fit(params, w): """ Fit Function: -Rs-RQ-C- See cir_RsRQC() for details """ Rs = params["Rs"] C = params["C"] Z_C = 1 / (C * (w * 1j)) if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) return Rs + Z_RQ + Z_C def cir_RsRCC_fit(params, w): """ Fit Function: -Rs-RC-C- See cir_RsRCC() for details """ Rs = params["Rs"] R1 = params["R1"] C1 = params["C1"] C = params["C"] return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_C(w, C=C) def cir_RsRCQ_fit(params, w): """ Fit Function: -Rs-RC-Q- See cir_RsRCQ() for details """ Rs = params["Rs"] R1 = params["R1"] C1 = params["C1"] Q = params["Q"] n = params["n"] return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_Q(w, Q, n) # Polymer electrolytes def cir_C_RC_C_fit(params, w): """ Fit Function: -C-(RC)-C- See cir_C_RC_C() for details <NAME> (<EMAIL> || <EMAIL>) """ # Interfacial impedance Ce = params["Ce"] Z_C = 1 / (Ce * (w * 1j)) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: # if R == 'none': Cb = params["Cb"] fsb = params["fsb"] Rb = 1 / (Cb * (2 * np.pi * fsb)) if str(params.keys())[10:].find("Cb") == -1: # elif Q == 'none': Rb = params["Rb"] fsb = params["fsb"] Cb = 1 / (Rb * (2 * np.pi * fsb)) if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none': Rb = params["Rb"] Cb = params["Cb"] Z_RC = Rb / (1 + Rb * Cb * (w * 1j)) return Z_C + Z_RC def cir_Q_RQ_Q_Fit(params, w): """ Fit Function: -Q-(RQ)-Q- See cir_Q_RQ_Q() for details <NAME> (<EMAIL> || <EMAIL>) """ # Interfacial impedance Qe = params["Qe"] ne = params["ne"] Z_Q = 1 / (Qe * (w * 1j) ** ne) # Bulk impedance if str(params.keys())[10:].find("Rb") == -1: # if R == 'none': Qb = params["Qb"] nb = params["nb"] fsb = params["fsb"] Rb = 1 / (Qb * (2 * np.pi * fsb) ** nb) if str(params.keys())[10:].find("Qb") == -1: # elif Q == 'none': Rb = params["Rb"] nb = params["nb"] fsb = params["fsb"] Qb = 1 / (Rb * (2 * np.pi * fsb) ** nb) if str(params.keys())[10:].find("nb") == -1: # elif n == 'none': Rb = params["Rb"] Qb = params["Qb"] fsb = params["fsb"] nb = np.log(Qb * Rb) / np.log(1 / (2 * np.pi * fsb)) if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none': Rb = params["Rb"] nb = params["nb"] Qb = params["Qb"] Z_RQ = Rb / (1 + Rb * Qb * (w * 1j) ** nb) return Z_Q + Z_RQ def cir_RCRCZD_fit(params, w): """ Fit Function: -RC_b-RC_e-Z_D See cir_RCRCZD() for details <NAME> (<EMAIL> || <EMAIL>) """ # Interfacial impendace if str(params.keys())[10:].find("Re") == -1: # if R == 'none': Ce = params["Ce"] fse = params["fse"] Re = 1 / (Ce * (2 * np.pi * fse)) if str(params.keys())[10:].find("Ce") == -1: # elif Q == 'none': Re = params["Rb"] fse = params["fsb"] Ce = 1 / (Re * (2 * np.pi * fse)) if str(params.keys())[10:].find("fse") == -1: # elif fs == 'none': Re = params["Re"] Ce = params["Ce"] Z_RCe = Re / (1 + Re * Ce * (w * 1j)) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: # if R == 'none': Cb = params["Cb"] fsb = params["fsb"] Rb = 1 / (Cb * (2 * np.pi * fsb)) if str(params.keys())[10:].find("Cb") == -1: # elif Q == 'none': Rb = params["Rb"] fsb = params["fsb"] Cb = 1 / (Rb * (2 * np.pi * fsb)) if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none': Rb = params["Rb"] Cb = params["Cb"] Z_RCb = Rb / (1 + Rb * Cb * (w * 1j)) # Mass transport impendance L = params["L"] D_s = params["D_s"] u1 = params["u1"] u2 = params["u2"] alpha = ((w * 1j * L ** 2) / D_s) ** (1 / 2) Z_D = Rb * (u2 / u1) * (tanh(alpha) / alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ_fit(params, w): """ Fit Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsTLsQ() <NAME> (<EMAIL> / <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Q = params["Q"] n = params["n"] Phi = 1 / (Q * (w * 1j) ** n) X1 = Ri # ohm/cm Lam = (Phi / X1) ** (1 / 2) # np.sqrt(Phi/X1) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # # Z_TLsQ = Lam * X1 * coth_mp Z_TLsQ = Lam * X1 * coth(x) return Rs + Z_TLsQ def cir_RsRQTLsQ_Fit(params, w): """ Fit Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsRQTLsQ <NAME> (<EMAIL> / <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Q = params["Q"] n = params["n"] if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) Phi = 1 / (Q * (w * 1j) ** n) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs_Fit(params, w): """ Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) See mor under cir_RsTLs() <NAME> (<EMAIL> / <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] n = params["n"] Q = params["Q"] Phi = R / (1 + R * Q * (w * 1j) ** n) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs_Fit(params, w): """ Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line with a faradaic interfacial impedance (RQ) See more under cir_RsRQTLs() <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) if str(params.keys())[10:].find("R2") == -1: # if R == 'none': Q2 = params["Q2"] n2 = params["n2"] fs2 = params["fs2"] R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2) if str(params.keys())[10:].find("Q2") == -1: # elif Q == 'none': R2 = params["R2"] n2 = params["n2"] fs2 = params["fs2"] Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n1) if str(params.keys())[10:].find("n2") == -1: # elif n == 'none': R2 = params["R2"] Q2 = params["Q2"] fs2 = params["fs2"] n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2)) if str(params.keys())[10:].find("fs2") == -1: # elif fs == 'none': R2 = params["R2"] n2 = params["n2"] Q2 = params["Q2"] Phi = R2 / (1 + R2 * Q2 * (w * 1j) ** n2) X1 = Ri Lam = (Phi / X1) ** (1 / 2) x = L / Lam x_mp = mp.matrix(x) # x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) # Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs def cir_RsTLQ_fit(params, w): """ Fit Function: -R-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Rel = params["Rel"] Q = params["Q"] n = params["n"] # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ_fit(params, w): """ Fit Function: -R-RQ-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Rel = params["Rel"] Q = params["Q"] n = params["n"] # The impedance of the series resistance Z_Rs = Rs # The (RQ) circuit in series with the transmission line if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) if str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_Fit(params, w): """ Fit Function: -R-TLQ- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel See cir_RsTL() for details <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Rel = params["Rel"] # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R") == -1: # if R == 'none': Q = params["Q"] n = params["n"] fs = params["fs"] R = 1 / (Q * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none': R = params["R"] n = params["n"] fs = params["fs"] Q = 1 / (R * (2 * np.pi * fs) ** n) if str(params.keys())[10:].find("n") == -1: # elif n == 'none': R = params["R"] Q = params["Q"] fs = params["fs"] n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs)) if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none': R = params["R"] n = params["n"] Q = params["Q"] Phi = R / (1 + R * Q * (w * 1j) ** n) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_fit(params, w): """ Fit Function: -R-RQ-TL- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity including both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] Rel = params["Rel"] # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) elif str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) elif str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) elif str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) # # # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R2") == -1: # if R == 'none': Q2 = params["Q2"] n2 = params["n2"] fs2 = params["fs2"] R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2) elif str(params.keys())[10:].find("Q2") == -1: # elif Q == 'none': R2 = params["R2"] n2 = params["n2"] fs2 = params["fs2"] Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n1) elif str(params.keys())[10:].find("n2") == -1: # elif n == 'none': R2 = params["R2"] Q2 = params["Q2"] fs2 = params["fs2"] n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2)) elif str(params.keys())[10:].find("fs2") == -1: # elif fs == 'none': R2 = params["R2"] n2 = params["n2"] Q2 = params["Q2"] Phi = R2 / (1 + R2 * Q2 * (w * 1j) ** n2) X1 = Ri X2 = Rel Lam = (Phi / (X1 + X2)) ** (1 / 2) x = L / Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float((mp.coth(x_mp[i]).imag))*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real) + float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real)*1j) # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float((mp.sinh(x_mp[i]).imag))*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_1Dsolid_fit(params, w): """ Fit Function: -R-TL(Q(RW))- Transmission line w/ full complexity See cir_RsTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] radius = params["radius"] D = params["D"] R = params["R"] Q = params["Q"] n = params["n"] R_w = params["R_w"] n_w = params["n_w"] Rel = params["Rel"] Ri = params["Ri"] # The impedance of the series resistance Z_Rs = Rs # The impedance of a 1D Warburg Element time_const = (radius ** 2) / D x = (time_const * w * 1j) ** n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) Z_w = R_w * np.array(warburg_coth_mp) / x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w=w, Q=Q, n=n) Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm # The Impedance of the Transmission Line lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2) x = L / lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid_fit(params, w): """ Fit Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel. The Warburg element is specific for 1D solid-state diffusion See cir_RsRQTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) """ Rs = params["Rs"] L = params["L"] Ri = params["Ri"] radius = params["radius"] D = params["D"] R2 = params["R2"] Q2 = params["Q2"] n2 = params["n2"] R_w = params["R_w"] n_w = params["n_w"] Rel = params["Rel"] Ri = params["Ri"] # The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: # if R == 'none': Q1 = params["Q1"] n1 = params["n1"] fs1 = params["fs1"] R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1) elif str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none': R1 = params["R1"] n1 = params["n1"] fs1 = params["fs1"] Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1) elif str(params.keys())[10:].find("n1") == -1: # elif n == 'none': R1 = params["R1"] Q1 = params["Q1"] fs1 = params["fs1"] n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1)) elif str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none': R1 = params["R1"] n1 = params["n1"] Q1 = params["Q1"] Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1) # The impedance of a 1D Warburg Element time_const = (radius ** 2) / D x = (time_const * w * 1j) ** n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append( float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j ) Z_w = R_w * np.array(warburg_coth_mp) / x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w, Q=Q2, n=n2) Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm # The Impedance of the Transmission Line lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2) x = L / lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * ( (Rel ** 2 + Ri ** 2) / (Rel + Ri) ) * coth(x) return Z_Rs + Z_RQ1 + Z_TL ### Least-Squares error function def leastsq_errorfunc(params, w, re, im, circuit, weight_func): """ Sum of squares error function for the complex non-linear least-squares fitting procedure (CNLS). The fitting function (lmfit) will use this function to iterate over until the total sum of errors is minimized. During the minimization the fit is weighed, and currently three different weigh options are avaliable: - modulus - unity - proportional Modulus is generially recommended as random errors and a bias can exist in the experimental data. <NAME> (<EMAIL> || <EMAIL>) Inputs ------------ - params: parameters needed for CNLS - re: real impedance - im: Imaginary impedance - circuit: The avaliable circuits are shown below, and this this parameter needs it as a string. - C - Q - R-C - R-Q - RC - RQ - R-RQ - R-RQ-RQ - R-RQ-Q - R-(Q(RW)) - R-(Q(RM)) - R-RC-C - R-RC-Q - R-RQ-Q - R-RQ-C - RC-RC-ZD - R-TLsQ - R-RQ-TLsQ - R-TLs - R-RQ-TLs - R-TLQ - R-RQ-TLQ - R-TL - R-RQ-TL - R-TL1Dsolid (reactive interface with 1D solid-state diffusion) - R-RQ-TL1Dsolid - weight_func Weight function - modulus - unity - proportional """ if circuit == "C": re_fit = elem_C_fit(params, w).real im_fit = -elem_C_fit(params, w).imag elif circuit == "Q": re_fit = elem_Q_fit(params, w).real im_fit = -elem_Q_fit(params, w).imag elif circuit == "R-C": re_fit = cir_RsC_fit(params, w).real im_fit = -cir_RsC_fit(params, w).imag elif circuit == "R-Q": re_fit = cir_RsQ_fit(params, w).real im_fit = -cir_RsQ_fit(params, w).imag elif circuit == "RC": re_fit = cir_RC_fit(params, w).real im_fit = -cir_RC_fit(params, w).imag elif circuit == "RQ": re_fit = cir_RQ_fit(params, w).real im_fit = -cir_RQ_fit(params, w).imag elif circuit == "R-RQ": re_fit = cir_RsRQ_fit(params, w).real im_fit = -cir_RsRQ_fit(params, w).imag elif circuit == "R-RQ-RQ": re_fit = cir_RsRQRQ_fit(params, w).real im_fit = -cir_RsRQRQ_fit(params, w).imag elif circuit == "R-RC-C": re_fit = cir_RsRCC_fit(params, w).real im_fit = -cir_RsRCC_fit(params, w).imag elif circuit == "R-RC-Q": re_fit = cir_RsRCQ_fit(params, w).real im_fit = -cir_RsRCQ_fit(params, w).imag elif circuit == "R-RQ-Q": re_fit = cir_RsRQQ_fit(params, w).real im_fit = -cir_RsRQQ_fit(params, w).imag elif circuit == "R-RQ-C": re_fit = cir_RsRQC_fit(params, w).real im_fit = -cir_RsRQC_fit(params, w).imag elif circuit == "R-(Q(RW))": re_fit = cir_Randles_simplified_Fit(params, w).real im_fit = -cir_Randles_simplified_Fit(params, w).imag elif circuit == "R-(Q(RM))": re_fit = cir_Randles_uelectrode_fit(params, w).real im_fit = -cir_Randles_uelectrode_fit(params, w).imag elif circuit == "C-RC-C": re_fit = cir_C_RC_C_fit(params, w).real im_fit = -cir_C_RC_C_fit(params, w).imag elif circuit == "Q-RQ-Q": re_fit = cir_Q_RQ_Q_Fit(params, w).real im_fit = -cir_Q_RQ_Q_Fit(params, w).imag elif circuit == "RC-RC-ZD": re_fit = cir_RCRCZD_fit(params, w).real im_fit = -cir_RCRCZD_fit(params, w).imag elif circuit == "R-TLsQ": re_fit = cir_RsTLsQ_fit(params, w).real im_fit = -cir_RsTLsQ_fit(params, w).imag elif circuit == "R-RQ-TLsQ": re_fit = cir_RsRQTLsQ_Fit(params, w).real im_fit = -cir_RsRQTLsQ_Fit(params, w).imag elif circuit == "R-TLs": re_fit = cir_RsTLs_Fit(params, w).real im_fit = -cir_RsTLs_Fit(params, w).imag elif circuit == "R-RQ-TLs": re_fit = cir_RsRQTLs_Fit(params, w).real im_fit = -cir_RsRQTLs_Fit(params, w).imag elif circuit == "R-TLQ": re_fit = cir_RsTLQ_fit(params, w).real im_fit = -cir_RsTLQ_fit(params, w).imag elif circuit == "R-RQ-TLQ": re_fit = cir_RsRQTLQ_fit(params, w).real im_fit = -cir_RsRQTLQ_fit(params, w).imag elif circuit == "R-TL": re_fit = cir_RsTL_Fit(params, w).real im_fit = -cir_RsTL_Fit(params, w).imag elif circuit == "R-RQ-TL": re_fit = cir_RsRQTL_fit(params, w).real im_fit = -cir_RsRQTL_fit(params, w).imag elif circuit == "R-TL1Dsolid": re_fit = cir_RsTL_1Dsolid_fit(params, w).real im_fit = -cir_RsTL_1Dsolid_fit(params, w).imag elif circuit == "R-RQ-TL1Dsolid": re_fit = cir_RsRQTL_1Dsolid_fit(params, w).real im_fit = -cir_RsRQTL_1Dsolid_fit(params, w).imag else: print("Circuit is not defined in leastsq_errorfunc()") error = [(re - re_fit) ** 2, (im - im_fit) ** 2] # sum of squares # Different Weighing options, see Lasia if weight_func == "modulus": weight = [ 1 / ((re_fit ** 2 + im_fit ** 2) ** (1 / 2)), 1 / ((re_fit ** 2 + im_fit ** 2) ** (1 / 2)), ] elif weight_func == "proportional": weight = [1 / (re_fit ** 2), 1 / (im_fit ** 2)] elif weight_func == "unity": unity_1s = [] for k in range(len(re)): unity_1s.append( 1 ) # makes an array of [1]'s, so that the weighing is == 1 * sum of squres. weight = [unity_1s, unity_1s] else: print("weight not defined in leastsq_errorfunc()") S = np.array(weight) * error # weighted sum of squares return S ### Fitting Class class EIS_exp: """ This class is used to plot and/or analyze experimental impedance data. The class has three major functions: - EIS_plot() - Lin_KK() - EIS_fit() - EIS_plot() is used to plot experimental data with or without fit - Lin_KK() performs a linear Kramers-Kronig analysis of the experimental data set. - EIS_fit() performs complex non-linear least-squares fitting of the experimental data to an equivalent circuit <NAME> (<EMAIL> || <EMAIL>) Inputs ----------- - path: path of datafile(s) as a string - data: datafile(s) including extension, e.g. ['EIS_data1', 'EIS_data2'] - cycle: Specific cycle numbers can be extracted using the cycle function. Default is 'none', which includes all cycle numbers. Specific cycles can be extracted using this parameter, insert cycle numbers in brackets, e.g. cycle number 1,4, and 6 are wanted. cycle=[1,4,6] - mask: ['high frequency' , 'low frequency'], if only a high- or low-frequency is desired use 'none' for the other, e.g. maks=[10**4,'none'] """ def __init__(self, path, data, cycle="off", mask=["none", "none"]): self.df_raw0 = [] self.cycleno = [] for j, f in enumerate(data, start=0): if f.endswith("mpt"): # file is a .mpt file self.df_raw0.append( extract_mpt(path=path, EIS_name=f) ) # reads all datafiles elif f.endswith("DTA"): # file is a .dta file self.df_raw0.append( extract_dta(path=path, EIS_name=f) ) # reads all datafiles elif f.endswith("z"): # file is a .z file self.df_raw0.append( extract_solar(path=path, EIS_name=f) ) # reads all datafiles elif f.endswith("txt"): self.df_raw0.append(extract_csv(path=path, EIS_name=f)) else: print("Data file(s) could not be identified") self.cycleno.append(self.df_raw0[j].cycle_number) if np.min(self.cycleno[j]) <= np.max(self.cycleno[j - 1]): if j > 0: # corrects cycle_number except for the first data file self.df_raw0[j].update( {"cycle_number": self.cycleno[j] + np.max(self.cycleno[j - 1])} ) # corrects cycle number # currently need to append a cycle_number coloumn to gamry files # adds individual dataframes into one if len(self.df_raw0) == 1: self.df_raw = self.df_raw0[0] elif len(self.df_raw0) == 2: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1]], axis=0) elif len(self.df_raw0) == 3: self.df_raw = pd.concat( [self.df_raw0[0], self.df_raw0[1], self.df_raw0[2]], axis=0 ) elif len(self.df_raw0) == 4: self.df_raw = pd.concat( [self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3]], axis=0, ) elif len(self.df_raw0) == 5: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], ], axis=0, ) elif len(self.df_raw0) == 6: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], ], axis=0, ) elif len(self.df_raw0) == 7: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], ], axis=0, ) elif len(self.df_raw0) == 8: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], ], axis=0, ) elif len(self.df_raw0) == 9: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], ], axis=0, ) elif len(self.df_raw0) == 10: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], ], axis=0, ) elif len(self.df_raw0) == 11: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], ], axis=0, ) elif len(self.df_raw0) == 12: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], ], axis=0, ) elif len(self.df_raw0) == 13: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], self.df_raw0[12], ], axis=0, ) elif len(self.df_raw0) == 14: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], ], self.df_raw0[12], self.df_raw0[13], axis=0, ) elif len(self.df_raw0) == 15: self.df_raw = pd.concat( [ self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], ], self.df_raw0[12], self.df_raw0[13], self.df_raw0[14], axis=0, ) else: print("Too many data files || 15 allowed") self.df_raw = self.df_raw.assign( w=2 * np.pi * self.df_raw.f ) # creats a new coloumn with the angular frequency # Masking data to each cycle self.df_pre = [] self.df_limited = [] self.df_limited2 = [] self.df = [] if mask == ["none", "none"] and cycle == "off": for i in range(len(self.df_raw.cycle_number.unique())): # includes all data self.df.append( self.df_raw[ self.df_raw.cycle_number == self.df_raw.cycle_number.unique()[i] ] ) elif mask == ["none", "none"] and cycle != "off": for i in range(len(cycle)): self.df.append( self.df_raw[self.df_raw.cycle_number == cycle[i]] ) # extracting dataframe for each cycle elif mask[0] != "none" and mask[1] == "none" and cycle == "off": self.df_pre = self.df_raw.mask(self.df_raw.f > mask[0]) self.df_pre.dropna(how="all", inplace=True) for i in range( len(self.df_pre.cycle_number.unique()) ): # Appending data based on cycle number self.df.append( self.df_pre[ self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i] ] ) elif ( mask[0] != "none" and mask[1] == "none" and cycle != "off" ): # or [i for i, e in enumerate(mask) if e == 'none'] == [0] self.df_limited = self.df_raw.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append( self.df_limited[self.df_limited.cycle_number == cycle[i]] ) elif mask[0] == "none" and mask[1] != "none" and cycle == "off": self.df_pre = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_pre.dropna(how="all", inplace=True) for i in range(len(self.df_raw.cycle_number.unique())): # includes all data self.df.append( self.df_pre[ self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i] ] ) elif mask[0] == "none" and mask[1] != "none" and cycle != "off": self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) for i in range(len(cycle)): self.df.append( self.df_limited[self.df_limited.cycle_number == cycle[i]] ) elif mask[0] != "none" and mask[1] != "none" and cycle != "off": self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append( self.df_limited[self.df_limited2.cycle_number == cycle[i]] ) elif mask[0] != "none" and mask[1] != "none" and cycle == "off": self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(self.df_raw.cycle_number.unique())): self.df.append( self.df_limited[ self.df_limited2.cycle_number == self.df_raw.cycle_number.unique()[i] ] ) else: print("__init__ error (#2)") def Lin_KK( self, num_RC="auto", legend="on", plot="residuals", bode="off", nyq_xlim="none", nyq_ylim="none", weight_func="Boukamp", savefig="none", ): """ Plots the Linear Kramers-Kronig (KK) Validity Test The script is based on Boukamp and Schōnleber et al.'s papers for fitting the resistances of multiple -(RC)- circuits to the data. A data quality analysis can hereby be made on the basis of the relative residuals Ref.: - Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 - Boukamp, B.A. J. Electrochem. Soc., 142, 6, 1885-1894 The function performs the KK analysis and as default the relative residuals in each subplot Note, that weigh_func should be equal to 'Boukamp'. <NAME> (<EMAIL> || <EMAIL>) Optional Inputs ----------------- - num_RC: - 'auto' applies an automatic algorithm developed by Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 that ensures no under- or over-fitting occurs - can be hardwired by inserting any number (RC-elements/decade) - plot: - 'residuals' = plots the relative residuals in subplots correspoding to the cycle numbers picked - 'w_data' = plots the relative residuals with the experimental data, in Nyquist and bode plot if desired, see 'bode =' in description - nyq_xlim/nyq_xlim: Change the x/y-axis limits on nyquist plot, if not equal to 'none' state [min,max] value - legend: - 'on' = displays cycle number - 'potential' = displays average potential which the spectra was measured at - 'off' = off bode = Plots Bode Plot - options: 'on' = re, im vs. log(freq) 'log' = log(re, im) vs. log(freq) 're' = re vs. log(freq) 'log_re' = log(re) vs. log(freq) 'im' = im vs. log(freq) 'log_im' = log(im) vs. log(freq) """ if num_RC == "auto": print("cycle || No. RC-elements || u") self.decade = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] self.number_RC = [] self.number_RC_sort = [] self.KK_u = [] self.KK_Rgreater = [] self.KK_Rminor = [] M = 2 for i in range(len(self.df)): self.decade.append( np.log10(np.max(self.df[i].f)) - np.log10(np.min(self.df[i].f)) ) # determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC.append(M) self.number_RC_sort.append(M) # needed for self.KK_R self.Rparam.append( KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]), )[0] ) # Creates intial guesses for R's self.t_const.append( KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i])) ) # Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append( minimize( KK_errorfunc, self.Rparam[i], method="leastsq", args=( self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i], ), ) ) # maxfev=99 self.R_names.append( KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]), )[1] ) # creates R names for j in range(len(self.R_names[i])): self.KK_R0.append( self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value ) self.number_RC_sort.insert(0, 0) # needed for self.KK_R for i in range(len(self.df)): self.KK_R.append( self.KK_R0[ int(np.cumsum(self.number_RC_sort)[i]) : int( np.cumsum(self.number_RC_sort)[i + 1] ) ] ) # assigns resistances from each spectra to their respective df self.KK_Rgreater.append( np.where(np.array(self.KK_R)[i] >= 0, np.array(self.KK_R)[i], 0) ) self.KK_Rminor.append( np.where(np.array(self.KK_R)[i] < 0, np.array(self.KK_R)[i], 0) ) self.KK_u.append( 1 - ( np.abs(np.sum(self.KK_Rminor[i])) / np.abs(np.sum(self.KK_Rgreater[i])) ) ) for i in range(len(self.df)): while self.KK_u[i] <= 0.75 or self.KK_u[i] >= 0.88: self.number_RC_sort0 = [] self.KK_R_lim = [] self.number_RC[i] = self.number_RC[i] + 1 self.number_RC_sort0.append(self.number_RC) self.number_RC_sort = np.insert(self.number_RC_sort0, 0, 0) self.Rparam[i] = KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]), )[ 0 ] # Creates intial guesses for R's self.t_const[i] = KK_timeconst( w=self.df[i].w, num_RC=int(self.number_RC[i]) ) # Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit[i] = minimize( KK_errorfunc, self.Rparam[i], method="leastsq", args=( self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i], ), ) # maxfev=99 self.R_names[i] = KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]), )[ 1 ] # creates R names self.KK_R0 = np.delete( np.array(self.KK_R0), np.s_[0 : len(self.KK_R0)] ) self.KK_R0 = [] for q in range(len(self.df)): for j in range(len(self.R_names[q])): self.KK_R0.append( self.Lin_KK_Fit[q].params.get(self.R_names[q][j]).value ) self.KK_R_lim = np.cumsum(self.number_RC_sort) # used for KK_R[i] self.KK_R[i] = self.KK_R0[ self.KK_R_lim[i] : self.KK_R_lim[i + 1] ] # assigns resistances from each spectra to their respective df self.KK_Rgreater[i] = np.where( np.array(self.KK_R[i]) >= 0, np.array(self.KK_R[i]), 0 ) self.KK_Rminor[i] = np.where( np.array(self.KK_R[i]) < 0, np.array(self.KK_R[i]), 0 ) self.KK_u[i] = 1 - ( np.abs(np.sum(self.KK_Rminor[i])) / np.abs(np.sum(self.KK_Rgreater[i])) ) else: print( "[" + str(i + 1) + "]" + " " + str(self.number_RC[i]), " " + str(np.round(self.KK_u[i], 2)), ) elif num_RC != "auto": # hardwired number of RC-elements/decade print("cycle || u") self.decade = [] self.number_RC0 = [] self.number_RC = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] for i in range(len(self.df)): self.decade.append( np.log10(np.max(self.df[i].f)) - np.log10(np.min(self.df[i].f)) ) # determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC0.append(np.round(num_RC * self.decade[i])) self.number_RC.append( np.round(num_RC * self.decade[i]) ) # Creats the the number of -(RC)- circuits self.Rparam.append( KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]), )[0] ) # Creates intial guesses for R's self.t_const.append( KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC0[i])) ) # Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append( minimize( KK_errorfunc, self.Rparam[i], method="leastsq", args=( self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC0[i], weight_func, self.t_const[i], ), ) ) # maxfev=99 self.R_names.append( KK_Rnam_val( re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]), )[1] ) # creates R names for j in range(len(self.R_names[i])): self.KK_R0.append( self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value ) self.number_RC0.insert(0, 0) # print(report_fit(self.Lin_KK_Fit[i])) # prints fitting report self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] self.KK_Rgreater = [] self.KK_Rminor = [] self.KK_u = [] for i in range(len(self.df)): self.KK_R.append( self.KK_R0[ int(np.cumsum(self.number_RC0)[i]) : int( np.cumsum(self.number_RC0)[i + 1] ) ] ) # assigns resistances from each spectra to their respective df self.KK_Rx = np.array(self.KK_R) self.KK_Rgreater.append(np.where(self.KK_Rx[i] >= 0, self.KK_Rx[i], 0)) self.KK_Rminor.append(np.where(self.KK_Rx[i] < 0, self.KK_Rx[i], 0)) self.KK_u.append( 1 - ( np.abs(np.sum(self.KK_Rminor[i])) / np.abs(np.sum(self.KK_Rgreater[i])) ) ) # currently gives incorrect values print( "[" + str(i + 1) + "]" + " " + str(np.round(self.KK_u[i], 2)) ) else: print("num_RC incorrectly defined") self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] for i in range(len(self.df)): if int(self.number_RC[i]) == 2: self.KK_circuit_fit.append( KK_RC2( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 3: self.KK_circuit_fit.append( KK_RC3( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 4: self.KK_circuit_fit.append( KK_RC4( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 5: self.KK_circuit_fit.append( KK_RC5( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 6: self.KK_circuit_fit.append( KK_RC6( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 7: self.KK_circuit_fit.append( KK_RC7( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 8: self.KK_circuit_fit.append( KK_RC8( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 9: self.KK_circuit_fit.append( KK_RC9( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 10: self.KK_circuit_fit.append( KK_RC10( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 11: self.KK_circuit_fit.append( KK_RC11( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 12: self.KK_circuit_fit.append( KK_RC12( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 13: self.KK_circuit_fit.append( KK_RC13( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 14: self.KK_circuit_fit.append( KK_RC14( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 15: self.KK_circuit_fit.append( KK_RC15( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 16: self.KK_circuit_fit.append( KK_RC16( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 17: self.KK_circuit_fit.append( KK_RC17( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 18: self.KK_circuit_fit.append( KK_RC18( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 19: self.KK_circuit_fit.append( KK_RC19( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 20: self.KK_circuit_fit.append( KK_RC20( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 21: self.KK_circuit_fit.append( KK_RC21( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 22: self.KK_circuit_fit.append( KK_RC22( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 23: self.KK_circuit_fit.append( KK_RC23( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 24: self.KK_circuit_fit.append( KK_RC24( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 25: self.KK_circuit_fit.append( KK_RC25( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 26: self.KK_circuit_fit.append( KK_RC26( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 27: self.KK_circuit_fit.append( KK_RC27( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 28: self.KK_circuit_fit.append( KK_RC28( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 29: self.KK_circuit_fit.append( KK_RC29( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 30: self.KK_circuit_fit.append( KK_RC30( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 31: self.KK_circuit_fit.append( KK_RC31( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 32: self.KK_circuit_fit.append( KK_RC32( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 33: self.KK_circuit_fit.append( KK_RC33( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 34: self.KK_circuit_fit.append( KK_RC34( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 35: self.KK_circuit_fit.append( KK_RC35( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 36: self.KK_circuit_fit.append( KK_RC36( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 37: self.KK_circuit_fit.append( KK_RC37( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 38: self.KK_circuit_fit.append( KK_RC38( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 39: self.KK_circuit_fit.append( KK_RC39( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 40: self.KK_circuit_fit.append( KK_RC40( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 41: self.KK_circuit_fit.append( KK_RC41( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 42: self.KK_circuit_fit.append( KK_RC42( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 43: self.KK_circuit_fit.append( KK_RC43( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 44: self.KK_circuit_fit.append( KK_RC44( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 45: self.KK_circuit_fit.append( KK_RC45( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 46: self.KK_circuit_fit.append( KK_RC46( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 47: self.KK_circuit_fit.append( KK_RC47( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 48: self.KK_circuit_fit.append( KK_RC48( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 49: self.KK_circuit_fit.append( KK_RC49( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 50: self.KK_circuit_fit.append( KK_RC50( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 51: self.KK_circuit_fit.append( KK_RC51( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 52: self.KK_circuit_fit.append( KK_RC52( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 53: self.KK_circuit_fit.append( KK_RC53( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 54: self.KK_circuit_fit.append( KK_RC54( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 55: self.KK_circuit_fit.append( KK_RC55( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 56: self.KK_circuit_fit.append( KK_RC56( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 57: self.KK_circuit_fit.append( KK_RC57( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 58: self.KK_circuit_fit.append( KK_RC58( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 59: self.KK_circuit_fit.append( KK_RC59( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 60: self.KK_circuit_fit.append( KK_RC60( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 61: self.KK_circuit_fit.append( KK_RC61( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 62: self.KK_circuit_fit.append( KK_RC62( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 63: self.KK_circuit_fit.append( KK_RC63( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 64: self.KK_circuit_fit.append( KK_RC64( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 65: self.KK_circuit_fit.append( KK_RC65( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 66: self.KK_circuit_fit.append( KK_RC66( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 67: self.KK_circuit_fit.append( KK_RC67( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 68: self.KK_circuit_fit.append( KK_RC68( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 69: self.KK_circuit_fit.append( KK_RC69( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 70: self.KK_circuit_fit.append( KK_RC70( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 71: self.KK_circuit_fit.append( KK_RC71( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 72: self.KK_circuit_fit.append( KK_RC72( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 73: self.KK_circuit_fit.append( KK_RC73( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 74: self.KK_circuit_fit.append( KK_RC74( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 75: self.KK_circuit_fit.append( KK_RC75( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 76: self.KK_circuit_fit.append( KK_RC76( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 77: self.KK_circuit_fit.append( KK_RC77( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 78: self.KK_circuit_fit.append( KK_RC78( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 79: self.KK_circuit_fit.append( KK_RC79( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) elif int(self.number_RC[i]) == 80: self.KK_circuit_fit.append( KK_RC80( w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get("Rs").value, R_values=self.KK_R[i], t_values=self.t_const[i], ) ) else: print("RC simulation circuit not defined") print(" Number of RC = ", self.number_RC) self.KK_rr_re.append( residual_real( re=self.df[i].re, fit_re=self.KK_circuit_fit[i].real, fit_im=-self.KK_circuit_fit[i].imag, ) ) # relative residuals for the real part self.KK_rr_im.append( residual_imag( im=self.df[i].im, fit_re=self.KK_circuit_fit[i].real, fit_im=-self.KK_circuit_fit[i].imag, ) ) # relative residuals for the imag part ### Plotting Linear_kk results ## # ### Label functions self.label_re_1 = [] self.label_im_1 = [] self.label_cycleno = [] if legend == "on": for i in range(len(self.df)): self.label_re_1.append("Z' (#" + str(i + 1) + ")") self.label_im_1.append("Z'' (#" + str(i + 1) + ")") self.label_cycleno.append("#" + str(i + 1)) elif legend == "potential": for i in range(len(self.df)): self.label_re_1.append( "Z' (" + str(np.round(np.average(self.df[i].E_avg), 2)) + " V)" ) self.label_im_1.append( "Z'' (" + str(np.round(np.average(self.df[i].E_avg), 2)) + " V)" ) self.label_cycleno.append( str(np.round(np.average(self.df[i].E_avg), 2)) + " V" ) if plot == "w_data": fig = figure(figsize=(6, 8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust(left=0.1, right=0.95, hspace=0.5, bottom=0.1, top=0.95) ax = fig.add_subplot(311, aspect="equal") ax1 = fig.add_subplot(312) ax2 = fig.add_subplot(313) colors = sns.color_palette("colorblind", n_colors=len(self.df)) colors_real = sns.color_palette("Blues", n_colors=len(self.df) + 2) colors_imag = sns.color_palette("Oranges", n_colors=len(self.df) + 2) ### Nyquist Plot for i in range(len(self.df)): ax.plot( self.df[i].re, self.df[i].im, marker="o", ms=4, lw=2, color=colors[i], ls="-", alpha=0.7, label=self.label_cycleno[i], ) ### Bode Plot if bode == "on": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), self.df[i].re, color=colors_real[i + 1], marker="D", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_re_1[i], ) ax1.plot( np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i + 1], marker="s", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_im_1[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z', -Z'' [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "re": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), self.df[i].re, color=colors_real[i + 1], marker="D", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_cycleno[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z' [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "log_re": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i + 1], marker="D", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_cycleno[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z') [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "im": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i + 1], marker="s", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_cycleno[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("-Z'' [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "log_im": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i + 1], marker="s", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_cycleno[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(-Z'') [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) elif bode == "log": for i in range(len(self.df)): ax1.plot( np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i + 1], marker="D", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_re_1[i], ) ax1.plot( np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i + 1], marker="s", ms=3, lw=2.25, ls="-", alpha=0.7, label=self.label_im_1[i], ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z', -Z'') [$\Omega$]") if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ### Kramers-Kronig Relative Residuals for i in range(len(self.df)): ax2.plot( np.log10(self.df[i].f), self.KK_rr_re[i] * 100, color=colors_real[i + 1], marker="D", ls="--", ms=6, alpha=0.7, label=self.label_re_1[i], ) ax2.plot( np.log10(self.df[i].f), self.KK_rr_im[i] * 100, color=colors_imag[i + 1], marker="s", ls="--", ms=6, alpha=0.7, label=self.label_im_1[i], ) ax2.set_xlabel("log(f) [Hz]") ax2.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if np.min(self.KK_rr_im_min) > np.min(self.KK_rr_re_min): ax2.set_ylim( np.min(self.KK_rr_re_min) * 100 * 1.5, np.max(np.abs(self.KK_rr_re_min)) * 100 * 1.5, ) ax2.annotate( "Lin-KK", xy=[ np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_re_max) * 100 * 0.9, ], color="k", fontweight="bold", ) elif np.min(self.KK_rr_im_min) < np.min(self.KK_rr_re_min): ax2.set_ylim( np.min(self.KK_rr_im_min) * 100 * 1.5, np.max(self.KK_rr_im_max) * 100 * 1.5, ) ax2.annotate( "Lin-KK", xy=[ np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_im_max) * 100 * 0.9, ], color="k", fontweight="bold", ) ### Figure specifics if legend == "on" or legend == "potential": ax.legend(loc="best", fontsize=10, frameon=False) ax.set_xlabel("Z' [$\Omega$]") ax.set_ylabel("-Z'' [$\Omega$]") if nyq_xlim != "none": ax.set_xlim(nyq_xlim[0], nyq_xlim[1]) if nyq_ylim != "none": ax.set_ylim(nyq_ylim[0], nyq_ylim[1]) # Save Figure if savefig != "none": fig.savefig(savefig) ### Illustrating residuals only elif plot == "residuals": colors = sns.color_palette("colorblind", n_colors=9) colors_real = sns.color_palette("Blues", n_colors=9) colors_imag = sns.color_palette("Oranges", n_colors=9) ### 1 Cycle if len(self.df) == 1: fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax = fig.add_subplot(231) ax.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax.set_xlabel("log(f) [Hz]") ax.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == "on" or legend == "potential": ax.legend(loc="best", fontsize=10, frameon=False) ax.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = np.min(self.KK_rr_im) self.KK_rr_im_max = np.max(self.KK_rr_im) self.KK_rr_re_min = np.min(self.KK_rr_re) self.KK_rr_re_max = np.max(self.KK_rr_re) if self.KK_rr_re_max > self.KK_rr_im_max: self.KK_ymax = self.KK_rr_re_max else: self.KK_ymax = self.KK_rr_im_max if self.KK_rr_re_min < self.KK_rr_im_min: self.KK_ymin = self.KK_rr_re_min else: self.KK_ymin = self.KK_rr_im_min if np.abs(self.KK_ymin) > self.KK_ymax: ax.set_ylim( self.KK_ymin * 100 * 1.5, np.abs(self.KK_ymin) * 100 * 1.5 ) if legend == "on": ax.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin) < self.KK_ymax: ax.set_ylim( np.negative(self.KK_ymax) * 100 * 1.5, np.abs(self.KK_ymax) * 100 * 1.5, ) if legend == "on": ax.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax * 100 * 1.3, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 2 Cycles elif len(self.df) == 2: fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax2.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.3, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.3, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 3 Cycles elif len(self.df) == 3: fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax2.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax3.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.3, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.3, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim( self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5 ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[2]) * 100 * 1.5, ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2]) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), self.KK_ymax[2] * 100 * 1.3, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 4 Cycles elif len(self.df) == 4: fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax2.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax3.set_xlabel("log(f) [Hz]") ax3.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 4 ax4.plot( np.log10(self.df[3].f), self.KK_rr_re[3] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax4.plot( np.log10(self.df[3].f), self.KK_rr_im[3] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax4.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax4.legend(loc="best", fontsize=10, frameon=False) ax4.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim( self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5 ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[2]) * 100 * 1.5, ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), self.KK_ymax[2] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim( self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5 ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim( np.negative(self.KK_ymax[3]) * 100 * 1.5, np.abs(self.KK_ymax[3]) * 100 * 1.5, ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), self.KK_ymax[3] * 100 * 1.2, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 5 Cycles elif len(self.df) == 5: fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax3.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 4 ax4.plot( np.log10(self.df[3].f), self.KK_rr_re[3] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax4.plot( np.log10(self.df[3].f), self.KK_rr_im[3] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) ax4.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax4.legend(loc="best", fontsize=10, frameon=False) ax4.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 5 ax5.plot( np.log10(self.df[4].f), self.KK_rr_re[4] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax5.plot( np.log10(self.df[4].f), self.KK_rr_im[4] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax5.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax5.legend(loc="best", fontsize=10, frameon=False) ax5.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim( self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5 ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[2]) * 100 * 1.5, ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), self.KK_ymax[2] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim( self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5 ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim( np.negative(self.KK_ymax[3]) * 100 * 1.5, np.abs(self.KK_ymax[3]) * 100 * 1.5, ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), self.KK_ymax[3] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim( self.KK_ymin[4] * 100 * 1.5, np.abs(self.KK_ymin[4]) * 100 * 1.5 ) if legend == "on": ax5.annotate( "Lin-KK, #5", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax5.annotate( "Lin-KK (" + str(np.round(np.average(self.df[4].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim( np.negative(self.KK_ymax[4]) * 100 * 1.5, np.abs(self.KK_ymax[4]) * 100 * 1.5, ) if legend == "on": ax5.annotate( "Lin-KK, #5", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax5.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[4].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[4].f)), self.KK_ymax[4] * 100 * 1.2, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 6 Cycles elif len(self.df) == 6: fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) ax6 = fig.add_subplot(236) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 4 ax4.plot( np.log10(self.df[3].f), self.KK_rr_re[3] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax4.plot( np.log10(self.df[3].f), self.KK_rr_im[3] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax4.set_xlabel("log(f) [Hz]") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == "on" or legend == "potential": ax4.legend(loc="best", fontsize=10, frameon=False) ax4.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 5 ax5.plot( np.log10(self.df[4].f), self.KK_rr_re[4] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax5.plot( np.log10(self.df[4].f), self.KK_rr_im[4] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax5.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax5.legend(loc="best", fontsize=10, frameon=False) ax5.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 6 ax6.plot( np.log10(self.df[5].f), self.KK_rr_re[5] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax6.plot( np.log10(self.df[5].f), self.KK_rr_im[5] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax6.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax6.legend(loc="best", fontsize=10, frameon=False) ax6.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim( self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5 ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[2]) * 100 * 1.5, ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), self.KK_ymax[2] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim( self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5 ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim( np.negative(self.KK_ymax[3]) * 100 * 1.5, np.abs(self.KK_ymax[3]) * 100 * 1.5, ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), self.KK_ymax[3] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim( self.KK_ymin[4] * 100 * 1.5, np.abs(self.KK_ymin[4]) * 100 * 1.5 ) if legend == "on": ax5.annotate( "Lin-KK, #5", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax5.annotate( "Lin-KK (" + str(np.round(np.average(self.df[4].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim( np.negative(self.KK_ymax[4]) * 100 * 1.5, np.abs(self.KK_ymax[4]) * 100 * 1.5, ) if legend == "on": ax5.annotate( "Lin-KK, #5", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax5.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[4].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[4].f)), self.KK_ymax[4] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[5]) > self.KK_ymax[5]: ax6.set_ylim( self.KK_ymin[5] * 100 * 1.5, np.abs(self.KK_ymin[5]) * 100 * 1.5 ) if legend == "on": ax6.annotate( "Lin-KK, #6", xy=[ np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax6.annotate( "Lin-KK (" + str(np.round(np.average(self.df[5].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[5]) < self.KK_ymax[5]: ax6.set_ylim( np.negative(self.KK_ymax[5]) * 100 * 1.5, np.abs(self.KK_ymax[5]) * 100 * 1.5, ) if legend == "on": ax6.annotate( "Lin-KK, #6", xy=[ np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymax[5]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax6.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[5].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[5].f)), self.KK_ymax[5] * 100 * 1.2, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 7 Cycles elif len(self.df) == 7: fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(331) ax2 = fig.add_subplot(332) ax3 = fig.add_subplot(333) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(335) ax6 = fig.add_subplot(336) ax7 = fig.add_subplot(337) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax3.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 4 ax4.plot( np.log10(self.df[3].f), self.KK_rr_re[3] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax4.plot( np.log10(self.df[3].f), self.KK_rr_im[3] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == "on" or legend == "potential": ax4.legend(loc="best", fontsize=10, frameon=False) ax4.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 5 ax5.plot( np.log10(self.df[4].f), self.KK_rr_re[4] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax5.plot( np.log10(self.df[4].f), self.KK_rr_im[4] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax5.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax5.legend(loc="best", fontsize=10, frameon=False) ax5.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 6 ax6.plot( np.log10(self.df[5].f), self.KK_rr_re[5] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax6.plot( np.log10(self.df[5].f), self.KK_rr_im[5] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax6.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax6.legend(loc="best", fontsize=10, frameon=False) ax6.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 7 ax7.plot( np.log10(self.df[6].f), self.KK_rr_re[6] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax7.plot( np.log10(self.df[6].f), self.KK_rr_im[6] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax7.set_xlabel("log(f) [Hz]") ax7.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == "on" or legend == "potential": ax7.legend(loc="best", fontsize=10, frameon=False) ax7.axhline(0, ls="--", c="k", alpha=0.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim( self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5 ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[0]) * 100 * 1.5, ) if legend == "on": ax1.annotate( "Lin-KK, #1", xy=[ np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax1.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[0].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[0].f)), self.KK_ymax[0] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim( self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5 ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim( np.negative(self.KK_ymax[1]) * 100 * 1.5, np.abs(self.KK_ymax[1]) * 100 * 1.5, ) if legend == "on": ax2.annotate( "Lin-KK, #2", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax2.annotate( "Lin-KK (" + str(np.round(np.average(self.df[1].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[1].f)), self.KK_ymax[1] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim( self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5 ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim( np.negative(self.KK_ymax[0]) * 100 * 1.5, np.abs(self.KK_ymax[2]) * 100 * 1.5, ) if legend == "on": ax3.annotate( "Lin-KK, #3", xy=[ np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax3.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[2].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[2].f)), self.KK_ymax[2] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim( self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5 ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim( np.negative(self.KK_ymax[3]) * 100 * 1.5, np.abs(self.KK_ymax[3]) * 100 * 1.5, ) if legend == "on": ax4.annotate( "Lin-KK, #4", xy=[ np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax4.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[3].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[3].f)), self.KK_ymax[3] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim( self.KK_ymin[4] * 100 * 1.5, np.abs(self.KK_ymin[4]) * 100 * 1.5 ) if legend == "on": ax5.annotate( "Lin-KK, #5", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax5.annotate( "Lin-KK (" + str(np.round(np.average(self.df[4].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim( np.negative(self.KK_ymax[4]) * 100 * 1.5, np.abs(self.KK_ymax[4]) * 100 * 1.5, ) if legend == "on": ax5.annotate( "Lin-KK, #5", xy=[ np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax5.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[4].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[4].f)), self.KK_ymax[4] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[5]) > self.KK_ymax[5]: ax6.set_ylim( self.KK_ymin[5] * 100 * 1.5, np.abs(self.KK_ymin[5]) * 100 * 1.5 ) if legend == "on": ax6.annotate( "Lin-KK, #6", xy=[ np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax6.annotate( "Lin-KK (" + str(np.round(np.average(self.df[5].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[5]) < self.KK_ymax[5]: ax6.set_ylim( np.negative(self.KK_ymax[5]) * 100 * 1.5, np.abs(self.KK_ymax[5]) * 100 * 1.5, ) if legend == "on": ax6.annotate( "Lin-KK, #6", xy=[ np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymax[5]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax6.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[5].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[5].f)), self.KK_ymax[5] * 100 * 1.2, ], color="k", fontweight="bold", ) if np.abs(self.KK_ymin[6]) > self.KK_ymax[6]: ax7.set_ylim( self.KK_ymin[6] * 100 * 1.5, np.abs(self.KK_ymin[6]) * 100 * 1.5 ) if legend == "on": ax7.annotate( "Lin-KK, #7", xy=[ np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymin[6]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax7.annotate( "Lin-KK (" + str(np.round(np.average(self.df[6].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymin[6]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif np.abs(self.KK_ymin[6]) < self.KK_ymax[6]: ax7.set_ylim( np.negative(self.KK_ymax[6]) * 100 * 1.5, np.abs(self.KK_ymax[6]) * 100 * 1.5, ) if legend == "on": ax7.annotate( "Lin-KK, #7", xy=[ np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymax[6]) * 100 * 1.2, ], color="k", fontweight="bold", ) elif legend == "potential": ax7.annotate( "Lin-KK, (" + str(np.round(np.average(self.df[6].E_avg), 2)) + " V)", xy=[ np.min(np.log10(self.df[6].f)), self.KK_ymax[6] * 100 * 1.2, ], color="k", fontweight="bold", ) # Save Figure if savefig != "none": fig.savefig(savefig) ### 8 Cycles elif len(self.df) == 8: fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k") fig.subplots_adjust( left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95 ) ax1 = fig.add_subplot(331) ax2 = fig.add_subplot(332) ax3 = fig.add_subplot(333) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(335) ax6 = fig.add_subplot(336) ax7 = fig.add_subplot(337) ax8 = fig.add_subplot(338) # cycle 1 ax1.plot( np.log10(self.df[0].f), self.KK_rr_re[0] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax1.plot( np.log10(self.df[0].f), self.KK_rr_im[0] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14) if legend == "on" or legend == "potential": ax1.legend(loc="best", fontsize=10, frameon=False) ax1.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 2 ax2.plot( np.log10(self.df[1].f), self.KK_rr_re[1] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax2.plot( np.log10(self.df[1].f), self.KK_rr_im[1] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax2.legend(loc="best", fontsize=10, frameon=False) ax2.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 3 ax3.plot( np.log10(self.df[2].f), self.KK_rr_re[2] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax3.plot( np.log10(self.df[2].f), self.KK_rr_im[2] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax3.legend(loc="best", fontsize=10, frameon=False) ax3.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 4 ax4.plot( np.log10(self.df[3].f), self.KK_rr_re[3] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax4.plot( np.log10(self.df[3].f), self.KK_rr_im[3] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14) if legend == "on" or legend == "potential": ax4.legend(loc="best", fontsize=10, frameon=False) ax4.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 5 ax5.plot( np.log10(self.df[4].f), self.KK_rr_re[4] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax5.plot( np.log10(self.df[4].f), self.KK_rr_im[4] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) if legend == "on" or legend == "potential": ax5.legend(loc="best", fontsize=10, frameon=False) ax5.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 6 ax6.plot( np.log10(self.df[5].f), self.KK_rr_re[5] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax6.plot( np.log10(self.df[5].f), self.KK_rr_im[5] * 100, color=colors_imag[3], marker="s", ls="--", ms=6, alpha=0.7, label="$\Delta$-Z''", ) ax6.set_xlabel("log(f) [Hz]") if legend == "on" or legend == "potential": ax6.legend(loc="best", fontsize=10, frameon=False) ax6.axhline(0, ls="--", c="k", alpha=0.5) # Cycle 7 ax7.plot( np.log10(self.df[6].f), self.KK_rr_re[6] * 100, color=colors_real[3], marker="D", ls="--", ms=6, alpha=0.7, label="$\Delta$Z'", ) ax7.plot(
np.log10(self.df[6].f)
numpy.log10
# A simple implementation of GW@DFT class; meant to be used to run GW on small molecules # using RI/CD GW algorithm import psi4 import numpy as np import scipy as sp class GW_DFT: def __init__(self, wfn, mol, gw_par): # wfn - Psi4 w.f. object from SCF calculation # mol - Psi4 molecule object # gw_par - is a dictionary with GW calculation parameters # such as the number of states or the number of # omega sampling points self.scf_wfn = wfn self.mol = mol self.gw_par = gw_par assert hasattr(self, 'scf_wfn') assert hasattr(self, 'mol') assert hasattr(self, 'gw_par') self.nfzc = 0 if not 'nfzc' in gw_par.keys() else gw_par['nfzc'] # read this parameter early and make sure that nocc is adjusted properly self._init_sys_params() # sets some basic system parameters self._gen_ri_ints() # generates integrals for RI-GW and # RI integrals are now available in self.nmR # Generate modified Gauss-Legendre grid for the frequency integration on imaginary axis self.gl_npoint = 100 if not 'gl_npoint' in gw_par.keys() else gw_par['gl_npoint'] self._gen_gaussleg() # Setup exchange-correlation kernel self._XC() # set GW calculation parameters # parameters of the self-energy calculation nomega_sigma = 501 if not 'nomega_sigma' in gw_par.keys() else gw_par['nomega_sigma'] step_sigma = 0.01 if not 'step_sigma' in gw_par.keys() else gw_par['step_sigma'] # Quasi-particle states self.no_qp = self.nocc if not 'no_qp' in gw_par.keys() else gw_par['no_qp'] # Number of hole states self.nv_qp = 0 if not 'nv_qp' in gw_par.keys() else gw_par['nv_qp'] # Number of particle states self.eta = 1e-3 if not 'eta' in gw_par.keys() else gw_par['eta'] # Default eta=1e-3 is recommended by Bruneval # Algorithms self.debug = False if not 'debug' in gw_par.keys() else gw_par['debug'] self.low_mem = True if not 'low_mem' in gw_par.keys() else gw_par['low_mem'] # Screened Coulomb interaction self.analytic_W = False if not 'analytic_W' in gw_par.keys() else gw_par['analytic_W'] # More or less printout self.verbose = True if not 'verbose' in gw_par.keys() else gw_par['verbose'] if self.debug: print("Running in debug mode!") else: print("Running in production mode!") # Quick sanity check assert self.no_qp <= self.nocc and self.nv_qp <= self.nvir # ### GW calculation starts here ### # create an array of sampling frequencies similar to MolGW nomega_grid = nomega_sigma // 2 # note this is a truncation (aka integer) division omega_grid = np.array(range(-nomega_grid, nomega_grid + 1)) * step_sigma # sampling energies for all the states so we could calculate the self-energy matrix (broadcasting) omega_grid_all = omega_grid + self.eps[self.nocc - self.no_qp:self.nocc + self.nv_qp].reshape((-1, 1)) assert omega_grid_all.shape == (self.no_qp + self.nv_qp, 2*nomega_grid + 1) print("Shape of the omega_grid_all is ", omega_grid_all.shape) self.omega_grid_all = np.copy(omega_grid_all) method = 'contour deformation' print("Caculating GW self-energy via %s" % (method)) if self.analytic_W: print("Analytic W has been requested; performing RPA calculation") self._RPA(gw_par) Sigma_c_grid = self._calculate_iGW(omega_grid_all) # self-energy matrix print("Finished calculating self-energy") Sigma_x = np.zeros(self.no_qp + self.nv_qp) I = np.einsum("nmQ, mnQ->nm", self.nmR[self.nocc - self.no_qp:self.nocc + self.nv_qp, :self.nocc, :], self.nmR[:self.nocc, self.nocc - self.no_qp:self.nocc + self.nv_qp, :]) Sigma_x = -np.einsum("nm->n", I) self.Sigma_c_grid = np.copy(Sigma_c_grid) # Apply solvers; Similar to MolGW - linear & graphic solutions print("Performing one-shot G0W0") qp_molgw_lin_ = np.zeros(self.no_qp + self.nv_qp) # Calculate pole strengths by performing numerical derivative on the omega grid zz = np.real(Sigma_c_grid[:, nomega_grid + 1] - Sigma_c_grid[:, nomega_grid - 1]) / (omega_grid[nomega_grid + 1] - omega_grid[nomega_grid - 1]) zz = 1. / (1. - zz) zz[zz <= 0.0] = 0.0 zz[zz >= 1.0] = 1.0 #xc_contr = (1. - self.alpha) * Sigma_x[self.nocc - self.no_qp:self.nocc + self.nv_qp] - np.diag(self.Vxc)[self.nocc - self.no_qp:self.nocc + self.nv_qp] xc_contr = (1. - self.alpha) * Sigma_x - np.diag(self.Vxc)[self.nocc - self.no_qp:self.nocc + self.nv_qp] print("SigX - Vxc") print(xc_contr) self.Sigma_x_Vxc = np.copy(xc_contr) qp_molgw_lin_ = self.eps[self.nocc - self.no_qp:self.nocc + self.nv_qp] + zz * (np.real(Sigma_c_grid[:, nomega_grid]) + xc_contr) #print(qp_molgw_lin_.shape) print("Perfoming graphic solution of the inverse Dyson equation") # both rhs and lhs of the QP equation have been calculated above qp_molgw_graph_ = np.copy(self.eps[self.nocc - self.no_qp:self.nocc + self.nv_qp]) zz_graph = np.zeros(self.no_qp + self.nv_qp) self.graph_solver_data = {} # Format: state = [[e1, e2, ...], [z1, z2, ...]] for state in range(self.no_qp + self.nv_qp): #z , e = self._find_fixed_point(omega_grid_all[state], np.real(Sigma_c_grid[state, :]) + self.eps[state + self.nocc - self.no_qp] + (1. - self.alpha) * Sigma_x[state + self.nocc - self.no_qp] - np.diag(self.Vxc)[state + self.nocc - self.no_qp]) z , e = self._find_fixed_point(omega_grid_all[state], np.real(Sigma_c_grid[state, :]) + self.eps[state + self.nocc - self.no_qp] + xc_contr[state]) if z[0] < 1e-6: print("Graphical solver failed for state %d" % (state + 1)) # Do nothing since the array cell already contains HF orbital energy else: qp_molgw_graph_[state] = e[0] zz_graph[state] = z[0] # Save all the solutions to graph_solver_data in case wrong solution # has the largest Z self.graph_solver_data[state] = [e, z] self.zz = np.copy(zz) self.qp_molgw_lin_ = np.copy(qp_molgw_lin_) self.qp_molgw_graph_ = np.copy(qp_molgw_graph_) print("Done!") self.evgw_iter = 0 if not 'evgw_iter' in gw_par.keys() else gw_par['evgw_iter'] if self.evgw_iter > 0: print("Starting evGW loop...") print("Number of iterations is %d" % (self.evgw_iter)) self.verbose = False # Will use QP produced by graphical solver to perform iteration; # Should also properly take care of screening if analytic_W is set eps0 = np.copy(self.eps[self.nocc - self.no_qp:self.nocc + self.nv_qp]) for _ in range(self.evgw_iter): if self.analytic_W: # update omega and xpy self._RPA(gw_par) omega_grid_all_ev = omega_grid + self.eps[self.nocc - self.no_qp:self.nocc + self.nv_qp].reshape((-1, 1)) Sigma_c_grid = self._calculate_iGW(omega_grid_all_ev) # self-energy matrix qp_ev = eps0 + (np.real(Sigma_c_grid[:, nomega_grid]) + xc_contr) print(qp_ev * psi4.constants.hartree2ev) self.eps[self.nocc - self.no_qp:self.nocc + self.nv_qp] = np.copy(qp_ev) print("Done with evGW!") def print_summary(self, extended=False): Ha2eV = psi4.constants.hartree2ev print("E^lin, eV E^graph, eV Z ") for i in range(self.no_qp + self.nv_qp): print("%13.6f %13.6f %13.6f" % (self.qp_molgw_lin_[i]*Ha2eV, self.qp_molgw_graph_[i]*Ha2eV, self.zz[i])) if extended: print("Graphical solver printout") for s in self.graph_solver_data: print("State %d" % (s)) print("E_qp, eV Z") e_vals, z_vals = self.graph_solver_data[s] for e, z in zip(e_vals, z_vals): print("%13.6f %13.6f" % (e * Ha2eV, z)) def int_dump(self, filename='INTDUMP'): output = open(filename, 'w') print("Saving inegrals and SCF data to a disk file...") naux = self.nmR.shape[2] output("%5d %5d" % (self.nbf, naux)) # Write orbitals for e in self.eps: output.write("%29.20f" % e) for n in range(self.nbf): for m in range(self.nbf): for R in range(naux): output.write("%5d %5d %5d %29.20f" % (n, m, R, self.nmR)) print("Orbital energies and RI integrals were saved to file %s" % (filename)) output.close() def _init_sys_params(self): self.nocc = self.scf_wfn.nalpha() - self.nfzc self.nbf = self.scf_wfn.nmo() - self.nfzc self.nvir = self.nbf - self.nocc self.C = np.asarray(self.scf_wfn.Ca()) self.Cocc = np.asarray(self.scf_wfn.Ca_subset("AO", "OCC")) self.eps = np.copy(np.asarray(self.scf_wfn.epsilon_a())) if self.nfzc > 0: # Reset orbital data self.C = np.copy(self.C[:, self.nfzc:]) self.Cocc = np.copy(self.Cocc[:, self.nfzc:]) self.eps = np.copy(self.eps[self.nfzc:]) # print a quick summary print("Number of basis functions: ", self.nbf) print("occ/virt: %d/%d" % (self.nocc, self.nvir)) def _XC(self): assert hasattr(self, 'scf_wfn') # The function constructs exchange-corrlation # potential matrix and extracts some other # relevant data from PSI4 objects # It is assumed that we are working with the closed-shell # reference Va = np.asarray(self.scf_wfn.Va()) self.Vxc = np.einsum("ia, ij, jb-> ab", self.C, Va, self.C) self.alpha = self.scf_wfn.V_potential().functional().x_alpha() # Fraction of HF exchange print("Fraction of HF exchange is %6.3f" % (self.alpha)) # will also need the integrals of exchange-correlation kernel # for fully analytic calculation but that will be implemented later def _gen_ri_ints(self): # MO coefficients C = np.asarray(self.C) # Extract basis set from the wfn object orb = self.scf_wfn.basisset() # Determine RI parameters ri_type = "RIFIT" if not 'ri_type' in self.gw_par.keys() else self.gw_par['ri_type'] ri_basis = str(orb.name()) if not 'ri_basis' in self.gw_par.keys() else self.gw_par['ri_basis'] # Sanity check assert ri_type in ["RIFIT", "JKFIT"] print("Attempting to create RI basis set for %s (%s)... " % (ri_basis, ri_type)) # Build auxiliary basis set #aux = psi4.core.BasisSet.build(self.mol, "DF_BASIS_SCF", "", "JKFIT", orb.name()) #aux = psi4.core.BasisSet.build(self.mol, "DF_BASIS_SCF", "", "RIFIT", orb.name()) aux = psi4.core.BasisSet.build(self.mol, "DF_BASIS_SCF", "", ri_type, ri_basis) # From Psi4 doc as of March, 2019 (http://www.psicode.org/psi4manual/1.2/psi4api.html#psi4.core.BasisSet.zero_ao_basis_set): # Returns a BasisSet object that actually has a single s-function at # the origin with an exponent of 0.0 and contraction of 1.0. zero_bas = psi4.core.BasisSet.zero_ao_basis_set() # Create a MintsHelper Instance mints = psi4.core.MintsHelper(orb) # Build (pq|P) raw 3-index ERIs, dimension (nbf, nbf, Naux, 1) pqP = mints.ao_eri(orb, orb, aux, zero_bas) # Build and invert the metric metric = mints.ao_eri(zero_bas, aux, zero_bas, aux) metric.power(-0.5, 1.e-14) # Remove the dimensions of size 1 pqP = np.squeeze(pqP) metric = np.squeeze(metric) # Transform (pq|P) to obtain (nm|P) in molecular orbital basis nmP = np.einsum("pn, qm, pqR-> nmR", C, C, pqP) # Contract with the inverse square root of the metric tensor self.nmR = np.einsum( "nmP, PR-> nmR", nmP, metric) print("Auxiliary basis set has been generated!") print("Number of auxiliary basis functions: ", self.nmR.shape[2]) def _gen_gaussleg(self): x, w = np.polynomial.legendre.leggauss(self.gl_npoint) self.gl_x = (1. + x) / (1. - x) self.gl_w = 2. * w / (1. - x)**2 def _find_fixed_point(self, lhs, rhs): # This function returns an array of fixed points and correspoinding pole strengths # Its application can be vectorized using strandard NumPy np.vectorize assert lhs.shape == rhs.shape # Maximum number of fixed points (same as in MolGW) nfp_max = 4 # Pole strength threshold pthresh = 1e-5 # Arrays of f.p. energies and Z zfp = np.zeros(nfp_max) zfp[:] = -1.0 efp = np.zeros(nfp_max) # Auxiliary index array idx = np.arange(nfp_max) n = len(lhs) ifixed = 0 g = rhs - lhs # loop over grid points excluding the last one for i in range(n - 1): if g[i] * g[i + 1] < 0.0: #print("Fixed point found betwenn %13.6f and %13.6f eV! " % (lhs[i] * Ha2eV, lhs[i+1] * Ha2eV)) z_zero = 1. / ( 1. - ( g[i+1] - g[i] ) / ( lhs[i+1] - lhs[i] ) ) if z_zero < pthresh: continue # Do some bookkeeping; the code looks ugly but that is exactly what F.Bruneval has in MolGW package if z_zero > zfp[-1]: jfixed = np.min(idx[z_zero > zfp]) zfp[jfixed + 1:] = zfp[jfixed:nfp_max - 1] efp[jfixed + 1:] = efp[jfixed:nfp_max - 1] zfp[jfixed] = z_zero # Perfom linear interpolation to find the root zeta = (g[i + 1] - g[i]) / (lhs[i + 1] - lhs[i]) efp[jfixed] = lhs[i] - g[i] / zeta #print("Graphical solver concluded operation") return (zfp, efp) def _RPA(self, gw_par): nocc = self.nocc nvir = self.nvir # Diagonal \epsilon_a - \epsilon_i eps_diag = self.eps[nocc:].reshape(-1, 1) - self.eps[:nocc] assert eps_diag.shape == (nvir, nocc) # A^{+} + B^{+} ApB = np.einsum("ij,ab,ai -> iajb", np.eye(nocc), np.eye(nvir), eps_diag) + 4. * np.einsum("iaQ, jbQ->iajb", self.nmR[:nocc, nocc:], self.nmR[:nocc, nocc:]) ApB = ApB.reshape((nocc*nvir, nocc*nvir)) # since nD numpy arrays have C-style memroy layout the occupied orbital inedex changes slower than the virtual one # Diagonal of A^{+} - B^{+} AmB_diag = eps_diag.T.reshape((1, -1)) AmB_diag = np.diag(AmB_diag[0,:]) assert AmB_diag.shape == ApB.shape # Form C matrix (as one usually does when solving RPA eigenvalue problem) C_ = np.einsum("ij,jk,kl->il", np.sqrt(AmB_diag), ApB, np.sqrt(AmB_diag)) # Solve for the excitation energies and calculate X + Y eigenvectors omega2, Z = np.linalg.eigh(C_) self.omega_s = np.sqrt(omega2) self.xpy = np.einsum("ij,jk,kl->il", np.sqrt(AmB_diag), Z, np.diag(1./np.sqrt(self.omega_s))) if self.debug: print("RPA excitation energies:") print(self.omega_s) def _calculate_iGW(self, omega_grid_all): nocc = self.nocc nvir = self.nvir eps = self.eps #print("eps : ", eps) no_qp = self.no_qp nv_qp = self.nv_qp nbf = self.nbf e_fermi = (eps[nocc - 1] + eps[nocc]) / 2. ngrid = omega_grid_all.shape[1] naux = self.nmR.shape[2] assert omega_grid_all.shape == (no_qp + nv_qp, ngrid) # Self-energy calculation will be performed via contour deformation # analytic continuation can be implemented later for comparison and # benchmarking e_ai = eps[nocc:, np.newaxis] - eps[np.newaxis, :nocc] im_grid = self.gl_x * 1.j # Calculate some intermediates for the imaginary time integration f = np.ones(nbf) f[eps > e_fermi] = -1. assert np.sum(f) == nocc - nvir complex_eps = eps + 0.5j * self.eta * f Wnm_im_grid = np.zeros((no_qp + nv_qp, nbf, len(self.gl_x))) omega_rts = np.zeros(1) # Calculate Wnm on the imaginary frequency grid if self.analytic_W: ### Aanalytic calculation of W on imaginary frequency grid # Omega tensors; Will be reused later to calculate the residue term i_rtia = np.einsum("iaQ, rtQ ->rtia", self.nmR[:nocc, nocc:, :], self.nmR) i_rtia = i_rtia.reshape((nbf, nbf, nocc*nvir)) omega_rts = np.sqrt(2.) * np.einsum("rtk, ks->rts", i_rtia, self.xpy) if self.verbose: print("Shape of omega tensor is ", omega_rts.shape) Ds_p = self.omega_s.reshape((-1, 1)) + im_grid - 0.5j*self.eta Ds_m = -self.omega_s.reshape((-1, 1)) + im_grid + 0.5j*self.eta assert Ds_p.shape == Ds_m.shape and Ds_m.shape == (len(self.omega_s), len(self.gl_x)) Wnm_im_grid = np.einsum("nms, sg, nms -> nmg",omega_rts[nocc - no_qp:nocc + nv_qp,:,:], 1./Ds_m - 1./Ds_p, omega_rts[nocc - no_qp:nocc + nv_qp,:,:]) #print(Wnm_im_grid.shape) #print( (no_qp + nv_qp, nbf, len(self.gl_x)) ) assert Wnm_im_grid.shape == (no_qp + nv_qp, nbf, len(self.gl_x)) else: O_ = self.nmR[nocc-no_qp:nocc+nv_qp, :, :] dp_ = im_grid[:,np.newaxis, np.newaxis] + e_ai[np.newaxis, :, :] - 0.5j * self.eta dm_ = im_grid[:,np.newaxis, np.newaxis] - e_ai[np.newaxis, :, :] + 0.5j * self.eta if self.debug: dp_debug = np.zeros((self.gl_npoint, nvir, nocc), dtype=np.complex128) dm_debug = np.zeros((self.gl_npoint, nvir, nocc), dtype=np.complex128) for idx, grid_point in enumerate(im_grid): tmp_p = grid_point + e_ai - 0.5j * self.eta tmp_m = grid_point - e_ai + 0.5j * self.eta dp_debug[idx, :, :] = tmp_p dm_debug[idx, :, :] = tmp_m assert np.allclose(dp_debug, dp_) and np.allclose(dm_debug, dm_) id_pq = np.eye(naux) assert id_pq.shape == (naux, naux) and np.all(np.diag(id_pq) == np.ones(naux)) #Ppq_ = np.einsum("iaP, gai, iaQ->gPQ", self.nmR[:nocc, nocc:,:], 1./dm_ - 1./dp_, self.nmR[:nocc,nocc:,:]) Ppq_ = 2. * np.einsum("iaP, gai, iaQ->gPQ", self.nmR[:nocc, nocc:,:], 1./dm_ - 1./dp_, self.nmR[:nocc,nocc:,:]) if self.debug: Ppq_debug = np.zeros((self.gl_npoint, naux, naux), dtype=np.complex128) tmp_O = self.nmR[:nocc,nocc:,:] for idx, grid_point in enumerate(im_grid): #Ppq_debug[idx, :,:] = np.einsum("iaP, ai, iaQ->PQ", tmp_O, 1./dm_[idx,:,:] - 1./dp_[idx,:,:], tmp_O) Ppq_debug[idx, :,:] = 2. * np.einsum("iaP, ai, iaQ->PQ", tmp_O, 1./dm_[idx,:,:] - 1./dp_[idx,:,:], tmp_O) assert np.allclose(Ppq_debug, Ppq_) assert Ppq_.shape == (len(im_grid), naux, naux) Wnm_im_grid = np.einsum("nmP, lPQ, nmQ -> nml", O_, (np.linalg.inv(id_pq[np.newaxis, :,:] - Ppq_) - id_pq[np.newaxis, :,:]), O_) assert Wnm_im_grid.shape == (no_qp + nv_qp, nbf, len(self.gl_x)) # Check if matrix inverse is numerically accurate if self.debug: inv_thresh = 1e-12 for idx, grid_point in enumerate(im_grid): tmp1 = id_pq - Ppq_[idx, :,:] tmp2 = np.linalg.inv(tmp1) tmp3 = np.dot(tmp1, tmp2) max_err = np.max(np.abs(np.real(tmp3) - id_pq)) max_err_im = np.max(np.abs(np.imag(tmp3))) if max_err > inv_thresh or max_err_im > inv_thresh: print("Matrix inverse failed when calculating the integral term!") print(max_err) print(max_err_im) # ### GW self-energy calculation via contour deformation # Inform the user about the amout of memory required for the calculation # with the current implementation (residue term is the most expensive one) # This excules the amout of memory needed to store the target objects mem_int = (nocc * nvir * (no_qp + nv_qp) + 4 * (nocc * nvir * len(self.gl_x)) + 2 * (len(im_grid) * naux * naux)) mem_res = 4. * ngrid * nbf * nocc * nvir + 2 * ngrid * nbf * naux * naux + nbf * naux + naux**2 if self.low_mem: mem_res = 4. * ngrid * nocc * nvir + naux + naux**2 + 2 * ngrid * naux**2 if self.verbose: print("Calculation of the integral term requires %8.3f Gb" %(mem_int * 8e-9)) # Each standard double is 8 bytes print("Calculation of the residue term requires %8.3f Gb" %(mem_res * 8e-9)) if self.low_mem and self.verbose: print("Using low-memory algorithm") In = np.zeros(omega_grid_all.shape, dtype=np.complex128) # Integral term Rn = np.zeros(omega_grid_all.shape, dtype=np.complex128) # Residue term # Integral term for qp in range(no_qp + nv_qp): # Calculate GF denominators = omega + 1.j omega_prime - eps_m \pm i eta qp_grid = np.copy(omega_grid_all[qp, :]) Dgf_p = qp_grid[:, np.newaxis, np.newaxis] - complex_eps[np.newaxis, :, np.newaxis] + im_grid[np.newaxis,np.newaxis, :] Dgf_m = qp_grid[:, np.newaxis, np.newaxis] - complex_eps[np.newaxis, :, np.newaxis] - im_grid[np.newaxis,np.newaxis, :] if self.debug: # Print some diagnostic information about the denominators thresh = 1e-10 Dgf_p_min = np.min(np.absolute(Dgf_p)) Dgf_m_min = np.min(np.absolute(Dgf_m)) if Dgf_p_min < thresh or Dgf_m_min < thresh: print("Small denominator detected when calculating the integral term! Diagonstic info is printed below:") print(Dgf_p_min_re) print(Dgf_m_min_re) assert Dgf_p.shape == (ngrid, nbf, len(self.gl_x)) and Dgf_m.shape == (ngrid, nbf, len(self.gl_x)) Wnm_tmp = np.copy(Wnm_im_grid[qp,:,:]) I_term = 1. / (2.*np.pi) * np.einsum("fmg, g->f", Wnm_tmp[np.newaxis, :,:]* (1./ Dgf_p + 1./Dgf_m), self.gl_w) In[qp, :] = np.copy(I_term) del Dgf_p del Dgf_m del Wnm_tmp del I_term # Residue term # Caculate Wnm and f vector for a give quasi-particle # Not memory efficient; just for testing #offset_complex_eps = complex_eps[:, np.newaxis] - qp_grid offset_complex_eps = np.abs(eps[:, np.newaxis] - qp_grid) + 0.5j * self.eta assert offset_complex_eps.shape == (nbf, ngrid) Wnm_4res = np.zeros((nbf, ngrid), dtype=np.complex128) fill_factors = np.zeros((ngrid, nbf)) #mask_vir = np.logical_and(qp_grid[:,np.newaxis] > eps[np.newaxis, :], eps.reshape((1, -1)) > e_fermi) #mask_occ = np.logical_and(qp_grid[:,np.newaxis] < eps[np.newaxis, :], eps.reshape((1, -1)) < e_fermi) # This is still incorrect but should be a bit better mask_vir = np.logical_and(qp_grid[:,np.newaxis] > eps[np.newaxis, :], eps.reshape((1, -1)) > e_fermi) mask_occ = np.logical_and(qp_grid[:,np.newaxis] < eps[np.newaxis, :], eps.reshape((1, -1)) < e_fermi) fill_factors[mask_vir] = 1. fill_factors[mask_occ] = -1. # Treat a special case mask_vir_eq = np.logical_and(qp_grid[:,np.newaxis] == eps[np.newaxis, :], eps.reshape((1, -1)) > e_fermi) mask_occ_eq = np.logical_and(qp_grid[:,np.newaxis] == eps[np.newaxis, :], eps.reshape((1, -1)) < e_fermi) fill_factors[mask_vir_eq] = 0.5 fill_factors[mask_occ_eq] = -0.5 if self.low_mem: # Low memory algorithm; Calculates W matrix elements only for those orbitals that have non-zero fill factors # This implementation will be a lot slower but will utilize much less memory # Basis set size is usually much smaller than the grid size for my systems, # yet if I compute the residue term for each basis function separately => this may reduce memory cost 20 times! for m in range(nbf): g_index = np.arange(ngrid) g_res = g_index[fill_factors[:, m] != 0.] if len(g_res) == 0: continue else: #print(len(g_res)) pass if self.analytic_W: Ds_p__ = offset_complex_eps[m, g_res, np.newaxis] + self.omega_s[np.newaxis,:] - 0.5j*self.eta Ds_m__ = offset_complex_eps[m, g_res, np.newaxis] - self.omega_s[np.newaxis,:] + 0.5j*self.eta assert Ds_p__.shape == Ds_m__.shape and Ds_p__.shape == (len(g_res), len(self.omega_s)) Wnm_4res[m, g_res] = np.einsum("s, s, gs -> g",omega_rts[nocc - no_qp + qp, m,:], omega_rts[nocc - no_qp + qp,m,:], 1./Ds_m__ - 1./Ds_p__) else: O__ = self.nmR[nocc-no_qp + qp, m, :] dp__ = offset_complex_eps[m, g_res, np.newaxis, np.newaxis] + e_ai[np.newaxis, :, :] - 0.501j * self.eta dm__ = offset_complex_eps[m, g_res, np.newaxis, np.newaxis] - e_ai[np.newaxis, :, :] + 0.501j * self.eta zero_thresh = 1e-12 assert np.min(np.abs(dp__)) > zero_thresh and np.min(np.abs(dm__)) > zero_thresh id_pq = np.eye(naux) #Ppq__ = np.einsum("aiP, gai, aiQ->gPQ", self.nmR[nocc:, :nocc,:], 1./dm__ - 1./dp__, self.nmR[nocc:,:nocc,:]) Ppq__ = 2. * np.einsum("aiP, gai, aiQ->gPQ", self.nmR[nocc:, :nocc,:], 1./dm__ - 1./dp__, self.nmR[nocc:,:nocc,:]) del dp__ del dm__ Wnm_4res[m, g_res] = np.einsum("P, gPQ, Q -> g", O__, (np.linalg.inv(id_pq[np.newaxis, :,:] - Ppq__) - id_pq[np.newaxis, :,:]), O__) if self.debug: # loop over the grid and check if matrix inverse was performed with sufficient accuracy thresh = 1e-11 for g in range(len(g_res)): tmp = id_pq - Ppq__[g, :, :] tmp_1 = np.linalg.inv(tmp) diff = np.dot(tmp, tmp_1) - id_pq if not (np.max(np.real(diff)) < thresh and np.max(np.imag(diff)) < thresh): print("Matrix inverse cannot be performed with sufficient accuracy!") print("Errors (real and imaginary parts)") print(np.max(np.real(diff))) print(np.max(np.imag(diff))) assert np.max(np.real(diff)) < thresh and np.max(np.imag(diff)) < thresh else: # Simple algorithm; supposed to be fast (especially for analytic W) but not memory eifficient if self.analytic_W: Ds_p__ = offset_complex_eps[:,:,np.newaxis] + self.omega_s[np.newaxis, np.newaxis,:] - 0.5j*self.eta Ds_m__ = offset_complex_eps[:,:,np.newaxis] - self.omega_s[np.newaxis, np.newaxis,:] + 0.5j*self.eta assert Ds_p__.shape == Ds_m__.shape and Ds_p__.shape == (nbf, ngrid, len(self.omega_s)) Wnm_4res = np.einsum("ms, ms, mgs -> mg",omega_rts[nocc - no_qp + qp,:,:], omega_rts[nocc - no_qp + qp,:,:], 1./Ds_m__ - 1./Ds_p__) else: O__ = self.nmR[nocc-no_qp + qp, :, :] dp__ = offset_complex_eps[:, :, np.newaxis, np.newaxis] + e_ai[np.newaxis, np.newaxis, :, :] - 0.501j * self.eta dm__ = offset_complex_eps[:, :, np.newaxis, np.newaxis] - e_ai[np.newaxis, np.newaxis, :, :] + 0.501j * self.eta zero_thresh = 1e-10 assert np.min(np.abs(dp__)) > zero_thresh and np.min(np.abs(dm__)) > zero_thresh id_pq = np.eye(naux) assert id_pq.shape == (naux, naux) and np.all(np.diag(id_pq) == np.ones(naux)) #Ppq__ = np.einsum("aiP, mgai, aiQ->mgPQ", self.nmR[nocc:, :nocc,:], 1./dm__ - 1./dp__, self.nmR[nocc:,:nocc,:]) Ppq__ = 2. * np.einsum("aiP, mgai, aiQ->mgPQ", self.nmR[nocc:, :nocc,:], 1./dm__ - 1./dp__, self.nmR[nocc:,:nocc,:]) del dp__ del dm__ assert Ppq__.shape == (nbf, ngrid, naux, naux) assert O__.shape == (nbf, naux) Wnm_4res = np.einsum("mP, mgPQ, mQ -> mg", O__, (np.linalg.inv(id_pq[np.newaxis, np.newaxis, :,:] - Ppq__) - id_pq[np.newaxis, np.newaxis, :,:]), O__) R_term =
np.einsum("gm, mg->g", fill_factors, Wnm_4res)
numpy.einsum
# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import deque, defaultdict import os import os.path as osp import gin import time import math import dill import numpy as np import tensorflow as tf from PIL import Image from third_party.baselines import logger from third_party.baselines.common import tf_util as U from third_party.baselines.common import explained_variance from third_party.baselines.common.input import observation_input from third_party.baselines.common.runners import AbstractEnvRunner from third_party.baselines.ppo2 import pathak_utils from third_party.baselines.ppo2 import policies from sprl.bonus_model import BonusModel from sprl.utils import _flatten, _unflatten, dump_pickle, load_pickle @gin.configurable class Model(object): def __init__(self, policy, ob_space, ac_space, nbatch_act, nbatch_train, nsteps, ent_coef, vf_coef, max_grad_norm, use_curiosity, curiosity_strength, forward_inverse_ratio, curiosity_loss_strength, random_state_predictor, pathak_multiplier, hidden_layer_size): sess = tf.get_default_session() act_model = policy(sess, ob_space, ac_space, nbatch_act, reuse=False) train_model = policy(sess, ob_space, ac_space, nbatch_train, reuse=True) self.nbatch_act = nbatch_act self.nbatch_train = nbatch_train self.action_dim = ac_space.n if use_curiosity: self.state_encoder_net = tf.make_template( 'state_encoder_net', pathak_utils.universeHead, create_scope_now_=True, trainable=(not random_state_predictor),) self.icm_forward_net = tf.make_template( 'icm_forward', pathak_utils.icm_forward_model, create_scope_now_=True, num_actions=ac_space.n, hidden_layer_size=hidden_layer_size, one_hot=(ac_space.dtype!='float32')) self.icm_forward_output = tf.make_template( 'icm_forward_output', pathak_utils.icm_forward_output, create_scope_now_=True) self.icm_inverse_net = tf.make_template( 'icm_inverse', pathak_utils.icm_inverse_model, create_scope_now_=True, hidden_layer_size=hidden_layer_size) self.icm_inverse_output = tf.make_template( 'icm_inverse_output', pathak_utils.icm_inverse_output, create_scope_now_=True) else: self.state_encoder_net = None self.icm_forward_net = None self.icm_forward_output = None self.icm_inverse_net = None self.icm_inverse_output = None A = train_model.pdtype.sample_placeholder([None]) ADV = tf.placeholder(tf.float32, [None]) R = tf.placeholder(tf.float32, [None]) OLDNEGLOGPAC = tf.placeholder(tf.float32, [None]) OLDVPRED = tf.placeholder(tf.float32, [None]) LR = tf.placeholder(tf.float32, []) CLIPRANGE = tf.placeholder(tf.float32, []) # When computing intrinsic reward a different batch size is used (number # of parallel environments), thus we need to define separate # placeholders for them. X_NEXT, _ = observation_input(ob_space, nbatch_train) X_INTRINSIC_NEXT, _ = observation_input(ob_space, None) X_INTRINSIC_CURRENT, _ = observation_input(ob_space, None) neglogpac = train_model.pd.neglogp(A) entropy = tf.reduce_mean(train_model.pd.entropy()) vpred = train_model.vf vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE) vf_losses1 = tf.square(vpred - R) vf_losses2 = tf.square(vpredclipped - R) vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2)) ratio = tf.exp(OLDNEGLOGPAC - neglogpac) pg_losses = -ADV * ratio pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE) pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2)) approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC)) clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE))) forward_loss, inverse_loss = self.compute_curiosity_loss( use_curiosity, train_model.X, A, X_NEXT, forward_inverse_ratio=forward_inverse_ratio, curiosity_loss_strength=curiosity_loss_strength) curiosity_loss = forward_loss + inverse_loss loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef + curiosity_loss if use_curiosity: encoded_time_step = self.state_encoder_net(X_INTRINSIC_CURRENT) encoded_next_time_step = self.state_encoder_net(X_INTRINSIC_NEXT) intrinsic_reward = self.curiosity_forward_model_loss( encoded_time_step, A, encoded_next_time_step) with tf.variable_scope('model'): params = tf.trainable_variables() grads = tf.gradients(loss * pathak_multiplier, params) if max_grad_norm is not None: grads, _ = tf.clip_by_global_norm(grads, max_grad_norm) grads = list(zip(grads, params)) trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5) _train = trainer.apply_gradients(grads) def getIntrinsicReward(curr, next_obs, actions): return sess.run(intrinsic_reward, {X_INTRINSIC_CURRENT: curr, X_INTRINSIC_NEXT: next_obs, A: actions}) def train(lr, cliprange, obs, next_obs, returns, actions, values, neglogpacs): advs = returns - values advs = (advs - advs.mean()) / (advs.std() + 1e-8) # Inputs td_map = {train_model.X: obs, A: actions, ADV: advs, R: returns, LR: lr, CLIPRANGE: cliprange, OLDNEGLOGPAC: neglogpacs, OLDVPRED: values, X_NEXT: next_obs} # Output summaries = [loss, pg_loss, vf_loss, entropy] if use_curiosity: summaries += [forward_loss, inverse_loss] return sess.run(summaries + [_train], td_map)[:-1] self.loss_names = ['loss', 'loss/policy', 'loss/value', 'policy_entropy'] if use_curiosity: self.loss_names += ['loss/forward', 'loss/inverse'] def save(save_path): ps = sess.run(params) with tf.gfile.Open(save_path, 'wb') as fh: fh.write(dill.dumps(ps)) def load(load_path): with tf.gfile.Open(load_path, 'rb') as fh: val = fh.read() loaded_params = dill.loads(val) restores = [] for p, loaded_p in zip(params, loaded_params): restores.append(p.assign(loaded_p)) sess.run(restores) self.getIntrinsicReward = getIntrinsicReward self.train = train self.train_model = train_model self.act_model = act_model self.step = act_model.step self.eval_step = act_model.eval_step self.value = act_model.value self.save = save self.load = load tf.global_variables_initializer().run(session=sess) # pylint: disable=E1101 def curiosity_forward_model_loss(self, encoded_state, action, encoded_next_state): pred_next_state = self.icm_forward_output(encoded_state, self.icm_forward_net(encoded_state, action)) forward_loss = 0.5 * tf.reduce_mean( tf.squared_difference(pred_next_state, encoded_next_state), axis=1) forward_loss = forward_loss * 288.0 return forward_loss def curiosity_inverse_model_loss(self, encoded_states, actions, encoded_next_states): pred_action_logits = self.icm_inverse_output(self.icm_inverse_net(encoded_states, encoded_next_states), self.action_dim) return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=pred_action_logits, labels=actions), name='invloss') def compute_curiosity_loss(self, use_curiosity, time_steps, actions, next_time_steps, forward_inverse_ratio, curiosity_loss_strength): if use_curiosity: with tf.name_scope('curiosity_loss'): encoded_time_steps = self.state_encoder_net(time_steps) encoded_next_time_steps = self.state_encoder_net(next_time_steps) inverse_loss = self.curiosity_inverse_model_loss( encoded_time_steps, actions, encoded_next_time_steps) forward_loss = self.curiosity_forward_model_loss( encoded_time_steps, actions, encoded_next_time_steps) forward_loss = tf.reduce_mean(forward_loss) else: forward_loss = tf.constant(0.0, dtype=tf.float32, name='forward_loss') inverse_loss = tf.constant(0.0, dtype=tf.float32, name='inverse_loss') return curiosity_loss_strength * (forward_inverse_ratio * forward_loss), curiosity_loss_strength * (1 - forward_inverse_ratio) * inverse_loss class Runner(AbstractEnvRunner): def __init__(self, env, model, bonus_model, rnet_trainer, rnet, nsteps, gamma, lam, log_dir='.', eval_callback=None): super(Runner, self).__init__(env=env, model=model, nsteps=nsteps) self._eval_callback = eval_callback self.lam = lam self.gamma = gamma self.nenvs = self.env.num_envs self.action_dim = self.env.action_space.n # self.bonus_model = bonus_model self.rnet_trainer = rnet_trainer self.rnet = rnet # self._collection_iteration = 0 self.bonus_accum_dict = { 'sprl': np.zeros(self.nenvs), 'eco': np.zeros(self.nenvs), 'icm': np.zeros(self.nenvs), 'bonus': np.zeros(self.nenvs), } self.infos = env.get_initial_infos() self._ep_return = np.zeros(self.nenvs) self._ep_length = np.zeros(self.nenvs) self.log_dir = log_dir self.rewards = 0 def _update_accumulator(self, mb_dones, current_dict, epinfos, accum_dict): for epinfo in epinfos: for key in accum_dict: epinfo[key] = 0. count = 0 # mb_dones => [256, num_envs] for idx, batch_done in enumerate(mb_dones): # idx = 0~255 # batch_done => [num_envs] for key, batch_current in current_dict.items(): # batch_current : [256 x num_envs] current_vec = batch_current[idx] # [num_envs] if key in accum_dict: accum_dict[key] += current_vec for env_ind, done in enumerate(batch_done): # for each env: 0~11 if done: for key in accum_dict: epinfos[count][key] = accum_dict[key][env_ind].copy() accum_dict[key][env_ind] = 0. count += 1 return epinfos @gin.configurable def run(self): if self._eval_callback: self._eval_callback(self.model.eval_step) self._collection_iteration += 1 mb_obs, mb_raw_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_infos = [], [], [], [], [], [], [] mb_neglogpacs, mb_next_obs = [], [] extra_logs = defaultdict(list) init_dones = self.dones epinfos = [] for env_step in range(self.nsteps): # 1. Policy step (See policies.py for step() function) obs = self.obs actions, values, neglogpacs = self.model.step(obs, self.dones, self.infos) ''' Notations: d(t), s(t), info(t) -> a(t) ~ policy -> r(t) -> d(t+1), s(t+1), info(t+1) For mb_xxx[i], we save s(t), info(t), d(t) -> a(t) -> r(t) mb_obs[i] : s(t) mb_infos[i] : info(t) --> contains raw_obs(t), mask(t) mb_dones[i] : done(t) --> if done(t) == 1: s(t) is initial state of an episode === self.model.step == (policy) mb_actions[i] : a(t) mb_neglogpacs[i]: -log(pi(a(t)|s(t))) mb_values[i] : V(s(t)) === self.env.step == (environment) mb_reward[i] : r(t) mb_next_dones[i]: d(t+1) mb_next_obs[i] : s(t+1) mb_next_infos[i]: info(t+1) --> contains raw_obs(t+1), mask(t+1) ''' assert self.obs.dtype == np.uint8 assert self.infos[0]['observations'].dtype == np.uint8 mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones) mb_infos.append(self.infos) mb_raw_obs.append(self.infos[0]['observations']) # 2. Environment step self.obs[:], rewards, self.dones, self.infos = self.env.step(actions) self.rewards = rewards # 3. Etc mb_next_obs.append(self.obs.copy()) mb_rewards.append(rewards) # Record Episode statistics self._ep_return += rewards self._ep_length += 1 for env_ind, (done, info) in enumerate(zip(self.dones, self.infos)): # for each env: 0~11 if done: epinfos.append({'l':self._ep_length[env_ind], 'r':self._ep_return[env_ind]}) self._ep_length[env_ind] = 0 self._ep_return[env_ind] = 0 # 3. Post-processing ### batch of steps to batch of rollouts preprocess_mb_raw_obs = mb_raw_obs preprocess_mb_actions = mb_actions mb_raw_obs = np.asarray(mb_raw_obs, dtype=np.uint8) mb_obs = np.asarray(mb_obs, dtype=np.uint8) mb_next_obs =
np.asarray(mb_next_obs, dtype=np.uint8)
numpy.asarray
from collections import OrderedDict from functools import partial from unittest import TestCase import os import os.path as osp import numpy as np from datumaro.components.annotation import ( AnnotationType, LabelCategories, Mask, MaskCategories, ) from datumaro.components.dataset import Dataset from datumaro.components.environment import Environment from datumaro.components.extractor import DatasetItem, Extractor from datumaro.components.media import Image from datumaro.plugins.camvid_format import CamvidConverter, CamvidImporter from datumaro.util.meta_file_util import parse_meta_file from datumaro.util.test_utils import ( TestDir, check_save_and_load, compare_datasets, ) import datumaro.plugins.camvid_format as Camvid from .requirements import Requirements, mark_requirement class CamvidFormatTest(TestCase): @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_write_and_parse_labelmap(self): src_label_map = Camvid.CamvidLabelMap with TestDir() as test_dir: file_path = osp.join(test_dir, 'label_colors.txt') Camvid.write_label_map(file_path, src_label_map) dst_label_map = Camvid.parse_label_map(file_path) self.assertEqual(src_label_map, dst_label_map) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_write_and_parse_meta_file(self): src_label_map = Camvid.CamvidLabelMap with TestDir() as test_dir: source_dataset = Dataset.from_iterable([], categories=Camvid.make_camvid_categories(src_label_map)) CamvidConverter.convert(source_dataset, test_dir, save_dataset_meta=True) dst_label_map = parse_meta_file(test_dir) self.assertEqual(src_label_map, dst_label_map) DUMMY_DATASET_DIR = osp.join(osp.dirname(__file__), 'assets', 'camvid_dataset') class TestExtractorBase(Extractor): def _label(self, camvid_label): return self.categories()[AnnotationType.label].find(camvid_label)[0] def categories(self): return Camvid.make_camvid_categories() class CamvidImportTest(TestCase): @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_import(self): source_dataset = Dataset.from_iterable([ DatasetItem(id='0001TP_008550', subset='test', image=np.ones((1, 5, 3)), annotations=[ Mask(image=np.array([[1, 1, 0, 0, 0]]), label=1), Mask(image=np.array([[0, 0, 1, 0, 0]]), label=18), Mask(image=np.array([[0, 0, 0, 1, 1]]), label=22), ] ), DatasetItem(id='0001TP_008580', subset='test', image=np.ones((1, 5, 3)), annotations=[ Mask(image=np.array([[1, 1, 0, 0, 0]]), label=2), Mask(image=np.array([[0, 0, 1, 0, 0]]), label=4), Mask(image=np.array([[0, 0, 0, 1, 1]]), label=27), ] ), DatasetItem(id='0001TP_006690', subset='train', image=np.ones((1, 5, 3)), annotations=[ Mask(image=np.array([[1, 1, 0, 1, 1]]), label=3), Mask(image=np.array([[0, 0, 1, 0, 0]]), label=18), ] ), DatasetItem(id='0016E5_07959', subset = 'val', image=np.ones((1, 5, 3)), annotations=[ Mask(image=np.array([[1, 1, 1, 0, 0]]), label=1), Mask(image=np.array([[0, 0, 0, 1, 1]]), label=8), ] ), ], categories=Camvid.make_camvid_categories()) parsed_dataset = Dataset.import_from(DUMMY_DATASET_DIR, 'camvid') compare_datasets(self, source_dataset, parsed_dataset) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_detect_camvid(self): detected_formats = Environment().detect_dataset(DUMMY_DATASET_DIR) self.assertEqual([CamvidImporter.NAME], detected_formats) class CamvidConverterTest(TestCase): @mark_requirement(Requirements.DATUM_GENERAL_REQ) def _test_save_and_load(self, source_dataset, converter, test_dir, target_dataset=None, importer_args=None, **kwargs): return check_save_and_load(self, source_dataset, converter, test_dir, importer='camvid', target_dataset=target_dataset, importer_args=importer_args, **kwargs) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_save_camvid_segm(self): class TestExtractor(TestExtractorBase): def __iter__(self): return iter([ DatasetItem(id='a/b/1', subset='test', image=np.ones((1, 5, 3)), annotations=[ Mask(image=np.array([[0, 0, 0, 1, 0]]), label=0), Mask(image=np.array([[0, 1, 1, 0, 0]]), label=3), Mask(image=np.array([[1, 0, 0, 0, 1]]), label=4), ]), ]) with TestDir() as test_dir: self._test_save_and_load(TestExtractor(), partial(CamvidConverter.convert, label_map='camvid'), test_dir) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_save_camvid_segm_unpainted(self): class TestExtractor(TestExtractorBase): def __iter__(self): return iter([ DatasetItem(id=1, subset='a', image=np.ones((1, 5, 3)), annotations=[ Mask(image=np.array([[0, 0, 0, 1, 0]]), label=0), Mask(image=np.array([[0, 1, 1, 0, 0]]), label=3), Mask(image=np.array([[1, 0, 0, 0, 1]]), label=4), ]), ]) class DstExtractor(TestExtractorBase): def __iter__(self): return iter([ DatasetItem(id=1, subset='a', image=np.ones((1, 5, 3)), annotations=[ Mask(image=np.array([[0, 0, 0, 1, 0]]), label=0), Mask(image=np.array([[0, 1, 1, 0, 0]]), label=3), Mask(image=np.array([[1, 0, 0, 0, 1]]), label=4), ]), ]) with TestDir() as test_dir: self._test_save_and_load(TestExtractor(), partial(CamvidConverter.convert, label_map='camvid', apply_colormap=False), test_dir, target_dataset=DstExtractor()) @mark_requirement(Requirements.DATUM_GENERAL_REQ) def test_can_save_dataset_with_no_subsets(self): class TestExtractor(TestExtractorBase): def __iter__(self): return iter([ DatasetItem(id=1, image=np.ones((1, 5, 3)), annotations=[ Mask(image=np.array([[1, 0, 0, 1, 0]]), label=0), Mask(image=
np.array([[0, 1, 1, 0, 1]])
numpy.array
''' script to generate test nc and other data files. ''' from shapely.geometry.point import Point import datetime import numpy as np import os.path import netCDF4 as nc SEED = 1 #: random number seeding for missing data OUTDIR = os.path.split(__file__)[0] #: location to write OUTNAME = 'test_simple_spatial_01.nc' #: name of the file to write RES = 1 #: resolution of the grid ORIGIN = Point(-105,40) #: center coordinate of upper left cell DIM = [4,4] #: number of cells [dimx,dimy] ## the scalar value to fill the cells. set to None for manual values. will use ## VAL_MAN variable instead. VAL = None VAR = ['foo','foo2'] #: name of the data variable ## any relevant variables for the time construction TIME = {'origin':datetime.datetime(2000,1,1,0,0,0), 'end':datetime.datetime(2001,12,31,0,0,0), 'calendar':'proleptic_gregorian', 'units':'days since 2000-01-01 00:00:00', 'name':'time'} ## any relevant variables for the spatial construction SPACE = {'row_bnds':'bounds_latitude', 'col_bnds':'bounds_longitude'} ## any relevant variables for the level construction LEVEL = {'name':'level', 'n':2} ## variables for masked data MASK = {'n':0, 'value':float(1e20)} ## GENERATE BASE ARRAYS ######################################################## ## make time vector delta = datetime.timedelta(1) start = TIME['origin'] timevec = [] while start <= TIME['end']: timevec.append(start) start += delta timevec = np.array(timevec) ## make the level vector levelvec = np.arange(1,LEVEL['n']+1)*100 ## make centroids col_coords = -np.arange(abs(ORIGIN.x)-RES*(DIM[0]-1),abs(ORIGIN.x)+RES,RES) col_coords = col_coords[::-1] row_coords = np.arange(ORIGIN.y-RES*(DIM[1]-1),ORIGIN.y+RES,RES) row_coords = row_coords[::-1] col,row = np.meshgrid(col_coords,row_coords) ## using points from |coords| adjust by |res| to provide bounds def make_bounds(coords,res): bnds = [] for g in coords.flat: bnds.append([g-res*0.5,g+res*0.5]) return(
np.array(bnds)
numpy.array
""" Reference: <NAME> et al. "Deep Interest Network for Click-Through Rate Prediction" (https://arxiv.org/pdf/1706.06978.pdf) author: massquantity """ import os from itertools import islice import numpy as np import pandas as pd import tensorflow.compat.v1 as tf from tensorflow.keras.initializers import ( truncated_normal as tf_truncated_normal ) from .base import Base, TfMixin from ..evaluation.evaluate import EvalMixin from ..utils.tf_ops import ( reg_config, dropout_config, dense_nn, lr_decay_config ) from ..data.data_generator import DataGenSequence from ..data.sequence import user_last_interacted from ..utils.misc import time_block, colorize from ..utils.misc import count_params from ..feature import ( get_predict_indices_and_values, get_recommend_indices_and_values, features_from_dict, add_item_features ) tf.disable_v2_behavior() class DIN(Base, TfMixin, EvalMixin): user_variables = ["user_feat"] item_variables = ["item_feat"] sparse_variables = ["sparse_feat"] dense_variables = ["dense_feat"] def __init__( self, task, data_info=None, embed_size=16, n_epochs=20, lr=0.001, lr_decay=False, reg=None, batch_size=256, num_neg=1, use_bn=True, dropout_rate=None, hidden_units="128,64,32", recent_num=10, random_num=None, use_tf_attention=False, seed=42, lower_upper_bound=None, tf_sess_config=None ): Base.__init__(self, task, data_info, lower_upper_bound) TfMixin.__init__(self, tf_sess_config) EvalMixin.__init__(self, task, data_info) self.task = task self.data_info = data_info self.embed_size = embed_size self.n_epochs = n_epochs self.lr = lr self.lr_decay = lr_decay self.reg = reg_config(reg) self.batch_size = batch_size self.num_neg = num_neg self.use_bn = use_bn self.dropout_rate = dropout_config(dropout_rate) self.hidden_units = list(map(int, hidden_units.split(","))) self.n_users = data_info.n_users self.n_items = data_info.n_items self.use_tf_attention = use_tf_attention ( self.interaction_mode, self.max_seq_len ) = self._check_interaction_mode(recent_num, random_num) self.seed = seed self.user_consumed = data_info.user_consumed self.sparse = self._decide_sparse_indices(data_info) self.dense = self._decide_dense_values(data_info) if self.sparse: self.sparse_feature_size = self._sparse_feat_size(data_info) self.sparse_field_size = self._sparse_field_size(data_info) if self.dense: self.dense_field_size = self._dense_field_size(data_info) self.item_sparse = ( True if data_info.item_sparse_unique is not None else False ) self.item_dense = ( True if data_info.item_dense_unique is not None else False ) if self.item_sparse: # item sparse col indices in all sparse cols self.item_sparse_col_indices = data_info.item_sparse_col.index if self.item_dense: # item dense col indices in all dense cols self.item_dense_col_indices = data_info.item_dense_col.index self.user_last_interacted = None self.last_interacted_len = None self.all_args = locals() def _build_model(self): self.graph_built = True tf.set_random_seed(self.seed) self.concat_embed, self.item_embed, self.seq_embed = [], [], [] self._build_placeholders() self._build_variables() self._build_user_item() if self.sparse: self._build_sparse() if self.dense: self._build_dense() self._build_attention() concat_embed = tf.concat(self.concat_embed, axis=1) mlp_layer = dense_nn(concat_embed, self.hidden_units, use_bn=self.use_bn, dropout_rate=self.dropout_rate, is_training=self.is_training, name="mlp") self.output = tf.reshape( tf.layers.dense(inputs=mlp_layer, units=1), [-1]) count_params() def _build_placeholders(self): self.user_indices = tf.placeholder(tf.int32, shape=[None]) self.item_indices = tf.placeholder(tf.int32, shape=[None]) self.user_interacted_seq = tf.placeholder( tf.int32, shape=[None, self.max_seq_len]) # B * seq self.user_interacted_len = tf.placeholder(tf.float32, shape=[None]) self.labels = tf.placeholder(tf.float32, shape=[None]) self.is_training = tf.placeholder_with_default(False, shape=[]) if self.sparse: self.sparse_indices = tf.placeholder( tf.int32, shape=[None, self.sparse_field_size]) if self.dense: self.dense_values = tf.placeholder( tf.float32, shape=[None, self.dense_field_size]) def _build_variables(self): self.user_feat = tf.get_variable( name="user_feat", shape=[self.n_users + 1, self.embed_size], initializer=tf_truncated_normal(0.0, 0.01), regularizer=self.reg) self.item_feat = tf.get_variable( name="item_feat", shape=[self.n_items + 1, self.embed_size], initializer=tf_truncated_normal(0.0, 0.01), regularizer=self.reg) if self.sparse: self.sparse_feat = tf.get_variable( name="sparse_feat", shape=[self.sparse_feature_size, self.embed_size], initializer=tf_truncated_normal(0.0, 0.01), regularizer=self.reg) if self.dense: self.dense_feat = tf.get_variable( name="dense_feat", shape=[self.dense_field_size, self.embed_size], initializer=tf_truncated_normal(0.0, 0.01), regularizer=self.reg) def _build_user_item(self): user_embed = tf.nn.embedding_lookup(self.user_feat, self.user_indices) item_embed = tf.nn.embedding_lookup(self.item_feat, self.item_indices) self.concat_embed.extend([user_embed, item_embed]) self.item_embed.append(item_embed) def _build_sparse(self): sparse_embed = tf.nn.embedding_lookup( self.sparse_feat, self.sparse_indices) self.concat_embed.append(tf.reshape( sparse_embed, [-1, self.sparse_field_size * self.embed_size]) ) if self.item_sparse: item_sparse_embed = tf.layers.flatten( tf.gather(sparse_embed, self.item_sparse_col_indices, axis=1) ) self.item_embed.append(item_sparse_embed) def _build_dense(self): batch_size = tf.shape(self.dense_values)[0] # 1 * F_dense * K dense_embed = tf.expand_dims(self.dense_feat, axis=0) # B * F_dense * K dense_embed = tf.tile(dense_embed, [batch_size, 1, 1]) dense_values_reshape = tf.reshape( self.dense_values, [-1, self.dense_field_size, 1]) dense_embed = tf.multiply(dense_embed, dense_values_reshape) self.concat_embed.append(tf.reshape( dense_embed, [-1, self.dense_field_size * self.embed_size]) ) if self.item_dense: item_dense_embed = tf.layers.flatten( tf.gather(dense_embed, self.item_dense_col_indices, axis=1) ) self.item_embed.append(item_dense_embed) def _build_attention(self): # B * seq * K seq_item_embed = tf.nn.embedding_lookup( self.item_feat, self.user_interacted_seq) self.seq_embed.append(seq_item_embed) if self.item_sparse: # contains unique field indices for each item item_sparse_fields = tf.convert_to_tensor( self.data_info.item_sparse_unique, dtype=tf.int64) item_sparse_fields_num = tf.shape(item_sparse_fields)[1] # B * seq * F_sparse seq_sparse_fields = tf.gather( item_sparse_fields, self.user_interacted_seq) # B * seq * F_sparse * K seq_sparse_embed = tf.nn.embedding_lookup( self.sparse_feat, seq_sparse_fields) # B * seq * FK seq_sparse_embed = tf.reshape( seq_sparse_embed, [-1, self.max_seq_len, item_sparse_fields_num * self.embed_size] ) self.seq_embed.append(seq_sparse_embed) if self.item_dense: # contains unique dense values for each item item_dense_values = tf.convert_to_tensor( self.data_info.item_dense_unique, dtype=tf.float32) item_dense_fields_num = tf.shape(item_dense_values)[1] # B * seq * F_dense seq_dense_values = tf.gather( item_dense_values, self.user_interacted_seq) # B * seq * F_dense * 1 seq_dense_values = tf.expand_dims(seq_dense_values, axis=-1) batch_size = tf.shape(seq_dense_values)[0] dense_embed = tf.reshape( self.dense_feat, [1, 1, self.dense_field_size, self.embed_size]) # B * seq * F_dense * K # Since dense_embeddings are same for all items, # we can simply repeat it (batch * seq) times seq_dense_embed = tf.tile( dense_embed, [batch_size, self.max_seq_len, 1, 1]) seq_dense_embed = tf.multiply( seq_dense_embed, seq_dense_values) # B * seq * FK seq_dense_embed = tf.reshape( seq_dense_embed, [-1, self.max_seq_len, item_dense_fields_num * self.embed_size] ) self.seq_embed.append(seq_dense_embed) # B * K item_total_embed = tf.concat(self.item_embed, axis=1) # B * seq * K seq_total_embed = tf.concat(self.seq_embed, axis=2) attention_layer = self._attention_unit( item_total_embed, seq_total_embed, self.user_interacted_len) self.concat_embed.append(tf.layers.flatten(attention_layer)) def _attention_unit(self, queries, keys, keys_len): if self.use_tf_attention: query_masks = tf.cast( tf.ones_like(tf.reshape(self.user_interacted_len, [-1, 1])), dtype=tf.bool ) key_masks = tf.sequence_mask( self.user_interacted_len, self.max_seq_len ) queries = tf.expand_dims(queries, axis=1) attention = tf.keras.layers.Attention(use_scale=False) pooled_outputs = attention(inputs=[queries, keys], mask=[query_masks, key_masks]) return pooled_outputs else: # queries: B * K, keys: B * seq * K queries = tf.expand_dims(queries, axis=1) # B * seq * K queries = tf.tile(queries, [1, self.max_seq_len, 1]) queries_keys_cross = tf.concat( [queries, keys, queries - keys, queries * keys], axis=2) mlp_layer = dense_nn(queries_keys_cross, (16,), use_bn=False, activation=tf.nn.sigmoid, name="attention") # B * seq * 1 mlp_layer = tf.layers.dense(mlp_layer, units=1, activation=None) # attention_weights = tf.transpose(mlp_layer, [0, 2, 1]) attention_weights = tf.layers.flatten(mlp_layer) key_masks = tf.sequence_mask(keys_len, self.max_seq_len) paddings = tf.ones_like(attention_weights) * (-2**32 + 1) attention_scores = tf.where(key_masks, attention_weights, paddings) attention_scores = tf.div_no_nan( attention_scores, tf.sqrt( tf.cast(keys.get_shape().as_list()[-1], tf.float32) ) ) # B * 1 * seq attention_scores = tf.expand_dims( tf.nn.softmax(attention_scores), 1) # B * 1 * K pooled_outputs = attention_scores @ keys return pooled_outputs def _build_train_ops(self, **kwargs): if self.task == "rating": self.loss = tf.losses.mean_squared_error(labels=self.labels, predictions=self.output) elif self.task == "ranking": self.loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=self.labels, logits=self.output) ) if self.reg is not None: reg_keys = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = self.loss + tf.add_n(reg_keys) else: total_loss = self.loss if self.lr_decay: n_batches = int(self.data_info.data_size / self.batch_size) self.lr, global_steps = lr_decay_config(self.lr, n_batches, **kwargs) else: global_steps = None optimizer = tf.train.AdamOptimizer(self.lr) optimizer_op = optimizer.minimize(total_loss, global_step=global_steps) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.training_op = tf.group([optimizer_op, update_ops]) self.sess.run(tf.global_variables_initializer()) def fit(self, train_data, verbose=1, shuffle=True, eval_data=None, metrics=None, **kwargs): self.show_start_time() if not self.graph_built: self._build_model() self._build_train_ops(**kwargs) data_generator = DataGenSequence(train_data, self.data_info, self.sparse, self.dense, mode=self.interaction_mode, num=self.max_seq_len, padding_idx=0) for epoch in range(1, self.n_epochs + 1): if self.lr_decay: print(f"With lr_decay, epoch {epoch} learning rate: " f"{self.sess.run(self.lr)}") with time_block(f"Epoch {epoch}", verbose): train_total_loss = [] for (u_seq, u_len, user, item, label, sparse_idx, dense_val ) in data_generator(shuffle, self.batch_size): feed_dict = self._get_seq_feed_dict( u_seq, u_len, user, item, label, sparse_idx, dense_val, True ) train_loss, _ = self.sess.run( [self.loss, self.training_op], feed_dict) train_total_loss.append(train_loss) if verbose > 1: train_loss_str = "train_loss: " + str( round(float(np.mean(train_total_loss)), 4) ) print(f"\t {colorize(train_loss_str, 'green')}") # for evaluation self._set_last_interacted() self.print_metrics(eval_data=eval_data, metrics=metrics, **kwargs) print("=" * 30) # for prediction and recommendation self._set_last_interacted() self.assign_oov() def predict(self, user, item, feats=None, cold_start="average", inner_id=False): user, item = self.convert_id(user, item, inner_id) unknown_num, unknown_index, user, item = self._check_unknown(user, item) ( user_indices, item_indices, sparse_indices, dense_values ) = get_predict_indices_and_values( self.data_info, user, item, self.n_items, self.sparse, self.dense) if feats is not None: assert isinstance(feats, (dict, pd.Series)), ( "feats must be dict or pandas.Series.") assert len(user_indices) == 1, "only support single user for feats" sparse_indices, dense_values = features_from_dict( self.data_info, sparse_indices, dense_values, feats, "predict") feed_dict = self._get_seq_feed_dict(self.user_last_interacted[user], self.last_interacted_len[user], user_indices, item_indices, None, sparse_indices, dense_values, False) preds = self.sess.run(self.output, feed_dict) if self.task == "rating": preds = np.clip(preds, self.lower_bound, self.upper_bound) elif self.task == "ranking": preds = 1 / (1 + np.exp(-preds)) if unknown_num > 0 and cold_start == "popular": preds[unknown_index] = self.default_prediction return preds def recommend_user(self, user, n_rec, user_feats=None, item_data=None, cold_start="average", inner_id=False): user_id = self._check_unknown_user(user, inner_id) if user_id is None: if cold_start == "average": user_id = self.n_users elif cold_start == "popular": return self.data_info.popular_items[:n_rec] else: raise ValueError(user) ( user_indices, item_indices, sparse_indices, dense_values ) = get_recommend_indices_and_values( self.data_info, user_id, self.n_items, self.sparse, self.dense) if user_feats is not None: assert isinstance(user_feats, (dict, pd.Series)), ( "feats must be dict or pandas.Series.") sparse_indices, dense_values = features_from_dict( self.data_info, sparse_indices, dense_values, user_feats, "recommend") if item_data is not None: assert isinstance(item_data, pd.DataFrame), ( "item_data must be pandas DataFrame") assert "item" in item_data.columns, ( "item_data must contain 'item' column") sparse_indices, dense_values = add_item_features( self.data_info, sparse_indices, dense_values, item_data) u_last_interacted = np.tile(self.user_last_interacted[user_id], (self.n_items, 1)) u_interacted_len = np.repeat(self.last_interacted_len[user_id], self.n_items) feed_dict = self._get_seq_feed_dict(u_last_interacted, u_interacted_len, user_indices, item_indices, None, sparse_indices, dense_values, False) recos = self.sess.run(self.output, feed_dict) if self.task == "ranking": recos = 1 / (1 + np.exp(-recos)) consumed = set(self.user_consumed[user_id]) count = n_rec + len(consumed) ids = np.argpartition(recos, -count)[-count:] rank = sorted(zip(ids, recos[ids]), key=lambda x: -x[1]) recs_and_scores = islice( (rec if inner_id else (self.data_info.id2item[rec[0]], rec[1]) for rec in rank if rec[0] not in consumed), n_rec ) return list(recs_and_scores) def _set_last_interacted(self): if (self.user_last_interacted is None and self.last_interacted_len is None): user_indices = np.arange(self.n_users) ( self.user_last_interacted, self.last_interacted_len ) = user_last_interacted(user_indices, self.user_consumed, self.n_items, self.max_seq_len) oov = np.full(self.max_seq_len, self.n_items, dtype=np.int32) self.user_last_interacted = np.vstack( [self.user_last_interacted, oov] ) self.last_interacted_len =
np.append(self.last_interacted_len, [1])
numpy.append
# coding: utf-8 from __future__ import division import numpy as np import scipy.spatial.distance as sd from scipy.special import gamma from scipy.linalg import toeplitz from scipy.optimize import minimize from scipy.stats import ttest_1samp as ttest import hypertools as hyp import pandas as pd import warnings from matplotlib import pyplot as plt gaussian_params = {'var': 100} laplace_params = {'scale': 100} eye_params = {} t_params = {'df': 100} mexican_hat_params = {'sigma': 10} uniform_params = {} boxcar_params = {'width': 10} def gaussian_weights(T, params=gaussian_params): if params is None: params = gaussian_params c1 = np.divide(1, np.sqrt(2 * np.math.pi * params['var'])) c2 = np.divide(-1, 2 * params['var']) sqdiffs = toeplitz(np.arange(T) ** 2) return c1 * np.exp(c2 * sqdiffs) def laplace_weights(T, params=laplace_params): if params is None: params = laplace_params absdiffs = toeplitz(np.arange(T)) return np.multiply(np.divide(1, 2 * params['scale']), np.exp(-np.divide(absdiffs, params['scale']))) #scale by a factor of 2.5 to prevent near-zero rounding issues def eye_weights(T, params=eye_params): return np.eye(T) def uniform_weights(T, params=uniform_params): return np.ones([T, T]) def t_weights(T, params=t_params): if params is None: params = t_params c1 = np.divide(gamma((params['df'] + 1) / 2), np.sqrt(params['df'] * np.math.pi) * gamma(params['df'] / 2)) c2 = np.divide(-params['df'] + 1, 2) sqdiffs = toeplitz(np.arange(T) ** 2) return np.multiply(c1, np.power(1 + np.divide(sqdiffs, params['df']), c2)) def mexican_hat_weights(T, params=mexican_hat_params): if params is None: params = mexican_hat_params absdiffs = toeplitz(np.arange(T)) sqdiffs = toeplitz(np.arange(T) ** 2) a = np.divide(2, np.sqrt(3 * params['sigma']) * np.power(np.math.pi, 0.25)) b = 1 - np.power(np.divide(absdiffs, params['sigma']), 2) c = np.exp(-np.divide(sqdiffs, 2 * np.power(params['sigma'], 2))) return np.multiply(a, np.multiply(b, c)) def boxcar_weights(T, params=boxcar_params): if params is None: params = boxcar_params return np.multiply(toeplitz(np.arange(T)) < params['width']/2., 1.) def format_data(data): def zero_nans(x): x[np.isnan(x)] = 0 return x x = hyp.tools.format_data(data, ppca=False, ) return list(map(zero_nans, x)) def _is_empty(dict): if not bool(dict): return True return False def wcorr(a, b, weights): ''' Compute moment-by-moment correlations between sets of observations :param a: a number-of-timepoints by number-of-features observations matrix :param b: a number-of-timepoints by number-of-features observations matrix :param weights: a number-of-timepoints by number-of-timepoints weights matrix specifying the per-timepoint weights to be considered (for each timepoint) :return: a a.shape[1] by b.shape[1] by weights.shape[0] array of per-timepoint correlation matrices. ''' def weighted_var_diffs(x, w): w[np.isnan(w)] = 0 if np.sum(np.abs(w)) == 0: weights_tiled = np.ones(x.shape) else: weights_tiled = np.tile(w[:, np.newaxis], [1, x.shape[1]]) mx = np.sum(np.multiply(weights_tiled, x), axis=0)[:, np.newaxis].T diffs = x - np.tile(mx, [x.shape[0], 1]) varx = np.sum(diffs ** 2, axis=0)[:, np.newaxis].T return varx, diffs autocorrelation = np.isclose(a, b).all() corrs = np.zeros([a.shape[1], b.shape[1], weights.shape[1]]) for t in np.arange(weights.shape[1]): vara, diffs_a = weighted_var_diffs(a, weights[:, t]) if autocorrelation: varb = vara diffs_b = diffs_a else: varb, diffs_b = weighted_var_diffs(b, weights[:, t]) alpha = np.dot(diffs_a.T, diffs_b) beta = np.sqrt(np.dot(vara.T, varb)) corrs[:, :, t] = np.divide(alpha, beta) return corrs def wisfc(data, timepoint_weights, subject_weights=None): ''' Compute moment-by-moment correlations between sets of observations :data: a list of number-of-timepoints by V matrices :timepoint weights: a number-of-timepoints by number-of-timepoints weights matrix specifying the per-timepoint weights to be considered (for each timepoint) :subject weights: number-of-subjects by number-of-subjects weights matrix :return: a list of number-of-timepoints by (V^2 - V)/2 + V correlation matrices ''' if type(data) != list: return wisfc([data], timepoint_weights, subject_weights=subject_weights)[0] if subject_weights is None: K = data[0].shape[1] connectomes = np.zeros([len(data), int((K ** 2 - K) / 2)]) for s in np.arange(len(data)): connectomes[s, :] = 1 - sd.pdist(data[s].T, metric='correlation') subject_weights = 1 - sd.squareform(sd.pdist(connectomes, metric='correlation')) np.fill_diagonal(subject_weights, 0) elif np.isscalar(subject_weights): subject_weights = subject_weights * np.ones([len(data), len(data)]) np.fill_diagonal(subject_weights, 0) corrs = [] for s, a in enumerate(data): b = weighted_mean(np.stack(data, axis=2), axis=2, weights=subject_weights[s, :]) wc = wcorr(a, b, timepoint_weights) wc[np.isnan(wc)] = 0 wc[np.isinf(wc)] = 1 try: corrs.append(mat2vec(wc)) except: print('mystery!') return corrs def isfc(data, timepoint_weights): if type(data) != list: return isfc([data], timepoint_weights)[0] return wisfc(data, timepoint_weights, subject_weights=1 - np.eye(len(data))) def autofc(data, timepoint_weights): if type(data) != list: return autofc([data], timepoint_weights)[0] return wisfc(data, timepoint_weights, subject_weights=np.eye(len(data))) def apply_by_row(corrs, f): ''' apply the function f to the correlation matrix specified in each row, and return a matrix of the concatenated results :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :param f: a function to apply to each vectorized correlation matrix :return: a matrix of function outputs (for each row of the given matrices), or a list of such matrices ''' if type(corrs) is list: return list(map(lambda x: apply_by_row(x, f), corrs)) corrs = vec2mat(corrs) return np.stack(list(map(lambda x: f(np.squeeze(x)), np.split(corrs, corrs.shape[2], axis=2))), axis=0) def corrmean_combine(corrs): ''' Compute the mean element-wise correlation across each matrix in a list. :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :return: a mean vectorized correlation matrix ''' if not (type(corrs) == list): return corrs elif np.shape(corrs)[0] == 1: return corrs else: return z2r(np.mean(r2z(np.stack(corrs, axis=2)), axis=2)) def mean_combine(vals): ''' Compute the element-wise mean across each matrix in a list. :param vals: a matrix, or a list of matrices :return: a mean matrix ''' if not (type(vals) == list): return vals else: return np.mean(np.stack(vals, axis=2), axis=2) def tstat_combine(corrs, return_pvals=False): ''' Compute element-wise t-tests (comparing distribution means to 0) across each correlation matrix in a list. :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :param return_pvals: Boolean (default: False). If True, return a second matrix (or list) of the corresponding t-tests' p-values :return: a matrix of t-statistics of the same shape as a matrix of vectorized correlation matrices ''' if not (type(corrs) == list): ts = corrs ps = np.nan * np.zeros_like(corrs) else: ts, ps = ttest(r2z(np.stack(corrs, axis=2)), popmean=0, axis=2) if return_pvals: return ts, ps else: return ts def null_combine(corrs): ''' Placeholder function that returns the input :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :return: the input ''' return corrs def reduce(corrs, rfun=None): ''' :param corrs: a matrix of vectorized correlation matrices (output of mat2vec), or a list of such matrices :param rfun: function to use for dimensionality reduction. All hypertools and scikit-learn functions are supported: PCA, IncrementalPCA, SparsePCA, MiniBatchSparsePCA, KernelPCA, FastICA, FactorAnalysis, TruncatedSVD, DictionaryLearning, MiniBatchDictionaryLearning, TSNE, Isomap, SpectralEmbedding, LocallyLinearEmbedding, MDS, and UMAP. Can be passed as a string, but for finer control of the model parameters, pass as a dictionary, e.g. reduction={‘model’ : ‘PCA’, ‘params’ : {‘whiten’ : True}}. See scikit-learn specific model docs for details on parameters supported for each model. Another option is to use graph theoretic measures computed for each node. The following measures are supported (via the brainconn toolbox): eigenvector_centrality, pagerank_centrality, and strength. (Each of these must be specified as a string; dictionaries not supported.) Default: None (no dimensionality reduction) :return: dimensionality-reduced (or original) correlation matrices ''' try: import brainconn as bc _has_brainconn = True graph_measures = {'eigenvector_centrality': bc.centrality.eigenvector_centrality_und, 'pagerank_centrality': lambda x: bc.centrality.pagerank_centrality(x, d=0.85), 'strength': bc.degree.strengths_und} except ImportError: _has_brainconn = False graph_measures = {'eigenvector_centrality': None, 'pagerank_centrality': None, 'strength': None} if rfun is None: return corrs get_V = lambda x: int(np.divide(np.sqrt(8 * x + 1) - 1, 2)) if type(corrs) is list: V = get_V(corrs[0].shape[1]) else: V = get_V(corrs.shape[1]) if _has_brainconn and rfun in graph_measures.keys(): return apply_by_row(corrs, graph_measures[rfun]) elif not _has_brainconn and rfun in graph_measures.keys(): raise ImportError('brainconn is not installed. Please install "git+https://github.com/FIU-Neuro/brainconn#egg=brainconn"') else: red_corrs = hyp.reduce(corrs, reduce=rfun, ndims=V) D = np.shape(red_corrs)[-1] if D < V : red_corrs = np.hstack((red_corrs, np.zeros((D, V - D)))) return red_corrs def smooth(w, windowsize=10, kernel_fun=laplace_weights, kernel_params=laplace_params): if type(w) is list: return list(map(lambda x: smooth(x, windowsize=windowsize, kernel_fun=kernel_fun, kernel_params=kernel_params), w)) assert type(windowsize) == int, 'smoothing kernel must have integer width' k = kernel_fun(windowsize, params=kernel_params) if iseven(windowsize): kernel = np.divide(k[int(np.floor(windowsize/2) - 1), :] + k[int(np.ceil(windowsize/2) - 1), :], 2) else: kernel = k[int(np.floor(windowsize/2)), :] kernel /= kernel.sum() x = np.zeros_like(w) for i in range(0, w.shape[1]): x[:, i] = np.convolve(kernel, w[:, i], mode='same') return x def timepoint_decoder(data, mu=None, nfolds=2, level=0, cfun=isfc, weights_fun=laplace_weights, weights_params=laplace_params, combine=mean_combine, rfun=None): """ :param data: a list of number-of-observations by number-of-features matrices :param mu: list of floats sum to one for mixing proportions vector :param nfolds: number of cross-validation folds (train using out-of-fold data; test using in-fold data) :param level: integer or list of integers for levels to be evaluated (default:0) :param cfun: function for transforming the group data (default: isfc) :param weights_fun: used to compute per-timepoint weights for cfun; default: laplace_weights :param weights_params: parameters passed to weights_fun; default: laplace_params :params combine: function for combining data within each group, or a list of such functions (default: mean_combine) :param rfun: function for reducing output (default: None) :return: results dictionary with the following keys: 'rank': mean percentile rank (across all timepoints and folds) in the decoding distribution of the true timepoint 'accuracy': mean percent accuracy (across all timepoints and folds) 'error': mean estimation error (across all timepoints and folds) between the decoded and actual window numbers, expressed as a percentage of the total number of windows """ assert len(np.unique( list(map(lambda x: x.shape[0], data)))) == 1, 'all data matrices must have the same number of timepoints' assert len(np.unique( list(map(lambda x: x.shape[1], data)))) == 1, 'all data matrices must have the same number of features' group_assignments = get_xval_assignments(len(data), nfolds) orig_level = level orig_level = np.ravel(orig_level) if type(level) is int: level = np.arange(level + 1) level = np.ravel(level) assert type(level) is np.ndarray, 'level needs be an integer, list, or np.ndarray' assert not np.any(level < 0), 'level cannot contain negative numbers' if mu: orig_level = level.max() orig_level = np.ravel(orig_level) assert np.sum(mu)==1, 'weights must sum to one' assert np.shape(mu)[0]== level.max()+1, 'weights lengths need to be the same as number of levels' if not np.all(np.arange(level.max()+1)==level): level = np.arange(level.max()+1) if callable(combine): combine = [combine] * np.shape(level)[0] combine = np.ravel(combine) assert type(combine) is np.ndarray and type(combine[0]) is not np.str_, 'combine needs to be a function, list of functions, or np.ndarray of functions' assert len(level)==len(combine), 'combine length need to be the same as level if input is type np.ndarray or list' if callable(cfun): cfun = [cfun] * np.shape(level)[0] cfun = np.ravel(cfun) assert type(cfun) is np.ndarray and type(cfun[0]) is not np.str_, 'combine needs be a function, list of functions, or np.ndarray of functions' assert len(level)==len(cfun), 'cfun length need to be the same as level if input is type np.ndarray or list' if type(rfun) not in [list, np.ndarray]: rfun = [rfun] * np.shape(level)[0] p_rfun = [None] * np.shape(level)[0] assert len(level)==len(rfun), 'parameter lengths need to be the same as level if input is ' \ 'type np.ndarray or list' results_pd = pd.DataFrame() corrs = 0 for i in range(0, nfolds): in_raw = [] out_raw = [] for v in level: if v==0: in_data = [x for x in data[group_assignments == i]] out_data = [x for x in data[group_assignments != i]] in_smooth, out_smooth, in_raw, out_raw = reduce_wrapper(folding_levels(in_data, out_data, level=v, cfun=None,rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params), level=v, rfun=rfun) else: in_smooth, out_smooth, in_raw, out_raw = reduce_wrapper(folding_levels(in_raw, out_raw, level=v, cfun=cfun, rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params), level=v, rfun=rfun) if mu: next_corrs = (1 - sd.cdist(in_smooth, out_smooth, 'correlation')) corrs += mu[v] * z2r(next_corrs) else: corrs = (1 - sd.cdist(in_smooth, out_smooth, 'correlation')) if v in orig_level: if mu: corrs = r2z(corrs) next_results_pd = decoder(corrs) next_results_pd['level'] = v next_results_pd['folds'] = i results_pd = pd.concat([results_pd, next_results_pd]) return results_pd def weighted_timepoint_decoder(data, nfolds=2, level=0, optimize_levels=None, cfun=isfc, weights_fun=laplace_weights, weights_params=laplace_params, combine=mean_combine, rfun=None, opt_init=None): """ :param data: a list of number-of-observations by number-of-features matrices :param nfolds: number of cross-validation folds (train using out-of-fold data; test using in-fold data) :param level: integer or list of integers for levels to be evaluated (default:0) :param cfun: function for transforming the group data (default: isfc) :param weights_fun: used to compute per-timepoint weights for cfun; default: laplace_weights :param weights_params: parameters passed to weights_fun; default: laplace_params :params combine: function for combining data within each group, or a list of such functions (default: mean_combine) :param rfun: function for reducing output (default: None) :return: results dictionary with the following keys: 'rank': mean percentile rank (across all timepoints and folds) in the decoding distribution of the true timepoint 'accuracy': mean percent accuracy (across all timepoints and folds) 'error': mean estimation error (across all timepoints and folds) between the decoded and actual window numbers, expressed as a percentage of the total number of windows """ assert len(np.unique( list(map(lambda x: x.shape[0], data)))) == 1, 'all data matrices must have the same number of timepoints' assert len(np.unique( list(map(lambda x: x.shape[1], data)))) == 1, 'all data matrices must have the same number of features' if nfolds == 1: sub_nfolds = 1 nfolds = 2 warnings.warn('When nfolds is set to one, the analysis will be circular.') else: sub_nfolds = 1 group_assignments = get_xval_assignments(len(data), nfolds) orig_level = level orig_level = np.ravel(orig_level) if type(level) is int: level = np.arange(level + 1) level = np.ravel(level) assert type(level) is np.ndarray, 'level needs be an integer, list, or np.ndarray' assert not np.any(level < 0), 'level cannot contain negative numbers' if not np.all(np.arange(level.max()+1)==level): level = np.arange(level.max()+1) if callable(combine): combine = [combine] * np.shape(level)[0] combine = np.ravel(combine) assert type(combine) is np.ndarray and type(combine[0]) is not np.str_, 'combine needs to be a function, list of ' \ 'functions, or np.ndarray of functions' assert len(level)==len(combine), 'combine length need to be the same as level if input is type np.ndarray or list' if callable(cfun): cfun = [cfun] * np.shape(level)[0] cfun = np.ravel(cfun) assert type(cfun) is np.ndarray and type(cfun[0]) is not np.str_, 'combine needs be a function, list of functions, ' \ 'or np.ndarray of functions' assert len(level)==len(cfun), 'cfun length need to be the same as level if input is type np.ndarray or list' if type(rfun) not in [list, np.ndarray]: rfun = [rfun] * np.shape(level)[0] p_rfun = [None] * np.shape(level)[0] assert len(level)==len(rfun), 'parameter lengths need to be the same as level if input is ' \ 'type np.ndarray or list' results_pd = pd.DataFrame() for i in range(0, nfolds): in_raw = [] out_raw = [] sub_in_raw = [] sub_out_raw = [] sub_corrs = [] corrs = [] subgroup_assignments = get_xval_assignments(len(data[group_assignments == i]), nfolds) in_data = [x for x in data[group_assignments == i]] out_data = [x for x in data[group_assignments != i]] for v in level: if v==0: in_smooth, out_smooth, in_raw, out_raw = folding_levels(in_data, out_data, level=v, cfun=None, rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) next_corrs = (1 - sd.cdist(mean_combine([x for x in in_raw]), mean_combine([x for x in out_raw]), 'correlation')) # next_corrs = (1 - sd.cdist(mean_combine(in_smooth), mean_combine(out_smooth), # 'correlation')) corrs.append(next_corrs) for s in range(0, 1): sub_in_data = [x for x in data[group_assignments == i][subgroup_assignments==s]] sub_out_data = [x for x in data[group_assignments == i][subgroup_assignments!=s]] sub_in_smooth, sub_out_smooth, sub_in_raw, sub_out_raw = folding_levels(sub_in_data, sub_out_data, level=v, cfun=None, rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) next_subcorrs = (1 - sd.cdist(mean_combine([x for x in sub_in_raw]), mean_combine([x for x in sub_out_raw]), 'correlation')) # next_subcorrs = (1 - sd.cdist(mean_combine(sub_in_smooth), # mean_combine(sub_out_smooth), 'correlation')) sub_corrs.append(next_subcorrs) else: in_smooth, out_smooth, in_raw, out_raw = folding_levels(in_raw, out_raw, level=v, cfun=cfun, rfun=rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) next_corrs = (1 - sd.cdist(in_smooth, out_smooth, 'correlation')) corrs.append(next_corrs) print('corrs ' + str(v)) for s in range(0, 1): sub_in_smooth, sub_out_smooth, sub_in_raw, sub_out_raw = folding_levels(sub_in_raw, sub_out_raw, level=v, cfun=cfun, rfun=rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) print('sub corrs ' + str(v) + str(s)) next_subcorrs = (1 - sd.cdist(sub_in_smooth, sub_out_smooth, 'correlation')) sub_corrs.append(next_subcorrs) sub_corrs = np.array(sub_corrs) corrs = np.array(corrs) if sub_nfolds == 1: sub_corrs = corrs if not optimize_levels: optimize_levels = range(v+1) opt_over = [] for lev in optimize_levels: opt_over.append(lev) sub_out_corrs = sub_corrs[opt_over,:,:] out_corrs = corrs[opt_over, :, :] mu = optimize_weights(sub_out_corrs, opt_init) w_corrs = weight_corrs(out_corrs, mu) next_results_pd = decoder(w_corrs) print(next_results_pd) next_results_pd['level'] = lev next_results_pd['folds'] = i mu_pd = pd.DataFrame() for c in opt_over: mu_pd['level_' + str(c)] = [0] mu_pd += mu next_results_pd = pd.concat([next_results_pd, mu_pd], axis=1, join_axes=[next_results_pd.index]) results_pd = pd.concat([results_pd, next_results_pd]) return results_pd def folding_levels(infold_data, outfold_data, level=0, cfun=None, weights_fun=None, weights_params=None, combine=None, rfun=None): from .timecorr import timecorr if rfun is None: rfun = [None] * np.shape(level)[0] p_cfun = eval('autofc') if level == 0: in_fold_smooth = np.asarray(timecorr([x for x in infold_data], cfun=None, rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) out_fold_smooth = np.asarray(timecorr([x for x in outfold_data], cfun=None, rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) in_fold_raw = infold_data out_fold_raw = outfold_data else: in_fold_smooth = np.asarray(timecorr(list(infold_data), cfun=cfun[level], rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) out_fold_smooth = np.asarray(timecorr(list(outfold_data), cfun=cfun[level], rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) in_fold_raw = np.asarray(timecorr(list(infold_data), cfun=p_cfun, rfun=rfun[level], combine=null_combine, weights_function=eye_weights, weights_params=eye_params)) out_fold_raw = np.asarray(timecorr(list(outfold_data), cfun=p_cfun, rfun=rfun[level], combine=null_combine, weights_function=eye_weights, weights_params=eye_params)) return in_fold_smooth, out_fold_smooth, in_fold_raw, out_fold_raw def weighted_timepoint_decoder_ec(data, nfolds=2, level=0, optimize_levels=None, cfun=isfc, weights_fun=laplace_weights, weights_params=laplace_params, combine=mean_combine, rfun=None, opt_init=None): """ :param data: a list of number-of-observations by number-of-features matrices :param nfolds: number of cross-validation folds (train using out-of-fold data; test using in-fold data) :param level: integer or list of integers for levels to be evaluated (default:0) :param cfun: function for transforming the group data (default: isfc) :param weights_fun: used to compute per-timepoint weights for cfun; default: laplace_weights :param weights_params: parameters passed to weights_fun; default: laplace_params :params combine: function for combining data within each group, or a list of such functions (default: mean_combine) :param rfun: function for reducing output (default: None) :return: results dictionary with the following keys: 'rank': mean percentile rank (across all timepoints and folds) in the decoding distribution of the true timepoint 'accuracy': mean percent accuracy (across all timepoints and folds) 'error': mean estimation error (across all timepoints and folds) between the decoded and actual window numbers, expressed as a percentage of the total number of windows """ if nfolds == 1: sub_nfolds = 1 nfolds = 2 warnings.warn('When nfolds is set to one, the analysis will be circular.') else: sub_nfolds = 1 group_assignments = get_xval_assignments(data.shape[1], nfolds) orig_level = level orig_level = np.ravel(orig_level) if type(level) is int: level = np.arange(level + 1) level = np.ravel(level) assert type(level) is np.ndarray, 'level needs be an integer, list, or np.ndarray' assert not np.any(level < 0), 'level cannot contain negative numbers' if not np.all(np.arange(level.max()+1)==level): level = np.arange(level.max()+1) if callable(combine): combine = [combine] * np.shape(level)[0] combine = np.ravel(combine) assert type(combine) is np.ndarray and type(combine[0]) is not np.str_, 'combine needs to be a function, list of ' \ 'functions, or np.ndarray of functions' assert len(level)==len(combine), 'combine length need to be the same as level if input is type np.ndarray or list' if callable(cfun): cfun = [cfun] * np.shape(level)[0] cfun = np.ravel(cfun) assert type(cfun) is np.ndarray and type(cfun[0]) is not np.str_, 'combine needs be a function, list of functions, ' \ 'or np.ndarray of functions' assert len(level)==len(cfun), 'cfun length need to be the same as level if input is type np.ndarray or list' if type(rfun) not in [list, np.ndarray]: rfun = [rfun] * np.shape(level)[0] p_rfun = [None] * np.shape(level)[0] assert len(level)==len(rfun), 'parameter lengths need to be the same as level if input is ' \ 'type np.ndarray or list' results_pd = pd.DataFrame() for i in range(0, nfolds): sub_corrs = [] corrs = [] subgroup_assignments = get_xval_assignments(len(data[0][group_assignments == i]), nfolds) in_data = [x for x in data[0][group_assignments == i]] out_data = [x for x in data[0][group_assignments != i]] for v in level: if v==0: in_smooth, out_smooth, in_raw, out_raw = folding_levels_ec(in_data, out_data, level=v, cfun=None, rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) # next_corrs = (1 - sd.cdist(mean_combine(in_smooth), mean_combine(out_smooth), # 'correlation')) next_corrs = (1 - sd.cdist(mean_combine(in_raw), mean_combine(out_raw), 'correlation')) corrs.append(next_corrs) for s in range(0, 1): sub_in_data = [x for x in data[0][group_assignments == i][subgroup_assignments==s]] sub_out_data = [x for x in data[0][group_assignments == i][subgroup_assignments!=s]] sub_in_smooth, sub_out_smooth, sub_in_raw, sub_out_raw = folding_levels_ec(sub_in_data, sub_out_data, level=v, cfun=None, rfun=p_rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) # next_subcorrs = (1 - sd.cdist(mean_combine(sub_in_smooth), # mean_combine(sub_out_smooth), 'correlation')) next_subcorrs = (1 - sd.cdist(mean_combine(sub_in_raw), mean_combine(sub_out_raw), 'correlation')) sub_corrs.append(next_subcorrs) elif v==1: in_smooth, out_smooth, in_raw, out_raw = folding_levels_ec(in_raw, out_raw, level=v, cfun=cfun, rfun=rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) next_corrs = (1 - sd.cdist(mean_combine(in_smooth), mean_combine(out_smooth), 'correlation')) corrs.append(next_corrs) for s in range(0, 1): sub_in_smooth, sub_out_smooth, sub_in_raw, sub_out_raw = folding_levels_ec(sub_in_raw, sub_out_raw, level=v, cfun=cfun, rfun=rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) next_subcorrs = (1 - sd.cdist(mean_combine(sub_in_smooth), mean_combine(sub_out_smooth), 'correlation')) sub_corrs.append(next_subcorrs) else: in_raw = [x for x in data[v-1][group_assignments == i]] out_raw = [x for x in data[v-1][group_assignments != i]] in_smooth, out_smooth, in_raw, out_raw = folding_levels_ec(in_raw, out_raw, level=v, cfun=cfun, rfun=rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) next_corrs = (1 - sd.cdist(in_smooth, out_smooth, 'correlation')) corrs.append(next_corrs) print('corrs ' + str(v)) for s in range(0, 1): sub_in_raw = [x for x in data[v-1][group_assignments == i][subgroup_assignments==s]] sub_out_raw = [x for x in data[v-1][group_assignments == i][subgroup_assignments!=s]] sub_in_smooth, sub_out_smooth, sub_in_raw, sub_out_raw = folding_levels_ec(sub_in_raw, sub_out_raw, level=v, cfun=cfun, rfun=rfun, combine=combine, weights_fun=weights_fun, weights_params=weights_params) print('sub corrs ' + str(v) + str(s)) next_subcorrs = (1 - sd.cdist(sub_in_smooth, sub_out_smooth, 'correlation')) sub_corrs.append(next_subcorrs) sub_corrs = np.array(sub_corrs) corrs = np.array(corrs) if sub_nfolds == 1: sub_corrs = corrs if not optimize_levels: optimize_levels = range(v+1) opt_over = [] for lev in optimize_levels: opt_over.append(lev) sub_out_corrs = sub_corrs[opt_over,:,:] out_corrs = corrs[opt_over, :, :] mu = optimize_weights(sub_out_corrs, opt_init) w_corrs = weight_corrs(out_corrs, mu) next_results_pd = decoder(w_corrs) print(next_results_pd) next_results_pd['level'] = lev next_results_pd['folds'] = i mu_pd = pd.DataFrame() for c in opt_over: mu_pd['level_' + str(c)] = [0] mu_pd += mu next_results_pd = pd.concat([next_results_pd, mu_pd], axis=1, join_axes=[next_results_pd.index]) results_pd = pd.concat([results_pd, next_results_pd]) return results_pd def folding_levels_ec(infold_data, outfold_data, level=0, cfun=None, weights_fun=None, weights_params=None, combine=None, rfun=None): from .timecorr import timecorr if rfun is None: rfun = [None] * np.shape(level)[0] p_cfun = eval('autofc') if level == 0: in_fold_smooth = np.asarray(timecorr([x for x in infold_data], cfun=None, rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) out_fold_smooth = np.asarray(timecorr([x for x in outfold_data], cfun=None, rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) in_fold_raw = infold_data out_fold_raw = outfold_data else: raw_rfun = [None] * (level + 1) in_fold_smooth = np.asarray(timecorr(list(infold_data), cfun=cfun[level], rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) out_fold_smooth = np.asarray(timecorr(list(outfold_data), cfun=cfun[level], rfun=rfun[level], combine=combine[level], weights_function=weights_fun, weights_params=weights_params)) in_fold_raw = infold_data out_fold_raw = outfold_data return in_fold_smooth, out_fold_smooth, in_fold_raw, out_fold_raw def pca_decoder(data, nfolds=2, dims=10, cfun=isfc, weights_fun=laplace_weights, weights_params=laplace_params, combine=mean_combine, rfun=None): """ :param data: a list of number-of-observations by number-of-features matrices :param nfolds: number of cross-validation folds (train using out-of-fold data; test using in-fold data) :param cfun: function for transforming the group data (default: isfc) :param weights_fun: used to compute per-timepoint weights for cfun; default: laplace_weights :param weights_params: parameters passed to weights_fun; default: laplace_params :params combine: function for combining data within each group, or a list of such functions (default: mean_combine) :param rfun: function for reducing output (default: None) :return: results dictionary with the following keys: 'rank': mean percentile rank (across all timepoints and folds) in the decoding distribution of the true timepoint 'accuracy': mean percent accuracy (across all timepoints and folds) 'error': mean estimation error (across all timepoints and folds) between the decoded and actual window numbers, expressed as a percentage of the total number of windows """ assert len(np.unique( list(map(lambda x: x.shape[0], data)))) == 1, 'all data matrices must have the same number of timepoints' assert len(np.unique( list(map(lambda x: x.shape[1], data)))) == 1, 'all data matrices must have the same number of features' pca_data = np.asarray(hyp.reduce(list(data), ndims=dims)) group_assignments = get_xval_assignments(len(pca_data), nfolds) results_pd = pd.DataFrame() for i in range(0, nfolds): for d in range(1, dims + 1): in_data = np.asarray([x for x in pca_data[group_assignments == i]])[:, :, :d] out_data = np.asarray([x for x in pca_data[group_assignments != i]])[:, :, :d] in_smooth, out_smooth, in_raw, out_raw = folding_levels(in_data, out_data, level=0, cfun=isfc, rfun=[None], combine=[mean_combine], weights_fun=weights_fun, weights_params=weights_params) if d < 3: in_smooth = np.hstack((in_smooth, np.zeros((in_smooth.shape[0], 3 - in_smooth.shape[1])))) out_smooth = np.hstack((out_smooth, np.zeros((out_smooth.shape[0], 3 - out_smooth.shape[1])))) corrs = (1 - sd.cdist(in_smooth, out_smooth, 'correlation')) corrs = np.array(corrs) next_results_pd = decoder(corrs) next_results_pd['dims'] = d next_results_pd['folds'] = i results_pd = pd.concat([results_pd, next_results_pd]) return results_pd def reduce_wrapper(data, dims=10, level=0, rfun=None): if not level == 0: all_smooth = list(data[0][np.newaxis, :, :]) + list(data[1][np.newaxis, :, :]) all_raw = list(data[2]) + list(data[3]) all_smooth_reduced = reduce(all_smooth, rfun=rfun[level]) all_raw_reduced = reduce(all_raw, rfun=rfun[level]) return all_smooth_reduced[0], all_smooth_reduced[1], all_raw_reduced[0], all_raw_reduced[1] else: return data[0], data[1], data[2], data[3] def optimize_weights(corrs, opt_init=None): b = (0, 1) bns = (b,) * np.shape(corrs)[0] con1 = {'type': 'eq', 'fun': lambda x: 1 - np.sum(x)} if opt_init=='random': x0 = sum_to_x(np.shape(corrs)[0], 1) elif opt_init=='last': x0 = np.repeat(1 / np.shape(corrs)[0], np.shape(corrs)[0]) x0[-1] = 1 else: x0 = np.repeat(1/np.shape(corrs)[0], np.shape(corrs)[0]) min_mu = minimize(calculate_error, x0, args=corrs, bounds=bns, constraints=con1, options={'disp': True, 'eps': 1e-1}) return min_mu.x def sum_to_x(n, x): values = [0.0, x] + list(np.random.uniform(low=0.0,high=x,size=n-1)) values.sort() return np.asarray([values[i+1] - values[i] for i in range(n)]) def calculate_error(mu, corrs, metric='error', sign=1): results = decoder(weight_corrs(corrs, mu)) return sign * results[metric].values def weight_corrs(corrs, mu): assert np.shape(mu)[0] == len(corrs) weighted_corrs = 0 for i in np.arange(np.shape(corrs)[0]): weighted_corrs += mu[i] * r2z(corrs[i]) return z2r(weighted_corrs) def decoder(corrs): next_results_pd = pd.DataFrame({'rank': [0], 'accuracy': [0], 'error': [0]}) for t in np.arange(corrs.shape[0]): decoded_inds = np.argmax(corrs[t, :]) next_results_pd['error'] += np.mean(np.abs(decoded_inds - np.array(t))) / corrs.shape[0] next_results_pd['accuracy'] += np.mean(decoded_inds == np.array(t)) next_results_pd['rank'] += np.mean(list(map((lambda x: int(x)), (corrs[t, :] <= corrs[t, t])))) next_results_pd['error'] = next_results_pd['error'].values / corrs.shape[0] next_results_pd['accuracy'] = next_results_pd['accuracy'].values / corrs.shape[0] next_results_pd['rank']= next_results_pd['rank'].values / corrs.shape[0] return next_results_pd def weighted_mean(x, axis=None, weights=None, tol=1e-5): if axis is None: axis = len(x.shape) - 1 if weights is None: weights = np.ones([1, x.shape[axis]]) # remove nans and force weights to sum to 1 weights[np.isnan(weights)] = 0 if np.sum(weights) == 0: return np.mean(x, axis=axis) # get rid of 0 weights to avoid unnecessary computations good_inds = np.abs(weights) > tol weights[good_inds] /= np.sum(weights[good_inds]) weighted_sum = np.zeros(np.take(x, 0, axis=axis).shape) for i in np.where(good_inds)[0]: weighted_sum += weights[i] * np.take(x, i, axis=axis) return weighted_sum def rmdiag(m): return m - np.diag(np.diag(m)) def r2z(r): """ Function that calculates the Fisher z-transformation Parameters ---------- r : int or ndarray Correlation value Returns ---------- result : int or ndarray Fishers z transformed correlation value """ return 0.5*(
np.log(1+r)
numpy.log
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ The module contains tools for centroiding sources. """ import inspect import warnings from astropy.nddata.utils import overlap_slices from astropy.utils.exceptions import AstropyUserWarning import numpy as np from ..utils._round import _py2intround __all__ = ['centroid_com', 'centroid_quadratic', 'centroid_sources'] def centroid_com(data, mask=None, oversampling=1): """ Calculate the centroid of an n-dimensional array as its "center of mass" determined from moments. Non-finite values (e.g., NaN or inf) in the ``data`` array are automatically masked. Parameters ---------- data : array_like The input n-dimensional array. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. oversampling : int or tuple of two int, optional Oversampling factors of pixel indices. If ``oversampling`` is a scalar this is treated as both x and y directions having the same oversampling factor; otherwise it is treated as ``(x_oversamp, y_oversamp)``. Returns ------- centroid : `~numpy.ndarray` The coordinates of the centroid in pixel order (e.g., ``(x, y)`` or ``(x, y, z)``), not numpy axis order. """ data = data.astype(float) if mask is not None and mask is not np.ma.nomask: mask = np.asarray(mask, dtype=bool) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data[mask] = 0. oversampling = np.atleast_1d(oversampling) if len(oversampling) == 1: oversampling = np.repeat(oversampling, 2) oversampling = oversampling[::-1] # reverse to (y, x) order if np.any(oversampling <= 0): raise ValueError('Oversampling factors must all be positive numbers.') badmask = ~np.isfinite(data) if np.any(badmask): warnings.warn('Input data contains non-finite values (e.g., NaN or ' 'inf) that were automatically masked.', AstropyUserWarning) data[badmask] = 0. total = np.sum(data) indices = np.ogrid[[slice(0, i) for i in data.shape]] # note the output array is reversed to give (x, y) order return np.array([np.sum(indices[axis] * data) / total / oversampling[axis] for axis in range(data.ndim)])[::-1] def centroid_quadratic(data, xpeak=None, ypeak=None, fit_boxsize=5, search_boxsize=None, mask=None): """ Calculate the centroid of an n-dimensional array by fitting a 2D quadratic polynomial. A second degree 2D polynomial is fit within a small region of the data defined by ``fit_boxsize`` to calculate the centroid position. The initial center of the fitting box can specified using the ``xpeak`` and ``ypeak`` keywords. If both ``xpeak`` and ``ypeak`` are `None`, then the box will be centered at the position of the maximum value in the input ``data``. If ``xpeak`` and ``ypeak`` are specified, the ``search_boxsize`` optional keyword can be used to further refine the initial center of the fitting box by searching for the position of the maximum pixel within a box of size ``search_boxsize``. `Vakili & Hogg (2016) <https://arxiv.org/abs/1610.05873>`_ demonstrate that 2D quadratic centroiding comes very close to saturating the `Cramér-Rao lower bound <https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound>`_ in a wide range of conditions. Parameters ---------- data : numpy.ndarray Image data. xpeak, ypeak : float or `None`, optional The initial guess of the position of the centroid. If either ``xpeak`` or ``ypeak`` is `None` then the position of the maximum value in the input ``data`` will be used as the initial guess. fit_boxsize : int or tuple of int, optional The size (in pixels) of the box used to define the fitting region. If ``fit_boxsize`` has two elements, they should be in ``(ny, nx)`` order. If ``fit_boxsize`` is a scalar then a square box of size ``fit_boxsize`` will be used. search_boxsize : int or tuple of int, optional The size (in pixels) of the box used to search for the maximum pixel value if ``xpeak`` and ``ypeak`` are both specified. If ``fit_boxsize`` has two elements, they should be in ``(ny, nx)`` order. If ``fit_boxsize`` is a scalar then a square box of size ``fit_boxsize`` will be used. This parameter is ignored if either ``xpeak`` or ``ypeak`` is `None`. In that case, the entire array is search for the maximum value. mask : bool `~numpy.ndarray`, optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from calculations. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid. Notes ----- Use ``fit_boxsize = (3, 3)`` to match the work of `Vakili & Hogg (2016) <https://arxiv.org/abs/1610.05873>`_ for their 2D second-order polynomial centroiding method. References ---------- .. [1] Vakili and Hogg 2016; arXiv:1610.05873 (https://arxiv.org/abs/1610.05873) """ if ((xpeak is None and ypeak is not None) or (xpeak is not None and ypeak is None)): raise ValueError('xpeak and ypeak must both be input or "None"') if xpeak is not None and ((xpeak < 0) or (xpeak > data.shape[1] - 1)): raise ValueError('xpeak is outside of the input data') if ypeak is not None and ((ypeak < 0) or (ypeak > data.shape[0] - 1)): raise ValueError('ypeak is outside of the input data') data = np.asanyarray(data, dtype=float).copy() ny, nx = data.shape badmask = ~np.isfinite(data) if np.any(badmask): warnings.warn('Input data contains non-finite values (e.g., NaN or ' 'inf) that were automatically masked.', AstropyUserWarning) data[badmask] = np.nan if mask is not None: if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data[mask] = np.nan fit_boxsize = _process_boxsize(fit_boxsize, data.shape) if np.product(fit_boxsize) < 6: raise ValueError('fit_boxsize is too small. 6 values are required ' 'to fit a 2D quadratic polynomial.') if xpeak is None or ypeak is None: yidx, xidx = np.unravel_index(np.nanargmax(data), data.shape) else: xidx = _py2intround(xpeak) yidx = _py2intround(ypeak) if search_boxsize is not None: search_boxsize = _process_boxsize(search_boxsize, data.shape) slc_data, _ = overlap_slices(data.shape, search_boxsize, (yidx, xidx), mode='trim') cutout = data[slc_data] yidx, xidx = np.unravel_index(np.nanargmax(cutout), cutout.shape) xidx += slc_data[1].start yidx += slc_data[0].start # if peak is at the edge of the data, return the position of the maximum if xidx == 0 or xidx == nx - 1 or yidx == 0 or yidx == ny - 1: warnings.warn('maximum value is at the edge of the data and its ' 'position was returned; no quadratic fit was ' 'performed', AstropyUserWarning) return np.array((xidx, yidx), dtype=float) # extract the fitting region slc_data, _ = overlap_slices(data.shape, fit_boxsize, (yidx, xidx), mode='trim') xidx0, xidx1 = (slc_data[1].start, slc_data[1].stop) yidx0, yidx1 = (slc_data[0].start, slc_data[0].stop) # shift the fitting box if it was clipped by the data edge if (xidx1 - xidx0) < fit_boxsize[1]: if xidx0 == 0: xidx1 = min(nx, xidx0 + fit_boxsize[1]) if xidx1 == nx: xidx0 = max(0, xidx1 - fit_boxsize[1]) if (yidx1 - yidx0) < fit_boxsize[0]: if yidx0 == 0: yidx1 = min(ny, yidx0 + fit_boxsize[0]) if yidx1 == ny: yidx0 = max(0, yidx1 - fit_boxsize[0]) cutout = data[yidx0:yidx1, xidx0:xidx1].ravel() if np.count_nonzero(~np.isnan(cutout)) < 6: warnings.warn('at least 6 unmasked data points are required to ' 'perform a 2D quadratic fit', AstropyUserWarning) return np.array((np.nan, np.nan)) # fit a 2D quadratic polynomial to the fitting region xi = np.arange(xidx0, xidx1) yi =
np.arange(yidx0, yidx1)
numpy.arange
import os import numpy as np import pickle from tensorrtserver.api import * import cv2 import time import json import xlrd import json import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt def softmax(x): """ Compute the softmax function for each row of the input x. Arguments: x -- A N dimensional vector or M x N dimensional numpy matrix. Return: x -- You are allowed to modify x in-place """ orig_shape = x.shape if len(x.shape) > 1: # Matrix exp_minmax = lambda x: np.exp(x - np.max(x)) denom = lambda x: 1.0 / np.sum(x) x = np.apply_along_axis(exp_minmax, 1, x) denominator = np.apply_along_axis(denom, 1, x) if len(denominator.shape) == 1: denominator = denominator.reshape((denominator.shape[0], 1)) x = x * denominator else: # Vector x_max = np.max(x) x = x - x_max numerator = np.exp(x) denominator = 1.0 / np.sum(numerator) x = numerator.dot(denominator) assert x.shape == orig_shape return x def plot_roc(y_true, y_pred): log = [] from sklearn import metrics def calc_metrics_table(y_true, y_pred, thresholds): metrics_list = list() for threshold in thresholds: y_pred_binary = np.zeros(y_pred.shape, dtype=np.uint8) y_pred_binary[y_pred>threshold] = 1 tn, fp, fn, tp = metrics.confusion_matrix(y_true, y_pred_binary).ravel() print('tn:{:.3f}\tfp:{:.3f}\tfn:{:.3f}\ttp:{:.3f}\t'.format(tn, fp, fn, tp)) accuracy = (tp+tn)/(tn+fp+fn+tp) sensitivity = tp/(tp+fn) specificity = tn/(fp+tn) ppv = tp/(tp+fp) npv = tn/(tn+fn) metrics_list.append([threshold, accuracy, sensitivity, specificity, ppv, npv]) metrics_table = pd.DataFrame(np.array(metrics_list), columns=['threshold','accuracy','sensitivity','specificity','ppv','npv']) return metrics_table fpr, tpr, thres = metrics.roc_curve(y_true, y_pred) auc = metrics.auc(fpr, tpr) thresholds = np.arange(0.05, 1., 0.05) metrics_table = calc_metrics_table(y_true, y_pred, thresholds) print('AUC:%.4f'% auc) log.append('AUC:%.4f'% auc) plt.title('roc curve') plt.plot(fpr, tpr, 'r') plt.xlabel('fpr') plt.ylabel('tpr') plt.xticks(np.arange(0, 1.1, step=0.1)) plt.yticks(np.arange(0, 1.1, step=0.1)) plt.grid(ls='--') # plt.show() print(metrics_table) log.append(metrics_table) return log def get_img(infile): img = cv2.imread(infile, cv2.IMREAD_GRAYSCALE) img = np.array(img, dtype=np.float32) img = img/255 img =
np.expand_dims(img, 0)
numpy.expand_dims
import numpy as np import tensorflow as tf from tensorflow.contrib.rnn import LSTMCell, GRUCell import sys class hierarchical_attention_network(object): ''' hierarchical attention network for document classification https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf parameters: - embedding_matrix: numpy array numpy array of word embeddings each row should represent a word embedding NOTE: the word index 0 is dropped, so the first row is ignored - num classes: int number of output classes - max_sents: int maximum number of sentences per document - max_words: int maximum number of words per sentence - rnn_type: string (default: "gru") rnn cells to use, can be "gru" or "lstm" - rnn_units: int (default: 200) number of rnn units to use for embedding layers - attention_size: int (default: 300) number of dimensions to use for attention context layer - dropout_keep: float (default: 0.5) dropout keep rate for final softmax layer methods: - train(data,labels,epochs=30,savebest=False,filepath=None) train network on given data - predict(data) return the one-hot-encoded predicted labels for given data - score(data,labels,bootstrap=False,bs_samples=100) return the accuracy of predicted labels on given data - save(filepath) save the model weights to a file - load(filepath) load model weights from a file ''' def __init__(self,embedding_matrix,num_classes,max_sents,max_words,rnn_type="gru", rnn_units=200,attention_size=300,dropout_keep=0.5): self.rnn_units = rnn_units if rnn_type == "gru": self.rnn_cell = GRUCell elif rnn_type == "lstm": self.rnn_cell = LSTMCell else: raise Exception("rnn_type parameter must be set to gru or lstm") self.dropout_keep = dropout_keep self.dropout = tf.placeholder(tf.float32) self.ms = max_sents self.mw = max_words #doc input and mask self.doc_input = tf.placeholder(tf.int32, shape=[max_sents,max_words]) words_per_line = tf.reduce_sum(tf.sign(self.doc_input),1) num_lines = tf.reduce_sum(tf.sign(words_per_line)) max_words_ = tf.reduce_max(words_per_line) doc_input_reduced = self.doc_input[:num_lines,:max_words_] num_words = words_per_line[:num_lines] #word rnn layer word_embeds = tf.gather(tf.get_variable('embeddings',initializer= embedding_matrix.astype(np.float32),dtype=tf.float32),doc_input_reduced) with tf.variable_scope('words'): [word_outputs_fw,word_outputs_bw],_ = \ tf.nn.bidirectional_dynamic_rnn( self.rnn_cell(self.rnn_units),self.rnn_cell(self.rnn_units), word_embeds,sequence_length=num_words,dtype=tf.float32) word_outputs = tf.concat((word_outputs_fw, word_outputs_bw),2) #word attention seq_mask = tf.reshape(tf.sequence_mask(num_words,max_words_),[-1]) word_u = tf.layers.dense(tf.reshape(word_outputs,[-1,self.rnn_units*2]),attention_size,tf.nn.tanh, kernel_initializer=tf.contrib.layers.xavier_initializer()) word_exps = tf.layers.dense(word_u,1,tf.exp,False,kernel_initializer=tf.contrib.layers.xavier_initializer()) word_exps = tf.where(seq_mask,word_exps,tf.ones_like(word_exps)*0.000000001) word_alpha = tf.reshape(word_exps,[-1,max_words_,1]) word_alpha /= tf.reshape(tf.reduce_sum(word_alpha,1),[-1,1,1]) sent_embeds = tf.reduce_sum(word_outputs*word_alpha,1) sent_embeds = tf.expand_dims(sent_embeds,0) #sentence rnn layer with tf.variable_scope('sentence'): [sent_outputs_fw,sent_outputs_bw],_ = \ tf.nn.bidirectional_dynamic_rnn( self.rnn_cell(self.rnn_units),self.rnn_cell(self.rnn_units), sent_embeds,sequence_length=tf.expand_dims(num_lines,0),dtype=tf.float32) sent_outputs = tf.concat((tf.squeeze(sent_outputs_fw,[0]),tf.squeeze(sent_outputs_bw,[0])),1) #sentence attention sent_u = tf.layers.dense(sent_outputs,attention_size,tf.nn.tanh, kernel_initializer=tf.contrib.layers.xavier_initializer()) sent_exp = tf.layers.dense(sent_u,1,tf.exp,False,kernel_initializer=tf.contrib.layers.xavier_initializer()) sent_atten = sent_exp/tf.reduce_sum(sent_exp) doc_embed = tf.transpose(tf.matmul(tf.transpose(sent_outputs),sent_atten)) #classification functions logits = tf.layers.dense(doc_embed,num_classes,kernel_initializer=tf.orthogonal_initializer()) self.prediction = tf.nn.softmax(logits) #loss, accuracy, and training functions self.labels = tf.placeholder(tf.float32, shape=[num_classes]) self.labels_rs = tf.expand_dims(self.labels,0) self.loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits,labels=self.labels_rs) self.optimizer = tf.train.AdamOptimizer(0.0001,0.9,0.99).minimize(self.loss) #init op self.init_op = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess = tf.Session() self.sess.run(self.init_op) def _list_to_numpy(self,inputval): ''' convert variable length lists of input values to zero padded numpy array ''' if type(inputval) == list: retval = np.zeros((self.ms,self.mw)) for i,line in enumerate(inputval): for j, word in enumerate(line): retval[i,j] = word return retval elif type(inputval) == np.ndarray: return inputval else: raise Exception("invalid input type") def train(self,data,labels,epochs=30,validation_data=None,savebest=False,filepath=None): ''' train network on given data parameters: - data: numpy array 3d numpy array (doc x sentence x word ids) of input data - labels: numpy array 2d numpy array of one-hot-encoded labels - epochs: int (default: 30) number of epochs to train for - validation_data: tuple (optional) tuple of numpy arrays (X,y) representing validation data - savebest: boolean (default: False) set to True to save the best model based on validation score per epoch - filepath: string (optional) path to save model if savebest is set to True outputs: None ''' if savebest==True and filepath==None: raise Exception("Please enter a path to save the network") if validation_data: validation_size = len(validation_data[0]) else: validation_size = len(data) print('training network on %i documents, validating on %i documents' \ % (len(data), validation_size)) #track best model for saving prevbest = 0 for i in range(epochs): correct = 0. #train for doc in range(len(data)): inputval = self._list_to_numpy(data[doc]) feed_dict = {self.doc_input:inputval,self.labels:labels[doc],self.dropout:self.dropout_keep} pred,cost,_ = self.sess.run([self.prediction,self.loss,self.optimizer],feed_dict=feed_dict) if np.argmax(pred) ==
np.argmax(labels[doc])
numpy.argmax
#!/usr/bin/env python3 import numpy as np import tensorflow as tf class Network: HEIGHT, WIDTH = 28, 28 def __init__(self, threads, seed=42): # Create an empty graph and a session graph = tf.Graph() graph.seed = seed self.session = tf.Session(graph = graph, config=tf.ConfigProto(inter_op_parallelism_threads=threads, intra_op_parallelism_threads=threads)) def construct(self, args): self.z_dim = args.z_dim with self.session.graph.as_default(): if args.recodex: tf.get_variable_scope().set_initializer(tf.glorot_uniform_initializer(seed=42)) # Inputs self.images = tf.placeholder(tf.float32, [None, self.HEIGHT, self.WIDTH, 1]) self.z = tf.placeholder(tf.float32, [None, self.z_dim]) # Generator def generator(z): # Define a generator as a sequence of: # - dense layer with 128 neurons and ReLU activation # - dense layer with as many neurons as there are pixels in an image # with sigmoid activation. # # Consider the output of the last hidden layer to be the logits of # individual pixels. Reshape them into a correct shape for a grayscale # image of size self.WIDTH x self.HEIGHT and return them. x = tf.layers.dense(z, 128, activation=tf.nn.relu) x = tf.layers.dense(x, self.HEIGHT * self.WIDTH, activation=tf.sigmoid) return tf.reshape(x, [-1, self.HEIGHT, self.WIDTH, 1]) with tf.variable_scope("generator"): # Define `self.generated_images` as a result of `generator` applied to `self.z`. self.generated_images = generator(self.z) # Discriminator def discriminator(image): # Define a discriminator as a sequence of: # - flattening layer # - dense layer with 128 neurons and ReLU activation # - dense layer with 1 neuron without activation # # Consider the last hidden layer output to be the logit of whether the input # images comes from real data. Change its shape to remove the last dimension # (i.e., [batch_size] instead of [batch_size, 1]) and return it. x = tf.layers.flatten(image) x = tf.layers.dense(x, 128, activation=tf.nn.relu) x = tf.layers.dense(x, 1) return tf.squeeze(x) with tf.variable_scope("discriminator"): # Define `discriminator_logit_real` as a result of # `discriminator` applied to `self.images`. discriminator_logit_real = discriminator(self.images) with tf.variable_scope("discriminator", reuse = True): # Define `discriminator_logit_fake` as a result of # `discriminator` applied to `self.generated_images`. # # Note the discriminator is called in the same variable # scope as several lines above -- it will try to utilize the # same variables. In order to allow reusing them, we need to explicitly # pass the `reuse=True` flag. discriminator_logit_fake = discriminator(self.generated_images) # Losses # Define `self.discriminator_loss` as a sum of # - sigmoid cross entropy loss with gold labels of ones (1.0) and discriminator_logit_real # - sigmoid cross entropy loss with gold labels of zeros (0.0) and discriminator_logit_fake self.discriminator_loss = tf.losses.sigmoid_cross_entropy(tf.ones_like(discriminator_logit_real), discriminator_logit_real) + \ tf.losses.sigmoid_cross_entropy(tf.zeros_like(discriminator_logit_fake), discriminator_logit_fake) # Define `self.generator_loss` as a sigmoid cross entropy # loss with gold labels of ones (1.0) and discriminator_logit_fake. self.generator_loss = tf.losses.sigmoid_cross_entropy(tf.ones_like(discriminator_logit_fake), discriminator_logit_fake) # Training global_step = tf.train.create_global_step() # Create `self.discriminator_training` as an AdamOptimizer.minimize # for discriminator_loss and variables in the "discriminator" namespace using # the option var_list=tf.global_variables("discriminator"). # Do *not* pass global_step as argument to AdamOptimizer.minimize. self.discriminator_training = tf.train.AdamOptimizer().minimize(self.discriminator_loss, var_list=tf.global_variables("discriminator")) # Create `self.generator_training` as an AdamOptimizer.minimize # for generator_loss and variables in "generator" namespace. # This time *do* pass global_step as argument to AdamOptimizer.minimize. self.generator_training = tf.train.AdamOptimizer().minimize(self.generator_loss, global_step=global_step, var_list=tf.global_variables("generator")) # Summaries discriminator_accuracy = tf.reduce_mean(tf.to_float(tf.concat([ tf.greater(discriminator_logit_real, 0), tf.less(discriminator_logit_fake, 0)], axis=0))) summary_writer = tf.contrib.summary.create_file_writer(args.logdir, flush_millis=10 * 1000) with summary_writer.as_default(), tf.contrib.summary.record_summaries_every_n_global_steps(100): self.discriminator_summary = [tf.contrib.summary.scalar("gan/discriminator_loss", self.discriminator_loss), tf.contrib.summary.scalar("gan/discriminator_accuracy", discriminator_accuracy)] self.generator_summary = tf.contrib.summary.scalar("gan/generator_loss", self.generator_loss) self.generated_image_data = tf.placeholder(tf.float32, [None, None, 1]) with summary_writer.as_default(), tf.contrib.summary.always_record_summaries(): self.generated_image_summary = tf.contrib.summary.image("gan/generated_image", tf.expand_dims(self.generated_image_data, axis=0)) # Initialize variables self.session.run(tf.global_variables_initializer()) with summary_writer.as_default(): tf.contrib.summary.initialize(session=self.session, graph=self.session.graph) def sample_z(self, batch_size): # Return uniform random noise in -1, 1 range using `np.random.uniform` # call, with shape [batch_size, self.z_dim]. return
np.random.uniform(-1, 1, [batch_size, self.z_dim])
numpy.random.uniform
# # Author: <NAME> # Copyright 2015-present, NASA-JPL/Caltech # import os import logging import numpy as np import numpy.matlib import isceobj logger = logging.getLogger('isce.alos2insar.runIonFilt') def runIonFilt(self): '''compute and filter ionospheric phase ''' catalog = isceobj.Catalog.createCatalog(self._insar.procDoc.name) self.updateParamemetersFromUser() if not self.doIon: catalog.printToLog(logger, "runIonFilt") self._insar.procDoc.addAllFromCatalog(catalog) return masterTrack = self._insar.loadTrack(master=True) slaveTrack = self._insar.loadTrack(master=False) from isceobj.Alos2Proc.runIonSubband import defineIonDir ionDir = defineIonDir() subbandPrefix = ['lower', 'upper'] ionCalDir = os.path.join(ionDir['ion'], ionDir['ionCal']) os.makedirs(ionCalDir, exist_ok=True) os.chdir(ionCalDir) ############################################################ # STEP 1. compute ionospheric phase ############################################################ from isceobj.Constants import SPEED_OF_LIGHT from isceobj.Alos2Proc.Alos2ProcPublic import create_xml ################################### #SET PARAMETERS HERE #THESE SHOULD BE GOOD ENOUGH, NO NEED TO SET IN setup(self) corThresholdAdj = 0.97 corOrderAdj = 20 ################################### print('\ncomputing ionosphere') #get files ml2 = '_{}rlks_{}alks'.format(self._insar.numberRangeLooks1*self._insar.numberRangeLooksIon, self._insar.numberAzimuthLooks1*self._insar.numberAzimuthLooksIon) lowerUnwfile = subbandPrefix[0]+ml2+'.unw' upperUnwfile = subbandPrefix[1]+ml2+'.unw' corfile = 'diff'+ml2+'.cor' #use image size from lower unwrapped interferogram img = isceobj.createImage() img.load(lowerUnwfile + '.xml') width = img.width length = img.length lowerUnw = (np.fromfile(lowerUnwfile, dtype=np.float32).reshape(length*2, width))[1:length*2:2, :] upperUnw = (np.fromfile(upperUnwfile, dtype=np.float32).reshape(length*2, width))[1:length*2:2, :] cor = (np.fromfile(corfile, dtype=np.float32).reshape(length*2, width))[1:length*2:2, :] #amp = (np.fromfile(corfile, dtype=np.float32).reshape(length*2, width))[0:length*2:2, :] #masked out user-specified areas if self.maskedAreasIon != None: maskedAreas = reformatMaskedAreas(self.maskedAreasIon, length, width) for area in maskedAreas: lowerUnw[area[0]:area[1], area[2]:area[3]] = 0 upperUnw[area[0]:area[1], area[2]:area[3]] = 0 cor[area[0]:area[1], area[2]:area[3]] = 0 #remove possible wired values in coherence cor[np.nonzero(cor<0)] = 0.0 cor[np.nonzero(cor>1)] = 0.0 #compute ionosphere fl = SPEED_OF_LIGHT / self._insar.subbandRadarWavelength[0] fu = SPEED_OF_LIGHT / self._insar.subbandRadarWavelength[1] adjFlag = 1 cor[np.nonzero(cor<corThresholdAdj)] = 0.0 ionos = computeIonosphere(lowerUnw, upperUnw, cor**corOrderAdj, fl, fu, adjFlag, 0) #dump ionosphere ionfile = 'ion'+ml2+'.ion' # ion = np.zeros((length*2, width), dtype=np.float32) # ion[0:length*2:2, :] = amp # ion[1:length*2:2, :] = ionos # ion.astype(np.float32).tofile(ionfile) # img.filename = ionfile # img.extraFilename = ionfile + '.vrt' # img.renderHdr() ionos.astype(np.float32).tofile(ionfile) create_xml(ionfile, width, length, 'float') ############################################################ # STEP 2. filter ionospheric phase ############################################################ ################################################# #SET PARAMETERS HERE #if applying polynomial fitting #False: no fitting, True: with fitting fit = self.fitIon #gaussian filtering window size size_max = self.filteringWinsizeMaxIon size_min = self.filteringWinsizeMinIon if size_min >= size_max: print('\n\nWARNING: minimum window size for filtering ionosphere phase {} >= maximum window size {}'.format(size_min, size_max)) print(' resetting maximum window size to {}\n\n'.format(size_min+5)) size_max = size_min + 5 #THESE SHOULD BE GOOD ENOUGH, NO NEED TO SET IN setup(self) #corThresholdFit = 0.85 #Now changed to use lower band coherence. crl, 23-apr-2020. useDiffCoherence = False if useDiffCoherence: #parameters for using diff coherence corfile = 'diff'+ml2+'.cor' corThresholdFit = 0.95 # 1 is not good for low coherence case, changed to 20 #corOrderFit = 1 corOrderFit = 20 corOrderFilt = 20 else: #parameters for using lower/upper band coherence corfile = subbandPrefix[0]+ml2+'.cor' corThresholdFit = 0.4 corOrderFit = 10 corOrderFilt = 10 ################################################# print('\nfiltering ionosphere') ionfile = 'ion'+ml2+'.ion' #corfile = 'diff'+ml2+'.cor' ionfiltfile = 'filt_ion'+ml2+'.ion' img = isceobj.createImage() img.load(ionfile + '.xml') width = img.width length = img.length #ion = (np.fromfile(ionfile, dtype=np.float32).reshape(length*2, width))[1:length*2:2, :] ion = np.fromfile(ionfile, dtype=np.float32).reshape(length, width) cor = (np.fromfile(corfile, dtype=np.float32).reshape(length*2, width))[1:length*2:2, :] #amp = (np.fromfile(ionfile, dtype=np.float32).reshape(length*2, width))[0:length*2:2, :] #masked out user-specified areas if self.maskedAreasIon != None: maskedAreas = reformatMaskedAreas(self.maskedAreasIon, length, width) for area in maskedAreas: ion[area[0]:area[1], area[2]:area[3]] = 0 cor[area[0]:area[1], area[2]:area[3]] = 0 #remove possible wired values in coherence cor[np.nonzero(cor<0)] = 0.0 cor[np.nonzero(cor>1)] = 0.0 # #applying water body mask here # waterBodyFile = 'wbd'+ml2+'.wbd' # if os.path.isfile(waterBodyFile): # print('applying water body mask to coherence used to compute ionospheric phase') # wbd = np.fromfile(waterBodyFile, dtype=np.int8).reshape(length, width) # cor[np.nonzero(wbd!=0)] = 0.00001 if fit: import copy wgt = copy.deepcopy(cor) wgt[np.nonzero(wgt<corThresholdFit)] = 0.0 ion_fit = weight_fitting(ion, wgt**corOrderFit, width, length, 1, 1, 1, 1, 2) ion -= ion_fit * (ion!=0) #minimize the effect of low coherence pixels #cor[np.nonzero( (cor<0.85)*(cor!=0) )] = 0.00001 #filt = adaptive_gaussian(ion, cor, size_max, size_min) #cor**14 should be a good weight to use. 22-APR-2018 filt = adaptive_gaussian(ion, cor**corOrderFilt, size_max, size_min) if fit: filt += ion_fit * (filt!=0) # ion = np.zeros((length*2, width), dtype=np.float32) # ion[0:length*2:2, :] = amp # ion[1:length*2:2, :] = filt # ion.astype(np.float32).tofile(ionfiltfile) # img.filename = ionfiltfile # img.extraFilename = ionfiltfile + '.vrt' # img.renderHdr() filt.astype(np.float32).tofile(ionfiltfile) create_xml(ionfiltfile, width, length, 'float') ############################################################ # STEP 3. resample ionospheric phase ############################################################ from contrib.alos2proc_f.alos2proc_f import rect from isceobj.Alos2Proc.Alos2ProcPublic import create_xml from scipy.interpolate import interp1d import shutil ################################################# #SET PARAMETERS HERE #interpolation method interpolationMethod = 1 ################################################# print('\ninterpolate ionosphere') ml3 = '_{}rlks_{}alks'.format(self._insar.numberRangeLooks1*self._insar.numberRangeLooks2, self._insar.numberAzimuthLooks1*self._insar.numberAzimuthLooks2) ionfiltfile = 'filt_ion'+ml2+'.ion' #ionrectfile = 'filt_ion'+ml3+'.ion' ionrectfile = self._insar.multilookIon img = isceobj.createImage() img.load(ionfiltfile + '.xml') width2 = img.width length2 = img.length img = isceobj.createImage() img.load(os.path.join('../../', ionDir['insar'], self._insar.multilookDifferentialInterferogram) + '.xml') width3 = img.width length3 = img.length #number of range looks output nrlo = self._insar.numberRangeLooks1*self._insar.numberRangeLooks2 #number of range looks input nrli = self._insar.numberRangeLooks1*self._insar.numberRangeLooksIon #number of azimuth looks output nalo = self._insar.numberAzimuthLooks1*self._insar.numberAzimuthLooks2 #number of azimuth looks input nali = self._insar.numberAzimuthLooks1*self._insar.numberAzimuthLooksIon if (self._insar.numberRangeLooks2 != self._insar.numberRangeLooksIon) or \ (self._insar.numberAzimuthLooks2 != self._insar.numberAzimuthLooksIon): #this should be faster using fortran if interpolationMethod == 0: rect(ionfiltfile, ionrectfile, width2,length2, width3,length3, nrlo/nrli, 0.0, 0.0, nalo/nali, (nrlo-nrli)/(2.0*nrli), (nalo-nali)/(2.0*nali), 'REAL','Bilinear') #finer, but slower method else: ionfilt = np.fromfile(ionfiltfile, dtype=np.float32).reshape(length2, width2) index2 = np.linspace(0, width2-1, num=width2, endpoint=True) index3 = np.linspace(0, width3-1, num=width3, endpoint=True) * nrlo/nrli + (nrlo-nrli)/(2.0*nrli) ionrect = np.zeros((length3, width3), dtype=np.float32) for i in range(length2): f = interp1d(index2, ionfilt[i,:], kind='cubic', fill_value="extrapolate") ionrect[i, :] = f(index3) index2 = np.linspace(0, length2-1, num=length2, endpoint=True) index3 = np.linspace(0, length3-1, num=length3, endpoint=True) * nalo/nali + (nalo-nali)/(2.0*nali) for j in range(width3): f = interp1d(index2, ionrect[0:length2, j], kind='cubic', fill_value="extrapolate") ionrect[:, j] = f(index3) ionrect.astype(np.float32).tofile(ionrectfile) del ionrect create_xml(ionrectfile, width3, length3, 'float') os.rename(ionrectfile, os.path.join('../../insar', ionrectfile)) os.rename(ionrectfile+'.vrt', os.path.join('../../insar', ionrectfile)+'.vrt') os.rename(ionrectfile+'.xml', os.path.join('../../insar', ionrectfile)+'.xml') os.chdir('../../insar') else: shutil.copyfile(ionfiltfile, os.path.join('../../insar', ionrectfile)) os.chdir('../../insar') create_xml(ionrectfile, width3, length3, 'float') #now we are in 'insar' ############################################################ # STEP 4. correct interferogram ############################################################ from isceobj.Alos2Proc.Alos2ProcPublic import renameFile from isceobj.Alos2Proc.Alos2ProcPublic import runCmd if self.applyIon: print('\ncorrect interferogram') if os.path.isfile(self._insar.multilookDifferentialInterferogramOriginal): print('original interferogram: {} is already here, do not rename: {}'.format(self._insar.multilookDifferentialInterferogramOriginal, self._insar.multilookDifferentialInterferogram)) else: print('renaming {} to {}'.format(self._insar.multilookDifferentialInterferogram, self._insar.multilookDifferentialInterferogramOriginal)) renameFile(self._insar.multilookDifferentialInterferogram, self._insar.multilookDifferentialInterferogramOriginal) cmd = "imageMath.py -e='a*exp(-1.0*J*b)' --a={} --b={} -s BIP -t cfloat -o {}".format( self._insar.multilookDifferentialInterferogramOriginal, self._insar.multilookIon, self._insar.multilookDifferentialInterferogram) runCmd(cmd) else: print('\nionospheric phase estimation finished, but correction of interfeorgram not requested') os.chdir('../') catalog.printToLog(logger, "runIonFilt") self._insar.procDoc.addAllFromCatalog(catalog) def computeIonosphere(lowerUnw, upperUnw, wgt, fl, fu, adjFlag, dispersive): ''' This routine computes ionosphere and remove the relative phase unwrapping errors lowerUnw: lower band unwrapped interferogram upperUnw: upper band unwrapped interferogram wgt: weight fl: lower band center frequency fu: upper band center frequency adjFlag: method for removing relative phase unwrapping errors 0: mean value 1: polynomial dispersive: compute dispersive or non-dispersive 0: dispersive 1: non-dispersive ''' #use image size from lower unwrapped interferogram (length, width)=lowerUnw.shape ########################################################################################## # ADJUST PHASE USING MEAN VALUE # #ajust phase of upper band to remove relative phase unwrapping errors # flag = (lowerUnw!=0)*(cor>=ionParam.corThresholdAdj) # index = np.nonzero(flag!=0) # mv = np.mean((lowerUnw - upperUnw)[index], dtype=np.float64) # print('mean value of phase difference: {}'.format(mv)) # flag2 = (lowerUnw!=0) # index2 = np.nonzero(flag2) # #phase for adjustment # unwd = ((lowerUnw - upperUnw)[index2] - mv) / (2.0*np.pi) # unw_adj = np.around(unwd) * (2.0*np.pi) # #ajust phase of upper band # upperUnw[index2] += unw_adj # unw_diff = lowerUnw - upperUnw # print('after adjustment:') # print('max phase difference: {}'.format(np.amax(unw_diff))) # print('min phase difference: {}'.format(np.amin(unw_diff))) ########################################################################################## #adjust phase using mean value if adjFlag == 0: flag = (lowerUnw!=0)*(wgt!=0) index = np.nonzero(flag!=0) mv = np.mean((lowerUnw - upperUnw)[index], dtype=np.float64) print('mean value of phase difference: {}'.format(mv)) diff = mv #adjust phase using a surface else: diff = weight_fitting(lowerUnw - upperUnw, wgt, width, length, 1, 1, 1, 1, 2) flag2 = (lowerUnw!=0) index2 = np.nonzero(flag2) #phase for adjustment unwd = ((lowerUnw - upperUnw) - diff)[index2] / (2.0*np.pi) unw_adj =
np.around(unwd)
numpy.around
import numpy as np import scipy as sp def mask_sparse_matrix_by_rows(M, row_mask): M_masked = sp.sparse.coo_matrix(M.shape, dtype=M.dtype) if np.sum(row_mask): M_coo = M.tocoo() entries_to_keep = row_mask[M_coo.row] M_masked = sp.sparse.coo_matrix((M_coo.data[entries_to_keep], (M_coo.row[entries_to_keep], M_coo.col[entries_to_keep])), shape=M.shape, dtype=M.dtype) return M_masked def mask_sparse_matrix_by_columns(M, column_mask): M_masked = sp.sparse.coo_matrix(M.shape, dtype=M.dtype) if
np.sum(column_mask)
numpy.sum
# Prototype, showing that threads share memory effectively between each other from threading import Thread from queue import Queue import numpy as np import time MBs = 20000 size = MBs // 4 def produce(array, q: Queue): while True: #array = q.get() time.sleep(0.2) q.put(array[size//4:(size*3)//4]) def process(q: Queue): while True: array = q.get() print(array.mean()) def main(): n = 4 array =
np.ones((size, 1024, 1024), dtype=np.float32)
numpy.ones
""" Test the nifti_masker module Functions in this file only test features added by the NiftiMasker class, not the underlying functions used (e.g. clean()). See test_masking.py and test_signal.py for this. """ # Author: <NAME>, <NAME> # License: simplified BSD import os import shutil from tempfile import mkdtemp import nibabel import numpy as np import pytest from nibabel import Nifti1Image from numpy.testing import assert_array_equal from nilearn._utils import testing from nilearn._utils import data_gen from nilearn._utils.class_inspect import get_params from nilearn._utils.exceptions import DimensionError from nilearn.image import index_img from nilearn.maskers import NiftiMasker from nilearn.maskers.nifti_masker import _filter_and_mask from nilearn.image import get_data def test_auto_mask(): # This mostly a smoke test data = np.zeros((9, 9, 9)) data[3:-3, 3:-3, 3:-3] = 10 img = Nifti1Image(data, np.eye(4)) masker = NiftiMasker() # Smoke test the fit masker.fit(img) # Smoke test the transform # With a 4D img masker.transform([img, ]) # With a 3D img masker.transform(img) # check exception when transform() called without prior fit() masker2 = NiftiMasker(mask_img=img) with pytest.raises(ValueError, match='has not been fitted. '): masker2.transform(img) def test_detrend(): # Check that detrending doesn't do something stupid with 3D images data = np.zeros((9, 9, 9)) data[3:-3, 3:-3, 3:-3] = 10 img = Nifti1Image(data, np.eye(4)) mask = data.astype(np.int) mask_img = Nifti1Image(mask, np.eye(4)) masker = NiftiMasker(mask_img=mask_img, detrend=True) # Smoke test the fit X = masker.fit_transform(img) assert np.any(X != 0) def test_resample(): # Check that target_affine triggers the right resampling data = np.zeros((9, 9, 9)) data[3:-3, 3:-3, 3:-3] = 10 img = Nifti1Image(data, np.eye(4)) mask = data.astype(np.int) mask_img = Nifti1Image(mask, np.eye(4)) masker = NiftiMasker(mask_img=mask_img, target_affine=2 * np.eye(3)) # Smoke test the fit X = masker.fit_transform(img) assert np.any(X != 0) def test_with_files(): # Standard masking data = np.zeros((40, 40, 40, 2)) data[20, 20, 20] = 1 data_img = Nifti1Image(data, np.eye(4)) with testing.write_tmp_imgs(data_img) as filename: masker = NiftiMasker() masker.fit(filename) masker.transform(filename) def test_nan(): data = np.ones((9, 9, 9)) data[0] = np.nan data[:, 0] = np.nan data[:, :, 0] = np.nan data[-1] = np.nan data[:, -1] = np.nan data[:, :, -1] = np.nan data[3:-3, 3:-3, 3:-3] = 10 img = Nifti1Image(data, np.eye(4)) masker = NiftiMasker(mask_args=dict(opening=0)) masker.fit(img) mask = get_data(masker.mask_img_) assert mask[1:-1, 1:-1, 1:-1].all() assert not mask[0].any() assert not mask[:, 0].any() assert not mask[:, :, 0].any() assert not mask[-1].any() assert not mask[:, -1].any() assert not mask[:, :, -1].any() def test_matrix_orientation(): """Test if processing is performed along the correct axis.""" # the "step" kind generate heavyside-like signals for each voxel. # all signals being identical, standardizing along the wrong axis # would leave a null signal. Along the correct axis, the step remains. fmri, mask = data_gen.generate_fake_fmri(shape=(40, 41, 42), kind="step") masker = NiftiMasker(mask_img=mask, standardize=True, detrend=True) timeseries = masker.fit_transform(fmri) assert(timeseries.shape[0] == fmri.shape[3]) assert(timeseries.shape[1] == get_data(mask).sum()) std = timeseries.std(axis=0) assert(std.shape[0] == timeseries.shape[1]) # paranoid assert(not np.any(std < 0.1)) # Test inverse transform masker = NiftiMasker(mask_img=mask, standardize=False, detrend=False) masker.fit() timeseries = masker.transform(fmri) recovered = masker.inverse_transform(timeseries) np.testing.assert_array_almost_equal(get_data(recovered), get_data(fmri)) def test_mask_3d(): # Dummy mask data = np.zeros((40, 40, 40, 2)) data[20, 20, 20] = 1 data_img = Nifti1Image(data, np.eye(4)) with testing.write_tmp_imgs(data_img, create_files=True)\ as filename: masker = NiftiMasker(mask_img=filename) pytest.raises(TypeError, masker.fit) def test_mask_4d(): # Dummy mask mask = np.zeros((10, 10, 10), dtype=int) mask[3:7, 3:7, 3:7] = 1 mask_bool = mask.astype(bool) mask_img = Nifti1Image(mask, np.eye(4)) # Dummy data data = np.zeros((10, 10, 10, 5), dtype=int) data[..., 0] = 1 data[..., 1] = 2 data[..., 2] = 3 data_img_4d = Nifti1Image(data, np.eye(4)) data_imgs = [index_img(data_img_4d, 0), index_img(data_img_4d, 1), index_img(data_img_4d, 2)] # check whether transform is indeed selecting niimgs subset sample_mask = np.array([0, 2]) masker = NiftiMasker(mask_img=mask_img) masker.fit() data_trans = masker.transform(data_imgs, sample_mask=sample_mask) data_trans_img = index_img(data_img_4d, sample_mask) data_trans_direct = get_data(data_trans_img)[mask_bool, :] data_trans_direct = np.swapaxes(data_trans_direct, 0, 1) assert_array_equal(data_trans, data_trans_direct) masker = NiftiMasker(mask_img=mask_img) masker.fit() data_trans2 = masker.transform(data_img_4d, sample_mask=sample_mask) assert_array_equal(data_trans2, data_trans_direct) diff_sample_mask = np.array([2, 4]) data_trans_img_diff = index_img(data_img_4d, diff_sample_mask) data_trans_direct_diff = get_data(data_trans_img_diff)[mask_bool, :] data_trans_direct_diff = np.swapaxes(data_trans_direct_diff, 0, 1) masker = NiftiMasker(mask_img=mask_img) masker.fit() data_trans3 = masker.transform( data_img_4d, sample_mask=diff_sample_mask ) assert_array_equal(data_trans3, data_trans_direct_diff) def test_4d_single_scan(): mask = np.zeros((10, 10, 10)) mask[3:7, 3:7, 3:7] = 1 mask_img = Nifti1Image(mask, np.eye(4)) # Test that, in list of 4d images with last dimension=1, they are # considered as 3d rng = np.random.RandomState(42) data_5d = [rng.random_sample((10, 10, 10, 1)) for i in range(5)] data_4d = [d[..., 0] for d in data_5d] data_5d = [nibabel.Nifti1Image(d, np.eye(4)) for d in data_5d] data_4d = [nibabel.Nifti1Image(d, np.eye(4)) for d in data_4d] masker = NiftiMasker(mask_img=mask_img) masker.fit() data_trans_5d = masker.transform(data_5d) data_trans_4d = masker.transform(data_4d) assert_array_equal(data_trans_4d, data_trans_5d) def test_5d(): mask = np.zeros((10, 10, 10)) mask[3:7, 3:7, 3:7] = 1 mask_img = Nifti1Image(mask, np.eye(4)) # Test that, in list of 4d images with last dimension=1, they are # considered as 3d rng = np.random.RandomState(42) data_5d = [rng.random_sample((10, 10, 10, 3)) for i in range(5)] data_5d = [nibabel.Nifti1Image(d, np.eye(4)) for d in data_5d] masker = NiftiMasker(mask_img=mask_img) masker.fit() with pytest.raises( DimensionError, match="Input data has incompatible dimensionality: " "Expected dimension is 4D and you provided " "a list of 4D images \\(5D\\)."): masker.transform(data_5d) def test_sessions(): # Test the sessions vector data = np.ones((40, 40, 40, 4)) # Create a border, so that the masking work well data[0] = 0 data[-1] = 0 data[:, -1] = 0 data[:, 0] = 0 data[..., -1] = 0 data[..., 0] = 0 data[20, 20, 20] = 1 data_img = Nifti1Image(data, np.eye(4)) masker = NiftiMasker(runs=np.ones(3, dtype=np.int)) pytest.raises(ValueError, masker.fit_transform, data_img) def test_joblib_cache(): from joblib import hash, Memory mask = np.zeros((40, 40, 40)) mask[20, 20, 20] = 1 mask_img = Nifti1Image(mask, np.eye(4)) with testing.write_tmp_imgs(mask_img, create_files=True) as filename: masker = NiftiMasker(mask_img=filename) masker.fit() mask_hash = hash(masker.mask_img_) get_data(masker.mask_img_) assert mask_hash == hash(masker.mask_img_) # Test a tricky issue with memmapped joblib.memory that makes # imgs return by inverse_transform impossible to save cachedir = mkdtemp() try: masker.memory = Memory(location=cachedir, mmap_mode='r', verbose=0) X = masker.transform(mask_img) # inverse_transform a first time, so that the result is cached out_img = masker.inverse_transform(X) out_img = masker.inverse_transform(X) out_img.to_filename(os.path.join(cachedir, 'test.nii')) finally: # enables to delete "filename" on windows del masker shutil.rmtree(cachedir, ignore_errors=True) def test_mask_strategy_errors(): # Error with unknown mask_strategy mask = NiftiMasker(mask_strategy='oops') with pytest.raises( ValueError, match="Unknown value of mask_strategy 'oops'"): mask.fit() # Warning with deprecated 'template' strategy img = np.random.RandomState(42).uniform(size=(9, 9, 5)) img = Nifti1Image(img, np.eye(4)) mask = NiftiMasker(mask_strategy='template') with pytest.warns(UserWarning, match="Masking strategy 'template' is deprecated."): mask.fit(img) def test_compute_epi_mask(): # Taken from test_masking.py, but used to test that the masker class # is passing parameters appropriately. mean_image = np.ones((9, 9, 3)) mean_image[3:-2, 3:-2, :] = 10 mean_image[5, 5, :] = 11 mean_image = Nifti1Image(mean_image.astype(float), np.eye(4)) masker = NiftiMasker(mask_strategy='epi', mask_args=dict(opening=False)) masker.fit(mean_image) mask1 = masker.mask_img_ masker2 = NiftiMasker(mask_strategy='epi', mask_args=dict(opening=False, exclude_zeros=True)) masker2.fit(mean_image) mask2 = masker2.mask_img_ # With an array with no zeros, exclude_zeros should not make # any difference np.testing.assert_array_equal(get_data(mask1), get_data(mask2)) # Check that padding with zeros does not change the extracted mask mean_image2 = np.zeros((30, 30, 3)) mean_image2[3:12, 3:12, :] = get_data(mean_image) mean_image2 = Nifti1Image(mean_image2, np.eye(4)) masker3 = NiftiMasker(mask_strategy='epi', mask_args=dict(opening=False, exclude_zeros=True)) masker3.fit(mean_image2) mask3 = masker3.mask_img_ np.testing.assert_array_equal(get_data(mask1), get_data(mask3)[3:12, 3:12]) # However, without exclude_zeros, it does masker4 = NiftiMasker(mask_strategy='epi', mask_args=dict(opening=False)) masker4.fit(mean_image2) mask4 = masker4.mask_img_ assert not np.allclose(get_data(mask1), get_data(mask4)[3:12, 3:12]) def _get_random_img(shape): img = np.random.RandomState(42).uniform(size=shape) return Nifti1Image(img, np.eye(4)) @pytest.fixture def expected_mask(mask_args): mask = np.zeros((9, 9, 5)) if mask_args == dict(): return mask else: mask[2:7, 2:7, 2] = 1 return mask @pytest.mark.parametrize('strategy', [f'{p}-template' for p in ['whole-brain', 'gm', 'wm']]) @pytest.mark.parametrize('mask_args', [dict(), dict(threshold=0.)]) def test_compute_brain_mask(strategy, mask_args, expected_mask): # Check masker for template masking strategy img = _get_random_img((9, 9, 5)) masker = NiftiMasker(mask_strategy=strategy, mask_args=mask_args) masker.fit(img) np.testing.assert_array_equal(get_data(masker.mask_img_), expected_mask) def test_filter_and_mask_error(): data = np.zeros([20, 30, 40, 5]) mask = np.zeros([20, 30, 40, 2]) mask[10, 15, 20, :] = 1 data_img = nibabel.Nifti1Image(data, np.eye(4)) mask_img = nibabel.Nifti1Image(mask, np.eye(4)) masker = NiftiMasker() params = get_params(NiftiMasker, masker) with pytest.raises( DimensionError, match="Input data has incompatible dimensionality: " "Expected dimension is 3D and you provided " "a 4D image."): _filter_and_mask(data_img, mask_img, params) def test_filter_and_mask(): data = np.zeros([20, 30, 40, 5]) mask = np.ones([20, 30, 40]) data_img = nibabel.Nifti1Image(data, np.eye(4)) mask_img = nibabel.Nifti1Image(mask, np.eye(4)) masker = NiftiMasker() params = get_params(NiftiMasker, masker) # Test return_affine = False data = _filter_and_mask(data_img, mask_img, params) assert data.shape == (5, 24000) def test_dtype(): data_32 = np.zeros((9, 9, 9), dtype=np.float32) data_64 = np.zeros((9, 9, 9), dtype=np.float64) data_32[2:-2, 2:-2, 2:-2] = 10 data_64[2:-2, 2:-2, 2:-2] = 10 affine_32 = np.eye(4, dtype=np.float32) affine_64 = np.eye(4, dtype=np.float64) img_32 = Nifti1Image(data_32, affine_32) img_64 = Nifti1Image(data_64, affine_64) masker_1 = NiftiMasker(dtype='auto') assert(masker_1.fit_transform(img_32).dtype == np.float32) assert(masker_1.fit_transform(img_64).dtype == np.float32) masker_2 = NiftiMasker(dtype='float64') assert(masker_2.fit_transform(img_32).dtype == np.float64) assert(masker_2.fit_transform(img_64).dtype == np.float64) def test_standardization(): rng = np.random.RandomState(42) data_shape = (9, 9, 5) n_samples = 500 signals = rng.standard_normal(size=(np.prod(data_shape), n_samples)) means = rng.standard_normal(size=(np.prod(data_shape), 1)) * 50 + 1000 signals += means img = Nifti1Image(signals.reshape(data_shape + (n_samples,)),
np.eye(4)
numpy.eye
''' @author: <NAME> @copyright: Copyright 2016-2019, <NAME>. @license: MIT @contact: <EMAIL> ''' import numpy as np def accuracy(conf): total_correct = 0. nb_classes = conf.shape[0] for i in
np.arange(0,nb_classes)
numpy.arange
import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtGui from PyQt4.QtCore import * from PyQt4.QtGui import * import sys import numpy as np import sympy as sym import pyqtgraph as pg import pyqtgraph.opengl as gl from pyqtgraph.dockarea import * import serial import time import thread import qdarkstyle # Define the robot class class robot: def __init__(self,rp_vector): try: self.ser = serial.Serial('COM6', 9600) except serial.serialutil.SerialException as e: print("No serial connected") else: pass finally: pass self.rp_vector = rp_vector self.size = len(rp_vector) self.joints = ["0"]*self.size self.alpha = np.zeros(self.size) self.a = np.zeros(self.size) self.d = np.zeros(self.size) self.theta = np.zeros(self.size) self.T = np.zeros((4,4,self.size)) self.T_full = np.zeros((4,4)) self.joint_values = np.zeros(self.size+1) self.joint_values_d = np.zeros(self.size) self.O =
np.zeros((3,self.size+1))
numpy.zeros
import sys import math import numpy as np ## the radius of the earth R = 6.371*10**6 def K0(x1,x2,pars): """ Args: x1,x2 are 1d numpy arrays with length 2 x1 = [a,b], with a as timestamp and b as latitude or longitude pars, a list of parameters Return: a scalar, a smi """ [l1,l2,l3,a1,a2,b1,b2,b3] = pars k1 = np.exp(-abs(x1[0]-x2[0])/l1)*np.exp(-(np.sin(abs(x1[0]-x2[0])/86400*math.pi))**2/a1) k2 = np.exp(-abs(x1[0]-x2[0])/l2)*np.exp(-(np.sin(abs(x1[0]-x2[0])/604800*math.pi))**2/a2) k3 = np.exp(-abs(x1[1]-x2[1])/l3) return b1*k1+b2*k2+b3*k3 ## all the functions below are based on the equations in [Csato and Opper (2002)] ## ref: http://www.cs.ubbcluj.ro/~csatol/SOGP/thesis/Gaussian_Process.html#SECTION00521000000000000000 ## ref: http://www.cs.ubbcluj.ro/~csatol/SOGP/thesis/Sparsity_in.html#cha:sparse def update_K(bv,K,pars): """ similarity matrix between bv's Args: bv, a list of basis vectors K, 2d numpy array Return: 2d numpy array """ if len(bv)==0: mat = np.array([1]) else: d = np.shape(K)[0] row = np.ones(d) column = np.ones([d+1,1]) for i in range(d): row[i] = column[i,0] = K0(bv[-1][:-1],bv[i][:-1],pars) mat = np.hstack([np.vstack([K,row]),column]) return mat def update_k(bv,x_current,pars): """ similarity vector between the current input with all bv's, t starts from 0 Args: bv, a list of basis vectors x_current, current input, X[i,:], 1d array Return: 1d numpy array """ d = len(bv) if d==0: out = np.array([0]) if d>=1: out = np.zeros(d) for i in range(d): out[i] = K0(x_current,bv[i][:-1],pars) return out def update_e_hat(Q,k): """ Args: Q, 2d numpy array k, 1d numpy array Return: 1d numpy array """ if np.shape(Q)[0]==0: out = np.array([0]) else: out = np.dot(Q,k) return out def update_gamma(k,e_hat): """ Args: k, 1d numpy array e_hat, 1d numpy array Return: scalar """ return 1-np.dot(k,e_hat) def update_q(k,alpha,sigmax,y_current): """ Args: k, alpha, e_hat: 1d numpy array sigmax, y_current: scalar Return: scalar """ if len(alpha)==0: out = y_current/sigmax else: out = (y_current-np.dot(k,alpha))/sigmax return out def update_s_hat(C,k,e_hat): """ Args: C: 2d numpy array k, e_hat: 1d numpy array Return: 1d numpy array """ return np.dot(C,k)+e_hat def update_eta(gamma,sigmax): """ Args: gamma and sigmax: scalar Return: scalar """ r = -1/sigmax return 1/(1+gamma*r) def update_alpha_hat(alpha,q,eta,s_hat): """ Args: q, eta: scalar alpha, s_hat: 1d numpy array Return: 1d numpy array """ return alpha+q*eta*s_hat def update_c_hat(C,sigmax,eta,s_hat): """ Args: sigmax, eta: scalar C: 2d array s_hat: 1d array Return: 2d array """ r = -1/sigmax return C+r*eta*np.outer(s_hat,s_hat) def update_s(C,k): """ Args: C: 2d array k: 1d array Return: 1d array """ if np.shape(C)[0]==0: s = np.array([1]) else: temp = np.dot(C,k) s = np.append(temp,1) return s def update_alpha(alpha,q,s): """ Args: alpha, s: 1d array q: scalar Return: 1d array """ T_alpha = np.append(alpha,0) new_alpha = T_alpha + q*s return new_alpha def update_c(C,sigmax,s): """ Args: C: 2d array sigmax: scalar s: 1d array Return: 1d array """ d = np.shape(C)[0] if d==0: U_c = np.array([0]) else: U_c = np.hstack([np.vstack([C,
np.zeros(d)
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : <NAME> # @Contact : <EMAIL> import numpy as np from sklearn.datasets import load_digits, load_boston from sklearn.model_selection import train_test_split from autoflow.estimator.wrap_lightgbm import LGBMRegressor, LGBMClassifier from autoflow.tests.base import EstimatorTestCase def calc_balanced_sample_weight(y_train: np.ndarray): unique, counts =
np.unique(y_train, return_counts=True)
numpy.unique
""" @package ion_functions.test.adcp_functions @file ion_functions/test/test_adcp_functions.py @author <NAME>, <NAME>, <NAME> @brief Unit tests for adcp_functions module """ from nose.plugins.attrib import attr from ion_functions.test.base_test import BaseUnitTestCase import numpy as np from ion_functions.data import adcp_functions as af from ion_functions.data.adcp_functions import ADCP_FILLVALUE from ion_functions.data.generic_functions import SYSTEM_FILLVALUE @attr('UNIT', group='func') class TestADCPFunctionsUnit(BaseUnitTestCase): def setUp(self): """ Implemented by: 2014-02-06: <NAME>. Initial Code. 2015-06-12: <NAME>. Changed raw beam data to type int. This change did not affect any previously written unit tests. """ # set test inputs -- values from DPS self.b1 = np.array([[-0.0300, -0.2950, -0.5140, -0.2340, -0.1880, 0.2030, -0.3250, 0.3050, -0.2040, -0.2940]]) * 1000 self.b2 = np.array([[0.1800, -0.1320, 0.2130, 0.3090, 0.2910, 0.0490, 0.1880, 0.3730, -0.0020, 0.1720]]) * 1000 self.b3 = np.array([[-0.3980, -0.4360, -0.1310, -0.4730, -0.4430, 0.1880, -0.1680, 0.2910, -0.1790, 0.0080]]) * 1000 self.b4 = np.array([[-0.2160, -0.6050, -0.0920, -0.0580, 0.4840, -0.0050, 0.3380, 0.1750, -0.0800, -0.5490]]) * 1000 # the data type of the raw beam velocities is int; # set b1-b4 to int so that fill replacement can be tested. self.b1 = self.b1.astype(int) self.b2 = self.b2.astype(int) self.b3 = self.b3.astype(int) self.b4 = self.b4.astype(int) # self.echo = np.array([[0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250]]) self.sfactor = 0.45 # units of compass data are in centidegrees. self.heading = 9841 self.pitch = 69 self.roll = -254 self.orient = 1 self.lat = 50.0000 self.lon = -145.0000 self.depth = 0.0 self.ntp = 3545769600.0 # May 12, 2012 # set expected results -- velocity profiles in earth coordinates # (values in DPS) self.uu = np.array([[0.2175, -0.2814, -0.1002, 0.4831, 1.2380, -0.2455, 0.6218, -0.1807, 0.0992, -0.9063]]) self.vv = np.array([[-0.3367, -0.1815, -1.0522, -0.8676, -0.8919, 0.2585, -0.8497, -0.0873, -0.3073, -0.5461]]) self.ww = np.array([[0.1401, 0.3977, 0.1870, 0.1637, 0.0091, -0.1290, 0.0334, -0.3017, 0.1384, 0.1966]]) # set expected results -- magnetic variation correction applied # (computed in Matlab using above values and mag_var.m) self.uu_cor = np.array([[0.1099, -0.3221, -0.4025, 0.2092, 0.9243, -0.1595, 0.3471, -0.1983, 0.0053, -1.0261]]) self.vv_cor = np.array([[-0.3855, -0.0916, -0.9773, -0.9707, -1.2140, 0.3188, -0.9940, -0.0308, -0.3229, -0.2582]]) # set the expected results -- error velocity self.ee = np.array([[0.789762, 0.634704, -0.080630, 0.626434, 0.064090, 0.071326, -0.317352, 0.219148, 0.054787, 0.433129]]) # set the expected results -- echo intensity conversion from counts to dB self.dB = np.array([[0.00, 11.25, 22.50, 33.75, 45.00, 56.25, 67.50, 78.75, 90.00, 101.25, 112.50]]) def test_adcp_beam(self): """ Directly tests DPA functions adcp_beam_eastward, adcp_beam_northward, adcp_beam_vertical, and adcp_beam_error. Tests adcp_beam2ins, adcp_ins2earth and magnetic_correction functions for ADCPs that output data in beam coordinates. All three functions must return the correct output for final tests cases to work. Values based on those defined in DPS: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00750_Data_Product_SPEC_VELPROF_OOI.pdf) Implemented by: 2013-04-10: <NAME>. Initial code. 2014-02-06: <NAME>. Added tests to confirm arrays of arrays can be processed (in other words, vectorized the code). 2015-06-23: <NAME>. Revised documentation. Added unit test for the function adcp_beam_error. Notes: The original suite of tests within this function did not provide a test for adcp_beam_error. However, adcp_beam_error and vadcp_beam_error are identical functions, and vadcp_beam_error is implicitly tested in the test_vadcp_beam function when the 4th output argument of adcp_beam2inst is tested. Therefore values to directly test adcp_beam_error were then derived from the function itself and included as part of the unit test within this code (test_adcp_beam). """ # single record case got_uu_cor = af.adcp_beam_eastward(self.b1, self.b2, self.b3, self.b4, self.heading, self.pitch, self.roll, self.orient, self.lat, self.lon, self.depth, self.ntp) got_vv_cor = af.adcp_beam_northward(self.b1, self.b2, self.b3, self.b4, self.heading, self.pitch, self.roll, self.orient, self.lat, self.lon, self.depth, self.ntp) got_ww = af.adcp_beam_vertical(self.b1, self.b2, self.b3, self.b4, self.heading, self.pitch, self.roll, self.orient) got_ee = af.adcp_beam_error(self.b1, self.b2, self.b3, self.b4) # test results np.testing.assert_array_almost_equal(got_uu_cor, self.uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, self.vv_cor, 4) np.testing.assert_array_almost_equal(got_ww, self.ww, 4) np.testing.assert_array_almost_equal(got_ee, self.ee, 4) # reset the test inputs for multiple records b1 = np.tile(self.b1, (24, 1)) b2 = np.tile(self.b2, (24, 1)) b3 = np.tile(self.b3, (24, 1)) b4 = np.tile(self.b4, (24, 1)) heading = np.ones(24, dtype=np.int) * self.heading pitch = np.ones(24, dtype=np.int) * self.pitch roll = np.ones(24, dtype=np.int) * self.roll orient = np.ones(24, dtype=np.int) * self.orient lat = np.ones(24) * self.lat lon = np.ones(24) * self.lon depth = np.ones(24) * self.depth ntp = np.ones(24) * self.ntp # reset outputs for multiple records uu_cor = np.tile(self.uu_cor, (24, 1)) vv_cor = np.tile(self.vv_cor, (24, 1)) ww = np.tile(self.ww, (24, 1)) ee = np.tile(self.ee, (24, 1)) # multiple record case got_uu_cor = af.adcp_beam_eastward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, depth, ntp) got_vv_cor = af.adcp_beam_northward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, depth, ntp) got_ww = af.adcp_beam_vertical(b1, b2, b3, b4, heading, pitch, roll, orient) got_ee = af.adcp_beam_error(b1, b2, b3, b4) # test results np.testing.assert_array_almost_equal(got_uu_cor, uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, vv_cor, 4) np.testing.assert_array_almost_equal(got_ww, ww, 4) np.testing.assert_array_almost_equal(got_ee, ee, 4) def test_adcp_beam_with_fill(self): """ Directly tests DPA functions adcp_beam_eastward, adcp_beam_northward, adcp_beam_vertical, and adcp_beam_error when system fill values and ADCP fill values (bad value sentinels) are present in the data stream. Non-fill values are based on those used in test_adcp_beam in this module. Implemented by: 2013-06-24: <NAME>. Initial code. Notes: """ # for convenience sfill = SYSTEM_FILLVALUE afill = ADCP_FILLVALUE ### set input data # units of compass data are in centidegrees. heading = np.array([9841]) pitch = np.array([69]) roll = np.array([-254]) missingroll = np.array([sfill]) orient = np.array([1]) lat = np.array([50.0000]) lon = np.array([-145.0000]) depth = np.array([0.0]) ntp = np.array([3545769600.0]) # May 12, 2012 ### # for positional clarity, input beam and expected velocities will be explicitly # enumerated for each single time record test case. ### ### single time record case; missing roll data ## the ADCP does not use its bad flag sentinel for compass data, only beam data. ## however, it is possible that CI could supply the system fillvalue for missing compass data. # input data # beam velocity units are mm/s b1_x1 = np.array([[-30, -295, -514, -234, -188, 203, -325, 305, -204, -294]]) b2_x1 = np.array([[180, -132, 213, 309, 291, 49, 188, 373, -2, 172]]) b3_x1 = np.array([[-398, -436, -131, -473, -443, 188, -168, 291, -179, 8]]) b4_x1 = np.array([[-216, -605, -92, -58, 484, -5, 338, 175, -80, -549]]) # expected results if all good beam and compass data # these will be used later in the multiple time record test uu_x0 = np.array([[0.1099, -0.3221, -0.4025, 0.2092, 0.9243, -0.1595, 0.3471, -0.1983, 0.0053, -1.0261]]) vv_x0 = np.array([[-0.3855, -0.0916, -0.9773, -0.9707, -1.2140, 0.3188, -0.9940, -0.0308, -0.3229, -0.2582]]) ww_x0 = np.array([[0.1401, 0.3977, 0.1870, 0.1637, 0.0091, -0.1290, 0.0334, -0.3017, 0.1384, 0.1966]]) ee_x0 = np.array([[0.789762, 0.634704, -0.080630, 0.626434, 0.064090, 0.071326, -0.317352, 0.219148, 0.054787, 0.433129]]) # expected results for all good beam data, missing roll data; # nans for all results except for the error velocity, which does not depend on the compass uu_x1 = uu_x0 * np.nan vv_x1 = vv_x0 * np.nan ww_x1 = ww_x0 * np.nan ee_x1 = np.copy(ee_x0) uu_calc = af.adcp_beam_eastward(b1_x1, b2_x1, b3_x1, b4_x1, heading, pitch, missingroll, orient, lat, lon, depth, ntp) vv_calc = af.adcp_beam_northward(b1_x1, b2_x1, b3_x1, b4_x1, heading, pitch, missingroll, orient, lat, lon, depth, ntp) ww_calc = af.adcp_beam_vertical(b1_x1, b2_x1, b3_x1, b4_x1, heading, pitch, missingroll, orient) ee_calc = af.adcp_beam_error(b1_x1, b2_x1, b3_x1, b4_x1) # test results np.testing.assert_array_almost_equal(uu_calc, uu_x1, 4) np.testing.assert_array_almost_equal(vv_calc, vv_x1, 4) np.testing.assert_array_almost_equal(ww_calc, ww_x1, 4) np.testing.assert_array_almost_equal(ee_calc, ee_x1, 4) ### single time record case; missing and bad-flagged beam data, good compass data # input data b1_x2 = np.array([[sfill, -295, -514, -234, -188, 203, -325, afill, -204, -294]]) b2_x2 = np.array([[sfill, -132, 213, 309, 291, 49, 188, afill, -2, sfill]]) b3_x2 = np.array([[sfill, -436, -131, -473, -443, 188, -168, afill, -179, 8]]) b4_x2 = np.array([[sfill, -605, -92, -58, afill, -5, 338, afill, -80, -549]]) # expected uu_x2 = np.array([[np.nan, -0.3221, -0.4025, 0.2092, np.nan, -0.1595, 0.3471, np.nan, 0.0053, np.nan]]) vv_x2 = np.array([[np.nan, -0.0916, -0.9773, -0.9707, np.nan, 0.3188, -0.9940, np.nan, -0.3229, np.nan]]) ww_x2 = np.array([[np.nan, 0.3977, 0.1870, 0.1637, np.nan, -0.1290, 0.0334, np.nan, 0.1384, np.nan]]) ee_x2 = np.array([[np.nan, 0.634704, -0.080630, 0.626434, np.nan, 0.071326, -0.317352, np.nan, 0.054787, np.nan]]) # calculated uu_calc = af.adcp_beam_eastward(b1_x2, b2_x2, b3_x2, b4_x2, heading, pitch, roll, orient, lat, lon, depth, ntp) vv_calc = af.adcp_beam_northward(b1_x2, b2_x2, b3_x2, b4_x2, heading, pitch, roll, orient, lat, lon, depth, ntp) ww_calc = af.adcp_beam_vertical(b1_x2, b2_x2, b3_x2, b4_x2, heading, pitch, roll, orient) ee_calc = af.adcp_beam_error(b1_x2, b2_x2, b3_x2, b4_x2) # test results np.testing.assert_array_almost_equal(uu_calc, uu_x2, 4) np.testing.assert_array_almost_equal(vv_calc, vv_x2, 4) np.testing.assert_array_almost_equal(ww_calc, ww_x2, 4) np.testing.assert_array_almost_equal(ee_calc, ee_x2, 4) ### multiple (5) record case ## reset the test inputs for 5 time records # 1st time record is the bad/missing beam data case above # 2nd time record is a missing heading data case # 3rd time record is all good data # 4th time record is bad/missing beam and missing pitch data. # 5th time record is missing orientation data b1 = np.vstack((b1_x2, b1_x1, b1_x1, b1_x2, b1_x1)) b2 = np.vstack((b2_x2, b2_x1, b2_x1, b2_x2, b2_x1)) b3 = np.vstack((b3_x2, b3_x1, b3_x1, b3_x2, b3_x1)) b4 = np.vstack((b4_x2, b4_x1, b4_x1, b4_x2, b4_x1)) heading = np.hstack((heading, sfill, heading, heading, heading)) pitch = np.hstack((pitch, pitch, pitch, sfill, pitch)) roll = np.tile(roll, 5) orient = np.hstack((orient, orient, orient, orient, sfill)) lat = np.tile(lat, 5) lon = np.tile(lon, 5) depth = np.tile(depth, 5) ntp = np.tile(ntp, 5) # set expected outputs for these 5 records # notes: # (1) heading is not used in the calculation of vertical velocity, # therefore the second entry to ww_xpctd is good data out (ww_x0), # not nans as resulted from the missingroll test. # (2) pitch is not used in the calculation of error velocity, so that # in the mixed case (time record 4) the error velocity should be # the same as that for the pure bad/missing beam case (ee_x2, 1st # and 4th entries in ee_xpctd). # (3) the orientation argument affects the roll calculation, so that # when its value is missing (5th time record) the expected result # would be the same as if the roll value were missing. therefore # the 5th column entries are all x1 results. uu_xpctd = np.vstack((uu_x2, uu_x1, uu_x0, uu_x1, uu_x1)) vv_xpctd = np.vstack((vv_x2, vv_x1, vv_x0, vv_x1, vv_x1)) ww_xpctd = np.vstack((ww_x2, ww_x0, ww_x0, ww_x1, ww_x1)) ee_xpctd = np.vstack((ee_x2, ee_x1, ee_x0, ee_x2, ee_x1)) # calculated uu_calc = af.adcp_beam_eastward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, depth, ntp) vv_calc = af.adcp_beam_northward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, depth, ntp) ww_calc = af.adcp_beam_vertical(b1, b2, b3, b4, heading, pitch, roll, orient) ee_calc = af.adcp_beam_error(b1, b2, b3, b4) # test results np.testing.assert_array_almost_equal(uu_calc, uu_xpctd, 4) np.testing.assert_array_almost_equal(vv_calc, vv_xpctd, 4) np.testing.assert_array_almost_equal(ww_calc, ww_xpctd, 4) np.testing.assert_array_almost_equal(ee_calc, ee_xpctd, 4) def test_adcp_earth(self): """ Tests magnetic_correction function for ADCPs set to output data in the Earth Coordinate system. Values were not defined in DPS, were recreated using test values above: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00750_Data_Product_SPEC_VELPROF_OOI.pdf) Implemented by: 2014-02-06: <NAME>. Initial code. 2015-06-10: <NAME>. Changed adcp_ins2earth to require the units of the compass data to be in centidegrees. """ # set the test data u, v, w, e = af.adcp_beam2ins(self.b1, self.b2, self.b3, self.b4) ### old adcp_ins2earth returned 3 variables (CEW) # adcp_ins2earth now requires compass data in units of centidegrees (RAD) uu, vv, ww = af.adcp_ins2earth(u, v, w, self.heading, self.pitch, self.roll, self.orient) # test the magnetic variation correction got_uu_cor = af.adcp_earth_eastward(uu, vv, self.depth, self.lat, self.lon, self.ntp) got_vv_cor = af.adcp_earth_northward(uu, vv, self.depth, self.lat, self.lon, self.ntp) np.testing.assert_array_almost_equal(got_uu_cor, self.uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, self.vv_cor, 4) # reset the test inputs for multiple records using the integer inputs. uu = np.tile(uu, (24, 1)) vv = np.tile(vv, (24, 1)) depth = np.ones(24) * self.depth lat = np.ones(24) * self.lat lon = np.ones(24) * self.lon ntp = np.ones(24) * self.ntp # reset expected results for multiple records uu_cor = np.tile(self.uu_cor, (24, 1)) vv_cor = np.tile(self.vv_cor, (24, 1)) # compute the results for multiple records got_uu_cor = af.adcp_earth_eastward(uu, vv, depth, lat, lon, ntp) got_vv_cor = af.adcp_earth_northward(uu, vv, depth, lat, lon, ntp) # test the magnetic variation correction np.testing.assert_array_almost_equal(got_uu_cor, uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, vv_cor, 4) def test_adcp_earth_int_input_velocity_data(self): """ Tests adcp_earth_eastward and adcp_earth_northward using int type raw velocity data, as will be supplied by CI. Also tests the almost trivial functions adcp_earth_vertical and adcp_earth_error (unit change). Input raw velocity values were derived from the float unit test in test_adcp_earth by rounding the uu and vv float output from adcp_ins2earth. These int inputs failed the assert_array_almost_equal unit tests (decimals=4) in test_adcp_earth because of round-off error but passed when the agreement precision was relaxed to decimals=3. This is taken as justification to more precisely calculate the expected values for unit tests in the current module from adcp_earth_eastward and adcp_earth_northward themselves (the very modules being tested), using as input the type int raw velocity data. Because these DPA functions were used to derive their own check data, the original (float type input velocity data) unit tests are retained in the test_adcp_earth function. The tests in this module will be used to derive unit tests checking the replacement of ADCP int bad value sentinels (-32768) with Nans; these tests require that the raw velocity data be of type int. Implemented by: 2014-06-16: <NAME>. Initial code. """ # set the input test data [mm/sec] uu = np.array([[218, -281, -100, 483, 1238, -245, 622, -181, 99, -906]]) vv = np.array([[-337, -182, -1052, -868, -892, 258, -850, -87, -307, -546]]) ww = np.array([[140, 398, 187, 164, 9, -129, 33, -302, 138, 197]]) ee = np.array([[790, 635, 81, 626, 64, 71, -317, 219, 55, 433]]) # expected values, calculated using adcp_earth_eastward and adcp_earth_northward uu_cor = np.array([[0.11031103, -0.32184604, -0.40227939, 0.20903718, 0.92426103, -0.15916447, 0.34724837, -0.19849871, 0.00522179, -1.02580274]]) vv_cor = np.array([[-0.38590734, -0.09219615, -0.97717720, -0.97109035, -1.21410442, 0.31820696, -0.99438552, -0.03046741, -0.32252555, -0.25822614]]) # expected values, calculated by changing units from mm/s to m/s ww_vel = ww / 1000.0 ee_vel = ee / 1000.0 # test the magnetic variation correction using type integer inputs for the velocities. got_uu_cor = af.adcp_earth_eastward(uu, vv, self.depth, self.lat, self.lon, self.ntp) got_vv_cor = af.adcp_earth_northward(uu, vv, self.depth, self.lat, self.lon, self.ntp) # and the unit change functions got_ww_vel = af.adcp_earth_vertical(ww) got_ee_vel = af.adcp_earth_error(ee) np.testing.assert_array_almost_equal(got_uu_cor, uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, vv_cor, 4) np.testing.assert_array_almost_equal(got_ww_vel, ww_vel, 4) np.testing.assert_array_almost_equal(got_ee_vel, ee_vel, 4) # reset the test inputs for multiple records using the integer inputs. uu = np.tile(uu, (24, 1)) vv = np.tile(vv, (24, 1)) ww = np.tile(ww, (24, 1)) ee = np.tile(ee, (24, 1)) depth = np.ones(24) * self.depth lat = np.ones(24) * self.lat lon = np.ones(24) * self.lon ntp = np.ones(24) * self.ntp # reset expected results for multiple records uu_cor = np.tile(uu_cor, (24, 1)) vv_cor = np.tile(vv_cor, (24, 1)) ww_vel = np.tile(ww_vel, (24, 1)) ee_vel = np.tile(ee_vel, (24, 1)) # compute the results for multiple records got_uu_cor = af.adcp_earth_eastward(uu, vv, depth, lat, lon, ntp) got_vv_cor = af.adcp_earth_northward(uu, vv, depth, lat, lon, ntp) got_ww_vel = af.adcp_earth_vertical(ww) got_ee_vel = af.adcp_earth_error(ee) # test the magnetic variation correction np.testing.assert_array_almost_equal(got_uu_cor, uu_cor, 4) np.testing.assert_array_almost_equal(got_vv_cor, vv_cor, 4) # and the unit change functions np.testing.assert_array_almost_equal(got_ww_vel, ww_vel, 4) np.testing.assert_array_almost_equal(got_ee_vel, ee_vel, 4) def test_adcp_earth_with_fill(self): """ Tests adcp_earth_eastward, adcp_earth_northward, adcp_earth_vertical and adcp_earth_error when system fill values and ADCP fill values (bad value sentinels) are present in the data stream. Non-fill test values come from the function test_adcp_earth_int_input_velocity_data in this module. Implemented by: 2014-06-25: <NAME>. Initial code. """ # for convenience sfill = SYSTEM_FILLVALUE afill = ADCP_FILLVALUE ### scalar time case # set the input test data lat = np.array([50.0000]) lon = np.array([-145.0000]) depth = np.array([0.0]) ntp = np.array([3545769600.0]) # May 12, 2012 # input velocities [mm/sec] uu_in0 = np.array([[218, sfill, -100, 483, afill, -245]]) vv_in0 = np.array([[sfill, -182, -1052, -868, -892, afill]]) ww_in0 = np.array([[sfill, 398, afill, 164, 9, -129]]) ee_in0 = np.array([[afill, 635, 81, 626, sfill, 71]]) # expected values [m/sec] uu_x0 = np.array([[np.nan, np.nan, -0.40227, 0.20903, np.nan, np.nan]]) vv_x0 = np.array([[np.nan, np.nan, -0.97717, -0.97109, np.nan, np.nan]]) ww_x0 = np.array([[np.nan, 0.398, np.nan, 0.164, 0.009, -0.129]]) ee_x0 = np.array([[np.nan, 0.635, 0.081, 0.626, np.nan, 0.071]]) # calculated uu_calc = af.adcp_earth_eastward(uu_in0, vv_in0, depth, lat, lon, ntp) vv_calc = af.adcp_earth_northward(uu_in0, vv_in0, depth, lat, lon, ntp) ww_calc = af.adcp_earth_vertical(ww_in0) ee_calc = af.adcp_earth_error(ee_in0) # test np.testing.assert_array_almost_equal(uu_calc, uu_x0, 4) np.testing.assert_array_almost_equal(vv_calc, vv_x0, 4) np.testing.assert_array_almost_equal(ww_calc, ww_x0, 4) np.testing.assert_array_almost_equal(ee_calc, ee_x0, 4) ### multiple time record case # set the input test data lat = np.tile(lat, 5) lon = np.tile(lon, 5) depth = np.tile(depth, 5) ntp = np.tile(ntp, 5) uu_in0 = np.tile(uu_in0, (5, 1)) vv_in0 = np.tile(vv_in0, (5, 1)) ww_in0 = np.tile(ww_in0, (5, 1)) ee_in0 = np.tile(ee_in0, (5, 1)) # expected uu_x0 = np.tile(uu_x0, (5, 1)) vv_x0 = np.tile(vv_x0, (5, 1)) ww_x0 = np.tile(ww_x0, (5, 1)) ee_x0 = np.tile(ee_x0, (5, 1)) # calculated uu_calc = af.adcp_earth_eastward(uu_in0, vv_in0, depth, lat, lon, ntp) vv_calc = af.adcp_earth_northward(uu_in0, vv_in0, depth, lat, lon, ntp) ww_calc = af.adcp_earth_vertical(ww_in0) ee_calc = af.adcp_earth_error(ee_in0) # test np.testing.assert_array_almost_equal(uu_calc, uu_x0, 4) np.testing.assert_array_almost_equal(vv_calc, vv_x0, 4) np.testing.assert_array_almost_equal(ww_calc, ww_x0, 4) np.testing.assert_array_almost_equal(ee_calc, ee_x0, 4) def test_adcp_backscatter(self): """ Tests echo intensity scaling function (adcp_backscatter) for ADCPs in order to convert from echo intensity in counts to dB. Values were not defined in DPS, were created using test values above: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00750_Data_Product_SPEC_VELPROF_OOI.pdf) Implemented by <NAME>, 2014-02-06 <NAME>, 2015-06-25. Added tests for fill values. """ # the single record case got = af.adcp_backscatter(self.echo, self.sfactor) np.testing.assert_array_almost_equal(got, self.dB, 4) # the multi-record case -- inputs raw = np.tile(self.echo, (24, 1)) sf = np.ones(24) * self.sfactor # the multi-record case -- outputs dB = np.tile(self.dB, (24, 1)) got = af.adcp_backscatter(raw, sf) np.testing.assert_array_almost_equal(got, dB, 4) ### test fill value replacement with nan # for convenience sfill = SYSTEM_FILLVALUE # the adcp bad sentinel fillvalue (requires 2 bytes) is not used for echo # intensity, which is stored in 1 byte. # the single time record case echo_with_fill, xpctd = np.copy(self.echo), np.copy(self.dB) echo_with_fill[0, 3], xpctd[0, 3] = sfill, np.nan echo_with_fill[0, 6], xpctd[0, 6] = sfill, np.nan echo_with_fill[0, 7], xpctd[0, 7] = sfill, np.nan got = af.adcp_backscatter(echo_with_fill, self.sfactor) np.testing.assert_array_almost_equal(got, xpctd, 4) # the multiple time record case echo_with_fill = np.vstack((echo_with_fill, self.echo, echo_with_fill)) xpctd = np.vstack((xpctd, self.dB, xpctd)) sfactor = np.tile(self.sfactor, (3, 1)) got = af.adcp_backscatter(echo_with_fill, sfactor) np.testing.assert_array_almost_equal(got, xpctd, 4) def test_vadcp_beam(self): """ Indirectly tests vadcp_beam_eastward, vadcp_beam_northward, vadcp_beam_vertical_est, and vadcp_beam_vertical_true functions (which call adcp_beam2ins and adcp_ins2earth) and vadcp_beam_error (which only calls adcp_beam2ins) for the specialized 5-beam ADCP. Application of the magnetic correction and conversion from mm/s to m/s is not applied. Values based on those defined in DPS: OOI (2012). Data Product Specification for Turbulent Velocity Profile and Echo Intensity. Document Control Number 1341-00760. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00760_Data_Product_SPEC_VELTURB_OOI.pdf) Implemented by: 2014-07-24: <NAME>. Initial code. 2015-06-10: <NAME>. adcp_ins2earth now requires the units of the compass data to be in centidegrees. """ # test inputs b1 = np.ones((10, 10)).astype(int) * -325 b2 = np.ones((10, 10)).astype(int) * 188 b3 = np.ones((10, 10)).astype(int) * 168 b4 = np.ones((10, 10)).astype(int) * -338 b5 = np.ones((10, 10)).astype(int) * -70 # units of centidegrees heading = np.array([30, 30, 30, 30, 30, 32, 32, 32, 32, 32]) * 100 pitch = np.array([0, 2, 3, 3, 1, 2, 2, 3, 3, 1]) * 100 roll = np.array([0, 4, 3, 4, 3, 3, 4, 3, 4, 3]) * 100 orient = np.ones(10, dtype=np.int) # expected outputs vle = np.array([279.6195, 282.6881, 281.8311, 282.7147, 282.1188, 246.2155, 246.9874, 246.1226, 247.0156, 246.4276]).reshape(-1, 1) vle = np.reshape(np.tile(vle, 10), (10, 10)) vln = np.array([-1015.5964, -1018.0226, -1018.2595, -1017.9765, -1017.7612, -1027.3264, -1027.2681, -1027.4749, -1027.2230, -1026.9870]).reshape(-1, 1) vln = np.reshape(np.tile(vln, 10), (10, 10)) vlu = np.array([81.6756, 3.3916, 3.5950, -9.4974, 29.4154, 16.5077, 3.3916, 3.5950, -9.4974, 29.4154]).reshape(-1, 1) vlu = np.reshape(np.tile(vlu, 10), (10, 10)) evl = np.array([34.1128, 34.1128, 34.1128, 34.1128, 34.1128, 34.1128, 34.1128, 34.1128, 34.1128, 34.1128]).reshape(-1, 1) evl = np.reshape(np.tile(evl, 10), (10, 10)) w5 = np.array([70.0000, -8.2485, -8.0487, -21.1287, 17.7575, 4.8552, -8.2485, -8.0487, -21.1287, 17.7575]).reshape(-1, 1) w5 = np.reshape(np.tile(w5, 10), (10, 10)) # test the transformations u, v, w_est, e = af.adcp_beam2ins(b1, b2, b3, b4) uu, vv, ww_est = af.adcp_ins2earth(u, v, w_est, heading, pitch, roll, orient) _, _, ww_true = af.adcp_ins2earth(u, v, b5, heading, pitch, roll, orient) # compare the results np.testing.assert_array_almost_equal(uu, vle, 4) np.testing.assert_array_almost_equal(vv, vln, 4) np.testing.assert_array_almost_equal(ww_est, vlu, 4) np.testing.assert_array_almost_equal(e, evl, 4) np.testing.assert_array_almost_equal(ww_true, w5, 4) #### KEEP: RAD 2015-06-22: """ ## Given that these unit tests have validated the VADCP DPA functions, use these ## vadcp functions to generate values for unit tests with (a) type integer inputs ## (b) that use the vadcp functions themselves, instead of their constituent sub- ## routines, so that unit tests checking the trapping of CI fill values (-999999999) ## and ADCP instrument bad value sentinels (-32768) can be constructed. #lat = np.ones(10) * self.lat #lon = np.ones(10) * self.lon #z = np.ones(10) * self.depth #dt = np.ones(10) * self.ntp # #vle = af.vadcp_beam_eastward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, z, dt) #vln = af.vadcp_beam_northward(b1, b2, b3, b4, heading, pitch, roll, orient, lat, lon, z, dt) #vlu_4bm = af.vadcp_beam_vertical_est(b1, b2, b3, b4, heading, pitch, roll, orient) #vlu_5bm = af.vadcp_beam_vertical_true(b1, b2, b3, b4, b5, heading, pitch, roll, orient) #err = af.vadcp_beam_error(b1, b2, b3, b4) # #print vle.T #print vln.T #print vlu_4bm.T #print vlu_5bm.T #print err.T """ #### RAD 2015-06-22 def test_vadcp_beam_int_input_velocity_data(self): """ Tests vadcp_beam_eastward, vadcp_beam_northward, vadcp_beam_vertical_est, vadcp_beam_vertical_true and vadcp_beam_error functions for the specialized 5-beam ADCP using int type raw velocity data, as will be supplied by CI. Test values come from the function test_vadcp_beam, in this module. The tests in this module will be used to derive unit tests checking the replacement of ADCP int bad value sentinels (-32768) with Nans; these tests require that the raw velocity data be of type int. Implemented by: 2014-06-22: <NAME>. Initial code. """ # inputs b1 = np.ones((10, 10), dtype=np.int) * -325 b2 = np.ones((10, 10), dtype=np.int) * 188 b3 = np.ones((10, 10), dtype=np.int) * 168 b4 = np.ones((10, 10), dtype=np.int) * -338 b5 = np.ones((10, 10), dtype=np.int) * -70 # units of centidegrees heading = np.array([30, 30, 30, 30, 30, 32, 32, 32, 32, 32]) * 100 pitch = np.array([0, 2, 3, 3, 1, 2, 2, 3, 3, 1]) * 100 roll = np.array([0, 4, 3, 4, 3, 3, 4, 3, 4, 3]) * 100 orient = np.ones(10, dtype=np.int) lat = np.ones(10) * self.lat lon = np.ones(10) * self.lon z =
np.ones(10)
numpy.ones
import numpy as _np from scipy.stats import multivariate_normal as _mvn from . import signalsource from .. utils import spacegeometry as sg class PointSource(signalsource.SignalSource): def __init__( self, RA, DEC, extent=None, attitudeStateName='attitude', useUnitVector=True ): self.useUnitVector = useUnitVector signalsource.SignalSource.__init__(self) self.__RA__ = RA self.__DEC__ = DEC self.__RaDec__ = {'RA': RA, 'DEC': DEC} self.attitudeStateName = attitudeStateName self.lastPDF = None self.extent = extent return def RaDec(self): return(self.__RaDec__) def unitVec( self, RaDec=None): if RaDec is None: RaDec = self.__RaDec__ cosD = _np.cos(RaDec['DEC']) sinD = _np.sin(RaDec['DEC']) cosRA =
_np.cos(RaDec['RA'])
numpy.cos
import numpy as np def kernel_function(t,tk,h): # tk can be a sequence return 1/((2 * np.pi)**0.5 * h) * np.exp( - (t - tk)**2 / (2 * h**2)) def kernel_smooth(game_matrix_list,h,T_list = None): T, N = game_matrix_list.shape[0:2] smoothed = game_matrix_list + 0 if T_list is None: T_list =
np.arange(T)
numpy.arange
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from typing import List, Dict import networkx as nx import numpy as np import pyomo.environ as pe from networkx import Graph from overrides import overrides from scipy.stats import uniform, randint from scipy.stats.distributions import rv_frozen from miplearn.instance.base import Instance class ChallengeA: def __init__( self, seed: int = 42, n_training_instances: int = 500, n_test_instances: int = 50, ) -> None: np.random.seed(seed) self.generator = MaxWeightStableSetGenerator( w=uniform(loc=100.0, scale=50.0), n=randint(low=200, high=201), p=uniform(loc=0.05, scale=0.0), fix_graph=True, ) np.random.seed(seed + 1) self.training_instances = self.generator.generate(n_training_instances)
np.random.seed(seed + 2)
numpy.random.seed
from __future__ import absolute_import, division, print_function import argparse import importlib import itertools import matplotlib matplotlib.use('Agg') import time from multiprocessing import Pool import numpy as np import os import pdb import pickle import subprocess import sys import tensorflow as tf import tensorflow.contrib.slim as slim import threading import scipy.misc from skimage import color import init_paths from models.sample_models import * from lib.data.synset import * import scipy import skimage import skimage.io import transforms3d import math import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont import random import utils import models.architectures as architectures from data.load_ops import resize_rescale_image from data.load_ops import rescale_image import utils import lib.data.load_ops as load_ops import task_viz parser = utils.create_parser("Viz Single Task") tf.logging.set_verbosity(tf.logging.ERROR) list_of_tasks = 'autoencoder curvature denoise edge2d edge3d \ keypoint2d keypoint3d colorization jigsaw \ reshade rgb2depth rgb2mist rgb2sfnorm \ room_layout segment25d segment2d vanishing_point \ segmentsemantic class_1000 class_places inpainting_whole' list_of_tasks = list_of_tasks.split() def prepare_image(task, im_name, cfg): img = task_viz.load_raw_image_center_crop( im_name ) img = skimage.img_as_float(img) scipy.misc.toimage(np.squeeze(img), cmin=0.0, cmax=1.0).save(im_name) if task == 'jigsaw' : img = cfg[ 'input_preprocessing_fn' ]( img, target=cfg['target_dict'][random.randint(0,99)], **cfg['input_preprocessing_fn_kwargs'] ) else: img = cfg[ 'input_preprocessing_fn' ]( img, **cfg['input_preprocessing_fn_kwargs'] ) img = img[np.newaxis,:] return img def run_to_task(): import general_utils from general_utils import RuntimeDeterminedEnviromentVars tf.logging.set_verbosity(tf.logging.ERROR) args = parser.parse_args() task = args.task if task not in list_of_tasks: raise ValueError('Task not supported') cfg = utils.generate_cfg(task) # Since we observe that areas with pixel values closes to either 0 or 1 sometimes overflows, we clip pixels value low_sat_tasks = 'autoencoder curvature denoise edge2d edge3d \ keypoint2d keypoint3d \ reshade rgb2depth rgb2mist rgb2sfnorm \ segment25d segment2d room_layout'.split() if task in low_sat_tasks: cfg['input_preprocessing_fn'] = load_ops.resize_rescale_image_low_sat print("Doing {task}".format(task=task)) general_utils = importlib.reload(general_utils) tf.reset_default_graph() training_runners = { 'sess': tf.InteractiveSession(), 'coord': tf.train.Coordinator() } ############## Set Up Inputs ############## # tf.logging.set_verbosity( tf.logging.INFO ) setup_input_fn = utils.setup_input inputs = setup_input_fn( cfg, is_training=False, use_filename_queue=False ) RuntimeDeterminedEnviromentVars.load_dynamic_variables( inputs, cfg ) RuntimeDeterminedEnviromentVars.populate_registered_variables() start_time = time.time() ############## Set Up Model ############## model = utils.setup_model( inputs, cfg, is_training=False ) m = model[ 'model' ] model[ 'saver_op' ].restore( training_runners[ 'sess' ], cfg[ 'model_path' ] ) ############## Single Image ############## if args.imgs_list: with open(args.imgs_list) as imgs_list: all_prediction = [] all_representation = [] for line in imgs_list: filename = args.dir_name + line.strip().split(',')[0] # FIXME img = prepare_image(task, filename, cfg) predicted, representation = training_runners['sess'].run( [ m.decoder_output, m.encoder_output ], feed_dict={m.input_images: img} ) utils.tasks(task, args, predicted, os.path.join(args.store_name + line.split(os.path.sep)[-1].strip() + '.jpg'), img=img) all_prediction.append(np.squeeze(predicted)) all_representation.append(np.squeeze(representation)) if args.store_rep: s_name, file_extension = os.path.splitext(args.store_name) with open('{}.npy'.format(s_name), 'wb') as fp: np.save(fp, np.array(all_representation)) if args.store_pred: s_name, file_extension = os.path.splitext(args.store_name) with open('{}_pred.npy'.format(s_name), 'wb') as fp: np.save(fp, np.array(all_prediction)) else: img = prepare_image(task, args.im_name, cfg) predicted, representation = training_runners['sess'].run( [ m.decoder_output, m.encoder_output ], feed_dict={m.input_images: img} ) utils.tasks(task, args, predicted, representation, img) if args.store_rep: s_name, file_extension = os.path.splitext(args.store_name) with open('{}.npy'.format(s_name), 'wb') as fp: np.save(fp,
np.squeeze(representation)
numpy.squeeze
# Created byMartin.cz import numpy as np import matplotlib.pyplot as plt import matplotlib import matplotlib.cm def print_accuracy(model, X, Y, threshold=0.5, label="Training"): """ Prints accuracy by comparing predicted and expected. Args: model: miniml.Model Trained model. X: np.ndarray Input data of shape (m, ...). Y: np.ndarray Expected output of shape (m, C). threshold: float Threshold to convert probabilities to either 0 or 1. label: str Dataset label. """ # get shape m = X.shape[0] C = Y.shape[1] # predict by model A = model.predict(X) # convert to 0/1 predictions p = A > threshold # calc accuracy accuracy = np.sum((p == Y))/m/C * 100 # print accuracy print("%s Accuracy: %.2f %%" % (label, accuracy)) def plot_costs(epochs, **series): """ Plots learning curve of the model. Args: epochs: int Number of iterations. *series: list of (float,) Collection of individual series to plot. All the series are expected to have the same length. """ # init plot plt.figure() plt.title("Learning Curve") plt.xlabel('Iterations') # plot curves steps = 1 labels = [] for label, data in series.items(): s, = plt.plot(np.squeeze(data), label=label) labels.append(s) steps = int(epochs / len(data)) # set legend plt.legend(handles=labels) # set x-ticks locs, labels = plt.xticks() plt.xticks(locs[1:-1], tuple(np.array(locs[1:-1], dtype='int')*steps)) plt.xticks() # show plot plt.show() def plot_boundaries(model, X, Y, threshold=0.5): """ Plots decision boundaries for 2D data. Args: model: miniml.Model Trained model. X: np.ndarray Input data of shape (m, 2). Y: np.ndarray Expected output of shape (m, C). threshold: float Threshold to convert probabilities to either 0 or 1. """ # check data if len(X.shape) != 2 or X.shape[1] != 2: raise ValueError("Input data (X) should be of shape (m, 2).") if len(Y.shape) != 2: raise ValueError("Expected output data (Y) should be of shape (m, C).") # get size NX = 1000 NY = 1000 C = Y.shape[1] # get range min_x = min(X[:, 0]) max_x = max(X[:, 0]) min_y = min(X[:, 1]) max_y = max(X[:, 1]) f = 0.3 x_range = (min_x-f*(max_x-min_x), max_x+f*(max_x-min_x)) y_range = (min_y-f*(max_y-min_y), max_y+f*(max_y-min_y)) # generate a grid of points xs = np.linspace(x_range[0], x_range[1], NX) ys =
np.linspace(y_range[1], y_range[0], NY)
numpy.linspace
""" Copyright (c) 2020, <NAME> and IBM Research * Licensed under The MIT License [see LICENSE for details] - Quantum population classes. """ import numpy as np from chromosome import QChromosomeParams, QChromosomeNetwork class QPopulation(object): """ QNAS Population to be evolved. """ def __init__(self, num_quantum_ind, repetition, update_quantum_rate): """ Initialize QPopulation. Args: num_quantum_ind: (int) number of quantum individuals. repetition: (int) ratio between the number of classic individuals in the classic population and the quantum individuals in the quantum population. update_quantum_rate: (float) probability that a quantum gene will be updated. """ self.dtype = np.float64 # Type of quantum population arrays. self.chromosome = None self.current_pop = None self.num_ind = num_quantum_ind self.repetition = repetition self.update_quantum_rate = update_quantum_rate def initialize_qpop(self): raise NotImplementedError('initialize_qpop() must be implemented in sub classes') def generate_classical(self): raise NotImplementedError('generate_classical() must be implemented in sub classes') def update_quantum(self, intensity): raise NotImplementedError('update_quantum() must be implemented in sub classes') class QPopulationParams(QPopulation): """ QNAS Chromosomes for the hyperparameters to be evolved. """ def __init__(self, num_quantum_ind, params_ranges, repetition, crossover_rate, update_quantum_rate): """ Initialize QPopulationParams. Args: num_quantum_ind: (int) number of quantum individuals. params_ranges: {'parameter_name': [parameter_lower_limit, parameter_upper_limit]}. repetition: (int) ratio between the number of classic individuals in the classic population and the quantum individuals in the quantum population. crossover_rate: (float) crossover rate. update_quantum_rate: (float) probability that a quantum gene will be updated. """ super(QPopulationParams, self).__init__(num_quantum_ind, repetition, update_quantum_rate) self.tolerance = 1.e-15 # Tolerance to compare floating point self.lower = None self.upper = None self.crossover = crossover_rate self.chromosome = QChromosomeParams(params_ranges, self.dtype) self.initial_lower, self.initial_upper = self.chromosome.initialize_qgenes() self.initialize_qpop() def initialize_qpop(self): """ Initialize quantum population with *self.num_ind* individuals. """ self.lower = np.tile(self.initial_lower, (self.num_ind, 1)) self.upper = np.tile(self.initial_upper, (self.num_ind, 1)) def classic_crossover(self, new_pop, distance): """ Perform arithmetic crossover of the old classic population with the new one. Args: new_pop: float numpy array representing the new classical population. distance: (float) random distance for arithmetic crossover (range = [0, 1]). """ mask = np.random.rand(self.num_ind * self.repetition, self.chromosome.num_genes) idx = np.where(mask <= self.crossover) new_pop[idx] = new_pop[idx] + (self.current_pop[idx] - new_pop[idx]) * distance return new_pop def generate_classical(self): """ Generate a specific number of classical individuals from the observation of quantum individuals. This number is equal to (*num_ind* x *repetition*). """ random_numbers = np.random.rand(self.num_ind * self.repetition, self.chromosome.num_genes).astype(self.dtype) new_pop = random_numbers * np.tile(self.upper - self.lower, (self.repetition, 1)) \ + np.tile(self.lower, (self.repetition, 1)) return new_pop def update_quantum(self, intensity): """ Update self.lower and self.upper. Args: intensity: (float) value defining the maximum intensity of the update. """ random = np.random.rand(self.num_ind, self.chromosome.num_genes) mask = np.where(random <= self.update_quantum_rate) max_genes =
np.max(self.current_pop, axis=0)
numpy.max
""" A full working spin-orbital CCSD(T) code generated with pdaggerq If you want to run the example here you should install pyscf openfermion and openfermion-pyscf The actual CCSD(T) code (ccsd_energy, singles_residual, doubles_residual, triples_residual, t3_energy, kernel) do not depend on those packages but you must obtain integrals from somehwere. The total energy for this example been checked against that produced by the CCSD(T) implementation in psi4. (T) energy = -0.003382913092468 * CCSD(T) total energy = -100.009057558929399 the main() function is fairly straightforward. """ # set allow numpy built with MKL to consume more threads for tensordot import os os.environ["MKL_NUM_THREADS"] = "{}".format(os.cpu_count() - 1) import numpy as np from numpy import einsum def ccsd_energy(t1, t2, f, g, o, v): """ < 0 | e(-T) H e(T) | 0> : :param t1: spin-orbital t1 amplitudes (nvirt x nocc) :param t2: spin-orbital t2 amplitudes (nvirt x nvirt x nocc x nocc) :param f: fock operator defined as soei + np.einsum('piiq->pq', astei[:, o, o, :]) where soei is 1 electron integrals (spinorb) and astei is antisymmetric 2 electron integrals in openfermion format <12|21>. <ij|kl> - <ij|lk> :param g: antisymmetric 2 electron integrals. See fock input. :param o: slice(None, occ) where occ is number of occupied spin-orbitals :param v: slice(occ, None) whwere occ is number of occupied spin-orbitals """ # 1.0000 f(i,i) energy = 1.0 * einsum('ii', f[o, o]) # 1.0000 f(i,a)*t1(a,i) energy += 1.0 * einsum('ia,ai', f[o, v], t1) # -0.5000 <j,i||j,i> energy += -0.5 * einsum('jiji', g[o, o, o, o]) # 0.2500 <j,i||a,b>*t2(a,b,j,i) energy += 0.25 * einsum('jiab,abji', g[o, o, v, v], t2) # -0.5000 <j,i||a,b>*t1(a,i)*t1(b,j) energy += -0.5 * einsum('jiab,ai,bj', g[o, o, v, v], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) return energy def t_energy(l1, l2, t3, f, g, o, v): """ E(t) :param l1: transpose of spin-orbital t1 amplitudes (nocc x nvirt) :param l2: transpose of spin-orbital t2 amplitudes (nocc x nocc x nvirt x nvirt) :param 3: spin-orbital t3 amplitudes (nvirt x nvirt x nvirt x nocc x nocc x nocc) :param f: fock operator defined as soei + np.einsum('piiq->pq', astei[:, o, o, :]) where soei is 1 electron integrals (spinorb) and astei is antisymmetric 2 electron integrals in openfermion format <12|21>. <ij|kl> - <ij|lk> :param g: antisymmetric 2 electron integrals. See fock input. :param o: slice(None, occ) where occ is number of occupied spin-orbitals :param v: slice(occ, None) whwere occ is number of occupied spin-orbitals """ # 0.2500 <k,j||b,c>*l1(i,a)*t3(b,c,a,i,k,j) energy = 0.25 * einsum('kjbc,ia,bcaikj', g[o, o, v, v], l1, t3, optimize=['einsum_path', (0, 2), (0, 1)]) # 0.2500 <l,k||c,j>*l2(i,j,b,a)*t3(c,b,a,i,l,k) energy += 0.25 * einsum('lkcj,ijba,cbailk', g[o, o, v, o], l2, t3, optimize=['einsum_path', (0, 2), (0, 1)]) # 0.2500 <k,b||c,d>*l2(i,j,b,a)*t3(c,d,a,i,j,k) energy += 0.25 * einsum('kbcd,ijba,cdaijk', g[o, v, v, v], l2, t3, optimize=['einsum_path', (0, 2), (0, 1)]) return energy def singles_residual(t1, t2, t3, f, g, o, v): """ < 0 | m* e e(-T) H e(T) | 0> :param t1: spin-orbital t1 amplitudes (nvirt x nocc) :param t2: spin-orbital t2 amplitudes (nvirt x nvirt x nocc x nocc) :param t3: spin-orbital t3 amplitudes (nvirt x nvirt x nvirt x nocc x nocc x nocc) :param f: fock operator defined as soei + np.einsum('piiq->pq', astei[:, o, o, :]) where soei is 1 electron integrals (spinorb) and astei is antisymmetric 2 electron integrals in openfermion format <12|21>. <ij|kl> - <ij|lk> :param g: antisymmetric 2 electron integrals. See fock input. :param o: slice(None, occ) where occ is number of occupied spin-orbitals :param v: slice(occ, None) whwere occ is number of occupied spin-orbitals """ # 1.0000 f(a,i) singles_res = 1.0 * einsum('ai->ai', f[v, o]) # -1.0000 f(j,i)*t1(a,j) singles_res += -1.0 * einsum('ji,aj->ai', f[o, o], t1) # 1.0000 f(a,b)*t1(b,i) singles_res += 1.0 * einsum('ab,bi->ai', f[v, v], t1) # -1.0000 f(j,b)*t2(b,a,i,j) singles_res += -1.0 * einsum('jb,baij->ai', f[o, v], t2) # -1.0000 f(j,b)*t1(b,i)*t1(a,j) singles_res += -1.0 * einsum('jb,bi,aj->ai', f[o, v], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) # 1.0000 <j,a||b,i>*t1(b,j) singles_res += 1.0 * einsum('jabi,bj->ai', g[o, v, v, o], t1) # -0.5000 <k,j||b,i>*t2(b,a,k,j) singles_res += -0.5 * einsum('kjbi,bakj->ai', g[o, o, v, o], t2) # -0.5000 <j,a||b,c>*t2(b,c,i,j) singles_res += -0.5 * einsum('jabc,bcij->ai', g[o, v, v, v], t2) # 1.0000 <k,j||b,i>*t1(b,j)*t1(a,k) singles_res += 1.0 * einsum('kjbi,bj,ak->ai', g[o, o, v, o], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) # 1.0000 <j,a||b,c>*t1(b,j)*t1(c,i) singles_res += 1.0 * einsum('jabc,bj,ci->ai', g[o, v, v, v], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) # 1.0000 <k,j||b,c>*t1(b,j)*t2(c,a,i,k) singles_res += 1.0 * einsum('kjbc,bj,caik->ai', g[o, o, v, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) # 0.5000 <k,j||b,c>*t1(b,i)*t2(c,a,k,j) singles_res += 0.5 * einsum('kjbc,bi,cakj->ai', g[o, o, v, v], t1, t2, optimize=['einsum_path', (0, 2), (0, 1)]) # 0.5000 <k,j||b,c>*t1(a,j)*t2(b,c,i,k) singles_res += 0.5 * einsum('kjbc,aj,bcik->ai', g[o, o, v, v], t1, t2, optimize=['einsum_path', (0, 2), (0, 1)]) # 1.0000 <k,j||b,c>*t1(b,j)*t1(c,i)*t1(a,k) singles_res += 1.0 * einsum('kjbc,bj,ci,ak->ai', g[o, o, v, v], t1, t1, t1, optimize=['einsum_path', (0, 1), (0, 2), (0, 1)]) return singles_res def doubles_residual(t1, t2, t3, f, g, o, v): """ < 0 | m* n* f e e(-T) H e(T) | 0> :param t1: spin-orbital t1 amplitudes (nvirt x nocc) :param t2: spin-orbital t2 amplitudes (nvirt x nvirt x nocc x nocc) :param t3: spin-orbital t3 amplitudes (nvirt x nvirt x nvirt x nocc x nocc x nocc) :param f: fock operator defined as soei + np.einsum('piiq->pq', astei[:, o, o, :]) where soei is 1 electron integrals (spinorb) and astei is antisymmetric 2 electron integrals in openfermion format <12|21>. <ij|kl> - <ij|lk> :param g: antisymmetric 2 electron integrals. See fock input. :param o: slice(None, occ) where occ is number of occupied spin-orbitals :param v: slice(occ, None) whwere occ is number of occupied spin-orbitals """ # -1.0000 P(i,j)f(k,j)*t2(a,b,i,k) contracted_intermediate = -1.0 * einsum('kj,abik->abij', f[o, o], t2) doubles_res = 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->abji', contracted_intermediate) # 1.0000 P(a,b)f(a,c)*t2(c,b,i,j) contracted_intermediate = 1.0 * einsum('ac,cbij->abij', f[v, v], t2) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->baij', contracted_intermediate) # -1.0000 P(i,j)f(k,c)*t1(c,j)*t2(a,b,i,k) contracted_intermediate = -1.0 * einsum('kc,cj,abik->abij', f[o, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->abji', contracted_intermediate) # -1.0000 P(a,b)f(k,c)*t1(a,k)*t2(c,b,i,j) contracted_intermediate = -1.0 * einsum('kc,ak,cbij->abij', f[o, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->baij', contracted_intermediate) # 1.0000 <a,b||i,j> doubles_res += 1.0 * einsum('abij->abij', g[v, v, o, o]) # 1.0000 P(a,b)<k,a||i,j>*t1(b,k) contracted_intermediate = 1.0 * einsum('kaij,bk->abij', g[o, v, o, o], t1) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->baij', contracted_intermediate) # 1.0000 P(i,j)<a,b||c,j>*t1(c,i) contracted_intermediate = 1.0 * einsum('abcj,ci->abij', g[v, v, v, o], t1) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->abji', contracted_intermediate) # 0.5000 <l,k||i,j>*t2(a,b,l,k) doubles_res += 0.5 * einsum('lkij,ablk->abij', g[o, o, o, o], t2) # 1.0000 P(i,j)*P(a,b)<k,a||c,j>*t2(c,b,i,k) contracted_intermediate = 1.0 * einsum('kacj,cbik->abij', g[o, v, v, o], t2) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->abji', contracted_intermediate) + -1.00000 * einsum('abij->baij', contracted_intermediate) + 1.00000 * einsum('abij->baji', contracted_intermediate) # 0.5000 <a,b||c,d>*t2(c,d,i,j) doubles_res += 0.5 * einsum('abcd,cdij->abij', g[v, v, v, v], t2) # -1.0000 <l,k||i,j>*t1(a,k)*t1(b,l) doubles_res += -1.0 * einsum('lkij,ak,bl->abij', g[o, o, o, o], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) # 1.0000 P(i,j)*P(a,b)<k,a||c,j>*t1(c,i)*t1(b,k) contracted_intermediate = 1.0 * einsum('kacj,ci,bk->abij', g[o, v, v, o], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('abij->abji', contracted_intermediate) + -1.00000 * einsum('abij->baij', contracted_intermediate) + 1.00000 * einsum('abij->baji', contracted_intermediate) # -1.0000 <a,b||c,d>*t1(c,j)*t1(d,i) doubles_res += -1.0 *
einsum('abcd,cj,di->abij', g[v, v, v, v], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)])
numpy.einsum
import unittest from math import sqrt, exp, log import numpy as np from pmacparser.pmac_parser import PMACParser, ParserError class TestParser(unittest.TestCase): def test_QP(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=P1") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["Q1"], 42) def test_QP2(self): input_dict = {"Q1": 42} lines = [] lines.append("P(1)=Q(1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["Q1"], 42) def test_QP3(self): input_dict = {"P1": 42} lines = [] lines.append("Q(1)=P(1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["Q1"], 42) def test_IM(self): input_dict = {"I1": 42} lines = [] lines.append("M1=I1") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["I1"], 42) self.assertEqual(output_dict["M1"], 42) def test_IM2(self): input_dict = {"M1": 42} lines = [] lines.append("I(1)=M(1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["I1"], 42) self.assertEqual(output_dict["M1"], 42) def test_float(self): input_dict = {"Q1": 42} lines = [] lines.append("Q1=56.254") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 1) self.assertEqual(output_dict["Q1"], 56.254) def test_add(self): input_dict = {"P1": 42, "P2": 9} lines = [] lines.append("Q1=P1+P2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 9) self.assertEqual(output_dict["Q1"], 51) def test_subtraction(self): input_dict = {"P1": 5.5, "P2": 3} lines = [] lines.append("P3=P1-P2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 5.5) self.assertEqual(output_dict["P2"], 3) self.assertEqual(output_dict["P3"], 2.5) def test_subtraction_negative(self): input_dict = {"P1": 5, "P2": 11} lines = [] lines.append("P3=P1-P2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 5) self.assertEqual(output_dict["P2"], 11) self.assertEqual(output_dict["P3"], -6) def test_multiply(self): input_dict = {"Q1": 3, "P2": 22} lines = [] lines.append("I1=Q1*P2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["Q1"], 3) self.assertEqual(output_dict["P2"], 22) self.assertEqual(output_dict["I1"], 66) def test_divide(self): input_dict = {"I1": 22, "Q5": 7} lines = [] lines.append("P99=I1/Q5") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["I1"], 22) self.assertEqual(output_dict["Q5"], 7) self.assertEqual(output_dict["P99"], 22/7.0) def test_multiply_precedence1(self): input_dict = {} lines = [] lines.append("Q1=3+4*5") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 1) self.assertEqual(output_dict["Q1"], 23) def test_multiply_precedence2(self): input_dict = {} lines = [] lines.append("P1=3*4+5") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 1) self.assertEqual(output_dict["P1"], 17) def test_multiply_precedence3(self): input_dict = {} lines = [] lines.append("Q1=3+4*5+6") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 1) self.assertEqual(output_dict["Q1"], 29) def test_multiply_precedence4(self): input_dict = {} lines = [] lines.append("Q1=2*3*4+5*6*7") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 1) self.assertEqual(output_dict["Q1"], 234) def test_divide_precedence1(self): input_dict = {} lines = [] lines.append("Q1=3+20/5") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 1) self.assertEqual(output_dict["Q1"], 7) def test_divide_precedence2(self): input_dict = {} lines = [] lines.append("P1=8/4+5") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 1) self.assertEqual(output_dict["P1"], 7) def test_divide_precedence3(self): input_dict = {} lines = [] lines.append("P1=16/4+5/5") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 1) self.assertEqual(output_dict["P1"], 5) def test_parenthesis_precedence(self): input_dict = {} lines = [] lines.append("Q1=2*3*(4+5)*6*7") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 1) self.assertEqual(output_dict["Q1"], 2268) def test_mod(self): input_dict = {"P1": 8} lines = [] lines.append("Q1=P1%3") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 8) self.assertEqual(output_dict["Q1"], 2) def test_bitand(self): input_dict = {"P1": 54254323} lines = [] lines.append("Q1=P1&213411") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 54254323) self.assertEqual(output_dict["Q1"], 213155) def test_bitor(self): input_dict = {"P1": 54254323} lines = [] lines.append("Q1=P1|213411") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 54254323) self.assertEqual(output_dict["Q1"], 54254579) def test_bitxor(self): input_dict = {"P1": 54254323} lines = [] lines.append("Q1=P1^213411") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 54254323) self.assertEqual(output_dict["Q1"], 54041424) def test_abs(self): input_dict = {"P1": -3} lines = [] lines.append("Q1=ABS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], -3) self.assertEqual(output_dict["Q1"], 3) def test_abs2(self): input_dict = {"P1": 4.5} lines = [] lines.append("Q1=ABS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 4.5) self.assertEqual(output_dict["Q1"], 4.5) def test_int(self): input_dict = {"P32": 3.141} lines = [] lines.append("Q3=INT(P32)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P32"], 3.141) self.assertEqual(output_dict["Q3"], 3) def test_int_2(self): input_dict = {"P32": 3.6} lines = [] lines.append("Q3=INT(P32)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P32"], 3.6) self.assertEqual(output_dict["Q3"], 3) def test_int_neg(self): input_dict = {"P32": -10.244} lines = [] lines.append("Q3=INT(P32)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P32"], -10.244) self.assertEqual(output_dict["Q3"], -11) def test_int_neg_2(self): input_dict = {"P32": -3.6} lines = [] lines.append("Q3=INT(P32)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P32"], -3.6) self.assertEqual(output_dict["Q3"], -4) def test_sqrt(self): input_dict = {"P45": 25} lines = [] lines.append("Q2=SQRT(P45)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P45"], 25) self.assertEqual(output_dict["Q2"], 5) def test_sqrt2(self): input_dict = {"P2": 2} lines = [] lines.append("Q2=SQRT(P2)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P2"], 2) self.assertEqual(output_dict["Q2"], sqrt(2)) def test_exp(self): input_dict = {"P1": 33} lines = [] lines.append("Q1=EXP(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 33) self.assertEqual(output_dict["Q1"], exp(33)) def test_ln(self): input_dict = {"P1": 33} lines = [] lines.append("Q1=LN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 33) self.assertEqual(output_dict["Q1"], log(33)) def test_sin_deg(self): input_dict = {"P1": 30} lines = [] lines.append("Q1=SIN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 30) self.assertAlmostEqual(output_dict["Q1"], 0.5) def test_sin_rad(self): input_dict = {"P1": 30, "I15": 1} lines = [] lines.append("Q1=SIN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 30) self.assertAlmostEqual(output_dict["Q1"], -0.988031624) self.assertEqual(output_dict["I15"], 1) def test_cos_deg(self): input_dict = {"P1": 60} lines = [] lines.append("Q1=COS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 60) self.assertAlmostEqual(output_dict["Q1"], 0.5) def test_cos_rad(self): input_dict = {"P1": 60, "I15": 1} lines = [] lines.append("Q1=COS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 60) self.assertAlmostEqual(output_dict["Q1"], -0.95241298) self.assertEqual(output_dict["I15"], 1) def test_tan_deg(self): input_dict = {"P1": 60} lines = [] lines.append("Q1=TAN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 60) self.assertAlmostEqual(output_dict["Q1"], 1.732050808) def test_tan_rad(self): input_dict = {"P1": 60, "I15": 1} lines = [] lines.append("Q1=TAN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 60) self.assertAlmostEqual(output_dict["Q1"], 0.320040389) self.assertEqual(output_dict["I15"], 1) def test_asin_deg(self): input_dict = {"P1": 0.5} lines = [] lines.append("Q1=ASIN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 0.5) self.assertAlmostEqual(output_dict["Q1"], 30) def test_asin_rad(self): input_dict = {"P1": 0.5, "I15": 1} lines = [] lines.append("Q1=ASIN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 0.5) self.assertAlmostEqual(output_dict["Q1"], 0.523598776) self.assertEqual(output_dict["I15"], 1) def test_acos_deg(self): input_dict = {"P1": 0.5} lines = [] lines.append("Q1=ACOS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 0.5) self.assertAlmostEqual(output_dict["Q1"], 60) def test_acos_rad(self): input_dict = {"P1": 0.5, "I15": 1} lines = [] lines.append("Q1=ACOS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 0.5) self.assertAlmostEqual(output_dict["Q1"], 1.047197551) self.assertEqual(output_dict["I15"], 1) def test_atan_deg(self): input_dict = {"P1": 0.5} lines = [] lines.append("Q1=ATAN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"], 0.5) self.assertAlmostEqual(output_dict["Q1"], 26.565051177) def test_atan_rad(self): input_dict = {"P1": 0.5, "I15": 1} lines = [] lines.append("Q1=ATAN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 0.5) self.assertAlmostEqual(output_dict["Q1"], 0.463647609) self.assertEqual(output_dict["I15"], 1) def test_atan2_deg(self): input_dict = {"P1": 0.5, "Q0": 2} lines = [] lines.append("Q1=ATAN2(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 0.5) self.assertAlmostEqual(output_dict["Q1"], 14.036243467934) self.assertEqual(output_dict["Q0"], 2) def test_atan2_rad(self): input_dict = {"P1": 0.5, "I15": 1, "Q0": 2} lines = [] lines.append("Q1=ATAN2(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 0.5) self.assertAlmostEqual(output_dict["Q1"], 0.244978663127) self.assertEqual(output_dict["I15"], 1) self.assertEqual(output_dict["Q0"], 2) def test_return(self): input_dict = {"P1": 42, "P2": 9} lines = [] lines.append("Q1=P1+P2") lines.append("RETURN") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 9) self.assertEqual(output_dict["Q1"], 51) def test_ret(self): input_dict = {"P1": 42, "P2": 9} lines = [] lines.append("Q1=P1+P2") lines.append("RET") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 9) self.assertEqual(output_dict["Q1"], 51) def test_multi_line(self): input_dict = {"P1": 42, "P2": 9} lines = [] lines.append("Q1=P1+P2") lines.append("Q2=Q1+6") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 9) self.assertEqual(output_dict["Q1"], 51) self.assertEqual(output_dict["Q2"], 57) def test_if(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1=42)") lines.append("P2=222") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_endi(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1=42)") lines.append("P2=222") lines.append("ENDI") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_false(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1=43)") lines.append("P2=222") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_else(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1=42)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_else(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_not_equal_true(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1!=40)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_not_equal_false(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1!=42)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_gt_true(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1>40)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_gt_false(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1>42)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_not_gt_true(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1!>42)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_not_gt_false(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1!>41)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_lt_true(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1<43)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_lt_false(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1<42)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_not_lt_true(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1!<42)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_not_lt_false(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1!<43)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_if_and_inline_true(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1ANDI1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_and_inline_false1(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2ANDI1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_and_inline_false2(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1ANDI1=2)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_and_inline_false3(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2ANDI1=2)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_or_inline_true(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1ORI1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_or_inline_false1(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2ORI1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_or_inline_false2(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1ORI1=2)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_or_inline_false3(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2ORI1=2)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_and_newline_true(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1)") lines.append("AND(I1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_and_newline_false1(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2)") lines.append("AND(I1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_and_newline_false2(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1)") lines.append("AND(I1=2)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_and_newline_false3(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2)") lines.append("AND(I1=2)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_or_newline_true(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1)") lines.append("OR(I1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_or_newline_false1(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2)") lines.append("OR(I1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_or_newline_false2(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1)") lines.append("OR(I1=2)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_or_newline_false3(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2)") lines.append("OR(I1=2)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_andor_precedence(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2)") lines.append("OR(I1=2)") lines.append("AND(P1=1)") lines.append("OR(I1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_nested1(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1)") lines.append("P2=222") # The nested if lines.append("IF(I1=1)") lines.append("P6=666") lines.append("ELSE") lines.append("P7=777") lines.append("ENDIF") # End of nested if lines.append("P4=444") lines.append("ELSE") lines.append("P3=333") lines.append("P5=555") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 7) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["P4"], 444) self.assertEqual(output_dict["P6"], 666) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_nested2(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1)") lines.append("P2=222") # The nested if lines.append("IF(I1=2)") lines.append("P6=666") lines.append("ELSE") lines.append("P7=777") lines.append("ENDIF") # End of nested if lines.append("P4=444") lines.append("ELSE") lines.append("P3=333") lines.append("P5=555") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 7) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["P4"], 444) self.assertEqual(output_dict["P7"], 777) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_nested3(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2)") lines.append("P2=222") # The nested if lines.append("IF(I1=1)") lines.append("P6=666") lines.append("ELSE") lines.append("P7=777") lines.append("ENDIF") # End of nested if lines.append("P4=444") lines.append("ELSE") lines.append("P3=333") lines.append("P5=555") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 6) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["P5"], 555) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_nested4(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2)") lines.append("P2=222") lines.append("P4=444") lines.append("ELSE") lines.append("P3=333") # The nested if lines.append("IF(I1=1)") lines.append("P6=666") lines.append("ELSE") lines.append("P7=777") lines.append("ENDIF") # End of nested if lines.append("P5=555") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 7) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["P5"], 555) self.assertEqual(output_dict["P6"], 666) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_nested5(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=2)") lines.append("P2=222") lines.append("P4=444") lines.append("ELSE") lines.append("P3=333") # The nested if lines.append("IF(I1=2)") lines.append("P6=666") lines.append("ELSE") lines.append("P7=777") lines.append("ENDIF") # End of nested if lines.append("P5=555") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 7) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["P5"], 555) self.assertEqual(output_dict["P7"], 777) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_if_nested6(self): input_dict = {"P1": 1, "I1": 1} lines = [] lines.append("Q1=1") lines.append("IF(P1=1)") lines.append("P2=222") lines.append("P4=444") lines.append("ELSE") lines.append("P3=333") # The nested if lines.append("IF(I1=1)") lines.append("P6=666") lines.append("ELSE") lines.append("P7=777") lines.append("ENDI") # End of nested if lines.append("P5=555") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 6) self.assertEqual(output_dict["P1"], 1) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["P4"], 444) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) self.assertEqual(output_dict["I1"], 1) def test_while(self): input_dict = {"P1": 1, "P2": 2} lines = [] lines.append("Q1=1") lines.append("Q2=2") lines.append("Q1=Q1+1") lines.append("WHILE(P1<10)") lines.append("P1=P1+1") lines.append("P2=P2+2") lines.append("ENDWHILE") lines.append("Q2=Q2+1") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 10) self.assertEqual(output_dict["P2"], 20) self.assertEqual(output_dict["Q1"], 2) self.assertEqual(output_dict["Q2"], 3) def test_while_endw(self): input_dict = {"P1": 1, "P2": 2} lines = [] lines.append("Q1=1") lines.append("Q2=2") lines.append("Q1=Q1+1") lines.append("WHILE(P1<10)") lines.append("P1=P1+1") lines.append("P2=P2+2") lines.append("ENDW") lines.append("Q2=Q2+1") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 10) self.assertEqual(output_dict["P2"], 20) self.assertEqual(output_dict["Q1"], 2) self.assertEqual(output_dict["Q2"], 3) def test_while_nested(self): input_dict = {"P1": 1, "P2": 2, "P3": 0, "P4": 0} lines = [] lines.append("Q1=1") lines.append("Q2=2") lines.append("Q1=Q1+1") lines.append("WHILE(P1<10)") lines.append("P1=P1+1") # Nested while lines.append("P3=0") lines.append("WHILE(P3<5)") lines.append("P3=P3+1") lines.append("P4=P4+2") lines.append("ENDWHILE") # End nested while lines.append("P2=P2+2") lines.append("ENDWHILE") lines.append("Q2=Q2+1") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 6) self.assertEqual(output_dict["P1"], 10) self.assertEqual(output_dict["P2"], 20) self.assertEqual(output_dict["P3"], 5) self.assertEqual(output_dict["P4"], 90) self.assertEqual(output_dict["Q1"], 2) self.assertEqual(output_dict["Q2"], 3) def test_parser_error(self): input_dict = {"Q1": 42} lines = [] lines.append("Q1=6") lines.append("TAN") parser = PMACParser(lines) self.assertRaises(Exception, parser.parse, input_dict) def test_unrecognised_token_exception(self): lines = [] lines.append("Q1=5G+3") self.assertRaises(Exception, PMACParser, lines) def test_float_expected_error(self): input_dict = {"Q1": 42} lines = [] lines.append("IAND=Q1") parser = PMACParser(lines) self.assertRaises(ParserError, parser.parse, input_dict) def test_unexpected_i_error(self): input_dict = {"Q1": 42} lines = [] lines.append("Q1=ENDIF") parser = PMACParser(lines) self.assertRaises(Exception, parser.parse, input_dict) def test_bad_comparitor_error(self): input_dict = {"Q1": 42} lines = [] lines.append("IF(Q1COS44)") parser = PMACParser(lines) self.assertRaises(ParserError, parser.parse, input_dict) def test_bad_unclosed_bracket_error(self): input_dict = {"Q1": 42} lines = [] lines.append("IF(Q1>44COS(3)") parser = PMACParser(lines) self.assertRaises(ParserError, parser.parse, input_dict) def test_unexpected_endif_error(self): input_dict = {"Q1": 42} lines = [] lines.append("Q1=3") lines.append("ENDIF") lines.append("Q1=4") parser = PMACParser(lines) self.assertRaises(ParserError, parser.parse, input_dict) def test_unexpected_else_error(self): input_dict = {"Q1": 42} lines = [] lines.append("Q1=3") lines.append("ELSE") lines.append("Q1=4") parser = PMACParser(lines) self.assertRaises(ParserError, parser.parse, input_dict) def test_unexpected_endwhile_error(self): input_dict = {"Q1": 42} lines = [] lines.append("Q1=3") lines.append("ENDWHILE") lines.append("Q1=4") parser = PMACParser(lines) self.assertRaises(ParserError, parser.parse, input_dict) def test_multiple_runs(self): input_dict = {"P1": 42} lines = [] lines.append("Q1=1") lines.append("IF(P1=1)") lines.append("P2=222") lines.append("ELSE") lines.append("P3=333") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"], 42) self.assertEqual(output_dict["P3"], 333) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) output_dict_2 = parser.parse(input_dict) self.assertEqual(len(output_dict_2), 4) self.assertEqual(output_dict_2["P1"], 42) self.assertEqual(output_dict_2["P3"], 333) self.assertEqual(output_dict_2["Q1"], 1) self.assertEqual(output_dict_2["Q2"], 2) input_dict = {"P1": 1} output_dict_3 = parser.parse(input_dict) self.assertEqual(len(output_dict_3), 4) self.assertEqual(output_dict_3["P1"], 1) self.assertEqual(output_dict_3["P2"], 222) self.assertEqual(output_dict_3["Q1"], 1) self.assertEqual(output_dict_3["Q2"], 2) def test_real_example1(self): input_dict = {"P5": 2, "P6": 4, "P4805": 8, "P4905": 16, "P4806": 32, "P4906": 64} lines = [] lines.append("Q7=((P(4800+5)*P5+P(4900+5))+(P(4800+6)*P6+P(4900+6)))/2") lines.append("Q8=(P(4800+5)*P5+P(4900+5))-(P(4800+6)*P6+P(4900+6))") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 8) self.assertEqual(output_dict["P5"], 2) self.assertEqual(output_dict["P6"], 4) self.assertEqual(output_dict["P4805"], 8) self.assertEqual(output_dict["P4905"], 16) self.assertEqual(output_dict["P4806"], 32) self.assertEqual(output_dict["P4906"], 64) self.assertEqual(output_dict["Q7"], 112) self.assertEqual(output_dict["Q8"], -160) def test_real_example2(self): input_dict = {"P1": 21, "P2": 21.5, "P3": 22, "P4": 22.5, "P5": 23, "P6": 23.5, "P7": 24, "P8": 24.5, "P17": 26, "P4801": 1, "P4802": 2, "P4803": 3, "P4804": 4, "P4805": 5, "P4806": 6, "P4807": 7, "P4808": 8, "P4817": 9, "P4901": 10, "P4902": 11, "P4903": 12, "P4904": 13, "P4905": 14, "P4906": 15, "P4907": 16, "P4908": 17, "P4917": 18, "Q21": 31, "Q22": 32, "Q23": 33, "Q24": 34, "Q25": 35, "Q26": 36, "Q27": 37, "Q28": 38, "Q29": 3900, "Q30": 40} lines = [] lines.append("Q1=(P(4800+1)*P1+P(4900+1))") lines.append("Q5=(P(4800+2)*P2+P(4900+2))") lines.append("Q9=(P(4800+7)*P7+P(4900+7))") lines.append("IF(Q27=0)") lines.append("Q2=(P(4800+3)*P3+P(4900+3))") lines.append("Q3=(P(4800+5)*P5+P(4900+5))") lines.append("Q4=(P(4800+3)*P3+P(4900+3))+(P(4800+8)*P8+P(4900+8))") lines.append("Q6=(P(4800+4)*P4+P(4900+4))") lines.append("Q7=(P(4800+6)*P6+P(4900+6))") lines.append("Q8=(P(4800+4)*P4+P(4900+4))+(P(4800+17)*P17+P(4900+17))") lines.append("ELSE") lines.append("Q130=SQRT((Q24+Q29)*(Q24+Q29)-(Q28+(P(4800+17)*P17+P(4900+17))-Q30)*" "(Q28+(P(4800+17)*P17+P(4900+17))-Q30))") lines.append("Q128=TAN(Q26)*(Q130+Q21)") lines.append("Q131=(P(4800+3)*P3+P(4900+3))-(P(4800+1)*P1+P(4900+1))-Q128") lines.append("Q6=(ATAN(Q131/(Q130+Q22))+Q26)/2") lines.append("Q133=(P(4800+5)*P5+P(4900+5))-(P(4800+1)*P1+P(4900+1))-Q128") lines.append("Q7=(ATAN(Q133/(Q130+Q23))+Q26)/2") lines.append("Q4=(P(4800+1)*P1+P(4900+1))+(P(4800+8)*P8+P(4900+8))") lines.append("Q129=TAN(Q25)*(Q130+Q21)") lines.append("Q132=(P(4800+4)*P4+P(4900+4))-(P(4800+2)*P2+P(4900+2))-Q129") lines.append("Q2=(ATAN(Q132/(Q130+Q22))+Q25)/2") lines.append("Q134=(P(4800+6)*P6+P(4900+6))-(P(4800+2)*P2+P(4900+2))-Q129") lines.append("Q3=(ATAN(Q134/(Q130+Q23))+Q25)/2") lines.append("Q8=(P(4800+2)*P2+P(4900+2))+(P(4800+17)*P17+P(4900+17))") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 53) self.assertEqual(output_dict["P1"], 21) self.assertEqual(output_dict["P2"], 21.5) self.assertEqual(output_dict["P3"], 22) self.assertEqual(output_dict["P4"], 22.5) self.assertEqual(output_dict["P5"], 23) self.assertEqual(output_dict["P6"], 23.5) self.assertEqual(output_dict["P7"], 24) self.assertEqual(output_dict["P8"], 24.5) self.assertEqual(output_dict["P17"], 26) self.assertEqual(output_dict["P4801"], 1) self.assertEqual(output_dict["P4802"], 2) self.assertEqual(output_dict["P4803"], 3) self.assertEqual(output_dict["P4804"], 4) self.assertEqual(output_dict["P4805"], 5) self.assertEqual(output_dict["P4806"], 6) self.assertEqual(output_dict["P4807"], 7) self.assertEqual(output_dict["P4808"], 8) self.assertEqual(output_dict["P4817"], 9) self.assertEqual(output_dict["P4901"], 10) self.assertEqual(output_dict["P4902"], 11) self.assertEqual(output_dict["P4903"], 12) self.assertEqual(output_dict["P4904"], 13) self.assertEqual(output_dict["P4905"], 14) self.assertEqual(output_dict["P4906"], 15) self.assertEqual(output_dict["P4907"], 16) self.assertEqual(output_dict["P4908"], 17) self.assertEqual(output_dict["P4917"], 18) self.assertEqual(output_dict["Q21"], 31) self.assertEqual(output_dict["Q22"], 32) self.assertEqual(output_dict["Q23"], 33) self.assertEqual(output_dict["Q24"], 34) self.assertEqual(output_dict["Q25"], 35) self.assertEqual(output_dict["Q26"], 36) self.assertEqual(output_dict["Q27"], 37) self.assertEqual(output_dict["Q28"], 38) self.assertEqual(output_dict["Q29"], 3900) self.assertEqual(output_dict["Q30"], 40) self.assertEqual(output_dict["Q1"], 31) self.assertEqual(output_dict["Q5"], 54) self.assertEqual(output_dict["Q9"], 184) self.assertAlmostEqual(output_dict["Q130"], 3926.048395015) self.assertAlmostEqual(output_dict["Q128"], 2874.963944354) self.assertAlmostEqual(output_dict["Q131"], -2827.963944354) self.assertAlmostEqual(output_dict["Q6"], 0.227391949) self.assertAlmostEqual(output_dict["Q133"], -2776.963944354) self.assertAlmostEqual(output_dict["Q7"], 0.476666233) self.assertEqual(output_dict["Q4"], 244) self.assertAlmostEqual(output_dict["Q129"], 2770.75511525) self.assertAlmostEqual(output_dict["Q132"], -2721.75511525) self.assertAlmostEqual(output_dict["Q2"], 0.242805324) self.assertAlmostEqual(output_dict["Q134"], -2668.75511525) self.assertAlmostEqual(output_dict["Q3"], 0.508241199) self.assertEqual(output_dict["Q8"], 306) def test_numpy_add(self): p1 = np.array([1, 2, 3, 4]) input_dict = {"P1": p1} lines = [] lines.append("Q1=P1+4") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 1) self.assertEqual(output_dict["P1"][1], 2) self.assertEqual(output_dict["P1"][2], 3) self.assertEqual(output_dict["P1"][3], 4) self.assertEqual(output_dict["Q1"][0], 5) self.assertEqual(output_dict["Q1"][1], 6) self.assertEqual(output_dict["Q1"][2], 7) self.assertEqual(output_dict["Q1"][3], 8) def test_numpy_subtract(self): p1 = np.array([10, 20, 30]) p2 = np.array([1, 2, 3]) input_dict = {"P1": p1, "P2": p2} lines = [] lines.append("Q1=P1-P2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 10) self.assertEqual(output_dict["P1"][1], 20) self.assertEqual(output_dict["P1"][2], 30) self.assertEqual(output_dict["P2"][0], 1) self.assertEqual(output_dict["P2"][1], 2) self.assertEqual(output_dict["P2"][2], 3) self.assertEqual(output_dict["Q1"][0], 9) self.assertEqual(output_dict["Q1"][1], 18) self.assertEqual(output_dict["Q1"][2], 27) def test_numpy_multiply(self): p1 = np.array([1, 2, 3, 4]) input_dict = {"P1": p1} lines = [] lines.append("Q1=P1*3") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 1) self.assertEqual(output_dict["P1"][1], 2) self.assertEqual(output_dict["P1"][2], 3) self.assertEqual(output_dict["P1"][3], 4) self.assertEqual(output_dict["Q1"][0], 3) self.assertEqual(output_dict["Q1"][1], 6) self.assertEqual(output_dict["Q1"][2], 9) self.assertEqual(output_dict["Q1"][3], 12) def test_numpy_divide(self): p1 = np.array([10, 20, 30]) p2 = np.array([2, 3, 4]) input_dict = {"P1": p1, "P2": p2} lines = [] lines.append("Q1=P1/P2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 10) self.assertEqual(output_dict["P1"][1], 20) self.assertEqual(output_dict["P1"][2], 30) self.assertEqual(output_dict["P2"][0], 2) self.assertEqual(output_dict["P2"][1], 3) self.assertEqual(output_dict["P2"][2], 4) self.assertEqual(output_dict["Q1"][0], 5) self.assertAlmostEqual(output_dict["Q1"][1], 6.666666666) self.assertAlmostEqual(output_dict["Q1"][2], 7.5) def test_numpy_mod(self): p1 = np.array([8, 13]) input_dict = {"P1": p1} lines = [] lines.append("Q1=P1%3") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 8) self.assertEqual(output_dict["P1"][1], 13) self.assertEqual(output_dict["Q1"][0], 2) self.assertEqual(output_dict["Q1"][1], 1) def test_numpy_bitand(self): p1 = np.array([54254323, 92364]) input_dict = {"P1": p1} lines = [] lines.append("Q1=P1&213411") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 54254323) self.assertEqual(output_dict["P1"][1], 92364) self.assertEqual(output_dict["Q1"][0], 213155) self.assertEqual(output_dict["Q1"][1], 82048) def test_numpy_bitor(self): p1 = np.array([54254323, 92364]) input_dict = {"P1": p1} lines = [] lines.append("Q1=P1|213411") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 54254323) self.assertEqual(output_dict["P1"][1], 92364) self.assertEqual(output_dict["Q1"][0], 54254579) self.assertEqual(output_dict["Q1"][1], 223727) def test_numpy_bitxor(self): p1 = np.array([54254323, 92364]) input_dict = {"P1": p1} lines = [] lines.append("Q1=P1^213411") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 54254323) self.assertEqual(output_dict["P1"][1], 92364) self.assertEqual(output_dict["Q1"][0], 54041424) self.assertEqual(output_dict["Q1"][1], 141679) def test_numpy_abs(self): p1 = np.array([-3, 45]) input_dict = {"P1": p1} lines = [] lines.append("Q1=ABS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], -3) self.assertEqual(output_dict["P1"][1], 45) self.assertEqual(output_dict["Q1"][0], 3) self.assertEqual(output_dict["Q1"][1], 45) def test_numpy_int(self): p32 = np.array([3.141, -45.39]) input_dict = {"P32": p32} lines = [] lines.append("Q3=INT(P32)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P32"][0], 3.141) self.assertEqual(output_dict["P32"][1], -45.39) self.assertEqual(output_dict["Q3"][0], 3) self.assertEqual(output_dict["Q3"][1], -46) def test_numpy_sqrt(self): p45 = np.array([25, 2]) input_dict = {"P45": p45} lines = [] lines.append("Q2=SQRT(P45)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P45"][0], 25) self.assertEqual(output_dict["P45"][1], 2) self.assertEqual(output_dict["Q2"][0], 5) self.assertAlmostEqual(output_dict["Q2"][1], 1.414213562) def test_numpy_exp(self): p1 = np.array([33, 18]) input_dict = {"P1": p1} lines = [] lines.append("Q1=EXP(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 33) self.assertEqual(output_dict["P1"][1], 18) self.assertAlmostEqual(output_dict["Q1"][0], 214643579785916.06) self.assertAlmostEqual(output_dict["Q1"][1], 65659969.13733051) def test_numpy_ln(self): p1 = np.array([33, 18]) input_dict = {"P1": p1} lines = [] lines.append("Q1=LN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 33) self.assertEqual(output_dict["P1"][1], 18) self.assertAlmostEqual(output_dict["Q1"][0], 3.4965075614) self.assertAlmostEqual(output_dict["Q1"][1], 2.8903717578) def test_numpy_sin_deg(self): p1 = np.array([30, -66]) input_dict = {"P1": p1} lines = [] lines.append("Q1=SIN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 30) self.assertEqual(output_dict["P1"][1], -66) self.assertAlmostEqual(output_dict["Q1"][0], 0.5) self.assertAlmostEqual(output_dict["Q1"][1], -0.913545457) def test_numpy_sin_rad(self): p1 = np.array([30, -66]) input_dict = {"P1": p1, "I15": 1} lines = [] lines.append("Q1=SIN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 30) self.assertEqual(output_dict["P1"][1], -66) self.assertAlmostEqual(output_dict["Q1"][0], -0.988031624) self.assertAlmostEqual(output_dict["Q1"][1], 0.026551154) self.assertEqual(output_dict["I15"], 1) def test_numpy_cos_deg(self): p1 = np.array([60, -63]) input_dict = {"P1": p1} lines = [] lines.append("Q1=COS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 60) self.assertEqual(output_dict["P1"][1], -63) self.assertAlmostEqual(output_dict["Q1"][0], 0.5) self.assertAlmostEqual(output_dict["Q1"][1], 0.453990499) def test_numpy_cos_rad(self): p1 = np.array([60, -63]) input_dict = {"P1": p1, "I15": 1} lines = [] lines.append("Q1=COS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 60) self.assertEqual(output_dict["P1"][1], -63) self.assertAlmostEqual(output_dict["Q1"][0], -0.95241298) self.assertAlmostEqual(output_dict["Q1"][1], 0.985896581) self.assertEqual(output_dict["I15"], 1) def test_numpy_tan_deg(self): p1 = np.array([60, -63]) input_dict = {"P1": p1} lines = [] lines.append("Q1=TAN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 60) self.assertEqual(output_dict["P1"][1], -63) self.assertAlmostEqual(output_dict["Q1"][0], 1.732050808) self.assertAlmostEqual(output_dict["Q1"][1], -1.96261050) def test_numpy_tan_rad(self): p1 = np.array([60, -63]) input_dict = {"P1": p1, "I15": 1} lines = [] lines.append("Q1=TAN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 60) self.assertEqual(output_dict["P1"][1], -63) self.assertAlmostEqual(output_dict["Q1"][0], 0.320040389) self.assertAlmostEqual(output_dict["Q1"][1], -0.169749752) self.assertEqual(output_dict["I15"], 1) def test_numpy_asin_deg(self): p1 = np.array([0.5, -0.213]) input_dict = {"P1": p1} lines = [] lines.append("Q1=ASIN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 0.5) self.assertEqual(output_dict["P1"][1], -0.213) self.assertAlmostEqual(output_dict["Q1"][0], 30) self.assertAlmostEqual(output_dict["Q1"][1], -12.298218098055672) def test_numpy_asin_rad(self): p1 = np.array([0.5, -0.213]) input_dict = {"P1": p1, "I15": 1} lines = [] lines.append("Q1=ASIN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 0.5) self.assertEqual(output_dict["P1"][1], -0.213) self.assertAlmostEqual(output_dict["Q1"][0], 0.523598776) self.assertAlmostEqual(output_dict["Q1"][1], -0.214644397) self.assertEqual(output_dict["I15"], 1) def test_numpy_acos_deg(self): p1 = np.array([0.5, -0.213]) input_dict = {"P1": p1} lines = [] lines.append("Q1=ACOS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 0.5) self.assertEqual(output_dict["P1"][1], -0.213) self.assertAlmostEqual(output_dict["Q1"][0], 60) self.assertAlmostEqual(output_dict["Q1"][1], 102.298218098) def test_numpy_acos_rad(self): p1 = np.array([0.5, -0.213]) input_dict = {"P1": p1, "I15": 1} lines = [] lines.append("Q1=ACOS(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 0.5) self.assertEqual(output_dict["P1"][1], -0.213) self.assertAlmostEqual(output_dict["Q1"][0], 1.047197551) self.assertAlmostEqual(output_dict["Q1"][1], 1.7854407247) self.assertEqual(output_dict["I15"], 1) def test_numpy_atan_deg(self): p1 = np.array([0.5, -0.213]) input_dict = {"P1": p1} lines = [] lines.append("Q1=ATAN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 2) self.assertEqual(output_dict["P1"][0], 0.5) self.assertEqual(output_dict["P1"][1], -0.213) self.assertAlmostEqual(output_dict["Q1"][0], 26.565051177) self.assertAlmostEqual(output_dict["Q1"][1], -12.02430666) def test_numpy_atan_rad(self): p1 = np.array([0.5, -0.213]) input_dict = {"P1": p1, "I15": 1} lines = [] lines.append("Q1=ATAN(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 0.5) self.assertEqual(output_dict["P1"][1], -0.213) self.assertAlmostEqual(output_dict["Q1"][0], 0.463647609) self.assertAlmostEqual(output_dict["Q1"][1], -0.209863741) self.assertEqual(output_dict["I15"], 1) def test_numpy_atan2_deg(self): p1 = np.array([0.5, -0.213]) input_dict = {"P1": p1, "Q0": 2} lines = [] lines.append("Q1=ATAN2(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 0.5) self.assertEqual(output_dict["P1"][1], -0.213) self.assertAlmostEqual(output_dict["Q1"][0], 14.036243467934) self.assertAlmostEqual(output_dict["Q1"][1], -6.079086119) self.assertEqual(output_dict["Q0"], 2) def test_numpy_atan2_rad(self): p1 = np.array([0.5, -0.213]) input_dict = {"P1": p1, "I15": 1, "Q0": 2} lines = [] lines.append("Q1=ATAN2(P1)") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"][0], 0.5) self.assertEqual(output_dict["P1"][1], -0.213) self.assertAlmostEqual(output_dict["Q1"][0], 0.244978663127) self.assertAlmostEqual(output_dict["Q1"][1], -0.106100068) self.assertEqual(output_dict["I15"], 1) self.assertEqual(output_dict["Q0"], 2) def test_numpy_if_all_true(self): p1 = np.array([42, 45]) input_dict = {"P1": p1} lines = [] lines.append("Q1=1") lines.append("IF(P1>40)") lines.append("P2=222") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 4) self.assertEqual(output_dict["P1"][0], 42) self.assertEqual(output_dict["P1"][1], 45) self.assertEqual(output_dict["P2"], 222) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_numpy_if_all_false(self): p1 = np.array([42, 45]) input_dict = {"P1": p1} lines = [] lines.append("Q1=1") lines.append("IF(P1<40)") lines.append("P2=222") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 3) self.assertEqual(output_dict["P1"][0], 42) self.assertEqual(output_dict["P1"][1], 45) self.assertEqual(output_dict["Q1"], 1) self.assertEqual(output_dict["Q2"], 2) def test_numpy_if_all_different(self): p1 = np.array([42, 45]) input_dict = {"P1": p1} lines = [] lines.append("Q1=1") lines.append("IF(P1<43)") lines.append("P2=222") lines.append("ENDIF") lines.append("Q2=2") parser = PMACParser(lines) self.assertRaises(Exception, parser.parse, input_dict) def test_numpy_while_all_true(self): p1 = np.array([20, 40]) p3 = np.array([1, 1]) input_dict = {"P1": p1, "P2": 2, "P3": p3} lines = [] lines.append("Q1=1") lines.append("Q2=2") lines.append("Q1=Q1+1") lines.append("WHILE(P3<10)") lines.append("P1=P1+1") lines.append("P2=P2+2") lines.append("P3=P3+1") lines.append("ENDWHILE") lines.append("Q2=Q2+1") parser = PMACParser(lines) output_dict = parser.parse(input_dict) self.assertEqual(len(output_dict), 5) self.assertEqual(output_dict["P1"][0], 29) self.assertEqual(output_dict["P1"][1], 49) self.assertEqual(output_dict["P2"], 20) self.assertEqual(output_dict["P3"][0], 10) self.assertEqual(output_dict["P3"][1], 10) self.assertEqual(output_dict["Q1"], 2) self.assertEqual(output_dict["Q2"], 3) def test_numpy_while_different(self): p1 = np.array([20, 40]) p3 = np.array([1, 2]) input_dict = {"P1": p1, "P2": 2, "P3": p3} lines = [] lines.append("Q1=1") lines.append("Q2=2") lines.append("Q1=Q1+1") lines.append("WHILE(P3<10)") lines.append("P1=P1+1") lines.append("P2=P2+2") lines.append("P3=P3+1") lines.append("ENDWHILE") lines.append("Q2=Q2+1") parser = PMACParser(lines) self.assertRaises(Exception, parser.parse, input_dict) def test_real_example2_numpy(self): p1 = np.array([21, 41]) p2 = np.array([21.5, 41.5]) p3 = np.array([22, 42]) p4 = np.array([22.5, 42.5]) p5 = np.array([23, 43]) p6 = np.array([23.5, 43.5]) p7 =
np.array([24, 44])
numpy.array
# Author: <NAME> # Date: February 8, 2021 # Purpose: Collection of custom functions for running CMA simulations of KdV, # analysis functions, and renormalization scripts. Generates some images # from past papers, but not all (didn't want / need to duplicate everything) # Translation of code from UW PhD in Matlab. # import libraries import numpy as np import scipy as sp import matplotlib.pyplot as plt from matplotlib import animation import glob import re def fftnorm(u_full): """Computes normalized FFT (such that FFT and IFFT are symmetrically normalized) Parameters ---------- u_full : 1D Numpy Array (N,) The vector whose discrete FFT is to be computed Returns ------- normalizedFFT : 1D Numpy Array (N,) The transformed version of that vector """ N = u_full.shape[0] normalizedFFT = np.fft.fft(u_full)*1/N return normalizedFFT def ifftnorm(u_full): """Computes normalized IFFT (such that FFT and IFFT are symmetrically normalized) Parameters ---------- u_full : 1D Numpy Array (N,) The vector whose discrete IFFT is to be computed Returns ------- normalizedIFFT : 1D Numpy Array (N,) The transformed version of that vector """ N = u_full.shape[0] normalizedIFFT = np.real(np.fft.ifft(u_full)*N) return normalizedIFFT def convolutionSumKdV(u,v,alpha): """Computes convolution sum associated with RHS of KdV ODE C_k(u,v) = -(alpha * 1i * k) / 2 * sum_{i+j = k} u_i v_j Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- u : 1D Numpy Array (N,) One of the two vectors being convolved v : 1D Numpy Array (N,) One of the two vectors being convolved alpha : float Degree of nonlinearity in KdV Returns ------- convo : 1D Numpy Array (N,) Convolution of the two vectors """ # generate array of wavenumbers L = u.shape[0] k = np.concatenate([np.arange(0,L/2),np.arange(-L/2,0)]) if v.shape[0]!=L: raise NameError('u and v must be the same length.') # compute double sum in real space, then apply scalar multiplier convo = fftnorm(ifftnorm(u)*ifftnorm(v)) convo = -alpha/2*1j*k*convo return convo # RHS: Right hand side functions for CMA and non-renormalized KdV def markovKdV(u,M,alpha): """Computes nonlinear part of Markov term in KdV C_k(u,v) = -(alpha * 1i * k) / 2 * sum_{i+j = k} u_i v_j where the sum of i and j is over a "full" system with M positive modes (user specified) Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- u : 1D Numpy Array (N,) Positive modes of state vector whose RHS is being computed M : int Number of positive modes in "full" model for intermediary calculations alpha : float Degree of nonlinearity in KdV Returns ------- nonlin0 : 1D Numpy Array (2*M,) Nonlinear part of Markov term for given state vector u_full : 1D Numpy array (2*M,) "full" state vector for use in later computations """ # construct full Fourier vector from only the positive modes u_full = np.zeros(2*M) +1j*np.zeros(2*M) u_full[0:u.shape[0]] = u u_full[2*M-u.shape[0]+1:] = np.conj(np.flip(u[1:])) # compute the convolution sum nonlin0 = convolutionSumKdV(u_full,u_full,alpha) return nonlin0,u_full def tModelKdV(u_full,nonlin0,alpha,F_modes): """Computes t-model term in KdV C_k(u,v) = -(alpha * 1i * k) / 2 * sum_{i+j = k, i and j in F} u_i v_j where the sum of i and j is over a "full" system with M positive modes (user specified) Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- u_full : Numpy array (2M,1) Current state of u in full form nonlin0 : Numpy array (2M,1) Markov term (for convolving) alpha : float Degree of nonlinearity in KdV F_modes : Numpy array Set of resolved modes (and aliasing modes) to zero out Returns ------- nonlin1 : 1D Numpy Array (2*M,) t-model term uuStar : 1D Numpy array (2*M,) unresolved modes of state vector convolved with itself """ uuStar = np.copy(nonlin0) uuStar[F_modes] = 0 nonlin1 = 2*convolutionSumKdV(u_full, uuStar, alpha) return nonlin1,uuStar def t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon): """Computes second order ROM term in KdV *see paper / symbolic notebook for expression* Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- u_full : Numpy array (2M,1) Current state of u in full form nonlin0 : Numpy array (2M,1) Markov term (for convolving) uuStar : 1D Numpy array (2*M,) Unresolved modes of state vector convolved with itself alpha : float Degree of nonlinearity in KdV F_modes : Numpy array Set of resolved modes (and aliasing modes) to zero out G_modes : Numpy array Set of unresolved modes (and aliasing modes) to zero out k : Numpy array (2M,1) Array of wavenumbers epsilon : float Size of linear term (stiffness) Returns ------- nonlin2 : 1D Numpy Array (2*M,) t2-model term uk3 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^3 uu : 1D Numpy array (2*M,) Resolved modes of state vector convolved with itself A, AStar, B, BStar, C, CStar, D, DStar : 1D Numpy arrays (2*M,) Specific convolutions used as inner terms in future terms """ # compute inner convolutions uu = np.copy(nonlin0) uu[G_modes] = 0 uk3 = k**3*u_full A = k**3*uu AStar = k**3*uuStar B = convolutionSumKdV(1j*epsilon**2*uk3+uu,u_full,alpha) BStar = np.copy(B) B[G_modes] = 0 BStar[F_modes] = 0 C = convolutionSumKdV(uuStar,u_full,alpha) CStar = np.copy(C) C[G_modes] = 0 CStar[F_modes] = 0 D = convolutionSumKdV(uuStar,uuStar,alpha) DStar = np.copy(D) D[G_modes] = 0 DStar[F_modes] = 0 # compute actual term nonlin2 = -2*convolutionSumKdV(u_full,1j*epsilon**2*AStar - 2*BStar + 2*CStar,alpha) - 2*D return nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar def t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar): """Computes third order ROM term in KdV *see paper / symbolic notebook for expression* Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- alpha : float Degree of nonlinearity in KdV F_modes : Numpy array Set of resolved modes (and aliasing modes) to zero out G_modes : Numpy array Set of unresolved modes (and aliasing modes) to zero out k : Numpy array (2M,1) Array of wavenumbers epsilon : float Size of linear term (stiffness) u_full : Numpy array (2M,1) Current state of u in full form uu : 1D Numpy array (2*M,) Resolved modes of state vector convolved with itself uuStar : 1D Numpy array (2*M,) Unresolved modes of state vector convolved with itself uk3 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^3 A, AStar, B, BStar, C, CStar, DStar : 1D Numpy arrays (2*M,) Specific convolutions used as inner terms in future terms Returns ------- nonlin3 : 1D Numpy Array (2*M,) t3-model term uk6 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^6 nonlin3,uk6,E,EStar,F,FStar E, EStar, F, FStar : 1D Numpy arrays (2*M,) Specific convolutions used as inner terms in future terms """ # compute internal convolutions uk6 = k**3*uk3 E = convolutionSumKdV(1j*epsilon**2*uk3+uu,1j*epsilon**2*uk3+uu,alpha) EStar = np.copy(E) E[G_modes] = 0 EStar[F_modes] = 0 F = convolutionSumKdV(uuStar,1j*epsilon**2*uk3+uu,alpha) FStar = np.copy(F) F[G_modes] = 0 FStar[F_modes] = 0 int1 = -2*BStar+CStar int2 = (convolutionSumKdV(u_full, -epsilon**4*uk6 +1j*epsilon**2*(A+AStar) +2*(B-2*C) +2*(CStar-2*BStar), alpha)) int2[F_modes] = 0 int3 = EStar-FStar int4 = np.copy(DStar) int5 = CStar-BStar # compute actual 3rd order term nonlin3 = (2*convolutionSumKdV(u_full,-k**3*epsilon**4*AStar +2*1j*epsilon**2*k**3*int1 +2*int2+2*int3+2*int4,alpha) +6*convolutionSumKdV(uuStar,1j*epsilon**2*AStar + 2*int5,alpha)) return nonlin3,uk6,E,EStar,F,FStar def t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar): """Computes fourth order ROM term in KdV *see paper / symbolic notebook for expression* Computed in real space to avoid loops and then converted back to Fourier space. Parameters ---------- alpha : float Degree of nonlinearity in KdV F_modes : Numpy array Set of resolved modes (and aliasing modes) to zero out G_modes : Numpy array Set of unresolved modes (and aliasing modes) to zero out k : Numpy array (2M,1) Array of wavenumbers epsilon : float Size of linear term (stiffness) u_full : Numpy array (2M,1) Current state of u in full form uu : 1D Numpy array (2*M,) Resolved modes of state vector convolved with itself uuStar : 1D Numpy array (2*M,) Unresolved modes of state vector convolved with itself uk3 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^3 uk6 : 1D Numpy array (2*M,) Resolved modes of state vector multiplied by k^6 A, AStar, B, BStar, C, CStar, DStar, E, EStar, F, FStar : 1D Numpy arrays (2*M,) Specific convolutions used as inner terms in future terms Returns ------- nonlin4 : 1D Numpy Array (2*M,) t4-model term """ # compute internal convolutions internal1 = (convolutionSumKdV(u_full,-epsilon**4*uk6+1j*epsilon**2*(A+AStar) +2*B-4*C-4*BStar+2*CStar,alpha)) internal1[F_modes] = 0 internal2 = (1j*epsilon**2*k**3*convolutionSumKdV(u_full,-3*epsilon**4*uk6 +1j*epsilon**2*(3*A+AStar) -2*(-3*B+5*C) +2*(-3*BStar+CStar),alpha)) internal2[F_modes] = 0 auxiliary1 = 2*convolutionSumKdV(u_full,epsilon**4*uk6-1j*epsilon**2*(A+3*AStar) +2*(3*C-B)+2*(5*BStar-3*CStar),alpha) auxiliary1[G_modes] = 0 auxiliary2 = 2*convolutionSumKdV(u_full,-3*epsilon**4*uk6+1j*epsilon**2*(3*A+AStar) +2*(3*B-5*C)+2*(-3*BStar+CStar),alpha) auxiliary2[F_modes] = 0 internal3 = convolutionSumKdV(u_full,1j*k**3*uk6*epsilon**6 +k**3*epsilon**4*(A-AStar) +2*1j*epsilon**2*k**3*(3*C-B) +2*1j*epsilon**2*k**3*(-3*BStar+CStar) +auxiliary1+auxiliary2 -2*(E-2*F) +2*(3*EStar-2*FStar) -6*D+2*DStar,alpha) internal3[F_modes]= 0 internal4 = convolutionSumKdV(1j*epsilon**2*uk3+uu,3*epsilon**4*uk6-1j*epsilon**2*(3*A+AStar) +2*(-3*B+5*C)+2*(3*BStar-CStar),alpha) internal4[F_modes] = 0 internal5 = convolutionSumKdV(uuStar,-epsilon**4*uk6+1j*epsilon**2*(A+3*AStar) +2*B-6*C-10*BStar+6*CStar,alpha) internal5[F_modes] = 0 # compute actual fourth order term nonlin4 = (2*convolutionSumKdV(u_full,-1j*epsilon**6*k**6*AStar +2*k**6*epsilon**4*(3*BStar-CStar) +2*internal2 +2*internal3 +2*internal4 -2*k**3*1j*epsilon**2*(2*FStar-3*EStar) +2*k**3*1j*epsilon**2*DStar +2*internal5,alpha) +8*convolutionSumKdV(uuStar,-k**3*epsilon**4*AStar +2*1j*epsilon**2*k**3*(-2*BStar+CStar) +2*internal1 +2*(EStar-FStar) +2*DStar,alpha) -48*convolutionSumKdV(BStar,1j*epsilon**2*AStar+2*CStar,alpha) +6*convolutionSumKdV(1j*epsilon**2*AStar+2*(BStar+CStar), 1j*epsilon**2*AStar+2*(BStar+CStar),alpha) ) nonlin4 = -nonlin4 return nonlin4 def RHSKdV(t,u,params): """ Computes the RHS for a full KdV or ROM simulation. For use in solver. Parameters ---------- t : float Current time u : Numpy array (N,) Current state vector params : Dictionary Dictionary of relevant parameters (see below) N : float, number of positive modes in simulation M : float, number of positive modes in "full" intermediate compuation alpha : float, degree of nonlinearity in KdV epsilon : float, size of linear term (stiffness) tau : float, time decay modifier coeffs : Numpy array, renormalization coefficients for ROM (None if no ROM) Returns ------- RHS : 1D Numpy array (N,) Derivative of each positive mode in state vector """ # extract parameters from dictionary N = params['N'] M = params['M'] alpha = params['alpha'] epsilon = params['epsilon'] tau = params['tau'] coeffs = params['coeffs'] # construct wavenumber array k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # Linear and Markov term nonlin0,u_full = markovKdV(u,M,alpha) RHS = 1j*k[0:N]**3*epsilon**2*u + nonlin0[0:N] if (np.any(coeffs == None)): order = 0 else: order = coeffs.shape[0] if (order >= 1): # compute t-model term # define which modes are resolved / unresolved in full array F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) G_modes = np.arange(N,2*M-N+1) # compute t-model term nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) RHS = RHS + coeffs[0]*nonlin1[0:N]*t**(1-tau) order = coeffs.shape[0] if (order >= 2): # compute t2-model term nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar = t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon) RHS = RHS + coeffs[1]*nonlin2[0:N]*t**(2*(1-tau)) if (order >= 3): # compute t3-model term nonlin3,uk6,E,EStar,F,FStar = t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar) RHS = RHS + coeffs[2]*nonlin3[0:N]*t**(3*(1-tau)) if (order == 4): # compute t4-model term nonlin4 = t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar) RHS = RHS + coeffs[3]*nonlin4[0:N]*t**(4*(1-tau)) return RHS def getMass(u,N): """Computes mass in first N modes for all timesteps from solution array u Parameters ---------- u : 2D Numpy Array (M,tList) Positive modes of state vector for all timesteps N : int Number of positive modes to include in mass measurement Returns ------- mass : 1D Numpy Array (tList,) Energy in first N modes at all timesteps """ mass = np.sum(2*(abs(u[0:N,]))**2,0) return mass def runSim(params): """ Runs an actual ROM or non-ROM simulation of KdV Parameters ---------- params : Dictionary Dictionary of relevant parameters (see below) N : float, number of positive modes in simulation M : float, number of positive modes in "full" intermediate compuation alpha : float, degree of nonlinearity in KdV epsilon : float, size of linear term (stiffness) tau : float, time decay modifier coeffs : Numpy array, renormalization coefficients for ROM (None if no ROM) IC : function handle, initial condition of simulation endtime : float, final time to simulate to timesteps: Numpy array, specific timesteps for which to save solution Returns ------- uSim : ODE solver output Output solution from sp.integrate.solve_ivp (includes state vector at all timesteps, time vector, etc.) """ # unpack parameters from dictionary N = params['N'] IC = params['IC'] endtime = params['endtime'] timesteps = params['timesteps'] # generate initial condition x = np.linspace(0,2*np.pi-2*np.pi/(2*N),2*N) y = IC(x) uFull = fftnorm(y) u = uFull[0:N] # define RHS in form appropriate for solve_ivp def myRHS(t,y): out = RHSKdV(t,y,params) return out # solve the IVP uSim = sp.integrate.solve_ivp(fun = myRHS, t_span = [0,endtime], y0 = u,method = "BDF", t_eval = timesteps) return uSim def makeRealSpace(u,N): """Takes a completed simulation and finds the real space solution at all timesteps for a chosen subset of modes Parameters ---------- u : Numpy array (M,t) Output of simulation giving energy in first M positive modes for all timesteps t N : int Number of positive modes to use in real space Returns ------- x : Numpy vector (2xN,1) x-grid for plotting purposes uReal : Numpy array (2xN,t) Real space solution at all times """ # identify shapes of arrays uShape = u.shape numTimes = uShape[1] # drop modes we don't wish to keep uNew = u[0:N,:] # generate full vector (with negative modes) uFull = np.zeros((2*N,numTimes)) + 1j*0 uFull[0:N,:] = uNew uFull[2*N-N+1:,:] = np.conj(np.flip(uNew[1:,:],0)) # initialize output uReal = np.zeros(uFull.shape) # take inverse transform for each timestep # NOTE: is there a vectorized way to do this? for i in np.arange(0,numTimes): uReal[:,i] = ifftnorm(uFull[:,i]) return uReal def makeAnimations(uList,t,legendList): """ Creates an animation from a list of simulations Parameters ---------- uList : List of Numpy arrays of size (N,T) Set of state vector evolutions to animate t : Numpy array (T,) Timesteps associated with simulations (must all be the same) legendList : List of strings Labels for each simulation Returns ------- anim : animation object output from animation.FuncAnimation """ # identify the resolution to use for plots and generate x grid N = min([x.shape[0] for x in uList]) xgrid = np.linspace(0,2*np.pi*(2*N-1)/(2*N),2*N) # generate real space solutions realSols = [makeRealSpace(x,N) for x in uList] # initialize figure myFig = plt.figure() ax = plt.subplot() ax.axis(xmin = 0,xmax = 2*np.pi-np.pi/N,ymin = -2, ymax = 4) # create empty list of lines to populate each iteration lineList = [ax.plot([],[]) for i in range(len(uList))] # define function to draw each frame def makeFrame(n): for i in range(len(uList)): lineList[i][0].set_data(xgrid,realSols[i][:,n]) plt.title('t = '+str(round(t[n],1))) plt.legend(legendList, loc = "upper right") return lineList # generate animation anim = animation.FuncAnimation(fig = myFig,func = makeFrame,frames = t.shape[0]) return anim def renormalize(fullM, endtime, Nlist, Mlist, epsilon, alpha, tau, timesteps, IC = np.sin, plots = False): """ Finds renormalization coefficients based on a single simulation. If the simulation doesn't yet exist, it creates it Parameters ---------- fullM : int Size of full simulation to base fits on endtime : int Endtime of full simulation Nlist : list of ints List of resolutions for which to find coefficients Mlist : list of ints List of intermediary "full" simulations to use for ROMs epsilon : float size of linear term (stiffness) alpha : float degree of nonlinearity in KdV tau : float time decay modifier timesteps : Numpy array specific timesteps for which to save solution IC : function handle initial condition of simulation (default np.sin) plots : boolean Indicates whether to generate plots (default: False) Returns ------- coeeffsArray1 : Numpy array (length(Nlist),1) Renormalization coefficients for t-model only coeffsArray2 : Numpy array (length(Nlist),2) Renormalization coefficients for t-model and t2-model only coeffsArray3 : Numpy array (length(Nlist),3) Renormalization coefficients for t1-t3-models coeffsArray4 : Numpy array (length(Nlist),4) Renormalization coefficients for t1-t4-models coeffsArray2only : Numpy array (length(Nlist),1) Renormalization coefficients for t2-model only coeffsArray24only : Numpy array (length(Nlist),2) Renormalization coefficients for t2-model and t4-model only fitLines : Dict Contains scaling law fits for each ROM coefficients of form c = -b * N^a Terms given are a, b, and r (correlation coefficient of fit) err : Dict Contains least-squares error for each fit for each model and resolution """ # Check if full simulation has already been constructed # if so, load it, if not, generate it try: uFull = np.load("u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+".npy") tFull = np.load("t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+".npy") except: fullParams = { 'N': fullM, 'M': int(3/2*fullM), 'alpha': 1, 'epsilon': epsilon, 'tau': 1, 'coeffs': None, 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } uSimFull = runSim(fullParams) uFull = uSimFull.y tFull = uSimFull.t np.save( "u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p'),uFull) np.save( "t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p'),tFull) # initialize output arrays coeffsArray1 = np.zeros((Nlist.shape[0],1)) coeffsArray2 = np.zeros((Nlist.shape[0],2)) coeffsArray3 = np.zeros((Nlist.shape[0],3)) coeffsArray4 = np.zeros((Nlist.shape[0],4)) coeffsArray2only = np.zeros((Nlist.shape[0],1)) coeffsArray24only = np.zeros((Nlist.shape[0],2)) # recover number of timesteps numSteps = tFull.shape[0] # initialize least squares error output err = {"t-model" : np.zeros((Nlist.shape[0],1)), "t2-model" : np.zeros((Nlist.shape[0],1)), "t3-model" : np.zeros((Nlist.shape[0],1)), "t4-model" : np.zeros((Nlist.shape[0],1)), "t2-model only" : np.zeros((Nlist.shape[0],1)), "t2- and t4-models" : np.zeros((Nlist.shape[0],1))} # loop through all resolutions for j in np.arange(0,Nlist.shape[0]): # Find number of positive terms in ROM, in intermediate calculations, and wavenumber array N = Nlist[j] M = Mlist[j] k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # Gather first derivative data for fitting purposes exactEnergy = np.zeros((N,numSteps)) R0Energy = np.zeros((N,numSteps)) R1Energy = np.zeros((N,numSteps)) R2Energy = np.zeros((N,numSteps)) R3Energy = np.zeros((N,numSteps)) R4Energy = np.zeros((N,numSteps)) # plug exact solution into exact RHS and all ROM terms and find energy contribution of each for i in np.arange(0,numSteps): # exact RHS exactRHS,dummyU = markovKdV(uFull[:,i],int(fullM*3/2),alpha) exactEnergy[:,i] = np.real(exactRHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(exactRHS[0:N])*uFull[0:N,i]) # Markov RHS nonlin0,u_full = markovKdV(uFull[0:N,i],M,alpha) R0RHS = nonlin0 R0Energy[:,i] = np.real(R0RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R0RHS[0:N])*uFull[0:N,i]) # First order RHS term F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) G_modes = np.arange(N,2*M-N+1) nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) R1RHS = nonlin1*tFull[i]**(1-tau) R1Energy[:,i] = np.real(R1RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R1RHS[0:N])*uFull[0:N,i]) # Second order RHS term nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar = t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon) R2RHS = nonlin2*tFull[i]**(2*(1-tau)) R2Energy[:,i] = np.real(R2RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R2RHS[0:N])*uFull[0:N,i]) # Third order RHS term nonlin3,uk6,E,EStar,F,FStar = t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar) R3RHS = nonlin3*tFull[i]**(3*(1-tau)) R3Energy[:,i] = np.real(R3RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R3RHS[0:N])*uFull[0:N,i]) # Fourth order RHS term nonlin4 = t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar) R4RHS = nonlin4*tFull[i]**(4*(1-tau)) R4Energy[:,i] = np.real(R4RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R4RHS[0:N])*uFull[0:N,i]) if j == 0: R0Energy0 = np.copy(R0Energy) R1Energy0 = np.copy(R1Energy) R2Energy0 = np.copy(R2Energy) R3Energy0 = np.copy(R3Energy) R4Energy0 = np.copy(R4Energy) ################################################## # Use least-squares fit to identify coefficients # ################################################## # t-model coefficient coeffsArray1[j,:] = np.sum((exactEnergy - R0Energy)*R1Energy)/np.sum(R1Energy*R1Energy) err["t-model"][j] = np.sum((exactEnergy - R0Energy - coeffsArray1[j,0]*R1Energy)**2) # t2-model coefficient LSMatrix = (np.array([[np.sum(R1Energy*R1Energy),np.sum(R1Energy*R2Energy)], [np.sum(R2Energy*R1Energy),np.sum(R2Energy*R2Energy)]])) LSb = (np.array([np.sum(R1Energy*(exactEnergy-R0Energy)),np.sum(R2Energy*(exactEnergy-R0Energy))])) coeffsArray2[j,:] = np.linalg.solve(LSMatrix,LSb) err["t2-model"][j] = np.sum((exactEnergy - R0Energy - coeffsArray2[j,0]*R1Energy - coeffsArray2[j,1]*R2Energy)**2) # t3-model coefficient LSMatrix = (np.array([[np.sum(R1Energy*R1Energy),np.sum(R1Energy*R2Energy),np.sum(R1Energy*R3Energy)], [np.sum(R2Energy*R1Energy),np.sum(R2Energy*R2Energy),np.sum(R2Energy*R3Energy)], [np.sum(R3Energy*R1Energy),np.sum(R3Energy*R2Energy),np.sum(R3Energy*R3Energy)]])) LSb = (np.array([np.sum(R1Energy*(exactEnergy-R0Energy)),np.sum(R2Energy*(exactEnergy-R0Energy)),np.sum(R3Energy*(exactEnergy-R0Energy))])) coeffsArray3[j,:] = np.linalg.solve(LSMatrix,LSb) err["t3-model"][j] = np.sum((exactEnergy - R0Energy - coeffsArray3[j,0]*R1Energy - coeffsArray3[j,1]*R2Energy - coeffsArray3[j,2]*R3Energy)**2) # t4-model coefficient LSMatrix = (np.array([[np.sum(R1Energy*R1Energy),np.sum(R1Energy*R2Energy),np.sum(R1Energy*R3Energy),np.sum(R1Energy*R4Energy)], [np.sum(R2Energy*R1Energy),np.sum(R2Energy*R2Energy),np.sum(R2Energy*R3Energy),np.sum(R2Energy*R4Energy)], [np.sum(R3Energy*R1Energy),np.sum(R3Energy*R2Energy),np.sum(R3Energy*R3Energy),np.sum(R3Energy*R4Energy)], [np.sum(R4Energy*R1Energy),np.sum(R4Energy*R2Energy),np.sum(R4Energy*R3Energy),np.sum(R4Energy*R4Energy)]])) LSb = (np.array([np.sum(R1Energy*(exactEnergy-R0Energy)),np.sum(R2Energy*(exactEnergy-R0Energy)),np.sum(R3Energy*(exactEnergy-R0Energy)),np.sum(R4Energy*(exactEnergy-R0Energy))])) coeffsArray4[j,:] = np.linalg.solve(LSMatrix,LSb) err["t4-model"][j] = np.sum((exactEnergy - R0Energy - coeffsArray4[j,0]*R1Energy - coeffsArray4[j,1]*R2Energy - coeffsArray4[j,2]*R3Energy - coeffsArray4[j,3]*R4Energy)**2) # t2-model with *no* t-model coeffsArray2only[j,:] = np.sum((exactEnergy - R0Energy)*R2Energy)/np.sum(R2Energy*R2Energy) err["t2-model only"][j] = np.sum((exactEnergy - R0Energy - coeffsArray2only[j,0]*R2Energy)**2) # t2-model and t4-model with *no* t-model or t3-model LSMatrix = (np.array([[np.sum(R2Energy*R2Energy),np.sum(R2Energy*R4Energy)], [np.sum(R4Energy*R2Energy),np.sum(R4Energy*R4Energy)]])) LSb = (np.array([np.sum(R2Energy*(exactEnergy-R0Energy)),np.sum(R4Energy*(exactEnergy-R0Energy))])) coeffsArray24only[j,:] = np.linalg.solve(LSMatrix,LSb) err["t2- and t4-models"][j] = np.sum((exactEnergy - R0Energy - coeffsArray24only[j,0]*R2Energy - coeffsArray24only[j,1]*R4Energy)**2) # Generate plots if desired if plots: # Plot 1: Qualitative comparison of each term contributing to energy movement N = Nlist[0] fig1, ax1 = plt.subplots(3,2) ax1[0,0].plot(tFull,np.sum(exactEnergy[0:N,:],0)) ax1[0,0].set_title("Exact Energy Decay") ax1[0,1].plot(tFull,np.sum(R0Energy0[0:N,:],0)) ax1[0,1].set_title("Markov Energy Decay") ax1[1,0].plot(tFull,np.sum(R2Energy0[0:N,:],0)) ax1[1,0].set_title("R2 Energy Decay") ax1[1,1].plot(tFull,np.sum(R1Energy0[0:N,:],0)) ax1[1,1].set_title("R1 Energy Decay") ax1[2,0].plot(tFull,np.sum(R4Energy0[0:N,:],0)) ax1[2,0].set_title("R4 Energy Decay") ax1[2,1].plot(tFull,np.sum(R3Energy0[0:N,:],0)) ax1[2,1].set_title("R3 Energy Decay") fig1.suptitle("N = "+str(N)+" Energy Decays") plt.tight_layout() # remove axis labels to not crowd plots (since only qualitative comparisons desired) for i in range(0,3): for j in range(0,2): #ax1[i,j].tick_params(labelbottom=False,labelleft=False) ax1[i,j].tick_params(labelleft=False) # compute best fit lines for coefficients in log-log space fitLines = {"t-model" : np.zeros((1,3)), "t2-model" : np.zeros((2,3)), "t3-model" : np.zeros((3,3)), "t4-model" : np.zeros((4,3)), "t2-model only" : np.zeros((1,3)), "t2- and t4-models" : np.zeros((2,3))} fig2, ax2 = plt.subplots(2,2) # t-model ax2[0,0].scatter(np.log(Nlist),np.log(abs(coeffsArray1[:,0]))) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray1[:,0]))) ax2[0,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist)) fitLines["t-model"][:] = np.array([slope,np.exp(intercept),r_value]) # t2-model ax2[0,0].scatter(np.log(Nlist),np.log(abs(coeffsArray2[:,0])),color="red") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2[:,0]))) ax2[0,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "red") fitLines["t2-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray2[:,1])),color="red") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2[:,1]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "red") fitLines["t2-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) # t3-model ax2[0,0].scatter(np.log(Nlist),np.log(abs(coeffsArray3[:,0])),color="green") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,0]))) ax2[0,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "green") fitLines["t3-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray3[:,1])),color="green") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,1]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "green") fitLines["t3-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) ax2[1,0].scatter(np.log(Nlist),np.log(abs(coeffsArray3[:,2])),color="green") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,2]))) ax2[1,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "green") fitLines["t3-model"][2,:] = np.array([slope,np.exp(intercept),r_value]) # t4-model ax2[0,0].scatter(np.log(Nlist),np.log(abs(coeffsArray4[:,0])),color="purple") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,0]))) ax2[0,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "purple") fitLines["t4-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray4[:,1])),color="purple") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,1]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "purple") fitLines["t4-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) ax2[1,0].scatter(np.log(Nlist),np.log(abs(coeffsArray4[:,2])),color="purple") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,2]))) ax2[1,0].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "purple") fitLines["t4-model"][2,:] = np.array([slope,np.exp(intercept),r_value]) ax2[1,1].scatter(np.log(Nlist),np.log(abs(coeffsArray4[:,3])),color="purple") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,3]))) ax2[1,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "purple") fitLines["t4-model"][3,:] = np.array([slope,np.exp(intercept),r_value]) # t2-model alone ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray2only[:,0])),color="cyan") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2only[:,0]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "cyan") fitLines["t2-model only"][:] = np.array([slope,np.exp(intercept),r_value]) # t2- and t4-model alone ax2[0,1].scatter(np.log(Nlist),np.log(abs(coeffsArray24only[:,0])),color="black") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray24only[:,0]))) ax2[0,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "black") fitLines["t2- and t4-models"][0,:] = np.array([slope,np.exp(intercept),r_value]) ax2[1,1].scatter(np.log(Nlist),np.log(abs(coeffsArray24only[:,1])),color="black") slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray24only[:,1]))) ax2[1,1].plot(np.log(Nlist),intercept + slope*np.log(Nlist), color = "black") fitLines["t2- and t4-models"][1,:] = np.array([slope,np.exp(intercept),r_value]) ax2[0,0].set_title("t-model") ax2[0,1].set_title("t2-model") ax2[1,0].set_title("t3-model") ax2[1,1].set_title("t4-model") customLines = [plt.Line2D([0],[0], color = "blue"), plt.Line2D([0],[0], color = "red"), plt.Line2D([0],[0], color = "green"), plt.Line2D([0],[0], color = "purple"), plt.Line2D([0],[0], color = "cyan"), plt.Line2D([0],[0], color = "black")] ax2[0,1].legend(customLines,["First Order Model","Second Order Model", "Third Order Model","Fourth Order Model", "Only Second Order","Second and Fourth Order"], prop = {"size":5}) fig2.suptitle("Renormalization Coefficients (log(a) vs log(N))") plt.subplots_adjust(right=0.7) plt.tight_layout() # calculate best fit lines if plotting didn't occur else: fitLines = {"t-model" : np.zeros((1,3)), "t2-model" : np.zeros((2,3)), "t3-model" : np.zeros((3,3)), "t4-model" : np.zeros((4,3)), "t2-model only" : np.zeros((1,3)), "t2- and t4-models" : np.zeros((2,3))} # t-model slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray1[:,0]))) fitLines["t-model"][:] = np.array([slope,np.exp(intercept),r_value]) # second order ROM slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2[:,0]))) fitLines["t2-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2[:,1]))) fitLines["t2-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) # third order ROM slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,0]))) fitLines["t3-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,1]))) fitLines["t3-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray3[:,2]))) fitLines["t3-model"][2,:] = np.array([slope,np.exp(intercept),r_value]) # fourth order ROM slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,0]))) fitLines["t4-model"][0,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,1]))) fitLines["t4-model"][1,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,2]))) fitLines["t4-model"][2,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray4[:,3]))) fitLines["t4-model"][3,:] = np.array([slope,np.exp(intercept),r_value]) # only t2-model slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray2only[:,0]))) fitLines["t2-model only"][:] = np.array([slope,np.exp(intercept),r_value]) # only t2- and t4-models slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray24only[:,0]))) fitLines["t2- and t4-models"][0,:] = np.array([slope,np.exp(intercept),r_value]) slope,intercept,r_value,p_value,std_err = sp.stats.linregress(np.log(Nlist), np.log(abs(coeffsArray24only[:,1]))) fitLines["t2- and t4-models"][1,:] = np.array([slope,np.exp(intercept),r_value]) return coeffsArray1,coeffsArray2,coeffsArray3,coeffsArray4,coeffsArray2only,coeffsArray24only,fitLines,err def scalingLaws(fullM, endtime, Nlist, Mlist, epsilonList, alpha, tau, timesteps, IC = np.sin, plots = False): """ Finds renormalization coefficients based on a simulations with a range of epsilon values. Parameters ---------- fullM : int Size of full simulation to base fits on endtime : int Endtime of full simulation Nlist : list of ints List of resolutions for which to find coefficients Mlist : list of ints List of intermediary "full" simulations to use for ROMs epsilonList : list of floats size of linear term (stiffness) alpha : float degree of nonlinearity in KdV tau : float time decay modifier timesteps : Numpy array specific timesteps for which to save solution IC : function handle initial condition of simulation (default np.sin) plots : boolean Indicates whether to generate plots (default: False) Returns ------- coeeffsArray1 : Numpy array (length(Nlist),1) Renormalization coefficients for t-model only coeffsArray2 : Numpy array (length(Nlist),2) Renormalization coefficients for t-model and t2-model only coeffsArray3 : Numpy array (length(Nlist),3) Renormalization coefficients for t1-t3-models coeffsArray4 : Numpy array (length(Nlist),4) Renormalization coefficients for t1-t4-models coeffsArray2only : Numpy array (length(Nlist),1) Renormalization coefficients for t2-model only coeffsArray24only : Numpy array (length(Nlist),2) Renormalization coefficients for t2-model and t4-model only fitLines : Dict Contains scaling law fits for each ROM coefficients of form c = -b * N^a Terms given are a, b, and r (correlation coefficient of fit) """ # initialize output arrays c1 = np.zeros((len(Nlist),1,len(epsilonList))) c2 = np.zeros((len(Nlist),2,len(epsilonList))) c3 = np.zeros((len(Nlist),3,len(epsilonList))) c4 = np.zeros((len(Nlist),4,len(epsilonList))) c2only = np.zeros((len(Nlist),1,len(epsilonList))) c24only = np.zeros((len(Nlist),2,len(epsilonList))) # loop through all epsilon values for i in np.arange(0,len(epsilonList)): # renormalize for given epsilon value and save results coeffsArray1,coeffsArray2,coeffsArray3,coeffsArray4,coeffsArray2only,coeffsArray24only,fitLines,err = renormalize(fullM = fullM, endtime = endtime, Nlist = Nlist, Mlist = Mlist, epsilon = epsilonList[i], alpha = alpha, tau = tau, timesteps = timesteps, IC = IC, plots = False) c1[:,:,i] = coeffsArray1 c2[:,:,i] = coeffsArray2 c3[:,:,i] = coeffsArray3 c4[:,:,i] = coeffsArray4 c2only[:,:,i] = coeffsArray2only c24only[:,:,i] = coeffsArray24only # pack results into dictionary for output coefficients = {"t-model" : c1, "t2-model" : c2, "t3-model" : c3, "t4-model" : c4, "t2-model only" : c2only, "t2- and t4-models" : c24only} # initialize output with best fit scaling laws fitLines = {"t-model" : np.zeros((1,3)), "t2-model" : np.zeros((2,3)), "t3-model" : np.zeros((3,3)), "t4-model" : np.zeros((4,3)), "t2-model only" : np.zeros((1,3)), "t2- and t4-models" : np.zeros((2,3))} # find the scaling laws for each coefficient # t-model coefficient fitLines["t-model"][0,:] = epsilonNscalingLaw(c1[:,0,:],Nlist,epsilonList) # Second order model coefficients fitLines["t2-model"][0,:] = epsilonNscalingLaw(c2[:,0,:],Nlist,epsilonList) fitLines["t2-model"][1,:] = epsilonNscalingLaw(c2[:,1,:],Nlist,epsilonList) # Third order model coefficients fitLines["t3-model"][0,:] = epsilonNscalingLaw(c3[:,0,:],Nlist,epsilonList) fitLines["t3-model"][1,:] = epsilonNscalingLaw(c3[:,1,:],Nlist,epsilonList) fitLines["t3-model"][2,:] = epsilonNscalingLaw(c3[:,2,:],Nlist,epsilonList) # Fourth order model coefficients fitLines["t4-model"][0,:] = epsilonNscalingLaw(c4[:,0,:],Nlist,epsilonList) fitLines["t4-model"][1,:] = epsilonNscalingLaw(c4[:,1,:],Nlist,epsilonList) fitLines["t4-model"][2,:] = epsilonNscalingLaw(c4[:,2,:],Nlist,epsilonList) fitLines["t4-model"][3,:] = epsilonNscalingLaw(c4[:,3,:],Nlist,epsilonList) # Only t2-model coefficient fitLines["t2-model only"][0,:] = epsilonNscalingLaw(c2only[:,0,:],Nlist,epsilonList) # Only t2- and t4-models coefficients fitLines["t2- and t4-models"][0,:] = epsilonNscalingLaw(c24only[:,0,:],Nlist,epsilonList) fitLines["t2- and t4-models"][1,:] = epsilonNscalingLaw(c24only[:,1,:],Nlist,epsilonList) # make plots fig1,ax1 = plt.subplots(1,2) fig2,ax2 = plt.subplots(2,2) fig3,ax3 = plt.subplots(3,2) fig4,ax4 = plt.subplots(4,2) fig5,ax5 = plt.subplots(1,2) fig6,ax6 = plt.subplots(2,2) # loop through epsilon values for i in np.arange(len(epsilonList)): # t-model coefficient ax1[0].scatter(np.log(Nlist),np.log(-c1[:,0,i])) # Second order model coefficients ax2[0,0].scatter(np.log(Nlist),np.log(-c2[:,0,i])) ax2[1,0].scatter(np.log(Nlist),np.log(-c2[:,1,i])) # Third order model coefficients ax3[0,0].scatter(np.log(Nlist),np.log(-c3[:,0,i])) ax3[1,0].scatter(np.log(Nlist),np.log(-c3[:,1,i])) ax3[2,0].scatter(np.log(Nlist),np.log(-c3[:,2,i])) # Fourth order model coefficients ax4[0,0].scatter(np.log(Nlist),np.log(-c4[:,0,i])) ax4[1,0].scatter(np.log(Nlist),np.log(-c4[:,1,i])) ax4[2,0].scatter(np.log(Nlist),np.log(-c4[:,2,i])) ax4[3,0].scatter(np.log(Nlist),np.log(-c4[:,3,i])) # Only t2-model ax5[0].scatter(np.log(Nlist),np.log(-c2only[:,0,i])) # Only t2- and t4-models ax6[0,0].scatter(np.log(Nlist),np.log(-c24only[:,0,i])) ax6[1,0].scatter(np.log(Nlist),np.log(-c24only[:,1,i])) # plot best fit lines myEps = epsilonList[i] myFit = fitLines["t-model"][0,:] ax1[0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2-model"][0,:] ax2[0,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2-model"][1,:] ax2[1,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t3-model"][0,:] ax3[0,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t3-model"][1,:] ax3[1,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t3-model"][2,:] ax3[2,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t4-model"][0,:] ax4[0,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t4-model"][1,:] ax4[1,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t4-model"][2,:] ax4[2,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t4-model"][3,:] ax4[3,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2-model only"][0,:] ax5[0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2- and t4-models"][0,:] ax6[0,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) myFit = fitLines["t2- and t4-models"][1,:] ax6[1,0].plot(np.log(Nlist),np.log(-myFit[0])+myFit[1]*np.log(Nlist)+myFit[2]*np.log(myEps)) # loop through epsilon values for j in np.arange(len(Nlist)): # t-model coefficient ax1[1].scatter(np.log(epsilonList),np.log(-c1[j,0,:])) # Second order model coefficients ax2[0,1].scatter(np.log(epsilonList),np.log(-c2[j,0,:])) ax2[1,1].scatter(np.log(epsilonList),np.log(-c2[j,1,:])) # Third order model coefficients ax3[0,1].scatter(np.log(epsilonList),np.log(-c3[j,0,:])) ax3[1,1].scatter(np.log(epsilonList),np.log(-c3[j,1,:])) ax3[2,1].scatter(np.log(epsilonList),np.log(-c3[j,2,:])) # Fourth order model coefficients ax4[0,1].scatter(np.log(epsilonList),np.log(-c4[j,0,:])) ax4[1,1].scatter(np.log(epsilonList),np.log(-c4[j,1,:])) ax4[2,1].scatter(np.log(epsilonList),np.log(-c4[j,2,:])) ax4[3,1].scatter(np.log(epsilonList),np.log(-c4[j,3,:])) # Only t2-model ax5[1].scatter(np.log(epsilonList),np.log(-c2only[j,0,:])) # Only t2- and t4-models ax6[0,1].scatter(np.log(epsilonList),np.log(-c24only[j,0,:])) ax6[1,1].scatter(np.log(epsilonList),np.log(-c24only[j,1,:])) # plot best fit lines myN = Nlist[j] myFit = fitLines["t-model"][0,:] ax1[1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2-model"][0,:] ax2[0,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2-model"][1,:] ax2[1,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t3-model"][0,:] ax3[0,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t3-model"][1,:] ax3[1,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t3-model"][2,:] ax3[2,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t4-model"][0,:] ax4[0,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t4-model"][1,:] ax4[1,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t4-model"][2,:] ax4[2,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t4-model"][3,:] ax4[3,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2-model only"][0,:] ax5[1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2- and t4-models"][0,:] ax6[0,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) myFit = fitLines["t2- and t4-models"][1,:] ax6[1,1].plot(np.log(epsilonList),np.log(-myFit[0])+myFit[1]*np.log(myN)+myFit[2]*np.log(epsilonList)) # label all plots fig1.suptitle("t-model") ax1[0].set_title("log(a1) vs log(N)") ax1[0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax1[1].set_title("log(a1) vs log(epsilon)") ax1[1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig2.suptitle("Second Order Renormalization") ax2[0,0].set_title("log(a1) vs log(N)") ax2[1,0].set_title("log(a2) vs log(N)") ax2[0,0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax2[0,1].set_title("log(a1) vs log(epsilon)") ax2[1,1].set_title("log(a1) vs log(epsilon)") ax2[0,1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig3.suptitle("Third Order Renormalization") ax3[0,0].set_title("log(a1) vs log(N)") ax3[1,0].set_title("log(a2) vs log(N)") ax3[2,0].set_title("log(a3) vs log(N)") ax3[0,0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax3[0,1].set_title("log(a1) vs log(epsilon)") ax3[1,1].set_title("log(a2) vs log(epsilon)") ax3[2,1].set_title("log(a3) vs log(epsilon)") ax3[0,1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig4.suptitle("Fourth Order Renormalization") ax4[0,0].set_title("log(a1) vs log(N)") ax4[1,0].set_title("log(a2) vs log(N)") ax4[2,0].set_title("log(a3) vs log(N)") ax4[3,0].set_title("log(a4) vs log(N)") ax4[0,0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax4[0,1].set_title("log(a1) vs log(epsilon)") ax4[1,1].set_title("log(a2) vs log(epsilon)") ax4[2,1].set_title("log(a3) vs log(epsilon)") ax4[3,1].set_title("log(a4) vs log(epsilon)") ax4[0,1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig5.suptitle("Only t2-Model Renormalization") ax5[0].set_title("log(a2) vs log(N)") ax5[0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax5[1].set_title("log(a2) vs log(epsilon)") ax5[1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() fig6.suptitle("Second and Fourth Order Renormalization") ax6[0,0].set_title("log(a2) vs log(N)") ax6[1,0].set_title("log(a4) vs log(N)") ax6[0,0].legend(["epsilon = "+str(round(epsilonList[i]),2) for i in range(len(epsilonList))],prop = {"size":5}) ax6[0,1].set_title("log(a2) vs log(epsilon)") ax6[1,1].set_title("log(a4) vs log(epsilon)") ax6[0,1].legend(["N = "+str(Nlist[i]) for i in range(len(Nlist))],prop = {"size":5}) plt.tight_layout() return coefficients,fitLines def epsilonNscalingLaw(coeffArray,Nlist,epsilonList): numEps = len(epsilonList) numN = len(Nlist) epsilonTile = np.tile(epsilonList,(numN,1)) Ntile = np.transpose(np.tile(Nlist,(numEps,1))) LSMatrix = (np.array([[numEps*numN,np.sum(np.log(Ntile)),np.sum(np.log(epsilonTile))], [np.sum(np.log(Ntile)),np.sum(np.log(Ntile)**2),np.sum(np.log(Ntile)*np.log(epsilonTile))], [np.sum(np.log(epsilonTile)),np.sum(np.log(Ntile)*np.log(epsilonTile)),np.sum(np.log(epsilonTile)**2)]]) ) LSb = np.array([np.sum(np.log(np.abs(coeffArray))),np.sum(np.log(np.abs(coeffArray))*np.log(Ntile)),np.sum(np.log(np.abs(coeffArray))*np.log(epsilonTile))]) sol = np.linalg.solve(LSMatrix,LSb) sol[0] = -np.exp(sol[0]) return sol def findError(compareList,exact,t): """ Finds the two norm of the error between a list of ROMs and an exact solution. Parameters ---------- compareList : List of Numpy arrays of size (N,T) Set of state vector evolutions to find errors from exact : Numpy array of size (N,T) Exact solution for the same timesteps t : Numpy array (T,) Timesteps associated with simulations (must all be the same) Returns ------- errList : List of Numpy arrays of size (T,1) Arrays with the two-norm of the error at all timesteps for each ROM """ # find the ROM size N = compareList[0].shape[0] # generate real space solutions realSols = [makeRealSpace(x,N) for x in compareList] exactSol = makeRealSpace(exact,N) # compute two norm of error at all times errList =[np.sum((i - exactSol)**2,0) for i in realSols] return errList def renormalizeRobust(fullM, endtime, Nlist, Mlist, epsilon, alpha, tau, timesteps, IC = np.sin, plots = False): """ Finds renormalization coefficients based on a single simulation. If the simulation doesn't yet exist, it creates it Parameters ---------- fullM : int Size of full simulation to base fits on endtime : int Endtime of full simulation Nlist : list of ints List of resolutions for which to find coefficients Mlist : list of ints List of intermediary "full" simulations to use for ROMs epsilon : float size of linear term (stiffness) alpha : float degree of nonlinearity in KdV tau : float time decay modifier timesteps : Numpy array specific timesteps for which to save solution IC : function handle initial condition of simulation (default np.sin) plots : boolean Indicates whether to generate plots (default: False) Returns ------- coeeffsArray1 : Numpy array (length(Nlist),1) Renormalization coefficients for t-model only coeffsArray2 : Numpy array (length(Nlist),2) Renormalization coefficients for t-model and t2-model only coeffsArray3 : Numpy array (length(Nlist),3) Renormalization coefficients for t1-t3-models coeffsArray4 : Numpy array (length(Nlist),4) Renormalization coefficients for t1-t4-models coeffsArray2only : Numpy array (length(Nlist),1) Renormalization coefficients for t2-model only coeffsArray24only : Numpy array (length(Nlist),2) Renormalization coefficients for t2-model and t4-model only fitLines : Dict Contains scaling law fits for each ROM coefficients of form c = -b * N^a Terms given are a, b, and r (correlation coefficient of fit) """ # Check if full simulation has already been constructed # if so, load it, if not, generate it try: uFull = np.load("u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__+".npy") tFull = np.load("t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__+".npy") except: fullParams = { 'N': fullM, 'M': int(3/2*fullM), 'alpha': 1, 'epsilon': epsilon, 'tau': 1, 'coeffs': None, 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } uSimFull = runSim(fullParams) uFull = uSimFull.y tFull = uSimFull.t np.save( "u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__,uFull) np.save( "t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__,tFull) # recover number of timesteps numSteps = tFull.shape[0] # initialize output arrays coeffsArray1 = np.zeros((Nlist.shape[0],numSteps - 30,1)) coeffsArray2 = np.zeros((Nlist.shape[0],numSteps - 30,2)) coeffsArray3 = np.zeros((Nlist.shape[0],numSteps - 30,3)) coeffsArray4 = np.zeros((Nlist.shape[0],numSteps - 30,4)) coeffsArray2only = np.zeros((Nlist.shape[0],numSteps - 30,1)) coeffsArray24only = np.zeros((Nlist.shape[0],numSteps - 30,2)) # loop through all resolutions for j in np.arange(0,Nlist.shape[0]): # Find number of positive terms in ROM, in intermediate calculations, and wavenumber array N = Nlist[j] M = Mlist[j] k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # Gather first derivative data for fitting purposes exactEnergy = np.zeros((N,numSteps)) R0Energy = np.zeros((N,numSteps)) R1Energy = np.zeros((N,numSteps)) R2Energy = np.zeros((N,numSteps)) R3Energy = np.zeros((N,numSteps)) R4Energy = np.zeros((N,numSteps)) # plug exact solution into exact RHS and all ROM terms and find energy contribution of each for i in np.arange(0,numSteps): # exact RHS exactRHS,dummyU = markovKdV(uFull[:,i],int(fullM*3/2),alpha) exactEnergy[:,i] = np.real(exactRHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(exactRHS[0:N])*uFull[0:N,i]) # Markov RHS nonlin0,u_full = markovKdV(uFull[0:N,i],M,alpha) R0RHS = nonlin0 R0Energy[:,i] = np.real(R0RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R0RHS[0:N])*uFull[0:N,i]) # First order RHS term F_modes = np.concatenate([np.arange(0,N),np.arange(2*N-1,M+N+2),np.arange(2*M-N+1,2*M)]) G_modes = np.arange(N,2*M-N+1) nonlin1,uuStar = tModelKdV(u_full,nonlin0,alpha,F_modes) R1RHS = nonlin1*tFull[i]**(1-tau) R1Energy[:,i] = np.real(R1RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R1RHS[0:N])*uFull[0:N,i]) # Second order RHS term nonlin2,uk3,uu,A,AStar,B,BStar,C,CStar,D,DStar = t2ModelKdV(u_full,nonlin0,uuStar,alpha,F_modes,G_modes,k,epsilon) R2RHS = nonlin2*tFull[i]**(2*(1-tau)) R2Energy[:,i] = np.real(R2RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R2RHS[0:N])*uFull[0:N,i]) # Third order RHS term nonlin3,uk6,E,EStar,F,FStar = t3ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,A,AStar,B,BStar,C,CStar,DStar) R3RHS = nonlin3*tFull[i]**(3*(1-tau)) R3Energy[:,i] = np.real(R3RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R3RHS[0:N])*uFull[0:N,i]) # Fourth order RHS term nonlin4 = t4ModelKdV(alpha,F_modes,G_modes,k,epsilon,u_full,uu,uuStar,uk3,uk6,A,AStar,B,BStar,C,CStar,D,DStar,E,EStar,F,FStar) R4RHS = nonlin4*tFull[i]**(4*(1-tau)) R4Energy[:,i] = np.real(R4RHS[0:N]*np.conj(uFull[0:N,i]) + np.conj(R4RHS[0:N])*uFull[0:N,i]) ################################################## # Use least-squares fit to identify coefficients # ################################################## for i in np.arange(30,numSteps): exactEnergySnip = exactEnergy[:,0:i] R0EnergySnip = R0Energy[:,0:i] R1EnergySnip = R1Energy[:,0:i] R2EnergySnip = R2Energy[:,0:i] R3EnergySnip = R3Energy[:,0:i] R4EnergySnip = R4Energy[:,0:i] # t-model coefficient coeffsArray1[j,i-30,:] = np.sum((exactEnergySnip - R0EnergySnip)*R1EnergySnip)/np.sum(R1EnergySnip*R1EnergySnip) # t2-model coefficient LSMatrix = (np.array([[np.sum(R1EnergySnip*R1EnergySnip),np.sum(R1EnergySnip*R2EnergySnip)], [np.sum(R2EnergySnip*R1EnergySnip),np.sum(R2EnergySnip*R2EnergySnip)]])) LSb = (np.array([np.sum(R1EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray2[j,i-30,:] = np.linalg.solve(LSMatrix,LSb) # t3-model coefficient LSMatrix = (np.array([[np.sum(R1EnergySnip*R1EnergySnip),np.sum(R1EnergySnip*R2EnergySnip),np.sum(R1EnergySnip*R3EnergySnip)], [np.sum(R2EnergySnip*R1EnergySnip),np.sum(R2EnergySnip*R2EnergySnip),np.sum(R2EnergySnip*R3EnergySnip)], [np.sum(R3EnergySnip*R1EnergySnip),np.sum(R3EnergySnip*R2EnergySnip),np.sum(R3EnergySnip*R3EnergySnip)]])) LSb = (np.array([np.sum(R1EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R3EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray3[j,i-30,:] = np.linalg.solve(LSMatrix,LSb) # t4-model coefficient LSMatrix = (np.array([[np.sum(R1EnergySnip*R1EnergySnip),np.sum(R1EnergySnip*R2EnergySnip),np.sum(R1EnergySnip*R3EnergySnip),np.sum(R1EnergySnip*R4EnergySnip)], [np.sum(R2EnergySnip*R1EnergySnip),np.sum(R2EnergySnip*R2EnergySnip),np.sum(R2EnergySnip*R3EnergySnip),np.sum(R2EnergySnip*R4EnergySnip)], [np.sum(R3EnergySnip*R1EnergySnip),np.sum(R3EnergySnip*R2EnergySnip),np.sum(R3EnergySnip*R3EnergySnip),np.sum(R3EnergySnip*R4EnergySnip)], [np.sum(R4EnergySnip*R1EnergySnip),np.sum(R4EnergySnip*R2EnergySnip),np.sum(R4EnergySnip*R3EnergySnip),np.sum(R4EnergySnip*R4EnergySnip)]])) LSb = (np.array([np.sum(R1EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R3EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R4EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray4[j,i-30,:] = np.linalg.solve(LSMatrix,LSb) # t2-model with *no* t-model coeffsArray2only[j,i-30,:] = np.sum((exactEnergySnip - R0EnergySnip)*R2EnergySnip)/np.sum(R2EnergySnip*R2EnergySnip) # t2-model and t4-model with *no* t-model or t3-model LSMatrix = (np.array([[np.sum(R2EnergySnip*R2EnergySnip),np.sum(R2EnergySnip*R4EnergySnip)], [np.sum(R4EnergySnip*R2EnergySnip),np.sum(R4EnergySnip*R4EnergySnip)]])) LSb = (np.array([np.sum(R2EnergySnip*(exactEnergySnip-R0EnergySnip)),np.sum(R4EnergySnip*(exactEnergySnip-R0EnergySnip))])) coeffsArray24only[j,i-30,:] = np.linalg.solve(LSMatrix,LSb) for ind in np.arange(Nlist.shape[0]): fig1,ax1 = plt.subplots(2,2) fig1.suptitle("N = "+str(Nlist[ind])) ax1[0,0].plot(timesteps[30:],coeffsArray1[ind,:,0],color = "blue") ax1[0,0].plot(timesteps[30:],coeffsArray2[ind,:,0],color = "red") ax1[0,0].plot(timesteps[30:],coeffsArray3[ind,:,0],color = "green") ax1[0,0].plot(timesteps[30:],coeffsArray4[ind,:,0],color = "black") ax1[0,0].set_title("t-model") ax1[0,1].plot([],[],color = "blue") ax1[0,1].plot(timesteps[30:],coeffsArray2[ind,:,1], color = "red") ax1[0,1].plot(timesteps[30:],coeffsArray3[ind,:,1], color = "green") ax1[0,1].plot(timesteps[30:],coeffsArray4[ind,:,1], color = "black") ax1[0,1].plot(timesteps[30:],coeffsArray2only[ind,:,0],color = "cyan") ax1[0,1].plot(timesteps[30:],coeffsArray24only[ind,:,0], color = "magenta") ax1[0,1].set_title("t2-model") ax1[0,1].legend(["First order","Second order","Third order","Fourth order","Only t2","t2 and t4"],prop = {"size":5}) ax1[1,0].plot(timesteps[30:],coeffsArray3[ind,:,2], color = "green") ax1[1,0].plot(timesteps[30:],coeffsArray4[ind,:,2],color = "black") ax1[1,0].set_title("t3-model") ax1[1,1].plot(timesteps[30:],coeffsArray4[ind,:,3], color = "black") ax1[1,1].plot(timesteps[30:],coeffsArray24only[ind,:,1], color = "magenta") ax1[1,1].set_title("t4-model") plt.tight_layout() return coeffsArray1,coeffsArray2,coeffsArray3,coeffsArray4,coeffsArray2only,coeffsArray24only def renormalizeWindow(fullM, endtime, width, Nlist, Mlist, epsilon, alpha, tau, timesteps, IC = np.sin, plots = False): """ Finds renormalization coefficients using sliding window least squares. Parameters ---------- fullM : int Size of full simulation to base fits on endtime : int Endtime of full simulation width : float Size of sliding window to use in fitting Nlist : list of ints List of resolutions for which to find coefficients Mlist : list of ints List of intermediary "full" simulations to use for ROMs epsilon : float size of linear term (stiffness) alpha : float degree of nonlinearity in KdV tau : float time decay modifier timesteps : Numpy array specific timesteps for which to save solution IC : function handle initial condition of simulation (default np.sin) plots : boolean Indicates whether to generate plots (default: False) Returns ------- coeeffsArray1 : Numpy array (length(Nlist),1) Renormalization coefficients for t-model only coeffsArray2 : Numpy array (length(Nlist),2) Renormalization coefficients for t-model and t2-model only coeffsArray3 : Numpy array (length(Nlist),3) Renormalization coefficients for t1-t3-models coeffsArray4 : Numpy array (length(Nlist),4) Renormalization coefficients for t1-t4-models coeffsArray2only : Numpy array (length(Nlist),1) Renormalization coefficients for t2-model only coeffsArray24only : Numpy array (length(Nlist),2) Renormalization coefficients for t2-model and t4-model only fitLines : Dict Contains scaling law fits for each ROM coefficients of form c = -b * N^a Terms given are a, b, and r (correlation coefficient of fit) """ # Check if full simulation has already been constructed # if so, load it, if not, generate it try: uFull = np.load("u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__+".npy") tFull = np.load("t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__+".npy") except: fullParams = { 'N': fullM, 'M': int(3/2*fullM), 'alpha': 1, 'epsilon': epsilon, 'tau': 1, 'coeffs': None, 'IC': IC, 'endtime': endtime, 'timesteps': timesteps } uSimFull = runSim(fullParams) uFull = uSimFull.y tFull = uSimFull.t np.save( "u" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__,uFull) np.save( "t" + str(fullM) + "t" + str(endtime)+"e"+str(round(epsilon,2)).replace('.','p')+IC.__name__,tFull) # recover number of timesteps numSteps = tFull.shape[0] widthSteps = round(width/(tFull[1]-tFull[0])) # initialize output arrays coeffsArray1 = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,1)) coeffsArray2 = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,2)) coeffsArray3 = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,3)) coeffsArray4 = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,4)) coeffsArray2only = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,1)) coeffsArray24only = np.zeros((Nlist.shape[0],numSteps - widthSteps+1,2)) exact1 = np.zeros((Nlist.shape[0],1)) exact2 = np.zeros((Nlist.shape[0],2)) exact3 = np.zeros((Nlist.shape[0],3)) exact4 = np.zeros((Nlist.shape[0],4)) exact2o = np.zeros((Nlist.shape[0],1)) exact24o = np.zeros((Nlist.shape[0],2)) # loop through all resolutions for j in np.arange(0,Nlist.shape[0]): # Find number of positive terms in ROM, in intermediate calculations, and wavenumber array N = Nlist[j] M = Mlist[j] k = np.concatenate([np.arange(0,M),np.arange(-M,0)]) # Gather first derivative data for fitting purposes exactEnergy = np.zeros((N,numSteps)) R0Energy =
np.zeros((N,numSteps))
numpy.zeros
# test_arnoldi_sampling.py import unittest import numpy as np import chaospy as cp from pystatreduce.stochastic_collocation import StochasticCollocation from pystatreduce.quantity_of_interest import QuantityOfInterest from pystatreduce.stochastic_arnoldi.arnoldi_sample import ArnoldiSampling import pystatreduce.examples as examples class ArnoldiSamplingTest(unittest.TestCase): def test_modified_GramSchmidt_fullRank(self): # Generate a random set of vectors and use modGramSchmidt to # orthogonalize them systemsize = 10 # Initialize ArnoldiSampling object alpha = 1.0 num_sample = 4 arnoldi = ArnoldiSampling(alpha, num_sample) # Create arrays for modified_GramSchmidt Z = np.random.rand(systemsize, num_sample) H = np.zeros([num_sample, num_sample-1]) # Populate Z for i in range(-1, num_sample-1): arnoldi.modified_GramSchmidt(i, H, Z) # Check that the vectors are unit normal self.assertAlmostEqual(np.linalg.norm(Z[:,i+1]), 1, places=14) # Check that the vectors are orthogonal for i in range(0, num_sample): for j in range(i+1, num_sample): self.assertAlmostEqual(np.dot(Z[:,i], Z[:,j]), 0, places=14) def test_modified_GramSchmidt_RankDeficient(self): # Generate a random set of vectors, make one of them a linear combination # of the others, and use modGramSchmidt to orthogonalize them systemsize = 10 # Initialize ArnoldiSampling object alpha = 1.0 num_sample = 4 arnoldi = ArnoldiSampling(alpha, num_sample) # Create arrays for modified_GramSchmidt Z = np.random.rand(systemsize, num_sample) Z[:,num_sample-1] = Z[:,0:num_sample-1].dot(np.random.rand(num_sample-1)) H = np.zeros([num_sample, num_sample-1]) for i in range(-1, num_sample-2): arnoldi.modified_GramSchmidt(i, H, Z) # Check that the vectors are unit normal self.assertAlmostEqual(np.linalg.norm(Z[:,i+1]), 1, places=14) # calling now should produce lin_depend flag lin_depend = arnoldi.modified_GramSchmidt(num_sample-2, H, Z) self.assertTrue(lin_depend) def test_arnoldiSample_complete(self): # Compute all of the eigenmodes of an isoprobabilistic Hadamard # quadratic system using Arnoldi sampling and verify against the exact # computation systemsize = 16 eigen_decayrate = 2.0 # Create Hadmard Quadratic object QoI = examples.HadamardQuadratic(systemsize, eigen_decayrate) # Initialize chaospy distribution std_dev = np.random.rand(QoI.systemsize) sqrt_Sigma = np.diag(std_dev) mu = np.random.rand(QoI.systemsize) jdist = cp.MvNormal(mu, sqrt_Sigma) # Estimate the eigenmodes of the Hessenberg matrix using Arnoldi perturbation_size = 1.e-6 num_sample = QoI.systemsize+1 arnoldi = ArnoldiSampling(perturbation_size, num_sample) eigenvals = np.zeros(num_sample-1) eigenvecs =
np.zeros([QoI.systemsize, num_sample-1])
numpy.zeros
""" SEG-Y geometry. """ import os from itertools import product import numpy as np import pandas as pd import h5pickle as h5py import segyio import cv2 from .base import SeismicGeometry from ..utils import find_min_max, lru_cache, SafeIO from ...batchflow import Notifier class SeismicGeometrySEGY(SeismicGeometry): """ Class to infer information about SEG-Y cubes and provide convenient methods of working with them. A wrapper around `segyio` to provide higher-level API. In order to initialize instance, one must supply `path`, `headers` and `index`: - `path` is a location of SEG-Y file - `headers` is a sequence of trace headers to infer from the file - `index_headers` is a subset of `headers` that is used as trace (unique) identifier: for example, `INLINE_3D` and `CROSSLINE_3D` has a one-to-one correspondance with trace numbers. Another example is `FieldRecord` and `TraceNumber`. Default values of `headers` and `index_headers` are ones for post-stack seismic (with correctly filled `INLINE_3D` and `CROSSLINE_3D` headers), so that post-stack cube can be loaded by providing path only. Each instance is basically built around `dataframe` attribute, which describes mapping from indexing headers to trace numbers. It is used to, for example, get all trace indices from a desired `FieldRecord`. `set_index` method can be called to change indexing headers of the dataframe. One can add stats to the instance by calling `collect_stats` method, that makes a full pass through the cube in order to analyze distribution of amplitudes. It also collects a number of trace examples into `trace_container` attribute, that can be used for later evaluation of various statistics. """ #pylint: disable=attribute-defined-outside-init, too-many-instance-attributes, redefined-builtin def __init__(self, path, headers=None, index_headers=None, **kwargs): self.structured = False self.quantized = False self.dataframe = None self.segyfile = None self.headers = headers or self.HEADERS_POST_FULL self.index_headers = index_headers or self.INDEX_POST super().__init__(path, **kwargs) def set_index(self, index_headers, sortby=None): """ Change current index to a subset of loaded headers. """ self.dataframe.reset_index(inplace=True) if sortby: self.dataframe.sort_values(index_headers, inplace=True, kind='mergesort')# the only stable sorting algorithm self.dataframe.set_index(index_headers, inplace=True) self.index_headers = index_headers self.add_attributes() # Methods of inferring dataframe and amplitude stats def process(self, collect_stats=True, recollect=False, **kwargs): """ Create dataframe based on `segy` file headers. """ # Note that all the `segyio` structure inference is disabled self.segyfile = SafeIO(self.path, opener=segyio.open, mode='r', strict=False, ignore_geometry=True) self.segyfile.mmap() self.depth = len(self.segyfile.trace[0]) self.delay = self.segyfile.header[0].get(segyio.TraceField.DelayRecordingTime) self.sample_rate = segyio.dt(self.segyfile) / 1000 # Load all the headers dataframe = {} for column in self.headers: dataframe[column] = self.segyfile.attributes(getattr(segyio.TraceField, column))[slice(None)] dataframe = pd.DataFrame(dataframe) dataframe.reset_index(inplace=True) dataframe.rename(columns={'index': 'trace_index'}, inplace=True) self.dataframe = dataframe.set_index(self.index_headers) self.add_attributes() # Collect stats, if needed and not collected previously if os.path.exists(self.path_meta) and not recollect: self.load_meta() self.has_stats = True elif collect_stats: self.collect_stats(**kwargs) # Create a matrix with ones at fully-zero traces if self.index_headers == self.INDEX_POST and not hasattr(self, 'zero_traces'): try: size = self.depth // 10 slc = np.stack([self[:, :, i * size] for i in range(1, 10)], axis=0) self.zero_traces = np.zeros(self.lens, dtype=np.int32) self.zero_traces[np.std(slc, axis=0) == 0] = 1 except (ValueError, AttributeError): # can't reshape pass # Store additional segy info self.segy_path = self.path self.segy_text = [self.segyfile.text[i] for i in range(1 + self.segyfile.ext_headers)] # Computed from CDP_X/CDP_Y information try: self.rotation_matrix = self.compute_rotation_matrix() self.area = self.compute_area() except (ValueError, KeyError): # single line SEG-Y self.rotation_matrix = None self.area = -1. def add_attributes(self): """ Infer info about curent index from `dataframe` attribute. """ self.index_len = len(self.index_headers) self._zero_trace = np.zeros(self.depth) # Unique values in each of the indexing column self.unsorted_uniques = [np.unique(self.dataframe.index.get_level_values(i).values) for i in range(self.index_len)] self.uniques = [np.sort(item) for item in self.unsorted_uniques] self.uniques_inversed = [{v: j for j, v in enumerate(self.uniques[i])} for i in range(self.index_len)] self.byte_no = [getattr(segyio.TraceField, h) for h in self.index_headers] self.offsets = [np.min(item) for item in self.uniques] self.lens = [len(item) for item in self.uniques] self.ranges = [(np.min(item), np.max(item)) for item in self.uniques] self.cube_shape = np.asarray([*self.lens, self.depth]) def _get_store_key(self, traceseqno): """ get trace lateral coordinates from header """ header = self.segyfile.header[traceseqno] # i -> id in a dataframe keys = [header.get(field) for field in self.byte_no] store_key = tuple(self.uniques_inversed[j][item] for j, item in enumerate(keys)) return store_key def collect_stats(self, spatial=True, bins=25, num_keep=10000, pbar=True, **kwargs): """ Pass through file data to collect stats: - min/max values. - a number of quantiles of values in the cube. - certain amount of traces are stored in a `trace_container` attribute. If `spatial` is True, makes an additional pass through the cube to obtain following: - min/max/mean/std for every trace - `min_matrix`, `max_matrix` and so on. - histogram of values for each trace: - `hist_matrix`. - bins for histogram creation: - `bins`. Parameters ---------- spatial : bool Whether to collect additional stats. bins : int or str Number of bins or name of automatic algorithm of defining number of bins. num_keep : int Number of traces to store. """ #pylint: disable=not-an-iterable _ = kwargs num_traces = len(self.segyfile.header) num_keep = min(num_keep, num_traces // 10) or 1 frequency = num_traces // num_keep # Get min/max values, store some of the traces trace_container = [] value_min, value_max = np.inf, -np.inf min_matrix, max_matrix = np.full(self.lens, np.nan), np.full(self.lens, np.nan) for i in Notifier(pbar, desc='Finding min/max')(range(num_traces)): trace = self.segyfile.trace[i] store_key = self._get_store_key(i) trace_min, trace_max = find_min_max(trace) min_matrix[store_key] = trace_min max_matrix[store_key] = trace_max if i % frequency == 0 and trace_min != trace_max: trace_container.extend(trace.tolist()) #TODO: add dtype for storing # Store everything into instance self.min_matrix, self.max_matrix = min_matrix, max_matrix self.zero_traces = (min_matrix == max_matrix).astype(np.int) self.zero_traces[np.isnan(min_matrix)] = 1 value_min = np.nanmin(min_matrix) value_max = np.nanmax(max_matrix) # Collect more spatial stats: min, max, mean, std, histograms matrices if spatial: # Make bins bins = np.histogram_bin_edges(None, bins, range=(value_min, value_max)).astype(np.float) self.bins = bins # Create containers hist_matrix = np.full((*self.lens, len(bins)-1), np.nan) # Iterate over traces for i in Notifier(pbar, desc=f'Collecting stats for {self.displayed_name}')(range(num_traces)): trace = self.segyfile.trace[i] store_key = self._get_store_key(i) # For each trace, we store an entire histogram of amplitudes val_min, val_max = find_min_max(trace) if val_min != val_max: histogram = np.histogram(trace, bins=bins)[0] hist_matrix[store_key] = histogram # Restore stats from histogram midpoints = (bins[1:] + bins[:-1]) / 2 probs = hist_matrix / np.sum(hist_matrix, axis=-1, keepdims=True) mean_matrix = np.sum(probs * midpoints, axis=-1) std_matrix = np.sqrt(np.sum((np.broadcast_to(midpoints, (*mean_matrix.shape, len(midpoints))) - \ mean_matrix.reshape(*mean_matrix.shape, 1))**2 * probs, axis=-1)) # Store everything into instance self.mean_matrix, self.std_matrix = mean_matrix, std_matrix self.hist_matrix = hist_matrix self.trace_container = np.array(trace_container) self.v_uniques = len(np.unique(trace_container)) self.v_min, self.v_max = value_min, value_max self.v_mean, self.v_std = np.mean(trace_container), np.std(trace_container) self.v_q001, self.v_q01, self.v_q05 = np.quantile(trace_container, [0.001, 0.01, 0.05]) self.v_q999, self.v_q99, self.v_q95 = np.quantile(trace_container, [0.999, 0.99, 0.95]) self.has_stats = True self.store_meta() # Compute stats from CDP/LINES correspondence def compute_rotation_matrix(self): """ Compute transform from INLINE/CROSSLINE coordinates to CDP system. """ ix_points = [] cdp_points = [] for _ in range(3): idx = np.random.randint(len(self.dataframe)) trace = self.segyfile.header[idx] # INLINE_3D -> CDP_X, CROSSLINE_3D -> CDP_Y ix = (trace[segyio.TraceField.INLINE_3D], trace[segyio.TraceField.CROSSLINE_3D]) cdp = (trace[segyio.TraceField.CDP_X], trace[segyio.TraceField.CDP_Y]) ix_points.append(ix) cdp_points.append(cdp) rotation_matrix = cv2.getAffineTransform(np.float32(ix_points), np.float32(cdp_points)) return rotation_matrix def compute_area(self, correct=True, shift=50): """ Compute approximate area of the cube in square kilometres. Parameters ---------- correct : bool Whether to correct computed area for zero traces. """ i = self.ilines[self.ilines_len // 2] x = self.xlines[self.xlines_len // 2] # Central trace coordinates idx = self.dataframe['trace_index'][(i, x)] trace = self.segyfile.header[idx] cdp_x, cdp_y = (trace[segyio.TraceField.CDP_X], trace[segyio.TraceField.CDP_Y]) # Two shifted traces idx_dx = self.dataframe['trace_index'][(i, x + shift)] trace_dx = self.segyfile.header[idx_dx] cdp_x_delta = abs(trace_dx[segyio.TraceField.CDP_X] - cdp_x) idx_dy = self.dataframe['trace_index'][(i + shift, x)] trace_dy = self.segyfile.header[idx_dy] cdp_y_delta = abs(trace_dy[segyio.TraceField.CDP_Y] - cdp_y) # Traces if CDP_X/CDP_Y coordinate system is rotated on 90 degrees with respect to ILINES/CROSSLINES if cdp_x_delta == 0 and cdp_y_delta == 0: idx_dx = self.dataframe['trace_index'][(i + shift, x)] trace_dx = self.segyfile.header[idx_dx] cdp_x_delta = abs(trace_dx[segyio.TraceField.CDP_X] - cdp_x) idx_dy = self.dataframe['trace_index'][(i, x + shift)] trace_dy = self.segyfile.header[idx_dy] cdp_y_delta = abs(trace_dy[segyio.TraceField.CDP_Y] - cdp_y) cdp_x_delta /= shift cdp_y_delta /= shift ilines_km = cdp_y_delta * self.ilines_len / 1000 xlines_km = cdp_x_delta * self.xlines_len / 1000 area = ilines_km * xlines_km if correct and hasattr(self, 'zero_traces'): area -= (cdp_x_delta / 1000) * (cdp_y_delta / 1000) * np.sum(self.zero_traces) return round(area, 2) # Methods to load actual data from SEG-Y # 1D def load_trace(self, index): """ Load individual trace from segyfile. If passed `np.nan`, returns trace of zeros. """ # TODO: can be improved by creating buffer and writing directly to it if not np.isnan(index): return self.segyfile.trace.raw[int(index)] return self._zero_trace def load_traces(self, trace_indices): """ Stack multiple traces together. """ # TODO: can be improved by preallocating memory and passing it as a buffer to `load_trace` return np.stack([self.load_trace(idx) for idx in trace_indices]) # 2D @lru_cache(128, attributes='index_headers') def load_slide(self, loc=None, axis=0, start=None, end=None, step=1, stable=True): """ Create indices and load actual traces for one slide. If the current index is 1D, then slide is defined by `start`, `end`, `step`. If the current index is 2D, then slide is defined by `loc` and `axis`. Parameters ---------- loc : int Number of slide to load. axis : int Number of axis to load slide along. start, end, step : ints Parameters of slice loading for 1D index. stable : bool Whether or not to use the same sorting order as in the segyfile. """ if axis in [0, 1]: indices = self.make_slide_indices(loc=loc, start=start, end=end, step=step, axis=axis, stable=stable) slide = self.load_traces(indices) elif axis == 2: slide = self.segyfile.depth_slice[loc] if slide.shape[0] == np.prod(self.lens): slide = slide.reshape(self.lens) else: buffer = np.zeros_like(self.zero_traces, dtype=np.float32) buffer[self.zero_traces == 0] = slide slide = buffer return slide def make_slide_indices(self, loc=None, axis=0, start=None, end=None, step=1, stable=True, return_iterator=False): """ Choose appropriate version of index creation, depending on length of the current index. Parameters ---------- start, end, step : ints Parameters of slice loading for 1d index. stable : bool Whether or not to use the same sorting order as in the segyfile. return_iterator : bool Whether to also return the same iterator that is used to index current `dataframe`. Can be useful for subsequent loads from the same place in various instances. """ if self.index_len == 1: _ = loc, axis result = self.make_slide_indices_1d(start=start, end=end, step=step, stable=stable, return_iterator=return_iterator) elif self.index_len == 2: _ = start, end, step result = self.make_slide_indices_2d(loc=loc, axis=axis, stable=stable, return_iterator=return_iterator) elif self.index_len == 3: raise NotImplementedError('Yet to be done!') else: raise ValueError('Index lenght must be less than 4. ') return result def make_slide_indices_1d(self, start=None, end=None, step=1, stable=True, return_iterator=False): """ 1D version of index creation. """ start = start or self.offsets[0] end = end or self.uniques[0][-1] if stable: iterator = self.dataframe.index[(self.dataframe.index >= start) & (self.dataframe.index <= end)] iterator = iterator.values[::step] else: iterator = np.arange(start, end+1, step) indices = self.dataframe['trace_index'].reindex(iterator, fill_value=np.nan).values if return_iterator: return indices, iterator return indices def make_slide_indices_2d(self, loc, axis=0, stable=True, return_iterator=False): """ 2D version of index creation. """ other_axis = 1 - axis location = self.uniques[axis][loc] if stable: others = self.dataframe[self.dataframe.index.get_level_values(axis) == location] others = others.index.get_level_values(other_axis).values else: others = self.uniques[other_axis] iterator = list(zip([location] * len(others), others) if axis == 0 else zip(others, [location] * len(others))) indices = self.dataframe['trace_index'].reindex(iterator, fill_value=np.nan).values #TODO: keep only uniques, when needed, with `nan` filtering if stable: indices = np.unique(indices) if return_iterator: return indices, iterator return indices # 3D def _load_crop(self, locations): """ Load 3D crop from the cube. Parameters ---------- locations : sequence of slices List of desired slices to load: along the first index, the second, and depth. Example ------- If the current index is `INLINE_3D` and `CROSSLINE_3D`, then to load 5:110 ilines, 100:1105 crosslines, 0:700 depths, locations must be:: [slice(5, 110), slice(100, 1105), slice(0, 700)] """ shape = np.array([((slc.stop or stop) - (slc.start or 0)) for slc, stop in zip(locations, self.cube_shape)]) indices = self.make_crop_indices(locations) crop = self.load_traces(indices)[..., locations[-1]].reshape(shape) return crop def make_crop_indices(self, locations): """ Create indices for 3D crop loading. """ iterator = list(product(*[[self.uniques[idx][i] for i in range(locations[idx].start, locations[idx].stop)] for idx in range(2)])) indices = self.dataframe['trace_index'].reindex(iterator, fill_value=np.nan).values _, unique_ind =
np.unique(indices, return_index=True)
numpy.unique
import numpy as np import tensorflow as tf from collections import defaultdict class Greedy_Tracker(object): def __init__(self, cfg_tracker, cfg_train, tf_ops, tf_placeholders, session): self.network_type = cfg_tracker.network_type self.cls_thr = cfg_tracker.nn_gating_thr self.det_ratio_thr = cfg_tracker.det_ratio self.N_miss_max = cfg_tracker.N_miss_max self.img_height = cfg_tracker.IMAGE_HEIGHT self.img_width = cfg_tracker.IMAGE_WIDTH self.all_tracks = defaultdict(lambda: defaultdict(defaultdict)) self.track_num = 0 self.model_info = {} self.model_info['app_hidden_dim'] = cfg_train.APP_HIDDEN_DIM self.model_info['mot_hidden_dim'] = cfg_train.MOT_HIDDEN_DIM self.model_info['mot_input_dim'] = cfg_train.MOT_INPUT_DIM self.result = [] self.cfg_train = cfg_train self.cfg_tracker = cfg_tracker self.sess = session self.tf_ops = tf_ops self.tf_plh = tf_placeholders self.neg_mem_indices = self.precompute_neg_mem_indices() def precompute_neg_mem_indices(self): # get indices for online negative examples (i.e. other tracks in the scene) for each track # NOTE: need to be set again when the code is used for tracking more objects max_track_num = 200 max_det_num = 200 neg_mem_ind = np.zeros((max_track_num, max_det_num, max_track_num-1, 2)) for i in range(100): for j in range(100): xy_ind_tmp = np.zeros((max_track_num - 1, 2)) x_ind_tmp = np.arange(max_track_num, dtype=np.int32) xy_ind_tmp[:, 0] = x_ind_tmp[x_ind_tmp != i] xy_ind_tmp[:, 1] = j neg_mem_ind[i, j, :, :] = xy_ind_tmp return neg_mem_ind def build_neg_mem_indices(self, track_num, det_num): if track_num > 1: neg_mem_inds = self.neg_mem_indices[:track_num, :det_num, :(track_num-1), :] elif track_num == 1: neg_mem_inds = None else: raise NotImplementedError return neg_mem_inds def get_lstm_states(self, h_np, c_np, cur_detbb_num, is_track_state): h_np = np.reshape(h_np, (cur_detbb_num, cur_detbb_num, -1)) c_np = np.reshape(c_np, (cur_detbb_num, cur_detbb_num, -1)) if is_track_state == True: h_np = np.transpose(h_np, (1, 0, 2)) c_np = np.transpose(c_np, (1, 0, 2)) # loop can be commented out later to improve processing time # check lstm states h_np = np.reshape(h_np , (cur_detbb_num * cur_detbb_num, -1)) for kkk in range(1, cur_detbb_num): assert(np.array_equal(h_np[kkk*cur_detbb_num:(kkk+1)*cur_detbb_num, :], \ h_np[:cur_detbb_num, :])) h_np = h_np[:cur_detbb_num, :] # check lstm states c_np = np.reshape(c_np , (cur_detbb_num * cur_detbb_num, -1)) for kkk in range(1, cur_detbb_num): assert(np.array_equal(c_np[kkk*cur_detbb_num:(kkk+1)*cur_detbb_num, :], \ c_np[:cur_detbb_num, :])) c_np = c_np[:cur_detbb_num, :] return (h_np, c_np) def get_lstm_states_new(self, h_np, c_np, cur_detbb_num): h_np = np.reshape(h_np, (cur_detbb_num, -1)) c_np = np.reshape(c_np, (cur_detbb_num, -1)) h_np = h_np[:cur_detbb_num, :] c_np = c_np[:cur_detbb_num, :] return (h_np, c_np) def get_lstm_states_for_matched_tracks(self, matching, model_dim, h_np, c_np, trk_num, det_num): inds_sel1 = [] track_i_sel = [] # select lstm states for matched tracks if len(matching) > 0: h_np_tmp = np.zeros((len(matching), model_dim)) c_np_tmp = np.zeros((len(matching), 2 * model_dim)) h_np = np.reshape(h_np, (trk_num, det_num, -1)) c_np = np.reshape(c_np, (trk_num, det_num, -1)) for kkk in range(0, len(matching)): track_i = int(matching[kkk][0, 0]) detbb_i = int(matching[kkk][0, 1]) h_np_tmp[kkk, :] = h_np[track_i, detbb_i, :] c_np_tmp[kkk, :] = c_np[track_i, detbb_i, :] inds_sel1.append(detbb_i) track_i_sel.append(track_i) h_np = h_np_tmp c_np = c_np_tmp else: h_np = [] c_np = [] return (h_np, c_np, inds_sel1, track_i_sel) def precompute_app_features(self, imgs, bbs): cur_detbb_num = np.shape(imgs)[0] assert(cur_detbb_num == np.shape(bbs)[0]) feed_dict = { self.tf_plh['detbb_num']: cur_detbb_num, self.tf_plh['images']:imgs, self.tf_plh['is_training']: False, self.tf_plh['num_step_by_user']: 1, self.tf_plh['valid_app_data']: np.ones((cur_detbb_num, 1, 1), dtype=np.int32), self.tf_plh['indices_for_mapping']: np.reshape(np.arange(cur_detbb_num * 1, dtype=np.int32), (-1, 1)), self.tf_plh['image_batch_shape']: np.array([cur_detbb_num * 1, self.cfg_train.APP_LAYER_DIM]) } app_embed_np = self.sess.run(self.tf_ops['app_embed'], feed_dict=feed_dict) return app_embed_np def initialize_tracks( self, h, c, memory, bbs, bbs_norm, det_ids, frame, hidden_dim, is_dummy, network ): h = np.reshape(h, (-1, hidden_dim)) if network == 'app_blstm': assert(np.shape(memory)[0] == np.shape(h)[0]) assert(np.shape(memory)[0] == np.shape(c)[0]) assert(np.array_equal(h, c[:, hidden_dim:])) assert(np.shape(h)[0] == np.shape(c)[0]) if is_dummy == False: for i in range(0, np.shape(h)[0]): self.track_num += 1 # 1 x d self.all_tracks[self.track_num]['h_states'] = h[i, :] # 1 x d self.all_tracks[self.track_num]['c_states'] = c[i, :] self.all_tracks[self.track_num]['real_det_num'] = 1 self.all_tracks[self.track_num]['miss_det_num'] = 0 self.all_tracks[self.track_num]['last_miss_det_num'] = 0 self.all_tracks[self.track_num]['bb'] = bbs[det_ids[i], :] self.all_tracks[self.track_num]['bb_norm'] = bbs_norm[det_ids[i], :] self.all_tracks[self.track_num]['frame'] = frame self.all_tracks[self.track_num]['th'] = [self.cls_thr] if network == 'app_blstm': # 1 x 1 x d self.all_tracks[self.track_num]['mem'] = memory[i, :, :] self.result.append((frame, det_ids[i], 1.0, self.track_num)) elif is_dummy == True: ct = -1 for i in range(0, np.shape(memory)[0]): ct -= 1 # 1 x d self.all_tracks[ct]['h_states'] = h[i, :] # 1 x d self.all_tracks[ct]['c_states'] = c[i, :] self.all_tracks[ct]['real_det_num'] = 1 self.all_tracks[ct]['miss_det_num'] = 0 self.all_tracks[ct]['last_miss_det_num'] = 0 self.all_tracks[ct]['bb'] = bbs[det_ids[i], :] self.all_tracks[ct]['bb_norm'] = bbs_norm[det_ids[i], :] self.all_tracks[ct]['frame'] = frame self.all_tracks[ct]['th'] = [self.cls_thr] if network == 'app_blstm': # 1 x 1 x d self.all_tracks[ct]['mem'] = memory[i, :, :] else: raise NotImplementedError def delete_dummy_tracks(self, frame): for i in self.all_tracks.keys(): if i < 0: del self.all_tracks[i] for i in self.all_tracks.keys(): assert(i > 0) def update_tracks( self, h, c, memory, bbs, bbs_norm, track_ids, matching, matching_score, frame, hidden_dim, network, missdet_tracks ): h = np.reshape(h, (-1, hidden_dim)) if np.shape(c)[0] != 0: if network == 'app_blstm': assert((np.shape(memory)[0] == np.shape(h)[0])) assert((np.shape(memory)[0] == np.shape(c)[0])) assert(np.array_equal(h, c[:, hidden_dim:])) assert(len(matching) == len(matching_score)) track_ids_sel1 = [] for i in range(0, len(matching)): track_i = int(matching[i][0, 0]) detbb_i = int(matching[i][0, 1]) if network == 'app_blstm': self.all_tracks[track_ids[track_i]]['mem'] = memory[i, :, :] self.all_tracks[track_ids[track_i]]['h_states'] = h[i, :] self.all_tracks[track_ids[track_i]]['c_states'] = c[i, :] self.all_tracks[track_ids[track_i]]['real_det_num'] += 1 self.all_tracks[track_ids[track_i]]['last_miss_det_num'] = 0 self.all_tracks[track_ids[track_i]]['bb'] = bbs[detbb_i, :] self.all_tracks[track_ids[track_i]]['bb_norm'] = bbs_norm[detbb_i, :] self.all_tracks[track_ids[track_i]]['frame'] = frame self.all_tracks[track_ids[track_i]]['th'] = self.all_tracks[track_ids[track_i]]['th'] \ + [matching_score[i]] self.result.append((frame, detbb_i, 1.0, track_ids[track_i])) track_ids_sel1.append(track_ids[track_i]) # update non matched tracks with dummy detections track_ids_sel2 = np.setdiff1d(track_ids, track_ids_sel1) if network == 'mot_lstm' and len(track_ids_sel2) > 0: assert(np.array_equal(track_ids_sel2, missdet_tracks['track_ids'])) for i in range(0, len(track_ids_sel2)): # skip dummy track if track_ids_sel2[i] < 0: continue self.all_tracks[track_ids_sel2[i]]['miss_det_num'] += 1 self.all_tracks[track_ids_sel2[i]]['last_miss_det_num'] += 1 self.result.append((frame, None, None, track_ids_sel2[i])) if network == 'mot_lstm' and len(track_ids_sel2) > 0: self.all_tracks[track_ids_sel2[i]]['h_states'] = missdet_tracks['h_states'][i, :] self.all_tracks[track_ids_sel2[i]]['c_states'] = missdet_tracks['c_states'][i, :] assert(track_ids_sel2[i] == missdet_tracks['track_ids'][i]) def compute_iou(self, bb_p, bb_n): bb_px_min = bb_p[0] bb_py_min = bb_p[1] bb_pw = bb_p[2] bb_ph = bb_p[3] bb_px_max = bb_px_min + bb_pw bb_py_max = bb_py_min + bb_ph bb_nx_min = bb_n[0] bb_ny_min = bb_n[1] bb_nw = bb_n[2] bb_nh = bb_n[3] bb_nx_max = bb_nx_min + bb_nw bb_ny_max = bb_ny_min + bb_nh bb_p_area = (bb_px_max - bb_px_min)*(bb_py_max - bb_py_min) bb_n_area = (bb_nx_max - bb_nx_min)*(bb_ny_max - bb_ny_min) x1 = np.maximum(bb_px_min, bb_nx_min) y1 = np.maximum(bb_py_min, bb_ny_min) x2 = np.minimum(bb_px_max, bb_nx_max) y2 = np.minimum(bb_py_max, bb_ny_max) w = np.maximum(0.0, x2 - x1) h = np.maximum(0.0, y2 - y1) intersection = np.multiply(w, h) union = np.add(bb_p_area, bb_n_area) - intersection IoU = np.divide(intersection, union) return IoU def solve_greedy_matching(self, softmax, m_states, track_num, detbb_num, track_ids, bbs, frame): col1 = np.arange(track_num) col2 = np.arange(detbb_num) col1 = np.expand_dims(col1, axis=1) col2 = np.expand_dims(col2, axis=0) col1 = np.reshape(np.tile(col1, (1, detbb_num)), (-1, 1)) col2 = np.reshape(np.tile(col2, (track_num, 1)), (-1, 1)) track_detbb_pair_ind = np.concatenate((col1, col2), axis=1) assert(np.shape(track_detbb_pair_ind)[0] == track_num * detbb_num) motion_gating_mask = np.ones((track_num, detbb_num, 1)) if self.cfg_tracker.IS_NAIVE_GATING_ON == True: for i in range(0, track_num): bb_p = self.all_tracks[track_ids[i]]['bb'] bb_n = bbs if track_ids[i] < 0: motion_gating_mask[i, :, 0] = 0 else: fr_diff = (frame - self.all_tracks[track_ids[i]]['frame']) motion_gating_mask[i, :, 0] = self.naive_motion_gating(bb_p, bb_n, fr_diff) motion_gating_mask = np.reshape(motion_gating_mask, (track_num * detbb_num, 1)) # (N1 * N2) x 1 softmax_pos = softmax[:, 1] softmax_pos = np.reshape(softmax_pos, (-1, 1)) softmax_pos_org = softmax_pos softmax_pos = np.multiply(softmax_pos, motion_gating_mask) matching = [] matching_score = [] while True: max_p = np.amax(softmax_pos, axis=0) max_i = np.argmax(softmax_pos, axis=0) assert(softmax_pos[max_i] == max_p) assert(np.shape(softmax_pos)[0] == np.shape(track_detbb_pair_ind)[0]) if max_p > self.cls_thr: matching.append(track_detbb_pair_ind[max_i, :]) matching_score.append(softmax_pos_org[max_i]) del_ind1 = track_detbb_pair_ind[:, 1] == track_detbb_pair_ind[max_i, 1] del_ind2 = track_detbb_pair_ind[:, 0] == track_detbb_pair_ind[max_i, 0] del_ind = np.where(np.logical_or(del_ind1, del_ind2))[0] track_detbb_pair_ind_tmp = np.delete(track_detbb_pair_ind, del_ind, axis=0) softmax_pos = np.delete(softmax_pos, del_ind, axis=0) softmax_pos_org = np.delete(softmax_pos_org, del_ind, axis=0) assert(len(np.where(track_detbb_pair_ind_tmp[:, 1] == track_detbb_pair_ind[max_i, 1])[0]) == 0) assert(len(np.where(track_detbb_pair_ind_tmp[:, 0] == track_detbb_pair_ind[max_i, 0])[0]) == 0) track_detbb_pair_ind = track_detbb_pair_ind_tmp # out of the loop when there is no good match left else: break # out of the loop when all detections are taken if np.shape(track_detbb_pair_ind)[0] == 0: break return (matching, matching_score) def pick_imgs(self, imgs, imgs_inds): imgs_sel = np.zeros((len(imgs_inds), self.img_height, self.img_width, 3)) for i in range(0, len(imgs_inds)): imgs_sel[i, :, :, :] = imgs[imgs_inds[i], :, :, :] return imgs_sel def pick_dets(self, dets, dets_inds): dets_sel = np.zeros((len(dets_inds), self.model_info['mot_input_dim'])) for i in range(0, len(dets_inds)): dets_sel[i, :] = dets[dets_inds[i], :] return dets_sel def get_gating_result(self, x_diff, y_diff, w_diff, h_diff, gating_factor): # NOTE: These parameters are tuned for the MOT Challenge datasets. x_diff_th = 3.5 y_diff_th = 2.0 w_diff_th = 1.8 h_diff_th = 1.8 return np.logical_and(np.logical_and(x_diff < x_diff_th, y_diff < y_diff_th), np.logical_and(w_diff < w_diff_th, h_diff < h_diff_th)) def naive_motion_gating(self, bb_p, bb_n, gating_factor): bb_px = bb_p[0] bb_py = bb_p[1] bb_pw = bb_p[2] bb_ph = bb_p[3] bb_nx = bb_n[:, 0] bb_ny = bb_n[:, 1] bb_nw = bb_n[:, 2] bb_nh = bb_n[:, 3] x_diff = np.divide(np.abs(bb_px - bb_nx), bb_pw) y_diff = np.divide(np.abs(bb_py - bb_ny), bb_ph) w_diff = np.maximum(np.divide(bb_pw, bb_nw), np.divide(bb_nw, bb_pw)) h_diff = np.maximum(np.divide(bb_ph, bb_nh), np.divide(bb_nh, bb_ph)) return self.get_gating_result(x_diff, y_diff, w_diff, h_diff, gating_factor) def get_result(self): return self.result class Greedy_Tracker_APP_BLSTM(Greedy_Tracker): def __init__(self, cfg_tracker, cfg_train, tf_ops, tf_placeholders, session): super(Greedy_Tracker_APP_BLSTM, self).__init__(cfg_tracker, cfg_train, tf_ops, tf_placeholders, session) def run(self, bbs, bbs_norm, imgs, frame_num): # first frame if len(self.all_tracks.keys()) == 0 and imgs is not None: mem_np = self.initialize_track_mems(imgs, bbs) h_np, c_np, memory_np = mem_np cur_detbb_num = np.shape(imgs)[0] self.initialize_tracks( h_np, c_np, memory_np, bbs, bbs_norm, np.array(range(cur_detbb_num)), frame_num, self.model_info['app_hidden_dim'], is_dummy=False, network='app_blstm' ) elif len(self.all_tracks.keys()) != 0: bookkeeping = {} self.data_association(imgs, bbs, bbs_norm, frame_num, bookkeeping) self.update_existing_tracks(bbs, bbs_norm, frame_num, bookkeeping) self.start_new_tracks(imgs, bbs, bbs_norm, frame_num, bookkeeping) def initialize_track_mems(self, imgs, bbs): cur_detbb_num = np.shape(imgs)[0] assert(cur_detbb_num == np.shape(bbs)[0]) # cnn features (input to lstm) app_embed_np = self.precompute_app_features(imgs, bbs) # current lstm states c_np = np.zeros((cur_detbb_num, 2 * self.model_info['app_hidden_dim'])) track_mems = self.update_lstm_mems(app_embed_np, c_np, cur_detbb_num) h_np, c_np, memory_np = track_mems return (h_np, c_np, memory_np) def update_lstm_mems(self, app_embed_np, c_np, cur_detbb_num): feed_dict = { self.tf_plh['track_num']: cur_detbb_num, self.tf_plh['app_embed_plh']: app_embed_np, self.tf_plh['istate_app']: c_np, self.tf_plh['is_training']: False, self.tf_plh['num_step_by_user']: 1, self.tf_plh['frames_by_user']: np.array([1]), self.tf_plh['track_len']: np.ones(cur_detbb_num, dtype=np.int32), self.tf_plh['track_len_offset']: np.zeros(cur_detbb_num, dtype=np.int32), } tf_ops = [ self.tf_ops['h_app_states'], self.tf_ops['c_app_states'], self.tf_ops['h_app_track_memory'] ] # N2 x 1 x d h_np, c_np, memory_np = self.sess.run(tf_ops, feed_dict=feed_dict) return (h_np, c_np, memory_np) def data_association(self, imgs, bbs, bbs_norm, frame_num, bookkeeping): # 1. compute appearance features for new detections app_embed_np = [] if imgs is not None: app_embed_np = self.precompute_app_features(imgs, bbs) # 2. load exisiting tracks track_memory_sel, track_bb_sel, track_ids_sel = self.collect_track_memory() assert(np.shape(track_memory_sel)[0] == len(track_ids_sel)) # 3. solve matching between detections and tracks matching = [] matching_score = [] inds_sel1 = [] istates_sel = [] if imgs is not None and np.shape(track_memory_sel)[0] > 1: detbb_num = np.shape(imgs)[0] assert(detbb_num == np.shape(bbs)[0]) track_num = np.shape(track_memory_sel)[0] softmax_np, m_states_np = self.compute_softmax_score( bbs, track_bb_sel, imgs, app_embed_np, track_memory_sel, track_ids_sel, track_num, detbb_num ) matching, matching_score = self.solve_greedy_matching( softmax_np, m_states_np, track_num, detbb_num, track_ids_sel, bbs, frame_num ) inds_sel1, istates_sel = self.pick_imgs_and_istates( track_ids_sel, matching, self.model_info['app_hidden_dim'], ) bookkeeping['matching'] = matching bookkeeping['matching_score'] = matching_score bookkeeping['inds_sel1'] = inds_sel1 bookkeeping['istates_sel'] = istates_sel bookkeeping['track_ids_sel'] = track_ids_sel bookkeeping['app_embed_np'] = app_embed_np def collect_track_memory(self): all_ids = sorted(self.all_tracks.keys()) sel_ids = [] for i in range(0, len(all_ids)): total_num = self.all_tracks[all_ids[i]]['real_det_num'] + \ self.all_tracks[all_ids[i]]['miss_det_num'] if self.all_tracks[all_ids[i]]['real_det_num'] > 0: if (((float(self.all_tracks[all_ids[i]]['real_det_num']) / total_num) >= self.det_ratio_thr) and (self.all_tracks[all_ids[i]]['last_miss_det_num'] <= self.N_miss_max)): sel_ids.append(all_ids[i]) else: assert((float(self.all_tracks[all_ids[i]]['real_det_num']) / total_num) < 1.0) track_mem_sel = np.zeros((len(sel_ids), 1, self.model_info['app_hidden_dim'])) track_bb_sel = np.zeros((len(sel_ids), self.cfg_train.MOT_INPUT_DIM)) for i in range(0, len(sel_ids)): track_mem_sel[i, :, :] = self.all_tracks[sel_ids[i]]['mem'] track_bb_sel[i, :] = self.all_tracks[sel_ids[i]]['bb'][:self.cfg_train.MOT_INPUT_DIM] # track_bb_sel[i, :] = self.all_tracks[sel_ids[i]]['bb_norm'][:6] assert(np.shape(self.all_tracks[sel_ids[i]]['bb'])[0] == (self.cfg_train.MOT_INPUT_DIM + 1)) return (track_mem_sel, track_bb_sel, sel_ids) def compute_softmax_score(self, det_bbs, trk_bbs, imgs, app_embed, trk_memory_sel, trk_ids_sel, trk_num, det_num): indices = self.build_neg_mem_indices(trk_num, det_num) # istate_app serves as dummy variables here. # It does not effect the results here feed_dict = { self.tf_plh['detbb_num']: det_num, self.tf_plh['track_num']: trk_num, self.tf_plh['app_embed_plh']: app_embed, self.tf_plh['istate_app']: np.zeros((trk_num, 2 * self.model_info['app_hidden_dim'])), self.tf_plh['h_app_track_memory_plh']: trk_memory_sel, self.tf_plh['is_training']: False, self.tf_plh['num_step_by_user']: 1, self.tf_plh['frames_by_user']: np.array([0]), self.tf_plh['indices_by_user']: indices, self.tf_plh['track_len']: np.ones(np.shape(app_embed)[0], dtype=np.int32), self.tf_plh['track_len_offset']: np.zeros(np.shape(app_embed)[0], dtype=np.int32), self.tf_plh['valid_app_data']: np.ones((det_num, 1, 1), dtype=np.int32), self.tf_plh['indices_for_mapping']: np.reshape(np.arange(det_num * 1, dtype=np.int32), (-1, 1)), self.tf_plh['image_batch_shape']: np.array([det_num * 1, self.cfg_train.APP_LAYER_DIM]), self.tf_plh['det_bbox_org']: det_bbs[:, :self.cfg_train.MOT_INPUT_DIM], self.tf_plh['trk_bbox_org']: trk_bbs, self.tf_plh['app_frame_num']: np.zeros((trk_num, 1)), self.tf_plh['sel_indices']: np.ones((trk_num, det_num, 1)) } tf_ops = [ self.tf_ops['softmax_out'], self.tf_ops['m_states'] ] # (N2 * N1) x 2, (N2 * N1) x (2 * (d / feat_dim)) matrix softmax_np, m_states_np = self.sess.run(tf_ops, feed_dict=feed_dict) return softmax_np, m_states_np def pick_imgs_and_istates(self, track_ids, matching, hidden_dim): h_states_sel = np.zeros((len(matching), hidden_dim)) c_states_sel = np.zeros((len(matching), 2 * hidden_dim)) imgs_sel_inds = [] for i in range(0, len(matching)): track_i = int(matching[i][0, 0]) detbb_i = int(matching[i][0, 1]) h_states_sel[i, :] = self.all_tracks[track_ids[track_i]]['h_states'] c_states_sel[i, :] = self.all_tracks[track_ids[track_i]]['c_states'] imgs_sel_inds.append(detbb_i) return (imgs_sel_inds, c_states_sel) def update_existing_tracks(self, bbs, bbs_norm, frame_num, bookkeeping): # update tracks with selected detections assert(len(bookkeeping['matching']) == len(bookkeeping['inds_sel1'])) h_np = [] c_np = [] memory_np = [] if len(bookkeeping['inds_sel1']) > 0: track_num = np.shape(bookkeeping['istates_sel'])[0] app_embed_sel_np = bookkeeping['app_embed_np'][bookkeeping['inds_sel1'], :] track_mems = self.update_lstm_mems( app_embed_sel_np, bookkeeping['istates_sel'], track_num ) h_np, c_np, memory_np = track_mems self.update_tracks( h_np, c_np, memory_np, bbs, bbs_norm, bookkeeping['track_ids_sel'], bookkeeping['matching'], bookkeeping['matching_score'], frame_num, self.model_info['app_hidden_dim'], network='app_blstm', missdet_tracks=None ) self.delete_dummy_tracks(frame_num) def start_new_tracks(self, imgs, bbs, bbs_norm, frame_num, bookkeeping): # start new tracks from detections which are not selected if imgs is not None: all_inds = range(np.shape(imgs)[0]) inds_sel2 = np.setdiff1d(all_inds, bookkeeping['inds_sel1']) if len(inds_sel2) > 0: cur_detbb_num = len(inds_sel2) app_embed_sel2_np = bookkeeping['app_embed_np'][inds_sel2, :] assert(cur_detbb_num == len(inds_sel2)) c_np = np.zeros((cur_detbb_num, 2 * self.model_info['app_hidden_dim'])) track_mems = self.update_lstm_mems(app_embed_sel2_np, c_np, cur_detbb_num) h_np, c_np, memory_np = track_mems self.initialize_tracks( h_np, c_np, memory_np, bbs, bbs_norm, inds_sel2, frame_num, self.model_info['app_hidden_dim'], is_dummy=False, network='app_blstm' ) class Greedy_Tracker_MOT_LSTM(Greedy_Tracker): def __init__(self, cfg_tracker, cfg_train, tf_ops, tf_placeholders, session): super(Greedy_Tracker_MOT_LSTM, self).__init__(cfg_tracker, cfg_train, tf_ops, tf_placeholders, session) def run(self, bbs, bbs_norm, imgs, frame_num): # first frame if len(self.all_tracks.keys()) == 0 and imgs is not None: h_np, c_np = self.initialize_track_mems(imgs, bbs, bbs_norm) cur_detbb_num = np.shape(imgs)[0] self.initialize_tracks( h_np, c_np, "", bbs, bbs_norm, np.array(range(cur_detbb_num)), frame_num, self.model_info['mot_hidden_dim'], is_dummy=False, network='mot_lstm' ) elif len(self.all_tracks.keys()) != 0: bookkeeping = {} self.data_association(imgs, bbs, bbs_norm, frame_num, bookkeeping) self.update_existing_tracks(bbs, bbs_norm, frame_num, bookkeeping) self.start_new_tracks(imgs, bbs, bbs_norm, frame_num, bookkeeping) def initialize_track_mems(self, imgs, bbs, bbs_norm): cur_detbb_num = np.shape(imgs)[0] assert(cur_detbb_num == np.shape(bbs)[0]) mask_np = np.ones((cur_detbb_num, 1, 1)) state_np = np.zeros((cur_detbb_num, 2 * self.model_info['mot_hidden_dim'])) # det_num == trk_num, that's why I use cur_detbb_num repeatedly h_np, c_np = self.update_lstm_states(bbs_norm, cur_detbb_num, cur_detbb_num, mask_np, state_np) assert(np.shape(h_np)[0] == cur_detbb_num) assert(np.shape(c_np)[0] == cur_detbb_num) h_np, c_np = self.get_lstm_states_new(h_np, c_np, cur_detbb_num) return (h_np, c_np) def update_lstm_states(self, det_bbs_np, det_num, trk_num, valid_mot_data_np, motlstm_state_np): feed_dict = { self.tf_plh['detection_bboxes']: det_bbs_np, self.tf_plh['valid_mot_data']: valid_mot_data_np, self.tf_plh['start_offset']: np.zeros(det_num, dtype=np.int32), self.tf_plh['end_offset']: np.zeros(det_num, dtype=np.int32), self.tf_plh['num_step_by_user']: 1, self.tf_plh['istate_mot']: motlstm_state_np, self.tf_plh['track_len']: np.ones(det_num, dtype=np.int32), self.tf_plh['c_mot_states_plh']: motlstm_state_np, self.tf_plh['mid_missdet_num']: np.zeros(det_num, dtype=np.int32), self.tf_plh['first_missdet_num']: np.zeros(det_num, dtype=np.int32), self.tf_plh['detbb_num']: det_num, self.tf_plh['track_num']: trk_num } tf_ops = [ self.tf_ops['h_mot_states_test'], self.tf_ops['c_mot_states_last_test'] ] h_np, c_np = self.sess.run(tf_ops, feed_dict=feed_dict) return (h_np, c_np) def data_association(self, imgs, bbs, bbs_norm, frame_num, bookkeeping): # cur_detbb_num = np.shape(imgs)[0] track_memory_sel, track_bb_sel, track_ids_sel = self.collect_track_memory() assert(np.shape(track_memory_sel)[0] == len(track_ids_sel)) matching = [] matching_score = [] inds_sel1 = [] track_i_sel = [] h_np = [] c_np = [] if imgs is not None and np.shape(track_memory_sel)[0] > 1: detbb_num = np.shape(imgs)[0] assert(detbb_num == np.shape(bbs)[0]) track_num = np.shape(track_memory_sel)[0] softmax_np, h_np, c_np = self.compute_softmax_score( bbs_norm, bbs, track_bb_sel, detbb_num, track_num, track_memory_sel ) matching, matching_score = self.solve_greedy_matching( softmax_np, track_memory_sel, track_num, detbb_num, track_ids_sel, bbs, frame_num ) h_np, c_np, inds_sel1, track_i_sel = self.get_lstm_states_for_matched_tracks( matching, self.model_info['mot_hidden_dim'], h_np, c_np, track_num, detbb_num ) bookkeeping['matching'] = matching bookkeeping['matching_score'] = matching_score bookkeeping['track_memory_sel'] = track_memory_sel bookkeeping['track_ids_sel'] = track_ids_sel bookkeeping['inds_sel1'] = inds_sel1 bookkeeping['track_i_sel'] = track_i_sel bookkeeping['h_np'] = h_np bookkeeping['c_np'] = c_np def collect_track_memory(self): all_ids = sorted(self.all_tracks.keys()) sel_ids = [] for i in range(0, len(all_ids)): total_num = self.all_tracks[all_ids[i]]['real_det_num'] + \ self.all_tracks[all_ids[i]]['miss_det_num'] if self.all_tracks[all_ids[i]]['real_det_num'] > 0: if (((float(self.all_tracks[all_ids[i]]['real_det_num']) / total_num) >= self.det_ratio_thr) and (self.all_tracks[all_ids[i]]['last_miss_det_num'] <= self.N_miss_max)): sel_ids.append(all_ids[i]) else: assert((float(self.all_tracks[all_ids[i]]['real_det_num']) / total_num) < 1.0) track_mem_sel = np.zeros((len(sel_ids), 2 * self.model_info['mot_hidden_dim'])) track_bb_sel = np.zeros((len(sel_ids), self.cfg_train.MOT_INPUT_DIM)) for i in range(0, len(sel_ids)): track_mem_sel[i, :] = self.all_tracks[sel_ids[i]]['c_states'] track_bb_sel[i, :] = self.all_tracks[sel_ids[i]]['bb'][:self.cfg_train.MOT_INPUT_DIM] assert(np.shape(self.all_tracks[sel_ids[i]]['bb'])[0] == (self.cfg_train.MOT_INPUT_DIM + 1)) return (track_mem_sel, track_bb_sel, sel_ids) def compute_softmax_score(self, bbs_norm, bbs, track_bbs, detbb_num, track_num, track_memory_sel): feed_dict = { self.tf_plh['detection_bboxes']: bbs_norm, self.tf_plh['valid_mot_data']: np.ones((detbb_num, 1, 1)), self.tf_plh['start_offset']: np.zeros(detbb_num, dtype=np.int32), self.tf_plh['end_offset']: np.zeros(detbb_num, dtype=np.int32), self.tf_plh['num_step_by_user']: 1, self.tf_plh['istate_mot']: track_memory_sel, self.tf_plh['track_len']: np.ones(track_num, dtype=np.int32), self.tf_plh['c_mot_states_plh']: track_memory_sel, self.tf_plh['mid_missdet_num']: np.zeros(detbb_num, dtype=np.int32), self.tf_plh['first_missdet_num']: np.zeros(detbb_num, dtype=np.int32), self.tf_plh['det_bbox_org']: bbs[:, :self.cfg_train.MOT_INPUT_DIM], self.tf_plh['trk_bbox_org']: track_bbs, self.tf_plh['detbb_num']: detbb_num, self.tf_plh['track_num']: track_num, self.tf_plh['sel_indices']: np.ones((track_num, detbb_num, 1)) } tf_ops = [ self.tf_ops['softmax_out'], self.tf_ops['h_mot_states'], self.tf_ops['c_mot_states_last'] ] # (N2 * N1) x 2 softmax_np, h_np, c_np = self.sess.run(tf_ops, feed_dict=feed_dict) return (softmax_np, h_np, c_np) def update_existing_tracks(self, bbs, bbs_norm, frame_num, bookkeeping): missing_det_tracks = {} track_i_all = range(len(bookkeeping['track_ids_sel'])) track_i_left = np.setdiff1d(track_i_all, bookkeeping['track_i_sel']) if len(track_i_left) > 0: track_memory_left = np.zeros((len(track_i_left), 2 * self.model_info['mot_hidden_dim'])) track_ids_left = np.zeros(len(track_i_left)) for kkk in range(0, len(track_i_left)): track_i_cur = track_i_left[kkk] track_memory_left[kkk, :] = bookkeeping['track_memory_sel'][track_i_cur, :] track_ids_left[kkk] = bookkeeping['track_ids_sel'][track_i_cur] det_num = len(track_i_left) det_bbs_np = np.zeros((det_num, self.cfg_train.MOT_INPUT_DIM)) valid_mot_data_np = np.zeros((det_num, 1, 1)) # use zero mask to make zero input motlstm_state_np = track_memory_left # det_num == trk_num, that's why det_num is used repeatedly h_np_left, c_np_left = self.update_lstm_states( det_bbs_np, det_num, det_num, valid_mot_data_np, motlstm_state_np ) missing_det_tracks['track_ids'] = track_ids_left missing_det_tracks['track_index'] = track_i_left h_np_left, c_np_left = self.get_lstm_states_new(h_np_left, c_np_left, det_num) missing_det_tracks['c_states'] = c_np_left missing_det_tracks['h_states'] = h_np_left self.update_tracks( bookkeeping['h_np'], bookkeeping['c_np'], None, bbs, bbs_norm, bookkeeping['track_ids_sel'], bookkeeping['matching'], bookkeeping['matching_score'], frame_num, self.model_info['mot_hidden_dim'], network='mot_lstm', missdet_tracks=missing_det_tracks ) self.delete_dummy_tracks(frame_num) def start_new_tracks(self, imgs, bbs, bbs_norm, frame_num, bookkeeping): if imgs is not None: # start new tracks from detections which are not selected all_inds = range(np.shape(imgs)[0]) inds_sel2 = np.setdiff1d(all_inds, bookkeeping['inds_sel1']) if len(inds_sel2) > 0: bbs_norm_sel2 = self.pick_dets(bbs_norm, inds_sel2) cur_detbb_num = np.shape(bbs_norm_sel2)[0] c_np = np.zeros((cur_detbb_num, 2 * self.model_info['mot_hidden_dim'])) assert(cur_detbb_num == len(inds_sel2)) det_bbs_np = bbs_norm_sel2 det_num = cur_detbb_num valid_mot_data_np = np.ones((cur_detbb_num, 1, 1)) motlstm_state_np = c_np # det_num == trk_num, that's why det_num is used repeatedly h_np, c_np = self.update_lstm_states( det_bbs_np, det_num, det_num, valid_mot_data_np, motlstm_state_np ) assert(np.shape(h_np)[0] == cur_detbb_num) assert(np.shape(c_np)[0] == cur_detbb_num) h_np, c_np = self.get_lstm_states_new(h_np, c_np, cur_detbb_num) self.initialize_tracks( h_np, c_np, None, bbs, bbs_norm, inds_sel2, frame_num, self.model_info['mot_hidden_dim'], is_dummy=False, network='mot_lstm' ) class Greedy_Tracker_APP_MOT(Greedy_Tracker_APP_BLSTM, Greedy_Tracker_MOT_LSTM): def __init__(self, cfg_tracker, cfg_train, tf_ops, tf_placeholders, session): super(Greedy_Tracker_APP_MOT, self).__init__(cfg_tracker, cfg_train, tf_ops, tf_placeholders, session) def run(self, bbs, bbs_norm, imgs, frame_num): # first frame if len(self.all_tracks.keys()) == 0 and imgs is not None: mem_np = self.initialize_track_mems(imgs, bbs, bbs_norm) h_app_np, c_app_np, memory_app_np, h_mot_np, c_mot_np = mem_np cur_detbb_num = np.shape(imgs)[0] self.initialize_tracks( h_app_np, c_app_np, memory_app_np, h_mot_np, c_mot_np, bbs, bbs_norm, np.array(range(cur_detbb_num)), frame_num, self.model_info['app_hidden_dim'], self.model_info['mot_hidden_dim'], is_dummy=False, network='app_mot_network' ) elif len(self.all_tracks.keys()) != 0: bookkeeping = {} self.data_association(imgs, bbs, bbs_norm, frame_num, bookkeeping) self.update_existing_tracks(bbs, bbs_norm, frame_num, bookkeeping) self.start_new_tracks(imgs, bbs, bbs_norm, frame_num, bookkeeping) def initialize_track_mems(self, imgs, bbs, bbs_norm): app_embed_np = self.precompute_app_features(imgs, bbs) cur_detbb_num = np.shape(imgs)[0] assert(cur_detbb_num == np.shape(bbs)[0]) valid_mot_data = np.ones((cur_detbb_num, 1, 1)) h_app_np, c_app_np, mem_app_np, h_mot_np, c_mot_np = self.update_lstm_states( app_embed_np, bbs_norm, valid_mot_data, cur_detbb_num ) assert(np.shape(h_mot_np)[0] == cur_detbb_num) assert(np.shape(c_mot_np)[0] == cur_detbb_num) h_mot_np, c_mot_np = self.get_lstm_states_new(h_mot_np, c_mot_np, cur_detbb_num) mem_np = (h_app_np, c_app_np, mem_app_np, h_mot_np, c_mot_np) return mem_np def update_lstm_states( self, app_embed, bbs_norm, valid_mot_data, det_num ): c_app = np.zeros((det_num, 2 * self.model_info['app_hidden_dim'])) c_mot = np.zeros((det_num, 2 * self.model_info['mot_hidden_dim'])) feed_dict = { self.tf_plh['detbb_num']: det_num, self.tf_plh['track_num']: det_num, # dummy self.tf_plh['app_embed_plh']: app_embed, self.tf_plh['istate_app']: c_app, self.tf_plh['is_training']: False, self.tf_plh['num_step_by_user']: 1, self.tf_plh['frames_by_user']: np.array([1]), self.tf_plh['track_len']: np.ones(det_num, dtype=np.int32), self.tf_plh['track_len_offset']: np.zeros(det_num, dtype=np.int32), self.tf_plh['detection_bboxes']: bbs_norm, self.tf_plh['valid_mot_data']: valid_mot_data, self.tf_plh['start_offset']: np.zeros(det_num, dtype=np.int32), self.tf_plh['end_offset']: np.zeros(det_num, dtype=np.int32), self.tf_plh['istate_mot']: c_mot, self.tf_plh['c_mot_states_plh']: c_mot, self.tf_plh['mid_missdet_num']: np.zeros(det_num, dtype=np.int32), self.tf_plh['first_missdet_num']: np.zeros(det_num, dtype=np.int32), } tf_ops = [ self.tf_ops['h_app_states'], self.tf_ops['c_app_states'], self.tf_ops['h_app_track_memory'], self.tf_ops['h_mot_states_test'], self.tf_ops['c_mot_states_last_test'] ] h_app_np, c_app_np, mem_app_np, h_mot_np, c_mot_np = self.sess.run(tf_ops, feed_dict=feed_dict) return (h_app_np, c_app_np, mem_app_np, h_mot_np, c_mot_np) def initialize_tracks( self, h_app, c_app, memory_app, h_mot, c_mot, bbs, bbs_norm, det_ids, frame, app_hidden_dim, mot_hidden_dim, is_dummy, network ): h_app = np.reshape(h_app, (-1, app_hidden_dim)) assert(np.shape(memory_app)[0] == np.shape(h_app)[0]) assert(np.shape(memory_app)[0] == np.shape(c_app)[0]) assert(np.array_equal(h_app, c_app[:, app_hidden_dim:])) assert(np.shape(h_app)[0] == np.shape(c_app)[0]) h_mot = np.reshape(h_mot, (-1, mot_hidden_dim)) assert(np.array_equal(h_mot, c_mot[:, mot_hidden_dim:])) assert(np.shape(h_mot)[0] == np.shape(c_mot)[0]) assert(np.shape(h_mot)[0] == np.shape(h_app)[0]) assert(np.shape(c_mot)[0] == np.shape(c_app)[0]) if is_dummy == False: for i in range(0, np.shape(h_app)[0]): self.track_num += 1 # 1 x 1 x mem dim self.all_tracks[self.track_num]['mem_app'] = memory_app[i, :, :] # 1 x app state dim self.all_tracks[self.track_num]['h_app_states'] = h_app[i, :] # 1 x app state dim self.all_tracks[self.track_num]['c_app_states'] = c_app[i, :] # 1 x mot state dim self.all_tracks[self.track_num]['h_mot_states'] = h_mot[i, :] # 1 x mot state dim self.all_tracks[self.track_num]['c_mot_states'] = c_mot[i, :] self.all_tracks[self.track_num]['real_det_num'] = 1 self.all_tracks[self.track_num]['miss_det_num'] = 0 self.all_tracks[self.track_num]['last_miss_det_num'] = 0 self.all_tracks[self.track_num]['bb'] = bbs[det_ids[i], :] self.all_tracks[self.track_num]['bb_norm'] = bbs_norm[det_ids[i], :] self.all_tracks[self.track_num]['frame'] = frame self.all_tracks[self.track_num]['th'] = [self.cls_thr] # self.all_tracks[self.track_num]['norm'] = np.linalg.norm(memory[i, :, :]) self.result.append((frame, det_ids[i], 1.0, self.track_num)) elif is_dummy == True: ct = -1 for i in range(0, np.shape(memory_app)[0]): ct -= 1 # 1 x 1 x d self.all_tracks[ct]['mem_app'] = memory_app[i, :, :] # 1 x d self.all_tracks[ct]['h_app_states'] = h_app[i, :] # 1 x d self.all_tracks[ct]['c_app_states'] = c_app[i, :] # 1 x d self.all_tracks[ct]['h_mot_states'] = h_mot[i, :] # 1 x d self.all_tracks[ct]['c_mot_states'] = c_mot[i, :] self.all_tracks[ct]['real_det_num'] = 1 self.all_tracks[ct]['miss_det_num'] = 0 self.all_tracks[ct]['last_miss_det_num'] = 0 self.all_tracks[ct]['bb'] = bbs[det_ids[i], :] self.all_tracks[ct]['bb_norm'] = bbs_norm[det_ids[i], :] self.all_tracks[ct]['frame'] = frame self.all_tracks[ct]['th'] = [self.cls_thr] else: raise NotImplementedError def data_association(self, imgs, bbs, bbs_norm, frame_num, bookkeeping): app_embed_np = [] if imgs is not None: app_embed_np = self.precompute_app_features(imgs, bbs) track_memory_sel, track_bb_sel, track_ids_sel = self.collect_track_memory() track_app_memory_sel, track_mot_memory_sel = track_memory_sel assert(np.shape(track_app_memory_sel)[0] == len(track_ids_sel)) assert(np.shape(track_mot_memory_sel)[0] == len(track_ids_sel)) matching = [] matching_score = [] inds_sel1 = [] inds_sel1_tmp = [] istates_sel = [] track_i_sel = [] h_app_np = [] c_app_np = [] memory_app_np = [] h_mot_np = [] c_mot_np = [] if imgs is not None and np.shape(track_app_memory_sel)[0] > 1: detbb_num =
np.shape(imgs)
numpy.shape
from keras.models import Sequential from keras.layers import Input from keras.layers import Dense from keras.layers import Multiply from keras.layers import Add from keras.layers import concatenate from keras.layers import Lambda from keras.optimizers import Adam from keras.callbacks import CSVLogger import keras.backend as K from collections import deque import random import numpy as np from agents.SumTree import SumTree # Double Deep Q-learning Agent with Prioritized Experience Replay class PERDDQNAgent: def __init__(self, game, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = Memory(1000000) self.gamma = 0.95 # discount rate self.epsilon = 1.0 # exploration rate self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.001 self.training_frequency = 4 self.target_update_frequency = 10000 self.model = self._build_model() self.target_model = self._build_model() self.reset_target_model() self.csv_loss_logger = CSVLogger(game + '_perddqn/' + game + '_perddqn_loss.csv', append=True, separator=',') def _build_model(self): model = Sequential() model.add(Dense(150, input_dim=self.state_size, activation='relu')) model.add(Dense(120, activation='relu')) model.add(Dense(self.action_size, activation='linear')) ''' Can uncomment this to try out the dueling architecture with PER state_input = Input(shape=(self.state_size,)) dense1 = Dense(24, activation='relu')(state_input) hidden1 = Dense(48, activation='relu')(dense1) q_prediction = Dense(self.action_size)(hidden1) hidden2 = Dense(48, activation='relu')(dense1) state_prediction = Dense(1)(hidden2) # Q = State value + (Action value - Average of all action values) q_prediction = Lambda(lambda x: x-K.mean(x, axis=-1), output_shape=(self.action_size,))(q_prediction) state_prediction = Lambda(lambda state_prediction: K.tile(state_prediction, [1, self.action_size]))(state_prediction) target_q = Add()([state_prediction, q_prediction]) model = Model(inputs=state_input, outputs=target_q) ''' model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model def reset_target_model(self): self.target_model.set_weights(self.model.get_weights()) def save_model(self, filename): self.model.save_weights(filename) def load_model(self, filename): self.model.load_weights(filename) def remember(self, state, action, reward, next_state, done): sample = (state, action, reward, next_state, done) state, target_f, error = self.getTargets(sample) self.memory.add(error, sample) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) # take random action act_values = self.model.predict(state) return np.argmax(act_values[0]) # returns action def test_act(self, state): ''' Don't take random actions when testing agent ''' act_values = self.model.predict(state) return
np.argmax(act_values[0])
numpy.argmax
import numpy as np import unittest from numpy.testing import assert_array_equal from .test_base import ( BaseSparrayTest, dense1d, dense2d, sparse2d, dense3d, assert_sparse_equal) class TestIndexing(BaseSparrayTest): def test_simple_indexing(self): for i in [0, 1, len(dense1d) - 1, -1]: self.assertEqual(dense1d[i], self.sp1d[i]) for i in [0, 1, len(dense2d) - 1, -1]: for j in [0, 1, dense2d.shape[1] - 1, -1]: self.assertEqual(dense2d[i,j], self.sp2d[i,j]) # check out of bounds indexes self.assertRaises(IndexError, lambda: self.sp1d[len(dense1d)]) def test_ellipses(self): assert_array_equal(dense1d[...], self.sp1d[...].toarray()) assert_array_equal(dense2d[...], self.sp2d[...].toarray()) # two ellipses is an error in recent numpy self.assertRaises(IndexError, lambda: self.sp1d[...,...]) # three ellipses is too many for any numpy self.assertRaises(IndexError, lambda: self.sp1d[...,...,...]) def test_partial_indexing(self): for i in [0, 1, len(dense2d) - 1, -1]: assert_array_equal(dense2d[i], self.sp2d[i].toarray()) for j in [0, 1, dense2d.shape[1] - 1, -1]: assert_array_equal(dense2d[:,j], self.sp2d[:,j].toarray()) def test_iter(self): assert_array_equal(dense1d, list(self.sp1d)) for dense_row, sparse_row in zip(dense2d, self.sp2d): assert_array_equal(dense_row, sparse_row.toarray()) def test_diagonal(self): assert_array_equal(dense2d.diagonal(), self.sp2d.diagonal().toarray()) self.assertRaises(ValueError, lambda: self.sp1d.diagonal()) self.assertRaises(ValueError, lambda: self.sp2d.diagonal(0,1,1)) def test_offset_diagonal(self): for k in [1, -1, 2, -2, 3, -3, 4, -4]: assert_sparse_equal(dense2d.diagonal(offset=k), self.sp2d.diagonal(offset=k), err_msg='Mismatch for k=%d' % k) def test_slicing(self): assert_array_equal(dense1d[1:], self.sp1d[1:].toarray()) assert_array_equal(dense2d[1:,1:], self.sp2d[1:,1:].toarray()) def test_mixed_fancy_indexing(self): idx = [0,2] assert_array_equal(dense2d[:,idx], self.sp2d[:,idx].toarray()) assert_array_equal(dense2d[idx,:], self.sp2d[idx,:].toarray()) assert_array_equal(dense3d[idx,:,idx], self.sp3d[idx,:,idx].toarray()) assert_array_equal(dense3d[[1],:,idx], self.sp3d[[1],:,idx].toarray()) assert_array_equal(dense3d[:,[1],idx], self.sp3d[:,[1],idx].toarray()) assert_array_equal(dense3d[idx,[1],:], self.sp3d[idx,[1],:].toarray()) assert_array_equal(dense3d[2,:,idx], self.sp3d[2,:,idx].toarray()) assert_array_equal(dense3d[:,1,idx], self.sp3d[:,1,idx].toarray()) assert_array_equal(dense3d[idx,1,:], self.sp3d[idx,1,:].toarray()) def test_inner_indexing(self): idx = [0,2] assert_array_equal(dense1d[idx], self.sp1d[idx].toarray()) assert_array_equal(dense2d[idx,idx], self.sp2d[idx,idx].toarray()) @unittest.expectedFailure def test_outer_indexing(self): ii = np.array([1,3])[:,None] jj = np.array([0,2]) assert_array_equal(dense2d[ii,jj], self.sp2d[ii,jj].toarray()) def test_1d_boolean(self): for idx in ([0,0,0,0,0], [1,0,0,0,0], [0,1,1,0,0], [1,1,1,1,1]): idx =
np.array(idx, dtype=bool)
numpy.array
"""A module containing general utility methods for performance comparisons, data manipulation and random feature generation""" from __future__ import print_function from builtins import object import autograd.numpy as np import time import pandas as pd import os import sys import math from collections import defaultdict import joblib import data as data import numpy as np import random from tqdm import tqdm from two_sample_test_utils import RMMD def performance_comparisons(methods,num_runs,param_name,params,alpha=0.05,mean_scale = 1, output='p_value', verbose=False, size=300, num_obs = 10, var1=.1, var2=.1, function1 = 'sine', function2 = 'sine',error1="gaussian", error2="gaussian",meta_mu=7): ''' This function computes performance comparison runs methods: name of methods to be tested num_runs: number of run results averaged over param: parameter vector to iterate over alpha: significance level ''' performance = defaultdict(int) for param in params: # define which parameter to iterate over if param_name == 'num_obs': num_obs = param if param_name == 'var1': var1 = param if param_name == 'size': size = param if param_name == 'mean_scale': mean_scale = param if param_name == 'error': error = param for n_run in tqdm(range(num_runs)): np.random.seed(n_run) # Create a null dataset. t1, y1 = data.generate_random_functions(size=size, num_obs = num_obs, mean_scale = mean_scale,\ function= function1,variance = var1, error=error1,\ meta_mu=meta_mu) t2, y2 = data.generate_random_functions(size=size, num_obs = num_obs, mean_scale = 1,\ function= function2, variance = var2, error=error2,\ meta_mu=meta_mu) if n_run % 100 == 0 and verbose == True: print('=' * 70) print('Sample output for parameter:', param) print('=' * 70) # Run the tests on both data sets and compute type I and II errors. for method in methods: method_name = method.__name__ key2 = 'method: {}; param value: {} '.format(method_name, param) tic = time.time() pval = method(t1, y1, t2, y2, output=output) toc = (time.time() - tic) / 2. # performance refers to tyoe I error if data generated under the null # and referes to power if data under the alternative performance[key2] += int(pval < alpha) / num_runs if n_run % 100 == 0 and verbose == True: print('{}: time={:.2}s, p_value={:.4}.'.format( method_name, toc, pval)) return performance def performance_comparisons_indep(methods,num_runs,param_name,params,alpha=0.05,mean_scale = 1, output='p_value', verbose=False, size=100, num_obs = 10, var=.1, data_type='ind',transformation=None, meta_mu=5): ''' This function computes performance comparison runs methods: name of methods to be tested num_runs: number of run results averaged over param: parameter vector to iterate over alpha: significance level ''' performance = defaultdict(int) for param in params: # define which parameter to iterate over if param_name == 'num_obs': num_obs = param if param_name == 'size': size = param if param_name == 'meta_mu': meta_mu = param if param_name == 'var': var = param for n_run in tqdm(range(num_runs)): np.random.seed(n_run) # Create a dataset under the alternative hypothesis of dependence. if data_type == 'ind': t1, y1, _, _ = data.generate_conditional_functions(size=size, num_obs = num_obs, function='sine',meta_mu=meta_mu,var=var) t2, y2, _, _ = data.generate_conditional_functions(size=size, num_obs = num_obs, function='zero', meta_mu=meta_mu,var=var) if data_type == 'dep': t1, y1, t2, y2 = data.generate_conditional_functions(size=size, num_obs = num_obs, function='sine',meta_mu=meta_mu, transformation=transformation,var=var) if n_run % 100 == 0 and verbose == True: print('=' * 70) print('Sample output for parameter:', param) print('=' * 70) # Run the tests on both data sets and compute type I and II errors. for method in methods: method_name = method.__name__ key2 = 'method: {}; param value: {} '.format(method_name, param) tic = time.time() pval = method(t1, y1, t2, y2, output=output) toc = (time.time() - tic) / 2. # performance refers to tyoe I error if data generated under the null # and referes to power if data under the alternative performance[key2] += int(pval < alpha) / num_runs if n_run % 100 == 0 and verbose == True: print('{}: time={:.2}s, p_value={:.4}.'.format( method_name, toc, pval)) return performance def time_complexity(methods,sizes,num_runs=10, num_obs = 10): times = defaultdict(int) for size in tqdm(sizes): t1, y1 = data.generate_random_functions(size=size, num_obs = num_obs) t2, y2 = data.generate_random_functions(size=size, num_obs = num_obs) for method in methods: method_name = method.__name__ key = 'method: {}, number of samples {}'.format(method_name, size) tic = time.time() [method(t1, y1, t2, y2, output='p_value') for i in range(num_runs)] toc = (time.time() - tic) times[key] = toc / num_runs return times def perf_num_features(num_runs, num_features, alpha=0.05,mean_scale = 1, output='p_value', verbose=False, size=300, num_obs = 10, var1=.1, var2=.1, function1 = 'sine', function2 = 'sine',error1="gaussian", error2="gaussian"): ''' This function computes performance as a function of the number of random features used to approximate the mean embedding. num_runs: number of run results averaged over ''' performance = defaultdict(int) for feat in num_features: for n_run in tqdm(range(num_runs)): np.random.seed(n_run) # Create a null dataset. t1, y1 = data.generate_random_functions(size=size, num_obs = num_obs, mean_scale = mean_scale,\ function= function1,variance = var1, error=error1) t2, y2 = data.generate_random_functions(size=size, num_obs = num_obs, mean_scale = 1,\ function= function2, variance = var2, error=error2) if n_run % 100 == 0 and verbose == True: print('=' * 70) print('Sample output for parameter:', param) print('=' * 70) # Run the tests on both data sets and compute type I and II errors. method_name = 'RMMD' key = 'method: {}; number of features: {} '.format(method_name, feat) tic = time.time() pval = RMMD(t1, y1, t2, y2, output=output) toc = (time.time() - tic) / 2. # performance refers to tyoe I error if data generated under the null # and referes to power if data under the alternative performance[key] += int(pval < alpha) / num_runs if n_run % 100 == 0 and verbose == True: print('{}: time={:.2}s, p_value={:.4}.'.format( method_name, toc, pval)) return performance def constrain(val, min_val, max_val): return min(max_val, max(min_val, val)) def dist_matrix(X, Y): """ Construct a pairwise Euclidean distance matrix of size X.shape[0] x Y.shape[0] """ sx = np.sum(X ** 2, 1) sy = np.sum(Y ** 2, 1) D2 = sx[:, np.newaxis] - 2.0 * np.dot(X, Y.T) + sy[np.newaxis, :] # to prevent numerical errors from taking sqrt of negative numbers D2[D2 < 0] = 0 D = np.sqrt(D2) return D def meddistance(X, subsample=None, mean_on_fail=True): """ Compute the median of pairwise distances (not distance squared) of points in the matrix. Useful as a heuristic for setting Gaussian kernel's width. Parameters ---------- X : n x d numpy array mean_on_fail: True/False. If True, use the mean when the median distance is 0. This can happen especially, when the data are discrete e.g., 0/1, and there are more slightly more 0 than 1. In this case, the m Return ------ median distance """ if subsample is None: D = dist_matrix(X, X) Itri = np.tril_indices(D.shape[0], -1) Tri = D[Itri] med = np.median(Tri) if med <= 0: # use the mean return np.mean(Tri) return med else: assert subsample > 0 rand_state = np.random.get_state() np.random.seed(9827) n = X.shape[0] ind = np.random.choice(n, min(subsample, n), replace=False) np.random.set_state(rand_state) # recursion just one return meddistance(X[ind, :], None, mean_on_fail) def is_real_num(x): """return true if x is a real number""" try: float(x) return not (np.isnan(x) or np.isinf(x)) except ValueError: return False def tr_te_indices(n, tr_proportion, seed=9282): """Get two logical vectors for indexing train/test points. Return (tr_ind, te_ind) """ rand_state = np.random.get_state() np.random.seed(seed) Itr = np.zeros(n, dtype=bool) tr_ind = np.random.choice(n, int(tr_proportion * n), replace=False) Itr[tr_ind] = True Ite = np.logical_not(Itr) np.random.set_state(rand_state) return (Itr, Ite) def subsample_ind(n, k, seed=28): """ Return a list of indices to choose k out of n without replacement """ rand_state = np.random.get_state() np.random.seed(seed) ind = np.random.choice(n, k, replace=False) np.random.set_state(rand_state) return ind def rp(k,s,d): ''' This function samples random frequencies from the fourier transform of the gaussian kernel (that is from a gaussian distribution) and uniform samples in [0,2pi] param: - k = number of random features - s = median heuristic for standard deviation of gaussian distribution, s**2 is the variance. In original paper of <NAME>, three embeddings are created with different scales s = [s1,s2,s3] - d = dimensionality of w ''' #s_list = [0.5*s,s,2*s] #w = np.vstack([si*np.random.randn(k,d) for si in s_list]) #b = 2*np.pi*np.random.rand(3*k,1) # with one parameter s use the following w = s*
np.random.randn(k,d)
numpy.random.randn
""" Fast JIT'ed graph methods. These are outside the CSRGraph class so methods can call them """ import gc import numba from numba import jit import numpy as np import pandas as pd import os from scipy import sparse import csrgraph as cg def _edgelist_to_graph(src, dst, weights, nnodes, nodenames=None): """ Assumptions: 1) edgelist is sorted by source nodes 2) nodes are all ints in [0, num_nodes] Params: --------- elist : pd.Dataframe[src, dst, (weight)] df of edge pairs. Assumed to be sorted. If w weight column is present, named 'weight' Return: ---------- csrgraph object """ new_src = np.zeros(nnodes + 1) # Fill indptr array new_src[1:] = np.cumsum(
np.bincount(src, minlength=nnodes)
numpy.bincount
import sys from unittest import TestCase, main import numpy as np import pandas as pd from numpy.testing import assert_array_equal from pandas.util.testing import assert_series_equal sys.path.append("../") from valhalla.transform import ColumnSelector, ColumnMerger from valhalla.transform import WordUnifier, DuplicateRemover, StopWordRemover from valhalla.transform import WordLower, RegExReplacer from valhalla.transform import MorphTokenizer, NounTokenizer, PosTokenizer class ColumnPreprocessingSimpleTest(TestCase): """ 테스트 메소드 리스트 - ColumnSelector : DONE - ColumnMerger : DONE """ def test_ColumnSelector(self): df = pd.DataFrame( data={ "과일": [ '사과', '배', '딸기'], "시장": [ '명동', '상정', '죽도']}) answer = pd.Series(data=['사과', '배', "딸기"]) cs = ColumnSelector("과일") pred = cs.transform(df) assert_series_equal(answer, pred, check_names=False, check_dtype=False) def test_ColumnMerger(self): df = pd.DataFrame( data={ "과일": [ '사과', '배', '딸기'], "시장": [ '명동', '상정', '죽도']}) answer = pd.Series(data=["사과 명동", "배 상정", "딸기 죽도"]) cs = ColumnMerger(["과일", "시장"]) pred = cs.transform(df) assert_series_equal(answer, pred, check_names=False, check_dtype=False) class BasicNLPPreprocessingSimpleTest(TestCase): """ 테스트 메소드 리스트 - WordUnifier : TODO - DuplicateRemover : DONE - StopWordRemover : DONE - RegExReplacer : TODO => Input Argument가 어떤 구성이 깔끔할지 고민이 되는 중 - WordLower : DONE """ """ Word Unifier Test """ def test_word_unifier_with_list(self): sample = ['삼성전자 노트북', "노트북 삼성", "samsung 스마트폰", 'lg 폰', "엘지전자 상거래"] transformer = WordUnifier( [["삼성", "삼성전자", 'samsung'], ["엘지", '엘지전자', 'lg']]) answer = ['삼성 노트북', "노트북 삼성", "삼성 스마트폰", "엘지 폰", "엘지 상거래"] pred = transformer.transform(sample) self.assertListEqual(answer, pred) def test_word_unifier_with_numpy_input(self): sample = np.array( ['삼성전자 노트북', "노트북 삼성", "samsung 스마트폰", 'lg 폰', "엘지전자 상거래"]) transformer = WordUnifier( [["삼성", "삼성전자", 'samsung'], ["엘지", '엘지전자', 'lg']]) answer = np.array(['삼성 노트북', "노트북 삼성", "삼성 스마트폰", "엘지 폰", "엘지 상거래"]) pred = transformer.transform(sample) assert_array_equal(answer, pred) def test_word_unifier_with_pandas_input(self): sample = pd.Series( ['삼성전자 노트북', "노트북 삼성", "samsung 스마트폰", 'lg 폰', "엘지전자 상거래"]) transformer = WordUnifier( [["삼성", "삼성전자", 'samsung'], ["엘지", '엘지전자', 'lg']]) answer = pd.Series(['삼성 노트북', "노트북 삼성", "삼성 스마트폰", "엘지 폰", "엘지 상거래"]) pred = transformer.transform(sample) assert_series_equal(answer, pred, check_names=False, check_dtype=False) """ RegExReplacer Test """ def test_RegExReplacer_with_list(self): sample = ["열무김치 10kg 판매", "매실 5kg 포장", "미닛메이드 10L 병", "포도주스 30L 병", "kgfi 공인 판매", "lipspace 판매"] transformer = RegExReplacer([("[0-9]+kg", "<단위>"), ("[0-9]+L", "<부피단위>")]) answer = ["열무김치 <단위> 판매", "매실 <단위> 포장", "미닛메이드 <부피단위> 병", "포도주스 <부피단위> 병", "kgfi 공인 판매", "lipspace 판매"] pred = transformer.transform(sample) self.assertListEqual(answer, pred) def test_RegExReplacer_with_numpy_input(self): sample = np.array(["열무김치 10kg 판매", "매실 5kg 포장", "미닛메이드 10L 병", "포도주스 30L 병", "kgfi 공인 판매", "lipspace 판매"]) transformer = RegExReplacer([("[0-9]+kg", "<단위>"), ("[0-9]+L", "<부피단위>")]) answer = np.array(["열무김치 <단위> 판매", "매실 <단위> 포장", "미닛메이드 <부피단위> 병", "포도주스 <부피단위> 병", "kgfi 공인 판매", "lipspace 판매"]) pred = transformer.transform(sample) assert_array_equal(answer, pred) def test_RegExReplacer_with_pandas_input(self): sample = pd.Series(["열무김치 10kg 판매", "매실 5kg 포장", "미닛메이드 10L 병", "포도주스 30L 병", "kgfi 공인 판매", "lipspace 판매"]) transformer = RegExReplacer([("[0-9]+kg", "<단위>"), ("[0-9]+L", "<부피단위>")]) answer = pd.Series(["열무김치 <단위> 판매", "매실 <단위> 포장", "미닛메이드 <부피단위> 병", "포도주스 <부피단위> 병", "kgfi 공인 판매", "lipspace 판매"]) pred = transformer.transform(sample) assert_series_equal(answer, pred, check_names=False, check_dtype=False) """ DuplicateRemover Test """ def test_DuplicateRemover_with_list(self): sample = ['청동 사과 할인 특가 사과', "삼성 컴퓨터 특가 세일 삼성", "완전 싸다 완전 초대박 싸다"] transformer = DuplicateRemover() answer = ['청동 사과 할인 특가', '삼성 컴퓨터 특가 세일', '완전 싸다 초대박'] pred = transformer.transform(sample) self.assertListEqual(answer, pred) def test_DuplicateRemover_with_numpy_input(self): sample = np.array( ['청동 사과 할인 특가 사과', "삼성 컴퓨터 특가 세일 삼성", "완전 싸다 완전 초대박 싸다"]) transformer = DuplicateRemover() answer = np.array(['청동 사과 할인 특가', '삼성 컴퓨터 특가 세일', '완전 싸다 초대박']) pred = transformer.transform(sample) assert_array_equal(answer, pred) def test_DuplicateRemover_with_pandas_input(self): sample = pd.Series( ['청동 사과 할인 특가 사과', "삼성 컴퓨터 특가 세일 삼성", "완전 싸다 완전 초대박 싸다"]) transformer = DuplicateRemover() answer = pd.Series(['청동 사과 할인 특가', '삼성 컴퓨터 특가 세일', '완전 싸다 초대박']) pred = transformer.transform(sample) assert_series_equal(answer, pred, check_names=False, check_dtype=False) """ StopWordRemover Test """ def test_StopWordRemover_with_list(self): sample = [ "노트북 할인 판매", "옷 기타 완전 세일", "비아그라 할인", "클래식기타 판매 세일", "판매왕의 판매 전략"] transformer = StopWordRemover(['판매', '기타']) answer = ["노트북 할인", "옷 완전 세일", "비아그라 할인", "클래식기타 세일", "판매왕의 전략"] pred = transformer.transform(sample) self.assertListEqual(answer, pred) def test_StopWordRemover_with_numpy_input(self): sample = np.array(["노트북 할인 판매", "옷 기타 완전 세일", "비아그라 할인", "클래식기타 판매 세일", "판매왕의 판매 전략"]) transformer = StopWordRemover(['판매', '기타']) answer = np.array( ["노트북 할인", "옷 완전 세일", "비아그라 할인", "클래식기타 세일", "판매왕의 전략"]) pred = transformer.transform(sample) assert_array_equal(answer, pred) def test_StopWordRemover_with_pandas_input(self): sample = pd.Series(["노트북 할인 판매", "옷 기타 완전 세일", "비아그라 할인", "클래식기타 판매 세일", "판매왕의 판매 전략"]) transformer = StopWordRemover(['판매', '기타']) answer = pd.Series( ["노트북 할인", "옷 완전 세일", "비아그라 할인", "클래식기타 세일", "판매왕의 전략"]) pred = transformer.transform(sample) assert_series_equal(answer, pred, check_names=False, check_dtype=False) """ WordLower Test """ def test_WordLower_with_list(self): sample = ["Kang", "KAM", "Kan"] transformer = WordLower() answer = ["kang", "kam", "kan"] pred = transformer.transform(sample) self.assertListEqual(answer, pred) def test_WordLower_with_numpy_input(self): sample = np.array(["Kang", "KAM", "Kan"]) transformer = WordLower() answer = np.array(["kang", "kam", "kan"]) pred = transformer.transform(sample) assert_array_equal(answer, pred) def test_WordLower_with_pandas_input(self): sample = pd.Series(["Kang", "KAM", "Kan"]) transformer = WordLower() answer = pd.Series(["kang", "kam", "kan"]) pred = transformer.transform(sample) assert_series_equal(answer, pred, check_names=False, check_dtype=False) class TokenizerSimpleTest(TestCase): """ MorphTokenizer Test """ def test_MorphTokenizer_with_list(self): sample = ["아버지가방에 들어가신다! 123", "어머니김치는 참맛있다!"] transformer = MorphTokenizer() answer = ['아버지 가방 에 들어가신다 ! 123', '어머니 김치 는 참 맛있다 !'] pred = transformer.transform(sample) self.assertListEqual(answer, pred) def test_MorphTokenizer_with_numpy_input(self): sample = np.array(["아버지가방에 들어가신다! 123", "어머니김치는 참맛있다!"]) transformer = MorphTokenizer() answer = np.array(['아버지 가방 에 들어가신다 ! 123', '어머니 김치 는 참 맛있다 !']) pred = transformer.transform(sample) assert_array_equal(answer, pred) def test_MorphTokenizer_with_pandas_input(self): sample = pd.Series(["아버지가방에 들어가신다! 123", "어머니김치는 참맛있다!"]) transformer = MorphTokenizer() answer = pd.Series(['아버지 가방 에 들어가신다 ! 123', '어머니 김치 는 참 맛있다 !']) pred = transformer.transform(sample) assert_series_equal(answer, pred, check_names=False, check_dtype=False) """ NounTokenizer Test """ def test_NounTokenizer_with_list(self): sample = ["아버지가방에 들어가신다! 123", "어머니김치는 참맛있다!"] transformer = NounTokenizer() answer = ['아버지 가방', '어머니 김치'] pred = transformer.transform(sample) self.assertListEqual(answer, pred) def test_NounTokenizer_with_numpy_input(self): sample =
np.array(["아버지가방에 들어가신다! 123", "어머니김치는 참맛있다!"])
numpy.array
''' @Description: In User Settings Edit @Author: <NAME> @Date: 2019-08-23 21:54:44 @LastEditTime: 2019-09-02 20:53:16 @LastEditors: Please set LastEditors ''' import numpy as np import scipy.sparse as sp import torch from numpy import linalg as la import time import logging from PIL import Image import numpy as np ''' @description: 读取off文件,跳过前三行,然后前面是n×6的矩阵 n是点个数(x y z ol1 ol2 ol3),后面是m×4的矩阵 m是面个数(3 index1 index2 index3) @param {type} @return: A : n*3的矩阵,每个点3维特征; ''' #load all data from xx.ply def load_light_normal_adj(path,normalization): with open(path, 'r') as f: lines = f.readlines() nver = int(lines[3].split(' ')[2]) del lines[0:17] normal = np.zeros((nver, 3), dtype=float) light = np.zeros((nver, 3), dtype=float) adj = np.zeros((nver, nver), dtype=float) i = 0 for line in lines: if i < nver: value = line.strip('\n').split(' ') #print(value[0]) #print(value) normal[i][0] = value[3] # value[3:6] normal[i][1] = value[4] normal[i][2] = value[5] light[i][0] = value[6] # value[6:9] light[i][1] = value[7] light[i][2] = value[8] i += 1 else: value = line.strip('\n').split(' ') # 带自连接的邻接矩阵 index1=int(value[1]) index2=int(value[2]) index3=int(value[3]) adj[index1][index1] = 1 adj[index1][index2] = 1 adj[index1][index3] = 1 adj[index2][index1] = 1 adj[index2][index2] = 1 adj[index2][index3] = 1 adj[index3][index1] = 1 adj[index3][index2] = 1 adj[index3][index3] = 1 for i in range(0,nver): if adj[i][i] ==0: adj[i][i] =1 Dsum=np.sum(adj,axis=1) V = np.diag(Dsum**(-0.5)) adj = V*adj*V if normalization == True: light = light/255 return light,normal,adj #load all data from xx.ply def load_color_normal_adj(path,normalization): with open(path, 'r') as f: lines = f.readlines() nver = int(lines[3].split(' ')[2]) del lines[0:17] normal = np.zeros((nver, 3), dtype=float) color = np.zeros((nver, 1), dtype=float) adj = np.zeros((nver, nver), dtype=float) i = 0 for line in lines: if i < nver: value = line.strip('\n').split(' ') #print(value[0]) #print(value) normal[i][0] = value[3] # value[3:6] normal[i][1] = value[4] normal[i][2] = value[5] color[i][0] = value[6] # value[6:9] i += 1 else: value = line.strip('\n').split(' ') # 带自连接的邻接矩阵 index1=int(value[1]) index2=int(value[2]) index3=int(value[3]) adj[index1][index1] = 1 adj[index1][index2] = 1 adj[index1][index3] = 1 adj[index2][index1] = 1 adj[index2][index2] = 1 adj[index2][index3] = 1 adj[index3][index1] = 1 adj[index3][index2] = 1 adj[index3][index3] = 1 for i in range(0,nver): if adj[i][i] ==0: adj[i][i] =1 Dsum=np.sum(adj,axis=1) V = np.diag(Dsum**(-0.5)) adj = V*adj*V if normalization == True: color = color/255 return color,normal,adj def load_color_data(filepath, normalization=True): with open(path, 'r') as f: lines = f.readlines() nver = int(lines[3].split(' ')[2]) del lines[0:17] color = np.zeros((nver, 1), dtype=float) i = 0 for line in lines: if i < nver: value = line.strip('\n').split(' ') color[i][0] = value[6] # value[6:9] i += 1 else: break if normalization == True: color = color/255 return color def load_adj_data(filepath): with open(path, 'r') as f: lines = f.readlines() nver = int(lines[3].split(' ')[2]) del lines[0:17] adj = np.zeros((nver, nver), dtype=float) i = 0 for line in lines: if i >= nver: value = line.strip('\n').split(' ') # 带自连接的邻接矩阵 index1=int(value[1]) index2=int(value[2]) index3=int(value[3]) adj[index1][index1] = 1 adj[index1][index2] = 1 adj[index1][index3] = 1 adj[index2][index1] = 1 adj[index2][index2] = 1 adj[index2][index3] = 1 adj[index3][index1] = 1 adj[index3][index2] = 1 adj[index3][index3] = 1 for i in range(0,nver): if adj[i][i] ==0: adj[i][i] =1 Dsum=np.sum(adj,axis=1) V = np.diag(Dsum**(-0.5)) adj = V*adj*V return torch.Tensor(adj) def load_nonself_adj(filepath): with open(path, 'r') as f: lines = f.readlines() nver = int(lines[3].split(' ')[2]) del lines[0:17] adj = np.zeros((nver, nver), dtype=float) i = 0 for line in lines: if i >= nver: value = line.strip('\n').split(' ') index1=int(value[1]) index2=int(value[2]) index3=int(value[3]) adj[index1][index1] = 1 adj[index1][index2] = 1 adj[index1][index3] = 1 adj[index2][index1] = 1 adj[index2][index2] = 1 adj[index2][index3] = 1 adj[index3][index1] = 1 adj[index3][index2] = 1 adj[index3][index3] = 1 Dsum=np.sum(adj,axis=1) V =
np.diag(Dsum**(-0.5))
numpy.diag
from argparse import ArgumentParser import json import os import sys import time import shutil import inspect import textwrap import subprocess from jinja2 import Environment from sympy import im import numpy as np import pyne.utils import pyne.data from pyne import nucname from .cram import get_CRAM_from_cache from .partialfrac import thetas_alphas from . import __version__ GCC_COMPILER_FLAGS = ['-O0', '-fcx-fortran-rules', '-fcx-limited-range', '-ftree-sra', '-ftree-ter', '-fexpensive-optimizations'] CLANG_COMPILER_FLAGS = ['-O0', '-ffast-math'] HEADER = """\ /* This file was generated automatically with transmutagen version {{__version__}}. */ /* The command used to generate this file was: python -m transmutagen.gensolve {{' '.join(sys.argv[1:])}}*/ #ifndef {{namespace.upper()}}_SOLVE_C #define {{namespace.upper()}}_SOLVE_C {% if py_solve %} #include <complex.h> {%- endif %} typedef struct {{namespace}}_transmute_info_tag { int n; int nnz; int* i; int* j; char** nucs; int* nucids; double* decay_matrix; } {{namespace}}_transmute_info_t; extern {{namespace}}_transmute_info_t {{namespace}}_transmute_info; int {{namespace}}_transmute_ij(int i, int j); int {{namespace}}_transmute_nucid_to_i(int nucid); {% if py_solve %} {%- for type, typefuncname in types %} void {{namespace}}_solve_{{typefuncname}}({{type}}* A, {{type}}* b, {{type}}* x); void {{namespace}}_diag_add_{{typefuncname}}({{type}}* A, {{type}} alpha); void {{namespace}}_dot_{{typefuncname}}({{type}}* A, {{type}}* x, {{type}}* y); void {{namespace}}_scalar_times_vector_{{typefuncname}}({{type}}, {{type}}*); {% endfor %} {%- endif %} {%- for degree in degrees %} void {{namespace}}_expm_multiply{{degree}}(double* A, double* b, double* x {%- if include_lost_bits %}, double* lost_bits {% endif %}); {%- endfor %} #endif """ SRC = """\ /* This file was generated automatically with transmutagen version {{__version__}}. */ /* The command used to generate this file was: python -m transmutagen.gensolve {{' '.join(sys.argv[1:])}}*/ #include <string.h> #include <complex.h> {%- if include_lost_bits %} #include <math.h> #include <stdlib.h> {%- endif %} {% if timing_test %} #include <time.h> #include <stdio.h> {% endif %} #include "{{headerfilename}}" const int {{namespace.upper()}}_I[{{NNZ}}] = { {%- for i, j in sorted(ij) %}{{i}},{% endfor -%} }; const int {{namespace.upper()}}_J[{{NNZ}}] = { {%- for i, j in sorted(ij) %}{{j}},{% endfor -%} }; const char* {{namespace.upper()}}_NUCS[{{N}}] = { {%- for nuc in nucs %}"{{nuc}}",{% endfor -%} }; const int {{namespace.upper()}}_NUCIDS[{{N}}] = { {%- for nuc in nucs %}{{nucname.id(nuc)}},{% endfor -%} }; const double {{namespace.upper()}}_DECAY_MATRIX[{{NNZ}}] = {%- if len(decay_matrix) > 0 %} { {%- for x in decay_matrix %}{{x.hex()}},{% endfor -%} }; {%- else -%} { {%- for i in range(NNZ) %}0,{% endfor -%} }; {% endif %} {{namespace}}_transmute_info_t {{namespace}}_transmute_info = { .n = {{N}}, .nnz = {{NNZ}}, .i = (int*) {{namespace.upper()}}_I, .j = (int*) {{namespace.upper()}}_J, .nucs = (char**) {{namespace.upper()}}_NUCS, .nucids = (int*) {{namespace.upper()}}_NUCIDS, .decay_matrix = (double*) {{namespace.upper()}}_DECAY_MATRIX, }; int {{namespace}}_transmute_ij(int i, int j) { int n = (i << 16) + j; switch (n) { {%- for i, j in sorted(ij) %} case {{(i * 2**16) + j}}: return {{ij[i, j]}}; {%- endfor %} default: return -1; } } int {{namespace}}_transmute_nucid_to_i(int nucid) { switch (nucid) { {%- for i, nuc in enumerate(nucs) %} case {{nucname.id(nuc)}}: return {{i}}; {%- endfor %} default: return -1; } } {%- if py_solve %} {%- for type, typefuncname in types %} void {{namespace}}_solve_{{typefuncname}}({{type}}* A, {{type}}* b, {{type}}* x) { /* Decompose first */ {{type}} LU [{{NIJK}}]; memcpy(LU, A, {{NNZ}}*sizeof({{type}})); memset(LU+{{NNZ}}, 0, {{NIJK-NNZ}}*sizeof({{type}})); {%- for i in range(N) %} {%- for j in range(i+1, N) %} {%- if (j, i) in ijk %} LU[{{ijk[j, i]}}] /= LU[{{ijk[i, i]}}]; {%- for k in range(i+1, N) %} {%- if (i, k) in ijk %} LU[{{ijk[j, k]}}] -= LU[{{ijk[j, i]}}] * LU[{{ijk[i, k]}}]; {%- endif %} {%- endfor %} {%- endif %} {%- endfor %} {%- endfor %} /* Perform Solve */ memcpy(x, b, {{N}}*sizeof({{type}})); {%- for i in range(N) %}{% if more_than_fore[i] %} x[{{i}}] = x[{{i}}]{% for j in range(i) %}{%if (i, j) in ijk%} - LU[{{ijk[i, j]}}]*x[{{j}}]{%endif%}{% endfor %}; {%- endif %} {%- endfor %} /* Backward calc */ {%- for i in range(N-1, -1, -1) %}{%if more_than_back[i]%} x[{{i}}] = x[{{i}}]{% for j in range(i+1, N) %}{%if (i, j) in ijk%} - LU[{{ijk[i, j]}}]*x[{{j}}]{%endif%}{% endfor %}; {%- endif %} x[{{i}}] /= LU[{{ijk[i, i]}}]; {%- endfor %} } void {{namespace}}_diag_add_{{typefuncname}}({{type}}* A, {{type}} theta) { /* In-place, performs the addition A + theta I, for a scalar theta. */ {%- for i in range(N) %} A[{{ij[i, i]}}] += theta; {%- endfor %} } void {{namespace}}_dot_{{typefuncname}}({{type}}* A, {{type}}* x, {{type}}* y) { /* Performs the caclulation Ax = y and returns y */ {%- for i in range(N) %} y[{{i}}] ={% for j in range(N) %}{% if (i,j) in ij %} + A[{{ij[i, j]}}]*x[{{j}}]{% endif %}{% endfor %}; {%- endfor %} } void {{namespace}}_scalar_times_vector_{{typefuncname}}({{type}} alpha, {{type}}* v) { /* In-place, performs alpha*v, for a scalar alpha and vector v. */ {%- for i in range(N) %} v[{{i}}] *= alpha; {%- endfor %} } {%- endfor %} {%- endif %} void {{namespace}}_solve_special(double* A, double complex theta, double complex alpha, double* b, double complex* x {%- if include_lost_bits %}, double* lost_bits{% endif %}) { /* Solves (A + theta*I)x = alpha*b and stores the result in x */ double complex LU [{{NIJK}}]; /* LU = A + theta*I */ {%- for i in range(NNZ) %} {%- if i in diagonals %} LU[{{i}}] = theta + A[{{i}}]; {%- else %} LU[{{i}}] = A[{{i}}]; {%- endif %} {%- endfor %} memset(LU+{{NNZ}}, 0, {{NIJK-NNZ}}*sizeof(double complex)); /* Decompose first */ {%- for i in range(N) %} {%- for j in range(i+1, N) %} {%- if (j, i) in ijk %} LU[{{ijk[j, i]}}] /= LU[{{ijk[i, i]}}]; {%- for k in range(i+1, N) %} {%- if (i, k) in ijk %} LU[{{ijk[j, k]}}] -= LU[{{ijk[j, i]}}] * LU[{{ijk[i, k]}}]; {%- endif %} {%- endfor %} {%- endif %} {%- endfor %} {%- endfor %} /* Multiply x by alpha and perform Solve */ {%- for i in range(N) %} {%- if include_lost_bits %} x[{{i}}] = alpha*b[{{i}}]; {%- for j in range(i) %} {% if (i, j) in ijk %} x[{{i}}] -= LU[{{ijk[i, j]}}]*x[{{j}}]; if (creal(x[{{i}}]) && creal(LU[{{ijk[i, j]}}]*x[{{j}}]) && creal(x[{{i}}])*creal(LU[{{ijk[i, j]}}]*x[{{j}}]) < 0) { if (abs(creal(x[{{i}}])) > abs(creal(LU[{{ijk[i, j]}}]*x[{{j}}]))) { lost_bits[{{i}}] += log2(1 - abs(creal(LU[{{ijk[i, j]}}]*x[{{j}}]))/abs(creal(x[{{i}}]))); } else { lost_bits[{{i}}] += log2(1 - abs(creal(x[{{i}}]))/abs(creal(LU[{{ijk[i, j]}}]*x[{{j}}]))); } } {%- endif %} {%- endfor %} {%- else %} x[{{i}}] = alpha*b[{{i}}]{% for j in range(i) %}{%if (i, j) in ijk%} - LU[{{ijk[i, j]}}]*x[{{j}}]{%endif%}{% endfor %}; {%- endif %} {%- endfor %} /* Backward calc */ {%- for i in range(N-1, -1, -1) %}{%if more_than_back[i]%} {%- if include_lost_bits %} x[{{i}}] = x[{{i}}]; {%- for j in range(i+1, N) %} {%- if (i, j) in ijk %} x[{{i}}] -= LU[{{ijk[i, j]}}]*x[{{j}}]; if (creal(x[{{i}}]) && creal(LU[{{ijk[i, j]}}]*x[{{j}}]) && creal(x[{{i}}])*creal(LU[{{ijk[i, j]}}]*x[{{j}}]) < 0) { if (abs(creal(x[{{i}}])) > abs(creal(LU[{{ijk[i, j]}}]*x[{{j}}]))) { lost_bits[{{i}}] += log2(1 - abs(creal(LU[{{ijk[i, j]}}]*x[{{j}}]))/abs(creal(x[{{i}}]))); } else { lost_bits[{{i}}] += log2(1 - abs(creal(x[{{i}}]))/abs(creal(LU[{{ijk[i, j]}}]*x[{{j}}]))); } } {%- endif %} {%- endfor %} {%- else %} x[{{i}}] = x[{{i}}]{% for j in range(i+1, N) %}{%if (i, j) in ijk%} - LU[{{ijk[i, j]}}]*x[{{j}}]{%endif%}{% endfor %}; {%- endif %} {%- endif %} x[{{i}}] /= LU[{{ijk[i, i]}}]; {%- endfor %} } {% for degree in degrees %} void {{namespace}}_expm_multiply{{degree}}(double* A, double* b, double* x {%- if include_lost_bits %}, double* lost_bits{% endif %}) { /* Computes exp(A)*b and stores the result in x */ {%- for i in range(degree//2) %} double complex x{{i}} [{{N}}]; {%- endfor %} {%- if include_lost_bits %} {%- for i in range(N) %} lost_bits[{{i}}] = 0; {%- endfor %} {%- endif %} {% set thetas, alphas, alpha0 = get_thetas_alphas(degree) -%} {% for theta, alpha in sorted(zip(thetas, alphas), key=abs0) if im(theta) >= 0 %} {{namespace}}_solve_special(A, {{ -theta}}, {{2*alpha}}, b, x{{loop.index0}} {%- if include_lost_bits %}, lost_bits {% endif %}); {%- endfor %} {% for i in range(N) %} x[{{i}}] = (double)creal({%- for j in range(degree//2) %}+x{{j}}[{{i}}]{%- endfor %}) + {{alpha0}}*b[{{i}}]; {%- endfor %} } {% endfor %} {% if timing_test %} int main(int argc, const char* argv[]) { double A[{{NNZ}}]; double b[{{N}}]; double x[{{N}}]; int i; double sum = 0.0; clock_t start, diff; memcpy(A, {{namespace.upper()}}_DECAY_MATRIX, {{NNZ}}*sizeof(double)); for (i=0; i <= {{N}}; i++) { b[i] = 0.0; } /* U235 */ b[{{namespace}}_transmute_nucid_to_i(922350000)] = 1.0; /* CPU time */ start = clock(); {{namespace}}_expm_multiply14(A, b, x); diff = clock() - start; float msec = (float)diff / CLOCKS_PER_SEC; printf("Took %f seconds\\n", msec); for (i=0; i <= {{N}}; i++) { sum += x[i]; } printf("Sum of resulting vector: %f\\n", sum); return(0); } {% endif %} """ def make_solve_special(ij, N): import math ijk = make_ijk(ij, N) NIJK = len(ijk) more_than_back = [len([j for j in range(i, N) if (i, j) in ijk]) > 1 for i in range(N)] diagonals = {ij[i, i]: i for i in range(N)} _pre_decomposed = {} _pre_decomposed_A = None def decompose(A, theta): nonlocal _pre_decomposed_A NNZ = A.shape[0] LU = np.zeros(NIJK, dtype=complex) if np.all(_pre_decomposed_A == A): if theta in _pre_decomposed: return _pre_decomposed[theta].copy() else: _pre_decomposed_A = A.copy() # LU = A + theta*I LU[:NNZ] = A for i in diagonals: LU[i] += theta # Decompose first for i in range(N): for j in range(i+1, N): if (j, i) in ijk: LU[ijk[j, i]] /= LU[ijk[i, i]] for k in range(i+1, N): if (i, k) in ijk: LU[ijk[j, k]] -= LU[ijk[j, i]] * LU[ijk[i, k]] _pre_decomposed[theta] = LU.copy() return LU def solve_special(A, theta, alpha, b): """ Solves (A + theta*I)x = alpha*b for x """ if len(A.shape) != 1: raise TypeError("A should be 1-dimensional") if len(b) != N: raise TypeError("b should be length %d" % N) LU = decompose(A, theta) # Multiply x by alpha and perform Solve x = alpha*b x_lost_bits = np.zeros(x.shape) for i in range(N): xvals = [x[i]] for j in range(i): if (i, j) in ijk: rhs = LU[ijk[i, j]]*x[j] if np.real(x[i]) and np.real(rhs): l = abs(np.real(x[i])) r = abs(np.real(rhs)) if l > r: x_lost_bits[i] += (l - r)*2**(-53)*(1 - r/l) else: x_lost_bits[i] += (r - l)*2**(-53)*(1 - l/r) xvals.append(-rhs) x[i] = math.fsum(np.real(xvals)) + math.fsum(np.imag(xvals))*1j # Backward calc for i in range(N-1, -1, -1): xvals = [x[i]] if more_than_back[i]: for j in range(i+1, N): if (i, j) in ijk: rhs = LU[ijk[i, j]]*x[j] if np.real(x[i]) and np.real(rhs): l = abs(
np.real(x[i])
numpy.real
# -*- coding: utf-8 -*- """ Simple application to provide freq from images of seismic. Freq code by endolith https://gist.github.com/endolith/255291 """ from io import BytesIO import uuid import base64 from flask import Flask from flask import make_response from flask import request, jsonify, render_template import urllib import requests import numpy as np from PIL import Image from bruges import get_bruges import geophysics from segy import write_segy import utils from errors import InvalidUsage application = Flask(__name__) @application.errorhandler(InvalidUsage) def handle_invalid_usage(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response # # Seismic frequency and SEGY bot # @application.route('/freq') def freq(): # Params from inputs. url = request.args.get('url') b64 = request.args.get('image') method = request.args.get('method') or 'xing' avg = request.args.get('avg') or 'mean' region = request.args.get('region') ntraces = request.args.get('ntraces') or '10' trace_spacing = request.args.get('trace_spacing') or 'regular' bins = request.args.get('bins') or '11' t_min = request.args.get('tmin') or '0' t_max = request.args.get('tmax') or '1' dt_param = request.args.get('dt') or 'auto' # Booleans. spectrum = request.args.get('spectrum') or 'false' segy = request.args.get('segy') or 'false' nope = {i: False for i in ('none', 'false', 'no', '0')} spectrum = nope.get(spectrum.lower(), True) segy = nope.get(segy.lower(), True) # Condition or generate params. ntraces = int(ntraces) bins = int(bins) t_min = float(t_min) t_max = float(t_max) uuid1 = str(uuid.uuid1()) if region: region = [int(n) for n in region.split(',')] else: region = [] # Fetch and crop image. if url: try: r = requests.get(url) im = Image.open(BytesIO(r.content)) except Exception: payload = {'job_uuid': uuid1} payload['parameters'] = utils.build_params(method, avg, t_min, t_max, dt_param, region, trace_spacing, url=url) mess = 'Unable to open image from target URI.' raise InvalidUsage(mess, status_code=410, payload=payload) elif b64: try: im = Image.open(BytesIO(base64.b64decode(b64))) except Exception: payload = {'job_uuid': uuid1} payload['parameters'] = utils.build_params(method, avg, t_min, t_max, dt_param, region, trace_spacing, url=url) mess = 'Could not decode payload image. Check base64 encoding.' raise InvalidUsage(mess, status_code=410, payload=payload) else: payload = {'job_uuid': uuid1} payload['parameters'] = utils.build_params(method, avg, t_min, t_max, dt_param, region, trace_spacing, url=url) mess = 'You must provide an image.' raise InvalidUsage(mess, status_code=410, payload=payload) if region: try: im = im.crop(region) except Exception: mess = 'Improper crop parameters ' raise InvalidUsage(mess, status_code=410) width, height = im.size[0], im.size[1] # Calculate dt and interpolate if necessary. if dt_param[:4].lower() == 'orig': dt = (t_max - t_min) / (height - 1) else: if dt_param[:4].lower() == 'auto': dts = [0.0005, 0.001, 0.002, 0.004, 0.008] for dt in sorted(dts, reverse=True): target = int(1 + (t_max - t_min) / dt) # Accept the first one that is larger than the current height. if target >= height: break # dt and target are set else: dt = float(dt_param) target = int((t_max - t_min) / dt) # If dt is not orig, we need to inpterpolate. im = im.resize((width, target), Image.ANTIALIAS) # Set up the image. grey = geophysics.is_greyscale(im) i = np.asarray(im) - 128 i = i.astype(np.int8) if (not grey) and (i.ndim == 3): r, g, b = i[..., 0], i[..., 1], i[..., 2] i = np.sqrt(0.299 * r**2. + 0.587 * g**2. + 0.114 * b**2.) elif i.ndim == 3: i = i[..., 0] else: i = i # Get SEGY file link, if requested. if segy: try: databytes = BytesIO() write_segy(i, databytes, dt, t_min) databytes.seek(0) except: print('Write SEGY failed') else: file_link = utils.get_url(databytes, uuid1) # Do analysis. print("Starting analysis") m = {'auto': geophysics.freq_from_autocorr, 'fft': geophysics.freq_from_fft, 'xing': geophysics.freq_from_crossings} traces = geophysics.get_trace_indices(i.shape[1], ntraces, trace_spacing) specs, f_list, p_list, snr_list, mis, mas = geophysics.analyse(i, t_min, t_max, traces, m[method]) print("Finished analysis") # Compute statistics. print("***** f_list:", f_list) fsd, psd = np.nanstd(f_list), np.nanstd(p_list) fn, pn = len(f_list), len(p_list) if avg.lower() == 'trim' and fn > 4: f = geophysics.trim_mean(f_list, 0.2) if np.isnan(f): f = 0 elif avg.lower() == 'mean' or (avg == 'trim' and fn <= 4): f = np.nanmean(f_list) else: mess = 'avg parameter must be trim or mean' raise InvalidUsage(mess, status_code=410) if avg.lower() == 'trim' and pn > 4: p = geophysics.trim_mean(p_list, 0.2) elif avg.lower() == 'mean' or (avg == 'trim' and pn <= 4): p = np.nanmean(p_list) else: mess = 'avg parameter must be trim or mean' raise InvalidUsage(mess, status_code=410) snrsd = np.nanstd(snr_list) snr = np.nanmean(snr_list) # Spectrum. print("Starting spectrum") try: spec = np.nanmean(np.dstack(specs), axis=-1) fs = i.shape[0] / (t_max - t_min) freq = np.fft.rfftfreq(i.shape[0], 1/fs) f_min = np.amin(mis) f_max = np.amax(mas) except: print("Failed spectrum") # Probably the image is not greyscale. payload = {'job_uuid': uuid1} payload['parameters'] = utils.build_params(method, avg, t_min, t_max, dt_param, region, trace_spacing, url=url) mess = 'Analysis error. Probably the colorbar is not greyscale.' raise InvalidUsage(mess, status_code=410, payload=payload) # Histogram. if bins: hist = np.histogram(i, bins=bins) else: hist = None # Construct the result and return. result = {'job_uuid': uuid1} result['status'] = 'success' result['message'] = '' result['result'] = {} result['result']['freq'] = {'peak': np.round(f, 2), 'sd': np.round(fsd, 2), 'n': fn, 'min':
np.round(f_min, 2)
numpy.round
from collections import OrderedDict import numpy as np from sklearn.metrics import confusion_matrix def softmax(x, dim=1): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x, axis=dim, keepdims=True)) return e_x / e_x.sum(axis=dim, keepdims=True) def norm_confusion_matrix(scores, labels): pred = np.argmax(scores, axis=1) cf = confusion_matrix(labels, pred).astype(float) cls_cnt = np.sum(cf, axis=1, keepdims=True) norm_cm = cf / cls_cnt return norm_cm def invalid_pred_info(scores, labels, k=5, scale=1.0): pred = np.argsort(scores, axis=-1)[:, -k:] conf = np.max(softmax(scale * scores, dim=-1), axis=1) invalid_mask = np.array([labels[i] not in pred[i] for i in range(len(labels))]) invalid_ids = np.arange(len(pred))[invalid_mask] invalid_conf = conf[invalid_mask] return invalid_ids, invalid_conf def mean_class_accuracy(scores, labels): pred = np.argmax(scores, axis=1) cf = confusion_matrix(labels, pred) cls_cnt = cf.sum(axis=1) cls_cnt[cls_cnt == 0] = 1 cls_hit = np.diag(cf) return np.mean(cls_hit.astype(float) / cls_cnt.astype(float)) def mean_top_k_accuracy(scores, labels, k=1): """MS-ASL like top-k accuracy definition. """ idx = np.argsort(-scores, axis=-1)[:, :k] labels = np.array(labels) matches = np.any(idx == labels.reshape([-1, 1]), axis=-1) classes = np.unique(labels) accuracy_values = [] for class_id in classes: mask = labels == class_id num_valid =
np.sum(mask)
numpy.sum
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for V-trace. For details and theory see: "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Espeholt, Soyer, Munos et al. """ from gym.spaces import Box import numpy as np import unittest from ray.rllib.agents.impala import vtrace_tf as vtrace_tf from ray.rllib.agents.impala import vtrace_torch as vtrace_torch from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.numpy import softmax from ray.rllib.utils.test_utils import check, framework_iterator tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() def _ground_truth_calculation(vtrace, discounts, log_rhos, rewards, values, bootstrap_value, clip_rho_threshold, clip_pg_rho_threshold): """Calculates the ground truth for V-trace in Python/Numpy.""" vs = [] seq_len = len(discounts) rhos = np.exp(log_rhos) cs = np.minimum(rhos, 1.0) clipped_rhos = rhos if clip_rho_threshold: clipped_rhos =
np.minimum(rhos, clip_rho_threshold)
numpy.minimum
""" General functions for plotting PV data """ from typing import List import numpy as np import pandas as pd import plotly.graph_objects as go from nowcasting_dataset.data_sources.pv.pv_data_source import PV from nowcasting_dataset.geospatial import osgb_to_lat_lon from plotly.subplots import make_subplots from nowcasting_utils.visualization.line import make_trace from nowcasting_utils.visualization.utils import make_buttons, make_slider def get_trace_centroid_pv(pv: PV, example_index: int) -> go.Scatter: """Produce plot of centroid pv system""" y = pv.power_normalized[example_index, :, 0] x = pv.time[example_index] return make_trace(x, y, truth=True, name="centorid pv", mode="lines") def get_trace_all_pv_systems( pv: PV, example_index: int, center_system: bool = True ) -> List[go.Scatter]: """Produce plot of centroid pv system""" traces = [] x = pv.time[example_index] n_pv_systems = pv.power_mw.shape[2] print(pv.power_mw.shape) print(n_pv_systems) if center_system: start_idx = 1 centroid_trace = get_trace_centroid_pv(pv=pv, example_index=example_index) traces.append(centroid_trace) else: start_idx = 0 # make the lines a little bit see-through opacity = (1 / n_pv_systems) ** 0.35 for pv_system_index in range(start_idx, n_pv_systems): y = pv.power_normalized[example_index, :, pv_system_index] pv_id = pv.id[example_index, pv_system_index].values truth = False if ~
np.isnan(pv_id)
numpy.isnan
#! /usr/bin/python3 from datetime import datetime import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.animation as animation import matplotlib.collections as collections from scipy import fftpack eps0 = 8.8541878176e-12 class Grid1D: """FDTD 1D Grid, TEM propagating along x-axis""" def __init__(self, dx, width): self.dx = dx self.x = np.arange(0.0, width, dx) self.ndx = len(self.x) self.dt = self.dx / (2 * 3e8) self.ez = np.zeros(self.ndx) self.hy = np.zeros(self.ndx) self.ca =
np.ones(self.ndx)
numpy.ones
import json from enum import IntEnum from threading import Lock import numpy as np from club_controller import app_config from club_controller.audio_udp_server.dsp import interpolate from club_controller.audio_udp_server.filters import ExpFilter from club_controller.misc.config_manager import config_manager from club_controller.protocol.message_ids import (ClientAnimationId, ServerMessageId) from scipy.ndimage.filters import gaussian_filter1d from .client import Client from .client_type_id import ClientTypeId from .led_strip_mode_id import LedStripModeId class EffectId(IntEnum): COLORED_ENERGY = 0 ENERGY = 1 SCROLL = 2 SPECTRUM = 3 class LedStripClient(Client): #TODO check if a max refreshrate is necessary #_max_led_FPS = int(((N_PIXELS * 30e-6) + 50e-6)**-1.0) #assert FPS <= _max_led_FPS, 'FPS must be <= {}'.format(_max_led_FPS) def __init__(self, uid, ip, port, mac, name, mode, color, color_templates, effect_id, fps, frequency, num_pixels, filter, strobe): self.mode = mode self.color = color self.color_templates = color_templates self.effect_id = effect_id self.fps = fps self.frequency = frequency self.num_pixels = num_pixels self.filter = filter self.strobe = strobe self.pixels_lock = Lock() self.pixels = np.tile(1, (3, self.num_pixels)) self.p = np.tile(1.0, (3, self.num_pixels // 2)) self.energy_filt = ExpFilter(0, alpha_decay=filter["decay"], alpha_rise=filter["rise"]) self.p_filt = ExpFilter(np.tile(0, (3, self.num_pixels // 2)), alpha_decay=filter["decay"], alpha_rise=filter["rise"]) self.gain = ExpFilter(np.tile(0.01, self.num_pixels // 2), alpha_decay=0.001, alpha_rise=0.99) self.prev_pixels = np.tile(0, (3, self.num_pixels)) self.prev_spectrum = np.tile(0.01, self.num_pixels // 2) self.r_filt = ExpFilter(np.tile(0.01, self.num_pixels // 2), alpha_decay=0.2, alpha_rise=0.99) self.b_filt = ExpFilter(np.tile(0.01, self.num_pixels // 2), alpha_decay=0.1, alpha_rise=0.5) self.common_mode = ExpFilter(np.tile(0.01, self.num_pixels // 2), alpha_decay=0.99, alpha_rise=0.01) super().__init__(uid, ip, port, mac, int(ClientTypeId.LED_STRIP_CLIENT), name) def toJson(self): return { "uid": self.uid, "mac": self.mac, "ip": self.ip, "port": self.port, "name": self.name, "type_id": self.type_id, "is_connected": self.is_connected, "color": self.color, "color_templates": self.color_templates, "effect_id": self.effect_id, "fps": self.fps, "frequency": self.frequency, "num_pixels": self.num_pixels, "filter": self.filter, "strobe": self.strobe, "mode": self.mode, } def update_from_json(self, new_data): for key, value in new_data.items(): if key == "mode": self.update_mode(value) if key == "effect_id": # TODO store as string self.effect_id = int(value) else: setattr(self, key, value) if key == "filter": self.update_filter_parameters(value) self.send_parameter_update(self.toJson()) def update_filter_parameters(self, new_filter_value): self.p_filt.alpha_rise = new_filter_value["rise"] self.p_filt.alpha_decay = new_filter_value["decay"] self.energy_filt.alpha_rise = new_filter_value["rise"] self.energy_filt.alpha_decay = new_filter_value["decay"] def update_strobe_delay(self, delay_ms : float): if self.strobe is None: print("update_strobe_delay: self.strobe is None") return self.strobe["delay_ms"] = delay_ms if self.is_connected: self.send_strobe_update(self.strobe) def update_mode(self, mode : str): if self.mode == mode: return self.mode = mode if self.mode == LedStripModeId.STROBE.name: data = { "delay": config_manager.get_ui_config()["main_ui_parameters"]["strobe"]["delay_ms"], "color": config_manager.get_ui_config()["main_ui_parameters"]["strobe"]["color"], } elif self.mode == LedStripModeId.AUDIO_CLIENT.name: data = { "color": self.color, } else: data = {} if self.is_connected: self.send_mode_update(LedStripModeId[mode], data) def set_pixel_data(self, pixel_data): self.pixels_lock.acquire() self.pixels = pixel_data self.pixels_lock.release() # TOOD returned processed data (Should the processing be somewhere else???) def process(self, fft_data): """Transforms the given fft data into pixel values based on the current config. Args: fft_data (np.ndarray): Fft data in the range 0 - 1 """ self.pixels_lock.acquire() # get chosen frequency range # fft_data spans from 0 to SAMPLING_RATE/2 Hz with spacing SAMPLING_RATE/len(fft_dat) spacing = app_config.SAMPLE_RATE / 2 / len(fft_data) i_min_freq = int(self.frequency["min"] / spacing) i_max_freq = int(self.frequency["max"] / spacing) if i_min_freq == i_max_freq: i_max_freq = i_min_freq + 1 mapped_fft_data = fft_data[i_min_freq:i_max_freq] effect_id = EffectId(self.effect_id) if(effect_id == EffectId.COLORED_ENERGY): pixel_values = self.get_pixel_values_colored_energy(mapped_fft_data) elif(effect_id == EffectId.ENERGY): pixel_values = self.get_pixel_values_energy(mapped_fft_data) elif(effect_id == EffectId.SCROLL): pixel_values = self.get_pixel_values_scroll(mapped_fft_data) elif(effect_id == EffectId.SPECTRUM): pixel_values = self.get_pixel_values_spectrum(mapped_fft_data) else: if __debug__: print("Unkown effectId: " + str(self.effect_id)) pixel_values = np.zeros(self.num_pixels) self.pixels = pixel_values self.pixels_lock.release() def get_pixel_values_colored_energy(self, fft_data): """Effect that expands from the center with increasing sound energy and set color""" y = interpolate(fft_data, self.num_pixels//2) self.gain.update(np.max(gaussian_filter1d(y, sigma=1.0))) y /= self.gain.value # Scale by the width of the LED strip y *= float((self.num_pixels // 2) - 1) # Adjust width with user input y *= self.filter["gain_adjust"] # Map color channels according to set color and the energy over the freq bands color = self.color i_on = int(np.mean(y)) # Assign color to different frequency regions self.p[0, :i_on] = color["r"] self.p[0, i_on:] = 0.0 self.p[1, :i_on] = color["g"] self.p[1, i_on:] = 0.0 self.p[2, :i_on] = color["b"] self.p[2, i_on:] = 0.0 self.p_filt.update(self.p) p = np.round(self.p_filt.value) # Apply substantial blur to smooth the edges p[0, :] = gaussian_filter1d(p[0, :], sigma=float(self.filter["edge_blurring"])) p[1, :] = gaussian_filter1d(p[1, :], sigma=float(self.filter["edge_blurring"])) p[2, :] = gaussian_filter1d(p[2, :], sigma=float(self.filter["edge_blurring"])) return np.concatenate((p[:, ::-1], p), axis=1) def get_pixel_values_energy(self, mel_data): """Effect that expands from the center with increasing sound energy""" y =
np.copy(mel_data)
numpy.copy
""" Functions for visualizing flow cytometry data. Functions in this module are divided in two categories: - Simple Plot Functions, with a signature similar to the following:: plot_fxn(data_list, channels, parameters, savefig) where `data_list` is a NxD FCSData object or numpy array, or a list of such, `channels` specifies the channel or channels to use for the plot, `parameters` are function-specific parameters, and `savefig` indicates whether to save the figure to an image file. Note that `hist1d`, `violin`, and `violin_dose_response` use `channel` instead of `channels`, since they use a single channel, and `density2d` only accepts one FCSData object or numpy array as its first argument. Simple Plot Functions do not create a new figure or axis, so they can be called directly to plot in a previously created axis if desired. If `savefig` is not specified, the plot is maintained in the current axis when the function returns. This allows for further modifications to the axis by direct calls to, for example, ``plt.xlabel``, ``plt.title``, etc. However, if `savefig` is specified, the figure is closed after being saved. In this case, the function may include keyword parameters `xlabel`, `ylabel`, `xlim`, `ylim`, `title`, and others related to legend or color, which allow the user to modify the axis prior to saving. The following functions in this module are Simple Plot Functions: - ``hist1d`` - ``violin`` - ``violin_dose_response`` - ``density2d`` - ``scatter2d`` - ``scatter3d`` - Complex Plot Functions, which create a figure with several axes, and use one or more Simple Plot functions to populate the axes. They always include a `savefig` argument, which indicates whether to save the figure to a file. If `savefig` is not specified, the plot is maintained in the newly created figure when the function returns. However, if `savefig` is specified, the figure is closed after being saved. The following functions in this module are Complex Plot Functions: - ``density_and_hist`` - ``scatter3d_and_projections`` """ import packaging import packaging.version import collections import numpy as np import scipy.ndimage.filters import matplotlib import matplotlib.scale import matplotlib.transforms import matplotlib.ticker import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.font_manager import FontProperties import warnings # expose the collections module abstract base classes (ABCs) in both # Python 2 and 3 try: # python 3 collectionsAbc = collections.abc except AttributeError: # python 2 collectionsAbc = collections cmap_default = plt.get_cmap('Spectral_r') savefig_dpi = 250 ### # CUSTOM TRANSFORMS ### class _InterpolatedInverseTransform(matplotlib.transforms.Transform): """ Class that inverts a given transform class using interpolation. Parameters ---------- transform : matplotlib.transforms.Transform Transform class to invert. It should be a monotonic transformation. smin : float Minimum value to transform. smax : float Maximum value to transform. resolution : int, optional Number of points to use to evaulate `transform`. Default is 1000. Methods ------- transform_non_affine(x) Apply inverse transformation to a Nx1 numpy array. Notes ----- Upon construction, this class generates an array of `resolution` points between `smin` and `smax`. Next, it evaluates the specified transformation on this array, and both the original and transformed arrays are stored. When calling ``transform_non_affine(x)``, these two arrays are used along with ``np.interp()`` to inverse-transform ``x``. Note that `smin` and `smax` are also transformed and stored. When using ``transform_non_affine(x)``, any values in ``x`` outside the range specified by `smin` and `smax` transformed are masked. """ # ``input_dims``, ``output_dims``, and ``is_separable`` are required by # matplotlib. input_dims = 1 output_dims = 1 is_separable = True def __init__(self, transform, smin, smax, resolution=1000): # Call parent's constructor matplotlib.transforms.Transform.__init__(self) # Store transform object self._transform = transform # Generate input array self._s_range = np.linspace(smin, smax, resolution) # Evaluate provided transformation and store result self._x_range = transform.transform_non_affine(self._s_range) # Transform bounds and store self._xmin = transform.transform_non_affine(smin) self._xmax = transform.transform_non_affine(smax) if self._xmin > self._xmax: self._xmax, self._xmin = self._xmin, self._xmax def transform_non_affine(self, x, mask_out_of_range=True): """ Transform a Nx1 numpy array. Parameters ---------- x : array Data to be transformed. mask_out_of_range : bool, optional Whether to mask input values out of range. Return ------ array or masked array Transformed data. """ # Mask out-of-range values if mask_out_of_range: x_masked = np.ma.masked_where((x < self._xmin) | (x > self._xmax), x) else: x_masked = x # Calculate s and return return np.interp(x_masked, self._x_range, self._s_range) def inverted(self): """ Get an object representing an inverse transformation to this class. Since this class implements the inverse of a given transformation, this function just returns the original transformation. Return ------ matplotlib.transforms.Transform Object implementing the reverse transformation. """ return self._transform class _LogicleTransform(matplotlib.transforms.Transform): """ Class implementing the Logicle transform, from scale to data values. Relevant parameters can be specified manually, or calculated from a given FCSData object. Parameters ---------- T : float Maximum range of data values. If `data` is None, `T` defaults to 262144. If `data` is not None, specifying `T` overrides the default value that would be calculated from `data`. M : float (Asymptotic) number of decades in display scale units. If `data` is None, `M` defaults to 4.5. If `data` is not None, specifying `M` overrides the default value that would be calculated from `data`. W : float Width of linear range in display scale units. If `data` is None, `W` defaults to 0.5. If `data` is not None, specifying `W` overrides the default value that would be calculated from `data`. data : FCSData or numpy array or list of FCSData or numpy array Flow cytometry data from which a set of T, M, and W parameters will be generated. channel : str or int Channel of `data` from which a set of T, M, and W parameters will be generated. `channel` should be specified if `data` is multidimensional. Methods ------- transform_non_affine(s) Apply transformation to a Nx1 numpy array. Notes ----- Logicle scaling combines the advantages of logarithmic and linear scaling. It is useful when data spans several orders of magnitude (when logarithmic scaling would be appropriate) and a significant number of datapoints are negative. Logicle scaling is implemented using the following equation:: x = T * 10**(-(M-W)) * (10**(s-W) \ - (p**2)*10**(-(s-W)/p) + p**2 - 1) This equation transforms data ``s`` expressed in "display scale" units into ``x`` in "data value" units. Parameters in this equation correspond to the class properties. ``p`` and ``W`` are related as follows:: W = 2*p * log10(p) / (p + 1) If a FCSData object or list of FCSData objects is specified along with a channel, the following default logicle parameters are used: T is taken from the largest ``data[i].range(channel)[1]`` or the largest element in ``data[i]`` if ``data[i].range()`` is not available, M is set to the largest of 4.5 and ``4.5 / np.log10(262144) * np.log10(T)``, and W is taken from ``(M - log10(T / abs(r))) / 2``, where ``r`` is the minimum negative event. If no negative events are present, W is set to zero. References ---------- .. [1] <NAME>, <NAME>, <NAME>, "A New Logicle Display Method Avoids Deceptive Effects of Logarithmic Scaling for Low Signals and Compensated Data," Cytometry Part A 69A:541-551, 2006, PMID 16604519. """ # ``input_dims``, ``output_dims``, and ``is_separable`` are required by # matplotlib. input_dims = 1 output_dims = 1 is_separable = True # Locator objects need this object to store the logarithm base used as an # attribute. base = 10 def __init__(self, T=None, M=None, W=None, data=None, channel=None): matplotlib.transforms.Transform.__init__(self) # If data is included, try to obtain T, M and W from it if data is not None: # Convert to list if necessary if not isinstance(data, list): data = [data] # Obtain T, M, and W if not specified # If elements of data have ``.range()``, use it to determine the # max data value. Else, use the maximum value in the array. if T is None: T = 0 for d in data: # Extract channel if d.ndim > 1: if channel is None: msg = "if multidimensional data is provided, a" msg += " channel should be specified" raise ValueError(msg) else: y = d[:, channel] else: y = d if hasattr(y, 'range') and hasattr(y.range, '__call__'): Ti = y.range(0)[1] else: Ti = np.max(y) T = Ti if Ti > T else T if M is None: M = max(4.5, 4.5 / np.log10(262144) * np.log10(T)) if W is None: W = 0 for d in data: # Extract channel if d.ndim > 1: if channel is None: msg = "if multidimensional data is provided, a" msg += " channel should be specified" raise ValueError(msg) else: y = d[:, channel] else: y = d # If negative events are present, use minimum. if np.any(y < 0): r = np.min(y) Wi = (M - np.log10(T / abs(r))) / 2 W = Wi if Wi > W else W else: # Default parameter values if T is None: T = 262144 if M is None: M = 4.5 if W is None: W = 0.5 # Check that property values are valid if T <= 0: raise ValueError("T should be positive") if M <= 0: raise ValueError("M should be positive") if W < 0: raise ValueError("W should not be negative") # Store parameters self._T = T self._M = M self._W = W # Calculate dependent parameter p # It is not possible to analytically obtain ``p`` as a function of W # only, so ``p`` is calculated numerically using a root finding # algorithm. The initial estimate provided to the algorithm is taken # from the asymptotic behavior of the equation as ``p -> inf``. This # results in ``W = 2*log10(p)``. p0 = 10**(W / 2.) # Functions to provide to the root finding algorithm def W_f(p): return 2*p / (p + 1) * np.log10(p) def W_root(p, W_target): return W_f(p) - W_target # Find solution sol = scipy.optimize.root(W_root, x0=p0, args=(W)) # Solution should be unique assert sol.success assert len(sol.x) == 1 # Store solution self._p = sol.x[0] @property def T(self): """ Maximum range of data. """ return self._T @property def M(self): """ (Asymptotic) number of decades in display scale units. """ return self._M @property def W(self): """ Width of linear range in display scale units. """ return self._W def transform_non_affine(self, s): """ Apply transformation to a Nx1 numpy array. Parameters ---------- s : array Data to be transformed in display scale units. Return ------ array or masked array Transformed data, in data value units. """ T = self._T M = self._M W = self._W p = self._p # Calculate x return T * 10**(-(M-W)) * (10**(s-W) - (p**2)*10**(-(s-W)/p) + p**2 - 1) def inverted(self): """ Get an object implementing the inverse transformation. Return ------ _InterpolatedInverseTransform Object implementing the reverse transformation. """ return _InterpolatedInverseTransform(transform=self, smin=0, smax=self._M) ### # CUSTOM TICK LOCATORS AND FORMATTERS ### class _LogicleLocator(matplotlib.ticker.Locator): """ Determine the tick locations for logicle axes. Parameters ---------- transform : _LogicleTransform transform object subs : array, optional Subtick values, as multiples of the main ticks. If None, do not use subticks. """ def __init__(self, transform, subs=None): self._transform = transform if subs is None: self._subs = [1.0] else: self._subs = subs self.numticks = 15 def set_params(self, subs=None, numticks=None): """ Set parameters within this locator. Parameters ---------- subs : array, optional Subtick values, as multiples of the main ticks. numticks : array, optional Number of ticks. """ if numticks is not None: self.numticks = numticks if subs is not None: self._subs = subs def __call__(self): """ Return the locations of the ticks. """ # Note, these are untransformed coordinates vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) def tick_values(self, vmin, vmax): """ Get a set of tick values properly spaced for logicle axis. """ # Extract base from transform object b = self._transform.base # The logicle domain is divided into two regions: A "linear" region, # which may include negative numbers, and a "logarithmic" region, which # only includes positive numbers. These two regions are separated by a # value t, given by the logicle equations. An illustration is given # below. # # -t ==0== t ========> # lin log # # vmin and vmax can be anywhere in this domain, meaning that both should # be greater than -t. # # The logarithmic region will only have major ticks at integral log # positions. The linear region will have a major tick at zero, and one # major tick at the largest absolute integral log value in screen # inside this region. Subticks will be added at multiples of the # integral log positions. # If the linear range is too small, create new transformation object # with slightly wider linear range. Otherwise, the number of decades # below will be infinite if self._transform.W == 0 or \ self._transform.M / self._transform.W > self.numticks: self._transform = _LogicleTransform( T=self._transform.T, M=self._transform.M, W=self._transform.M / self.numticks) # Calculate t t = - self._transform.transform_non_affine(0) # Swap vmin and vmax if necessary if vmax < vmin: vmin, vmax = vmax, vmin # Calculate minimum and maximum limits in scale units vmins = self._transform.inverted().transform_non_affine(vmin) vmaxs = self._transform.inverted().transform_non_affine(vmax) # Check whether linear or log regions are present has_linear = has_log = False if vmin <= t: has_linear = True if vmax > t: has_log = True else: has_log = True # Calculate number of ticks in linear and log regions # The number of ticks is distributed by the fraction that each region # occupies in scale units if has_linear: fraction_linear = (min(vmaxs, 2*self._transform.W) - vmins) / \ (vmaxs - vmins) numticks_linear = np.round(self.numticks*fraction_linear) else: numticks_linear = 0 if has_log: fraction_log = (vmaxs - max(vmins, 2*self._transform.W)) / \ (vmaxs - vmins) numticks_log = np.round(self.numticks*fraction_log) else: numticks_log = 0 # Calculate extended ranges and step size for tick location # Extended ranges take into account discretization. if has_log: # The logarithmic region's range will include from the decade # immediately below the lower end of the region to the decade # immediately above the upper end. # Note that this may extend the logarithmic region to the left. log_ext_range = [np.floor(np.log(max(vmin, t)) / np.log(b)), np.ceil(np.log(vmax) /
np.log(b)
numpy.log
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2019 <NAME>, <NAME> # # This file is part of WarpX. # # License: BSD-3-Clause-LBNL import numpy as np import scipy.special as spe import scipy.integrate as integ import scipy.stats as st import matplotlib.pyplot as plt # This script performs detailed checks of the Breit-Wheeler pair production process. # Four populations of photons are initialized with different momenta in different # directions in a background EM field (with non-zero components along each direction). # Specifically the script checks that: # # - The expected number of generated pairs n_pairs is in agreement with theory # (the maximum tolerated error is 5*sqrt(n_pairs) # - The weight of the generated particles is equal to the weight of the photon # - Momenta of the residual photons are still equal to the original momentum # - The generated particles are emitted in the right direction # - Total energy is conserved in each event # - The energy distribution of the generated particles is in agreement with theory # - The optical depths of the product species are correctly initialized (QED effects are # enabled for product species too). # # More details on the theoretical formulas used in this script can be found in # the Jupyter notebook picsar/src/multi_physics/QED_tests/validation/validation.ipynb # # References: # 1) <NAME> et al 2011 Plasma Phys. Control. Fusion 53 015009 # 2) <NAME> et al. 2015 Phys. Rev. E 92, 023305 # 3) <NAME>. PhD thesis "Effets radiatifs et d'electrodynamique # quantique dans l'interaction laser-matiere ultra-relativiste" # URL: https://tel.archives-ouvertes.fr/tel-01314224 # Tolerances tol = 1.e-8 tol_red = 2.e-2 # Physical constants (from CODATA 2018, see: https://physics.nist.gov/cuu/Constants/index.html ) me = 9.1093837015e-31 #electron mass c = 299792458 #speed of light hbar = 6.62607015e-34/(2*np.pi) #reduced Plank constant fine_structure = 7.2973525693e-3 #fine structure constant qe = 1.602176634e-19#elementary charge E_s = (me**2 * c**3)/(qe * hbar) #Schwinger E field B_s = E_s/c #Schwinger B field mec = me*c mec2 = mec*c #______________ # Initial parameters spec_names_phot = ["p1", "p2", "p3", "p4"] spec_names_ele = ["ele1", "ele2", "ele3", "ele4"] spec_names_pos = ["pos1", "pos2", "pos3", "pos4"] initial_momenta = [ np.array([2000.0,0,0])*mec, np.array([0.0,5000.0,0.0])*mec, np.array([0.0,0.0,10000.0])*mec, np.array([57735.02691896, 57735.02691896, 57735.02691896])*mec ] initial_particle_number = 1048576 E_f = np.array([-2433321316961438., 973328526784575., 1459992790176863.]) B_f = np.array([2857142.85714286, 4285714.28571428, 8571428.57142857]) NNS = [128,128,128,128] #bins for energy distribution comparison. #______________ #Returns all the species names and if they are photon species or not def get_all_species_names_and_types(): names = spec_names_phot + spec_names_ele + spec_names_pos types = [True]*len(spec_names_phot) + [False]*(len(spec_names_ele)+len(spec_names_pos)) return names, types def calc_chi_gamma(p, E, B): pnorm = np.linalg.norm(p) v = c*(p/pnorm) EpvvecB = E + np.cross(v,B) vdotEoverc = np.dot(v,E)/c ff = np.sqrt(np.dot(EpvvecB,EpvvecB) - np.dot(vdotEoverc,vdotEoverc)) gamma_phot = pnorm/mec return gamma_phot*ff/E_s #Auxiliary functions @np.vectorize def BW_inner(x): return integ.quad(lambda s: np.sqrt(s)*spe.kv(1./3., 2./3. * s**(3./2.)), x, np.inf)[0] def BW_X(chi_phot, chi_ele): div = (chi_ele*(chi_phot-chi_ele)) div = np.where(np.logical_and(chi_phot > chi_ele, chi_ele != 0), div, 1.0); res = np.where(
np.logical_and(chi_phot > chi_ele, chi_ele != 0)
numpy.logical_and
import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.distributions as distributions import matplotlib.pyplot as plt import numpy as np import gym import park import tqdm class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super().__init__() self.fc_1 = nn.Linear(input_dim, hidden_dim) self.fc_2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): x = self.fc_1(x) x = F.relu(x) x = self.fc_2(x) return x class ActorCritic(nn.Module): def __init__(self, actor, critic): super().__init__() self.actor = actor self.critic = critic def forward(self, state): action_pred = self.actor(state) value_pred = self.critic(state) return action_pred, value_pred def init_weights(m): if type(m) == nn.Linear: torch.nn.init.kaiming_normal_(m.weight) m.bias.data.fill_(0) def calculate_returns(rewards, discount_factor, device, normalize=True): returns = [] R = 0 for r in reversed(rewards): R = r + R * discount_factor returns.insert(0, R) returns = torch.tensor(returns).to(device) if normalize: returns = (returns - returns.mean()) / returns.std() return returns def calculate_advantages(returns, pred_values, normalize=True): advantages = returns - pred_values if normalize: advantages = (advantages - advantages.mean()) / advantages.std() return advantages def update_policy(advantages, log_prob_actions, returns, value_preds, entropies, optimizer): returns = returns.detach() policy_loss = -(advantages * log_prob_actions).mean() value_loss = F.smooth_l1_loss(returns, value_preds) optimizer.zero_grad() loss = policy_loss + value_loss * 0.5 - entropies.mean() * 0.01 loss.backward() optimizer.step() return loss.item() def evaluate(env, policy, device,num_steps): policy.eval() done = False #episode_reward = 0 episode_reward = [] state = env.reset() for steps in range(num_steps): state = torch.FloatTensor(state).unsqueeze(0).to(device) with torch.no_grad(): action_pred, _ = policy(state) action_prob = F.softmax(action_pred, dim=-1) action = torch.argmax(action_prob, dim=-1) state, reward, done, _ = env.step(action.item()) #episode_reward += reward episode_reward.append(reward) if(done): break #return episode_reward return np.mean(np.array(episode_reward)[-50:]) def train(env, policy, optimizer, discount_factor, device,num_steps): policy.train() log_prob_actions = [] entropies = [] value_preds = [] rewards = [] done = False episode_reward = 0 state = env.reset() for steps in range(num_steps): state = torch.FloatTensor(state).unsqueeze(0).to(device) action_pred, value_pred = policy(state) action_prob = F.softmax(action_pred, dim=-1) dist = distributions.Categorical(action_prob) action = dist.sample() log_prob_action = dist.log_prob(action) entropy = dist.entropy() state, reward, done, _ = env.step(action.item()) log_prob_actions.append(log_prob_action) entropies.append(entropy) value_preds.append(value_pred.squeeze(0)) rewards.append(reward) episode_reward += reward if(done): break log_prob_actions = torch.cat(log_prob_actions) entropies = torch.cat(entropies) value_preds = torch.cat(value_preds) returns = calculate_returns(rewards, discount_factor, device) advantages = calculate_advantages(returns, value_preds) loss = update_policy(advantages, log_prob_actions, returns, value_preds, entropies, optimizer) return loss, episode_reward if __name__ == '__main__': hidden_dim = 256 max_episodes = 80 discount_factor = 0.99 num_steps = 1000000 train_env = park.make('cache') test_env = park.make('cache') input_dim = train_env.observation_space.shape[0] output_dim = train_env.action_space.n train_rewards = torch.zeros(max_episodes) test_rewards = torch.zeros(max_episodes) device = torch.device('cpu') actor = MLP(input_dim, hidden_dim, output_dim) critic = MLP(input_dim, hidden_dim, 1) actor_critic = ActorCritic(actor, critic) actor_critic = actor_critic.to(device) actor_critic.apply(init_weights) optimizer = optim.Adam(actor_critic.parameters(), lr=3e-4) for episode in tqdm.tqdm(range(max_episodes)): loss, train_reward = train(train_env, actor_critic, optimizer, discount_factor, device, num_steps) test_reward = evaluate(test_env, actor_critic, device, num_steps) train_rewards[episode] = torch.from_numpy(np.array(train_reward)) test_rewards[episode] = torch.from_numpy(
np.array(test_reward)
numpy.array
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Federated hypothesis-based clustering implementation. Based on the paper: Three Approaches for Personalization with Applications to Federated Learning <NAME>, <NAME>, <NAME>, <NAME> https://arxiv.org/abs/2002.10619 """ from typing import Iterator, List, Mapping, NamedTuple, Optional from fedjax.legacy import core import jax.numpy as jnp import jax.random as jrandom import numpy as np class HypClusterState(NamedTuple): """State of server for HypCluster passed between rounds. Attributes: cluster_params: A list of pytrees representing the server model parameters per cluster. cluster_server_opt_states: A list of pytrees representing the server optimizer state per cluster. """ cluster_params: List[core.Params] cluster_server_opt_states: List[core.OptState] class HypClusterHParams(NamedTuple): """Hyperparameters for federated hypothesis-based clustering. Attributes: train_data_hparams: Hyperparameters for training client data preparation. num_clusters: Number of clusters. init_cluster_client_ids: Optional list of client ids used to initialize cluster centers via k-means++ variant. If None, initialization is random. """ train_data_hparams: core.ClientDataHParams num_clusters: int = 1 init_cluster_client_ids: Optional[List[str]] = None def _get_cluster_by_client_loss( federated_data: core.FederatedData, client_ids: List[str], model: core.Model, cluster_params: List[core.Params], data_hparams: Optional[core.ClientDataHParams] = None) -> np.ndarray: """Returns the loss per cluster and client pair. Args: federated_data: Federated data separated per client to be evaluated. client_ids: Ids of clients to be evaluated. model: Model implementation. cluster_params: List of pytree model parameters per cluster. data_hparams: Hyperparameters for dataset preparation. Returns: Numpy array of losses of shape [num_clusters, num_clients]. """ cluster_by_client_loss = [] for params in cluster_params: client_metrics = core.evaluate_multiple_clients( federated_data=federated_data, client_ids=client_ids, model=model, params=params, client_data_hparams=data_hparams) client_loss = [m['loss'] if m else np.inf for m in client_metrics] cluster_by_client_loss.append(client_loss) # [num_clusters, num_clients]. cluster_by_client_loss = np.array(cluster_by_client_loss) return cluster_by_client_loss def maximization( federated_data: core.FederatedData, client_ids: List[str], model: core.Model, cluster_params: List[core.Params], data_hparams: Optional[core.ClientDataHParams] = None) -> List[List[str]]: """Finds the cluster that produces the lowest loss for each client. Args: federated_data: Federated data separated per client to be evaluated. client_ids: Ids of clients to be evaluated. model: Model implementation. cluster_params: List of pytree model parameters per cluster. data_hparams: Hyperparameters for dataset preparation. Returns: List of lists of client ids per cluster. """ cluster_by_client_loss = _get_cluster_by_client_loss(federated_data, client_ids, model, cluster_params, data_hparams) # [num_clients] index of best cluster per client. cluster_ids = np.argmin(cluster_by_client_loss, axis=0) cluster_client_ids = [[] for _ in cluster_params] for cluster_id, client_id in zip(cluster_ids, client_ids): cluster_client_ids[cluster_id].append(client_id) return cluster_client_ids # TODO(b/162864512): Break up functions to jit compile. class HypCluster(core.FederatedAlgorithm): """Federated hypothesis-based clustering algorithm.""" def __init__(self, federated_data: core.FederatedData, model: core.Model, client_optimizer: core.Optimizer, server_optimizer: core.Optimizer, hparams: HypClusterHParams, rng_seq: core.PRNGSequence): """Initializes HypCluster algorithm. Args: federated_data: Federated data separated per client. model: Model implementation. client_optimizer: Client optimizer. server_optimizer: Server optimizer. hparams: Hyperparameters for federated hypothesis-based clustering. rng_seq: Iterator of JAX random keys. """ self._federated_data = federated_data self._model = model self._client_optimizer = client_optimizer self._server_optimizer = server_optimizer self._hparams = hparams self._rng_seq = rng_seq self._client_trainer = core.DefaultClientTrainer(model, client_optimizer) def _kmeans_init(self) -> List[core.Params]: """Initializes cluster parameters for HypCluster using k-means++ variant. Given a set of input clients, we train parameters for each client. The initial cluster parameters are chosen out of this set of client parameters. At a high level, the cluster parameters are selected by choosing the client parameters that are the "furthest away" from each other (greatest difference in loss). Returns: Cluster center params. """ init_params = self._model.init_params(next(self._rng_seq)) client_ids = self._hparams.init_cluster_client_ids client_states = core.train_multiple_clients( federated_data=self.federated_data, client_ids=client_ids, client_trainer=self._client_trainer, init_client_trainer_state=self._client_trainer.init_state( params=init_params), rng_seq=self._rng_seq, client_data_hparams=self._hparams.train_data_hparams) params_by_client = [cs.params for cs in client_states] center_client = jrandom.choice(next(self._rng_seq), len(params_by_client)) cluster_centers = [params_by_client[center_client]] for _ in range(1, self._hparams.num_clusters): # [num_centers, num_clients]. cluster_by_client_loss = _get_cluster_by_client_loss( self.federated_data, client_ids, self.model, cluster_centers, self._hparams.train_data_hparams) # [num_clients]. best_loss_per_client = np.min(cluster_by_client_loss, axis=0) worst_client =
np.argmax(best_loss_per_client)
numpy.argmax
""" The transformers in this module act on a single numpy array. """ from abc import ABC, abstractmethod import logging import numpy as np from PIL import Image from typing import Tuple, Dict LOG = logging.getLogger(__name__) class NumpyTransform(ABC): @staticmethod def check_type_with_warning(input_: np.ndarray) -> None: if not isinstance(input_, np.ndarray): raise TypeError(f'Attempting to use a numpy transform with input of type {type(input_)}. Abort.') @abstractmethod def __call__(self, *args, **kwargs) -> np.ndarray: raise NotImplementedError class Numpy2PILTransform(NumpyTransform): """Transforms a Numpy nd.array into a PIL image.""" def __call__(self, array: np.ndarray) -> Image: self.check_type_with_warning(array) return Image.fromarray(array) class NumpyReshapeTransform(NumpyTransform): """Take a flattened 1D numpy array and transform into new 2D shape and returns a PIL image (for torchvision).""" def __init__(self, new_shape: Tuple[int, int]) -> None: self._new_shape = new_shape def __call__(self, array: np.ndarray) -> np.ndarray: self.check_type_with_warning(array) return np.reshape(array, self._new_shape) class NumpyNormalizeTransform(NumpyTransform): """Normalizes a numpy array to have zero mean and unit variance. Note: This transformer takes NO mask into account! """ def __call__(self, array: np.ndarray) -> np.ndarray: self.check_type_with_warning(array) return normalize_2d_array(array) class NumpyNormalize01Transform(NumpyTransform): """Normalizes the data such that it lies in the range of [0, 1]. Note: This transformer takes NO mask into account! """ def __call__(self, array: np.ndarray) -> np.ndarray: self.check_type_with_warning(array) return (array - np.min(array)) / (np.max(array) - np.min(array)) def normalize_2d_array(input_array: np.ndarray, mask: np.ndarray = None) -> np.ndarray: """Normalizes a given input array to zero mean and unit variance. When mask is given, only consider those values.""" if mask is not None: assert input_array.shape == mask.shape, f'Input and mask need to have same shape: ' \ f'{input_array.shape} != {mask.shape}' assert mask.dtype == bool, f'Mask needs to be boolean. Given: {mask.dtype}' relevant_values = input_array[mask] # gives back 1D array of values where mask has 'True' entry else: relevant_values = input_array mean =
np.mean(relevant_values)
numpy.mean
import numpy as np from numpy import linalg as la from matrixmath import randn,vec from ltimultgen import gen_system_mult from policygradient import PolicyGradientOptions, run_policy_gradient, Regularizer from ltimult import dlyap_obj,check_olmss from matplotlib import pyplot as plt from time import time import os from utility import create_directory from pickle_io import pickle_import,pickle_export def calc_sparsity(K,thresh,PGO): if PGO is None: regstr = 'vec1' else: if PGO.regularizer is None: regstr = 'vec1' else: regstr = PGO.regularizer.regstr # Calculate vals if regstr == 'vec1' or PGO.regularizer.regstr == 'vec_huber': vals = np.abs(vec(K)) elif regstr == 'mr': vals = np.abs(K).max(1) elif regstr == 'mc': vals = np.abs(K).max(0) elif regstr == 'glr'or regstr == 'glr_huber': vals = la.norm(K,ord=2,axis=1) elif regstr == 'glc'or regstr == 'glc_huber': vals = la.norm(K,ord=2,axis=0) binmax = np.max(vals) bin1 = thresh*binmax sparsity = np.sum(vals<bin1)/vals.size print('Sparsity = %.3f' % sparsity) # Calculate black and white sparsity matrix Kbw =
np.zeros_like(K)
numpy.zeros_like