prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
###Determining if news is "fake" via NLP & a NN (99% Accuracy) ###Dataset: https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset #Base package imports import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') from bs4 import BeautifulSoup #for pulling data out of html and xml files import re, string,unicodedata from string import punctuation #Natural language toolkit imports import nltk from nltk.corpus import stopwords #words to be ignored nltk.download('stopwords') from nltk.stem.porter import PorterStemmer #used produce variants of a root/base word from nltk.stem import WordNetLemmatizer #used find the root of a word variant (lemma) from nltk.tokenize import word_tokenize,sent_tokenize #strips strings into tokens #tokenizing text represents every word with a number, changes all chr to lower case from nltk.tokenize.toktok import ToktokTokenizer #tokenizes final period only from nltk import pos_tag #tags words from nltk.corpus import wordnet #English language database #Tensorflow & Keras imports import tensorflow as tf import keras from keras.preprocessing import text, sequence from keras.models import Sequential from keras.layers import Dense,Embedding,LSTM,Dropout from keras.callbacks import ReduceLROnPlateau #plain stack of layers, each layer has one input and one output tensor (Sequential) #regular deeply connected nn layer (Dense) #a dense vector rep for words (Embedding) #in this case a vector represents the projection of the word into a continuous vector space #the position of the word in the learned vector space is its embedding #lstm layer (long short-term memory layer) chooses different implementations #to maximize performance of the NN #dropout layer helps prevent overfitting by randomly setting input units to 0 at each step during training #ReduceLROnPlateau reduces the learning rate when the metric has stopped improving #Sklearn imports from sklearn.metrics import classification_report,confusion_matrix,accuracy_score from sklearn.model_selection import train_test_split #Loading in datasets true = pd.read_csv("True.csv") false = pd.read_csv("Fake.csv") #Taking a look at the data #True data true.head() #False data false.head() #Visualizing breakdown by subject (Fake News) plt.figure(figsize=(20,10)) sns.countplot('subject',data=true) plt.show() print(true.subject.value_counts()) #Visualizing breakdown by subject (Real News) plt.figure(figsize=(20,10)) sns.countplot('subject',data=false) plt.show() print(false.subject.value_counts()) #Merging the two datasets together true['category'] = 1 false['category'] = 0 df = pd.concat([true,false]) df.head() #Visualizing breakdown by subject (Real News) plt.figure(figsize=(20,10)) sns.countplot('category',data=df) plt.show() #Checking for missing values df.isna().sum() #Topics in subject col are diff for both categories, thus we exclude df['text'] = df['text'] + " " + df['title'] del df['title'] del df['subject'] del df['date'] #Setting stopwords (English) stop_words = set(stopwords.words('english')) punctuation = list(string.punctuation) stop_words.update(punctuation) #Cleaning the data #Defining a function to strip html format text def html_strip(text): soup = BeautifulSoup(text,'html.parser') #using BeautifulSoup parser return soup.get_text() #Defining a function to strip text between square brackets def square_bracket_strip(text): return re.sub('\[[^]]*\]','',text) #Defining a function to strip url formatted text def url_strip(text): return re.sub(r'http\S+', '', text) #Defining a function to identify and remove stopwords def remove_stopwords(text): final_text = [] for i in text.split(): if i.strip().lower() not in stop_words: final_text.append(i.strip()) return " ".join(final_text) #Defining a function to remove any noise in the text def remove_noise(text): text = strip_html(text) text = remove_between_square_brackets(text) text = remove_stopwords(text) return text df['text'] = df['text'].apply(denoise_text) #Performing train-validation split X_train, X_val, y_train, y_val = train_test_split(df.text, df.category, random_state = 7,test_size = 0.30) #Tokenizing text data #Defining tokenizer tokenizer = text.Tokenizer(num_words = max_features) #Tokenizing X_train tokenizer.fit_on_texts(X_train) tokenized_train = tokenizer.texts_to_sequences(X_train) X_train = sequence.pad_sequences(tokenized_train,maxlen = maxlen) #Tokenizing X_val tokenized_test = tokenizer.texts_to_sequences(X_val) X_val = sequence.pad_sequences(tokenized_test, maxlen=maxlen) #Using the GloVe Method, ie Global vectors for word representation #Glove derives semantic relationships between words from the co-occurence matrix #Need three words a time to measure the semantic similarity between words #ie P(k|ice), P(k|steam) & P(k|ice)/P(k|steam) #Using pre-trained twitter data from: https://nlp.stanford.edu/projects/glove/ embedding_file = 'glove.6B.100d.txt' #Defining a function to create an array of word coefs def get_coefs(word, *arr): return word,
np.asarray(arr, dtype='float32')
numpy.asarray
from camera import CAMERA from yolo_model import BoundBox, YOLO from utils.bbox import bbox_iou from lane import LaneLineFinder, get_center_shift, get_curvature import numpy as np import cv2 from datetime import datetime from PIL import Image # yolo_detector = YOLO(score = 0.3, iou = 0.5, gpu_num = 0) WHITE = (255, 255, 255) YELLOW = (66, 244, 238) GREEN = (80, 220, 60) LIGHT_CYAN = (255, 255, 224) DARK_BLUE = (139, 0, 0) GRAY = (128, 128, 128) RED = (0,0,255) ORANGE =(0,165,255) vehicles = [1,2,3,5,6,7,8] animals =[15,16,17,18,19,21,22,23,] humans =[0] obstructions = humans + animals + vehicles classes = [# 'Ped','bicycle','car','motorbike','aeroplane','bus',\ 'train','truck','boat','traffic light','fire hydrant','stop sign',\ 'parking meter','bench','bird','cat','dog','horse',\ 'sheep','cow','elephant', 'bear','zebra','giraffe',\ 'backpack','umbrella','handbag','tie','suitcase','frisbee',\ 'skis','snowboard','sports ball','kite','baseball bat',\ 'baseball glove','skateboard','surfboard','tennis racket','bottle','wine glass',\ 'cup','fork','knife','spoon','bowl','banana',\ 'apple','sandwich','orange','broccoli','carrot','hot dog',\ 'pizza','donut','cake','chair','sofa','pottedplant',\ 'bed','diningtable','toilet','tvmonitor','laptop','mouse',\ 'remote','keyboard','cell phone','microwave','oven','toaster',\ 'sink','refrigerator','book','clock','vase','scissors',\ 'teddy bear','hair drier','toothbrush' ] class OBSTACLE(BoundBox): xmax :int xmin :int ymin :int ymax :int xmid :int ymid :int lane : str tracker = None position : [int,int] PERIOD = 5 __count = 0 def __init__(self,box: BoundBox,dst, _id) : self.col_time:float =999.0 self._id = _id self.update_coord(box) self.update_score(box) self.history : np.ndarray = [] self.position_hist = [] self.velocity = np.zeros((2)) self.position = dst self.score=box.score self.label = box.label def update_obstacle(self, box: BoundBox, dst, fps) : self.position_hist.append((self.xmin, self.ymin, self.xmax,self.ymax)) self.update_coord(box) old_loc = self.position self.history.append(old_loc) self.col_time = min(dst[1]/(self.velocity[1]+0.001),99) if self.__count % self.PERIOD == 0 : self.velocity = (old_loc-dst ) * fps/self.PERIOD self.__count += 1 def update_coord(self,box): self.xmax = box.xmax self.xmin = box.xmin self.ymin = box.ymin self.ymax = box.ymax self.xmid = int((box.xmax+box.xmin)/2) self.ymid = int((box.ymax+box.ymin)/2) def update_score(self,box): self.score=box.score self.label = box.label def update_box(self,box): self.update_coord(box) self.update_score(box) class TRAFFIC_LIGHTS(OBSTACLE) : def __init__(self) : return None def detect_status(self): return None class TRAFFIC_SIGNS(OBSTACLE): def __init__(self) : return None def decipher(self): return None class FRAME : fps:float UNWARPED_SIZE :(int,int) LANE_WIDTH :int WRAPPED_WIDTH : int camera : CAMERA yolo : classmethod PERSP_PERIOD = 100000 YOLO_PERIOD = 0.5 # SECONDS _defaults = { "id": 0, "first": True, "speed": 0, "n_objects" :0, "camera" : CAMERA(), "image" : [], "LANE_WIDTH" : 3.66, "fps" :22 } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, **kwargs): # calc pers => detect cars and dist > detect lanes self.__dict__.update(self._defaults) # set up default values self.__dict__.update(kwargs) # and update with user overrides self.speed = self.get_speed() ### IMAGE PROPERTIES self.image : np.ndarray if self.image.size ==0 : raise ValueError("No Image") self.temp_dir = './images/detection/' self.size : (int , int) = (self.image.shape[0] , self.image.shape[1] ) self.UNWARPED_SIZE = (int(self.size[0]),int(self.size[1]*.4)) self.WRAPPED_WIDTH = int(self.UNWARPED_SIZE[0]*1.25) self.trans_mat = None self.inv_trans_mat = None self.pixels_per_meter = [0,0] self.perspective_done_at = 0 self.img_shp = (self.image.shape[1], self.image.shape[0] ) self.area = self.img_shp[0]*self.img_shp[1] # self.image = self.camera.undistort(self.image) ### OBJECT DETECTION AND TRACKING self.yolo = YOLO() self.first_detect = True self.obstacles :[OBSTACLE] =[] self.__yp = int(self.YOLO_PERIOD*self.fps) ### LANE FINDER self.lane_found = False self.count = 0 self.mask = np.zeros((self.UNWARPED_SIZE[1], self.UNWARPED_SIZE[0], 3), dtype=np.uint8) self.roi_mask = np.ones((self.UNWARPED_SIZE[1], self.UNWARPED_SIZE[0], 3), dtype=np.uint8) self.total_mask = np.zeros_like(self.roi_mask) self.warped_mask = np.zeros((self.UNWARPED_SIZE[1], self.UNWARPED_SIZE[0]), dtype=np.uint8) self.lane_count = 0 self.left_line = LaneLineFinder(self.UNWARPED_SIZE, self.pixels_per_meter, -1.8288) # 6 feet in meters self.right_line = LaneLineFinder(self.UNWARPED_SIZE, self.pixels_per_meter, 1.8288) def perspective_tfm(self , pos) : now = datetime.utcnow().timestamp() if now - self.perspective_done_at > self.PERSP_PERIOD : self.calc_perspective() return cv2.perspectiveTransform(pos, self.trans_mat) #cv2.warpPerspective(image, self.trans_mat, self.UNWARPED_SIZE) def calc_perspective(self, verbose = True): roi = np.zeros((self.size[0], self.size[1]), dtype=np.uint8) # 720 , 1280 roi_points = np.array([[0, self.size[0]],[self.size[1],self.size[0]], [self.size[1]//2+100,-0*self.size[0]], [self.size[1]//2-100,-0*self.size[0]]], dtype=np.int32) cv2.fillPoly(roi, [roi_points], 1) Lhs = np.zeros((2,2), dtype= np.float32) Rhs = np.zeros((2,1), dtype= np.float32) grey = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY) mn_hsl = np.median(grey) #grey.median() edges = cv2.Canny(grey, int(mn_hsl*4), int(mn_hsl*3)) # edges = cv2.Canny(grey[:, :, 1], 500, 400) edges2 = edges*roi cv2.imwrite(self.temp_dir+"mask.jpg", edges2) lines = cv2.HoughLinesP(edges*roi,rho = 4,theta = np.pi/180,threshold = 4,minLineLength = 80,maxLineGap = 40) # print(lines) for line in lines: for x1, y1, x2, y2 in line: normal = np.array([[-(y2-y1)], [x2-x1]], dtype=np.float32) normal /=np.linalg.norm(normal) point = np.array([[x1],[y1]], dtype=np.float32) outer = np.matmul(normal, normal.T) Lhs += outer Rhs += np.matmul(outer, point) vanishing_point = np.matmul(np.linalg.inv(Lhs),Rhs) top = vanishing_point[1] + 50 bottom = self.size[1]-100 def on_line(p1, p2, ycoord): return [p1[0]+ (p2[0]-p1[0])/float(p2[1]-p1[1])*(ycoord-p1[1]), ycoord] #define source and destination targets p1 = [vanishing_point[0] - self.WRAPPED_WIDTH/2, top] p2 = [vanishing_point[0] + self.WRAPPED_WIDTH/2, top] p3 = on_line(p2, vanishing_point, bottom) p4 = on_line(p1, vanishing_point, bottom) src_points = np.array([p1,p2,p3,p4], dtype=np.float32) # print(src_points,vanishing_point) dst_points = np.array([[0, 0], [self.UNWARPED_SIZE[0], 0], [self.UNWARPED_SIZE[0], self.UNWARPED_SIZE[1]], [0, self.UNWARPED_SIZE[1]]], dtype=np.float32) self.trans_mat = cv2.getPerspectiveTransform(src_points, dst_points) self.inv_trans_mat = cv2.getPerspectiveTransform(dst_points,src_points) min_wid = 1000 img = cv2.warpPerspective(self.image, self.trans_mat, self.UNWARPED_SIZE) grey = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) mask = grey[:,:,1]>128 mask[:, :50]=0 mask[:, -50:]=0 cv2.imshow("grey", grey) cv2.waitKey(0) cv2.destroyAllWindows() mom = cv2.moments(mask[:,:self.UNWARPED_SIZE[0]//2].astype(np.uint8)) x1 = mom["m10"]/mom["m00"] mom = cv2.moments(mask[:,self.UNWARPED_SIZE[0]//2:].astype(np.uint8)) x2 = self.UNWARPED_SIZE[0]//2 + mom["m10"]/mom["m00"] if (x2-x1<min_wid): min_wid = x2-x1 self.pixels_per_meter[0] = min_wid/self.LANE_WIDTH if False :#self.camera.callibration_done : Lh = np.linalg.inv(np.matmul(self.trans_mat, self.camera.cam_matrix)) else: Lh = np.linalg.inv(self.trans_mat) self.pixels_per_meter[1] = self.pixels_per_meter[0] * np.linalg.norm(Lh[:,0]) / np.linalg.norm(Lh[:,1]) self.perspective_done_at = datetime.utcnow().timestamp() if verbose : img_orig = cv2.polylines(self.image, [src_points.astype(np.int32)],True, (0,0,255), thickness=5) cv2.line(img, (int(x1), 0), (int(x1), self.UNWARPED_SIZE[1]), (255, 0, 0), 3) cv2.line(img, (int(x2), 0), (int(x2), self.UNWARPED_SIZE[1]), (0, 0, 255), 3) cv2.circle(img_orig,tuple(vanishing_point),10, color=(0,0,255), thickness=5) cv2.imwrite(self.temp_dir+"perspective1.jpg",img_orig) cv2.imwrite(self.temp_dir+"perspective2.jpg",img) # cv2.imshow(cv2.hconcat((img_orig, cv2.resize(img, img_orig.shape)))) return def get_speed(self): return 30 def determine_lane(self, box:OBSTACLE): points =np.array( [box.xmid, box.ymid], dtype='float32').reshape(1,1,2) new_points = cv2.perspectiveTransform(points,self.inv_trans_mat) new_points = new_points.reshape(2) left =
np.polyval(self.left_line.poly_coeffs,new_points[0])
numpy.polyval
from __future__ import division import numpy as np import matplotlib.pyplot as plt import scipy.signal as signal from scipy.io import wavfile from scipy.fftpack import fft,fftfreq from numpy.lib.function_base import angle from calibratesdr.dvbt import dvbt_const as dc import os from rtlsdr import RtlSdr # def file_input(): # ''' # Input the data file. # ''' # os.chdir('calibratesdr/dvbt/test') # filename = input("Input Recorded File Name:") # # filename = 'DVB-T 5MHz 5333333sps_IQ.wav' # frequency_center = int(input("Central Frequency:")) # # frequency_center = 5333333 # samplerate, data = wavfile.read(filename) # return data,samplerate,frequency_center def wavtoiq(data): ''' Convert the Interleaved IQ wav file to complex format ''' data = np.ravel(data) iq_data = data[0::2] + 1j*data[1::2] return iq_data def run_dsp(iq_data): constellations, num_symbols = get_constellations(iq_data) return constellations, num_symbols def get_constellations(iq_data): ''' Find the start of a symbol and extract constellation data ''' iq_dc = iq_data -
np.mean(iq_data)
numpy.mean
""" :Authors: - <NAME> """ import numpy as np from .extractor import TableLookup class RuleTable(TableLookup): CDEC_DEFAULT = 'Glue PassThrough EgivenFCoherent SampleCountF CountEF MaxLexFgivenE MaxLexEgivenF IsSingletonF IsSingletonFE'.split() def __init__(self, uid, name, fnames=CDEC_DEFAULT): super(RuleTable, self).__init__(uid, name) self._fnames = tuple(fnames) def __repr__(self): return '{0}(uid={1}, name={2}, fnames={3})'.format(RuleTable.__name__, repr(self.id), repr(self.name), repr(self._fnames)) def weights(self, wmap): # using a dense representation wvec = [] for f in self._fnames: try: wvec.append(wmap[f]) except KeyError: raise KeyError('Missing RuleTable feature: %s' % f) return
np.array(wvec, float)
numpy.array
from __future__ import print_function, division, absolute_import import math import copy import numbers import sys import os import json import types import warnings import numpy as np import cv2 import imageio import scipy.spatial.distance import six import six.moves as sm import skimage.draw import skimage.measure import collections from PIL import Image as PIL_Image, ImageDraw as PIL_ImageDraw, ImageFont as PIL_ImageFont ALL = "ALL" FILE_DIR = os.path.dirname(os.path.abspath(__file__)) # filepath to the quokka image, its annotations and depth map QUOKKA_FP = os.path.join(FILE_DIR, "quokka.jpg") QUOKKA_ANNOTATIONS_FP = os.path.join(FILE_DIR, "quokka_annotations.json") QUOKKA_DEPTH_MAP_HALFRES_FP = os.path.join(FILE_DIR, "quokka_depth_map_halfres.png") DEFAULT_FONT_FP = os.path.join( os.path.dirname(os.path.abspath(__file__)), "DejaVuSans.ttf" ) # We instantiate a current/global random state here once. # One can also call np.random, but that is (in contrast to np.random.RandomState) # a module and hence cannot be copied via deepcopy. That's why we use RandomState # here (and in all augmenters) instead of np.random. CURRENT_RANDOM_STATE = np.random.RandomState(42) SEED_MIN_VALUE = 0 SEED_MAX_VALUE = 2**31-1 # use 2**31 instead of 2**32 here because 2**31 errored on some systems # to check if a dtype instance is among these dtypes, use e.g. `dtype.type in NP_FLOAT_TYPES` # do not just use `dtype in NP_FLOAT_TYPES` as that would fail NP_FLOAT_TYPES = set(np.sctypes["float"]) NP_INT_TYPES = set(np.sctypes["int"]) NP_UINT_TYPES = set(np.sctypes["uint"]) IMSHOW_BACKEND_DEFAULT = "matplotlib" IMRESIZE_VALID_INTERPOLATIONS = ["nearest", "linear", "area", "cubic", cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC] def is_np_array(val): """ Checks whether a variable is a numpy array. Parameters ---------- val The variable to check. Returns ------- out : bool True if the variable is a numpy array. Otherwise False. """ # using np.generic here via isinstance(val, (np.ndarray, np.generic)) seems to also fire for scalar numpy values # even though those are not arrays return isinstance(val, np.ndarray) def is_single_integer(val): """ Checks whether a variable is an integer. Parameters ---------- val The variable to check. Returns ------- bool True if the variable is an integer. Otherwise False. """ return isinstance(val, numbers.Integral) and not isinstance(val, bool) def is_single_float(val): """ Checks whether a variable is a float. Parameters ---------- val The variable to check. Returns ------- bool True if the variable is a float. Otherwise False. """ return isinstance(val, numbers.Real) and not is_single_integer(val) and not isinstance(val, bool) def is_single_number(val): """ Checks whether a variable is a number, i.e. an integer or float. Parameters ---------- val The variable to check. Returns ------- bool True if the variable is a number. Otherwise False. """ return is_single_integer(val) or is_single_float(val) def is_iterable(val): """ Checks whether a variable is iterable. Parameters ---------- val The variable to check. Returns ------- bool True if the variable is an iterable. Otherwise False. """ return isinstance(val, collections.Iterable) # TODO convert to is_single_string() or rename is_single_integer/float/number() def is_string(val): """ Checks whether a variable is a string. Parameters ---------- val The variable to check. Returns ------- bool True if the variable is a string. Otherwise False. """ return isinstance(val, six.string_types) def is_single_bool(val): """ Checks whether a variable is a boolean. Parameters ---------- val The variable to check. Returns ------- bool True if the variable is a boolean. Otherwise False. """ return type(val) == type(True) def is_integer_array(val): """ Checks whether a variable is a numpy integer array. Parameters ---------- val The variable to check. Returns ------- bool True if the variable is a numpy integer array. Otherwise False. """ return is_np_array(val) and issubclass(val.dtype.type, np.integer) def is_float_array(val): """ Checks whether a variable is a numpy float array. Parameters ---------- val The variable to check. Returns ------- bool True if the variable is a numpy float array. Otherwise False. """ return is_np_array(val) and issubclass(val.dtype.type, np.floating) def is_callable(val): """ Checks whether a variable is a callable, e.g. a function. Parameters ---------- val The variable to check. Returns ------- bool True if the variable is a callable. Otherwise False. """ # python 3.x with x <= 2 does not support callable(), apparently if sys.version_info[0] == 3 and sys.version_info[1] <= 2: return hasattr(val, '__call__') else: return callable(val) def is_generator(val): """ Checks whether a variable is a generator. Parameters ---------- val The variable to check. Returns ------- bool True is the variable is a generator. Otherwise False. """ return isinstance(val, types.GeneratorType) def caller_name(): """ Returns the name of the caller, e.g. a function. Returns ------- str The name of the caller as a string """ return sys._getframe(1).f_code.co_name def seed(seedval): """ Set the seed used by the global random state and thereby all randomness in the library. This random state is by default by all augmenters. Under special circumstances (e.g. when an augmenter is switched to deterministic mode), the global random state is replaced by another -- local -- one. The replacement is dependent on the global random state. Parameters ---------- seedval : int The seed to use. """ CURRENT_RANDOM_STATE.seed(seedval) def current_random_state(): """ Returns the current/global random state of the library. Returns ---------- numpy.random.RandomState The current/global random state. """ return CURRENT_RANDOM_STATE def new_random_state(seed=None, fully_random=False): """ Returns a new random state. Parameters ---------- seed : None or int, optional Optional seed value to use. The same datatypes are allowed as for ``numpy.random.RandomState(seed)``. fully_random : bool, optional Whether to use numpy's random initialization for the RandomState (used if set to True). If False, a seed is sampled from the global random state, which is a bit faster and hence the default. Returns ------- numpy.random.RandomState The new random state. """ if seed is None: if not fully_random: # sample manually a seed instead of just RandomState(), # because the latter one # is way slower. seed = CURRENT_RANDOM_STATE.randint(SEED_MIN_VALUE, SEED_MAX_VALUE, 1)[0] return np.random.RandomState(seed) def dummy_random_state(): """ Returns a dummy random state that is always based on a seed of 1. Returns ------- numpy.random.RandomState The new random state. """ return np.random.RandomState(1) def copy_random_state(random_state, force_copy=False): """ Creates a copy of a random state. Parameters ---------- random_state : numpy.random.RandomState The random state to copy. force_copy : bool, optional If True, this function will always create a copy of every random state. If False, it will not copy numpy's default random state, but all other random states. Returns ------- rs_copy : numpy.random.RandomState The copied random state. """ if random_state == np.random and not force_copy: return random_state else: rs_copy = dummy_random_state() orig_state = random_state.get_state() rs_copy.set_state(orig_state) return rs_copy def derive_random_state(random_state): """ Create a new random states based on an existing random state or seed. Parameters ---------- random_state : numpy.random.RandomState Random state or seed from which to derive the new random state. Returns ------- numpy.random.RandomState Derived random state. """ return derive_random_states(random_state, n=1)[0] # TODO use this everywhere instead of manual seed + create def derive_random_states(random_state, n=1): """ Create N new random states based on an existing random state or seed. Parameters ---------- random_state : numpy.random.RandomState Random state or seed from which to derive new random states. n : int, optional Number of random states to derive. Returns ------- list of numpy.random.RandomState Derived random states. """ seed_ = random_state.randint(SEED_MIN_VALUE, SEED_MAX_VALUE, 1)[0] return [new_random_state(seed_+i) for i in sm.xrange(n)] def forward_random_state(random_state): """ Forward the internal state of a random state. This makes sure that future calls to the random_state will produce new random values. Parameters ---------- random_state : numpy.random.RandomState Random state to forward. """ random_state.uniform() def _quokka_normalize_extract(extract): """ Generate a normalized rectangle to be extract from the standard quokka image. Parameters ---------- extract : 'square' or tuple of number or imgaug.BoundingBox or imgaug.BoundingBoxesOnImage Unnormalized representation of the image subarea to be extracted. * If string ``square``, then a squared area ``(x: 0 to max 643, y: 0 to max 643)`` will be extracted from the image. * If a tuple, then expected to contain four numbers denoting ``x1``, ``y1``, ``x2`` and ``y2``. * If a BoundingBox, then that bounding box's area will be extracted from the image. * If a BoundingBoxesOnImage, then expected to contain exactly one bounding box and a shape matching the full image dimensions (i.e. (643, 960, *)). Then the one bounding box will be used similar to BoundingBox. Returns ------- bb : imgaug.BoundingBox Normalized representation of the area to extract from the standard quokka image. """ if extract == "square": bb = BoundingBox(x1=0, y1=0, x2=643, y2=643) elif isinstance(extract, tuple) and len(extract) == 4: bb = BoundingBox(x1=extract[0], y1=extract[1], x2=extract[2], y2=extract[3]) elif isinstance(extract, BoundingBox): bb = extract elif isinstance(extract, BoundingBoxesOnImage): do_assert(len(extract.bounding_boxes) == 1) do_assert(extract.shape[0:2] == (643, 960)) bb = extract.bounding_boxes[0] else: raise Exception( "Expected 'square' or tuple of four entries or BoundingBox or BoundingBoxesOnImage " + "for parameter 'extract', got %s." % (type(extract),) ) return bb def _compute_resized_shape(from_shape, to_shape): """ Computes the intended new shape of an image-like array after resizing. Parameters ---------- from_shape : tuple or ndarray Old shape of the array. Usually expected to be a tuple of form ``(H, W)`` or ``(H, W, C)`` or alternatively an array with two or three dimensions. to_shape : None or tuple of ints or tuple of floats or int or float or ndarray New shape of the array. * If None, then `from_shape` will be used as the new shape. * If an int ``V``, then the new shape will be ``(V, V, [C])``, where ``C`` will be added if it is part of `from_shape`. * If a float ``V``, then the new shape will be ``(H*V, W*V, [C])``, where ``H`` and ``W`` are the old height/width. * If a tuple ``(H', W', [C'])`` of ints, then ``H'`` and ``W'`` will be used as the new height and width. * If a tuple ``(H', W', [C'])`` of floats (except ``C``), then ``H'`` and ``W'`` will be used as the new height and width. * If a numpy array, then the array's shape will be used. Returns ------- to_shape_computed : tuple of int New shape. """ if is_np_array(from_shape): from_shape = from_shape.shape if is_np_array(to_shape): to_shape = to_shape.shape to_shape_computed = list(from_shape) if to_shape is None: pass elif isinstance(to_shape, tuple): do_assert(len(from_shape) in [2, 3]) do_assert(len(to_shape) in [2, 3]) if len(from_shape) == 3 and len(to_shape) == 3: do_assert(from_shape[2] == to_shape[2]) elif len(to_shape) == 3: to_shape_computed.append(to_shape[2]) do_assert(all([v is None or is_single_number(v) for v in to_shape[0:2]]), "Expected the first two entries in to_shape to be None or numbers, " + "got types %s." % (str([type(v) for v in to_shape[0:2]]),)) for i, from_shape_i in enumerate(from_shape[0:2]): if to_shape[i] is None: to_shape_computed[i] = from_shape_i elif is_single_integer(to_shape[i]): to_shape_computed[i] = to_shape[i] else: # float to_shape_computed[i] = int(np.round(from_shape_i * to_shape[i])) elif is_single_integer(to_shape) or is_single_float(to_shape): to_shape_computed = _compute_resized_shape(from_shape, (to_shape, to_shape)) else: raise Exception("Expected to_shape to be None or ndarray or tuple of floats or tuple of ints or single int " + "or single float, got %s." % (type(to_shape),)) return tuple(to_shape_computed) def quokka(size=None, extract=None): """ Returns an image of a quokka as a numpy array. Parameters ---------- size : None or float or tuple of int, optional Size of the output image. Input into :func:`imgaug.imgaug.imresize_single_image`. Usually expected to be a tuple ``(H, W)``, where ``H`` is the desired height and ``W`` is the width. If None, then the image will not be resized. extract : None or 'square' or tuple of number or imgaug.BoundingBox or imgaug.BoundingBoxesOnImage Subarea of the quokka image to extract: * If None, then the whole image will be used. * If string ``square``, then a squared area ``(x: 0 to max 643, y: 0 to max 643)`` will be extracted from the image. * If a tuple, then expected to contain four numbers denoting ``x1``, ``y1``, ``x2`` and ``y2``. * If a BoundingBox, then that bounding box's area will be extracted from the image. * If a BoundingBoxesOnImage, then expected to contain exactly one bounding box and a shape matching the full image dimensions (i.e. ``(643, 960, *)``). Then the one bounding box will be used similar to BoundingBox. Returns ------- img : (H,W,3) ndarray The image array of dtype uint8. """ img = imageio.imread(QUOKKA_FP, pilmode="RGB") if extract is not None: bb = _quokka_normalize_extract(extract) img = bb.extract_from_image(img) if size is not None: shape_resized = _compute_resized_shape(img.shape, size) img = imresize_single_image(img, shape_resized[0:2]) return img def quokka_square(size=None): """ Returns an (square) image of a quokka as a numpy array. Parameters ---------- size : None or float or tuple of int, optional Size of the output image. Input into :func:`imgaug.imgaug.imresize_single_image`. Usually expected to be a tuple ``(H, W)``, where ``H`` is the desired height and ``W`` is the width. If None, then the image will not be resized. Returns ------- img : (H,W,3) ndarray The image array of dtype uint8. """ return quokka(size=size, extract="square") def quokka_heatmap(size=None, extract=None): """ Returns a heatmap (here: depth map) for the standard example quokka image. Parameters ---------- size : None or float or tuple of int, optional See :func:`imgaug.quokka`. extract : None or 'square' or tuple of number or imgaug.BoundingBox or imgaug.BoundingBoxesOnImage See :func:`imgaug.quokka`. Returns ------- result : imgaug.HeatmapsOnImage Depth map as an heatmap object. Values close to 0.0 denote objects that are close to the camera. Values close to 1.0 denote objects that are furthest away (among all shown objects). """ img = imageio.imread(QUOKKA_DEPTH_MAP_HALFRES_FP, pilmode="RGB") img = imresize_single_image(img, (643, 960), interpolation="cubic") if extract is not None: bb = _quokka_normalize_extract(extract) img = bb.extract_from_image(img) if size is None: size = img.shape[0:2] shape_resized = _compute_resized_shape(img.shape, size) img = imresize_single_image(img, shape_resized[0:2]) img_0to1 = img[..., 0] # depth map was saved as 3-channel RGB img_0to1 = img_0to1.astype(np.float32) / 255.0 img_0to1 = 1 - img_0to1 # depth map was saved as 0 being furthest away return HeatmapsOnImage(img_0to1, shape=img_0to1.shape[0:2] + (3,)) def quokka_segmentation_map(size=None, extract=None): """ Returns a segmentation map for the standard example quokka image. Parameters ---------- size : None or float or tuple of int, optional See :func:`imgaug.quokka`. extract : None or 'square' or tuple of number or imgaug.BoundingBox or imgaug.BoundingBoxesOnImage See :func:`imgaug.quokka`. Returns ------- result : imgaug.SegmentationMapOnImage Segmentation map object. """ with open(QUOKKA_ANNOTATIONS_FP, "r") as f: json_dict = json.load(f) xx = [] yy = [] for kp_dict in json_dict["polygons"][0]["keypoints"]: x = kp_dict["x"] y = kp_dict["y"] xx.append(x) yy.append(y) img_seg = np.zeros((643, 960, 1), dtype=np.float32) rr, cc = skimage.draw.polygon(np.array(yy), np.array(xx), shape=img_seg.shape) img_seg[rr, cc] = 1.0 if extract is not None: bb = _quokka_normalize_extract(extract) img_seg = bb.extract_from_image(img_seg) segmap = SegmentationMapOnImage(img_seg, shape=img_seg.shape[0:2] + (3,)) if size is not None: shape_resized = _compute_resized_shape(img_seg.shape, size) segmap = segmap.resize(shape_resized[0:2]) segmap.shape = tuple(shape_resized[0:2]) + (3,) return segmap def quokka_keypoints(size=None, extract=None): """ Returns example keypoints on the standard example quokke image. The keypoints cover the eyes, ears, nose and paws. Parameters ---------- size : None or float or tuple of int or tuple of float, optional Size of the output image on which the keypoints are placed. If None, then the keypoints are not projected to any new size (positions on the original image are used). Floats lead to relative size changes, ints to absolute sizes in pixels. extract : None or 'square' or tuple of number or imgaug.BoundingBox or imgaug.BoundingBoxesOnImage Subarea to extract from the image. See :func:`imgaug.quokka`. Returns ------- kpsoi : imgaug.KeypointsOnImage Example keypoints on the quokka image. """ left, top = 0, 0 if extract is not None: bb_extract = _quokka_normalize_extract(extract) left = bb_extract.x1 top = bb_extract.y1 with open(QUOKKA_ANNOTATIONS_FP, "r") as f: json_dict = json.load(f) keypoints = [] for kp_dict in json_dict["keypoints"]: keypoints.append(Keypoint(x=kp_dict["x"] - left, y=kp_dict["y"] - top)) if extract is not None: shape = (bb_extract.height, bb_extract.width, 3) else: shape = (643, 960, 3) kpsoi = KeypointsOnImage(keypoints, shape=shape) if size is not None: shape_resized = _compute_resized_shape(shape, size) kpsoi = kpsoi.on(shape_resized) return kpsoi def quokka_bounding_boxes(size=None, extract=None): """ Returns example bounding boxes on the standard example quokke image. Currently only a single bounding box is returned that covers the quokka. Parameters ---------- size : None or float or tuple of int or tuple of float, optional Size of the output image on which the BBs are placed. If None, then the BBs are not projected to any new size (positions on the original image are used). Floats lead to relative size changes, ints to absolute sizes in pixels. extract : None or 'square' or tuple of number or imgaug.BoundingBox or imgaug.BoundingBoxesOnImage Subarea to extract from the image. See :func:`imgaug.quokka`. Returns ------- bbsoi : imgaug.BoundingBoxesOnImage Example BBs on the quokka image. """ left, top = 0, 0 if extract is not None: bb_extract = _quokka_normalize_extract(extract) left = bb_extract.x1 top = bb_extract.y1 with open(QUOKKA_ANNOTATIONS_FP, "r") as f: json_dict = json.load(f) bbs = [] for bb_dict in json_dict["bounding_boxes"]: bbs.append( BoundingBox( x1=bb_dict["x1"] - left, y1=bb_dict["y1"] - top, x2=bb_dict["x2"] - left, y2=bb_dict["y2"] - top ) ) if extract is not None: shape = (bb_extract.height, bb_extract.width, 3) else: shape = (643, 960, 3) bbsoi = BoundingBoxesOnImage(bbs, shape=shape) if size is not None: shape_resized = _compute_resized_shape(shape, size) bbsoi = bbsoi.on(shape_resized) return bbsoi def angle_between_vectors(v1, v2): """ Returns the angle in radians between vectors `v1` and `v2`. From http://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python Parameters ---------- v1 : (N,) ndarray First vector. v2 : (N,) ndarray Second vector. Returns ------- out : float Angle in radians. Examples -------- >>> angle_between_vectors(np.float32([1, 0, 0]), np.float32([0, 1, 0])) 1.570796... >>> angle_between_vectors(np.float32([1, 0, 0]), np.float32([1, 0, 0])) 0.0 >>> angle_between_vectors(np.float32([1, 0, 0]), np.float32([-1, 0, 0])) 3.141592... """ v1_u = v1 / np.linalg.norm(v1) v2_u = v2 / np.linalg.norm(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) # TODO is this used anywhere? def compute_line_intersection_point(x1, y1, x2, y2, x3, y3, x4, y4): """ Compute the intersection point of two lines. Taken from https://stackoverflow.com/a/20679579 . Parameters ---------- x1 : number x coordinate of the first point on line 1. (The lines extends beyond this point.) y1 : number: y coordinate of the first point on line 1. (The lines extends beyond this point.) x2 : number x coordinate of the second point on line 1. (The lines extends beyond this point.) y2 : number: y coordinate of the second point on line 1. (The lines extends beyond this point.) x3 : number x coordinate of the first point on line 2. (The lines extends beyond this point.) y3 : number: y coordinate of the first point on line 2. (The lines extends beyond this point.) x4 : number x coordinate of the second point on line 2. (The lines extends beyond this point.) y4 : number: y coordinate of the second point on line 2. (The lines extends beyond this point.) Returns ------- tuple of number or bool The coordinate of the intersection point as a tuple ``(x, y)``. If the lines are parallel (no intersection point or an infinite number of them), the result is False. """ def _make_line(p1, p2): A = (p1[1] - p2[1]) B = (p2[0] - p1[0]) C = (p1[0]*p2[1] - p2[0]*p1[1]) return A, B, -C L1 = _make_line((x1, y1), (x2, y2)) L2 = _make_line((x3, y3), (x4, y4)) D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] if D != 0: x = Dx / D y = Dy / D return x, y else: return False # TODO replace by cv2.putText()? def draw_text(img, y, x, text, color=(0, 255, 0), size=25): """ Draw text on an image. This uses by default DejaVuSans as its font, which is included in this library. dtype support:: * ``uint8``: yes; fully tested * ``uint16``: no * ``uint32``: no * ``uint64``: no * ``int8``: no * ``int16``: no * ``int32``: no * ``int64``: no * ``float16``: no * ``float32``: yes; not tested * ``float64``: no * ``float128``: no * ``bool``: no TODO check if other dtypes could be enabled Parameters ---------- img : (H,W,3) ndarray The image array to draw text on. Expected to be of dtype uint8 or float32 (value range 0.0 to 255.0). y : int x-coordinate of the top left corner of the text. x : int y- coordinate of the top left corner of the text. text : str The text to draw. color : iterable of int, optional Color of the text to draw. For RGB-images this is expected to be an RGB color. size : int, optional Font size of the text to draw. Returns ------- img_np : (H,W,3) ndarray Input image with text drawn on it. """ do_assert(img.dtype in [np.uint8, np.float32]) input_dtype = img.dtype if img.dtype == np.float32: img = img.astype(np.uint8) img = PIL_Image.fromarray(img) font = PIL_ImageFont.truetype(DEFAULT_FONT_FP, size) context = PIL_ImageDraw.Draw(img) context.text((x, y), text, fill=tuple(color), font=font) img_np = np.asarray(img) img_np.setflags(write=True) # PIL/asarray returns read only array if img_np.dtype != input_dtype: img_np = img_np.astype(input_dtype) return img_np # TODO rename sizes to size? def imresize_many_images(images, sizes=None, interpolation=None): """ Resize many images to a specified size. dtype support:: * ``uint8``: yes; fully tested * ``uint16``: yes; tested * ``uint32``: no (1) * ``uint64``: no (2) * ``int8``: yes; tested (3) * ``int16``: yes; tested * ``int32``: limited; tested (4) * ``int64``: no (2) * ``float16``: yes; tested (5) * ``float32``: yes; tested * ``float64``: yes; tested * ``float128``: no (1) * ``bool``: yes; tested (6) - (1) rejected by ``cv2.imresize`` - (2) results too inaccurate - (3) mapped internally to ``int16`` when interpolation!="nearest" - (4) only supported for interpolation="nearest", other interpolations lead to cv2 error - (5) mapped internally to ``float32`` - (6) mapped internally to ``uint8`` Parameters ---------- images : (N,H,W,[C]) ndarray or list of (H,W,[C]) ndarray Array of the images to resize. Usually recommended to be of dtype uint8. sizes : float or iterable of int or iterable of float The new size of the images, given either as a fraction (a single float) or as a ``(height, width)`` tuple of two integers or as a ``(height fraction, width fraction)`` tuple of two floats. interpolation : None or str or int, optional The interpolation to use during resize. If int, then expected to be one of: * ``cv2.INTER_NEAREST`` (nearest neighbour interpolation) * ``cv2.INTER_LINEAR`` (linear interpolation) * ``cv2.INTER_AREA`` (area interpolation) * ``cv2.INTER_CUBIC`` (cubic interpolation) If string, then expected to be one of: * ``nearest`` (identical to ``cv2.INTER_NEAREST``) * ``linear`` (identical to ``cv2.INTER_LINEAR``) * ``area`` (identical to ``cv2.INTER_AREA``) * ``cubic`` (identical to ``cv2.INTER_CUBIC``) If None, the interpolation will be chosen automatically. For size increases, area interpolation will be picked and for size decreases, linear interpolation will be picked. Returns ------- result : (N,H',W',[C]) ndarray Array of the resized images. Examples -------- >>> imresize_many_images(np.zeros((2, 16, 16, 3), dtype=np.uint8), 2.0) Converts 2 RGB images of height and width 16 to images of height and width 16*2 = 32. >>> imresize_many_images(np.zeros((2, 16, 16, 3), dtype=np.uint8), (16, 32)) Converts 2 RGB images of height and width 16 to images of height 16 and width 32. >>> imresize_many_images(np.zeros((2, 16, 16, 3), dtype=np.uint8), (2.0, 4.0)) Converts 2 RGB images of height and width 16 to images of height 32 and width 64. """ # we just do nothing if the input contains zero images # one could also argue that an exception would be appropriate here if len(images) == 0: return images # verify that all input images have height/width > 0 do_assert( all([image.shape[0] > 0 and image.shape[1] > 0 for image in images]), ("Cannot resize images, because at least one image has a height and/or width of zero. " + "Observed shapes were: %s.") % (str([image.shape for image in images]),) ) # verify that sizes contains only values >0 if is_single_number(sizes) and sizes <= 0: raise Exception( "Cannot resize to the target size %.8f, because the value is zero or lower than zero." % (sizes,)) elif isinstance(sizes, tuple) and (sizes[0] <= 0 or sizes[1] <= 0): sizes_str = [ "int %d" % (sizes[0],) if is_single_integer(sizes[0]) else "float %.8f" % (sizes[0],), "int %d" % (sizes[1],) if is_single_integer(sizes[1]) else "float %.8f" % (sizes[1],), ] sizes_str = "(%s, %s)" % (sizes_str[0], sizes_str[1]) raise Exception( "Cannot resize to the target sizes %s. At least one value is zero or lower than zero." % (sizes_str,)) # change after the validation to make the above error messages match the original input if is_single_number(sizes): sizes = (sizes, sizes) else: do_assert(len(sizes) == 2, "Expected tuple with exactly two entries, got %d entries." % (len(sizes),)) do_assert(all([is_single_number(val) for val in sizes]), "Expected tuple with two ints or floats, got types %s." % (str([type(val) for val in sizes]),)) # if input is a list, call this function N times for N images # but check beforehand if all images have the same shape, then just convert to a single array and de-convert # afterwards if isinstance(images, list): nb_shapes = len(set([image.shape for image in images])) if nb_shapes == 1: return list(imresize_many_images(np.array(images), sizes=sizes, interpolation=interpolation)) else: return [imresize_many_images(image[np.newaxis, ...], sizes=sizes, interpolation=interpolation)[0, ...] for image in images] shape = images.shape do_assert(images.ndim in [3, 4], "Expected array of shape (N, H, W, [C]), got shape %s" % (str(shape),)) nb_images = shape[0] im_height, im_width = shape[1], shape[2] nb_channels = shape[3] if images.ndim > 3 else None height, width = sizes[0], sizes[1] height = int(np.round(im_height * height)) if is_single_float(height) else height width = int(np.round(im_width * width)) if is_single_float(width) else width if height == im_height and width == im_width: return np.copy(images) ip = interpolation do_assert(ip is None or ip in IMRESIZE_VALID_INTERPOLATIONS) if ip is None: if height > im_height or width > im_width: ip = cv2.INTER_AREA else: ip = cv2.INTER_LINEAR elif ip in ["nearest", cv2.INTER_NEAREST]: ip = cv2.INTER_NEAREST elif ip in ["linear", cv2.INTER_LINEAR]: ip = cv2.INTER_LINEAR elif ip in ["area", cv2.INTER_AREA]: ip = cv2.INTER_AREA else: # if ip in ["cubic", cv2.INTER_CUBIC]: ip = cv2.INTER_CUBIC # TODO find more beautiful way to avoid circular imports from . import dtypes as iadt if ip == cv2.INTER_NEAREST: iadt.gate_dtypes(images, allowed=["bool", "uint8", "uint16", "int8", "int16", "int32", "float16", "float32", "float64"], disallowed=["uint32", "uint64", "uint128", "uint256", "int64", "int128", "int256", "float96", "float128", "float256"], augmenter=None) else: iadt.gate_dtypes(images, allowed=["bool", "uint8", "uint16", "int8", "int16", "float16", "float32", "float64"], disallowed=["uint32", "uint64", "uint128", "uint256", "int32", "int64", "int128", "int256", "float96", "float128", "float256"], augmenter=None) result_shape = (nb_images, height, width) if nb_channels is not None: result_shape = result_shape + (nb_channels,) result = np.zeros(result_shape, dtype=images.dtype) for i, image in enumerate(images): input_dtype = image.dtype if image.dtype.type == np.bool_: image = image.astype(np.uint8) * 255 elif image.dtype.type == np.int8 and ip != cv2.INTER_NEAREST: image = image.astype(np.int16) elif image.dtype.type == np.float16: image = image.astype(np.float32) result_img = cv2.resize(image, (width, height), interpolation=ip) assert result_img.dtype == image.dtype # cv2 removes the channel axis if input was (H, W, 1) # we re-add it (but only if input was not (H, W)) if len(result_img.shape) == 2 and nb_channels is not None and nb_channels == 1: result_img = result_img[:, :, np.newaxis] if input_dtype.type == np.bool_: result_img = result_img > 127 elif input_dtype.type == np.int8 and ip != cv2.INTER_NEAREST: # TODO somehow better avoid circular imports here from . import dtypes as iadt result_img = iadt.restore_dtypes_(result_img, np.int8) elif input_dtype.type == np.float16: # TODO see above from . import dtypes as iadt result_img = iadt.restore_dtypes_(result_img, np.float16) result[i] = result_img return result def imresize_single_image(image, sizes, interpolation=None): """ Resizes a single image. dtype support:: See :func:`imgaug.imgaug.imresize_many_images`. Parameters ---------- image : (H,W,C) ndarray or (H,W) ndarray Array of the image to resize. Usually recommended to be of dtype uint8. sizes : float or iterable of int or iterable of float See :func:`imgaug.imgaug.imresize_many_images`. interpolation : None or str or int, optional See :func:`imgaug.imgaug.imresize_many_images`. Returns ------- out : (H',W',C) ndarray or (H',W') ndarray The resized image. """ grayscale = False if image.ndim == 2: grayscale = True image = image[:, :, np.newaxis] do_assert(len(image.shape) == 3, image.shape) rs = imresize_many_images(image[np.newaxis, :, :, :], sizes, interpolation=interpolation) if grayscale: return np.squeeze(rs[0, :, :, 0]) else: return rs[0, ...] # TODO add crop() function too def pad(arr, top=0, right=0, bottom=0, left=0, mode="constant", cval=0): """ Pad an image-like array on its top/right/bottom/left side. This function is a wrapper around :func:`numpy.pad`. dtype support:: * ``uint8``: yes; fully tested (1) * ``uint16``: yes; fully tested (1) * ``uint32``: yes; fully tested (2) (3) * ``uint64``: yes; fully tested (2) (3) * ``int8``: yes; fully tested (1) * ``int16``: yes; fully tested (1) * ``int32``: yes; fully tested (1) * ``int64``: yes; fully tested (2) (3) * ``float16``: yes; fully tested (2) (3) * ``float32``: yes; fully tested (1) * ``float64``: yes; fully tested (1) * ``float128``: yes; fully tested (2) (3) * ``bool``: yes; tested (2) (3) - (1) Uses ``cv2`` if `mode` is one of: ``"constant"``, ``"edge"``, ``"reflect"``, ``"symmetric"``. Otherwise uses ``numpy``. - (2) Uses ``numpy``. - (3) Rejected by ``cv2``. Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Image-like array to pad. top : int, optional Amount of pixels to add at the top side of the image. Must be 0 or greater. right : int, optional Amount of pixels to add at the right side of the image. Must be 0 or greater. bottom : int, optional Amount of pixels to add at the bottom side of the image. Must be 0 or greater. left : int, optional Amount of pixels to add at the left side of the image. Must be 0 or greater. mode : str, optional Padding mode to use. See :func:`numpy.pad` for details. In case of mode ``constant``, the parameter `cval` will be used as the ``constant_values`` parameter to :func:`numpy.pad`. In case of mode ``linear_ramp``, the parameter `cval` will be used as the ``end_values`` parameter to :func:`numpy.pad`. cval : number, optional Value to use for padding if `mode` is ``constant``. See :func:`numpy.pad` for details. The cval is expected to match the input array's dtype and value range. Returns ------- arr_pad : (H',W') ndarray or (H',W',C) ndarray Padded array with height ``H'=H+top+bottom`` and width ``W'=W+left+right``. """ do_assert(arr.ndim in [2, 3]) do_assert(top >= 0) do_assert(right >= 0) do_assert(bottom >= 0) do_assert(left >= 0) if top > 0 or right > 0 or bottom > 0 or left > 0: mapping_mode_np_to_cv2 = { "constant": cv2.BORDER_CONSTANT, "edge": cv2.BORDER_REPLICATE, "linear_ramp": None, "maximum": None, "mean": None, "median": None, "minimum": None, "reflect": cv2.BORDER_REFLECT_101, "symmetric": cv2.BORDER_REFLECT, "wrap": None, cv2.BORDER_CONSTANT: cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE: cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT_101: cv2.BORDER_REFLECT_101, cv2.BORDER_REFLECT: cv2.BORDER_REFLECT } bad_mode_cv2 = mapping_mode_np_to_cv2.get(mode, None) is None # these datatypes all simply generate a "TypeError: src data type = X is not supported" error bad_datatype_cv2 = arr.dtype.name in ["uint32", "uint64", "int64", "float16", "float128", "bool"] if not bad_datatype_cv2 and not bad_mode_cv2: cval = float(cval) if arr.dtype.kind == "f" else int(cval) # results in TypeError otherwise for np inputs if arr.ndim == 2 or arr.shape[2] <= 4: # without this, only the first channel is padded with the cval, all following channels with 0 if arr.ndim == 3: cval = tuple([cval] * arr.shape[2]) arr_pad = cv2.copyMakeBorder(arr, top=top, bottom=bottom, left=left, right=right, borderType=mapping_mode_np_to_cv2[mode], value=cval) if arr.ndim == 3 and arr_pad.ndim == 2: arr_pad = arr_pad[..., np.newaxis] else: result = [] channel_start_idx = 0 while channel_start_idx < arr.shape[2]: arr_c = arr[..., channel_start_idx:channel_start_idx+4] cval_c = tuple([cval] * arr_c.shape[2]) arr_pad_c = cv2.copyMakeBorder(arr_c, top=top, bottom=bottom, left=left, right=right, borderType=mapping_mode_np_to_cv2[mode], value=cval_c) arr_pad_c = np.atleast_3d(arr_pad_c) result.append(arr_pad_c) channel_start_idx += 4 arr_pad = np.concatenate(result, axis=2) else: paddings_np = [(top, bottom), (left, right)] # paddings for 2d case if arr.ndim == 3: paddings_np.append((0, 0)) # add paddings for 3d case if mode == "constant": arr_pad = np.pad(arr, paddings_np, mode=mode, constant_values=cval) elif mode == "linear_ramp": arr_pad = np.pad(arr, paddings_np, mode=mode, end_values=cval) else: arr_pad = np.pad(arr, paddings_np, mode=mode) return arr_pad return np.copy(arr) # TODO allow shape as input instead of array def compute_paddings_for_aspect_ratio(arr, aspect_ratio): """ Compute the amount of pixels by which an array has to be padded to fulfill an aspect ratio. The aspect ratio is given as width/height. Depending on which dimension is smaller (height or width), only the corresponding sides (left/right or top/bottom) will be padded. In each case, both of the sides will be padded equally. Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Image-like array for which to compute pad amounts. aspect_ratio : float Target aspect ratio, given as width/height. E.g. 2.0 denotes the image having twice as much width as height. Returns ------- result : tuple of int Required paddign amounts to reach the target aspect ratio, given as a tuple of the form ``(top, right, bottom, left)``. """ do_assert(arr.ndim in [2, 3]) do_assert(aspect_ratio > 0) height, width = arr.shape[0:2] do_assert(height > 0) aspect_ratio_current = width / height pad_top = 0 pad_right = 0 pad_bottom = 0 pad_left = 0 if aspect_ratio_current < aspect_ratio: # vertical image, height > width diff = (aspect_ratio * height) - width pad_right = int(np.ceil(diff / 2)) pad_left = int(np.floor(diff / 2)) elif aspect_ratio_current > aspect_ratio: # horizontal image, width > height diff = ((1/aspect_ratio) * width) - height pad_top = int(np.floor(diff / 2)) pad_bottom = int(np.ceil(diff / 2)) return pad_top, pad_right, pad_bottom, pad_left def pad_to_aspect_ratio(arr, aspect_ratio, mode="constant", cval=0, return_pad_amounts=False): """ Pad an image-like array on its sides so that it matches a target aspect ratio. Depending on which dimension is smaller (height or width), only the corresponding sides (left/right or top/bottom) will be padded. In each case, both of the sides will be padded equally. dtype support:: See :func:`imgaug.imgaug.pad`. Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Image-like array to pad. aspect_ratio : float Target aspect ratio, given as width/height. E.g. 2.0 denotes the image having twice as much width as height. mode : str, optional Padding mode to use. See :func:`numpy.pad` for details. cval : number, optional Value to use for padding if `mode` is ``constant``. See :func:`numpy.pad` for details. return_pad_amounts : bool, optional If False, then only the padded image will be returned. If True, a tuple with two entries will be returned, where the first entry is the padded image and the second entry are the amounts by which each image side was padded. These amounts are again a tuple of the form (top, right, bottom, left), with each value being an integer. Returns ------- arr_padded : (H',W') ndarray or (H',W',C) ndarray Padded image as (H',W') or (H',W',C) ndarray, fulfulling the given aspect_ratio. tuple of int Amounts by which the image was padded on each side, given as a tuple ``(top, right, bottom, left)``. This tuple is only returned if `return_pad_amounts` was set to True. Otherwise only ``arr_padded`` is returned. """ pad_top, pad_right, pad_bottom, pad_left = compute_paddings_for_aspect_ratio(arr, aspect_ratio) arr_padded = pad( arr, top=pad_top, right=pad_right, bottom=pad_bottom, left=pad_left, mode=mode, cval=cval ) if return_pad_amounts: return arr_padded, (pad_top, pad_right, pad_bottom, pad_left) else: return arr_padded def pool(arr, block_size, func, cval=0, preserve_dtype=True): """ Resize an array by pooling values within blocks. dtype support:: * ``uint8``: yes; fully tested * ``uint16``: yes; tested * ``uint32``: yes; tested (2) * ``uint64``: no (1) * ``int8``: yes; tested * ``int16``: yes; tested * ``int32``: yes; tested (2) * ``int64``: no (1) * ``float16``: yes; tested * ``float32``: yes; tested * ``float64``: yes; tested * ``float128``: yes; tested (2) * ``bool``: yes; tested - (1) results too inaccurate (at least when using np.average as func) - (2) Note that scikit-image documentation says that the wrapped pooling function converts inputs to float64. Actual tests showed no indication of that happening (at least when using preserve_dtype=True). Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Image-like array to pool. Ideally of datatype ``numpy.float64``. block_size : int or tuple of int Spatial size of each group of values to pool, aka kernel size. If a single integer, then a symmetric block of that size along height and width will be used. If a tuple of two values, it is assumed to be the block size along height and width of the image-like, with pooling happening per channel. If a tuple of three values, it is assumed to be the block size along height, width and channels. func : callable Function to apply to a given block in order to convert it to a single number, e.g. :func:`numpy.average`, :func:`numpy.min`, :func:`numpy.max`. cval : number, optional Value to use in order to pad the array along its border if the array cannot be divided by `block_size` without remainder. preserve_dtype : bool, optional Whether to convert the array back to the input datatype if it is changed away from that in the pooling process. Returns ------- arr_reduced : (H',W') ndarray or (H',W',C') ndarray Array after pooling. """ # TODO find better way to avoid circular import from . import dtypes as iadt iadt.gate_dtypes(arr, allowed=["bool", "uint8", "uint16", "uint32", "int8", "int16", "int32", "float16", "float32", "float64", "float128"], disallowed=["uint64", "uint128", "uint256", "int64", "int128", "int256", "float256"], augmenter=None) do_assert(arr.ndim in [2, 3]) is_valid_int = is_single_integer(block_size) and block_size >= 1 is_valid_tuple = is_iterable(block_size) and len(block_size) in [2, 3] \ and [is_single_integer(val) and val >= 1 for val in block_size] do_assert(is_valid_int or is_valid_tuple) if is_single_integer(block_size): block_size = [block_size, block_size] if len(block_size) < arr.ndim: block_size = list(block_size) + [1] input_dtype = arr.dtype arr_reduced = skimage.measure.block_reduce(arr, tuple(block_size), func, cval=cval) if preserve_dtype and arr_reduced.dtype.type != input_dtype: arr_reduced = arr_reduced.astype(input_dtype) return arr_reduced def avg_pool(arr, block_size, cval=0, preserve_dtype=True): """ Resize an array using average pooling. dtype support:: See :func:`imgaug.imgaug.pool`. Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Image-like array to pool. See :func:`imgaug.pool` for details. block_size : int or tuple of int or tuple of int Size of each block of values to pool. See :func:`imgaug.pool` for details. cval : number, optional Padding value. See :func:`imgaug.pool` for details. preserve_dtype : bool, optional Whether to preserve the input array dtype. See :func:`imgaug.pool` for details. Returns ------- arr_reduced : (H',W') ndarray or (H',W',C') ndarray Array after average pooling. """ return pool(arr, block_size, np.average, cval=cval, preserve_dtype=preserve_dtype) def max_pool(arr, block_size, cval=0, preserve_dtype=True): """ Resize an array using max-pooling. dtype support:: See :func:`imgaug.imgaug.pool`. Parameters ---------- arr : (H,W) ndarray or (H,W,C) ndarray Image-like array to pool. See :func:`imgaug.pool` for details. block_size : int or tuple of int or tuple of int Size of each block of values to pool. See `imgaug.pool` for details. cval : number, optional Padding value. See :func:`imgaug.pool` for details. preserve_dtype : bool, optional Whether to preserve the input array dtype. See :func:`imgaug.pool` for details. Returns ------- arr_reduced : (H',W') ndarray or (H',W',C') ndarray Array after max-pooling. """ return pool(arr, block_size, np.max, cval=cval, preserve_dtype=preserve_dtype) def draw_grid(images, rows=None, cols=None): """ Converts multiple input images into a single image showing them in a grid. dtype support:: * ``uint8``: yes; fully tested * ``uint16``: yes; fully tested * ``uint32``: yes; fully tested * ``uint64``: yes; fully tested * ``int8``: yes; fully tested * ``int16``: yes; fully tested * ``int32``: yes; fully tested * ``int64``: yes; fully tested * ``float16``: yes; fully tested * ``float32``: yes; fully tested * ``float64``: yes; fully tested * ``float128``: yes; fully tested * ``bool``: yes; fully tested Parameters ---------- images : (N,H,W,3) ndarray or iterable of (H,W,3) array The input images to convert to a grid. rows : None or int, optional The number of rows to show in the grid. If None, it will be automatically derived. cols : None or int, optional The number of cols to show in the grid. If None, it will be automatically derived. Returns ------- grid : (H',W',3) ndarray Image of the generated grid. """ nb_images = len(images) do_assert(nb_images > 0) if is_np_array(images): do_assert(images.ndim == 4) else: do_assert(is_iterable(images) and is_np_array(images[0]) and images[0].ndim == 3) dts = [image.dtype.name for image in images] nb_dtypes = len(set(dts)) do_assert(nb_dtypes == 1, ("All images provided to draw_grid() must have the same dtype, " + "found %d dtypes (%s)") % (nb_dtypes, ", ".join(dts))) cell_height = max([image.shape[0] for image in images]) cell_width = max([image.shape[1] for image in images]) channels = set([image.shape[2] for image in images]) do_assert( len(channels) == 1, "All images are expected to have the same number of channels, " + "but got channel set %s with length %d instead." % (str(channels), len(channels)) ) nb_channels = list(channels)[0] if rows is None and cols is None: rows = cols = int(math.ceil(math.sqrt(nb_images))) elif rows is not None: cols = int(math.ceil(nb_images / rows)) elif cols is not None: rows = int(math.ceil(nb_images / cols)) do_assert(rows * cols >= nb_images) width = cell_width * cols height = cell_height * rows dt = images.dtype if is_np_array(images) else images[0].dtype grid = np.zeros((height, width, nb_channels), dtype=dt) cell_idx = 0 for row_idx in sm.xrange(rows): for col_idx in sm.xrange(cols): if cell_idx < nb_images: image = images[cell_idx] cell_y1 = cell_height * row_idx cell_y2 = cell_y1 + image.shape[0] cell_x1 = cell_width * col_idx cell_x2 = cell_x1 + image.shape[1] grid[cell_y1:cell_y2, cell_x1:cell_x2, :] = image cell_idx += 1 return grid def show_grid(images, rows=None, cols=None): """ Converts the input images to a grid image and shows it in a new window. dtype support:: minimum of ( :func:`imgaug.imgaug.draw_grid`, :func:`imgaug.imgaug.imshow` ) Parameters ---------- images : (N,H,W,3) ndarray or iterable of (H,W,3) array See :func:`imgaug.draw_grid`. rows : None or int, optional See :func:`imgaug.draw_grid`. cols : None or int, optional See :func:`imgaug.draw_grid`. """ grid = draw_grid(images, rows=rows, cols=cols) imshow(grid) def imshow(image, backend=IMSHOW_BACKEND_DEFAULT): """ Shows an image in a window. dtype support:: * ``uint8``: yes; not tested * ``uint16``: ? * ``uint32``: ? * ``uint64``: ? * ``int8``: ? * ``int16``: ? * ``int32``: ? * ``int64``: ? * ``float16``: ? * ``float32``: ? * ``float64``: ? * ``float128``: ? * ``bool``: ? Parameters ---------- image : (H,W,3) ndarray Image to show. backend : {'matplotlib', 'cv2'}, optional Library to use to show the image. May be either matplotlib or OpenCV ('cv2'). OpenCV tends to be faster, but apparently causes more technical issues. """ do_assert(backend in ["matplotlib", "cv2"], "Expected backend 'matplotlib' or 'cv2', got %s." % (backend,)) if backend == "cv2": image_bgr = image if image.ndim == 3 and image.shape[2] in [3, 4]: image_bgr = image[..., 0:3][..., ::-1] win_name = "imgaug-default-window" cv2.namedWindow(win_name, cv2.WINDOW_NORMAL) cv2.imshow(win_name, image_bgr) cv2.waitKey(0) cv2.destroyWindow(win_name) else: # import only when necessary (faster startup; optional dependency; less fragile -- see issue #225) import matplotlib.pyplot as plt dpi = 96 h, w = image.shape[0] / dpi, image.shape[1] / dpi w = max(w, 6) # if the figure is too narrow, the footer may appear and make the fig suddenly wider (ugly) fig, ax = plt.subplots(figsize=(w, h), dpi=dpi) fig.canvas.set_window_title("imgaug.imshow(%s)" % (image.shape,)) ax.imshow(image, cmap="gray") # cmap is only activate for grayscale images plt.show() def do_assert(condition, message="Assertion failed."): """ Function that behaves equally to an `assert` statement, but raises an Exception. This is added because `assert` statements are removed in optimized code. It replaces `assert` statements throughout the library that should be kept even in optimized code. Parameters ---------- condition : bool If False, an exception is raised. message : str, optional Error message. """ if not condition: raise AssertionError(str(message)) class HooksImages(object): """ Class to intervene with image augmentation runs. This is e.g. useful to dynamically deactivate some augmenters. Parameters ---------- activator : None or callable, optional A function that gives permission to execute an augmenter. The expected interface is ``f(images, augmenter, parents, default)``, where ``images`` are the input images to augment, ``augmenter`` is the instance of the augmenter to execute, ``parents`` are previously executed augmenters and ``default`` is an expected default value to be returned if the activator function does not plan to make a decision for the given inputs. propagator : None or callable, optional A function that gives permission to propagate the augmentation further to the children of an augmenter. This happens after the activator. In theory, an augmenter may augment images itself (if allowed by the activator) and then execute child augmenters afterwards (if allowed by the propagator). If the activator returned False, the propagation step will never be executed. The expected interface is ``f(images, augmenter, parents, default)``, with all arguments having identical meaning to the activator. preprocessor : None or callable, optional A function to call before an augmenter performed any augmentations. The interface is ``f(images, augmenter, parents)``, with all arguments having identical meaning to the activator. It is expected to return the input images, optionally modified. postprocessor : None or callable, optional A function to call after an augmenter performed augmentations. The interface is the same as for the preprocessor. Examples -------- >>> seq = iaa.Sequential([ >>> iaa.GaussianBlur(3.0, name="blur"), >>> iaa.Dropout(0.05, name="dropout"), >>> iaa.Affine(translate_px=-5, name="affine") >>> ]) >>> images = [np.zeros((10, 10), dtype=np.uint8)] >>> >>> def activator(images, augmenter, parents, default): >>> return False if augmenter.name in ["blur", "dropout"] else default >>> >>> seq_det = seq.to_deterministic() >>> images_aug = seq_det.augment_images(images) >>> heatmaps = [np.random.rand(*(3, 10, 10))] >>> heatmaps_aug = seq_det.augment_images( >>> heatmaps, >>> hooks=ia.HooksImages(activator=activator) >>> ) This augments images and their respective heatmaps in the same way. The heatmaps however are only modified by Affine, not by GaussianBlur or Dropout. """ def __init__(self, activator=None, propagator=None, preprocessor=None, postprocessor=None): self.activator = activator self.propagator = propagator self.preprocessor = preprocessor self.postprocessor = postprocessor def is_activated(self, images, augmenter, parents, default): """ Returns whether an augmenter may be executed. Returns ------- bool If True, the augmenter may be executed. If False, it may not be executed. """ if self.activator is None: return default else: return self.activator(images, augmenter, parents, default) def is_propagating(self, images, augmenter, parents, default): """ Returns whether an augmenter may call its children to augment an image. This is independent of the augmenter itself possible changing the image, without calling its children. (Most (all?) augmenters with children currently dont perform any changes themselves.) Returns ------- bool If True, the augmenter may be propagate to its children. If False, it may not. """ if self.propagator is None: return default else: return self.propagator(images, augmenter, parents, default) def preprocess(self, images, augmenter, parents): """ A function to be called before the augmentation of images starts (per augmenter). Returns ------- (N,H,W,C) ndarray or (N,H,W) ndarray or list of (H,W,C) ndarray or list of (H,W) ndarray The input images, optionally modified. """ if self.preprocessor is None: return images else: return self.preprocessor(images, augmenter, parents) def postprocess(self, images, augmenter, parents): """ A function to be called after the augmentation of images was performed. Returns ------- (N,H,W,C) ndarray or (N,H,W) ndarray or list of (H,W,C) ndarray or list of (H,W) ndarray The input images, optionally modified. """ if self.postprocessor is None: return images else: return self.postprocessor(images, augmenter, parents) class HooksHeatmaps(HooksImages): """ Class to intervene with heatmap augmentation runs. This is e.g. useful to dynamically deactivate some augmenters. This class is currently the same as the one for images. This may or may not change in the future. """ pass class HooksKeypoints(HooksImages): """ Class to intervene with keypoint augmentation runs. This is e.g. useful to dynamically deactivate some augmenters. This class is currently the same as the one for images. This may or may not change in the future. """ pass def compute_geometric_median(X, eps=1e-5): """ Estimate the geometric median of points in 2D. Code from https://stackoverflow.com/a/30305181 Parameters ---------- X : (N,2) ndarray Points in 2D. Second axis must be given in xy-form. eps : float, optional Distance threshold when to return the median. Returns ------- (2,) ndarray Geometric median as xy-coordinate. """ y = np.mean(X, 0) while True: D = scipy.spatial.distance.cdist(X, [y]) nonzeros = (D != 0)[:, 0] Dinv = 1 / D[nonzeros] Dinvs = np.sum(Dinv) W = Dinv / Dinvs T = np.sum(W * X[nonzeros], 0) num_zeros = len(X) - np.sum(nonzeros) if num_zeros == 0: y1 = T elif num_zeros == len(X): return y else: R = (T - y) * Dinvs r = np.linalg.norm(R) rinv = 0 if r == 0 else num_zeros/r y1 = max(0, 1-rinv)*T + min(1, rinv)*y if scipy.spatial.distance.euclidean(y, y1) < eps: return y1 y = y1 class Keypoint(object): """ A single keypoint (aka landmark) on an image. Parameters ---------- x : number Coordinate of the keypoint on the x axis. y : number Coordinate of the keypoint on the y axis. """ def __init__(self, x, y): self.x = x self.y = y @property def x_int(self): """ Return the keypoint's x-coordinate, rounded to the closest integer. Returns ------- result : int Keypoint's x-coordinate, rounded to the closest integer. """ return int(np.round(self.x)) @property def y_int(self): """ Return the keypoint's y-coordinate, rounded to the closest integer. Returns ------- result : int Keypoint's y-coordinate, rounded to the closest integer. """ return int(np.round(self.y)) def project(self, from_shape, to_shape): """ Project the keypoint onto a new position on a new image. E.g. if the keypoint is on its original image at x=(10 of 100 pixels) and y=(20 of 100 pixels) and is projected onto a new image with size (width=200, height=200), its new position will be (20, 40). This is intended for cases where the original image is resized. It cannot be used for more complex changes (e.g. padding, cropping). Parameters ---------- from_shape : tuple of int Shape of the original image. (Before resize.) to_shape : tuple of int Shape of the new image. (After resize.) Returns ------- imgaug.Keypoint Keypoint object with new coordinates. """ if from_shape[0:2] == to_shape[0:2]: return Keypoint(x=self.x, y=self.y) else: from_height, from_width = from_shape[0:2] to_height, to_width = to_shape[0:2] x = (self.x / from_width) * to_width y = (self.y / from_height) * to_height return Keypoint(x=x, y=y) def shift(self, x=0, y=0): """ Move the keypoint around on an image. Parameters ---------- x : number, optional Move by this value on the x axis. y : number, optional Move by this value on the y axis. Returns ------- imgaug.Keypoint Keypoint object with new coordinates. """ return Keypoint(self.x + x, self.y + y) def generate_similar_points_manhattan(self, nb_steps, step_size, return_array=False): """ Generate nearby points to this keypoint based on manhattan distance. To generate the first neighbouring points, a distance of S (step size) is moved from the center point (this keypoint) to the top, right, bottom and left, resulting in four new points. From these new points, the pattern is repeated. Overlapping points are ignored. The resulting points have a shape similar to a square rotated by 45 degrees. Parameters ---------- nb_steps : int The number of steps to move from the center point. nb_steps=1 results in a total of 5 output points (1 center point + 4 neighbours). step_size : number The step size to move from every point to its neighbours. return_array : bool, optional Whether to return the generated points as a list of keypoints or an array of shape ``(N,2)``, where ``N`` is the number of generated points and the second axis contains the x- (first value) and y- (second value) coordinates. Returns ------- points : list of imgaug.Keypoint or (N,2) ndarray If return_array was False, then a list of Keypoint. Otherwise a numpy array of shape ``(N,2)``, where ``N`` is the number of generated points and the second axis contains the x- (first value) and y- (second value) coordinates. The center keypoint (the one on which this function was called) is always included. """ # TODO add test # Points generates in manhattan style with S steps have a shape similar to a 45deg rotated # square. The center line with the origin point has S+1+S = 1+2*S points (S to the left, # S to the right). The lines above contain (S+1+S)-2 + (S+1+S)-2-2 + ... + 1 points. E.g. # for S=2 it would be 3+1=4 and for S=3 it would be 5+3+1=9. Same for the lines below the # center. Hence the total number of points is S+1+S + 2*(S^2). points = np.zeros((nb_steps + 1 + nb_steps + 2*(nb_steps**2), 2), dtype=np.float32) # we start at the bottom-most line and move towards the top-most line yy = np.linspace(self.y - nb_steps * step_size, self.y + nb_steps * step_size, nb_steps + 1 + nb_steps) # bottom-most line contains only one point width = 1 nth_point = 0 for i_y, y in enumerate(yy): if width == 1: xx = [self.x] else: xx = np.linspace(self.x - (width-1)//2 * step_size, self.x + (width-1)//2 * step_size, width) for x in xx: points[nth_point] = [x, y] nth_point += 1 if i_y < nb_steps: width += 2 else: width -= 2 if return_array: return points return [Keypoint(x=points[i, 0], y=points[i, 1]) for i in sm.xrange(points.shape[0])] def __repr__(self): return self.__str__() def __str__(self): return "Keypoint(x=%.8f, y=%.8f)" % (self.x, self.y) class KeypointsOnImage(object): """ Object that represents all keypoints on a single image. Parameters ---------- keypoints : list of imgaug.Keypoint List of keypoints on the image. shape : tuple of int The shape of the image on which the keypoints are placed. Examples -------- >>> image = np.zeros((70, 70)) >>> kps = [Keypoint(x=10, y=20), Keypoint(x=34, y=60)] >>> kps_oi = KeypointsOnImage(kps, shape=image.shape) """ def __init__(self, keypoints, shape): self.keypoints = keypoints if is_np_array(shape): self.shape = shape.shape else: do_assert(isinstance(shape, (tuple, list))) self.shape = tuple(shape) @property def height(self): return self.shape[0] @property def width(self): return self.shape[1] @property def empty(self): """ Returns whether this object contains zero keypoints. Returns ------- result : bool True if this object contains zero keypoints. """ return len(self.keypoints) == 0 def on(self, image): """ Project keypoints from one image to a new one. Parameters ---------- image : ndarray or tuple of int New image onto which the keypoints are to be projected. May also simply be that new image's shape tuple. Returns ------- keypoints : imgaug.KeypointsOnImage Object containing all projected keypoints. """ if is_np_array(image): shape = image.shape else: shape = image if shape[0:2] == self.shape[0:2]: return self.deepcopy() else: keypoints = [kp.project(self.shape, shape) for kp in self.keypoints] return KeypointsOnImage(keypoints, shape) def draw_on_image(self, image, color=(0, 255, 0), size=3, copy=True, raise_if_out_of_image=False): """ Draw all keypoints onto a given image. Each keypoint is marked by a square of a chosen color and size. Parameters ---------- image : (H,W,3) ndarray The image onto which to draw the keypoints. This image should usually have the same shape as set in KeypointsOnImage.shape. color : int or list of int or tuple of int or (3,) ndarray, optional The RGB color of all keypoints. If a single int ``C``, then that is equivalent to ``(C,C,C)``. size : int, optional The size of each point. If set to ``C``, each square will have size ``C x C``. copy : bool, optional Whether to copy the image before drawing the points. raise_if_out_of_image : bool, optional Whether to raise an exception if any keypoint is outside of the image. Returns ------- image : (H,W,3) ndarray Image with drawn keypoints. """ if copy: image = np.copy(image) height, width = image.shape[0:2] for keypoint in self.keypoints: y, x = keypoint.y_int, keypoint.x_int if 0 <= y < height and 0 <= x < width: x1 = max(x - size//2, 0) x2 = min(x + 1 + size//2, width) y1 = max(y - size//2, 0) y2 = min(y + 1 + size//2, height) image[y1:y2, x1:x2] = color else: if raise_if_out_of_image: raise Exception("Cannot draw keypoint x=%.8f, y=%.8f on image with shape %s." % (y, x, image.shape)) return image def shift(self, x=0, y=0): """ Move the keypoints around on an image. Parameters ---------- x : number, optional Move each keypoint by this value on the x axis. y : number, optional Move each keypoint by this value on the y axis. Returns ------- out : KeypointsOnImage Keypoints after moving them. """ keypoints = [keypoint.shift(x=x, y=y) for keypoint in self.keypoints] return KeypointsOnImage(keypoints, self.shape) def get_coords_array(self): """ Convert the coordinates of all keypoints in this object to an array of shape (N,2). Returns ------- result : (N, 2) ndarray Where N is the number of keypoints. Each first value is the x coordinate, each second value is the y coordinate. """ result = np.zeros((len(self.keypoints), 2), np.float32) for i, keypoint in enumerate(self.keypoints): result[i, 0] = keypoint.x result[i, 1] = keypoint.y return result @staticmethod def from_coords_array(coords, shape): """ Convert an array (N,2) with a given image shape to a KeypointsOnImage object. Parameters ---------- coords : (N, 2) ndarray Coordinates of ``N`` keypoints on the original image. Each first entry ``coords[i, 0]`` is expected to be the x coordinate. Each second entry ``coords[i, 1]`` is expected to be the y coordinate. shape : tuple Shape tuple of the image on which the keypoints are placed. Returns ------- out : KeypointsOnImage KeypointsOnImage object that contains all keypoints from the array. """ keypoints = [Keypoint(x=coords[i, 0], y=coords[i, 1]) for i in sm.xrange(coords.shape[0])] return KeypointsOnImage(keypoints, shape) # TODO add to_gaussian_heatmaps(), from_gaussian_heatmaps() def to_keypoint_image(self, size=1): """ Draws a new black image of shape ``(H,W,N)`` in which all keypoint coordinates are set to 255. (H=shape height, W=shape width, N=number of keypoints) This function can be used as a helper when augmenting keypoints with a method that only supports the augmentation of images. Parameters ------- size : int Size of each (squared) point. Returns ------- image : (H,W,N) ndarray Image in which the keypoints are marked. H is the height, defined in KeypointsOnImage.shape[0] (analogous W). N is the number of keypoints. """ do_assert(len(self.keypoints) > 0) height, width = self.shape[0:2] image = np.zeros((height, width, len(self.keypoints)), dtype=np.uint8) do_assert(size % 2 != 0) sizeh = max(0, (size-1)//2) for i, keypoint in enumerate(self.keypoints): # TODO for float values spread activation over several cells # here and do voting at the end y = keypoint.y_int x = keypoint.x_int x1 = np.clip(x - sizeh, 0, width-1) x2 = np.clip(x + sizeh + 1, 0, width) y1 = np.clip(y - sizeh, 0, height-1) y2 = np.clip(y + sizeh + 1, 0, height) if x1 < x2 and y1 < y2: image[y1:y2, x1:x2, i] = 128 if 0 <= y < height and 0 <= x < width: image[y, x, i] = 255 return image @staticmethod def from_keypoint_image(image, if_not_found_coords={"x": -1, "y": -1}, threshold=1, nb_channels=None): # pylint: disable=locally-disabled, dangerous-default-value, line-too-long """ Converts an image generated by ``to_keypoint_image()`` back to a KeypointsOnImage object. Parameters ---------- image : (H,W,N) ndarray The keypoints image. N is the number of keypoints. if_not_found_coords : tuple or list or dict or None, optional Coordinates to use for keypoints that cannot be found in `image`. If this is a list/tuple, it must have two integer values. If it is a dictionary, it must have the keys ``x`` and ``y`` with each containing one integer value. If this is None, then the keypoint will not be added to the final KeypointsOnImage object. threshold : int, optional The search for keypoints works by searching for the argmax in each channel. This parameters contains the minimum value that the max must have in order to be viewed as a keypoint. nb_channels : None or int, optional Number of channels of the image on which the keypoints are placed. Some keypoint augmenters require that information. If set to None, the keypoint's shape will be set to ``(height, width)``, otherwise ``(height, width, nb_channels)``. Returns ------- out : KeypointsOnImage The extracted keypoints. """ do_assert(len(image.shape) == 3) height, width, nb_keypoints = image.shape drop_if_not_found = False if if_not_found_coords is None: drop_if_not_found = True if_not_found_x = -1 if_not_found_y = -1 elif isinstance(if_not_found_coords, (tuple, list)): do_assert(len(if_not_found_coords) == 2) if_not_found_x = if_not_found_coords[0] if_not_found_y = if_not_found_coords[1] elif isinstance(if_not_found_coords, dict): if_not_found_x = if_not_found_coords["x"] if_not_found_y = if_not_found_coords["y"] else: raise Exception("Expected if_not_found_coords to be None or tuple or list or dict, got %s." % ( type(if_not_found_coords),)) keypoints = [] for i in sm.xrange(nb_keypoints): maxidx_flat = np.argmax(image[..., i]) maxidx_ndim = np.unravel_index(maxidx_flat, (height, width)) found = (image[maxidx_ndim[0], maxidx_ndim[1], i] >= threshold) if found: keypoints.append(Keypoint(x=maxidx_ndim[1], y=maxidx_ndim[0])) else: if drop_if_not_found: pass # dont add the keypoint to the result list, i.e. drop it else: keypoints.append(Keypoint(x=if_not_found_x, y=if_not_found_y)) out_shape = (height, width) if nb_channels is not None: out_shape += (nb_channels,) return KeypointsOnImage(keypoints, shape=out_shape) def to_distance_maps(self, inverted=False): """ Generates a ``(H,W,K)`` output containing ``K`` distance maps for ``K`` keypoints. The k-th distance map contains at every location ``(y, x)`` the euclidean distance to the k-th keypoint. This function can be used as a helper when augmenting keypoints with a method that only supports the augmentation of images. Parameters ------- inverted : bool, optional If True, inverted distance maps are returned where each distance value d is replaced by ``d/(d+1)``, i.e. the distance maps have values in the range ``(0.0, 1.0]`` with 1.0 denoting exactly the position of the respective keypoint. Returns ------- distance_maps : (H,W,K) ndarray A ``float32`` array containing ``K`` distance maps for ``K`` keypoints. Each location ``(y, x, k)`` in the array denotes the euclidean distance at ``(y, x)`` to the ``k``-th keypoint. In inverted mode the distance ``d`` is replaced by ``d/(d+1)``. The height and width of the array match the height and width in ``KeypointsOnImage.shape``. """ do_assert(len(self.keypoints) > 0) height, width = self.shape[0:2] distance_maps = np.zeros((height, width, len(self.keypoints)), dtype=np.float32) yy = np.arange(0, height) xx = np.arange(0, width) grid_xx, grid_yy = np.meshgrid(xx, yy) for i, keypoint in enumerate(self.keypoints): y, x = keypoint.y, keypoint.x distance_maps[:, :, i] = (grid_xx - x) ** 2 + (grid_yy - y) ** 2 distance_maps = np.sqrt(distance_maps) if inverted: return 1/(distance_maps+1) return distance_maps # TODO add option to if_not_found_coords to reuse old keypoint coords @staticmethod def from_distance_maps(distance_maps, inverted=False, if_not_found_coords={"x": -1, "y": -1}, threshold=None, # pylint: disable=locally-disabled, dangerous-default-value, line-too-long nb_channels=None): """ Converts maps generated by ``to_distance_maps()`` back to a KeypointsOnImage object. Parameters ---------- distance_maps : (H,W,N) ndarray The distance maps. N is the number of keypoints. inverted : bool, optional Whether the given distance maps were generated in inverted or normal mode. if_not_found_coords : tuple or list or dict or None, optional Coordinates to use for keypoints that cannot be found in ``distance_maps``. If this is a list/tuple, it must have two integer values. If it is a dictionary, it must have the keys ``x`` and ``y``, with each containing one integer value. If this is None, then the keypoint will not be added to the final KeypointsOnImage object. threshold : float, optional The search for keypoints works by searching for the argmin (non-inverted) or argmax (inverted) in each channel. This parameters contains the maximum (non-inverted) or minimum (inverted) value to accept in order to view a hit as a keypoint. Use None to use no min/max. nb_channels : None or int, optional Number of channels of the image on which the keypoints are placed. Some keypoint augmenters require that information. If set to None, the keypoint's shape will be set to ``(height, width)``, otherwise ``(height, width, nb_channels)``. Returns ------- imgaug.KeypointsOnImage The extracted keypoints. """ do_assert(len(distance_maps.shape) == 3) height, width, nb_keypoints = distance_maps.shape drop_if_not_found = False if if_not_found_coords is None: drop_if_not_found = True if_not_found_x = -1 if_not_found_y = -1 elif isinstance(if_not_found_coords, (tuple, list)): do_assert(len(if_not_found_coords) == 2) if_not_found_x = if_not_found_coords[0] if_not_found_y = if_not_found_coords[1] elif isinstance(if_not_found_coords, dict): if_not_found_x = if_not_found_coords["x"] if_not_found_y = if_not_found_coords["y"] else: raise Exception("Expected if_not_found_coords to be None or tuple or list or dict, got %s." % ( type(if_not_found_coords),)) keypoints = [] for i in sm.xrange(nb_keypoints): # TODO introduce voting here among all distance values that have min/max values if inverted: hitidx_flat = np.argmax(distance_maps[..., i]) else: hitidx_flat = np.argmin(distance_maps[..., i]) hitidx_ndim =
np.unravel_index(hitidx_flat, (height, width))
numpy.unravel_index
#!/usr/bin/env python # wujian@2019 """ Sound Source Localization (SSL) Module """ import numpy as np from .utils import cmat_abs def ml_ssl(stft, sv, compression=0, eps=1e-8, norm=False, mask=None): """ Maximum likelihood SSL Arguments: stft: STFT transform result, M x T x F sv: steer vector in each directions, A x M x F norm: normalze STFT or not mask: TF-mask for source, T x F x (N) Return: index: DoA index """ _, T, F = stft.shape if mask is None: mask = np.ones([T, F]) # make sure sv is normalized sv = sv / np.linalg.norm(sv, axis=1, keepdims=True) if norm: stft = stft / np.maximum(cmat_abs(stft), eps) ssh_cor = np.abs(np.einsum("mtf,mtf->tf", stft, stft.conj())) ssv_cor = np.abs(np.einsum("amf,mtf->atf", sv, stft.conj()))**2 # A x T x F delta = ssh_cor[None, ...] - ssv_cor / (1 + eps) if compression <= 0: tf_loglike = -np.log(np.maximum(delta, eps)) else: tf_loglike = -np.power(delta, compression) # masking if mask.ndim == 2: loglike = np.sum(mask[None, ...] * tf_loglike, (1, 2)) else: loglike = np.einsum("ntf,atf->na", mask, tf_loglike) return np.argmax(loglike, axis=-1) def srp_ssl(stft, sv, srp_pair=None, mask=None): """ Do SRP-PHAT based SSL Arguments: stft: STFT transform result, M x T x F sv: steer vector in each directions, A x M x F srp_pair: index pair to compute srp response mask: TF-mask for source, T x F Return: index: DoA index """ if srp_pair is None: raise ValueError("srp_pair cannot be None, (list, list)") _, T, F = stft.shape if mask is None: mask = np.ones([T, F]) index_l, index_r = srp_pair # M x T x F obs_pha = np.angle(stft) # A x M x F ora_pha = np.angle(sv) # observed ipd: P x T x F obs_ipd = obs_pha[index_l] - obs_pha[index_r] # oracle ipd: A x P x F ora_ipd = ora_pha[:, index_l] - ora_pha[:, index_r] # directional feature: A x P x T x F af =
np.cos(obs_ipd[None, ...] - ora_ipd[..., None, :])
numpy.cos
import cv2 as cv import shapely.geometry as sg import numpy as np import time import os from lxml import etree MIP36h12 = [0xd2b63a09d, 0x6001134e5, 0x1206fbe72, 0xff8ad6cb4, 0x85da9bc49, 0xb461afe9c, 0x6db51fe13, 0x5248c541f, 0x8f34503, 0x8ea462ece, 0xeac2be76d, 0x1af615c44, 0xb48a49f27, 0x2e4e1283b, 0x78b1f2fa8, 0x27d34f57e, 0x89222fff1, 0x4c1669406, 0xbf49b3511, 0xdc191cd5d, 0x11d7c3f85, 0x16a130e35, 0xe29f27eff, 0x428d8ae0c, 0x90d548477, 0x2319cbc93, 0xc3b0c3dfc, 0x424bccc9, 0x2a081d630, 0x762743d96, 0xd0645bf19, 0xf38d7fd60, 0xc6cbf9a10, 0x3c1be7c65, 0x276f75e63, 0x4490a3f63, 0xda60acd52, 0x3cc68df59, 0xab46f9dae, 0x88d533d78, 0xb6d62ec21, 0xb3c02b646, 0x22e56d408, 0xac5f5770a, 0xaaa993f66, 0x4caa07c8d, 0x5c9b4f7b0, 0xaa9ef0e05, 0x705c5750, 0xac81f545e, 0x735b91e74, 0x8cc35cee4, 0xe44694d04, 0xb5e121de0, 0x261017d0f, 0xf1d439eb5, 0xa1a33ac96, 0x174c62c02, 0x1ee27f716, 0x8b1c5ece9, 0x6a05b0c6a, 0xd0568dfc, 0x192d25e5f, 0x1adbeccc8, 0xcfec87f00, 0xd0b9dde7a, 0x88dcef81e, 0x445681cb9, 0xdbb2ffc83, 0xa48d96df1, 0xb72cc2e7d, 0xc295b53f, 0xf49832704, 0x9968edc29, 0x9e4e1af85, 0x8683e2d1b, 0x810b45c04, 0x6ac44bfe2, 0x645346615, 0x3990bd598, 0x1c9ed0f6a, 0xc26729d65, 0x83993f795, 0x3ac05ac5d, 0x357adff3b, 0xd5c05565, 0x2f547ef44, 0x86c115041, 0x640fd9e5f, 0xce08bbcf7, 0x109bb343e, 0xc21435c92, 0x35b4dfce4, 0x459752cf2, 0xec915b82c, 0x51881eed0, 0x2dda7dc97, 0x2e0142144, 0x42e890f99, 0x9a8856527, 0x8e80d9d80, 0x891cbcf34, 0x25dd82410, 0x239551d34, 0x8fe8f0c70, 0x94106a970, 0x82609b40c, 0xfc9caf36, 0x688181d11, 0x718613c08, 0xf1ab7629, 0xa357bfc18, 0x4c03b7a46, 0x204dedce6, 0xad6300d37, 0x84cc4cd09, 0x42160e5c4, 0x87d2adfa8, 0x7850e7749, 0x4e750fc7c, 0xbf2e5dfda, 0xd88324da5, 0x234b52f80, 0x378204514, 0xabdf2ad53, 0x365e78ef9, 0x49caa6ca2, 0x3c39ddf3, 0xc68c5385d, 0x5bfcbbf67, 0x623241e21, 0xabc90d5cc, 0x388c6fe85, 0xda0e2d62d, 0x10855dfe9, 0x4d46efd6b, 0x76ea12d61, 0x9db377d3d, 0xeed0efa71, 0xe6ec3ae2f, 0x441faee83, 0xba19c8ff5, 0x313035eab, 0x6ce8f7625, 0x880dab58d, 0x8d3409e0d, 0x2be92ee21, 0xd60302c6c, 0x469ffc724, 0x87eebeed3, 0x42587ef7a, 0x7a8cc4e52, 0x76a437650, 0x999e41ef4, 0x7d0969e42, 0xc02baf46b, 0x9259f3e47, 0x2116a1dc0, 0x9f2de4d84, 0xeffac29, 0x7b371ff8c, 0x668339da9, 0xd010aee3f, 0x1cd00b4c0, 0x95070fc3b, 0xf84c9a770, 0x38f863d76, 0x3646ff045, 0xce1b96412, 0x7a5d45da8, 0x14e00ef6c, 0x5e95abfd8, 0xb2e9cb729, 0x36c47dd7, 0xb8ee97c6b, 0xe9e8f657, 0xd4ad2ef1a, 0x8811c7f32, 0x47bde7c31, 0x3adadfb64, 0x6e5b28574, 0x33e67cd91, 0x2ab9fdd2d, 0x8afa67f2b, 0xe6a28fc5e, 0x72049cdbd, 0xae65dac12, 0x1251a4526, 0x1089ab841, 0xe2f096ee0, 0xb0caee573, 0xfd6677e86, 0x444b3f518, 0xbe8b3a56a, 0x680a75cfc, 0xac02baea8, 0x97d815e1c, 0x1d4386e08, 0x1a14f5b0e, 0xe658a8d81, 0xa3868efa7, 0x3668a9673, 0xe8fc53d85, 0x2e2b7edd5, 0x8b2470f13, 0xf69795f32, 0x4589ffc8e, 0x2e2080c9c, 0x64265f7d, 0x3d714dd10, 0x1692c6ef1, 0x3e67f2f49, 0x5041dad63, 0x1a1503415, 0x64c18c742, 0xa72eec35, 0x1f0f9dc60, 0xa9559bc67, 0xf32911d0d, 0x21c0d4ffc, 0xe01cef5b0, 0x4e23a3520, 0xaa4f04e49, 0xe1c4fcc43, 0x208e8f6e8, 0x8486774a5, 0x9e98c7558, 0x2c59fb7dc, 0x9446a4613, 0x8292dcc2e, 0x4d61631, 0xd05527809, 0xa0163852d, 0x8f657f639, 0xcca6c3e37, 0xcb136bc7a, 0xfc5a83e53, 0x9aa44fc30, 0xbdec1bd3c, 0xe020b9f7c, 0x4b8f35fb0, 0xb8165f637, 0x33dc88d69, 0x10a2f7e4d, 0xc8cb5ff53, 0xde259ff6b, 0x46d070dd4, 0x32d3b9741, 0x7075f1c04, 0x4d58dbea0] MIP36h12_set = set(MIP36h12) def get_rand_val(val_range): min_val = val_range[0] max_val = val_range[1] return np.random.rand() * (max_val - min_val) + min_val class Polygon: def __init__(self, np_poly): self.np_poly = np_poly curr_poly = [] for i in range(4): curr_poly.append((np_poly[i, 0], np_poly[i, 1])) self.sg_poly = sg.Polygon(curr_poly) def intersects_with(self, polygon2): return self.sg_poly.intersects(polygon2.sg_poly) def get_cam_dir_rot(X, Y, Z): V = [X, Y, Z] # vector going though the camera center and then through the point V = V / np.linalg.norm(V) Z_vec = [0, 0, 1] axis = np.cross(Z_vec, V) angle = np.arccos(np.dot(V, Z_vec)) rot_vec = axis / np.linalg.norm(axis) * angle cam_dir_rot, _ = cv.Rodrigues(rot_vec) return cam_dir_rot def make_sure_dir_exists(dir_path): if not os.path.exists(dir_path): os.mkdir(dir_path) class ImageGenerator: def __init__(self): # physical units are in meters and radians self.marker_corners = np.array([[-0.5, -0.5, 0], [0.5, -0.5, 0], [0.5, 0.5, 0], [-0.5, 0.5, 0]]).transpose() self.fov_range = [np.pi / 3, np.pi / 18 * 10] self.im_width = 640 self.im_height = 360 self.im_size = (self.im_width, self.im_height) self.marker_size_range = [0.16, 0.32] self.num_markers_range = [1, 11] self.Z_range = [0.3, 1.8] self.max_oop_rot = np.pi / 4 # out of plane (oop) maximum rotation self.horizontal_flip_prob = 0.1 self.vertical_flip_prob = 0 self.marker_pixels = self.im_height self.mborder_size = int(self.marker_pixels / 8) self.mimage_size = self.marker_pixels + 2 * self.mborder_size self.files_list = [] self.input_dataset_folder = "" self.ids_permutation = [] self.id_perm_index = 0 self.max_color_mod = 25 def write_pascal_voc_xml(self, xml_file_path, image_name, bounding_boxes, marker_corners, marker_ids): root = etree.Element("annotation") etree.SubElement(root, "folder").text = "images" etree.SubElement(root, "filename").text = image_name etree.SubElement(root, "path").text = "" source = etree.SubElement(root, "source") etree.SubElement(source, "database").text = "Unknown" size = etree.SubElement(root, "size") etree.SubElement(size, "width").text = str(self.im_width) etree.SubElement(size, "height").text = str(self.im_height) etree.SubElement(size, "depth").text = "3" etree.SubElement(root, "segmented").text = "0" for i in range(len(bounding_boxes)): x = bounding_boxes[i][0] y = bounding_boxes[i][1] width = bounding_boxes[i][2] height = bounding_boxes[i][3] x_min = int(x - width / 2 + .5) x_max = int(x + width / 2 + .5) y_min = int(y - height / 2 + .5) y_max = int(y + height / 2 + .5) object_node = etree.SubElement(root, "object") etree.SubElement(object_node, "name").text = "aruco" etree.SubElement(object_node, "pose").text = "Unspecified" etree.SubElement(object_node, "truncated").text = "0" etree.SubElement(object_node, "difficult").text = "0" bndbox = etree.SubElement(object_node, "bndbox") etree.SubElement(bndbox, "xmin").text = str(x_min) etree.SubElement(bndbox, "ymin").text = str(y_min) etree.SubElement(bndbox, "xmax").text = str(x_max) etree.SubElement(bndbox, "ymax").text = str(y_max) corners = etree.SubElement(object_node, "corners") for j in range(4): corner = marker_corners[i][j] etree.SubElement(corners, "x" + str(j)).text = str(corner[0]) etree.SubElement(corners, "y" + str(j)).text = str(corner[1]) etree.SubElement(object_node, "id").text = str(marker_ids[i]) xml_file = open(xml_file_path, "w") xml_file.write(etree.tostring(etree.ElementTree(root), encoding="unicode", pretty_print=True)) xml_file.close() def set_input_folder(self, input_dataset_folder): print("Listing the images in the directory... ") self.files_list = os.listdir(input_dataset_folder) print("Done!") self.input_dataset_folder = input_dataset_folder + "/" def read_random_photo(self): file_index = int(np.random.rand() * len(self.files_list)) image = cv.imread(self.input_dataset_folder + self.files_list[file_index], cv.IMREAD_COLOR) height, width, _ = image.shape if height > width: image = cv.rotate(image, cv.ROTATE_90_CLOCKWISE) height, width, _ = image.shape scale = max(float(self.im_width) / width, float(self.im_height) / height) if scale > 1: image = cv.resize(image, (0, 0), fx=scale, fy=scale) height, width, _ = image.shape x_positions = width - self.im_width y_positions = height - self.im_height x = 0 y = 0 if x_positions > 0: x = int(np.random.rand() * x_positions) if y_positions > 0: y = int(np.random.rand() * y_positions) # crop the image to the right size and with the random shift image = image[y:self.im_height + y, x:self.im_width + x] # flip horizontally randomly if np.random.rand() < self.horizontal_flip_prob: image = cv.flip(image, 1) # # flip vertically randomly # if np.random.rand() < self.vertical_flip_prob: # image = cv.flip(image, 0) brightness_modifier = get_rand_val([0.1, 1.9]) image = image.astype(np.float) * brightness_modifier image = np.minimum(np.maximum(image, 0), 255).astype(np.uint8) return image def get_rand_rot_mat(self): in_plane_axis = np.array([0, 0, 1.0]) in_plane_rot = get_rand_val([0, 2 * np.pi]) in_plane_mat, _ = cv.Rodrigues(in_plane_axis * in_plane_rot) oop_rot = get_rand_val([0, self.max_oop_rot]) # debug # oop_rot = self.max_oop_rot # debug oop_axis_orientation = get_rand_val([0, 2 * np.pi]) oop_axis = np.array([np.cos(oop_axis_orientation), np.sin(oop_axis_orientation), 0]) oop_mat, _ = cv.Rodrigues(oop_axis * oop_rot) rot_mat = np.matmul(oop_mat, in_plane_mat) return rot_mat def get_camera_params(self, width_fov): f = self.im_width / (2 * np.tan(width_fov / 2)) cx = self.im_width / 2 cy = self.im_height / 2 cam_mat = np.eye(3) cam_mat[1, 1] = f cam_mat[0, 0] = f cam_mat[0, 2] = cx cam_mat[1, 2] = cy return cam_mat, f, cx, cy def get_rand_marker(self, polygon, binary_square=False): marker_pixels = self.im_height mborder_size = int(marker_pixels / 8) mimage_size = marker_pixels + 2 * mborder_size marker_image = [] marker_id = 0 if binary_square: bs_image = (np.random.rand(8, 8) * 2).astype(np.uint8) * 255 # make sure it is not aruco x = int(np.random.rand() * 8) y = int(np.random.rand() * 8) i = int(np.random.rand() * 2) if x != 0 and x != 7 and i == 0: y = int(y / 4) * 7 if y != 0 and y != 7 and i == 1: x = int(x / 4) * 7 bs_image[y, x] = 255 marker_image = cv.resize(bs_image, (marker_pixels, marker_pixels), interpolation=cv.INTER_NEAREST) else: if self.id_perm_index == 0: self.ids_permutation = np.random.permutation(250) marker_id = self.ids_permutation[self.id_perm_index] # int(np.random.rand() * 250) self.id_perm_index = (self.id_perm_index + 1) % 250 bs_image = np.zeros((8, 8), np.uint8) code_mat = np.zeros((6, 6), np.uint8) matrix_in_dict = True marker_code = MIP36h12[marker_id] for i in reversed(range(6)): for j in reversed(range(6)): code_mat[i][j] = marker_code % 2 marker_code = int(marker_code / 2) bs_image[1:7, 1:7] = code_mat * 255 marker_image = cv.resize(bs_image, (marker_pixels, marker_pixels), interpolation=cv.INTER_NEAREST) marker_image = cv.copyMakeBorder(marker_image, mborder_size, mborder_size, mborder_size, mborder_size, cv.BORDER_CONSTANT, value=(255, 255, 255)) # increase the black value and decrease the white value to be able to work with different illuminations n = 50.0 cn = float(int(1 + np.random.rand() * (n - 2))) # contrast numerator white_val = 255 / (cn / n + 1) black_val = white_val * (cn / n) marker_image = marker_image * (white_val - black_val) / 255.0 + np.ones((mimage_size, mimage_size)) * black_val # apply illumination illum_generator = np.random.rand() * 2 - 1 if illum_generator >= 0: illumination = 255 / white_val * illum_generator else: illumination = pow(white_val - black_val, illum_generator) add_color = np.random.rand() > 0.5 if add_color: illum_color = (np.random.rand(1, 1, 3) * 2 + 1) / 3 illum_color /= illum_color[0, 0, 0] * 0.114 + illum_color[0, 0, 1] * 0.587 + illum_color[0, 0, 2] * 0.229 illumination *= illum_color # print("White val: " + str(white_val)) # print("black val: " + str(black_val)) # # print( # "White Range: [" + str(white_val / (white_val - black_val)) + "," + str(250 * white_val / black_val) + "]") # print( # "Black Range: [" + str(black_val / (white_val - black_val)) + "," + str(250 * black_val / black_val) + "]") add_shadow = np.random.rand() > 0.5 illum_map = [] if add_shadow: illum_map_small = np.minimum(np.rint(np.random.rand(3, 3)) + np.random.rand() * 2.0 / 3 + 1.0 / 3, 1.0) illum_map_big = cv.resize(illum_map_small, (mimage_size, mimage_size), interpolation=cv.INTER_CUBIC) illum_map = np.empty((mimage_size, mimage_size, 1)) illum_map[..., 0] = illum_map_big marker_color_image = np.empty((mimage_size, mimage_size, 3)) for i in range(3): marker_color_image[..., i] = marker_image # random color change # rand_color_range = 3 # rand_color_change = np.random.rand(1, 1, 3) * rand_color_range # form the final image if add_shadow: marker_image = np.rint(marker_color_image * (illum_map * illumination)) else: marker_image =
np.rint(marker_color_image * illumination)
numpy.rint
# Written by <NAME>, Seoul National University (<EMAIL>) import os import numpy as np from collections import OrderedDict import torch import torch.nn.functional as F from src.evaluate import compute_metrics from src.utils import Print class Trainer(): """ train / eval helper class """ def __init__(self, model): self.model = model self.optim = None self.scheduler = None self.class_weight = None # initialize logging parameters self.train_flag = False self.epoch = 0.0 self.best_loss = None self.logger_train = Logger() self.logger_eval = Logger() def train(self, batch, device): # training of the model batch = set_device(batch, device) self.model.train() self.optim.zero_grad() inputs, labels = batch outputs = self.model(inputs) loss = get_loss(outputs, labels, self.class_weight) loss.backward() self.optim.step() # logging self.logger_train.update(len(outputs), loss.item()) self.logger_train.keep(F.softmax(outputs, dim=1), labels) def evaluate(self, batch, device): # evaluation of the model batch = set_device(batch, device) self.model.eval() with torch.no_grad(): inputs, labels = batch outputs = self.model(inputs) loss = get_loss(outputs, labels, self.class_weight).item() # logging self.logger_eval.update(len(outputs), loss) self.logger_eval.keep(F.softmax(outputs, dim=1), labels) def scheduler_step(self): # scheduler_step self.scheduler.step() def save_model(self, save_prefix): # save state_dicts to checkpoint """ if save_prefix is None: return elif not os.path.exists(save_prefix + "/checkpoints/"): os.makedirs(save_prefix + "/checkpoints/", exist_ok=True) state = self.model.state_dict() torch.save(state, save_prefix + "/checkpoints/%d.pt" % self.epoch) def save_outputs(self, save_prefix): # save state_dicts to checkpoint """ if save_prefix is None: return self.logger_eval.evaluate(train=False) np.save(save_prefix + "/Y.npy", self.logger_eval.labels)
np.save(save_prefix + "/P.npy", self.logger_eval.outputs)
numpy.save
__author__ = '<NAME>' __project__ = 'noise vs resolution' """Copyright 2020. All rights reserved. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software within the scope of evaluating mutli-analyte sensing. No permission is granted to use the software for commercial applications, and alter it or redistribute it. This notice may not be removed or altered from any distribution. """ import matplotlib import matplotlib.pylab as plt from matplotlib.path import Path import matplotlib.patches as patches from mpl_toolkits.mplot3d import Axes3D from shapely.geometry import LineString import cv2 import math import multiprocessing as mp import seaborn as sns import pandas as pd import numpy as np import random from lmfit import Model import scipy.signal from scipy.interpolate import interp1d from scipy.signal import savgol_filter from mcerp import * from uncertainties import * from uncertainties import unumpy import h5py import os from glob import glob from PIL import Image import datetime # global variables sns.set(style="darkgrid") sns.set_context('paper') col = ['#14274e', '#f6830f', '#bb2205'] mark = ['o', 'd'] fs = 13 depth_lim = dict({'optode1': (-5, 4), 'optode2': (-5, 4)}) # ===================================================================================== def prep_plotting_avSD(error, dfoptode, uncer_op1, uncer_op2): if error == 'SD' or error == 'sd': df_error = [pd.DataFrame([[i.s for i in dfoptode[en][se]] for se in dfoptode[en].columns], columns=dfoptode[en].index, index=dfoptode[en].columns).T for en in range(len(dfoptode))] else: df_error = [uncer_op1['sem'], uncer_op2['sem']] return df_error def prepPlot_optodeSet(o, s, error, dfoptode, uncer_op1, uncer_op2): if '1' in o: dfop, optode_sem, interpol = dfoptode[0], uncer_op1['sem'], uncer_op1['SD_interpol'][s] optode_sd = pd.DataFrame([[i.s for i in dfop[se]] for se in dfop.columns], index=dfop.columns, columns=dfop.index).T else: dfop, optode_sem, interpol = dfoptode[1], uncer_op2['sem'], uncer_op2['SD_interpol'][s] optode_sd = pd.DataFrame([[i.s for i in dfop[se]] for se in dfop.columns], index=dfop.columns, columns=dfop.index).T if error == 'SD': dferr = optode_sd else: dferr = optode_sem return dfop, interpol, dferr def prepPlot_SVerrprop(error, dop1_value, dop2_value, op1_normSEM, op2_normSEM): if error == 'SD' or error == 'sd': derror1 = dict(map(lambda s: (s, dop1_value[s][['O2 SD', 'iratio SD']]), dop1_value.keys())) derror2 = dict(map(lambda s: (s, dop2_value[s][['O2 SD', 'iratio SD']]), dop2_value.keys())) else: derror1, derror2 = op1_normSEM, op2_normSEM for s in derror1.keys(): derror1[s].columns, derror2[s].columns = ['O2', 'iratio'], ['O2', 'iratio'] derror = [derror1, derror2] return derror def prepPlot_SVerrprop_ex(o, s, error, dop1_value=None, dop1_param=None, op1_normSEM=None, f1inter_mc=None, dop2_value=None, dop2_param=None, op2_normSEM=None, f2inter_mc=None): if '1' in o: ls_df = [dop1_value, dop1_param, op1_normSEM, f1inter_mc] if any(i == None for i in ls_df): raise ValueError('To plot the example, provide all relevant data! Please check dop_value, dop_param, ' ', op_normSEM, and finter_mc') dfop, dop_para, df_SEM, finter_mc = dop1_value[s], dop1_param[s], op1_normSEM[s], f1inter_mc[s] else: ls_df = [dop2_value, dop2_param, op2_normSEM, f2inter_mc] if any(i == None for i in ls_df): raise ValueError('To plot the example, provide all relevant data! Please check dop_value, dop_param, ' ', op_normSEM, and finter_mc') dfop, dop_para, df_SEM, finter_mc = dop2_value[s], dop2_param[s], op2_normSEM[s], f2inter_mc[s] if error == 'SD' or error == 'sd': dferr = dfop[['O2 SD', 'iratio SD']] else: dferr = pd.concat([df_SEM['O2'], pd.DataFrame([i.s for i in df_SEM['iratio']], index=df_SEM.index)], axis=1) dferr.columns = ['O2', 'iratio'] return dfop, dop_para, df_SEM, dferr, finter_mc def prepMS_plot(index_lp, dic_micro, offset): # microsensor preparation df_micro = dic_micro['run1'].set_index('Intensity (mV)') df_micro['Depth (mm)'] = df_micro['Depth (µm)'] / 1000 # depth in mm # microsensor extension to same depth as selected for the optode df_ms = pd.DataFrame([df_micro['Depth (mm)'].index, df_micro['Depth (mm)']], index=['Intensity', 'Depth (mm)']).T xnew = np.linspace(1, len(df_ms.index), num=int(len(df_ms.index))) df_ms.index = xnew df_ms.loc[0, :] = [df_ms['Intensity'].loc[:3].to_numpy().mean(), index_lp[0] * 1.05] df_ms = df_ms.sort_index() df_ms.loc[xnew[-1] + 1, :] = [df_ms['Intensity'].loc[df_ms.shape[0] - 3:].to_numpy().mean(), index_lp[-1] * 1.05] df_ms = df_ms.sort_index() df_ms['Depth (mm)'] = [i - offset for i in df_ms['Depth (mm)']] return df_ms def sgolay2d(z, window_size, order, derivative=None): # number of terms in the polynomial expression n_terms = (order + 1) * (order + 2) / 2.0 if window_size % 2 == 0: raise ValueError('window_size must be odd') if window_size**2 < n_terms: raise ValueError('order is too high for the window size') half_size = window_size // 2 # exponents of the polynomial: p(x,y) = a0 + a1*x + a2*y + a3*x^2 + a4*y^2 + a5*x*y + ... # this line gives a list of two item tuple. Each tuple contains the exponents of the k-th term. First element of # tuple is for x second element for y. exps = [(k-n, n) for k in range(order+1) for n in range(k+1)] # coordinates of points ind = np.arange(-half_size, half_size+1, dtype=np.float64) dx = np.repeat(ind, window_size) dy = np.tile(ind, [window_size, 1]).reshape(window_size**2, ) # build matrix of system of equation A = np.empty((window_size**2, len(exps))) for i, exp in enumerate(exps): A[:, i] = (dx**exp[0]) * (dy**exp[1]) # pad input array with appropriate values at the four borders new_shape = z.shape[0] + 2*half_size, z.shape[1] + 2*half_size Z = np.zeros((new_shape)) # top band band = z[0, :] Z[:half_size, half_size:-half_size] = band - np.abs( np.flipud(z[1:half_size+1, :]) - band) # bottom band band = z[-1, :] Z[-half_size:, half_size:-half_size] = band + np.abs(np.flipud(z[-half_size-1:-1, :]) -band) # left band band = np.tile(z[:, 0].reshape(-1, 1), [1, half_size]) Z[half_size:-half_size, :half_size] = band - np.abs(np.fliplr(z[:, 1:half_size+1]) - band) # right band band = np.tile(z[:, -1].reshape(-1, 1), [1, half_size]) Z[half_size:-half_size, -half_size:] = band + np.abs(np.fliplr(z[:, -half_size-1:-1]) - band) # central band Z[half_size:-half_size, half_size:-half_size] = z # top left corner band = z[0, 0] Z[:half_size, :half_size] = band - np.abs(np.flipud(np.fliplr(z[1:half_size+1, 1:half_size+1])) - band) # bottom right corner band = z[-1, -1] Z[-half_size:, -half_size:] = band + np.abs(np.flipud(np.fliplr(z[-half_size-1:-1, -half_size-1:-1])) - band) # top right corner band = Z[half_size, -half_size:] Z[:half_size, -half_size:] = band - np.abs(np.flipud(Z[half_size+1:2*half_size+1, -half_size:]) - band) # bottom left corner band = Z[-half_size:, half_size].reshape(-1, 1) Z[-half_size:, :half_size] = band - np.abs(np.fliplr(Z[-half_size:, half_size+1:2*half_size+1]) - band) # solve system and convolve if derivative == None: m = np.linalg.pinv(A)[0].reshape((window_size, -1)) return scipy.signal.fftconvolve(Z, m, mode='valid') elif derivative == 'col': c = np.linalg.pinv(A)[1].reshape((window_size, -1)) return scipy.signal.fftconvolve(Z, -c, mode='valid') elif derivative == 'row': r = np.linalg.pinv(A)[2].reshape((window_size, -1)) return scipy.signal.fftconvolve(Z, -r, mode='valid') elif derivative == 'both': c = np.linalg.pinv(A)[1].reshape((window_size, -1)) r = np.linalg.pinv(A)[2].reshape((window_size, -1)) return scipy.signal.fftconvolve(Z, -r, mode='valid'), scipy.signal.fftconvolve(Z, -c, mode='valid') # ------------------------------------------------------------------------ def plot_optode_avSD_v1(conc, dfoptode, error, col, mark, fs, RoI_op): fig2, ax2 = plt.subplots(figsize=(8, 8), nrows=3, ncols=len(RoI_op), sharex=True, sharey=True, frameon=False) if len(RoI_op) == 1: ax2[0].set_title('Optode with different settings', fontsize=fs * 0.9) else: for n in range(len(RoI_op)): ax2[0][n].set_title('Optode-' + str(n+1), fontsize=fs*0.9) # plotting part ls_handels = list() if len(RoI_op) == 1: for en in range(len(dfoptode[0].columns)): l = ax2[en].errorbar(conc, [i.n for i in dfoptode[0][en]], error[0][en].values, linestyle='None', marker=mark[0], fillstyle='none', color=col[en], ms=6, capsize=6, label=en) ls_handels.append(l) else: for o in range(len(RoI_op)): for en, s in enumerate(dfoptode[o].columns): l = ax2[en][o].errorbar(conc, [i.n for i in dfoptode[o][s]], error[o][s].values, linestyle='None', marker=mark[0], fillstyle='none', color=col[en], ms=6, capsize=6, label=s.split('t')[0] + 'tting ' + s.split('t')[-1]) if o == 1: ls_handels.append(l) # legend and axis layout / labelling if len(RoI_op) == 1: ax2[1].legend(handles=ls_handels, loc="upper left", bbox_to_anchor=[1, 0.9], shadow=True, fancybox=True) else: ax2[1][len(RoI_op)-1].legend(handles=ls_handels, loc="upper left", bbox_to_anchor=[1, 0.9], shadow=True, fancybox=True) if len(RoI_op) == 1: ax2[0].tick_params(axis='both', which='both', direction='out', labelsize=fs * 0.8) # top row ax2[1].tick_params(axis='both', which='both', direction='out', labelsize=fs * 0.8) # middle row ax2[2].tick_params(axis='both', which='both', direction='out', labelsize=fs * 0.8) # bottom row else: for o in range(len(RoI_op)): ax2[0][o].tick_params(axis='both', which='both', direction='out', labelsize=fs * 0.8) # top row ax2[1][o].tick_params(axis='both', which='both', direction='out', labelsize=fs * 0.8) # middle row ax2[2][o].tick_params(axis='both', which='both', direction='out', labelsize=fs * 0.8) # bottom row # x,y label position fig2.text(0.5, 0.075, 'O$_2$ concentration [%air]', va='center', ha='center', fontsize=fs * 1.2) fig2.text(0.025, 0.55, 'Ratio $R/G$', va='center', ha='center', rotation='vertical', fontsize=fs * 1.2) plt.subplots_adjust(left=0.1, bottom=0.15, right=0.85, top=0.95) plt.show() return fig2, ax2 def plot_optode_set(o, s, conc, xinter, dfop, interpol, optode_sem, fs=11): fig2, ax2 = plt.subplots(figsize=(5, 3), frameon=False) ax2.set_title(o, fontsize=fs*0.9) # plotting part ax2.errorbar(conc, [i.n for i in dfop[s]], optode_sem[s].values, linestyle='None', marker=mark[int(s[-1])-1], fillstyle='none', color=col[int(s[-1])-1], ms=6, capsize=5, label=s) ax2.fill_between(x=xinter, y1=interpol[0](xinter), y2=interpol[1](xinter), color=col[int(s[-1])-1], alpha=0.2, lw=0) # legend and axis layout / labelling ax2.legend(loc="upper left", bbox_to_anchor=[1, 0.9], shadow=True, fancybox=True) ax2.tick_params(axis='both', which='both', direction='out', labelsize=fs*0.8) # x,y label position ax2.set_xlabel('O$_2$ concentration [%air]', va='center', ha='center', fontsize=fs*0.9) ax2.set_ylabel('Ratio $R/G$', va='center', ha='center', rotation='vertical', fontsize=fs*0.9) plt.tight_layout() plt.show() return fig2, ax2 def plot_SVerrorprop(dop1_value, dop1_param, derror, f1inter_mc, RoI1_av, RoI2_av=None, dop2_value=None, dop2_param=None, f2inter_mc=None, fs=11.): n = 1 if RoI2_av: n += 1 ls = [dop2_value, dop2_param, f2inter_mc] if any([i == None for i in ls]): raise ValueError('To plot both optodes, all data are required! Please check dop_value, dop_param, ' 'and finter_mc') # ----------------------------------------------------------------------------------------- fig2, ax2 = plt.subplots(figsize=(8, 8), nrows=3, ncols=n, sharex=True, sharey=True, frameon=False) if n == 1: ax2[0].set_title('Optode 1', fontsize=fs*0.9) else: ax2[0][0].set_title('Optode 1', fontsize=fs*0.9), ax2[0][1].set_title('Optode 2', fontsize=fs*0.9) num = int(100/0.5 + 1) xnew = np.linspace(0, 100, num=num) ls_handels = list() if RoI1_av: for en, s in enumerate(dop1_value.keys()): name = s.split('t')[0] + 'tting ' + s.split('t')[-1] O2new = np.linspace(dop1_value[s]['O2 mean'].loc[0], dop1_value[s]['O2 mean'].loc[100], num=num) ynew = _simplifiedSV(xnew, k=dop1_param[s]['k'].mean, f=dop1_param[s]['f'].mean) ydata = f1inter_mc[s] # dashed line for bestFit if n == 1: ax2[en].plot(xnew, ynew, ls='-.', lw=1., color=col[en], label='bestFit') l = ax2[en].errorbar(dop1_value[s]['O2 mean'], dop1_value[s]['iratio mean'].values, capsize=6, ms=6, xerr=derror[0][s]['O2'].values, linestyle='None', marker=mark[0], color=col[en], yerr=derror[0][s]['iratio'].values, fillstyle='none', label=name) ax2[en].fill_between(x=O2new, y1=ydata[0](O2new), y2=ydata[1](O2new), color=col[en], alpha=0.2, lw=0) ls_handels.append(l) else: ax2[en][0].plot(xnew, ynew, ls='-.', lw=1., color=col[en], label='bestFit') l = ax2[en][0].errorbar(dop1_value[s]['O2 mean'], dop1_value[s]['iratio mean'].values, capsize=6, ms=6, xerr=derror[0][s]['O2'].values, linestyle='None', marker=mark[0], color=col[en], fillstyle='none', label=name) ax2[en][0].fill_between(x=O2new, y1=ydata[0](O2new), y2=ydata[1](O2new), color=col[en], lw=0, alpha=0.2) ls_handels.append(l) ls_handels = list() if RoI2_av: for en, s in enumerate(dop2_value.keys()): name = s.split('t')[0] + 'tting ' + s.split('t')[-1] O2new = np.linspace(dop2_value[s]['O2 mean'].loc[0], dop2_value[s]['O2 mean'].loc[100], num=num) ynew = _simplifiedSV(xnew, k=dop2_param[s]['k'].mean, f=dop2_param[s]['f'].mean) ydata = f2inter_mc[s] # dashed line for bestFit if n == 1: ax2[en].plot(xnew, ynew, ls='-.', lw=1., color=col[en], label='bestFit') l = ax2[en].errorbar(dop2_value[s]['O2 mean'], dop2_value[s]['iratio mean'].values, capsize=6, ms=6, xerr=derror[1][s]['O2'].values, linestyle='None', marker=mark[0], color=col[en], fillstyle='none', label=name) ax2[en].fill_between(x=O2new, y1=ydata[0](O2new), color=col[en], alpha=0.2, lw=0, y2=ydata[1](O2new)) ls_handels.append(l) else: ax2[en][1].plot(xnew, ynew, ls='-.', lw=1., color=col[en], label='bestFit') l = ax2[en][1].errorbar(dop2_value[s]['O2 mean'], dop2_value[s]['iratio mean'].values, capsize=6, ms=6, xerr=derror[1][s]['O2'].values, linestyle='None', marker=mark[0], color=col[en], fillstyle='none', label=name) ax2[en][1].fill_between(x=O2new, y1=ydata[0](O2new), color=col[en], lw=0, alpha=0.2, y2=ydata[1](O2new)) ls_handels.append(l) # legend and axis layout / labelling if n == 1: ax2[1].legend(handles=ls_handels, loc="upper left", bbox_to_anchor=[1, 0.9], shadow=True, fancybox=True) else: ax2[1][1].legend(handles=ls_handels, loc="upper left", bbox_to_anchor=[1, 0.9], shadow=True, fancybox=True) # x,y label position fig2.text(0.5, 0.018, 'O$_2$ concentration [%air]', va='center', ha='center', fontsize=fs*1.2) fig2.text(0.025, 0.55, 'Ratio $R/G$', va='center', ha='center', rotation='vertical', fontsize=fs*1.2) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.85, top=0.95) plt.show() return fig2, ax2 def plot_optode_set_SV(o, s, en, dfop, dop_para, dferr, finter_mc, fs=11): fig2, ax2 = plt.subplots(figsize=(5, 3), frameon=False) title = o + ' - ' + s ax2.set_title(title, loc='left', fontsize=fs * 0.9) xnew = np.linspace(0, 100, num=int(100 / 0.5 + 1)) O2new = np.linspace(dfop['O2 mean'].loc[0], dfop['O2 mean'].loc[100], num=int(100 / 0.5 + 1)) ynew = _simplifiedSV(xnew, k=dop_para['k'].mean, f=dop_para['f'].mean) ax2.plot(xnew, ynew, ls='-.', lw=1., color=col[en - 1], label='bestFit') ax2.errorbar(dfop['O2 mean'], dfop['iratio mean'].values, capsize=6, xerr=dferr['O2'].values,color=col[en - 1], linestyle='None', marker=mark[0], fillstyle='none', ms=6, label=s) ax2.fill_between(x=O2new, y1=finter_mc[0](O2new), y2=finter_mc[1](O2new), color=col[en - 1], alpha=0.2, lw=0) # x,y label position fig2.text(0.5, 0.04, 'O$_2$ concentration [%air]', va='center', ha='center', fontsize=fs) fig2.text(0.025, 0.55, 'Ratio $R/G$', va='center', ha='center', rotation='vertical', fontsize=fs) plt.subplots_adjust(left=0.1, bottom=0.2, right=0.95, top=0.9) plt.show() return fig2, ax2 def plot_wholeImage3D(dO2_mean, unit, pad=2): xx, yy = np.meshgrid(dO2_mean.index.to_numpy(), dO2_mean.columns.to_numpy()) # 3D image of full area fig = plt.figure(figsize=(10, 8)) ax = fig.gca(projection='3d') surf = ax.plot_surface(xx, yy, dO2_mean.T.fillna(limit=5, method='ffill'), cmap='magma_r', linewidth=0, vmin=0, vmax=100, antialiased=False, rstride=5, cstride=10) cbar = fig.colorbar(surf, aspect=20, shrink=0.8) ax.view_init(16, 45) ax.tick_params(axis='x', labelsize=fs*0.9) ax.tick_params(axis='y', labelsize=fs*0.9) ax.tick_params(axis='z', labelsize=fs*0.9) cbar.ax.tick_params(labelsize=fs*0.8) ax.set_xlabel('Image height [{}]'.format(unit), fontsize=fs, labelpad=pad) ax.set_ylabel('Image width [{}]'.format(unit), fontsize=fs, labelpad=pad) ax.set_zlabel('$O_2$ concentration [%air]', fontsize=fs, labelpad=pad) plt.tight_layout() plt.draw() return fig, ax def plot_optode2D(o, s, px2mm, surface, dO2_av, depth_range, width_range, figsize=(6, 2), unit='mm', fs=11, vmin=None, vmax=None): # prepare optode for plotting; baseline correction and cropping the image to the depth and width of interest df_data = optodePrep2D(o=o, s=s, px2mm=px2mm, baseline=surface, dO2_av=dO2_av, depth_range=depth_range, width_range=width_range) # resetting the axis ticks with extent extent = [df_data.columns[0], df_data.columns[-1], # x-axis, e.g. columns df_data.index[0], df_data.index[-1]] # y-axis, e.g. index # plotting fig, ax = plt.subplots(figsize=figsize) sur = ax.imshow(df_data, extent=extent, cmap='magma_r', vmin=vmin, vmax=vmax) if vmin is None: vmin = int(df_data.min().min()) if vmax is None: vmax = int(df_data.max().max()) plt.colorbar(sur, shrink=0.75, fraction=0.1, aspect=10, ticks=np.linspace(vmin, vmax, num=5)) ax.set_xlabel('Image width [{}]'.format(unit), fontsize=fs) ax.set_ylabel('Image height [{}]'.format(unit), fontsize=fs) plt.tight_layout() return fig, ax def plotLP(dO2_lp, df_ms, header_ms, depth, kshape, depth_lp, s, arg, dO2_optode=None): # additional information col_ = int(s[-1])-1 # figure creation fig_lp = plt.figure(figsize=(arg['figsize']), dpi=100) with plt.style.context('seaborn-darkgrid'): ax1 = fig_lp.add_subplot(131) ax2 = fig_lp.add_subplot(132, sharex=ax1, sharey=ax1) ax3 = fig_lp.add_subplot(133, sharex=ax1, sharey=ax1) if dO2_optode: with plt.style.context('classic'): ax11 = fig_lp.add_axes([0.13, 0.2, 0.2, 0.2]) ax21 = fig_lp.add_axes([0.44, 0.2, 0.2, 0.2]) if len(dO2_lp[kshape]['square'].keys()) != 0: ax31 = fig_lp.add_axes([0.75, 0.2, 0.2, 0.2]) ax1.set_title('(A) Horizontal blur', fontsize=fs, loc='left') ax2.set_title('(B) Vertical blur', fontsize=fs, loc='left') if len(dO2_lp[kshape]['square'].keys()) != 0: ax3.set_title('(C) Square blur', fontsize=fs, loc='left') # plot line profile # horizontal df_h = dO2_lp[kshape]['horizontal'][arg['lw']].fillna(limit=5, method='ffill').loc[depth_lp[0]: depth_lp[1]] ax1.plot(df_h['mean'].values, df_h.index, lw=arg['curve lw'], color=col[col_]) ax1.fill_betweenx(df_h.index, df_h['mean'].values - df_h['SD'].values, df_h['mean'].values + df_h['SD'].values, facecolor=col[col_], alpha=0.25) # vertical df_v = dO2_lp[kshape]['vertical'][arg['lw']].fillna(limit=5, method='ffill').loc[depth_lp[0]: depth_lp[1]] ax2.plot(df_v['mean'].values, df_v.index, lw=arg['curve lw'], color=col[col_]) ax2.fill_betweenx(df_v.index, df_v['mean'].values - df_v['SD'].values, df_v['mean'].values + df_v['SD'].values, facecolor=col[col_], alpha=0.25) # squared if len(dO2_lp[kshape]['square'].keys()) == 0: ax3.axis('off') else: df_s = dO2_lp[kshape]['square'][arg['lw']].fillna(limit=5, method='ffill').loc[depth_lp[0]: depth_lp[1]] ax3.plot(df_s['mean'].values, df_s.index, lw=arg['curve lw'], color=col[col_]) ax3.fill_betweenx(df_s.index, df_s['mean'].values - df_s['SD'].values, df_s['mean'].values + df_s['SD'].values, facecolor=col[col_], alpha=0.25) # .......................................... # 2D imshow if dO2_optode: opt_h = dO2_optode[kshape]['horizontal'] extent = [opt_h.columns[0], opt_h.columns[-1], # x-axis, e.g. columns opt_h.index[-1], opt_h.index[0]] # y-axis, e.g. index op1 = ax11.imshow(opt_h, extent=extent, aspect=arg['aspect'], cmap=arg['cmap'], vmin=arg['vmin op'], vmax=arg['vmax op']) op2 = ax21.imshow(dO2_optode[kshape]['vertical'], extent=extent, aspect=arg['aspect'], cmap=arg['cmap'], vmin=arg['vmin op'], vmax=arg['vmax op']) if len(dO2_lp[kshape]['square'].keys()) != 0: op3 = ax31.imshow(dO2_optode[kshape]['square'], extent=extent, aspect=arg['aspect'], cmap=arg['cmap'], vmin=arg['vmin op'], vmax=arg['vmax op']) # color bar fig_lp.colorbar(op1, aspect=10, shrink=0.8, ax=ax11) fig_lp.colorbar(op2, aspect=10, shrink=0.8, ax=ax21) if len(dO2_lp[kshape]['square'].keys()) != 0: fig_lp.colorbar(op3, aspect=10, shrink=0.8, ax=ax31) # .......................................... # microsensor ax1.plot(df_ms[header_ms[1]].to_numpy(), depth, lw=arg['curve lw'], color='black', label='microsensor') ax2.plot(df_ms[header_ms[1]].to_numpy(), depth, lw=arg['curve lw'], color='black', label='microsensor') if len(dO2_lp[kshape]['square'].keys()) != 0: ax3.plot(df_ms[header_ms[1]].to_numpy(), depth, lw=arg['curve lw'], color='black', label='microsensor') # .......................................... # adjust axes ax1.set_xlim(arg['vmin'], arg['vmax']) ax1.set_ylim(df_h.index[-1] * 1.05, df_h.index[0] * 1.05) ax1.tick_params(labelsize=arg['fontsize']*0.9) ax2.tick_params(labelsize=arg['fontsize']*0.9) if len(dO2_lp[kshape]['square'].keys()) != 0: ax3.tick_params(labelsize=arg['fontsize']*0.9) if dO2_optode: ax11.tick_params(labelsize=arg['fontsize']*0.7) ax21.tick_params(labelsize=arg['fontsize']*0.7) if len(dO2_lp[kshape]['square'].keys()) != 0: ax31.tick_params(labelsize=arg['fontsize']*0.7) ax11.set_xlabel('Width [mm]', fontsize=arg['fontsize']*0.7) ax11.set_ylabel('Height [mm]', fontsize=arg['fontsize']*0.7) ax21.set_xlabel('Width [mm]', fontsize=arg['fontsize']*0.7) ax21.set_ylabel('Height [mm]', fontsize=arg['fontsize']*0.7) if len(dO2_lp[kshape]['square'].keys()) != 0: ax31.set_xlabel('Width [mm]', fontsize=arg['fontsize']*0.7) ax31.set_ylabel('Height [mm]', fontsize=arg['fontsize']*0.7) fig_lp.text(0.4, 0.02, '$O_2$ concentration [%air]', fontsize=arg['fontsize']) fig_lp.text(0.01, 0.48, 'Depth [mm]', fontsize=arg['fontsize'], rotation='vertical') fig_lp.subplots_adjust(bottom=0.12, right=0.95, top=0.95, left=0.05, wspace=0.2, hspace=0.2) return fig_lp def plot_penetrationDepth(depth, ls_kernel, arg): if isinstance(ls_kernel[0], tuple): kernel_s = [k[1] for k in ls_kernel] else: kernel_s = ls_kernel # ..................... fig, ax = plt.subplots(figsize=(5, 3.5)) for en, c in enumerate(depth.columns): ax.plot(kernel_s, depth[c], lw=1., ls='-.', marker=arg['marker'][en], ms=7, color=arg['colors'][en], fillstyle='none', label=c.split('-')[0] + ' blur') ax.legend(loc=0, frameon=True, fancybox=True, fontsize=fs * 0.8) ax.tick_params(axis='both', labelsize=fs * 0.8) ax.set_xlabel('kernel size', fontsize=fs) ax.set_ylabel('$O_2$ penetration depth [mm]', fontsize=fs) plt.tight_layout() return fig # ===================================================================================== def crop_optode(dratio, RoI1, RoI2): # optode 1 if RoI1 == None: optode1 = None else: optode1 = dict() for en, c in enumerate(dratio.keys()): ls_av = list() for av in range(len(RoI1)): height = RoI1[av][1][1] - RoI1[av][0][1] im_ratio = dratio[c][0][RoI1[av][0][1]:RoI1[av][1][1] + 1] ls_av.append(np.stack([im_ratio[n][RoI1[av][0][0]:RoI1[av][2][1] + 1] for n in np.arange(height + 1)], axis=0)) optode1[c] = ls_av # ------------------------------------------------------------------------- # optode 2 if RoI2 == None: optode2 = None else: optode2 = dict() for en, c in enumerate(dratio.keys()): ls_av = list() for av in range(len(RoI2)): height2 = RoI2[av][1][1] - RoI2[av][0][1] im_ratio2 = dratio[c][1][RoI2[av][0][1]:RoI2[av][1][1] + 1] ls_av.append(np.stack([im_ratio2[n][RoI2[av][0][0]:RoI2[av][2][1] + 1] for n in np.arange(height2 + 1)], axis=0)) optode2[c] = ls_av return optode1, optode2 def image_resolution(px, dist_mm, inch=None): px2mm = px / dist_mm * 1 if inch: dpi = px / inch else: dpi = None return px2mm, dpi def px2mm_conversion(df, px2mm, surface): ind_new = df.index.to_numpy() / px2mm - surface col_new = df.columns.to_numpy() / px2mm df.index, df.columns = ind_new, col_new return df def round_decimals_up(number, decimals=2): """ Returns a value rounded up to a specific number of decimal places. """ if not isinstance(decimals, int): raise TypeError("decimal places must be an integer") elif decimals < 0: raise ValueError("decimal places has to be 0 or more") elif decimals == 0: return math.ceil(number) factor = 10 ** decimals return math.ceil(number * factor) / factor def round_decimals_down(number, decimals=2): """ Returns a value rounded down to a specific number of decimal places. """ if not isinstance(decimals, int): raise TypeError("decimal places must be an integer") elif decimals < 0: raise ValueError("decimal places has to be 0 or more") elif decimals == 0: return math.floor(number) factor = 10 ** decimals return math.floor(number * factor) / factor # ===================================================================================== def averaging_areas(doptode_set): l = dict(map(lambda c: (c, pd.DataFrame([(np.mean(doptode_set[c][av]), np.std(doptode_set[c][av])) for av in range(len(doptode_set[c]))], columns=['mean', 'SD_area'])), doptode_set.keys())) dfop_set = pd.concat(l, axis=0).sort_index(axis=0) return dfop_set def averaging_deriv(ls_x): der = 1/len(ls_x) * ls_x return der def optode_normalization(dfop): optode_norm = dict(map(lambda s: (s, dfop[s].loc[0] / dfop[s]), dfop.keys())) # update calibration point zero for s in optode_norm.keys(): sd = ((dfop[s][0].std_dev / dfop[s][0].n)**2)*2 optode_norm[s].loc[0] = ufloat(dfop[s][0].n / dfop[s][0].n, np.sqrt(sd) * dfop[s][0].n / dfop[s][0].n) return optode_norm def interpolation_SD(conc, dfop, s, method='cubic'): f_min = interp1d(conc, [i.n-i.s for i in dfop[s]], kind=method) f_max = interp1d(conc, [i.n+i.s for i in dfop[s]], kind=method) return f_min, f_max def interpolation_SDmc(df, s, method='cubic'): I_min = interp1d(df[s]['O2 mean'].values, (df[s]['iratio mean'] - df[s]['iratio SD']).values, kind=method) I_max = interp1d(df[s]['O2 mean'].values, (df[s]['iratio mean'] + df[s]['iratio SD']).values, kind=method) return I_min, I_max def channel_division(dconc, dch_num, dch_denom, s): dratio = dict() for c in dconc[s]: dratio[c] = [dch_num[s][str(c)+'%'][n] / dch_denom[s][str(c)+'%'][n] for n in range(len(dch_num[s][str(c)+'%']))] return dratio def ratiometric_intensity(path, crop_op, channel, RoI1=None, RoI2=None): # RoI are areas defined anti-clockwise starting from the top left corner with P(col / ind) if crop_op: pass else: RoI_op_ = RoI1 + RoI2 crop_op = [[(RoI_op_[o][p][0] + 5, RoI_op_[o][p][1] + 5) for p in range(len(RoI_op_[o]))] for o in range(len(RoI_op_))] # ------------------------------- # RoI for different settings height = list(map(lambda n: (crop_op[n][1][1] - crop_op[n][0][1]), range(len(crop_op)))) # load all calibration images - collect information dict_red, dict_green, dict_conc = load_calibration_info(path=path, RoI1=crop_op, height=height, channel=channel, server=False) # calculating the ratio R/G of the whole optode dratio = dict(map(lambda k: (k, channel_division(dconc=dict_conc, dch_num=dict_red, dch_denom=dict_green, s=k)), dict_red.keys())) # combine cropped info optode1 = dict(map(lambda s: (s, crop_optode(dratio[s], RoI1=RoI1, RoI2=RoI2)[0]), dratio.keys())) optode2 = dict(map(lambda s: (s, crop_optode(dratio[s], RoI1=RoI1, RoI2=RoI2)[1]), dratio.keys())) # determine number of pixels within the defined RoI = sample size if RoI1: npx1 = (RoI1[0][1][1] - RoI1[0][0][1]) * (RoI1[0][2][0] - RoI1[0][0][0]) else: npx1 = 0 if RoI2: npx2 = (RoI2[0][1][1] - RoI2[0][0][1]) * (RoI2[0][2][0] - RoI2[0][0][0]) else: npx2 = 0 # ---------------------------------------------------------- # signal averaged within RoI used as start/input signal for uncertainty propagation averaging each RoI for all # optodes and settings if RoI1: # optode 1 dfop1_set1 = averaging_areas(doptode_set=optode1['set1']) dfop1_set2 = averaging_areas(doptode_set=optode1['set2']) dfop1_set3 = averaging_areas(doptode_set=optode1['set3']) conc = dfop1_set1.index.levels[0].to_numpy() dfop1 = dict({'set1': [ufloat(dfop1_set1.loc[i, 'mean'], dfop1_set1.loc[i, 'SD_area']) for i in dfop1_set1.index], 'set2': [ufloat(dfop1_set2.loc[i, 'mean'], dfop1_set2.loc[i, 'SD_area']) for i in dfop1_set2.index], 'set3': [ufloat(dfop1_set3.loc[i, 'mean'], dfop1_set3.loc[i, 'SD_area']) for i in dfop1_set3.index]}) dfop1 = pd.DataFrame(dfop1, index=conc) else: dfop1 = None if RoI2: # optode 2 dfop2_set1 = averaging_areas(doptode_set=optode2['set1']) dfop2_set2 = averaging_areas(doptode_set=optode2['set2']) dfop2_set3 = averaging_areas(doptode_set=optode2['set3']) conc = dfop2_set1.index.levels[0].to_numpy() dfop2 = dict({'set1': [ufloat(dfop2_set1.loc[i, 'mean'], dfop2_set1.loc[i, 'SD_area']) for i in dfop2_set1.index], 'set2': [ufloat(dfop2_set2.loc[i, 'mean'], dfop2_set2.loc[i, 'SD_area']) for i in dfop2_set2.index], 'set3': [ufloat(dfop2_set3.loc[i, 'mean'], dfop2_set3.loc[i, 'SD_area']) for i in dfop2_set3.index]}) dfop2 = pd.DataFrame(dfop2, index=conc) else: dfop2 = None # prepare for output dfoptode = [dfop1, dfop2] para = dict({'sample size': (npx1, npx2), 'concentration': conc, 'ch1': dict_red, 'ch2': dict_green}) return dfoptode, para def reduce_dict(name, dint1, dint2=None, nopt=1, option='ratio'): if option == 'ratio': dop1 = dict(map(lambda s: (s, np.divide(dint1[s][name][0], dint2[s][name][0])), dint1.keys())) if nopt > 1: dop2 = dict(map(lambda s: (s, np.divide(dint1[s][name][1], dint2[s][name][1])), dint1.keys())) else: dop2 = None else: dop1 = dict(map(lambda s: (s, dint1[s][name][0]), dint1.keys())) if nopt > 1: dop2 = dict(map(lambda s: (s, dint1[s][name][1]), dint1.keys())) else: dop2 = None dint = dict({'optode1': dop1, 'optode2': dop2}) return dint def splitImage(path, RoI_op): # RoI for different settings height = dict(map(lambda o: (o, RoI_op[o][1][1] - RoI_op[o][0][1]), range(len(RoI_op)))) dict_red, dict_green = load_files(path, RoI_op, height) # split into smaller dictionaries name = list(dict_red['set1'].keys())[0] dint_red = reduce_dict(name=name, dint1=dict_red, dint2=None, nopt=len(RoI_op), option='single') dint_green = reduce_dict(name=name, dint1=dict_green, dint2=None, nopt=len(RoI_op), option='single') dint_ratio = reduce_dict(name=name, dint1=dict_red, dint2=dict_green, nopt=len(RoI_op), option='ratio') return dint_red, dint_green, dint_ratio def split2statics(dO2): # mean value dic_av = dict(map(lambda o: (o, dict(map(lambda s: (s, pd.DataFrame(list(map(lambda j: [i.n if i is not np.nan else i for i in dO2[o][s][j]], dO2[o][s].columns)), columns=dO2[o][s].index, index=dO2[o][s].columns).T), dO2[o].keys()))), dO2.keys())) # standard error dic_sd = dict(map(lambda o: (o, dict(map(lambda s: (s, pd.DataFrame(list(map(lambda j: [i.s if i is not np.nan else i for i in dO2[o][s][j]], dO2[o][s].columns)), columns=dO2[o][s].index, index=dO2[o][s].columns).T), dO2[o].keys()))), dO2.keys())) return dic_av, dic_sd def line_profile_v1(df, lp, lw): if df.empty is True: df_lp = None else: # find closest value in df.columns diff_min, diff_max = (lp - lw / 2) - df.columns, (lp + lw / 2) - df.columns for en, i in enumerate(diff_min): if i == min(np.abs(diff_min)): pos_min = (en, df.columns[en]) for en, i in enumerate(diff_max): if i == min(np.abs(diff_max)): pos_max = (en, df.columns[en]) if pos_min: pass else: pos_min = (None, None) if pos_max: pass else: pos_max = (None, None) if pos_min == pos_max: df_lp = pd.DataFrame(df[pos_min[1]]) else: df_lp = df.loc[:, pos_min[1]:pos_max[1]] return df_lp def optodePrep2D(o, s, dO2_av, px2mm, baseline, depth_range=None, width_range=None): # image preparation and cropping image depth/width df_ex = dO2_av[o][s] xnew = df_ex.index df = df_ex.copy() df.index = reversed(xnew) if depth_range is None: df_ = df else: px_range = np.arange(0, len(df.index) + 1, step=1) px_range_mm = px_range / px2mm - baseline[int(o.split('e')[-1])-1] crop_px1 = list() for en, p in enumerate(px_range_mm): if p.round(1) == depth_range[0]: crop_px1.append(en) crop_px2 = list() for en, p in enumerate(px_range_mm): if p.round(1) == depth_range[1]: crop_px2.append(en) crop_px = int(np.mean(crop_px1)), int(np.mean(crop_px2)) df_ = df.loc[df.index[min(crop_px)]:df.index[max(crop_px)], :] df_.index = reversed(df_ex.index[min(crop_px):max(crop_px) + 1]) if width_range is None: df_data = df_ else: df_data = df_.loc[:, width_range[0]:width_range[1]] return df_data def sem_optode(dfop, RoI, conc): n = np.sqrt(sum([(RoI[i][1][1] - RoI[i][0][1])*(RoI[i][2][0] - RoI[i][0][0]) for i in range(len(RoI))])) dfop_sem = dict(map(lambda s: (s, [i.s/n for i in dfop[s]]), dfop.keys())) optode_sem = pd.concat(list(map(lambda s: pd.DataFrame([np.mean(dfop_sem[s][c:(c+1)]) for c in range(len(conc))], index=conc, columns=[s]), dfop.keys())), axis=1) return optode_sem, n def uncertainty(para, RoI1, RoI2, conc, dfop1=None, dfop2=None, method='cubic'): # interpolation for SD if isinstance(dfop1, pd.DataFrame): f_op1 = dict(map(lambda s: (s, interpolation_SD(conc=para['concentration'], dfop=dfop1, s=s, method=method)), dfop1.columns)) # standard error of the mean optode1_sem, n1 = sem_optode(dfop=dfop1, RoI=RoI1, conc=conc) # combine for output uncer_op1 = dict({'SD_interpol': f_op1, 'sem': optode1_sem, 'sample size': n1}) else: uncer_op1 = None if isinstance(dfop2, pd.DataFrame): f_op2 = dict(map(lambda s: (s, interpolation_SD(conc=para['concentration'], dfop=dfop2, s=s, method=method)), dfop2.columns)) # standard error of the mean optode2_sem, n2 = sem_optode(dfop=dfop2, RoI=RoI2, conc=conc) # combine for output uncer_op2 = dict({'SD_interpol': f_op2, 'sem': optode2_sem, 'sample size': n2}) else: uncer_op2 = None return uncer_op1, uncer_op2 def lin_propagation(dfop1, dfop2, n1, n2, RoI1, RoI2, conc): # normalization if RoI1: # optode 1 optode1_norm = optode_normalization(dfop=dfop1) else: optode1_norm = None if RoI2: # optode 2 optode2_norm = optode_normalization(dfop=dfop2) else: optode2_norm = None optode_norm = [optode1_norm, optode2_norm] # standard error of the mean if RoI1: optode1_norm_SEM = dict(map(lambda s: (s, pd.DataFrame([i.s / n1 for i in optode1_norm[s]], index=optode1_norm[s].index)), optode1_norm.keys())) # interpolation for SD fnorm_op1 = dict(map(lambda s: (s, interpolation_SD(conc=conc, dfop=optode1_norm, s=s)), optode1_norm.keys())) else: optode1_norm_SEM, fnorm_op1 = None, None if RoI2: optode2_norm_SEM = dict(map(lambda s: (s, pd.DataFrame([i.s / n2 for i in optode2_norm[s]], index=optode2_norm[s].index)), optode2_norm.keys())) # interpolation for SD fnorm_op2 = dict(map(lambda s: (s, interpolation_SD(conc=conc, dfop=optode2_norm, s=s)), optode2_norm.keys())) else: optode2_norm_SEM, fnorm_op2 = None, None return optode_norm, optode1_norm_SEM, optode2_norm_SEM, fnorm_op1, fnorm_op2 def mc_propagation(conc, dfop, optode_norm, optode_norm_SEM, RoI, uncer_op): dic_optode_value = dict() dic_optode_param = dict() for s in dfop.columns: if RoI: [dic_optode_param[s], dic_optode_value[s]] = mcerp_simplifiedSVFit(optode=optode_norm[s].to_numpy(), conc=conc) for s in dic_optode_param.keys(): if RoI: dic_optode_param[s]['I0'] = dfop.loc[0][s] # ------------------------------------------------------------------- # uncertainty propagation for SEM # intensity iratio_normSEM = dict(map(lambda s: (s, pd.Series([ufloat(optode_norm[s].loc[c].n, optode_norm_SEM[s].loc[c][0]) for c in optode_norm[s].index], index=optode_norm[s].index, name=s)), optode_norm.keys())) # concentration ox_normSEM = dict(map(lambda s: (s, dic_optode_value[s]['O2 SD'] / uncer_op['sample size']), dic_optode_value.keys())) optode_normSEM = dict(map(lambda s: (s, pd.concat([ox_normSEM[s], iratio_normSEM[s]], axis=1, keys=['O2 SEM', 'iratio SEM'])), iratio_normSEM.keys())) return dic_optode_value, dic_optode_param, optode_normSEM # ===================================================================================== def _simplifiedSV(x, f, k): """ fitting function according to the common two site model. In general, x represents the pO2 or pCO2 content, whereas m, k and f are the common fitting parameters :param x: list :param k: np.float :param f: np.float :return: iratio: normalized signal i0/i """ return 1 / (f / (1. + k*x) + (1.-f)) def _simplified_SVFit_1run(data, conc, par0=None): simply_sv = Model(_simplifiedSV) if par0: params_sens = simply_sv.make_params(k=par0['k'], f=par0['f']) else: params_sens = simply_sv.make_params(k=0.165, f=0.887) params_sens['k'].min = 0. params_sens['f'].max = 1. params_sens['f'].vary = True params_sens['k'].vary = True # use i0/i data for fit and re-calculate i afterwards # full concentration range result = simply_sv.fit(data, params_sens, x=conc, nan_policy='omit') return result def mcerp_simplifiedSVFit(optode, conc): # use simplifiedSV_run1 to calculate best fit res = _simplified_SVFit_1run(data=[i.n for i in optode], conc=conc) # evaluate the covariance matrix of your parameters covariance = res.covar # draw random samples from a normal multivariate distribution using the best value of your parameters # and their covariance matrix f = N(res.params['f'].value, res.params['f'].stderr**2) # stderr**2 := cov(f,f) k = N(res.params['k'].value, res.params['k'].stderr**2) y = [N(o.n, o.s) for o in optode] params = dict({'f': f, 'k': k, 'covariance': covariance, 'fit result': res}) # calculate x for each point of the sample O2_calc = O2_analysis_v2(f=f, k=k, iratio=y) # estimate the mean and standard deviation of x ox_out = [(O2_calc[ox].mean, np.sqrt(O2_calc[ox].var), optode[ox].n, optode[ox].s) for ox in range(len(conc))] out = pd.DataFrame(ox_out, index=conc, columns=['O2 mean', 'O2 SD', 'iratio mean', 'iratio SD']) return params, out def o2_calculation(inp, dict_ratio_run1, dict_ratio_run2, dpara, surface, px2mm, splitdata=True, run=2, vmin=-50, vmax=150): o, s, run = inp.split(',')[0].strip(), inp.split(',')[1].strip(), int(run) if run == 1: dratio = dict_ratio_run1 else: dratio = dict_ratio_run2 dO2_calc = dict() for o in dratio.keys(): if dratio[o]: dic_cal = dict(map(lambda s: (s, O2_analysis_area(para=dpara[o][s], iratio=dratio[o][s])), dratio[o].keys())) dO2_calc[o] = dic_cal # post-processing dO2, dO2_av, dO2_SD = postprocessing_v1(dO2_calc=dO2_calc, px2mm=px2mm, surface=surface, split=splitdata, vmin=vmin, vmax=vmax) return dO2, dO2_av, dO2_SD def O2_analysis_v2(f, k, iratio): """ :param f: mcerp.UncertainVariable contaning a normal distributed sample of values around the best value of the fit parameter f and its covariance value as sigma :param k: mcerp.UncertainVariable contaning a normal distributed sample of values around the best value of the fit parameter k and its covariance value as sigma :param iratio: list of mcerp.UncertainVariables containing a normal distributed sample of the intensity ratio (mu is the average value and sigma is the proagated error) return x: """ # mean O2 concentration x = [1/k * (f / ((1/y) + f -1) -1) for y in iratio] return x def O2_analysis_area(para, iratio, iratio_std=None, int_type='norm'): """ :param f: mcerp.UncertainVariable contaning a normal distributed sample of values around the best value of the fit parameter f and its covariance value as sigma :param k: mcerp.UncertainVariable contaning a normal distributed sample of values around the best value of the fit parameter k and its covariance value as sigma :param iratio: array of mcerp.UncertainVariables containing a normal distributed sample of the intensity ratio (mu is the average value and sigma is the proagated error) or only mean values as np.float64 return x: """ # create ufloat for uncertainty propagation via parameter f_mp = ufloat(para.loc['f'][0], para.loc['f'][1]) k_mp = ufloat(para.loc['k'][0], para.loc['k'][1]) if int_type == 'norm': int_arr = unumpy.uarray(np.array(iratio.to_numpy()), np.array(iratio_std.to_numpy())) else: i0_mp = ufloat(para.loc['I0'][0], para.loc['I0'][1]) if isinstance(iratio, (np.ndarray, np.generic)): iratio_arr = unumpy.uarray(iratio, np.array(np.zeros(shape=(iratio.shape)))) else: iratio_arr = unumpy.uarray(iratio.values, np.array(np.zeros(shape=(iratio.shape)))) int_arr = iratio_arr / i0_mp # intermediate value calculation for x = 1/k * (np.divide(f, np.divide(1, inorm) + f - 1) - 1) a = int_arr + f_mp - 1 b = f_mp / a - 1 # final O2 concentration x = 1 / k_mp * b df_x = pd.DataFrame(x, index=pd.DataFrame(iratio).index, columns=pd.DataFrame(iratio).columns) return df_x # ===================================================================================== def fsigmoid(x, a, b, c): return c / (1.0 + np.exp(-a * (x - b))) def interpolation_microsensor(df_ms, profile_ex): smodel = Model(fsigmoid) # interpolation of microsensor to step width of optode params = smodel.make_params(a=-15, b=1, c=50) res_ms = smodel.fit(df_ms.loc[1:16, :]['Intensity'].to_numpy(), x=df_ms.loc[1:16, :]['Depth (mm)'].to_numpy(), params=params) xnew = profile_ex.index ydata = fsigmoid(x=xnew, a=res_ms.best_values['a'], b=res_ms.best_values['b'], c=res_ms.best_values['c']) data_ms = pd.DataFrame(ydata, index=xnew) data_ms.columns = ['microsensor'] return data_ms def geometric_intersection(treshold, dd, column): # generate curve second_line = LineString(np.column_stack((dd.index, [treshold]*dd.shape[0]))) first_line = LineString(np.column_stack((dd.index, dd[column].to_numpy()))) # geometric determination of intersection points intersection = first_line.intersection(second_line) try: xdata = LineString(intersection).xy except: xdata = intersection.xy return xdata def penetration_depth(dO2_lp, ls_kernel, df_ms, treshold): # combine relevant line profiles dprofile = dict() for kshape in ls_kernel: if len(dO2_lp[kshape]['square'].keys()) != 0: depth = pd.concat([dO2_lp[kshape]['vertical'][0], dO2_lp[kshape]['horizontal'][0], dO2_lp[kshape]['square'][0]], axis=1) col = dO2_lp[kshape].keys() else: depth = pd.concat([dO2_lp[kshape]['vertical'][0], dO2_lp[kshape]['horizontal'][0]], axis=1) col = ['vertical', 'horizontal'] depth.columns = [i + '-' + j for i in col for j in ['mean', 'SD']] dprofile[kshape] = depth # exponential decay for interpolation of micro-sensor data close to the transition data_ms = interpolation_microsensor(df_ms=df_ms, profile_ex=dprofile[ls_kernel[0]]) # geometric intersection of line profile and O2 threshold for penetration depth dd = dict(map(lambda k: (k, pd.concat([dprofile[k].filter(like='mean'), data_ms], axis=1)), ls_kernel)) # minimal line profile dd_min = dict(map(lambda k: (k, pd.concat([pd.DataFrame([dprofile[k][c + '-mean'] - dprofile[k][c + '-SD'] for c in col], index=col).T, data_ms['microsensor']], axis=1)), ls_kernel)) # maximal line profile dd_max = dict(map(lambda k: (k, pd.concat([pd.DataFrame([dprofile[k][c + '-mean'] + dprofile[k][c + '-SD'] for c in col], index=col).T, data_ms['microsensor']], axis=1)), ls_kernel)) ydepth = pd.concat([pd.DataFrame([geometric_intersection(treshold=treshold, dd=dd[k], column=d)[0][0] for d in dd[k].columns], index=dd[k].columns) for k in ls_kernel], axis=1).T ydepth_min = pd.concat([pd.DataFrame([geometric_intersection(treshold=treshold, dd=dd_min[k], column=d)[0][0] for d in dd_min[k].columns], index=dd_min[k].columns) for k in ls_kernel], axis=1).T ydepth_max = pd.concat([pd.DataFrame([geometric_intersection(treshold=treshold, dd=dd_max[k], column=d)[0][0] for d in dd_max[k].columns], index=dd_max[k].columns) for k in ls_kernel], axis=1).T ydepth.index, ydepth_min.index, ydepth_max.index = ls_kernel, ls_kernel, ls_kernel ydepth.columns = [i.split('-')[0] for i in ydepth.columns] return ydepth, ydepth_min, ydepth_max # ===================================================================================== def saving_res(save_name, conc, crop_op, RoI1_av, RoI2_av, df_initial, df_norm, dop1_param, dop2_param, dop1_value, dop2_value, op1_normSEM, op2_normSEM): # open h5 file f = h5py.File(save_name, "w") # ----------------------------- # [group creation] # header grp_header = f.create_group('header') supgrp_nRoI = grp_header.create_group("Pixels for optode") supgrp_nRoI1 = supgrp_nRoI.create_group("optode1") supgrp_nRoI2 = supgrp_nRoI.create_group("optode2") supgrp_RoI = grp_header.create_group("RoI for optode") supgrp_RoI1 = supgrp_RoI.create_group("optode1") supgrp_RoI2 = supgrp_RoI.create_group("optode2") supgrp_conc = grp_header.create_group("concentration point") # data group grp_data = f.create_group("data") supgrp_av = grp_data.create_group('averaged') supgrp_av1 = supgrp_av.create_group('optode1') supgrp_av2 = supgrp_av.create_group('optode2') supgrp_norm = grp_data.create_group('normalized') supgrp_norm1 = supgrp_norm.create_group('optode1') supgrp_norm2 = supgrp_norm.create_group('optode2') # group related to fit process grp_fit = f.create_group("fit") supgrp_params = grp_fit.create_group("parameter") supgrp_params1 = supgrp_params.create_group('optode1') supgrp_params2 = supgrp_params.create_group('optode2') supgrp_cov = grp_fit.create_group("covariance matrix") supgrp_cov1 = supgrp_cov.create_group('optode1') supgrp_cov2 = supgrp_cov.create_group('optode2') supgrp_chi = grp_fit.create_group("reduced chi-square") supgrp_chi1 = supgrp_chi.create_group('optode1') supgrp_chi2 = supgrp_chi.create_group('optode2') supgrp_values = grp_fit.create_group("values") supgrp_values1 = supgrp_values.create_group('optode1') supgrp_v1_o2av = supgrp_values1.create_group('O2 mean') supgrp_v1_o2sd = supgrp_values1.create_group('O2 SD') supgrp_v1_o2sem = supgrp_values1.create_group('O2 SEM') supgrp_v1_iav = supgrp_values1.create_group('iratio mean') supgrp_v1_isd = supgrp_values1.create_group('iratio SD') supgrp_v1_isem = supgrp_values1.create_group('iratio SEM') supgrp_values2 = supgrp_values.create_group('optode2') supgrp_v2_o2av = supgrp_values2.create_group('O2 mean') supgrp_v2_o2sd = supgrp_values2.create_group('O2 SD') supgrp_v2_o2sem = supgrp_values2.create_group('O2 SEM') supgrp_v2_iav = supgrp_values2.create_group('iratio mean') supgrp_v2_isd = supgrp_values2.create_group('iratio SD') supgrp_v2_isem = supgrp_values2.create_group('iratio SEM') # -------------------------------------------------------- # [fill groups] # -------------------------------------------------------- # header # Pixels for optode supgrp_nRoI1.create_dataset('RoI1', data=np.array(crop_op[0])) supgrp_nRoI2.create_dataset('RoI2', data=np.array(crop_op[1])) # concentration supgrp_conc.create_dataset('concentration', data=conc) # RoI within optode supgrp_RoI1.create_dataset('RoI1', data=np.array(RoI1_av)) supgrp_RoI2.create_dataset('RoI1', data=np.array(RoI2_av)) # ------------------------------ # data # supgroup - averaged data for s in df_initial[0].columns: v = np.array([[i.n for i in df_initial[0][s].values], [i.s for i in df_initial[0][s].values]]) supgrp_av1.create_dataset(str(s), data=np.array(v)) for s in df_initial[1].columns: v = np.array([[i.n for i in df_initial[1][s].values], [i.s for i in df_initial[1][s].values]]) supgrp_av2.create_dataset(str(s), data=np.array(v)) # ------------------------------ # supgroup - normalized data for s in df_norm[0].keys(): v = [[i.n for i in df_norm[0][s].values], [i.s for i in df_norm[0][s].values]] supgrp_norm1.create_dataset(str(s), data=np.array(v)) for s in df_norm[1].keys(): v = [[i.n for i in df_norm[1][s].values], [i.s for i in df_norm[1][s].values]] supgrp_norm2.create_dataset(str(s), data=np.array(v)) # ------------------------------ # supgroup - fit parameters for s in dop1_param.keys(): v = [(dop1_param[s][l].mean, dop1_param[s][l].std) for l in ['f', 'k']] v += [(dop1_param[s]['I0'].n, dop1_param[s]['I0'].s)] supgrp_params1.create_dataset(str(s), data=np.array(v)) for s in dop2_param.keys(): v = [(dop2_param[s][l].mean, dop2_param[s][l].std) for l in ['f', 'k']] v += [(dop2_param[s]['I0'].n, dop2_param[s]['I0'].s)] supgrp_params2.create_dataset(str(s), data=np.array(v)) # ------------------------------ # supgroup - covariance matrix for s in dop1_param.keys(): supgrp_cov1.create_dataset(str(s), data=np.array(dop1_param[s]['covariance'])) for s in dop2_param.keys(): supgrp_cov2.create_dataset(str(s), data=np.array(dop2_param[s]['covariance'])) # ------------------------------ # supgroup - reduces chi-square for s in dop1_param.keys(): supgrp_chi1.create_dataset(str(s), data=
np.array(dop1_param[s]['fit result'].redchi)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 5 12:13:33 2018 @author: <NAME> (<EMAIL> / <EMAIL>) """ #Python dependencies from __future__ import division import pandas as pd import numpy as np from scipy.constants import codata from pylab import * from scipy.optimize import curve_fit import mpmath as mp from lmfit import minimize, Minimizer, Parameters, Parameter, report_fit #from scipy.optimize import leastsq pd.options.mode.chained_assignment = None #Plotting import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import LinearLocator, FormatStrFormatter import seaborn as sns import matplotlib.ticker as mtick mpl.rc('mathtext', fontset='stixsans', default='regular') mpl.rcParams.update({'axes.labelsize':22}) mpl.rc('xtick', labelsize=16) mpl.rc('ytick', labelsize=16) mpl.rc('legend',fontsize=14) from scipy.constants import codata F = codata.physical_constants['Faraday constant'][0] Rg = codata.physical_constants['molar gas constant'][0] ### Importing PyEIS add-ons from .PyEIS_Data_extraction import * from .PyEIS_Lin_KK import * from .PyEIS_Advanced_tools import * ### Frequency generator ## # def freq_gen(f_start, f_stop, pts_decade=7): ''' Frequency Generator with logspaced freqencies Inputs ---------- f_start = frequency start [Hz] f_stop = frequency stop [Hz] pts_decade = Points/decade, default 7 [-] Output ---------- [0] = frequency range [Hz] [1] = Angular frequency range [1/s] ''' f_decades = np.log10(f_start) - np.log10(f_stop) f_range = np.logspace(np.log10(f_start), np.log10(f_stop), num=np.around(pts_decade*f_decades).astype(int), endpoint=True) w_range = 2 * np.pi * f_range return f_range, w_range ### Simulation Element Functions ## # def elem_L(w, L): ''' Simulation Function: -L- Returns the impedance of an inductor <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Inductance [ohm * s] ''' return 1j*w*L def elem_C(w,C): ''' Simulation Function: -C- Inputs ---------- w = Angular frequency [1/s] C = Capacitance [F] ''' return 1/(C*(w*1j)) def elem_Q(w,Q,n): ''' Simulation Function: -Q- Inputs ---------- w = Angular frequency [1/s] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] ''' return 1/(Q*(w*1j)**n) ### Simulation Curciuts Functions ## # def cir_RsC(w, Rs, C): ''' Simulation Function: -Rs-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] C = Capacitance [F] ''' return Rs + 1/(C*(w*1j)) def cir_RsQ(w, Rs, Q, n): ''' Simulation Function: -Rs-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] ''' return Rs + 1/(Q*(w*1j)**n) def cir_RQ(w, R='none', Q='none', n='none', fs='none'): ''' Simulation Function: -RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) return (R/(1+R*Q*(w*1j)**n)) def cir_RsRQ(w, Rs='none', R='none', Q='none', n='none', fs='none'): ''' Simulation Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) return Rs + (R/(1+R*Q*(w*1j)**n)) def cir_RC(w, C='none', R='none', fs='none'): ''' Simulation Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1. see cir_RQ() for details <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] C = Capacitance [F] fs = Summit frequency of RC circuit [Hz] ''' return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RsRQRQ(w, Rs, R='none', Q='none', n='none', fs='none', R2='none', Q2='none', n2='none', fs2='none'): ''' Simulation Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase element exponent [-] fs = Summit frequency of RQ circuit [Hz] R2 = Resistance [Ohm] Q2 = Constant phase element [s^n/ohm] n2 = Constant phase element exponent [-] fs2 = Summit frequency of RQ circuit [Hz] ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if R2 == 'none': R2 = (1/(Q2*(2*np.pi*fs2)**n2)) elif Q2 == 'none': Q2 = (1/(R2*(2*np.pi*fs2)**n2)) elif n2 == 'none': n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) return Rs + (R/(1+R*Q*(w*1j)**n)) + (R2/(1+R2*Q2*(w*1j)**n2)) def cir_RsRQQ(w, Rs, Q, n, R1='none', Q1='none', n1='none', fs1='none'): ''' Simulation Function: -Rs-RQ-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = Summit frequency of RQ circuit [Hz] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] ''' return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_Q(w,Q,n) def cir_RsRQC(w, Rs, C, R1='none', Q1='none', n1='none', fs1='none'): ''' Simulation Function: -Rs-RQ-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = summit frequency of RQ circuit [Hz] C = Constant phase element of series Q [s^n/ohm] ''' return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_C(w, C=C) def cir_RsRCC(w, Rs, R1, C1, C): ''' Simulation Function: -Rs-RC-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] C = Capacitance of series C [s^n/ohm] ''' return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_C(w, C=C) def cir_RsRCQ(w, Rs, R1, C1, Q, n): ''' Simulation Function: -Rs-RC-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] ''' return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_Q(w,Q,n) def Randles_coeff(w, n_electron, A, E='none', E0='none', D_red='none', D_ox='none', C_red='none', C_ox='none', Rg=Rg, F=F, T=298.15): ''' Returns the Randles coefficient sigma [ohm/s^1/2]. Two cases: a) ox and red are both present in solution here both Cred and Dred are defined, b) In the particular case where initially only Ox species are present in the solution with bulk concentration C*_ox, the surface concentrations may be calculated as function of the electrode potential following Nernst equation. Here C_red and D_red == 'none' Ref.: - <NAME>., ISBN: 978-1-4614-8932-0, "Electrochemical Impedance Spectroscopy and its Applications" - <NAME>., ISBN: 0-471-04372-9, <NAME>. R. (2001) "Electrochemical methods: Fundamentals and applications". New York: Wiley. <NAME> (<EMAIL> // <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Bulk concetration of oxidized specie [mol/cm3] C_red = Bulk concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = formal potential [V] if reduced specie is absent == 'none' Returns ---------- Randles coefficient [ohm/s^1/2] ''' if C_red != 'none' and D_red != 'none': sigma = ((Rg*T) / ((n_electron**2) * A * (F**2) * (2**(1/2)))) * ((1/(D_ox**(1/2) * C_ox)) + (1/(D_red**(1/2) * C_red))) elif C_red == 'none' and D_red == 'none' and E!='none' and E0!= 'none': f = F/(Rg*T) x = (n_electron*f*(E-E0))/2 func_cosh2 = (np.cosh(2*x)+1)/2 sigma = ((4*Rg*T) / ((n_electron**2) * A * (F**2) * C_ox * ((2*D_ox)**(1/2)) )) * func_cosh2 else: print('define E and E0') Z_Aw = sigma*(w**(-0.5))-1j*sigma*(w**(-0.5)) return Z_Aw def cir_Randles(w, n_electron, D_red, D_ox, C_red, C_ox, Rs, Rct, n, E, A, Q='none', fs='none', E0=0, F=F, Rg=Rg, T=298.15): ''' Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with full complity of the warbug constant NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Concetration of oxidized specie [mol/cm3] C_red = Concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = Formal potential [V] if reduced specie is absent == 'none' Rs = Series resistance [ohm] Rct = charge-transfer resistance [ohm] Q = Constant phase element used to model the double-layer capacitance [F] n = expononent of the CPE [-] Returns ---------- The real and imaginary impedance of a Randles circuit [ohm] ''' Z_Rct = Rct Z_Q = elem_Q(w,Q,n) Z_w = Randles_coeff(w, n_electron=n_electron, E=E, E0=E0, D_red=D_red, D_ox=D_ox, C_red=C_red, C_ox=C_ox, A=A, T=T, Rg=Rg, F=F) return Rs + 1/(1/Z_Q + 1/(Z_Rct+Z_w)) def cir_Randles_simplified(w, Rs, R, n, sigma, Q='none', fs='none'): ''' Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with a simplified NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) Z_Q = 1/(Q*(w*1j)**n) Z_R = R Z_w = sigma*(w**(-0.5))-1j*sigma*(w**(-0.5)) return Rs + 1/(1/Z_Q + 1/(Z_R+Z_w)) # Polymer electrolytes def cir_C_RC_C(w, Ce, Cb='none', Rb='none', fsb='none'): ''' Simulation Function: -C-(RC)-C- This circuit is often used for modeling blocking electrodes with a polymeric electrolyte, which exhibts a immobile ionic species in bulk that gives a capacitance contribution to the otherwise resistive electrolyte Ref: - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London, Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Ce = Interfacial capacitance [F] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = summit frequency of bulk (RC) circuit [Hz] ''' Z_C = elem_C(w,C=Ce) Z_RC = cir_RC(w, C=Cb, R=Rb, fs=fsb) return Z_C + Z_RC def cir_Q_RQ_Q(w, Qe, ne, Qb='none', Rb='none', fsb='none', nb='none'): ''' Simulation Function: -Q-(RQ)-Q- Modified cir_C_RC_C() circuits that can be used if electrodes and bulk are not behaving like ideal capacitors <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Qe = Interfacial capacitance modeled with a CPE [F] ne = Interfacial constant phase element exponent [-] Rb = Bulk/series resistance [Ohm] Qb = Bulk capacitance modeled with a CPE [s^n/ohm] nb = Bulk constant phase element exponent [-] fsb = summit frequency of bulk (RQ) circuit [Hz] ''' Z_Q = elem_Q(w,Q=Qe,n=ne) Z_RQ = cir_RQ(w, Q=Qb, R=Rb, fs=fsb, n=nb) return Z_Q + Z_RQ def tanh(x): ''' As numpy gives errors when tanh becomes very large, above 10^250, this functions is used for np.tanh ''' return (1-np.exp(-2*x))/(1+np.exp(-2*x)) def cir_RCRCZD(w, L, D_s, u1, u2, Cb='none', Rb='none', fsb='none', Ce='none', Re='none', fse='none'): ''' Simulation Function: -RC_b-RC_e-Z_D This circuit has been used to study non-blocking electrodes with an ioniocally conducting electrolyte with a mobile and immobile ionic specie in bulk, this is mixed with a ionically conducting salt. This behavior yields in a impedance response, that consists of the interfacial impendaces -(RC_e)-, the ionically conducitng polymer -(RC_e)-, and the diffusional impedance from the dissolved salt. Refs.: - <NAME>. and <NAME>., Electrochimica Acta, 27, 1671-1675, 1982, "Conductivity, Charge Transfer and Transport number - An AC-Investigation of the Polymer Electrolyte LiSCN-Poly(ethyleneoxide)" - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Thickness of electrode [cm] D_s = Diffusion coefficient of dissolved salt [cm2/s] u1 = Mobility of the ion reacting at the electrode interface u2 = Mobility of other ion Re = Interfacial resistance [Ohm] Ce = Interfacial capacitance [F] fse = Summit frequency of the interfacial (RC) circuit [Hz] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = Summit frequency of the bulk (RC) circuit [Hz] ''' Z_RCb = cir_RC(w, C=Cb, R=Rb, fs=fsb) Z_RCe = cir_RC(w, C=Ce, R=Re, fs=fse) alpha = ((w*1j*L**2)/D_s)**(1/2) Z_D = Rb * (u2/u1) * (tanh(x=alpha)/alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ(w, Rs, L, Ri, Q='none', n='none'): ''' Simulation Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = exponent for the interfacial capacitance [-] ''' Phi = 1/(Q*(w*1j)**n) X1 = Ri # ohm/cm Lam = (Phi/X1)**(1/2) #np.sqrt(Phi/X1) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_TLsQ def cir_RsRQTLsQ(w, Rs, R1, fs1, n1, L, Ri, Q, n, Q1='none'): ''' Simulation Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance(Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = Exponent for the interfacial capacitance [-] Output ----------- Impdance of Rs-(RQ)1-TLsQ ''' Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = 1/(Q*(w*1j)**n) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs(w, Rs, L, Ri, R='none', Q='none', n='none', fs='none'): ''' Simulation Function: -Rs-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R = Interfacial Charge transfer resistance [ohm*cm] fs = Summit frequency of interfacial RQ circuit [Hz] n = Exponent for interfacial RQ circuit [-] Q = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-TLs(RQ) ''' Phi = cir_RQ(w, R, Q, n, fs) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs(w, Rs, L, Ri, R1, n1, fs1, R2, n2, fs2, Q1='none', Q2='none'): ''' Simulation Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/(ohm * cm)] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R2 = Interfacial Charge transfer resistance [ohm*cm] fs2 = Summit frequency of interfacial RQ circuit [Hz] n2 = Exponent for interfacial RQ circuit [-] Q2 = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-(RQ)1-TLs(RQ)2 ''' Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = cir_RQ(w=w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs ### Support function def sinh(x): ''' As numpy gives errors when sinh becomes very large, above 10^250, this functions is used instead of np/mp.sinh() ''' return (1 - np.exp(-2*x))/(2*np.exp(-x)) def coth(x): ''' As numpy gives errors when coth becomes very large, above 10^250, this functions is used instead of np/mp.coth() ''' return (1 + np.exp(-2*x))/(1 - np.exp(-2*x)) ### def cir_RsTLQ(w, L, Rs, Q, n, Rel, Ri): ''' Simulation Function: -R-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ(w, L, Rs, Q, n, Rel, Ri, R1, n1, fs1, Q1='none'): ''' Simulation Function: -R-RQ-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs #The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL(w, L, Rs, R, fs, n, Rel, Ri, Q='none'): ''' Simulation Function: -R-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = Interfacial charge transfer resistance [ohm * cm] fs = Summit frequency for the interfacial RQ element [Hz] n = Exponenet for interfacial RQ element [-] Q = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = Electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = Thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R, Q=Q, n=n, fs=fs) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL(w, L, Rs, R1, fs1, n1, R2, fs2, n2, Rel, Ri, Q1='none', Q2='none'): ''' Simulation Function: -R-RQ-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] R2 = interfacial charge transfer resistance [ohm * cm] fs2 = Summit frequency for the interfacial RQ element [Hz] n2 = exponenet for interfacial RQ element [-] Q2 = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs #The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL # Transmission lines with solid-state transport def cir_RsTL_1Dsolid(w, L, D, radius, Rs, R, Q, n, R_w, n_w, Rel, Ri): ''' Simulation Function: -R-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = particle charge transfer resistance [ohm*cm^2] Q = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output -------------- Impedance of Rs-TL(Q(RW)) ''' #The impedance of the series resistance Z_Rs = Rs #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w,Q=Q,n=n) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid(w, L, D, radius, Rs, R1, fs1, n1, R2, Q2, n2, R_w, n_w, Rel, Ri, Q1='none'): ''' Simulation Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = charge transfer resistance of the interfacial RQ element [ohm*cm^2] fs1 = max frequency peak of the interfacial RQ element[Hz] n1 = exponenet for interfacial RQ element R2 = particle charge transfer resistance [ohm*cm^2] Q2 = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n2 = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output ------------------ Impedance of R-RQ-TL(Q(RW)) ''' #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w,Q=Q2,n=n2) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ + Z_TL ### Fitting Circuit Functions ## # def elem_C_fit(params, w): ''' Fit Function: -C- ''' C = params['C'] return 1/(C*(w*1j)) def elem_Q_fit(params, w): ''' Fit Function: -Q- Constant Phase Element for Fitting ''' Q = params['Q'] n = params['n'] return 1/(Q*(w*1j)**n) def cir_RsC_fit(params, w): ''' Fit Function: -Rs-C- ''' Rs = params['Rs'] C = params['C'] return Rs + 1/(C*(w*1j)) def cir_RsQ_fit(params, w): ''' Fit Function: -Rs-Q- ''' Rs = params['Rs'] Q = params['Q'] n = params['n'] return Rs + 1/(Q*(w*1j)**n) def cir_RC_fit(params, w): ''' Fit Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1 ''' if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['C'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("C") == -1: #elif Q == 'none': R = params['R'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['C'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] Q = params['C'] return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RQ_fit(params, w): ''' Fit Function: -RQ- Return the impedance of an RQ circuit: Z(w) = R / (1+ R*Q * (2w)^n) See Explanation of equations under cir_RQ() The params.keys()[10:] finds the names of the user defined parameters that should be interated over if X == -1, if the paramter is not given, it becomes equal to 'none' <NAME> (<EMAIL> / <EMAIL>) ''' if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] n = params['n'] Q = params['Q'] return R/(1+R*Q*(w*1j)**n) def cir_RsRQ_fit(params, w): ''' Fit Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RsRQ_fit() <NAME> (<EMAIL> / <EMAIL>) ''' if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] Q = params['Q'] n = params['n'] Rs = params['Rs'] return Rs + (R/(1+R*Q*(w*1j)**n)) def cir_RsRQRQ_fit(params, w): ''' Fit Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details under cir_RsRQRQ() <NAME> (<EMAIL> / <EMAIL>) ''' if str(params.keys())[10:].find("'R'") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'Q'") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'n'") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("'fs'") == -1: #elif fs == 'none': R = params['R'] Q = params['Q'] n = params['n'] if str(params.keys())[10:].find("'R2'") == -1: #if R == 'none': Q2 = params['Q2'] n2 = params['n2'] fs2 = params['fs2'] R2 = (1/(Q2*(2*np.pi*fs2)**n2)) if str(params.keys())[10:].find("'Q2'") == -1: #elif Q == 'none': R2 = params['R2'] n2 = params['n2'] fs2 = params['fs2'] Q2 = (1/(R2*(2*np.pi*fs2)**n2)) if str(params.keys())[10:].find("'n2'") == -1: #elif n == 'none': R2 = params['R2'] Q2 = params['Q2'] fs2 = params['fs2'] n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) if str(params.keys())[10:].find("'fs2'") == -1: #elif fs == 'none': R2 = params['R2'] Q2 = params['Q2'] n2 = params['n2'] Rs = params['Rs'] return Rs + (R/(1+R*Q*(w*1j)**n)) + (R2/(1+R2*Q2*(w*1j)**n2)) def cir_Randles_simplified_Fit(params, w): ''' Fit Function: Randles simplified -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit. See more under cir_Randles_simplified() NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> || <EMAIL>) ''' if str(params.keys())[10:].find("'R'") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'Q'") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'n'") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("'fs'") == -1: #elif fs == 'none': R = params['R'] Q = params['Q'] n = params['n'] Rs = params['Rs'] sigma = params['sigma'] Z_Q = 1/(Q*(w*1j)**n) Z_R = R Z_w = sigma*(w**(-0.5))-1j*sigma*(w**(-0.5)) return Rs + 1/(1/Z_Q + 1/(Z_R+Z_w)) def cir_RsRQQ_fit(params, w): ''' Fit Function: -Rs-RQ-Q- See cir_RsRQQ() for details ''' Rs = params['Rs'] Q = params['Q'] n = params['n'] Z_Q = 1/(Q*(w*1j)**n) if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) return Rs + Z_RQ + Z_Q def cir_RsRQC_fit(params, w): ''' Fit Function: -Rs-RQ-C- See cir_RsRQC() for details ''' Rs = params['Rs'] C = params['C'] Z_C = 1/(C*(w*1j)) if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) return Rs + Z_RQ + Z_C def cir_RsRCC_fit(params, w): ''' Fit Function: -Rs-RC-C- See cir_RsRCC() for details ''' Rs = params['Rs'] R1 = params['R1'] C1 = params['C1'] C = params['C'] return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_C(w, C=C) def cir_RsRCQ_fit(params, w): ''' Fit Function: -Rs-RC-Q- See cir_RsRCQ() for details ''' Rs = params['Rs'] R1 = params['R1'] C1 = params['C1'] Q = params['Q'] n = params['n'] return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_Q(w,Q,n) # Polymer electrolytes def cir_C_RC_C_fit(params, w): ''' Fit Function: -C-(RC)-C- See cir_C_RC_C() for details <NAME> (<EMAIL> || <EMAIL>) ''' # Interfacial impedance Ce = params['Ce'] Z_C = 1/(Ce*(w*1j)) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: #if R == 'none': Cb = params['Cb'] fsb = params['fsb'] Rb = (1/(Cb*(2*np.pi*fsb))) if str(params.keys())[10:].find("Cb") == -1: #elif Q == 'none': Rb = params['Rb'] fsb = params['fsb'] Cb = (1/(Rb*(2*np.pi*fsb))) if str(params.keys())[10:].find("fsb") == -1: #elif fs == 'none': Rb = params['Rb'] Cb = params['Cb'] Z_RC = (Rb/(1+Rb*Cb*(w*1j))) return Z_C + Z_RC def cir_Q_RQ_Q_Fit(params, w): ''' Fit Function: -Q-(RQ)-Q- See cir_Q_RQ_Q() for details <NAME> (<EMAIL> || <EMAIL>) ''' # Interfacial impedance Qe = params['Qe'] ne = params['ne'] Z_Q = 1/(Qe*(w*1j)**ne) # Bulk impedance if str(params.keys())[10:].find("Rb") == -1: #if R == 'none': Qb = params['Qb'] nb = params['nb'] fsb = params['fsb'] Rb = (1/(Qb*(2*np.pi*fsb)**nb)) if str(params.keys())[10:].find("Qb") == -1: #elif Q == 'none': Rb = params['Rb'] nb = params['nb'] fsb = params['fsb'] Qb = (1/(Rb*(2*np.pi*fsb)**nb)) if str(params.keys())[10:].find("nb") == -1: #elif n == 'none': Rb = params['Rb'] Qb = params['Qb'] fsb = params['fsb'] nb = np.log(Qb*Rb)/np.log(1/(2*np.pi*fsb)) if str(params.keys())[10:].find("fsb") == -1: #elif fs == 'none': Rb = params['Rb'] nb = params['nb'] Qb = params['Qb'] Z_RQ = Rb/(1+Rb*Qb*(w*1j)**nb) return Z_Q + Z_RQ def cir_RCRCZD_fit(params, w): ''' Fit Function: -RC_b-RC_e-Z_D See cir_RCRCZD() for details <NAME> (<EMAIL> || <EMAIL>) ''' # Interfacial impendace if str(params.keys())[10:].find("Re") == -1: #if R == 'none': Ce = params['Ce'] fse = params['fse'] Re = (1/(Ce*(2*np.pi*fse))) if str(params.keys())[10:].find("Ce") == -1: #elif Q == 'none': Re = params['Rb'] fse = params['fsb'] Ce = (1/(Re*(2*np.pi*fse))) if str(params.keys())[10:].find("fse") == -1: #elif fs == 'none': Re = params['Re'] Ce = params['Ce'] Z_RCe = (Re/(1+Re*Ce*(w*1j))) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: #if R == 'none': Cb = params['Cb'] fsb = params['fsb'] Rb = (1/(Cb*(2*np.pi*fsb))) if str(params.keys())[10:].find("Cb") == -1: #elif Q == 'none': Rb = params['Rb'] fsb = params['fsb'] Cb = (1/(Rb*(2*np.pi*fsb))) if str(params.keys())[10:].find("fsb") == -1: #elif fs == 'none': Rb = params['Rb'] Cb = params['Cb'] Z_RCb = (Rb/(1+Rb*Cb*(w*1j))) # Mass transport impendance L = params['L'] D_s = params['D_s'] u1 = params['u1'] u2 = params['u2'] alpha = ((w*1j*L**2)/D_s)**(1/2) Z_D = Rb * (u2/u1) * (tanh(alpha)/alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ_fit(params, w): ''' Fit Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsTLsQ() <NAME> (<EMAIL> / <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Q = params['Q'] n = params['n'] Phi = 1/(Q*(w*1j)**n) X1 = Ri # ohm/cm Lam = (Phi/X1)**(1/2) #np.sqrt(Phi/X1) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # # Z_TLsQ = Lam * X1 * coth_mp Z_TLsQ = Lam * X1 * coth(x) return Rs + Z_TLsQ def cir_RsRQTLsQ_Fit(params, w): ''' Fit Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsRQTLsQ <NAME> (<EMAIL> / <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Q = params['Q'] n = params['n'] if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) Phi = 1/(Q*(w*1j)**n) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs_Fit(params, w): ''' Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) See mor under cir_RsTLs() <NAME> (<EMAIL> / <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] n = params['n'] Q = params['Q'] Phi = R/(1+R*Q*(w*1j)**n) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs_Fit(params, w): ''' Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line with a faradaic interfacial impedance (RQ) See more under cir_RsRQTLs() <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) if str(params.keys())[10:].find("R2") == -1: #if R == 'none': Q2 = params['Q2'] n2 = params['n2'] fs2 = params['fs2'] R2 = (1/(Q2*(2*np.pi*fs2)**n2)) if str(params.keys())[10:].find("Q2") == -1: #elif Q == 'none': R2 = params['R2'] n2 = params['n2'] fs2 = params['fs2'] Q2 = (1/(R2*(2*np.pi*fs2)**n1)) if str(params.keys())[10:].find("n2") == -1: #elif n == 'none': R2 = params['R2'] Q2 = params['Q2'] fs2 = params['fs2'] n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) if str(params.keys())[10:].find("fs2") == -1: #elif fs == 'none': R2 = params['R2'] n2 = params['n2'] Q2 = params['Q2'] Phi = (R2/(1+R2*Q2*(w*1j)**n2)) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs def cir_RsTLQ_fit(params, w): ''' Fit Function: -R-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] Q = params['Q'] n = params['n'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ_fit(params, w): ''' Fit Function: -R-RQ-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] Q = params['Q'] n = params['n'] #The impedance of the series resistance Z_Rs = Rs #The (RQ) circuit in series with the transmission line if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ1 = (R1/(1+R1*Q1*(w*1j)**n1)) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_Fit(params, w): ''' Fit Function: -R-TLQ- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel See cir_RsTL() for details <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] n = params['n'] Q = params['Q'] Phi = (R/(1+R*Q*(w*1j)**n)) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_fit(params, w): ''' Fit Function: -R-RQ-TL- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity including both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) elif str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ1 = (R1/(1+R1*Q1*(w*1j)**n1)) # # # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R2") == -1: #if R == 'none': Q2 = params['Q2'] n2 = params['n2'] fs2 = params['fs2'] R2 = (1/(Q2*(2*np.pi*fs2)**n2)) elif str(params.keys())[10:].find("Q2") == -1: #elif Q == 'none': R2 = params['R2'] n2 = params['n2'] fs2 = params['fs2'] Q2 = (1/(R2*(2*np.pi*fs2)**n1)) elif str(params.keys())[10:].find("n2") == -1: #elif n == 'none': R2 = params['R2'] Q2 = params['Q2'] fs2 = params['fs2'] n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) elif str(params.keys())[10:].find("fs2") == -1: #elif fs == 'none': R2 = params['R2'] n2 = params['n2'] Q2 = params['Q2'] Phi = (R2/(1+R2*Q2*(w*1j)**n2)) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float((mp.coth(x_mp[i]).imag))*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real) + float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real)*1j) # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float((mp.sinh(x_mp[i]).imag))*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_1Dsolid_fit(params, w): ''' Fit Function: -R-TL(Q(RW))- Transmission line w/ full complexity See cir_RsTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] radius = params['radius'] D = params['D'] R = params['R'] Q = params['Q'] n = params['n'] R_w = params['R_w'] n_w = params['n_w'] Rel = params['Rel'] Ri = params['Ri'] #The impedance of the series resistance Z_Rs = Rs #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w=w, Q=Q, n=n) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid_fit(params, w): ''' Fit Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel. The Warburg element is specific for 1D solid-state diffusion See cir_RsRQTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] radius = params['radius'] D = params['D'] R2 = params['R2'] Q2 = params['Q2'] n2 = params['n2'] R_w = params['R_w'] n_w = params['n_w'] Rel = params['Rel'] Ri = params['Ri'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) elif str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ1 = (R1/(1+R1*Q1*(w*1j)**n1)) #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w,Q=Q2,n=n2) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL ### Least-Squares error function def leastsq_errorfunc(params, w, re, im, circuit, weight_func): ''' Sum of squares error function for the complex non-linear least-squares fitting procedure (CNLS). The fitting function (lmfit) will use this function to iterate over until the total sum of errors is minimized. During the minimization the fit is weighed, and currently three different weigh options are avaliable: - modulus - unity - proportional Modulus is generially recommended as random errors and a bias can exist in the experimental data. <NAME> (<EMAIL> || <EMAIL>) Inputs ------------ - params: parameters needed for CNLS - re: real impedance - im: Imaginary impedance - circuit: The avaliable circuits are shown below, and this this parameter needs it as a string. - C - Q - R-C - R-Q - RC - RQ - R-RQ - R-RQ-RQ - R-RQ-Q - R-(Q(RW)) - R-(Q(RM)) - R-RC-C - R-RC-Q - R-RQ-Q - R-RQ-C - RC-RC-ZD - R-TLsQ - R-RQ-TLsQ - R-TLs - R-RQ-TLs - R-TLQ - R-RQ-TLQ - R-TL - R-RQ-TL - R-TL1Dsolid (reactive interface with 1D solid-state diffusion) - R-RQ-TL1Dsolid - weight_func Weight function - modulus - unity - proportional ''' if circuit == 'C': re_fit = elem_C_fit(params, w).real im_fit = -elem_C_fit(params, w).imag elif circuit == 'Q': re_fit = elem_Q_fit(params, w).real im_fit = -elem_Q_fit(params, w).imag elif circuit == 'R-C': re_fit = cir_RsC_fit(params, w).real im_fit = -cir_RsC_fit(params, w).imag elif circuit == 'R-Q': re_fit = cir_RsQ_fit(params, w).real im_fit = -cir_RsQ_fit(params, w).imag elif circuit == 'RC': re_fit = cir_RC_fit(params, w).real im_fit = -cir_RC_fit(params, w).imag elif circuit == 'RQ': re_fit = cir_RQ_fit(params, w).real im_fit = -cir_RQ_fit(params, w).imag elif circuit == 'R-RQ': re_fit = cir_RsRQ_fit(params, w).real im_fit = -cir_RsRQ_fit(params, w).imag elif circuit == 'R-RQ-RQ': re_fit = cir_RsRQRQ_fit(params, w).real im_fit = -cir_RsRQRQ_fit(params, w).imag elif circuit == 'R-RC-C': re_fit = cir_RsRCC_fit(params, w).real im_fit = -cir_RsRCC_fit(params, w).imag elif circuit == 'R-RC-Q': re_fit = cir_RsRCQ_fit(params, w).real im_fit = -cir_RsRCQ_fit(params, w).imag elif circuit == 'R-RQ-Q': re_fit = cir_RsRQQ_fit(params, w).real im_fit = -cir_RsRQQ_fit(params, w).imag elif circuit == 'R-RQ-C': re_fit = cir_RsRQC_fit(params, w).real im_fit = -cir_RsRQC_fit(params, w).imag elif circuit == 'R-(Q(RW))': re_fit = cir_Randles_simplified_Fit(params, w).real im_fit = -cir_Randles_simplified_Fit(params, w).imag elif circuit == 'R-(Q(RM))': re_fit = cir_Randles_uelectrode_fit(params, w).real im_fit = -cir_Randles_uelectrode_fit(params, w).imag elif circuit == 'C-RC-C': re_fit = cir_C_RC_C_fit(params, w).real im_fit = -cir_C_RC_C_fit(params, w).imag elif circuit == 'Q-RQ-Q': re_fit = cir_Q_RQ_Q_Fit(params, w).real im_fit = -cir_Q_RQ_Q_Fit(params, w).imag elif circuit == 'RC-RC-ZD': re_fit = cir_RCRCZD_fit(params, w).real im_fit = -cir_RCRCZD_fit(params, w).imag elif circuit == 'R-TLsQ': re_fit = cir_RsTLsQ_fit(params, w).real im_fit = -cir_RsTLsQ_fit(params, w).imag elif circuit == 'R-RQ-TLsQ': re_fit = cir_RsRQTLsQ_Fit(params, w).real im_fit = -cir_RsRQTLsQ_Fit(params, w).imag elif circuit == 'R-TLs': re_fit = cir_RsTLs_Fit(params, w).real im_fit = -cir_RsTLs_Fit(params, w).imag elif circuit == 'R-RQ-TLs': re_fit = cir_RsRQTLs_Fit(params, w).real im_fit = -cir_RsRQTLs_Fit(params, w).imag elif circuit == 'R-TLQ': re_fit = cir_RsTLQ_fit(params, w).real im_fit = -cir_RsTLQ_fit(params, w).imag elif circuit == 'R-RQ-TLQ': re_fit = cir_RsRQTLQ_fit(params, w).real im_fit = -cir_RsRQTLQ_fit(params, w).imag elif circuit == 'R-TL': re_fit = cir_RsTL_Fit(params, w).real im_fit = -cir_RsTL_Fit(params, w).imag elif circuit == 'R-RQ-TL': re_fit = cir_RsRQTL_fit(params, w).real im_fit = -cir_RsRQTL_fit(params, w).imag elif circuit == 'R-TL1Dsolid': re_fit = cir_RsTL_1Dsolid_fit(params, w).real im_fit = -cir_RsTL_1Dsolid_fit(params, w).imag elif circuit == 'R-RQ-TL1Dsolid': re_fit = cir_RsRQTL_1Dsolid_fit(params, w).real im_fit = -cir_RsRQTL_1Dsolid_fit(params, w).imag else: print('Circuit is not defined in leastsq_errorfunc()') error = [(re-re_fit)**2, (im-im_fit)**2] #sum of squares #Different Weighing options, see Lasia if weight_func == 'modulus': weight = [1/((re_fit**2 + im_fit**2)**(1/2)), 1/((re_fit**2 + im_fit**2)**(1/2))] elif weight_func == 'proportional': weight = [1/(re_fit**2), 1/(im_fit**2)] elif weight_func == 'unity': unity_1s = [] for k in range(len(re)): unity_1s.append(1) #makes an array of [1]'s, so that the weighing is == 1 * sum of squres. weight = [unity_1s, unity_1s] else: print('weight not defined in leastsq_errorfunc()') S = np.array(weight) * error #weighted sum of squares return S ### Fitting Class class EIS_exp: ''' This class is used to plot and/or analyze experimental impedance data. The class has three major functions: - EIS_plot() - Lin_KK() - EIS_fit() - EIS_plot() is used to plot experimental data with or without fit - Lin_KK() performs a linear Kramers-Kronig analysis of the experimental data set. - EIS_fit() performs complex non-linear least-squares fitting of the experimental data to an equivalent circuit <NAME> (<EMAIL> || <EMAIL>) Inputs ----------- - path: path of datafile(s) as a string - data: datafile(s) including extension, e.g. ['EIS_data1', 'EIS_data2'] - cycle: Specific cycle numbers can be extracted using the cycle function. Default is 'none', which includes all cycle numbers. Specific cycles can be extracted using this parameter, insert cycle numbers in brackets, e.g. cycle number 1,4, and 6 are wanted. cycle=[1,4,6] - mask: ['high frequency' , 'low frequency'], if only a high- or low-frequency is desired use 'none' for the other, e.g. maks=[10**4,'none'] ''' def __init__(self, path, data, cycle='off', mask=['none','none']): self.df_raw0 = [] self.cycleno = [] for j in range(len(data)): if data[j].find(".mpt") != -1: #file is a .mpt file self.df_raw0.append(extract_mpt(path=path, EIS_name=data[j])) #reads all datafiles elif data[j].find(".DTA") != -1: #file is a .dta file self.df_raw0.append(extract_dta(path=path, EIS_name=data[j])) #reads all datafiles elif data[j].find(".z") != -1: #file is a .z file self.df_raw0.append(extract_solar(path=path, EIS_name=data[j])) #reads all datafiles else: print('Data file(s) could not be identified') self.cycleno.append(self.df_raw0[j].cycle_number) if np.min(self.cycleno[j]) <= np.max(self.cycleno[j-1]): if j > 0: #corrects cycle_number except for the first data file self.df_raw0[j].update({'cycle_number': self.cycleno[j]+np.max(self.cycleno[j-1])}) #corrects cycle number # else: # print('__init__ Error (#1)') #currently need to append a cycle_number coloumn to gamry files # adds individual dataframes into one if len(self.df_raw0) == 1: self.df_raw = self.df_raw0[0] elif len(self.df_raw0) == 2: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1]], axis=0) elif len(self.df_raw0) == 3: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2]], axis=0) elif len(self.df_raw0) == 4: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3]], axis=0) elif len(self.df_raw0) == 5: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4]], axis=0) elif len(self.df_raw0) == 6: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5]], axis=0) elif len(self.df_raw0) == 7: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6]], axis=0) elif len(self.df_raw0) == 8: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7]], axis=0) elif len(self.df_raw0) == 9: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8]], axis=0) elif len(self.df_raw0) == 10: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9]], axis=0) elif len(self.df_raw0) == 11: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10]], axis=0) elif len(self.df_raw0) == 12: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11]], axis=0) elif len(self.df_raw0) == 13: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], self.df_raw0[12]], axis=0) elif len(self.df_raw0) == 14: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11]], self.df_raw0[12], self.df_raw0[13], axis=0) elif len(self.df_raw0) == 15: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11]], self.df_raw0[12], self.df_raw0[13], self.df_raw0[14], axis=0) else: print("Too many data files || 15 allowed") self.df_raw = self.df_raw.assign(w = 2*np.pi*self.df_raw.f) #creats a new coloumn with the angular frequency #Masking data to each cycle self.df_pre = [] self.df_limited = [] self.df_limited2 = [] self.df = [] if mask == ['none','none'] and cycle == 'off': for i in range(len(self.df_raw.cycle_number.unique())): #includes all data self.df.append(self.df_raw[self.df_raw.cycle_number == self.df_raw.cycle_number.unique()[i]]) elif mask == ['none','none'] and cycle != 'off': for i in range(len(cycle)): self.df.append(self.df_raw[self.df_raw.cycle_number == cycle[i]]) #extracting dataframe for each cycle elif mask[0] != 'none' and mask[1] == 'none' and cycle == 'off': self.df_pre = self.df_raw.mask(self.df_raw.f > mask[0]) self.df_pre.dropna(how='all', inplace=True) for i in range(len(self.df_pre.cycle_number.unique())): #Appending data based on cycle number self.df.append(self.df_pre[self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]]) elif mask[0] != 'none' and mask[1] == 'none' and cycle != 'off': # or [i for i, e in enumerate(mask) if e == 'none'] == [0] self.df_limited = self.df_raw.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append(self.df_limited[self.df_limited.cycle_number == cycle[i]]) elif mask[0] == 'none' and mask[1] != 'none' and cycle == 'off': self.df_pre = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_pre.dropna(how='all', inplace=True) for i in range(len(self.df_raw.cycle_number.unique())): #includes all data self.df.append(self.df_pre[self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]]) elif mask[0] == 'none' and mask[1] != 'none' and cycle != 'off': self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) for i in range(len(cycle)): self.df.append(self.df_limited[self.df_limited.cycle_number == cycle[i]]) elif mask[0] != 'none' and mask[1] != 'none' and cycle != 'off': self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append(self.df_limited[self.df_limited2.cycle_number == cycle[i]]) elif mask[0] != 'none' and mask[1] != 'none' and cycle == 'off': self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(self.df_raw.cycle_number.unique())): self.df.append(self.df_limited[self.df_limited2.cycle_number == self.df_raw.cycle_number.unique()[i]]) else: print('__init__ error (#2)') def Lin_KK(self, num_RC='auto', legend='on', plot='residuals', bode='off', nyq_xlim='none', nyq_ylim='none', weight_func='Boukamp', savefig='none'): ''' Plots the Linear Kramers-Kronig (KK) Validity Test The script is based on Boukamp and Schōnleber et al.'s papers for fitting the resistances of multiple -(RC)- circuits to the data. A data quality analysis can hereby be made on the basis of the relative residuals Ref.: - Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 - Boukamp, B.A. J. Electrochem. Soc., 142, 6, 1885-1894 The function performs the KK analysis and as default the relative residuals in each subplot Note, that weigh_func should be equal to 'Boukamp'. <NAME> (<EMAIL> || <EMAIL>) Optional Inputs ----------------- - num_RC: - 'auto' applies an automatic algorithm developed by Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 that ensures no under- or over-fitting occurs - can be hardwired by inserting any number (RC-elements/decade) - plot: - 'residuals' = plots the relative residuals in subplots correspoding to the cycle numbers picked - 'w_data' = plots the relative residuals with the experimental data, in Nyquist and bode plot if desired, see 'bode =' in description - nyq_xlim/nyq_xlim: Change the x/y-axis limits on nyquist plot, if not equal to 'none' state [min,max] value - legend: - 'on' = displays cycle number - 'potential' = displays average potential which the spectra was measured at - 'off' = off bode = Plots Bode Plot - options: 'on' = re, im vs. log(freq) 'log' = log(re, im) vs. log(freq) 're' = re vs. log(freq) 'log_re' = log(re) vs. log(freq) 'im' = im vs. log(freq) 'log_im' = log(im) vs. log(freq) ''' if num_RC == 'auto': print('cycle || No. RC-elements || u') self.decade = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] self.number_RC = [] self.number_RC_sort = [] self.KK_u = [] self.KK_Rgreater = [] self.KK_Rminor = [] M = 2 for i in range(len(self.df)): self.decade.append(np.log10(np.max(self.df[i].f))-np.log10(np.min(self.df[i].f))) #determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC.append(M) self.number_RC_sort.append(M) #needed for self.KK_R self.Rparam.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[0]) #Creates intial guesses for R's self.t_const.append(KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i]))) #Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append(minimize(KK_errorfunc, self.Rparam[i], method='leastsq', args=(self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i]) )) #maxfev=99 self.R_names.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[1]) #creates R names for j in range(len(self.R_names[i])): self.KK_R0.append(self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value) self.number_RC_sort.insert(0,0) #needed for self.KK_R for i in range(len(self.df)): self.KK_R.append(self.KK_R0[int(np.cumsum(self.number_RC_sort)[i]):int(np.cumsum(self.number_RC_sort)[i+1])]) #assigns resistances from each spectra to their respective df self.KK_Rgreater.append(np.where(np.array(self.KK_R)[i] >= 0, np.array(self.KK_R)[i], 0) ) self.KK_Rminor.append(np.where(np.array(self.KK_R)[i] < 0, np.array(self.KK_R)[i], 0) ) self.KK_u.append(1-(np.abs(np.sum(self.KK_Rminor[i]))/np.abs(np.sum(self.KK_Rgreater[i])))) for i in range(len(self.df)): while self.KK_u[i] <= 0.75 or self.KK_u[i] >= 0.88: self.number_RC_sort0 = [] self.KK_R_lim = [] self.number_RC[i] = self.number_RC[i] + 1 self.number_RC_sort0.append(self.number_RC) self.number_RC_sort = np.insert(self.number_RC_sort0, 0,0) self.Rparam[i] = KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[0] #Creates intial guesses for R's self.t_const[i] = KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i])) #Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit[i] = minimize(KK_errorfunc, self.Rparam[i], method='leastsq', args=(self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i]) ) #maxfev=99 self.R_names[i] = KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[1] #creates R names self.KK_R0 = np.delete(np.array(self.KK_R0), np.s_[0:len(self.KK_R0)]) self.KK_R0 = [] for q in range(len(self.df)): for j in range(len(self.R_names[q])): self.KK_R0.append(self.Lin_KK_Fit[q].params.get(self.R_names[q][j]).value) self.KK_R_lim = np.cumsum(self.number_RC_sort) #used for KK_R[i] self.KK_R[i] = self.KK_R0[self.KK_R_lim[i]:self.KK_R_lim[i+1]] #assigns resistances from each spectra to their respective df self.KK_Rgreater[i] = np.where(np.array(self.KK_R[i]) >= 0, np.array(self.KK_R[i]), 0) self.KK_Rminor[i] = np.where(np.array(self.KK_R[i]) < 0, np.array(self.KK_R[i]), 0) self.KK_u[i] = 1-(np.abs(np.sum(self.KK_Rminor[i]))/np.abs(np.sum(self.KK_Rgreater[i]))) else: print('['+str(i+1)+']'+' '+str(self.number_RC[i]),' '+str(np.round(self.KK_u[i],2))) elif num_RC != 'auto': #hardwired number of RC-elements/decade print('cycle || u') self.decade = [] self.number_RC0 = [] self.number_RC = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] for i in range(len(self.df)): self.decade.append(np.log10(np.max(self.df[i].f))-np.log10(np.min(self.df[i].f))) #determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC0.append(np.round(num_RC * self.decade[i])) self.number_RC.append(np.round(num_RC * self.decade[i])) #Creats the the number of -(RC)- circuits self.Rparam.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]))[0]) #Creates intial guesses for R's self.t_const.append(KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC0[i]))) #Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append(minimize(KK_errorfunc, self.Rparam[i], method='leastsq', args=(self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC0[i], weight_func, self.t_const[i]) )) #maxfev=99 self.R_names.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]))[1]) #creates R names for j in range(len(self.R_names[i])): self.KK_R0.append(self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value) self.number_RC0.insert(0,0) # print(report_fit(self.Lin_KK_Fit[i])) # prints fitting report self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] self.KK_Rgreater = [] self.KK_Rminor = [] self.KK_u = [] for i in range(len(self.df)): self.KK_R.append(self.KK_R0[int(np.cumsum(self.number_RC0)[i]):int(np.cumsum(self.number_RC0)[i+1])]) #assigns resistances from each spectra to their respective df self.KK_Rx = np.array(self.KK_R) self.KK_Rgreater.append(np.where(self.KK_Rx[i] >= 0, self.KK_Rx[i], 0) ) self.KK_Rminor.append(np.where(self.KK_Rx[i] < 0, self.KK_Rx[i], 0) ) self.KK_u.append(1-(np.abs(np.sum(self.KK_Rminor[i]))/np.abs(np.sum(self.KK_Rgreater[i])))) #currently gives incorrect values print('['+str(i+1)+']'+' '+str(np.round(self.KK_u[i],2))) else: print('num_RC incorrectly defined') self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] for i in range(len(self.df)): if int(self.number_RC[i]) == 2: self.KK_circuit_fit.append(KK_RC2(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 3: self.KK_circuit_fit.append(KK_RC3(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 4: self.KK_circuit_fit.append(KK_RC4(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 5: self.KK_circuit_fit.append(KK_RC5(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 6: self.KK_circuit_fit.append(KK_RC6(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 7: self.KK_circuit_fit.append(KK_RC7(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 8: self.KK_circuit_fit.append(KK_RC8(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 9: self.KK_circuit_fit.append(KK_RC9(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 10: self.KK_circuit_fit.append(KK_RC10(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 11: self.KK_circuit_fit.append(KK_RC11(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 12: self.KK_circuit_fit.append(KK_RC12(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 13: self.KK_circuit_fit.append(KK_RC13(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 14: self.KK_circuit_fit.append(KK_RC14(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 15: self.KK_circuit_fit.append(KK_RC15(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 16: self.KK_circuit_fit.append(KK_RC16(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 17: self.KK_circuit_fit.append(KK_RC17(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 18: self.KK_circuit_fit.append(KK_RC18(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 19: self.KK_circuit_fit.append(KK_RC19(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 20: self.KK_circuit_fit.append(KK_RC20(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 21: self.KK_circuit_fit.append(KK_RC21(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 22: self.KK_circuit_fit.append(KK_RC22(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 23: self.KK_circuit_fit.append(KK_RC23(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 24: self.KK_circuit_fit.append(KK_RC24(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 25: self.KK_circuit_fit.append(KK_RC25(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 26: self.KK_circuit_fit.append(KK_RC26(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 27: self.KK_circuit_fit.append(KK_RC27(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 28: self.KK_circuit_fit.append(KK_RC28(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 29: self.KK_circuit_fit.append(KK_RC29(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 30: self.KK_circuit_fit.append(KK_RC30(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 31: self.KK_circuit_fit.append(KK_RC31(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 32: self.KK_circuit_fit.append(KK_RC32(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 33: self.KK_circuit_fit.append(KK_RC33(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 34: self.KK_circuit_fit.append(KK_RC34(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 35: self.KK_circuit_fit.append(KK_RC35(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 36: self.KK_circuit_fit.append(KK_RC36(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 37: self.KK_circuit_fit.append(KK_RC37(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 38: self.KK_circuit_fit.append(KK_RC38(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 39: self.KK_circuit_fit.append(KK_RC39(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 40: self.KK_circuit_fit.append(KK_RC40(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 41: self.KK_circuit_fit.append(KK_RC41(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 42: self.KK_circuit_fit.append(KK_RC42(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 43: self.KK_circuit_fit.append(KK_RC43(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 44: self.KK_circuit_fit.append(KK_RC44(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 45: self.KK_circuit_fit.append(KK_RC45(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 46: self.KK_circuit_fit.append(KK_RC46(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 47: self.KK_circuit_fit.append(KK_RC47(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 48: self.KK_circuit_fit.append(KK_RC48(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 49: self.KK_circuit_fit.append(KK_RC49(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 50: self.KK_circuit_fit.append(KK_RC50(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 51: self.KK_circuit_fit.append(KK_RC51(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 52: self.KK_circuit_fit.append(KK_RC52(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 53: self.KK_circuit_fit.append(KK_RC53(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 54: self.KK_circuit_fit.append(KK_RC54(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 55: self.KK_circuit_fit.append(KK_RC55(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 56: self.KK_circuit_fit.append(KK_RC56(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 57: self.KK_circuit_fit.append(KK_RC57(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 58: self.KK_circuit_fit.append(KK_RC58(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 59: self.KK_circuit_fit.append(KK_RC59(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 60: self.KK_circuit_fit.append(KK_RC60(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 61: self.KK_circuit_fit.append(KK_RC61(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 62: self.KK_circuit_fit.append(KK_RC62(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 63: self.KK_circuit_fit.append(KK_RC63(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 64: self.KK_circuit_fit.append(KK_RC64(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 65: self.KK_circuit_fit.append(KK_RC65(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 66: self.KK_circuit_fit.append(KK_RC66(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 67: self.KK_circuit_fit.append(KK_RC67(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 68: self.KK_circuit_fit.append(KK_RC68(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 69: self.KK_circuit_fit.append(KK_RC69(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 70: self.KK_circuit_fit.append(KK_RC70(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 71: self.KK_circuit_fit.append(KK_RC71(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 72: self.KK_circuit_fit.append(KK_RC72(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 73: self.KK_circuit_fit.append(KK_RC73(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 74: self.KK_circuit_fit.append(KK_RC74(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 75: self.KK_circuit_fit.append(KK_RC75(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 76: self.KK_circuit_fit.append(KK_RC76(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 77: self.KK_circuit_fit.append(KK_RC77(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 78: self.KK_circuit_fit.append(KK_RC78(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 79: self.KK_circuit_fit.append(KK_RC79(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 80: self.KK_circuit_fit.append(KK_RC80(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) else: print('RC simulation circuit not defined') print(' Number of RC = ', self.number_RC) self.KK_rr_re.append(residual_real(re=self.df[i].re, fit_re=self.KK_circuit_fit[i].to_numpy().real, fit_im=-self.KK_circuit_fit[i].to_numpy().imag)) #relative residuals for the real part self.KK_rr_im.append(residual_imag(im=self.df[i].im, fit_re=self.KK_circuit_fit[i].to_numpy().real, fit_im=-self.KK_circuit_fit[i].to_numpy().imag)) #relative residuals for the imag part ### Plotting Linear_kk results ## # ### Label functions self.label_re_1 = [] self.label_im_1 = [] self.label_cycleno = [] if legend == 'on': for i in range(len(self.df)): self.label_re_1.append("Z' (#"+str(i+1)+")") self.label_im_1.append("Z'' (#"+str(i+1)+")") self.label_cycleno.append('#'+str(i+1)) elif legend == 'potential': for i in range(len(self.df)): self.label_re_1.append("Z' ("+str(np.round(np.average(self.df[i].E_avg), 2))+' V)') self.label_im_1.append("Z'' ("+str(np.round(np.average(self.df[i].E_avg), 2))+' V)') self.label_cycleno.append(str(np.round(np.average(self.df[i].E_avg), 2))+' V') if plot == 'w_data': fig = figure(figsize=(6, 8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.5, bottom=0.1, top=0.95) ax = fig.add_subplot(311, aspect='equal') ax1 = fig.add_subplot(312) ax2 = fig.add_subplot(313) colors = sns.color_palette("colorblind", n_colors=len(self.df)) colors_real = sns.color_palette("Blues", n_colors=len(self.df)+2) colors_imag = sns.color_palette("Oranges", n_colors=len(self.df)+2) ### Nyquist Plot for i in range(len(self.df)): ax.plot(self.df[i].re, self.df[i].im, marker='o', ms=4, lw=2, color=colors[i], ls='-', alpha=.7, label=self.label_cycleno[i]) ### Bode Plot if bode == 'on': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), self.df[i].re, color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_re_1[i]) ax1.plot(np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_im_1[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z', -Z'' [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 're': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), self.df[i].re, color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z' [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'log_re': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z') [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'im': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("-Z'' [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'log_im': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(-Z'') [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'log': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_re_1[i]) ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_im_1[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z', -Z'') [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ### Kramers-Kronig Relative Residuals for i in range(len(self.df)): ax2.plot(np.log10(self.df[i].f), self.KK_rr_re[i]*100, color=colors_real[i+1], marker='D', ls='--', ms=6, alpha=.7, label=self.label_re_1[i]) ax2.plot(np.log10(self.df[i].f), self.KK_rr_im[i]*100, color=colors_imag[i+1], marker='s', ls='--', ms=6, alpha=.7, label=self.label_im_1[i]) ax2.set_xlabel("log(f) [Hz]") ax2.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if np.min(self.KK_rr_im_min) > np.min(self.KK_rr_re_min): ax2.set_ylim(np.min(self.KK_rr_re_min)*100*1.5, np.max(np.abs(self.KK_rr_re_min))*100*1.5) ax2.annotate('Lin-KK', xy=[np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_re_max)*100*.9], color='k', fontweight='bold') elif np.min(self.KK_rr_im_min) < np.min(self.KK_rr_re_min): ax2.set_ylim(np.min(self.KK_rr_im_min)*100*1.5, np.max(self.KK_rr_im_max)*100*1.5) ax2.annotate('Lin-KK', xy=[np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_im_max)*100*.9], color='k', fontweight='bold') ### Figure specifics if legend == 'on' or legend == 'potential': ax.legend(loc='best', fontsize=10, frameon=False) ax.set_xlabel("Z' [$\Omega$]") ax.set_ylabel("-Z'' [$\Omega$]") if nyq_xlim != 'none': ax.set_xlim(nyq_xlim[0], nyq_xlim[1]) if nyq_ylim != 'none': ax.set_ylim(nyq_ylim[0], nyq_ylim[1]) #Save Figure if savefig != 'none': fig.savefig(savefig) ### Illustrating residuals only elif plot == 'residuals': colors = sns.color_palette("colorblind", n_colors=9) colors_real = sns.color_palette("Blues", n_colors=9) colors_imag = sns.color_palette("Oranges", n_colors=9) ### 1 Cycle if len(self.df) == 1: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax = fig.add_subplot(231) ax.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax.set_xlabel("log(f) [Hz]") ax.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == 'on' or legend == 'potential': ax.legend(loc='best', fontsize=10, frameon=False) ax.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = np.min(self.KK_rr_im) self.KK_rr_im_max = np.max(self.KK_rr_im) self.KK_rr_re_min = np.min(self.KK_rr_re) self.KK_rr_re_max = np.max(self.KK_rr_re) if self.KK_rr_re_max > self.KK_rr_im_max: self.KK_ymax = self.KK_rr_re_max else: self.KK_ymax = self.KK_rr_im_max if self.KK_rr_re_min < self.KK_rr_im_min: self.KK_ymin = self.KK_rr_re_min else: self.KK_ymin = self.KK_rr_im_min if np.abs(self.KK_ymin) > self.KK_ymax: ax.set_ylim(self.KK_ymin*100*1.5, np.abs(self.KK_ymin)*100*1.5) if legend == 'on': ax.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin)*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin)*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin) < self.KK_ymax: ax.set_ylim(np.negative(self.KK_ymax)*100*1.5, np.abs(self.KK_ymax)*100*1.5) if legend == 'on': ax.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax*100*1.3], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 2 Cycles elif len(self.df) == 2: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) #cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax2.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.3], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 3 Cycles elif len(self.df) == 3: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax2.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.3], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.3], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 4 Cycles elif len(self.df) == 4: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax2.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") ax3.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 5 Cycles elif len(self.df) == 5: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) ax4.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) # Cycle 5 ax5.plot(np.log10(self.df[4].f), self.KK_rr_re[4]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax5.plot(np.log10(self.df[4].f), self.KK_rr_im[4]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax5.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax5.legend(loc='best', fontsize=10, frameon=False) ax5.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5,
np.abs(self.KK_ymin[1])
numpy.abs
# -*- coding: utf-8 -*- """ @Author : <NAME> @Time : 2021/3/24 9:28 上午 @FileName: main.py @desc: 主程序入口文件 """ import os import random from collections import Counter import unicodedata import cv2 from Levenshtein import ratio from PIL import Image from numpy import average, dot, linalg import numpy as np import config from backend.tools.infer import utility from backend.tools.infer.predict_det import TextDetector from backend.tools.infer.predict_system import TextSystem from config import SubtitleArea # 加载文本检测+识别模型 class OcrRecogniser: def __init__(self): # 获取参数对象 self.args = utility.parse_args() self.recogniser = self.init_model() def predict(self, image): detection_box, recognise_result = self.recogniser(image) return detection_box, recognise_result def init_model(self): self.args.use_gpu = config.USE_GPU if config.USE_GPU: # 设置文本检测模型路径 self.args.det_model_dir = config.DET_MODEL_PATH # 设置文本识别模型路径 self.args.rec_model_dir = config.REC_MODEL_PATH else: # 加载快速模型 self.args.det_model_dir = config.DET_MODEL_FAST_PATH # 加载快速模型 self.args.rec_model_dir = config.REC_MODEL_FAST_PATH # 设置字典路径 self.args.rec_char_dict_path = config.DICT_PATH # 设置识别文本的类型 self.args.rec_char_type = config.REC_CHAR_TYPE return TextSystem(self.args) class SubtitleDetect: def __init__(self): # 获取参数对象 args = utility.parse_args() args.det_algorithm = 'DB' args.det_model_dir = config.DET_MODEL_FAST_PATH self.text_detector = TextDetector(args) def detect_subtitle(self, img): dt_boxes, elapse = self.text_detector(img) return dt_boxes, elapse class SubtitleExtractor: """ 视频字幕提取类 """ def __init__(self, vd_path, sub_area=None): # 字幕区域位置 self.sub_area = sub_area self.sub_detector = SubtitleDetect() # 视频路径 self.video_path = vd_path self.video_cap = cv2.VideoCapture(vd_path) # 视频帧总数 self.frame_count = self.video_cap.get(cv2.CAP_PROP_FRAME_COUNT) # 视频帧率 self.fps = self.video_cap.get(cv2.CAP_PROP_FPS) # 视频尺寸 self.frame_height = int(self.video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.frame_width = int(self.video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 字幕出现区域 self.subtitle_area = config.SUBTITLE_AREA print(f'帧数:{self.frame_count},帧率:{self.fps}') # 临时存储文件夹 self.temp_output_dir = os.path.join(config.BASE_DIR, 'output') # 提取的视频帧储存目录 self.frame_output_dir = os.path.join(self.temp_output_dir, 'frames') # 提取的字幕文件存储目录 self.subtitle_output_dir = os.path.join(self.temp_output_dir, 'subtitle') # 不存在则创建文件夹 if not os.path.exists(self.frame_output_dir): os.makedirs(self.frame_output_dir) if not os.path.exists(self.subtitle_output_dir): os.makedirs(self.subtitle_output_dir) # 提取的原始字幕文本存储路径 self.raw_subtitle_path = os.path.join(self.subtitle_output_dir, 'raw.txt') def run(self): """ 运行整个提取视频的步骤 """ print('【处理中】开启提取视频关键帧...') if self.sub_area is not None and config.ACCURATE_MODE_ON: self.extract_frame_by_det() else: self.extract_frame_by_fps() print('【结束】提取视频关键帧完毕...') print('【处理中】开始提取字幕信息,此步骤可能花费较长时间,请耐心等待...') self.extract_subtitles() print('【结束】完成字幕提取,生成原始字幕文件...') if self.sub_area is None: print('【处理中】开始检测并过滤水印区域内容') # 询问用户视频是否有水印区域 user_input = input('视频是否存在水印区域,存在的话输入y,不存在的话输入n: ').strip() if user_input == 'y': self.filter_watermark() print('【结束】已经成功过滤水印区域内容') else: print('-----------------------------') if self.sub_area is None: print('【处理中】开始检测非字幕区域,并将非字幕区域的内容删除') self.filter_scene_text() print('【结束】已将非字幕区域的内容删除') print('【处理中】开始生成字幕文件') self.generate_subtitle_file() print('【结束】字幕文件生成成功') def extract_frame(self): """ 根据视频的分辨率,将高分辨的视频帧缩放到1280*720p 根据字幕区域位置,将该图像区域截取出来 """ # 删除缓存 self.__delete_frame_cache() # 当前视频帧的帧号 frame_no = 0 while self.video_cap.isOpened(): ret, frame = self.video_cap.read() # 如果读取视频帧失败(视频读到最后一帧) if not ret: break # 读取视频帧成功 else: frame_no += 1 frame = self._frame_preprocess(frame) # 帧名往前补零,后续用于排序与时间戳转换,补足8位 # 一部10h电影,fps120帧最多也才1*60*60*120=432000 6位,所以8位足够 filename = os.path.join(self.frame_output_dir, str(frame_no).zfill(8) + '.jpg') # 保存视频帧 cv2.imwrite(filename, frame) # 将当前帧与接下来的帧进行比较,计算余弦相似度 compare_times = 0 while self.video_cap.isOpened(): ret, frame_next = self.video_cap.read() if ret: frame_no += 1 frame_next = self._frame_preprocess(frame_next) cosine_distance = self._compute_image_similarity(Image.fromarray(frame), Image.fromarray(frame_next)) compare_times += 1 if compare_times == config.FRAME_COMPARE_TIMES: break if cosine_distance > config.COSINE_SIMILARITY_THRESHOLD: # 如果下一帧与当前帧的相似度大于设定阈值,则略过该帧 continue # 如果相似度小于设定阈值,停止该while循环 else: break else: break self.video_cap.release() def extract_frame_by_fps(self): """ 根据帧率,定时提取视频帧,容易丢字幕,但速度快 """ # 删除缓存 self.__delete_frame_cache() # 当前视频帧的帧号 frame_no = 0 while self.video_cap.isOpened(): ret, frame = self.video_cap.read() # 如果读取视频帧失败(视频读到最后一帧) if not ret: break # 读取视频帧成功 else: frame_no += 1 frame = self._frame_preprocess(frame) # 帧名往前补零,后续用于排序与时间戳转换,补足8位 # 一部10h电影,fps120帧最多也才1*60*60*120=432000 6位,所以8位足够 filename = os.path.join(self.frame_output_dir, str(frame_no).zfill(8) + '.jpg') # 保存视频帧 cv2.imwrite(filename, frame) # 跳过剩下的帧 for i in range(int(self.fps // config.EXTRACT_FREQUENCY) - 1): ret, _ = self.video_cap.read() if ret: frame_no += 1 self.video_cap.release() def extract_frame_by_det(self): """ 通过检测字幕区域位置提取字幕帧 """ # 删除缓存 self.__delete_frame_cache() # 当前视频帧的帧号 frame_no = 0 while self.video_cap.isOpened(): ret, frame = self.video_cap.read() # 如果读取视频帧失败(视频读到最后一帧) if not ret: break # 读取视频帧成功 else: frame_no += 1 if self.sub_area is not None: ymin, ymax, xmin, xmax = self.sub_area dt_boxes, elapse = self.sub_detector.detect_subtitle(frame[ymin:ymax, xmin:xmax]) if len(dt_boxes) > 0: # 保存视频帧 frame = self._frame_preprocess(frame) # 帧名往前补零,后续用于排序与时间戳转换,补足8位 # 一部10h电影,fps120帧最多也才1*60*60*120=432000 6位,所以8位足够 filename = os.path.join(self.frame_output_dir, str(frame_no).zfill(8) + '.jpg') cv2.imwrite(filename, frame) print(f'字幕帧:{frame_no}, 耗时: {elapse}') self.video_cap.release() def extract_subtitle_frame(self): """ 提取包含字幕的视频帧 """ # 删除缓存 self.__delete_frame_cache() # 获取字幕帧列表 subtitle_frame_list = self._analyse_subtitle_frame() if subtitle_frame_list is None: print('请指定字幕区域') return cap = cv2.VideoCapture(self.video_path) idx = 0 index = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break if idx in subtitle_frame_list and idx != 0: filename = os.path.join(self.frame_output_dir, str(idx).zfill(8) + '.jpg') frame = self._frame_preprocess(frame) cv2.imwrite(filename, frame) subtitle_frame_list.remove(idx) index += 1 idx = idx + 1 cap.release() def extract_subtitles(self): """ 提取视频帧中的字幕信息,生成一个txt文件 """ # 初始化文本识别对象 text_recogniser = OcrRecogniser() # 视频帧列表 frame_list = [i for i in sorted(os.listdir(self.frame_output_dir)) if i.endswith('.jpg')] # 删除缓存 if os.path.exists(self.raw_subtitle_path): os.remove(self.raw_subtitle_path) # 新建文件 f = open(self.raw_subtitle_path, mode='w+', encoding='utf-8') for frame in frame_list: # 读取视频帧 img = cv2.imread(os.path.join(self.frame_output_dir, frame)) # 获取检测结果 dt_box, rec_res = text_recogniser.predict(img) # 获取文本坐标 coordinates = self.__get_coordinates(dt_box) # 将结果写入txt文本中 text_res = [(res[0], res[1]) for res in rec_res] for content, coordinate in zip(text_res, coordinates): if self.sub_area is not None: s_ymin = self.sub_area[0] s_ymax = self.sub_area[1] s_xmin = self.sub_area[2] s_xmax = self.sub_area[3] xmin = coordinate[0] xmax = coordinate[1] ymin = coordinate[2] ymax = coordinate[3] if s_xmin <= xmin and xmax <= s_xmax and s_ymin <= ymin and ymax <= s_ymax: print(content[0], content[1]) if content[1] > config.DROP_SCORE: f.write(f'{os.path.splitext(frame)[0]}\t' f'{coordinate}\t' f'{content[0]}\n') else: f.write(f'{os.path.splitext(frame)[0]}\t' f'{coordinate}\t' f'{content[0]}\n') # 关闭文件 f.close() def filter_watermark(self): """ 去除原始字幕文本中的水印区域的文本 """ # 获取潜在水印区域 watermark_areas = self._detect_watermark_area() # 从frame目录随机读取一张图片,将所水印区域标记出来,用户看图判断是否是水印区域 frame_path = os.path.join(self.frame_output_dir, random.choice( [i for i in sorted(os.listdir(self.frame_output_dir)) if i.endswith('.jpg')])) sample_frame = cv2.imread(frame_path) # 给潜在的水印区域编号 area_num = ['E', 'D', 'C', 'B', 'A'] for watermark_area in watermark_areas: ymin = min(watermark_area[0][2], watermark_area[0][3]) ymax = max(watermark_area[0][3], watermark_area[0][2]) xmin = min(watermark_area[0][0], watermark_area[0][1]) xmax = max(watermark_area[0][1], watermark_area[0][0]) cover = sample_frame[ymin:ymax, xmin:xmax] cover = cv2.blur(cover, (10, 10)) cv2.rectangle(cover, pt1=(0, cover.shape[0]), pt2=(cover.shape[1], 0), color=(0, 0, 255), thickness=3) sample_frame[ymin:ymax, xmin:xmax] = cover position = ((xmin + xmax) // 2, ymax) cv2.putText(sample_frame, text=area_num.pop(), org=position, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255, 0, 0), thickness=2, lineType=cv2.LINE_AA) sample_frame_file_path = os.path.join(os.path.dirname(self.frame_output_dir), 'watermark_area.jpg') cv2.imwrite(sample_frame_file_path, sample_frame) print(f'请查看图片, 确定水印区域: {sample_frame_file_path}') area_num = ['E', 'D', 'C', 'B', 'A'] for watermark_area in watermark_areas: user_input = input(f'是否去除区域{area_num.pop()}{str(watermark_area)}中的字幕?' f'\n输入 "y" 或 "回车" 表示去除,输入"n"或其他表示不去除: ').strip() if user_input == 'y' or user_input == '\n': with open(self.raw_subtitle_path, mode='r+', encoding='utf-8') as f: content = f.readlines() f.seek(0) for i in content: if i.find(str(watermark_area[0])) == -1: f.write(i) f.truncate() print(f'已经删除该区域字幕...') print('水印区域字幕过滤完毕...') # 删除缓存 if os.path.exists(sample_frame_file_path): os.remove(sample_frame_file_path) def filter_scene_text(self): """ 将场景里提取的文字过滤,仅保留字幕区域 """ # 获取潜在字幕区域 subtitle_area = self._detect_subtitle_area()[0][0] # 从frame目录随机读取一张图片,将所水印区域标记出来,用户看图判断是否是水印区域 frame_path = os.path.join(self.frame_output_dir, random.choice( [i for i in sorted(os.listdir(self.frame_output_dir)) if i.endswith('.jpg')])) sample_frame = cv2.imread(frame_path) # 为了防止有双行字幕,根据容忍度,将字幕区域y范围加高 ymin = abs(subtitle_area[0] - config.SUBTITLE_AREA_DEVIATION_PIXEL) ymax = subtitle_area[1] + config.SUBTITLE_AREA_DEVIATION_PIXEL # 画出字幕框的区域 cv2.rectangle(sample_frame, pt1=(0, ymin), pt2=(sample_frame.shape[1], ymax), color=(0, 0, 255), thickness=3) sample_frame_file_path = os.path.join(os.path.dirname(self.frame_output_dir), 'subtitle_area.jpg') cv2.imwrite(sample_frame_file_path, sample_frame) print(f'请查看图片, 确定字幕区域是否正确: {sample_frame_file_path}') user_input = input(f'是否去除红色框区域外{(ymin, ymax)}的字幕?' f'\n输入 "y" 或 "回车" 表示去除,输入"n"或其他表示不去除: ').strip() if user_input == 'y' or user_input == '\n': with open(self.raw_subtitle_path, mode='r+', encoding='utf-8') as f: content = f.readlines() f.seek(0) for i in content: i_ymin = int(i.split('\t')[1].split('(')[1].split(')')[0].split(', ')[2]) i_ymax = int(i.split('\t')[1].split('(')[1].split(')')[0].split(', ')[3]) if ymin <= i_ymin and i_ymax <= ymax: f.write(i) f.truncate() print('去除完毕') # 删除缓存 if os.path.exists(sample_frame_file_path): os.remove(sample_frame_file_path) def generate_subtitle_file(self): """ 生成srt格式的字幕文件 """ subtitle_content = self._remove_duplicate_subtitle() print(os.path.splitext(self.video_path)[0]) srt_filename = os.path.join(os.path.splitext(self.video_path)[0] + '.srt') # 保存持续时间不足1秒的字幕行,用于后续处理 post_process_subtitle = [] with open(srt_filename, mode='w', encoding='utf-8') as f: for index, content in enumerate(subtitle_content): line_code = index + 1 frame_start = self._frame_to_timecode(int(content[0])) # 比较起始帧号与结束帧号, 如果字幕持续时间不足1秒,则将显示时间设为1s if abs(int(content[1]) - int(content[0])) < self.fps: frame_end = self._frame_to_timecode(int(int(content[0]) + self.fps)) post_process_subtitle.append(line_code) else: frame_end = self._frame_to_timecode(int(content[1])) frame_content = content[2] subtitle_line = f'{line_code}\n{frame_start} --> {frame_end}\n{frame_content}\n' f.write(subtitle_line) print(f'字幕文件生成位置:{srt_filename}') # 返回持续时间低于1s的字幕行 return post_process_subtitle def _analyse_subtitle_frame(self): """ 使用简单的图像算法找出包含字幕的视频帧 : 参考 https://github.com/BruceHan98/OCR-Extract-Subtitles/blob/main/analyze_key_frame.py """ if self.sub_area is None: return None else: subtitle_frame_index_list = [] index = 0 s_ymin = self.sub_area[0] s_ymax = self.sub_area[1] s_xmin = self.sub_area[2] s_xmax = self.sub_area[3] cap = cv2.VideoCapture(self.video_path) success, frame = cap.read() if success: # 截取字幕部分 frame = frame[s_ymin:s_ymax, s_xmin:s_xmax] h, w = frame.shape[0:2] if config.BG_MOD == config.BackgroundColor.DARK: # 深色背景 minuend = np.full(h * w, config.BG_VALUE_DARK) # 被减矩阵 else: minuend = np.full(h * w, config.BG_VALUE_OTHER) # 被减矩阵 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) flatten_gray = gray.flatten() last_roi = flatten_gray - minuend last_roi = np.where(last_roi > 0, 1, 0) while cap.isOpened(): ret, frame = cap.read() if not ret: break frame = frame[s_ymin:s_ymax, s_xmin:s_xmax] if index % config.EXTRACT_INTERVAL == 0: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) flatten_gray = gray.flatten() roi = flatten_gray - minuend roi =
np.where(roi > 0, 1, 0)
numpy.where
# import libraries from presets import Preset import numpy as np import matplotlib.pyplot as plt import librosa as lb import librosa.display import time import sounddevice as sd y, sr = lb.load('Muumit goes war.mp3', sr=None, duration=100) audioLength = lb.get_duration(y, sr=sr) ''' Usually librosa forces the code to use sampling rate of 22050. We'd prefer to use the sampling rate of audio signal loaded. Therefore we use presets library to change the default sampling rate to that of the audio signal. Also in the process, we set the frame length and frame shift to the values presented in the article. ''' librosa = Preset(lb) librosa['sr'] = sr librosa['n_fft'] = 1024 librosa['hop_length'] = 512 F = lb.stft(y) # Step 1: Calculate the STFT of the input signal gamma = 0.3 # Defines the amount of range compression # Step 2: Calculate a range-compressed version of Power Spectrogram W = np.power(np.abs(F), 2 * gamma) # Step 3: Set the initial values for harmonic and percussive spectrogram H = 0.5 * W P = 0.5 * W # Two more values are required in the algorithm, and they are as follows kMax = 100 # The amount of iterations in the algorithm alpha = 0.3 # Balance parameter (experimentally determined) for k in range(kMax): # Step 4: Calculate the update variables delta(k) # The delta(K) is roughly the difference between harmonic # and percussive parts. Slots for those parts are made beforehand. partH = np.zeros_like(H) # An array to store the harmonic part partP = np.zeros_like(P) # An array to store the percussive part # The harmonic part is calculated with for loop over the i. for iIter in range(1, np.shape(H)[1] - 1): partH[:, iIter] = alpha * ((H[:, iIter - 1] - (2 * H[:, iIter]) + H[:, iIter + 1]) / 4) # The percussive part is calculated with for loop over the h. for hIter in range(1, np.shape(H)[0] - 1): partP[hIter, :] = (1 - alpha) * ((P[hIter - 1, :] - (2 * P[hIter, :]) + P[hIter + 1, :]) / 4) deltak = partH - partP # The calculated update variables # Step 5: Update H and P as defined in the article H = np.minimum(np.maximum(H + deltak, 0), W) P = W - H # Step 6: Increment k by 1 ( if k != kmax -1) # If we had used while-loop, there would be k+1 here, but with for-loop # the incrementation is done correctly automatically (requiring that # we used the correct length for the for-loop). # Step 7: Binarize the separation result H = np.where(np.less(H, P), 0, W) P = np.where(np.greater_equal(H, P), 0, W) # Step 8: Convert H and P into waveforms # The H and P are assigned this value in this step because it's needed to # plot the spectrogram later. Otherwise, we would calculate the waveforms # directly, not with an additional step. We do not care about overwriting # existing data on H or P, because they're not needed anymore. H = np.power(H, (1 / (2 * gamma))) * np.exp( 1j * np.angle(F)) # ISTFT is taken first on this, with H P = np.power(P, (1 / (2 * gamma))) * np.exp( 1j * np.angle(F)) # ISTFT is taken second on this, with P # Calculate the actual waveforms with ISTFT. Length is set to len(y) # so we can subtract the separated waveforms from the original. h = lb.istft(H, length=len(y)) p = lb.istft(P, length=len(y)) rp = np.max(np.abs(F)) # To scale the colorbar correctly (hopefully) plt.figure(figsize=(12, 8)) # Plot the original audio's spectrogram. plt.subplot(3, 1, 1) lb.display.specshow(lb.amplitude_to_db(np.abs(F), ref=rp), sr=sr, y_axis='log', x_axis='time') plt.colorbar() plt.title('Full spectrogram') plt.tight_layout() # Plot the harmonic spectrogram. plt.subplot(3, 1, 2) lb.display.specshow(lb.amplitude_to_db(np.abs(H), ref=rp), sr=sr, y_axis='log', x_axis='time') plt.colorbar() plt.title('Harmonic spectrogram') plt.tight_layout() # Plot the percussive spectrogram. plt.subplot(3, 1, 3) lb.display.specshow(lb.amplitude_to_db(np.abs(P), ref=rp), sr=sr, y_axis='log', x_axis='time') plt.colorbar() plt.title('Percussive spectrogram') plt.tight_layout() plt.show() e = y - p - h # Noise (original signal minus percussive & harmonic components) # Calculate the sinal noise ratio. SNR = 10*np.log10(np.sum(np.power(y, 2))/np.sum(
np.power(e, 2)
numpy.power
""" Simple two-level AMR using TF """ import numpy as np np.set_printoptions(edgeitems=30, linewidth=200, formatter=dict(float=lambda x: "%.3g" % x)) import tensorflow.compat.v1 as tf from my_libs.utils import grid_points, int2digits, digits2int, linear_interp_coeff import matplotlib.pyplot as plt from matplotlib import tri as mtri from matplotlib import collections as mc from matplotlib.backends.backend_pdf import PdfPages def my_show(): try: pdf.savefig() except: plt.show() def plot_amr(mesh, field, edges, colorbar=False): fig1, ax1 = plt.subplots(figsize=(7,7)) triang = mtri.Triangulation(mesh[:,0], mesh[:,1], None) ax1.set_aspect(1) tpc = ax1.tripcolor(triang, field.ravel(), vmin=0, vmax=1) if colorbar: fig1.colorbar(tpc) lines = mesh[edges] pbc_flag = np.where(np.linalg.norm(lines[:,0]-lines[:,1],axis=1)< (N1+1)) lines = lines[pbc_flag] ax1.add_collection(mc.LineCollection(lines, colors='r', linewidths=0.7)) #, colors=np.random.rand([len(edges),3]), linewidths=1.1)) my_show() class amr_state_variables: # def __init__(self, dim, shape_all, shape0, mask1, mask1_where, field0, field1, shared_interface, shared_edge3d, mask_all, field_all, edge_all, type_all=None, refine_threshold=0.001, periodic=True): def __init__(self, dim, shape_all, shape0, field_all, type_all=None, refine_threshold=0.001, periodic=True, buffer=0, eval_freq=1): # """" # shared_interface: flag of shape [shape0, dim, 2] # shared_edge3d: [shape0, dim, dim, 2, 2] # """" assert periodic, 'Must be periodic' self.dim = dim self.shape_all = tuple(shape_all) self.n_all = np.prod(shape_all) self.ijk2int = tf.convert_to_tensor([shape_all[1],1] if dim==2 else [shape_all[1]*shape_all[2],shape_all[2],1], dtype=tf.int64) # edge_all = tf.tensordot(edge_all, ijk2int, 1) self.shape0 = tuple(shape0) shape0 = np.array(shape0) self.n0 = np.prod(shape0) shape1 = np.array(shape_all) // np.array(shape0) self.shape1 = tuple(shape1) self.shape1_plus1 = (-1,) + tuple(
np.array(shape1)
numpy.array
''' After noticing such a substantial improvment 2.6% after my own manual changes, validating my expectations, i've decided to automate this process. ''' import keras import os import pickle import numpy as np validation_dir = "prepared_validation_data" USE_WEIGHTS = True DECAY = 0.9 # w0 s1 a2 d3 wa4 wd5 sa6 sd7 nk8 WEIGHTS = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] #WEIGHTS =[0.030903154382632643, 1000.0, 0.020275559590445278, 0.013302794647291147, 0.0225283995449392, 0.025031555049932444, 1000.0, 1000.0, 0.016423203268260675] mapping_dict = {0: "W", 1: "S", 2: "A", 3: "D", 4: "WA", 5: "WD", 6: "SA", 7: "SD", 8: "NK",} close_dict = { 0: {4: 0.3, 5: 0.3, 8: 0.05}, # Should be W, but said WA or WD NK nbd 1: {6: 0.3, 7: 0.3, 8: 0.05}, # Should be S, but said SA OR SD, NK nbd 2: {4: 0.3, 6: 0.3}, # Should be A, but SA or WA 3: {5: 0.3, 7: 0.3}, # Shoudl be D, but SD or WD 4: {2: 0.5}, # Should be WA, but A 5: {3: 0.5}, # Should be WD, but D 6: {1: 0.3, 2: 0.3}, # Should be SA, but S or A 7: {1: 0.3, 3: 0.3}, # Should be SD, but S or D 8: {0: 0.05, 1: 0.05, 2: 0.05, 3: 0.05, 4: 0.05, 5: 0.05, 6: 0.05, 7: 0.05, }, # should be NK... but whatever. } model = keras.models.load_model(f"trained_models/1536269759_xception-v1_p-01.0456_ta-0.73_va-0.38.model") while True: dist_dict = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0} total = 0 correct = 0 closeness = 0 # step 1 for f in os.listdir(validation_dir): if ".pickle" in f: chunk = pickle.load(open(os.path.join(validation_dir, f), "rb")) for data in chunk: total += 1 X = data[1] X = X/255.0 y = data[0] prediction = model.predict([X.reshape(-1, X.shape[0], X.shape[1], X.shape[2])])[0] if USE_WEIGHTS: prediction = np.array(prediction) * np.array(WEIGHTS) dist_dict[np.argmax(prediction)] += 1 if np.argmax(prediction) == np.argmax(y): correct += 1 closeness += 1 else: if np.argmax(prediction) in close_dict[np.argmax(y)]: closeness += close_dict[
np.argmax(y)
numpy.argmax
# Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Lint as: python3 """Tests for tensorflow_probability.spinoffs.oryx.distributions.distributions_extensions.""" from absl.testing import absltest from absl.testing import parameterized import jax from jax import random import jax.numpy as np import numpy as onp from oryx import core from oryx import distributions as bd from oryx.core import ppl DISTRIBUTIONS = [ ('normal_scalar_args', bd.Normal, (0., 1.), {}, 0., [0., 1.]), ('normal_scalar_kwargs', bd.Normal, (), { 'loc': 0., 'scale': 1. }, 0., [0., 1.]), ('mvn_diag_args', bd.MultivariateNormalDiag, (onp.zeros(5, dtype=onp.float32), onp.ones(5, dtype=onp.float32)), {}, onp.zeros(5, dtype=onp.float32), [onp.zeros(5, dtype=onp.float32), onp.ones(5, dtype=onp.float32)]), ('mvn_diag_kwargs', bd.MultivariateNormalDiag, (), { 'loc': onp.zeros(5, dtype=onp.float32), 'scale_diag': onp.ones(5, dtype=onp.float32) }, onp.zeros(5, dtype=onp.float32), [onp.zeros(5, dtype=onp.float32),
onp.ones(5, dtype=onp.float32)
numpy.ones
""" Core of likelihood computations This package implements many likelihoods based on the common chi2 statistics python/numpy version. N_logLikelihood Computes a normal likelihood (default, symmetric errors) SN_logLikelihood Computes a Split Normal likelihood (asymmetric errors) getNorm_lnP Compute the norm of a log-likelihood (overflow robust) """ import numpy as np __all__ = [ "N_chi2_NM", "N_covar_chi2", "N_logLikelihood_NM", "N_covar_logLikelihood", "N_covar_logLikelihood_cholesky", "getNorm_lnP", ] def N_chi2_NM(flux, fluxmod_wbias, ivar, mask=None): """ compute the non-reduced chi2 between data and model taking into account the noise model computed from ASTs. Parameters ---------- flux: np.ndarray[float, ndim=1] array of fluxes fluxmod_wbias: np.ndarray[float, ndim=2] array of modeled fluxes + ast-derived biases (nfilters , nmodels) ivar: np.ndarray[float, ndim=2] array of ast-derived inverse variances (nfilters , nmodels) mask: np.ndarray[bool, ndim=1] mask array to apply during the calculations mask.shape = flux.shape Returns ------- chi2: np.ndarray[float, ndim=1] array of chi2 values (nmodels) """ if (mask is None) or np.all(mask is False): temp = flux - fluxmod_wbias _ie = ivar else: _m = ~mask.astype(bool) temp = flux[_m] - fluxmod_wbias[:, _m] _ie = ivar[:, _m] return np.einsum("ij,ij,ij->i", temp, temp, _ie) def N_covar_chi2(flux, fluxmod_wbias, icov_diag, two_icov_offdiag): """ compute the non-reduced chi2 between data and model using the full covariance matrix information computed from ASTs. Parameters ---------- flux: np.ndarray[float, ndim=1] array of fluxes fluxmod_wbias: np.ndarray[float, ndim=2] array of modeled fluxes (nfilters , nmodels) icov_diag: np.ndarray[float, ndim=2] array giving the diagnonal terms of the covariance matrix inverse two_icov_offdiag: np.ndarray[float, ndim=2] array giving 2x the off diagonal terms of the covariance matrix inverse Returns ------- chi2: np.ndarray[float, ndim=1] array of chi2 values (nmodels) Note ---- Mask removed as it cannot be used with a precomputed inverse covariance matrix. (KDG 29 Jan 2016) """ # get the number of models and filters n_models, n_filters = fluxmod_wbias.shape # compute the difference in fluxes fluxdiff = flux[None, :] - fluxmod_wbias # diagonal terms chisqr = np.einsum("ij,ij,ij->i", fluxdiff, fluxdiff, icov_diag) # off-diagonal terms m_start = 0 for k in range(n_filters - 1): m_end = m_start + n_filters - k - 1 tchisqr = np.einsum( "ij,ij->i", two_icov_offdiag[:, m_start:m_end], fluxdiff[:, k + 1 :] ) tchisqr *= fluxdiff[:, k] chisqr += tchisqr m_start = m_end return chisqr def N_logLikelihood_NM(flux, fluxmod_wbias, ivar, mask=None, lnp_threshold=1000.0): r""" Computes the log of the chi2 likelihood between data and model taking into account the noise model. Parameters ---------- flux: np.ndarray[float, ndim=1] array of fluxes fluxmod_wbias: np.ndarray[float, ndim=2] array of modeled fluxes + ast-derived biases (nfilters, nmodels) ivar: np.ndarray[float, ndim=2] array of ast-derived inverse variances (nfilters , nmodels) mask: np.ndarray[bool, ndim=1] mask array to apply during the calculations mask.shape = flux.shape lnp_threshold: float cut the values outside -x, x in lnp Returns ------- (lnp, chi2) lnP: np.ndarray[float, ndim=1] array of ln(P) values (Nmodels) chi2: np.ndarray[float, ndim=1] array of chi-squared values (Nmodels) .. math:: P = \\frac{1}{\\sqrt{2pi} * \\sigma} \\times exp ( - \\chi^2 / 2 ) and \\chi ^ 2 = \\sum_{k} (flux_{obs,k} - flux_{pred,k} - \mu_k) ^ 2 / \sigma^2_{pred,k} """ ni, nj = np.shape(fluxmod_wbias) # compute the quality factor # lnQ = -0.5 * nj * ln( 2 * pi) - sum_j {ln( err[j] ) } temp = 0.5 *
np.log(2.0 * np.pi)
numpy.log
import numpy as np import pickle as pkl import networkx as nx import scipy.sparse as sp import random from collections import defaultdict from scipy.sparse.linalg.eigen.arpack import eigsh import sys def load_train_valid_labels(filename, valid_prop): lbs = dict() lbs['f2g'] = dict() lbs['f2g']['train'] = defaultdict(list) lbs['f2g']['valid'] = defaultdict(list) lbs['g2f'] = dict() lbs['g2f']['train'] = defaultdict(list) lbs['g2f']['valid'] = defaultdict(list) with open(filename, 'r') as fin: for ln in fin: elems = ln.strip().split() for val in elems[1].split(';'): if random.random()<valid_prop: lbs['f2g']['train'][elems[0]].append(val) lbs['g2f']['train'][val].append(elems[0]) else: lbs['f2g']['valid'][elems[0]].append(val) lbs['g2f']['valid'][val].append(elems[0]) return lbs # def _fetch_obj_labels(lbs, src_lbs, start_idx, end_idx): # obj_lbs = set() # for i in range(start_idx, end_idx): # src_lb = src_lbs[i] # for obj_lb in lbs[src_lb]: # obj_lbs.add(obj_lb) # return list(obj_lbs) def batch_iter(lbs, batch_size, neg_ratio, lookup_src, lookup_obj, src_lb_tag, obj_lb_tag): train_lb_src2obj = lbs['{}2{}'.format(src_lb_tag,obj_lb_tag)]['train'] train_lb_obj2src = lbs['{}2{}'.format(obj_lb_tag,src_lb_tag)]['train'] train_size = len(train_lb_src2obj) start_index = 0 end_index = min(start_index+batch_size, train_size) src_lb_keys = train_lb_src2obj.keys() obj_lb_keys = train_lb_obj2src.keys() shuffle_indices = np.random.permutation(np.arange(train_size)) while start_index < end_index: pos_src = list() pos_obj = list() neg_src = list() neg_obj = list() for i in range(start_index,end_index): idx = shuffle_indices[i] src_lb = src_lb_keys[idx] if not src_lb in lookup_src: continue nd_src = lookup_src[src_lb] # idx of embedding in src network obj_lbs = train_lb_src2obj[src_lb] for obj_lb in obj_lbs: cur_neg_src = list() cur_neg_obj = list() if not obj_lb in lookup_obj: continue nd_obj = lookup_obj[obj_lb] for k in range(neg_ratio): rand_nd_obj = None while not rand_nd_obj or rand_nd_obj in cur_neg_obj or rand_obj_lb in obj_lbs: rand_obj_lb_idx = random.randint(0, len(obj_lb_keys)-1) rand_obj_lb = obj_lb_keys[rand_obj_lb_idx] if not rand_obj_lb in lookup_obj: # print rand_obj_lb continue rand_nd_obj = lookup_obj[rand_obj_lb] cur_neg_src.append(nd_src) cur_neg_obj.append(rand_nd_obj) pos_src.append(nd_src) pos_obj.append(nd_obj) neg_src.append(cur_neg_src) neg_obj.append(cur_neg_obj) start_index = end_index end_index = min(start_index+batch_size, train_size) yield pos_src,pos_obj,neg_src,neg_obj def valid_iter(lbs, valid_sample_size, lookup_src, lookup_obj, src_lb_tag, obj_lb_tag): valid_lb_src2obj = lbs['{}2{}'.format(src_lb_tag,obj_lb_tag)]['valid'] valid_lb_obj2src = lbs['{}2{}'.format(obj_lb_tag,src_lb_tag)]['valid'] valid_src = list() valid_obj = list() src_lb_keys = valid_lb_src2obj.keys() obj_lb_keys = valid_lb_obj2src.keys() for i in range(len(valid_lb_src2obj)): cand_src = list() cand_obj = list() src_lb = src_lb_keys[i] if not src_lb in lookup_src: continue nd_src = lookup_src[src_lb] # idx of embedding in src network obj_lbs = valid_lb_src2obj[src_lb] for obj_lb in obj_lbs: if not obj_lb in lookup_obj: continue nd_obj = lookup_obj[obj_lb] cand_src.append(nd_src) cand_obj.append(nd_obj) for k in range(valid_sample_size-1): rand_nd_obj = None while not rand_nd_obj or rand_nd_obj in cand_obj or rand_obj_lb in obj_lbs: rand_obj_lb_idx = random.randint(0, len(obj_lb_keys)-1) rand_obj_lb = obj_lb_keys[rand_obj_lb_idx] if not rand_obj_lb in lookup_obj: continue rand_nd_obj = lookup_obj[rand_obj_lb] cand_src.append(nd_src) cand_obj.append(rand_nd_obj) if (cand_src and cand_obj) and len(cand_src)==valid_sample_size and len(cand_obj)==valid_sample_size: valid_src.append(cand_src) valid_obj.append(cand_obj) cand_src = list() cand_obj = list() return valid_src, valid_obj def parse_index_file(filename): """Parse index file.""" index = [] for line in open(filename): index.append(int(line.strip())) return index def sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def read_embeddings(embed_file, lookup, look_back): embedding = list() with open(embed_file, 'r') as emb_handler: idx = 0 for ln in emb_handler: ln = ln.strip() if ln: elems = ln.split() if len(elems)==2: continue arr = np.array(map(float, elems[1:])) embedding.append(arr/np.linalg.norm(arr)) lookup[elems[0]] = idx look_back.append(elems[0]) idx += 1 return
np.array(embedding)
numpy.array
import os,sys, time,pickle, copy import numpy as np, tensorflow as tf import os.path as osp from baselines import logger from collections import deque import baselines.common.tf_util as U from baselines.common import explained_variance, set_global_seeds, colorize from baselines.common.policies import build_policy from contextlib import contextmanager try: from mpi4py import MPI except ImportError: MPI = None # MBL from mbl.mbl import MBL, MBLCEM, MBLMPPI from mbl.exp_util import eval_policy, Policy from mbl.util.util import load_extracted_val_data as load_val_data from mbl.util.util import to_onehot from mbl.model_config import get_make_mlp_model #from plot import plot #from visdom import Visdom from multiprocessing.dummy import Pool import multiprocessing as mp from runner import Runner from model_novec import Model def constfn(val): def f(_): return val return f def learn(*, network, env, eval_env, make_eval_env, env_id, total_timesteps, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4, vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95, log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2, sil_update=10, sil_value=0.01, sil_alpha=0.6, sil_beta=0.1, sil_loss=0.1, # MBL # For train mbl mbl_train_freq=5, # For eval num_eval_episodes=5, eval_freq=5, vis_eval=False, eval_targs=('mbmf',), #eval_targs=('mf',), quant=2, # For mbl.step #num_samples=(1500,), num_samples=(1,), horizon=(2,), #horizon=(2,1), #num_elites=(10,), num_elites=(1,), mbl_lamb=(1.0,), mbl_gamma=0.99, #mbl_sh=1, # Number of step for stochastic sampling mbl_sh=10000, #vf_lookahead=-1, #use_max_vf=False, reset_per_step=(0,), # For get_model num_fc=2, num_fwd_hidden=500, use_layer_norm=False, # For MBL num_warm_start=int(1e4), init_epochs=10, update_epochs=5, batch_size=512, update_with_validation=False, use_mean_elites=1, use_ent_adjust=0, adj_std_scale=0.5, # For data loading validation_set_path=None, # For data collect collect_val_data=False, # For traj collect traj_collect='mf', # For profile measure_time=True, eval_val_err=False, measure_rew=True, save_interval=0, load_path=None, model_fn=None, update_fn=None, init_fn=None, mpi_rank_weight=1, comm=None, **network_kwargs): ''' Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347) Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See common/models.py/lstm for more details on using recurrent nets in policies env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int number of timesteps (i.e. number of actions taken in the environment) ent_coef: float policy entropy coefficient in the optimization objective lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training. vf_coef: float value function loss coefficient in the optimization objective max_grad_norm: float or None gradient norm clipping coefficient gamma: float discounting factor lam: float advantage estimation discounting factor (lambda in the paper) log_interval: int number of timesteps between logging events nminibatches: int number of training minibatches per update. For recurrent policies, should be smaller or equal than number of environments run in parallel. noptepochs: int number of training epochs per update cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training save_interval: int number of timesteps between saving events load_path: str path to load the model from **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' if not isinstance(num_samples, tuple): num_samples = (num_samples,) if not isinstance(horizon, tuple): horizon = (horizon,) if not isinstance(num_elites, tuple): num_elites = (num_elites,) if not isinstance(mbl_lamb, tuple): mbl_lamb = (mbl_lamb,) if not isinstance(reset_per_step, tuple): reset_per_step = (reset_per_step,) if validation_set_path is None: if collect_val_data: validation_set_path = os.path.join(logger.get_dir(), 'val.pkl') else: validation_set_path = os.path.join('dataset', '{}-val.pkl'.format(env_id)) if eval_val_err: eval_val_err_path = os.path.join('dataset', '{}-combine-val.pkl'.format(env_id)) logger.log(locals()) logger.log('MBL_SH', mbl_sh) logger.log('Traj_collect', traj_collect) if MPI is not None: nworkers = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() else: nworkers = 1 rank = 0 cpus_per_worker = 1 U.get_session(config=tf.ConfigProto( allow_soft_placement=True, inter_op_parallelism_threads=cpus_per_worker, intra_op_parallelism_threads=cpus_per_worker )) set_global_seeds(seed) if isinstance(lr, float): lr = constfn(lr) else: assert callable(lr) if isinstance(cliprange, float): cliprange = constfn(cliprange) else: assert callable(cliprange) total_timesteps = int(total_timesteps) policy = build_policy(env, network, **network_kwargs) np.set_printoptions(precision=3) # Get the nb of env nenvs = env.num_envs # Get state_space and action_space ob_space = env.observation_space ac_space = env.action_space # Calculate the batch_size nbatch = nenvs * nsteps nbatch_train = nbatch // nminibatches is_mpi_root = (MPI is None or MPI.COMM_WORLD.Get_rank() == 0) # Instantiate the model object (that creates act_model and train_model) if model_fn is None: model_fn = Model make_model = lambda: Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, sil_update=sil_update, fn_reward=None, fn_obs=None, sil_value=sil_value, sil_alpha=sil_alpha, sil_beta=sil_beta, sil_loss=sil_loss, comm=comm, mpi_rank_weight=mpi_rank_weight, ppo=True,prev_pi=None) model=make_model() pi=model.sil_model if load_path is not None: model.load(load_path) # MBL # --------------------------------------- #viz = Visdom(env=env_id) win = None eval_targs = list(eval_targs) logger.log(eval_targs) make_model_f = get_make_mlp_model(num_fc=num_fc, num_fwd_hidden=num_fwd_hidden, layer_norm=use_layer_norm) mbl = MBL(env=eval_env, env_id=env_id, make_model=make_model_f, num_warm_start=num_warm_start, init_epochs=init_epochs, update_epochs=update_epochs, batch_size=batch_size, **network_kwargs) val_dataset = {'ob': None, 'ac': None, 'ob_next': None} if update_with_validation: logger.log('Update with validation') val_dataset = load_val_data(validation_set_path) if eval_val_err: logger.log('Log val error') eval_val_dataset = load_val_data(eval_val_err_path) if collect_val_data: logger.log('Collect validation data') val_dataset_collect = [] def _mf_pi(ob, t=None): stochastic = True ac, vpred, _, _ = pi.step(ob, stochastic=stochastic) return ac, vpred def _mf_det_pi(ob, t=None): #ac, vpred, _, _ = pi.step(ob, stochastic=False) ac, vpred = pi._evaluate([pi.pd.mode(), pi.vf], ob) return ac, vpred def _mf_ent_pi(ob, t=None): mean, std, vpred = pi._evaluate([pi.pd.mode(), pi.pd.std, pi.vf], ob) ac = np.random.normal(mean, std * adj_std_scale, size=mean.shape) return ac, vpred ################### use_ent_adjust======> adj_std_scale????????pi action sample def _mbmf_inner_pi(ob, t=0): if use_ent_adjust: return _mf_ent_pi(ob) else: #return _mf_pi(ob) if t < mbl_sh: return _mf_pi(ob) else: return _mf_det_pi(ob) # --------------------------------------- # Run multiple configuration once all_eval_descs = [] def make_mbmf_pi(n, h, e, l): def _mbmf_pi(ob): ac, rew = mbl.step(ob=ob, pi=_mbmf_inner_pi, horizon=h, num_samples=n, num_elites=e, gamma=mbl_gamma, lamb=l, use_mean_elites=use_mean_elites) return ac[None], rew return Policy(step=_mbmf_pi, reset=None) for n in num_samples: for h in horizon: for l in mbl_lamb: for e in num_elites: if 'mbmf' in eval_targs: all_eval_descs.append(('MeanRew', 'MBL_PPO_SIL', make_mbmf_pi(n, h, e, l))) #if 'mbmf' in eval_targs: all_eval_descs.append(('MeanRew-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), 'MBL_TRPO-n-{}-h-{}-e-{}-l-{}-sh-{}-me-{}'.format(n, h, e, l, mbl_sh, use_mean_elites), make_mbmf_pi(n, h, e, l))) if 'mf' in eval_targs: all_eval_descs.append(('MeanRew', 'PPO_SIL', Policy(step=_mf_pi, reset=None))) logger.log('List of evaluation targets') for it in all_eval_descs: logger.log(it[0]) @contextmanager def timed(msg): if rank == 0: print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta')) else: yield pool = Pool(mp.cpu_count()) warm_start_done = False U.initialize() if load_path is not None: pi.load(load_path) # Instantiate the runner object runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam) epinfobuf = deque(maxlen=40) if init_fn is not None: init_fn() if traj_collect == 'mf': obs= runner.run()[0] # Start total timer tfirststart = time.perf_counter() nupdates = total_timesteps//nbatch for update in range(1, nupdates+1): assert nbatch % nminibatches == 0 # Start timer if hasattr(model.train_model, "ret_rms"): model.train_model.ret_rms.update(returns) if hasattr(model.train_model, "rms"): model.train_model.rms.update(obs) tstart = time.perf_counter() frac = 1.0 - (update - 1.0) / nupdates # Calculate the learning rate lrnow = lr(frac) # Calculate the cliprange cliprangenow = cliprange(frac) if update % log_interval == 0 and is_mpi_root: logger.info('Stepping environment...') # Get minibatch obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() #pylint: disable=E0632 # Val data collection if collect_val_data: for ob_, ac_, ob_next_ in zip(obs[:-1, 0, ...], actions[:-1, ...], obs[1:, 0, ...]): val_dataset_collect.append((copy.copy(ob_), copy.copy(ac_), copy.copy(ob_next_))) # ----------------------------- # MBL update else: ob_mbl, ac_mbl = obs.copy(), actions.copy() mbl.add_data_batch(ob_mbl[:-1, ...], ac_mbl[:-1, ...], ob_mbl[1:, ...]) mbl.update_forward_dynamic(require_update=(update-1) % mbl_train_freq == 0, ob_val=val_dataset['ob'], ac_val=val_dataset['ac'], ob_next_val=val_dataset['ob_next']) # ----------------------------- if update % log_interval == 0 and is_mpi_root: logger.info('Done.') epinfobuf.extend(epinfos) # Here what we're going to do is for each minibatch calculate the loss and append it. mblossvals = [] if states is None: # nonrecurrent version # Index of each element of batch_size # Create the indices array inds = np.arange(nbatch) for _ in range(noptepochs): # Randomize the indexes np.random.shuffle(inds) # 0 to batch_size with batch_train_size step for start in range(0, nbatch, nbatch_train): end = start + nbatch_train mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mblossvals.append(model.train(lrnow, cliprangenow, *slices)) l_loss, sil_adv, sil_samples, sil_nlogp = model.sil_train(lrnow) else: # recurrent version print("caole") assert nenvs % nminibatches == 0 envsperbatch = nenvs // nminibatches envinds = np.arange(nenvs) flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps) for _ in range(noptepochs): np.random.shuffle(envinds) for start in range(0, nenvs, envsperbatch): end = start + envsperbatch mbenvinds = envinds[start:end] mbflatinds = flatinds[mbenvinds].ravel() slices = (arr[mbflatinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mbstates = states[mbenvinds] mblossvals.append(model.train(lrnow, cliprangenow, *slices, mbstates)) # Feedforward --> get losses --> update lossvals =
np.mean(mblossvals, axis=0)
numpy.mean
from typing import NamedTuple, Tuple, List, Dict import numpy as np import matplotlib.pyplot as plt from gym.envs.toy_text.discrete import DiscreteEnv from matplotlib.animation import FuncAnimation PL = 0 MNT = 1 WTCH = 2 MNST = 3 LAVA = 4 UP = 0 RIGHT = 1 DOWN = 2 LEFT = 3 ACTIONS = [UP, RIGHT, DOWN, LEFT] COLORS = np.array([ [1, 1, 1], [0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0] ]).astype(float) DELTA = { UP: np.array([-1, 0]), RIGHT: np.array([0, 1]), DOWN:
np.array([1, 0])
numpy.array
# !usr/bin/env python # -*- coding: utf-8 -*- # # Licensed under a 3-clause BSD license. # # @Author: <NAME> # @Date: 2018-09-22 09:07:08 # @Last modified by: <NAME> (<EMAIL>) # @Last Modified time: 2018-10-10 14:43:05 from __future__ import absolute_import, division, print_function import math import re from decimal import Decimal from operator import eq, ge, gt, le, lt, ne import numpy as np from astropy.io import fits from sdssdb.sqlalchemy.mangadb import MangaBase, database, sampledb from sqlalchemy import and_, func, select from sqlalchemy.dialects.postgresql import ARRAY from sqlalchemy.engine import reflection from sqlalchemy.ext.declarative import AbstractConcreteBase, declared_attr from sqlalchemy.ext.hybrid import hybrid_method, hybrid_property from sqlalchemy.orm import deferred, relationship from sqlalchemy.schema import Column from sqlalchemy.sql import column from sqlalchemy.types import Float, Integer, String SCHEMA = 'mangadatadb' class Base(AbstractConcreteBase, MangaBase): __abstract__ = True _schema = SCHEMA _relations = 'define_relations' @declared_attr def __table_args__(cls): return {'schema': cls._schema} class ArrayOps(object): ''' this class adds array functionality ''' __table__ = None __tablename__ = 'arrayops' @property def cols(self): return list(self.__table__.columns._data.keys()) @property def collist(self): return ['wavelength', 'flux', 'ivar', 'mask', 'xpos', 'ypos', 'specres'] def getTableName(self): return self.__table__.name def matchIndex(self, name=None): # Get index of correct column incols = [x for x in self.cols if x in self.collist] if not any(incols): return None elif len(incols) == 1: idx = self.cols.index(incols[0]) else: if not name: print('Multiple columns found. Column name must be specified!') return None elif name in self.collist: idx = self.cols.index(name) else: return None return idx def filter(self, start, end, name=None): # Check input types or map string operators startnum = type(start) == int or type(start) == float endnum = type(end) == int or type(end) == float opdict = {'=': eq, '<': lt, '<=': le, '>': gt, '>=': ge, '!=': ne} if start in opdict.keys() or end in opdict.keys(): opind = list(opdict.keys()).index(start) if start in opdict.keys() else list(opdict.keys()).index(end) if start in opdict.keys(): start = opdict[list(opdict.keys())[opind]] if end in opdict.keys(): end = opdict[list(opdict.keys())[opind]] # Get matching index self.idx = self.matchIndex(name=name) if not self.idx: return None # Perform calculation try: data = self.__getattribute__(self.cols[self.idx]) except: data = None if data: if startnum and endnum: arr = [x for x in data if x >= start and x <= end] elif not startnum and endnum: arr = [x for x in data if start(x, end)] elif startnum and not endnum: arr = [x for x in data if end(x, start)] elif startnum == eq or endnum == eq: arr = [x for x in data if start(x, end)] if start == eq else [x for x in data if end(x, start)] return arr else: return None def equal(self, num, name=None): # Get matching index self.idx = self.matchIndex(name=name) if not self.idx: return None # Perform calculation try: data = self.__getattribute__(self.cols[self.idx]) except: data = None if data: arr = [x for x in data if x == num] return arr else: return None def less(self, num, name=None): # Get matching index self.idx = self.matchIndex(name=name) if not self.idx: return None # Perform calculation try: data = self.__getattribute__(self.cols[self.idx]) except: data = None if data: arr = [x for x in data if x <= num] return arr else: return None def greater(self, num, name=None): # Get matching index self.idx = self.matchIndex(name=name) if not self.idx: return None # Perform calculation try: data = self.__getattribute__(self.cols[self.idx]) except: data = None if data: arr = [x for x in data if x >= num] return arr else: return None def getIndices(self, arr): if self.idx: indices = [self.__getattribute__(self.cols[self.idx]).index(a) for a in arr] else: return None return indices class Cube(ArrayOps, Base): __tablename__ = 'cube' print_fields = ['plateifu', 'pipelineInfo.version.version'] specres = deferred(Column(ARRAY(Float, zero_indexes=True))) specresd = deferred(Column(ARRAY(Float, zero_indexes=True))) prespecres = deferred(Column(ARRAY(Float, zero_indexes=True))) prespecresd = deferred(Column(ARRAY(Float, zero_indexes=True))) target = relationship(sampledb.MangaTarget, backref='cubes') carts = relationship('Cart', secondary='{0}.cart_to_cube'.format(SCHEMA), backref="cubes") @property def header(self): '''Returns an astropy header''' session = database.Session.object_session(self) data = session.query(FitsHeaderKeyword.label, FitsHeaderValue.value, FitsHeaderValue.comment).join(FitsHeaderValue).filter( FitsHeaderValue.cube == self).all() hdr = fits.Header(data) return hdr def header_to_dict(self): '''Returns a simple python dictionary header''' values = self.headervals hdrdict = {str(val.keyword.label): val.value for val in values} return hdrdict @property def plateclass(self): '''Returns a plate class''' plate = Plate(self) return plate def testhead(self, key): ''' Test existence of header keyword''' try: if self.header_to_dict()[key]: return True except Exception: return False def getFlags(self, bits, name): from sdssdb.sqlalchemy.mangadb.auxdb import MaskBit session = database.Session.object_session(self) # if bits not a digit, return None if not str(bits).isdigit(): return 'NULL' else: bits = int(bits) # Convert the integer value to list of bits bitlist = [int(i) for i in '{0:08b}'.format(bits)] bitlist.reverse() indices = [i for i, bit in enumerate(bitlist) if bit] labels = [] for i in indices: maskbit = session.query(MaskBit).filter_by(flag=name, bit=i).one() labels.append(maskbit.label) return labels def getQualBits(self, stage='3d'): ''' get quality flags ''' col = 'DRP2QUAL' if stage == '2d' else 'DRP3QUAL' hdr = self.header_to_dict() bits = hdr.get(col, None) return bits def getQualFlags(self, stage='3d'): ''' get quality flags ''' name = 'MANGA_DRP2QUAL' if stage == '2d' else 'MANGA_DRP3QUAL' bits = self.getQualBits(stage=stage) if bits: return self.getFlags(bits, name) else: return None def getTargFlags(self, targtype=1): ''' get target flags ''' name = 'MANGA_TARGET1' if targtype == 1 else 'MANGA_TARGET2' if targtype == 2 else 'MANGA_TARGET3' bits = self.getTargBits(targtype=targtype) if bits: return self.getFlags(bits, name) else: return None def getTargBits(self, targtype=1): ''' get target bits ''' assert targtype in [1, 2, 3], 'target type can only 1, 2 or 3' hdr = self.header_to_dict() newcol = 'MNGTARG{0}'.format(targtype) oldcol = 'MNGTRG{0}'.format(targtype) bits = hdr.get(newcol, hdr.get(oldcol, None)) return bits def get3DCube(self, extension='flux'): """Returns a 3D array of ``extension`` from the cube spaxels. For example, ``cube.get3DCube('flux')`` will return the original flux cube with the same ordering as the FITS data cube. Note that this method seems to be really slow retrieving arrays (this is especially serious for large IFUs). """ session = database.Session.object_session(self) spaxels = session.query(getattr(Spaxel, extension)).filter( Spaxel.cube_pk == self.pk).order_by(Spaxel.x, Spaxel.y).all() # Assumes cubes are always square (!) nx = ny = int(np.sqrt(len(spaxels))) nwave = len(spaxels[0][0]) spArray =
np.array(spaxels)
numpy.array
# Copyright (c) 2018-2022, NVIDIA Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ The matplotlib plotter implementation for all the primitive tasks (in our case: lines and dots) """ from typing import Any, Callable, Dict, List import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 import numpy as np from .core import BasePlotter, BasePlotterTask class Matplotlib2DPlotter(BasePlotter): _fig: plt.figure # plt figure _ax: plt.axis # plt axis # stores artist objects for each task (task name as the key) _artist_cache: Dict[str, Any] # callables for each task primitives _create_impl_callables: Dict[str, Callable] _update_impl_callables: Dict[str, Callable] def __init__(self, task: "BasePlotterTask") -> None: fig, ax = plt.subplots() self._fig = fig self._ax = ax self._artist_cache = {} self._create_impl_callables = { "Draw2DLines": self._lines_create_impl, "Draw2DDots": self._dots_create_impl, "Draw2DTrail": self._trail_create_impl, } self._update_impl_callables = { "Draw2DLines": self._lines_update_impl, "Draw2DDots": self._dots_update_impl, "Draw2DTrail": self._trail_update_impl, } self._init_lim() super().__init__(task) @property def ax(self): return self._ax @property def fig(self): return self._fig def show(self): plt.show() def _min(self, x, y): if x is None: return y if y is None: return x return min(x, y) def _max(self, x, y): if x is None: return y if y is None: return x return max(x, y) def _init_lim(self): self._curr_x_min = None self._curr_y_min = None self._curr_x_max = None self._curr_y_max = None def _update_lim(self, xs, ys): self._curr_x_min = self._min(np.min(xs), self._curr_x_min) self._curr_y_min = self._min(np.min(ys), self._curr_y_min) self._curr_x_max = self._max(np.max(xs), self._curr_x_max) self._curr_y_max = self._max(np.max(ys), self._curr_y_max) def _set_lim(self): if not ( self._curr_x_min is None or self._curr_x_max is None or self._curr_y_min is None or self._curr_y_max is None ): self._ax.set_xlim(self._curr_x_min, self._curr_x_max) self._ax.set_ylim(self._curr_y_min, self._curr_y_max) self._init_lim() @staticmethod def _lines_extract_xy_impl(index, lines_task): return lines_task[index, :, 0], lines_task[index, :, 1] @staticmethod def _trail_extract_xy_impl(index, trail_task): return (trail_task[index : index + 2, 0], trail_task[index : index + 2, 1]) def _lines_create_impl(self, lines_task): color = lines_task.color self._artist_cache[lines_task.task_name] = [ self._ax.plot( *Matplotlib2DPlotter._lines_extract_xy_impl(i, lines_task), color=color, linewidth=lines_task.line_width, alpha=lines_task.alpha )[0] for i in range(len(lines_task)) ] def _lines_update_impl(self, lines_task): lines_artists = self._artist_cache[lines_task.task_name] for i in range(len(lines_task)): artist = lines_artists[i] xs, ys = Matplotlib2DPlotter._lines_extract_xy_impl(i, lines_task) artist.set_data(xs, ys) if lines_task.influence_lim: self._update_lim(xs, ys) def _dots_create_impl(self, dots_task): color = dots_task.color self._artist_cache[dots_task.task_name] = self._ax.plot( dots_task[:, 0], dots_task[:, 1], c=color, linestyle="", marker=".", markersize=dots_task.marker_size, alpha=dots_task.alpha, )[0] def _dots_update_impl(self, dots_task): dots_artist = self._artist_cache[dots_task.task_name] dots_artist.set_data(dots_task[:, 0], dots_task[:, 1]) if dots_task.influence_lim: self._update_lim(dots_task[:, 0], dots_task[:, 1]) def _trail_create_impl(self, trail_task): color = trail_task.color trail_length = len(trail_task) - 1 self._artist_cache[trail_task.task_name] = [ self._ax.plot( *Matplotlib2DPlotter._trail_extract_xy_impl(i, trail_task), color=trail_task.color, linewidth=trail_task.line_width, alpha=trail_task.alpha * (1.0 - i / (trail_length - 1)) )[0] for i in range(trail_length) ] def _trail_update_impl(self, trail_task): trails_artists = self._artist_cache[trail_task.task_name] for i in range(len(trail_task) - 1): artist = trails_artists[i] xs, ys = Matplotlib2DPlotter._trail_extract_xy_impl(i, trail_task) artist.set_data(xs, ys) if trail_task.influence_lim: self._update_lim(xs, ys) def _create_impl(self, task_list): for task in task_list: self._create_impl_callables[task.task_type](task) self._draw() def _update_impl(self, task_list): for task in task_list: self._update_impl_callables[task.task_type](task) self._draw() def _set_aspect_equal_2d(self, zero_centered=True): xlim = self._ax.get_xlim() ylim = self._ax.get_ylim() if not zero_centered: xmean = np.mean(xlim) ymean = np.mean(ylim) else: xmean = 0 ymean = 0 plot_radius = max( [ abs(lim - mean_) for lims, mean_ in ((xlim, xmean), (ylim, ymean)) for lim in lims ] ) self._ax.set_xlim([xmean - plot_radius, xmean + plot_radius]) self._ax.set_ylim([ymean - plot_radius, ymean + plot_radius]) def _draw(self): self._set_lim() self._set_aspect_equal_2d() self._fig.canvas.draw() self._fig.canvas.flush_events() plt.pause(0.00001) class Matplotlib3DPlotter(BasePlotter): _fig: plt.figure # plt figure _ax: p3.Axes3D # plt 3d axis # stores artist objects for each task (task name as the key) _artist_cache: Dict[str, Any] # callables for each task primitives _create_impl_callables: Dict[str, Callable] _update_impl_callables: Dict[str, Callable] def __init__(self, task: "BasePlotterTask") -> None: self._fig = plt.figure() self._ax = p3.Axes3D(self._fig) self._artist_cache = {} self._create_impl_callables = { "Draw3DLines": self._lines_create_impl, "Draw3DDots": self._dots_create_impl, "Draw3DTrail": self._trail_create_impl, } self._update_impl_callables = { "Draw3DLines": self._lines_update_impl, "Draw3DDots": self._dots_update_impl, "Draw3DTrail": self._trail_update_impl, } self._init_lim() super().__init__(task) @property def ax(self): return self._ax @property def fig(self): return self._fig def show(self): plt.show() def _min(self, x, y): if x is None: return y if y is None: return x return min(x, y) def _max(self, x, y): if x is None: return y if y is None: return x return max(x, y) def _init_lim(self): self._curr_x_min = None self._curr_y_min = None self._curr_z_min = None self._curr_x_max = None self._curr_y_max = None self._curr_z_max = None def _update_lim(self, xs, ys, zs): self._curr_x_min = self._min(np.min(xs), self._curr_x_min) self._curr_y_min = self._min(np.min(ys), self._curr_y_min) self._curr_z_min = self._min(np.min(zs), self._curr_z_min) self._curr_x_max = self._max(np.max(xs), self._curr_x_max) self._curr_y_max = self._max(
np.max(ys)
numpy.max
import pytest import numpy as np from numpy.testing import assert_array_equal from sktime.forecasters import DummyForecaster, EnsembleForecaster from sktime.forecasters import ExpSmoothingForecaster from sktime.forecasters import ARIMAForecaster from sktime.datasets import load_shampoo_sales __author__ = "<NAME>" # forecasters FORECASTERS = (DummyForecaster, ExpSmoothingForecaster, ARIMAForecaster) # forecast horizons FHS = ([1], [1, 3], np.array([1]), np.array([1, 3]), np.arange(5)) # load test data y = load_shampoo_sales() # test default forecasters output for different forecasters horizons @pytest.mark.parametrize("fh", FHS) def test_EnsembleForecaster_fhs(fh): estimators = [ ('ses', ExpSmoothingForecaster()), ('last', DummyForecaster(strategy='last')) ] m = EnsembleForecaster(estimators=estimators) m.fit(y, fh=fh) y_pred = m.predict(fh=fh) # adjust for default value if fh is None: fh = np.array([1]) if isinstance(fh, list): fh =
np.asarray(fh)
numpy.asarray
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ AUTHOR - <NAME> <<EMAIL>> - <NAME> <<EMAIL>> DESCRIPTION usage: cwt_analysis_synthesis.py [-h] [-v] [-M MODE] [-m MEAN_F0] [-o OUTPUT] [-P] input_file Tool for CWT analysis/synthesis of the F0 positional arguments: input_file Input signal or F0 file optional arguments: -h, --help show this help message and exit -v, --verbosity increase output verbosity -M MODE, --mode MODE script mode: 0=analysis, 1=synthesis, 2=analysis/synthesis -m MEAN_F0, --mean_f0 MEAN_F0 Mean f0 needed for synthesis (unsed for analysis modes) -o OUTPUT, --output OUTPUT output directory for analysis or filename for synthesis. (Default: input_file directory [Analysis] or <input_file>.f0 [Synthesis]) -P, --plot Plot the results LICENSE See https://github.com/asuni/wavelet_prosody_toolkit/blob/master/LICENSE.txt """ import sys import os import traceback import argparse import time import logging import yaml # Collections from collections import defaultdict import warnings # Plotting import matplotlib.pyplot as plt import matplotlib.colors as colors # Wavelet import from wavelet_prosody_toolkit.prosody_tools import misc from wavelet_prosody_toolkit.prosody_tools import cwt_utils from wavelet_prosody_toolkit.prosody_tools import f0_processing import numpy as np # List of logging levels used to setup everything using verbose option LEVEL = [logging.WARNING, logging.INFO, logging.DEBUG] # FIXME: be more specific! warnings.simplefilter("ignore", np.ComplexWarning) # Plotting can't deal with complex, but we don't care ############################################################################### # Functions ############################################################################### def apply_configuration(current_configuration, updating_part): """Utils to update the current configuration using the updating part Parameters ---------- current_configuration: dict The current state of the configuration updating_part: dict The information to add to the current configuration Returns ------- dict the updated configuration """ if not isinstance(current_configuration, dict): return updating_part if current_configuration is None: return updating_part if updating_part is None: return current_configuration for k in updating_part: if k not in current_configuration: current_configuration[k] = updating_part[k] else: current_configuration[k] = apply_configuration(current_configuration[k], updating_part[k]) return current_configuration def load_f0(input_file, binary_mode=False, configuration=None): """Load the f0 from a text file or extract it from a wav file Parameters ---------- input_file: string The input file name. Returns ------- 1D arraylike the raw f0 values """ if input_file.lower().endswith(".csv"): if binary_mode: raise Exception("cannot have a csv file in binary mode") else: raw_f0 = np.loadtxt(input_file) if input_file.lower().endswith(".f0"): if binary_mode: raw_f0 = np.fromfile(input_file, dtype=np.float32) else: raw_f0 = np.loadtxt(input_file) elif input_file.lower().endswith(".lf0"): if binary_mode: raw_f0 = np.fromfile(input_file, dtype=np.float32) else: raw_f0 = np.loadtxt(input_file) raw_f0 = np.exp(raw_f0) elif input_file.lower().endswith(".wav"): logging.info("Extracting the F0 from the signal") (fs, wav_form) = misc.read_wav(input_file) raw_f0 = f0_processing.extract_f0(wav_form, fs, configuration["f0"]["min_f0"], configuration["f0"]["max_f0"]) return raw_f0 ############################################################################### # Main function ############################################################################### def run(): """Main entry function This function contains the code needed to achieve the analysis and/or the synthesis """ global args warnings.simplefilter("ignore", FutureWarning) # Plotting can't deal with complex, but we don't care # Loading default configuration configuration = defaultdict() with open(os.path.dirname(os.path.realpath(__file__)) + "/configs/default.yaml", 'r') as f: configuration = apply_configuration(configuration, defaultdict(lambda: False, yaml.load(f))) logging.debug("default configuration") logging.debug(configuration) # Loading dedicated analysis.synthesis configuration with open(os.path.dirname(os.path.realpath(__file__)) + "/configs/synthesis.yaml", 'r') as f: configuration = apply_configuration(configuration, defaultdict(lambda: False, yaml.load(f))) logging.debug("configuration filled with synthesis part") logging.debug(configuration) # Loading user configuration if args.configuration_file: try: with open(args.configuration_file, 'r') as f: configuration = apply_configuration(configuration, defaultdict(lambda: False, yaml.load(f))) logging.debug("configuration filled with user part") logging.debug(configuration) except IOError as ex: logging.error("configuration file " + args.config + " could not be loaded:") logging.error(ex.msg) sys.exit(1) # Analysis Mode if args.mode == 0: raw_f0 = load_f0(args.input_file, args.binary_mode, configuration) logging.info("Processing f0") f0 = f0_processing.process(raw_f0) # FIXME: reintegrated if args.plot: plt.title("F0 preprocessing and interpolation") plt.plot(f0, color="red", alpha=0.5, linewidth=3) plt.plot(raw_f0, color="gray", alpha=0.5) plt.show() # # FIXME: read this? # logging.info("writing interpolated lf0\t" + output_file + ".interp") # np.savetxt(output_file + ".interp", f0.astype('float'), # fmt="%f", delimiter="\n") # Perform continuous wavelet transform of mean-substracted f0 with 12 scales, one octave apart logging.info("Starting analysis with (num_scale=%d, scale_distance=%f, mother_name=%s)" % (configuration["wavelet"]["num_scales"], configuration["wavelet"]["scale_distance"], configuration["wavelet"]["mother_wavelet"])) full_scales, widths, _ = cwt_utils.cwt_analysis(f0 - np.mean(f0), mother_name=configuration["wavelet"]["mother_wavelet"], period=configuration["wavelet"]["period"], num_scales=configuration["wavelet"]["num_scales"], scale_distance=configuration["wavelet"]["scale_distance"], apply_coi=False) full_scales = np.real(full_scales) # SSW parameterization, adjacent scales combined (with extra scales to handle long utterances) scales = cwt_utils.combine_scales(np.real(full_scales), configuration["wavelet"]["combined_scales"]) for i in range(0, len(scales)): logging.debug("Mean scale[%d]: %s" % (i, str(
np.mean(scales[i])
numpy.mean
""" Common covariance operator implementations. """ import math import numpy as np from numpy import random from scipy import sparse, linalg from . import CovarianceOperator __all__ = [ 'to_matrix', 'DenseCovariance', 'DiagonalCovariance', ] def to_matrix(C, force_dense=False, out=None): """ Returns matrix representation of a covariance operator. If the passed instance is already a covariance matrix, it is returned as-is. Compatible matrix types are * ``numpy.ndarray``, ``numpy.matrix`` - returned as-is * subclass of ``scipy.sparse.spmatrix`` - returned as-is if ``force_dense=False``, otherwise converted to ``numpy.ndarray``. If ``C`` is an instance of :class:`endas.CovarianceOperator`, the result of ``C.to_matrix()`` is returned. Please note that not all covariance operators support conversion to explicit matrix form. Args: C : :class:`endas.CovarianceOperator` instance or NumPy array. force_dense : Value passed to :meth:`endas.CovarianceOperator.to_matrix()`. out : If specified, the array is used as the output buffer instead of allocating new array. The provided array must have the correct shape. Returns: Dense NumPy array (``ndarray``) or sparse SciPy array depending on ``C`` and ``force_dense``. Raises: TypeError: if C is of unsupported type ValueError: if C is a non-square matrix NotImplementedError: raised by :meth:`endas.CovarianceOperator.to_matrix()` MemoryError: if the covariance matrix array cannot be allocated """ if isinstance(C, np.ndarray): ret = C elif isinstance(C, np.matrix): ret = C elif isinstance(C, sparse.spmatrix): ret = C.toarray(out=out) elif isinstance(C, CovarianceOperator): ret = C.to_matrix(force_dense, out=out) else: raise TypeError("C is not an instance of matrix or CovarianceOperator") if ret.shape[0] != ret.shape[1]: raise ValueError("C must be a square matrix") return ret class DiagonalCovariance(CovarianceOperator): """ Implements diagonal covariance matrix. The covariance operator is internally represented by a sparse matrix. Currently only the main diagonal is supported but other diagonals could be added, if needed. The operator supports all methods of :class:`CovarianceOperator`. The covariance can be instantiated with either the array of diagonal elements or the reciprocal (inverse) array. This can prevent numerical issues in situations where the inverse coefficients are near zero (thus leading to very large coefficients on the original diagonal) and if only the inverse coefficients are needed (such as when only ``solve()`` is called). Args: diag (nx1 array) : Vector of diagonal elements of the covariance matrix. Defines covariance matrix of shape (n, n) invdiag (nx1 array) : Vector of inverse diagonal elements of the covariance matrix. Defines covariance matrix of shape (n, n) Only one of the ``diag`` and ``invdiag`` arrays can be given. """ def __init__(self, diag=None, invdiag=None): if diag is not None and invdiag is not None: raise ValueError("Only one of 'diag' and 'invdiag' arrays can be given.") elif diag is None and invdiag is None: raise ValueError("One of 'diag' or 'invdiag' arrays is needed.") elif diag is not None: self._diag_is_original = True self._Q = sparse.diags(diag) self._Qinv = sparse.diags(np.reciprocal(diag)) self._sddiag = np.sqrt(diag) else: self._diag_is_original = False self._sddiag = np.reciprocal(invdiag) self._Q = sparse.diags(np.copy(self._sddiag)) self._Qinv = sparse.diags(invdiag) self._sddiag = np.sqrt(self._sddiag) @property def shape(self): return self._Q.shape @property def is_diagonal(self): return True @property def mc_only(self): return False def diagonal(self): """ Returns the matrix diagonal as an array. Returns: Array of length ``self.shape[0]`` or ``self.shape[1]``. """ return self._Q.diagonal() def inv_diagonal(self): """ Returns the inverse of the matrix diagonal as an array. Returns: Array of length ``self.shape[0]`` or ``self.shape[1]``. """ return self._Qinv.diagonal() def random_multivariate_normal(self, N=1): assert N >= 1 n = self.shape[0] if N == 1: return random.randn(n) * self._sddiag else: rv = random.randn(n * N).reshape(n, N) return rv * self._sddiag.reshape(n, 1) def solve(self, b, overwrite_b=False): return self._Qinv.dot(b) def to_matrix(self, force_dense=False, out=None): return self._Q if not force_dense else np.asarray(self._Q.todense()) def add_to(self, x): # Todo: custom add-to-diagonal ufunc? np.fill_diagonal(x, x.diagonal() + self._Q.diagonal()) def localize(self, selected, taper): sel_diag = self._Q.diagonal()[selected] sel_invdiag = self._Qinv.diagonal()[selected] if taper is not None: assert len(selected) == len(taper) sel_invdiag = sel_invdiag * taper return DiagonalCovariance(invdiag=sel_invdiag) elif self._diag_is_original: return DiagonalCovariance(diag=sel_diag) else: return DiagonalCovariance(invdiag=sel_invdiag) class DenseCovariance(CovarianceOperator): """ Dense covariance matrix as CovarianceOperator. This is a trivial wrapper around a dense covariance matrix stored in a NumPy array. Use only on small problems when other representations don't fit. Args: C : Square NumPy matrix or array representing the covariance matrix. """ def __init__(self, C): self._C = np.asarray(C) @property def shape(self): return self._C.shape @property def is_diagonal(self): return False @property def mc_only(self): return False def random_multivariate_normal(self, N=1): assert N >= 1 n = self.shape[0] if N == 1: return random.multivariate_normal(np.zeros(n), self._C) else: return random.multivariate_normal(
np.zeros(n)
numpy.zeros
import logging import numpy as np import pickle from copy import deepcopy from ase.atoms import Atoms from thyme.utils.cell import convert_cell_format from thyme.utils.savenload import save_file, load_file from thyme.utils.atomic_symbols import species_to_order_label from ._key import * class Trajectory(object): default_per_frame_keys = [ POSITION, FORCE, TOTAL_ENERGY, CELL, ] default_metadata_keys = [ "dipole_correction", "species", "nelm", "cutoff", "kpoints", ] stat_keys = [ NATOMS, SPECIES, "nframes", "name", "formula", PER_FRAME_ATTRS, METADATA_ATTRS, "fixed_attrs", "filenames", ] def __init__(self): """ dummy init. do nothing """ self._items = dict() # unique name that can be used for printing self.name = "default" self.nframes = 0 self.natoms = 0 self.formula = "" self.per_frame_attrs = [] self.metadata_attrs = [] self.fixed_attrs = [] self._iter_index = 0 def __len__(self): return self.nframes def __repr__(self): s = f"{self.name}: {self.nframes} frames with {self.natoms} atoms, {self.formula}" return s def __str__(self): """ string method to list all details or shape of the trajectory """ s = repr(self) for k in self.per_frame_attrs: item = getattr(self, k) s += f"\n {k} {item.shape}" s += "metadata:\n" for k in self.metadata_attrs: item = getattr(self, k) if isinstance(item, np.ndarray): s += f"\n {k} shape {item.shape}" elif isinstance(item, np.ndarray): s += f"\n {k} len {len(item)}" else: s += f"\n {k} value {item}" return s @property def keys(self): return ( self.per_frame_attrs + self.metadata_attrs + self.fixed_attrs + self.stat_keys ) def __getitem__(self, key): if key in self.per_frame_attrs or key in self.metadata_attrs: return getattr(self, key, None) if isinstance(key, int): return self.get_frame(key) def __iter__(self): return self def __next__(self): self._iter_index = getattr(self, "_iter_index", 0) if self._iter_index >= self.nframes: raise StopIteration self._iter_index += 1 return self.get_frame(self._iter_index - 1) def get_frame(self, idx, keys=None): if idx >= self.nframes: raise ValueError(f"{idx} is larger than the total length {self.nframes}") frame = {NATOMS: self.natoms, SPECIES: self.species} if keys is None: frame.update({key: getattr(self, key)[idx] for key in self.per_frame_attrs}) frame.update({key: getattr(self, key) for key in self.fixed_attrs}) else: frame.update( { key: getattr(self, key)[idx] for key in self.per_frame_attrs if key in keys } ) frame.update( {key: getattr(self, key) for key in self.fixed_attrs if key in keys} ) return frame def add_frames(self, dictionary): find_key = [(key in dictionary) for key in self.per_frame_attrs] if not all(find_key): raise RuntimeError("key missing") match_fields = [ (repr(dictionary[key]) == getattr(self.key)) for key in self.fixed_attrs if key in dictionary ] if not all(match_fields): raise RuntimeError("fixed fields are not consistent missing") for key in self.per_frame_attrs: mat = np.vstack((getattr(self, key), dictionary[key])) setattr(self, key, mat) self.nframes += dictionary[POSITION].shape[0] def get_attr(self, key): if key in self.per_frame_attrs: return getattr(self, key) else: return np.array([getattr(self, key)] * self.nframes) def pop(self, key, fail=None): item = self.get_attr(key) for name_list in [self.per_frame_attrs, self.fixed_attrs, self.metadata_attrs]: if key in name_list: name_list.remove(key) delattr(self, key) return item def add_frames(self, dictionary): find_key = [(key in dictionary) for key in self.per_frame_attrs] if not all(find_key): raise RuntimeError("key missing") match_fields = [ (repr(dictionary[key]) == getattr(self.key)) for key in self.fixed_attrs if key in dictionary ] if not all(match_fields): raise RuntimeError("fixed fields are not consistent missing") for key in self.per_frame_attrs: mat = np.append(getattr(self, key), dictionary[key], axis=0) setattr(self, key, mat) self.nframes += dictionary[POSITION].shape[0] def sanity_check(self): for k in self.stat_keys: if not hasattr(self, k): setattr(self, k, 0) if self.nframes < 0: raise RuntimeError("nframes should be non-negative int") if len(self.per_frame_attrs) != 0: frames = {} for k in self.per_frame_attrs: frames[k] = len(getattr(self, k)) frames_values = set(list(frames.values())) if len(frames_values) > 1: logging.error(f"numbers of frames are inconsistent: {frames}") raise RuntimeError(f"Data inconsistent") if self.nframes != list(frames_values)[0]: logging.error( f"numbers of frames are inconsistent: {frames} and nframes = {self.nframes}" ) raise RuntimeError(f"Data inconsistent") if len(self.per_frame_attrs) > len(list(set(self.per_frame_attrs))): raise ValueError(f"repeated keys in self.per_frame_attrs") # always put POSITION as the first attribute if POSITION not in self.per_frame_attrs: raise ValueError(POSITION + " has to be defined") idx = self.per_frame_attrs.index(POSITION) if idx != 0: temp = self.per_frame_attrs[0] self.per_frame_attrs[0] = POSITION self.per_frame_attrs[idx] = temp if ( self.position.shape[1] != self.natoms or len(self.species) != self.natoms ): if self.position.shape[1] == len(self.species): self.natoms = self.position.shape[1] else: raise ValueError("Natoms cannot be defined") if len(self.metadata_attrs) > len(list(set(self.metadata_attrs))): raise ValueError(f"repeated keys in self.metadata_attrs") if len(self.fixed_attrs) > len(list(set(self.fixed_attrs))): raise ValueError(f"repeated keys in self.fix_attrs") if len(set(self.fixed_attrs).intersection(set(self.per_frame_attrs))) > 0: raise ValueError( f"fix attr: {self.fixed_attrs} and per frame attr: {self.per_frame_attrs} has overlap" ) def add_field(self, list_name, name, item): if list_name == PER_FRAME_ATTRS: if not isinstance(item, np.ndarray): raise TypeError(f"{name} value should be np.ndarray type") if len(item) != self.nframes and len(self.per_frame_attrs) > 0: logging.error( f"Error: {repr(item)}'s length {len(item)} does not match {self.nframes}" ) raise RuntimeError elif len(self.per_frame_attrs) == 0: self.nframes = item.shape[0] the_list = getattr(self, list_name) if name in the_list: logging.debug(f"overwriting per_frame attr {name}") else: the_list += [name] setattr(self, name, item) logging.debug(f"add a pointer of {name} to the {list_name}") def include_frames(self, accept_id=None): if accept_id is None: return for k in self.per_frame_attrs: new_mat = getattr(self, k) new_mat = getattr(self, k)[accept_id] setattr(self, k, new_mat) self.nframes = len(accept_id) def fix_to_per_frame(self, key): if key not in self.fixed_attrs: return mat = self.expand_fixed_attr(key) setattr(self, key, mat) self.fixed_attrs.remove(key) self.per_frame_attrs += [key] def expand_fixed_attr(self, key): if key not in self.fixed_attrs: return mat = getattr(self, key) if isinstance(mat, np.ndarray): mat = np.tile( np.expand_dims(mat, axis=0), (self.nframes) + (1) * len(mat.shape) ) else: mat = [mat] * self.nframes return mat @classmethod def from_file(cls, filename, update_dict={}, mapping={}): obj = load_file( supported_formats={"npz": "npz", "pickle": "pickle"}, filename=filename ) if isinstance(obj, cls): obj.sanity_check() return obj return cls.from_dict(dict(obj), update_dict=update_dict, mapping=mapping) def to_dict(self): return {k: getattr(self, k) for k in self.keys} @classmethod def from_dict(cls, input_dict, update_dict={}, mapping={}): """ requirement positions: nframes x ? optional: cells forces species, or symbols """ trj = cls() backward_remap = { POSITION: POSITION + "s", FORCE: FORCE + "S", CELL: CELL + "s", TOTAL_ENERGY: "energies", } input_dict = {k: v for k, v in input_dict.items()} for new_name, original_name in mapping.items(): input_dict[new_name] = input_dict.pop(original_name) for new_name, original_name in backward_remap.items(): if original_name in input_dict: input_dict[new_name] = input_dict.pop(original_name) input_dict.update(update_dict) trj.nframes = input_dict[POSITION].shape[0] if CELL in input_dict: input_dict[CELL] = convert_cell_format(trj.nframes, input_dict[CELL]) for k in [POSITION, FORCE]: if k in input_dict: input_dict[k] = input_dict[k].reshape([trj.nframes, -1, 3]) trj.natoms = input_dict[POSITION].shape[1] for k in cls.stat_keys: if k in input_dict: setattr(trj, k, input_dict[k]) for k in input_dict: found = False for attr in ["per_frame", "metadata", "fixed"]: input_list = input_dict.get(f"{attr}_attrs", []) if k in input_list and not found: trj.add_field(f"{attr}_attrs", k, input_dict[k]) found = True for attr in ["per_frame", "metadata", "fixed"]: default_list = getattr(cls, f"default_{attr}_keys", []) if k in default_list and not found: trj.add_field(f"{attr}_attrs", k, input_dict[k]) found = True trj.nframes = trj.position.shape[0] trj.natoms = trj.position.shape[1] remain_keys = set(list(input_dict.keys())) - set(trj.keys) for k in remain_keys: logging.debug(f"undefined attributes {k}, set to metadata") try: dim0 = input_dict[k].shape[0] except: dim0 = -1 if dim0 == trj.nframes: trj.add_field(PER_FRAME_ATTRS, k, input_dict[k]) else: trj.add_field(METADATA_ATTRS, k, input_dict[k]) trj.sanity_check() return trj def copy_metadata(self, trj, exception): for k in set(trj.metadata_attrs) - set(exception): item = getattr(trj, k, None) ori_item = getattr(self, k, None) if ori_item is None and item is not None: setattr(self, k, item) if k not in self.metadata_attrs: self.metadata_attrs += [k] else: equal = False try: if ori_item == item: equal = True except: pass try: if (ori_item == item).all(): equal = True except: pass try: if np.equal(ori_item, item).all(): equal = True except: pass if not equal and item is None: ori_item = getattr(self, k, None) logging.info(f"key {k} are not the same in the two objects") logging.info(f" {item} {ori_item}") def save(self, name: str, format: str = None): save_file( self.to_dict(), supported_formats={"npz": "npz", "pickle": "pickle"}, filename=name, enforced_format=format, ) @classmethod def stack(cls, trjs, safe_mode=True, order=None): """ add all frames from another trajectory instance """ nframes = np.sum([trj.nframes for trj in trjs]) if nframes <= 0: return Trajectory() if len(trjs) == 1: trj = Trajectory() trj.copy(trjs[0]) return trj if order is not None: for i, trj in enumerate(trjs): trj.reorder_atoms(order[i]) natoms = set([trj.natoms for trj in trjs]) if len(natoms) != 1: raise ValueError(f"cannot merge trjs with different numbers {natoms}") if safe_mode: labels = [] for trj in trjs: _order, new_label = species_to_order_label(trj.species) labels += [new_label] labels = set(labels) if len(labels) != 1: raise ValueError(f"cannot merge trjs with different species {labels}") trj0 = trjs[0] d = trj0.to_dict() for k in trj0.per_frame_attrs: items = [getattr(trj, k) for trj in trjs] try: mat = np.stack(items, axis=0) except Exception as e: raise RuntimeError("fail", k, set([item.shape for item in items]), e) d[k] = mat d["nframes"] = nframes d["natoms"] = list(natoms)[0] trj = Trajectory.from_dict(d) return trj def add_trj(self, trj, safe_mode=True, order=None): """ add all frames from another trajectory instance """ if trj.nframes <= 0: return if order is not None: trj.reorder_atoms(order) if self.nframes == 0: self.copy(trj) else: if self.natoms != trj.natoms: raise ValueError( f"cannot merge two trj with different numbers {self.natoms}, {trj.natoms}" ) if safe_mode: if not all(trj.species == self.species): _order, new_label = species_to_order_label(trj.species) _, old_label = species_to_order_label(self.species) if new_label != old_label: raise ValueError(f"cannot merge two trj with different numbers") if order is None: trj.reorder_atoms(_order) for k in self.per_frame_attrs: item = getattr(trj, k) ori_item = getattr(self, k) try: mat = np.append(ori_item, item, axis=0) except Exception as e: raise RuntimeError("fail", k, item.shape, ori_item.shape, e) setattr(self, k, mat) self.copy_metadata(trj, exception=["name", "nframes", "natom", "filenames"]) self.nframes += trj.nframes def reshape(self, key, shape): mat = getattr(self, k) if isinstance(mat, np.ndarray): setattr(self, k, mat.reshape(tuple([self.nframes]) + shape)) def flatten(self): for k in self.per_frame_attrs: self.reshape(k, tuple([-1])) for k in self.fixed_attrs: self.reshape(k, tuple([-1])) def extract_frames(self, frame_list): trj = type(self)() trj.copy(self) trj.include_frames(frame_list) trj.name = f"{self.name}_{trj.nframes}" return trj def reorder_atoms(self, order): if len(order) > self.natoms: logging.error( f"{len(order)} order should be smaller than {self.natoms} lines" ) raise RuntimeError() for k in self.per_frame_attrs: ori_item = getattr(self, k) if len(ori_item.shape) > 1: if ori_item.shape[1] == self.natoms: item = np.swapaxes(ori_item, 0, 1) item = item[order] item = np.swapaxes(item, 0, 1) setattr(self, k, item) self.species = np.array(self.species)[order] natoms = self.position.shape[1] if natoms != self.natoms: logging.info(f"extract_frames {self.natoms} lines to {natoms} lines") self.natoms = natoms self.sanity_check() def shuffle(self): frame_list =
np.random.permutation(self.nframes)
numpy.random.permutation
import math from typing import Iterable, Union import numpy as np from shor.errors import CircuitError from shor.layers import _Layer from shor.utils.collections import flatten QbitOrIterable = Union[int, Iterable] class _Gate(_Layer): """Abstract base quantum gate class A quantum gate operates on qbits only, and represents a pure (unitary) quantum operation. input_length = valid length of input qbits qbits = indices of qbits, to be used as input to gate. Attributes __________ input_length : int valid length of input qbits qbits : int indices of qbits, to be used as input to gate Methods ------- symbol(self): Returns matrix symbol as lower case for provider transpiler qbits(self):Returns qbit indices associated with applying the gate to_gates(self):Returns number of gate objects applied to input qbit array. Ex: H([1,2]) will return two hadamard gates objects applied to qbits indexed to 1 and 2 num_states(self):Returns the number of states associated with a state vector and its gate matrix to_matrix(self): Return unitary matrix form of gate object matrix(self): Call to_matrix which returns matrix form of gate object invert(self): Return self I(self): Calls invert(self) """ @property def symbol(self): return self.__class__.__name__.lower() def __init__(self, *qbits: QbitOrIterable, **kwargs): """ Parameters __________ qbits : int qbits to which the gate is being applied kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ super().__init__(**kwargs) self.qbits = flatten(qbits) if qbits else [0] self.dimension = kwargs.get("dimension", 1) assert all(map(lambda q: type(q) == int, self.qbits)), str(self.qbits) try: assert len(self.qbits) % self.dimension == 0 except AssertionError: raise CircuitError( f"The input qbits length {len(self.qbits)} is not divisible by the '{self.symbol}' " f"gate's dimension {self.dimension}" ) @property def qubits(self): """Alias for qbits. Both refer to qbit inputs for this gate.""" return self.qbits def to_gates(self): """Returns gate objects applied to provided qbit indices Returns ------- _Gate Object The _Gate Objects applied to the provided qbits. Ex: H([1,2]) will return two gate objects such as H(1) and H(2) """ if len(self.qbits) > self.dimension: return [ self.__class__(self.qbits[i: i + self.dimension]) for i in range(0, len(self.qbits), self.dimension) ] return [self] @property def num_states(self): return np.power(2, self.dimension) def to_matrix(self) -> np.ndarray: return np.eye(self.num_states()) @property def matrix(self): return self.to_matrix() def invert(self): return self @property def I(self): return self.invert() def __invert__(self): return self.invert() class CNOT(_Gate): """ Apply the controlled X gate to control and target qbit Inherits from gate class Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int list of length 2 containing qbit indices to which the controlled X gate is applied dimension : int number of qbits to which the controlled X gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "CX" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit indices apply CNOT gate. First is control qbit and the second applies the Pauli-X gate to the target qbit. kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 2 if not qbits: qbits = [0, 1] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2**n where n is the number of qbits """ return np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) class CY(_Gate): """ Apply the controlled Y gate to control and target qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int list of length 2 containing qbit indices controlled Y gate is applied to dimension : int number of qbits to which the controlled Y gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "CY" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit indices apply CY gate. First is control qbit and the second applies the Pauli-Y gate to the target qbit. kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 2 if not qbits: qbits = [0, 1] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2**n where n is the number of qbits """ return np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, -1 * 1j], [0, 0, 1j, 0]]) class CSWAP(_Gate): """ Apply the Fredkin gate or sometimes called the CSWAP gate to three qbits Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit indices CSWAP gate is applied to: the first being a control qbit and the SWAP gate is applied to the second and third target qbits. dimension : int number of qbits to which the CSWAP gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "CSWAP" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit indexes apply CSWAP gate. First is control qbits and the second/third applies the SWAP gate. kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 3 if not qbits: qbits = [0, 1, 2] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2**n where n is the number of qbits """ cswap_matrix = np.eye(8) cswap_matrix[:, [5, 6]] = cswap_matrix[:, [6, 5]] return cswap_matrix class Hadamard(_Gate): """ Apply the hadamard gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index to which the hadamard gate is applied dimension : int number of qbits to which the hardamard gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "H" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index to which the hadamard gate is applied. kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2**n where n is the number of qbits """ return np.multiply(np.divide(1, np.sqrt(self.num_states)), np.array([[1, 1], [1, -1]])) class PauliX(_Gate): """ Apply the PauliX gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index to which the PauliX gate is applied dimension : int number of qbits to which the PauliX gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "X" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index to which the PauliX gate is applied kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2**n where n is the number of qbits """ return np.array([[0, 1], [1, 0]]) class PauliY(_Gate): """ Apply the PauliY gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit indices to which the PauliY gate is applied dimension : int number of qbits to which the PauliY gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "Y" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index to which the PailiY gate is applied kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2**n where n is the number of qbits """ return np.array([[0, -1j], [1j, 0]]) class PauliZ(_Gate): """ Apply the PauliZ gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit indices to which the PauliZ gate is applied dimension : int number of qbits to which the PauliZ gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "Z" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index to which the PauliZ gate is applied kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2**n where n is the number of qbits """ return np.array([[1, 0], [0, -1]]) class QFT(_Gate): """ Apply the Quantum Fourier Transform gate to two qbits Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit indices to which the QFT gate is applied dimension : int number of qbits to which the QFT gate is applied Methods ------- get_nth_unity_root(self,k) to_matrixSelf) -> np.ndarray Returns matrix form of gate as numpy array """ # TODO: add documentation of class methods def __init__(self, *qbits, **kwargs): if not qbits: qbits = [0, 1] super().__init__(*qbits, dimension=len(qbits), **kwargs) # def to_gates(self): # # TODO: translate this gate to base gates / CNOTs # pass def get_nth_unity_root(self, k): return np.exp((2j * np.pi * k) / self.num_states) def to_matrix(self) -> np.ndarray: m = np.array(np.ones((self.num_states, self.num_states)), dtype="complex") for i in range(1, self.num_states): for j in range(i, self.num_states): w = self.get_nth_unity_root(i * j) m[i, j] = w m[j, i] = w return np.around(np.multiply(1 / np.sqrt(self.num_states), m), decimals=15) class SWAP(_Gate): """ Apply the SWAP gate to two qbits Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit indices SWAP gate is applied to dimension : int number of qbits SWAP gate is applied to Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "SWAP" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index SWAP gate is applied to kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 2 if not qbits: qbits = [0, 1] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2**n where n is the number of qbits """ return np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) class Cx(_Gate): """ Apply the the Cx gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit indices Cx gate is applied to dimension : int number of qbits Cx gate is applied to Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "CX" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit indexes apply Cx gate. First is the control qbit and second the target to which the X gate is applied. kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 2 if not qbits: qbits = [0, 1] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 4x4 """ return np.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]) class CCNOT(_Gate): """ Apply the CCNOT or CCX gate to three qbits. The first and second qbit being control qits and the paulix gate is applied to the third qbit. Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit indices to which CCNOT gate is applied dimension : int number of qbits CCNOT gate is applied to Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "CCX" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit indices apply CCNOT gate. First and second are control qbits and the third applies the Pauli-x gate to the third qbit. kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 3 if not qbits: qbits = [0, 1, 2] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 9x9 """ return np.array( [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], ] ) class CRZ(_Gate): """ Apply the CRZ gate to two qbits. The first being the control qbit and the Rz gate is applied to the target qbit. Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index CRZ gate is applied to angle : float angle by which the CRZ gate rotates the second target qbit around the z-axis dimension : int number of qbits CRZ gate is applied to Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "CRZ" def __init__(self, *qbits, angle=0, **kwargs): """ Parameters __________ qbits : int qbit indexes apply CRZ gate. First is a control qbit and the second applies the RZ gate to the third qbit. angle : float angle by which the CRZ gate rotates the second target qbit around the z-axis kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 2 self.angle = angle if not qbits: qbits = [0, 1] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 4x4 """ return np.array( [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, np.exp(-1j * self.angle / 2), 0], [0, 0, 0, np.exp(1j * self.angle / 2)], ] ) class CH(_Gate): """ Apply the CH gate to two qbits. The first being the control qbit and the second applies the hadarmard gate to the target qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index CH gate is applied to dimension : int number of qbits CH gate is applied to Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "CH" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit indexes apply CH gate. First is control qbit second applies the H gate to the target qbit. kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 2 if not qbits: qbits = [0, 1] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 4x4 """ return np.array( [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1 / np.sqrt(2), 1 / np.sqrt(2)], [0, 0, 1 / np.sqrt(2), -1 / np.sqrt(2)], ] ) class S(_Gate): """ Apply the S gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index S gate is applied to dimension : int number of qbits S gate is applied to Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "S" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index S gate is applied to kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array([[1, 0], [0, 1j]]) class Sdg(_Gate): """ Apply the Sdg gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index to which the Sdg gate is applied dimension : int number of qbits to which the Sdg gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "Sdg" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index Sdg gate is applied to kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array([[1, 0], [0, -1j]]) class T(_Gate): """ Apply the T gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index to which the T gate is applied dimension : int number of qbits to which the T gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "T" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index to which T gate is applied kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array([[1, 0], [0, np.exp(1j * np.pi / 4)]]) class Tdg(_Gate): """ Apply the Tdg gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index to which Tdg gate is applied dimension : int number of qbits to which Tdg gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "Tdg" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index to which Tdg gate is applied kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array([[1, 0], [0, np.exp(-1j * np.pi / 4)]]) class ID(_Gate): """ Apply the identity (ID) gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index to which ID gate is applied dimension : int number of qbits to which ID gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "I" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit index ID gate is applied to kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array([[1, 0], [0, 1]]) class U1(_Gate): """ Apply the U1 gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index U1 gate is applied to angle : float angle used to rotate qbit of choice around the z-axis dimension : int number of qbits U1 gate is applied to Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "U1" def __init__(self, *qbits, angle=0, **kwargs): """ Parameters __________ qbits : int qbit indexes apply CRZ gate. First is a control qbit and the second applies the RZ gate to the third qbit. angle : float angle used to rotate qbit of choice around the z-axis kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 self.angle = angle if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array([[1, 0], [0, np.exp(1j * self.angle)]]) class Cz(_Gate): """ Apply the Cz gate to a two qbits. First is control qbit and PauliZ gate is applied to the target qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index U1 gate is applied to dimension : int number of qbits U1 gate is applied to Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "CZ" def __init__(self, *qbits, **kwargs): """ Parameters __________ qbits : int qbit indexes apply CZ gate. First is a control qbit and the Z gate to the target qbit. kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 2 if not qbits: qbits = [0, 1] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 4x4 """ return np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]) class Rx(_Gate): """ Apply the Rx gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index tow which Rx gate is applied dimension : int number of qbits to which Rx gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "RX" def __init__(self, *qbits, angle=math.pi / 2, **kwargs): """ Parameters __________ qbits : integer qbit being rotated kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 self.angle = angle if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array( [ [math.cos(self.angle / 2), -math.sin(self.angle / 2) * 1j], [-math.sin(self.angle / 2) * 1j, math.cos(self.angle / 2)], ] ) class Ry(_Gate): """ Apply the Ry gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index to which the Ry gate is applied dimension : int number of qbits to which the Ry gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "RY" def __init__(self, *qbits, angle=math.pi / 2, **kwargs): """ Parameters __________ qbits : integer qbit being rotated kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 self.angle = angle if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array( [ [math.cos(self.angle / 2), -math.sin(self.angle / 2)], [math.sin(self.angle / 2), math.cos(self.angle / 2)], ] ) class Rz(_Gate): """ Apply the Rz gate to a single qbit Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index to which the Rz gate is applied dimension : int number of qbits to which the Rz gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "RZ" def __init__(self, *qbits, angle, **kwargs): """ Parameters __________ qbits : integer qbit being rotated kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ self.angle = angle kwargs["dimension"] = 1 if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array( [[np.exp(-(1 / 2) * 1j * self.angle), 0], [0, np.exp((1 / 2) * 1j * self.angle)]], dtype="complex" ) class U3(_Gate): """ apply U3 gate for single qbit rotation with 3 euler angles Attributes __________ symbol : str a string used to represent gate for provider transpiler qbits : int qbit index to which the Rz gate is applied theta : float first angle used to rotate single qbit phi : float second angle used to rotate single qbit lam : float third angle used to rotate single qbit dimension : int number of qbits to which the Rz gate is applied Methods ------- to_matrix(self) -> np.ndarray Returns matrix form of gate as numpy array """ symbol = "U3" def __init__(self, *qbits, theta=0, phi=0, lam=0, **kwargs): """ Parameters __________ qbits : integer qbit being rotated theta : float angle used to rotate single qbit phi : float angle used to rotate single qbit lam : float angle used to rotate single qbit kwargs : dictionary containing key value arguments keyword - dimension - the number of input qbits """ kwargs["dimension"] = 1 self.theta = theta self.phi = phi self.lam = lam if not qbits: qbits = [0] super().__init__(*qbits, **kwargs) def to_matrix(self) -> np.ndarray: """Returns matrix form of gate as numpy array Returns ------- numpy array matrix form of gate with the size 2x2 """ return np.array( [ [math.cos(self.theta / 2), -np.exp(1j * self.lam) * math.sin(self.theta / 2)], [ np.exp(1j * self.phi) * math.sin(self.theta / 2),
np.exp(1j * (self.phi + self.lam))
numpy.exp
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Sep 27 18:18:29 2020 @author: DiviyaT """ import numpy as np import pandas as pd from scipy import io import timeit from sklearn.svm import LinearSVC from sklearn.feature_selection import RFE in_file = io.loadmat('colon.mat') X = pd.DataFrame(in_file['X'], dtype=float) y = pd.DataFrame(in_file['Y']) # convert classes from whatever datatype they are to binary integers (0 and 1) y_values = np.unique(y) if len(y_values) > 2: raise errors.NonBinaryTargets() y_binary = np.array(y == y_values[0], dtype=int) X = X.values y = np.reshape(y_binary, -1) def apply_SVM_RFE(X, y, **kwargs): n_features = kwargs.get('n_features', 1) step = kwargs.get('step', 1) feature_subset = np.arange(X.shape[1]) feature_idx_elimination_order = [] for i in range(n_features, 0, -step): X_set = X[:, feature_subset] svc = LinearSVC(dual = False) rfe = RFE(svc, i, step=step, verbose=1) rfe.fit(X_set, y) boolean_mask = rfe.get_support(indices=False) pruned_feature_indices = feature_subset[
np.invert(boolean_mask)
numpy.invert
import argparse import math import h5py import numpy as np import tensorflow as tf import socket import importlib import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, 'models')) sys.path.append(os.path.join(BASE_DIR, 'utils')) import provider import tf_util parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--model', default='contrastnet', help='Model name: contrastnet') parser.add_argument('--log_dir', default='log', help='Log dir [default: log]') parser.add_argument('--num_point', type=int, default=512, help='Point Number [256/512/1024/2048] [default: 1024]') parser.add_argument('--max_epoch', type=int, default=600, help='Epoch to run [default: 250]') parser.add_argument('--batch_size', type=int, default=40, help='Batch Size during training [default: 32]') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]') parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]') parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]') parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]') parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]') parser.add_argument('--model_path', default='log/model.ckpt', help='model checkpoint file path [default: log/model.ckpt]') FLAGS = parser.parse_args() BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point MAX_EPOCH = FLAGS.max_epoch BASE_LEARNING_RATE = FLAGS.learning_rate GPU_INDEX = FLAGS.gpu MOMENTUM = FLAGS.momentum OPTIMIZER = FLAGS.optimizer DECAY_STEP = FLAGS.decay_step DECAY_RATE = FLAGS.decay_rate MODEL_PATH = FLAGS.model_path MODEL = importlib.import_module(FLAGS.model) # import network module MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py') LOG_DIR = FLAGS.log_dir if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR) os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w') LOG_FOUT.write(str(FLAGS)+'\n') MAX_NUM_POINT = 2048 NUM_CLASSES = 2 BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 HOSTNAME = socket.gethostname() # ModelNet40 official train/test split TRAIN_FILES = provider.getDataFiles( \ os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048_cut/train_files.txt')) TEST_FILES = provider.getDataFiles(\ os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048_cut/test_files.txt')) def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def get_learning_rate(batch): learning_rate = tf.train.exponential_decay( BASE_LEARNING_RATE, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. DECAY_STEP, # Decay step. DECAY_RATE, # Decay rate. staircase=True) learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( BN_INIT_DECAY, batch*BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay def train(): with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): pointclouds_pl_1, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT) pointclouds_pl_2, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT) is_training_pl = tf.placeholder(tf.bool, shape=()) print(is_training_pl) # Note the global_step=batch parameter to minimize. # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains. batch = tf.Variable(0) bn_decay = get_bn_decay(batch) tf.summary.scalar('bn_decay', bn_decay) # Get model and loss pred, feature1, feature2, end_points = MODEL.get_model(pointclouds_pl_1, pointclouds_pl_2, is_training_pl, bn_decay=bn_decay) loss = MODEL.get_loss(pred, labels_pl, end_points) tf.summary.scalar('loss', loss) correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl)) accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE) tf.summary.scalar('accuracy', accuracy) # Get training operator learning_rate = get_learning_rate(batch) tf.summary.scalar('learning_rate', learning_rate) if OPTIMIZER == 'momentum': optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM) elif OPTIMIZER == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=batch) # Add ops to save and restore all the variables. saver = tf.train.Saver(max_to_keep = 10) # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) # Add summary writers #merged = tf.merge_all_summaries() merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph) test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test')) # Init variables init = tf.global_variables_initializer() sess.run(init, {is_training_pl: True}) ops = {'pointclouds_pl_1': pointclouds_pl_1, 'pointclouds_pl_2': pointclouds_pl_2, 'labels_pl': labels_pl, 'is_training_pl': is_training_pl, 'pred': pred, 'loss': loss, 'train_op': train_op, 'merged': merged, 'step': batch} for epoch in range(MAX_EPOCH): log_string('**** EPOCH %03d ****' % (epoch)) sys.stdout.flush() train_one_epoch(sess, ops, train_writer) if epoch % 40 == 0 and epoch >= 120: save_path = saver.save(sess, os.path.join(LOG_DIR, 'epoch_' + str(epoch)+'.ckpt')) log_string("Model saved in file: %s" % save_path) elif epoch % 10 == 0: save_path = saver.save(sess, os.path.join(LOG_DIR, 'model.ckpt')) log_string("Model saved in file: %s" % save_path) def train_one_epoch(sess, ops, train_writer): """ ops: dict mapping from string to tf ops """ is_training = True # Shuffle train files train_file_idxs = np.arange(0, len(TRAIN_FILES)) np.random.shuffle(train_file_idxs) current_data_1 = np.empty([3*len(TRAIN_FILES), NUM_POINT, 3], dtype=float) current_data_2 = np.empty([3*len(TRAIN_FILES), NUM_POINT, 3], dtype=float) current_label = np.empty([3*len(TRAIN_FILES),1], dtype=int) fn = 0 count = 0 while fn < len(TRAIN_FILES) - 1: # log_string('----' + str(fn) + '-----') total_current = []; a1, a2, _ = provider.loadDataFile_cut_2(TRAIN_FILES[train_file_idxs[fn]]) idx = np.random.randint(a1.shape[0], size=NUM_POINT) a1 = a1[idx,:] idx = np.random.randint(a2.shape[0], size=NUM_POINT) a2 = a2[idx,:] total_current.append(a1) total_current.append(a2) fn = fn + 1; b1, b2, _ = provider.loadDataFile_cut_2(TRAIN_FILES[train_file_idxs[fn]]) idx = np.random.randint(b1.shape[0], size=NUM_POINT) b1 = b1[idx,:] idx = np.random.randint(b2.shape[0], size=NUM_POINT) b2 = b2[idx,:] total_current.append(b1) total_current.append(b2) fn = fn + 1; pair_num = 0 for index in range(len(total_current)): for index2 in range(index + 1, len(total_current)): current_data_1[6*count+pair_num,:,:] = total_current[index] current_data_2[6*count+pair_num, :,:] = total_current[index2] if (index < 2) and (index2 >= 2): current_label[6*count+pair_num,:] = 0 else: current_label[6*count+pair_num,:] = 1 pair_num = pair_num + 1 count = count + 1 current_label = np.squeeze(current_label) file_size = current_data_1.shape[0] num_batches = file_size // BATCH_SIZE total_correct = 0 total_seen = 0 loss_sum = 0 for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE # shuffle each batch data_1 = current_data_1[start_idx:end_idx, :, :] data_2 = current_data_2[start_idx:end_idx, :, :] label = current_label[start_idx:end_idx] combine_data =
np.concatenate((data_1, data_2), axis=2)
numpy.concatenate
# -*- coding: utf-8 -*- """Radial depending sensitivities.""" import os import glob import numpy as np from scipy.interpolate import UnivariateSpline as uvs import matplotlib.pyplot as plt from mpi4py import MPI import welltestpy as wtp import anaflow as ana # plotting style plt.style.use("ggplot") # increase fontsize of plots, prevent type 3 fonts in pdf output plt.rcParams.update({"font.size": 16, "pdf.fonttype": 42, "ps.fonttype": 42}) # file extension of the saved plots file_ext = ".pdf" # rank is the actual core-number, size is total number of cores rank = MPI.COMM_WORLD.Get_rank() size = MPI.COMM_WORLD.Get_size() # paths here = os.path.abspath(os.path.dirname(__file__)) results = os.path.normpath( os.path.join(here, "..", "results", "01_estimate", "rad_sens") ) def dashes(i=1, max_d=12, space=1): """Dashes for matplotlib.""" return i * [space, space] + [max_d - 2 * i * space, space] def lin(xp, fp): """ Linear interpolation of given values as a callable function. Parameters ---------- xp : list of float The x values of the data points. fp : list of float The function values of the data points. Returns ------- callable The linear interpolation. """ def inter(x): return np.interp(x, xp, fp) return inter def harm_mu(mu, var): """ Recalculate mu to get the exponent for the harmonic mean in log-norm. Parameters ---------- mu : float Mean of the log-normal distribution. var : TYPE Variance of the log-normal distribution. Returns ------- float Recalculated mean. """ var = 0 if var is None else var return mu - 0.5 * var def est_sens( rad, mu=-9, lnS=-7, fix=True, dummy=False, fix_var=None, harm=False, var_mean=5, ): """ Estimate radial depending sensitivities. Parameters ---------- rad : float Radial distance to calculate the sensitivity at. mu : float, optional Mean of the log-normal distribution. The default is -9. lnS : float, optional log-storativity. The default is -7. fix : bool, optional Whether to fix mu and lnS (only var and len_scale estimated). The default is True. dummy : bool, optional Whether to use a dummy paramter. The default is False. fix_var : float, optional Whether to fix the variance. The default is None. harm : bool, optional Whether to use the harmonic mean for the reference type-curve. Harmonic mean is calculated from fix_var, if given, or var_mean. The default is False. """ var_flag = fix_var is not None root = results root += "_all" if not fix else "" root += "_dummy" if dummy else "" root += "_fix_var" if var_flag else "" root += "_harm" if harm else "" # recalculate mu to get the harm-mean if wanted harm_var = var_mean if (harm and not var_flag) else fix_var mu = harm_mu(mu, harm_var) val_fix = {"mu": mu, "lnS": lnS} if fix else {} if var_flag: val_fix["var"] = fix_var rad = float(rad) prate = -1 time = np.geomspace(10, 7200, 10) drawdown = ana.theis(time, rad, np.exp(lnS), np.exp(mu), prate) campaign = wtp.data.Campaign(name="sens-campaign") campaign.add_well(name="well_0", radius=0, coordinates=(0.0, 0.0)) campaign.add_well(name="well_1", radius=0, coordinates=(rad, 0.0)) pumptest = wtp.data.PumpingTest("well_0", "well_0", prate) pumptest.add_transient_obs("well_1", time, drawdown) campaign.addtests(pumptest) estimation = wtp.estimate.ExtTheis2D( "est", campaign, val_fix=val_fix, generate=True ) if dummy: estimation.gen_setup(dummy=dummy) estimation.sensitivity(folder=os.path.join(root, "rad_" + str(rad))) def post_all_sens( save=True, smooth=None, fix=True, dummy=False, fix_var=None, harm=False, plt_dummy=False, typ="ST", ): """ Post-process sensitivity analysis. Parameters ---------- save : bool, optional Whether to save the plot. The default is True. smooth : bool, optional Whether to smooth the result. The default is None. fix : bool, optional Whether mu and ln(S) were fixed. The default is True. dummy : bool, optional Whether a dummy paramter was used. The default is False. fix_var : float, optional The used fixed variance if any. The default is None. harm : bool, optional Whether the Theis(T_harm) solution was used as reference. The default is False. plt_dummy : bool, optional Whether to plot the dummy result. The default is False. typ : str, optional The type of the FAST result. Either "ST" for total sensitivity, or "S1" for first order sensitivity. The default is "ST". """ var_flag = fix_var is not None root = results root += "_all" if not fix else "" root += "_dummy" if dummy else "" root += "_fix_var" if var_flag else "" root += "_harm" if harm else "" radii_dir = glob.glob(os.path.join(root, "rad*")) radii_dir.sort() # sorting by radii radii = [] rad_Si = [] sig2_sen = [] corr_sen = [] mu_sen = [] lnS_sen = [] dum_sen = [] for rad_dir in radii_dir: radii.append(float(os.path.basename(rad_dir)[4:])) ST_files = glob.glob(os.path.join(rad_dir, "*_FAST_estimate.txt")) ST_files.sort() # use the latest estimation S1_files = glob.glob(os.path.join(rad_dir, "*_FAST_estimate_S1.txt")) S1_files.sort() # use the latest estimation ST = np.loadtxt(ST_files[-1]) S1 =
np.loadtxt(S1_files[-1])
numpy.loadtxt
# Copyright 2021 The ODE-LSTM Authors. All Rights Reserved. import numpy as np import os import tensorflow as tf from tqdm import tqdm class Walker2dImitationData: def __init__(self, seq_len): self.seq_len = seq_len all_files = sorted( [ os.path.join("data/walker", d) for d in os.listdir("data/walker") if d.endswith(".npy") ] ) self.rng = np.random.RandomState(891374) np.random.RandomState(125487).shuffle(all_files) # 15% test set, 10% validation set, the rest is for training test_n = int(0.15 * len(all_files)) valid_n = int((0.15 + 0.1) * len(all_files)) test_files = all_files[:test_n] valid_files = all_files[test_n:valid_n] train_files = all_files[valid_n:] train_x, train_t, train_y = self._load_files(train_files) valid_x, valid_t, valid_y = self._load_files(valid_files) test_x, test_t, test_y = self._load_files(test_files) train_x, train_t, train_y = self.perturb_sequences(train_x, train_t, train_y) valid_x, valid_t, valid_y = self.perturb_sequences(valid_x, valid_t, valid_y) test_x, test_t, test_y = self.perturb_sequences(test_x, test_t, test_y) self.train_x, self.train_times, self.train_y = self.align_sequences( train_x, train_t, train_y ) self.valid_x, self.valid_times, self.valid_y = self.align_sequences( valid_x, valid_t, valid_y ) self.test_x, self.test_times, self.test_y = self.align_sequences( test_x, test_t, test_y ) self.input_size = self.train_x.shape[-1] print("train_times: ", str(self.train_times.shape)) print("train_x: ", str(self.train_x.shape)) print("train_y: ", str(self.train_y.shape)) def align_sequences(self, set_x, set_t, set_y): times = [] x = [] y = [] for i in range(len(set_y)): seq_x = set_x[i] seq_t = set_t[i] seq_y = set_y[i] for t in range(0, seq_y.shape[0] - self.seq_len, self.seq_len // 4): x.append(seq_x[t : t + self.seq_len]) times.append(seq_t[t : t + self.seq_len]) y.append(seq_y[t : t + self.seq_len]) return ( np.stack(x, axis=0), np.expand_dims(np.stack(times, axis=0), axis=-1), np.stack(y, axis=0), ) def perturb_sequences(self, set_x, set_t, set_y): x = [] times = [] y = [] for i in range(len(set_y)): seq_x = set_x[i] seq_y = set_y[i] new_x, new_times = [], [] new_y = [] skip = 0 for t in range(seq_y.shape[0]): skip += 1 if self.rng.rand() < 0.9: new_x.append(seq_x[t]) new_times.append(skip) new_y.append(seq_y[t]) skip = 0 x.append(np.stack(new_x, axis=0)) times.append(np.stack(new_times, axis=0)) y.append(np.stack(new_y, axis=0)) return x, times, y def _load_files(self, files): all_x = [] all_t = [] all_y = [] for f in files: arr = np.load(f) x_state = arr[:-1, :].astype(np.float32) y = arr[1:, :].astype(np.float32) x_times = np.ones(x_state.shape[0]) all_x.append(x_state) all_t.append(x_times) all_y.append(y) print("Loaded file '{}' of length {:d}".format(f, x_state.shape[0])) return all_x, all_t, all_y class ETSMnistData: def __init__(self, time_major, pad_size=256): self.threshold = 128 self.pad_size = pad_size if not self.load_from_cache(): self.create_dataset() self.train_elapsed /= self.pad_size self.test_elapsed /= self.pad_size def load_from_cache(self): if os.path.isfile("dataset/test_mask.npy"): self.train_events = np.load("dataset/train_events.npy") self.train_elapsed = np.load("dataset/train_elapsed.npy") self.train_mask = np.load("dataset/train_mask.npy") self.train_y = np.load("dataset/train_y.npy") self.test_events = np.load("dataset/test_events.npy") self.test_elapsed = np.load("dataset/test_elapsed.npy") self.test_mask = np.load("dataset/test_mask.npy") self.test_y = np.load("dataset/test_y.npy") print("train_events.shape: ", str(self.train_events.shape)) print("train_elapsed.shape: ", str(self.train_elapsed.shape)) print("train_mask.shape: ", str(self.train_mask.shape)) print("train_y.shape: ", str(self.train_y.shape)) print("test_events.shape: ", str(self.test_events.shape)) print("test_elapsed.shape: ", str(self.test_elapsed.shape)) print("test_mask.shape: ", str(self.test_mask.shape)) print("test_y.shape: ", str(self.test_y.shape)) return True return False def transform_sample(self, x): x = x.flatten() events = np.zeros([self.pad_size, 1], dtype=np.float32) elapsed = np.zeros([self.pad_size, 1], dtype=np.float32) mask = np.zeros([self.pad_size], dtype=np.bool) last_char = -1 write_index = 0 elapsed_counter = 0 for i in range(x.shape[0]): elapsed_counter += 1 char = int(x[i] > self.threshold) if last_char != char: events[write_index] = char elapsed[write_index] = elapsed_counter mask[write_index] = True write_index += 1 if write_index >= self.pad_size: # Enough 1s in this sample, abort self._abort_counter += 1 break elapsed_counter = 0 last_char = char self._all_lenghts.append(write_index) return events, elapsed, mask def transform_array(self, x): events_list = [] elapsed_list = [] mask_list = [] for i in tqdm(range(x.shape[0])): events, elapsed, mask = self.transform_sample(x[i]) events_list.append(events) elapsed_list.append(elapsed) mask_list.append(mask) return ( np.stack(events_list, axis=0), np.stack(elapsed_list, axis=0), np.stack(mask_list, axis=0), ) def create_dataset(self): (train_x, train_y), (test_x, test_y) = tf.keras.datasets.mnist.load_data() self._all_lenghts = [] self._abort_counter = 0 train_x = train_x.reshape([-1, 28 * 28]) test_x = test_x.reshape([-1, 28 * 28]) self.train_y = train_y self.test_y = test_y print("Transforming training samples") self.train_events, self.train_elapsed, self.train_mask = self.transform_array( train_x ) print("Transforming test samples") self.test_events, self.test_elapsed, self.test_mask = self.transform_array( test_x ) print("Average time-series length: {:0.2f}".format(np.mean(self._all_lenghts))) print("Abort counter: ", str(self._abort_counter)) os.makedirs("dataset", exist_ok=True) np.save("dataset/train_events.npy", self.train_events) np.save("dataset/train_elapsed.npy", self.train_elapsed) np.save("dataset/train_mask.npy", self.train_mask) np.save("dataset/train_y.npy", self.train_y) np.save("dataset/test_events.npy", self.test_events) np.save("dataset/test_elapsed.npy", self.test_elapsed) np.save("dataset/test_mask.npy", self.test_mask) np.save("dataset/test_y.npy", self.test_y) class PersonData: class_map = { "lying down": 0, "lying": 0, "sitting down": 1, "sitting": 1, "standing up from lying": 2, "standing up from sitting": 2, "standing up from sitting on the ground": 2, "walking": 3, "falling": 4, "on all fours": 5, "sitting on the ground": 6, } sensor_ids = { "010-000-024-033": 0, "010-000-030-096": 1, "020-000-033-111": 2, "020-000-032-221": 3, } def __init__(self, seq_len=32): self.seq_len = seq_len self.num_classes = 7 all_x, all_t, all_y = self.load_crappy_formated_csv() all_x, all_t, all_y = self.cut_in_sequences( all_x, all_t, all_y, seq_len=seq_len, inc=seq_len // 2 ) print("all_x.shape: ", str(all_x.shape)) print("all_t.shape: ", str(all_t.shape)) print("all_y.shape: ", str(all_y.shape)) total_seqs = all_x.shape[0] print("Total number of sequences: {}".format(total_seqs)) permutation = np.random.RandomState(98841).permutation(total_seqs) test_size = int(0.2 * total_seqs) self.test_x = all_x[permutation[:test_size]] self.test_y = all_y[permutation[:test_size]] self.test_t = all_t[permutation[:test_size]] self.train_x = all_x[permutation[test_size:]] self.train_t = all_t[permutation[test_size:]] self.train_y = all_y[permutation[test_size:]] self.feature_size = int(self.train_x.shape[-1]) print("train_x.shape: ", str(self.train_x.shape)) print("train_t.shape: ", str(self.train_t.shape)) print("train_y.shape: ", str(self.train_y.shape)) print("Total number of train sequences: {}".format(self.train_x.shape[0])) print("Total number of test sequences: {}".format(self.test_x.shape[0])) def load_crappy_formated_csv(self): all_x = [] all_y = [] all_t = [] series_x = [] series_t = [] series_y = [] last_millis = None if not os.path.isfile("data/person/ConfLongDemo_JSI.txt"): print("ERROR: File 'data/person/ConfLongDemo_JSI.txt' not found") print("Please execute the command") print("source download_dataset.sh") import sys sys.exit(-1) with open("data/person/ConfLongDemo_JSI.txt", "r") as f: current_person = "A01" for line in f: arr = line.split(",") if len(arr) < 6: break if arr[0] != current_person: # Enque and reset series_x = np.stack(series_x, axis=0) series_t = np.stack(series_t, axis=0) series_y = np.array(series_y, dtype=np.int32) all_x.append(series_x) all_t.append(series_t) all_y.append(series_y) last_millis = None series_x = [] series_y = [] series_t = [] millis = np.int64(arr[2]) / (100 * 1000) # 100ms will be normalized to 1.0 millis_mapped_to_1 = 10.0 if last_millis is None: elasped_sec = 0.05 else: elasped_sec = float(millis - last_millis) / 1000.0 elasped = elasped_sec * 1000 / millis_mapped_to_1 last_millis = millis current_person = arr[0] sensor_id = self.sensor_ids[arr[1]] label_col = self.class_map[arr[7].replace("\n", "")] feature_col_2 = np.array(arr[4:7], dtype=np.float32) # Last 3 entries of the feature vector contain sensor value # First 4 entries of the feature vector contain sensor ID feature_col_1 = np.zeros(4, dtype=np.float32) feature_col_1[sensor_id] = 1 feature_col = np.concatenate([feature_col_1, feature_col_2]) series_x.append(feature_col) series_t.append(elasped) series_y.append(label_col) return all_x, all_t, all_y def cut_in_sequences(self, all_x, all_t, all_y, seq_len, inc=1): sequences_x = [] sequences_t = [] sequences_y = [] for i in range(len(all_x)): x, t, y = all_x[i], all_t[i], all_y[i] for s in range(0, x.shape[0] - seq_len, inc): start = s end = start + seq_len sequences_x.append(x[start:end]) sequences_t.append(t[start:end]) sequences_y.append(y[start:end]) return ( np.stack(sequences_x, axis=0), np.stack(sequences_t, axis=0).reshape([-1, seq_len, 1]), np.stack(sequences_y, axis=0), ) class XORData: def __init__(self, time_major, event_based=True, pad_size=24): self.pad_size = pad_size self.event_based = event_based self._abort_counter = 0 if not self.load_from_cache(): self.create_dataset() self.train_elapsed /= self.pad_size self.test_elapsed /= self.pad_size def load_from_cache(self): if os.path.isfile("dataset/xor_test_y.npy"): self.train_events = np.load("dataset/xor_train_events.npy") self.train_elapsed = np.load("dataset/xor_train_elapsed.npy") self.train_mask = np.load("dataset/xor_train_mask.npy") self.train_y = np.load("dataset/xor_train_y.npy") self.test_events = np.load("dataset/xor_test_events.npy") self.test_elapsed = np.load("dataset/xor_test_elapsed.npy") self.test_mask = np.load("dataset/xor_test_mask.npy") self.test_y = np.load("dataset/xor_test_y.npy") print("train_events.shape: ", str(self.train_events.shape)) print("train_elapsed.shape: ", str(self.train_elapsed.shape)) print("train_mask.shape: ", str(self.train_mask.shape)) print("train_y.shape: ", str(self.train_y.shape)) print("test_events.shape: ", str(self.test_events.shape)) print("test_elapsed.shape: ", str(self.test_elapsed.shape)) print("test_mask.shape: ", str(self.test_mask.shape)) print("test_y.shape: ", str(self.test_y.shape)) return True return False def create_event_based_sample(self, rng): label = 0 events = np.zeros([self.pad_size, 1], dtype=np.float32) elapsed = np.zeros([self.pad_size, 1], dtype=np.float32) mask = np.zeros([self.pad_size], dtype=np.bool) last_char = -1 write_index = 0 elapsed_counter = 0 length = rng.randint(low=2, high=self.pad_size) for i in range(length): elapsed_counter += 1 char = int(rng.randint(low=0, high=2)) label += char if last_char != char: events[write_index] = char elapsed[write_index] = elapsed_counter mask[write_index] = True write_index += 1 elapsed_counter = 0 if write_index >= self.pad_size - 1: # Enough 1s in this sample, abort self._abort_counter += 1 break last_char = char if elapsed_counter > 0: events[write_index] = char elapsed[write_index] = elapsed_counter mask[write_index] = True label = label % 2 return events, elapsed, mask, label def create_dense_sample(self, rng): label = 0 events = np.zeros([self.pad_size, 1], dtype=np.float32) elapsed = np.zeros([self.pad_size, 1], dtype=np.float32) mask = np.zeros([self.pad_size], dtype=np.bool) last_char = -1 write_index = 0 elapsed_counter = 0 length = rng.randint(low=2, high=self.pad_size) for i in range(length): elapsed_counter += 1 char = int(rng.randint(low=0, high=2)) label += char events[write_index] = char elapsed[write_index] = elapsed_counter mask[write_index] = True write_index += 1 elapsed_counter = 0 label = label % 2 label2 = int(np.sum(events)) % 2 assert label == label2 return events, elapsed, mask, label def create_set(self, size, seed): rng = np.random.RandomState(seed) events_list = [] elapsed_list = [] mask_list = [] label_list = [] for i in tqdm(range(size)): if self.event_based: events, elapsed, mask, label = self.create_event_based_sample(rng) else: events, elapsed, mask, label = self.create_dense_sample(rng) events_list.append(events) elapsed_list.append(elapsed) mask_list.append(mask) label_list.append(label) return ( np.stack(events_list, axis=0), np.stack(elapsed_list, axis=0), np.stack(mask_list, axis=0), np.stack(label_list, axis=0), ) def create_dataset(self): print("Transforming training samples") ( self.train_events, self.train_elapsed, self.train_mask, self.train_y, ) = self.create_set(100000, 1234984) print("Transforming test samples") ( self.test_events, self.test_elapsed, self.test_mask, self.test_y, ) = self.create_set(10000, 48736) print("train_events.shape: ", str(self.train_events.shape)) print("train_elapsed.shape: ", str(self.train_elapsed.shape)) print("train_mask.shape: ", str(self.train_mask.shape)) print("train_y.shape: ", str(self.train_y.shape)) print("test_events.shape: ", str(self.test_events.shape)) print("test_elapsed.shape: ", str(self.test_elapsed.shape)) print("test_mask.shape: ", str(self.test_mask.shape)) print("test_y.shape: ", str(self.test_y.shape)) print("Abort counter: ", str(self._abort_counter)) os.makedirs("dataset", exist_ok=True) np.save("dataset/xor_train_events.npy", self.train_events) np.save("dataset/xor_train_elapsed.npy", self.train_elapsed) np.save("dataset/xor_train_mask.npy", self.train_mask) np.save("dataset/xor_train_y.npy", self.train_y) np.save("dataset/xor_test_events.npy", self.test_events) np.save("dataset/xor_test_elapsed.npy", self.test_elapsed)
np.save("dataset/xor_test_mask.npy", self.test_mask)
numpy.save
# import the libraries import sys import argparse import numpy as np import matplotlib.pyplot as plt from scipy.linalg import lstsq def parse_cmdline_args(): """Parse command line arguments, define the parameters""" try: # try converting directly to values return [ int(sys.argv[1]) if len(sys.argv) >= 2 else 25, int(sys.argv[2]) if len(sys.argv) >= 3 else 25, int(sys.argv[3]) if len(sys.argv) >= 4 else 8, int(sys.argv[4]) if len(sys.argv) >= 5 else 1500, ] except ValueError: # otherwise, parse keyword arguments parser = argparse.ArgumentParser(description="Resistor simulation") parser.add_argument( "-x", "--Nx", type=int, default=25, help="size along x axis" ) parser.add_argument( "-y", "--Ny", type=int, default=25, help="size along y axis" ) parser.add_argument( "-r", "--radius", type=int, default=8, help="radius of central lead" ) parser.add_argument( "-n", "--Niter", type=int, default=1500, help="number of iterations to do" ) args = parser.parse_args() return args.Nx, args.Ny, args.radius, args.Niter def contruct_phi(Nx, Ny, radius): """Construct and plot phi, return phi, area inside radius and x,y coordinates""" phi = np.zeros((Ny, Nx)) # allocate the potential array X, Y = np.meshgrid(np.linspace(-0.5, 0.5, Nx), np.linspace(-0.5, 0.5, Ny)) # scaled radius = 0.35 for default args, 5% margin for floating point errors ii = np.where(X ** 2 + Y ** 2 <= (1.05 * radius / (min(Nx, Ny) - 1)) ** 2) phi[ii] = 1.0 # initialize the potential array return phi, ii, X, Y def contour_plot(phi, ii, X, Y): """Obtain a contour plot of the potential""" plt.figure(figsize=(8, 8)) plt.title("Contour Plot of the Potential", fontsize=14) plt.xlabel("$x$", fontsize=14) plt.ylabel("$y$", fontsize=14) plt.clabel(plt.contour(X, Y, phi)) plt.scatter(X[0, ii[1]], Y[ii[0], 0], color="r", label="$V=1$") plt.legend() plt.grid() plt.show() def iterate(phi, ii, Niter): """Perform Niter no. of iterations on phi, return phi and errors""" errors =
np.zeros(Niter)
numpy.zeros
# Copyright (c) 2016 by <NAME> and the other collaborators on GitHub at # https://github.com/rmjarvis/Piff All rights reserved. # # Piff is free software: Redistribution and use in source and binary forms # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy as np import piff import os import galsim import fitsio import yaml import subprocess from piff_test_helper import get_script_name, timer @timer def test_twodstats(): """Make sure we can execute and print a readout of the plot """ if __name__ == '__main__': logger = piff.config.setup_logger(2) else: logger = None model = piff.Gaussian(fastfit=True) interp = piff.Polynomial(order=1) # should find that order=1 is better # create background model stars, true_model = generate_starlist(100) psf = piff.SimplePSF(model, interp) psf.fit(stars, None, None) # check the coeffs of sigma and g2, which are actually linear fits # skip g1 since it is actually a 2d parabola # factor of 0.263 is to account for going from pixel xy to wcs uv np.testing.assert_almost_equal(psf.interp.coeffs[0].flatten(), np.array([0.4, 0, 1. / (0.263 * 2048), 0]), decimal=4) np.testing.assert_almost_equal(psf.interp.coeffs[2].flatten(), np.array([-0.1 * 1000 / 2048, 0, 0.1 / (0.263 * 2048), 0]), decimal=4) stats = piff.TwoDHistStats(number_bins_u=5, number_bins_v=5, reducing_function='np.mean') stats.compute(psf, stars, logger=logger) # check the twodhists # get the average value in the bin u_i = 3 v_i = 3 icen = stats.twodhists['u'][v_i, u_i] / 0.263 jcen = stats.twodhists['v'][v_i, u_i] / 0.263 print('icen = ',icen) print('jcen = ',jcen) icenter = 1000 jcenter = 2000 # the average value in the bin should match up with the model for the average coordinates sigma, g1, g2 = psf_model(icen, jcen, icenter, jcenter) sigma_average = stats.twodhists['T'][v_i, u_i] g1_average = stats.twodhists['g1'][v_i, u_i] g2_average = stats.twodhists['g2'][v_i, u_i] # assert equal to 4th decimal print('sigma, g1, g2 = ',[sigma,g1,g2]) print('av sigma, g1, g2 = ',[sigma_average,g1_average,g2_average]) np.testing.assert_almost_equal([sigma, g1, g2], [sigma_average, g1_average, g2_average], decimal=2) # Test the plotting and writing twodstats_file = os.path.join('output','twodstats.pdf') stats.write(twodstats_file) # repeat for whisker stats = piff.WhiskerStats(number_bins_u=21, number_bins_v=21, reducing_function='np.mean') stats.compute(psf, stars) # Test the plotting and writing twodstats_file = os.path.join('output','whiskerstats.pdf') stats.write(twodstats_file) @timer def test_shift_cmap(): from matplotlib import cm # test vmax and vmin center issues vmin = -1 vmax = 8 center = 2 # color map vmin > center cmap = piff.TwoDHistStats._shift_cmap(vmin, vmax, vmin - 1) assert cmap == cm.Reds # color map vmax < center cmap = piff.TwoDHistStats._shift_cmap(vmin, vmax, vmax + 1) assert cmap == cm.Blues_r # test without center cmap = piff.TwoDHistStats._shift_cmap(vmin, vmax) midpoint = (0 - vmin) * 1. / (vmax - vmin) unshifted_cmap = cm.RdBu_r # check segment data # NOTE: that because of interpolation cmap(midpont) does not have to equal # unshifted_cmap(0.5) for val, color in zip(unshifted_cmap(0.5), ['red', 'green', 'blue', 'alpha']): assert midpoint == cmap._segmentdata[color][128][0] assert val == cmap._segmentdata[color][128][1] assert val == cmap._segmentdata[color][128][2] # but edge values are the same assert cmap(0.) == unshifted_cmap(0.) assert cmap(1.) == unshifted_cmap(1.) # test with center cmap = piff.TwoDHistStats._shift_cmap(vmin, vmax, center) midpoint = (center - vmin) * 1. / (vmax - vmin) unshifted_cmap = cm.RdBu_r for val, color in zip(unshifted_cmap(0.5), ['red', 'green', 'blue', 'alpha']): assert midpoint == cmap._segmentdata[color][128][0] assert val == cmap._segmentdata[color][128][1] assert val == cmap._segmentdata[color][128][2] assert cmap(0.) == unshifted_cmap(0.) assert cmap(1.) == unshifted_cmap(1.) # what if vmax < vmin? cmap = piff.TwoDHistStats._shift_cmap(vmax, vmin, center) midpoint = 1. - (center - vmax) * 1. / (vmin - vmax) unshifted_cmap = cm.RdBu_r for val, color in zip(unshifted_cmap(0.5), ['red', 'green', 'blue', 'alpha']): assert midpoint == cmap._segmentdata[color][128][0] assert val == cmap._segmentdata[color][128][1] assert val == cmap._segmentdata[color][128][2] assert cmap(0.) == unshifted_cmap(1.) assert cmap(1.) == unshifted_cmap(0.) def make_star(icen=500, jcen=700, ccdnum=28, sigma=1, g1=0, g2=0, pixel_to_focal=False, properties={}, fit_kwargs={}): properties['ccdnum'] = ccdnum # setting scale is crucial stardata = piff.Star.makeTarget(x=icen, y=jcen, properties=properties, scale=0.263) # apply Gaussian sigma, g1, g2 params = np.array([sigma, g1, g2]) starfit = piff.StarFit(params, **fit_kwargs) star = piff.Star(stardata.data, starfit) return star def psf_model(icens, jcens, icenter, jcenter): sigmas = icens * (2. - 1.) / 2048. + 0.4 g1s = ((jcens - jcenter) / 4096.) ** 2 * -0.2 g2s = (icens - icenter) * 0.1 / 2048. return sigmas, g1s, g2s def generate_starlist(n_samples=500): # create n_samples images from the 63 ccds and pixel coordinates np_rng = np.random.RandomState(1234) icens = np_rng.randint(100, 2048, n_samples) jcens = np_rng.randint(100, 4096, n_samples) ccdnums = np_rng.randint(1, 63, n_samples) icenter = 1000 jcenter = 2000 # throw out any icens and jcens that are within 400 pixels of the center conds = (np.abs(icens - icenter) > 400) | (np.abs(jcens - jcenter) > 400) icens = icens[conds] jcens = jcens[conds] ccdnums = ccdnums[conds] sigmas, g1s, g2s = psf_model(icens, jcens, icenter, jcenter) # throw in a 2d polynomial function for sigma g1 and g2 # all sigma > 0, all g1 < 0, and g2 straddles. star_list = [make_star(icen, jcen, ccdnum, sigma, g1, g2) for icen, jcen, ccdnum, sigma, g1, g2 in zip(icens, jcens, ccdnums, sigmas, g1s, g2s)] # load up model and draw the stars model = piff.Gaussian(fastfit=True) star_list = [model.draw(star) for star in star_list] star_list = [model.initialize(star) for star in star_list] star_list = [model.fit(star) for star in star_list] return star_list, model @timer def setup(): """Build an input image and catalog used by a few tests below. """ # Make the image (copied from test_single_image in test_simple.py) image = galsim.Image(2048, 2048, scale=0.26) # Where to put the stars. x_list = [ 123.12, 345.98, 567.25, 1094.94, 924.15, 1532.74, 1743.11, 888.39, 1033.29, 1409.31 ] y_list = [ 345.43, 567.45, 1094.32, 924.29, 1532.92, 1743.83, 888.83, 1033.19, 1409.20, 123.11 ] # Draw a Gaussian PSF at each location on the image. sigma = 1.3 g1 = 0.23 g2 = -0.17 dx = 0.31 # in pixels dy = -0.32 flux = 123.45 psf = galsim.Gaussian(sigma=sigma).shear(g1=g1, g2=g2) * flux for x, y in zip(x_list, y_list): bounds = galsim.BoundsI(int(x-31), int(x+32), int(y-31), int(y+32)) offset = galsim.PositionD( x-int(x)-0.5 + dx, y-int(y)-0.5 + dy) psf.drawImage(image=image[bounds], method='no_pixel', offset=offset) image.addNoise(galsim.GaussianNoise(rng=galsim.BaseDeviate(1234), sigma=1e-6)) # Write out the image to a file image_file = os.path.join('output','test_stats_image.fits') image.write(image_file) # Write out the catalog to a file dtype = [ ('x','f8'), ('y','f8') ] data = np.empty(len(x_list), dtype=dtype) data['x'] = x_list data['y'] = y_list cat_file = os.path.join('output','test_stats_cat.fits') fitsio.write(cat_file, data, clobber=True) @timer def test_twodstats_config(): """Test running stats through a config file. """ if __name__ == '__main__': logger = piff.config.setup_logger(verbose=2) else: logger = piff.config.setup_logger(log_file='output/test_twodstats_config.log') image_file = os.path.join('output','test_stats_image.fits') cat_file = os.path.join('output','test_stats_cat.fits') psf_file = os.path.join('output','test_twodstats.fits') twodhist_file = os.path.join('output','test_twodhiststats.pdf') twodhist_std_file = os.path.join('output','test_twodhiststats_std.pdf') config = { 'input' : { 'image_file_name' : image_file, 'cat_file_name' : cat_file, 'stamp_size' : 48 }, 'psf' : { 'model' : { 'type' : 'Gaussian', 'fastfit': True, 'include_pixel': False }, 'interp' : { 'type' : 'Mean' }, }, 'output' : { 'file_name' : psf_file, 'stats' : [ { 'type': 'TwoDHist', 'file_name': twodhist_file, 'number_bins_u': 3, 'number_bins_v': 3, }, { 'type': 'TwoDHist', 'file_name': twodhist_std_file, 'reducing_function': 'np.std', 'number_bins_u': 3, 'number_bins_v': 3, }, ] } } piff.piffify(config, logger) assert os.path.isfile(twodhist_file) assert os.path.isfile(twodhist_std_file) # repeat with plotify function os.remove(twodhist_file) os.remove(twodhist_std_file) piff.plotify(config, logger) assert os.path.isfile(twodhist_file) assert os.path.isfile(twodhist_std_file) @timer def test_rhostats_config(): """Test running stats through a config file. """ if __name__ == '__main__': logger = piff.config.setup_logger(verbose=2) else: logger = piff.config.setup_logger(log_file='output/test_rhostats_config.log') image_file = os.path.join('output','test_stats_image.fits') cat_file = os.path.join('output','test_stats_cat.fits') psf_file = os.path.join('output','test_rhostats.fits') rho_file = os.path.join('output','test_rhostats.pdf') config = { 'input' : { 'image_file_name' : image_file, 'cat_file_name' : cat_file, 'stamp_size' : 48 }, 'psf' : { 'model' : { 'type' : 'Gaussian', 'fastfit': True, 'include_pixel': False }, 'interp' : { 'type' : 'Mean' }, }, 'output' : { 'file_name' : psf_file, 'stats' : { # Note: stats doesn't have to be a list. 'type': 'Rho', 'file_name': rho_file } }, } piff.piffify(config, logger) assert os.path.isfile(rho_file) # repeat with plotify function os.remove(rho_file) piff.plotify(config, logger) assert os.path.isfile(rho_file) # Test rho statistics directly. min_sep = 1 max_sep = 100 bin_size = 0.1 psf = piff.read(psf_file) orig_stars, wcs, pointing = piff.Input.process(config['input'], logger) stats = piff.RhoStats(min_sep=min_sep, max_sep=max_sep, bin_size=bin_size) stats.compute(psf, orig_stars) rhos = [stats.rho1, stats.rho2, stats.rho3, stats.rho4, stats.rho5] for rho in rhos: # Test the range of separations radius = np.exp(rho.logr) # last bin can be one bigger than max_sep np.testing.assert_array_less(radius, np.exp(np.log(max_sep) + bin_size)) np.testing.assert_array_less(min_sep, radius) np.testing.assert_array_almost_equal(np.diff(rho.logr), bin_size, decimal=5) # Test that the max absolute value of each rho isn't crazy np.testing.assert_array_less(np.abs(rho.xip), 1) # # Check that each rho isn't precisely zero. This means the sum of abs > 0 np.testing.assert_array_less(0, np.sum(np.abs(rho.xip))) # Test using the piffify executable os.remove(rho_file) config['verbose'] = 0 with open('rho.yaml','w') as f: f.write(yaml.dump(config, default_flow_style=False)) piffify_exe = get_script_name('piffify') p = subprocess.Popen( [piffify_exe, 'rho.yaml'] ) p.communicate() assert os.path.isfile(rho_file) # Test using the plotify executable os.remove(rho_file) plotify_exe = get_script_name('plotify') p = subprocess.Popen( [plotify_exe, 'rho.yaml'] ) p.communicate() assert os.path.isfile(rho_file) # test running plotify with dir in config, with no logger, and with a modules specification. # (all to improve test coverage) config['output']['dir'] = '.' config['modules'] = [ 'custom_wcs' ] os.remove(rho_file) piff.plotify(config) assert os.path.isfile(rho_file) @timer def test_shapestats_config(): """Test running stats through a config file. """ if __name__ == '__main__': logger = piff.config.setup_logger(verbose=2) else: logger = piff.config.setup_logger(log_file='output/test_shapestats_config.log') image_file = os.path.join('output','test_stats_image.fits') cat_file = os.path.join('output','test_stats_cat.fits') psf_file = os.path.join('output','test_shapestats.fits') shape_file = os.path.join('output','test_shapestats.pdf') config = { 'input' : { 'image_file_name' : image_file, 'cat_file_name' : cat_file, 'stamp_size' : 48 }, 'psf' : { 'model' : { 'type' : 'Gaussian', 'fastfit': True, 'include_pixel': False }, 'interp' : { 'type' : 'Mean' }, }, 'output' : { 'file_name' : psf_file, 'stats' : [ { 'type': 'ShapeHistograms', 'file_name': shape_file }, ] }, } piff.piffify(config, logger) assert os.path.isfile(shape_file) # repeat with plotify function os.remove(shape_file) piff.plotify(config, logger) assert os.path.isfile(shape_file) # Test ShapeHistogramStats directly psf = piff.read(psf_file) shapeStats = piff.ShapeHistogramsStats() orig_stars, wcs, pointing = piff.Input.process(config['input'], logger) shapeStats.compute(psf, orig_stars) # test their characteristics sigma = 1.3 # (copied from setup()) g1 = 0.23 g2 = -0.17 np.testing.assert_array_almost_equal(sigma, shapeStats.T, decimal=4) np.testing.assert_array_almost_equal(sigma, shapeStats.T_model, decimal=3) np.testing.assert_array_almost_equal(g1, shapeStats.g1, decimal=4) np.testing.assert_array_almost_equal(g1, shapeStats.g1_model, decimal=3) np.testing.assert_array_almost_equal(g2, shapeStats.g2, decimal=4) np.testing.assert_array_almost_equal(g2, shapeStats.g2_model, decimal=3) @timer def test_starstats_config(): """Test running stats through a config file. """ if __name__ == '__main__': logger = piff.config.setup_logger(verbose=2) else: logger = piff.config.setup_logger(log_file='output/test_starstats_config.log') image_file = os.path.join('output','test_stats_image.fits') cat_file = os.path.join('output','test_stats_cat.fits') psf_file = os.path.join('output','test_starstats.fits') star_file = os.path.join('output', 'test_starstats.pdf') star_noadjust_file = os.path.join('output', 'test_starstats_noadjust.pdf') config = { 'input' : { 'image_file_name' : image_file, 'cat_file_name' : cat_file, 'stamp_size' : 48 }, 'psf' : { 'model' : { 'type' : 'Gaussian', 'fastfit': True, 'include_pixel': False }, 'interp' : { 'type' : 'Mean' }, }, 'output' : { 'file_name' : psf_file, 'stats' : [ { 'type': 'Star', 'file_name': star_file, 'number_plot': 5, 'adjust_stars': True, } ] } } piff.piffify(config, logger) assert os.path.isfile(star_file) # repeat with plotify function os.remove(star_file) piff.plotify(config, logger) assert os.path.isfile(star_file) # check default number_plot psf = piff.read(psf_file) starStats = piff.StarStats() orig_stars, wcs, pointing = piff.Input.process(config['input'], logger) starStats.compute(psf, orig_stars) assert starStats.number_plot == len(starStats.stars) assert starStats.number_plot == len(starStats.models) assert starStats.number_plot == len(starStats.indices) np.testing.assert_array_equal(starStats.stars[2].image.array, orig_stars[starStats.indices[2]].image.array) # check number_plot = 6 starStats = piff.StarStats(number_plot=6) starStats.compute(psf, orig_stars) assert len(starStats.stars) == 6 # check number_plot >> len(stars) starStats = piff.StarStats(number_plot=1000000) starStats.compute(psf, orig_stars) assert len(starStats.stars) == len(orig_stars) # if use all stars, no randomness np.testing.assert_array_equal(starStats.stars[3].image.array, orig_stars[3].image.array) np.testing.assert_array_equal(starStats.indices, np.arange(len(orig_stars))) # check number_plot = 0 starStats = piff.StarStats(number_plot=0) starStats.compute(psf, orig_stars) assert len(starStats.stars) == len(orig_stars) # if use all stars, no randomness np.testing.assert_array_equal(starStats.stars[3].image.array, orig_stars[3].image.array) np.testing.assert_array_equal(starStats.indices, np.arange(len(orig_stars))) # rerun with adjust stars and see if it did the right thing # first with starstats == False starStats = piff.StarStats(number_plot=0, adjust_stars=False) starStats.compute(psf, orig_stars, logger=logger) fluxs_noadjust = np.array([s.fit.flux for s in starStats.stars]) ds_noadjust = np.array([s.fit.center for s in starStats.stars]) # check that fluxes 1
np.testing.assert_array_equal(fluxs_noadjust, 1)
numpy.testing.assert_array_equal
#!/usr/bin/env python # coding: utf-8 def read_usv(adir_usv, iusv): import xarray as xr import numpy as np filename_usv_list = ['pmel_2015_sd126-ALL-1_min-v1.nc', 'pmel_2015_sd128-ALL-1_min-v1.nc', 'pmel_2016_sd126-ALL-1_min-v1.nc', 'pmel_2016_sd128-ALL-1_min-v1.nc', 'arctic_2019_sd1033-NRT-1_min-v1.nc', 'arctic_2019_sd1034-NRT-1_min-v1.nc', 'arctic_2019_sd1035-NRT-1_min-v1.nc', 'arctic_2019_sd1036-NRT-1_min-v1.nc', 'arctic_2019_sd1037-NRT-1_min-v1.nc', 'saildrone-gen_5-antarctica_circumnavigation_2019-sd1020-20190119T040000-20190803T043000-1440_minutes-v1.1564857794963.nc', 'wcoast_2018_sd1024-ALL-1_min-v1.nc', 'wcoast_2018_sd1025-ALL-1_min-v1.nc', 'wcoast_2018_sd1026-ALL-1_min-v1.nc', 'wcoast_2018_sd1027-ALL-1_min-v1.nc', 'wcoast_2018_sd1028-ALL-1_min-v1.nc'] name_usv_list = ['pmel_2015_sd126', 'pmel_2015_sd128', 'pmel_2016_sd126', 'pmel_2016_sd128', 'arctic2019_1033', 'arctic2019_1034', 'arctic2019_1035', 'arctic2019_1036', 'arctic2019_1037', 'antarctic2019','wcoast1025','wcoast1026','wcoast1027','wcoast1028','wcoast1029'] filename_usv = adir_usv + filename_usv_list[iusv] print('FILEIN:', filename_usv) ds_usv = xr.open_dataset(filename_usv) ds_usv.close() # NEED TO FIND OUT IF wind_speed is to/from wind_direction ? if (iusv == 0 or iusv == 1): # 1033 ds_usv = ds_usv.rename( {'temp_air_mean': 'TEMP_AIR_MEAN', 'rh_mean': 'RH_MEAN', 'baro_pres_mean': 'BARO_PRES_MEAN', 'sal_mean': 'SAL_MEAN', 'temp_ctd_mean': 'TEMP_CTD_MEAN', 'temp_o2_mean': 'TEMP_O2_MEAN', 'chlor_mean': 'CHLOR_MEAN', 'gust_wnd_mean': 'GUST_WND_MEAN', 'temp_ctd_stddev': 'TEMP_CTD_STDDEV'}) tem_att = ds_usv.wind_speed_mean.attrs ds_usv['wind_speed_mean'] = ds_usv.wind_speed_mean * .51444 ds_usv.wind_speed_mean.attrs = tem_att ds_usv.wind_speed_mean.attrs['units'] = 'm s-1' uwnd = ds_usv.wind_speed_mean * np.cos(np.deg2rad(ds_usv.wind_direction_mean)) vwnd = ds_usv.wind_speed_mean * np.sin(
np.deg2rad(ds_usv.wind_direction_mean)
numpy.deg2rad
from unittest import TestCase from tempfile import TemporaryDirectory from pathlib import Path from giant.camera_models import PinholeModel, OwenModel, BrownModel, OpenCVModel, save, load import numpy as np import giant.rotations as at import lxml.etree as etree class TestPinholeModel(TestCase): def setUp(self): self.Class = PinholeModel def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) model = self.Class(kx=1, ky=2, px=4, py=5, focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], estimation_parameters=['focal_length', 'px']) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 0, 4], [0, 2, 5]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['focal_length', 'px']) def test_estimation_parameters(self): model = self.Class() model.estimation_parameters = 'kx' self.assertEqual(model.estimation_parameters, ['kx']) model.estimate_multiple_misalignments = False model.estimation_parameters = ['px', 'py', 'Multiple misalignments'] self.assertEqual(model.estimation_parameters, ['px', 'py', 'multiple misalignments']) self.assertTrue(model.estimate_multiple_misalignments) def test_kx(self): model = self.Class(intrinsic_matrix=np.array([[1, 0, 0], [0, 0, 0]])) self.assertEqual(model.kx, 1) model.kx = 100 self.assertEqual(model.kx, 100) self.assertEqual(model.intrinsic_matrix[0, 0], 100) def test_ky(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 3, 0]])) self.assertEqual(model.ky, 3) model.ky = 100 self.assertEqual(model.ky, 100) self.assertEqual(model.intrinsic_matrix[1, 1], 100) def test_px(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 20], [0, 3, 0]])) self.assertEqual(model.px, 20) model.px = 100 self.assertEqual(model.px, 100) self.assertEqual(model.intrinsic_matrix[0, 2], 100) def test_py(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 0, 10]])) self.assertEqual(model.py, 10) model.py = 100 self.assertEqual(model.py, 100) self.assertEqual(model.intrinsic_matrix[1, 2], 100) def test_a1(self): model = self.Class(temperature_coefficients=np.array([10, 0, 0])) self.assertEqual(model.a1, 10) model.a1 = 100 self.assertEqual(model.a1, 100) self.assertEqual(model.temperature_coefficients[0], 100) def test_a2(self): model = self.Class(temperature_coefficients=np.array([0, 10, 0])) self.assertEqual(model.a2, 10) model.a2 = 100 self.assertEqual(model.a2, 100) self.assertEqual(model.temperature_coefficients[1], 100) def test_a3(self): model = self.Class(temperature_coefficients=np.array([0, 0, 10])) self.assertEqual(model.a3, 10) model.a3 = 100 self.assertEqual(model.a3, 100) self.assertEqual(model.temperature_coefficients[2], 100) def test_intrinsic_matrix_inv(self): model = self.Class(kx=5, ky=10, px=100, py=-5) np.testing.assert_array_almost_equal(model.intrinsic_matrix @ np.vstack([model.intrinsic_matrix_inv, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) np.testing.assert_array_almost_equal(model.intrinsic_matrix_inv @ np.vstack([model.intrinsic_matrix, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) def test_get_temperature_scale(self): model = self.Class(temperature_coefficients=[1, 2, 3.]) self.assertEqual(model.get_temperature_scale(1), 7) np.testing.assert_array_equal(model.get_temperature_scale([1, 2]), [7, 35]) np.testing.assert_array_equal(model.get_temperature_scale([-1, 2.]), [-1, 35]) def test_apply_distortion(self): inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] model = self.Class() for inp in inputs: gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, inp) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, a1=1, a2=2, a3=3) with self.subTest(misalignment=None): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=1): for point in points: gnom, _, pix = model.get_projections(point, temperature=1) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(1) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=-10.5): for point in points: gnom, _, pix = model.get_projections(point, temperature=-10.5) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(-10.5) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[0] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[1] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() point_new = rot_mat @ point gnom, _, pix = model.get_projections(point, image=0) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) gnom, _, pix = model.get_projections(point, image=1) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, a1=-1e-3, a2=1e-6, a3=-7e-8) with self.subTest(misalignment=None): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=1): for point in points: pix = model.project_onto_image(point, temperature=1) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(1) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=-10.5): for point in points: pix = model.project_onto_image(point, temperature=-10.5) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(-10.5) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pix = model.project_onto_image(point) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[0] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[1] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() point_new = rot_mat @ point pix = model.project_onto_image(point, image=0) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) pix = model.project_onto_image(point, image=1) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 30, "ky": 40, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 300, "ky": 400, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 300, "ky": 400, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 300, "ky": 400, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dmisalignment(self): def num_deriv(loc, dtheta, delta=1e-10) -> np.ndarray: mis_pert = at.rotvec_to_rotmat(np.array(dtheta) + [delta, 0, 0]).squeeze() point_pert_x_f = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) + [0, delta, 0]).squeeze() point_pert_y_f = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) + [0, 0, delta]).squeeze() point_pert_z_f = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) - [delta, 0, 0]).squeeze() point_pert_x_b = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) - [0, delta, 0]).squeeze() point_pert_y_b = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) - [0, 0, delta]).squeeze() point_pert_z_b = mis_pert @ loc return np.array([(point_pert_x_f - point_pert_x_b) / (2 * delta), (point_pert_y_f - point_pert_y_b) / (2 * delta), (point_pert_z_f - point_pert_z_b) / (2 * delta)]).T inputs = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [np.sqrt(3), np.sqrt(3), np.sqrt(3)], [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-np.sqrt(3), -np.sqrt(3), -np.sqrt(3)], [1, 0, 100], [0, 0.5, 1]] misalignment = [[1e-8, 0, 0], [0, 1e-8, 0], [0, 0, 1e-8], [1e-9, 1e-9, 1e-9], [-1e-8, 0, 0], [0, -1e-8, 0], [0, 0, -1e-8], [-1e-9, -1e-9, -1e-9], [1e-9, 2.3e-9, -0.5e-9]] for mis in misalignment: with self.subTest(misalignment=mis): for inp in inputs: num = num_deriv(inp, mis) # noinspection PyTypeChecker ana = self.Class._compute_dcamera_point_dmisalignment(inp) np.testing.assert_allclose(num, ana, atol=1e-10, rtol=1e-4) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 1.5, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 1.5, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 1.5, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 1.5, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 1.5, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 1.5}, {"kx": 1.5, "ky": 1.5, "px": 1.5, "py": 1.5, 'a1': 1.5, 'a2': 1.5, 'a3': 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temperatures = [0, 1, -1, 10.5, -10.5] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for temp in temperatures: with self.subTest(temp=temp, **intrins_coef): for inp in inputs: num = num_deriv(inp, model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dgnomic_dcamera_point(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0, 0] gnom_pert_x_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, delta, 0] gnom_pert_y_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, 0, delta] gnom_pert_z_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [delta, 0, 0] gnom_pert_x_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, delta, 0] gnom_pert_y_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, 0, delta] gnom_pert_z_b = cmodel.get_projections(loc_pert)[0] return np.array([(gnom_pert_x_f - gnom_pert_x_b) / (2 * delta), (gnom_pert_y_f - gnom_pert_y_b) / (2 * delta), (gnom_pert_z_f - gnom_pert_z_b) / (2 * delta)]).T intrins_coefs = [{"focal_length": 1}, {"focal_length": 2.5}, {"focal_length": 1000}, {"focal_length": 0.1}] inputs = [[0, 0, 1], [0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [0.5, 1e-14, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dgnomic_dcamera_point(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-9, rtol=1e-5) def test__compute_dgnomic_dfocal_length(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta gnom_pert_f = model_pert.get_projections(loc)[0] model_pert = cmodel.copy() model_pert.focal_length -= delta gnom_pert_b = model_pert.get_projections(loc)[0] # noinspection PyTypeChecker return np.asarray((gnom_pert_f - gnom_pert_b) / (2 * delta)) intrins_coefs = [{"focal_length": 1}, {"focal_length": 2.5}, {"focal_length": 1000}, {"focal_length": 0.1}] inputs = [[0, 0, 1], [0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dgnomic_dfocal_length(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-10, rtol=1e-5) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "ky": 0, "px": 0, "py": 0}, {"kx": 0, "ky": 1.5, "px": 0, "py": 0}, {"kx": 0, "ky": 0, "px": 1.5, "py": 0}, {"kx": 0, "ky": 0, "px": 0, "py": 1.5}, {"kx": 1.5, "ky": 1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dpixel_dintrinsic(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dpixel_dtemperature_coeffs(self): def num_deriv(loc, cmodel, delta=1e-6, temperature=0) -> np.ndarray: loc = np.array(loc) model_pert = cmodel.copy() model_pert.a1 += delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a1_f = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a2 += delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a2_f = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a3 += delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a3_f = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a1 -= delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a1_b = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a2 -= delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a2_b = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a3 -= delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a3_b = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_a1_f - pix_pert_a1_b) / (2 * delta), (pix_pert_a2_f - pix_pert_a2_b) / (2 * delta), (pix_pert_a3_f - pix_pert_a3_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 1.5, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 1.5, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 1.5, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 1.5, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 1.5, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 1.5}, {"kx": 1.5, "ky": 1.5, "px": 1.5, "py": 1.5, 'a1': 1.5, 'a2': 1.5, 'a3': 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temperatures = [0, 1, -1, -10.5, 10.5] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for temp in temperatures: with self.subTest(temp=temp, **intrins_coef): for inp in inputs: num = num_deriv(inp, model, temperature=temp) ana = model._compute_dpixel_dtemperature_coeffs(inp, temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-10) def test_get_jacobian_row(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() delta_misalignment = 1e-6 model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta_misalignment pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta_misalignment pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta_misalignment pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta_misalignment pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta_misalignment pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta_misalignment pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta_misalignment * 2), (pix_pert_my_f - pix_pert_my_b) / (delta_misalignment * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta_misalignment * 2)]).T # TODO: investigate why this fails with slightly larger misalignments and temperature coefficients model_param = {"focal_length": 100.75, "kx": 30, "ky": 40, "px": 4005.23, "py": 4005.23, "a1": 1e-4, "a2": 2e-7, "a3": 3e-8, "misalignment": [[2e-15, -1.2e-14, 5e-16], [-1e-14, 2e-14, -1e-15]]} inputs = [[0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [[10], [-22], [1200.23]]] temperatures = [0, -1, 1, -10.5, 10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for inp in inputs: for temp in temperatures: with self.subTest(temp=temp, inp=inp): num = num_deriv(inp, model, delta=1, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 0, 1, temperature=temp) np.testing.assert_allclose(ana, num, rtol=1e-2, atol=1e-10) num = num_deriv(inp, model, delta=1, image=1, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 1, 2, temperature=temp) np.testing.assert_allclose(ana, num, atol=1e-10, rtol=1e-2) def test_compute_jacobian(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, nimages=1, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() delta_misalignment = 1e-6 model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta_misalignment pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta_misalignment pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta_misalignment pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta_misalignment pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta_misalignment pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta_misalignment pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta_misalignment * 2), (pix_pert_my_f - pix_pert_my_b) / (delta_misalignment * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta_misalignment * 2), np.zeros(((nimages - image - 1) * 3, 2))]).T model_param = {"focal_length": 100.75, "kx": 30, "ky": 40, "px": 4005.23, "py": 4005.23, "a1": 1e-5, "a2": 1e-6, "a3": 1e-7, "misalignment": [[0, 0, 1e-15], [0, 2e-15, 0], [3e-15, 0, 0]]} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1000]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) for temp in temperatures: with self.subTest(temp=temp): model.use_a_priori = False jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1, image=ind, nimages=numim, temperature=temp)) np.testing.assert_allclose(jac_ana, np.vstack(jac_num), rtol=1e-2, atol=1e-10) model.use_a_priori = True jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1, image=ind, nimages=numim, temperature=temp)) jac_num = np.vstack(jac_num) jac_num = np.pad(jac_num, [(0, jac_num.shape[1]), (0, 0)], 'constant', constant_values=0) jac_num[-jac_num.shape[1]:] = np.eye(jac_num.shape[1]) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-2, atol=1e-10) def test_remove_jacobian_columns(self): jac = np.arange(30).reshape(1, -1) model = self.Class() for est_param, vals in model.element_dict.items(): model.estimation_parameters = [est_param] expected = jac[0, vals] np.testing.assert_array_equal(model._remove_jacobian_columns(jac), [expected]) def test_apply_update(self): model_param = {"focal_length": 0, "kx": 0, "ky": 0, "px": 0, "py": 0, "a1": 0, "a2": 0, "a3": 0, "misalignment": [[0, 0, 0], [0, 0, 0]]} model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) update_vec = np.arange(14) model.apply_update(update_vec) keys = list(model_param.keys()) keys.remove('misalignment') for key in keys: self.assertEqual(getattr(model, key), update_vec[model.element_dict[key][0]]) for ind, vec in enumerate(update_vec[8:].reshape(-1, 3)): np.testing.assert_array_almost_equal(at.Rotation(vec).q, at.Rotation(model.misalignment[ind]).q) def test_pixels_to_gnomic(self): gnomic = [[1, 0], [0, 1], [-1, 0], [0, -1], [0.5, 0], [0, 0.5], [-0.5, 0], [0, -0.5], [0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5], [[1, 0, 0.5], [0, 1.5, -0.5]]] model = self.Class(kx=2000, ky=-3000.2, px=1025, py=937.567, a1=1e-3, a2=2e-6, a3=-5.5e-8) temperatures = [0, 1, -1, 10.5, -10.5] for gnoms in gnomic: for temp in temperatures: with self.subTest(gnoms=gnoms, temp=temp): dis_gnoms = np.asarray(model.apply_distortion(gnoms)).astype(float) dis_gnoms *= model.get_temperature_scale(temp) pixels = ((model.intrinsic_matrix[:, :2] @ dis_gnoms).T + model.intrinsic_matrix[:, 2]).T gnoms_solved = model.pixels_to_gnomic(pixels, temperature=temp) np.testing.assert_allclose(gnoms_solved, gnoms) def test_undistort_pixels(self): intrins_param = {"kx": 3000, "ky": 4000, "px": 4005.23, 'py': 2000.33, 'a1': 1e-6, 'a2': 1e-5, 'a3': 2e-5} pinhole = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] model = self.Class(**intrins_param) temperatures = [0, 1, -1, 10.5, -10.5] for gnom in pinhole: gnom = np.asarray(gnom).astype(float) for temp in temperatures: with self.subTest(gnom=gnom, temp=temp): mm_dist = model.apply_distortion(np.array(gnom)) temp_scale = model.get_temperature_scale(temp) mm_dist *= temp_scale pix_dist = ((model.intrinsic_matrix[:, :2] @ mm_dist).T + model.intrinsic_matrix[:, 2]).T pix_undist = model.undistort_pixels(pix_dist, temperature=temp) gnom *= temp_scale pix_pinhole = ((model.intrinsic_matrix[:, :2] @ gnom).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_allclose(pix_undist, pix_pinhole, atol=1e-13) def test_pixels_to_unit(self): intrins_param = {"focal_length": 32.7, "kx": 3000, "ky": 4000, "px": 4005.23, 'py': 2000.33, 'a1': 1e-5, 'a2': -1e-10, 'a3': 2e-4, 'misalignment': [[1e-10, 2e-13, -3e-12], [4e-8, -5.3e-9, 9e-15]]} camera_vecs = [[0, 0, 1], [0.01, 0, 1], [-0.01, 0, 1], [0, 0.01, 1], [0, -0.01, 1], [0.01, 0.01, 1], [-0.01, -0.01, 1], [[0.01, -0.01], [-0.01, 0.01], [1, 1]]] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**intrins_param) # TODO: consider adjusting so this isn't needed model.estimate_multiple_misalignments = True for vec in camera_vecs: for image in [0, 1]: for temp in temperatures: with self.subTest(vec=vec, image=image, temp=temp): pixel_loc = model.project_onto_image(vec, image=image, temperature=temp) unit_vec = model.pixels_to_unit(pixel_loc, image=image, temperature=temp) unit_true = np.array(vec).astype(np.float64) unit_true /= np.linalg.norm(unit_true, axis=0, keepdims=True) np.testing.assert_allclose(unit_vec, unit_true, atol=1e-13) def test_overwrite(self): model1 = self.Class(field_of_view=10, intrinsic_matrix=np.array([[1, 0, 3], [0, 5, 6]]), focal_length=60, misalignment=[[1, 2, 3], [4, 5, 6]], use_a_priori=False, estimation_parameters=['multiple misalignments']) model2 = self.Class(field_of_view=20, intrinsic_matrix=np.array([[11, 0, 13], [0, 15, 16]]), focal_length=160, misalignment=[[11, 12, 13], [14, 15, 16]], use_a_priori=True, estimation_parameters=['single misalignment']) modeltest = model1.copy() modeltest.overwrite(model2) self.assertEqual(model2.field_of_view, modeltest.field_of_view) self.assertEqual(model2.use_a_priori, modeltest.use_a_priori) self.assertEqual(model2.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model2.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model2.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model2.estimation_parameters, modeltest.estimation_parameters) modeltest = model2.copy() modeltest.overwrite(model1) self.assertEqual(model1.field_of_view, modeltest.field_of_view) self.assertEqual(model1.use_a_priori, modeltest.use_a_priori) self.assertEqual(model1.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model1.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model1.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model1.estimation_parameters, modeltest.estimation_parameters) def test_distort_pixels(self): model = self.Class(kx=1000, ky=-950.5, px=4500, py=139.32, a1=1e-3, a2=1e-4, a3=1e-5) pixels = [[0, 1], [1, 0], [-1, 0], [0, -1], [9000., 200.2], [[4500, 100, 10.98], [0, 139.23, 200.3]]] temperatures = [0, 1, -1, 10.5, -10.5] for pix in pixels: for temp in temperatures: with self.subTest(pix=pix, temp=temp): undist_pix = model.undistort_pixels(pix, temperature=temp) dist_pix = model.distort_pixels(undist_pix, temperature=temp) np.testing.assert_allclose(dist_pix, pix) def test_distortion_map(self): model = self.Class(kx=100, ky=-985.234, px=1000, py=1095) rows, cols, dist = model.distortion_map((2000, 250), step=10) # noinspection PyTypeChecker np.testing.assert_allclose(dist, 0, atol=1e-10) rl, cl = np.arange(0, 2000, 10), np.arange(0, 250, 10) rs, cs = np.meshgrid(rl, cl, indexing='ij') np.testing.assert_array_equal(rows, rs) np.testing.assert_array_equal(cols, cs) def test_undistort_image(self): # not sure how best to do this test... pass def test_copy(self): model = self.Class() model_copy = model.copy() model.kx = 1000 model.ky = 999 model.px = 100 model.py = -20 model.a1 = 5 model.a2 = 6 model.a3 = 7 model._focal_length = 11231 model.field_of_view = 1231231 model.use_a_priori = True model.estimation_parameters = ['a1', 'kx', 'ky'] model.estimate_multiple_misalignments = True model.misalignment = [1231241, 123124, .12] self.assertNotEqual(model.kx, model_copy.kx) self.assertNotEqual(model.ky, model_copy.ky) self.assertNotEqual(model.px, model_copy.px) self.assertNotEqual(model.py, model_copy.py) self.assertNotEqual(model.a1, model_copy.a1) self.assertNotEqual(model.a2, model_copy.a2) self.assertNotEqual(model.a3, model_copy.a3) self.assertNotEqual(model.focal_length, model_copy.focal_length) self.assertNotEqual(model.field_of_view, model_copy.field_of_view) self.assertNotEqual(model.use_a_priori, model_copy.use_a_priori) self.assertNotEqual(model.estimate_multiple_misalignments, model_copy.estimate_multiple_misalignments) self.assertNotEqual(model.estimation_parameters, model_copy.estimation_parameters) self.assertTrue((model.misalignment != model_copy.misalignment).all()) def test_to_from_elem(self): element = etree.Element(self.Class.__name__) model = self.Class(focal_length=20, field_of_view=5, use_a_priori=True, misalignment=[1, 2, 3], kx=2, ky=200, px=50, py=300, a1=37, a2=1, a3=-1230, estimation_parameters=['a1', 'multiple misalignments'], n_rows=20, n_cols=30) model_copy = model.copy() with self.subTest(misalignment=True): element = model.to_elem(element, misalignment=True) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) self.assertEqual(model, model_new) with self.subTest(misalignment=False): element = model.to_elem(element, misalignment=False) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) model.estimation_parameters[-1] = 'single misalignment' model.estimate_multiple_misalignments = False model.misalignment = np.zeros(3) self.assertEqual(model, model_new) class TestOwenModel(TestPinholeModel): def setUp(self): self.Class = OwenModel def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], distortion_coefficients=np.array([1, 2, 3, 4, 5, 6]), estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 7)) model = self.Class(kx=1, ky=2, px=4, py=5, focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], kxy=80, kyx=90, estimation_parameters=['focal_length', 'px'], n_rows=500, n_cols=600, e1=1, radial2=2, pinwheel2=3, e4=4, tangential_x=6, e5=5) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 80, 4], [90, 2, 5]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['focal_length', 'px']) self.assertEqual(model.n_rows, 500) self.assertEqual(model.n_cols, 600) np.testing.assert_array_equal(model.distortion_coefficients, [2, 4, 5, 6, 1, 3]) def test_kxy(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.kxy, 1) model.kxy = 100 self.assertEqual(model.kxy, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_kyx(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [3, 0, 0]])) self.assertEqual(model.kyx, 3) model.kyx = 100 self.assertEqual(model.kyx, 100) self.assertEqual(model.intrinsic_matrix[1, 0], 100) def test_e1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0])) self.assertEqual(model.e1, 1) model.e1 = 100 self.assertEqual(model.e1, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_e2(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0, 0])) self.assertEqual(model.e2, 1) model.e2 = 100 self.assertEqual(model.e2, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_e3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1])) self.assertEqual(model.e3, 1) model.e3 = 100 self.assertEqual(model.e3, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_e4(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0, 0])) self.assertEqual(model.e4, 1) model.e4 = 100 self.assertEqual(model.e4, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_e5(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0, 0])) self.assertEqual(model.e5, 1) model.e5 = 100 self.assertEqual(model.e5, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_e6(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0])) self.assertEqual(model.e6, 1) model.e6 = 100 self.assertEqual(model.e6, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_pinwheel1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0])) self.assertEqual(model.pinwheel1, 1) model.pinwheel1 = 100 self.assertEqual(model.pinwheel1, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_radial2(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0, 0])) self.assertEqual(model.radial2, 1) model.radial2 = 100 self.assertEqual(model.radial2, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_pinwheel2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1])) self.assertEqual(model.pinwheel2, 1) model.pinwheel2 = 100 self.assertEqual(model.pinwheel2, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_radial4(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0, 0])) self.assertEqual(model.radial4, 1) model.radial4 = 100 self.assertEqual(model.radial4, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_tangential_y(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0, 0])) self.assertEqual(model.tangential_y, 1) model.tangential_y = 100 self.assertEqual(model.tangential_y, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_tangential_x(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0])) self.assertEqual(model.tangential_x, 1) model.tangential_x = 100 self.assertEqual(model.tangential_x, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_apply_distortion(self): dist_coefs = [{"radial2": 1.5, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] solus = [[[0, 0], [2.5, 0], [-2.5, 0], [1.5 + 1.5 ** 4, 0], [-(1.5 + 1.5 ** 4), 0], [[(1.5 + 1.5 ** 4)], [0]], [[(1.5 + 1.5 ** 4), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 4)], [0, -(1.5 + 1.5 ** 4)], [[0], [(1.5 + 1.5 ** 4)]], [[0, 0], [(1.5 + 1.5 ** 4), -2.5]], [1 + 2 * 1.5, 1 + 2 * 1.5]], [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 6), 0], [-(1.5 + 1.5 ** 6), 0], [[(1.5 + 1.5 ** 6)], [0]], [[(1.5 + 1.5 ** 6), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 6)], [0, -(1.5 + 1.5 ** 6)], [[0], [(1.5 + 1.5 ** 6)]], [[0, 0], [(1.5 + 1.5 ** 6), -2.5]], [1 + 4 * 1.5, 1 + 4 * 1.5]], [[0, 0], [2.5, 0], [0.5, 0], [(1.5 + 1.5 ** 3), 0], [-1.5 + 1.5 ** 3, 0], [[(1.5 + 1.5 ** 3)], [0]], [[(1.5 + 1.5 ** 3), 0.5], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [2.5, 2.5]], [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 2.5], [0, 0.5], [0, 1.5 + 1.5 ** 3], [0, -1.5 + 1.5 ** 3], [[0], [1.5 + 1.5 ** 3]], [[0, 0], [1.5 + 1.5 ** 3, 0.5]], [2.5, 2.5]], [[0, 0], [1, 1.5], [-1, -1.5], [1.5, 1.5 ** 3], [-1.5, -1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, -1.5]], [-1.5, 1], [1.5, -1], [-1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[-1.5 ** 3], [1.5]], [[-1.5 ** 3, 1.5], [1.5, -1]], [1 - np.sqrt(2) * 1.5, 1 + np.sqrt(2) * 1.5]], [[0, 0], [1, 1.5], [-1, -1.5], [1.5, 1.5 ** 5], [-1.5, -1.5 ** 5], [[1.5], [1.5 ** 5]], [[1.5, -1], [1.5 ** 5, -1.5]], [-1.5, 1], [1.5, -1], [-1.5 ** 5, 1.5], [1.5 ** 5, -1.5], [[-1.5 ** 5], [1.5]], [[-1.5 ** 5, 1.5], [1.5, -1]], [1 - 2 * np.sqrt(2) * 1.5, 1 + 2 * np.sqrt(2) * 1.5]]] for dist, sols in zip(dist_coefs, solus): with self.subTest(**dist): model = self.Class(**dist) for inp, solu in zip(inputs, sols): gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, solu) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23e-8, a1=1e-1, a2=1e-6, a3=-3e-7) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: pin, dist, pix = model.get_projections(point, temperature=temp) pin_true = model.focal_length * np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) dist_true *= model.get_temperature_scale(temp) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pin, pin_true) np.testing.assert_array_equal(dist, dist_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = -model.focal_length * np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = model.focal_length * np.array(point[:2]) / point[2] pin_true[0] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = model.focal_length * np.array(point[:2]) / point[2] pin_true[1] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point) pin_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point, image=0) pin_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) pin, dist, pix = model.get_projections(point, image=1) pin_true = -model.focal_length * np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, a1=1, a2=2, a3=-3) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: _, __, pix = model.get_projections(point, temperature=temp) pix_proj = model.project_onto_image(point, temperature=temp) np.testing.assert_array_equal(pix, pix_proj) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: _, __, pix = model.get_projections(point, image=0) pix_proj = model.project_onto_image(point, image=0) np.testing.assert_array_equal(pix, pix_proj) _, __, pix = model.get_projections(point, image=1) pix_proj = model.project_onto_image(point, image=1) np.testing.assert_array_equal(pix, pix_proj) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-5, "radial4": 1.5e-5, "tangential_x": 1.5e-5, "tangential_y": 1.5e-5, "pinwheel1": 1.5e-5, "pinwheel2": 1.5e-5, "kx": 30, "ky": 40, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-6) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-8, "radial4": 1.5e-8, "tangential_x": 1.5e-8, "tangential_y": 1.5e-8, "pinwheel1": 1.5e-8, "pinwheel2": 1.5e-8, "kx": 300, "ky": 400, "kxy": 0.5, "kyx": -0.8, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-8, "radial4": 1.5e-8, "tangential_x": 1.5e-8, "tangential_y": 1.5e-8, "pinwheel1": 1.5e-8, "pinwheel2": 1.5e-8, "kx": 300, "ky": 400, "kxy": 0.5, "kyx": -0.8, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-8, "radial4": 1.5e-8, "tangential_x": 1.5e-8, "tangential_y": 1.5e-8, "pinwheel1": 1.5e-8, "pinwheel2": 1.5e-8, "kx": 300, "ky": 400, "kxy": 0.5, "kyx": -0.8, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_ddistortion_dgnomic(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] dist_pert_x_f = cmodel.apply_distortion(loc_pert) - loc_pert loc_pert = np.array(loc) + [0, delta] dist_pert_y_f = cmodel.apply_distortion(loc_pert) - loc_pert loc_pert = np.array(loc) - [delta, 0] dist_pert_x_b = cmodel.apply_distortion(loc_pert) - loc_pert loc_pert = np.array(loc) - [0, delta] dist_pert_y_b = cmodel.apply_distortion(loc_pert) - loc_pert return np.array( [(dist_pert_x_f - dist_pert_x_b) / (2 * delta), (dist_pert_y_f - dist_pert_y_b) / (2 * delta)]).T dist_coefs = [{"radial2": 1.5, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5}, {"e1": -1.5, "e2": -1.5, "e3": -1.5, "e4": -1.5, "e5": -1.5, "e6": -1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r3 = r ** 3 r4 = r ** 4 num = num_deriv(inp, model) ana = model._compute_ddistortion_dgnomic(np.array(inp), r, r2, r3, r4) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 1.5, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 1.5, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 1.5, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 1.5, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 1.5}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0, "a1": 1.5, "a2": 0, "a3": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0, "a1": 0, "a2": 1.5, "a3": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0, "a1": 0, "a2": 0, "a3": 1.5}, {"kx": 1.5, "kxy": 1.5, "ky": 1.5, "kyx": 1.5, "px": 1.5, "py": 1.5, "a1": 1.5, "a2": 1.5, "a3": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temps = [0, 1, -1, 10.5, -10.5] for temp in temps: for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef, temp=temp): for inp in inputs: num = num_deriv(inp, model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kyx += delta pix_pert_kyx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kyx -= delta pix_pert_kyx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_kxy_f - pix_pert_kxy_b) / (2 * delta), (pix_pert_kyx_f - pix_pert_kyx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 1.5, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 1.5, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 1.5, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 1.5, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 1.5}, {"kx": 1.5, "kxy": 1.5, "ky": 1.5, "kyx": 1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dpixel_dintrinsic(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_ddistorted_gnomic_ddistortion(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: model_pert = cmodel.copy() model_pert.radial2 += delta loc_pert_r2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.radial4 += delta loc_pert_r4_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_y += delta loc_pert_ty_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_x += delta loc_pert_tx_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel1 += delta loc_pert_p1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel2 += delta loc_pert_p2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.radial2 -= delta loc_pert_r2_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.radial4 -= delta loc_pert_r4_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_y -= delta loc_pert_ty_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_x -= delta loc_pert_tx_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel1 -= delta loc_pert_p1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel2 -= delta loc_pert_p2_b = model_pert.apply_distortion(loc) return np.array([(loc_pert_r2_f - loc_pert_r2_b) / (2 * delta), (loc_pert_r4_f - loc_pert_r4_b) / (2 * delta), (loc_pert_ty_f - loc_pert_ty_b) / (2 * delta), (loc_pert_tx_f - loc_pert_tx_b) / (2 * delta), (loc_pert_p1_f - loc_pert_p1_b) / (2 * delta), (loc_pert_p2_f - loc_pert_p2_b) / (2 * delta)]).T dist_coefs = [{"radial2": 1.5, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r3 = r ** 3 r4 = r ** 4 num = num_deriv(inp, model) ana = model._compute_ddistorted_gnomic_ddistortion(np.array(inp), r, r2, r3, r4) np.testing.assert_allclose(num, ana, atol=1e-10) def test_get_jacobian_row(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx += delta pix_pert_kyx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx -= delta pix_pert_kyx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 += delta pix_pert_r2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 += delta pix_pert_r4_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y += delta pix_pert_ty_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x += delta pix_pert_tx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 -= delta pix_pert_r2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 -= delta pix_pert_r4_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y -= delta pix_pert_ty_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x -= delta pix_pert_tx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() delta_m = 1e-6 model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta_m pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta_m pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta_m pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta_m pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta_m pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta_m pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_kxy_f - pix_pert_kxy_b) / (delta * 2), (pix_pert_kyx_f - pix_pert_kyx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_r2_f - pix_pert_r2_b) / (delta * 2), (pix_pert_r4_f - pix_pert_r4_b) / (delta * 2), (pix_pert_ty_f - pix_pert_ty_b) / (delta * 2), (pix_pert_tx_f - pix_pert_tx_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta_m * 2), (pix_pert_my_f - pix_pert_my_b) / (delta_m * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta_m * 2)]).T model_param = {"focal_length": 100.75, "radial2": 1.5e-5, "radial4": 1.5e-5, "tangential_x": 1.5e-5, "tangential_y": 1.5e-5, "pinwheel1": 1.5e-5, "pinwheel2": 1.5e-5, "kx": 30, "ky": 40, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [[0.1, 0, 1], [0, 0.1, 1], [0.1, 0.1, 1], [-0.1, 0, 1], [0, -0.1, 1], [-0.1, -0.1, 1], [5, 10, 1000.23], [[1], [2], [1200.23]]] temps = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temps: for inp in inputs: with self.subTest(temp=temp, inp=inp): num = num_deriv(inp, model, delta=1e-3, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 0, 1, temperature=temp) np.testing.assert_allclose(ana, num, rtol=1e-3, atol=1e-10) num = num_deriv(inp, model, delta=1e-3, image=1, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 1, 2, temperature=temp) np.testing.assert_allclose(ana, num, atol=1e-10, rtol=1e-3) def test_compute_jacobian(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, nimages=1, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx += delta pix_pert_kyx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx -= delta pix_pert_kyx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 += delta pix_pert_r2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 += delta pix_pert_r4_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y += delta pix_pert_ty_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x += delta pix_pert_tx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 -= delta pix_pert_r2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 -= delta pix_pert_r4_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y -= delta pix_pert_ty_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x -= delta pix_pert_tx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_kxy_f - pix_pert_kxy_b) / (delta * 2), (pix_pert_kyx_f - pix_pert_kyx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_r2_f - pix_pert_r2_b) / (delta * 2), (pix_pert_r4_f - pix_pert_r4_b) / (delta * 2), (pix_pert_ty_f - pix_pert_ty_b) / (delta * 2), (pix_pert_tx_f - pix_pert_tx_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta * 2), (pix_pert_my_f - pix_pert_my_b) / (delta * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta * 2), np.zeros(((nimages - image - 1) * 3, 2))]).T model_param = {"focal_length": 100.75, "radial2": 1.5e-5, "radial4": 1.5e-5, "tangential_x": 1.5e-5, "tangential_y": 1.5e-5, "pinwheel1": 1.5e-5, "pinwheel2": 1.5e-5, "kx": 30, "ky": 40, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5, [1, -10, 10]] model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) for temp in temperatures: with self.subTest(temp=temp): model.use_a_priori = False jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): if isinstance(temp, list): templ = temp[ind] else: templ = temp for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1e-4, image=ind, nimages=numim, temperature=templ)) np.testing.assert_allclose(jac_ana, np.vstack(jac_num), rtol=1e-3, atol=1e-10) model.use_a_priori = True jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): if isinstance(temp, list): templ = temp[ind] else: templ = temp for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1e-4, image=ind, nimages=numim, temperature=templ)) jac_num = np.vstack(jac_num) jac_num = np.pad(jac_num, [(0, jac_num.shape[1]), (0, 0)], 'constant', constant_values=0) jac_num[-jac_num.shape[1]:] = np.eye(jac_num.shape[1]) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test_apply_update(self): model_param = {"focal_length": 0, "radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0, "kx": 0, "ky": 0, "kxy": 0, "kyx": 0, "px": 0, "misalignment": [[0, 0, 0], [0, 0, 0]], "a1": 0, "a2": 0, "a3": 0} model = self.Class(**model_param, estimation_parameters=['intrinsic', "temperature dependence", 'multiple misalignments']) update_vec = np.arange(22) model.apply_update(update_vec) keys = list(model_param.keys()) keys.remove('misalignment') for key in keys: self.assertEqual(getattr(model, key), update_vec[model.element_dict[key][0]]) for ind, vec in enumerate(update_vec[16:].reshape(-1, 3)): np.testing.assert_array_almost_equal(at.Rotation(vec).q, at.Rotation(model.misalignment[ind]).q) def test_pixels_to_gnomic(self): intrins_param = {"kx": 3000, "ky": 4000, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, 'py': 2000.33, 'a1': 1e-6, 'a2': 1e-7, 'a3': 1e-8} dist_coefs = [{"radial2": 1.5e-3, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5e-3, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5e-3, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5e-3, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5e-3, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5e-3}, {"radial2": 1.5e-3, "radial4": 1.5e-3, "tangential_x": 1.5e-3, "tangential_y": 1.5e-3, "pinwheel1": 1.5e-3, "pinwheel2": 1.5e-3}] pinhole = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for gnoms in pinhole: with self.subTest(**dist, temp=temp, gnoms=gnoms): mm_dist = model.apply_distortion(np.array(gnoms)) mm_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ mm_dist).T + model.intrinsic_matrix[:, 2]).T mm_undist = model.pixels_to_gnomic(pix_dist, temperature=temp) np.testing.assert_allclose(mm_undist, gnoms, atol=1e-13) def test_undistort_pixels(self): intrins_param = {"kx": 3000, "ky": 4000, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, 'py': 2000.33, "a1": 1e-3, "a2": 1e-4, "a3": 1e-5} dist_coefs = [{"radial2": 1.5e-3, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5e-3, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5e-3, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5e-3, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5e-3, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5e-3}, {"radial2": 1.5e-3, "radial4": 1.5e-3, "tangential_x": 1.5e-3, "tangential_y": 1.5e-3, "pinwheel1": 1.5e-3, "pinwheel2": 1.5e-3}] pinhole = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for gnoms in pinhole: with self.subTest(**dist, temp=temp, gnoms=gnoms): gnoms = np.array(gnoms).astype(np.float64) mm_dist = model.apply_distortion(np.array(gnoms)) mm_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ mm_dist).T + model.intrinsic_matrix[:, 2]).T pix_undist = model.undistort_pixels(pix_dist, temperature=temp) gnoms *= model.get_temperature_scale(temp) pix_pinhole = ((model.intrinsic_matrix[:, :2] @ gnoms).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_allclose(pix_undist, pix_pinhole, atol=1e-13) def test_pixels_to_unit(self): intrins_param = {"focal_length": 32.7, "kx": 3000, "ky": 4000, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, 'py': 2000.33, "a1": 1e-6, "a2": 1e-7, "a3": -3e-5} dist_coefs = [{"radial2": 1.5e-3, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5e-3, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5e-3, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5e-3, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5e-3, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5e-3}, {"radial2": 1.5e-3, "radial4": 1.5e-3, "tangential_x": 1.5e-3, "tangential_y": 1.5e-3, "pinwheel1": 1.5e-3, "pinwheel2": 1.5e-3}, {"misalignment": np.array([1e-11, 2e-12, -1e-10])}, {"misalignment": np.array([[1e-11, 2e-12, -1e-10], [-1e-13, 1e-11, 2e-12]]), "estimation_parameters": "multiple misalignments"}] camera_vecs = [[0, 0, 1], [0.01, 0, 1], [-0.01, 0, 1], [0, 0.01, 1], [0, -0.01, 1], [0.01, 0.01, 1], [-0.01, -0.01, 1], [[0.01, -0.01], [-0.01, 0.01], [1, 1]]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for vec in camera_vecs: with self.subTest(**dist, temp=temp, vec=vec): pixel_loc = model.project_onto_image(vec, image=-1, temperature=temp) unit_vec = model.pixels_to_unit(pixel_loc, image=-1, temperature=temp) unit_true = np.array(vec).astype(np.float64) unit_true /= np.linalg.norm(unit_true, axis=0, keepdims=True) np.testing.assert_allclose(unit_vec, unit_true, atol=1e-13) def test_overwrite(self): model1 = self.Class(field_of_view=10, intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), distortion_coefficients=np.array([1, 2, 3, 4, 5, 6]), focal_length=60, misalignment=[[1, 2, 3], [4, 5, 6]], use_a_priori=False, estimation_parameters=['multiple misalignments'], a1=0, a2=3, a3=5) model2 = self.Class(field_of_view=20, intrinsic_matrix=np.array([[11, 12, 13], [14, 15, 16]]), distortion_coefficients=np.array([11, 12, 13, 14, 15, 16]), focal_length=160, misalignment=[[11, 12, 13], [14, 15, 16]], use_a_priori=True, estimation_parameters=['single misalignment'], a1=-100, a2=-200, a3=-300) modeltest = model1.copy() modeltest.overwrite(model2) self.assertEqual(modeltest, model2) modeltest = model2.copy() modeltest.overwrite(model1) self.assertEqual(modeltest, model1) def test_intrinsic_matrix_inv(self): model = self.Class(kx=5, ky=10, kxy=20, kyx=-30.4, px=100, py=-5) np.testing.assert_array_almost_equal( model.intrinsic_matrix @ np.vstack([model.intrinsic_matrix_inv, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) np.testing.assert_array_almost_equal( model.intrinsic_matrix_inv @ np.vstack([model.intrinsic_matrix, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) def test_distort_pixels(self): model = self.Class(kx=1000, ky=-950.5, px=4500, py=139.32, a1=1e-3, a2=1e-4, a3=1e-5, kxy=0.5, kyx=-8, radial2=1e-5, radial4=1e-5, pinwheel2=1e-7, pinwheel1=-1e-12, tangential_x=1e-6, tangential_y=2e-12) pixels = [[0, 1], [1, 0], [-1, 0], [0, -1], [9000., 200.2], [[4500, 100, 10.98], [0, 139.23, 200.3]]] temperatures = [0, 1, -1, 10.5, -10.5] for pix in pixels: for temp in temperatures: with self.subTest(pix=pix, temp=temp): undist_pix = model.undistort_pixels(pix, temperature=temp) dist_pix = model.distort_pixels(undist_pix, temperature=temp) np.testing.assert_allclose(dist_pix, pix, atol=1e-10) def test_distortion_map(self): model = self.Class(kx=100, ky=-985.234, px=1000, py=1095, kxy=10, kyx=-5, e1=1e-6, e2=1e-12, e3=-4e-10, e5=6e-7, e6=-1e-5, e4=1e-7, a1=1e-6, a2=-1e-7, a3=4e-12) rows, cols, dist = model.distortion_map((2000, 250), step=10) rl, cl = np.arange(0, 2000, 10), np.arange(0, 250, 10) rs, cs = np.meshgrid(rl, cl, indexing='ij') np.testing.assert_array_equal(rows, rs) np.testing.assert_array_equal(cols, cs) distl = model.distort_pixels(np.vstack([cs.flatten(), rs.flatten()])) np.testing.assert_array_equal(distl - np.vstack([cs.flatten(), rs.flatten()]), dist) class TestBrownModel(TestPinholeModel): def setUp(self): self.Class = BrownModel # Not supported for this model test__compute_dgnomic_dfocal_length = None def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], distortion_coefficients=np.array([1, 2, 3, 4, 5]), estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 6)) model = self.Class(kx=1, fy=2, px=4, py=5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], kxy=80, estimation_parameters=['kx', 'px'], n_rows=500, n_cols=600, radial2=1, radial4=2, k3=3, p1=4, tiptilt_x=5) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 80, 4], [0, 2, 5]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['kx', 'px']) self.assertEqual(model.n_rows, 500) self.assertEqual(model.n_cols, 600) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 6)) def test_fx(self): model = self.Class(intrinsic_matrix=np.array([[1, 0, 0], [0, 0, 0]])) self.assertEqual(model.kx, 1) model.kx = 100 self.assertEqual(model.kx, 100) self.assertEqual(model.intrinsic_matrix[0, 0], 100) def test_fy(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 1, 0]])) self.assertEqual(model.ky, 1) model.ky = 100 self.assertEqual(model.ky, 100) self.assertEqual(model.intrinsic_matrix[1, 1], 100) def test_kxy(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.kxy, 1) model.kxy = 100 self.assertEqual(model.kxy, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_alpha(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.alpha, 1) model.alpha = 100 self.assertEqual(model.alpha, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_k1(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.k1, 1) model.k1 = 100 self.assertEqual(model.k1, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_k2(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.k2, 1) model.k2 = 100 self.assertEqual(model.k2, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_k3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0])) self.assertEqual(model.k3, 1) model.k3 = 100 self.assertEqual(model.k3, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_p1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0])) self.assertEqual(model.p1, 1) model.p1 = 100 self.assertEqual(model.p1, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_p2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1])) self.assertEqual(model.p2, 1) model.p2 = 100 self.assertEqual(model.p2, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_radial2(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.radial2, 1) model.radial2 = 100 self.assertEqual(model.radial2, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_radial4(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.radial4, 1) model.radial4 = 100 self.assertEqual(model.radial4, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_radial6(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0])) self.assertEqual(model.radial6, 1) model.radial6 = 100 self.assertEqual(model.radial6, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_tiptilt_y(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0])) self.assertEqual(model.tiptilt_y, 1) model.tiptilt_y = 100 self.assertEqual(model.tiptilt_y, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_tiptilt_x(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1])) self.assertEqual(model.tiptilt_x, 1) model.tiptilt_x = 100 self.assertEqual(model.tiptilt_x, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_apply_distortion(self): dist_coefs = [{"k1": 1.5, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] solus = [[[0, 0], [2.5, 0], [-2.5, 0], [1.5 + 1.5 ** 4, 0], [-(1.5 + 1.5 ** 4), 0], [[(1.5 + 1.5 ** 4)], [0]], [[(1.5 + 1.5 ** 4), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 4)], [0, -(1.5 + 1.5 ** 4)], [[0], [(1.5 + 1.5 ** 4)]], [[0, 0], [(1.5 + 1.5 ** 4), -2.5]], [1 + 2 * 1.5, 1 + 2 * 1.5]], [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 6), 0], [-(1.5 + 1.5 ** 6), 0], [[(1.5 + 1.5 ** 6)], [0]], [[(1.5 + 1.5 ** 6), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 6)], [0, -(1.5 + 1.5 ** 6)], [[0], [(1.5 + 1.5 ** 6)]], [[0, 0], [(1.5 + 1.5 ** 6), -2.5]], [1 + 4 * 1.5, 1 + 4 * 1.5]], [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 8), 0], [-(1.5 + 1.5 ** 8), 0], [[(1.5 + 1.5 ** 8)], [0]], [[(1.5 + 1.5 ** 8), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 8)], [0, -(1.5 + 1.5 ** 8)], [[0], [(1.5 + 1.5 ** 8)]], [[0, 0], [(1.5 + 1.5 ** 8), -2.5]], [1 + 8 * 1.5, 1 + 8 * 1.5]], [[0, 0], [1, 1.5], [-1, 1.5], [1.5, 1.5 ** 3], [-1.5, 1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, 1.5]], [0, 1 + 3 * 1.5], [0, -1 + 3 * 1.5], [0, 1.5 + 3 * 1.5 ** 3], [0, -1.5 + 3 * 1.5 ** 3], [[0], [1.5 + 3 * 1.5 ** 3]], [[0, 0], [1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5]], [1 + 2 * 1.5, 1 + 4 * 1.5]], [[0, 0], [1 + 3 * 1.5, 0], [-1 + 3 * 1.5, 0], [1.5 + 3 * 1.5 ** 3, 0], [-1.5 + 3 * 1.5 ** 3, 0], [[1.5 + 3 * 1.5 ** 3], [0]], [[1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5], [0, 0]], [1.5, 1], [1.5, -1], [1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[1.5 ** 3], [1.5]], [[1.5 ** 3, 1.5], [1.5, -1]], [1 + 4 * 1.5, 1 + 2 * 1.5]]] for dist, sols in zip(dist_coefs, solus): with self.subTest(**dist): model = self.Class(**dist) for inp, solu in zip(inputs, sols): gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, solu) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, a1=1e-1, a2=-1e-6, a3=3e-7) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: pin, dist, pix = model.get_projections(point, temperature=temp) pin_true = np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) dist_true *= model.get_temperature_scale(temp) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pin, pin_true) np.testing.assert_array_equal(dist, dist_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = -np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = np.array(point[:2]) / point[2] pin_true[0] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = np.array(point[:2]) / point[2] pin_true[1] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point) pin_true = np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point, image=0) pin_true = np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) pin, dist, pix = model.get_projections(point, image=1) pin_true = -np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, a1=1, a2=2, a3=-3) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(temp=temp, misalignment=None): for point in points: _, __, pix = model.get_projections(point, temperature=temp) pix_proj = model.project_onto_image(point, temperature=temp) np.testing.assert_array_equal(pix, pix_proj) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: _, __, pix = model.get_projections(point, image=0) pix_proj = model.project_onto_image(point, image=0) np.testing.assert_array_equal(pix, pix_proj) _, __, pix = model.get_projections(point, image=1) pix_proj = model.project_onto_image(point, image=1) np.testing.assert_array_equal(pix, pix_proj) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(2): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model, delta=1e-8) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-1, atol=1e-10) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T/10, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T/10] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=100, py=100.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.05, k2=-0.03, k3=0.015, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(2): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_ddistorted_gnomic_dgnomic(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] dist_pert_x_f = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) + [0, delta] dist_pert_y_f = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) - [delta, 0] dist_pert_x_b = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) - [0, delta] dist_pert_y_b = cmodel.apply_distortion(loc_pert) return np.array( [(dist_pert_x_f - dist_pert_x_b) / (2 * delta), (dist_pert_y_f - dist_pert_y_b) / (2 * delta)]).T dist_coefs = [{"k1": 1.5, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5}, {"k1": -1.5, "k2": -1.5, "k3": -1.5, "p1": -1.5, "p2": -1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r4 = r ** 4 r6 = r ** 6 num = num_deriv(inp, model) ana = model._compute_ddistorted_gnomic_dgnomic(np.array(inp), r2, r4, r6) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"fx": 1.5, "fy": 0, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 1.5, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 1.5, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 1.5, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 0, "py": 1.5}, {"fx": -1.5, "fy": -1.5, "alpha": -1.5, "px": 1.5, "py": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temps = [0, 1, -1, 10.5, -10.5] for temp in temps: for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef, temp=temp): for inp in inputs: num = num_deriv(np.array(inp), model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_kxy_f - pix_pert_kxy_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"fx": 1.5, "fy": 0, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 1.5, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 1.5, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 1.5, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 0, "py": 1.5}, {"fx": -1.5, "fy": -1.5, "alpha": -1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for inp in inputs: with self.subTest(**intrins_coef, inp=inp): num = num_deriv(inp, model, delta=1e-5) ana = model._compute_dpixel_dintrinsic(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-14, rtol=1e-5) def test__compute_ddistorted_gnomic_ddistortion(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: model_pert = cmodel.copy() model_pert.k1 += delta loc_pert_k1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k2 += delta loc_pert_k2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k3 += delta loc_pert_k3_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p1 += delta loc_pert_p1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p2 += delta loc_pert_p2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k1 -= delta loc_pert_k1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k2 -= delta loc_pert_k2_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k3 -= delta loc_pert_k3_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p1 -= delta loc_pert_p1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p2 -= delta loc_pert_p2_b = model_pert.apply_distortion(loc) return np.array([(loc_pert_k1_f - loc_pert_k1_b) / (2 * delta), (loc_pert_k2_f - loc_pert_k2_b) / (2 * delta), (loc_pert_k3_f - loc_pert_k3_b) / (2 * delta), (loc_pert_p1_f - loc_pert_p1_b) / (2 * delta), (loc_pert_p2_f - loc_pert_p2_b) / (2 * delta)]).T dist_coefs = [{"k1": 1.5, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r4 = r ** 4 r6 = r ** 6 num = num_deriv(np.array(inp), model) ana = model._compute_ddistorted_gnomic_ddistortion(np.array(inp), r2, r4, r6) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dgnomic_dcamera_point(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0, 0] gnom_pert_x_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, delta, 0] gnom_pert_y_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, 0, delta] gnom_pert_z_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [delta, 0, 0] gnom_pert_x_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, delta, 0] gnom_pert_y_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, 0, delta] gnom_pert_z_b = cmodel.get_projections(loc_pert)[0] return np.array([(gnom_pert_x_f - gnom_pert_x_b) / (2 * delta), (gnom_pert_y_f - gnom_pert_y_b) / (2 * delta), (gnom_pert_z_f - gnom_pert_z_b) / (2 * delta)]).T inputs = [[0, 0, 1], [0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [0.5, 1e-14, 1]] model = self.Class() for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dgnomic_dcamera_point(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-9, rtol=1e-5) def test_get_jacobian_row(self): def num_deriv(loc, temp, cmodel, delta=1e-8, image=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.fx += delta pix_pert_fx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy += delta pix_pert_fy_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha += delta pix_pert_skew_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fx -= delta pix_pert_fx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy -= delta pix_pert_fy_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha -= delta pix_pert_skew_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 += delta pix_pert_k1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 += delta pix_pert_k2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 += delta pix_pert_k3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 -= delta pix_pert_k1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 -= delta pix_pert_k2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 -= delta pix_pert_k3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() return np.vstack([(pix_pert_fx_f - pix_pert_fx_b) / (delta * 2), (pix_pert_fy_f - pix_pert_fy_b) / (delta * 2), (pix_pert_skew_f - pix_pert_skew_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_k1_f - pix_pert_k1_b) / (delta * 2), (pix_pert_k2_f - pix_pert_k2_b) / (delta * 2), (pix_pert_k3_f - pix_pert_k3_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta * 2), (pix_pert_my_f - pix_pert_my_b) / (delta * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta * 2)]).T model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True inputs = [[0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [[1], [2], [1200.23]]] temps = [0, 1.5, -10] # TODO: investigate if this is actually correct for temperature in temps: for inp in inputs: with self.subTest(temperature=temperature, inp=inp): num = num_deriv(inp, temperature, model, delta=1e-2) ana = model._get_jacobian_row(np.array(inp), 0, 1, temperature=temperature) np.testing.assert_allclose(ana, num, rtol=1e-1, atol=1e-10) num = num_deriv(inp, temperature, model, delta=1e-2, image=1) ana = model._get_jacobian_row(np.array(inp), 1, 2, temperature=temperature) np.testing.assert_allclose(ana, num, atol=1e-10, rtol=1e-1) def test_compute_jacobian(self): def num_deriv(loc, temp, cmodel, delta=1e-8, image=0, nimages=2) -> np.ndarray: model_pert = cmodel.copy() model_pert.fx += delta pix_pert_fx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy += delta pix_pert_fy_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha += delta pix_pert_skew_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fx -= delta pix_pert_fx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy -= delta pix_pert_fy_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha -= delta pix_pert_skew_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 += delta pix_pert_k1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 += delta pix_pert_k2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 += delta pix_pert_k3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 -= delta pix_pert_k1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 -= delta pix_pert_k2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 -= delta pix_pert_k3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() return np.vstack([(pix_pert_fx_f - pix_pert_fx_b) / (delta * 2), (pix_pert_fy_f - pix_pert_fy_b) / (delta * 2), (pix_pert_skew_f - pix_pert_skew_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_k1_f - pix_pert_k1_b) / (delta * 2), (pix_pert_k2_f - pix_pert_k2_b) / (delta * 2), (pix_pert_k3_f - pix_pert_k3_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta * 2), (pix_pert_my_f - pix_pert_my_b) / (delta * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta * 2), np.zeros(((nimages - image - 1) * 3, 2))]).T model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9], [1e-10, 2e-11, 3e-12]], a1=0.15e-6, a2=-0.01e-7, a3=0.5e-8, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] model.use_a_priori = False temps = [0, -20, 20.5] jac_ana = model.compute_jacobian(inputs, temperature=temps) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): temperature = temps[ind] for vec in inp.T: jac_num.append(num_deriv(vec.T, temperature, model, delta=1e-3, image=ind, nimages=numim)) np.testing.assert_allclose(jac_ana, np.vstack(jac_num), rtol=1e-1, atol=1e-9) model.use_a_priori = True jac_ana = model.compute_jacobian(inputs, temperature=temps) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): temperature = temps[ind] for vec in inp.T: jac_num.append(num_deriv(vec.T, temperature, model, delta=1e-3, image=ind, nimages=numim)) jac_num = np.vstack(jac_num) jac_num = np.pad(jac_num, [(0, jac_num.shape[1]), (0, 0)], 'constant', constant_values=0) jac_num[-jac_num.shape[1]:] = np.eye(jac_num.shape[1]) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-1, atol=1e-9) def test_apply_update(self): model_param = {"fx": 0, "fy": 0, "alpha": 0, "k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 0, 'a1': 0, 'a2': 0, 'a3': 0, "px": 0, "py": 0, "misalignment": [[0, 0, 0], [0, 0, 0]]} model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) update_vec = np.arange(19) model.apply_update(update_vec) keys = list(model_param.keys()) keys.remove('misalignment') for key in keys: self.assertEqual(getattr(model, key), update_vec[model.element_dict[key][0]]) for ind, vec in enumerate(update_vec[13:].reshape(-1, 3)): np.testing.assert_array_almost_equal(at.Rotation(vec).q, at.Rotation(model.misalignment[ind]).q) def test_pixels_to_gnomic(self): intrins_param = {"fx": 3000, "fy": 4000, "alpha": 0.5, "px": 4005.23, 'py': 2000.33, 'a1': 1e-5, 'a2': 1e-6, 'a3': -1e-7} dist_coefs = [{"k1": 1.5e-1, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5e-1, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5e-1, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5e-6, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5e-6}] pinhole = [[0, 0], [0.1, 0], [-0.1, 0], [0.15, 0], [-0.15, 0], [[0.15], [0]], [[0.15, -0.1], [0, 0]], [0, 0.1], [0, -0.1], [0, 0.15], [0, -0.15], [[0], [0.15]], [[0, 0], [0.15, -0.1]], [0.1, 0.1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for fp_pinhole in pinhole: with self.subTest(**dist, temp=temp, fp_pinhole=fp_pinhole): fp_dist = model.apply_distortion(np.array(fp_pinhole)) fp_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ fp_dist).T + model.intrinsic_matrix[:, 2]).T fp_undist = model.pixels_to_gnomic(pix_dist, temperature=temp) np.testing.assert_allclose(fp_undist, fp_pinhole, atol=1e-13) def test_undistort_pixels(self): intrins_param = {"fx": 3000, "fy": 4000, "alpha": 0.5, "px": 4005.23, 'py': 2000.33, 'a1': 1e-5, 'a2': 1e-6, 'a3': -1e-7} dist_coefs = [{"k1": 1.5e-1, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5e-1, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5e-1, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5e-6, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5e-6}] pinhole = [[0, 0], [0.1, 0], [-0.1, 0], [0.15, 0], [-0.15, 0], [[0.15], [0]], [[0.15, -0.1], [0, 0]], [0, 0.1], [0, -0.1], [0, 0.15], [0, -0.15], [[0], [0.15]], [[0, 0], [0.15, -0.1]], [0.1, 0.1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) with self.subTest(**dist, temp=temp): for fp_pinhole in pinhole: fp_pinhole = np.array(fp_pinhole).astype(np.float64) fp_dist = model.apply_distortion(fp_pinhole) fp_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ fp_dist).T + model.intrinsic_matrix[:, 2]).T pix_undist = model.undistort_pixels(pix_dist, temperature=temp) fp_pinhole *= model.get_temperature_scale(temp) pix_pinhole = ((model.intrinsic_matrix[:, :2] @ fp_pinhole).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_allclose(pix_undist, pix_pinhole, atol=1e-13) def test_pixels_to_unit(self): intrins_param = {"fx": 3000, "fy": 4000, "alpha": 0.5, "px": 4005.23, 'py': 2000.33, 'a1': 1e-6, 'a2': -2e-7, 'a3': 4.5e-8} dist_coefs = [{"k1": 1.5e-1, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5e-1, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5e-1, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5e-6, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5e-6}, {"misalignment": np.array([1e-11, 2e-12, -1e-10])}, {"misalignment": np.array([[1e-11, 2e-12, -1e-10], [-1e-13, 1e-11, 2e-12]]), "estimation_parameters": "multiple misalignments"}] camera_vecs = [[0, 0, 1], [0.1, 0, 1], [-0.1, 0, 1], [0, 0.1, 1], [0, -0.1, 1], [0.1, 0.1, 1], [-0.1, -0.1, 1], [[0.1, -0.1], [-0.1, 0.1], [1, 1]]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) with self.subTest(**dist, temp=temp): for vec in camera_vecs: pixel_loc = model.project_onto_image(vec, image=-1, temperature=temp) unit_vec = model.pixels_to_unit(pixel_loc, image=-1, temperature=temp) unit_true = np.array(vec).astype(np.float64) unit_true /= np.linalg.norm(unit_true, axis=0, keepdims=True) np.testing.assert_allclose(unit_vec, unit_true, atol=1e-13) def test_overwrite(self): model1 = self.Class(field_of_view=10, intrinsic_matrix=np.array([[1, 2, 3], [0, 5, 6]]), distortion_coefficients=np.array([1, 2, 3, 4, 5]), misalignment=[[1, 2, 3], [4, 5, 6]], use_a_priori=False, estimation_parameters=['multiple misalignments']) model2 = self.Class(field_of_view=20, intrinsic_matrix=np.array([[11, 12, 13], [0, 15, 16]]), distortion_coefficients=np.array([11, 12, 13, 14, 15]), misalignment=[[11, 12, 13], [14, 15, 16]], use_a_priori=True, estimation_parameters=['single misalignment']) modeltest = model1.copy() modeltest.overwrite(model2) self.assertEqual(model2.field_of_view, modeltest.field_of_view) self.assertEqual(model2.use_a_priori, modeltest.use_a_priori) self.assertEqual(model2.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model2.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model2.distortion_coefficients, modeltest.distortion_coefficients) np.testing.assert_array_equal(model2.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model2.estimation_parameters, modeltest.estimation_parameters) modeltest = model2.copy() modeltest.overwrite(model1) self.assertEqual(model1.field_of_view, modeltest.field_of_view) self.assertEqual(model1.use_a_priori, modeltest.use_a_priori) self.assertEqual(model1.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model1.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model1.distortion_coefficients, modeltest.distortion_coefficients) np.testing.assert_array_equal(model1.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model1.estimation_parameters, modeltest.estimation_parameters) def test_distort_pixels(self): model = self.Class(kx=1000, ky=-950.5, px=4500, py=139.32, a1=1e-3, a2=1e-4, a3=1e-5, kxy=0.5, radial2=1e-5, radial4=1e-5, radial6=1e-7, tiptilt_x=1e-6, tiptilt_y=2e-12) pixels = [[0, 1], [1, 0], [-1, 0], [0, -1], [9000., 200.2], [[4500, 100, 10.98], [0, 139.23, 200.3]]] temperatures = [0, 1, -1, 10.5, -10.5] for pix in pixels: for temp in temperatures: with self.subTest(pix=pix, temp=temp): undist_pix = model.undistort_pixels(pix, temperature=temp) dist_pix = model.distort_pixels(undist_pix, temperature=temp) np.testing.assert_allclose(dist_pix, pix, atol=1e-10) def test_to_from_elem(self): element = etree.Element(self.Class.__name__) model = self.Class(field_of_view=5, use_a_priori=True, misalignment=[1, 2, 3], kx=2, ky=200, px=50, py=300, kxy=12123, a1=37, a2=1, a3=-1230, k1=5, k2=10, k3=20, p1=-10, p2=35, estimation_parameters=['kx', 'multiple misalignments'], n_rows=20, n_cols=30) model_copy = model.copy() with self.subTest(misalignment=True): element = model.to_elem(element, misalignment=True) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) self.assertEqual(model, model_new) with self.subTest(misalignment=False): element = model.to_elem(element, misalignment=False) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) model.estimation_parameters[-1] = 'single misalignment' model.estimate_multiple_misalignments = False model.misalignment = np.zeros(3) self.assertEqual(model, model_new) def test_distortion_map(self): model = self.Class(kx=100, ky=-985.234, px=1000, py=1095, kxy=10, k1=1e-6, k2=1e-12, k3=-4e-10, p1=6e-7, p2=-1e-5, a1=1e-6, a2=-1e-7, a3=4e-12) rows, cols, dist = model.distortion_map((2000, 250), step=10) rl, cl = np.arange(0, 2000, 10), np.arange(0, 250, 10) rs, cs = np.meshgrid(rl, cl, indexing='ij') np.testing.assert_array_equal(rows, rs) np.testing.assert_array_equal(cols, cs) distl = model.distort_pixels(np.vstack([cs.flatten(), rs.flatten()])) np.testing.assert_array_equal(distl - np.vstack([cs.flatten(), rs.flatten()]), dist) class TestOpenCVModel(TestPinholeModel): def setUp(self): self.Class = OpenCVModel # Not supported for this model test__compute_dgnomic_dfocal_length = None def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], distortion_coefficients=np.array([1, 2, 3, 4, 5]), estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 6)) model = self.Class(kx=1, fy=2, px=4, py=5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], kxy=80, estimation_parameters=['kx', 'px'], n_rows=500, n_cols=600, radial2n=1, radial4n=2, k3=3, p1=4, tiptilt_x=5, radial2d=9, k5=100, k6=-90, s1=400, thinprism_2=-500, s3=600, s4=5) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 80, 4], [0, 2, 5]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['kx', 'px']) self.assertEqual(model.n_rows, 500) self.assertEqual(model.n_cols, 600) np.testing.assert_array_equal(model.distortion_coefficients, [1, 2, 3, 9, 100, -90, 4, 5, 400, -500, 600, 5]) def test_fx(self): model = self.Class(intrinsic_matrix=np.array([[1, 0, 0], [0, 0, 0]])) self.assertEqual(model.kx, 1) model.kx = 100 self.assertEqual(model.kx, 100) self.assertEqual(model.intrinsic_matrix[0, 0], 100) def test_fy(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 1, 0]])) self.assertEqual(model.ky, 1) model.ky = 100 self.assertEqual(model.ky, 100) self.assertEqual(model.intrinsic_matrix[1, 1], 100) def test_kxy(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.kxy, 1) model.kxy = 100 self.assertEqual(model.kxy, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_alpha(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.alpha, 1) model.alpha = 100 self.assertEqual(model.alpha, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_k1(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.k1, 1) model.k1 = 100 self.assertEqual(model.k1, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_k2(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.k2, 1) model.k2 = 100 self.assertEqual(model.k2, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_k3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.k3, 1) model.k3 = 100 self.assertEqual(model.k3, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_k4(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.k4, 1) model.k4 = 100 self.assertEqual(model.k4, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_k5(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.k5, 1) model.k5 = 100 self.assertEqual(model.k5, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_k6(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.k6, 1) model.k6 = 100 self.assertEqual(model.k6, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_p1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 1, 0])) self.assertEqual(model.p1, 1) model.p1 = 100 self.assertEqual(model.p1, 100) self.assertEqual(model.distortion_coefficients[6], 100) def test_p2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 1])) self.assertEqual(model.p2, 1) model.p2 = 100 self.assertEqual(model.p2, 100) self.assertEqual(model.distortion_coefficients[7], 100) def test_s1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0])) self.assertEqual(model.s1, 1) model.s1 = 100 self.assertEqual(model.s1, 100) self.assertEqual(model.distortion_coefficients[8], 100) def test_s2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0])) self.assertEqual(model.s2, 1) model.s2 = 100 self.assertEqual(model.s2, 100) self.assertEqual(model.distortion_coefficients[9], 100) def test_s3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0])) self.assertEqual(model.s3, 1) model.s3 = 100 self.assertEqual(model.s3, 100) self.assertEqual(model.distortion_coefficients[10], 100) def test_s4(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])) self.assertEqual(model.s4, 1) model.s4 = 100 self.assertEqual(model.s4, 100) self.assertEqual(model.distortion_coefficients[11], 100) def test_radial2n(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.radial2n, 1) model.radial2n = 100 self.assertEqual(model.radial2n, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_radial4n(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.radial4n, 1) model.radial4n = 100 self.assertEqual(model.radial4n, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_radial6n(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0])) self.assertEqual(model.radial6n, 1) model.radial6n = 100 self.assertEqual(model.radial6n, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_radial2d(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.radial2d, 1) model.radial2d = 100 self.assertEqual(model.radial2d, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_radial4d(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.radial4d, 1) model.radial4d = 100 self.assertEqual(model.radial4d, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_radial6d(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.radial6d, 1) model.radial6d = 100 self.assertEqual(model.radial6d, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_tiptilt_y(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 1, 0])) self.assertEqual(model.tiptilt_y, 1) model.tiptilt_y = 100 self.assertEqual(model.tiptilt_y, 100) self.assertEqual(model.distortion_coefficients[6], 100) def test_tiptilt_x(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 1])) self.assertEqual(model.tiptilt_x, 1) model.tiptilt_x = 100 self.assertEqual(model.tiptilt_x, 100) self.assertEqual(model.distortion_coefficients[7], 100) def test_thinprism_1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0])) self.assertEqual(model.thinprism_1, 1) model.thinprism_1 = 100 self.assertEqual(model.thinprism_1, 100) self.assertEqual(model.distortion_coefficients[8], 100) def test_thinprism_2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0])) self.assertEqual(model.thinprism_2, 1) model.thinprism_2 = 100 self.assertEqual(model.thinprism_2, 100) self.assertEqual(model.distortion_coefficients[9], 100) def test_thinprism_3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0])) self.assertEqual(model.thinprism_3, 1) model.thinprism_3 = 100 self.assertEqual(model.thinprism_3, 100) self.assertEqual(model.distortion_coefficients[10], 100) def test_thinprism_4(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])) self.assertEqual(model.thinprism_4, 1) model.thinprism_4 = 100 self.assertEqual(model.thinprism_4, 100) self.assertEqual(model.distortion_coefficients[11], 100) def test_apply_distortion(self): dist_coefs = [{"k1": 1.5}, {"k2": 1.5}, {"k3": 1.5}, {"p1": 1.5}, {"p2": 1.5}, {"k4": 1.5}, {"k5": 1.5}, {"k6": 1.5}, {"s1": 1.5}, {"s2": 1.5}, {"s3": 1.5}, {"s4": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] solus = [ # k1 [[0, 0], [2.5, 0], [-2.5, 0], [1.5 + 1.5 ** 4, 0], [-(1.5 + 1.5 ** 4), 0], [[(1.5 + 1.5 ** 4)], [0]], [[(1.5 + 1.5 ** 4), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 4)], [0, -(1.5 + 1.5 ** 4)], [[0], [(1.5 + 1.5 ** 4)]], [[0, 0], [(1.5 + 1.5 ** 4), -2.5]], [1 + 2 * 1.5, 1 + 2 * 1.5]], # k2 [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 6), 0], [-(1.5 + 1.5 ** 6), 0], [[(1.5 + 1.5 ** 6)], [0]], [[(1.5 + 1.5 ** 6), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 6)], [0, -(1.5 + 1.5 ** 6)], [[0], [(1.5 + 1.5 ** 6)]], [[0, 0], [(1.5 + 1.5 ** 6), -2.5]], [1 + 4 * 1.5, 1 + 4 * 1.5]], # k3 [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 8), 0], [-(1.5 + 1.5 ** 8), 0], [[(1.5 + 1.5 ** 8)], [0]], [[(1.5 + 1.5 ** 8), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 8)], [0, -(1.5 + 1.5 ** 8)], [[0], [(1.5 + 1.5 ** 8)]], [[0, 0], [(1.5 + 1.5 ** 8), -2.5]], [1 + 8 * 1.5, 1 + 8 * 1.5]], # p1 [[0, 0], [1, 1.5], [-1, 1.5], [1.5, 1.5 ** 3], [-1.5, 1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, 1.5]], [0, 1 + 3 * 1.5], [0, -1 + 3 * 1.5], [0, 1.5 + 3 * 1.5 ** 3], [0, -1.5 + 3 * 1.5 ** 3], [[0], [1.5 + 3 * 1.5 ** 3]], [[0, 0], [1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5]], [1 + 2 * 1.5, 1 + 4 * 1.5]], # p2 [[0, 0], [1 + 3 * 1.5, 0], [-1 + 3 * 1.5, 0], [1.5 + 3 * 1.5 ** 3, 0], [-1.5 + 3 * 1.5 ** 3, 0], [[1.5 + 3 * 1.5 ** 3], [0]], [[1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5], [0, 0]], [1.5, 1], [1.5, -1], [1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[1.5 ** 3], [1.5]], [[1.5 ** 3, 1.5], [1.5, -1]], [1 + 4 * 1.5, 1 + 2 * 1.5]], # k4 [[0, 0], [1 / 2.5, 0], [-1 / 2.5, 0], [1.5 / (1 + 1.5 ** 3), 0], [-1.5 / (1 + 1.5 ** 3), 0], [[1.5 / (1 + 1.5 ** 3)], [0]], [[1.5 / (1 + 1.5 ** 3), -1 / 2.5], [0, 0]], [0, 1 / 2.5], [0, -1 / 2.5], [0, 1.5 / (1 + 1.5 ** 3)], [0, -1.5 / (1 + 1.5 ** 3)], [[0], [1.5 / (1 + 1.5 ** 3)]], [[0, 0], [1.5 / (1 + 1.5 ** 3), -1 / 2.5]], [1 / 4, 1 / 4]], # k5 [[0, 0], [1 / 2.5, 0], [-1 / 2.5, 0], [1.5 / (1 + 1.5 ** 5), 0], [-1.5 / (1 + 1.5 ** 5), 0], [[1.5 / (1 + 1.5 ** 5)], [0]], [[1.5 / (1 + 1.5 ** 5), -1 / 2.5], [0, 0]], [0, 1 / 2.5], [0, -1 / 2.5], [0, 1.5 / (1 + 1.5 ** 5)], [0, -1.5 / (1 + 1.5 ** 5)], [[0], [1.5 / (1 + 1.5 ** 5)]], [[0, 0], [1.5 / (1 + 1.5 ** 5), -1 / 2.5]], [1 / 7, 1 / 7]], # k6 [[0, 0], [1 / 2.5, 0], [-1 / 2.5, 0], [1.5 / (1 + 1.5 ** 7), 0], [-1.5 / (1 + 1.5 ** 7), 0], [[1.5 / (1 + 1.5 ** 7)], [0]], [[1.5 / (1 + 1.5 ** 7), -1 / 2.5], [0, 0]], [0, 1 / 2.5], [0, -1 / 2.5], [0, 1.5 / (1 + 1.5 ** 7)], [0, -1.5 / (1 + 1.5 ** 7)], [[0], [1.5 / (1 + 1.5 ** 7)]], [[0, 0], [1.5 / (1 + 1.5 ** 7), -1 / 2.5]], [1 / 13, 1 / 13]], # s1 [[0, 0], [1 + 1.5, 0], [-1 + 1.5, 0], [1.5 + 1.5 ** 3, 0], [-1.5 + 1.5 ** 3, 0], [[1.5 + 1.5 ** 3], [0]], [[1.5 + 1.5 ** 3, -1 + 1.5], [0, 0]], [1.5, 1], [1.5, -1], [1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[1.5 ** 3], [1.5]], [[1.5 ** 3, 1.5], [1.5, -1]], [1 + 2 * 1.5, 1]], # s2 [[0, 0], [1 + 1.5, 0], [-1 + 1.5, 0], [1.5 + 1.5 ** 5, 0], [-1.5 + 1.5 ** 5, 0], [[1.5 + 1.5 ** 5], [0]], [[1.5 + 1.5 ** 5, -1 + 1.5], [0, 0]], [1.5, 1], [1.5, -1], [1.5 ** 5, 1.5], [1.5 ** 5, -1.5], [[1.5 ** 5], [1.5]], [[1.5 ** 5, 1.5], [1.5, -1]], [1 + 4 * 1.5, 1]], # s3 [[0, 0], [1, 1.5], [-1, 1.5], [1.5, 1.5 ** 3], [-1.5, 1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, 1.5]], [0, 1 + 1.5], [0, -1 + 1.5], [0, 1.5 + 1.5 ** 3], [0, -1.5 + 1.5 ** 3], [[0], [1.5 + 1.5 ** 3]], [[0, 0], [1.5 + 1.5 ** 3, -1 + 1.5]], [1, 1 + 2 * 1.5]], # s4 [[0, 0], [1, 1.5], [-1, 1.5], [1.5, 1.5 ** 5], [-1.5, 1.5 ** 5], [[1.5], [1.5 ** 5]], [[1.5, -1], [1.5 ** 5, 1.5]], [0, 1 + 1.5], [0, -1 + 1.5], [0, 1.5 + 1.5 ** 5], [0, -1.5 + 1.5 ** 5], [[0], [1.5 + 1.5 ** 5]], [[0, 0], [1.5 + 1.5 ** 5, -1 + 1.5]], [1, 1 + 4 * 1.5]] ] for dist, sols in zip(dist_coefs, solus): model = self.Class(**dist) for inp, solu in zip(inputs, sols): with self.subTest(**dist, inp=inp): gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, solu) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, a1=1e-1, a2=-1e-6, a3=3e-7, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: pin, dist, pix = model.get_projections(point, temperature=temp) pin_true = np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) dist_true *= model.get_temperature_scale(temp) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pin, pin_true) np.testing.assert_array_equal(dist, dist_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = -np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = np.array(point[:2]) / point[2] pin_true[0] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = np.array(point[:2]) / point[2] pin_true[1] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point) pin_true = np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point, image=0) pin_true = np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) pin, dist, pix = model.get_projections(point, image=1) pin_true = -np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, a1=1, a2=2, a3=-3, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1 ) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(temp=temp, misalignment=None): for point in points: _, __, pix = model.get_projections(point, temperature=temp) pix_proj = model.project_onto_image(point, temperature=temp) np.testing.assert_array_equal(pix, pix_proj) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: _, __, pix = model.get_projections(point, image=0) pix_proj = model.project_onto_image(point, image=0) np.testing.assert_array_equal(pix, pix_proj) _, __, pix = model.get_projections(point, image=1) pix_proj = model.project_onto_image(point, image=1) np.testing.assert_array_equal(pix, pix_proj) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=-0.5, k5=0.02, k6=0.01, s1=-0.45, s2=0.0045, s3=-0.8, s4=0.9, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(2): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=-0.5, k5=0.02, k6=0.01, s1=-0.45, s2=0.0045, s3=-0.8, s4=0.9, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T/100, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T/100] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.005, k2=-0.003, k3=0.0015, p1=1e-7, p2=1e-6, k4=-0.005, k5=0.0002, k6=0.0001, s1=-0.0045, s2=0.000045, s3=-0.008, s4=0.009, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model, delta=1e-4) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-1, atol=1e-10) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T/10, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T/10] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=100, py=100.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.005, k2=-0.003, k3=0.0015, p1=1e-7, p2=1e-6, k4=-0.005, k5=0.0002, k6=0.0001, s1=-0.0045, s2=0.000045, s3=-0.008, s4=0.009, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(2): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_ddistorted_gnomic_dgnomic(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] dist_pert_x_f = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) + [0, delta] dist_pert_y_f = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) - [delta, 0] dist_pert_x_b = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) - [0, delta] dist_pert_y_b = cmodel.apply_distortion(loc_pert) return np.array( [(dist_pert_x_f - dist_pert_x_b) / (2 * delta), (dist_pert_y_f - dist_pert_y_b) / (2 * delta)]).T dist_coefs = [{"k1": 1.5}, {"k2": 1.5}, {"k3": 1.5}, {"p1": 1.5}, {"p2": 1.5}, {"k4": 1.5}, {"k5": 1.5}, {"k6": 1.5}, {"s1": 1.5}, {"s2": 1.5}, {"s3": 1.5}, {"s4": 1.5}, {"k1": -1.5, "k2": -1.5, "k3": -1.5, "p1": -1.5, "p2": -1.5, "k4": -1.5, "k5": -1.5, "k6": -1.5, "s1": -1.5, "s2": -1.5, "s3": -1.5, "s4": -1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) for inp in inputs: with self.subTest(**dist_coef, inp=inp): r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r4 = r ** 4 r6 = r ** 6 num = num_deriv(inp, model) ana = model._compute_ddistorted_gnomic_dgnomic(np.array(inp), r2, r4, r6) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"fx": 1.5, "fy": 0, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 1.5, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 1.5, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 1.5, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 0, "py": 1.5}, {"fx": -1.5, "fy": -1.5, "alpha": -1.5, "px": 1.5, "py": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temps = [0, 1, -1, 10.5, -10.5] for temp in temps: for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef, temp=temp): for inp in inputs: num = num_deriv(np.array(inp), model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_kxy_f - pix_pert_kxy_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"fx": 1.5, "fy": 0, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 1.5, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 1.5, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 1.5, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 0, "py": 1.5}, {"fx": -1.5, "fy": -1.5, "alpha": -1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for inp in inputs: with self.subTest(**intrins_coef, inp=inp): num = num_deriv(inp, model, delta=1e-5) ana = model._compute_dpixel_dintrinsic(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-14, rtol=1e-5) def test__compute_ddistorted_gnomic_ddistortion(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: model_pert = cmodel.copy() model_pert.k1 += delta loc_pert_k1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k2 += delta loc_pert_k2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k3 += delta loc_pert_k3_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k4 += delta loc_pert_k4_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k5 += delta loc_pert_k5_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k6 += delta loc_pert_k6_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p1 += delta loc_pert_p1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p2 += delta loc_pert_p2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.s1 += delta loc_pert_s1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.s2 += delta loc_pert_s2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.s3 += delta loc_pert_s3_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.s4 += delta loc_pert_s4_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k1 -= delta loc_pert_k1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k2 -= delta loc_pert_k2_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k3 -= delta loc_pert_k3_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k4 -= delta loc_pert_k4_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k5 -= delta loc_pert_k5_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k6 -= delta loc_pert_k6_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p1 -= delta loc_pert_p1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p2 -= delta loc_pert_p2_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.s1 -= delta loc_pert_s1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.s2 -= delta loc_pert_s2_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.s3 -= delta loc_pert_s3_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.s4 -= delta loc_pert_s4_b = model_pert.apply_distortion(loc) return np.array([(loc_pert_k1_f - loc_pert_k1_b) / (2 * delta), (loc_pert_k2_f - loc_pert_k2_b) / (2 * delta), (loc_pert_k3_f - loc_pert_k3_b) / (2 * delta), (loc_pert_k4_f - loc_pert_k4_b) / (2 * delta), (loc_pert_k5_f - loc_pert_k5_b) / (2 * delta), (loc_pert_k6_f - loc_pert_k6_b) / (2 * delta), (loc_pert_p1_f - loc_pert_p1_b) / (2 * delta), (loc_pert_p2_f - loc_pert_p2_b) / (2 * delta), (loc_pert_s1_f - loc_pert_s1_b) / (2 * delta), (loc_pert_s2_f - loc_pert_s2_b) / (2 * delta), (loc_pert_s3_f - loc_pert_s3_b) / (2 * delta), (loc_pert_s4_f - loc_pert_s4_b) / (2 * delta)]).T dist_coefs = [{"k1": 1.5}, {"k2": 1.5}, {"k3": 1.5}, {"p1": 1.5}, {"p2": 1.5}, {"k4": 1.5}, {"k5": 1.5}, {"k6": 1.5}, {"s1": 1.5}, {"s2": 1.5}, {"s3": 1.5}, {"s4": 1.5}, {"k1": -1.5, "k2": -1.5, "k3": -1.5, "p1": -1.5, "p2": -1.5, "k4": -1.5, "k5": -1.5, "k6": -1.5, "s1": -1.5, "s2": -1.5, "s3": -1.5, "s4": -1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r4 = r ** 4 r6 = r ** 6 num = num_deriv(np.array(inp), model) ana = model._compute_ddistorted_gnomic_ddistortion(np.array(inp), r2, r4, r6) np.testing.assert_allclose(num, ana, rtol=1e-5, atol=1e-14) def test__compute_dgnomic_dcamera_point(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0, 0] gnom_pert_x_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, delta, 0] gnom_pert_y_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, 0, delta] gnom_pert_z_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [delta, 0, 0] gnom_pert_x_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, delta, 0] gnom_pert_y_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, 0, delta] gnom_pert_z_b = cmodel.get_projections(loc_pert)[0] return np.array([(gnom_pert_x_f - gnom_pert_x_b) / (2 * delta), (gnom_pert_y_f - gnom_pert_y_b) / (2 * delta), (gnom_pert_z_f - gnom_pert_z_b) / (2 * delta)]).T inputs = [[0, 0, 1], [0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [0.5, 1e-14, 1]] model = self.Class() for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dgnomic_dcamera_point(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-9, rtol=1e-5) def test_get_jacobian_row(self): def num_deriv(loc, temp, cmodel, delta=1e-8, image=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.fx += delta pix_pert_fx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy += delta pix_pert_fy_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha += delta pix_pert_skew_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fx -= delta pix_pert_fx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy -= delta pix_pert_fy_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha -= delta pix_pert_skew_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 += delta pix_pert_k1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 += delta pix_pert_k2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 += delta pix_pert_k3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k4 += delta pix_pert_k4_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k5 += delta pix_pert_k5_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k6 += delta pix_pert_k6_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s1 += delta pix_pert_s1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s2 += delta pix_pert_s2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s3 += delta pix_pert_s3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s4 += delta pix_pert_s4_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 -= delta pix_pert_k1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 -= delta pix_pert_k2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 -= delta pix_pert_k3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k4 -= delta pix_pert_k4_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k5 -= delta pix_pert_k5_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k6 -= delta pix_pert_k6_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s1 -= delta pix_pert_s1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s2 -= delta pix_pert_s2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s3 -= delta pix_pert_s3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s4 -= delta pix_pert_s4_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() return np.vstack([(pix_pert_fx_f - pix_pert_fx_b) / (delta * 2), (pix_pert_fy_f - pix_pert_fy_b) / (delta * 2), (pix_pert_skew_f - pix_pert_skew_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_k1_f - pix_pert_k1_b) / (delta * 2), (pix_pert_k2_f - pix_pert_k2_b) / (delta * 2), (pix_pert_k3_f - pix_pert_k3_b) / (delta * 2), (pix_pert_k4_f - pix_pert_k4_b) / (delta * 2), (pix_pert_k5_f - pix_pert_k5_b) / (delta * 2), (pix_pert_k6_f - pix_pert_k6_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_s1_f - pix_pert_s1_b) / (delta * 2), (pix_pert_s2_f - pix_pert_s2_b) / (delta * 2), (pix_pert_s3_f - pix_pert_s3_b) / (delta * 2), (pix_pert_s4_f - pix_pert_s4_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta * 2), (pix_pert_my_f - pix_pert_my_b) / (delta * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta * 2)]).T model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=-0.5, k5=0.02, k6=0.01, s1=-0.45, s2=0.0045, s3=-0.8, s4=0.9, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True inputs = [[0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [[1], [2], [1200.23]]] temps = [0, 1.5, -10] # TODO: investigate if this is actually correct for temperature in temps: for inp in inputs: with self.subTest(temperature=temperature, inp=inp): num = num_deriv(inp, temperature, model, delta=1e-2) ana = model._get_jacobian_row(np.array(inp), 0, 1, temperature=temperature) np.testing.assert_allclose(ana, num, rtol=1e-1, atol=1e-10) num = num_deriv(inp, temperature, model, delta=1e-2, image=1) ana = model._get_jacobian_row(np.array(inp), 1, 2, temperature=temperature) np.testing.assert_allclose(ana, num, atol=1e-10, rtol=1e-1) def test_compute_jacobian(self): def num_deriv(loc, temp, cmodel, delta=1e-8, image=0, nimages=2) -> np.ndarray: model_pert = cmodel.copy() model_pert.fx += delta pix_pert_fx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy += delta pix_pert_fy_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha += delta pix_pert_skew_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fx -= delta pix_pert_fx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy -= delta pix_pert_fy_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha -= delta pix_pert_skew_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 += delta pix_pert_k1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 += delta pix_pert_k2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 += delta pix_pert_k3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k4 += delta pix_pert_k4_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k5 += delta pix_pert_k5_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k6 += delta pix_pert_k6_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s1 += delta pix_pert_s1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s2 += delta pix_pert_s2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s3 += delta pix_pert_s3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s4 += delta pix_pert_s4_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 -= delta pix_pert_k1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 -= delta pix_pert_k2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 -= delta pix_pert_k3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k4 -= delta pix_pert_k4_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k5 -= delta pix_pert_k5_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k6 -= delta pix_pert_k6_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s1 -= delta pix_pert_s1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s2 -= delta pix_pert_s2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s3 -= delta pix_pert_s3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.s4 -= delta pix_pert_s4_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() return np.vstack([(pix_pert_fx_f - pix_pert_fx_b) / (delta * 2), (pix_pert_fy_f - pix_pert_fy_b) / (delta * 2), (pix_pert_skew_f - pix_pert_skew_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_k1_f - pix_pert_k1_b) / (delta * 2), (pix_pert_k2_f - pix_pert_k2_b) / (delta * 2), (pix_pert_k3_f - pix_pert_k3_b) / (delta * 2), (pix_pert_k4_f - pix_pert_k4_b) / (delta * 2), (pix_pert_k5_f - pix_pert_k5_b) / (delta * 2), (pix_pert_k6_f - pix_pert_k6_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_s1_f - pix_pert_s1_b) / (delta * 2), (pix_pert_s2_f - pix_pert_s2_b) / (delta * 2), (pix_pert_s3_f - pix_pert_s3_b) / (delta * 2), (pix_pert_s4_f - pix_pert_s4_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta * 2), (pix_pert_my_f - pix_pert_my_b) / (delta * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta * 2), np.zeros(((nimages - image - 1) * 3, 2))]).T model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=-0.5, k5=0.02, k6=0.01, s1=-0.45, s2=0.0045, s3=-0.8, s4=0.9, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9], [1e-10, 2e-11, 3e-12]], a1=0.15e-6, a2=-0.01e-7, a3=0.5e-8, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] model.use_a_priori = False temps = [0, -20, 20.5] jac_ana = model.compute_jacobian(inputs, temperature=temps) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): temperature = temps[ind] for vec in inp.T: jac_num.append(num_deriv(vec.T, temperature, model, delta=1e-3, image=ind, nimages=numim)) np.testing.assert_allclose(jac_ana, np.vstack(jac_num), rtol=1e-1, atol=1e-9) model.use_a_priori = True jac_ana = model.compute_jacobian(inputs, temperature=temps) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): temperature = temps[ind] for vec in inp.T: jac_num.append(num_deriv(vec.T, temperature, model, delta=1e-3, image=ind, nimages=numim)) jac_num = np.vstack(jac_num) jac_num =
np.pad(jac_num, [(0, jac_num.shape[1]), (0, 0)], 'constant', constant_values=0)
numpy.pad
import numpy as np import scipy.linalg from scipy.special import gammaln, digamma from suffstats import ParamBag, SuffStatBag from util import LOGTWO, LOGPI, LOGTWOPI, EPS from util import dotATA, dotATB, dotABT from util import as1D, as2D, as3D from util import numpyToSharedMemArray, fillSharedMemArray from obsmodel.AbstractObsModel import AbstractObsModel from obsmodel.GaussObsModel import createECovMatFromUserInput class AutoRegGaussObsModel(AbstractObsModel): ''' First-order auto-regressive data generation model. Attributes for Prior (Matrix-Normal-Wishart) -------- nu : float degrees of freedom B : 2D array, size D x D scale matrix that sets mean of parameter Sigma M : 2D array, size D x E sets mean of parameter A V : 2D array, size E x E scale matrix that sets covariance of parameter A Attributes for k-th component of EstParams (EM point estimates) --------- A[k] : 2D array, size D x E coefficient matrix for auto-regression. Sigma[k] : 2D array, size D x D covariance matrix. Attributes for k-th component of Post (VB parameter) --------- nu[k] : float B[k] : 2D array, size D x D M[k] : 2D array, size D x E V[k] : 2D array, size E x E ''' def __init__(self, inferType='EM', D=None, E=None, min_covar=None, Data=None, **PriorArgs): ''' Initialize bare obsmodel with valid prior hyperparameters. Resulting object lacks either EstParams or Post, which must be created separately (see init_global_params). ''' # Set dimension D if Data is not None: D = Data.X.shape[1] else: assert D is not None D = int(D) self.D = D # Set dimension E if Data is not None: E = Data.Xprev.shape[1] else: assert E is not None E = int(E) self.E = E self.K = 0 self.inferType = inferType self.min_covar = min_covar self.createPrior(Data, D=D, E=E, **PriorArgs) self.Cache = dict() def createPrior( self, Data, D=None, E=None, nu=0, B=None, M=None, V=None, ECovMat=None, sF=1.0, VMat='eye', sV=1.0, MMat='zero', sM=1.0, **kwargs): ''' Initialize Prior ParamBag attribute. Post Condition ------ Prior expected covariance matrix set to match provided value. ''' if Data is None: if D is None: raise ValueError("Need to specify dimension D") if E is None: raise ValueError("Need to specify dimension E") if Data is not None: if D is None: D = Data.X.shape[1] else: assert D == Data.X.shape[1] if E is None: E = Data.Xprev.shape[1] else: assert E == Data.Xprev.shape[1] nu = np.maximum(nu, D + 2) if B is None: if ECovMat is None or isinstance(ECovMat, str): ECovMat = createECovMatFromUserInput(D, Data, ECovMat, sF) B = ECovMat * (nu - D - 1) B = as2D(B) if M is None: if MMat == 'zero': M = np.zeros((D, E)) elif MMat == 'eye': assert D <= E M = sM * np.eye(D) M = np.hstack([M, np.zeros((D, E-D))]) assert M.shape == (D,E) else: raise ValueError('Unrecognized MMat: %s' % (MMat)) else: M = as2D(M) if V is None: if VMat == 'eye': V = sV * np.eye(E) elif VMat == 'same': assert D == E V = sV * ECovMat else: raise ValueError('Unrecognized VMat: %s' % (VMat)) else: V = as2D(V) self.Prior = ParamBag(K=0, D=D, E=E) self.Prior.setField('nu', nu, dims=None) self.Prior.setField('B', B, dims=('D', 'D')) self.Prior.setField('V', V, dims=('E', 'E')) self.Prior.setField('M', M, dims=('D', 'E')) def get_mean_for_comp(self, k=None): if k is None or k == 'prior': return np.diag(self.Prior.M) elif hasattr(self, 'EstParams'): return np.diag(self.EstParams.A[k]) else: return np.diag(self.Post.M[k]) def get_covar_mat_for_comp(self, k=None): if k is None or k == 'prior': return self._E_CovMat() elif hasattr(self, 'EstParams'): return self.EstParams.Sigma[k] else: return self._E_CovMat(k) def get_name(self): return 'AutoRegGauss' def get_info_string(self): return 'Auto-Regressive Gaussian with full covariance.' def get_info_string_prior(self): msg = 'MatrixNormal-Wishart on each mean/prec matrix pair: A, Lam\n' if self.D > 2: sfx = ' ...' else: sfx = '' M = self.Prior.M[:2, :2] S = self._E_CovMat()[:2, :2] msg += 'E[ A ] = \n' msg += str(M) + sfx + '\n' msg += 'E[ Sigma ] = \n' msg += str(S) + sfx msg = msg.replace('\n', '\n ') return msg def setEstParams(self, obsModel=None, SS=None, LP=None, Data=None, A=None, Sigma=None, **kwargs): ''' Initialize EstParams attribute with fields A, Sigma. ''' self.ClearCache() if obsModel is not None: self.EstParams = obsModel.EstParams.copy() self.K = self.EstParams.K return if LP is not None and Data is not None: SS = self.calcSummaryStats(Data, None, LP) if SS is not None: self.updateEstParams(SS) else: A = as3D(A) Sigma = as3D(Sigma) self.EstParams = ParamBag( K=A.shape[0], D=A.shape[1], E=A.shape[2]) self.EstParams.setField('A', A, dims=('K', 'D', 'E')) self.EstParams.setField('Sigma', Sigma, dims=('K', 'D', 'D')) def setEstParamsFromPost(self, Post): ''' Convert from Post to EstParams. ''' D = Post.D self.EstParams = ParamBag(K=Post.K, D=D, E=Post.E) A = Post.M.copy() Sigma = Post.B / (Post.nu - D - 1)[:, np.newaxis, np.newaxis] self.EstParams.setField('A', A, dims=('K', 'D', 'E')) self.EstParams.setField('Sigma', Sigma, dims=('K', 'D', 'D')) self.K = self.EstParams.K def setPostFactors(self, obsModel=None, SS=None, LP=None, Data=None, nu=0, B=0, M=0, V=0, **kwargs): ''' Set Post attribute to provided values. ''' self.ClearCache() if obsModel is not None: if hasattr(obsModel, 'Post'): self.Post = obsModel.Post.copy() else: self.setPostFromEstParams(obsModel.EstParams) self.K = self.Post.K return if LP is not None and Data is not None: SS = self.calcSummaryStats(Data, None, LP) if SS is not None: self.updatePost(SS) else: M = as3D(M) B = as3D(B) V = as3D(V) K, D, E = M.shape assert D == self.D assert E == self.E self.Post = ParamBag(K=K, D=self.D, E=self.E) self.Post.setField('nu', as1D(nu), dims=('K')) self.Post.setField('B', B, dims=('K', 'D', 'D')) self.Post.setField('M', M, dims=('K', 'D', 'E')) self.Post.setField('V', V, dims=('K', 'E', 'E')) self.K = self.Post.K def setPostFromEstParams(self, EstParams, Data=None, N=None): ''' Set Post attribute values based on provided EstParams. ''' K = EstParams.K D = EstParams.D E = EstParams.E if Data is not None: N = Data.nObsTotal N = np.asarray(N, dtype=np.float) if N.ndim == 0: N = N / K * np.ones(K) nu = self.Prior.nu + N B = EstParams.Sigma * (nu - D - 1)[:, np.newaxis, np.newaxis] M = EstParams.A.copy() V = as3D(self.Prior.V) self.Post = ParamBag(K=K, D=D, E=E) self.Post.setField('nu', nu, dims=('K')) self.Post.setField('B', B, dims=('K', 'D', 'D')) self.Post.setField('M', M, dims=('K', 'D', 'E')) self.Post.setField('V', V, dims=('K', 'E', 'E')) self.K = self.Post.K def calcSummaryStats(self, Data, SS, LP, **kwargs): """ Fill in relevant sufficient stats fields into provided SS. Returns ------- SS : bnpy.suffstats.SuffStatBag """ return calcSummaryStats(Data, SS, LP, **kwargs) def forceSSInBounds(self, SS): ''' Force count vector N to remain positive This avoids numerical problems due to incremental add/subtract ops which can cause computations like x = 10. x += 1e-15 x -= 10 x -= 1e-15 to be slightly different than zero instead of exactly zero. Post Condition -------------- Field N is guaranteed to be positive. ''' np.maximum(SS.N, 0, out=SS.N) def incrementSS(self, SS, k, x): pass def decrementSS(self, SS, k, x): pass def calcSummaryStatsForContigBlock(self, Data, SS=None, a=0, b=0): ''' Calculate sufficient stats for a single contiguous block of data ''' D = Data.X.shape[1] E = Data.Xprev.shape[1] if SS is None: SS = SuffStatBag(K=1, D=D, E=E) elif not hasattr(SS, 'E'): SS._Fields.E = E ppT = dotATA(Data.Xprev[a:b])[np.newaxis, :, :] xxT = dotATA(Data.X[a:b])[np.newaxis, :, :] pxT = dotATB(Data.Xprev[a:b], Data.X[a:b])[np.newaxis, :, :] SS.setField('N', (b - a) * np.ones(1), dims='K') SS.setField('xxT', xxT, dims=('K', 'D', 'D')) SS.setField('ppT', ppT, dims=('K', 'E', 'E')) SS.setField('pxT', pxT, dims=('K', 'E', 'D')) return SS def calcLogSoftEvMatrix_FromEstParams(self, Data, **kwargs): ''' Compute log soft evidence matrix for Dataset under EstParams. Returns ------- L : 2D array, size N x K L[n,k] = log p( data n | EstParams for comp k ) ''' K = self.EstParams.K L = np.empty((Data.nObs, K)) for k in xrange(K): L[:, k] = - 0.5 * self.D * LOGTWOPI \ - 0.5 * self._logdetSigma(k) \ - 0.5 * self._mahalDist_EstParam(Data.X, Data.Xprev, k) return L def _mahalDist_EstParam(self, X, Xprev, k): ''' Calc Mahalanobis distance from comp k to every row of X. Args ---- X : 2D array, size N x D k : integer ID of comp Returns ------- dist : 1D array, size N ''' deltaX = X - np.dot(Xprev, self.EstParams.A[k].T) Q = np.linalg.solve(self.GetCached('cholSigma', k), deltaX.T) Q *= Q return np.sum(Q, axis=0) def _cholSigma(self, k): ''' Calculate lower cholesky decomposition of Sigma[k] Returns ------- L : 2D array, size D x D, lower triangular Sigma = np.dot(L, L.T) ''' return scipy.linalg.cholesky(self.EstParams.Sigma[k], lower=1) def _logdetSigma(self, k): ''' Calculate log determinant of EstParam.Sigma for comp k Returns ------- logdet : scalar real ''' return 2 * np.sum(np.log(np.diag(self.GetCached('cholSigma', k)))) def updateEstParams_MaxLik(self, SS): ''' Update attribute EstParams for all comps given suff stats. Update uses the maximum likelihood objective for point estimation. Post Condition --------- Attributes K and EstParams updated in-place. ''' self.ClearCache() if not hasattr(self, 'EstParams') or self.EstParams.K != SS.K: self.EstParams = ParamBag(K=SS.K, D=SS.D, E=SS.E) minCovMat = self.min_covar * np.eye(SS.D) if SS.E == SS.D: minCovMat_EE = minCovMat else: minCovMat_EE = self.min_covar * np.eye(SS.E) A = np.zeros((SS.K, self.D, self.E)) Sigma = np.zeros((SS.K, self.D, self.D)) for k in xrange(SS.K): # Add small pos multiple of identity to make invertible # TODO: This is source of potential stability issues. A[k] = np.linalg.solve(SS.ppT[k] + minCovMat_EE, SS.pxT[k]).T Sigma[k] = SS.xxT[k] \ - 2 * np.dot(SS.pxT[k].T, A[k].T) \ + np.dot(A[k], np.dot(SS.ppT[k], A[k].T)) Sigma[k] /= SS.N[k] # Sigma[k] = 0.5 * (Sigma[k] + Sigma[k].T) # symmetry! Sigma[k] += minCovMat self.EstParams.setField('A', A, dims=('K', 'D', 'E')) self.EstParams.setField('Sigma', Sigma, dims=('K', 'D', 'D')) self.K = SS.K def updateEstParams_MAP(self, SS): ''' Update attribute EstParams for all comps given suff stats. Update uses the MAP objective for point estimation. Post Condition --------- Attributes K and EstParams updated in-place. ''' self.ClearCache() if not hasattr(self, 'EstParams') or self.EstParams.K != SS.K: self.EstParams = ParamBag(K=SS.K, D=SS.D, E=SS.E) raise NotImplemented('TODO') def updatePost(self, SS): ''' Update attribute Post for all comps given suff stats. Update uses the variational objective. Post Condition --------- Attributes K and Post updated in-place. ''' self.ClearCache() if not hasattr(self, 'Post') or self.Post.K != SS.K: self.Post = ParamBag(K=SS.K, D=SS.D, E=SS.E) elif not hasattr(self.Post, 'E'): self.Post.E = SS.E nu, B, M, V = self.calcPostParams(SS) self.Post.setField('nu', nu, dims=('K')) self.Post.setField('B', B, dims=('K', 'D', 'D')) self.Post.setField('M', M, dims=('K', 'D', 'E')) self.Post.setField('V', V, dims=('K', 'E', 'E')) self.K = SS.K def calcPostParams(self, SS): ''' Calc updated posterior params for all comps given suff stats These params define the common-form of the exponential family Normal-Wishart posterior distribution over mu, diag(Lambda) Returns -------- nu : 1D array, size K B : 3D array, size K x D x D each B[k] symmetric and positive definite M : 3D array, size K x D x E V : 3D array, size K x E x E ''' Prior = self.Prior nu = Prior.nu + SS.N B_MVM = Prior.B + np.dot(Prior.M, np.dot(Prior.V, Prior.M.T)) B = SS.xxT + B_MVM[np.newaxis, :] V = SS.ppT + Prior.V[np.newaxis, :] M =
np.zeros((SS.K, SS.D, SS.E))
numpy.zeros
import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as ticker import seaborn as sns import numpy from ..objects._dataset import Dataset from ..utilities._checkInRange import checkInRange def plotFeatureRanges(dataset, compounds, logx=False, histBins=20, savePath=None, figureFormat='png', dpi=72, figureSize=(4, 7)): """ plotFeatureRanges(dataset, compounds, logx=False, histBins=20, **kwargs) Plot distributions plots of the values listed in **compounds**, on to a set of axes with a linked x-axis. If reference ranges are specified in :py:attr:`~nPYc.objects.Dataset.featureMetadata`, a reference range will be drawn behind each plot. If reference ranges are available, distributions that for within the range will be shaded green, and those that fall outside red, where no reference range is available the distribution will be shaded blue. :param Dataset dataset: Dataset object to plot values from :param list compounds: List of features to plot :param bool logx: Calculate and plot histograms on a log10 scale, if the minumn values is below 1, the histogram is calculated by adding one to all values :param int histBins: Number of bins for histograms """ if not isinstance(dataset, Dataset): raise TypeError('dataset must be an instance of Dataset.') with sns.axes_style("whitegrid", rc={'axes.grid': False}): width = figureSize[0] height = 0.6 * len(compounds) fig, ax = plt.subplots(len(compounds), 1, sharex=True, figsize=(width, height)) globalMinV = numpy.finfo(numpy.float64).max globalMaxV = 0 globalMax = 0 if not isinstance(ax, numpy.ndarray): ax = [ax] for compound in compounds: if compound in dataset.featureMetadata['Feature Name'].values: featureIndex = dataset.featureMetadata.loc[dataset.featureMetadata['Feature Name'] == compound].index[0] values = dataset.intensityData[:,featureIndex] if numpy.min(values) < globalMinV: globalMinV = numpy.nanmin(values) if numpy.max(values) > globalMaxV: globalMaxV = numpy.nanmax(values) if globalMinV == globalMaxV: logx = False globalMaxV = globalMaxV + 1 if logx == True: if globalMinV < 1: offset = 1 globalMinV = globalMinV + offset globalMaxV = globalMaxV + offset else: offset = 0 if globalMinV < 0: logx = False nbins = histBins xscale = 'linear' else: nbins = 10 ** numpy.linspace(numpy.log10(globalMinV), numpy.log10(globalMaxV), histBins) xscale = 'log' else: nbins = numpy.linspace(globalMinV, globalMaxV, histBins) xscale = 'linear' for i in range(len(compounds)): if compounds[i] in dataset.featureMetadata['Feature Name'].values: featureIndex = dataset.featureMetadata.loc[dataset.featureMetadata['Feature Name'] == compounds[i]].index[0] feature = dataset.featureMetadata.loc[dataset.featureMetadata['Feature Name'] == compounds[i]] values = dataset.intensityData[:,featureIndex] if logx: values = values + offset if {'Upper Reference Bound', 'Upper Reference Value', 'Lower Reference Bound', 'Lower Reference Value'}.issubset(feature.columns): minV = feature['Lower Reference Value'].values[0] maxV = feature['Upper Reference Value'].values[0] # Interpret '-' as no lower boud i.e. 0 if minV == '-': minV = 0 if numpy.isfinite(minV) and
numpy.isfinite(maxV)
numpy.isfinite
from math import * import numpy as np from scipy.special import hyp2f1 from scipy.integrate import quad,romberg,fixed_quad,quad_vec from Distances import Distances from Sersic import Sersic from onedimLens import lens_stat1D import matplotlib.pyplot as plt from scipy.optimize import bisect class lens_stat_gnfw(): def __init__(self,z0=0,z1=.3,z2=1.5,M200=1e13,Mstar=10**11.5,c=5,Re=3,m=4,Om=.25,Or=8.4e-5,Ol=.75,H0=70,ratio=1,cratio=1,alpha=1,source_mag=25.,galaxy=True,get_rho=False): self.statt = lens_stat1D(z0=z0,z1=z1,z2=z2,M200=M200,Mstar=Mstar*ratio, c=c*cratio,Re=Re,m=m,Om=Om,Or=Or,Ol=Ol,H0=H0,galaxy=galaxy) self.alpha = alpha # power law index of the gnfw profile self.z0 = 0 self.z1 = z1 self.z2 = z2 self.mag_unlensed = source_mag self.H0 = H0/3.086e19 #convert to s^-1 self.h = H0/100 self.d = Distances(z0=z0,z1=z1,z2=z2,Om=Om,Ol=Ol,Or=Or,H0=H0) self.Ez = np.sqrt(Or*(1+z1)**4+Om*(1+z1)**3+Ol) self.Hz = self.H0*self.Ez G = 6.67e-11 # m^3 kg^-1 s^-2 self.c = c*cratio #concentration parameter self.rhoz = 3*self.Hz**2/(8*pi*G)/1.989e30/(3.24e-23)**3 # M_sun * Mpc^(-3) self.rhos = 200/3*self.rhoz*(3-alpha)*c**(alpha)/hyp2f1(3-alpha,3-alpha,4-alpha,-c) self.M200 = M200*ratio self.r200 = (self.M200/(4/3*pi*200*self.rhoz))**(1/3) #Mpc self.rs = self.r200/c #Mpc self.galaxy = Sersic(Mstar=Mstar,Re=Re,m=m) self.apply_galaxy=galaxy self.Da1 = self.d.angular_diameter_distance(self.z0,z1) #ang distance to the lens self.Da2 = self.d.angular_diameter_distance(self.z0,z2) #ang distance to the source self.thetas = self.rs/self.Da1 #in radians self.Sigmacr = self.d.get_Sigmacr() self.kappas = self.rhos*self.rs/self.Sigmacr self.b = 4*self.rhos*self.rs/self.Sigmacr if get_rho == False: self.xval_min,self.caus1,self.beta_mag = self.get_xval_min() def rho(self,r): alpha = self.alpha return self.rhos/((r/self.rs)**(alpha)*(1+(r/self.rs))**(3-alpha)) def Sigma(self,r): x = r/self.rs return 2*self.rhos*self.rs*x**(1-self.alpha)*quad_vec(lambda t:np.sin(t)*(
np.sin(t)
numpy.sin
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Jan 19 15:05:11 2018 @author: gcgibson """ import sys import numpy as np import numpy.matlib as nm from svgd_original import SVGD def dln_gaussian_mean(x,mean,var): return (1.0/var)*(x - mean ) def dln_binom(x,mean): ##dbinom x-mean (mean,1-e^-t) return np.log(1-np.pow(np.e,-.5)) - np.log(np.pow(np.e,-.5)) def dln_observation_density(x,mean): return dln_gaussian_mean(x,mean,1) def dln_transition_density(x,mean): return dln_binom(x,mean) def dln_prior(x): return dln_gaussian_mean(x,0,1) class SSM: def __init__(self, time_series): self.time_series = time_series def dlnprob(self, theta): lambda_ = 3 theta = theta.reshape((300,3,20)) theta_new = [] for theta_i in theta: tmp_p = [] tmp_p.append(dln_prior(theta_i[0])+dln_observation_density(self.time_series[0],theta_i[0])) for i in range(1,len(self.time_series)): tmp_p.append(dln_observation_density(self.time_series[i],theta_i[i]) + dln_transition_density(theta_i[i],theta_i[i-1])) theta_new.append(tmp_p) return theta_new if __name__ == '__main__': #time_series =np.round(np.power(np.sin(np.arange(100)+1),2)*10 + 10) with open("/Users/gcgibson/Stein-Variational-Gradient-Descent/python/dat.json") as f: dat = f.read() dat = dat.split(",") time = [] cases = [] count = 0 for elm in dat: if count % 2 ==0: time.append(elm.split(":")[1]) else: cases.append(int(elm.split(":")[1].replace("}","").replace(']"]\n',""))) count +=1 time_series =
np.array(cases)
numpy.array
import numpy as np from sklearn import linear_model, svm, metrics class OrdinalRidge(linear_model.Ridge): """ Overwrite Ridge from scikit-learn to use the (minus) squared error as score function. (see https://github.com/scikit-learn/scikit-learn/issues/3848 on why this cannot be accomplished using a GridSearchCV object) """ def fit(self, X, y, **fit_params): self.unique_y_ =
np.unique(y)
numpy.unique
__author__ = '<NAME>' import numpy as np import os import cv2 from matplotlib import pyplot as plt def myFullTensor(myDim): if myDim.__class__ == tuple: return np.ones(myDim) * 7.5 else: return None def myFilesList(myFolder=None): if myFolder == None or not(os.path.exists(myFolder)): myFolder = os.getcwd() contentList = os.listdir(myFolder) fileList = [x for x in contentList if os.path.isfile(os.path.join(myFolder, x))] return fileList def myImageMean(img): if img.__class__ != np.ndarray: return None else: return np.mean(np.float64(img)) def myCommonTone(img): if img.__class__ != np.ndarray: return None else: myHist = np.zeros(256) for i in range(256): myHist[i] = len(img[img == i]) return
np.argmax(myHist)
numpy.argmax
import numpy as np X = np.array([0.2918, -0.3295, 0.8546, -0.5962, 1.1042, -0.5381, 1.1731, -1.2153, 1.0419, -1.5694, 1.1610, -1.4891, 1.5439, -1.3711, 1.6795, -1.5151, 1.5884, -1.6542, 1.4734, -1.6288, 1.4955, -1.4850, 1.4004, -1.3038, 1.3394, -1.2050, 1.0921, -1.0800, 0.9654, -0.8946, 0.8220, -0.7448, 0.6380, -0.5272, 0.5125, -0.4434, 0.3662, -0.3331, 0.2555, -0.1915, 0.1676, -0.1586, 0.1043, -0.1036, 0.0759, -0.0677]) X = np.array([X]).T import pandas as pd import matplotlib.pyplot as plt signal = pd.read_csv('IUTSUM00BHZ.csv') signal= signal.values signal =
np.diff(signal[:,0])
numpy.diff
import pandas as pd import numpy as np import json import re import copy import itertools import math import re, string from collections import OrderedDict, defaultdict from quantipy.core.helpers.constants import DTYPE_MAP from quantipy.core.helpers.constants import MAPPED_PATTERN from itertools import product, combinations from scipy.stats.stats import _ttest_finish as get_pval from operator import add, sub, mul, truediv from quantipy.core.view import View from quantipy.core.view_generators.view_mapper import ViewMapper from quantipy.core.helpers import functions from quantipy.core.tools.view import struct import quantipy.core.tools.dp.prep def describe(data, x, weights=None): ''' Replacment of (wrapper around) the df.describe() method that can deal with weighted data. Weight vectors are allowed to be non-normalized, i.e. sum of weights <> number of cases in sample. Quartile information currently dropped from output, variance is unbiased variance. Calculations are identical to SPSS Statistics/Professional. ''' data = data.copy().dropna(subset=[x]) desc_df = data[x].describe() desc_df.rename( { 'std': 'stdDev', '25%': 'lower quartile', '50%': 'median', '75%': 'upper quartile' }, inplace=True ) # percentile information (incorrect for weighted data!) excluded for now... # desc_df.drop(['Lower quartile', 'Median', 'Upper quartile'], inplace=True) if not len(data.index) == 0: if not weights == '@1': count = data[weights].sum() norm_wvector_coef = 1 if len(data.index) == count else len(data.index)/count w_squared_sum = (data[weights]**2).sum() eff_count = count**2/w_squared_sum mean = data[x].mul(data[weights].mul(norm_wvector_coef)).mean() var = data[weights].mul((data[x].sub(mean))**2).sum()/(data[weights].sum()-1) try: stddev = math.sqrt(var) if abs(stddev) == 0.00: stddev = np.NaN except: stddev = np.NaN desc_df['count'] = count desc_df['eff. count'] = eff_count desc_df['weights squared sum'] = w_squared_sum desc_df['mean'] = mean desc_df['stdDev'] = stddev else: desc_df['eff. count'] = desc_df['count'] desc_df['weights squared sum'] = 1.00 desc_df['efficiency'] = desc_df['eff. count']/desc_df['count']*100 return pd.DataFrame(desc_df[['count', 'eff. count', 'min', 'max', 'mean', 'stdDev', 'weights squared sum', 'efficiency']]) def make_default_cat_view(link, weights=None): ''' This function is creates Quantipy's default categorical aggregations: The x axis has to be a catgeorical single or multicode variable, the y axis can be generated from either categorical (single or multicode) or numeric (int/float). Numeric y axes are categorized into unique column codes. Acts as a wrapper around _df_to_value_matrix(), _aggregate_matrix() and set_qp_multiindex(). Parameters ---------- data : pd.DataFrame x, y : str Variable names from the processed case data input, i.e. the link definition. weighted : bool Controls if the aggregation is performed on weighted or weighted data. Returns ------- view_df : pd.Dataframe (multiindexed) ''' mat, xdef, ydef = get_matrix(link, weights) mat = weight_matrix(mat, xdef) df = _default_cat_df(mat, xdef, ydef) view_df = struct.set_qp_multiindex(df, link.x, link.y) return view_df def make_default_str_view(data, x, y=None): df = pd.DataFrame({x: data[x]}) return df def make_default_num_view(data, x, y=None, weights=None, drop=None, rescale=None, get_only=None): ''' This function is creates Quantipy's default numeric aggregations: The x axis has to be a numeric variable of type int or float, the y axis can be generated from either categorical (single or multicode) or numeric (int/float) as well. Numeric y axes are categorized into unique column codes. Acts as a wrapper around describe() and set_qp_multiindex(). Parameters ---------- data : pd.DataFrame x, y : str Variable names from the processed case data input, i.e. the link definition. weights : str Controls if the aggregation is performed on weighted or weighted data. Returns ------- view_df : pd.Dataframe (multiindexed) ''' if not drop is None: _exclude_codes(data[x], drop) if not rescale is None: _rescale_codes(data[x], rescale) weight = weights if not weights is None else '@1' if y is None or y == '@': df = describe(data, x, weight) df.columns = ['@'] else: data = data[[x, y, weight]].copy().dropna() if len(data.index) == 0: df = describe(data, x, weight) df.columns = ['None'] else: # changing column naming for x==y aggregations if not data.columns.is_unique: data.columns = [x, y+'_', weight] if data[y].dtype == 'object': # for Quantipy multicoded data on the y axis dummy_y = _cat_to_dummies(data[y], as_df=True) dummy_y_data = pd.concat([data[[x, weight]], dummy_y], axis=1) df = pd.concat( [ describe(dummy_y_data[dummy_y_data[y_code] == 1], x, weight) for y_code in dummy_y.columns ], axis=1 ) df.columns = dummy_y.columns else: y_codes = sorted(data[y].unique()) df = pd.concat( [ describe(data[data[y] == y_code], x, weight) for y_code in y_codes ], axis=1 ) df.columns = [ str(int(y_code)) if float(y_code).is_integer() else str(y_code) for y_code in y_codes ] if get_only is None: df['All'] = describe(data, x, weight).values c_margin = df.xs('count') df = df.T df['All'] = c_margin df = df.T view_df = struct.set_qp_multiindex(df, x, y) return view_df else: return df.T[get_only].T def calc_nets(casedata, link, source_view, combine_codes, use_logic=False, force_raw_sum=False): ''' Used to compute (categorical) net code figures from a given Quantipy link definition, a reference view dataframe and a list of codes to build from. If the link's aggregation x axis is single coded categorical type, the calculation is a simple addition over the qualifying x codes. If x is type multicode, the result is calculated using the value matrix approach (as long force_raw_sum is not set to True). See also: - _cat_to_dummies(), _df_to_value_matrix(), _aggregate_matrix() - make_default_cat_view() Parameters ---------- link : Quantipy Link object source_view : Quantipy View object I.e. a count or pct aggregation combine_codes : list of integers The list of codes to combine. force_raw_sum : bool, optional, default=False Controls if the calculation is performed on raw source_view figures. This effectively treats every categorical aggregation as single coded and is useful when needing to calculate the total responses given instead of effective qualifying answers. Returns ------- net_values : np.array Stores the calculated net values ''' if not use_logic and (not source_view.meta['x']['is_multi'] or force_raw_sum): boolmask = [ int(index_val[1]) in combine_codes for index_val in source_view.index if not ( isinstance(index_val[1], str) and index_val[1] == 'None' ) ] if any(boolmask): net_values = np.array(source_view[boolmask].values.sum(axis=0)) else: net_values = np.zeros(link['default'].dataframe.shape[1]-1) else: if not link.y == '@': matrix, xdef, ydef = get_matrix( link, weights=source_view.meta['agg']['weights'], data=casedata) matrix = weight_matrix(matrix, xdef) matrix = missingfy_matrix(matrix, xdef, combine_codes, keep=True) ycodes = reversed(range(1, len(ydef)+1)) net_values = np.array([np.nansum( matrix[:, [0]]*matrix[:, [-ycode]]) for ycode in ycodes]) else: matrix, xdef, ydef = get_matrix( link, weights=source_view.meta['agg']['weights'], data=casedata) matrix = weight_matrix(matrix, xdef) matrix = missingfy_matrix(matrix, xdef, combine_codes, keep=True) net_values = np.nansum(matrix[:, [0]]) if net_values.size == 0: net_values = np.zeros(link['default'].dataframe.shape[1]-1) return net_values def _exclude_codes(matrix, dropped): ''' Used to drop columns from a numeric matrix representation of a Link. This will prevent unwanted values from feeding into the statistical calculations. Parameters ---------- matrix : pd.DataFrame of dummy-transformed data. As produced by _cat_to_dummies(). dropped: int or list of int (or floats) The codes that should be dropped. If str is passed the function automatically converts to a list of a single element. Returns ------- matrix : pd.DataFrame (modified) ''' if not isinstance(dropped, list): dropped = [dropped] dropped = [code for code in dropped if code in matrix.columns] return matrix.drop(dropped, axis=1, inplace=True) def _rescale_codes(matrix, scaling): ''' Used to orient statistical figures produced by numerical aggregation on a new scale, e.g. to produce means and stddev that range between 0 and 100 instead of the original survey codes that might have been 1,2,3,4,5. Parameters ---------- matrix : pd.DataFrame of dummy-transformed data. As produced by _cat_to_dummies. scaling: dict A 1-on-1 mapping of old values to new values. Returns ------- data : pd.DataFrame (modified) ''' return matrix.rename(columns=scaling, inplace=True) def calc_pct(source, base): return pd.DataFrame(np.divide(source.values, base.values)*100) def get_default_num_stat(default_num_view, stat, drop_bases=True, as_df=True): ''' Is used to extract a specific statistical figure from a given numerical default aggregation. Parameters ---------- default_num_view : Quantipy default view (Numerical aggregation case) stat : string States the figure to extract. drop_bases : boolean, optional, default = True Controls if the base [= 'All'] column figure is excluded as_df : boolean, optional, default = True If True will only return as pd.DataFrame, otherwise as np.array. Returns ------- pd.DataFrame OR np.array ''' df = struct._partition_view_df(default_num_view, values=False, data_only=True) if drop_bases: df = df.drop('All', axis=1).drop('All', axis=0) df = df.T[[stat]].T if as_df: return df else: df.values def _aggregate_matrix(value_matrix, x_def, y_def, calc_bases=True, as_df=True): ''' Uses a np.array containing dichotomous values and lists of column codes to aggregate frequency tables (and bases if requested) to create basic categorical aggregations of uni- or bivariate cell frequencies. Parameters ---------- value_matrix : np.array with 1/0 coded values I.e. as returned from qp.helpers.aggregation._df_to_value_matrix(). x_def, y_def : lists of column codes calc_bases : bool, default=True Controls if the output contains base calculations for column, row and total base figures (cb, rb, tb). as_df : bool, default=True Controls if the output is returned as pd.DataFrame with regular axis indexing (and base rows/columns ['All'] if requested). Returns ------- agg_df : pd.DataFrame of frequency and base figures OR tuple : freqs as np.array, list of base figures (column, row, total) ''' # handling empty matrices if np.size(value_matrix) == 0: empty = True freq, cb, rb, tb = np.zeros(1), np.zeros(1), np.zeros(1), np.zeros(1) else: empty = False xcodes = len(x_def)+1 if not y_def is None: # bivariate calculation (cross-tabulation) ycodes = reversed(range(1, len(y_def)+1)) freq = np.array([ np.sum( value_matrix[value_matrix[:, -ycode] == 1][:, 1:xcodes], axis=0 ) for ycode in ycodes ]) if calc_bases: ycodes = reversed(range(1, len(y_def)+1)) cb = np.array([ np.sum( value_matrix[value_matrix[:, -ycode] == 1][:, [0]]) for ycode in ycodes ]) rb = np.sum(value_matrix[:, 1:xcodes], axis=0) tb = np.sum(value_matrix[:, [0]], axis=0) else: # univariate calculation (frequency table) freq = np.sum(value_matrix[:, 1:xcodes], axis=0) if calc_bases: cb = np.array(
np.sum(value_matrix[:, :1])
numpy.sum
##imports=============================================================================== from scipy.spatial.distance import cdist import numpy as np import os, sys,glob, copy, csv, time import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.colors import Normalize from neuropixels.continuous_traces import get_channel_count, filtr from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.manifold import TSNE from scipy.cluster.vq import kmeans2 ##=============================================================================== ##=============================================================================== #probe geometry, for the summary figure only option234_xpositions = np.zeros((192,2)) option234_ypositions = np.zeros((192,2)) option234_positions = np.zeros((384,2)) option234_positions[:,0][::4] = 21 option234_positions[:,0][1::4] = 53 option234_positions[:,0][2::4] = 5 option234_positions[:,0][3::4] = 37 option234_positions[:,1] = np.floor(np.linspace(383,0,384)/2) * 20 ##=============================================================================== ##helper functions=============================================================================== def read_kilosort_params(filename): f=open(filename) params = {} for line in list(f): try: params[line.split(' =')[0]]=line.split('= ')[1].replace('\r\n','') except: pass return params def read_cluster_groups_CSV(directory): cluster_id = []; if os.path.isfile(os.path.join(directory,'cluster_group.tsv')): cluster_id = [row for row in csv.reader(open(os.path.join(directory,'cluster_group.tsv')))][0:]; else: if os.path.isfile(os.path.join(directory,'cluster_groups.csv')): cluster_id = [row for row in csv.reader(open(os.path.join(directory,'cluster_groups.csv')))][0:]; else: print('could not find cluster groups csv or tsv') return None good=[];mua=[];unsorted=[] for i in np.arange(1,np.shape(cluster_id)[0]): if cluster_id[i][0].split('\t')[1] == 'good':#if it is a 'good' cluster by manual sort good.append(cluster_id[i][0].split('\t')[0]) if cluster_id[i][0].split('\t')[1] == 'mua':#if it is a 'good' cluster by manual sort mua.append(cluster_id[i][0].split('\t')[0]) if cluster_id[i][0].split('\t')[1] == 'unsorted':#if it is a 'good' cluster by manual sort unsorted.append(cluster_id[i][0].split('\t')[0]) return (np.array(good).astype(int),np.array(mua).astype(int),np.array(unsorted).astype(int)) def count_unique(x): values=[] instances=[] for v in np.unique(x): values.extend([v]) instances.extend([len(np.where(np.array(x)==v)[0].flatten())]) return values, instances def ismember(a, b): bind = {} for i, elt in enumerate(b): if elt not in bind: bind[elt] = i return [bind.get(itm, None) for itm in a] # None can be replaced by any other "not in b" def load_waveforms(data,channel,times,pre=0.5,post=1.5,channels=384,sampling_rate=30000): #input can be memory mapped file or a string specifiying the file to memory map. if string, deletes the memory mapped object when done, for hygiene. pre = pre * .001 post = post * .001 channel = int(channel) channels = int(channels) if type(data)==str: mm = np.memmap(data, dtype=np.int16, mode='r') else: mm=data waveforms=[] for i in times: start = int((i - pre) * sampling_rate) * int(channels) temp = mm[start:start+int((pre+post)*sampling_rate*channels)][channel::channels]# - mm[start:start+int((pre+post)*sampling_rate*channels)][channel::channels][0] temp = temp - temp[0] waveforms.extend([temp * 0.195]) if type(data)==str: del mm return waveforms def mean_waveform(rawdata,times,pre=0.5,post=1.5,channels=384,sampling_rate=30000): mean_waveform = []#np.zeros(channels,int((pre+post)*.001)*sampling_rate*channels) for i,ch in enumerate(np.linspace(0,channels-1,channels).astype(int)): try: w = load_waveforms(rawdata,ch,times,pre,post,channels,sampling_rate) except: w = np.zeros((len(times),int(((pre+post)/1000.)*sampling_rate))) mean_waveform.append(np.mean(w,axis=0))#[i,:]=np.mean(w).flatten() return mean_waveform def probe_waveforms(rawdata,times,pre=0.5,post=1.5,channels=384,sampling_rate=30000): probe_waveform = np.zeros((channels,int((pre+post)*.001*sampling_rate),len(times))) for i,ch in enumerate(np.linspace(0,channels-1,channels).astype(int)): try: probe_waveform[i,:,:] = np.array(load_waveforms(rawdata,ch,times,pre,post,channels,sampling_rate)).T probe_waveform[i,:,:] -= np.mean(probe_waveform[i,:,:]) except: probe_waveform[i,:,:] = 0.#np.zeros((len(times),int(((pre+post)/1000.)*sampling_rate))) return probe_waveform.T def load_phy_template(path,site_positions = option234_positions,**kwargs): # load spike data that has been manually sorted with the phy-template GUI # the site_positions should contain coordinates of the channels in probe space. for example, in um on the face of the probe # returns a dictionary of 'good' units, each of which includes: # times: spike times, in seconds # template: template used for matching # ypos: y position on the probe, calculated from the template. requires an accurate site_positions. averages template from 100 spikes. # xpos: x position on the probe, calcualted from the template. requires an accurate site_positions. averages template from 100 spikes. clusters = np.load(open(os.path.join(path,'spike_clusters.npy'), 'rb')) spikes = np.load(open(os.path.join(path,'spike_times.npy'), 'rb')) spike_templates = np.load(open(os.path.join(path,'spike_templates.npy'), 'rb')) templates = np.load(open(os.path.join(path,'templates.npy'), 'rb')) cluster_id = []; #[cluster_id.append(row) for row in csv.reader(open(os.path.join(path,'cluster_group.tsv')))]; if os.path.isfile(os.path.join(path,'cluster_group.tsv')): cluster_id = [row for row in csv.reader(open(os.path.join(path,'cluster_group.tsv')))][0:]; else: if os.path.isfile(os.path.join(path,'cluster_groups.csv')): cluster_id = [row for row in csv.reader(open(os.path.join(path,'cluster_groups.csv')))][0:]; else: print('could not find cluster groups csv or tsv') return None if 'sampling_rate' in kwargs.keys(): samplingrate = kwargs['sampling_rate'] else: samplingrate =30000. print('no sampling rate specified, using default of 30kHz') units = {} for i in np.arange(1,np.shape(cluster_id)[0]): if cluster_id[i][0].split('\t')[1] != 'garabge' :#:or cluster_id[i][0].split('\t')[1] == 'unsorted' :#if it is a 'good' cluster by manual sort unit = int(cluster_id[i][0].split('\t')[0]) units[str(unit)] = {} #get the unit spike times units[str(unit)]['times'] = spikes[np.where(clusters==unit)]/samplingrate units[str(unit)]['times'] = units[str(unit)]['times'].flatten() #get the mean template used for this unit all_templates = spike_templates[np.where(clusters==unit)].flatten() n_templates_to_subsample = 100 random_subsample_of_templates = templates[all_templates[np.array(np.random.rand(n_templates_to_subsample)*all_templates.shape[0]).astype(int)]] mean_template = np.mean(random_subsample_of_templates,axis=0) units[str(unit)]['template'] = mean_template #take a weighted average of the site_positions, where the weights is the absolute value of the template for that channel #this gets us the x and y positions of the unit on the probe. weights = np.zeros(site_positions.shape) for channel in range(site_positions.shape[0]): weights[channel,:]=np.trapz(np.abs(mean_template.T[channel,:])) weights = weights/np.max(weights) (xpos,ypos)=np.average(site_positions,axis=0,weights=weights) units[str(unit)]['waveform_weights'] = weights units[str(unit)]['xpos'] = xpos units[str(unit)]['ypos'] = ypos - site_positions[-1][1] return units ##=============================================================================== ##=============================================================================== def ISIviolations(spikeTrain, refDur, minISI): #modified from cortex-lab/sortingQuality GitHub by <NAME>. isis = np.diff(spikeTrain) nSpikes = len(spikeTrain) numViolations = sum(isis<refDur) violationTime = 2*nSpikes*(refDur-minISI) totalRate = nSpikes/(spikeTrain[-1] - spikeTrain[0]) violationRate = numViolations/violationTime fpRate = violationRate/totalRate if fpRate > 1.: fpRate = 1. # it is nonsense to have a rate > 1; a rate > 1 means the assumputions of this analysis are failing return fpRate, numViolations def isiViolations(directory,time_limits=None,tr=.0015,tc=0): spike_clusters_path = os.path.join(directory,'spike_clusters.npy') spike_templates_path = os.path.join(directory,'spike_templates.npy') spike_times_path = os.path.join(directory,'spike_times.npy') params_path = os.path.join(directory,'params.py') if time_limits == None: time_limits=[0,1e7] print(' ') print('loading data for ISI computation...') if os.path.isfile(spike_clusters_path): spike_clusters = np.load(spike_clusters_path) else: spike_clusters = np.load(spike_templates_path) params = read_kilosort_params(params_path) spike_times = np.load(spike_times_path) / float(params['sample_rate']) print('computing ISI violations...') cluster_IDs = np.unique(spike_clusters) isiV = np.zeros(np.shape(cluster_IDs)[0]) for i,cluster_ID in enumerate(cluster_IDs): all_spikes = spike_times[np.where(spike_clusters==cluster_ID)[0]].flatten() if all_spikes[-1] < time_limits[0] or all_spikes[0] > time_limits[1]: isiV[i] = np.nan else: spikes = all_spikes[np.where(all_spikes > time_limits[0])[0][0]:np.where(all_spikes < time_limits[1])[0][-1]] if len(spikes) > 1: (fp_rate, num_violations) = ISIviolations(spikes,tr,tc) #print fp_rate isiV[i] = fp_rate n_spikes = len(spikes) print('\rcluster '+str(cluster_ID)+': '+str(num_violations)+' violations ('+str(n_spikes)+' spikes), '+str(fp_rate)+' estimated FP rate',) else: isiV[i] = np.nan return cluster_IDs,isiV def cluster_signalToNoise(directory, filename, channels, time_limits=None,sigma=5.,number_to_average=250,plots=False): spike_clusters_path = os.path.join(directory,'spike_clusters.npy') spike_templates_path = os.path.join(directory,'spike_templates.npy') spike_times_path = os.path.join(directory,'spike_times.npy') params_path = os.path.join(directory,'params.py') if time_limits == None: time_limits=[0,1e7] print(' ') print('loading data for s/n computation...') if os.path.isfile(spike_clusters_path): spike_clusters = np.load(spike_clusters_path) else: spike_clusters = np.load(spike_templates_path) try: rawdata = np.memmap(os.path.join(directory,filename), dtype=np.int16, mode='r') except: print('could not load spike data. is the filename correct? (default: experiment1_100-0_0.dat)') return None spike_templates = np.load(spike_templates_path) templates = np.load(os.path.join(directory,'templates.npy')) params = read_kilosort_params(params_path) spike_times = np.load(spike_times_path) / float(params['sample_rate']) if channels == 'all': channels = get_channel_count(directory) site_positions=option234_positions[np.linspace(0,channels-1,channels).astype(int)] data = load_phy_template(directory,site_positions) print('computing Quian Quiroga signal/noise ratio...') cluster_IDs = np.unique(spike_clusters) sn_peak = np.zeros(np.shape(cluster_IDs)[0]) sn_mean = np.zeros(np.shape(cluster_IDs)[0]) #spike_amplitudes = [] sn_all=[] for i,cluster_ID in enumerate(cluster_IDs): print('\rcluster '+str(cluster_ID)+': '+str(i)+'/'+str(len(cluster_IDs)),) #peak_y_channel = np.where(data[clusterID]['waveform_weights'] == np.max(data[clusterID]['waveform_weights']))[0][0] all_spikes = spike_times[np.where(spike_clusters==cluster_ID)[0]].flatten() if all_spikes[-1] < time_limits[0] or all_spikes[0] > time_limits[1] or str(cluster_ID) not in data.keys(): sn_peak[i] = np.nan sn_mean[i] = np.nan sn_all.append([np.nan]) else: spikes = all_spikes[np.where(all_spikes > time_limits[0])[0][0]:np.where(all_spikes < time_limits[1])[0][-1]] channels_with_template = [ch for ch,t in enumerate(data[str(cluster_ID)]['waveform_weights']) if np.max(np.abs(t))>0.1] # <----- get the channels that have a template > 20uV if len(spikes) > number_to_average: sub_times = np.random.choice(spikes,number_to_average,replace=False) else: sub_times = spikes random_times = np.random.rand(number_to_average) * (np.max(spike_times)-np.min(spike_times)) + np.min(spike_times) s_ns = [] if plots: plt.figure() for channel in channels_with_template: ws = load_waveforms(os.path.join(directory,filename),channel,sub_times,channels=channels) rs = load_waveforms(os.path.join(directory,filename),channel,random_times,channels=channels) mean = np.mean(ws,axis=0) # if time_limits[1]==1e7: # cunk = rawdata[int(650*int(params['sample_rate'].strip('.'))*channels):int(660*int(params['sample_rate'].strip('.'))*channels)][channel::channels] # else: # cunk = rawdata[int(time_limits[0]*int(params['sample_rate'].strip('.'))*channels):int(time_limits[1]*int(params['sample_rate'].strip('.'))*channels)][channel::channels] # channel_chunk = filtr(cunk,300,6000,float(params['sample_rate']),3) * 0.195 # <-- re-filter and put into uV #noise = sigma * np.median(np.abs(channel_chunk)/0.6725) noise = sigma * np.median(np.abs(np.array(rs))/0.6725) # <--- as defined by <NAME> 2004 signal = np.max(np.abs(mean)) # <-- convert to uV # if signal/noise > np.max(s_ns): # amplitudes = [np.max(np.abs(w)) for w in np.array(waveforms).T] s_ns.extend([signal/noise]) if plots: plt.plot(mean) if plots: plt.title(str(np.max(s_ns))) sn_peak[i] = np.max(s_ns) sn_mean[i] = np.mean(s_ns) sn_all.append(s_ns) #spike_amplitudes.append(amplitudes) print('\rcluster '+str(cluster_ID)+': '+str(np.max(s_ns))+' sn',) return cluster_IDs, sn_peak, sn_mean, sn_all# spike_amplitudes,sn_all def masked_cluster_quality(directory,time_limits=None,n_fet=3,minimum_number_of_spikes=10): pc_features_path = os.path.join(directory,'pc_features.npy') pc_features_ind_path = os.path.join(directory,'pc_feature_ind.npy') spike_clusters_path = os.path.join(directory,'spike_clusters.npy') spike_templates_path = os.path.join(directory,'spike_templates.npy') spike_times_path = os.path.join(directory,'spike_times.npy') params_path = os.path.join(directory,'params.py') params = read_kilosort_params(params_path) try: pc_features = np.load(pc_features_path) except: print('loading PC features failed.') return None pc_feature_ind = np.load(pc_features_ind_path) if os.path.isfile(spike_clusters_path): print('building features matrix from clusters / templates') spike_clusters = np.load(spike_clusters_path) spike_templates = np.load(spike_templates_path) spike_times = np.load(spike_times_path) / float(params['sample_rate']) cluster_IDs = np.unique(spike_clusters) n_clusters = len(cluster_IDs) n_spikes = len(spike_clusters) n_fet_per_chan = np.shape(pc_features)[1] n_templates = np.shape(pc_feature_ind)[0] new_fet = np.zeros((n_spikes,n_fet_per_chan,n_fet)) new_fet_inds = np.zeros((n_clusters,n_fet)) if time_limits == None: time_limits=[0,1e7] else: print('spike_clusters do not exist, using spike_templates instead') print('computing cluster qualities...') (cluster_IDs,unit_quality,contamination_rate,flda) = masked_cluster_quality_sparse(spike_clusters,pc_features,pc_feature_ind,spike_times,spike_templates,time_limits) return cluster_IDs,unit_quality,contamination_rate, flda def masked_cluster_quality_sparse(spike_clusters,pc_features,pc_feature_ind,spike_times,spike_templates,time_limits=None,n_fet=3,fet_n_chans=6): fet_N = np.shape(pc_features)[1] * fet_n_chans N = len(spike_clusters) cluster_IDs = np.unique(spike_clusters) unit_quality = np.zeros(len(cluster_IDs)) contamination_rate = np.zeros(len(cluster_IDs)) flda = np.zeros(len(cluster_IDs)) print('number of clusters: '+str(np.shape(unit_quality)[0])) if time_limits == None: time_limits=[0,1e7] for i,cluster_ID in enumerate(cluster_IDs): all_spikes = spike_times[np.where(spike_clusters==cluster_ID)[0]].flatten() if all_spikes[-1] < time_limits[0] or all_spikes[0] > time_limits[1]: unit_quality[i] = 0; contamination_rate[i] =np.nan; else: these_spikes = np.where(spike_clusters==cluster_ID)[0][np.where(all_spikes > time_limits[0])[0][0]:np.where(all_spikes < time_limits[1])[0][-1]+1] n_spikes_in_cluster = len(these_spikes) if n_spikes_in_cluster < fet_n_chans or n_spikes_in_cluster > N/2.: unit_quality[i] = 0; contamination_rate[i] =np.nan; else: fet_this_cluster = pc_features[these_spikes,:n_fet,:fet_n_chans]#.reshape((len(these_spikes),-1)) #print 'this cluster PCs: '+str(np.shape(fet_this_cluster)) these_templates = spike_templates[these_spikes] #count the templates in this unit and their frequency of occurence: (included_templates,instances) = count_unique(these_templates) #use the template that occurs most frequently: this_template = included_templates[np.where(instances==np.max(instances))[0][0]] this_cluster_chans = pc_feature_ind[this_template,:fet_n_chans] other_clusters_IDs = [] fet_other_clusters = [] for ii,cluster_2 in enumerate(cluster_IDs): try: if cluster_2 != cluster_ID: all_spikes_2 = spike_times[np.where(spike_clusters==cluster_2)[0]].flatten() these_spikes_2 = np.where(spike_clusters==cluster_2)[0][np.where(all_spikes_2 > time_limits[0])[0][0]:np.where(all_spikes_2 < time_limits[1])[0][-1]+1] these_templates_2 = spike_templates[these_spikes_2] #count the templates in this unit and their frequency of occurence: (included_templates_2,instances_2) = count_unique(these_templates_2) #use the template that occurs most frequently: this_template_2 = included_templates_2[np.where(instances_2==np.max(instances_2))[0][0]] #get the channels that have signal in this template cluster_2_chans = pc_feature_ind[this_template_2] if np.any(np.in1d(this_cluster_chans,cluster_2_chans)): #<---continue only if the second cluster has an overlapping channel with the main cluster #spikes_other_clusters.extend(these_spikes_2) fet_cluster2 = np.zeros((np.shape(these_spikes_2)[0],n_fet,fet_n_chans)) #<---make an empty matrix with dimensions: [number of spikes,number of features, number of channels] #get the pca values, for each channel and each feature, that overlap with the main cluster in question for iii,ch in enumerate(this_cluster_chans): if np.in1d(this_cluster_chans,cluster_2_chans)[iii]: fet_cluster2[:,:,iii] = pc_features[these_spikes_2,:n_fet,np.where(ch==cluster_2_chans)[0][0]] fet_other_clusters.extend(fet_cluster2) except: pass #reshape to the arrays to dimensions: [number of spikes, (number of features * number of channels)] try: fet_other_clusters = np.array(fet_other_clusters).reshape((np.shape(fet_other_clusters)[0],-1)) fet_this_cluster = fet_this_cluster.reshape((len(these_spikes),-1)) except ValueError: pass #pass the features to core to calculate isolation distance and mahalanobis contamination unit_quality[i],contamination_rate[i] = masked_cluster_quality_core(fet_this_cluster,fet_other_clusters,plots=False) #pass the features to flda to calculate the d prime of this cluster from all other spikes, using Fisher's LDA try: flda[i] = masked_cluster_quality_flda(fet_this_cluster,fet_other_clusters,plots=False) except ValueError: pass #pass spike times to neighbor similarity to measure the distance between #neighbor_similarity[i],spike_similarity = masked_waveform_similarity(these_spikes,spikes_other_clusters,number_to_average=250,metric='euclidean') #plans for the future: #l_ratio[i] = masked_cluster_quality_lratio(fet_this_cluster,fet_other_clusters,plots=False) print('\rcluster '+str(cluster_ID)+': # spikes:'+str(np.shape(all_spikes)[0])+' iso. distance:'+str(unit_quality[i])+' contamination:'+str(contamination_rate[i])+' '+str(i+1)+'/'+str(np.shape(unit_quality)[0]),) return cluster_IDs,unit_quality,contamination_rate,flda # def masked_waveform_similarity(directory,number_to_average=250,metric='euclidean'): # params_path = os.path.join(directory,'params.py') # filename = read_kilosort_params(params_path)['dat_path'][1:-1] # # if len(spikes) > number_to_average: # sub_times = np.random.choice(spikes,number_to_average,replace=False) # else: # sub_times = spikes # # random_times = np.random.rand(number_to_average) * (np.max(spike_times)-np.min(spike_times)) + np.min(spike_times) # # for channel in channels_with_template: # ws = load_waveforms(os.path.join(directory,filename),channel,sub_times,channels=channels) # # return neighbor_similarity_dprime,spike_by_spike_similarity def masked_cluster_quality_flda(fet_this_cluster,fet_other_clusters,plots=False): #based on documentation here: http://sebastianraschka.com/Articles/2014_python_lda.html flda =LDA(n_components=1) X = np.concatenate((fet_this_cluster, fet_other_clusters)) y = np.concatenate((np.zeros(np.shape(fet_this_cluster)[0]), np.ones(np.shape(fet_other_clusters)[0]))) X_flda = flda.fit_transform(X, y) flda_this_cluster = X_flda[:np.shape(fet_this_cluster)[0]] flda_other_cluster = X_flda[np.shape(fet_this_cluster)[0]:] dprime = (np.mean(flda_this_cluster) - np.mean(flda_other_cluster))/np.sqrt(0.5*(np.std(flda_this_cluster)**2+np.std(flda_other_cluster)**2)) return dprime def masked_cluster_quality_core(fet_this_cluster,fet_other_clusters,point_limit=20000000,plots=False): n = np.shape(fet_this_cluster)[0] n_other = np.shape(fet_other_clusters)[0] n_fet = np.shape(fet_this_cluster)[1] if n_other > n and n > n_fet: if n > point_limit: random_indices = np.random.choice(n,point_limit,replace=False) fet_this_cluster = fet_this_cluster[random_indices,:] if n_other > point_limit: random_indices = np.random.choice(n_other,point_limit,replace=False) fet_other_clusters = fet_other_clusters[random_indices,:] md = np.sort(cdist(fet_this_cluster.mean(0).reshape(1,fet_this_cluster.shape[1]), fet_other_clusters, 'mahalanobis')[0]) md_self = np.sort(cdist(fet_this_cluster.mean(0).reshape(1,fet_this_cluster.shape[1]), fet_this_cluster, 'mahalanobis')[0]) #print fet_this_cluster.mean(0).reshape(1,fet_this_cluster.shape[1]) if plots: plt.figure() plt.plot(fet_this_cluster[:,0],fet_this_cluster[:,1],'r.') plt.plot(fet_other_clusters[:n,0],fet_other_clusters[:n,1],'b.') plt.plot(fet_this_cluster.mean(0).reshape(1,fet_this_cluster.shape[1])[0][0],fet_this_cluster.mean(0).reshape(1,fet_this_cluster.shape[1])[0][1],'*',color='#ffcccc',ms=12) # plt.figure() plt.hist(md[:n],bins=100,range=(0,10),color='b') plt.hist(md_self,bins=100,range=(0,10),color='r') plt.title('iso: '+str(np.max(md[:n]))) unit_quality = np.max(md[:n]) contamination_rate = 1 - (tipping_point(md_self,md) / float(len(md_self))) else: unit_quality = 0 contamination_rate = np.nan return unit_quality, contamination_rate def tipping_point(x,y): # Input: x, y are sorted ascending arrays of positive numbers # Output: minimal pos s.t. sum(x > x(pos)) <= sum(y < x(pos)) #original: # algorithm here is to sort x and y together, and determine the indices of # x in this sorted list (call this xInds). Then, xInds-(1:length(xInds)) # will be the number of y's that are less than that value of x. # translated from matlab (by <NAME>) to python: # algorithm here is to sort x and y together, and determine how many y are less than x # in the first len(x) instances of the sorted together array. #pos = [ind for ind,together in enumerate(np.sort(np.array(zip(x,y)).flatten())) if np.any(together==x)][:len(x)][-1]-len(x) #pos = np.where(np.array(np.sort(np.concatenate((x,y)).flatten()))[:len(x)] == np.sort(x)[-1])[0][0] - len(x) #print str(np.where(np.array(np.sort(np.array(zip(x,y)).flatten()))== np.sort(x)[-1])[0][0])+' furthest self: '+str(x[-1])+' closest other:'+str(y[0]) pos = sum(np.in1d(np.array(np.sort(np.concatenate((x,y)).flatten()))[:len(x)],np.sort(x))) return pos ##=============================================================================== ##plotting functions ##=============================================================================== def placeAxesOnGrid(fig,dim=[1,1],xspan=[0,1],yspan=[0,1],wspace=None,hspace=None,): ''' Takes a figure with a gridspec defined and places an array of sub-axes on a portion of the gridspec Takes as arguments: fig: figure handle - required dim: number of rows and columns in the subaxes - defaults to 1x1 xspan: fraction of figure that the subaxes subtends in the x-direction (0 = left edge, 1 = right edge) yspan: fraction of figure that the subaxes subtends in the y-direction (0 = top edge, 1 = bottom edge) wspace and hspace: white space between subaxes in vertical and horizontal directions, respectively returns: subaxes handles written by <NAME> ''' import matplotlib.gridspec as gridspec outer_grid = gridspec.GridSpec(100,100) inner_grid = gridspec.GridSpecFromSubplotSpec(dim[0],dim[1], subplot_spec=outer_grid[int(100*yspan[0]):int(100*yspan[1]),int(100*xspan[0]):int(100*xspan[1])], wspace=wspace, hspace=hspace) #NOTE: A cleaner way to do this is with list comprehension: # inner_ax = [[0 for ii in range(dim[1])] for ii in range(dim[0])] inner_ax = dim[0]*[dim[1]*[fig]] #filling the list with figure objects prevents an error when it they are later replaced by axis handles inner_ax = np.array(inner_ax) idx = 0 for row in range(dim[0]): for col in range(dim[1]): inner_ax[row][col] = plt.Subplot(fig, inner_grid[idx]) fig.add_subplot(inner_ax[row,col]) idx += 1 inner_ax = np.array(inner_ax).squeeze().tolist() #remove redundant dimension return inner_ax def cleanAxes(ax,bottomLabels=False,leftLabels=False,rightLabels=False,topLabels=False,total=False): ax.tick_params(axis='both',labelsize=10) ax.spines['top'].set_visible(False); ax.yaxis.set_ticks_position('left'); ax.spines['right'].set_visible(False); ax.xaxis.set_ticks_position('bottom') if not bottomLabels or topLabels: ax.set_xticklabels([]) if not leftLabels or rightLabels: ax.set_yticklabels([]) if rightLabels: ax.spines['right'].set_visible(True); ax.spines['left'].set_visible(False); ax.yaxis.set_ticks_position('right'); if total: ax.set_frame_on(False); ax.set_xticklabels('',visible=False); ax.set_xticks([]); ax.set_yticklabels('',visible=False); ax.set_yticks([]) def psth_line(times,triggers,pre=0.5,timeDomain=False,post=1,binsize=0.05,ymax=75,yoffset=0,output='fig',name='',color='#00cc00',linewidth=0.5,axes=None,labels=True,sparse=False,labelsize=18,axis_labelsize=20,error='',alpha=0.5,**kwargs): post = post + 1 peris=[]#np.zeros(len(triggers),len(times)) p=[] if timeDomain: samplingRate = 1.0 else: samplingRate = samplingRate times = np.array(times).astype(float) / samplingRate + pre triggers = np.array(triggers).astype(float) / samplingRate numbins = (post+pre) / binsize bytrial = np.zeros((len(triggers),numbins)) for i,t in enumerate(triggers): if len(np.where(times >= t - pre)[0]) > 0 and len(np.where(times >= t + post)[0]) > 0: start = np.where(times >= t - pre)[0][0] end = np.where(times >= t + post)[0][0] for trial_spike in times[start:end-1]: if float(trial_spike-t)/float(binsize) < float(numbins): bytrial[i][(trial_spike-t)/binsize-1] +=1 else: pass #bytrial[i][:]=0 #print 'start: ' + str(start)+' end: ' + str(end) variance = np.std(bytrial,axis=0)/binsize/np.sqrt((len(triggers))) hist = np.mean(bytrial,axis=0)/binsize edges = np.linspace(-pre,post,numbins) if output == 'fig': if error == 'shaded': if 'shade_color' in kwargs.keys(): shade_color=kwargs['shade_color'] else: shade_color=color if axes == None: plt.figure() axes=plt.gca() plt.locator_params(axis='y',nbins=4) upper = hist+variance lower = hist-variance axes.fill_between(edges[2:-1],upper[2:-1]+yoffset,hist[2:-1]+yoffset,alpha=alpha,color='white',facecolor=shade_color) axes.fill_between(edges[2:-1],hist[2:-1]+yoffset,lower[2:-1]+yoffset,alpha=alpha,color='white',facecolor=shade_color) axes.plot(edges[2:-1],hist[2:-1]+yoffset,color=color,linewidth=linewidth) axes.set_xlim(-pre,post-1) axes.set_ylim(0,ymax); if sparse: axes.set_xticklabels([]) axes.set_yticklabels([]) else: if labels: axes.set_xlabel(r'$time \/ [s]$',fontsize=axis_labelsize) axes.set_ylabel(r'$firing \/ rate \/ [Hz]$',fontsize=axis_labelsize) axes.tick_params(axis='both',labelsize=labelsize) axes.spines['top'].set_visible(False);axes.yaxis.set_ticks_position('left') axes.spines['right'].set_visible(False);axes.xaxis.set_ticks_position('bottom') axes.set_title(name,y=0.5) return axes else: if axes == None: plt.figure() axes=plt.gca() f=axes.errorbar(edges,hist,yerr=variance,color=color) axes.set_xlim(-pre,post - 1) if ymax=='auto': pass else: axes.set_ylim(0,ymax) if sparse: axes.set_xticklabels([]) axes.set_yticklabels([]) else: if labels: axes.set_xlabel(r'$time \/ [s]$',fontsize=axis_labelsize) axes.set_ylabel(r'$firing \/ rate \/ [Hz]$',fontsize=axis_labelsize) axes.tick_params(axis='both',labelsize=labelsize) axes.spines['top'].set_visible(False);axes.yaxis.set_ticks_position('left') axes.spines['right'].set_visible(False);axes.xaxis.set_ticks_position('bottom') axes.set_title(name) return axes if output == 'hist': return (hist,edges) if output == 'p': return (edges,hist,variance) def project_linear_quality(data,labels,plots=False): flda =LDA(n_components=1) if np.shape(data)[0] == np.shape(labels)[0]: X_flda = flda.fit_transform(data, labels) return X_flda else: print('dimensions of data do not match labels') return None def get_spike_amplitudes(datapath,channel,times,pre=0.5,post=1.5,channels=384,sampling_rate=30000): pre = pre * .001 post = post * .001 mm = np.memmap(datapath, dtype=np.int16, mode='r') amplitudes = [] channel = int(channel) for i in times: start = int((i - pre) * sampling_rate) * int(channels) temp=mm[start:start+int((pre+post)*sampling_rate*channels)][channel::channels] amplitudes.extend([np.max(np.abs(temp-temp[0]))]) return amplitudes def get_PCs(datapath,channel,times,PC=1,pre=0.5,post=1.5,channels=384,sampling_rate=30000): pre = pre * .001 post = post * .001 mm = np.memmap(datapath, dtype=np.int16, mode='r') PCs = [] for i in times: start = int((i - pre) * sampling_rate) * channels amplitudes.extend([np.max(np.abs(mm[start:start+(pre+post)*sampling_rate*channels][channel::channels] - mm[start:start+(pre+post)*sampling_rate*channels][channel::channels][0]))]) return PCs # %% def neuron_fig(clusterID,df,sortpath,filename='experiment1_102-0_0.dat',time_limits=None,timeplot_binsize=60.,neighbor_colors=["#67572e","#50a874","#ff4d4d"]): channels = 175 #get_channel_count(sortpath) site_positions=option234_positions[np.linspace(0,channels-1,channels).astype(int)] data = load_phy_template(sortpath,site_positions) cluster_ID = int(clusterID) cluster_IDs = np.load(os.path.join(sortpath,'spike_clusters.npy')) pc_data = np.load(os.path.join(sortpath,'pc_features.npy')) pc_ind_data = np.load(os.path.join(sortpath,'pc_feature_ind.npy')) params_path = os.path.join(sortpath,'params.py') params = read_kilosort_params(params_path) spike_times_data = np.load(os.path.join(sortpath,'spike_times.npy'))/ float(params['sample_rate']) spike_templates = np.load(os.path.join(sortpath,'spike_templates.npy')) datapath=os.path.join(sortpath,filename) #df_line = df[df.clusterID==int(clusterID)] fig = plt.figure(figsize=(11,8.5)) ax_text = placeAxesOnGrid(fig,xspan=[0.0,0.4],yspan=[0,0.1]) ax_position = placeAxesOnGrid(fig,xspan=[0,0.1],yspan=[0.12,1.0]) ax_waveform = placeAxesOnGrid(fig,xspan=[0.2,0.45],yspan=[0.12,0.65]) ax_time = placeAxesOnGrid(fig,xspan=[0.2,1.0],yspan=[0.82,1.0]) ax_PCs = placeAxesOnGrid(fig,xspan=[0.5,0.8],yspan=[0,0.35]) ax_ACG = placeAxesOnGrid(fig,dim=[1,2],xspan=[0.55,1.0],yspan=[0.5,0.7]) #ax_neighbor_waveform_1 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.82,1.0],yspan=[0,0.13]) #ax_neighbor_waveform_2 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.82,1.0],yspan=[0.13,0.26]) #ax_neighbor_waveform_3 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.82,1.0],yspan=[0.26,0.39]) ax_neighbor_waveforms=placeAxesOnGrid(fig,dim=[1,1],xspan=[0.82,1.0],yspan=[0.0,0.39])#[ax_neighbor_waveform_1,ax_neighbor_waveform_2,ax_neighbor_waveform_3] ax_CCGs_1 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.53,0.68],yspan=[0.36,0.48]) ax_CCGs_2 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.7,.85],yspan=[0.36,0.48]) ax_CCGs_3 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.86,1.0],yspan=[0.36,0.48]) ax_CCGs = [ax_CCGs_1,ax_CCGs_2,ax_CCGs_3] #position plot ax_position.imshow(data[clusterID]['waveform_weights'][::4],extent=(site_positions[:,0][::4][0],site_positions[:,0][::4][0]+16,site_positions[:,1][::4][0],site_positions[:,1][::4][-1]),cmap=plt.cm.gray_r,clim=(0,0.5),interpolation='none') ax_position.imshow(data[clusterID]['waveform_weights'][1::4],extent=(site_positions[:,0][1::4][0],site_positions[:,0][1::4][0]+16,site_positions[:,1][1::4][0],site_positions[:,1][1::4][-1]),cmap=plt.cm.gray_r,clim=(0,0.5),interpolation='none') ax_position.imshow(data[clusterID]['waveform_weights'][2::4],extent=(site_positions[:,0][2::4][0],site_positions[:,0][2::4][0]+16,site_positions[:,1][2::4][0],site_positions[:,1][2::4][-1]),cmap=plt.cm.gray_r,clim=(0,0.5),interpolation='none') ax_position.imshow(data[clusterID]['waveform_weights'][3::4],extent=(site_positions[:,0][3::4][0],site_positions[:,0][3::4][0]+16,site_positions[:,1][3::4][0],site_positions[:,1][3::4][-1]),cmap=plt.cm.gray_r,clim=(0,0.5),interpolation='none') ax_position.set_aspect(0.1) ax_position.set_ylim(3840,0) ax_position.set_xlim(70,0) cleanAxes(ax_position) ax_position.set_title('neuron position') #time limits if time_limits == None: time_limits=[0,1e7] all_spikes = data[clusterID]['times'] spike_times = all_spikes[np.where(all_spikes > time_limits[0])[0][0]:np.where(all_spikes < time_limits[1])[0][-1]] #print len(all_spikes) #print all_spikes[0] #print all_spikes[-1] ##print np.where(all_spikes > time_limits[0])[0][0] #print np.where(all_spikes < time_limits[1])[0][-1] these_spikes = np.where(cluster_IDs==cluster_ID)[0][np.where(all_spikes > time_limits[0])[0][0]:np.where(all_spikes < time_limits[1])[0][-1]] #spike_times = spike_times_data[these_spikes] #for PC and CCG display, find close by clusters calculate #PC plot number_of_spikes_to_plot = 5000 these_templates=spike_templates[np.where(cluster_IDs==cluster_ID)[0]] (included_templates,instances) = count_unique(these_templates) this_template = included_templates[int(np.where(instances==np.max(instances))[0])] ch1 = pc_ind_data[this_template][0] ch2 = pc_ind_data[this_template][1] ax_PCs.plot(pc_data[these_spikes][:number_of_spikes_to_plot,0,0], pc_data[these_spikes][:number_of_spikes_to_plot,0,1],'bo',ms=1.5,markeredgewidth=0) nearby_trio = [0,0,0]; nearby_euclids = [10000,10000,10000]; nearby_times=[] for other_cluster in data.keys(): if other_cluster != clusterID: if (np.abs(data[clusterID]['ypos']-data[other_cluster]['ypos']) + np.abs(data[clusterID]['xpos']-data[other_cluster]['xpos'])) < nearby_euclids[-1]: rank = np.where((np.abs(data[clusterID]['ypos']-data[other_cluster]['ypos']) + np.abs(data[clusterID]['xpos']-data[other_cluster]['xpos'])) < nearby_euclids)[0][0] nearby_euclids[rank] = (np.abs(data[clusterID]['ypos']-data[other_cluster]['ypos']) + np.abs(data[clusterID]['xpos']-data[other_cluster]['xpos'])) nearby_trio[rank]=other_cluster print(nearby_trio) for ii,neighbor in enumerate(nearby_trio): all_spikes_neighbor = data[neighbor]['times'] indices_neighbor= np.where(cluster_IDs==int(neighbor))[0][np.where(all_spikes_neighbor > time_limits[0])[0][0]:np.where(all_spikes_neighbor < time_limits[1])[0][-1]] neighbor_templates=spike_templates[indices_neighbor] neighbor_spike_times = all_spikes_neighbor[np.where(all_spikes_neighbor > time_limits[0])[0][0]:np.where(all_spikes_neighbor < time_limits[1])[0][-1]] nearby_times.append(neighbor_spike_times) (included_templates,instances) = count_unique(neighbor_templates) this_template = included_templates[int(np.where(instances==np.max(instances))[0])] ch1_index = np.where(pc_ind_data[this_template] == ch1)[0] ch2_index = np.where(pc_ind_data[this_template] == ch2)[0] if ch2_index.size != 0 and ch1_index.size != 0: ax_PCs.plot(pc_data[indices_neighbor][:number_of_spikes_to_plot,0,np.where(pc_ind_data[this_template] == ch1)[0][0]], pc_data[indices_neighbor][:number_of_spikes_to_plot,0,np.where(pc_ind_data[this_template] == ch2)[0][0]], 'o',color=neighbor_colors[ii],ms=1,markeredgewidth=0,alpha=0.8) all_diffs = [] for spike_time in spike_times: try: neighbor_start = np.where(neighbor_spike_times < spike_time - 0.5)[0][-1] except: neighbor_start = 0 try: neighbor_end = np.where(neighbor_spike_times > spike_time + 0.5)[0][0] except: neighbor_end = -1 neighbor_chunk = neighbor_spike_times[neighbor_start:neighbor_end] #print '\r'+str(spike_time)+' '+str(neighbor_start)+' - '+str(neighbor_end), all_diffs.extend(neighbor_chunk - spike_time) all_diffs=np.array(all_diffs).flatten() hist,edges = np.histogram(all_diffs,bins=np.linspace(-0.2,0.2,400)) ax_CCGs[ii].plot(edges[:-1],hist,drawstyle='steps',color=neighbor_colors[ii]) ax_CCGs[ii].set_xlim(-.02,.02) ax_CCGs[ii].xaxis.set_ticks([-0.075,0.0,0.075]) ax_CCGs[ii].axvline(0.0,ymax=0.1,ls='--',color='#ff8080') cleanAxes(ax_CCGs[ii],total=True) cleanAxes(ax_neighbor_waveforms,total=True) cleanAxes(ax_PCs) ax_PCs.set_title('PC features') #waveform plot cleanAxes(ax_waveform,total=True) ax_waveform.set_title('waveform') channel_offset = 0 # should not be 0 if not starting from tip. peak_y_channel = np.where(data[clusterID]['waveform_weights'] == np.max(data[clusterID]['waveform_weights']))[0][0] times = np.random.choice(spike_times,100,replace=False) random_times = np.random.rand(100) * (np.max(spike_times)-np.min(spike_times)) + np.min(spike_times) xoffs=[0,100,50,150,0,100,50,150,0,100,50,150,0,100,50,150,0,100][::-1] yoff=100 signal = 0; for ii,channel in enumerate(np.linspace(peak_y_channel-8,peak_y_channel+10,18)): if channel > 0: ws = load_waveforms(datapath,channel,times,channels=channels) ws_bkd = load_waveforms(datapath,channel,random_times,channels=channels) x_range = np.linspace(xoffs[ii],xoffs[ii]+60,60) for i in range(np.shape(ws)[0]): if np.shape(x_range)[0] == np.shape(ws[i][:]-yoff*(ii/2))[0]: ax_waveform.plot(x_range,ws[i][:]-yoff*(ii/2),alpha=0.05,color='#0066ff') ax_waveform.plot(x_range,ws_bkd[i][:]-yoff*(ii/2),alpha=0.05,color='#c8c8c8') if np.shape(x_range)[0] == np.shape(np.mean(ws,axis=0)-yoff*(ii/2))[0]: if np.max(np.abs(np.mean(ws,axis=0)-yoff*(ii/2))) > signal: signal = np.max(np.abs(np.mean(ws,axis=0)-yoff*(ii/2))) noise = np.mean(ws_bkd) + np.std(ws_bkd)* 4. ax_waveform.plot(x_range,np.mean(ws,axis=0)-yoff*(ii/2),color='#0066ff') if ii > 3 and ii < 14: for nn,axis in enumerate(nearby_trio): if np.shape(x_range)[0] == np.shape(np.mean(ws,axis=0)-yoff*(ii/2))[0]: neighbor_ws = load_waveforms(datapath,channel,np.random.choice(nearby_times[nn],100,replace=False),channels=channels) ax_neighbor_waveforms.plot(x_range,np.mean(ws,axis=0)-(yoff/3.)*(ii/2),color='#0066ff') ax_neighbor_waveforms.plot(x_range,np.mean(neighbor_ws,axis=0)-(yoff/3.)*(ii/2),color=neighbor_colors[nn],alpha=0.8) #time plot hist,edges = np.histogram(spike_times,bins=int(np.ceil(spike_times[-1] / timeplot_binsize))) ax_time.plot(edges[1:],hist/float(timeplot_binsize),drawstyle='steps') ax_time.set_xlabel('time (sec)') ax_time.set_ylabel('firing rate (Hz)') ax_time.set_title('firing rate over time') max_spikes_to_plot = 2000 if len(spike_times) > max_spikes_to_plot: times = np.random.choice(spike_times,max_spikes_to_plot,replace=False) else: times = spike_times amps = get_spike_amplitudes(datapath,peak_y_channel,times,channels=channels) ax_time_r = ax_time.twinx() ax_time_r.plot(times,amps,'o',markersize=2,alpha=0.3) ax_time_r.set_ylabel('amplitude') ax_time_r.set_ylim(0,np.max(amps)) cleanAxes(ax_time,leftLabels=True,bottomLabels=True) cleanAxes(ax_time_r,rightLabels=True,bottomLabels=True) #for ACG display, calculate ISIs. isis = np.diff(spike_times) hist,edges = np.histogram(np.concatenate((isis,isis*-1)),bins=np.linspace(-0.5,0.5,100)) ax_ACG[0].plot(edges[:-1],hist,drawstyle='steps') ax_ACG[0].set_xlim(-.5,.5) ax_ACG[0].xaxis.set_ticks([-0.25,0.0,0.25]) ax_ACG[0].set_ylabel('spike count') hist,edges = np.histogram(np.concatenate((isis,isis*-1)),bins=np.linspace(-0.02,0.02,160)) ax_ACG[1].plot(edges[:-1],hist,drawstyle='steps') ax_ACG[1].set_xlim(-.02,.02) ax_ACG[1].axvline(0.0015,ls='--',color='#ff8080');ax_ACG[1].axvline(-0.0015,ls='--',color='#ff8080') ax_ACG[1].xaxis.set_ticks([-0.02,-0.01,0.0,0.01,0.02]) for axis in ax_ACG: axis.set_xlabel('time (sec)') #text info plot cleanAxes(ax_text,total=True) ax_text.text(0, 1, 'cluster: '+clusterID, fontsize=12,weight='bold') #"%.2f" % signal #ax_text.text(10, 30, 'amp.: '+"%.2f" % 1.0+'uV', fontsize=10) #ax_text.text(10, 60, 'SNR: '+"%.2f" % float(df[df.clusterID==int(clusterID)].sn_max), fontsize=10) #ax_text.text(50, 0, 'isolation distance: '+"%.2f" % float(df[df.clusterID==int(clusterID)].isolation_distance), fontsize=10) #ax_text.text(50, 30, 'purity [mahalanobis]: '+"%.2f" % float(1-float(df[df.clusterID==int(clusterID)].mahalanobis_contamination)), fontsize=10) #ax_text.text(50, 60, 'ISI violation rate: '+"%.2f" % float(1-float(df[df.clusterID==int(clusterID)].isi_purity)), fontsize=10) ax_text.set_ylim(100,0) ax_text.set_xlim(0,100) return plt.gcf() ##=============================================================================== ##=============================================================================== # %% ##=============================================================================== ##=============================================================================== ##=============================================================================== ##=============================================================================== ##=============================================================================== ##OLD PLOTTING FUNCTIONS ##=============================================================================== ##=============================================================================== ##=============================================================================== ##=============================================================================== def plot_quality(quality,isiV,labels): (good,mua,unsorted) = labels f,ax = plt.subplots(3,1,figsize=(4,6)); ax[0].plot(quality[1][np.where(np.in1d(quality[0],good))[0]],quality[2][np.where(np.in1d(quality[0],good))[0]],'o',label='good',mfc='g',mec='g');#plt.ylim(0,1) ax[0].plot(quality[1][np.where(np.in1d(quality[0],mua))[0]],quality[2][np.where(np.in1d(quality[0],mua))[0]],'o',label='mua',mfc='r',mec='r');#plt.ylim(0,1) ax[0].plot(quality[1][np.where(np.in1d(quality[0],unsorted))[0]],quality[2][np.where(np.in1d(quality[0],unsorted))[0]],'k.',label='unsorted',alpha=0.3);#plt.ylim(0,1) ax[0].set_xlabel('iso distance');ax[0].set_ylabel('contamination from mahal.') ax[0].set_ylim(ymin=0);ax[0].set_xlim(xmin=1.) ax[0].set_xscale('log'); # if np.max(quality[1]) > 20: # ax[0].set_xlim(1,20) legend = ax[0].legend(loc='upper right', shadow=False, fontsize=10,numpoints=1) ax[1].plot(quality[1][np.where(np.in1d(quality[0],good))[0]],isiV[1][np.where(np.in1d(isiV[0],good))[0]],'o',label='good',mfc='g',mec='g');plt.ylim(0,1) ax[1].plot(quality[1][np.where(np.in1d(quality[0],mua))[0]],isiV[1][np.where(np.in1d(isiV[0],mua))[0]],'o',label='mua',mfc='r',mec='r');plt.ylim(0,1) ax[1].plot(quality[1][np.where(np.in1d(quality[0],unsorted))[0]],isiV[1][np.where(np.in1d(isiV[0],unsorted))[0]],'k.',label='unsorted',alpha=0.3);plt.ylim(0,1) ax[1].set_xlabel('iso distance');ax[1].set_ylabel('isi contamination') ax[1].set_ylim(ymin=0);ax[1].set_xlim(xmin=1.) ax[1].set_xscale('log'); # if np.max(quality[1]) > 20: # ax[1].set_xlim(1,20) legend = ax[1].legend(loc='upper right', shadow=False, fontsize=10,numpoints=1) ax[2].plot(quality[2][np.where(np.in1d(quality[0],good))[0]],isiV[1][np.where(np.in1d(isiV[0],good))[0]],'o',label='good',mfc='g',mec='g');plt.ylim(0,1) ax[2].plot(quality[2][np.where(np.in1d(quality[0],mua))[0]],isiV[1][np.where(np.in1d(isiV[0],mua))[0]],'o',label='mua',mfc='r',mec='r');plt.ylim(0,1) ax[2].plot(quality[2][np.where(np.in1d(quality[0],unsorted))[0]],isiV[1][np.where(np.in1d(isiV[0],unsorted))[0]],'k.',label='unsorted',alpha=0.3);plt.ylim(0,1) ax[2].set_ylabel('isi contamination');ax[2].set_xlabel('contamination from mahal.') ax[2].set_ylim(ymin=0.01);ax[2].set_xlim(xmin=0.01) ax[2].set_xscale('log');ax[2].set_yscale('log') #legend = ax[2].legend(loc='upper left', shadow=False, fontsize=10,numpoints=1) plt.tight_layout() def neuron_fig2(clusterID,df,sortpath,filename='experiment1_102-0_0.dat',time_limits=None,timeplot_binsize=60.,neighbor_colors=["#67572e","#50a874","#ff4d4d"]): channels = get_channel_count(sortpath) site_positions=option234_positions[np.linspace(0,channels-1,channels).astype(int)] data = load_phy_template(sortpath,site_positions) cluster_ID = int(clusterID) cluster_IDs = np.load(os.path.join(sortpath,'spike_clusters.npy')) pc_data = np.load(os.path.join(sortpath,'pc_features.npy')) pc_ind_data = np.load(os.path.join(sortpath,'pc_feature_ind.npy')) params_path = os.path.join(sortpath,'params.py') params = read_kilosort_params(params_path) spike_times_data = np.load(os.path.join(sortpath,'spike_times.npy'))/ float(params['sample_rate']) spike_templates = np.load(os.path.join(sortpath,'spike_templates.npy')) datapath=os.path.join(sortpath,'experiment1_102-0_0.dat') df_line = df[df.clusterID==int(clusterID)] fig = plt.figure(figsize=(11,8.5)) ax_text = placeAxesOnGrid(fig,xspan=[0.0,0.4],yspan=[0,0.1]) ax_position = placeAxesOnGrid(fig,xspan=[0,0.1],yspan=[0.12,1.0]) ax_waveform = placeAxesOnGrid(fig,xspan=[0.2,0.45],yspan=[0.12,0.65]) ax_time = placeAxesOnGrid(fig,xspan=[0.2,1.0],yspan=[0.82,1.0]) ax_PCs = placeAxesOnGrid(fig,xspan=[0.5,0.8],yspan=[0,0.35]) ax_ACG = placeAxesOnGrid(fig,dim=[1,2],xspan=[0.55,1.0],yspan=[0.5,0.7]) #ax_neighbor_waveform_1 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.82,1.0],yspan=[0,0.13]) #ax_neighbor_waveform_2 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.82,1.0],yspan=[0.13,0.26]) #ax_neighbor_waveform_3 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.82,1.0],yspan=[0.26,0.39]) ax_neighbor_waveforms=placeAxesOnGrid(fig,dim=[1,1],xspan=[0.82,1.0],yspan=[0.0,0.39])#[ax_neighbor_waveform_1,ax_neighbor_waveform_2,ax_neighbor_waveform_3] ax_CCGs_1 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.53,0.68],yspan=[0.36,0.48]) ax_CCGs_2 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.7,.85],yspan=[0.36,0.48]) ax_CCGs_3 = placeAxesOnGrid(fig,dim=[1,1],xspan=[0.86,1.0],yspan=[0.36,0.48]) ax_CCGs = [ax_CCGs_1,ax_CCGs_2,ax_CCGs_3] #position plot ax_position.imshow(data[clusterID]['waveform_weights'][::4],extent=(site_positions[:,0][::4][0],site_positions[:,0][::4][0]+16,site_positions[:,1][::4][0],site_positions[:,1][::4][-1]),cmap=plt.cm.gray_r,clim=(0,0.5),interpolation='none') ax_position.imshow(data[clusterID]['waveform_weights'][1::4],extent=(site_positions[:,0][1::4][0],site_positions[:,0][1::4][0]+16,site_positions[:,1][1::4][0],site_positions[:,1][1::4][-1]),cmap=plt.cm.gray_r,clim=(0,0.5),interpolation='none') ax_position.imshow(data[clusterID]['waveform_weights'][2::4],extent=(site_positions[:,0][2::4][0],site_positions[:,0][2::4][0]+16,site_positions[:,1][2::4][0],site_positions[:,1][2::4][-1]),cmap=plt.cm.gray_r,clim=(0,0.5),interpolation='none') ax_position.imshow(data[clusterID]['waveform_weights'][3::4],extent=(site_positions[:,0][3::4][0],site_positions[:,0][3::4][0]+16,site_positions[:,1][3::4][0],site_positions[:,1][3::4][-1]),cmap=plt.cm.gray_r,clim=(0,0.5),interpolation='none') ax_position.set_aspect(0.1) ax_position.set_ylim(3840,0) ax_position.set_xlim(70,0) cleanAxes(ax_position) ax_position.set_title('neuron position') #time limits if time_limits == None: time_limits=[0,1e7] all_spikes = data[clusterID]['times'] spike_times = all_spikes[np.where(all_spikes > time_limits[0])[0][0]:np.where(all_spikes < time_limits[1])[0][-1]] #print len(all_spikes) #print all_spikes[0] #print all_spikes[-1] ##print np.where(all_spikes > time_limits[0])[0][0] #print np.where(all_spikes < time_limits[1])[0][-1] these_spikes = np.where(cluster_IDs==cluster_ID)[0][np.where(all_spikes > time_limits[0])[0][0]:np.where(all_spikes < time_limits[1])[0][-1]] #spike_times = spike_times_data[these_spikes] #for PC and CCG display, find close by clusters calculate #PC plot number_of_spikes_to_plot = 2000 these_templates=spike_templates[np.where(cluster_IDs==cluster_ID)[0]] (included_templates,instances) = count_unique(these_templates) this_template = included_templates[int(np.where(instances==np.max(instances))[0])] ch1 = pc_ind_data[this_template][0] ch2 = pc_ind_data[this_template][1] ax_PCs.plot(pc_data[these_spikes][:number_of_spikes_to_plot,0,0], pc_data[these_spikes][:number_of_spikes_to_plot,0,1],'bo',ms=1.5,markeredgewidth=0) nearby_trio = [0,0,0]; nearby_euclids = [10000,10000,10000]; nearby_times=[] for other_cluster in data.keys(): if other_cluster != clusterID: if (np.abs(data[clusterID]['ypos']-data[other_cluster]['ypos']) + np.abs(data[clusterID]['xpos']-data[other_cluster]['xpos'])) < nearby_euclids[-1]: rank = np.where((np.abs(data[clusterID]['ypos']-data[other_cluster]['ypos']) + np.abs(data[clusterID]['xpos']-data[other_cluster]['xpos'])) < nearby_euclids)[0][0] nearby_euclids[rank] = (np.abs(data[clusterID]['ypos']-data[other_cluster]['ypos']) + np.abs(data[clusterID]['xpos']-data[other_cluster]['xpos'])) nearby_trio[rank]=other_cluster print(nearby_trio) for ii,neighbor in enumerate(nearby_trio): all_spikes_neighbor = data[neighbor]['times'] indices_neighbor= np.where(cluster_IDs==int(neighbor))[0][np.where(all_spikes_neighbor > time_limits[0])[0][0]:np.where(all_spikes_neighbor < time_limits[1])[0][-1]] neighbor_templates=spike_templates[indices_neighbor] neighbor_spike_times = all_spikes_neighbor[np.where(all_spikes_neighbor > time_limits[0])[0][0]:np.where(all_spikes_neighbor < time_limits[1])[0][-1]] nearby_times.append(neighbor_spike_times) (included_templates,instances) = count_unique(neighbor_templates) this_template = included_templates[int(np.where(instances==np.max(instances))[0])] ch1_index = np.where(pc_ind_data[this_template] == ch1)[0] ch2_index = np.where(pc_ind_data[this_template] == ch2)[0] if ch2_index.size != 0 and ch1_index.size != 0: ax_PCs.plot(pc_data[indices_neighbor][:number_of_spikes_to_plot,0,np.where(pc_ind_data[this_template] == ch1)[0][0]], pc_data[indices_neighbor][:number_of_spikes_to_plot,0,np.where(pc_ind_data[this_template] == ch2)[0][0]], 'o',color=neighbor_colors[ii],ms=1,markeredgewidth=0,alpha=0.8) all_diffs = [] for spike_time in spike_times: try: neighbor_start = np.where(neighbor_spike_times < spike_time - 0.5)[0][-1] except: neighbor_start = 0 try: neighbor_end = np.where(neighbor_spike_times > spike_time + 0.5)[0][0] except: neighbor_end = -1 neighbor_chunk = neighbor_spike_times[neighbor_start:neighbor_end] #print '\r'+str(spike_time)+' '+str(neighbor_start)+' - '+str(neighbor_end), all_diffs.extend(neighbor_chunk - spike_time) all_diffs=np.array(all_diffs).flatten() hist,edges = np.histogram(all_diffs,bins=np.linspace(-0.2,0.2,400)) ax_CCGs[ii].plot(edges[:-1],hist,drawstyle='steps',color=neighbor_colors[ii]) ax_CCGs[ii].set_xlim(-.2,.2) ax_CCGs[ii].xaxis.set_ticks([-0.075,0.0,0.075]) ax_CCGs[ii].axvline(0.0,ls='--',color='#ff8080') cleanAxes(ax_CCGs[ii],total=True) cleanAxes(ax_neighbor_waveforms,total=True) cleanAxes(ax_PCs) ax_PCs.set_title('PC features') #waveform plot cleanAxes(ax_waveform,total=True) ax_waveform.set_title('waveform') channel_offset = 0 # should not be 0 if not starting from tip. peak_y_channel = np.where(data[clusterID]['waveform_weights'] == np.max(data[clusterID]['waveform_weights']))[0][0] times = np.random.choice(spike_times,100,replace=False) random_times = np.random.rand(100) * (np.max(spike_times)-np.min(spike_times)) + np.min(spike_times) xoffs=[0,100,50,150,0,100,50,150,0,100,50,150,0,100,50,150,0,100][::-1] yoff=1500 signal = 0; for ii,channel in enumerate(np.linspace(peak_y_channel-8,peak_y_channel+10,18)): ws = load_waveforms(datapath,channel,times,channels=channels) ws_bkd = load_waveforms(datapath,channel,random_times,channels=channels) x_range = np.linspace(xoffs[ii],xoffs[ii]+60,60) for i in range(np.shape(ws)[0]): if np.shape(x_range)[0] == np.shape(ws[i][:]-yoff*(ii/2))[0]: ax_waveform.plot(x_range,ws[i][:]-yoff*(ii/2),alpha=0.05,color='#0066ff') ax_waveform.plot(x_range,ws_bkd[i][:]-yoff*(ii/2),alpha=0.05,color='#c8c8c8') if np.shape(x_range)[0] == np.shape(np.mean(ws,axis=0)-yoff*(ii/2))[0]: if np.max(np.abs(np.mean(ws,axis=0)-yoff*(ii/2))) > signal: signal = np.max(np.abs(np.mean(ws,axis=0)-yoff*(ii/2))) noise = np.mean(ws_bkd) + np.std(ws_bkd)* 4. ax_waveform.plot(x_range,np.mean(ws,axis=0)-yoff*(ii/2),color='#0066ff') if ii > 3 and ii < 14: for nn,axis in enumerate(nearby_trio): if np.shape(x_range)[0] == np.shape(
np.mean(ws,axis=0)
numpy.mean
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Load mini-imagenet-dataset from hard drive. """ import paddle from paddle.io import Dataset import numpy as np import cv2 import os import collections import sys sys.path.append("../..") from paddle.vision import transforms as T class MiniImageNet1(Dataset): """ Implementation of Mini-ImageNet dataset. Args: mode(str): 'train', 'test', or 'val' mode. Default 'test'. transform: function to call to preprocess images. Returns: Dataset: Mini-Imagenet Dataset. Examples: .. code-block:: python from miniimagenet import MINIIMAGENET test_dataset = MINIIMAGENET(mode='test') test_loader = paddle.io.DataLoader(test_dataset, batch_size=1, shuffle=False) for id, data in enumerate(test_loader): image = data[0] label = data[1] """ def __init__(self, mode='test', transform=None): self.transform = transform # TODO: make it more general parent_folder = '../dataset/mini-imagenet1/mini-imagenet' supported_mode = ('train', 'val', 'test') assert mode in supported_mode subclass_folders = os.listdir(parent_folder) self.image_2_label = [] # TODO: shrink this... for i, folder in enumerate(subclass_folders): if mode == 'train': image_folder = os.path.join(parent_folder, folder, mode) image_filenames = os.listdir(image_folder) for image_filename in image_filenames: image_path = os.path.join(image_folder, image_filename) self.image_2_label.append((image_path, i)) # mix train & val together. mode = 'val' image_folder = os.path.join(parent_folder, folder, mode) image_filenames = os.listdir(image_folder) for image_filename in image_filenames: image_path = os.path.join(image_folder, image_filename) self.image_2_label.append((image_path, i)) else: mode = 'test' image_folder = os.path.join(parent_folder, folder, mode) image_filenames = os.listdir(image_folder) for image_filename in image_filenames: image_path = os.path.join(image_folder, image_filename) self.image_2_label.append((image_path, i)) def __getitem__(self, idx): image_filepath, label = self.image_2_label[idx] reading_success = False while not reading_success: try: image = cv2.imread(image_filepath) if self.transform is not None: # TODO: fix bug here. transformed_image = self.transform(image) else: transformed_image = image reading_success = True except Exception as e: print(e) import pdb pdb.set_trace() return transformed_image, label def __len__(self): return len(self.image_2_label) def main(): """ Main for running a tutorial for ImageNet. Returns: None """ mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] # Set the testing set transform_train = T.Compose([T.Resize((224, 224)), T.RandomHorizontalFlip(0.5), T.RandomVerticalFlip(0.5), T.Transpose(), T.Normalize( mean=[0, 0, 0], std=[255, 255, 255]), T.Normalize(mean, std, data_format='CHW') ]) transform_eval = T.Compose([T.Resize((224, 224)), T.Transpose(), T.Normalize( mean=[0, 0, 0], std=[255, 255, 255]), T.Normalize(mean, std, data_format='CHW') ]) # Set the classification network model1 = paddle.vision.models.resnet50(pretrained=True) model2 = paddle.vision.models.vgg16(pretrained=True) model7 = paddle.vision.models.mobilenet_v1(pretrained=True) train_set = MiniImageNet1(mode='train', transform=transform_train) test_set = MiniImageNet1(mode='test', transform=transform_eval) train_loader = paddle.io.DataLoader(train_set, batch_size=16, shuffle=True) test_loader = paddle.io.DataLoader(test_set, batch_size=16, shuffle=True) train_label_dict = collections.defaultdict(int) test_label_dict = collections.defaultdict(int) for index, data in enumerate(train_loader): images = data[0] labels = data[1] for label in labels: train_label_dict[label] += 1 predict1 = model1(images) predict2 = model2(images) predict7 = model7(images) label1 = np.argmax(predict1, axis=1) label2 =
np.argmax(predict2, axis=1)
numpy.argmax
''' <NAME> (+) added customized outputs: flow_fwd, flow_bwd, segmentation mask (src/tgt), instance mask (src/tgt) (+) added recursive_check_nonzero_inst ''' import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data import numpy as np from imageio import imread from path import Path import random import math from matplotlib import pyplot as plt from flow_io import flow_read from rigid_warp import flow_warp import pdb def load_as_float(path): return imread(path).astype(np.float32) def load_flo_as_float(path): out = np.array(flow_read(path)).astype(np.float32) return out def load_seg_as_float(path): out = np.load(path).astype(np.float32) return out def L2_norm(x, dim=1, keepdim=True): curr_offset = 1e-10 l2_norm = torch.norm(torch.abs(x) + curr_offset, dim=dim, keepdim=True) return l2_norm def find_noc_masks(fwd_flow, bwd_flow): ''' fwd_flow: torch.size([1, 2, 256, 832]) bwd_flow: torch.size([1, 2, 256, 832]) output: torch.size([1, 1, 256, 832]), torch.size([1, 1, 256, 832]) input shape of flow_warp(): torch.size([bs, 2, 256, 832]) ''' bwd2fwd_flow, _ = flow_warp(bwd_flow, fwd_flow) fwd2bwd_flow, _ = flow_warp(fwd_flow, bwd_flow) fwd_flow_diff = torch.abs(bwd2fwd_flow + fwd_flow) bwd_flow_diff = torch.abs(fwd2bwd_flow + bwd_flow) fwd_consist_bound = torch.max(0.05 * L2_norm(fwd_flow), torch.Tensor([3.0])) bwd_consist_bound = torch.max(0.05 * L2_norm(bwd_flow), torch.Tensor([3.0])) noc_mask_0 = (L2_norm(fwd_flow_diff) < fwd_consist_bound).type(torch.FloatTensor) # noc_mask_tgt, torch.Size([1, 1, 256, 832]), torch.float32 noc_mask_1 = (L2_norm(bwd_flow_diff) < bwd_consist_bound).type(torch.FloatTensor) # noc_mask_src, torch.Size([1, 1, 256, 832]), torch.float32 # pdb.set_trace() return noc_mask_0, noc_mask_1 def inst_iou(seg_src, seg_tgt, valid_mask): ''' => Which channel instance of seg_tgt does the instances of seg_src match? => seg_src의 인스턴스들이 seg_tgt의 몇 번째 채널 인스턴스에 매칭되는가? seg_src: torch.Size([1, n_inst, 256, 832]) seg_tgt: torch.Size([1, n_inst, 256, 832]) valid_mask: torch.Size([1, 1, 256, 832]) ''' n_inst_src = seg_src.shape[1] n_inst_tgt = seg_tgt.shape[1] seg_src_m = seg_src * valid_mask.repeat(1,n_inst_src,1,1) seg_tgt_m = seg_tgt * valid_mask.repeat(1,n_inst_tgt,1,1) # pdb.set_trace() ''' plt.figure(1), plt.imshow(seg_src.sum(dim=0).sum(dim=0)), plt.colorbar(), plt.ion(), plt.show() plt.figure(2), plt.imshow(seg_tgt.sum(dim=0).sum(dim=0)), plt.colorbar(), plt.ion(), plt.show() plt.figure(3), plt.imshow(valid_mask[0,0]), plt.colorbar(), plt.ion(), plt.show() plt.figure(4), plt.imshow(seg_src_m.sum(dim=0).sum(dim=0)), plt.colorbar(), plt.ion(), plt.show() ''' for i in range(n_inst_src): if i == 0: match_table = torch.from_numpy(np.zeros([1,n_inst_tgt]).astype(np.float32)) continue; overl = (seg_src_m[:,i].unsqueeze(1).repeat(1,n_inst_tgt,1,1) * seg_tgt_m).clamp(min=0,max=1).squeeze(0).sum(1).sum(1) union = (seg_src_m[:,i].unsqueeze(1).repeat(1,n_inst_tgt,1,1) + seg_tgt_m).clamp(min=0,max=1).squeeze(0).sum(1).sum(1) iou_inst = overl / union match_table = torch.cat((match_table, iou_inst.unsqueeze(0)), dim=0) iou, inst_idx = torch.max(match_table,dim=1) # pdb.set_trace() return iou, inst_idx def recursive_check_nonzero_inst(tgt_inst, ref_inst): assert( tgt_inst[0].mean() == ref_inst[0].mean() ) n_inst = int(tgt_inst[0].mean()) for nn in range(n_inst): if tgt_inst[nn+1].mean() == 0: tgt_inst[0] -= 1 ref_inst[0] -= 1 if nn+1 == n_inst: tgt_inst[nn+1:] = 0 ref_inst[nn+1:] = 0 else: tgt_inst[nn+1:] = torch.cat([tgt_inst[nn+2:], torch.zeros(1, tgt_inst.size(1), tgt_inst.size(2))], dim=0) # re-ordering ref_inst[nn+1:] = torch.cat([ref_inst[nn+2:], torch.zeros(1, ref_inst.size(1), ref_inst.size(2))], dim=0) # re-ordering return recursive_check_nonzero_inst(tgt_inst, ref_inst) if ref_inst[nn+1].mean() == 0: tgt_inst[0] -= 1 ref_inst[0] -= 1 if nn+1 == n_inst: tgt_inst[nn+1:] = 0 ref_inst[nn+1:] = 0 else: tgt_inst[nn+1:] = torch.cat([tgt_inst[nn+2:], torch.zeros(1, tgt_inst.size(1), tgt_inst.size(2))], dim=0) # re-ordering ref_inst[nn+1:] = torch.cat([ref_inst[nn+2:], torch.zeros(1, ref_inst.size(1), ref_inst.size(2))], dim=0) # re-ordering return recursive_check_nonzero_inst(tgt_inst, ref_inst) return tgt_inst, ref_inst class SequenceFolder(data.Dataset): """ A sequence data loader where the files are arranged in this way: root/scene_1/0000000.jpg root/scene_1/0000001.jpg .. root/scene_1/cam.txt root/scene_2/0000000.jpg . transform functions must take in a list a images and a numpy array (usually intrinsics matrix) """ def __init__(self, root, train, seed=None, shuffle=True, max_num_instances=20, sequence_length=3, transform=None, proportion=1, begin_idx=None): np.random.seed(seed) random.seed(seed) self.root = Path(root) scene_list_path = self.root/'train.txt' if train else self.root/'val.txt' self.scenes = [self.root/'image'/folder[:-1] for folder in open(scene_list_path)] self.is_shuffle = shuffle self.crawl_folders(sequence_length) self.mni = max_num_instances self.transform = transform split_index = int(math.floor(len(self.samples)*proportion)) self.samples = self.samples[:split_index] if begin_idx: self.samples = self.samples[begin_idx:] # pdb.set_trace() def crawl_folders(self, sequence_length): sequence_set = [] demi_length = (sequence_length-1)//2 shifts = list(range(-demi_length, demi_length + 1)) shifts.pop(demi_length) for scene in self.scenes: sceneff = Path(Path.dirname(scene).parent+'/flow_f/'+scene.split('/')[-1]) scenefb = Path(Path.dirname(scene).parent+'/flow_b/'+scene.split('/')[-1]) scenei = Path(Path.dirname(scene).parent+'/segmentation/'+scene.split('/')[-1]) intrinsics = np.genfromtxt(scene/'cam.txt').astype(np.float32).reshape((3, 3)) imgs = sorted(scene.files('*.jpg')) flof = sorted(sceneff.files('*.flo')) # 00: src, 01: tgt flob = sorted(scenefb.files('*.flo')) # 00: tgt, 01: src segm = sorted(scenei.files('*.npy')) if len(imgs) < sequence_length: continue for i in range(demi_length, len(imgs)-demi_length): sample = {'intrinsics': intrinsics, 'tgt': imgs[i], 'ref_imgs': [], 'flow_fs':[], 'flow_bs':[], 'tgt_seg':segm[i], 'ref_segs':[]} # ('tgt_insts':[], 'ref_insts':[]) will be processed when getitem() is called for j in shifts: sample['ref_imgs'].append(imgs[i+j]) sample['ref_segs'].append(segm[i+j]) for j in range(-demi_length, 1): sample['flow_fs'].append(flof[i+j]) sample['flow_bs'].append(flob[i+j]) sequence_set.append(sample) # pdb.set_trace() if self.is_shuffle: random.shuffle(sequence_set) self.samples = sequence_set def __getitem__(self, index): sample = self.samples[index] tgt_img = load_as_float(sample['tgt']) ref_imgs = [load_as_float(ref_img) for ref_img in sample['ref_imgs']] flow_fs = [torch.from_numpy(load_flo_as_float(flow_f)) for flow_f in sample['flow_fs']] flow_bs = [torch.from_numpy(load_flo_as_float(flow_b)) for flow_b in sample['flow_bs']] tgt_seg = torch.from_numpy(load_seg_as_float(sample['tgt_seg'])) ref_segs = [torch.from_numpy(load_seg_as_float(ref_seg)) for ref_seg in sample['ref_segs']] tgt_sort = torch.cat([torch.zeros(1).long(), tgt_seg.sum(dim=(1,2)).argsort(descending=True)[:-1]], dim=0) ref_sorts = [ torch.cat([torch.zeros(1).long(), ref_seg.sum(dim=(1,2)).argsort(descending=True)[:-1]], dim=0) for ref_seg in ref_segs ] tgt_seg = tgt_seg[tgt_sort] ref_segs = [ref_seg[ref_sort] for ref_seg, ref_sort in zip(ref_segs, ref_sorts)] tgt_insts = [] ref_insts = [] for i in range( len(ref_imgs) ): noc_f, noc_b = find_noc_masks(flow_fs[i].unsqueeze(0), flow_bs[i].unsqueeze(0)) if i < len(ref_imgs)/2: # first half seg0 = ref_segs[i].unsqueeze(0) seg1 = tgt_seg.unsqueeze(0) else: # second half seg0 = tgt_seg.unsqueeze(0) seg1 = ref_segs[i].unsqueeze(0) seg0w, _ = flow_warp(seg1, flow_fs[i].unsqueeze(0)) seg1w, _ = flow_warp(seg0, flow_bs[i].unsqueeze(0)) n_inst0 = seg0.shape[1] n_inst1 = seg1.shape[1] ### Warp seg0 to seg1. Find IoU between seg1w and seg1. Find the maximum corresponded instance in seg1. iou_01, ch_01 = inst_iou(seg1w, seg1, valid_mask=noc_b) iou_10, ch_10 = inst_iou(seg0w, seg0, valid_mask=noc_f) seg0_re = torch.zeros(self.mni+1, seg0.shape[2], seg0.shape[3]) seg1_re = torch.zeros(self.mni+1, seg1.shape[2], seg1.shape[3]) non_overlap_0 = torch.ones([seg0.shape[2], seg0.shape[3]]) non_overlap_1 = torch.ones([seg0.shape[2], seg0.shape[3]]) num_match = 0 for ch in range(n_inst0): condition1 = (ch == ch_10[ch_01[ch]]) and (iou_01[ch] > 0.5) and (iou_10[ch_01[ch]] > 0.5) condition2 = ((seg0[0,ch] * non_overlap_0).max() > 0) and ((seg1[0,ch_01[ch]] * non_overlap_1).max() > 0) if condition1 and condition2 and (num_match < self.mni): # matching success! num_match += 1 seg0_re[num_match] = seg0[0,ch] * non_overlap_0 seg1_re[num_match] = seg1[0,ch_01[ch]] * non_overlap_1 non_overlap_0 = non_overlap_0 * (1 - seg0_re[num_match]) non_overlap_1 = non_overlap_1 * (1 - seg1_re[num_match]) seg0_re[0] = num_match seg1_re[0] = num_match # pdb.set_trace() if seg0_re[0].mean() != 0 and seg0_re[int(seg0_re[0].mean())].mean() == 0: pdb.set_trace() if seg1_re[0].mean() != 0 and seg1_re[int(seg1_re[0].mean())].mean() == 0: pdb.set_trace() if i < len(ref_imgs)/2: # first half tgt_insts.append(seg1_re.detach().cpu().numpy().transpose(1,2,0)) ref_insts.append(seg0_re.detach().cpu().numpy().transpose(1,2,0)) else: # second half tgt_insts.append(seg0_re.detach().cpu().numpy().transpose(1,2,0)) ref_insts.append(seg1_re.detach().cpu().numpy().transpose(1,2,0)) # pdb.set_trace() ''' plt.close('all') plt.figure(1), plt.imshow(tgt_insts[0].sum(dim=0)), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar(), plt.ion(), plt.show() plt.figure(2), plt.imshow(tgt_insts[1].sum(dim=0)), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar(), plt.ion(), plt.show() plt.figure(3), plt.imshow(ref_insts[0].sum(dim=0)), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar(), plt.ion(), plt.show() plt.figure(4), plt.imshow(ref_insts[1].sum(dim=0)), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar(), plt.ion(), plt.show() ''' if self.transform is not None: imgs, segms, intrinsics = self.transform([tgt_img] + ref_imgs, tgt_insts + ref_insts, np.copy(sample['intrinsics'])) tgt_img = imgs[0] ref_imgs = imgs[1:] tgt_insts = segms[:int(len(ref_imgs)/2+1)] ref_insts = segms[int(len(ref_imgs)/2+1):] else: intrinsics = np.copy(sample['intrinsics']) ### While passing through RandomScaleCrop(), instances could be flied-out and become zero-mask. -> Need filtering! for sq in range( len(ref_imgs) ): tgt_insts[sq], ref_insts[sq] = recursive_check_nonzero_inst(tgt_insts[sq], ref_insts[sq]) if tgt_insts[0][0].mean() != 0 and tgt_insts[0][int(tgt_insts[0][0].mean())].mean() == 0: pdb.set_trace() if tgt_insts[1][0].mean() != 0 and tgt_insts[1][int(tgt_insts[1][0].mean())].mean() == 0: pdb.set_trace() if ref_insts[0][0].mean() != 0 and ref_insts[0][int(ref_insts[0][0].mean())].mean() == 0: pdb.set_trace() if ref_insts[1][0].mean() != 0 and ref_insts[1][int(ref_insts[1][0].mean())].mean() == 0: pdb.set_trace() if tgt_insts[0][0].mean() != tgt_insts[0][1:].mean(-1).mean(-1).nonzero().size(0): pdb.set_trace() if tgt_insts[1][0].mean() != tgt_insts[1][1:].mean(-1).mean(-1).nonzero().size(0): pdb.set_trace() if ref_insts[0][0].mean() != ref_insts[0][1:].mean(-1).mean(-1).nonzero().size(0): pdb.set_trace() if ref_insts[1][0].mean() != ref_insts[1][1:].mean(-1).mean(-1).nonzero().size(0): pdb.set_trace() # pdb.set_trace() return tgt_img, ref_imgs, intrinsics,
np.linalg.inv(intrinsics)
numpy.linalg.inv
import pytest import numpy as np from sosfilt import _zpk_funcs class TestCplxReal: def test_trivial_input(self): np.testing.assert_equal( _zpk_funcs._cplxreal(np.array([], dtype=np.complex_)), ([], []) ) np.testing.assert_equal( _zpk_funcs._cplxreal(np.array([1], dtype=np.complex_)), ([], [1]) ) def test_output_order(self): zc, zr = _zpk_funcs._cplxreal(np.roots(np.array([1, 0, 0, 1]))) np.testing.assert_allclose( np.append(zc, zr), [1 / 2 + 1j * np.sin(np.pi / 3), -1] ) eps = np.spacing(1) a = [ 0 + 1j, 0 - 1j, eps + 1j, eps - 1j, -eps + 1j, -eps - 1j, 1, 4, 2, 3, 0, 0, 2 + 3j, 2 - 3j, 1 - eps + 1j, 1 + 2j, 1 - 2j, 1 + eps - 1j, # sorts out of order 3 + 1j, 3 + 1j, 3 + 1j, 3 - 1j, 3 - 1j, 3 - 1j, 2 - 3j, 2 + 3j, ] zc, zr = _zpk_funcs._cplxreal(np.array(a)) np.testing.assert_allclose( zc, [1j, 1j, 1j, 1 + 1j, 1 + 2j, 2 + 3j, 2 + 3j, 3 + 1j, 3 + 1j, 3 + 1j] ) np.testing.assert_allclose(zr, [0, 0, 1, 2, 3, 4]) z = np.array( [ 1 - eps + 1j, 1 + 2j, 1 - 2j, 1 + eps - 1j, 1 + eps + 3j, 1 - 2 * eps - 3j, 0 + 1j, 0 - 1j, 2 + 4j, 2 - 4j, 2 + 3j, 2 - 3j, 3 + 7j, 3 - 7j, 4 - eps + 1j, 4 + eps - 2j, 4 - 1j, 4 - eps + 2j, ] ) zc, zr = _zpk_funcs._cplxreal(z) np.testing.assert_allclose( zc, [1j, 1 + 1j, 1 + 2j, 1 + 3j, 2 + 3j, 2 + 4j, 3 + 7j, 4 + 1j, 4 + 2j] ) np.testing.assert_equal(zr, []) def test_unmatched_conjugates(self): with pytest.raises(ValueError): _zpk_funcs._cplxreal(np.array([1 + 3j, 1 - 3j, 1 + 2j])) with pytest.raises(ValueError): _zpk_funcs._cplxreal(np.array([1 + 3j])) with pytest.raises(ValueError): _zpk_funcs._cplxreal(np.array([1 - 3j])) class TestZpk2Sos: def sos2zpk(self, z, p, k): return _zpk_funcs.zpk2sos_multiple( z[:, None], p[:, None], np.array([k], dtype=np.float64) )[0, ...] def test_basic(self): z = np.array([-1.0, -1.0], dtype=np.complex_) p = np.array([0.57149 + 0.29360j, 0.57149 - 0.29360j]) k = 1 sos = self.sos2zpk(z, p, k) sos2 = [[1, 2, 1, 1, -1.14298, 0.41280]]
np.testing.assert_array_almost_equal(sos, sos2, decimal=4)
numpy.testing.assert_array_almost_equal
# -*- coding: utf-8 -*- import numpy as np from sklearn.metrics.pairwise import euclidean_distances from tsam.utils.durationRepresentation import durationRepresentation def representations( candidates, clusterOrder, default, representationMethod=None, representationDict=None, distributionPeriodWise=True, timeStepsPerPeriod=None, ): clusterCenterIndices = None if representationMethod is None: representationMethod = default if representationMethod == "meanRepresentation": clusterCenters = meanRepresentation(candidates, clusterOrder) elif representationMethod == "medoidRepresentation": clusterCenters, clusterCenterIndices = medoidRepresentation( candidates, clusterOrder ) elif representationMethod == "maxoidRepresentation": clusterCenters, clusterCenterIndices = maxoidRepresentation( candidates, clusterOrder ) elif representationMethod == "minmaxmeanRepresentation": clusterCenters = minmaxmeanRepresentation( candidates, clusterOrder, representationDict, timeStepsPerPeriod ) elif representationMethod == "durationRepresentation" or representationMethod == "distributionRepresentation": clusterCenters = durationRepresentation( candidates, clusterOrder, distributionPeriodWise, timeStepsPerPeriod, representMinMax=False, ) elif representationMethod == "distributionAndMinMaxRepresentation": clusterCenters = durationRepresentation( candidates, clusterOrder, distributionPeriodWise, timeStepsPerPeriod, representMinMax=True, ) else: raise ValueError("Chosen 'representationMethod' does not exist.") return clusterCenters, clusterCenterIndices def maxoidRepresentation(candidates, clusterOrder): """ Represents the candidates of a given cluster group (clusterOrder) by its medoid, measured with the euclidean distance. :param candidates: Dissimilarity matrix where each row represents a candidate. required :type candidates: np.ndarray :param clusterOrder: Integer array where the index refers to the candidate and the Integer entry to the group. required :type clusterOrder: np.array """ # set cluster member that is farthest away from the points of the other clusters as maxoid clusterCenters = [] clusterCenterIndices = [] for clusterNum in np.unique(clusterOrder): indice = np.where(clusterOrder == clusterNum) innerDistMatrix = euclidean_distances(candidates, candidates[indice]) mindistIdx = np.argmax(innerDistMatrix.sum(axis=0)) clusterCenters.append(candidates[indice][mindistIdx]) clusterCenterIndices.append(indice[0][mindistIdx]) return clusterCenters, clusterCenterIndices def medoidRepresentation(candidates, clusterOrder): """ Represents the candidates of a given cluster group (clusterOrder) by its medoid, measured with the euclidean distance. :param candidates: Dissimilarity matrix where each row represents a candidate. required :type candidates: np.ndarray :param clusterOrder: Integer array where the index refers to the candidate and the Integer entry to the group. required :type clusterOrder: np.array """ # set cluster center as medoid clusterCenters = [] clusterCenterIndices = [] for clusterNum in np.unique(clusterOrder): indice = np.where(clusterOrder == clusterNum) innerDistMatrix = euclidean_distances(candidates[indice]) mindistIdx = np.argmin(innerDistMatrix.sum(axis=0)) clusterCenters.append(candidates[indice][mindistIdx]) clusterCenterIndices.append(indice[0][mindistIdx]) return clusterCenters, clusterCenterIndices def meanRepresentation(candidates, clusterOrder): """ Represents the candidates of a given cluster group (clusterOrder) by its mean. :param candidates: Dissimilarity matrix where each row represents a candidate. required :type candidates: np.ndarray :param clusterOrder: Integer array where the index refers to the candidate and the Integer entry to the group. required :type clusterOrder: np.array """ # set cluster centers as means of the group candidates clusterCenters = [] for clusterNum in
np.unique(clusterOrder)
numpy.unique
#!/usr/bin/env python3 # This file is covered by the LICENSE file in the root of this project. # Brief: rendering views from a given map at arbitrary 3d locations. from typing import Dict import os import math import numpy as np from map_renderer import Mesh import OpenGL.GL as gl from map_renderer.glow import GlBuffer, GlProgram, GlShader, GlFramebuffer, GlRenderbuffer, GlTexture2D, vec4, vec3 import map_renderer.glow as glow glow.WARN_INVALID_UNIFORMS = True def glPerspective(fov, aspect, z_near, z_far): """ generate perspective matrix. For more details see https://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml """ M = np.zeros((4, 4), dtype=np.float32) # Copied from gluPerspective f = 1.0 / math.tan(0.5 * fov) M[0, 0] = f / aspect M[1, 1] = f M[2, 2] = (z_near + z_far) / (z_near - z_far) M[2, 3] = (2.0 * z_far * z_near) / (z_near - z_far) M[3, 2] = -1.0 return M def normalize(vec: np.array): """ normalize. """ length = math.sqrt(np.dot(vec, vec)) if abs(length) < 0.0000001: return vec return vec / length def lookAt(x_cam, y_cam, z_cam, x_ref, y_ref, z_ref): """ generate view matrix. """ # determine rotation from current location: pos_cam = vec3(x_cam, y_cam, z_cam) pos = vec3(x_ref, y_ref, z_ref) up = vec3(0.0, 1.0, 0.0) f = normalize(pos - pos_cam) x_axis = normalize(np.cross(f, up)) y_axis = normalize(np.cross(x_axis, f)) z_axis = -f view_matrix = np.zeros((4, 4), dtype=np.float32) view_matrix[0, :3] = x_axis view_matrix[1, :3] = y_axis view_matrix[2, :3] = z_axis view_matrix[3, 3] = 1.0 # effectively => R * T view_matrix[0, 3] = np.dot(-pos_cam, x_axis) view_matrix[1, 3] = np.dot(-pos_cam, y_axis) view_matrix[2, 3] = np.dot(-pos_cam, z_axis) return view_matrix class MapRenderer: """ rendering views from a given map at arbitrary 3d locations. """ def __init__(self, params: Dict): """ Args: params[Dict]: the parameter that are used to render: width, height, fov_up, fov_down, min_depth, max_depth """ self._width = int(params["width"]) self._height = int(params["height"]) self._mesh = None current_directory = os.path.abspath(os.path.join(os.path.dirname(__file__))) self._render_program = GlProgram() self._render_program.attach( GlShader.from_file(gl.GL_VERTEX_SHADER, os.path.join(current_directory, "shader/render_mesh.vert"))) self._render_program.attach( GlShader.from_file(gl.GL_GEOMETRY_SHADER, os.path.join(current_directory, "shader/render_mesh.geom"))) self._render_program.attach( GlShader.from_file(gl.GL_FRAGMENT_SHADER, os.path.join(current_directory, "shader/render_mesh.frag"))) self._render_program.link() self._render_program.bind() self._render_program["fov_up"] = float(params["fov_up"]) self._render_program["fov_down"] = float(params["fov_down"]) self._render_program["min_depth"] = float(params["min_range"]) self._render_program["max_depth"] = float(params["max_range"]) self._render_program.release() self._draw_program = GlProgram() self._draw_program.attach( GlShader.from_file(gl.GL_VERTEX_SHADER, os.path.join(current_directory, "shader/draw_mesh.vert"))) self._draw_program.attach( GlShader.from_file(gl.GL_FRAGMENT_SHADER, os.path.join(current_directory, "shader/draw_mesh.frag"))) self._draw_program.link() self._draw_program.bind() def set_uniform(program: GlProgram, name: str, value): loc = gl.glGetUniformLocation(program.id, name) if isinstance(value, float): gl.glUniform1f(loc, value) elif isinstance(value, np.ndarray): if value.shape[0] == 4: gl.glUniform4fv(loc, 1, value) elif value.shape[0] == 3: gl.glUniform3fv(loc, 1, value) else: raise NotImplementedError("implement.") set_uniform(self._draw_program, "lights[0].position", vec4(0, 0, -1, 0)) set_uniform(self._draw_program, "lights[0].ambient", vec3(.01, .01, .01)) set_uniform(self._draw_program, "lights[0].diffuse", vec3(.9, .9, .9)) set_uniform(self._draw_program, "lights[0].specular", vec3(.9, .9, .9)) # more evenly distributed sun light... dirs = [vec4(1, -1, 1, 0), vec4(-1, -1, 1, 0), vec4(1, -1, -1, 0), vec4(-1, -1, -1, 0)] indirect_intensity = vec3(.1, .1, .1) for i, direction in enumerate(dirs): light_name = "lights[{}]".format(i + 1) set_uniform(self._draw_program, light_name + ".position", direction) set_uniform(self._draw_program, light_name + ".ambient", vec3(.01, .01, .01)) set_uniform(self._draw_program, light_name + ".diffuse", indirect_intensity) set_uniform(self._draw_program, light_name + ".specular", indirect_intensity) set_uniform(self._draw_program, "material.ambient", vec3(0.9, 0.9, 0.9)) set_uniform(self._draw_program, "material.diffuse", vec3(0.0, 0.0, 0.9)) set_uniform(self._draw_program, "material.specular", vec3(0.0, 0.0, 0.0)) set_uniform(self._draw_program, "material.emission", vec3(0.0, 0.0, 0.0)) set_uniform(self._draw_program, "material.shininess", 1.0) set_uniform(self._draw_program, "material.alpha", 1.0) self._draw_program.release() self._draw_program["num_lights"] = 5 self._draw_program["model_mat"] = np.identity(4, dtype=np.float32) self._draw_program["normal_mat"] =
np.identity(4, dtype=np.float32)
numpy.identity
# -*- coding: utf-8 -*- """ Created on Thu Dec 3 12:44:30 2020 @author: niklas """ import os import imageio import tifffile from pathlib import Path import numpy as np from bridson import poisson_disc_samples def get_affinities(labels): shape = labels.shape # we use three channels, to save as rgb affinities = np.zeros((shape[0] - 1, shape[1] - 1, 3)) top_affinity = (labels[:-1, :-1] - labels[1:, :-1]) == 0 right_affinity = (labels[:-1, :-1] - labels[:-1, 1:]) == 0 affinities[..., 0] = top_affinity affinities[..., 1] = right_affinity return affinities def toy_circle_labels_affinities( width, height, radius, intensity_prob, noise_func ): # affinity maps have -1 extents, so we build images with +1 extents height = height + 1 width = width + 1 labels = np.zeros((height, width), dtype=np.uint16) sketch = np.zeros_like(labels, dtype=float) # r is the distance between two center points, so we need to multiply by 2 centers = poisson_disc_samples(width=width, height=height, r=radius * 2) ys = np.arange(height) xs = np.arange(width) meshy, meshx = np.meshgrid(ys, xs, indexing="ij") for i, (x, y) in enumerate(centers): dist = (meshx - x)**2 + (meshy - y)**2 tmp_radius = np.random.uniform(radius / 2, radius) mask = dist < tmp_radius**2 # enumerate starts at 0, but 0 is background labels[mask] = i + 1 tmp_intensity = np.random.uniform(*intensity_prob) sketch[mask] = ( tmp_radius - np.sqrt(dist[mask]) ) / tmp_radius * tmp_intensity noise = noise_func(sketch) affinities = get_affinities(labels) return labels[:-1, :-1], sketch[:-1, :-1], noise[:-1, :-1], affinities def gaussian_noise(sigma): def func(sketch): return sketch + np.random.normal(0, sigma, size=sketch.shape) return func width = 600 height = 600 radius = 30 # labels, sketch, noise, affinities = toy_circle_labels_affinities( # width, height, radius, # [1, 2], # gaussian_noise(1.5 / 16) # ) # affinity_top = (labels[:-1, :] - labels[1:, :]) == 0 # affinity_right = (labels[:, :-1] - labels[:, 1:]) == 0 path = r"D:\pytorch-CycleGAN-and-pix2pix\datasets" newpath = os.path.join(path, "disk-affinity") Path(newpath).mkdir(parents=True, exist_ok=True) sets = ["val", "train", "test"] num = 100 for s in sets: paths = [] for b in ["A", "B", "C"]: pathb = os.path.join(newpath, s+b) Path(pathb).mkdir(parents=True, exist_ok=True) paths.append(pathb) for i in range(num): labels, sketch, noise, affinities = toy_circle_labels_affinities( width, height, radius, [1, 2], gaussian_noise(1.5 / 16) ) # we need to save noise as RGB, too, since cycleGAN needs # input and output channels to meet up noise =
np.repeat(noise[..., np.newaxis], 3, axis=2)
numpy.repeat
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse import datetime import os import sys import warnings # parse args parser = argparse.ArgumentParser( description='This is the main mnist and fashion mnist experiment.') parser.add_argument( '--outfile', type=str, help='json file to dump results to; will terminate if file already exists; ' 'required', required=True) parser.add_argument( '--dataset', choices=['mnist', 'fashion_mnist'], help='dataset to use in experiments; ' 'required', required=True) parser.add_argument( '--fold-count', type=int, help='number of folds contained in masks; ' 'required', required=True) parser.add_argument( '--train-folds', type=str, help='colon separated set of folds to use for training; ' 'can also specify the training folds to use in each phase using double colons; ' 'required', required=True) parser.add_argument( '--prevent-repeats', action='store_true', help='prevent the same sample appearing multiple times in the same phase') parser.add_argument( '--test-folds', type=str, help='colon separated set of folds to use for testing') parser.add_argument( '--phases', type=str, help='colon separated sets of digits for different phases; ' 'required', required=True) parser.add_argument( '--test-on-all-digits', action='store_true', help='also test on all the digits appearing in any phase; ' 'requires test folds to be specified') parser.add_argument( '--log-frequency', type=int, help='number of examples to learn on between recording accuracies and predictions; ' 'required', required=True) parser.add_argument( '--init-seed', type=int, help='seed for network initialization; ' 'required', required=True) parser.add_argument( '--shuffle-seed', type=int, help='seed for the random number generator used to shuffle datasets') parser.add_argument( '--criteria', choices=['steps', 'offline', 'online'], help='type of criteria to use when deciding whether or not to move to the next phase') parser.add_argument( '--steps', type=int, help='number of steps in each phase; ' 'required for steps criteria only', default=None) parser.add_argument( '--required-accuracy', type=float, help='required classifier accuracy to move onto next phase; ' 'required for offline and online criteria only', default=None) parser.add_argument( '--tolerance', type=int, help='maximum number of steps to try and satisfy required accuracy in a single phase; ' 'required for offline and online criteria only', default=None) parser.add_argument( '--validation-folds', type=str, help='colon separated set of folds to use for determining when accuracy criteria is met; ' 'required for offline criteria only', default=None) parser.add_argument( '--minimum-steps', type=int, help='minimum number of steps before moving onto next phase; ' 'required for online criteria only', default=None) parser.add_argument( '--hold-steps', type=int, help='minimum number of steps to hold accuracy for before moving onto next stage; ' 'required for online criteria only', default=None) parser.add_argument( '--optimizer', choices=['sgd', 'adam', 'rms'], help='optimization algorithm to use to train the network; ' 'required', required=True) parser.add_argument( '--lr', type=float, help='learning rate for training; ' 'requried by sgd, adam, and rms optimizer only', default=None) parser.add_argument( '--momentum', type=float, help='momentum hyperparameter; ' 'requried by sgd optimizer only', default=None) parser.add_argument( '--beta-1', type=float, help='beta 1 hyperparameter; ' 'requried by adam optimizer only', default=None) parser.add_argument( '--beta-2', type=float, help='beta 2 hyperparameter; ' 'requried by adam optimizer only', default=None) parser.add_argument( '--rho', type=float, help='rho hyperparameter; ' 'required by rms optimizer only', default=None) experiment = vars(parser.parse_args()) # check that the outfile doesn't already exist if os.path.isfile(experiment['outfile']): warnings.warn('outfile already exists; terminating\n') sys.exit(0) # check and process fold and phase structure arguments are specified correctly assert(0 < experiment['fold_count']) experiment['phases'] = [[int(i) for i in x] for x in experiment['phases'].split(':')] experiment['digits'] = sorted(list(set(i for j in experiment['phases'] for i in j))) assert(all([0 <= digit <= 9 for digit in experiment['digits']])) experiment['train_folds'] = experiment['train_folds'].split('::') if len(experiment['train_folds']) != len(experiment['phases']): assert(len(experiment['train_folds']) == 1) experiment['train_folds'] = [experiment['train_folds'][0] for _ in experiment['phases']] experiment['train_folds'] = [sorted([int(j)for j in folds.split(':')]) for folds in experiment['train_folds']] assert(len(experiment['train_folds']) == len(experiment['phases'])) assert(all([0 <= i < experiment['fold_count'] for i in sum(experiment['train_folds'], [])])) if experiment['test_folds'] is not None: experiment['test_folds'] = sorted([int(i)for i in experiment['test_folds'].split(':')]) assert(all([0 <= i < experiment['fold_count'] for i in experiment['test_folds']])) assert(set(experiment['test_folds']).isdisjoint(sum(experiment['train_folds'], []))) if experiment['test_on_all_digits']: assert(experiment['test_folds'] is not None) # check and process criteria arguments if experiment['criteria'] == 'steps': assert(experiment['steps'] is not None) assert(experiment['required_accuracy'] is None) assert(experiment['tolerance'] is None) assert(experiment['validation_folds'] is None) assert(experiment['minimum_steps'] is None) assert(experiment['hold_steps'] is None) assert(0 < experiment['steps']) if experiment['criteria'] == 'offline': assert(experiment['steps'] is None) assert(experiment['required_accuracy'] is not None) assert(experiment['tolerance'] is not None) assert(experiment['validation_folds'] is not None) assert(experiment['minimum_steps'] is None) assert(experiment['hold_steps'] is None) assert(0 < experiment['required_accuracy'] <= 1) assert(0 < experiment['tolerance']) experiment['validation_folds'] = \ sorted([int(i)for i in experiment['validation_folds'].split(':')]) assert(all([0 <= i < experiment['fold_count'] for i in experiment['validation_folds']])) assert(set(experiment['validation_folds']).isdisjoint(sum(experiment['train_folds'], []))) assert(set(experiment['validation_folds']).isdisjoint(experiment['test_folds'])) if experiment['criteria'] == 'online': assert(experiment['steps'] is None) assert(experiment['required_accuracy'] is not None) if not experiment['prevent_repeats']: assert(experiment['tolerance'] is not None) assert(0 < experiment['tolerance']) assert(experiment['validation_folds'] is None) assert(experiment['minimum_steps'] is not None) assert(experiment['hold_steps'] is not None) assert(0 < experiment['required_accuracy'] <= 1) assert(0 <= experiment['minimum_steps']) assert(0 <= experiment['hold_steps']) # check that optimizer arguments are specified correctly if experiment['optimizer'] == 'sgd': assert(experiment['momentum'] is not None) assert(experiment['beta_1'] is None) assert(experiment['beta_2'] is None) assert(experiment['rho'] is None) if experiment['optimizer'] == 'adam': assert(experiment['momentum'] is None) assert(experiment['beta_1'] is not None) assert(experiment['beta_2'] is not None) assert(experiment['rho'] is None) if experiment['optimizer'] == 'rms': assert(experiment['momentum'] is None) assert(experiment['beta_1'] is None) assert(experiment['beta_2'] is None) assert(experiment['rho'] is not None) # check and process all other arguments assert(0 < experiment['log_frequency']) # args ok; start experiment experiment['start_time'] = datetime.datetime.now(datetime.timezone.utc).astimezone().isoformat() # stop the annoying deprecation warnings when loading tensorflow warnings.filterwarnings('ignore') import copy import json import numpy as np import tensorflow as tf import torch # setup libraries torch.set_num_threads(1) try: tf.logging.set_verbosity('FATAL') except AttributeError: pass if experiment['init_seed'] is not None: torch.manual_seed(experiment['init_seed']) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # load dataset and masks if experiment['dataset'] == 'mnist': (raw_x_train, raw_y_train), (raw_x_test, raw_y_test) = \ tf.keras.datasets.mnist.load_data() masks = np.load('mnist_masks.npy', allow_pickle=True) else: assert experiment['dataset'] == 'fashion_mnist' (raw_x_train, raw_y_train), (raw_x_test, raw_y_test) = \ tf.keras.datasets.fashion_mnist.load_data() masks = np.load('fashion_mnist_masks.npy', allow_pickle=True) raw_x_train, raw_x_test = raw_x_train / 255.0, raw_x_test / 255.0 raw_x_test, raw_y_test = None, None # disable use of the holdout dataset # build masks assert(masks.shape[0] > experiment['fold_count']) # make sure we're not touching the holdout def build_mask(digits, folds): return np.array(sum([masks[fold][digit] for fold in folds for digit in digits]), dtype=bool) train_masks = [build_mask(phase, folds) for phase, folds in zip(experiment['phases'], experiment['train_folds'])] if experiment['test_folds'] is not None: test_masks = [build_mask(phase, experiment['test_folds']) for phase in experiment['phases']] if experiment['test_on_all_digits']: test_masks.append(build_mask(experiment['digits'], experiment['test_folds'])) if experiment['validation_folds'] is not None: validation_masks = [build_mask(phase, experiment['validation_folds']) for phase in experiment['phases']] # build datasets def shuffle_jointly(x, y): z = list(zip(x, y)) np.random.RandomState(seed=experiment['shuffle_seed']).shuffle(z) x, y = zip(* z) return x, y x_train = [raw_x_train[mask, ...] for mask in train_masks] y_train = [raw_y_train[mask, ...] - min(experiment['digits']) for mask in train_masks] for i in range(len(x_train)): x_train[i], y_train[i] = shuffle_jointly(x_train[i], y_train[i]) x_train[i] = torch.tensor(x_train[i], dtype=torch.float).flatten(start_dim=1) y_train[i] = torch.tensor(y_train[i], dtype=torch.int) if experiment['test_folds'] is not None: x_test = [raw_x_train[mask, ...] for mask in test_masks] y_test = [raw_y_train[mask, ...] - min(experiment['digits']) for mask in test_masks] mask = np.zeros(len(y_test[-1]), dtype=bool) digit_counts = np.zeros(max(raw_y_train)) for i, digit in enumerate(y_test[-1]): if (digit in experiment['digits']) and (digit_counts[digit] < 10): mask[i] = True digit_counts[digit] += 1 interference_x_test = x_test[-1][mask, ...] # smaller dataset for second order tests interference_y_test = y_test[-1][mask, ...] for i in range(len(x_test)): x_test[i] = torch.tensor(x_test[i], dtype=torch.float).flatten(start_dim=1) y_test[i] = torch.tensor(y_test[i], dtype=torch.int) interference_x_test = torch.tensor(interference_x_test, dtype=torch.float).flatten(start_dim=1) interference_y_test = torch.tensor(interference_y_test, dtype=torch.int) if experiment['validation_folds'] is not None: x_validation = [raw_x_train[mask, ...] for mask in validation_masks] y_validation = [raw_y_train[mask, ...] - min(experiment['digits']) for mask in validation_masks] for i in range(len(x_validation)): x_validation[i] = torch.tensor(x_validation[i], dtype=torch.float).flatten(start_dim=1) y_validation[i] = torch.tensor(y_validation[i], dtype=torch.int) # build model dtype = torch.float linear1 = torch.nn.Linear(28 * 28, 100) relu1 = torch.nn.ReLU() linear2 = torch.nn.Linear(100, len(experiment['digits'])) torch.nn.init.normal_(linear1.weight, std=0.1) torch.nn.init.normal_(linear1.bias, std=0.1) torch.nn.init.normal_(linear2.weight, std=0.1) torch.nn.init.normal_(linear2.bias, std=0.1) model = torch.nn.Sequential( linear1, relu1, linear2 ) loss_fn = torch.nn.CrossEntropyLoss() # prepare optimizer if experiment['optimizer'] == 'sgd': optimizer = torch.optim.SGD( model.parameters(), lr=experiment['lr'], momentum=experiment['momentum'] ) elif experiment['optimizer'] == 'rms': optimizer = torch.optim.RMSprop( model.parameters(), lr=experiment['lr'], alpha=experiment['rho'] ) else: assert(experiment['optimizer'] == 'adam') optimizer = torch.optim.Adam( model.parameters(), lr=experiment['lr'], betas=(experiment['beta_1'], experiment['beta_2']) ) # prepare buffers to store results experiment['success'] = True experiment['correct'] = list() experiment['phase_length'] = list() experiment['accuracies'] = None if experiment['test_folds'] is None else list() experiment['predictions'] = None if experiment['test_folds'] is None else list() experiment['activation_similarity'] = None if experiment['test_folds'] is None else list() experiment['pairwise_interference'] = None if experiment['test_folds'] is None else list() # create helper functions for metrics @torch.no_grad() def test_accuracies(): rv = list() for phase in range(len(x_test)): x = x_test[phase] y_pred = model(x).argmax(axis=1) y = y_test[phase] accuracy = (y_pred == y).int().float().mean().item() rv.append(accuracy) return rv @torch.no_grad() def test_predictions(): rv = torch.zeros((len(experiment['digits']), len(experiment['digits'])), dtype=torch.float) predictions = model(x_test[-1]).argmax(axis=1) for i in range(len(experiment['digits'])): for j in range(len(experiment['digits'])): y_pred = predictions + min(experiment['digits']) == experiment['digits'][i] y = y_test[-1] + min(experiment['digits']) == experiment['digits'][j] rv[i, j] = ((y_pred & y).int().sum().float() / y.sum().float()).item() return rv.tolist() @torch.no_grad() def test_activation_similarity(): activations = list() for i in range(len(interference_x_test)): activations.append( (relu1.forward( linear1.forward( interference_x_test[i, :]))).numpy()) mean, count = 0, 0 for i in range(len(activations)): for j in range(i, len(activations)): value = np.dot(activations[i], activations[j]) count += 1 mean += (value - mean) / count return float(mean) @torch.no_grad() def _interference_test(): return ((interference_y_test - model(interference_x_test).argmax(1)) ** 2).numpy() def test_pairwise_interference(): pre_performance = np.tile(_interference_test(), (len(interference_x_test), 1)) post_performance = np.zeros_like(pre_performance) state_dict = copy.deepcopy(model.state_dict()) optimizer_state_dict = copy.deepcopy(optimizer.state_dict()) for i in range(len(interference_x_test)): y_pred = model(interference_x_test[i, :]).double() y = interference_y_test[i].long() loss = loss_fn(y_pred.unsqueeze(0), y.unsqueeze(0)) optimizer.zero_grad() loss.backward() optimizer.step() post_performance[i, :] = _interference_test() model.load_state_dict(copy.deepcopy(state_dict)) optimizer.load_state_dict(copy.deepcopy(optimizer_state_dict)) return float(
np.mean(post_performance - pre_performance)
numpy.mean
"""Reproduction of the algorithm presented by paper "Multi-sphere approximation of real particles for \ DEM simulation based on a modified greedy heuristic algorithm (https://doi.org/10.1016/j.powtec.2015.08.026)". @author: chuan """ import numpy as np from sklearn.decomposition import PCA from skimage import io import matplotlib.pyplot as plt class CellCollection: """Just a data structure of the cell collection. """ def __init__(self, sandPointCloud, nX=40): self.nX = nX pcaReturns = CellCollection._pcaTransfer(sandPointCloud) self.pcaModel = pcaReturns[0] self.pcaPoints = pcaReturns[1] self.l, self.w = pcaReturns[2] self.lEnds, self.wEnds = pcaReturns[3] self.r = self.l / self.nX / 2 self.nY = int(self.w / self.l * self.nX) # 四舍五入还是地板除法,需要搞清楚分割方法 # cellCoords是每一个cell中心点的坐标 self.cellBox, self.cellInd, self.cellCoords = self._getCells() self.boundaryCoords, self.innerCoords = self._boundaryDetect() @classmethod def _pcaTransfer(cls, sandPointCloud): pcaModel = PCA(n_components=2) pcaModel = pcaModel.fit(sandPointCloud) pcaPoints = pcaModel.transform(sandPointCloud) l = pcaPoints[:, 0].max() - pcaPoints[:, 0].min() w = pcaPoints[:, 1].max() - pcaPoints[:, 1].min() assert l >= w # [l, w]Ends denotes the two ends of the line along l, w axis lEnds = (pcaPoints[:, 0].min(), pcaPoints[:, 0].max()) wEnds = (pcaPoints[:, 1].min(), pcaPoints[:, 1].max()) return pcaModel, pcaPoints, [l, w], [lEnds, wEnds] def _getCuboid(self): cuboidVerticesL, cuboidVerticesW, cuboidVerticesH = np.meshgrid( self.lEnds, self.wEnds, self.hEnds) return cuboidVerticesL, cuboidVerticesW, cuboidVerticesH def _getCells(self): # 重新命名方便后续书写 nX, nY = self.nX, self.nY r = self.r lEnds, wEnds = self.lEnds, self.wEnds pcaPoints = self.pcaPoints # 对cellBox三维数组的索引,记坐标(lEnds[0], wEnds[0], hEnds[0])为索引(0, 0, 0) # clct: collection, ind: index, ctr: center cellBox =
np.zeros((nX, nY), dtype=np.uint8)
numpy.zeros
# -*- coding: utf-8 -*- """Plotting.py for notebook 04_Modelling_AGN_fractions_from_literature This python file contains all the functions used for modelling the AGN fraction based on measurements from literature Script written by: <NAME> Project supervised by <NAME> Date created: 20th April 2021 """ # astropy modules import astropy.units as u import astropy.io.fits as fits from astropy.table import Table, Column from astropy.coordinates import SkyCoord from astropy.cosmology import FlatLambdaCDM, z_at_value import numpy as np import seaborn as sns # scipy modules import scipy.odr as odr from scipy import interpolate import os import sys import importlib # plotting imports import matplotlib import matplotlib.pyplot as plt sys.path.append('../imported_files/') import Agn_incidence_from_Major_Mergers as aimm import All_sky as sky import Comparison_simulation_with_literature_data as cswl import plotting_aim03 as pt """ Functions begin """ def getXY(arr): "Function to get x and y arr from the parent arr" x = [np.vstack(arr)[i][0] for i in range(len(arr))] y = [np.vstack(arr)[i][1] for i in range(len(arr))] return x, y def getErrArrays(x): "Function to get the error arrays from the parent array" x_err_arr = [x[i][:2] for i in range(len(x))] y_err_arr = [x[i][2:] for i in range(len(x))] return x_err_arr, y_err_arr def getErr(x_err_arr, x, y_err_arr, y): "Function to transform the errors arrays into readable pyplot formats" xerr = np.abs(np.transpose(np.vstack(x_err_arr)) - x) yerr = np.abs(np.transpose(np.vstack(y_err_arr)) - y) return xerr, yerr def powerLaw(beta, x): return -beta[0]/np.power(x, beta[1]) def performODR(X, Y, xerr_all, yerr_all, func=powerLaw): "Function to fit the empirical data" # model object power_law_model = odr.Model(func) # data and reverse data object data = odr.RealData(X, Y, sx=xerr_all, sy=yerr_all) # odr with model and data myodr = odr.ODR(data, power_law_model, beta0=[0.2, 0.]) out = myodr.run() out = myodr.restart(iter=1000) return out def getAGNlengths(redshift_limit=2, frac_cp_agn=0.03, all=True): agn_lens = np.load('../Data/all_sky_agn_lengths_z%.1f_fracCP_%.2f.npy'%(redshift_limit, frac_cp_agn), allow_pickle=True) rand_agn = np.array([agn_lens[i][0] for i in range(len(agn_lens))]) if all: cp_agn = np.array([agn_lens[i][1] for i in range(len(agn_lens))]) else: cp_agn = np.array([agn_lens[i][1] - rand_agn[i] for i in range(len(agn_lens))]) print(rand_agn[-2:-1]) return rand_agn, cp_agn def loadPairsAllSky(r_p, end_points, data_dir, pixel_no_cont_arr, frac_cp_agn=0.03, cp_agn=True): n_pairs_separation = np.zeros((0, len(r_p))) for i, e in enumerate(end_points[:-1]): ll, ul = pixel_no_cont_arr[int(e)], pixel_no_cont_arr[int(end_points[i+1]-1)] if cp_agn: n_pairs = np.load(data_dir+'np_tmm2_xoff6_pixels_%s-%s_fracAGN%.2f.npy'%(ll, ul, frac_cp_agn), allow_pickle=True) else: n_pairs = np.load(data_dir+'np_pixels_%s-%s.npy'%(ll, ul), allow_pickle=True) n_pairs_separation = np.vstack((n_pairs_separation, n_pairs)) return n_pairs_separation def openAGNhaloPairsFile(file_divide=16, redshift_limit=0.2, num_rp_bins=12, last_px=750,\ old_agn_pairs=True, frac_cp_agn=0.03): """ @file_divide :: number of files into which the pair counting is divided for the all sky @redshift_limit :: lookback into redshift until @num_rp_bins :: number of r bins that was used when counting pairs """ # get shell volume and projected radius bins [Mpc] r_p, shell_volume = aimm.shellVolume() r_p_half, shell_volume_half = aimm.shellVolume(num_bins=num_rp_bins ) # pixel number from the simulation file pixel_no_cont_arr = sky.allPixelNames() end_points = np.linspace(0, last_px, file_divide) end_points = np.append(end_points, [767], axis=None) halo_lens = np.load('../Data/all_sky_halo_lengths_z%.1f.npy'%redshift_limit) rand_agn, cp_agn = getAGNlengths(redshift_limit=redshift_limit, frac_cp_agn=frac_cp_agn, all=False) data_cp_dir = '../Data/pairs_z%.1f/cat_AGN_halo_pairs/'%redshift_limit # get the total number of possible AGN-halo pairs lens_rand, lens_cp = np.array([halo_lens, rand_agn]), np.array([halo_lens, cp_agn]) tot_p_rand_agn = cswl.GammaDenominator(lens_rand, 0, -1, num_sets=2) tot_p_cp_agn = cswl.GammaDenominator(lens_cp, 0, -1, num_sets=2) # repeat same process for old catAGN (without close pairs) if old_agn_pairs: r_p_half, shell_volume_half = aimm.shellVolume(num_bins=num_rp_bins ) data_dir = data_cp_dir + 'cat_without_CP/' n_p_sep = loadPairsAllSky(r_p_half, end_points, data_dir, pixel_no_cont_arr, cp_agn=False) print(tot_p_rand_agn.shape) frac_rand_agn_mean = [np.mean(n_p_sep[:, i]/tot_p_rand_agn) for i in range(len(r_p_half))] frac_rand_agn_std = [np.std(n_p_sep[:, i]/tot_p_rand_agn) for i in range(len(r_p_half))] mean_gamma_rand, std_gamma_rand = frac_rand_agn_mean[1:]/shell_volume_half, frac_rand_agn_std[1:]/shell_volume_half n_pairs_sep = loadPairsAllSky(r_p, end_points, data_cp_dir, pixel_no_cont_arr, frac_cp_agn=frac_cp_agn) # get mean and std of the number density frac_cp_agn_mean = [np.mean(n_pairs_sep[:, i]/tot_p_cp_agn) for i in range(len(r_p))] frac_cp_agn_std = [np.std(n_pairs_sep[:, i]/tot_p_cp_agn) for i in range(len(r_p))] mean_gamma_cp, std_gamma_cp = frac_cp_agn_mean[1:]/shell_volume, frac_cp_agn_std[1:]/shell_volume names_cp, names_rand = ['Gamma_mean_CP', 'Gamma_std_CP'], ['Gamma_mean_RAND', 'Gamma_std_RAND'] return Table([mean_gamma_cp, std_gamma_cp], names=names_cp), Table([mean_gamma_rand, std_gamma_rand], names=names_rand) def getFracAgnHaloPairsCp(ax, frac_cp_agn_arr, z=1, num_rp_bins=12): """ Function to get the fraction of pairs """ # get shell volume and projected radius bins [Mpc] r_p, _ = aimm.shellVolume() r_p_half, _ = aimm.shellVolume(num_bins=num_rp_bins ) pal = sns.color_palette("viridis", 4).as_hex() data_dir = '../Data/pairs_z%.1f/Major_dv_pairs/'%1 gamma_all = np.load(data_dir+'gamma_all_pixels.npy', allow_pickle=True) f_cp_agn_halo_pairs, f_rand_agn_halo_pairs = np.zeros((0, len(r_p)-1)), np.zeros((0, len(r_p_half)-1)) for f, frac_cp_agn in enumerate(frac_cp_agn_arr): # read the files that count pairs (AGN-halo and halo-halo) for the new catAGN and old catAGN g_cp, g_rand = openAGNhaloPairsFile(redshift_limit=z, frac_cp_agn=frac_cp_agn, num_rp_bins=num_rp_bins) # plot the results and the chanes wrt the old catAGN gamma_all_inter = pt.plotChangesCatAGN(ax, g_cp, g_rand, label_idx = f, num_rp_bins=num_rp_bins, \ redshift_limit=z, c=pal[f], frac_cp_agn=frac_cp_agn) # append these values cols_cp0 = Column(data=gamma_all[0], name='Gamma_meanALL') cols_cp1 = Column(data=gamma_all[1], name='Gamma_stdALL' ) cols_rand0 = Column(data=gamma_all_inter[0], name='Gamma_meanALL' ) cols_rand1 = Column(data=gamma_all_inter[1], name='Gamma_stdALL' ) g_cp.add_columns([cols_cp0, cols_cp1]) g_rand.add_columns([cols_rand0,cols_rand1]) return g_cp, g_rand def combineFracTmmXoff(t0, std_t0, frac_xoff_z2, num_decs=20): models_all = np.zeros((0, len(t0) )) std_all = np.zeros((0, len(t0) )) for d in np.arange(0, num_decs, 2): x, std_x = frac_xoff_z2.columns[d], frac_xoff_z2.columns[d+1] models_all = np.append(models_all, [t0+x], axis=0) std = np.sqrt(std_x**2 + std_t0**2) std_all = np.append(std_all, [std], axis=0) return models_all, std_all def generateDecileModels(frac_tmm, frac_xoff, num_decs=20): models = np.zeros((0, len(frac_tmm))) std = np.zeros((0, len(frac_tmm))) for d in np.arange(0, num_decs, 2): # best possible models for z<2 tmm, std_tmm = frac_tmm.columns[d], frac_tmm.columns[d+1] models_tmm, std_tmm = combineFracTmmXoff(tmm, std_tmm, frac_xoff, num_decs=num_decs) models =
np.append(models, models_tmm, axis=0)
numpy.append
import math import numpy as np def sind(deg): rad = math.radians(deg) return math.sin(rad) def cosd(deg): rad = math.radians(deg) return math.cos(rad) def tand(deg): rad = math.radians(deg) return math.tan(rad) def cotd(deg): rad = math.radians(deg) return math.cos(rad) / math.sin(rad) def asind(x): rad = math.asin(x) return math.degrees(rad) def acosd(x): rad = math.acos(x) return math.degrees(rad) def atand(x): rad = math.atan(x) return math.degrees(rad) def km2deg(kilometers): return kilometers / 111.19 def deg2km(degree): return degree * 111.19 class distaz: """ c Subroutine to calculate the Great Circle Arc distance c between two sets of geographic coordinates c c Equations take from Bullen, pages 154, 155 c c <NAME>, September 19, 1991 c Sept. 25 -- fixed az and baz calculations c <NAME>, Setember 27, 1995 Converted to c to fix annoying problem of fortran giving wrong answers if the input doesn't contain a decimal point. <NAME>, September 18, 1997 Java version for direct use in java programs. * * <NAME>, May 4, 2004 * Added enough convenience constructors to choke a horse and made public double * values use accessors so we can use this class as an immutable <NAME>, May 31, 2006 Port to python, thus adding to the great list of languages to which distaz has been ported from the origin fortran: C, Tcl, Java and now python and I vaguely remember a perl port. Long live distaz! """ def __init__(self, lat1, lon1, lat2, lon2): self.stalat = lat1 self.stalon = lon1 self.evtlat = lat2 self.evtlon = lon2 ''' if (lat1 == lat2) and (lon1 == lon2): self.delta = 0.0 self.az = 0.0 self.baz = 0.0 return ''' rad = 2. * math.pi / 360.0 """ c c scolat and ecolat are the geocentric colatitudes c as defined by Richter (pg. 318) c c Earth Flattening of 1/298.257 take from Bott (pg. 3) c """ sph = 1.0 / 298.257 scolat = math.pi / 2.0 - np.arctan((1. - sph) * (1. - sph) * np.tan(lat1 * rad)) ecolat = math.pi / 2.0 - np.arctan((1. - sph) * (1. - sph) * np.tan(lat2 * rad)) slon = lon1 * rad elon = lon2 * rad """ c c a - e are as defined by Bullen (pg. 154, Sec 10.2) c These are defined for the pt. 1 c """ a = np.sin(scolat) * np.cos(slon) b = np.sin(scolat) * np.sin(slon) c = np.cos(scolat) d = np.sin(slon) e = -np.cos(slon) g = -c * e h = c * d k = -np.sin(scolat) """ c c aa - ee are the same as a - e, except for pt. 2 c """ aa =
np.sin(ecolat)
numpy.sin
import warnings warnings.filterwarnings('ignore') import chainer import chainer.functions as F import chainer.links as L import numpy as np from chainer import Chain from chainer.backends import cuda from sklearn.metrics import recall_score from functools import partial class MyClassifier(Chain): prior = 0 it_position = None def __call__(self, x, t, loss_func): self.clear() h = self.calculate(x) self.loss = loss_func(h, t) chainer.reporter.report({'loss': self.loss}, self) return self.loss def clear(self): self.loss = None def calculate(self, x): return None def call_reporter(self, dictionary): chainer.reporter.report(dictionary, self) def error(self, x, t): warnings.filterwarnings("ignore") xp = cuda.get_array_module(x, False) size = len(t) with chainer.no_backprop_mode(): with chainer.using_config("train", False): h = xp.reshape(xp.sign(self.calculate(x).data), size) if isinstance(h, chainer.Variable): h = h.data if isinstance(t, chainer.Variable): t = t.data result = (h != t).sum() / size t, h = t.get(), h.get() h_separated = ','.join([str(x) for x in h]) + '\n' h_separated = str(self.it_position) + ',' + h_separated with open('result/preds.csv', 'a') as f: f.write(h_separated) assert h.shape[0] == t.shape[0] # Calculate partial recall recall = recall_score(t, h) # Calculate perc pos and perc pos non fake h_pos_idx = np.where(h == 1)[0] perc_pos = h_pos_idx.shape[0]/h.shape[0] if h.shape[0] > 0 else 0. if len(h_pos_idx) > 0: perc_pos_nf =
np.unique(t[h_pos_idx], return_counts=True)
numpy.unique
from terraingrid import TerrainGrid import matplotlib.pyplot as plt from sklearn.metrics import f1_score, precision_score, recall_score import numpy as np import cv2 as cv def pixel_accuracy(eval_segm, gt_segm): ''' sum_i(n_ii) / sum_i(t_i) ''' check_size(eval_segm, gt_segm) cl, n_cl = extract_classes(gt_segm) eval_mask, gt_mask = extract_both_masks(eval_segm, gt_segm, cl, n_cl) sum_n_ii = 0 sum_t_i = 0 for i, c in enumerate(cl): curr_eval_mask = eval_mask[i, :, :] curr_gt_mask = gt_mask[i, :, :] sum_n_ii += np.sum(np.logical_and(curr_eval_mask, curr_gt_mask)) sum_t_i += np.sum(curr_gt_mask) if (sum_t_i == 0): pixel_accuracy_ = 0 else: pixel_accuracy_ = sum_n_ii / sum_t_i return pixel_accuracy_ def mean_accuracy(eval_segm, gt_segm): ''' (1/n_cl) sum_i(n_ii/t_i) ''' check_size(eval_segm, gt_segm) cl, n_cl = extract_classes(gt_segm) eval_mask, gt_mask = extract_both_masks(eval_segm, gt_segm, cl, n_cl) accuracy = list([0]) * n_cl for i, c in enumerate(cl): curr_eval_mask = eval_mask[i, :, :] curr_gt_mask = gt_mask[i, :, :] n_ii = np.sum(np.logical_and(curr_eval_mask, curr_gt_mask)) t_i = np.sum(curr_gt_mask) if (t_i != 0): accuracy[i] = n_ii / t_i mean_accuracy_ = np.mean(accuracy) return mean_accuracy_ def mean_IU(eval_segm, gt_segm): ''' (1/n_cl) * sum_i(n_ii / (t_i + sum_j(n_ji) - n_ii)) ''' check_size(eval_segm, gt_segm) cl, n_cl = union_classes(eval_segm, gt_segm) _, n_cl_gt = extract_classes(gt_segm) eval_mask, gt_mask = extract_both_masks(eval_segm, gt_segm, cl, n_cl) IU = list([0]) * n_cl for i, c in enumerate(cl): curr_eval_mask = eval_mask[i, :, :] curr_gt_mask = gt_mask[i, :, :] if (np.sum(curr_eval_mask) == 0) or (
np.sum(curr_gt_mask)
numpy.sum
# Modifications to GRIDLOD for nonlinear Helmholtz setup # Copyright holders: <NAME>, <NAME> # 2020 import numpy as np import scipy.sparse as sparse import scipy.sparse.linalg import gc import warnings from gridlod import fem from gridlod import util from gridlod import linalg from gridlod import coef from gridlod import transport from gridlod import interp from gridlod import world # Saddle point problem solver class DirectSolver: def __init__(self): pass def solve(self, A, I, bList, fixed, NPatchCoarse=None, NCoarseElement=None): return saddleDirectComplex(A, I, bList, fixed) def saddleDirectComplex(A, B, rhsList, fixed): A = linalg.imposeBoundaryConditionsStronglyOnMatrix(A, fixed) # rhsList = [linalg.imposeBoundaryConditionsStronglyOnVector(rhs, fixed) for rhs in rhsList] # B = linalg.imposeBoundaryConditionsStronglyOnInterpolation(B, fixed) # K = sparse.bmat([[A, B.T], [B, None]], format='csc',dtype='complex128') xList = [] for rhs in rhsList: b = np.zeros(K.shape[0],dtype='complex128') b[:np.size(rhs)] = rhs xAll = sparse.linalg.spsolve(K, b, use_umfpack=True) xList.append(xAll[:np.size(rhs)]) if(np.any(np.absolute(B*xAll[:np.size(rhs)]) > 1e-10)): print(np.abs(B*xAll[:np.size(rhs)])) return xList def ritzProjectionToFinePatch(patch, APatchFull, bPatchFullList, IPatch, saddleSolver=None): if saddleSolver is None: saddleSolver = DirectSolver() # Fast for small patch problems world = patch.world d = np.size(patch.NPatchCoarse) NPatchFine = patch.NPatchFine NpFine = patch.NpFine # Find what patch faces are common to the world faces, and inherit # boundary conditions from the world for those. For the other # faces, all DoFs fixed (Dirichlet) boundaryMapWorld = world.boundaryConditions==0 inherit0 = patch.iPatchWorldCoarse==0 inherit1 = (patch.iPatchWorldCoarse + patch.NPatchCoarse)==world.NWorldCoarse boundaryMap = np.ones([d, 2], dtype='bool') boundaryMap[inherit0,0] = boundaryMapWorld[inherit0,0] boundaryMap[inherit1,1] = boundaryMapWorld[inherit1,1] # Using schur complement solver for the case when there are no # Dirichlet conditions does not work. Fix if necessary. fixed = util.boundarypIndexMap(NPatchFine, boundaryMap) projectionsList = saddleSolver.solve(APatchFull, IPatch, bPatchFullList, fixed, patch.NPatchCoarse, world.NCoarseElement) return projectionsList class CoarseScaleInformation_helmholtz: def __init__(self, Kij, Kmsij, muTPrime, Mij, Mmsij, Bdij, Bdmsij): self.Kij = Kij self.Kmsij = Kmsij self.muTPrime = muTPrime self.Mij = Mij self.Mmsij = Mmsij self.Bdij = Bdij self.Bdmsij = Bdmsij def computeElementCorrector_helmholtz(patch, IPatch, aPatch, kPatch, k2Patch, ARhsList=None, MRhsList=None, saddleSolver=None): '''Compute the fine correctors over a patch. Compute the correctors B( Q_T_j, vf)_{U_K(T)} = B( ARhs_j, vf)_{T} + (MRhs_j, vf)_{T} where B is the sesquilinear form associated with the linear Helmholtz eq. ''' while callable(IPatch): IPatch = IPatch() while callable(aPatch): aPatch = aPatch() while callable(kPatch): kPatch = kPatch() while callable(k2Patch): k2Patch = k2Patch() assert(ARhsList is not None or MRhsList is not None) numRhs = None if ARhsList is not None: assert(numRhs is None or numRhs == len(ARhsList)) numRhs = len(ARhsList) if MRhsList is not None: assert(numRhs is None or numRhs == len(MRhsList)) numRhs = len(MRhsList) world = patch.world NCoarseElement = world.NCoarseElement NPatchCoarse = patch.NPatchCoarse d = np.size(NCoarseElement) NPatchFine = NPatchCoarse*NCoarseElement NtFine = np.prod(NPatchFine) NpFineCoarseElement = np.prod(NCoarseElement+1) NpCoarse = np.prod(NPatchCoarse+1) NpFine = np.prod(NPatchFine+1) assert(aPatch.shape[0] == NtFine) assert(aPatch.ndim == 1 or aPatch.ndim == 3) assert(kPatch.ndim == 1) assert(k2Patch.ndim == 1) if aPatch.ndim == 1: ALocFine = world.ALocFine elif aPatch.ndim == 3: ALocFine = world.ALocMatrixFine MLocFine = world.MLocFine BdLocFine = fem.localBoundaryMassMatrixGetter(NCoarseElement*world.NWorldCoarse) iElementPatchCoarse = patch.iElementPatchCoarse elementFinetIndexMap = util.extractElementFine(NPatchCoarse, NCoarseElement, iElementPatchCoarse, extractElements=True) elementFinepIndexMap = util.extractElementFine(NPatchCoarse, NCoarseElement, iElementPatchCoarse, extractElements=False) # global boundary? bdMapWorld = world.boundaryConditions == 1 # on element bdMapElement = np.zeros([d, 2], dtype='bool') inheritElement0 = patch.iElementWorldCoarse == 0 inheritElement1 = (patch.iElementWorldCoarse + np.ones(d)) == world.NWorldCoarse bdMapElement[inheritElement0, 0] = bdMapWorld[inheritElement0, 0] bdMapElement[inheritElement1, 1] = bdMapWorld[inheritElement1, 1] # on patch inherit0 = patch.iPatchWorldCoarse == 0 inherit1 = (patch.iPatchWorldCoarse + NPatchCoarse) == world.NWorldCoarse bdMapPatch = np.zeros([d, 2], dtype='bool') bdMapPatch[inherit0, 0] = bdMapWorld[inherit0, 0] bdMapPatch[inherit1, 1] = bdMapWorld[inherit1, 1] if ARhsList is not None: AElementFull = fem.assemblePatchMatrix(NCoarseElement, ALocFine, aPatch[elementFinetIndexMap]) k2MElementFull = fem.assemblePatchMatrix(NCoarseElement, MLocFine, k2Patch[elementFinetIndexMap]) kBdElementFull = fem.assemblePatchBoundaryMatrix(NCoarseElement, BdLocFine, kPatch[elementFinetIndexMap],bdMapElement) if MRhsList is not None: MElementFull = fem.assemblePatchMatrix(NCoarseElement, MLocFine) APatchFull = fem.assemblePatchMatrix(NPatchFine, ALocFine, aPatch) k2MPatchFull = fem.assemblePatchMatrix(NPatchFine, MLocFine, k2Patch) kBdPatchFull = fem.assemblePatchBoundaryMatrix(NPatchFine, BdLocFine, kPatch, bdMapPatch) SPatchFull = APatchFull - k2MPatchFull + 1j*kBdPatchFull bPatchFullList = [] for rhsIndex in range(numRhs): bPatchFull = np.zeros(NpFine,dtype='complex128') if ARhsList is not None: bPatchFull[elementFinepIndexMap] += (AElementFull - k2MElementFull + 1j*kBdElementFull)*ARhsList[rhsIndex] if MRhsList is not None: bPatchFull[elementFinepIndexMap] += MElementFull*MRhsList[rhsIndex] bPatchFullList.append(bPatchFull) correctorsList = ritzProjectionToFinePatch(patch, SPatchFull, bPatchFullList, IPatch, saddleSolver) return correctorsList def computeBasisCorrectors_helmholtz(patch, IPatch, aPatch, kPatch, k2Patch, saddleSolver=None): '''Compute the fine basis correctors over the patch. Compute the correctors Q_T\lambda_i: B( Q_T lambda_j, vf)_{U_K(T)} = B( lambda_j, vf)_{T} where B is the sesquilinear form associated with the linear Helmholtz eq. ''' ARhsList = list(patch.world.localBasis.T) return computeElementCorrector_helmholtz(patch, IPatch, aPatch, kPatch, k2Patch, ARhsList, saddleSolver=None) def computeEftErrorIndicatorsCoarseFromGreeks(etaT, cetaTPrime, greeksPatch): '''Compute the coarse error idicator E(T) from the "greeks" delta and kappa, where deltaMaxTPrime = || ANew^{-1/2} (ANew - AOld) AOld^{-1/2} ||_max(TPrime) over all coarse elements TPrime in the patch kappaMaxT = || AOld^{1/2) ANew^{-1/2} ||_max(T) over the patch coarse T (patch.iPatchWorldCoarse) nuT = || f - f_ref ||_L2(T) ''' while callable(greeksPatch): greeksPatch = greeksPatch() deltaMaxTPrime, kappaMaxT, xiMaxT, nuT, gammaT = greeksPatch eft_square = xiMaxT**2 * nuT**2 * etaT eRft_square = kappaMaxT**2 * np.sum((deltaMaxTPrime**2)*cetaTPrime) return np.sqrt(eft_square), np.sqrt(eRft_square) def computeErrorIndicatorCoarse_helmholtz(patch, muTPrime, aPatchOld, aPatchNew): ''' Compute the coarse error idicator E(T) with explicit value of AOld and ANew. This requires muTPrime from CSI and the new and old coefficient. ''' while callable(muTPrime): muTPrime = muTPrime() while callable(aPatchOld): aPatchOld = aPatchOld() while callable(aPatchNew): aPatchNew = aPatchNew() aOld = aPatchOld aNew = aPatchNew world = patch.world NPatchCoarse = patch.NPatchCoarse NCoarseElement = world.NCoarseElement NPatchFine = NPatchCoarse*NCoarseElement iElementPatchCoarse = patch.iElementPatchCoarse elementCoarseIndex = util.convertpCoordIndexToLinearIndex(NPatchCoarse-1, iElementPatchCoarse) TPrimeFinetStartIndices = util.pIndexMap(NPatchCoarse-1, NPatchFine-1, NCoarseElement) TPrimeFinetIndexMap = util.lowerLeftpIndexMap(NCoarseElement-1, NPatchFine-1) TPrimeIndices = np.add.outer(TPrimeFinetStartIndices, TPrimeFinetIndexMap) aTPrime = aNew[TPrimeIndices] aOldTPrime = aOld[TPrimeIndices] deltaMaxTPrime = np.max(np.abs(aTPrime - aOldTPrime), axis=1) epsilonTSquare = np.sum((deltaMaxTPrime ** 2) * muTPrime) return np.sqrt(epsilonTSquare) def performTPrimeLoop_helmholtz(patch, lambdasList, correctorsList, aPatch, kPatch, k2Patch, accumulate): while callable(aPatch): aPatch = aPatch() while callable(kPatch): kPatch = kPatch() while callable(k2Patch): k2Patch = k2Patch() world = patch.world NCoarseElement = world.NCoarseElement NPatchCoarse = patch.NPatchCoarse NPatchFine = NPatchCoarse*NCoarseElement NTPrime = np.prod(NPatchCoarse) NpPatchCoarse = np.prod(NPatchCoarse+1) d =
np.size(NPatchCoarse)
numpy.size
import matplotlib.pyplot as plt import numpy as np import torch from matplotlib.animation import FuncAnimation, writers np.random.seed(0) def cost_dz(R_z, z, z_goal): # compute the first-order deravative of latent cost w.r.t z z_diff = np.expand_dims(z - z_goal, axis=-1) return np.squeeze(2 * np.matmul(R_z, z_diff)) def cost_du(R_u, u): # compute the first-order deravative of latent cost w.r.t u return np.atleast_1d(np.squeeze(2 * np.matmul(R_u, np.expand_dims(u, axis=-1)))) def cost_dzz(R_z): # compute the second-order deravative of latent cost w.r.t z return 2 * R_z def cost_duu(R_u): # compute the second-order deravative of latent cost w.r.t u return 2 * R_u def cost_duz(z, u): # compute the second-order deravative of latent cost w.r.t uz return np.zeros((u.shape[-1], z.shape[-1])) def latent_cost(R_z, R_u, z_seq, z_goal, u_seq): z_diff = np.expand_dims(z_seq - z_goal, axis=-1) cost_z = np.squeeze(np.matmul(np.matmul(z_diff.transpose((0, 2, 1)), R_z), z_diff)) u_seq_reshaped = np.expand_dims(u_seq, axis=-1) cost_u = np.squeeze(np.matmul(np.matmul(u_seq_reshaped.transpose((0, 2, 1)), R_u), u_seq_reshaped)) return np.sum(cost_z) + np.sum(cost_u) def one_step_back(R_z, R_u, z, u, z_goal, A, B, V_prime_next_z, V_prime_next_zz, mu_inv_regulator): """ V_prime_next_z: first order derivative of the value function at time step t+1 V_prime_next_zz: second order derivative of the value function at time tep t+1 A: derivative of F(z, u) w.r.t z at z_bar_t, u_bar_t B: derivative of F(z, u) w.r.t u at z_bar_t, u_bar_t """ # compute Q_z, Q_u, Q_zz, Q_uu, Q_uz using cost function, A, B and V Q_z = cost_dz(R_z, z, z_goal) + np.matmul(A.transpose(), V_prime_next_z) Q_u = cost_du(R_u, u) + np.matmul(B.transpose(), V_prime_next_z) Q_zz = cost_dzz(R_z) + np.matmul(np.matmul(A.transpose(), V_prime_next_zz), A) Q_uz = cost_duz(z, u) + np.matmul(np.matmul(B.transpose(), V_prime_next_zz), A) Q_uu = cost_duu(R_u) + np.matmul(np.matmul(B.transpose(), V_prime_next_zz), B) # compute k and K matrix, add regularization to Q_uu Q_uu_regularized = Q_uu + mu_inv_regulator * np.eye(Q_uu.shape[0]) Q_uu_in = np.linalg.inv(Q_uu_regularized) k = -np.matmul(Q_uu_in, Q_u) K = -np.matmul(Q_uu_in, Q_uz) # compute V_z and V_zz using k and K V_prime_z = Q_z + np.matmul(Q_uz.transpose(), k) V_prime_zz = Q_zz + np.matmul(Q_uz.transpose(), K) return k, K, V_prime_z, V_prime_zz def backward(R_z, R_u, z_seq, u_seq, z_goal, A_seq, B_seq, inv_regulator): """ do the backward pass return a sequence of k and K matrices """ # first and second order derivative of the value function at the last time step V_prime_next_z = cost_dz(R_z, z_seq[-1], z_goal) V_prime_next_zz = cost_dzz(R_z) k, K = [], [] act_seq_len = len(u_seq) for t in reversed(range(act_seq_len)): k_t, K_t, V_prime_z, V_prime_zz = one_step_back( R_z, R_u, z_seq[t], u_seq[t], z_goal, A_seq[t], B_seq[t], V_prime_next_z, V_prime_next_zz, inv_regulator ) k.insert(0, k_t) K.insert(0, K_t) V_prime_next_z, V_prime_next_zz = V_prime_z, V_prime_zz return k, K def forward(z_seq, u_seq, k, K, dynamics, alpha): """ update the trajectory, given k and K !!!! update using the linearization matricies (A and B), not the learned dynamics """ z_seq_new = [] z_seq_new.append(z_seq[0]) u_seq_new = [] for i in range(0, len(u_seq)): u_new = u_seq[i] + alpha * k[i] + np.matmul(K[i], z_seq_new[i] - z_seq[i]) u_seq_new.append(u_new) with torch.no_grad(): z_new = dynamics(torch.from_numpy(z_seq_new[i]).unsqueeze(0), torch.from_numpy(u_new).unsqueeze(0))[0].mean z_seq_new.append(z_new.squeeze().numpy()) return np.array(z_seq_new), np.array(u_seq_new) # def forward(u_seq, k_seq, K_seq, A_seq, B_seq, alpha): # """ # update the trajectory, given k and K # !!!! update using the linearization matricies (A and B), not the learned dynamics # """ # u_new_seq = [] # plan_len = len(u_seq) # z_dim = K_seq[0].shape[1] # for i in range(0, plan_len): # if i == 0: # z_delta = np.zeros(z_dim) # else: # z_delta = np.matmul(A_seq[i-1], z_delta) + np.matmul(B_seq[i-1], u_delta) # u_delta = alpha * (k_seq[i] + np.matmul(K_seq[i], z_delta)) # u_new_seq.append(u_seq[i] + u_delta) # return np.array(u_new_seq) def get_x_data(mdp, state, config): image_data = mdp.render(state).squeeze() x_dim = config["obs_shape"] if config["task"] == "plane": x_dim = np.prod(x_dim) x_data = torch.from_numpy(image_data).double().view(x_dim).unsqueeze(0) elif config["task"] in ["swing", "balance"]: x_dim =
np.prod(x_dim)
numpy.prod
import os import sys sys.path.append(os.path.join(os.path.dirname( os.path.realpath(__file__)), '../')) from sklearn.neighbors import DistanceMetric from sklearn.preprocessing import normalize, MinMaxScaler from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions import numpy as np from matchers.matcher_base import MatcherBase class PretrainedCnnMatcher(MatcherBase): def __init__(self): self.batch_size = 10 self.model = ResNet50(weights='imagenet', include_top=False, pooling='avg') self.dist = DistanceMetric.get_metric('euclidean') self.min_max_scaler = MinMaxScaler() def distance_metrics(self, scenes, is_norm=True): feats = self.get_feats(scenes) dist_metrics = self.dist.pairwise(feats, feats) # print(dist_metrics) if is_norm: # dist_metrics = normalize(dist_metrics, axis=0, norm='l2') # dist_metrics = self.min_max_scaler.fit_transform(dist_metrics) dist_metrics = (dist_metrics - np.min(dist_metrics)) / (
np.max(dist_metrics)
numpy.max
import sys from pathlib import Path file = Path(__file__).resolve() root = file.parents[3] sys.path.append(str(root)) if __name__ == "__main__": import numpy from coopihc.space.Space import Space from coopihc.space.StateElement import StateElement numpy.set_printoptions(precision=3, suppress=True) # [start-stateelement-init] x = StateElement( values=None, spaces=[ Space( [ numpy.array([-1], dtype=numpy.float32),
numpy.array([1], dtype=numpy.float32)
numpy.array
""" Modeling homework, problem 2 Conservative differential equations: accuracy and fidelity """ import numpy as np from matplotlib import pyplot as plt from scipy.integrate import solve_ivp A = 6 def V(y): return y**2 * (
np.log(y**2)
numpy.log
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** ## \package pts.modeling.maps.mapmaking Contains the MapMaker class. # ----------------------------------------------------------------- # Ensure Python 3 compatibility from __future__ import absolute_import, division, print_function # Import standard modules import copy import numpy as np # Import astronomical modules from astropy.units import Unit from photutils import detect_sources # Import the relevant PTS classes and modules from ...magic.basics.mask import Mask from ...magic.core.image import Image from ...magic.core.frame import Frame from .component import MapsComponent from ...core.tools import filesystem as fs from ..decomposition.decomposition import load_parameters from ...core.tools.logging import log from .dust.buat import BuatDustMapMaker from .dust.cortese import CorteseDustMapMaker from .dust.blackbody import BlackBodyDustMapMaker from .stars.old import OldStellarMapMaker from .stars.young import YoungStellarMapMaker from .stars.ionizing import IonizingStellarMapMaker # ----------------------------------------------------------------- class MapMaker(MapsComponent): """ This class... """ def __init__(self, config=None): """ The constructor ... :param config: :return: """ # Call the constructor of the base class super(MapMaker, self).__init__(config) # -- Attributes -- # The structural galaxy parameters self.parameters = None self.distance_mpc = None # Input images self.images = dict() # Cutoff masks self.cutoff_masks = dict() # Bulge and disk self.disk = None self.bulge = None # Set the low signal-to-noise mask to None initially self.mask = None # The map of dust self.dust = None # The map of old stars self.old_stars = None # The map of young stars self.young_stars = None # The map of ionizing stars self.ionizing_stars = None # ----------------------------------------------------------------- @classmethod def from_arguments(cls, arguments): """ This function ... :param arguments: :return: """ # Create a new MapMaker instance maker = cls(arguments.config) # Set the input and output path maker.config.path = arguments.path # A single map name can be specified so the procedure is only run for that map maker.config.single_map = arguments.map # Return the new instance return maker # ----------------------------------------------------------------- def run(self): """ This function ... :return: """ # 1. Call the setup function self.setup() # 2. Load the input images self.load_images() # Calculate the signal-to-noise self.create_cutoff_masks() self.write_cutoff_masks() # 3. Cut-off the low signal-to-noise pixels #self.cutoff_low_snr() # 4. If requested, save the maps with masked #if self.config.save_cutoff_maps: self.save_cutoff_maps() # 5. Convert maps to solar luminosity units self.convert_units() # Make the dust map self.make_dust_map() # Make the old stars map self.make_old_stars_map() # Make the young (non-ionizing) stars map self.make_young_stars_map() # Make the ionizing young stars map self.make_ionizing_stars_map() # Writing self.write() # ----------------------------------------------------------------- def setup(self): """ This function ... :return: """ # Call the setup function of the base class super(MapMaker, self).setup() # Determine the path to the parameters file path = fs.join(self.components_path, "parameters.dat") # Load the structural parameters self.parameters = load_parameters(path) # Get the galaxy distance self.distance_mpc = self.parameters.distance.to("Mpc").value # ----------------------------------------------------------------- def load_images(self): """ This function ... :return: """ # Load the GALEX FUV image self.load_image("GALEX FUV", "FUV") # Load the SDSS i image self.load_image("SDSS i", "i") # Load the 2MASS H image self.load_image("2MASS H", "H") # Load the H-alpha image self.load_image("Mosaic Halpha", "Halpha") # Load the 24 micron image self.load_image("MIPS 24mu", "24mu") # Load the IRAC 3.6 image self.load_image("IRAC I1", "3.6mu") # Load the PACS 70 image self.load_image("Pacs blue", "70mu") # load the PACS 160 image self.load_image("Pacs red", "160mu") # Load the disk image self.load_disk() # Load the bulge image self.load_bulge() # ----------------------------------------------------------------- def load_disk(self): """ This function ... """ # Inform the user log.info("Loading the disk image ...") # Determine the path to the disk image path = fs.join(self.truncation_path, "disk.fits") # Load the disk image self.disk = Frame.from_file(path) # ----------------------------------------------------------------- def load_bulge(self): """ This function ... """ # Inform the user log.info("Loading the bulge image ...") # Determine the path to the bulge image path = fs.join(self.truncation_path, "bulge.fits") # Load the bulge image self.bulge = Frame.from_file(path) # ----------------------------------------------------------------- def load_image(self, image_name, image_id): """ This function ... :param image_name: :param image_id: """ # Inform the user log.info("Loading the " + image_name + " image ...") # Determine the full path to the image path = fs.join(self.truncation_path, image_name + ".fits") # Check whether the image is present if not fs.is_file(path): raise IOError("Could not find the " + image_name + " image") # Open the image image = Image.from_file(path) # Assert that the units are MJy/sr if not "Halpha" in image_name: assert image.unit == Unit("MJy/sr") # Add the image to the dictionary self.images[image_id] = image # ----------------------------------------------------------------- def create_cutoff_masks(self): """ This function ... :return: """ sigma_level = 3.0 # Loop over all images for name in self.images: # Calculate the signal-to-noise ratio in each pixel snr = self.images[name].frames.primary / self.images[name].frames.errors # Calculate the snr > sigma level mask and add it to the dictionary self.cutoff_masks[name] = Mask(snr < sigma_level) # ----------------------------------------------------------------- def write_cutoff_masks(self): """ This function ... :return: """ # Loop over all cutoff masks for name in self.cutoff_masks: # Get the mask mask = self.cutoff_masks[name] # Determine the path to the FITS file path = fs.join(self.maps_cutoff_path, name + ".fits") # Save the mask as a FITS file Frame(mask.astype(float)).save(path) # ----------------------------------------------------------------- def cutoff_low_snr(self): """ This function ... :return: """ # Check whether the reference image is present if os.path.isfile(self.config.cutoff.reference_path): # Open the reference image reference = Image.from_file(self.config.cutoff.reference_path) # Check whether the errors frame is present assert self.config.errors in reference.frames, "An error map could not be found for the reference image" # Create a mask for the pixels with a signal-to-noise ratio of 5 or less data = reference.frames[self.config.primary] < self.config.cutoff.level*reference.frames[self.config.errors] self.mask = Mask(data) # If requested, remove holes from the cut-off mask if self.config.cutoff.remove_holes: # Save the mask as a FITS file Frame(self.mask.astype(float)).save(self.config.saving.cutoff_mask_with_holes_path) # Perform the segmentation segments = detect_sources(self.mask.astype(float), 0.5, 1).data # Save segments Frame(segments.astype(float)).save(self.config.saving.cutoff_mask_segments_path) # Find the label of the largest segment (=the background) label_counts = np.bincount(segments.flatten()) background_label = np.argmax(label_counts) # Create a mask for the holes identified as background holes = copy.deepcopy(self.mask) holes[segments == background_label] = False # Save holes mask Frame(holes.astype(float)).save(self.config.saving.cutoff_mask_holes_path) # Remove holes from the mask self.mask[holes] = False # Save the mask as a FITS file Frame(self.mask.astype(float)).save(self.config.saving.cutoff_mask_path) # If not, raise an error else: raise IOError("The prepared reference image could not be found") # Cut-off the input images at the same contour level for name in self.images: self.images[name].apply_mask(self.mask, 0.0) # Cut-off the bulge and disk map at the same contour level self.disk[self.mask] = 0.0 self.bulge[self.mask] = 0.0 # ----------------------------------------------------------------- def save_cutoff_maps(self): """ This function ... :return: """ # Inform the user log.info("Saving input images set to zero outside the low signal-to-noise contour level") # Save each of the frames self.h.save(self.config.saving.h_cutoff_path) self.fuv.save(self.config.saving.fuv_cutoff_path) self.ha.save(self.config.saving.ha_cutoff_path) self.irac.save(self.config.saving.irac_cutoff_path) self.mips.save(self.config.saving.mips_cutoff_path) self.pacsblue.save(self.config.saving.pacsblue_cutoff_path) self.pacsred.save(self.config.saving.pacsred_cutoff_path) self.disk.save(self.config.saving.disk_cutoff_path) self.bulge.save(self.config.saving.bulge_cutoff_path) # ----------------------------------------------------------------- def convert_units(self): """ This function ... :return: """ # Inform the user log.info("Converting the H-alpha, 24mu, 70mu and 160mu images to solar luminosities ...") # FUV is not converted to Lsun # Convert the H-alpha image to solar luminosities self.convert_halpha_to_solar() # Convert the MIPS image to solar luminosities self.convert_mips_to_solar() # Convert the PACS images to solar luminosities self.convert_pacs_to_solar() # Save the images that are converted to solar units halpa_path = fs.join(self.maps_solar_path, self.images["Halpha"].name + ".fits") self.images["Halpha"].save(halpa_path) mips_path = fs.join(self.maps_solar_path, self.images["24mu"].name + ".fits") self.images["24mu"].save(mips_path) pacs70_path = fs.join(self.maps_solar_path, self.images["70mu"].name + ".fits") self.images["70mu"].save(pacs70_path) pacs160_path = fs.join(self.maps_solar_path, self.images["160mu"].name + ".fits") self.images["160mu"].save(pacs160_path) # ----------------------------------------------------------------- def convert_halpha_to_solar(self): """ This function converts the H alpha image from :return: """ # Debugging log.debug("Converting the H-alpha image to solar luminosities ...") # Convert from erg/s to Lsun self.images["Halpha"].convert_to("Lsun") # ----------------------------------------------------------------- def convert_mips_to_solar(self): """ This function ... :return: """ # Debugging log.debug("Converting the 24 micron image to solar luminosities ...") # Calculate conversion factors from MJy/sr to solar luminosities exponent = (2.0*np.log10(2.85/206264.806247)) - 20.0 + np.log10(3e8/24e-6) + np.log10(4.0*np.pi) + (2.0*np.log10(self.distance_mpc*3.08567758e22)) - np.log10(3.846e26) # Multiply the image self.images["24mu"] *= 10.**exponent # Set the new unit self.images["24mu"].unit = "Lsun" # ----------------------------------------------------------------- def convert_pacs_to_solar(self): """ This function ... :return: """ # Debugging log.debug("Converting the 70 and 160 micron images to solar luminosities ...") # Calculate the conversion factors exponent_70 = (2.0*np.log10(2.85/206264.806247)) - 20.0 + np.log10(3e8/70e-6) + np.log10(4.0*np.pi) + (2.0*np.log10(self.distance_mpc*3.08567758e22)) - np.log10(3.846e26) exponent_160 = (2.0*np.log10(2.85/206264.806247)) - 20.0 + np.log10(3e8/160e-6) + np.log10(4.0*np.pi) + (2.0*np.log10(self.distance_mpc*3.08567758e22)) -
np.log10(3.846e26)
numpy.log10
from __future__ import division ''' NeuroLearn Statistics Tools =========================== Tools to help with statistical analyses. ''' __all__ = ['pearson', 'zscore', 'fdr', 'holm_bonf', 'threshold', 'multi_threshold', 'winsorize', 'trim', 'calc_bpm', 'downsample', 'upsample', 'fisher_r_to_z', 'one_sample_permutation', 'two_sample_permutation', 'correlation_permutation', 'matrix_permutation', 'jackknife_permutation', 'make_cosine_basis', 'summarize_bootstrap', 'regress', 'procrustes', 'procrustes_distance', 'align', 'find_spikes', 'correlation', 'distance_correlation', 'transform_pairwise', 'double_center', 'u_center',] import numpy as np import pandas as pd from scipy.stats import pearsonr, spearmanr, kendalltau, norm, ttest_1samp from scipy.stats import t as t_dist from scipy.spatial.distance import squareform, pdist from copy import deepcopy import nibabel as nib from scipy.interpolate import interp1d import warnings import itertools from joblib import Parallel, delayed import six from .utils import attempt_to_import, check_square_numpy_matrix from .external.srm import SRM, DetSRM from scipy.linalg import orthogonal_procrustes from scipy.spatial import procrustes as procrust from scipy.ndimage import label, generate_binary_structure from sklearn.utils import check_random_state from sklearn.metrics import pairwise_distances MAX_INT = np.iinfo(np.int32).max # Optional dependencies sm = attempt_to_import('statsmodels.tsa.arima_model', name='sm') def pearson(x, y): """ Correlates row vector x with each row vector in 2D array y. From neurosynth.stats.py - author: <NAME> """ data = np.vstack((x, y)) ms = data.mean(axis=1)[(slice(None, None, None), None)] datam = data - ms datass = np.sqrt(np.sum(datam*datam, axis=1)) # datass = np.sqrt(ss(datam, axis=1)) temp = np.dot(datam[1:], datam[0].T) rs = temp / (datass[1:] * datass[0]) return rs def zscore(df): """ zscore every column in a pandas dataframe or series. Args: df: (pd.DataFrame) Pandas DataFrame instance Returns: z_data: (pd.DataFrame) z-scored pandas DataFrame or series instance """ if isinstance(df, pd.DataFrame): return df.apply(lambda x: (x - x.mean())/x.std()) elif isinstance(df, pd.Series): return (df-np.mean(df))/np.std(df) else: raise ValueError("Data is not a Pandas DataFrame or Series instance") def fdr(p, q=.05): """ Determine FDR threshold given a p value array and desired false discovery rate q. Written by <NAME> Args: p: (np.array) vector of p-values (only considers non-zero p-values) q: (float) false discovery rate level Returns: fdr_p: (float) p-value threshold based on independence or positive dependence """ if not isinstance(p, np.ndarray): raise ValueError('Make sure vector of p-values is a numpy array') s = np.sort(p) nvox = p.shape[0] null = np.array(range(1, nvox + 1), dtype='float') * q / nvox below = np.where(s <= null)[0] fdr_p = s[max(below)] if len(below) else -1 return fdr_p def holm_bonf(p, alpha=.05): """ Compute corrected p-values based on the Holm-Bonferroni method, i.e. step-down procedure applying iteratively less correction to highest p-values. A bit more conservative than fdr, but much more powerful thanvanilla bonferroni. Args: p: (np.array) vector of p-values alpha: (float) alpha level Returns: bonf_p: (float) p-value threshold based on bonferroni step-down procedure """ if not isinstance(p, np.ndarray): raise ValueError('Make sure vector of p-values is a numpy array') s = np.sort(p) nvox = p.shape[0] null = .05 / (nvox - np.arange(1, nvox + 1) + 1) below = np.where(s <= null)[0] bonf_p = s[max(below)] if len(below) else -1 return bonf_p def threshold(stat, p, thr=.05, return_mask=False): """ Threshold test image by p-value from p image Args: stat: (Brain_Data) Brain_Data instance of arbitrary statistic metric (e.g., beta, t, etc) p: (Brain_Data) Brain_data instance of p-values threshold: (float) p-value to threshold stat image return_mask: (bool) optionall return the thresholding mask; default False Returns: out: Thresholded Brain_Data instance """ from nltools.data import Brain_Data if not isinstance(stat, Brain_Data): raise ValueError('Make sure stat is a Brain_Data instance') if not isinstance(p, Brain_Data): raise ValueError('Make sure p is a Brain_Data instance') # Create Mask mask = deepcopy(p) if thr > 0: mask.data = (mask.data < thr).astype(int) else: mask.data = np.zeros(len(mask.data), dtype=int) # Apply Threshold Mask out = deepcopy(stat) if np.sum(mask.data) > 0: out = out.apply_mask(mask) out.data = out.data.squeeze() else: out.data = np.zeros(len(mask.data), dtype=int) if return_mask: return out, mask else: return out def multi_threshold(t_map, p_map, thresh): """ Threshold test image by multiple p-value from p image Args: stat: (Brain_Data) Brain_Data instance of arbitrary statistic metric (e.g., beta, t, etc) p: (Brain_Data) Brain_data instance of p-values threshold: (list) list of p-values to threshold stat image Returns: out: Thresholded Brain_Data instance """ from nltools.data import Brain_Data if not isinstance(t_map, Brain_Data): raise ValueError('Make sure stat is a Brain_Data instance') if not isinstance(p_map, Brain_Data): raise ValueError('Make sure p is a Brain_Data instance') if not isinstance(thresh, list): raise ValueError('Make sure thresh is a list of p-values') affine = t_map.to_nifti().get_affine() pos_out = np.zeros(t_map.to_nifti().shape) neg_out = deepcopy(pos_out) for thr in thresh: t = threshold(t_map, p_map, thr=thr) t_pos = deepcopy(t) t_pos.data = np.zeros(len(t_pos.data)) t_neg = deepcopy(t_pos) t_pos.data[t.data > 0] = 1 t_neg.data[t.data < 0] = 1 pos_out = pos_out+t_pos.to_nifti().get_data() neg_out = neg_out+t_neg.to_nifti().get_data() pos_out = pos_out + neg_out*-1 return Brain_Data(nib.Nifti1Image(pos_out, affine)) def winsorize(data, cutoff=None, replace_with_cutoff=True): ''' Winsorize a Pandas DataFrame or Series with the largest/lowest value not considered outlier Args: data: (pd.DataFrame, pd.Series) data to winsorize cutoff: (dict) a dictionary with keys {'std':[low,high]} or {'quantile':[low,high]} replace_with_cutoff: (bool) If True, replace outliers with cutoff. If False, replaces outliers with closest existing values; (default: False) Returns: out: (pd.DataFrame, pd.Series) winsorized data ''' return _transform_outliers(data, cutoff, replace_with_cutoff=replace_with_cutoff, method='winsorize') def trim(data, cutoff=None): ''' Trim a Pandas DataFrame or Series by replacing outlier values with NaNs Args: data: (pd.DataFrame, pd.Series) data to trim cutoff: (dict) a dictionary with keys {'std':[low,high]} or {'quantile':[low,high]} Returns: out: (pd.DataFrame, pd.Series) trimmed data ''' return _transform_outliers(data, cutoff, replace_with_cutoff=None, method='trim') def _transform_outliers(data, cutoff, replace_with_cutoff, method): ''' This function is not exposed to user but is called by either trim or winsorize. Args: data: (pd.DataFrame, pd.Series) data to transform cutoff: (dict) a dictionary with keys {'std':[low,high]} or {'quantile':[low,high]} replace_with_cutoff: (bool) If True, replace outliers with cutoff. If False, replaces outliers with closest existing values. (default: False) method: 'winsorize' or 'trim' Returns: out: (pd.DataFrame, pd.Series) transformed data ''' df = data.copy() # To not overwrite data make a copy def _transform_outliers_sub(data, cutoff, replace_with_cutoff, method='trim'): if not isinstance(data, pd.Series): raise ValueError('Make sure that you are applying winsorize to a pandas dataframe or series.') if isinstance(cutoff, dict): # calculate cutoff values if 'quantile' in cutoff: q = data.quantile(cutoff['quantile']) elif 'std' in cutoff: std = [data.mean()-data.std()*cutoff['std'][0], data.mean()+data.std()*cutoff['std'][1]] q = pd.Series(index=cutoff['std'], data=std) # if replace_with_cutoff is false, replace with true existing values closest to cutoff if method == 'winsorize': if not replace_with_cutoff: q.iloc[0] = data[data > q.iloc[0]].min() q.iloc[1] = data[data < q.iloc[1]].max() else: raise ValueError('cutoff must be a dictionary with quantile or std keys.') if method == 'winsorize': if isinstance(q, pd.Series) and len(q) == 2: data[data < q.iloc[0]] = q.iloc[0] data[data > q.iloc[1]] = q.iloc[1] elif method == 'trim': data[data < q.iloc[0]] = np.nan data[data > q.iloc[1]] = np.nan return data # transform each column if a dataframe, if series just transform data if isinstance(df, pd.DataFrame): for col in df.columns: df.loc[:, col] = _transform_outliers_sub(df.loc[:, col], cutoff=cutoff, replace_with_cutoff=replace_with_cutoff, method=method) return df elif isinstance(df, pd.Series): return _transform_outliers_sub(df, cutoff=cutoff, replace_with_cutoff=replace_with_cutoff, method=method) else: raise ValueError('Data must be a pandas DataFrame or Series') def calc_bpm(beat_interval, sampling_freq): ''' Calculate instantaneous BPM from beat to beat interval Args: beat_interval: (int) number of samples in between each beat (typically R-R Interval) sampling_freq: (float) sampling frequency in Hz Returns: bpm: (float) beats per minute for time interval ''' return 60*sampling_freq*(1/(beat_interval)) def downsample(data, sampling_freq=None, target=None, target_type='samples', method='mean'): ''' Downsample pandas to a new target frequency or number of samples using averaging. Args: data: (pd.DataFrame, pd.Series) data to downsample sampling_freq: (float) Sampling frequency of data in hertz target: (float) downsampling target target_type: type of target can be [samples,seconds,hz] method: (str) type of downsample method ['mean','median'], default: mean Returns: out: (pd.DataFrame, pd.Series) downsmapled data ''' if not isinstance(data, (pd.DataFrame, pd.Series)): raise ValueError('Data must by a pandas DataFrame or Series instance.') if not (method == 'median') | (method == 'mean'): raise ValueError("Metric must be either 'mean' or 'median' ") if target_type == 'samples': n_samples = target elif target_type == 'seconds': n_samples = target*sampling_freq elif target_type == 'hz': n_samples = sampling_freq/target else: raise ValueError('Make sure target_type is "samples", "seconds", ' ' or "hz".') idx = np.sort(np.repeat(np.arange(1, data.shape[0]/n_samples, 1), n_samples)) # if data.shape[0] % n_samples: if data.shape[0] > len(idx): idx = np.concatenate([idx, np.repeat(idx[-1]+1, data.shape[0]-len(idx))]) if method == 'mean': return data.groupby(idx).mean().reset_index(drop=True) elif method == 'median': return data.groupby(idx).median().reset_index(drop=True) def upsample(data, sampling_freq=None, target=None, target_type='samples', method='linear'): ''' Upsample pandas to a new target frequency or number of samples using interpolation. Args: data: (pd.DataFrame, pd.Series) data to upsample (Note: will drop non-numeric columns from DataFrame) sampling_freq: Sampling frequency of data in hertz target: (float) upsampling target target_type: (str) type of target can be [samples,seconds,hz] method: (str) ['linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'] where 'zero', 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of zeroth, first, second or third order (default: linear) Returns: upsampled pandas object ''' methods = ['linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'] if method not in methods: raise ValueError("Method must be 'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'") if target_type == 'samples': n_samples = target elif target_type == 'seconds': n_samples = target*sampling_freq elif target_type == 'hz': n_samples = float(sampling_freq)/float(target) else: raise ValueError('Make sure target_type is "samples", "seconds", or "hz".') orig_spacing = np.arange(0, data.shape[0], 1) new_spacing = np.arange(0, data.shape[0]-1, n_samples) if isinstance(data, pd.Series): interpolate = interp1d(orig_spacing, data, kind=method) return interpolate(new_spacing) elif isinstance(data, pd.DataFrame): numeric_data = data._get_numeric_data() if data.shape[1] != numeric_data.shape[1]: warnings.warn('Dropping %s non-numeric columns' % (data.shape[1] - numeric_data.shape[1]), UserWarning) out = pd.DataFrame(columns=numeric_data.columns, index=None) for i, x in numeric_data.iteritems(): interpolate = interp1d(orig_spacing, x, kind=method) out.loc[:, i] = interpolate(new_spacing) return out else: raise ValueError('Data must by a pandas DataFrame or Series instance.') def fisher_r_to_z(r): ''' Use Fisher transformation to convert correlation to z score ''' return .5*np.log((1+r)/(1-r)) def correlation(data1, data2, metric='pearson'): ''' This function calculates the correlation between data1 and data2 Args: data1: (np.array) x data2: (np.array) y metric: (str) type of correlation ["spearman" or "pearson" or "kendall"] Returns: r: (np.array) correlations p: (float) p-value ''' if metric == 'spearman': func = spearmanr elif metric == 'pearson': func = pearsonr elif metric == 'kendall': func = kendalltau else: raise ValueError('metric must be "spearman" or "pearson" or "kendall"') return func(data1, data2) def _permute_sign(data, random_state=None): random_state = check_random_state(random_state) return np.mean(data*random_state.choice([1, -1], len(data))) def _permute_group(data, random_state=None): random_state = check_random_state(random_state) perm_label = random_state.permutation(data['Group']) return (np.mean(data.loc[perm_label == 1, 'Values']) - np.mean(data.loc[perm_label == 0, 'Values'])) def _permute_func(data1, data2, metric, random_state=None): """ Helper function for matrix_permutation. Can take a functon, that would be repeated for calculation. Args: data1: (np.array) squareform matrix data2: flattened np array (same size upper triangle of data1) metric: similarity/distance function from scipy.stats (e.g., spearman, pearson, kendall etc) random_state: random_state instance for permutation Returns: r: r value of function """ random_state = check_random_state(random_state) data_row_id = range(data1.shape[0]) permuted_ix = random_state.choice(data_row_id, size=len(data_row_id), replace=False) new_fmri_dist = data1.iloc[permuted_ix, permuted_ix].values new_fmri_dist = new_fmri_dist[np.triu_indices(new_fmri_dist.shape[0], k=1)] return correlation(new_fmri_dist, data2, metric=metric)[0] def _calc_pvalue(all_p, stat, tail): """Calculates p value based on distribution of correlations This function is called by the permutation functions all_p: list of correlation values from permutation stat: actual value being tested, i.e., stats['correlation'] or stats['mean'] tail: (int) either 2 or 1 for two-tailed p-value or one-tailed """ denom = float(len(all_p)) + 1 if tail == 2: numer = np.sum(np.abs(all_p) >= np.abs(stat)) + 1 elif tail == 1: if stat >= 0: numer = np.sum(all_p >= stat) + 1 else: numer = np.sum(all_p <= stat) + 1 else: raise ValueError('tail must be either 1 or 2') p = numer / denom return p def one_sample_permutation(data, n_permute=5000, tail=2, n_jobs=-1, return_perms=False, random_state=None): ''' One sample permutation test using randomization. Args: data: (pd.DataFrame, pd.Series, np.array) data to permute n_permute: (int) number of permutations tail: (int) either 1 for one-tail or 2 for two-tailed test (default: 2) n_jobs: (int) The number of CPUs to use to do the computation. -1 means all CPUs. return_parms: (bool) Return the permutation distribution along with the p-value; default False Returns: stats: (dict) dictionary of permutation results ['mean','p'] ''' random_state = check_random_state(random_state) seeds = random_state.randint(MAX_INT, size=n_permute) data = np.array(data) stats = dict() stats['mean'] = np.mean(data) all_p = Parallel(n_jobs=n_jobs)(delayed(_permute_sign)(data, random_state=seeds[i]) for i in range(n_permute)) stats['p'] = _calc_pvalue(all_p, stats['mean'], tail) if return_perms: stats['perm_dist'] = all_p return stats def two_sample_permutation(data1, data2, n_permute=5000, tail=2, n_jobs=-1, return_perms=False, random_state=None): ''' Independent sample permutation test. Args: data1: (pd.DataFrame, pd.Series, np.array) dataset 1 to permute data2: (pd.DataFrame, pd.Series, np.array) dataset 2 to permute n_permute: (int) number of permutations tail: (int) either 1 for one-tail or 2 for two-tailed test (default: 2) n_jobs: (int) The number of CPUs to use to do the computation. -1 means all CPUs. return_parms: (bool) Return the permutation distribution along with the p-value; default False Returns: stats: (dict) dictionary of permutation results ['mean','p'] ''' random_state = check_random_state(random_state) seeds = random_state.randint(MAX_INT, size=n_permute) stats = dict() stats['mean'] = np.mean(data1)-np.mean(data2) data = pd.DataFrame(data={'Values': data1, 'Group': np.ones(len(data1))}) data = data.append(pd.DataFrame(data={ 'Values': data2, 'Group': np.zeros(len(data2))})) all_p = Parallel(n_jobs=n_jobs)(delayed(_permute_group)(data, random_state=seeds[i]) for i in range(n_permute)) stats['p'] = _calc_pvalue(all_p, stats['mean'], tail) if return_perms: stats['perm_dist'] = all_p return stats def correlation_permutation(data1, data2, n_permute=5000, metric='spearman', tail=2, n_jobs=-1, return_perms=False, random_state=None): ''' Permute correlation. Args: data1: (pd.DataFrame, pd.Series, np.array) dataset 1 to permute data2: (pd.DataFrame, pd.Series, np.array) dataset 2 to permute n_permute: (int) number of permutations metric: (str) type of association metric ['spearman','pearson', 'kendall'] tail: (int) either 1 for one-tail or 2 for two-tailed test (default: 2) n_jobs: (int) The number of CPUs to use to do the computation. -1 means all CPUs. return_parms: (bool) Return the permutation distribution along with the p-value; default False Returns: stats: (dict) dictionary of permutation results ['correlation','p'] ''' random_state = check_random_state(random_state) stats = dict() data1 = np.array(data1) data2 = np.array(data2) stats['correlation'] = correlation(data1, data2, metric=metric)[0] all_p = Parallel(n_jobs=n_jobs)(delayed(correlation)( random_state.permutation(data1), data2, metric=metric) for i in range(n_permute)) all_p = [x[0] for x in all_p] stats['p'] = _calc_pvalue(all_p, stats['correlation'], tail) if return_perms: stats['perm_dist'] = all_p return stats def matrix_permutation(data1, data2, n_permute=5000, metric='spearman', tail=2, n_jobs=-1, return_perms=False, random_state=None): """ Permute 2-dimensional matrix correlation (mantel test). Chen, G. et al. (2016). Untangling the relatedness among correlations, part I: nonparametric approaches to inter-subject correlation analysis at the group level. Neuroimage, 142, 248-259. Args: data1: (pd.DataFrame, np.array) square matrix data2: (pd.DataFrame, np.array) square matrix n_permute: (int) number of permutations metric: (str) type of association metric ['spearman','pearson', 'kendall'] tail: (int) either 1 for one-tail or 2 for two-tailed test (default: 2) n_jobs: (int) The number of CPUs to use to do the computation. -1 means all CPUs. return_parms: (bool) Return the permutation distribution along with the p-value; default False Returns: stats: (dict) dictionary of permutation results ['correlation','p'] """ random_state = check_random_state(random_state) seeds = random_state.randint(MAX_INT, size=n_permute) sq_data1 = check_square_numpy_matrix(data1) sq_data2 = check_square_numpy_matrix(data2) data1 = sq_data1[np.triu_indices(sq_data1.shape[0], k=1)] data2 = sq_data2[np.triu_indices(sq_data2.shape[0], k=1)] stats = dict() stats['correlation'] = correlation(data1, data2, metric=metric)[0] all_p = Parallel(n_jobs=n_jobs)(delayed(_permute_func)( pd.DataFrame(sq_data1), data2, metric=metric, random_state=seeds[i]) for i in range(n_permute)) stats['p'] = _calc_pvalue(all_p, stats['correlation'], tail) if return_perms: stats['perm_dist'] = all_p return stats def jackknife_permutation(data1, data2, metric='spearman', p_value='permutation', n_jobs=-1, n_permute=5000, tail=2, random_state=None): ''' This function uses a randomization test on a jackknife of absolute distance/similarity of each subject Args: data1: (Adjacency, pd.DataFrame, np.array) square matrix data2: (Adjacency, pd.DataFrame, np.array) square matrix metric: (str) type of association metric ['spearman','pearson', 'kendall'] tail: (int) either 1 for one-tail or 2 for two-tailed test (default: 2) p_value: ['ttest', 'permutation'] n_permute: (int) number of permutations n_jobs: (int) The number of CPUs to use to do the computation. -1 means all CPUs. Returns: stats: (dict) dictionary of permutation results ['correlation','p'] ''' random_state = check_random_state(random_state) data1 = check_square_numpy_matrix(data1) data2 = check_square_numpy_matrix(data2) stats = {} stats['all_r'] = [] for s in range(data1.shape[0]): stats['all_r'].append(correlation(np.delete(data1[s, ], s), np.delete(data2[s, ], s), metric=metric)[0]) stats['correlation'] = np.mean(stats['all_r']) if p_value == 'permutation': stats_permute = one_sample_permutation(stats['all_r'], n_permute=n_permute, tail=tail, n_jobs=n_jobs, random_state=random_state) stats['p'] = stats_permute['p'] elif p_value == 'ttest': stats['p'] = ttest_1samp(stats['all_r'], 0)[1] else: raise NotImplementedError("Only ['ttest', 'permutation'] are currently implemented.") return stats def make_cosine_basis(nsamples, sampling_freq, filter_length, unit_scale=True, drop=0): """ Create a series of cosine basis functions for a discrete cosine transform. Based off of implementation in spm_filter and spm_dctmtx because scipy dct can only apply transforms but not return the basis functions. Like SPM, does not add constant (i.e. intercept), but does retain first basis (i.e. sigmoidal/linear drift) Args: nsamples (int): number of observations (e.g. TRs) sampling_freq (float): sampling frequency in hertz (i.e. 1 / TR) filter_length (int): length of filter in seconds unit_scale (true): assure that the basis functions are on the normalized range [-1, 1]; default True drop (int): index of which early/slow bases to drop if any; default is to drop constant (i.e. intercept) like SPM. Unlike SPM, retains first basis (i.e. linear/sigmoidal). Will cumulatively drop bases up to and inclusive of index provided (e.g. 2, drops bases 1 and 2) Returns: out (ndarray): nsamples x number of basis sets numpy array """ # Figure out number of basis functions to create order = int(np.fix(2 * (nsamples * sampling_freq)/filter_length + 1)) n = np.arange(nsamples) # Initialize basis function matrix C = np.zeros((len(n), order)) # Add constant C[:, 0] = np.ones((1, len(n)))/np.sqrt(nsamples) # Insert higher order cosine basis functions for i in range(1, order): C[:, i] = np.sqrt(2./nsamples) * np.cos(np.pi*(2*n+1) * i/(2*nsamples)) # Drop intercept ala SPM C = C[:, 1:] if C.size == 0: raise ValueError('Basis function creation failed! nsamples is too small for requested filter_length.') if unit_scale: C *= 1. / C[0, 0] C = C[:, drop:] return C def transform_pairwise(X, y): '''Transforms data into pairs with balanced labels for ranking Transforms a n-class ranking problem into a two-class classification problem. Subclasses implementing particular strategies for choosing pairs should override this method. In this method, all pairs are choosen, except for those that have the same target value. The output is an array of balanced classes, i.e. there are the same number of -1 as +1 Reference: "Large Margin Rank Boundaries for Ordinal Regression", <NAME>, <NAME>, <NAME>. Authors: <NAME> <<EMAIL>> <NAME> <<EMAIL>> Args: X: (np.array), shape (n_samples, n_features) The data y: (np.array), shape (n_samples,) or (n_samples, 2) Target labels. If it's a 2D array, the second column represents the grouping of samples, i.e., samples with different groups will not be considered. Returns: X_trans: (np.array), shape (k, n_feaures) Data as pairs, where k = n_samples * (n_samples-1)) / 2 if grouping values were not passed. If grouping variables exist, then returns values computed for each group. y_trans: (np.array), shape (k,) Output class labels, where classes have values {-1, +1} If y was shape (n_samples, 2), then returns (k, 2) with groups on the second dimension. ''' X_new, y_new, y_group = [], [], [] y_ndim = y.ndim if y.ndim == 1: y = np.c_[y, np.ones(y.shape[0])] comb = itertools.combinations(range(X.shape[0]), 2) for k, (i, j) in enumerate(comb): if y[i, 0] == y[j, 0] or y[i, 1] != y[j, 1]: # skip if same target or different group continue X_new.append(X[i] - X[j]) y_new.append(np.sign(y[i, 0] - y[j, 0])) y_group.append(y[i, 1]) # output balanced classes if y_new[-1] != (-1) ** k: y_new[-1] = - y_new[-1] X_new[-1] = - X_new[-1] if y_ndim == 1: return np.asarray(X_new), np.asarray(y_new).ravel() elif y_ndim == 2: return np.asarray(X_new), np.vstack((np.asarray(y_new), np.asarray(y_group))).T def _robust_estimator(vals, X, robust_estimator='hc0', nlags=1): """ Computes robust sandwich estimators for standard errors used in OLS computation. Types include: 'hc0': Huber (1980) sandwich estimator to return robust standard error estimates. 'hc3': MacKinnon and White (1985) HC3 sandwich estimator. Provides more robustness in smaller samples than HC0 Long & Ervin (2000) 'hac': Newey-West (1987) estimator for robustness to heteroscedasticity as well as serial auto-correlation at given lags. Refs: https://www.wikiwand.com/en/Heteroscedasticity-consistent_standard_errors https://github.com/statsmodels/statsmodels/blob/master/statsmodels/regression/linear_model.py https://cran.r-project.org/web/packages/sandwich/vignettes/sandwich.pdf https://www.stata.com/manuals13/tsnewey.pdf Args: vals (np.ndarray): 1d array of residuals X (np.ndarray): design matrix used in OLS, e.g. Brain_Data().X robust_estimator (str): estimator type, 'hc0' (default), 'hc3', or 'hac' nlags (int): number of lags, only used with 'hac' estimator, default is 1 Returns: stderr (np.ndarray): 1d array of standard errors with length == X.shape[1] """ if robust_estimator not in ['hc0', 'hc3', 'hac']: raise ValueError("robust_estimator must be one of hc0, hc3 or hac") # Make a sandwich! # First we need bread bread = np.linalg.pinv(np.dot(X.T, X)) # Then we need meat if robust_estimator == 'hc0': V = np.diag(vals**2) meat = np.dot(np.dot(X.T, V), X) elif robust_estimator == 'hc3': V = np.diag(vals**2)/(1-np.diag(np.dot(X, np.dot(bread, X.T))))**2 meat = np.dot(np.dot(X.T, V), X) elif robust_estimator == 'hac': weights = 1 - np.arange(nlags+1.)/(nlags+1.) # First compute lag 0 V = np.diag(vals**2) meat = weights[0] * np.dot(
np.dot(X.T, V)
numpy.dot
# pylint: disable=I0011,W0613,W0201,W0212,E1101,E1103,R0903,R0904 import pytest import numpy as np from numpy.testing import assert_equal, assert_allclose from unittest.mock import MagicMock from astropy.utils import NumpyRNGContext from glue import core from glue.utils import broadcast_to from ..component import Component, DerivedComponent, CategoricalComponent, DateTimeComponent from ..component_id import ComponentID from ..component_link import ComponentLink, CoordinateComponentLink, BinaryComponentLink from ..coordinates import Coordinates, IdentityCoordinates from ..data import Data, pixel_label, BaseCartesianData from ..link_helpers import LinkSame from ..data_collection import DataCollection from ..exceptions import IncompatibleAttribute from ..hub import Hub from ..registry import Registry from ..subset import (Subset, CategoricalROISubsetState, SubsetState, RoiSubsetState, RangeSubsetState, SliceSubsetState, CategoricalMultiRangeSubsetState, MaskSubsetState, CategoricalROISubsetState2D, AndState, roi_to_subset_state) from ..roi import PolygonalROI, CategoricalROI, RangeROI, RectangularROI from .test_state import clone class _TestCoordinates(Coordinates): def __init__(self): super().__init__(pixel_n_dim=2, world_n_dim=2) def pixel_to_world_values(self, *args): return [(i + 2.) * a for i, a in enumerate(args)] def world_to_pixel_values(self, *args): return [a / (i + 2.) for i, a in enumerate(args)] class TestData(object): def setup_method(self, method): self.data = Data(label="Test Data") Registry().clear() comp = Component(np.random.random((2, 3))) self.comp = comp self.data.coords = _TestCoordinates() self.comp_id = self.data.add_component(comp, 'Test Component') def test_2d_component_print(self): assert str(self.comp) == 'Component with shape (2, 3)' def test_shape_empty(self): d = Data() assert d.shape == () def test_ndim_empty(self): d = Data() assert d.ndim == 0 def test_shape(self): assert self.data.shape == (2, 3) def test_ndim(self): assert self.data.ndim == 2 def test_size(self): assert self.data.size == 6 def test_label(self): d = Data() assert d.label == '' assert self.data.label == "Test Data" def test_set_label(self): d = Data() d.label = 'test_set_label' assert d.label == 'test_set_label' def test_add_component_with_id(self): cid = ComponentID("test") comp = Component(np.random.random((2, 3))) cid2 = self.data.add_component(comp, cid) assert cid2 is cid def test_add_component_via_setitem(self): d = Data(x=[1, 2, 3]) d['y'] = d['x'] * 2 np.testing.assert_array_equal(d['y'], [2, 4, 6]) def test_add_component_incompatible_shape(self): comp = MagicMock() comp.data.shape = (3, 2) with pytest.raises(TypeError) as exc: self.data.add_component(comp("junk label")) assert exc.value.args[0] == ("add_component() missing 1 required " "positional argument: 'label'") def test_get_getitem_incompatible_attribute(self): cid = ComponentID('bad') with pytest.raises(IncompatibleAttribute) as exc: self.data.__getitem__(cid) assert exc.value.args[0] is cid def test_get_component_incompatible_attribute(self): cid = ComponentID('bad') with pytest.raises(IncompatibleAttribute) as exc: self.data.get_component(cid) assert exc.value.args[0] is cid def test_get_component_name(self): d = Data(x=[1, 2, 3]) assert isinstance(d.get_component('x'), Component) def test_component_ids(self): cid = self.data.component_ids() assert self.comp_id in cid def test_new_subset(self): sub = self.data.new_subset() assert sub in self.data.subsets def test_data_not_created_with_subsets(self): assert len(self.data.subsets) == 0 def test_register(self): hub = MagicMock(spec_set=Hub) self.data.register_to_hub(hub) assert hub is self.data.hub def test_component_order(self): """Components should be returned in the order they were specified""" data = Data() comp = Component(np.array([1, 2, 3])) labels = 'asldfkjaAREGWoibasiwnsldkgajsldkgslkg' for label in labels: data.add_component(comp, label) ids = data.main_components assert [cid.label for cid in ids] == list(labels) def test_broadcast(self): hub = MagicMock(spec_set=Hub) # make sure broadcasting with no hub is ok self.data.broadcast('testing') # make sure broadcast with hub gets relayed self.data.register_to_hub(hub) self.data.broadcast('testing') assert hub.broadcast.call_count == 1 def test_double_hub_add(self): hub = MagicMock(spec_set=Hub) hub2 = MagicMock(spec_set=Hub) self.data.register_to_hub(hub) with pytest.raises(AttributeError) as exc: self.data.__setattr__('hub', hub2) assert exc.value.args[0] == ("Data has already been assigned " "to a different hub") def test_main_components(self): compid = ComponentID('virtual') link = MagicMock(spec_set=ComponentLink) comp = DerivedComponent(self.data, link) self.data.add_component(comp, compid) main_comps = self.data.main_components assert self.comp_id in main_comps assert compid not in main_comps def test_add_component_invalid_component(self): comp = Component(np.array([1])) with pytest.raises(ValueError) as exc: self.data.add_component(comp, label='bad') assert exc.value.args[0].startswith("The dimensions of component bad") def test_add_component_link(self): link = MagicMock(spec_set=ComponentLink) cid = ComponentID("new id") link.get_to_id.return_value = cid self.data.add_component_link(link) assert cid in self.data.derived_components def test_derived_components(self): compid = ComponentID('virtual') link = MagicMock(spec_set=ComponentLink) comp = DerivedComponent(self.data, link) self.data.add_component(comp, compid) pricomps = self.data.derived_components assert self.comp_id not in pricomps assert compid in pricomps def test_str_empty(self): d = Data() str(d) def test_str_(self): str(self.data) def test_add_derived_component(self): compid = ComponentID('virtual') link = MagicMock(spec_set=ComponentLink) comp = DerivedComponent(self.data, link) comp.data.shape = self.data.shape self.data.add_component(comp, compid) result = self.data[compid] link.compute.assert_called_with(self.data) def test_find_component_id(self): cid = self.data.find_component_id('Test Component') assert cid == self.comp_id assert self.data.find_component_id('does not exist') is None def test_add_subset(self): s = Subset(Data()) self.data.add_subset(s) assert s in self.data.subsets def test_add_subset_with_subset_state(self): """Passing a subset state auto-wraps into a subset object""" state = SubsetState() self.data.add_subset(state) added = self.data.subsets[-1] assert added.subset_state is state assert added.data is self.data def test_add_subset_reparents_subset(self): """add_subset method updates subset.data reference""" s = Subset(None) self.data.add_subset(s) assert s.data is self.data def test_add_subset_disambiguates_label(self): """adding subset should disambiguate label if needed""" s1 = Subset(None) self.data.add_subset(s1) s1.label = "test_subset_label" s2 = Subset(None) s2.label = "test_subset_label" assert s2.label == "test_subset_label" self.data.add_subset(s2) assert s2.label != "test_subset_label" def test_add_subset_with_hub(self): s = Subset(None) hub = MagicMock(spec_set=Hub) self.data.register_to_hub(hub) self.data.add_subset(s) assert s in self.data.subsets assert hub.broadcast.call_count == 1 def test_remove_component(self): hub = MagicMock(spec_set=Hub) self.data.register_to_hub(hub) self.data.remove_component(self.comp_id) assert self.comp_id not in self.data.components assert hub.broadcast.call_count == 2 def test_get_component(self): assert self.data.get_component(self.comp_id) is self.comp def test_get_None_component(self): with pytest.raises(IncompatibleAttribute): self.data.get_component(None) def test_get_item(self): assert self.data[self.comp_id] is self.comp.data def test_coordinate_links(self): links = self.data.coordinate_links w0 = self.data[self.data.world_component_ids[0]] w1 = self.data[self.data.world_component_ids[1]] p0 = self.data[self.data.pixel_component_ids[0]] p1 = self.data[self.data.pixel_component_ids[1]] w0prime = links[0].compute(self.data) p0prime = links[1].compute(self.data) w1prime = links[2].compute(self.data) p1prime = links[3].compute(self.data) np.testing.assert_array_equal(w0, w0prime) np.testing.assert_array_equal(w1, w1prime) np.testing.assert_array_equal(p0, p0prime) np.testing.assert_array_equal(p1, p1prime) def test_coordinate_links_empty_data(self): d = Data() d.coords = None assert d.coordinate_links == [] def test_coordinate_links_idempotent(self): """Should only calculate links once, and return the same objects every time""" links = self.data.coordinate_links links2 = self.data.coordinate_links assert links == links2 def test_fancy_view(self): result = self.data[self.comp_id, :, 2] np.testing.assert_array_equal(result, self.data[self.comp_id][:, 2]) def test_get_by_string(self): result = self.data['Test Component'] assert result is self.comp.data def test_get_by_missing_string(self): with pytest.raises(IncompatibleAttribute) as exc: result = self.data['xyz'] assert exc.value.args[0] == 'xyz' def test_immutable(self): d = Data(x=[1, 2, 3]) with pytest.raises(ValueError) as exc: d['x'][:] = 5 assert 'read-only' in exc.value.args[0] assert not d['x'].flags['WRITEABLE'] @pytest.mark.xfail def test_categorical_immutable(self): d = Data() c = CategoricalComponent(['M', 'M', 'F'], categories=['M', 'F']) d.add_component(c, label='gender') with pytest.raises(ValueError) as exc: d['gender'][:] = 5 assert 'read-only' in exc.value.args[0] assert not d['gender'].flags['WRITEABLE'] def test_update_components(self): d = Data(x=[1, 2, 3], y=[1, 2, 3]) d.update_components({d.id['x']: [10, 20, 30]}) np.testing.assert_array_equal(d['x'],[10, 20, 30]) def test_update_categorical_components(self): d = Data(x=['M', 'M', 'F'], y=['F', 'F', 'M']) d.update_components({d.id['x']: ['M', 'F', 'M']}) np.testing.assert_array_equal(d['x'],np.array(['M', 'F', 'M'])) assert isinstance(d.get_component(d.id['x']),CategoricalComponent) def test_update_nd_categorical_components(self): d = Data(x=[['M', 'M', 'F'],['F', 'F', 'M']]) d.update_components({d.id['x']: [['M', 'F', 'M'],['F','M','F']]}) np.testing.assert_array_equal(d['x'],[['M', 'F', 'M'],['F','M','F']]) assert isinstance(d.get_component(d.id['x']),CategoricalComponent) def test_update_clears_subset_cache(self): from ..roi import RectangularROI d = Data(x=[1, 2, 3], y=[1, 2, 3]) s = d.new_subset() state = core.subset.RoiSubsetState() state.xatt = d.id['x'] state.yatt = d.id['y'] state.roi = RectangularROI(xmin=1.5, xmax=2.5, ymin=1.5, ymax=2.5) s.subset_state = state np.testing.assert_array_equal(s.to_mask(), [False, True, False]) d.update_components({d.id['x']: [10, 20, 30]}) np.testing.assert_array_equal(s.to_mask(), [False, False, False]) def test_add_derived_implicit(self): # Regression test for a bug that caused derived components added via # the data[...] = ... syntax to have links that did not include a 'to' # argument, leading the link manager to add a ghost component to the # data. from ..data_collection import DataCollection dc = DataCollection([]) data = Data(x=[1, 2, 3], y=[2, 3, 4], label='data1') dc.append(data) data['z'] = data.id['x'] + 1 # There should be four components: x, y, z, and pixel assert len(data.components) == 4 def test_remove_derived_dependency(self): # Regression test for a bug that occurred when removing a component # used in a derived component, which should also remove the derived # component itself. To make things more fun, we set up a chain of # derived components to make sure they are all removed. data = Data(a=[1, 2, 3], b=[2, 3, 4], label='data1') data['c'] = data.id['a'] + 1 data['d'] = data.id['c'] + 1 data['e'] = data.id['d'] + 1 data['f'] = data.id['e'] + 1 a_id = data.id['a'] b_id = data.id['b'] c_id = data.id['c'] d_id = data.id['d'] e_id = data.id['e'] f_id = data.id['f'] # There should be seven components: pixel, a, b, c, d, e, f assert len(data.components) == 7 data.remove_component(data.id['d']) # This should also remove e and f since they depend on d assert len(data.components) == 4 assert a_id in data.components assert b_id in data.components assert c_id in data.components assert d_id not in data.components assert e_id not in data.components assert f_id not in data.components def test_links_property(self): data = Data(a=[1, 2, 3], b=[2, 3, 4], label='data1', coords=IdentityCoordinates(n_dim=1)) assert len(data.links) == 2 assert isinstance(data.links[0], CoordinateComponentLink) assert isinstance(data.links[1], CoordinateComponentLink) data['c'] = data.id['a'] + 1 assert len(data.links) == 3 assert isinstance(data.links[2], BinaryComponentLink) class TestROICreation(object): def test_range_roi(self): d = Data(xdata=[1, 2, 3], ydata=[1, 2, 3]) comp = d.get_component(d.id['xdata']) roi = RangeROI('x', min=2, max=3) s = roi_to_subset_state(roi, x_att='xdata') assert isinstance(s, RangeSubsetState) np.testing.assert_array_equal((s.lo, s.hi), [2, 3]) roi = RangeROI('y', min=2, max=3) s = roi_to_subset_state(roi, x_att='xdata', y_att='ydata') assert isinstance(s, RangeSubsetState) assert s.att == 'ydata' def test_range_roi_categorical(self): d = Data(x=['a', 'b', 'c'], y=[1, 2, 3]) comp = d.get_component(d.id['x']) roi = CategoricalROI(['b', 'c']) s = roi_to_subset_state(roi, x_att=d.id['x'], x_categories=comp.categories) assert isinstance(s, CategoricalROISubsetState) np.testing.assert_array_equal((s.roi.contains(['a', 'b', 'c'], None)), [False, True, True]) roi = RangeROI('x', min=1, max=3) s = roi_to_subset_state(roi, x_att='x', x_categories=comp.categories) assert isinstance(s, CategoricalROISubsetState) np.testing.assert_array_equal((s.roi.contains(['a', 'b', 'c'], None)), [False, True, True]) def test_polygon_roi(self): d = Data(x=[1, 1.3, 3, 10], y=[1, 1.5, 3, 10]) roi = PolygonalROI([0, 0, 2, 2], [0, 2, 2, 0]) s = roi_to_subset_state(roi, x_att=d.id['x'], y_att=d.id['y']) assert isinstance(s, RoiSubsetState) np.testing.assert_array_equal(s.to_mask(d), [True, True, False, False]) def test_polygon_categorical_rectangular(self): d = Data(x=[1, 1.3, 3, 10], y=['a', 'b', 'c', 'd']) y_comp = d.get_component(d.id['y']) roi = PolygonalROI([0, 0, 2, 2], [0, 2, 2, 0]) s = roi_to_subset_state(roi, x_att='x', y_att='y', y_categories=y_comp.categories) assert isinstance(s, CategoricalMultiRangeSubsetState) np.testing.assert_array_equal(s.to_mask(d), [True, True, False, False]) def test_polygon_categorical_arbitrary(self): d = Data(x=[1, 1.3, 3, 10], y=['a', 'b', 'c', 'd']) y_comp = d.get_component(d.id['y']) roi = PolygonalROI([0, 4, 4, 1, 0], [-0.5, 3.5, 0, -1, -0.5]) s = roi_to_subset_state(roi, x_att='x', y_att='y', y_categories=y_comp.categories) assert isinstance(s, CategoricalMultiRangeSubsetState) np.testing.assert_array_equal(s.to_mask(d), [True, False, True, False]) def test_rectangular_categorical(self): d = Data(x=[1, 1.3, 3, 10], y=['a', 'b', 'c', 'd']) x_comp = d.get_component(d.id['x']) y_comp = d.get_component(d.id['y']) roi = RectangularROI(xmin=-0.1, xmax=2.1, ymin=-0.1, ymax=2.1) s = roi_to_subset_state(roi, x_att='x', y_att='y', y_categories=y_comp.categories) assert isinstance(s, AndState) np.testing.assert_array_equal(s.to_mask(d), [True, True, False, False]) s = roi_to_subset_state(roi, x_att='x', y_att='y', y_categories=y_comp.categories) assert isinstance(s, AndState) np.testing.assert_array_equal(s.to_mask(d), [True, True, False, False]) def test_polygon_both_categorical_arbitrary(self): d = Data(x=['a', 'b', 'c', 'd', 'b', 'c'], y=['p', 'q', 'r', 's', 's', 'q']) x_comp = d.get_component(d.id['x']) y_comp = d.get_component(d.id['y']) roi = PolygonalROI([0.5, 1.5, 2.5, 1, 0.5], [0.5, 0.5, 2.5, 3.5, 0.5]) s = roi_to_subset_state(roi, x_att='x', x_categories=x_comp.categories, y_att='y', y_categories=y_comp.categories) assert isinstance(s, CategoricalROISubsetState2D) np.testing.assert_array_equal(s.to_mask(d), [False, True, True, False, True, False]) def test_polygon_both_categorical_empty(self): d = Data(x=['a', 'b', 'c', 'd', 'b', 'c'], y=['p', 'q', 'r', 's', 's', 'q']) x_comp = d.get_component(d.id['x']) y_comp = d.get_component(d.id['y']) roi = PolygonalROI([0.5, 0.6, 0.6, 0.5], [0.5, 0.5, 0.6, 0.5]) s = roi_to_subset_state(roi, x_att='x', x_categories=x_comp.categories, y_att='y', y_categories=y_comp.categories) assert isinstance(s, CategoricalROISubsetState2D) np.testing.assert_array_equal(s.to_mask(d), [False, False, False, False, False, False]) def test_component_id_item_access(): data = Data() c1 = Component(np.array([1, 2, 3])) data.add_component(c1, 'values') c2 = Component(np.array([4., 5., 6.])) data.add_component(c2, 'Flux') assert data.id['values'] == data.find_component_id('values') assert data.id['Flux'] == data.find_component_id('Flux') def test_component_id_item_access_missing(): """id attribute should raise KeyError if requesting a bad ComponentID""" data = Data() with pytest.raises(KeyError): data.id['not found'] class TestPixelLabel(object): def test(self): assert pixel_label(0, 2) == "0 [y]" assert pixel_label(1, 2) == "1 [x]" assert pixel_label(0, 3) == "0 [z]" assert pixel_label(1, 3) == "1 [y]" assert pixel_label(2, 3) == "2 [x]" assert pixel_label(1, 0) == "1" assert pixel_label(1, 4) == "1" @pytest.mark.parametrize(('kwargs'), [{'x': [1, 2, 3]}, {'x': np.array([1, 2, 3])}, {'x': [[1, 2, 3], [2, 3, 4]]}, {'x': [1, 2], 'y': [2, 3]}]) def test_init_with_inputs(kwargs): """Passing array-like objects as keywords to Data auto-populates Components with label names = keywords""" d = Data(**kwargs) for label, data in kwargs.items(): np.testing.assert_array_equal(d[d.id[label]], data) def test_init_with_invalid_kwargs(): with pytest.raises(ValueError) as exc: d = Data(x=[1, 2], y=[1, 2, 3]) assert exc.value.args[0].startswith('The dimensions of component') def test_getitem_with_component_link(): d = Data(x=[1, 2, 3, 4]) y = d.id['x'] * 5 np.testing.assert_array_equal(d[y], [5, 10, 15, 20]) def test_getitem_with_component_link_and_slice(): d = Data(x=[1, 2, 3, 4]) y = d.id['x'] * 5 np.testing.assert_array_equal(d[y, ::2], [5, 15]) def test_add_link_with_binary_link(): d = Data(x=[1, 2, 3, 4], y=[4, 5, 6, 7]) z = d.id['x'] + d.id['y'] d.add_component_link(z, 'z') np.testing.assert_array_equal(d[d.id['z']], [5, 7, 9, 11]) def test_foreign_pixel_components_not_in_visible(): """Pixel components from other data should not be visible""" # currently, this is trivially satisfied since all coordinates are hidden d1 = Data(x=[1], y=[2], coords=IdentityCoordinates(n_dim=1)) d2 = Data(w=[3], v=[4], coords=IdentityCoordinates(n_dim=1)) dc = DataCollection([d1, d2]) dc.add_link(LinkSame(d1.id['x'], d2.id['w'])) dc.add_link(LinkSame(d1.world_component_ids[0], d2.world_component_ids[0])) assert d2.pixel_component_ids[0] not in d1.main_components np.testing.assert_array_equal(d1[d2.pixel_component_ids[0]], [0]) def test_add_binary_component(): d = Data(x=[1, 2, 3], y=[2, 3, 4]) z = d.id['x'] + d.id['y'] d.add_component(z, label='z') np.testing.assert_array_equal(d['z'], [3, 5, 7]) EXPECTED_STR = """ Data Set: mydata Number of dimensions: 1 Shape: 3 Main components: - x - y Coordinate components: - Pixel Axis 0 [x] """.strip() def test_data_str(): # Regression test for Data.__str__ d = Data(x=[1, 2, 3], y=[2, 3, 4], label='mydata') assert str(d) == EXPECTED_STR EXPECTED_STR_WITH_DERIVED = """ Data Set: mydata Number of dimensions: 1 Shape: 3 Main components: - x - y Derived components: - z Coordinate components: - Pixel Axis 0 [x] """.strip() def test_data_str_with_derived(): d = Data(x=[1, 2, 3], y=[2, 3, 4], label='mydata') d['z'] = d.id['x'] + 1 assert str(d) == EXPECTED_STR_WITH_DERIVED def test_update_values_from_data(): d1 = Data(a=[1, 2, 3], b=[4, 5, 6], label='banana') d2 = Data(b=[1, 2, 3, 4], c=[5, 6, 7, 8], label='apple') d1a = d1.id['a'] d1b = d1.id['b'] d2b = d2.id['b'] d2c = d2.id['c'] d1.update_values_from_data(d2) assert d1a not in d1.components assert d1b in d1.components assert d2b not in d1.components assert d2c not in d1.components assert [cid.label for cid in d1.main_components] == ['b', 'c'] assert d1.shape == (4,) def test_update_values_from_data_invalid(): d1 = Data(a=[1, 2, 3], label='banana') d1.add_component([3, 4, 5], 'a') d2 = Data(b=[1, 2, 3, 4], c=[5, 6, 7, 8], label='apple') with pytest.raises(ValueError) as exc: d1.update_values_from_data(d2) assert exc.value.args[0] == "Non-unique component labels in original data" d1 = Data(a=[1, 2, 3], b=[4, 5, 6], label='banana') d2 = Data(b=[1, 2, 3, 4], label='apple') d2.add_component([5, 6, 7, 8], 'b') with pytest.raises(ValueError) as exc: d1.update_values_from_data(d2) assert exc.value.args[0] == "Non-unique component labels in new data" def test_update_values_from_data_order(): # Make sure that the order of components is preserved when calling # Data.update_values_from_data. The final order should be first # components that existed before, followed by new components d1 = Data() d1['c'] = [1, 2, 3] d1['b'] = [2, 3, 4] d1['j'] = [0, 1, 2] d1['a'] = [4, 4, 4] d1['f'] = [4, 5, 6] d2 = Data() d2['h'] = [4, 4, 4] d2['j'] = [0, 1, 2] d2['a'] = [4, 4, 4] d2.update_values_from_data(d1) assert [cid.label for cid in d2.main_components] == ['j', 'a', 'c', 'b', 'f'] def test_find_component_id_with_cid(): # Regression test for a bug that caused Data.find_component_id to return # True erroneously when passing a component ID. d1 = Data() d1['a'] = ['a', 'b', 'c'] d1['b'] = [1, 2, 3] assert d1.find_component_id(d1.id['a']) is d1.id['a'] assert d1.find_component_id(d1.id['b']) is d1.id['b'] def test_parent_preserved_session(): # Regression test for a bug that caused ComponentID parents to not be # preserved when saving and restoring a session. from ..link_helpers import LinkSame from ..data_collection import DataCollection d1 = Data(x=[1], y=[2], label='test1') d2 = Data(w=[3], v=[4], label='test2') dc = DataCollection([d1, d2]) dc.add_link(LinkSame(d1.id['x'], d2.id['w'])) assert d1.id['x'].parent is d1 assert d1.id['y'].parent is d1 assert d2.id['w'].parent is d2 assert d2.id['v'].parent is d2 dc2 = clone(dc) assert dc2[0].id['x'].parent.label == 'test1' assert dc2[0].id['y'].parent.label == 'test1' assert dc2[1].id['w'].parent.label == 'test2' assert dc2[1].id['v'].parent.label == 'test2' def test_preserve_datetime(): # Make sure that we recognize and preserve the Numpy datetime64 format dates = np.array([1, 2, 3], dtype='M8[D]') data = Data(dates=dates) assert isinstance(data.get_component('dates'), DateTimeComponent) def test_clone_meta(): # Regression test for a bug that caused metadata to not be preserved # when saving/loading sessions. class CustomObject(object): pass data1 = Data(x=[1, 2, 3]) data1.meta['a'] = 1 data1.meta['b'] = 'test' data1.meta['c'] = CustomObject() data2 = clone(data1) assert data2.meta['a'] == 1 assert data2.meta['b'] == 'test' assert 'c' not in data2.meta def test_update_coords(): # Make sure that when overriding coords, the world coordinate components # are updated. data1 = Data(x=[1, 2, 3], coords=IdentityCoordinates(n_dim=1)) assert len(data1.components) == 3 assert_equal(data1[data1.world_component_ids[0]], [0, 1, 2]) data2 = Data(x=[1, 2, 3], coords=IdentityCoordinates(n_dim=1)) assert len(data1.links) == 2 assert len(data2.links) == 2 data_collection = DataCollection([data1, data2]) assert len(data_collection.links) == 4 data_collection.add_link(LinkSame(data1.world_component_ids[0], data2.world_component_ids[0])) assert len(data_collection.links) == 5 class CustomCoordinates(Coordinates): def __init__(self): super().__init__(pixel_n_dim=1, world_n_dim=1) @property def world_axis_names(self): return ['Custom {0}'.format(axis) for axis in range(3)] def world_to_pixel_values(self, *world): return tuple([0.4 * w for w in world]) def pixel_to_world_values(self, *pixel): return tuple([2.5 * p for p in pixel]) data1.coords = CustomCoordinates() assert len(data1.components) == 3 assert_equal(data1[data1.world_component_ids[0]], [0, 2.5, 5]) assert sorted(cid.label for cid in data1.world_component_ids) == ['Custom 0'] # The link between the two world coordinates should be remove assert len(data_collection.links) == 4 def test_compute_statistic_subset(): data = Data(x=list(range(10))) result = data.compute_statistic('mean', data.id['x'], subset_state=data.id['x'] > 5) assert_allclose(result, 7.5) subset_state = SliceSubsetState(data, [slice(5)]) result = data.compute_statistic('mean', data.id['x'], subset_state=subset_state) assert_allclose(result, 2.0) @pytest.mark.parametrize('shape', (100, (30, 10), (500, 1, 30))) def test_compute_statistic_chunks(shape): # Make sure that when using chunks, the result is the same as without. data = Data(x=np.random.random(shape)) axis = tuple(range(data.ndim - 1)) assert_allclose(data.compute_statistic('mean', data.id['x'], axis=axis), data.compute_statistic('mean', data.id['x'], axis=axis, n_chunk_max=10)) def test_compute_statistic_random_subset(): data = Data(x=list(range(10))) with NumpyRNGContext(12345): result = data.compute_statistic('mean', data.id['x'], random_subset=5) assert_allclose(result, 4.2) result = data.compute_statistic('mean', data.id['x'], random_subset=5, subset_state=MaskSubsetState([0, 1, 0, 1, 1, 1, 0, 1, 0, 1], data.pixel_component_ids)) assert_allclose(result, 5) def test_compute_statistic_empty_subset(): data = Data(x=np.empty((30, 20, 40))) # A default subset state should be empty subset_state = SubsetState() result = data.compute_statistic('mean', data.id['x'], subset_state=subset_state) assert_equal(result, np.nan) result = data.compute_statistic('maximum', data.id['x'], subset_state=subset_state, axis=1) assert_equal(result, broadcast_to(np.nan, (30, 40))) result = data.compute_statistic('median', data.id['x'], subset_state=subset_state, axis=(1, 2)) assert_equal(result, broadcast_to(np.nan, (30))) result = data.compute_statistic('sum', data.id['x'], subset_state=subset_state, axis=(0, 1, 2)) assert_equal(result, np.nan) def test_compute_statistic_efficient(): # Unit test to test the logic for dealing with accessing only a minimal # region from the data based on the smallest array that covers a given # subset state. array = np.ones(10 * 20 * 30 * 40).reshape((10, 20, 40, 30)) array[3:5, 6:14, :, 10:21:2] += 1 class CustomData(Data): def get_data(self, cid, view=None): if cid.label == 'x': self.elements_accessed = np.ones(self.shape)[view].sum() else: self.elements_accessed = 0 return super().get_data(cid, view=view) data = CustomData(x=array, y=array) subset_state = data.id['y'] > 1.5 # First test without view result = data.compute_statistic('sum', data.id['x'], subset_state=subset_state)
assert_allclose(result, 7680)
numpy.testing.assert_allclose
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import numpy as np from cleverhans.devtools.checks import CleverHansTest from cleverhans.attacks import Attack from cleverhans.attacks import FastGradientMethod from cleverhans.attacks import BasicIterativeMethod from cleverhans.attacks import MomentumIterativeMethod from cleverhans.attacks import VirtualAdversarialMethod from cleverhans.attacks import SaliencyMapMethod from cleverhans.attacks import CarliniWagnerL2 from cleverhans.attacks import ElasticNetMethod from cleverhans.attacks import DeepFool from cleverhans.attacks import MadryEtAl from cleverhans.attacks import FastFeatureAdversaries class TestAttackClassInitArguments(CleverHansTest): def test_model(self): import tensorflow as tf sess = tf.Session() # Exception is thrown when model does not have __call__ attribute with self.assertRaises(Exception) as context: model = tf.placeholder(tf.float32, shape=(None, 10)) Attack(model, back='tf', sess=sess) self.assertTrue(context.exception) def test_back(self): # Define empty model def model(): return True # Exception is thrown when back is not tf or th with self.assertRaises(Exception) as context: Attack(model, back='test', sess=None) self.assertTrue(context.exception) def test_sess(self): # Define empty model def model(): return True # Test that it is permitted to provide no session Attack(model, back='tf', sess=None) def test_sess_generate_np(self): def model(x): return True class DummyAttack(Attack): def generate(self, x, **kwargs): return x attack = DummyAttack(model, back='tf', sess=None) with self.assertRaises(Exception) as context: attack.generate_np(0.) self.assertTrue(context.exception) class TestParseParams(CleverHansTest): def test_parse(self): def model(): return True import tensorflow as tf sess = tf.Session() test_attack = Attack(model, back='tf', sess=sess) self.assertTrue(test_attack.parse_params({})) class TestVirtualAdversarialMethod(CleverHansTest): def setUp(self): super(TestVirtualAdversarialMethod, self).setUp() import tensorflow as tf import tensorflow.contrib.slim as slim def dummy_model(x): net = slim.fully_connected(x, 60) return slim.fully_connected(net, 10, activation_fn=None) self.sess = tf.Session() self.sess.as_default() self.model = tf.make_template('dummy_model', dummy_model) self.attack = VirtualAdversarialMethod(self.model, sess=self.sess) # initialize model with tf.name_scope('dummy_model'): self.model(tf.placeholder(tf.float32, shape=(None, 1000))) self.sess.run(tf.global_variables_initializer()) def test_parse_params(self): self.attack.parse_params() # test default values self.assertEqual(self.attack.eps, 2.0) self.assertEqual(self.attack.num_iterations, 1) self.assertEqual(self.attack.xi, 1e-6) self.assertEqual(self.attack.clip_min, None) self.assertEqual(self.attack.clip_max, None) def test_generate_np(self): x_val = np.random.rand(100, 1000) perturbation = self.attack.generate_np(x_val) - x_val perturbation_norm = np.sqrt(np.sum(perturbation**2, axis=1)) # test perturbation norm self.assertClose(perturbation_norm, self.attack.eps) class TestFastGradientMethod(CleverHansTest): def setUp(self): super(TestFastGradientMethod, self).setUp() import tensorflow as tf # The world's simplest neural network def my_model(x): W1 = tf.constant([[1.5, .3], [-2, 0.3]], dtype=tf.float32) h1 = tf.nn.sigmoid(tf.matmul(x, W1)) W2 = tf.constant([[-2.4, 1.2], [0.5, -2.3]], dtype=tf.float32) res = tf.nn.softmax(tf.matmul(h1, W2)) return res self.sess = tf.Session() self.model = my_model self.attack = FastGradientMethod(self.model, sess=self.sess) def help_generate_np_gives_adversarial_example(self, ord): x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) x_adv = self.attack.generate_np(x_val, eps=.5, ord=ord, clip_min=-5, clip_max=5) if ord == np.inf: delta = np.max(np.abs(x_adv - x_val), axis=1) elif ord == 1: delta = np.sum(np.abs(x_adv - x_val), axis=1) elif ord == 2: delta = np.sum(np.square(x_adv - x_val), axis=1)**.5 self.assertClose(delta, 0.5) orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1) new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1) self.assertTrue(np.mean(orig_labs == new_labs) < 0.5) def test_generate_np_gives_adversarial_example_linfinity(self): self.help_generate_np_gives_adversarial_example(np.infty) def test_generate_np_gives_adversarial_example_l1(self): self.help_generate_np_gives_adversarial_example(1) def test_generate_np_gives_adversarial_example_l2(self): self.help_generate_np_gives_adversarial_example(2) def test_targeted_generate_np_gives_adversarial_example(self): x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) random_labs = np.random.random_integers(0, 1, 100) random_labs_one_hot = np.zeros((100, 2)) random_labs_one_hot[np.arange(100), random_labs] = 1 x_adv = self.attack.generate_np(x_val, eps=.5, ord=np.inf, clip_min=-5, clip_max=5, y_target=random_labs_one_hot) delta = np.max(np.abs(x_adv - x_val), axis=1) self.assertClose(delta, 0.5) new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1) self.assertTrue(np.mean(random_labs == new_labs) > 0.7) def test_generate_np_can_be_called_with_different_eps(self): x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) for eps in [0.1, 0.2, 0.3, 0.4]: x_adv = self.attack.generate_np(x_val, eps=eps, ord=np.inf, clip_min=-5.0, clip_max=5.0) delta = np.max(np.abs(x_adv - x_val), axis=1) self.assertClose(delta, eps) def test_generate_np_clip_works_as_expected(self): x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) x_adv = self.attack.generate_np(x_val, eps=0.5, ord=np.inf, clip_min=-0.2, clip_max=0.1) self.assertClose(np.min(x_adv), -0.2) self.assertClose(np.max(x_adv), 0.1) def test_generate_np_caches_graph_computation_for_eps_clip_or_xi(self): import tensorflow as tf x_val = np.random.rand(1, 2) x_val = np.array(x_val, dtype=np.float32) self.attack.generate_np(x_val, eps=.3, num_iterations=10, clip_max=-5.0, clip_min=-5.0, xi=1e-6) old_grads = tf.gradients def fn(*x, **y): raise RuntimeError() tf.gradients = fn self.attack.generate_np(x_val, eps=.2, num_iterations=10, clip_max=-4.0, clip_min=-4.0, xi=1e-5) tf.gradients = old_grads class TestBasicIterativeMethod(TestFastGradientMethod): def setUp(self): super(TestBasicIterativeMethod, self).setUp() import tensorflow as tf # The world's simplest neural network def my_model(x): W1 = tf.constant([[1.5, .3], [-2, 0.3]], dtype=tf.float32) h1 = tf.nn.sigmoid(tf.matmul(x, W1)) W2 = tf.constant([[-2.4, 1.2], [0.5, -2.3]], dtype=tf.float32) res = tf.nn.softmax(tf.matmul(h1, W2)) return res self.sess = tf.Session() self.model = my_model self.attack = BasicIterativeMethod(self.model, sess=self.sess) def test_attack_strength(self): """ If clipping is not done at each iteration (not passing clip_min and clip_max to fgm), this attack fails by np.mean(orig_labels == new_labels) == .39. """ x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) x_adv = self.attack.generate_np(x_val, eps=1.0, ord=np.inf, clip_min=0.5, clip_max=0.7, nb_iter=5) orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1) new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1) self.assertTrue(np.mean(orig_labs == new_labs) < 0.1) def test_generate_np_does_not_cache_graph_computation_for_nb_iter(self): import tensorflow as tf x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) x_adv = self.attack.generate_np(x_val, eps=1.0, ord=np.inf, clip_min=-5.0, clip_max=5.0, nb_iter=10) orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1) new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1) self.assertTrue(np.mean(orig_labs == new_labs) < 0.1) ok = [False] old_grads = tf.gradients def fn(*x, **y): ok[0] = True return old_grads(*x, **y) tf.gradients = fn x_adv = self.attack.generate_np(x_val, eps=1.0, ord=np.inf, clip_min=-5.0, clip_max=5.0, nb_iter=11) orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1) new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1) self.assertTrue(np.mean(orig_labs == new_labs) < 0.1) tf.gradients = old_grads self.assertTrue(ok[0]) class TestMomentumIterativeMethod(TestBasicIterativeMethod): def setUp(self): super(TestMomentumIterativeMethod, self).setUp() import tensorflow as tf # The world's simplest neural network def my_model(x): W1 = tf.constant([[1.5, .3], [-2, 0.3]], dtype=tf.float32) h1 = tf.nn.sigmoid(tf.matmul(x, W1)) W2 = tf.constant([[-2.4, 1.2], [0.5, -2.3]], dtype=tf.float32) res = tf.nn.softmax(tf.matmul(h1, W2)) return res self.sess = tf.Session() self.model = my_model self.attack = MomentumIterativeMethod(self.model, sess=self.sess) def test_generate_np_can_be_called_with_different_decay_factor(self): x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) for dacay_factor in [0.0, 0.5, 1.0]: x_adv = self.attack.generate_np(x_val, eps=0.5, ord=np.inf, dacay_factor=dacay_factor, clip_min=-5.0, clip_max=5.0) delta = np.max(np.abs(x_adv - x_val), axis=1) self.assertClose(delta, 0.5) class TestCarliniWagnerL2(CleverHansTest): def setUp(self): super(TestCarliniWagnerL2, self).setUp() import tensorflow as tf # The world's simplest neural network def my_model(x): W1 = tf.constant([[1.5, .3], [-2, 0.3]], dtype=tf.float32) h1 = tf.nn.sigmoid(tf.matmul(x, W1)) W2 = tf.constant([[-2.4, 1.2], [0.5, -2.3]], dtype=tf.float32) res = tf.matmul(h1, W2) return res self.sess = tf.Session() self.model = my_model self.attack = CarliniWagnerL2(self.model, sess=self.sess) def test_generate_np_untargeted_gives_adversarial_example(self): x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) x_adv = self.attack.generate_np(x_val, max_iterations=100, binary_search_steps=3, initial_const=1, clip_min=-5, clip_max=5, batch_size=10) orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1) new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1) self.assertTrue(np.mean(orig_labs == new_labs) < 0.1) def test_generate_np_targeted_gives_adversarial_example(self): x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) feed_labs = np.zeros((100, 2)) feed_labs[np.arange(100), np.random.randint(0, 1, 100)] = 1 x_adv = self.attack.generate_np(x_val, max_iterations=100, binary_search_steps=3, initial_const=1, clip_min=-5, clip_max=5, batch_size=100, y_target=feed_labs) new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1) self.assertTrue(np.mean(np.argmax(feed_labs, axis=1) == new_labs) > 0.9) def test_generate_gives_adversarial_example(self): import tensorflow as tf x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1) feed_labs = np.zeros((100, 2)) feed_labs[np.arange(100), orig_labs] = 1 x = tf.placeholder(tf.float32, x_val.shape) y = tf.placeholder(tf.float32, feed_labs.shape) x_adv_p = self.attack.generate(x, max_iterations=100, binary_search_steps=3, initial_const=1, clip_min=-5, clip_max=5, batch_size=100, y=y) x_adv = self.sess.run(x_adv_p, {x: x_val, y: feed_labs}) new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1) self.assertTrue(np.mean(orig_labs == new_labs) < 0.1) def test_generate_np_gives_clipped_adversarial_examples(self): x_val = np.random.rand(100, 2) x_val = np.array(x_val, dtype=np.float32) x_adv = self.attack.generate_np(x_val, max_iterations=10, binary_search_steps=1, learning_rate=1e-3, initial_const=1, clip_min=-0.2, clip_max=0.3, batch_size=100) self.assertTrue(-0.201 < np.min(x_adv)) self.assertTrue(np.max(x_adv) < .301) def test_generate_np_high_confidence_targeted_examples(self): import tensorflow as tf def trivial_model(x): W1 = tf.constant([[1, -1]], dtype=tf.float32) res = tf.matmul(x, W1) return res for CONFIDENCE in [0, 2.3]: x_val = np.random.rand(10, 1) - .5 x_val = np.array(x_val, dtype=np.float32) feed_labs = np.zeros((10, 2)) feed_labs[np.arange(10), np.random.randint(0, 2, 10)] = 1 attack = CarliniWagnerL2(trivial_model, sess=self.sess) x_adv = attack.generate_np(x_val, max_iterations=100, binary_search_steps=2, learning_rate=1e-2, initial_const=1, clip_min=-10, clip_max=10, confidence=CONFIDENCE, y_target=feed_labs, batch_size=10) new_labs = self.sess.run(trivial_model(x_adv)) good_labs = new_labs[np.arange(10), np.argmax(feed_labs, axis=1)] bad_labs = new_labs[np.arange( 10), 1 - np.argmax(feed_labs, axis=1)] self.assertTrue(np.isclose( 0, np.min(good_labs - (bad_labs + CONFIDENCE)), atol=1e-1)) self.assertTrue(np.mean(np.argmax(new_labs, axis=1) ==
np.argmax(feed_labs, axis=1)
numpy.argmax
# -*- coding: utf-8 -*- from datetime import datetime import numpy as np import pytest from tidegravity import solve_longman_tide, solve_longman_tide_scalar, solve_tide_df, solve_point_corr from tidegravity import import_trajectory, calculate_julian_century def test_array_calculation(): lat = np.array([47.1234, 49.8901]) lon = np.array([104.9903, 105.9901]) alt =
np.array([1609.3, 1700.1])
numpy.array
import numpy as np #for arrays and matrices import matplotlib.pyplot as plt #for ploting import scipy #for math calculations from mpl_toolkits.mplot3d import Axes3D #for 3D ploting import math #for math constants from matplotlib import collections as matcoll from scipy import signal #for signal analysis from scipy import fftpack #for fourier spectrum from scipy.fftpack import fft import binascii ##PARAMETERS Fm = 3000 #kHz Tm = 1 / Fm #sec A = 1 #V AM = 3 N_periods = 4 #periods displayed Samples_per_period = 2000 #number of samples per period N_samples = N_periods * Samples_per_period + 1 #total number of samples (in linspace) Timestep = 1.0 / (float(Fm * Samples_per_period)) #sample spacing #### Α ΕΡΏΤΗΜΑ #### A_bit = Fm/1000 #(V) Amplitude of bit stream T_b = 0.5 #(sec) bit duration N_rand_bits = 46 #number of random bits generated E_b = pow(A_bit, 2)*T_b rand_bits = np.random.randint(2, size=(N_rand_bits)) #generate random bits [0,1] def SNR_dB_lin(snr_ratio): return 10**(snr_ratio / 10) No_5 = E_b / SNR_dB_lin(5) #Conversion from dB to linear scale No_15 = E_b / SNR_dB_lin(15) #Conversion from dB to linear scale #QPSK encoding ''' 00 -> s1 01 -> s2 11 -> s3 10 -> s4 ''' qpsk_num_symbols = 100 #QPSK CONSTELLATION POINTS (00, 01, 11, 10) qpsk_v_size = math.sqrt(E_b) #vector size of qpsk constellation qpsk_const_points = np.random.randint(0, 4, qpsk_num_symbols) # 0 to 3 # qpsk_const_points = np.arange(0,4) qpsk_const_degrees = qpsk_const_points*360/4.0 + 45 # 45, 135, 225, 315 degrees qpsk_const_radians = qpsk_const_degrees*np.pi/180.0 # sin() and cos() takes in radians qpsk_const_symbols = qpsk_v_size*np.cos(qpsk_const_radians) + qpsk_v_size*1j*np.sin(qpsk_const_radians) # this produces our QPSK complex symbols plt.plot(
np.real(qpsk_const_symbols)
numpy.real
# First look at the color filtering # It is based on that code for pink ball detection color filtering.py # That code was for Green Ball, this is for pink ball import numpy as np import cv2 cap = cv2.VideoCapture(0) while True: _, frame = cap.read() #flip video frame=cv2.flip(frame, 1) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # Hue Saturation Value # http://colorizer.org/ for knowing color hsv values lower_pink =
np.array([165, 160, 76])
numpy.array
#! /usr/bin/env python3 # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implement datasets classes for graph and family tree tasks.""" import numpy as np import itertools from torch.utils.data.dataset import Dataset #from torchvision import datasets import torch import jacinle.random as random import pickle from .family import randomly_generate_family from ...envs.graph import get_random_graph_generator import math from .nqueens import NQueenSolution from IPython.core.debugger import Pdb import copy from jacinle.logging import get_logger, set_output_file from torch.distributions.categorical import Categorical TRAIN = 0 DEV = 1 TEST = 2 logger = get_logger(__file__) __all__ = [ 'GraphOutDegreeDataset', 'GraphConnectivityDataset', 'GraphAdjacentDataset', 'FamilyTreeDataset','NQueensDataset', 'FutoshikiDataset','TowerDataset','SudokuDataset' ] class GraphDatasetBase(Dataset): """Base dataset class for graphs. Args: epoch_size: The number of batches for each epoch. nmin: The minimal number of nodes in the graph. pmin: The lower bound of the parameter p of the graph generator. nmax: The maximal number of nodes in the graph, the same as $nmin in default. pmax: The upper bound of the parameter p of the graph generator, the same as $pmin in default. directed: Generator directed graph if directed=True. gen_method: Controlling the graph generation method. If gen_method='dnc', use the similar way as in DNC paper. Else using Erdos-Renyi algorithm (each edge exists with prob). """ def __init__(self, epoch_size, nmin, pmin, nmax=None, pmax=None, directed=False, gen_method='dnc'): self._epoch_size = epoch_size self._nmin = nmin self._nmax = nmin if nmax is None else nmax assert self._nmin <= self._nmax self._pmin = pmin self._pmax = pmin if pmax is None else pmax assert self._pmin <= self._pmax self._directed = directed self._gen_method = gen_method def _gen_graph(self, item): n = self._nmin + item % (self._nmax - self._nmin + 1) p = self._pmin + random.rand() * (self._pmax - self._pmin) gen = get_random_graph_generator(self._gen_method) return gen(n, p, directed=self._directed) def __len__(self): return self._epoch_size class GraphOutDegreeDataset(GraphDatasetBase): """The dataset for out-degree task in graphs.""" def __init__(self, degree, epoch_size, nmin, pmin, nmax=None, pmax=None, directed=False, gen_method='dnc'): super().__init__(epoch_size, nmin, pmin, nmax, pmax, directed, gen_method) self._degree = degree def __getitem__(self, item): graph = self._gen_graph(item) # The goal is to predict whether out-degree(x) == self._degree for all x. return dict( n=graph.nr_nodes, relations=np.expand_dims(graph.get_edges(), axis=-1), target=(graph.get_out_degree() == self._degree).astype('float'), ) class GraphConnectivityDataset(GraphDatasetBase): """The dataset for connectivity task in graphs.""" def __init__(self, dist_limit, epoch_size, nmin, pmin, nmax=None, pmax=None, directed=False, gen_method='dnc'): super().__init__(epoch_size, nmin, pmin, nmax, pmax, directed, gen_method) self._dist_limit = dist_limit def __getitem__(self, item): graph = self._gen_graph(item) # The goal is to predict whether (x, y) are connected within a limited steps # I.e. dist(x, y) <= self._dist_limit for all x, y. return dict( n=graph.nr_nodes, relations=np.expand_dims(graph.get_edges(), axis=-1), target=graph.get_connectivity(self._dist_limit, exclude_self=True), ) class GraphAdjacentDataset(GraphDatasetBase): """The dataset for adjacent task in graphs.""" def __init__(self, nr_colors, epoch_size, nmin, pmin, nmax=None, pmax=None, directed=False, gen_method='dnc', is_train=True, is_mnist_colors=False, mnist_dir='../data'): super().__init__(epoch_size, nmin, pmin, nmax, pmax, directed, gen_method) self._nr_colors = nr_colors self._is_mnist_colors = is_mnist_colors # When taking MNIST digits as inputs, fetch MNIST dataset. if self._is_mnist_colors: assert nr_colors == 10 self.mnist = datasets.MNIST( mnist_dir, train=is_train, download=True, transform=None) def __getitem__(self, item): graph = self._gen_graph(item) n = graph.nr_nodes if self._is_mnist_colors: m = self.mnist.__len__() digits = [] colors = [] for i in range(n): x = random.randint(m) digit, color = self.mnist.__getitem__(x) digits.append(np.array(digit)[np.newaxis]) colors.append(color) digits, colors = np.array(digits), np.array(colors) else: colors = random.randint(self._nr_colors, size=n) states = np.zeros((n, self._nr_colors)) adjacent = np.zeros((n, self._nr_colors)) # The goal is to predict whether there is a node with desired color # as adjacent node for each node x. for i in range(n): states[i, colors[i]] = 1 adjacent[i, colors[i]] = 1 for j in range(n): if graph.has_edge(i, j): adjacent[i, colors[j]] = 1 if self._is_mnist_colors: states = digits return dict( n=n, relations=np.expand_dims(graph.get_edges(), axis=-1), states=states, colors=colors, target=adjacent, ) class FamilyTreeDataset(Dataset): """The dataset for family tree tasks.""" def __init__(self, task, epoch_size, nmin, nmax=None, p_marriage=0.8, balance_sample=False): super().__init__() self._task = task self._epoch_size = epoch_size self._nmin = nmin self._nmax = nmin if nmax is None else nmax assert self._nmin <= self._nmax self._p_marriage = p_marriage self._balance_sample = balance_sample self._data = [] def _gen_family(self, item): n = self._nmin + item % (self._nmax - self._nmin + 1) return randomly_generate_family(n, self._p_marriage) def __getitem__(self, item): #Pdb().set_trace() while len(self._data) == 0: family = self._gen_family(item) relations = family.relations[:, :, 2:] if self._task == 'has-father': target = family.has_father() elif self._task == 'has-daughter': target = family.has_daughter() elif self._task == 'has-sister': target = family.has_sister() elif self._task == 'parents': target = family.get_parents() elif self._task == 'grandparents': target = family.get_grandparents() elif self._task == 'uncle': target = family.get_uncle() elif self._task == 'maternal-great-uncle': target = family.get_maternal_great_uncle() else: assert False, '{} is not supported.'.format(self._task) if not self._balance_sample: return dict(n=family.nr_people, relations=relations, target=target) # In balance_sample case, the data format is different. Not used. def get_positions(x): return list(np.vstack(np.where(x)).T) def append_data(pos, target): states = np.zeros((family.nr_people, 2)) states[pos[0], 0] = states[pos[1], 1] = 1 self._data.append(dict(n=family.nr_people, relations=relations, states=states, target=target)) positive = get_positions(target == 1) if len(positive) == 0: continue negative = get_positions(target == 0) np.random.shuffle(negative) negative = negative[:len(positive)] for i in positive: append_data(i, 1) for i in negative: append_data(i, 0) return self._data.pop() def __len__(self): return self._epoch_size class NQueensDataset(Dataset): """The dataset for nqueens tasks.""" def __init__(self, epoch_size, n=10, num_missing = 1, random_seed = 42, min_loss = False, arbit_solution = False, train_dev_test = TRAIN, data_file = None, data_sampling='rs'): super().__init__() self._epoch_size = epoch_size self._n = n self.num_missing = num_missing self.min_loss = min_loss self.arbit_solution = arbit_solution self.mode = train_dev_test self.data_sampling = data_sampling self.nqueen_solver = NQueenSolution() self.relations = self.nqueen_solver.get_relations(n) print("In constructor. Size: {}".format(n)) if data_file is None: outfile = "data/nqueens_data_"+str(self._n)+"_"+str(self.num_missing)+".pkl" else: outfile = data_file # with open(outfile,"rb") as f: self.dataset = pickle.load(f) self.max_count = 0 self.unique_indices = [] self.ambiguous_indices = [] for i,data in enumerate(self.dataset): self.max_count = max(self.max_count, data["count"]) if data["count"]==1: self.unique_indices.append(i) else: self.ambiguous_indices.append(i) np.random.seed(random_seed) self.reset_sampler(data_sampling) def reset_sampler(self,data_sampling): self.data_sampling = data_sampling if data_sampling == 'rsxy': logger.info("Sampling uniformly from (x,y) tuples") self.sampler = Categorical(probs = torch.tensor([x['count'] for x in self.dataset]).float()) else: self.sampler = Categorical(probs = torch.tensor([1.0 for _ in self.dataset]).float()) def pad_set(self,target_set): pad_counter = self.max_count - len(target_set) return_set = list(target_set) return_set.extend([target_set[-1] for _ in range(pad_counter)]) return np.array(return_set) def sample_imbalance(self, imbalance_ratio): if np.random.rand()<imbalance_ratio: ind = np.random.choice(self.ambiguous_indices) else: ind = np.random.choice(self.unique_indices) return ind def __getitem__(self, item): #ind = np.random.randint(0,len(self.dataset)) ind = self.sampler.sample().item() if self.mode==TRAIN: if self.data_sampling=="unique": ind = self.sample_imbalance(0) elif self.data_sampling=="ambiguous": ind = self.sample_imbalance(1) elif self.data_sampling=="one-one": ind = self.sample_imbalance(0.5) elif self.data_sampling=="two-one": ind = self.sample_imbalance(0.33) elif self.data_sampling=="three-one": ind = self.sample_imbalance(0.25) elif self.data_sampling=="four-one": ind = self.sample_imbalance(0.20) else: ind = item%len(self.dataset) data = self.dataset[ind] if len(data["query"].shape)==1: data["query"] = np.expand_dims(data["query"],1) if self.mode==TRAIN and self.arbit_solution: data["target"] = data["target_set"][0] else: data["target"] = data["target_set"][np.random.randint(len(data["target_set"]))] # data["target_set"] = self.pad_set(data["target_set"]) data['mask'] = np.array([1 for _ in range(data['count'])] + [0 for _ in range(data['target_set'].shape[0] - data['count'])]) #Pdb().set_trace() data["relations"] = self.relations data['ind'] = ind if isinstance(data["qid"],tuple): data["qid"] = np.array([data["qid"][0]]+list(data["qid"][1])) return data def __len__(self): if self.mode==TRAIN: return self._epoch_size else: return len(self.dataset) class FutoshikiDataset(Dataset): """The dataset for futoshiki tasks.""" def __init__(self, epoch_size, n=10, num_missing = 1, num_constraints = 0, data_size = -1, random_seed = 42, min_loss = False, arbit_solution = False, train_dev_test = TRAIN, data_file = None, data_sampling='rs',args=None): super().__init__() self.args = args self._epoch_size = epoch_size self._n = n self.num_missing = num_missing self.min_loss = min_loss self.arbit_solution = arbit_solution self.mode = train_dev_test self.data_sampling = data_sampling self.relations = self.get_relations() print("In constructor. Size: {}".format(n)) if train_dev_test == TRAIN: mode = 'train' elif train_dev_test == DEV: mode = 'val' elif train_dev_test == TEST: mode = 'test' if data_file is None: outfile = "data/futo_{}_{}_{}_{}.pkl".format(self._n, num_missing, num_constraints, mode) else: outfile = data_file # logger.info("data file : {}".format(outfile)) #Pdb().set_trace() with open(outfile,"rb") as f: self.dataset = pickle.load(f) if data_size != -1: self.dataset= self.dataset[:data_size] # self.max_count = 0 self.unique_indices = [] self.ambiguous_indices = [] for i,data in enumerate(self.dataset): if 'count' in data: this_count = data['count'] else: this_count = data['target_set'].shape[0] data['count'] = this_count self.max_count = max(self.max_count, this_count) if this_count == 1: self.unique_indices.append(i) else: self.ambiguous_indices.append(i) np.random.seed(random_seed) self.reset_sampler(data_sampling) def reset_sampler(self,data_sampling): self.data_sampling = data_sampling if data_sampling == 'rsxy': logger.info("Sampling uniformly from (x,y) tuples") self.sampler = Categorical(probs = torch.tensor([x['count'] for x in self.dataset]).float()) else: self.sampler = Categorical(probs = torch.tensor([1.0 for _ in self.dataset]).float()) def get_relations(self): n = self._n n2 = self._n**2 n3 = self._n**3 relations = np.zeros((n3, n3,3)) for x in range(n3): row = int(x/n2) col = int((x%n2)/n) num = int(x%n2)%n for y in range(n): # cell constraints relations[x][row*n2+col*n+y][0]=1 # row constraints relations[x][y*n2+col*n+num][1]=1 # column constraints relations[x][row*n2+y*n+num][2]=1 return relations def pad_set(self,target_set): pad_counter = self.max_count - len(target_set) if pad_counter < 0: return target_set[:self.max_count] return_set = list(target_set) return_set.extend([target_set[-1] for _ in range(pad_counter)]) return np.array(return_set) def sample_imbalance(self, imbalance_ratio): if np.random.rand()<imbalance_ratio: ind = np.random.choice(self.ambiguous_indices) else: ind =
np.random.choice(self.unique_indices)
numpy.random.choice
import logging import numpy as np import gym import pytest from ..base.errors import NumpyArrayCheckError from .misc import set_tf_loglevel from .array import ( idx, check_numpy_array, project_onto_actions_np, softmax, log_softmax, box_to_reals_np, reals_to_box_np) set_tf_loglevel(logging.ERROR) def test_check_numpy_array_ndim_min(): arr = np.array([]) with pytest.raises(NumpyArrayCheckError): check_numpy_array(arr, ndim_min=2) def test_idx_type(): with pytest.raises(NumpyArrayCheckError): idx(0) with pytest.raises(NumpyArrayCheckError): idx('foo') with pytest.raises(NumpyArrayCheckError): idx([]) with pytest.raises(NumpyArrayCheckError): idx(None) def test_idx_empty(): arr = np.array(0) with pytest.raises(NumpyArrayCheckError): idx(arr) def test_idx_expected(): arr = np.resize(np.arange(12), (3, 4)) np.testing.assert_array_equal(idx(arr), [0, 1, 2]) assert idx(arr).dtype == 'int' def test_project_onto_actions_np_expected(): Y = np.resize(np.arange(12), (3, 4)) A = np.array([2, 0, 3]) Y_proj = project_onto_actions_np(Y, A) assert Y_proj.ndim == 1 assert Y_proj.shape == (3,) np.testing.assert_array_equal(Y_proj, [Y[0, 2], Y[1, 0], Y[2, 3]]) def test_softmax_expected(): rnd = np.random.RandomState(7) w = rnd.randn(3, 5) x = softmax(w, axis=1) y = softmax(w + 100., axis=1) z = softmax(w * 100., axis=1) # check shape assert x.shape == w.shape # check normalization np.testing.assert_almost_equal(x.sum(axis=1), np.ones(3)) # check translation invariance np.testing.assert_almost_equal(y.sum(axis=1), np.ones(3)) np.testing.assert_almost_equal(x, y) # check robustness by clipping assert not np.any(np.isnan(z)) np.testing.assert_almost_equal(z.sum(axis=1),
np.ones(3)
numpy.ones
import scipy.signal import numpy as np #=========================================================== # Routine by Luis-<NAME> (IPGP & IFSTTAR), Jan 2020. #=========================================================== # Tapering with a Hanning window def taper(x,p): if p <= 0.0: return x else: f0 = 0.5 f1 = 0.5 n = len(x) nw = int(p*n) if nw > 0: ow = np.pi/nw w = np.ones( n ) for i in range( nw ): w[i] = f0 - f1 * np.cos(ow*i) for i in range( n-nw,n ): w[i] = 1.0 - w[i-n+nw] return x * w elif nw == 0: return x # Bitwise version def next_power_of_2(n): """ Return next power of 2 greater than or equal to n """ return 2**(n-1).bit_length() # PCC2 from Ventosa el al. (2019) def pcc2(x1, x2, dt, lag0, lagu): # Preprocessing x1 = x1 -
np.mean(x1)
numpy.mean
import numpy as np import numpy.linalg as linalg import scipy as sp import scipy.sparse as sparse import scipy.special as special import matplotlib.pyplot as plt import itertools import multiprocessing as mp def bitvector_to_index(v): ''' Given a list or array of binary values (v), convert to an integer. The list is assumed to be big-endian. This method is meant to convert back and forth between matrix indices and spin configurations. In this sense, zeros are interpretted as spins in the +z state while ones are spins in the -z state. Arguments: v: One dimensional list or array of binary (0 or 1) values. Returns: ind: Integer corresponding to big-endian interpretation of the binary list v. ''' ind = sum([vj*(2**(len(v)-j-1)) for j,vj in enumerate(v)]) return ind def index_to_bitvector(ind, n): ''' Given a non-negative interger (ind) and a number of bits (n), return a big-endian binary list of length n encoding ind. Require 0 <= ind < 2**n. This method is meant to convert back and forth between matrix indices and spin configurations. In this sense, zeros are interpretted as spins in the +z state while ones are spins in the -z state. n is the total number of spins. Arguments: ind: Integer to be converted. Must be in range(2**n). n: Integer representing total number of bits / spin sites. Returns: v: Length n list of binary (0 or 1) values to be interpretted as big-endian. ''' assert(isinstance(ind, int)) assert(isinstance(n, int)) assert(n >= 1) assert(ind in range(2**n)) v = [int(bit) for bit in format(ind, '0'+str(n)+'b')] return v def construct_local_pauli(nSpins, nMeas, axis): ''' For a system with nSpins total spins, constructs the operator corresponding to the Pauli operator along the specified axis at the specified spin (nMeas). Arguments: nSpins: Integer representing total number of spin sites. nMeas: Integer representing the spin site where the operator will act. Indexed from zero, thus must be in range(nSpins). axis: A list of the form [theta, phi] specifying the axis of the Pauli operator's action. Theta is the polar angle given by a float in [0,pi] while phi is the azimuthal angle given by a float in [0,2*pi). Returns: P: A two-dimensional sparse CSR-matrix of size (2**nSpins x 2**nSpins) representing the action of the local Pauli operator on the full Hilbert space. ''' assert(isinstance(nSpins, int)) assert(nSpins >= 1) assert(isinstance(nMeas, int)) assert(nMeas in range(nSpins)) assert(len(axis)==2) theta, phi = axis # Define 2x2 pauli matrix for the chosen axis sigma = np.array( [ [np.cos(theta), \ np.sin(theta)*np.exp(-1j*phi)], \ [np.sin(theta)*np.exp(1j*phi),\ -np.cos(theta)] ], dtype='complex') # Define operator on full Hilbert space as a sparse # COO-matrix row = [] col = [] data = [] for ind in range(2**nSpins): # Convert current index to a binary list. Find # index for equivalent state with just the local # spin nMeas flipped. v = index_to_bitvector(ind,nSpins) vFlip = v.copy() vFlip[nMeas] = 1 - vFlip[nMeas] indFlip = bitvector_to_index(vFlip) # Using the 2x2 Pauli matrix sigma, add the # contributions from these two states to the # Pauli matrix on the full Hilbert space. s_site = v[nMeas] sFlip_site = vFlip[nMeas] row.append(ind) col.append(ind) data.append(sigma[s_site,s_site]) row.append(ind) col.append(indFlip) data.append(sigma[s_site,sFlip_site]) P = sparse.coo_matrix((data, (row,col)), \ shape=(2**nSpins,2**nSpins), \ dtype='complex') # Convert to sparse CSR-matrix P = P.tocsr() return P def construct_local_projector(nSpins, nMeas, m, axis): ''' For a system with nSpins total spins, constructs the operator corresponding to the projection operator along the specified axis at the specified spin (nMeas) onto the subspace given by the value of m. Arguments: nSpins: Integer representing total number of spin sites. nMeas: Integer representing the spin site where the operator will act. Indexed from zero, thus must be in range(nSpins). m: The integer 1 or 0. Corresponds to either projecting on to the subspace of spin aligned with the axis (0) or anti-aligned with the axis (1). axis: A list of the form [theta, phi] specifying the axis of the projection operator's action. Theta is the polar angle given by a float in [0,pi] while phi is the azimuthal angle given by a float in [0,2*pi). Returns: P: A two-dimensional sparse CSR-matrix of size (2**nSpins x 2**nSpins) representing the action of the local projection operator on the full Hilbert space. ''' assert(isinstance(nSpins, int)) assert(nSpins >= 1) assert(isinstance(nMeas, int)) assert(nMeas in range(nSpins)) assert(m==0 or m==1) assert(len(axis)==2) # Set sign of projector. s = 1 - 2*m I = sparse.identity(2**nSpins,format='csr') pauli = construct_local_pauli(nSpins,nMeas,axis) P = .5*(I+s*pauli) return P def construct_global_projector(nSpins, pState, axisL): ''' For a system with nSpins total spins, constructs the operator corresponding to the projection operator along the specified axis at the specified spin (nMeas) onto the subspace given by the sign of s. Arguments: nSpins: Integer representing total number of spin sites. pState: A list of length nSpins consisting of the integers 0 and 1 or None. Each integer denotes the orientation of the spin along the corresponding measurement axis. Zeros are interpretted as spins aligned along the axis while ones are anti-aligned. None indicates no measurement is performed and must be matched with a corresponding None axis. The returned projection operator projects onto this state. axisL: A list of length nSpins consisting of axes where each axis is specified by the form [theta, phi] or None. Theta is the polar angle given by a float in [0,pi] while phi is the azimuthal angle given by a float in [0,2*pi). Each axis specifies the orientation of the projection operator's action on the corresponding spin. If no measurement is to be performed on the spin, the corresponding axis can be set to None. This must be matched with a corresponding None in pState. Returns: P: A two-dimensional numpy-matrix of size (2**nSpins x 2**nSpins) representing the projection operator onto the state specified by pState and axisL. ''' assert(isinstance(nSpins, int)) assert(nSpins >= 1) assert(len(pState)==nSpins) assert(len(axisL)==nSpins) assert(all([axis==None or len(axis)==2 for axis in axisL])) assert(all([m==0 or m==1 or m==None for m in pState])) P = 1 for m, axis in zip(pState, axisL): try: # Axis and projection specified s = 1-2*m theta, phi = axis sigma = np.array( [ [np.cos(theta), \ np.sin(theta)*np.exp(-1j*phi)], \ [np.sin(theta)*np.exp(1j*phi),\ -np.cos(theta)] ], dtype='complex') I = np.identity(2) t = .5*(np.identity(2)+s*sigma) except TypeError: # No projection specified t = np.identity(2) P = np.kron(P, t) return P def construct_complete_projector_list(nSpins, axisL): ''' For a system with nSpins total spins, constructs all possible projection operators corresponding to possible measurement outcomes along the list of axes provided (axisL). The list of returned projection operators is complete. Arguments: nSpins: Integer representing total number of spin sites. axisL: A list of length nSpins consisting of axes where each axis is specified by the form [theta, phi] or None. Theta is the polar angle given by a float in [0,pi] while phi is the azimuthal angle given by a float in [0,2*pi). Each axis specifies the orientation of the projection operator's action on the corresponding spin. If no measurement is to be performed on the spin, the corresponding axis can be set to None. Returns: Plist: A list of two-dimensional numpy-matrices each of size (2**nSpins x 2**nSpins) representing a projection operator onto a fine-grained state. ''' assert(isinstance(nSpins, int)) assert(nSpins >= 1) assert(len(axisL)==nSpins) assert(all([axis==None or len(axis)==2 for axis in axisL])) # List possible projective measurements for each spin mList = [ [None] if axis==None else [0,1] for axis in axisL] # Generate all possible combinations of projective # measurements stateList = list(itertools.product(*mList)) # Generate complete list of projectors Plist = [] for pState in stateList: P = construct_global_projector(nSpins, pState, axisL) Plist.append(P) return Plist def transverse_field_ising_hamiltonian(nSpins, h, g, J): ''' For a system with nSpins total spins, constructs the Hamiltonian for the transverse-field Ising model. The strength of nearest-neighbor interactions is set by J, while h is the transverse field along the z-axis, and g is the longitudinal field along the x-axis. Hamiltonian can be written as, H = - J sum_{i} \sigma^{z}_{i} \sigma^{z}_{i+1} - h sum_{i} \sigma^{z}_{i} - g sum_{i} \sigma^{x}_{i} Arguments: nSpins: Integer representing total number of spin sites. h: Float giving the strength of the external field in the z-axis. g: Float giving the strength of the external field in the x-axis. J: Float giving the strength of nearest- neighbor interactions. Returns: H: A two-dimensional sparse CSR-matrix of size (2**nSpins x 2**nSpins) representing the Hamiltonian of the system. ''' assert(isinstance(nSpins, int)) assert(nSpins >= 1) # Define the Hamiltonian as a COO-sparse matrix row = [] col = [] data = [] for ind in range(2**nSpins): v = index_to_bitvector(ind,nSpins) # For given spin configuration, calculate the # contributions from the transverse field and # spin-spin interactions nUp = sum([s==0 for s in v]) c = sum([(-1)**(v[i]+v[i+1]) for i in range(nSpins-1)]) row.append(ind) col.append(ind) data.append(-h*(2*nUp-nSpins)-J*c) for n in range(nSpins): # Flip a single spin from the current # spin configuration vFlip = v.copy() vFlip[n] = 1 - vFlip[n] indFlip = bitvector_to_index(vFlip) # Calculate the coupling from the # longitudinal field. row.append(ind) col.append(indFlip) data.append(-g) H = sparse.coo_matrix((data, (row,col)), \ shape=(2**nSpins,2**nSpins), \ dtype='float') # Convert to sparse CSR-matrix H = H.tocsr() return H def power_law_ising_hamiltonian(nSpins, h, g, J, lmax, zeta): ''' For a system with nSpins total spins, constructs the Hamiltonian for the power-law Ising model. hList specifies the transverse field along the z-axis at each site, and gList is the longitudinal field along the x-axis at each site. If either of these are given as a scalar instead of a list, the field is assumed to be constant. The strength of the spin-spin interaction is set by J. lmax sets the maximum distance of the interaction (measured in spin sites) while zeta specifies the power at which the interaction decays. Hamiltonian can be written as, H = - sum_{l=1}^{lmax} sum_{i=1}^{nSpins-l} (J/l**zeta) * \sigma^{z}_{i} \sigma^{z}_{i+l} - sum_{i} h_{i} \sigma^{z}_{i} - sum_{i} g_{i} \sigma^{x}_{i} Arguments: nSpins: Integer representing total number of spin sites. h: List of length nSpins consisting of floats giving the strength of the external field in the z-axis at each spin site. Can also be provided as a single float if the field is uniform. g: List of length nSpins consisting of floats giving the strength of the external field in the x-axis at each spin site. Can also be provided as a single float if the field is uniform. J: Float giving the strength of spin-spin interactions. lmax: Maximum distance of the spin-spin interaction measured in number of lattice sites. Must be an integer between 0 (no interaction) and nSpins-1 (all pair-wise interactions). zeta: Non-negative float describing the power at which spin-spin interactions decay with distance. Scaling is of the form 1 / l**zeta. Returns: H: A two-dimensional sparse CSR-matrix of size (2**nSpins x 2**nSpins) representing the Hamiltonian of the system. ''' assert(isinstance(nSpins, int)) assert(nSpins >= 1) assert(isinstance(lmax, int)) assert(0<=lmax and lmax<=nSpins-1) assert(zeta >= 0) # Define the Hamiltonian as a COO-sparse matrix row = [] col = [] data = [] for ind in range(2**nSpins): v = index_to_bitvector(ind,nSpins) # Contribution from spin-spin interactions Hss = J*sum([ sum([(-1)**(v[i]+v[i+l])/(l**zeta) for i in range(nSpins-l)]) for l in range(1,lmax+1)]) try: # Calculate transverse field contribution Hz = sum([h[i]*(1-2*s) for i,s in enumerate(v)]) except TypeError: # Case where transverse field is uniform Hz = h*sum([(1-2*s) for s in v]) row.append(ind) col.append(ind) data.append(-Hz-Hss) for n in range(nSpins): # Flip a single spin from the current # spin configuration vFlip = v.copy() vFlip[n] = 1 - vFlip[n] indFlip = bitvector_to_index(vFlip) row.append(ind) col.append(indFlip) try: # Add longitudinal field contribution Hx = g[n] except TypeError: # Case where longitudinal field is uniform Hx = g data.append(-Hx) H = sparse.coo_matrix((data, (row,col)), \ shape=(2**nSpins,2**nSpins), \ dtype='float') # Convert to sparse CSR-matrix H = H.tocsr() return H def get_U(Lambda, Q, t, hbar=1): ''' Calculates the time-evolution operator for a system over a period t given the eigenvalue decomposition of the Hamiltonian as Lambda, Q. Arguments: Lambda: One dimensional numpy array of the eigenvalues of the Hamiltonian. Q: Numpy matrix consisting of eigenvectors of the Hamiltonian. The column Q[:, i] is the normalized eigenvector corresponding to the eigenvalue Lambda[i]. t: Float giving the time of the evolution. hbar: Positive float giving the value of the reduced Planck constant. By default, units chosen so that hbar = 1. Returns: U: Two-dimensional numpy matrix giving the time-evolution operator for the system. ''' assert(hbar>0) powers = np.exp(-1j*Lambda*t/hbar) U = Q @ sparse.diags(powers) @ Q.getH() return U def thermal_density_matrix(Lambda, Q, beta): ''' Calculates the thermal density matrix for a system at inverse temperature beta given the eigenvalue decomposition of the Hamiltonian as Lambda, Q. Arguments: Lambda: One dimensional numpy array of the eigenvalues of the Hamiltonian. Q: Numpy matrix consisting of eigenvectors of the Hamiltonian. The column Q[:, i] is the normalized eigenvector corresponding to the eigenvalue Lambda[i]. beta: Non-negative float or np.inf giving the inverse temperature of the system in units of inverse energy. Returns: rho: Two-dimensional numpy matrix giving the density matrix for the system. ''' assert(beta>=0) if beta != np.inf: # Temperature is non-zero, all states have # support. Subtract off smallest eigenvalue to # improve performance at very low temperatures. powers = np.exp(-(Lambda-np.min(Lambda))*beta) D = powers / np.sum(powers) rho = Q @ sparse.diags(D) @ Q.getH() else: # Temperature is zero. Only ground state # has support. G = [1 if l==np.min(Lambda) else 0 for l in Lambda] D = G / np.sum(G) rho = Q @ sparse.diags(D) @ Q.getH() return rho def calculate_A(V1, W2, V2, W3): ''' Calculates the quasiprobability A(V1, W2, V2, W3) given projection operators V1, V2, W2, and W3. W2 and W3 are given in the Heisenberg picture. Arguments: V1: A two-dimensional sparse CSR-matrix representing the action of a local projection operator. W2: A two-dimensional numpy matrix representing the action of a local projection operator. For time evolving systems, must be given in the Heisenberg picture. V2: A two-dimensional sparse CSR-matrix representing the action of a local projection operator. W3: A two-dimensional numpy matrix representing the action of a local projection operator. For time evolving systems, must be given in the Heisenberg picture. Returns: A: Complex float giving the evaluated quasiprobability. ''' A = np.trace(W3 @ V2 @ W2 @ V1) return A def epsilon_smooth_distribution(dist, eps, alpha): ''' Heuristically smooths a probability distribution (dist) so as to minimize its max-entropy or maximize its min-entropy. The order of the Renyi entropy to be smoothed is given by alpha. alpha cannot be equal to one. eps gives the maximum distance to the smoothed distribution in Total Variation. This smoothing is only performed over normalized distributions and does not consider sub-normalized distributions. Arguments: dist: A one-dimensional numpy array giving a normalized probability distribution which is to be smoothed. eps: Smoothing factor which gives the maximum Total Variation distance from the initial distribution to the smoothed distribution. Must be a float between zero and one, exclusive. alpha: Order of the Renyi entropy to be smoothed. Must be np.inf or a positive float not equal to one. Returns: D: eps smoothed distribution. ''' assert(abs(1-np.sum(dist))<.001) assert(eps>0) assert(eps<np.sum(dist)) # Create sorted copy of the distribution D = dist.copy() sortInds = np.argsort(D) Dsorted = D[sortInds] if alpha < 1: # Max-type entropy to minimize. # Find the largest collection of # low probability elements which # sum to less than eps. cumulDist = np.cumsum(Dsorted) inds = np.flatnonzero(cumulDist < eps) # Remove as much weight as possible # from these elements freeWeight = np.sum(Dsorted[inds]) Dsorted[inds] = 0 try: ind = inds[-1]+1 except IndexError: # No element was smaller than eps ind = 0 Dsorted[ind] -= eps - freeWeight # Put all removed weight on the # maximum probability element Dsorted[-1] += eps elif alpha > 1: # Min-type entropy to maximize. # Flatten tops of the distribution trimWeight = np.array([[ind, np.sum(Dsorted[ind:]-floor)] \ for ind,floor in enumerate(Dsorted)]) trim = trimWeight[(trimWeight[:,1]<eps)] try: # Find largest collection of peaks which can # be completely flattened by removing at most # eps weight. ind, freedWeight = int(trim[0,0]), trim[0,1] Dsorted[ind:] = Dsorted[ind] # Remove remaining allowance of weight from the # flat top of the distribution delta = (eps-freedWeight) / (len(Dsorted)-ind) Dsorted[ind:] -= delta except IndexError: # No set of peaks can be flattened by removing at # most eps weight. Remove eps weight from the # largest peak. ind, freedWeight = len(Dsorted)-1, 0 Dsorted[ind] = Dsorted[ind] - eps # Raise bottoms of the distribution fillWeight = np.array([[ind, np.sum(ceil-Dsorted[:ind+1])] \ for ind, ceil in enumerate(Dsorted)]) filled = fillWeight[(fillWeight[:,1]<eps)] ind, spentWeight = int(filled[-1,0]), filled[-1,1] Dsorted[:ind+1] = Dsorted[ind] delta = (eps-spentWeight) / (1+ind) Dsorted[:ind+1] += delta else: # Smoothing isn't defined for alpha == 1. raise ValueError("Smoothing not defined for alpha=1") # Rearrange elements of the smoothed sorted distribution D[sortInds] = Dsorted return D def calculate_renyi_entropy(rho, alpha, eps=0): ''' Calculates the base-2 Renyi entropy of order alpha for the density matrix rho. Rho may be specified either as a full matrix or, if diagonal, it can be specified by a one-dimensional array consisting of the diagonal elements. If a non-zero value of eps is given, approximates the epsilon-smoothed Renyi entropy using a heuristic smoothing. eps gives the maximum distance to the smoothed distribution in Total Variation. Arguments: rho: Numpy array giving the density matrix. Can either be a two dimensional array fully specifying the matrix or, if the matrix is diagonal, rho can be a one- dimensional array giving the diagonal entries. alpha: Order of the Renyi entropy to be calculated. Must be np.inf or a positive float not equal to one. eps: Smoothing factor which gives the maximum Total Variation distance from the initial distribution to the smoothed distribution. Must be a non-negative float less than one. Returns: H: The order alpha Renyi entropy of rho as a float. ''' assert(alpha>=0) assert(alpha!=1) if rho.ndim == 1: # Density matrices are non-negative. # Absolute value is to prevent # sign errors stemming from floating # point error for values near zero. D = np.abs(rho.copy()) else: D, _ = linalg.eigh(rho) D = np.abs(D) if eps > 0: D = epsilon_smooth_distribution(D, eps, alpha) if alpha == np.inf: H = -np.log2(np.max(D)) else: # Pull out factor of largest eigenvalue to # improve numerical performance for very # large values of alpha H = np.log2(np.max(D))*alpha/(1-alpha) \ + np.log2(np.sum((D/np.max(D))**alpha))/(1-alpha) return H def calculate_neumann_entropy(rho): ''' Calculates the base-2 von Neumann entropy of the density matrix rho. Rho may be specified either as a full matrix, or if diagonal it can be specified by a one-dimensional array consisting of the diagonal elements. Arguments: rho: Numpy array giving the density matrix. Can either be a two dimensional array fully specifying the matrix or, if the matrix is diagonal, rho can be a one- dimensional array giving the diagonal entries. Returns: H: The von Neumann entropy of rho as a float. ''' if rho.ndim == 1: # Density matrices are non-negative. # Absolute value is to prevent # sign errors stemming from floating # point error for values near zero. D = np.abs(rho.copy()) else: D, _ = linalg.eigh(rho) D = np.abs(D) H = -np.sum(special.xlogy(D,D))/np.log(2) return H def weak_measurement_couplings(x0, Delta, gtilde, xList, hbar=1): ''' Gives the weak meausurement couplings for a system where the measurement is coupled to a particle's position and the particle is initialized in a momentum-space wavepacket. Couplings are calculated from the density functions using the simple midpoint rule where the midpoints are the xList values. Arguments: x0: Reference position used to define the interaction between the weakly coupled particle and the system. The interaction is governed by: V_int = exp(-i*gtilde*(x-x0)*(\Pi^V)/hbar) Delta: Strictly positive float giving the spread of the readout particle's wavepacket in momentum space. gtilde: Float giving the coupling parameter between the readout particle and the system. xList: A one-dimensional numpy array of length N that lists the possible positions at which the readout particle may be observed. hbar: Positive float giving the value of the reduced Planck constant. By default, units chosen so that hbar = 1. Returns: pgList: A two-dimensional numpy array with shape (N x 2) and columns [px,gx] listing the values for the weak measurement Kraus operators. ''' assert(Delta>0) assert(hbar>0) # Calculate value of density functions pDense = (Delta / (hbar * np.sqrt(np.pi))) \ *np.exp(-(Delta*xList/hbar)**2) gDense = np.sqrt(pDense) \ *np.expm1(-1j*(xList-x0)*gtilde/hbar) # Find the width associated with each xValue xDiffs = np.diff(xList) dx = np.concatenate([[xDiffs[0]], .5*(xDiffs[:-1]+xDiffs[1:]), [xDiffs[-1]]]) # Scale couplings densities by the interval widths pdx = pDense * dx gdx = gDense * np.sqrt(dx) # pdx should be a nearly normalized # probability distribution. In case of # numerical errors, impose normalization # by hand and appropriately scale gdx. scaling = 1.0/np.sum(pdx) p = pdx * scaling g = gdx * np.sqrt(scaling) pgList = np.stack([p,g], axis=1) return pgList def f_arg_W(V1, V2, pg1, pg2, W): ''' For a specified strong measurement W, calculates the minimum over the remaining parameters of the argument which appears on the RHS of the inequality. Arguments: V1: A two-dimensional sparse CSR-matrix representing the action of a local projection operator. Corresponds to a weak measurement. V2: A two-dimensional sparse CSR-matrix representing the action of a local projection operator. Corresponds to a weak measurement. pg1: A two-dimensional numpy array with shape (N x 2) and columns [px,gx] listing the values for the weak measurement Kraus operator V1. pg2: A two-dimensional numpy array with shape (N x 2) and columns [px,gx] listing the values for the weak measurement Kraus operator V2. W: A two-dimensional numpy matrix representing the action of a projection operator. Corresponds to a strong measurement. For time evolving systems, must be given in the Heisenberg picture. Returns: a: Float giving the minimum value of the argument for the specified strong measurement W. aOrd: Numpy array [LO, NLO, NNLO] of giving the contributions to the argument by order in the small parameter g. aTerm: Numpy array giving the contributions to the argument by each term on the RHS of the inequality. qProbs: Numpy array giving the quasiprobabilities [A1213, A2223, A1223]. ''' TrW = np.trace(W) # Check if V1 and V2 are the same if (V1!=V2).nnz==0: # V1 == V2 TrWV1 = np.trace(W @ V1) TrWV2 = TrWV1 A1213 = calculate_A(V1, W, V1, W) A2223 = A1213 A1223 = A1213 dV1V2 = 1 else: # V1 != V2 TrWV1 = np.trace(W @ V1) TrWV2 = np.trace(W @ V2) A1213 = calculate_A(V1, W, V1, W) A2223 = calculate_A(V2, W, V2, W) A1223 = calculate_A(V1, W, V2, W) dV1V2 = 0 # Initialize the running minimum and associated # decompositions of the RHS. a = np.inf aOrd = np.array([]) aTerms = np.array([]) qProbs = np.array([A1213, A2223, A1223]) # Need to consider all possible valid # combinations of weak measurement parameters. for p1,g1 in pg1: p2 = pg2[:,0] g2 = pg2[:,1] # Calculate leading order term t1 = np.real( -np.log2(p1*p2*TrW) ) LO = t1 # Calculate order g terms t2 = np.real( -2*np.real(g1)*TrWV1/(np.sqrt(p1)*TrW*np.log(2)) ) t3 = np.real( -2*np.real(g2)*TrWV2/(np.sqrt(p2)*TrW*np.log(2)) ) NLO = t2 + t3 # Calculate order g**2 terms t4 = np.real( -(np.abs(g1)**2)*A1213/(p1*TrW*np.log(2)) ) t5 = np.real( -(np.abs(g2)**2)*A2223/(p2*TrW*np.log(2)) ) t6 = np.real( -2*np.real(g1*g2*A1223)/(np.sqrt(p1*p2)*TrW*np.log(2)) ) t7 = np.real( -2*np.real(g1*np.conj(g2)*TrWV1)*dV1V2/(np.sqrt(p1*p2)*TrW*np.log(2)) ) t8 = np.real( 2*((np.real(g1)*TrWV1/(np.sqrt(p1)*TrW))**2)/np.log(2) ) t9 = np.real( 4*(np.real(g1)*TrWV1/(np.sqrt(p1)*TrW)) \ *(np.real(g2)*TrWV2/(np.sqrt(p2)*TrW))/np.log(2) ) t10 = np.real( 2*((np.real(g2)*TrWV2/(np.sqrt(p2)*TrW))**2)/np.log(2) ) NNLO = t4 + t5 + t6 + t7 + t8 + t9 + t10 # Sum all contributions total = LO + NLO + NNLO # Check if this contains a new minimum if np.min(total) <= a: indMin = np.argmin(total) a = total[indMin] aOrd = np.array([LO[indMin], NLO[indMin], NNLO[indMin]]) aTerm = np.array([t1[indMin], t2, t3[indMin], t4, t5[indMin], \ t6[indMin], t7[indMin], t8, t9[indMin], t10[indMin]]) return a, aOrd, aTerm, qProbs def RHS(V1, V2, pg1, pg2, Wlist): ''' For a list of strong measurements (Wlist), and weak measurements V1 and V2 with lists of Kraus operator parameters pg1 and pg2, calculates the RHS of the inequality. Arguments: V1: A two-dimensional sparse CSR-matrix representing the action of a local projection operator. Corresponds to a weak measurement. V2: A two-dimensional sparse CSR-matrix representing the action of a local projection operator. Corresponds to a weak measurement. pg1: A two-dimensional numpy array with shape (N x 2) and columns [px,gx] listing the values for the weak measurement Krauss operator V1. pg2: A two-dimensional numpy array with shape (N x 2) and columns [px,gx] listing the values for the weak measurement Krauss operator V2. Wlist: A list of two-dimensional numpy matrices each representing the action of a projection operator. Each matrix corresponds to a strong measurement. For time evolving systems, must be given in the Heisenberg picture. Returns: f: Float giving the RHS of the inequality. fOrd: One-dimensional numpy array [LO, NLO, NNLO] giving the contributions to f by order in the small parameter g. fTerm: Numpy array giving the contributions to f by each term on the RHS of the inequality. qProbs: Numpy array giving the quasiprobabilities [A1213, A2223, A1223]. ''' # For each W in Wlist, find the minimum of the # argument on the RHS of the inequality argList = [] argListByOrder = [] argListByTerm = [] argListQuasi = [] for W in Wlist: aW, aWOrd, aWTerm, aQProbs = f_arg_W(V1, V2, pg1, pg2, W) argList.append(aW) argListByOrder.append(aWOrd) argListByTerm.append(aWTerm) argListQuasi.append(aQProbs) # Find the minimum argument over choice of W indMin = np.argmin(argList) f = argList[indMin] fOrd = argListByOrder[indMin] fTerm = argListByTerm[indMin] qProbs = argListQuasi[indMin] return f, fOrd, fTerm, qProbs def f_arg_strong(V1, V2, pg1, pg2, W2, W3): ''' For specified strong measurements W2 and W3, calculates the minimum over the remaining parameters of the argument which appears on the RHS of the inequality. Arguments: V1: A two-dimensional sparse CSR-matrix representing the action of a local projection operator. Corresponds to a weak measurement. V2: A two-dimensional sparse CSR-matrix representing the action of a local projection operator. Corresponds to a weak measurement. pg1: A two-dimensional numpy array with shape (N x 2) and columns [px,gx] listing the values for the weak measurement Kraus operator V1. pg2: A two-dimensional numpy array with shape (N x 2) and columns [px,gx] listing the values for the weak measurement Kraus operator V2. W2: A two-dimensional numpy matrix representing the action of a projection operator. Corresponds to a strong measurement. For time evolving systems, must be given in the Heisenberg picture. W3: A two-dimensional numpy matrix representing the action of a projection operator. Corresponds to a strong measurement. For time evolving systems, must be given in the Heisenberg picture. Returns: f: Float giving the minimum value of the RHS for the specified strong measurements W2 and W3. aOrd: Numpy array [LO, NLO, N2LO, N3LO, N4LO] giving the contributions to the argument by order in the parameter g. aTerm: Numpy array giving the contributions to the argument by each term on the RHS of the inequality. qProbs: Numpy array giving the quasiprobabilities [A1213, A2223, A1223]. ''' # Check V1 == V2 and W2 == W3 if (V1!=V2).nnz==0 and np.array_equal(W2,W3): # V1 == V2 and W2 == W3 dV1V2 = 1 dW2W3 = 1 TrW = np.trace(W2) TrWV1 = np.trace(W2 @ V1) TrWV2 = TrWV1 A1213 = calculate_A(V1, W2, V1, W2) A2223 = A1213 A1223 = A1213 elif (V1!=V2).nnz==0 and not np.array_equal(W2,W3): # V1 == V2 and W2 != W3 dV1V2 = 1 dW2W3 = 0 TrW = 0 TrWV1 = 0 TrWV2 = 0 A1213 = calculate_A(V1, W2, V1, W3) A2223 = A1213 A1223 = A1213 elif (V1!=V2).nnz!=0 and np.array_equal(W2,W3): # V1 != V2 and W2 == W3 dV1V2 = 0 dW2W3 = 1 TrW = np.trace(W2) TrWV1 = np.trace(W2 @ V1) TrWV2 = np.trace(W2 @ V2) A1213 = calculate_A(V1, W2, V1, W2) A2223 = calculate_A(V2, W2, V2, W2) A1223 = calculate_A(V1, W2, V2, W2) else: # V1 != V2 and W2 != W3 dV1V2 = 0 dW2W3 = 0 TrW = 0 TrWV1 = 0 TrWV2 = 0 A1213 = calculate_A(V1, W2, V1, W3) A2223 = calculate_A(V2, W2, V2, W3) A1223 = calculate_A(V1, W2, V2, W3) # Initialize the running minimum and associated # decompositions of the argument. f = np.inf aOrd = np.array([]) aTerms = np.array([]) qProbs = np.array([A1213, A2223, A1223]) # Need to consider all possible valid # combinations of weak measurement parameters. for p1,g1 in pg1: p2 = pg2[:,0] g2 = pg2[:,1] # Calculate leading order term t1 = np.real(p1*p2*TrW*dW2W3) LO = t1 # Calculate order g terms t2 = np.real(2*np.sqrt(p1)*p2*np.real(g1)*TrWV1*dW2W3) t3 = np.real(2*p1*np.sqrt(p2)*np.real(g2)*TrWV2*dW2W3) NLO = t2 + t3 # Calculate order g**2 terms t4 = np.real(p2*(np.abs(g1)**2)*A1213) t5 = np.real(p1*(np.abs(g2)**2)*A2223) t6 = np.real(2*np.sqrt(p1*p2)*np.real(g1*g2*A1223)) t7 = np.real(2*np.sqrt(p1*p2)*np.real(g1*np.conj(g2)) \ *TrWV1*dV1V2*dW2W3) N2LO = t4 + t5 + t6 + t7 # Calculate order g**3 terms t8 = np.real(2*np.sqrt(p2)*(np.abs(g1)**2)*np.real(g2*A1223) \ *dV1V2) t9 = np.real(2*np.sqrt(p1)*(np.abs(g2)**2)*
np.real(g1*A1223)
numpy.real
import tensorflow as tf import numpy as np import pymysql import datetime seq_length = 7 data_dim = 1 hidden_dim = 10 output_dim = 1 #num_layer = 3 # connect db con=pymysql.connect(host='192.168.3.11',port=3306,user='root',password='<PASSWORD>!',db='abeekx',charset='utf8') cursor=con.cursor() # if new data input then start main cursor.execute("SELECT MAX(id) FROM sensors") # check new data in pre_max_id=int(cursor.fetchone()[0]) max_id = pre_max_id while( max_id == pre_max_id ): con.commit() cursor.execute("SELECT MAX(id) FROM sensors") max_id=int(cursor.fetchone()[0]) # main cursor.execute("SELECT temp,time FROM sensors") xy=[] time=[] for row in cursor: xy.append([float(row[0])]) time.append([str(row[1])]) # get timestamp last_time=time[-1] xy1=xy # pre Scalar data numerator = xy - np.min(xy, 0) # MinMaxScalar denominator = np.max(xy, 0) - np.min(xy, 0) xy = (xy - np.min(xy, 0))/ (denominator + 1e-7) x = xy dataX = [] dataY = [] for i in range(0, len(x) - seq_length): _x = x[i:i + seq_length] _y = x[i+seq_length] dataX.append(_x) dataY.append(_y) # train/test split train_size = int(0.95*len(dataX)) trainX, testX = np.array(dataX[0:train_size]), np.array(dataX[train_size:len(dataX)]) trainY, testY = np.array(dataY[0:train_size]), np.array(dataY[train_size:len(dataY)]) timeY = np.array(time[train_size:len(dataY)]) X = tf.placeholder(tf.float32, [None, seq_length, data_dim]) Y = tf.placeholder(tf.float32, [None, data_dim]) # build a LSTM network cell = tf.contrib.rnn.BasicLSTMCell(num_units=hidden_dim, state_is_tuple=True, activation=tf.tanh) '''Multi Layer LSTM network cells = [] for _ in range(num_layers): cell = tf.contrib.rnn.BasicLSTMCell(num_units=hidden_dim, state_is_tuple=True, activation=tf.tanh) cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=0.8) cells.append(cell) cell = tf.contrib.rnn.MultiRNNCell(cells,state_is_tuple=True) ''' outputs, _states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32) Y_pred = tf.contrib.layers.fully_connected(outputs[:,-1], output_dim, activation_fn=None) targets = tf.placeholder(tf.float32, [None, data_dim]) predictions = tf.placeholder(tf.float32, [None, data_dim]) rmse = tf.sqrt(tf.reduce_mean(tf.square(targets - predictions))) sess=tf.Session() saver=tf.train.Saver() init = tf.global_variables_initializer() sess.run(init) save_path="./rnn_train.ckpt" saver.restore(sess,save_path) # restore train variable # Test step test_predict = sess.run(Y_pred, feed_dict={X: testX}) # 5 times added prediction temp_list=testX[-1] temp_list=np.delete(temp_list, 0, axis=0) temp_list= np.append(temp_list, xy[-1, 0].reshape(1, 1), axis=0) test_predict1 = sess.run(Y_pred, feed_dict={X: temp_list.reshape(1, 7, 1)}) temp_list=np.delete(temp_list, 0,axis=0) temp_list= np.append(temp_list, test_predict[-1, 0].reshape(1, 1), axis=0) test_predict2 = sess.run(Y_pred, feed_dict={X: temp_list.reshape(1, 7, 1)}) temp_list=np.delete(temp_list, 0,axis=0) temp_list= np.append(temp_list, test_predict[-1, 0].reshape(1, 1), axis=0) test_predict3 = sess.run(Y_pred, feed_dict={X: temp_list.reshape(1, 7, 1)}) temp_list=np.delete(temp_list, 0,axis=0) temp_list= np.append(temp_list, test_predict[-1, 0].reshape(1, 1), axis=0) test_predict4 = sess.run(Y_pred, feed_dict={X: temp_list.reshape(1, 7, 1)}) temp_list=np.delete(temp_list, 0,axis=0) temp_list= np.append(temp_list, test_predict[-1, 0].reshape(1, 1), axis=0) test_predict5 = sess.run(Y_pred, feed_dict={X: temp_list.reshape(1, 7, 1)}) rmse_val = sess.run(rmse, feed_dict={targets: testY, predictions: test_predict}) print("RMSE: {}".format(rmse_val)) test_predict=np.append(test_predict, test_predict1, axis=0) test_predict=np.append(test_predict, test_predict2, axis=0) test_predict=np.append(test_predict, test_predict3, axis=0) test_predict=np.append(test_predict, test_predict4, axis=0) test_predict=np.append(test_predict, test_predict5, axis=0) testY = testY*( np.max(xy1, 0) - np.min(xy1, 0) + 1e-7)+
np.min(xy1, 0)
numpy.min
"""Core API""" from typing import Sequence, Union import numpy as np import torch from opacus import GradSampleModule from opacus.accountants import RDPAccountant from opacus.accountants.utils import get_noise_multiplier from opacus.optimizers import DPOptimizer from opacus.privacy_engine import forbid_accumulation_hook from opacus.utils.uniform_sampler import UniformWithReplacementSampler from .data import NonUniformPoissonSampler, WeightedDataLoader from .optimizers import DPSGDFOptimizer from .utils import _data_loader_with_batch_sampler device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def reweigh(labels: Sequence[int]) -> np.ndarray: """Returns the inverse weighting for each sample in the dataset. Args: labels (Sequence[int]): The relevant sensitive group labels of the dataset. Returns: np.ndarray: The inverse weighting for each sample in the dataset. Usage: >>> reweigh([0, 1, 1, 2, 3]) array([0.25, 0.125, 0.125, 0.25, 0.25]) """ num_samples = len(labels) sensitive_groups = [] for value, counts in zip(*np.unique(labels, return_counts=True)): sensitive_groups.append((labels == value, counts)) n_unique = len(sensitive_groups) target_prob = 1 / n_unique weights = np.zeros(num_samples) for mask, counts in sensitive_groups: weights[mask] = target_prob / counts return weights def latent_reweigh( train_loader: torch.utils.data.DataLoader, vae: torch.nn.Module, alpha: float = 0.01, k: int = 16, ) -> np.ndarray: """Returns the inverse weighting for each sample in the dataset computed using the latent distributions. Args: train_loader (torch.utils.data.DataLoader): The relevant training data loader. vae (torch.nn.Module): The relevant VAE model. alpha (float): The hyperparameter for the latent space. Defaults to 0.01. k (int): The number of samples to use for the latent space. Defaults to 16. Returns: np.ndarray: The inverse weighting for each sample in the dataset. """ dataloader = torch.utils.data.DataLoader( train_loader.dataset, batch_size=train_loader.batch_size, shuffle=False ) mus = [] for batch in dataloader: mu, _ = vae.encode(batch[0].to(device)) mus.append(mu.cpu().detach().numpy()) mu = np.concatenate(mus) weights = np.zeros(mu.shape[0]) latent_dim = mu.shape[1] for i in range(latent_dim): hist, bin_edges = np.histogram(mu[:, i], density=True, bins=k) bin_edges[0] = float("-inf") bin_edges[-1] = float("inf") hist += alpha hist = hist / hist.sum() bin_idxs = np.digitize(mu[:, i], bin_edges) p = 1.0 / hist[bin_idxs - 1] p /= p.sum() weights = np.maximum(weights, p) weights /= weights.sum() return weights def setup_weighted_dpsgd( data_loader: torch.utils.data.DataLoader, model: torch.nn.Module, optimizer: torch.optim.Optimizer, weights: Union[Sequence[float], np.ndarray], target_epsilon: float, target_delta: float, max_grad_norm: float, epochs: int, ): """Sets up the DP-SGD-W optimizer. Args: data_loader (torch.utils.data.DataLoader): The training data loader. model (torch.nn.Module): The model to be used during training. optimizer (torch.optim.Optimizer): The optimizer to be used during training. weights (Union[Sequence[float], np.ndarray]): The weights for each sample in the dataset. target_epsilon (float): The target epsilon for DP-SGD-W. target_delta (float): The target delta for DP-SGD-W. max_grad_norm (float): The gradient clipping bound for DP-SGD-W. """ weights = np.array(weights) model = GradSampleModule(model) model.register_forward_pre_hook(forbid_accumulation_hook) N = len(data_loader.dataset) sample_rate = 1 / len(data_loader) max_sample_rate = np.max(weights) * N * sample_rate expected_batch_size = int(N * sample_rate) batch_sampler = NonUniformPoissonSampler( weights=weights, num_samples=N, sample_rate=sample_rate ) dp_loader = _data_loader_with_batch_sampler(data_loader, batch_sampler, wrap=False) accountant = RDPAccountant() optimizer = DPOptimizer( optimizer=optimizer, noise_multiplier=get_noise_multiplier( target_epsilon=target_epsilon, target_delta=target_delta, sample_rate=max_sample_rate, steps=int(epochs / sample_rate), accountant=accountant.mechanism(), ), max_grad_norm=max_grad_norm, expected_batch_size=expected_batch_size, ) optimizer.attach_step_hook( accountant.get_optimizer_hook_fn(sample_rate=sample_rate) ) return dp_loader, model, optimizer, accountant def setup_adaptive_clipped_dpsgd( data_loader: torch.utils.data.DataLoader, model: torch.nn.Module, optimizer: torch.optim.Optimizer, target_epsilon: float, target_delta: float, epochs: int, clipping: str = "dpsgdf", **kwargs ): """Sets up the DP-SGD-W optimizer. Args: data_loader (torch.utils.data.DataLoader): The training data loader. model (torch.nn.Module): The model to be used during training. optimizer (torch.optim.Optimizer): The optimizer to be used during training. target_epsilon (float): The target epsilon for DP-SGD-W. target_delta (float): The target delta for DP-SGD-W. max_grad_norm (float): The gradient clipping bound for DP-SGD-W. clipping (str): The clipping method to use. Takes values ["dpsgdf", "fairdp"]. Defaults to "dpsgdf". **kwargs: Passed to the ``opacus.optimizers.DPOptimizer`` wrapper. """ model = GradSampleModule(model) model.register_forward_pre_hook(forbid_accumulation_hook) N = len(data_loader.dataset) sample_rate = 1 / len(data_loader) expected_batch_size = int(N * sample_rate) batch_sampler = UniformWithReplacementSampler( num_samples=N, sample_rate=sample_rate ) dp_loader = _data_loader_with_batch_sampler(data_loader, batch_sampler, wrap=True) accountant = RDPAccountant() if clipping == "dpsgdf": optimizer = DPSGDFOptimizer( optimizer=optimizer, noise_multiplier=get_noise_multiplier( target_epsilon=target_epsilon, target_delta=target_delta, sample_rate=sample_rate, steps=int(epochs / sample_rate), accountant=accountant.mechanism(), ), expected_batch_size=expected_batch_size, **kwargs ) else: raise ValueError("``clipping`` must be one of ['dpsgdf', 'fairdp']") optimizer.attach_step_hook( accountant.get_optimizer_hook_fn(sample_rate=sample_rate) ) return dp_loader, model, optimizer, accountant def create_teacher_loaders( dataset: torch.utils.data.Dataset, n_teachers: int, batch_size: int ) -> Sequence[torch.utils.data.DataLoader]: teacher_loaders = [] n_train = len(dataset) shuffled_idxs = np.random.permutation(n_train) size = n_train // n_teachers for i in range(n_teachers): idxs = shuffled_idxs[i * size : min((i + 1) * size, n_train)] subset_data = torch.utils.data.Subset(dataset, idxs) loader = torch.utils.data.DataLoader( subset_data, batch_size=batch_size, shuffle=True ) teacher_loaders.append(loader) return teacher_loaders def create_weighted_teacher_loaders( dataset: torch.utils.data.Dataset, n_teachers: int, batch_size: int, weights: Union[Sequence[float], np.ndarray, torch.Tensor], ) -> Sequence[WeightedDataLoader]: teacher_loaders = [] n_train = len(dataset) shuffled_idxs =
np.random.permutation(n_train)
numpy.random.permutation
# -*- coding: utf-8 -*- import numpy as np def parametric_eurocode1(A_t, A_f, A_v, h_eq, q_fd, lambda_, rho, c, t_lim, time_end=7200, time_step=1, time_start=0, time_padding = (0, 0),temperature_initial=293.15, is_more_return=False): """Function Description: (SI UNITS ONLY) This function calculates the time-temperature curve according to Eurocode 1 part 1-2, Appendix A. :param A_t: :param A_f: :param A_v: :param h_eq: :param q_fd: :param lambda_: :param rho: :param c: :param t_lim: :param time_end: :param time_step: :param time_start: :param time_padding: :param temperature_initial: :return t: :return T_g: """ # Reference: Eurocode 1991-1-2; <NAME>, <NAME> (2010) - Fire Design of Steel Structures # UNITS: SI -> Equations q_fd /= 1e6 # [J/m2] -> [MJ/m2] t_lim /= 3600 # [s] -> [hr] time_end /= 3600 # [s] -> [hr] time_step /= 3600 # [s] -> [hr] time_start /= 3600 # [s] -> [hr] temperature_initial -= 273.15 # [K] -> [C] # ACQUIRING REQUIRED VARIABLES t = np.arange(time_start, time_end, time_step, dtype=float) b = (lambda_ * rho * c) ** 0.5 O = A_v * h_eq**0.5 / A_t q_td = q_fd * A_f / A_t Gamma = ((O/0.04)/(b/1160))**2 t_max = 0.0002*q_td/O # check criteria if not 50 <= q_td <= 1000: print("q_td = {:4.1f} not in range [50, 1000]".format(q_td)) # CALCULATION def _temperature_heating(t_star, temperature_initial): # eq. 3.12 T_g = 1325 * (1 - 0.324*np.exp(-0.2*t_star) - 0.204*np.exp(-1.7*t_star) - 0.472*np.exp(-19*t_star)) T_g += temperature_initial return T_g def _temperature_cooling_vent(t_star_max, T_max, t_star): # ventilation controlled # eq. 3.16 if t_star_max <= 0.5: T_g = T_max - 625 * (t_star - t_star_max) elif 0.5 < t_star_max < 2.0: T_g = T_max - 250 * (3 - t_star_max) * (t_star - t_star_max) elif 2.0 <= t_star_max: T_g = T_max - 250 * (t_star - t_star_max) else: T_g = np.nan return T_g def _temperature_cooling_fuel(t_star_max, T_max, t_star, Gamma, t_lim): # fuel controlled # eq. 3.22 if t_star_max <= 0.5: T_g = T_max - 625 * (t_star - Gamma * t_lim) elif 0.5 < t_star_max < 2.0: T_g = T_max - 250 * (3 - t_star_max) * (t_star - Gamma * t_lim) elif 2.0 <= t_star_max: T_g = T_max - 250 * (t_star - Gamma * t_lim) else: T_g = np.nan return T_g def _variables(t, Gamma, t_max): t_star = Gamma * t t_star_max = Gamma * t_max return t_star, t_star_max def _variables_2(t, t_lim, q_td, b, O): O_lim = 0.0001 * q_td / t_lim Gamma_lim = ((O_lim/0.04)/(b/1160))**2 if O > 0.04 and q_td < 75 and b < 1160: k = 1 + ((O-0.04)/(0.04)) * ((q_td-75)/(75)) * ((1160-b)/(1160)) Gamma_lim *= k t_star_ = Gamma_lim * t t_star_max_ = Gamma_lim * t_lim return t_star_, t_star_max_ t_star, t_star_max = _variables(t, Gamma, t_max) if t_max >= t_lim: # ventilation controlled fire T_max = _temperature_heating(t_star_max, temperature_initial) T_heating_g = _temperature_heating(Gamma * t, temperature_initial) T_cooling_g = _temperature_cooling_vent(t_star_max, T_max, t_star) fire_type = "ventilation controlled" else: # fuel controlled fire t_star_, t_star_max_ = _variables_2(t, t_lim, q_td, b, O) T_max = _temperature_heating(t_star_max_, temperature_initial) T_heating_g = _temperature_heating(t_star_, temperature_initial) T_cooling_g = _temperature_cooling_fuel(t_star_max, T_max, t_star, Gamma, t_lim) fire_type = "fuel controlled" T_g = np.minimum(T_heating_g, T_cooling_g) T_g[T_g < temperature_initial] = temperature_initial data_all = {"fire_type": fire_type} # UNITS: Eq. -> SI t *= 3600 T_g += 273.15 if is_more_return: return t, T_g, data_all else: return t, T_g def standard_fire_iso834( time, temperature_initial ): # INPUTS CHECK time = np.array(time, dtype=float) time[time < 0] = np.nan # SI UNITS -> EQUATION UNITS temperature_initial -= 273.15 # [K] -> [C] time /= 60. # [s] - [min] # CALCULATE TEMPERATURE BASED ON GIVEN TIME temperature = 345. * np.log10(time * 8. + 1.) + temperature_initial temperature[temperature == np.nan] = temperature_initial # EQUATION UNITS -> SI UNITS time *= 60. # [min] -> [s] temperature += 273.15 # [C] -> [K] return time, temperature def standard_fire_astm_e119( time, temperature_ambient ): time /= 1200. # convert from seconds to hours temperature_ambient -= 273.15 # convert temperature from kelvin to celcius temperature = 750 * (1 - np.exp(-3.79553 * np.sqrt(time))) + 170.41 * np.sqrt(time) + temperature_ambient return temperature + 273.15 # convert from celsius to kelvin (SI unit) def hydrocarbon_eurocode( time, temperature_initial ): time /= 1200. # convert time unit from second to hour temperature_initial -= 273.15 # convert temperature from kelvin to celsius temperature = 1080 * (1 - 0.325 * np.exp(-0.167 * time) - 0.675 * np.exp(-2.5 * time)) + temperature_initial return temperature + 273.15 def external_fire_eurocode( time, temperature_initial ): time /= 1200. # convert time from seconds to hours temperature_initial -= 273.15 # convert ambient temperature from kelvin to celsius temperature = 660 * (1 - 0.687 * np.exp(-0.32 * time) - 0.313 * np.exp(-3.8 * time)) + temperature_initial return temperature + 273.15 # convert temperature from celsius to kelvin def travelling_fire( T_0, q_fd, RHRf, l, w, s, # A_v, # h_eq, h_s, l_s, temperature_max=1050, time_ubound=10800, time_step=1): """ :param T_0: [float][K] Initial temperature. :param q_fd: [float][J m2] Fire load density. :param RHRf: [float][W m2] Heat release rate density :param l: [float][m] Compartment length :param w: [float][m] Compartment width :param s: [float][m/s] Fire spread speed # :param A_v: [float][m2] Ventilation area # :param h_eq: [float][m] Weighted ventilation height :param h_s: [float][m] Vertical distance between element to fuel bed. :param l_s: [float][m] Horizontal distance between element to fire front. :param time_ubound: [float][s] Maximum time for the curve. :param time_step: [float][s] Static time step. :return time: [ndarray][s] An array representing time incorporating 'temperature'. :return temperature: [ndarray][K] An array representing temperature incorporating 'time'. """ # SETTINGS time_lbound = 0 # UNIT CONVERSION TO FIT EQUATIONS T_0 -= 273.15 q_fd /= 1e6 RHRf /= 1e6 # MAKE TIME ARRAY time = np.arange(time_lbound, time_ubound+time_step, time_step) # fire_load_density_MJm2=900 # heat_release_rate_density_MWm2=0.15 # length_compartment_m=150 # width_compartment_m=17.4 # fire_spread_rate_ms=0.012 # area_ventilation_m2=190 # height_ventilation_opening_m=3.3 # height_fuel_to_element_m=3.5 # length_element_to_fire_origin_m=105 # workout burning time etc. t_burn = max([q_fd / RHRf, 900.]) t_decay = max([t_burn, l / s]) t_lim = min([t_burn, l / s]) # reduce resolution to fit time step for t_burn, t_decay, t_lim t_decay_ = round(t_decay/time_step, 0) * time_step t_lim_ = round(t_lim/time_step, 0) * time_step if t_decay_ == t_lim_: t_lim_ -= time_step # workout the heat release rate ARRAY (corrected with time) Q_growth = (RHRf * w * s * time) * (time < t_lim_) Q_peak = min([RHRf * w * s * t_burn, RHRf * w * l]) * (time >= t_lim_) * (time <= t_decay_) Q_decay = (max(Q_peak) - (time-t_decay_) * w * s * RHRf) * (time > t_decay_) Q_decay[Q_decay < 0] = 0 Q = (Q_growth + Q_peak + Q_decay) * 1000. # workout the distance between fire_curve midian to the structural element r l_fire_front = s * time l_fire_front[l_fire_front < 0] = 0. l_fire_front[l_fire_front > l] = l l_fire_end = s * (time - t_lim) l_fire_end[l_fire_end < 0] = 0. l_fire_end[l_fire_end > l] = l l_fire_median = (l_fire_front + l_fire_end) / 2. r =
np.absolute(l_s - l_fire_median)
numpy.absolute
from itertools import cycle import numpy as np from numpy import zeros, searchsorted, allclose from pyNastran.utils.numpy_utils import integer_types from pyNastran.op2.result_objects.op2_objects import BaseElement from pyNastran.op2.tables.oef_forces.oef_force_objects import ForceObject from pyNastran.f06.f06_formatting import write_imag_floats_13e, write_float_12e # get_key0, from pyNastran.f06.f06_formatting import _eigenvalue_header class ComplexForceObject(ForceObject): def __init__(self, data_code, isubcase, apply_data_code=True): ForceObject.__init__(self, data_code, isubcase, apply_data_code=apply_data_code) @property def is_real(self): return False @property def is_complex(self): return True class ComplexRodForceArray(ComplexForceObject): def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None ComplexForceObject.__init__(self, data_code, isubcase) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.nelements = 0 # result specific if is_sort1: pass else: raise NotImplementedError('SORT2') def get_headers(self): headers = ['axial_force', 'torque'] return headers #def get_headers(self): #headers = ['axial', 'torque'] #return headers def build(self): """sizes the vectorized attributes of the ComplexRodForceArray""" #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element = zeros(self.nelements, dtype='int32') #[axial_force, torque] self.data = zeros((self.ntimes, self.ntotal, 2), dtype='complex64') def build_dataframe(self): """creates a pandas dataframe""" headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() data_frame = self._build_pandas_transient_elements(column_values, column_names, headers, self.element, self.data) #data_frame = pd.Panel(self.data, items=column_values, #major_axis=self.element, minor_axis=headers).to_frame() #data_frame.columns.names = column_names #data_frame.index.names = ['ElementID', 'Item'] self.data_frame = data_frame def __eq__(self, table): # pragma: no cover self._eq_header(table) assert self.is_sort1 == table.is_sort1 if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 for itime in range(self.ntimes): for ie, eid in enumerate(self.element): t1 = self.data[itime, ie, :] t2 = table.data[itime, ie, :] (axial1, torque1) = t1 (axial2, torque2) = t2 if not allclose(t1, t2): msg += '(%s) (%s, %s) (%s, %s)\n' % ( eid, axial1, torque1, axial2, torque2) i += 1 if i > 10: print(msg) raise ValueError(msg) #print(msg) if i > 0: raise ValueError(msg) return True def add_sort1(self, dt, eid, axial, torque): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt self.element[self.ielement] = eid self.data[self.itime, self.ielement, :] = [axial, torque] self.ielement += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i; table_name=%r\n' % (self.__class__.__name__, nelements, self.table_name)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nnodes, %i] where %i=[%s]\n' % ( ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) #msg.append(' element type: %s\n' % self.element_type) msg.append(' element name: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_f06_header(self, is_mag_phase=True, is_sort1=True): if self.element_type == 1: # CROD msg = [' C O M P L E X F O R C E S I N R O D E L E M E N T S ( C R O D )\n'] elif self.element_type == 10: # CONROD msg = [' C O M P L E X F O R C E S I N R O D E L E M E N T S ( C O N R O D )\n'] elif self.element_type == 3: # CTUBE msg = [' C O M P L E X F O R C E S I N R O D E L E M E N T S ( C T U B E )\n'] #pass else: raise NotImplementedError('element_name=%s element_type=%s' % (self.element_name, self.element_type)) if is_mag_phase: msg += [' (MAGNITUDE/PHASE)\n'] else: msg += [' (REAL/IMAGINARY)\n'] if is_sort1: msg += [ ' \n' ' ELEMENT AXIAL TORSIONAL\n' ' ID. STRAIN STRAIN\n' ] #' 14 0.0 / 0.0 0.0 / 0.0' else: raise NotImplementedError('sort2') return self.element_name, msg def get_element_index(self, eids): # elements are always sorted; nodes are not itot = searchsorted(eids, self.element) #[0] return itot def eid_to_element_node_index(self, eids): #ind = ravel([searchsorted(self.element == eid) for eid in eids]) ind = searchsorted(eids, self.element) #ind = ind.reshape(ind.size) #ind.sort() return ind def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] (elem_name, msg_temp) = self.get_f06_header(is_mag_phase=is_mag_phase, is_sort1=is_sort1) # write the f06 #(ntimes, ntotal, two) = self.data.shape ntimes = self.data.shape[0] eids = self.element #is_odd = False #nwrite = len(eids) #if len(eids) % 2 == 1: #nwrite -= 1 #is_odd = True #print('len(eids)=%s nwrite=%s is_odd=%s' % (len(eids), nwrite, is_odd)) for itime in range(ntimes): dt = self._times[itime] # TODO: rename this... header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg_temp)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) axial = self.data[itime, :, 0] torsion = self.data[itime, :, 1] for eid, axiali, torsioni in zip(eids, axial, torsion): out = write_imag_floats_13e([axiali, torsioni], is_mag_phase) [raxial, rtorsion, iaxial, itorsion] = out #ELEMENT AXIAL TORSIONAL #ID. STRESS STRESS #14 0.0 / 0.0 0.0 / 0.0 f06_file.write(' %8i %-13s / %-13s %-13s / %s\n' % (eid, raxial, iaxial, rtorsion, itorsion)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num - 1 def write_op2(self, op2, op2_ascii, itable, new_result, date, is_mag_phase=False, endian='>'): """writes an OP2""" import inspect from struct import Struct, pack frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) if itable == -1: self._write_table_header(op2, op2_ascii, date) itable = -3 #eids = self.element # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] nelements = self.data.shape[1] # 21 = 1 node, 3 principal, 6 components, 9 vectors, 2 p/ovm #ntotal = ((nnodes * 21) + 1) + (nelements * 4) ntotali = self.num_wide ntotal = ntotali * nelements #device_code = self.device_code op2_ascii.write(' ntimes = %s\n' % self.ntimes) eids_device = self.element * 10 + self.device_code if self.is_sort1: struct1 = Struct(endian + b'i4f') else: raise NotImplementedError('SORT2') op2_ascii.write('nelements=%i\n' % nelements) for itime in range(self.ntimes): self._write_table_3(op2, op2_ascii, new_result, itable, itime) # record 4 itable -= 1 header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4 * ntotal] op2.write(pack('%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4 * ntotal)) axial = self.data[itime, :, 0] torsion = self.data[itime, :, 1] for eid_device, axiali, torsioni in zip(eids_device, axial, torsion): data = [eid_device, axiali.real, torsioni.real, axiali.imag, torsioni.imag] op2_ascii.write(' eid_device=%s data=%s\n' % (eid_device, tuple(data))) op2.write(struct1.pack(*data)) itable -= 1 header = [4 * ntotal,] op2.write(pack('i', *header)) op2_ascii.write('footer = %s\n' % header) new_result = False return itable class ComplexCShearForceArray(BaseElement): def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None BaseElement.__init__(self, data_code, isubcase) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.nelements = 0 # result specific #if is_sort1: #pass #else: #raise NotImplementedError('SORT2') @property def is_real(self): return False @property def is_complex(self): return True def _reset_indices(self): self.itotal = 0 self.ielement = 0 def get_headers(self): headers = [ 'force41', 'force14', 'force21', 'force12', 'force32', 'force23', 'force43', 'force34', 'kickForce1', 'kickForce2', 'kickForce3', 'kickForce4', 'shear12', 'shear23', 'shear34', 'shear41' ] return headers #def get_headers(self): #headers = ['axial', 'torque'] #return headers def build(self): """sizes the vectorized attributes of the ComplexCShearForceArray""" #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element = zeros(self.nelements, dtype='int32') #[force41, force14, force21, force12, force32, force23, force43, force34, #kick_force1, kick_force2, kick_force3, kick_force4, #shear12, shear23, shear34, shear41] self.data = zeros((self.ntimes, self.ntotal, 16), dtype='complex64') def build_dataframe(self): """creates a pandas dataframe""" #Mode 1 2 #EigenvalueReal -0.0 -0.0 #EigenvalueImag -0.0 -0.0 #Damping 0.0 0.0 #ElementID Item #22 force41 2.927977e-10+0.000000e+00j 0.000000+0.000000j # force14 2.927977e-10+5.855954e-10j 0.000000+0.000000j # force21 -2.927977e-10+0.000000e+00j 0.000000+0.000000j # force12 -2.927977e-10+5.855954e-10j 0.000000+0.000000j # force32 2.927977e-10+0.000000e+00j 0.000000+0.000000j # force23 2.927977e-10+5.855954e-10j 0.000000+0.000000j # force43 -2.927977e-10+0.000000e+00j 0.000000+0.000000j # force34 -2.927977e-10+5.855954e-10j 0.000000+0.000000j # kickForce1 0.000000e+00+0.000000e+00j 0.000000+0.000000j # kickForce2 0.000000e+00+0.000000e+00j 0.000000+0.000000j # kickForce3 0.000000e+00+0.000000e+00j 0.000000+0.000000j # kickForce4 0.000000e+00+0.000000e+00j 0.000000+0.000000j # shear12 0.000000e+00+0.000000e+00j 0.000000+0.000000j # shear23 0.000000e+00+0.000000e+00j 0.000000+0.000000j # shear34 0.000000e+00+0.000000e+00j 0.000000+0.000000j # shear41 0.000000e+00+0.000000e+00j 0.000000+0.000000j headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() self.data_frame = self._build_pandas_transient_elements( column_values, column_names, headers, self.element, self.data) def __eq__(self, table): # pragma: no cover self._eq_header(table) assert self.is_sort1 == table.is_sort1 if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 for itime in range(self.ntimes): for ie, eid in enumerate(self.element): t1 = self.data[itime, ie, :] t2 = table.data[itime, ie, :] (force41a, force14a, force21a, force12a, force32a, force23a, force43a, force34a, kick_force1a, kick_force2a, kick_force3a, kick_force4a, shear12a, shear23a, shear34a, shear41a) = t1 (force41b, force14b, force21b, force12b, force32b, force23b, force43b, force34b, kick_force1b, kick_force2b, kick_force3b, kick_force4b, shear12b, shear23b, shear34b, shear41b) = t2 if not allclose(t1, t2): msg += ( '%s (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)\n' ' (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)\n' % ( eid, force41a, force14a, force21a, force12a, force32a, force23a, force43a, force34a, kick_force1a, kick_force2a, kick_force3a, kick_force4a, shear12a, shear23a, shear34a, shear41a, force41b, force14b, force21b, force12b, force32b, force23b, force43b, force34b, kick_force1b, kick_force2b, kick_force3b, kick_force4b, shear12b, shear23b, shear34b, shear41b )) i += 1 if i > 10: print(msg) raise ValueError(msg) #print(msg) if i > 0: raise ValueError(msg) return True def add_sort1(self, dt, eid, force41, force14, force21, force12, force32, force23, force43, force34, kick_force1, kick_force2, kick_force3, kick_force4, shear12, shear23, shear34, shear41): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt self.element[self.ielement] = eid self.data[self.itime, self.ielement, :] = [ force41, force14, force21, force12, force32, force23, force43, force34, kick_force1, kick_force2, kick_force3, kick_force4, shear12, shear23, shear34, shear41] self.ielement += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i; table_name=%r\n' % (self.__class__.__name__, nelements, self.table_name)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nnodes, %i] where %i=[%s]\n' % ( ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) #msg.append(' element type: %s\n' % self.element_type) msg.append(' element name: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_f06_header(self, is_mag_phase=True, is_sort1=True): msg = [' C O M P L E X F O R C E S A C T I N G O N S H E A R P A N E L E L E M E N T S (CSHEAR)\n'] if is_mag_phase: msg += [' (MAGNITUDE/PHASE)\n \n'] else: msg += [' (REAL/IMAGINARY)\n \n'] if is_sort1: msg += [ ' ====== POINT 1 ====== ====== POINT 2 ====== ====== POINT 3 ====== ====== POINT 4 ======\n' ' ELEMENT F-FROM-4 F-FROM-2 F-FROM-1 F-FROM-3 F-FROM-2 F-FROM-4 F-FROM-3 F-FROM-1\n' ' ID KICK-1 SHEAR-12 KICK-2 SHEAR-23 KICK-3 SHEAR-34 KICK-4 SHEAR-41\n' ] else: raise NotImplementedError('sort2') return msg def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] msg_temp = self.get_f06_header(is_mag_phase=is_mag_phase, is_sort1=is_sort1) # write the f06 #(ntimes, ntotal, two) = self.data.shape ntimes = self.data.shape[0] eids = self.element for itime in range(ntimes): dt = self._times[itime] # TODO: rename this... header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg_temp)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) ## TODO: I'm sure this ordering is wrong... force41 = self.data[itime, :, 0] force14 = self.data[itime, :, 1] force21 = self.data[itime, :, 2] # TODO: this is wrong... force12 = self.data[itime, :, 3] force32 = self.data[itime, :, 4] force23 = self.data[itime, :, 5] force43 = self.data[itime, :, 6] force34 = self.data[itime, :, 7] kick_force1 = self.data[itime, :, 8] kick_force2 = self.data[itime, :, 9] kick_force3 = self.data[itime, :, 10] kick_force4 = self.data[itime, :, 11] shear12 = self.data[itime, :, 12] shear23 = self.data[itime, :, 13] shear34 = self.data[itime, :, 14] shear41 = self.data[itime, :, 15] assert len(force12) > 0, force12 for (eid, iforce41, force14i, iforce21, iforce12, iforce32, iforce23, iforce43, iforce34, ikick_force1, ikick_force2, ikick_force3, ikick_force4, ishear12, ishear23, ishear34, ishear41) in zip( eids, force41, force14, force21, force12, force32, force23, force43, force34, kick_force1, kick_force2, kick_force3, kick_force4, shear12, shear23, shear34, shear41): vals2 = write_imag_floats_13e([ iforce41, force14i, iforce21, iforce12, iforce32, iforce23, iforce43, iforce34, ikick_force1, ikick_force2, ikick_force3, ikick_force4, ishear12, ishear23, ishear34, ishear41], is_mag_phase) [ force41r, force14r, force21i, force12r, force32r, force23r, force43r, force34r, kick_force1r, kick_force2r, kick_force3r, kick_force4r, shear12r, shear23r, shear34r, shear41r, force41i, force14i, force21i, force12i, force32i, force23i, force43i, force34i, kick_force1i, kick_force2i, kick_force3i, kick_force4i, shear12i, shear23i, shear34i, shear41i ] = vals2 #complex_cshear_force_f06 #' ====== POINT 1 ====== ====== POINT 2 ====== ====== POINT 3 ====== ====== POINT 4 ======' #' ELEMENT F-FROM-4 F-FROM-2 F-FROM-1 F-FROM-3 F-FROM-2 F-FROM-4 F-FROM-3 F-FROM-1' #' ID KICK-1 SHEAR-12 KICK-2 SHEAR-23 KICK-3 SHEAR-34 KICK-4 SHEAR-41' #' 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0' #' 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0' f06_file.write( ' %8i %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n'% ( eid, force41r, force14r, force21i, force12r, force32r, force23r, force43r, force34r, kick_force1r, kick_force2r, kick_force3r, kick_force4r, shear12r, shear23r, shear34r, shear41r, force41i, force14i, force21i, force12i, force32i, force23i, force43i, force34i, kick_force1i, kick_force2i, kick_force3i, kick_force4i, shear12i, shear23i, shear34i, shear41i )) f06_file.write(page_stamp % page_num) page_num += 1 return page_num - 1 class ComplexSpringDamperForceArray(ComplexForceObject): def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None ComplexForceObject.__init__(self, data_code, isubcase) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.nelements = 0 # result specific #if is_sort1: #pass #else: #raise NotImplementedError('SORT2') def get_headers(self): headers = ['spring_force'] return headers #def get_headers(self): #headers = ['axial', 'torque'] #return headers def build(self): """sizes the vectorized attributes of the ComplexSpringDamperForceArray""" #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element = zeros(self.nelements, dtype='int32') #[axial_force, torque] self.data = zeros((self.ntimes, self.ntotal, 1), dtype='complex64') def build_dataframe(self): """creates a pandas dataframe""" #Mode 1 2 #EigenvalueReal -0.0 -0.0 #EigenvalueImag -0.0 -0.0 #Damping 0.0 0.0 #ElementID Item #30 spring_force 0.000000+0.000000j 0.000000+0.000000j #31 spring_force 0.000000+0.000000j 0.000000+0.000000j #32 spring_force 0.000000+0.000000j 0.000000+0.000000j #33 spring_force 0.000000+0.000000j 0.000000+0.000000j headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() self.data_frame = self._build_pandas_transient_elements( column_values, column_names, headers, self.element, self.data) def __eq__(self, table): # pragma: no cover self._eq_header(table) assert self.is_sort1 == table.is_sort1 if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 for itime in range(self.ntimes): for ie, eid in enumerate(self.element): t1 = self.data[itime, ie, 0] t2 = table.data[itime, ie, 0] if not allclose([t1.real, t1.imag], [t2.real, t2.imag], atol=0.0001): msg += '%s (%s, %s) (%s, %s)\n' % ( eid, t1.real, t1.imag, t2.real, t2.imag) i += 1 if i > 10: print(msg) raise ValueError(msg) #print(msg) if i > 0: raise ValueError(msg) return True def add_sort1(self, dt, eid, force): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt self.element[self.ielement] = eid self.data[self.itime, self.ielement, 0] = force self.ielement += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i; table_name=%r\n' % (self.__class__.__name__, nelements, self.table_name)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nelements, %i] where %i=[%s]\n' % (ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) #msg.append(' element type: %s\n' % self.element_type) msg.append(' element name: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_f06_header(self, is_mag_phase=True, is_sort1=True): # 11-CELAS1, 12-CELAS2, 13-CELAS3, 14-CELAS4 if self.element_type == 11: msg = [' C O M P L E X F O R C E S I N S C A L A R S P R I N G S ( C E L A S 1 )\n'] elif self.element_type == 12: msg = [' C O M P L E X F O R C E S I N S C A L A R S P R I N G S ( C E L A S 2 )\n'] elif self.element_type == 13: msg = [' C O M P L E X F O R C E S I N S C A L A R S P R I N G S ( C E L A S 3 )\n'] elif self.element_type == 14: msg = [' C O M P L E X F O R C E S I N S C A L A R S P R I N G S ( C E L A S 4 )\n'] elif self.element_type == 20: # CDAMP1 msg = [' C O M P L E X F O R C E S I N S C A L A R D A M P E R S ( C D A M P 1 )\n'] elif self.element_type == 21: # CDAMP2 msg = [' C O M P L E X F O R C E S I N S C A L A R D A M P E R S ( C D A M P 2 )\n'] elif self.element_type == 22: # CDAMP3 msg = [' C O M P L E X F O R C E S I N S C A L A R D A M P E R S ( C D A M P 3 )\n'] elif self.element_type == 23: # CDAMP4 msg = [' C O M P L E X F O R C E S I N S C A L A R D A M P E R S ( C D A M P 4 )\n'] else: raise NotImplementedError('element_name=%s element_type=%s' % (self.element_name, self.element_type)) if is_mag_phase: msg += [' (MAGNITUDE/PHASE)\n \n'] else: msg += [' (REAL/IMAGINARY)\n \n'] if is_sort1: msg += [ ' ELEMENT ELEMENT\n' ' ID. FORCE ID. FORCE\n' ] #' 14 0.0 / 0.0 0.0 / 0.0' else: msg += [' FREQUENCY FORCE FREQUENCY FORCE\n'] return msg #def get_element_index(self, eids): ## elements are always sorted; nodes are not #itot = searchsorted(eids, self.element) #[0] #return itot #def eid_to_element_node_index(self, eids): ##ind = ravel([searchsorted(self.element == eid) for eid in eids]) #ind = searchsorted(eids, self.element) ##ind = ind.reshape(ind.size) ##ind.sort() #return ind def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] msg_temp = self.get_f06_header(is_mag_phase=is_mag_phase, is_sort1=is_sort1) # write the f06 #(ntimes, ntotal, two) = self.data.shape ntimes = self.data.shape[0] eids = self.element #is_odd = False #nwrite = len(eids) #if len(eids) % 2 == 1: #nwrite -= 1 #is_odd = True #print('len(eids)=%s nwrite=%s is_odd=%s' % (len(eids), nwrite, is_odd)) for itime in range(ntimes): dt = self._times[itime] # TODO: rename this... header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg_temp)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) spring_force = self.data[itime, :, 0] for eid, spring_forcei in zip(eids, spring_force): [rspring, ispring] = write_imag_floats_13e([spring_forcei], is_mag_phase) #ELEMENT AXIAL TORSIONAL #ID. STRESS STRESS #14 0.0 / 0.0 0.0 / 0.0 f06_file.write(' %8i %-13s / %-13s\n' % (eid, rspring, ispring)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num - 1 def write_op2(self, op2, op2_ascii, itable, new_result, date, is_mag_phase=False, endian='>'): """writes an OP2""" import inspect from struct import Struct, pack frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) if itable == -1: self._write_table_header(op2, op2_ascii, date) itable = -3 #eids = self.element # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] nelements = self.data.shape[1] # 21 = 1 node, 3 principal, 6 components, 9 vectors, 2 p/ovm #ntotal = ((nnodes * 21) + 1) + (nelements * 4) ntotali = self.num_wide ntotal = ntotali * nelements #print('shape = %s' % str(self.data.shape)) #assert self.ntimes == 1, self.ntimes #device_code = self.device_code op2_ascii.write(' ntimes = %s\n' % self.ntimes) eids_device = self.element * 10 + self.device_code #print('ntotal=%s' % (ntotal)) #assert ntotal == 193, ntotal if self.is_sort1: struct1 = Struct(endian + b'i2f') else: raise NotImplementedError('SORT2') op2_ascii.write('%s-nelements=%i\n' % (self.element_name, nelements)) for itime in range(self.ntimes): self._write_table_3(op2, op2_ascii, new_result, itable, itime) # record 4 itable -= 1 header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4 * ntotal] op2.write(pack('%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4 * ntotal)) force = self.data[itime, :, 0] for eid, forcei in zip(eids_device, force): data = [eid, forcei.real, forcei.imag] op2_ascii.write(' eid=%s force=%s\n' % (eid, forcei)) op2.write(struct1.pack(*data)) itable -= 1 header = [4 * ntotal,] op2.write(pack('i', *header)) op2_ascii.write('footer = %s\n' % header) new_result = False return itable class ComplexSpringForceArray(ComplexSpringDamperForceArray): # 11-CELAS1,12-CELAS2,13-CELAS3, 14-CELAS4 def __init__(self, data_code, is_sort1, isubcase, dt): ComplexSpringDamperForceArray.__init__(self, data_code, is_sort1, isubcase, dt) class ComplexDamperForceArray(ComplexSpringDamperForceArray): def __init__(self, data_code, is_sort1, isubcase, dt): ComplexSpringDamperForceArray.__init__(self, data_code, is_sort1, isubcase, dt) class ComplexViscForceArray(BaseElement): def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None BaseElement.__init__(self, data_code, isubcase) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.nelements = 0 # result specific if is_sort1: pass else: raise NotImplementedError('SORT2') def _reset_indices(self): self.itotal = 0 self.ielement = 0 def get_headers(self): headers = ['axial_force', 'torque'] return headers #def get_headers(self): #headers = ['axial', 'torque'] #return headers def build(self): """sizes the vectorized attributes of the ComplexViscForceArray""" #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element = zeros(self.nelements, dtype='int32') #[axial_force, torque] self.data = zeros((self.ntimes, self.ntotal, 2), dtype='complex64') def build_dataframe(self): """creates a pandas dataframe""" #Mode 1 2 3 4 #EigenvalueReal -0.0 -0.0 -0.0 -0.0 #EigenvalueImag -0.0 -0.0 -0.0 -0.0 #Damping 0.0 0.0 0.0 0.0 #ElementID Item #50 axial_force (-0+0j) (-0+0j) (-0+0j) (-0+0j) # torque (-0+0j) (-0+0j) (-0+0j) (-0+0j) #51 axial_force (-0+0j) (-0+0j) (-0+0j) (-0+0j) # torque 0j (-0+0j) (-0+0j) (-0+0j) headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() data_frame = self._build_pandas_transient_elements(column_values, column_names, headers, self.element, self.data) self.data_frame = data_frame def __eq__(self, table): # pragma: no cover self._eq_header(table) assert self.is_sort1 == table.is_sort1 if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 for itime in range(self.ntimes): for ie, eid in enumerate(self.element): t1 = self.data[itime, ie, :] t2 = table.data[itime, ie, :] (axial1, torque1) = t1 (axial2, torque2) = t2 if not allclose(t1, t2): msg += '(%s) (%s, %s) (%s, %s)\n' % ( eid, axial1, torque1, axial2, torque2) i += 1 if i > 10: print(msg) raise ValueError(msg) #print(msg) if i > 0: raise ValueError(msg) return True def add_sort1(self, dt, eid, axial, torque): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt self.element[self.ielement] = eid self.data[self.itime, self.ielement, :] = [axial, torque] self.ielement += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i; table_name=%r\n' % (self.__class__.__name__, nelements, self.table_name)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nnodes, %i] where %i=[%s]\n' % (ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) #msg.append(' element type: %s\n' % self.element_type) msg.append(' element name: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_f06_header(self, is_mag_phase=True, is_sort1=True): #if self.element_type == 1: # CROD #msg = [' C O M P L E X F O R C E S I N R O D E L E M E N T S ( C R O D )\n'] #elif self.element_type == 10: # CONROD #msg = [' C O M P L E X F O R C E S I N R O D E L E M E N T S ( C O N R O D )\n'] #elif self.element_type == 3: # CTUBE #msg = [' C O M P L E X F O R C E S I N R O D E L E M E N T S ( C T U B E )\n'] ##pass if self.element_type == 24: msg = [' C O M P L E X F O R C E S I N V I S C E L E M E N T S ( C V I S C )\n'] else: raise NotImplementedError('element_name=%s element_type=%s' % (self.element_name, self.element_type)) if is_mag_phase: msg += [' (MAGNITUDE/PHASE)\n'] else: msg += [' (REAL/IMAGINARY)\n'] if is_sort1: msg += [ ' \n' ' ELEMENT AXIAL TORSIONAL\n' ' ID. STRAIN STRAIN\n' ] #' 14 0.0 / 0.0 0.0 / 0.0' else: raise NotImplementedError('sort2') return self.element_name, msg def get_element_index(self, eids): # elements are always sorted; nodes are not itot = searchsorted(eids, self.element) #[0] return itot def eid_to_element_node_index(self, eids): #ind = ravel([searchsorted(self.element == eid) for eid in eids]) ind = searchsorted(eids, self.element) #ind = ind.reshape(ind.size) #ind.sort() return ind def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] (elem_name, msg_temp) = self.get_f06_header(is_mag_phase=is_mag_phase, is_sort1=is_sort1) # write the f06 #(ntimes, ntotal, two) = self.data.shape ntimes = self.data.shape[0] eids = self.element #is_odd = False #nwrite = len(eids) #if len(eids) % 2 == 1: #nwrite -= 1 #is_odd = True #print('len(eids)=%s nwrite=%s is_odd=%s' % (len(eids), nwrite, is_odd)) for itime in range(ntimes): dt = self._times[itime] # TODO: rename this... header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg_temp)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) axial = self.data[itime, :, 0] torsion = self.data[itime, :, 1] for eid, axiali, torsioni in zip(eids, axial, torsion): out = write_imag_floats_13e([axiali, torsioni], is_mag_phase) [raxial, rtorsion, iaxial, itorsion] = out #ELEMENT AXIAL TORSIONAL #ID. STRESS STRESS #14 0.0 / 0.0 0.0 / 0.0 f06_file.write(' %8i %-13s / %-13s %-13s / %s\n' % (eid, raxial, iaxial, rtorsion, itorsion)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num - 1 class ComplexPlateForceArray(ComplexForceObject): def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None ComplexForceObject.__init__(self, data_code, isubcase) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.nelements = 0 # result specific #if is_sort1: #pass #else: #raise NotImplementedError('SORT2') def get_headers(self): headers = ['mx', 'my', 'mxy', 'bmx', 'bmy', 'bmxy', 'tx', 'ty'] return headers def build(self): """sizes the vectorized attributes of the ComplexPlateForceArray""" #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element = zeros(self.nelements, dtype='int32') #[mx, my, mxy, bmx, bmy, bmxy, tx, ty] self.data = zeros((self.ntimes, self.ntotal, 8), dtype='complex64') def build_dataframe(self): """creates a pandas dataframe""" # Freq 0.00001 10.00000 20.00000 30.00000 40.00000 50.00000 60.00000 # ElementID Item #8 mx 0j 0j 0j 0j (-361.6303-680.04156j) 0j 0j # my 0j 0j 0j 0j (-7884.6196-14826.936j) 0j 0j # mxy 0j 0j 0j 0j (-237.5723-446.7519j) 0j 0j # bmx 0j 0j 0j 0j (5.514431+10.3698225j) 0j 0j # bmy 0j 0j 0j 0j (10.107019+19.00613j) 0j 0j # bmxy 0j 0j 0j 0j (-16.361727-30.768036j) 0j 0j # tx 0j 0j 0j 0j (18.819313+35.3895j) 0j 0j # ty 0j 0j 0j 0j (-61.55238-115.74853j) 0j 0j #9 mx 0j 0j 0j 0j (1086.9078+2043.9175j) 0j 0j # my 0j 0j 0j 0j (8089.895+15212.953j) 0j 0j # mxy 0j 0j 0j 0j (-4725.3286-8885.925j) 0j 0j # bmx 0j 0j 0j 0j (-3.9810739-7.486363j) 0j 0j # bmy 0j 0j 0j 0j (-10.283798-19.338562j) 0j 0j # bmxy 0j 0j 0j 0j (-8.663734-16.292051j) 0j 0j # tx 0j 0j 0j 0j (54.14508+101.81919j) 0j 0j # ty 0j 0j 0j 0j (-61.92162-116.44288j) 0j 0j headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() data_frame = self._build_pandas_transient_elements(column_values, column_names, headers, self.element, self.data) #data_frame = pd.Panel(self.data, items=column_values, #major_axis=self.element, minor_axis=headers).to_frame() #data_frame.columns.names = column_names #data_frame.index.names = ['ElementID', 'Item'] self.data_frame = data_frame def __eq__(self, table): # pragma: no cover assert self.is_sort1 == table.is_sort1 self._eq_header(table) if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 for itime in range(self.ntimes): for ie, eid in enumerate(self.element): t1 = self.data[itime, ie, :] t2 = table.data[itime, ie, :] (mx1, my1, mxy1, bmx1, bmy1, bmxy1, tx1, ty1) = t1 (mx2, my2, mxy2, bmx2, bmy2, bmxy2, tx2, ty2) = t2 if not allclose(t1, t2): #if not np.array_equal(t1.real, t2.real): msg += ('%-8s (%s, %s, %s, %s, %s, %s, %s, %s)\n' '%-8s (%s, %s, %s, %s, %s, %s, %s, %s)\n' % ( eid, #mx1.real, my1.real, mxy1.real, bmx1.real, bmy1.real, #bmxy1.real, tx1.real, ty1.real, mx1, my1, mxy1, bmx1, bmy1, bmxy1, tx1, ty1, '', mx2, my2, mxy2, bmx2, bmy2, bmxy2, tx2, ty2, #mx2.real, my2.real, mxy2.real, bmx2.real, bmy2.real, #bmxy2.real, tx2.real, ty2.real, )) i += 1 if i > 10: print(msg) raise ValueError(msg) #print(msg) if i > 0: raise ValueError(msg) return True def add_sort1(self, dt, eid, mx, my, mxy, bmx, bmy, bmxy, tx, ty): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt self.element[self.ielement] = eid self.data[self.itime, self.ielement, :] = [mx, my, mxy, bmx, bmy, bmxy, tx, ty] self.ielement += 1 self.itotal += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i; table_name=%r\n' % (self.__class__.__name__, nelements, self.table_name)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nnodes, %i] where %i=[%s]\n' % (ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) #msg.append(' element type: %s\n' % self.element_type) msg.append(' element name: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_f06_header(self, is_mag_phase=True, is_sort1=True): loads = [' ELEMENT - MEMBRANE FORCES - - BENDING MOMENTS - - TRANSVERSE SHEAR FORCES -\n' ' ID FX FY FXY MX MY MXY QX QY\n',] if is_mag_phase: mag_real = [' (MAGNITUDE/PHASE)\n \n'] else: mag_real = [' (REAL/IMAGINARY)\n \n'] cquad4_bilinear = [' C O M P L E X F O R C E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n'] # good cquad4_linear = [' C O M P L E X F O R C E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n'] # good ctria3 = [' C O M P L E X F O R C E S I N T R I A N G U L A R E L E M E N T S ( T R I A 3 )\n'] # good cquad8 = [' C O M P L E X F O R C E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 8 )\n'] cquadr = [' C O M P L E X F O R C E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D R )\n'] ctria6 = [' C O M P L E X F O R C E S I N T R I A N G U L A R E L E M E N T S ( T R I A 6 )\n'] ctriar = [' C O M P L E X F O R C E S I N <NAME> N <NAME> R E L E M E N T S ( T R I A R )\n'] #is_bilinear = False if self.element_type == 144: # CQUAD4 msg = cquad4_linear + mag_real + loads elif self.element_type == 33: # CQUAD4 msg = cquad4_bilinear + mag_real + loads elif self.element_type == 64: #CQUAD8 msg = cquad8 + mag_real + loads elif self.element_type == 82: # CQUADR msg = cquadr + mag_real + loads elif self.element_type == 74: # CTRIA3 msg = ctria3 + mag_real + loads elif self.element_type == 75: # CTRIA6 msg = ctria6 + mag_real + loads elif self.element_type == 70: # CTRIAR msg = ctriar + mag_real + loads else: raise NotImplementedError('name=%r type=%s' % (self.element_name, self.element_type)) return msg def get_element_index(self, eids): # elements are always sorted; nodes are not itot = searchsorted(eids, self.element) #[0] return itot def eid_to_element_node_index(self, eids): #ind = ravel([searchsorted(self.element == eid) for eid in eids]) ind = searchsorted(eids, self.element) #ind = ind.reshape(ind.size) #ind.sort() return ind def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] msg_temp = self.get_f06_header(is_mag_phase=is_mag_phase, is_sort1=is_sort1) # write the f06 #(ntimes, ntotal, two) = self.data.shape ntimes = self.data.shape[0] eids = self.element for itime in range(ntimes): dt = self._times[itime] # TODO: rename this... header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg_temp)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) mx = self.data[itime, :, 0] my = self.data[itime, :, 1] mxy = self.data[itime, :, 2] bmx = self.data[itime, :, 3] bmy = self.data[itime, :, 4] bmxy = self.data[itime, :, 5] tx = self.data[itime, :, 6] ty = self.data[itime, :, 7] for eid, mxi, myi, mxyi, bmxi, bmyi, bmxyi, txi, tyi in zip(eids, mx, my, mxy, bmx, bmy, bmxy, tx, ty): out = write_imag_floats_13e([mxi, myi, mxyi, bmxi, bmyi, bmxyi, txi, tyi], is_mag_phase) [smxr, smyr, smxyr, sbmxr, sbmyr, sbmxyr, stxr, styr, smxi, smyi, smxyi, sbmxi, sbmyi, sbmxyi, stxi, styi] = out #""" #ELEMENT - MEMBRANE FORCES - - BENDING MOMENTS - - TRANSVERSE SHEAR FORCES - #ID FX FY FXY MX MY MXY QX QY #0 564 1.543439E+03 7.311177E+02 1.322702E+02 1.080178E+00 1.699104E+00 2.618547E-01 3.877034E+01 4.518554E+00 #358.3129 358.0245 177.5593 177.5292 178.2112 0.0907 358.1465 179.4567 #""" # fx fy fxy mx my mxy qx qy f06_file.write( '0 %8i %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %8s %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' % ( eid, smxr, smyr, smxyr, sbmxr, sbmyr, sbmxyr, stxr, styr, '', smxi, smyi, smxyi, sbmxi, sbmyi, sbmxyi, stxi, styi)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num - 1 def write_op2(self, op2, op2_ascii, itable, new_result, date, is_mag_phase=False, endian='>'): """writes an OP2""" import inspect from struct import Struct, pack frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) if itable == -1: self._write_table_header(op2, op2_ascii, date) itable = -3 #if isinstance(self.nonlinear_factor, float): #op2_format = '%sif' % (7 * self.ntimes) #raise NotImplementedError() #else: #op2_format = 'i21f' #s = Struct(op2_format) eids = self.element eids_device = eids * 10 + self.device_code # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] nelements = self.data.shape[1] # 21 = 1 node, 3 principal, 6 components, 9 vectors, 2 p/ovm #ntotal = ((nnodes * 21) + 1) + (nelements * 4) ntotali = self.num_wide ntotal = ntotali * nelements #print('shape = %s' % str(self.data.shape)) #assert self.ntimes == 1, self.ntimes op2_ascii.write(' ntimes = %s\n' % self.ntimes) #fmt = '%2i %6f' #print('ntotal=%s' % (ntotal)) #assert ntotal == 193, ntotal if self.is_sort1: struct1 = Struct(endian + b'i 16f') else: raise NotImplementedError('SORT2') op2_ascii.write('%s-nelements=%i\n' % (self.element_name, nelements)) for itime in range(self.ntimes): self._write_table_3(op2, op2_ascii, new_result, itable, itime) # record 4 #print('stress itable = %s' % itable) itable -= 1 header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4 * ntotal] op2.write(pack('%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4 * ntotal)) mx = self.data[itime, :, 0] my = self.data[itime, :, 1] mxy = self.data[itime, :, 2] bmx = self.data[itime, :, 3] bmy = self.data[itime, :, 4] bmxy = self.data[itime, :, 5] tx = self.data[itime, :, 6] ty = self.data[itime, :, 7] for eid_device, mxi, myi, mxyi, bmxi, bmyi, bmxyi, txi, tyi in zip(eids_device, mx, my, mxy, bmx, bmy, bmxy, tx, ty): data = [eid_device, mxi.real, myi.real, mxyi.real, bmxi.real, bmyi.real, bmxyi.real, txi.real, tyi.real, mxi.imag, myi.imag, mxyi.imag, bmxi.imag, bmyi.imag, bmxyi.imag, txi.imag, tyi.imag] op2_ascii.write(' eid_device=%s data=%s\n' % (eid_device, str(data))) op2.write(struct1.pack(*data)) itable -= 1 header = [4 * ntotal,] op2.write(pack('i', *header)) op2_ascii.write('footer = %s\n' % header) new_result = False return itable class ComplexPlate2ForceArray(ComplexForceObject): def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None ComplexForceObject.__init__(self, data_code, isubcase) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.nelements = 0 # result specific #if is_sort1: #pass #else: #raise NotImplementedError('SORT2') def get_headers(self): headers = ['mx', 'my', 'mxy', 'bmx', 'bmy', 'bmxy', 'tx', 'ty'] return headers def build(self): """sizes the vectorized attributes of the ComplexPlate2ForceArray""" if self.is_built: return assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element = zeros(self.nelements, dtype='int32') self.element_node = zeros((self.ntotal, 2), dtype='int32') #[mx, my, mxy, bmx, bmy, bmxy, tx, ty] self.data = zeros((self.ntimes, self.ntotal, 8), dtype='complex64') def build_dataframe(self): """creates a pandas dataframe""" import pandas as pd headers = self.get_headers() assert 0 not in self.element #print(self.element_node) element_node = [self.element_node[:, 0], self.element_node[:, 1]] assert 0 not in self.element_node[:, 0] if self.nonlinear_factor not in (None, np.nan): # Freq 0.00001 10.00000 20.00000 30.00000 40.00000 50.00000 60.00000 # ElementID NodeID Item # 6 0 mx 0j 0j 0j 0j (-705.7376-1327.1312j) 0j 0j # my 0j 0j 0j 0j (7404.8853+13924.8j) 0j 0j # mxy 0j 0j 0j 0j (-101.319756-190.53061j) 0j 0j # bmx 0j 0j 0j 0j (3.0701134+5.7733126j) 0j 0j # bmy 0j 0j 0j 0j (98.75731+185.71196j) 0j 0j # bmxy 0j 0j 0j 0j (0.25202343+0.4739271j) 0j 0j # tx 0j 0j 0j 0j (14.426779+27.129389j) 0j 0j # ty 0j 0j 0j 0j (-199.6823-375.5002j) 0j 0j # 4 mx 0j 0j 0j 0j (-2934.639-5518.5537j) 0j 0j # my 0j 0j 0j 0j (7516.2485+14134.217j) 0j 0j # mxy 0j 0j 0j 0j (-101.319756-190.53061j) 0j 0j # bmx 0j 0j 0j 0j (-19.69526-37.036705j) 0j 0j # bmy 0j 0j 0j 0j (100.64615+189.2639j) 0j 0j # bmxy 0j 0j 0j 0j (0.25202343+0.4739271j) 0j 0j # tx 0j 0j 0j 0j (14.426779+27.129389j) 0j 0j # ty 0j 0j 0j 0j (-199.6823-375.5002j) 0j 0j column_names, column_values = self._build_dataframe_transient_header() data_frame = self._build_pandas_transient_element_node( column_values, column_names, headers, self.element_node, self.data) #data_frame = pd.Panel(self.data, items=column_values, #major_axis=element_node, minor_axis=headers).to_frame() #data_frame.columns.names = column_names #data_frame.index.names = ['ElementID', 'NodeID', 'Item'] else: data_frame = pd.Panel(self.data, major_axis=element_node, minor_axis=headers).to_frame() data_frame.columns.names = ['Static'] data_frame.index.names = ['ElementID', 'NodeID', 'Item'] self.data_frame = data_frame def __eq__(self, table): # pragma: no cover self._eq_header(table) assert self.is_sort1 == table.is_sort1 if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 for itime in range(self.ntimes): for ie, e in enumerate(self.element_node): (eid, nid) = e t1 = self.data[itime, ie, :] t2 = table.data[itime, ie, :] (mx1, my1, mxy1, bmx1, bmy1, bmxy1, tx1, ty1) = t1 (mx2, my2, mxy2, bmx2, bmy2, bmxy2, tx2, ty2) = t2 if not allclose(t1, t2): base1 = '(%s, %s) ' % (eid, nid) base2 = ' ' * len(base1) msg += ( '%s (%s, %s, %s, %s, %s, %s, %s, %s)\n' '%s(%s, %s, %s, %s, %s, %s, %s, %s)\n' % ( base1, mx1, my1, mxy1, bmx1, bmy1, bmxy1, tx1, ty1, base2, mx2, my2, mxy2, bmx2, bmy2, bmxy2, tx2, ty2)) i += 1 if i > 10: print(msg) raise ValueError(msg) if i > 0: raise ValueError(msg) return True def add_new_element_sort1(self, dt, eid, term, nid, mx, my, mxy, bmx, bmy, bmxy, tx, ty): self._times[self.itime] = dt self.element[self.ielement] = eid self.element_node[self.itotal, :] = [eid, nid] self.data[self.itime, self.itotal, :] = [mx, my, mxy, bmx, bmy, bmxy, tx, ty] self.itotal += 1 self.ielement += 1 def add_sort1(self, dt, eid, nid, mx, my, mxy, bmx, bmy, bmxy, tx, ty): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt #assert self.element[self.ielement - 1] == eid, eid self.element_node[self.itotal, :] = [eid, nid] self.data[self.itime, self.itotal, :] = [mx, my, mxy, bmx, bmy, bmxy, tx, ty] self.itotal += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i; table_name=%r\n' % (self.__class__.__name__, nelements, self.table_name)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nnodes, %i] where %i=[%s]\n' % ( ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) #msg.append(' element type: %s\n' % self.element_type) msg.append(' element name: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_f06_header(self, is_mag_phase=True, is_sort1=True): loads = [ ' ELEMENT - MEMBRANE FORCES - - BENDING MOMENTS - - TRANSVERSE SHEAR FORCES -\n' ' ID FX FY FXY MX MY MXY QX QY\n',] if is_mag_phase: mag_real = [' (MAGNITUDE/PHASE)\n \n'] else: mag_real = [' (REAL/IMAGINARY)\n \n'] cquad4_bilinear = [' C O M P L E X F O R C E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n'] # good cquad4_linear = [' C O M P L E X F O R C E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n'] # good ctria3 = [' C O M P L E X F O R C E S I N T R I A N G U L A R E L E M E N T S ( T R I A 3 )\n'] # good cquad8 = [' C O M P L E X F O R C E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 8 )\n'] cquadr = [' C O M P L E X F O R C E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D R )\n'] ctria6 = [' C O M P L E X F O R C E S I N T R I A N G U L A R E L E M E N T S ( T R I A 6 )\n'] ctriar = [' C O M P L E X F O R C E S I N T R I A N G U L A R E L E M E N T S ( T R I A R )\n'] #is_bilinear = False if self.element_type == 144: # CQUAD4 msg = cquad4_linear + mag_real + loads elif self.element_type == 33: # CQUAD4 msg = cquad4_bilinear + mag_real + loads elif self.element_type == 64: #CQUAD8 msg = cquad8 + mag_real + loads elif self.element_type == 82: # CQUADR msg = cquadr + mag_real + loads elif self.element_type == 74: # CTRIA3 msg = ctria3 + mag_real + loads elif self.element_type == 75: # CTRIA6 msg = ctria6 + mag_real + loads elif self.element_type == 70: # CTRIAR msg = ctriar + mag_real + loads else: raise NotImplementedError('name=%r type=%s' % (self.element_name, self.element_type)) return msg def get_element_index(self, eids): # elements are always sorted; nodes are not itot = searchsorted(eids, self.element) #[0] return itot def eid_to_element_node_index(self, eids): #ind = ravel([searchsorted(self.element == eid) for eid in eids]) ind = searchsorted(eids, self.element) #ind = ind.reshape(ind.size) #ind.sort() return ind def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] msg_temp = self.get_f06_header(is_mag_phase=is_mag_phase, is_sort1=is_sort1) # write the f06 #(ntimes, ntotal, two) = self.data.shape ntimes = self.data.shape[0] eids = self.element for itime in range(ntimes): dt = self._times[itime] # TODO: rename this... header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg_temp)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) mx = self.data[itime, :, 0] my = self.data[itime, :, 1] mxy = self.data[itime, :, 2] bmx = self.data[itime, :, 3] bmy = self.data[itime, :, 4] bmxy = self.data[itime, :, 5] tx = self.data[itime, :, 6] ty = self.data[itime, :, 7] for eid, mxi, myi, mxyi, bmxi, bmyi, bmxyi, txi, tyi in zip(eids, mx, my, mxy, bmx, bmy, bmxy, tx, ty): out = write_imag_floats_13e([mxi, myi, mxyi, bmxi, bmyi, bmxyi, txi, tyi], is_mag_phase) [smxr, smyr, smxyr, sbmxr, sbmyr, sbmxyr, stxr, styr, smxi, smyi, smxyi, sbmxi, sbmyi, sbmxyi, stxi, styi] = out #""" #ELEMENT - MEMBRANE FORCES - - BENDING MOMENTS - - TRANSVERSE SHEAR FORCES - #ID FX FY FXY MX MY MXY QX QY #0 564 1.543439E+03 7.311177E+02 1.322702E+02 1.080178E+00 1.699104E+00 2.618547E-01 3.877034E+01 4.518554E+00 #358.3129 358.0245 177.5593 177.5292 178.2112 0.0907 358.1465 179.4567 #""" # fx fy fxy mx my mxy qx qy f06_file.write( '0 %8i %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %8s %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' % ( eid, smxr, smyr, smxyr, sbmxr, sbmyr, sbmxyr, stxr, styr, '', smxi, smyi, smxyi, sbmxi, sbmyi, sbmxyi, stxi, styi)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num - 1 def write_op2(self, op2, op2_ascii, itable, new_result, date, is_mag_phase=False, endian='>'): """writes an OP2""" import inspect from struct import Struct, pack frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) if itable == -1: self._write_table_header(op2, op2_ascii, date) itable = -3 #if isinstance(self.nonlinear_factor, float): #op2_format = '%sif' % (7 * self.ntimes) #raise NotImplementedError() #else: #op2_format = 'i21f' #s = Struct(op2_format) #eids = self.element eids_device = self.element * 10 + self.device_code eids = self.element_node[:, 0] nids = self.element_node[:, 1] # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] nelements = len(self.element) # 21 = 1 node, 3 principal, 6 components, 9 vectors, 2 p/ovm #ntotal = ((nnodes * 21) + 1) + (nelements * 4) ntotali = self.num_wide nnodes_all = 5 numwide_imag = 2 + nnodes_all * 17 assert ntotali == numwide_imag ntotal = ntotali * nelements #print('shape = %s' % str(self.data.shape)) #assert self.ntimes == 1, self.ntimes op2_ascii.write(' ntimes = %s\n' % self.ntimes) #fmt = '%2i %6f' #print('ntotal=%s' % (ntotal)) #assert ntotal == 193, ntotal if self.is_sort1: struct1 = Struct(endian + b'i 4s i 16f') struct2 = Struct(endian + b'i 16f') else: raise NotImplementedError('SORT2') op2_ascii.write('%s-nelements=%i\n' % (self.element_name, nelements)) for itime in range(self.ntimes): self._write_table_3(op2, op2_ascii, new_result, itable, itime) # record 4 #print('stress itable = %s' % itable) itable -= 1 header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4 * ntotal] op2.write(pack('%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4 * ntotal)) mx = self.data[itime, :, 0] my = self.data[itime, :, 1] mxy = self.data[itime, :, 2] bmx = self.data[itime, :, 3] bmy = self.data[itime, :, 4] bmxy = self.data[itime, :, 5] tx = self.data[itime, :, 6] ty = self.data[itime, :, 7] nwide = 0 ielement = -1 for eid, nid, mxi, myi, mxyi, bmxi, bmyi, bmxyi, txi, tyi in zip(eids, nids, mx, my, mxy, bmx, bmy, bmxy, tx, ty): if nid == 0: ielement += 1 eid_device = eids_device[ielement] data = [eid_device, b'CEN/', nid, mxi.real, myi.real, mxyi.real, bmxi.real, bmyi.real, bmxyi.real, txi.real, tyi.real, mxi.imag, myi.imag, mxyi.imag, bmxi.imag, bmyi.imag, bmxyi.imag, txi.imag, tyi.imag] op2_ascii.write(' eid_device=%s data=%s\n' % (eid_device, str(data))) op2.write(struct1.pack(*data)) else: data = [nid, mxi.real, myi.real, mxyi.real, bmxi.real, bmyi.real, bmxyi.real, txi.real, tyi.real, mxi.imag, myi.imag, mxyi.imag, bmxi.imag, bmyi.imag, bmxyi.imag, txi.imag, tyi.imag] op2_ascii.write(' data=%s\n' % (str(data))) op2.write(struct2.pack(*data)) nwide += len(data) assert nwide == ntotal, 'nwide=%s ntotal=%s' % (nwide, ntotal) itable -= 1 header = [4 * ntotal,] op2.write(pack('i', *header)) op2_ascii.write('footer = %s\n' % header) new_result = False return itable class ComplexCBarForceArray(ComplexForceObject): def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None ComplexForceObject.__init__(self, data_code, isubcase) self.result_flag = 0 #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.itime = 0 self.nelements = 0 # result specific #self.element_type = 'CBAR' #self.cid = {} # gridGauss #if is_sort1: ##sort1 #pass #else: #raise NotImplementedError('SORT2') def get_headers(self): headers = ['bending_moment_1a', 'bending_moment_2a', 'bending_moment_1b', 'bending_moment_2b', 'shear1', 'shear2', 'axial', 'torque', ] return headers def build(self): """sizes the vectorized attributes of the ComplexCBarForceArray""" #print('ntimes=%s nelements=%s ntotal=%s subtitle=%s' % ( #self.ntimes, self.nelements, self.ntotal, self.subtitle)) if self.is_built: return nnodes = 1 #self.names = [] #self.nelements //= nnodes self.nelements //= self.ntimes #self.ntotal //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 self.is_built = True #print('ntotal=%s ntimes=%s nelements=%s' % (self.ntotal, self.ntimes, self.nelements)) #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) self._times = zeros(self.ntimes, 'float32') self.element = zeros(self.ntotal, 'int32') # the number is messed up because of the offset for the element's properties if not self.nelements * nnodes == self.ntotal: msg = 'ntimes=%s nelements=%s nnodes=%s ne*nn=%s ntotal=%s' % ( self.ntimes, self.nelements, nnodes, self.nelements * nnodes, self.ntotal) raise RuntimeError(msg) #[bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq] self.data = zeros((self.ntimes, self.ntotal, 8), 'complex64') def build_dataframe(self): """creates a pandas dataframe""" headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() data_frame = self._build_pandas_transient_elements(column_values, column_names, headers, self.element, self.data) #self.data_frame = pd.Panel(self.data, items=column_values, #major_axis=self.element, minor_axis=headers).to_frame() #self.data_frame.columns.names = column_names #self.data_frame.index.names = ['ElementID', 'Item'] self.data_frame = data_frame def __eq__(self, table): # pragma: no cover assert self.is_sort1 == table.is_sort1 self._eq_header(table) if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) ntimes = self.data.shape[0] i = 0 if self.is_sort1: for itime in range(ntimes): for ieid, eid in enumerate(self.element): t1 = self.data[itime, ieid, :] t2 = table.data[itime, ieid, :] (s1a1, s2a1, s3a1, s4a1, axial1, s2a1, s2b1, s2c1, s2d1) = t1 (s1a2, s2a2, s3a2, s4a2, axial2, s2a2, s2b2, s2c2, s2d2) = t2 #d = t1 - t2 if not allclose([s1a1.real, s2a1.real, s3a1.real, s4a1.real, axial1.real, s2a1.real, s2b1.real, s2c1.real, s2d1.real], [s1a2.real, s2a2.real, s3a2.real, s4a2.real, axial2.real, s2a2.real, s2b2.real, s2c2.real, s2d2.real], atol=0.0001): #if not np.array_equal(t1, t2): msg += '%-4s (%s, %s, %s, %s, %s, %s, %s, %s, %s)\n (%s, %s, %s, %s, %s, %s, %s, %s, %s)\n' % ( eid, s1a1.real, s2a1.real, s3a1.real, s4a1.real, axial1.real, s2a1.real, s2b1.real, s2c1.real, s2d1.real, s1a2.real, s2a2.real, s3a2.real, s4a2.real, axial2.real, s2a2.real, s2b2.real, s2c2.real, s2d2.real, ) i += 1 if i > 10: print(msg) raise ValueError(msg) else: raise NotImplementedError(self.is_sort2) if i > 0: print(msg) raise ValueError(msg) return True def add_sort1(self, dt, eid, bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt self.data[self.itime, self.itotal, :] = [bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq] self.element[self.itotal] = eid self.itotal += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) else: msg.append(' type=%s nelements=%i; table_name=%r\n' % ( self.__class__.__name__, nelements, self.table_name)) msg.append(' eType, cid\n') msg.append(' data: [ntimes, nelements, 8] where 8=[%s]\n' % str(', '.join(self.get_headers()))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) msg.append(' is_sort1=%s is_sort2=%s\n' % (self.is_sort1, self.is_sort2)) msg.append(' CBAR\n') msg += self.get_data_code() return msg def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] #msg_temp, nnodes = get_f06_header(self, is_mag_phase, is_sort1) #is_sort1 = False if is_mag_phase: mag_phase = ' (MAGNITUDE/PHASE)\n \n' else: mag_phase = ' (REAL/IMAGINARY)\n \n' name = self.data_code['name'] if name == 'freq': name = 'FREQUENCY' #else: # mode #raise RuntimeError(name) if is_sort1: line1 = '0 ELEMENT BEND-MOMENT-END-A BEND-MOMENT-END-B SHEAR\n' line2 = ' ID. PLANE 1 PLANE 2 PLANE 1 PLANE 2 PLANE 1 PLANE 2 FORCE TORQUE\n' else: line1 = ' BEND-MOMENT-END-A BEND-MOMENT-END-B SHEAR\n' line2 = ' %16s PLANE 1 PLANE 2 PLANE 1 PLANE 2 PLANE 1 PLANE 2 FORCE TORQUE\n' % name # force msg_temp = header + [ ' C O M P L E X F O R C E S I N B A R E L E M E N T S ( C B A R )\n', mag_phase, ' ', line1, line2, ] if self.is_sort1: assert self.is_sort1 == True, str(self) if is_sort1: page_num = self._write_sort1_as_sort1(f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase) else: self._write_sort1_as_sort2(f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase) else: assert self.is_sort1 == True, str(self) return page_num - 1 def _write_sort1_as_sort1(self, f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase): eids = self.element #times = self._times ntimes = self.data.shape[0] for itime in range(ntimes): dt = self._times[itime] dt_line = ' %14s = %12.5E\n' % (self.data_code['name'], dt) header[1] = dt_line msg = header + msg_temp f06_file.write(''.join(msg)) #bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq assert self.is_sort1 == True, str(self) bm1a = self.data[itime, :, 0] bm2a = self.data[itime, :, 1] bm1b = self.data[itime, :, 2] bm2b = self.data[itime, :, 3] ts1 = self.data[itime, :, 4] ts2 = self.data[itime, :, 5] af = self.data[itime, :, 6] trq = self.data[itime, :, 7] for eid, bm1ai, bm2ai, bm1bi, bm2bi, ts1i, ts2i, afi, trqi in zip(eids, bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq): vals = (bm1ai, bm2ai, bm1bi, bm2bi, ts1i, ts2i, afi, trqi) vals2 = write_imag_floats_13e(vals, is_mag_phase) (bm1air, bm2air, bm1bir, bm2bir, ts1ir, ts2ir, afir, trqir, bm1aii, bm2aii, bm1bii, bm2bii, ts1ii, ts2ii, afii, trqii) = vals2 f06_file.write('0%16i %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %14s %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' % ( eid, bm1air, bm2air, bm1bir, bm2bir, ts1ir, ts2ir, afir, trqir, '', bm1aii, bm2aii, bm1bii, bm2bii, ts1ii, ts2ii, afii, trqii)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num def _write_sort1_as_sort2(self, f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase): eids = self.element times = self._times #ntimes = self.data.shape[0] for ieid, eid in enumerate(eids): eid_line = ' ELEMENT-ID = %s' % (eid) header[1] = eid_line msg = header + msg_temp f06_file.write(''.join(msg)) #bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq bm1a = self.data[:, ieid, 0] bm2a = self.data[:, ieid, 1] bm1b = self.data[:, ieid, 2] bm2b = self.data[:, ieid, 3] ts1 = self.data[:, ieid, 4] ts2 = self.data[:, ieid, 5] af = self.data[:, ieid, 6] trq = self.data[:, ieid, 7] for dt, bm1ai, bm2ai, bm1bi, bm2bi, ts1i, ts2i, afi, trqi in zip(times, bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq): vals = (bm1ai, bm2ai, bm1bi, bm2bi, ts1i, ts2i, afi, trqi) vals2 = write_imag_floats_13e(vals, is_mag_phase) (bm1air, bm2air, bm1bir, bm2bir, ts1ir, ts2ir, afir, trqir, bm1aii, bm2aii, bm1bii, bm2bii, ts1ii, ts2ii, afii, trqii) = vals2 f06_file.write('0%16s %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %15s %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' % ( write_float_12e(dt), bm1air, bm2air, bm1bir, bm2bir, ts1ir, ts2ir, afir, trqir, '', bm1aii, bm2aii, bm1bii, bm2bii, ts1ii, ts2ii, afii, trqii)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num def write_op2(self, op2, op2_ascii, itable, new_result, date, is_mag_phase=False, endian='>'): """writes an OP2""" import inspect from struct import Struct, pack frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) if itable == -1: self._write_table_header(op2, op2_ascii, date) itable = -3 #if isinstance(self.nonlinear_factor, float): #op2_format = '%sif' % (7 * self.ntimes) #raise NotImplementedError() #else: #op2_format = 'i21f' #s = Struct(op2_format) eids = self.element eids_device = eids * 10 + self.device_code # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] nelements = self.data.shape[1] # 21 = 1 node, 3 principal, 6 components, 9 vectors, 2 p/ovm #ntotal = ((nnodes * 21) + 1) + (nelements * 4) ntotali = self.num_wide ntotal = ntotali * nelements #print('shape = %s' % str(self.data.shape)) #assert self.ntimes == 1, self.ntimes op2_ascii.write(' ntimes = %s\n' % self.ntimes) #fmt = '%2i %6f' #print('ntotal=%s' % (ntotal)) #assert ntotal == 193, ntotal if self.is_sort1: struct1 = Struct(endian + b'i 16f') else: raise NotImplementedError('SORT2') op2_ascii.write('%s-nelements=%i\n' % (self.element_name, nelements)) for itime in range(self.ntimes): self._write_table_3(op2, op2_ascii, new_result, itable, itime) # record 4 #print('stress itable = %s' % itable) itable -= 1 header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4 * ntotal] op2.write(pack('%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4 * ntotal)) #bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq bm1a = self.data[itime, :, 0] bm2a = self.data[itime, :, 1] bm1b = self.data[itime, :, 2] bm2b = self.data[itime, :, 3] ts1 = self.data[itime, :, 4] ts2 = self.data[itime, :, 5] af = self.data[itime, :, 6] trq = self.data[itime, :, 7] assert len(eids_device) == len(bm1a.real) for eid_device, bm1ai, bm2ai, bm1bi, bm2bi, ts1i, ts2i, afi, trqi in zip( eids_device, bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq): data = [eid_device, bm1ai.real, bm2ai.real, bm1bi.real, bm2bi.real, ts1i.real, ts2i.real, afi.real, trqi.real, bm1ai.imag, bm2ai.imag, bm1bi.imag, bm2bi.imag, ts1i.imag, ts2i.imag, afi.imag, trqi.imag] op2_ascii.write(' eid_device=%s data=%s\n' % (eid_device, str(data))) op2.write(struct1.pack(*data)) itable -= 1 header = [4 * ntotal,] op2.write(pack('i', *header)) op2_ascii.write('footer = %s\n' % header) new_result = False return itable class ComplexCBeamForceArray(ComplexForceObject): def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None ComplexForceObject.__init__(self, data_code, isubcase) self.result_flag = 0 self.itime = 0 self.nelements = 0 # result specific #self.element_type = 'CBEAM' #if is_sort1: ##sort1 #pass #else: #raise NotImplementedError('SORT2') def get_headers(self): headers = [ 'sd', 'bending_moment1', 'bending_moment2', 'shear1', 'shear2', 'axial_force', 'total_torque', 'warping_torque', ] return headers def build(self): """sizes the vectorized attributes of the ComplexCBeamForceArray""" #print('ntimes=%s nelements=%s ntotal=%s subtitle=%s' % ( #self.ntimes, self.nelements, self.ntotal, self.subtitle)) nnodes = 11 #self.names = [] #self.nelements //= nnodes self.nelements //= self.ntimes #self.ntotal //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 self.is_built = True #print('ntotal=%s ntimes=%s nelements=%s' % (self.ntotal, self.ntimes, self.nelements)) #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) self._times = zeros(self.ntimes, 'float32') self.element = zeros(self.ntotal, 'int32') self.element_node = zeros((self.ntotal, 2), 'int32') # the number is messed up because of the offset for the element's properties if not self.nelements * nnodes == self.ntotal: msg = 'ntimes=%s nelements=%s nnodes=%s ne*nn=%s ntotal=%s' % ( self.ntimes, self.nelements, nnodes, self.nelements * nnodes, self.ntotal) raise RuntimeError(msg) #[sd, bm1, bm2, ts1, ts2, af, ttrq, wtrq] self.data = zeros((self.ntimes, self.ntotal, 8), 'complex64') def finalize(self): sd = self.data[0, :, 0].real i_sd_zero = np.where(sd != 0.0)[0] i_node_zero = np.where(self.element_node[:, 1] != 0)[0] assert i_node_zero.max() > 0, 'CBEAM element_node hasnt been filled' i = np.union1d(i_sd_zero, i_node_zero) self.element = self.element[i] self.element_node = self.element_node[i, :] self.data = self.data[:, i, :] def build_dataframe(self): """creates a pandas dataframe""" # Freq 0.00001 10.00000 ... 50.00000 60.00000 # ElementID Location Item ... # 12.0 12.0 bending_moment1 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # bending_moment2 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # shear1 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # shear2 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # axial_force 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # total_torque 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # warping_torque 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # 0.0 1.0 bending_moment1 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # bending_moment2 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # shear1 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # shear2 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # axial_force 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # total_torque 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j # warping_torque 0.000000+0.000000j 0.000000+0.000000j ... 0.000000+0.000000j 0.000000+0.000000j import pandas as pd headers = self.get_headers()[1:] column_names, column_values = self._build_dataframe_transient_header() element_location = [ self.element_node[:, 0], self.data[0, :, 0].real, ] is_v25 = pd.__version__ >= '0.25' if is_v25: print(f'skipping pandas {self.class_name}') return # wrong type for ElementID #data_frame = self._build_pandas_transient_element_node( #column_values, column_names, #headers, element_location, self.data[:, :, 1:]) #data_frame.index.names = ['ElementID', 'Location', 'Item'] #data_frame.index['ElementID', :]# .astype('int32') #print(data_frame) data_frame = pd.Panel(self.data[:, :, 1:], items=column_values, major_axis=element_location, minor_axis=headers).to_frame() data_frame.columns.names = column_names data_frame.index.names = ['ElementID', 'Location', 'Item'] #print(data_frame) self.data_frame = data_frame def __eq__(self, table): # pragma: no cover return self.assert_equal(table) def assert_equal(self, table, rtol=1.e-5, atol=1.e-8): assert self.is_sort1 == table.is_sort1 self._eq_header(table) if not np.allclose(self.data, table.data, atol=atol): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) ntimes = self.data.shape[0] i = 0 if self.is_sort1: for itime in range(ntimes): for ieid, eid in enumerate(self.element): t1 = self.data[itime, ieid, :] t2 = table.data[itime, ieid, :] #print(t1) #'sd', 'bending_moment1', 'bending_moment2', 'shear1', 'shear2', #'axial_force', 'total_torque', 'warping_torque', ] (sd1, bm11, bm21, shear11, shear21, axial1, total_torque1, warp_torque1) = t1 (sd2, bm12, bm22, shear12, shear22, axial2, total_torque2, warp_torque2) = t2 d = t1 - t2 if not allclose(t1, t2, atol=atol): msg += ( '%-4s (%s, %sj, %s, %sj, %s, %sj, %s, %sj, %s, %sj, %s, %sj, %s, %sj)\n' ' (%s, %sj, %s, %sj, %s, %sj, %s, %sj, %s, %sj, %s, %sj, %s, %sj)\n' ' dt12=(%s, %sj, %s, %sj, %s, %sj, %s, %sj, %s, %sj, %s, %sj, %s, %sj)\n' % ( eid, bm11.real, bm11.imag, bm21.real, bm21.imag, shear11.real, shear11.imag, shear21.real, shear21.imag, axial1.real, axial1.imag, total_torque1.real, total_torque1.imag, warp_torque1.real, warp_torque1.imag, bm12.real, bm12.imag, bm22.real, bm22.imag, shear12.real, shear12.imag, shear22.real, shear22.imag, axial2.real, axial2.imag, total_torque2.real, total_torque2.imag, warp_torque2.real, warp_torque2.imag, d[0].real, d[0].imag, d[1].real, d[1].imag, d[2].real, d[2].imag, d[3].real, d[3].imag, d[4].real, d[4].imag, d[5].real, d[5].imag, d[6].real, d[6].imag, )) i += 1 if i > 10: print(msg) raise ValueError(msg) else: raise NotImplementedError(self.is_sort2) if i > 0: print(msg) raise ValueError(msg) return True #def add_new_element_sort1(self, dt, eid, nid, sd, bm1, bm2, ts1, ts2, af, ttrq, wtrq): #return self.add_sort1(dt, eid, nid, sd, bm1, bm2, ts1, ts2, af, ttrq, wtrq) def add_sort1(self, dt, eid, nid, sd, bm1, bm2, ts1, ts2, af, ttrq, wtrq): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt self.data[self.itime, self.itotal, :] = [sd, bm1, bm2, ts1, ts2, af, ttrq, wtrq] self.element[self.itotal] = eid self.element_node[self.itotal, :] = [eid, nid] self.itotal += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i\n' % (self.__class__.__name__, ntimes, nelements)) else: msg.append(' type=%s nelements=%i\n' % (self.__class__.__name__, nelements)) #msg.append(' eType, cid\n') msg.append(' data: [ntimes, nelements, 8] where 8=[%s]\n' % str(', '.join(self.get_headers()))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) msg.append(' is_sort1=%s is_sort2=%s\n' % (self.is_sort1, self.is_sort2)) msg.append(' CBEAM\n') msg += self.get_data_code() return msg def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] # option B #' C O M P L E X F O R C E S I N B E A M E L E M E N T S ( C B E A M ) ' #' (REAL/IMAGINARY)' #' STAT DIST/ - BENDING MOMENTS - - WEB SHEARS - AXIAL TOTAL WARPING' #' ELEMENT-ID GRID LENGTH PLANE 1 PLANE 2 PLANE 1 PLANE 2 FORCE TORQUE TORQUE' #'0 20' #'0 11 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0' #' 0.0 0.0 0.0 0.0 0.0 0.0 0.0' #'0 12 1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0' #' 0.0 0.0 0.0 0.0 0.0 0.0 0.0' #msg_temp, nnodes = get_f06_header(self, is_mag_phase, is_sort1) #print('write_f06 not implemented for ComplexCBeamForceArray') #return page_num #asdf #is_sort1 = False if is_mag_phase: mag_phase = ' (MAGNITUDE/PHASE)\n \n' else: mag_phase = ' (REAL/IMAGINARY)\n \n' if is_sort1: line1 = '0 ELEMENT BEND-MOMENT-END-A BEND-MOMENT-END-B SHEAR\n' line2 = ' ID. PLANE 1 PLANE 2 PLANE 1 PLANE 2 PLANE 1 PLANE 2 FORCE TORQUE\n' else: name = self.data_code['name'] if name == 'freq': name = 'FREQUENCY' else: # mode raise RuntimeError(name) line1 = ' BEND-MOMENT-END-A BEND-MOMENT-END-B SHEAR\n' line2 = ' %16s PLANE 1 PLANE 2 PLANE 1 PLANE 2 PLANE 1 PLANE 2 FORCE TORQUE\n' % name # force msg_temp = header + [ ' C O M P L E X F O R C E S I N B A R E L E M E N T S ( C B E A M )\n', mag_phase, ' ', line1, line2, ] if self.is_sort1: assert self.is_sort1 == True, str(self) #if is_sort1: page_num = self._write_sort1_as_sort1(f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase) #else: #self._write_sort1_as_sort2(f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase) else: assert self.is_sort1 == True, str(self) return page_num - 1 def _write_sort1_as_sort1(self, f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase): eids = self.element #times = self._times ntimes = self.data.shape[0] for itime in range(ntimes): dt = self._times[itime] dt_line = ' %14s = %12.5E\n' % (self.data_code['name'], dt) header[1] = dt_line msg = header + msg_temp f06_file.write(''.join(msg)) #bm1a, bm2a, bm1b, bm2b, ts1, ts2, af, trq assert self.is_sort1 == True, str(self) #sd, bm1, bm2, ts1, ts2, af, ttrq, wtrq sd = self.data[itime, :, 0] bm1 = self.data[itime, :, 1] bm2 = self.data[itime, :, 2] ts1 = self.data[itime, :, 3] ts2 = self.data[itime, :, 4] af = self.data[itime, :, 5] ttrq = self.data[itime, :, 6] wtrq = self.data[itime, :, 7] for eid, sdi, bm1i, bm2i, ts1i, ts2i, afi, ttrqi, wtrqi in zip(eids, sd, bm1, bm2, ts1, ts2, af, ttrq, wtrq): vals = (sdi, bm1i, bm2i, ts1i, ts2i, afi, ttrqi, wtrqi) vals2 = write_imag_floats_13e(vals, is_mag_phase) (sdir, bm1ir, bm2ir, ts1ir, ts2ir, afir, ttrqir, wtrqir, sdii, bm1ii, bm2ii, ts1ii, ts2ii, afii, ttrqii, wtrqii) = vals2 f06_file.write('0%16i %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %14s %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' % ( eid, sdir, bm1ir, bm2ir, ts1ir, ts2ir, afir, ttrqir, wtrqir, '', sdii, bm1ii, bm2ii, ts1ii, ts2ii, afii, ttrqii, wtrqii)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num def write_op2(self, op2, op2_ascii, itable, new_result, date, is_mag_phase=False, endian='>'): """writes an OP2""" import inspect from struct import Struct, pack frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) if itable == -1: self._write_table_header(op2, op2_ascii, date) itable = -3 eids = self.element_node[:, 0] nids = self.element_node[:, 1] #long_form = False #if nids.min() == 0: #long_form = True eids_device = eids * 10 + self.device_code ueids = np.unique(eids) #ieid = np.searchsorted(eids, ueids) # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] nelements = len(ueids) # 21 = 1 node, 3 principal, 6 components, 9 vectors, 2 p/ovm #ntotal = ((nnodes * 21) + 1) + (nelements * 4) ntotali = self.num_wide ntotal = ntotali * nelements op2_ascii.write(' ntimes = %s\n' % self.ntimes) #print('ntotal=%s' % (ntotal)) #assert ntotal == 193, ntotal if self.is_sort1: struct1 = Struct(endian + b'2i 15f') struct2 = Struct(endian + b'i 15f') else: raise NotImplementedError('SORT2') op2_ascii.write('nelements=%i\n' % nelements) for itime in range(self.ntimes): self._write_table_3(op2, op2_ascii, new_result, itable, itime) # record 4 itable -= 1 header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4 * ntotal] op2.write(pack('%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4 * ntotal)) sd = self.data[itime, :, 0] bm1 = self.data[itime, :, 1] bm2 = self.data[itime, :, 2] ts1 = self.data[itime, :, 3] ts2 = self.data[itime, :, 4] af = self.data[itime, :, 5] ttrq = self.data[itime, :, 6] wtrq = self.data[itime, :, 7] icount = 0 nwide = 0 ielement = 0 assert len(eids) == len(sd) for eid, sdi, bm1i, bm2i, ts1i, ts2i, afi, ttrqi, wtrqi in zip(eids, sd, bm1, bm2, ts1, ts2, af, ttrq, wtrq): if icount == 0: eid_device = eids_device[ielement] nid = nids[ielement] data = [eid_device, nid, sdi.real, bm1i.real, bm2i.real, ts1i.real, ts2i.real, afi.real, ttrqi.real, wtrqi.real, bm1i.imag, bm2i.imag, ts1i.imag, ts2i.imag, afi.imag, ttrqi.imag, wtrqi.imag] # 17 op2.write(struct1.pack(*data)) ielement += 1 icount = 1 elif nid > 0 and icount > 0: # 11 total nodes, with 1, 11 getting an nid; the other 9 being # xxb sections data = [0, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] #print('***adding %s\n' % (10-icount)) for unused_i in range(10 - icount): op2.write(struct2.pack(*data)) nwide += len(data) eid_device2 = eids_device[ielement] #print(eids_device) assert eid_device == eid_device2, 'eid_device=%s eid_device2=%s' % (eid_device, eid_device2) nid = nids[ielement] data = [nid, sdi.real, bm1i.real, bm2i.real, ts1i.real, ts2i.real, afi.real, ttrqi.real, wtrqi.real, bm1i.imag, bm2i.imag, ts1i.imag, ts2i.imag, afi.imag, ttrqi.imag, wtrqi.imag] # 16 op2.write(struct2.pack(*data)) ielement += 1 icount = 0 else: raise RuntimeError('CBEAM OEF op2 writer') #data = [0, xxb, sxc, sxd, sxe, sxf, smax, smin, smt, smc] # 10 #op2.write(struct2.pack(*data)) #icount += 1 op2_ascii.write(' eid_device=%s data=%s\n' % (eid_device, str(data))) nwide += len(data) assert ntotal == nwide, 'ntotal=%s nwide=%s' % (ntotal, nwide) itable -= 1 header = [4 * ntotal,] op2.write(pack('i', *header)) op2_ascii.write('footer = %s\n' % header) new_result = False return itable class ComplexCBendForceArray(BaseElement): # 69-CBEND def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None BaseElement.__init__(self, data_code, isubcase) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.nelements = 0 # result specific #if is_sort1: #pass #else: #raise NotImplementedError('SORT2') def _reset_indices(self): self.itotal = 0 self.ielement = 0 def get_headers(self): headers = [ 'bending_moment_1a', 'bending_moment_2a', 'shear_1a', 'shear_2a', 'axial_a', 'torque_a', 'bending_moment_1b', 'bending_moment_2b', 'shear_1b', 'shear_2b', 'axial_b', 'torque_b', ] return headers def build(self): """sizes the vectorized attributes of the ComplexCBendForceArray""" #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element_node = zeros((self.nelements, 3), dtype='int32') #[bending_moment_1a, bending_moment_2a, shear_1a, shear_2a, axial_a, torque_a # bending_moment_1b, bending_moment_2b, shear_1b, shear_2b, axial_b, torque_b] self.data = zeros((self.ntimes, self.nelements, 12), dtype='complex64') def build_dataframe(self): """creates a pandas dataframe""" #Freq 0.0 2.5 #ElementID Item #6901 bending_moment_1a 1.066567-0.035549j 1.066996-0.035577j # bending_moment_2a 1.101375-0.036709j 1.102188-0.036763j # shear_1a 0.516478-0.017214j 0.516842-0.017239j # shear_2a 0.859292-0.028640j 0.860111-0.028695j # axial_a 0.834822-0.027825j 0.834982-0.027835j # torque_a 0.953420-0.031777j 0.953947-0.031813j # bending_moment_1b -0.284733+0.009490j -0.284828+0.009497j # bending_moment_2b 0.094127-0.003137j 0.093836-0.003118j # shear_1b 0.834822-0.027825j 0.834982-0.027835j # shear_2b 0.859292-0.028640j 0.860111-0.028695j # axial_b -0.516478+0.017214j -0.516842+0.017239j # torque_b -0.242082+0.008069j -0.242077+0.008068j #6902 bending_moment_1a -0.931214+0.031037j -0.931519+0.031058j headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() # element_node is (nelements, 3) element = self.element_node[:, 0] self.data_frame = self._build_pandas_transient_elements( column_values, column_names, headers, element, self.data) def __eq__(self, table): # pragma: no cover assert self.is_sort1 == table.is_sort1 if not np.array_equal(self.element_node, table.element_node): assert self.element_node.shape == table.element_node.shape, 'element_node shape=%s table.shape=%s' % (self.element_node.shape, table.element_nodes.shape) msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) msg += 'Eid, Nid_A, Nid_B\n' for (eid1, nida1, nidb1), (eid2, nida2, nidb2) in zip(self.element_node, table.element_node): msg += '(%s, %s, %s), (%s, %s, %s)\n' % (eid1, nida1, nidb1, eid2, nida2, nidb2) print(msg) raise ValueError(msg) if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 eids = self.element_node[:, 0] for itime in range(self.ntimes): for ie, eid in enumerate(eids): t1 = self.data[itime, ie, :] t2 = table.data[itime, ie, :] (bending_moment_1a1, bending_moment_2a1, shear_1a1, shear_2a1, axial_a1, torque_a1, bending_moment_1b1, bending_moment_2b1, shear_1b1, shear_2b1, axial_b1, torque_b1) = t1 (bending_moment_1a2, bending_moment_2a2, shear_1a2, shear_2a2, axial_a2, torque_a2, bending_moment_1b2, bending_moment_2b2, shear_1b2, shear_2b2, axial_b2, torque_b2) = t2 if not allclose(t1, t2): msg += '(%s) (%s, %s) (%s, %s)\n' % ( eid, bending_moment_1a1.real, bending_moment_1b1.real, bending_moment_1a2.real, bending_moment_1b2.real, ) i += 1 if i > 10: print(msg) raise ValueError(msg) #if not allclose(t1, t2): #msg += '(%s) (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)\n' % ( #eid, #bending_moment_1a1, bending_moment_2a1, shear_1a1, shear_2a1, axial_a1, torque_a1, #bending_moment_1b1, bending_moment_2b1, shear_1b1, shear_2b1, axial_b1, torque_b1, #bending_moment_1a2, bending_moment_2a2, shear_1a2, shear_2a2, axial_a2, torque_a2, #bending_moment_1b2, bending_moment_2b2, shear_1b2, shear_2b2, axial_b2, torque_b2) #i += 1 #if i > 10: #print(msg) #raise ValueError(msg) #print(msg) if i > 0: raise ValueError(msg) return True def add_sort1(self, dt, eid, nid_a, bending_moment_1a, bending_moment_2a, shear_1a, shear_2a, axial_a, torque_a, nid_b, bending_moment_1b, bending_moment_2b, shear_1b, shear_2b, axial_b, torque_b): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) #bending_moment_1a, bending_moment_2a, shear_1a, shear_2a, axial_a, torque_a, #bending_moment_1b, bending_moment_2b, shear_1b, shear_2b, axial_b, torque_b self._times[self.itime] = dt self.element_node[self.ielement] = [eid, nid_a, nid_b] self.data[self.itime, self.ielement, :] = [ bending_moment_1a, bending_moment_2a, shear_1a, shear_2a, axial_a, torque_a, bending_moment_1b, bending_moment_2b, shear_1b, shear_2b, axial_b, torque_b ] self.ielement += 1 if self.ielement == self.nelements: self.ielement = 0 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i; table_name=%r\n' % (self.__class__.__name__, nelements, self.table_name)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nnodes, %i] where %i=[%s]\n' % ( ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) #msg.append(' element type: %s\n' % self.element_type) msg.append(' element name: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_f06_header(self, is_mag_phase=True, is_sort1=True): msg = [' C O M P L E X F O R C E S I N B E N D E L E M E N T S ( C B E N D )\n'] if is_mag_phase: msg += [' (MAGNITUDE/PHASE)\n'] else: msg += [' (REAL/IMAGINARY)\n'] if is_sort1: msg += [ ' - BENDING MOMENTS - - SHEARS - AXIAL' ' ELEMENT-ID GRID END PLANE 1 PLANE 2 PLANE 1 PLANE 2 FORCE TORQUE' ] else: raise NotImplementedError('sort2') return msg def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] #' C O M P L E X F O R C E S I N B E N D E L E M E N T S ( C B E N D )' #' (REAL/IMAGINARY)' #' - BENDING MOMENTS - - SHEARS - AXIAL' #' ELEMENT-ID GRID END PLANE 1 PLANE 2 PLANE 1 PLANE 2 FORCE TORQUE' #'0 27 21 A 0.0 0.0 0.0 0.0 0.0 0.0' #' 0.0 0.0 0.0 0.0 0.0 0.0' #'0 22 B 0.0 0.0 0.0 0.0 0.0 0.0' #' 0.0 0.0 0.0 0.0 0.0 0.0' msg_temp = self.get_f06_header(is_mag_phase=is_mag_phase, is_sort1=is_sort1) # write the f06 #(ntimes, ntotal, two) = self.data.shape ntimes = self.data.shape[0] eids = self.element_node[:, 0] nid_a = self.element_node[:, 1] nid_b = self.element_node[:, 2] for itime in range(ntimes): dt = self._times[itime] # TODO: rename this... header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg_temp)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) bending_moment_1a = self.data[itime, :, 0] bending_moment_2a = self.data[itime, :, 1] shear_1a = self.data[itime, :, 2] shear_2a = self.data[itime, :, 3] axial_a = self.data[itime, :, 4] torque_a = self.data[itime, :, 5] bending_moment_1b = self.data[itime, :, 6] bending_moment_2b = self.data[itime, :, 7] shear_1b = self.data[itime, :, 8] shear_2b = self.data[itime, :, 9] axial_b = self.data[itime, :, 10] torque_b = self.data[itime, :, 11] for (eid, nid_ai, bending_moment_1ai, bending_moment_2ai, shear_1ai, shear_2ai, axial_ai, torque_ai, nid_bi, bending_moment_1bi, bending_moment_2bi, shear_1bi, shear_2bi, axial_bi, torque_bi) in zip(eids, nid_a, bending_moment_1a, bending_moment_2a, shear_1a, shear_2a, axial_a, torque_a, nid_b, bending_moment_1b, bending_moment_2b, shear_1b, shear_2b, axial_b, torque_b): [bending_moment_1ari, bending_moment_2ari, shear_1ari, shear_2ari, axial_ari, torque_ari, bending_moment_1bri, bending_moment_2bri, shear_1bri, shear_2bri, axial_bri, torque_bri, bending_moment_1aii, bending_moment_2aii, shear_1aii, shear_2aii, axial_aii, torque_aii, bending_moment_1bii, bending_moment_2bii, shear_1bii, shear_2bii, axial_bii, torque_bii, ] = write_imag_floats_13e( [bending_moment_1ai, bending_moment_2ai, shear_1ai, shear_2ai, axial_ai, torque_ai, bending_moment_1bi, bending_moment_2bi, shear_1bi, shear_2bi, axial_bi, torque_bi], is_mag_phase) f06_file.write( '0 %8s%8s A %13s %13s %13s %13s %13s %s\n' ' %13s %13s %13s %13s %13s %s\n' '0 %8s%8s B %13s %13s %13s %13s %13s %s\n' ' %13s %13s %13s %13s %13s %s\n' % ( eid, nid_ai, bending_moment_1ari, bending_moment_2ari, shear_1ari, shear_2ari, axial_ari, torque_ari, bending_moment_1aii, bending_moment_2aii, shear_1aii, shear_2aii, axial_aii, torque_aii, '', nid_bi, bending_moment_1bri, bending_moment_2bri, shear_1bri, shear_2bri, axial_bri, torque_bri, bending_moment_1bii, bending_moment_2bii, shear_1bii, shear_2bii, axial_bii, torque_bii,)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num - 1 class ComplexSolidPressureForceArray(ComplexForceObject): def __init__(self, data_code, is_sort1, isubcase, dt): self.element_type = None self.element_name = None ComplexForceObject.__init__(self, data_code, isubcase) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.nelements = 0 # result specific if is_sort1: pass else: raise NotImplementedError('SORT2') def _reset_indices(self): self.itotal = 0 self.ielement = 0 def get_headers(self): headers = ['ax', 'ay', 'az', 'vx', 'vy', 'vz', 'pressure'] return headers #def get_headers(self): #headers = ['axial', 'torque'] #return headers def build(self): """sizes the vectorized attributes of the ComplexSolidPressureForceArray""" #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) if self.is_built: return assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element = zeros(self.nelements, dtype='int32') #[ax, ay, az, vx, vy, vz, pressure] self.data = zeros((self.ntimes, self.ntotal, 7), dtype='complex64') def build_dataframe(self): """creates a pandas dataframe""" #Mode 1 2 #EigenvalueReal -0.000000 -0.000000 #EigenvalueImag -0.000000 -0.000000 #Damping 0.000000 0.000000 #ElementID Item #1000 ax -1.887379e-13+2.791559e-13j -1.901257e-13+2.789015e-13j # ay 3.330669e-14-7.316397e-14j 1.776357e-14-7.368508e-14j # az -1.360023e-13-9.545406e-14j -1.432188e-13-8.333307e-14j # vx 0.000000e+00+0.000000e+00j 0.000000e+00+0.000000e+00j # vy 0.000000e+00+0.000000e+00j 0.000000e+00+0.000000e+00j # vz 0.000000e+00+0.000000e+00j 0.000000e+00+0.000000e+00j # pressure 0.000000e+00+0.000000e+00j 0.000000e+00+0.000000e+00j headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() self.data_frame = self._build_pandas_transient_elements( column_values, column_names, headers, self.element, self.data) def __eq__(self, table): # pragma: no cover self._eq_header(table) assert self.is_sort1 == table.is_sort1 if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 for itime in range(self.ntimes): for ie, eid in enumerate(self.element): t1 = self.data[itime, ie, :] t2 = table.data[itime, ie, :] (ax1, ay1, az1, vx1, vy1, vz1, pressure1) = t1 (ax2, ay2, az2, vx2, vy2, vz2, pressure2) = t2 #rpressure1 = pressure1.real #rpressure2 = pressure2.real if not allclose([ax1, ay1, az1, vx1, vy1, vz1], [ax2, ay2, az2, vx2, vy2, vz2]): msg += '%s (%s, %s) (%s, %s)\n' % ( eid, ax1.real, t1.imag, ax2.real, t2.imag) i += 1 if i > 10: print(msg) raise ValueError(msg) #print(msg) if i > 0: raise ValueError(msg) return True def add_sort1(self, dt, eid, ename, ax, ay, az, vx, vy, vz, pressure): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) self._times[self.itime] = dt self.element[self.ielement] = eid self.data[self.itime, self.ielement, :] = [ax, ay, az, vx, vy, vz, pressure] self.ielement += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i; table_name=%r\n' % (self.__class__.__name__, nelements, self.table_name)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nelements, %i] where %i=[%s]\n' % ( ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) #msg.append(' element type: %s\n' % self.element_type) msg.append(' element name: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_f06_header(self, is_mag_phase=True, is_sort1=True): msg = [ ' ( R O O T M E A N S Q U A R E ) \n' ' C O M P L E X A C C E L E R A T I O N S V E L O C I T I E S A N D P R E S S U R E L E V E L S\n' #' (REAL/IMAGINARY)' #' ELE-ID EL-TYPE X-ACCELERATION Y-ACCELERATION Z-ACCELERATION X-VELOCITY Y-VELOCITY Z-VELOCITY PRESSURE (DB)' #' 2000 PENPR 6.883253E+06 1.066544E+07 -6.883253E+06 7.288279E+05 -3.134843E+04 -7.288279E+05 1.162309E+02' #' 1.831744E+07 -7.878719E+05 -1.831744E+07 -2.738759E+05 -4.243642E+05 2.738759E+05' #'' ] #msg = [' C O M P L E X A C O U S T I C P R E S S U R E R E S U L T S'] #' C O M P L E X A C O U S T I C P R E S S U R E R E S U L T S' #' (MAGNITUDE/PHASE)' #' ' #' POINT ID. TYPE P P(RMS) DB DB(A)' #'0 57 S 7.339671E+05 5.189931E+05 1.173135E+02 3.011353E+01' #' 249.9102 249.9102 249.9102 249.9102' if is_mag_phase: msg += [' (MAGNITUDE/PHASE)\n \n'] else: msg += [' (REAL/IMAGINARY)\n \n'] if is_sort1: msg += [' ELE-ID EL-TYPE X-ACCELERATION Y-ACCELERATION Z-ACCELERATION X-VELOCITY Y-VELOCITY Z-VELOCITY PRESSURE (DB)\n'] #msg += [ #' POINT ID. TYPE P P(RMS) DB DB(A)\n' #] #' 14 0.0 / 0.0 0.0 / 0.0' else: raise NotImplementedError('sort2') return msg #def get_element_index(self, eids): ## elements are always sorted; nodes are not #itot = searchsorted(eids, self.element) #[0] #return itot #def eid_to_element_node_index(self, eids): ##ind = ravel([searchsorted(self.element == eid) for eid in eids]) #ind = searchsorted(eids, self.element) ##ind = ind.reshape(ind.size) ##ind.sort() #return ind def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] msg_temp = self.get_f06_header(is_mag_phase=is_mag_phase, is_sort1=is_sort1) # write the f06 #(ntimes, ntotal, two) = self.data.shape ntimes = self.data.shape[0] eids = self.element #print('len(eids)=%s nwrite=%s is_odd=%s' % (len(eids), nwrite, is_odd)) etypei = self.element_type for itime in range(ntimes): dt = self._times[itime] # TODO: rename this... header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg_temp)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) ax = self.data[itime, :, 0] ay = self.data[itime, :, 0] az = self.data[itime, :, 0] vx = self.data[itime, :, 0] vy = self.data[itime, :, 0] vz = self.data[itime, :, 0] pressure = self.data[itime, :, 0] for eid, axi, ayi, azi, vxi, vyi, vzi, pressurei in zip(eids, ax, ay, az, vx, vy, vz, pressure): out = write_imag_floats_13e([axi, ayi, azi, vxi, vyi, vzi, pressurei], is_mag_phase) [saxr, sayr, sazr, svxr, svyr, svzr, spressurer, saxi, sayi, sazi, svxi, svyi, svzi, spressurei] = out #' 1000 HEXPR 1.582050E-08 5.505425E+06 2.598164E-09 -8.884337E-10 -4.806934E+04 1.046571E-10 9.968034E+01' #' -1.116439E-08 -6.040572E+05 1.315160E-09 -1.258955E-09 -4.381078E+05 -2.067553E-10' f06_file.write(' %8i %8s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %8s %8s %-13s %-13s %-13s %-13s %-13s %s\n\n' % (eid, etypei, saxr, sayr, sazr, svxr, svyr, svzr, spressurer, '', '', saxi, sayi, sazi, svxi, svyi, svzi)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num - 1 def write_op2(self, op2, op2_ascii, itable, new_result, date, is_mag_phase=False, endian='>'): """writes an OP2""" import inspect from struct import Struct, pack frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) if itable == -1: self._write_table_header(op2, op2_ascii, date) itable = -3 eids = self.element # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] nelements = self.data.shape[1] # 21 = 1 node, 3 principal, 6 components, 9 vectors, 2 p/ovm #ntotal = ((nnodes * 21) + 1) + (nelements * 4) ntotali = self.num_wide ntotal = ntotali * nelements #device_code = self.device_code op2_ascii.write(' ntimes = %s\n' % self.ntimes) eids_device = self.element * 10 + self.device_code if self.is_sort1: struct1 = Struct(endian + b'i 8s13f') else: raise NotImplementedError('SORT2') op2_ascii.write('nelements=%i\n' % nelements) etypei = self.element_type if etypei == 76: ename = b'HEXPR' elif etypei == 77: ename = b'PENPR' elif etypei == 78: ename = b'TETPR' else: raise NotImplementedError(self) #etypeb = self.element_type#.encode('ascii') for itime in range(self.ntimes): self._write_table_3(op2, op2_ascii, new_result, itable, itime) # record 4 itable -= 1 header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4 * ntotal] op2.write(pack('%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4 * ntotal)) ax = self.data[itime, :, 0] ay = self.data[itime, :, 0] az = self.data[itime, :, 0] vx = self.data[itime, :, 0] vy = self.data[itime, :, 0] vz = self.data[itime, :, 0] pressure = self.data[itime, :, 0] for eid, eid_device, axi, ayi, azi, vxi, vyi, vzi, pressurei in zip( eids, eids_device, ax, ay, az, vx, vy, vz, pressure): out = write_imag_floats_13e([axi, ayi, azi, vxi, vyi, vzi, pressurei], is_mag_phase) [saxr, sayr, sazr, svxr, svyr, svzr, spressurer, saxi, sayi, sazi, svxi, svyi, svzi, spressurei] = out #' 1000 HEXPR 1.582050E-08 5.505425E+06 2.598164E-09 -8.884337E-10 -4.806934E+04 1.046571E-10 9.968034E+01' #' -1.116439E-08 -6.040572E+05 1.315160E-09 -1.258955E-09 -4.381078E+05 -2.067553E-10' data = [ eid_device, ename, axi.real, ayi.real, azi.real, vxi.real, vyi.real, vzi.real, pressurei.real, axi.imag, ayi.imag, azi.imag, vxi.imag, vyi.imag, vzi.imag, ] op2_ascii.write(' %8i %8s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %8s %8s %-13s %-13s %-13s %-13s %-13s %s\n\n' % (eid, etypei, saxr, sayr, sazr, svxr, svyr, svzr, spressurer, '', '', saxi, sayi, sazi, svxi, svyi, svzi)) op2.write(struct1.pack(*data)) #for eid, eid_device, fxi, fyi, fzi, mxi, myi, mzi in zip(eids, eids_device, fx, fy, fz, mx, my, mz): #data = [ #eid_device, #fxi.real, fyi.real, fzi.real, mxi.real, myi.real, mzi.real, #fxi.imag, fyi.imag, fzi.imag, mxi.imag, myi.imag, mzi.imag, #] #vals = (fxi, fyi, fzi, mxi, myi, mzi) #vals2 = write_imag_floats_13e(vals, is_mag_phase) #(fxir, fyir, fzir, mxir, myir, mzir, #fxii, fyii, fzii, mxii, myii, mzii) = vals2 #op2_ascii.write('0%26i %-13s %-13s %-13s %-13s %-13s %s\n' #' %26s %-13s %-13s %-13s %-13s %-13s %s\n' % ( #eid, fxir, fyir, fzir, mxir, myir, mzir, #'', fxii, fyii, fzii, mxii, myii, mzii)) #op2.write(struct1.pack(*data)) itable -= 1 header = [4 * ntotal,] op2.write(pack('i', *header)) op2_ascii.write('footer = %s\n' % header) new_result = False return itable class ComplexCBushForceArray(ComplexForceObject): def get_headers(self): headers = ['fx', 'fy', 'fz', 'mx', 'my', 'mz'] return headers def __init__(self, data_code, is_sort1, isubcase, dt): ComplexForceObject.__init__(self, data_code, isubcase) self.result_flag = 0 #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.itime = 0 self.nelements = 0 # result specific self.element_type = 'CBUSH' @property def is_real(self): return False @property def is_complex(self): return True def _reset_indices(self): self.itotal = 0 self.ielement = 0 def build(self): """sizes the vectorized attributes of the ComplexCBushForceArray""" #print('ntimes=%s nelements=%s ntotal=%s subtitle=%s' % ( #self.ntimes, self.nelements, self.ntotal, self.subtitle)) if self.is_built: return nnodes = 1 #self.names = [] #self.nelements //= nnodes self.nelements /= self.ntimes #self.ntotal //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 self.is_built = True #print('ntotal=%s ntimes=%s nelements=%s' % (self.ntotal, self.ntimes, self.nelements)) #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) self._times = zeros(self.ntimes, 'float32') self.element = zeros(self.ntotal, 'int32') # the number is messed up because of the offset for the element's properties if self.nelements * nnodes != self.ntotal: msg = 'ntimes=%s nelements=%s nnodes=%s ne*nn=%s ntotal=%s' % ( self.ntimes, self.nelements, nnodes, self.nelements * nnodes, self.ntotal) raise RuntimeError(msg) #[fx, fy, fz, mx, my, mz] self.data = zeros((self.ntimes, self.ntotal, 6), 'complex64') def build_dataframe(self): """creates a pandas dataframe""" #Freq 10.0 #ElementID Item #123 fx 10000.000000+0.000021j # fy 1000.000000+0.000002j # fz 100.000000+0.000000j # mx 7000.000000+0.000000j # my 700.000000+0.000000j # mz 70.000000+0.000000j headers = self.get_headers() column_names, column_values = self._build_dataframe_transient_header() self.data_frame = self._build_pandas_transient_elements( column_values, column_names, headers, self.element, self.data) def __eq__(self, table): # pragma: no cover self._eq_header(table) assert self.is_sort1 == table.is_sort1 if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) ntimes = self.data.shape[0] i = 0 if self.is_sort1: for itime in range(ntimes): for ieid, eid in enumerate(self.element): t1 = self.data[itime, ieid, :] t2 = table.data[itime, ieid, :] (tx1, ty1, tz1, rx1, ry1, rz1) = t1 (tx2, ty2, tz2, rx2, ry2, rz2) = t2 d = t1 - t2 if not allclose([tx1.real, tx1.imag, ty1.real, ty1.imag], [tx2.real, tx2.imag, ty2.real, ty2.imag], atol=0.0001): #if not np.array_equal(t1, t2): msg += '%-4s (%s, %sj, %s, %sj)\n (%s, %sj, %s, %sj)\n dt12=(%s, %sj, %s, %sj)\n' % ( eid, tx1.real, tx1.imag, ty1.real, ty1.imag, tx2.real, tx2.imag, ty2.real, ty2.imag, d[0].real, d[0].imag, d[1].real, d[1].imag,) i += 1 if i > 10: print(msg) raise ValueError(msg) else: raise NotImplementedError(self.is_sort2) if i > 0: print(msg) raise ValueError(msg) return True def add_sort1(self, dt, eid, fx, fy, fz, mx, my, mz): """unvectorized method for adding SORT1 transient data""" assert isinstance(eid, integer_types) and eid > 0, 'dt=%s eid=%s' % (dt, eid) #[fx, fy, fz, mx, my, mz] self._times[self.itime] = dt self.data[self.itime, self.itotal, :] = [fx, fy, fz, mx, my, mz] self.element[self.itotal] = eid self.itotal += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) else: msg.append(' type=%s nelements=%i; table_name=%r\n' % ( self.__class__.__name__, nelements, self.table_name)) msg.append(' eType, cid\n') msg.append(' data: [ntimes, nelements, 6] where 6=[%s]\n' % str(', '.join(self.get_headers()))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) # msg.append(' is_sort1=%s is_sort2=%s\n' % (self.is_sort1, self.is_sort2)) msg.append(' CBUSH\n') msg += self.get_data_code() return msg def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] #msg_temp, nnodes = get_f06_header(self, is_mag_phase, is_sort1) # write the f06 #is_sort1 = False if is_mag_phase: mag_phase = ' (MAGNITUDE/PHASE)\n\n' else: mag_phase = ' (REAL/IMAGINARY)\n\n' name = self.data_code['name'] if name == 'freq': name = 'FREQUENCY' else: raise RuntimeError(name) # is_sort1 = True if is_sort1: line2 = ' ID. FORCE-X FORCE-Y FORCE-Z MOMENT-X MOMENT-Y MOMENT-Z \n' else: line2 = ' %26s FORCE-X FORCE-Y FORCE-Z MOMENT-X MOMENT-Y MOMENT-Z \n' % name # force msg_temp = header + [ ' C O M P L E X F O R C E S I N B U S H E L E M E N T S ( C B U S H ) \n', mag_phase, ' ', # line1, line2, ] if self.is_sort1: if is_sort1: page_num = self._write_sort1_as_sort1(f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase) else: page_num = self._write_sort1_as_sort2(f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase) else: assert self.is_sort1 == True, str(self) return page_num - 1 def _write_sort1_as_sort1(self, f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase): ntimes = self.data.shape[0] eids = self.element for itime in range(ntimes): dt = self._times[itime] dt_line = ' %14s = %12.5E\n' % (self.data_code['name'], dt) header[1] = dt_line msg = header + msg_temp f06_file.write(''.join(msg)) #fx, fy, fz, mx, my, mz if self.is_sort1: fx = self.data[itime, :, 0] fy = self.data[itime, :, 1] fz = self.data[itime, :, 2] mx = self.data[itime, :, 3] my = self.data[itime, :, 4] mz = self.data[itime, :, 5] else: fx = self.data[:, itime, 0] fy = self.data[:, itime, 1] fz = self.data[:, itime, 2] mx = self.data[:, itime, 3] my = self.data[:, itime, 4] mz = self.data[:, itime, 5] for eid, fxi, fyi, fzi, mxi, myi, mzi in zip(eids, fx, fy, fz, mx, my, mz): vals = (fxi, fyi, fzi, mxi, myi, mzi) vals2 = write_imag_floats_13e(vals, is_mag_phase) (fxir, fyir, fzir, mxir, myir, mzir, fxii, fyii, fzii, mxii, myii, mzii) = vals2 f06_file.write('0%26i %-13s %-13s %-13s %-13s %-13s %s\n' ' %26s %-13s %-13s %-13s %-13s %-13s %s\n' % ( eid, fxir, fyir, fzir, mxir, myir, mzir, '', fxii, fyii, fzii, mxii, myii, mzii)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num def _write_sort1_as_sort2(self, f06_file, page_num, page_stamp, header, msg_temp, is_mag_phase): eids = self.element times = self._times for ieid, eid in enumerate(eids): eid_line = ' ELEMENT-ID = %s' % (eid) header[1] = eid_line msg = header + msg_temp f06_file.write(''.join(msg)) if self.is_sort1: fx = self.data[:, ieid, 0] fy = self.data[:, ieid, 1] fz = self.data[:, ieid, 2] mx = self.data[:, ieid, 3] my = self.data[:, ieid, 4] mz = self.data[:, ieid, 5] else: raise RuntimeError() for dt, fxi, fyi, fzi, mxi, myi, mzi in zip(times, fx, fy, fz, mx, my, mz): vals = (fxi, fyi, fzi, mxi, myi, mzi) vals2 = write_imag_floats_13e(vals, is_mag_phase) (fxir, fyir, fzir, mxir, myir, mzir, fxii, fyii, fzii, mxii, myii, mzii) = vals2 f06_file.write('0%26s %-13s %-13s %-13s %-13s %-13s %s\n' ' %26s %-13s %-13s %-13s %-13s %-13s %s\n' % ( write_float_12e(dt), fxir, fyir, fzir, mxir, myir, mzir, '', fxii, fyii, fzii, mxii, myii, mzii)) f06_file.write(page_stamp % page_num) page_num += 1 return page_num def write_op2(self, op2, op2_ascii, itable, new_result, date, is_mag_phase=False, endian='>'): """writes an OP2""" import inspect from struct import Struct, pack frame = inspect.currentframe() call_frame = inspect.getouterframes(frame, 2) op2_ascii.write('%s.write_op2: %s\n' % (self.__class__.__name__, call_frame[1][3])) if itable == -1: self._write_table_header(op2, op2_ascii, date) itable = -3 eids = self.element # table 4 info #ntimes = self.data.shape[0] #nnodes = self.data.shape[1] nelements = self.data.shape[1] # 21 = 1 node, 3 principal, 6 components, 9 vectors, 2 p/ovm #ntotal = ((nnodes * 21) + 1) + (nelements * 4) ntotali = self.num_wide ntotal = ntotali * nelements #device_code = self.device_code op2_ascii.write(' ntimes = %s\n' % self.ntimes) eids_device = self.element * 10 + self.device_code if self.is_sort1: struct1 = Struct(endian + b'i 12f') else: raise NotImplementedError('SORT2') op2_ascii.write('nelements=%i\n' % nelements) for itime in range(self.ntimes): self._write_table_3(op2, op2_ascii, new_result, itable, itime) # record 4 itable -= 1 header = [4, itable, 4, 4, 1, 4, 4, 0, 4, 4, ntotal, 4, 4 * ntotal] op2.write(pack('%ii' % len(header), *header)) op2_ascii.write('r4 [4, 0, 4]\n') op2_ascii.write('r4 [4, %s, 4]\n' % (itable)) op2_ascii.write('r4 [4, %i, 4]\n' % (4 * ntotal)) fx = self.data[itime, :, 0] fy = self.data[itime, :, 1] fz = self.data[itime, :, 2] mx = self.data[itime, :, 3] my = self.data[itime, :, 4] mz = self.data[itime, :, 5] for eid, eid_device, fxi, fyi, fzi, mxi, myi, mzi in zip(eids, eids_device, fx, fy, fz, mx, my, mz): data = [ eid_device, fxi.real, fyi.real, fzi.real, mxi.real, myi.real, mzi.real, fxi.imag, fyi.imag, fzi.imag, mxi.imag, myi.imag, mzi.imag, ] vals = (fxi, fyi, fzi, mxi, myi, mzi) vals2 = write_imag_floats_13e(vals, is_mag_phase) (fxir, fyir, fzir, mxir, myir, mzir, fxii, fyii, fzii, mxii, myii, mzii) = vals2 op2_ascii.write('0%26i %-13s %-13s %-13s %-13s %-13s %s\n' ' %26s %-13s %-13s %-13s %-13s %-13s %s\n' % ( eid, fxir, fyir, fzir, mxir, myir, mzir, '', fxii, fyii, fzii, mxii, myii, mzii)) op2.write(struct1.pack(*data)) itable -= 1 header = [4 * ntotal,] op2.write(pack('i', *header)) op2_ascii.write('footer = %s\n' % header) new_result = False return itable class ComplexCBeamForceVUArray(BaseElement): # 191-VUBEAM """ **ELTYPE = 191 Beam view element (VUBEAM)** 2 PARENT I Parent p-element identification number 3 COORD I CID coordinate system identification number 4 ICORD CHAR4 ICORD flat/curved and so on TCODE,7 =0 Real 5 VUGRID I VU grid ID for output grid 6 POSIT RS x/L position of VU grid identification number 7 POS(3) RS Y, Z, W coordinate of output point 10 NX RS Normal x 11 TXY RS Shear xy 12 TZX RS Shear zx **ELTYPE = 191 Beam view element (VUBEAM)** TCODE,7 = 1 Real/imaginary or magnitude/phase 5 VUGRID I VU grid identification number for output grid 6 POSIT RS x/L position of VU grid identification number 7 FORCEXR RS Force x real/mag. 8 SHEARYR RS Shear force y real/mag. 9 SHEARZR RS Shear force z real/mag. 10 TORSINR RS Torsional moment x real/mag. 11 BENDYR RS Bending moment y real/mag. 12 BENDZR RS Bending moment z real/mag. 13 FORCEXI RS Force x imag./phase 14 SHEARYI RS Shear force y imag./phase 15 SHEARZI RS Shear force z imag./phase 16 TORSINI RS Torsional moment x imag./phase 17 BENDYI RS Bending moment y imag./phase 18 BENDZI RS Bending moment z imag./phase Words 5 through max repeat 2 times """ def __init__(self, data_code, is_sort1, isubcase, dt): BaseElement.__init__(self, data_code, isubcase, apply_data_code=True) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.ielement = 0 self.nelements = 0 # result specific self.nnodes = None #if is_sort1: #pass #else: #raise NotImplementedError('SORT2') @property def is_real(self): return False @property def is_complex(self): return True def _reset_indices(self): self.itotal = 0 self.ielement = 0 def get_headers(self): return ['xxb', 'force_x', 'shear_y', 'shear_z', 'torsion', 'bending_y', 'bending_z'] def build(self): """sizes the vectorized attributes of the ComplexCBendForceVUArray""" #print("self.ielement = %s" % self.ielement) #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal if self.element_type in [191]: # VUBEAM nnodes_per_element = 2 else: raise NotImplementedError('name=%r type=%s' % (self.element_name, self.element_type)) #print('nnodes_per_element[%s, %s] = %s' % (self.isubcase, self.element_type, nnodes_per_element)) self.nnodes = nnodes_per_element #self.nelements //= nnodes_per_element self.nelements //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("***name=%s type=%s nnodes_per_element=%s ntimes=%s nelements=%s ntotal=%s" % ( #self.element_name, self.element_type, nnodes_per_element, self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = np.zeros(self.ntimes, dtype=dtype) self.element_node = np.zeros((self.ntotal, 2), dtype='int32') self.parent_coord = np.zeros((self.ntotal, 2), dtype='int32') #[xxb, force_x, shear_y, shear_z, torsion, bending_y, bending_z] self.data = np.zeros((self.ntimes, self.ntotal, 7), dtype='complex64') #def build_dataframe(self): #"""creates a pandas dataframe""" #import pandas as pd #headers = self.get_headers() #nelements = self.element_node.shape[0] // 2 #if self.is_fiber_distance: #fiber_distance = ['Top', 'Bottom'] * nelements #else: #fiber_distance = ['Mean', 'Curvature'] * nelements #fd = np.array(fiber_distance, dtype='unicode') #element_node = [self.element_node[:, 0], self.element_node[:, 1], fd] #if self.nonlinear_factor not in (None, np.nan): #column_names, column_values = self._build_dataframe_transient_header() #self.data_frame = pd.Panel(self.data, items=column_values, major_axis=element_node, minor_axis=headers).to_frame() #self.data_frame.columns.names = column_names #self.data_frame.index.names = ['ElementID', 'NodeID', 'Location', 'Item'] #else: ## option B - nice! #df1 = pd.DataFrame(element_node).T #df1.columns = ['ElementID', 'NodeID', 'Location'] #df2 = pd.DataFrame(self.data[0]) #df2.columns = headers #self.data_frame = df1.join(df2) #self.data_frame = self.data_frame.reset_index().replace({'NodeID': {0:'CEN'}}).set_index(['ElementID', 'NodeID', 'Location']) #print(self.data_frame) def __eq__(self, table): # pragma: no cover assert self.is_sort1 == table.is_sort1 self._eq_header(table) if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 for itime in range(self.ntimes): for ie, element_nodei in enumerate(self.element_node): (eid, nid) = element_nodei t1 = self.data[itime, ie, :] t2 = table.data[itime, ie, :] (xxb1, fx1, fy1, fz1, mx1, my1, mz1) = t1 (xxb2, fx2, fy2, fz2, mx2, my2, mz2) = t2 if not np.array_equal(t1, t2): eid_nid1 = '(%s, %s) ' % (eid, nid) eid_nid2 = ' ' * len(eid_nid1) msg += ('%s(%s, %s, %s, %s, %s, %s, %s)\n%s(%s, %s, %s, %s, %s, %s, %s)\n' % ( eid_nid1, xxb1, fx1, fy1, fz1, mx1, my1, mz1, eid_nid2, xxb2, fx2, fy2, fz2, mx2, my2, mz2)) i += 1 if i > 10: #print(msg.replace('+0j,', '0,')) raise ValueError(msg.replace('0j,', '0,').replace('+0j)', ')')) #print(msg) if i > 0: raise ValueError(msg.replace('0j,', '0,').replace('+0j)', ')')) return True def _add_sort1(self, dt, eid, parent, coord, icord, node_id, xxb, force_x, shear_y, shear_z, torsion, bending_y, bending_z): assert eid is not None, eid assert isinstance(node_id, int), node_id self.element_node[self.itotal, :] = [eid, node_id] self.parent_coord[self.itotal, :] = [parent, coord] # TODO: save ICORD #print('parent=%r, coord=%r, icord=%r' % (parent, coord, icord)) self.data[self.itime, self.itotal, :] = [xxb, force_x, shear_y, shear_z, torsion, bending_y, bending_z] self.itotal += 1 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes nnodes = self.nnodes ntotal = self.ntotal nlayers = 2 nelements = self.ntotal // self.nnodes // 2 msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msgi = ' type=%s ntimes=%i nelements=%i nnodes_per_element=%i nlayers=%i ntotal=%i\n' % ( self.__class__.__name__, ntimes, nelements, nnodes, nlayers, ntotal) ntimes_word = 'ntimes' else: msgi = ' type=%s nelements=%i nnodes_per_element=%i nlayers=%i ntotal=%i\n' % ( self.__class__.__name__, nelements, nnodes, nlayers, ntotal) ntimes_word = '1' msg.append(msgi) headers = self.get_headers() n = len(headers) msg.append(' data: [%s, ntotal, %i] where %i=[%s]\n' % (ntimes_word, n, n, str(', '.join(headers)))) msg.append(' element_node.shape = %s\n' % str(self.element_node.shape).replace('L', '')) msg.append(' data.shape=%s\n' % str(self.data.shape).replace('L', '')) msg.append(' element type: %s\n' % self.element_name) msg += self.get_data_code() return msg def get_element_index(self, eids): # elements are always sorted; nodes are not itot = np.searchsorted(eids, self.element_node[:, 0]) #[0] return itot def eid_to_element_node_index(self, eids): ind = np.ravel([np.searchsorted(self.element_node[:, 0] == eid) for eid in eids]) #ind = searchsorted(eids, self.element) #ind = ind.reshape(ind.size) #ind.sort() return ind def write_f06(self, f06_file, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): """ C O M P L E X F O R C E S I N P - V E R S I O N B E A M E L E M E N T S ( B E A M ) (REAL/IMAGINARY) VU-ELEMENT ID= 100001001, P-ELEMENT ID = 1, OUTPUT COORD. ID= 0, P OF EDGES = 3 VUGRID VUGRID DIST/ - BENDING MOMENTS - -WEB SHEARS - AXIAL TOTAL ID. LENGTH PLANE 1 PLANE 2 PLANE 1 PLANE 2 FORCE TORQUE 111001001 0.000 0.000000E+00 -1.598690E+05 0.000000E+00 -1.040952E+06 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 111001002 0.333 0.000000E+00 5.328967E+04 0.000000E+00 1.872484E+05 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 C O M P L E X S T R A I N S I N P - V E R S I O N B E A M E L E M E N T S ( B E A M ) (REAL/IMAGINARY) VU-ELEMENT ID= 100001003, P-ELEMENT ID = 1, OUTPUT COORD. ID= 0, P OF EDGES = 3 VUGRID VUGRID DIST/ LOCATION LOCATION LOCATION LOCATION ID. LENGTH C D E F 111001003 0.667 -2.557904E+00 -2.557904E+00 2.557904E+00 2.557904E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 111001004 1.000 7.673713E+00 7.673713E+00 -7.673713E+00 -7.673713E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 """ msg = [ ' C O M P L E X F O R C E S I N P - V E R S I O N B E A M E L E M E N T S ( B E A M )\n' ' (REAL/IMAGINARY)\n' ' VU-ELEMENT ID= %9i, P-ELEMENT ID =%8i, OUTPUT COORD. ID=%8i, P OF EDGES = 3\n' '\n' ' VUGRID VUGRID DIST/ - BENDING MOMENTS - -WEB SHEARS - AXIAL TOTAL \n' ' ID. LENGTH PLANE 1 PLANE 2 PLANE 1 PLANE 2 FORCE TORQUE \n' #' 111001003 0.667 0.000000E+00 5.328967E+04 0.000000E+00 -1.872484E+05 0.000000E+00 0.000000E+00' #' 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00' #' 111001004 1.000 0.000000E+00 -1.598690E+05 0.000000E+00 1.040952E+06 0.000000E+00 0.000000E+00' #' 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00' #' C O M P L E X S T R A I N S I N P - V E R S I O N B E A M E L E M E N T S ( B E A M )\n' #' (REAL/IMAGINARY)\n' #' VU-ELEMENT ID= %9i, P-ELEMENT ID = 1, OUTPUT COORD. ID= 0, P OF EDGES = 3\n' #'\n' #' VUGRID VUGRID DIST/ LOCATION LOCATION LOCATION LOCATION \n' #' ID. LENGTH C D E F \n' #' 111001003 0.667 -2.557904E+00 -2.557904E+00 2.557904E+00 2.557904E+00' #' 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00' #' 111001004 1.000 7.673713E+00 7.673713E+00 -7.673713E+00 -7.673713E+00' #' 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00' ] if header is None: header = [] #msg, nnodes, cen = _get_plate_msg(self) # write the f06 ntimes = self.data.shape[0] eids = self.element_node[:, 0] nids = self.element_node[:, 1] parent = self.parent_coord[:, 0] coord = self.parent_coord[:, 1] for itime in range(ntimes): dt = self._times[itime] header = _eigenvalue_header(self, header, itime, ntimes, dt) #[xxb, force_x, shear_y, shear_z, torsion, bending_y, bending_z] xxb = self.data[itime, :, 0] fx = self.data[itime, :, 1] fy = self.data[itime, :, 2] fz = self.data[itime, :, 3] mx = self.data[itime, :, 4] my = self.data[itime, :, 5] mz = self.data[itime, :, 6] for (i, eid, parenti, coordi, nid, xxbi, fxi, fyi, fzi, mxi, myi, mzi) in zip( cycle(range(2)), eids, parent, coord, nids, xxb, fx, fy, fz, mx, my, mz): if i == 0: f06_file.write(''.join(header + msg) % (eid, parenti, coordi)) #out = write_imag_floats_13e([fxi, fyi, fzi, mxi, myi, mzi], is_mag_phase=is_mag_phase) #[fxri, fyri, fzri, mxri, myri, mzri, #fxii, fyii, fzii, mxii, myii, mzii] = out # nid xxb f06_file.write( ' %9i %.3f %13.6E %13.6E %13.6E %13.6E %13.6E %13.6E\n' ' %13.6E %13.6E %13.6E %13.6E %13.6E %13.6E\n' % ( nid, xxbi.real, myi.real, mzi.real, fyi.real, fzi.real, fxi.real, mxi.real, myi.imag, mzi.imag, fyi.imag, fzi.imag, fxi.imag, mxi.imag, )) # stress/strain #f06_file.write( #' %9i %.3s %13.6E %13.6E %13.6E %13.6E %13.6E %13.6E\n' #' %13.6E %13.6E %13.6E %13.6E %13.6E %13.6E\n' % ( #nid, xxbi.real, #fxi.real, fyi.real, fzi.real, mxi.real, myi.real, mzi.real, #fxi.imag, fyi.imag, fzi.imag, mxi.imag, myi.imag, mzi.imag, #)) if i == 1: f06_file.write(page_stamp % page_num + '\n') page_num += 1 return page_num - 1 class ComplexForceVU_2DArray(BaseElement): # 189-VUQUAD,190-VUTRIA def __init__(self, data_code, is_sort1, isubcase, dt): BaseElement.__init__(self, data_code, isubcase) #self.parent = {} #self.coord = {} #self.icord = {} #self.theta = {} #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.nelements = 0 # result specific self.ntimes = 0 # TODO if dt=None, handle SORT1 case self.dt = dt #if is_sort1: #if dt is not None: #self.add = self.add_sort1 #else: #assert dt is not None #self.add = self.add_sort2 def _reset_indices(self): self.itotal = 0 self.ielement = 0 def get_stats(self, short=False): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes #ntotal = self.ntotal msg = [] if self.nonlinear_factor not in (None, np.nan): # transient msg.append(' type=%s ntimes=%i nelements=%i; table_name=%r\n' % (self.__class__.__name__, ntimes, nelements, self.table_name)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i; table_name=%r\n' % (self.__class__.__name__, nelements, self.table_name)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nnodes, %i] where %i=[%s]\n' % ( ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) #msg.append(' element type: %s\n' % self.element_type) msg.append(' element name: %s\n' % self.element_name) msg += self.get_data_code() return msg def build(self): """sizes the vectorized attributes of the ComplexCShearForceArray""" #print('%s ntimes=%s nelements=%s ntotal=%s' % ( #self.element_type, self.ntimes, self.nelements, self.ntotal)) assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes self.ntotal = self.nelements self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, integer_types): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element_node = zeros((self.nelements, 2), dtype='int32') #[membrane_x, membrane_y, membrane_xy, bending_x, bending_y, bending_xy, # shear_yz, shear_xz] self.data =
zeros((self.ntimes, self.nelements, 8), dtype='complex64')
numpy.zeros
# coding: utf-8 # In[1]: # import the packages import numpy as np from scipy.misc import imread, imresize, imsave import matplotlib.pyplot as plt from numpy import matlib import math from scipy import stats import imageio from skimage.transform import resize import skimage import zlib, sys import gzip import matplotlib import scipy import copy import random import numpy import sympy as sp # In[2]: # define a function to covert the image to a gray scale image def rgb2gray(rgb): return np.dot(rgb[...,:3], [0.299, 0.587, 0.114]) # In[3]: L0=0.99436891104358 L1=0.41984465132951 L2=-0.17677669529664 L3=-0.06629126073624 L4=0.03314563036812 H0=-0.70710678118655 H1=0.35355339059327 H2=0 H3=0 H4=0 def CDF(N): TA=
np.zeros((N,N+8))
numpy.zeros
"""No-UI PlotOptiX raytracer (output to numpy array only). https://github.com/rnd-team-dev/plotoptix/blob/master/LICENSE.txt Have a look at examples on GitHub: https://github.com/rnd-team-dev/plotoptix. """ import json, math, logging, os, threading, time import numpy as np from ctypes import byref, c_ubyte, c_float, c_uint, c_int, c_longlong from typing import List, Tuple, Callable, Optional, Union, Any from plotoptix.singleton import Singleton from plotoptix.geometry import GeometryMeta from plotoptix._load_lib import load_optix, PARAM_NONE_CALLBACK, PARAM_INT_CALLBACK from plotoptix.utils import _make_contiguous_vector, _make_contiguous_3d from plotoptix.enums import * class NpOptiX(threading.Thread, metaclass=Singleton): """No-UI raytracer, output to numpy array only. Base, headless interface to the `RnD.SharpOptiX` raytracing engine. Provides infrastructure for running the raytracing and compute threads and exposes their callbacks to the user. Outputs raytraced image to numpy array. In derived UI classes, implement in overriden methods: - start and run UI event loop in: :meth:`plotoptix.NpOptiX._run_event_loop` - raise UI close event in: :meth:`plotoptix.NpOptiX.close` - update image in UI in: :meth:`plotoptix.NpOptiX._launch_finished_callback` - optionally apply UI edits in: :meth:`plotoptix.NpOptiX._scene_rt_starting_callback` Parameters ---------- src : string or dict, optional Scene description, file name or dictionary. Empty scene is prepared if the default ``None`` value is used. on_initialization : callable or list, optional Callable or list of callables to execute upon starting the raytracing thread. These callbacks are executed on the main thread. on_scene_compute : callable or list, optional Callable or list of callables to execute upon starting the new frame. Callbacks are executed in a thread parallel to the raytracing. on_rt_completed : callable or list, optional Callable or list of callables to execute when the frame raytracing is completed (execution may be paused with pause_compute() method). Callbacks are executed in a thread parallel to the raytracing. on_launch_finished : callable or list, optional Callable or list of callables to execute when the frame raytracing is completed. These callbacks are executed on the raytracing thread. on_rt_accum_done : callable or list, optional Callable or list of callables to execute when the last accumulation frame is finished. These callbacks are executed on the raytracing thread. width : int, optional Pixel width of the raytracing output. Default value is 16. height : int, optional Pixel height of the raytracing output. Default value is 16. start_now : bool, optional Start raytracing thread immediately. If set to ``False``, then user should call ``start()`` method. Default is ``False``. devices : list, optional List of selected devices, with the primary device at index 0. Empty list is default, resulting with all compatible devices selected for processing. log_level : int or string, optional Log output level. Default is ``WARN``. """ _img_rgba = None """Ray-tracing output, 8bps color. Shape: ``(height, width, 4)``, ``dtype = np.uint8``, contains RGBA data (alpha channel is now constant, ``255``). A ndarray wrapped aroud the gpu bufffer. It enables reading the image with no additional memory copy. Access the buffer in the ``on_launch_finished`` callback or in/after the ``on_rt_accum_done`` callback to avoid reading while the buffer content is being updated. """ _raw_rgba = None """Ray-tracing output, raw floating point data. Shape: ``(height, width, 4)``, ``dtype = np.float32``, contains RGBA data (alpha channel is now constant, ``1.0``). A ndarray wrapped aroud the gpu bufffer. It enables reading the image with no additional memory copy. Access the buffer in the ``on_launch_finished`` callback or in/after the ``on_rt_accum_done`` callback to avoid reading while the buffer content is being updated. """ _hit_pos = None """Hit position. Shape: ``(height, width, 4)``, ``dtype = np.float32``, contains ``[X, Y, Z, D]`` data, where ``XYZ`` is the hit 3D position and ``D`` is the hit distance to the camera plane. """ _geo_id = None """Object info. Encodes the object handle and primitive index (or vertex/face index for meshes) for each pixel in the output image. Shape: ``(height, width, 2)``, ``dtype = np.int32``, contains: - ``_geo_id[h, w, 0] = handle | (vtx_id << 30)``, where ``handle`` is the object handle, ``vtx_id`` is the vertex index for the triangular face that was hit (values are ``0``, ``1``, ``2``); - ``_geo_id[h, w, 1] = prim_idx``, where ``prim_idx`` is the primitive index in a data set, or face index of a mesh. """ _albedo = None """Surface albedo. Shape: ``(height, width, 4)``, ``dtype = np.float32``, contains RGBA data (alpha channel is now constant, ``0.0``). Available when denoiser is enabled (:attr:`plotoptix.enums.Postprocessing.Denoiser`), and set to :attr:`plotoptix.enums.DenoiserKind.RgbAlbedo` or :attr:`plotoptix.enums.DenoiserKind.RgbAlbedoNormal` mode, or when ``save_albedo`` parameter is set to ``True`` (see :meth:`plotoptix.NpOptiX.set_param`). """ _normal = None """Surface normal. Shape: ``(height, width, 4)``, ``dtype = np.float32``, contains XYZ0 data (4'th channel is constant, ``0.0``). Surface normal vector in camera space. Available only when the denoiser is enabled (:attr:`plotoptix.enums.Postprocessing.Denoiser`), and set to :attr:`plotoptix.enums.DenoiserKind.RgbAlbedoNormal` mode, or when ``save_normals`` parameter is set to ``True`` (see :meth:`plotoptix.NpOptiX.set_param`). """ def __init__(self, src: Optional[Union[str, dict]] = None, on_initialization = None, on_scene_compute = None, on_rt_completed = None, on_launch_finished = None, on_rt_accum_done = None, width: int = -1, height: int = -1, start_now: bool = False, devices: List = [], log_level: Union[int, str] = logging.WARN) -> None: """NpOptiX constructor. """ super().__init__() self._raise_on_error = False self._logger = logging.getLogger(__name__ + "-NpOptiX") self._logger.setLevel(log_level) self._started_event = threading.Event() self._padlock = threading.RLock() self._is_scene_created = False self._is_started = False self._is_closed = False rt_log = 0 if isinstance(log_level, int): if log_level == logging.ERROR: rt_log = 1 elif log_level == logging.WARNING: rt_log = 2 elif log_level == logging.INFO: rt_log = 3 elif log_level == logging.DEBUG: rt_log = 4 if isinstance(log_level, str): if log_level == 'ERROR': rt_log = 1 elif log_level == 'WARNING': rt_log = 2 elif log_level == 'WARN': rt_log = 2 elif log_level == 'INFO': rt_log = 3 elif log_level == 'DEBUG': rt_log = 4 # load SharpOptiX library, configure paths #################### self._logger.info("Configure RnD.SharpOptiX library...") self._optix = load_optix() self._logger.info("...done.") ############################################################### # setup SharpOptiX interface ################################## self._logger.info("Preparing empty scene...") self._width = 0 self._height = 0 if width < 1: width = 1 if height < 1: height = 1 self.resize(width, height) self.geometry_data = {} # geometry name to metadata dictionary self.geometry_names = {} # geometry handle to name dictionary self.camera_handles = {} # camera name to handle dictionary self.camera_names = {} # camera handle to name dictionary self.light_handles = {} # light name to handle dictionary self.light_names = {} # light handle to name dictionary # scene initialization / compute / upload / accumulation done callbacks: if on_initialization is not None: self._initialization_cb = self._make_list_of_callable(on_initialization) elif src is None: self._initialization_cb = [self._default_initialization] else: self._initialization_cb = [] self.set_scene_compute_cb(on_scene_compute) self.set_rt_completed_cb(on_rt_completed) self.set_rt_starting_cb(cb=None) self.set_launch_finished_cb(on_launch_finished) self.set_accum_done_cb(on_rt_accum_done) device_ptr = 0 device_count = 0 if len(devices) > 0: self._logger.info("Configure selected devices.") device_idx = [int(d) for d in devices] device_idx = np.ascontiguousarray(device_idx, dtype=np.int32) device_ptr = device_idx.ctypes.data device_count = device_idx.shape[0] if src is None: # create empty scene self._logger.info(" - ray-tracer initialization") self._is_scene_created = self._optix.create_empty_scene(self._width, self._height, device_ptr, device_count, rt_log) if self._is_scene_created: self._logger.info("Empty scene ready.") elif isinstance(src, str): # create scene from file if not os.path.isfile(src): msg = "File %s not found." % src self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return wd = os.getcwd() if os.path.isabs(src): d, f = os.path.split(src) os.chdir(d) else: f = src self._is_scene_created = self._optix.create_scene_from_file(f, self._width, self._height, device_ptr, device_count) self._is_scene_created &= self._init_scene_metadata() if self._is_scene_created: self._logger.info("Scene loaded correctly.") os.chdir(wd) elif isinstance(src, dict): # create scene from dictionary s = json.dumps(src) self._is_scene_created = self._optix.create_scene_from_json(s, self._width, self._height, device_ptr, device_count) self._is_scene_created &= self._init_scene_metadata() if self._is_scene_created: self._logger.info("Scene loaded correctly.") else: msg = "Scene source type not supported." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) if self._is_scene_created: # optionally start raytracing thread: if start_now: self.start() else: self._logger.info("Use start() to start raytracing.") else: msg = "Initial setup failed, see errors above." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) ############################################################### def __del__(self): """Release resources. """ if self._is_scene_created and not self._is_closed: if self._is_started: self.close() else: self._optix.destroy_scene() def get_gpu_architecture(self, ordinal: int) -> Optional[GpuArchitecture]: """Get SM architecture of selected GPU. Returns architecture of selected GPU. Parameters ---------- ordinal : int CUDA ordinal of the GPU. Returns ------- out : GpuArchitecture or None SM architecture or ``None`` if not recognized. See Also -------- :py:mod:`plotoptix.enums.GpuArchitecture` """ cfg = self._optix.get_n_gpu_architecture(ordinal) if cfg >= 0: return GpuArchitecture(cfg) else: return None def _make_list_of_callable(self, items) -> List[Callable[["NpOptiX"], None]]: if callable(items): return [items] else: for item in items: assert callable(item), "Expected callable or list of callable items." return items def start(self) -> None: """Start the raytracing, compute, and UI threads. Actions provided with ``on_initialization`` parameter of NpOptiX constructor are executed by this method on the main thread, before starting the ratracing thread. """ if self._is_closed: self._logger.warn("Raytracing output was closed, cannot re-open.") return if self._is_started: self._logger.warn("Raytracing output already running.") return for c in self._initialization_cb: c(self) self._logger.info("Initialization done.") self._optix.start_rt() self._logger.info("RT loop ready.") super().start() if self._started_event.wait(600): self._logger.info("Raytracing started.") self._is_started = True else: msg = "Raytracing output startup timed out." self._logger.error(msg) self._is_started = False if self._raise_on_error: raise TimeoutError(msg) def update_device_buffers(self): """Update buffer pointers. Use after changing denoiser mode since albedo and normal buffer wrappers are not updated automatically. """ c_buf = c_longlong() c_len = c_int() r_buf = c_longlong() r_len = c_int() h_buf = c_longlong() h_len = c_int() g_buf = c_longlong() g_len = c_int() a_buf = c_longlong() a_len = c_int() n_buf = c_longlong() n_len = c_int() if self._optix.get_device_buffers( byref(c_buf), byref(c_len), byref(r_buf), byref(r_len), byref(h_buf), byref(h_len), byref(g_buf), byref(g_len), byref(a_buf), byref(a_len), byref(n_buf), byref(n_len)): buf = (((c_ubyte * 4) * self._width) * self._height).from_address(c_buf.value) self._img_rgba = np.ctypeslib.as_array(buf) buf = (((c_float * 4) * self._width) * self._height).from_address(r_buf.value) self._raw_rgba = np.ctypeslib.as_array(buf) buf = (((c_float * 4) * self._width) * self._height).from_address(h_buf.value) self._hit_pos = np.ctypeslib.as_array(buf) buf = (((c_uint * 2) * self._width) * self._height).from_address(g_buf.value) self._geo_id = np.ctypeslib.as_array(buf) if a_len.value > 0: buf = (((c_float * 4) * self._width) * self._height).from_address(a_buf.value) self._albedo = np.ctypeslib.as_array(buf) else: self._albedo = None if n_len.value > 0: buf = (((c_float * 4) * self._width) * self._height).from_address(n_buf.value) self._normal = np.ctypeslib.as_array(buf) else: self._normal = None else: msg = "Image buffers setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def run(self): """Starts UI event loop. Derived from `threading.Thread <https://docs.python.org/3/library/threading.html>`__. Use :meth:`plotoptix.NpOptiX.start` to perform complete initialization. **Do not override**, use :meth:`plotoptix.NpOptiX._run_event_loop` instead. """ assert self._is_scene_created, "Scene is not ready, see initialization messages." c_buf = c_longlong() c_len = c_int() r_buf = c_longlong() r_len = c_int() h_buf = c_longlong() h_len = c_int() g_buf = c_longlong() g_len = c_int() a_buf = c_longlong() a_len = c_int() n_buf = c_longlong() n_len = c_int() if self._optix.resize_scene(self._width, self._height, byref(c_buf), byref(c_len), byref(r_buf), byref(r_len), byref(h_buf), byref(h_len), byref(g_buf), byref(g_len), byref(a_buf), byref(a_len), byref(n_buf), byref(n_len)): buf = (((c_ubyte * 4) * self._width) * self._height).from_address(c_buf.value) self._img_rgba = np.ctypeslib.as_array(buf) buf = (((c_float * 4) * self._width) * self._height).from_address(r_buf.value) self._raw_rgba = np.ctypeslib.as_array(buf) buf = (((c_float * 4) * self._width) * self._height).from_address(h_buf.value) self._hit_pos = np.ctypeslib.as_array(buf) buf = (((c_uint * 2) * self._width) * self._height).from_address(g_buf.value) self._geo_id = np.ctypeslib.as_array(buf) if a_len.value > 0: buf = (((c_float * 4) * self._width) * self._height).from_address(a_buf.value) self._albedo = np.ctypeslib.as_array(buf) else: self._albedo = None if n_len.value > 0: buf = (((c_float * 4) * self._width) * self._height).from_address(n_buf.value) self._normal = np.ctypeslib.as_array(buf) else: self._normal = None else: msg = "Image buffers setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) c1_ptr = self._get_launch_finished_callback() r1 = self._optix.register_launch_finished_callback(c1_ptr) c2_ptr = self._get_accum_done_callback() r2 = self._optix.register_accum_done_callback(c2_ptr) c3_ptr = self._get_scene_rt_starting_callback() r3 = self._optix.register_scene_rt_starting_callback(c3_ptr) c4_ptr = self._get_start_scene_compute_callback() r4 = self._optix.register_start_scene_compute_callback(c4_ptr) c5_ptr = self._get_scene_rt_completed_callback() r5 = self._optix.register_scene_rt_completed_callback(c5_ptr) if r1 & r2 & r3 & r4 & r5: self._logger.info("Callbacks registered.") else: msg = "Callbacks setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) self._run_event_loop() ########################################################################### def _run_event_loop(self): """Internal method for running the UI event loop. This method should be overriden in derived UI class (but **do not call this base implementation**). Remember to set self._started_event after all your UI initialization. """ self._started_event.set() while not self._is_closed: time.sleep(0.5) ########################################################################### ########################################################################### def close(self) -> None: """Stop the raytracing thread, release resources. Raytracing cannot be restarted after this method is called. Override in UI class, call this base implementation (or raise a close event for your UI and call this base implementation there). """ assert not self._is_closed, "Raytracing output already closed." assert self._is_started, "Raytracing output not yet running." with self._padlock: self._logger.info("Stopping raytracing output.") self._is_scene_created = False self._is_started = False self._optix.stop_rt() self._optix.destroy_scene() self._is_closed = True ########################################################################### def is_started(self) -> bool: return self._is_started def is_closed(self) -> bool: return self._is_closed def get_rt_output(self, bps: Union[ChannelDepth, str] = ChannelDepth.Bps8, channels: Union[ChannelOrder, str] = ChannelOrder.RGBA) -> Optional[np.ndarray]: """Return a copy of the output image. The image data type is specified with the ``bps`` argument. 8 bit per channel data, ``numpy.uint8``, is returned by default. Use ``Bps16`` value to read the image in 16 bit per channel depth, ``numpy.uint16``. Use ``Bps32`` value to read the HDR image in 32 bit per channel format, ``numpy.float32``. If channels ordering includes alpha channel then it is a constant, 100% opaque value, to be used in the future releases. Safe to call at any time, from any thread. Parameters ---------- bps : ChannelDepth enum or string, optional Color depth. channels : ChannelOrder enum or string, optional Color channels ordering. Returns ------- out : ndarray RGB(A) array of shape (height, width, 3) or (height, width, 4) and type corresponding to ``bps`` argument. ``None`` in case of errors. See Also -------- :class:`plotoptix.enums.ChannelDepth`, :class:`plotoptix.enums.ChannelOrder` """ assert self._is_started, "Raytracing output not running." if isinstance(bps, str): bps = ChannelDepth[bps] if isinstance(channels, str): channels = ChannelOrder[channels] a = None try: self._padlock.acquire() if bps == ChannelDepth.Bps8 and channels == ChannelOrder.RGBA: if self._img_rgba is not None: return self._img_rgba.copy() else: a = np.ascontiguousarray(np.zeros((self._height, self._width, 4), dtype=np.uint8)) if bps == ChannelDepth.Bps8: if channels == ChannelOrder.BGRA: a = np.ascontiguousarray(np.zeros((self._height, self._width, 4), dtype=np.uint8)) elif channels == ChannelOrder.RGB or channels == ChannelOrder.BGR: a = np.ascontiguousarray(np.zeros((self._height, self._width, 3), dtype=np.uint8)) elif bps == ChannelDepth.Bps16: if channels == ChannelOrder.RGBA or channels == ChannelOrder.BGRA: a = np.ascontiguousarray(np.zeros((self._height, self._width, 4), dtype=np.uint16)) elif channels == ChannelOrder.RGB or channels == ChannelOrder.BGR: a = np.ascontiguousarray(np.zeros((self._height, self._width, 3), dtype=np.uint16)) elif bps == ChannelDepth.Bps32: if channels == ChannelOrder.RGBA or channels == ChannelOrder.BGRA: a = np.ascontiguousarray(np.zeros((self._height, self._width, 4), dtype=np.float32)) elif channels == ChannelOrder.RGB or channels == ChannelOrder.BGR: a = np.ascontiguousarray(np.zeros((self._height, self._width, 3), dtype=np.float32)) else: return a if not self._optix.get_output(a.ctypes.data, a.nbytes, bps.value, channels.value): msg = "Image not copied." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() return a def resize(self, width: Optional[int] = None, height: Optional[int] = None) -> None: """Change dimensions of the raytracing output. Both or one of the dimensions may be provided. No effect if width and height is same as of the current output. Parameters ---------- width : int, optional New width of the raytracing output. height : int, optional New height of the raytracing output. """ if width is None: width = self._width if height is None: height = self._height if (width == self._width) and (height == self._height): return with self._padlock: self._width = width self._height = height # resize the scene, update gpu memory address c_buf = c_longlong() c_len = c_int() r_buf = c_longlong() r_len = c_int() h_buf = c_longlong() h_len = c_int() g_buf = c_longlong() g_len = c_int() a_buf = c_longlong() a_len = c_int() n_buf = c_longlong() n_len = c_int() if self._optix.resize_scene(self._width, self._height, byref(c_buf), byref(c_len), byref(r_buf), byref(r_len), byref(h_buf), byref(h_len), byref(g_buf), byref(g_len), byref(a_buf), byref(a_len), byref(n_buf), byref(n_len)): buf = (((c_ubyte * 4) * self._width) * self._height).from_address(c_buf.value) #buf_from_mem = ctypes.pythonapi.PyMemoryView_FromMemory #buf_from_mem.restype = ctypes.py_object #buf_from_mem.argtypes = (ctypes.c_void_p, ctypes.c_int, ctypes.c_int) #buf = buf_from_mem(c_buf.value, c_len.value, 0x100) self._img_rgba = np.ctypeslib.as_array(buf) #self._img_rgba = np.ndarray((height, width, 4), np.uint8, buf, order='C') #print(self._img_rgba.shape, self._img_rgba.__array_interface__) #print(self._img_rgba[int(height/2), int(width/2)]) buf = (((c_float * 4) * self._width) * self._height).from_address(r_buf.value) self._raw_rgba = np.ctypeslib.as_array(buf) buf = (((c_float * 4) * self._width) * self._height).from_address(h_buf.value) self._hit_pos = np.ctypeslib.as_array(buf) buf = (((c_uint * 2) * self._width) * self._height).from_address(g_buf.value) self._geo_id = np.ctypeslib.as_array(buf) if a_len.value > 0: buf = (((c_float * 4) * self._width) * self._height).from_address(a_buf.value) self._albedo = np.ctypeslib.as_array(buf) else: self._albedo = None if n_len.value > 0: buf = (((c_float * 4) * self._width) * self._height).from_address(n_buf.value) self._normal = np.ctypeslib.as_array(buf) else: self._normal = None else: self._img_rgba = None self._hit_pos = None self._geo_id = None self._albedo = None self._normal = None @staticmethod def _default_initialization(wnd) -> None: wnd._logger.info("Default scene initialization.") if wnd._optix.get_current_camera() == 0: wnd.setup_camera("default", [0, 0, 10], [0, 0, 0]) ########################################################################### def set_launch_finished_cb(self, cb) -> None: """Set callback function(s) executed after each finished frame. Parameters ---------- cb : callable or list Callable or list of callables to set as the launch finished callback. """ with self._padlock: if cb is not None: self._launch_finished_cb = self._make_list_of_callable(cb) else: self._launch_finished_cb = [] def _launch_finished_callback(self, rt_result: int) -> None: """ Callback executed after each finished frame (``min_accumulation_step`` accumulation frames are raytraced together). This callback is executed in the raytracing thread and should not compute extensively (get/save the image data here but calculate scene etc in another thread). Override this method in the UI class, call this base implementation and update image in UI (or raise an event to do so). Actions provided with ``on_launch_finished`` parameter of NpOptiX constructor are executed here. Parameters ---------- rt_result : int Raytracing result code corresponding to :class:`plotoptix.enums.RtResult`. """ if self._is_started: if rt_result < RtResult.NoUpdates.value: #self._logger.info("Launch finished.") with self._padlock: for c in self._launch_finished_cb: c(self) def _get_launch_finished_callback(self): def func(rt_result: int): self._launch_finished_callback(rt_result) return PARAM_INT_CALLBACK(func) ########################################################################### ########################################################################### def set_rt_starting_cb(self, cb) -> None: """Set callback function(s) executed before each frame raytracing. Parameters ---------- cb : callable or list Callable or list of callables to set as the rt starting callback. """ with self._padlock: if cb is not None: self._rt_starting_cb = self._make_list_of_callable(cb) else: self._rt_starting_cb = [] def _scene_rt_starting_callback(self) -> None: """ Callback executed before starting frame raytracing. Appropriate to override in UI class and apply scene edits (or raise an event to do so) like camera rotations, etc. made by a user in UI. This callback is executed in the raytracing thread and should not compute extensively. """ for c in self._rt_starting_cb: c(self) def _get_scene_rt_starting_callback(self): def func(): self._scene_rt_starting_callback() return PARAM_NONE_CALLBACK(func) ########################################################################### ########################################################################### def set_accum_done_cb(self, cb) -> None: """Set callback function(s) executed when all accumulation frames are completed. Parameters ---------- cb : callable or list Callable or list of callables to set as the accum done callback. """ with self._padlock: if cb is not None: self._rt_accum_done_cb = self._make_list_of_callable(cb) else: self._rt_accum_done_cb = [] def _accum_done_callback(self) -> None: """ Callback executed when all accumulation frames are completed. **Do not override**, it is intended to launch ``on_rt_accum_done`` actions provided with NpOptiX constructor parameters. Executed in the raytracing thread, so do not compute or write files (make a copy of the image data and process it in another thread). """ if self._is_started: self._logger.info("RT accumulation finished.") with self._padlock: for c in self._rt_accum_done_cb: c(self) def _get_accum_done_callback(self): def func(): self._accum_done_callback() return PARAM_NONE_CALLBACK(func) ########################################################################### ########################################################################### def set_scene_compute_cb(self, cb) -> None: """Set callback function(s) executed on each frame ray tracing start. Callback(s) executed in parallel to the raytracing and intended for CPU intensive computations. Note, set ``compute_timeout`` to appropriate value if your computations are longer than single frame ray tracing, see :meth:`plotoptix.NpOptiX.set_param`. Parameters ---------- cb : callable or list Callable or list of callables to set as the scene compute callback. """ with self._padlock: if cb is not None: self._scene_compute_cb = self._make_list_of_callable(cb) else: self._scene_compute_cb = [] def _start_scene_compute_callback(self, n_frames : int) -> None: """ Compute callback executed together with the start of each frame raytracing. This callback is executed in parallel to the raytracing and is intended for CPU intensive computations. Do not set, update data, cameras, lights, etc. here, as it will block until the end of raytracing in the parallel thread. Callback execution can be suspended / resumed with :meth:`plotoptix.NpOptiX.pause_compute` / :meth:`plotoptix.NpOptiX.resume_compute` methods. **Do not override**, this method is intended to launch ``on_scene_compute`` actions provided with NpOptiX constructor parameters. Parameters ---------- n_frames : int Number of the raytraced frames since the last call (excluding paused cycles). """ if self._is_started: self._logger.info("Compute, delta %d frames.", n_frames) for c in self._scene_compute_cb: c(self, n_frames) def _get_start_scene_compute_callback(self): def func(n_frames : int): self._start_scene_compute_callback(n_frames) return PARAM_INT_CALLBACK(func) def set_rt_completed_cb(self, cb) -> None: """Set callback function(s) executed on each frame ray tracing finished. Callback(s) executed in the same thread as the scene compute callback. Note, set ``compute_timeout`` to appropriate value if your computations are longer than single frame ray tracing, see :meth:`plotoptix.NpOptiX.set_param`. Parameters ---------- cb : callable or list Callable or list of callables to set as the RT completed callback. """ with self._padlock: if cb is not None: self._rt_completed_cb = self._make_list_of_callable(cb) else: self._rt_completed_cb = [] def _scene_rt_completed_callback(self, rt_result : int) -> None: """ Callback executed in the same thread as _start_scene_compute_callback, after it finishes computations. This callback is synchronized also with the raytracing thread and should be used for any uploads of the updated scene to GPU: data, cameras, lights setup or updates. Image updates in UI are also possible here, but note that callback execution can be suspended / resumed with pause_compute() / resume_compute() methods. **Do not override**, this method is intended to launch on_rt_completed actions provided with __init__ method parameters. Parameters ---------- rt_result : int Raytracing result code corresponding to RtResult enum. """ if self._is_started and rt_result <= RtResult.NoUpdates.value: self._logger.info("RT completed, result %s.", RtResult(rt_result)) for c in self._rt_completed_cb: c(self) def _get_scene_rt_completed_callback(self): def func(rt_result : int): self._scene_rt_completed_callback(rt_result) return PARAM_INT_CALLBACK(func) ########################################################################### def pause_compute(self) -> None: """Suspend execution of ``on_scene_compute`` / ``on_rt_completed`` actions. """ if self._optix.set_compute_paused(True): self._logger.info("Compute thread paused.") else: self._logger.warn("Pausing compute thread had no effect.") def resume_compute(self) -> None: """Resume execution of ``on_scene_compute`` / ``on_rt_completed actions``. """ if self._optix.set_compute_paused(False): self._logger.info("Compute thread resumed.") else: msg = "Resuming compute thread had no effect." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def refresh_scene(self) -> None: """Refresh scene Starts raytracing accumulation from scratch. """ self._optix.refresh_scene() def get_float(self, name: str) -> Optional[float]: """Get shader ``float`` variable with given ``name``. Parameters ---------- name : string Variable name. Returns ------- out : float Value of the variable or ``None`` if variable not found. """ if not isinstance(name, str): name = str(name) c_x = c_float() if self._optix.get_float(name, byref(c_x)): self._logger.info("Variable float %s = %f", name, c_x.value) return c_x.value else: msg = "Variable float %s not found." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None def get_float2(self, name: str) -> (Optional[float], Optional[float]): """Get shader ``float2`` variable with given ``name``. Parameters ---------- name : string Variable name. Returns ------- out : tuple (float, float) Value (x, y) of the variable or ``(None, None)`` if variable not found. """ if not isinstance(name, str): name = str(name) c_x = c_float() c_y = c_float() if self._optix.get_float2(name, byref(c_x), byref(c_y)): self._logger.info("Variable float2 %s = (%f, %f)", name, c_x.value, c_y.value) return c_x.value, c_y.value else: msg = "Variable float2 %s not found." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None, None def get_float3(self, name: str) -> (Optional[float], Optional[float], Optional[float]): """Get shader ``float3`` variable with given ``name``. Parameters ---------- name : string Variable name. Returns ------- out : tuple (float, float, float) Value (x, y, z) of the variable or ``(None, None, None)`` if variable not found. """ if not isinstance(name, str): name = str(name) c_x = c_float() c_y = c_float() c_z = c_float() if self._optix.get_float3(name, byref(c_x), byref( c_y), byref(c_z)): self._logger.info("Variable float3 %s = (%f, %f, %f)", name, c_x.value, c_y.value, c_z.value) return c_x.value, c_y.value, c_z.value else: msg = "Variable float3 %s not found." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None, None, None def set_float(self, name: str, x: float, y: Optional[float] = None, z: Optional[float] = None, refresh: bool = False) -> None: """Set shader variable. Set shader variable with given ``name`` and of the type ``float``, ``float2`` (if y provided), or ``float3`` (if y and z provided). Raytrace the whole scene if refresh is set to ``True``. Parameters ---------- name : string Vairable name. x : float Variable value (x component in case of ``float2`` and ``float3``). y : float, optional Y component value for ``float2`` and ``float3`` variables. z : float, optional Z component value for ``float3`` variables. refresh : bool, optional Set to ``True`` if the image should be re-computed. Examples -------- >>> optix = TkOptiX() >>> optix.set_float("tonemap_exposure", 0.8) >>> optix.set_float("tonemap_gamma", 2.2) """ if not isinstance(name, str): name = str(name) if not isinstance(x, float): x = float(x) if z is not None: # expect float3 if not isinstance(z, float): z = float(z) if not isinstance(y, float): y = float(y) self._optix.set_float3(name, x, y, z, refresh) return if y is not None: # expect float2 if not isinstance(y, float): y = float(y) self._optix.set_float2(name, x, y, refresh) return self._optix.set_float(name, x, refresh) def get_uint(self, name: str) -> Optional[int]: """Get shader ``uint`` variable with given ``name``. Parameters ---------- name : string Variable name. Returns ------- out : int Value of the variable or ``None`` if variable not found. """ if not isinstance(name, str): name = str(name) c_x = c_uint() if self._optix.get_uint(name, byref(c_x)): self._logger.info("Variable uint %s = %d", name, c_x.value) return c_x.value else: msg = "Variable uint %s not found." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None def get_uint2(self, name: str) -> (Optional[int], Optional[int]): """Get shader ``uint2`` variable with given ``name``. Parameters ---------- name : string Variable name. Returns ------- out : tuple (int, int) Value (x, y) of the variable or ``(None, None)`` if variable not found. """ if not isinstance(name, str): name = str(name) c_x = c_uint() c_y = c_uint() if self._optix.get_uint2(name, byref(c_x), byref(c_y)): self._logger.info("Variable uint2 %s = (%d, %d)", name, c_x.value, c_y.value) return c_x.value, c_y.value else: msg = "Variable uint2 %s not found." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None, None def set_uint(self, name: str, x: int, y: Optional[int] = None, refresh: bool = False) -> None: """Set shader variable. Set shader variable with given ``name`` and of the type ``uint`` or ``uint2`` (if y provided). Raytrace the whole scene if refresh is set to ``True``. Note, shader variables distinguish ``int`` and ``uint`` while the type provided by Python methods is ``int`` in both cases. Parameters ---------- name : string Variable name. x : int Variable value (x component in case of ``uint2``). y : int, optional Y component value for ``uint2`` variable. refresh : bool, optional Set to ``True`` if the image should be re-computed. Examples -------- >>> optix = TkOptiX() >>> optix.set_uint("path_seg_range", 4, 16) # set longer range of traced path segments """ if not isinstance(name, str): name = str(name) if not isinstance(x, int): x = int(x) if y is not None: # expect uint2 if not isinstance(y, int): y = int(y) self._optix.set_uint2(name, x, y, refresh) return self._optix.set_uint(name, x, refresh) def get_int(self, name: str) -> Optional[int]: """Get shader ``int`` variable with given ``name``. Parameters ---------- name : string Variable name. Returns ------- out : int Value of the variable or ``None`` if variable not found. """ if not isinstance(name, str): name = str(name) c_x = c_int() if self._optix.get_int(name, byref(c_x)): self._logger.info("Variable int %s = %d", name, c_x.value) return c_x.value else: msg = "Variable int %s not found." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None def set_int(self, name: str, x: int, refresh: bool = False) -> None: """Set shader variable. Set shader variable with given ``name`` and of the type ``int``. Raytrace the whole scene if refresh is set to ``True``. Note, shader variables distinguish ``int`` and ``uint`` while the type provided by Python methods is ``int`` in both cases. Parameters ---------- name : string Variable name. x : int Variable value. refresh : bool, optional Set to ``True`` if the image should be re-computed. """ if not isinstance(name, str): name = str(name) if not isinstance(x, int): x = int(x) self._optix.set_int(name, x, refresh) def set_texture_1d(self, name: str, data: Any, addr_mode: Union[TextureAddressMode, str] = TextureAddressMode.Clamp, keep_on_host: bool = False, refresh: bool = False) -> None: """Set texture data. Set texture ``name`` data. Texture format (float, float2, float4 or byte, byte2, byte4) and length are deduced from the ``data`` array shape and dtype. Use ``keep_on_host=True`` to make a copy of data in the host memory (in addition to GPU memory), this option is required when (small) textures are going to be saved to JSON description of the scene. Parameters ---------- name : string Texture name. data : array_like Texture data. addr_mode : TextureAddressMode or string, optional Texture addressing mode on edge crossing. keep_on_host : bool, optional Store texture data copy in the host memory. refresh : bool, optional Set to ``True`` if the image should be re-computed. """ if not isinstance(name, str): name = str(name) if not isinstance(data, np.ndarray): data = np.ascontiguousarray(data) if isinstance(addr_mode, str): addr_mode = TextureAddressMode[addr_mode] if data.dtype != np.uint8: # everything not explicitly given as uin8 upload as float32 if len(data.shape) == 1: rt_format = RtFormat.Float elif len(data.shape) == 2: if data.shape[1] == 1: rt_format = RtFormat.Float elif data.shape[1] == 2: rt_format = RtFormat.Float2 elif data.shape[1] == 4: rt_format = RtFormat.Float4 else: msg = "Texture 1D shape should be (length,n), where n=1,2,4." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return else: msg = "Texture 1D shape should be (length,) or (length,n), where n=1,2,4." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if data.dtype != np.float32: data = np.ascontiguousarray(data, dtype=np.float32) if not data.flags['C_CONTIGUOUS']: data = np.ascontiguousarray(data, dtype=np.float32) else: if len(data.shape) == 1: rt_format = RtFormat.UByte elif len(data.shape) == 2: if data.shape[1] == 1: rt_format = RtFormat.UByte elif data.shape[1] == 2: rt_format = RtFormat.UByte2 elif data.shape[1] == 4: rt_format = RtFormat.UByte4 else: msg = "Texture 1D shape should be (length,n), where n=1,2,4." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return else: msg = "Texture 1D shape should be (length,) or (length,n), where n=1,2,4." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if not data.flags['C_CONTIGUOUS']: data = np.ascontiguousarray(data, dtype=np.uint8) self._logger.info("Set texture 1D %s: length=%d, format=%s.", name, data.shape[0], rt_format.name) if not self._optix.set_texture_1d(name, data.ctypes.data, data.shape[0], rt_format.value, addr_mode.value, keep_on_host, refresh): msg = "Texture 1D %s not uploaded." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def set_texture_2d(self, name: str, data: Any, addr_mode: Union[TextureAddressMode, str] = TextureAddressMode.Wrap, keep_on_host: bool = False, refresh: bool = False) -> None: """Set texture data. Set texture ``name`` data. Texture format (float, float2, float4 or byte, byte2, byte4) and width/height are deduced from the ``data`` array shape and dtype. Use ``keep_on_host=True`` to make a copy of data in the host memory (in addition to GPU memory), this option is required when (small) textures are going to be saved to JSON description of the scene. Parameters ---------- name : string Texture name. data : array_like Texture data. addr_mode : TextureAddressMode or string, optional Texture addressing mode on edge crossing. keep_on_host : bool, optional Store texture data copy in the host memory. refresh : bool, optional Set to ``True`` if the image should be re-computed. """ if not isinstance(name, str): name = str(name) if not isinstance(data, np.ndarray): data = np.ascontiguousarray(data) if isinstance(addr_mode, str): addr_mode = TextureAddressMode[addr_mode] if data.dtype != np.uint8: # everything not explicitly given as uin8 upload as float32 if len(data.shape) == 2: rt_format = RtFormat.Float elif len(data.shape) == 3: if data.shape[2] == 1: rt_format = RtFormat.Float elif data.shape[2] == 2: rt_format = RtFormat.Float2 elif data.shape[2] == 4: rt_format = RtFormat.Float4 else: msg = "Texture 2D shape should be (height,width,n), where n=1,2,4." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return else: msg = "Texture 2D shape should be (height,width) or (height,width,n), where n=1,2,4." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if data.dtype != np.float32: data = np.ascontiguousarray(data, dtype=np.float32) if not data.flags['C_CONTIGUOUS']: data = np.ascontiguousarray(data, dtype=np.float32) else: # uint8 if len(data.shape) == 2: rt_format = RtFormat.UByte elif len(data.shape) == 3: if data.shape[2] == 1: rt_format = RtFormat.UByte elif data.shape[2] == 2: rt_format = RtFormat.UByte2 elif data.shape[2] == 4: rt_format = RtFormat.UByte4 else: msg = "Texture 2D shape should be (height,width,n), where n=1,2,4." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return else: msg = "Texture 2D shape should be (height,width) or (height,width,n), where n=1,2,4." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if not data.flags['C_CONTIGUOUS']: data = np.ascontiguousarray(data, dtype=np.uint8) self._logger.info("Set texture 2D %s: %d x %d, format=%s.", name, data.shape[1], data.shape[0], rt_format.name) if not self._optix.set_texture_2d(name, data.ctypes.data, data.shape[1], data.shape[0], rt_format.value, addr_mode.value, keep_on_host, refresh): msg = "Texture 2D %s not uploaded." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def load_texture(self, tex_name: str, file_name: str, rt_format: RtFormat = RtFormat.Float4, prescale: float = 1.0, baseline: float = 0.0, exposure: float = 1.0, gamma: float = 1.0, addr_mode: Union[TextureAddressMode, str] = TextureAddressMode.Wrap, keep_on_host: bool = False, refresh: bool = False) -> None: """Load texture from file. Parameters ---------- tex_name : string Texture name. file_name : string Source image file. rt_format: RtFormat, optional Target format of the texture. prescale : float, optional Scaling factor for color values. baseline : float, optional Baseline added to color values. exposure : float, optional Exposure value used in the postprocessing. gamma : float, optional Gamma value used in the postprocessing. addr_mode : TextureAddressMode or string, optional Texture addressing mode on edge crossing. keep_on_host : bool, optional Store texture data copy in the host memory. refresh : bool, optional Set to ``True`` if the image should be re-computed. Examples -------- >>> optix = TkOptiX() >>> optix.load_texture("rainbow", "data/rainbow.jpg") # set gray background """ if isinstance(rt_format, str): rt_format = RtFormat[rt_format] if isinstance(addr_mode, str): addr_mode = TextureAddressMode[addr_mode] if not self._optix.load_texture_2d(tex_name, file_name, prescale, baseline, exposure, gamma, rt_format.value, addr_mode.value, refresh): msg = "Failed on reading texture from file %s." % file_name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) def set_normal_tilt(self, name: str, data: Any, mapping: Union[TextureMapping, str] = TextureMapping.Flat, addr_mode: Union[TextureAddressMode, str] = TextureAddressMode.Wrap, keep_on_host: bool = False, refresh: bool = False) -> None: """Set normal tilt data. Set shading normal tilt according to displacement data for the material ``name``. The ``data`` has to be a 2D array containing displacement mapping. ``mapping`` determines how the normal tilt is calculated from the displacement map (see :class:`plotoptix.enums.TextureMapping`). Use ``keep_on_host=True`` to make a copy of data in the host memory (in addition to GPU memory), this option is required when (small) arrays are going to be saved to JSON description of the scene. Parameters ---------- name : string Object name. data : array_like Displacement map data. mapping : TextureMapping or string, optional Mapping mode (see :class:`plotoptix.enums.TextureMapping`). addr_mode : TextureAddressMode or string, optional Texture addressing mode on edge crossing. keep_on_host : bool, optional Store texture data copy in the host memory. refresh : bool, optional Set to ``True`` if the image should be re-computed. """ if not isinstance(name, str): name = str(name) if not isinstance(data, np.ndarray): data = np.ascontiguousarray(data, dtype=np.float32) if isinstance(mapping, str): mapping = TextureMapping[mapping] if isinstance(addr_mode, str): addr_mode = TextureAddressMode[addr_mode] if len(data.shape) != 2: msg = "Data shape should be (height,width)." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if data.dtype != np.float32: data = np.ascontiguousarray(data, dtype=np.float32) if not data.flags['C_CONTIGUOUS']: data = np.ascontiguousarray(data, dtype=np.float32) self._logger.info("Set shading normal tilt map for %s: %d x %d.", name, data.shape[1], data.shape[0]) if not self._optix.set_normal_tilt(name, data.ctypes.data, data.shape[1], data.shape[0], mapping.value, addr_mode.value, keep_on_host, refresh): msg = "%s normal tilt map not uploaded." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def load_normal_tilt(self, name: str, file_name: str, mapping: Union[TextureMapping, str] = TextureMapping.Flat, addr_mode: Union[TextureAddressMode, str] = TextureAddressMode.Wrap, prescale: float = 1.0, baseline: float = 0.0, refresh: bool = False) -> None: """Set normal tilt data. Set shading normal tilt according to displacement map loaded from an image file. ``mapping`` determines how the normal tilt is calculated from the displacement data (see :class:`plotoptix.enums.TextureMapping`). Tilt data is stored in the device memory only (there is no host copy). Parameters ---------- name : string Material name. file_name : string Image file name with the displacement data. mapping : TextureMapping or string, optional Mapping mode (see :class:`plotoptix.enums.TextureMapping`). addr_mode : TextureAddressMode or string, optional Texture addressing mode on edge crossing. prescale : float, optional Scaling factor for displacement values. baseline : float, optional Baseline added to displacement values. refresh : bool, optional Set to ``True`` if the image should be re-computed. """ if not isinstance(name, str): name = str(name) if not isinstance(file_name, str): name = str(file_name) if isinstance(mapping, str): mapping = TextureMapping[mapping] if isinstance(addr_mode, str): addr_mode = TextureAddressMode[addr_mode] self._logger.info("Set shading normal tilt map for %s using %s.", name, file_name) if not self._optix.load_normal_tilt(name, file_name, mapping.value, addr_mode.value, prescale, baseline, refresh): msg = "%s normal tilt map not uploaded." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def set_displacement(self, name: str, data: Any, addr_mode: Union[TextureAddressMode, str] = TextureAddressMode.Wrap, keep_on_host: bool = False, refresh: bool = False) -> None: """Set surface displacement data. Set displacement data for the object ``name``. Geometry attribute program of the object has to be set to :attr:`plotoptix.enums.GeomAttributeProgram.DisplacedSurface`. The ``data`` has to be a 2D array containing displacement map. Use ``keep_on_host=True`` to make a copy of data in the host memory (in addition to GPU memory), this option is required when (small) arrays are going to be saved to JSON description of the scene. Parameters ---------- name : string Object name. data : array_like Displacement map data. addr_mode : TextureAddressMode or string, optional Texture addressing mode on edge crossing. keep_on_host : bool, optional Store texture data copy in the host memory. refresh : bool, optional Set to ``True`` if the image should be re-computed. """ if not isinstance(name, str): name = str(name) if not isinstance(data, np.ndarray): data = np.ascontiguousarray(data, dtype=np.float32) if isinstance(addr_mode, str): addr_mode = TextureAddressMode[addr_mode] if len(data.shape) != 2: msg = "Data shape should be (height,width)." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if data.dtype != np.float32: data = np.ascontiguousarray(data, dtype=np.float32) if not data.flags['C_CONTIGUOUS']: data = np.ascontiguousarray(data, dtype=np.float32) self._logger.info("Set displacement map for %s: %d x %d.", name, data.shape[1], data.shape[0]) if not self._optix.set_displacement(name, data.ctypes.data, data.shape[1], data.shape[0], addr_mode.value, keep_on_host, refresh): msg = "%s displacement map not uploaded." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def load_displacement(self, name: str, file_name: str, prescale: float = 1.0, baseline: float = 0.0, addr_mode: Union[TextureAddressMode, str] = TextureAddressMode.Wrap, refresh: bool = False) -> None: """Load surface displacement data from file. Load displacement data for the object ``name`` from an image file. Geometry attribute program of the object has to be set to :attr:`plotoptix.enums.GeomAttributeProgram.DisplacedSurface`. Tilt data is stored in the device memory only (there is no host copy). Parameters ---------- name : string Object name. file_name : string Image file name with the displacement data. prescale : float, optional Scaling factor for displacement values. baseline : float, optional Baseline added to displacement values. addr_mode : TextureAddressMode or string, optional Texture addressing mode on edge crossing. refresh : bool, optional Set to ``True`` if the image should be re-computed. """ if not isinstance(name, str): name = str(name) if not isinstance(file_name, str): name = str(file_name) if isinstance(addr_mode, str): addr_mode = TextureAddressMode[addr_mode] self._logger.info("Set displacement map for %s using %s.", name, file_name) if not self._optix.load_displacement(name, file_name, prescale, baseline, addr_mode.value, refresh): msg = "%s displacement map not uploaded." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def get_background_mode(self) -> Optional[MissProgram]: """Get currently configured miss program. Returns ------- out : MissProgram or None Miss program, see :py:mod:`plotoptix.enums.MissProgram`, or `None` if reading the mode failed. See Also -------- :py:mod:`plotoptix.enums.MissProgram` """ miss = self._optix.get_miss_program() if miss >= 0: mode = MissProgram(miss) self._logger.info("Current miss program is: %s", mode.name) return mode else: msg = "Failed on reading the miss program." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) return None def set_background_mode(self, mode: Union[MissProgram, str], refresh: bool = False) -> None: """Set miss program. Parameters ---------- mode : MissProgram enum or string Miss program, see :py:mod:`plotoptix.enums.MissProgram`. refresh : bool, optional Set to ``True`` if the image should be re-computed. See Also -------- :py:mod:`plotoptix.enums.MissProgram` """ if isinstance(mode, str): mode = MissProgram[mode] if self._optix.set_miss_program(mode.value, refresh): self._logger.info("Miss program %s is selected.", mode.name) else: msg = "Miss program setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def get_background(self) -> (float, float, float): """Get background color. **Note**, currently returns constant background color also in texture based background modes. Returns ------- out : tuple (float, float, float) Color values (r, g, b) of the background color. """ return self.get_float3("bg_color") def set_background(self, bg: Any, rt_format: Union[RtFormat, str] = RtFormat.Float4, prescale: float = 1.0, baseline: float = 0.0, exposure: float = 1.0, gamma: float = 1.0, keep_on_host: bool = False, refresh: bool = False) -> None: """Set background color. Set background color or texture (shader variable ``bg_color``, texture ``bg_texture`` or ``bg_texture8`` depending on the ``rt_format``). Raytrace the whole scene if refresh is set to ``True``. Texture should be provided as an array of shape ``(height, width, n)``, where ``n`` is 3 or 4. 3-component RGB arrays are extended to 4-component RGBA shape (alpha channel is reserved for future implementations). Function attempts to load texture from file if ``bg`` is a string. Color values are corrected to account for the postprocessing tone mapping if ``exposure`` and ``gamma`` values are provided. Use ``keep_on_host=True`` to make a copy of data in the host memory (in addition to GPU memory), this option is required when (small) textures are going to be saved to JSON description of the scene. Note, color components range is <0; 1>. Parameters ---------- bg : Any New backgroud color or texture data; single value is a grayscale level, RGB color components can be provided as an array-like values, texture is provided as an array of shape ``(height, width, n)`` or string with the source image file path. rt_format: RtFormat, optional Target format of the texture. prescale : float, optional Scaling factor for color values. baseline : float, optional Baseline added to color values. exposure : float, optional Exposure value used in the postprocessing. gamma : float, optional Gamma value used in the postprocessing. keep_on_host : bool, optional Store texture data copy in the host memory. refresh : bool, optional Set to ``True`` if the image should be re-computed. Examples -------- >>> optix = TkOptiX() >>> optix.set_background(0.5) # set gray background >>> optix.set_background([0.5, 0.7, 0.9]) # set light bluish background """ if isinstance(rt_format, str): rt_format = RtFormat[rt_format] if rt_format == RtFormat.Float4: bg_name = "bg_texture" elif rt_format == RtFormat.UByte4: bg_name = "bg_texture8" else: msg = "Background texture format should be Float4 or UByte4." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) if isinstance(bg, str): if self._optix.load_texture_2d(bg_name, bg, prescale, baseline, exposure, gamma, rt_format.value, TextureAddressMode.Mirror.value, False): if not self._optix.set_bg_texture(bg_name, refresh): msg = "Background texture %s not set." % bg_name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) self._logger.info("Background texture loaded from file.") else: msg = "Failed on reading background texture." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return e = 1 / exposure if isinstance(bg, float) or isinstance(bg, int): x = float(bg); x = e * np.power(x, gamma) y = float(bg); y = e * np.power(y, gamma) z = float(bg); z = e * np.power(z, gamma) if self._optix.set_float3("bg_color", x, y, z, refresh): self._logger.info("Background constant gray level updated.") else: msg = "Failed on updating background color." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if not isinstance(bg, np.ndarray): bg = np.ascontiguousarray(bg) if (len(bg.shape) == 1) and (bg.shape[0] == 3): x = e * np.power(bg[0], gamma) y = e * np.power(bg[1], gamma) z = e * np.power(bg[2], gamma) if self._optix.set_float3("bg_color", x, y, z, refresh): self._logger.info("Background constant color updated.") else: msg = "Failed on updating background color." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if len(bg.shape) == 3: if bg.shape[-1] == 3: b = np.zeros((bg.shape[0], bg.shape[1], 4), dtype=bg.dtype) b[...,:-1] = bg bg = b if bg.shape[-1] == 4: if gamma != 1: if bg.dtype != np.float32 and bg.dtype != np.float64: bg = bg.astype(dtype=np.float32) bg *= 1.0/255.0 bg = np.power(bg, gamma) if e != 1: if bg.dtype != np.float32 and bg.dtype != np.float64: bg = bg.astype(dtype=np.float32) bg *= 1.0/255.0 bg *= e if rt_format == RtFormat.Float4 and bg.dtype != np.float32: bg = bg.astype(dtype=np.float32) elif rt_format == RtFormat.UByte4 and bg.dtype != np.uint8: if bg.dtype == np.float32 or bg.dtype == np.float64: bg *= 255.0 np.clip(bg, 0.0, 255.0, out=bg) bg = bg.astype(dtype=np.uint8) self.set_texture_2d(bg_name, bg, addr_mode=TextureAddressMode.Mirror, keep_on_host=keep_on_host, refresh=False) if not self._optix.set_bg_texture(bg_name, refresh): msg = "Background texture %s not set." % bg_name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) self._logger.info("Background texture %s updated." % bg_name) return msg = "Background should be a single gray level or [r,g,b] array_like or 2D array_like of [r,g,b]/[r,g,b,a] values." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) def get_ambient(self) -> (float, float, float): """Get ambient color. Returns ------- out : tuple (float, float, float) Color values (r, g, b) of the ambient light color. """ return self.get_float3("ambient_color") def set_ambient(self, color: Any, refresh: bool = False) -> None: """Set ambient light color. Set ambient light color of the scene (shader variable ``ambient_color``, default value is [0.86, 0.89, 0.94]). Raytrace the whole scene if refresh is set to ``True``. Note, color components range is <0; 1>. Parameters ---------- color : Any New ambient light color value; single value is a grayscale level, RGB color components can be provided as array-like values. refresh : bool, optional Set to ``True`` if the image should be re-computed. Examples -------- >>> optix = TkOptiX() >>> optix.set_ambient(0.5) # set dim gray light >>> optix.set_ambient([0.1, 0.2, 0.3]) # set dim bluish light """ if isinstance(color, float) or isinstance(color, int): x = float(color) y = float(color) z = float(color) else: if not isinstance(color, np.ndarray): color = np.asarray(color, dtype=np.float32) if (len(color.shape) != 1) or (color.shape[0] != 3): msg = "Color should be a single value or 3-element array/list/tupe." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return x = color[0] y = color[1] z = color[2] self._optix.set_float3("ambient_color", x, y, z, refresh) self._logger.info("Ambient color updated.") def get_param(self, name: str) -> Optional[Any]: """Get raytracer parameter. Available parameters: - ``compute_timeout`` - ``light_shading`` - ``max_accumulation_frames`` - ``min_accumulation_step`` - ``rt_timeout`` - ``save_albedo`` - ``save_normals`` Parameters ---------- name : string Parameter name. Returns ------- out : Any, optional Value of the parameter or ``None`` if parameter not found. Examples -------- >>> optix = TkOptiX() >>> print(optix.get_param("max_accumulation_frames")) See Also -------- :meth:`plotoptix.NpOptiX.set_param` """ try: v = None self._padlock.acquire() if name == "min_accumulation_step": v = self._optix.get_min_accumulation_step() elif name == "max_accumulation_frames": v = self._optix.get_max_accumulation_frames() elif name == "light_shading": shading = self._optix.get_light_shading() if shading >= 0: v = LightShading(shading) elif name == "compute_timeout": v = self._optix.get_compute_timeout() elif name == "rt_timeout": v = self._optix.get_rt_timeout() elif name == "save_albedo": v = self._optix.get_save_albedo() elif name == "save_normals": v = self._optix.get_save_normals() else: msg = "Unknown parameter " + name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() self._logger.info("Value of %s is %s", name, v) return v def set_param(self, **kwargs) -> None: """Set raytracer parameter(s). Available parameters: - ``compute_timeout``: timeout for the computation thread Set this parameter if the computations performed in the scene_compute callback are longer than the frame ray tracing. See also :meth:`plotoptix.NpOptiX.set_scene_compute_cb`. - ``light_shading``: light shading mode. Use :attr:`plotoptix.enums.LightShading.Hard` for best caustics or :attr:`plotoptix.enums.LightShading.Soft` for fast convergence. String names ``"Hard"`` and ``"Soft"`` are accepted. Set mode before adding lights. - ``max_accumulation_frames`` Number of accumulation frames computed for the scene. - ``min_accumulation_step`` Number of accumulation frames computed in a single step (before each image refresh). - ``rt_timeout`` Ray tracing timeout. Default value is 30000 (30s). - ``save_albedo`` Allocate buffer and collect albedo information if set to `True`. If set to `False` then buffer is allocated only if denoiser requires it. - ``save_normals`` Allocate buffer and collect normals if set to `True`. If set to `False` then buffer is allocated only if denoiser requires it. Parameters ---------- kwargs : Any Values of parameters corresponding to provided names. Examples -------- >>> optix = TkOptiX() >>> optix.set_param(min_accumulation_step=4, max_accumulation_frames=200) """ try: self._padlock.acquire() for key, value in kwargs.items(): self._logger.info("Set %s to %s", key, value) if key == "min_accumulation_step": self._optix.set_min_accumulation_step(int(value)) elif key == "max_accumulation_frames": self._optix.set_max_accumulation_frames(int(value)) elif key == "light_shading": if len(self.light_handles) > 0: msg = "Light shading has to be selected before adding lights." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) continue if isinstance(value, str): mode = LightShading[value] else: mode = value self._optix.set_light_shading(mode.value) elif key == "compute_timeout": self._optix.set_compute_timeout(int(value)) elif key == "rt_timeout": self._optix.set_rt_timeout(int(value)) elif key == "save_albedo": self._optix.set_save_albedo(bool(value)) elif key == "save_normals": self._optix.set_save_normals(bool(value)) else: msg = "Unknown parameter " + key self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def get_scene(self) -> dict: """Get dictionary with the scene description. Returns a dictionary with the scene description. Geometry objects, materials, lights, texture data or file names, cameras, postprocessing and scene parameters are included. Callback functions and vieport dimensions are not saved. Existing files are overwritten. Returns ------- out : dict, optional Dictionary with the scene description. """ try: self._padlock.acquire() s = self._optix.save_scene_to_json() if len(s) > 2: return json.loads(s) else: return {} except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def _init_scene_metadata(self) -> bool: s = self._optix.get_scene_metadata() if len(s) > 2: meta = json.loads(s) else: self._logger.error("Scene loading failed.") return False self.geometry_data = {} # geometry name to handle dictionary self.geometry_names = {} # geometry handle to name dictionary if "Geometry" in meta: for key, value in meta["Geometry"].items(): self.geometry_data[key] = GeometryMeta(key, value["Handle"], value["Size"]) self.geometry_names[value["Handle"]] = key else: return False self.camera_handles = {} # camera name to handle dictionary self.camera_names = {} # camera handle to name dictionary if "Cameras" in meta: for key, value in meta["Cameras"].items(): self.camera_handles[key] = value self.camera_names[value] = key else: return False self.light_handles = {} # light name to handle dictionary self.light_names = {} # light handle to name dictionary if "Lights" in meta: for key, value in meta["Lights"].items(): self.light_handles[key] = value self.light_names[value] = key else: return False return True def set_scene(self, scene: dict) -> None: """Setup scene using description in provided dictionary. Set new scene using provided description (and destroy current scene). Geometry objects, materials, lights, texture data or file names, cameras, postprocessing and scene parameters are replaced. Callback functions and vieport dimensions are preserved. Note: locations of external resources loaded from files (e.g. textures) are saved as relative paths, ensure your working directory matches these locations. Parameters ---------- scene : dict Dictionary with the scene description. """ s = json.dumps(scene) with self._padlock: self._logger.info("Loading new scene from dictionary.") if self._optix.load_scene_from_json(s) and self._init_scene_metadata(): self.update_device_buffers() self._logger.info("New scene ready.") else: msg = "Scene loading failed." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) def load_scene(self, file_name: str) -> None: """Load scene description from JSON file. Load new scene from JSON file (and destroy current scene). Geometry objects, materials, lights, texture data or file names, cameras, postprocessing and scene parameters are replaced. Callback functions and vieport dimensions are preserved. Parameters ---------- file_name : str Input file name. """ if not os.path.isfile(file_name): msg = "File %s not found." % file_name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return wd = os.getcwd() if os.path.isabs(file_name): d, f = os.path.split(file_name) os.chdir(d) else: f = file_name with self._padlock: self._logger.info("Loading new scene from file %s.", file_name) if self._optix.load_scene_from_file(f) and self._init_scene_metadata(): self.update_device_buffers() self._logger.info("New scene ready.") else: msg = "Scene loading failed." self._logger.error(msg) if self._raise_on_error: os.chdir(wd) raise ValueError(msg) os.chdir(wd) def save_scene(self, file_name: str) -> None: """Save scene description to JSON file. Save description of the scene to file. Geometry objects, materials, lights, texture data or file names, cameras, postprocessing and scene parameters are included. Callback functions and vieport dimensions are not saved. Existing files are overwritten. Parameters ---------- file_name : str Output file name. """ try: self._padlock.acquire() if not self._optix.save_scene_to_file(file_name): msg = "Scene not saved." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def save_image(self, file_name: str, bps: Union[ChannelDepth, str] = ChannelDepth.Bps8) -> None: """Save current image to file. Save current content of the image buffer to a file. Accepted formats, recognized by the extension used in the ``file_name``, are: - bmp, gif, png, jpg, and tif for 8bps color depth, - png (Windows only), and tif for 16bps color depth, - tif for 32bps hdr images. Existing files are overwritten. Parameters ---------- file_name : str Output file name. bps : ChannelDepth enum or string, optional Color depth. See Also -------- :class:`plotoptix.enums.ChannelDepth` """ if isinstance(bps, str): bps = ChannelDepth[bps] try: self._padlock.acquire() if bps == ChannelDepth.Bps8: ok = self._optix.save_image_to_file(file_name) elif bps == ChannelDepth.Bps16: ok = self._optix.save_image_to_file_16bps(file_name) elif bps == ChannelDepth.Bps32: ok = self._optix.save_image_to_file_32bps(file_name) else: ok = False if not ok: msg = "Image not saved." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def encoder_create(self, fps: int, bitrate: float = 2, idrrate: Optional[int] = None, profile: Union[NvEncProfile, str] = NvEncProfile.Default, preset: Union[NvEncPreset, str] = NvEncPreset.Default) -> None: """Create video encoder. Create and configure video encoder for this raytracer instance. Only one encoder per raytracer instance is supported now. Specifying ``preset`` overrides ``bitrate`` settings. Beware that some combinations are not supported by all players (e.g. lossless encoding is not playable in Windows Media Player). Parameters ---------- fps : int Frames per second assumed in the output file. bitrate : float, optional Constant bitrate of the encoded stream, in Mbits to save you typing 0's. idrrate : int, optional Instantaneous Decode Refresh frame interval. 2 seconds interval is used if ``idrrate`` is not provided. profile : NvEncProfile enum or string, optional H.264 encoding profile. preset : NvEncPreset enum or string, optional H.264 encoding preset, overrides ``bitrate`` settings. See Also -------- :class:`plotoptix.enums.NvEncProfile`, :class:`plotoptix.enums.NvEncPreset` """ if idrrate is None: idrrate = 2 * fps if isinstance(profile, str): profile = NvEncProfile[profile] if isinstance(preset, str): preset = NvEncPreset[preset] try: self._padlock.acquire() if not self._optix.encoder_create(fps, int(1000000 * bitrate), idrrate, profile.value, preset.value): msg = "Encoder not created." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def encoder_start(self, out_name: str, n_frames: int = 0) -> None: """Start video encoding. Start encoding to MP4 file with provided name. Total number of frames can be optionally limited. Output file is overwritten if it already exists. New file is created and encoding is restarted if method is launched during previously started encoding. Parameters ---------- out_name : str Output file name. n_frames : int, optional Maximum number of frames to encode if ``n_frames`` or unlimited encoding when default value is used. """ try: self._padlock.acquire() if not self._optix.encoder_start(out_name, n_frames): msg = "Encoder not started." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def encoder_stop(self) -> None: """Stop video encoding. Stop encoding and close the output file (can happen before configured total number of frames to encode). """ try: self._padlock.acquire() if not self._optix.encoder_stop(): msg = "Encoder not stopped." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def encoder_is_open(self) -> bool: """Encoder is encoding. Returns ------- out : bool ``True`` if encoder is encoding. """ return self._optix.encoder_is_open() def encoded_frames(self) -> int: """Number of encoded video frames. Returns ------- out : int Number of frames. """ n = self._optix.encoded_frames() if n < 0: msg = "Number of encoded frames unavailable." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return n def encoding_frames(self) -> int: """Number of frames to encode. Returns ------- out : int Number of frames. """ n = self._optix.encoding_frames() if n < 0: msg = "Number of frames to encode unavailable." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return n def get_camera_names(self) -> list: """Return list of cameras' names. """ return list(self.camera_handles.keys()) def get_camera_name_handle(self, name: Optional[str] = None) -> (Optional[str], Optional[int]): """Get camera name and handle. Mostly for the internal use. Parameters ---------- name : string, optional Camera name; current camera is used if name not provided. Returns ------- out : tuple (name, handle) Name and handle of the camera or ``(None, None)`` if camera not found. """ cam_handle = 0 if name is None: # try current camera cam_handle = self._optix.get_current_camera() if cam_handle == 0: msg = "Current camera is not set." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None, None for n, h in self.camera_handles.items(): if h == cam_handle: name = n break else: # try camera by name if not isinstance(name, str): name = str(name) if name in self.camera_handles: cam_handle = self.camera_handles[name] else: msg = "Camera %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None, None return name, cam_handle def get_camera(self, name: Optional[str] = None) -> Optional[dict]: """Get camera parameters. Parameters ---------- name : string, optional Name of the camera, use current camera if name not provided. Returns ------- out : dict, optional Dictionary of the camera parameters or ``None`` if failed on accessing camera data. """ name, cam_handle = self.get_camera_name_handle(name) if name is None: return None s = self._optix.get_camera(cam_handle) if len(s) > 2: return json.loads(s) else: msg = "Failed on reading camera %s." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None def get_camera_eye(self, name: Optional[str] = None) -> Optional[np.ndarray]: """Get camera eye coordinates. Parameters ---------- name : string, optional Name of the camera, use current camera if name not provided. Returns ------- out : np.ndarray, optional 3D coordinates of the camera eye or None if failed on accessing camera data. """ if name is not None and not isinstance(name, str): name = str(name) name, cam_handle = self.get_camera_name_handle(name) if name is None: return None eye = np.ascontiguousarray([0, 0, 0], dtype=np.float32) self._optix.get_camera_eye(cam_handle, eye.ctypes.data) return eye def get_camera_target(self, name: Optional[str] = None) -> Optional[np.ndarray]: """Get camera target coordinates. Parameters ---------- name : string, optional Name of the camera, use current camera if name not provided. Returns ------- out : np.ndarray, optional 3D coordinates of the camera target or ``None`` if failed on accessing camera data. """ if name is not None and not isinstance(name, str): name = str(name) name, cam_handle = self.get_camera_name_handle(name) if name is None: return None target = np.ascontiguousarray([0, 0, 0], dtype=np.float32) self._optix.get_camera_target(cam_handle, target.ctypes.data) return target def get_camera_glock(self, name: Optional[str] = None) -> Optional[bool]: """Get camera gimbal lock state. Parameters ---------- name : string, optional Name of the camera, use current camera if name not provided. Returns ------- out : bool, optional Gimbal lock state of the camera or ``None`` if failed on accessing camera data. """ if name is not None and not isinstance(name, str): name = str(name) name, cam_handle = self.get_camera_name_handle(name) if name is None: return None return self._optix.get_camera_glock(cam_handle) def set_camera_glock(self, state: bool) -> None: """Set current camera's gimbal lock. Parameters ---------- state : bool Gimbal lock state. """ if not self._optix.set_camera_glock(state): msg = "Camera gimbal lock not set." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def setup_camera(self, name: str, eye: Optional[Any] = None, target: Optional[Any] = None, up: Optional[Any] = None, cam_type: Union[Camera, str] = Camera.Pinhole, aperture_radius: float = -1, aperture_fract: float = 0.15, focal_scale: float = -1, chroma_l: float = 0.05, chroma_t: float = 0.01, fov: float = -1, blur: float = 1, glock: bool = False, textures: Optional[Any] = None, make_current: bool = True) -> None: """Setup new or update existing camera. Note, parameters possible to update with this method are: ``eye``, ``target``, ``up``, ``aperture_radius``, ``focal_scale``, and ``fov``. Parameters ---------- name : string Name of the new camera. eye : array_like, optional Eye 3D position. Best fit for the current scene is computed if argument is not provided. Ignored in camera modes with ray origins stored in a texture. target : array_like, optional Target 3D position. Center of all geometries if argument not provided. Ignored in camera modes with ray targets or directions stored in a texture. up : array_like, optional Up (vertical) direction. Y axis if argument not provided. Ignored in camera modes with ray origins stored in a texture. cam_type : Camera enum or string, optional Type (pinhole, depth of field, ...), see :class:`plotoptix.enums.Camera`. Cannot be changed after construction. aperture_radius : float, optional Aperture radius (increases focus blur for depth of field cameras). aperture_fract : float, optional Fraction of blind central spot of the aperture (results with ring-like bokeh if > 0). Cannot be changed after construction. focal_scale : float, optional Focusing distance, relative to ``eye - target`` length. chroma_l : float, optional Longitudinal chromatic aberration strength, relative variation of the focusing distance for different wavelengths. Use be a small positive value << 1.0. Default is ``0.05``, use ``0.0`` for no aberration. chroma_t : float, optional Transverse chromatic aberration strength, relative variation of the lens magnification for different wavelengths. Use be a small positive value << 1.0. Default is ``0.01``, use ``0.0`` for no aberration. fov : float, optional Field of view in degrees. blur : float, optional Weight of the new frame in averaging with already accumulated frames. Range is (0; 1>, lower values result with a higher motion blur, value 1.0 turns off the blur (default). Cannot be changed after construction. glock : bool, optional Gimbal lock state of the new camera. textures : array_like, optional List of textures used by the camera ray generation program. make_current : bool, optional Automatically switch to this camera if set to ``True``. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if isinstance(cam_type, str): cam_type = Camera[cam_type] if name in self.camera_handles: self.update_camera(name=name, eye=eye, target=target, up=up, aperture_radius=aperture_radius, focal_scale=focal_scale, fov=fov) return if up is None: up = np.ascontiguousarray([0, 1, 0], dtype=np.float32) if aperture_radius <= 0: aperture_radius = 0.1 if focal_scale <= 0: focal_scale = 1.0 if fov <= 0: fov = 35.0 eye_ptr = 0 eye = _make_contiguous_vector(eye, 3) if eye is not None: eye_ptr = eye.ctypes.data target_ptr = 0 target = _make_contiguous_vector(target, 3) if target is not None: target_ptr = target.ctypes.data up = _make_contiguous_vector(up, 3) if up is None: msg = "Need 3D camera up vector." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return tex_list = "" if textures is not None: tex_list = ";".join(textures) h = self._optix.setup_camera(name, cam_type.value, eye_ptr, target_ptr, up.ctypes.data, aperture_radius, aperture_fract, focal_scale, chroma_l, chroma_t, fov, blur, glock, tex_list, make_current) if h > 0: self._logger.info("Camera %s handle: %d.", name, h) self.camera_handles[name] = h self.camera_names[h] = name else: msg = "Camera setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def update_camera(self, name: Optional[str] = None, eye: Optional[Any] = None, target: Optional[Any] = None, up: Optional[Any] = None, aperture_radius: float = -1.0, focal_scale: float = -1.0, fov: float = -1.0) -> None: """Update camera parameters. Parameters ---------- name : string Name of the camera to update. eye : array_like, optional Eye 3D position. target : array_like, optional Target 3D position. up : array_like, optional Up (vertical) direction. aperture_radius : float, optional Aperture radius (increases focus blur for depth of field cameras). focal_scale : float, optional Focus distance / (eye - target).length. fov : float, optional Field of view in degrees. """ name, cam_handle = self.get_camera_name_handle(name) if (name is None) or (cam_handle == 0): return eye = _make_contiguous_vector(eye, 3) if eye is not None: eye_ptr = eye.ctypes.data else: eye_ptr = 0 target = _make_contiguous_vector(target, 3) if target is not None: target_ptr = target.ctypes.data else: target_ptr = 0 up = _make_contiguous_vector(up, 3) if up is not None: up_ptr = up.ctypes.data else: up_ptr = 0 if self._optix.update_camera(name, eye_ptr, target_ptr, up_ptr, aperture_radius, focal_scale, fov): self._logger.info("Camera %s updated.", name) else: msg = "Camera %s update failed." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def get_current_camera(self) -> Optional[str]: """Get current camera name. Returns ------- out : string, optional Name of the current camera or ``None`` if camera not set. """ cam_handle = self._optix.get_current_camera() if cam_handle == 0: msg = "Current camera is not set." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None if cam_handle not in self.camera_names: msg = "Camera handle %d does not exists." % cam_handle self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None return self.camera_names[cam_handle] def set_current_camera(self, name: str) -> None: """Switch to another camera. Parameters ---------- name : string Name of the new current camera. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name not in self.camera_handles: msg = "Camera %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if self._optix.set_current_camera(name): self._logger.info("Current camera: %s", name) else: msg = "Current camera not changed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def camera_fit(self, camera: Optional[str] = None, geometry: Optional[str] = None, scale: float = 2.5) -> None: """Fit the camera eye and target to contain geometry in the field of view. Parameters ---------- camera : string, optional Name of the new camera to fit; current camera if name not provided. geometry : string, optional Name of the geometry to fit in view; all geometries if not provided. scale : float, optional Adjustment of the prefered distance (useful for wide angle cameras). """ camera, cam_handle = self.get_camera_name_handle(camera) if camera is None: return if geometry is not None: if not isinstance(geometry, str): geometry = str(geometry) else: geometry = "" self._optix.fit_camera(cam_handle, geometry, scale) def camera_move_by(self, shift: Tuple[float, float, float]) -> None: """Move current camera in the world coordinates. Parameters ---------- shift : tuple (float, float, float) (X, Y, Z) shift vector. """ if not self._optix.move_camera_by(shift[0], shift[1], shift[2]): msg = "Camera move failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def camera_move_by_local(self, shift: Tuple[float, float, float]) -> None: """Move current camera in the camera coordinates. Camera coordinates are: X to the right, Y up, Z towards camera. Parameters ---------- shift : tuple (float, float, float) (X, Y, Z) shift vector. """ if not self._optix.move_camera_by_local(shift[0], shift[1], shift[2]): msg = "Camera move failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def camera_rotate_by(self, rot: Tuple[float, float, float], center: Tuple[float, float, float]) -> None: """Rotate current camera in the world coordinates about the center. Rotation is done the world coordinates about Y, X, and then Z axis, by the angles provided with ``rot = (rx, ry, rz)`` parameter. Parameters ---------- rot : tuple (float, float, float) Rotation around (X, Y, Z) axis. center : tuple (float, float, float) Rotation center. """ if not self._optix.rotate_camera_by(rot[0], rot[1], rot[2], center[0], center[1], center[2]): msg = "Camera rotate failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def camera_rotate_by_local(self, rot: Tuple[float, float, float], center: Tuple[float, float, float]) -> None: """Rotate current camera in the camera coordinates about the center. Rotation is done the camera coordinates about Y (camera up, yaw), X (camera right, pitch), and then Z (towards camera, roll) axis, by the angles provided with ``rot = (rx, ry, rz)`` parameter. Parameters ---------- rot : tuple (float, float, float) Rotation around (X, Y, Z) axis. center : tuple (float, float, float) Rotation center. """ if not self._optix.rotate_camera_by_local(rot[0], rot[1], rot[2], center[0], center[1], center[2]): msg = "Camera rotate local failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def camera_rotate_eye(self, rot: Tuple[float, float, float]) -> None: """Rotate current camera eye about the target point in the world coordinates. Rotation is done the world coordinates about Y, X, and then Z axis, by the angles provided with ``rot = (rx, ry, rz)`` parameter. Parameters ---------- rot : tuple (float, float, float) Rotation around (X, Y, Z) axis. """ if not self._optix.rotate_camera_eye_by(rot[0], rot[1], rot[2]): msg = "Camera rotate eye failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def camera_rotate_eye_local(self, rot: Tuple[float, float, float]) -> None: """Rotate current camera eye about the target point in the camera coordinates. Rotation is done the camera coordinates about Y (camera up, yaw), X (camera right, pitch), and then Z (towards camera, roll) axis, by the angles provided with ``rot = (rx, ry, rz)`` parameter. Parameters ---------- rot : tuple (float, float, float) Rotation around (X, Y, Z) axis. """ if not self._optix.rotate_camera_eye_by_local(rot[0], rot[1], rot[2]): msg = "Camera rotate eye local failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def camera_rotate_target(self, rot: Tuple[float, float, float]) -> None: """Rotate current camera target about the eye point in the world coordinates. Rotation is done the world coordinates about Y, X, and then Z axis, by the angles provided with ``rot = (rx, ry, rz)`` parameter. Parameters ---------- rot : tuple (float, float, float) Rotation around (X, Y, Z) axis. """ if not self._optix.rotate_camera_tgt_by(rot[0], rot[1], rot[2]): msg = "Camera rotate target failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def camera_rotate_target_local(self, rot: Tuple[float, float, float]) -> None: """Rotate current camera target about the eye point in the camera coordinates. Rotation is done the camera coordinates about Y (camera up, yaw), X (camera right, pitch), and then Z (towards camera, roll) axis, by the angles provided with ``rot = (rx, ry, rz)`` parameter. Parameters ---------- rot : tuple (float, float, float) Rotation around (X, Y, Z) axis. """ if not self._optix.rotate_camera_tgt_by_local(rot[0], rot[1], rot[2]): msg = "Camera rotate target failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def get_light_names(self) -> list: """Return list of lights' names. """ return list(self.light_handles.keys()) def get_light_shading(self) -> Optional[LightShading]: """Get light shading mode. Deprecated, use ``get_param("light_shading")`` instead. Returns ---------- out : LightShading or None Light shading mode. ``None`` is returned if function could not read the mode from the raytracer. See Also -------- :meth:`plotoptix.NpOptiX.get_param` """ self._logger.warn("Deprecated, use get_param(\"light_shading\") instead.") return self.get_param("light_shading") def set_light_shading(self, mode: Union[LightShading, str]) -> None: """Set light shading mode. Deprecated, use ``set_param(light_shading=mode)`` instead. See Also -------- :meth:`plotoptix.NpOptiX.set_param` """ self._logger.warn("Deprecated, use set_param(light_shading=mode) instead.") self.set_param(light_shading=mode) def get_light_pos(self, name: Optional[str] = None) -> Optional[np.ndarray]: """Get light 3D position. Parameters ---------- name : string, optional Name of the light (last added light if ``None``). Returns ------- out : np.ndarray, optional 3D of the light or ``None`` if failed on accessing light data. """ if name is None: if len(self.light_handles) > 0: name = list(self.light_handles.keys())[-1] else: raise ValueError() if not isinstance(name, str): name = str(name) if name not in self.light_handles: msg = "Light %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None pos = np.ascontiguousarray([0, 0, 0], dtype=np.float32) self._optix.get_light_pos(name, pos.ctypes.data) return pos def get_light_color(self, name: Optional[str] = None) -> Optional[np.ndarray]: """Get light color. Parameters ---------- name : string, optional Name of the light (last added light if ``None``). Returns ------- out : np.ndarray, optional Light color RGB or ``None`` if failed on accessing light data. """ if name is None: if len(self.light_handles) > 0: name = list(self.light_handles.keys())[-1] else: raise ValueError() if not isinstance(name, str): name = str(name) if name not in self.light_handles: msg = "Light %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None col = np.ascontiguousarray([0, 0, 0], dtype=np.float32) self._optix.get_light_color(name, col.ctypes.data) return col def get_light_u(self, name: Optional[str] = None) -> Optional[np.ndarray]: """Get parallelogram light U vector. Parameters ---------- name : string, optional Name of the light (last added light if ``None``). Returns ------- out : np.ndarray, optional Light U vector or ``None`` if failed on accessing light data. """ if name is None: if len(self.light_handles) > 0: name = list(self.light_handles.keys())[-1] else: raise ValueError() if not isinstance(name, str): name = str(name) if name not in self.light_handles: msg = "Light %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None u = np.ascontiguousarray([0, 0, 0], dtype=np.float32) self._optix.get_light_u(name, u.ctypes.data) return u def get_light_v(self, name: Optional[str] = None) -> Optional[np.ndarray]: """Get parallelogram light V vector. Parameters ---------- name : string, optional Name of the light (last added light if ``None``). Returns ------- out : np.ndarray, optional Light V vector or ``None`` if failed on accessing light data. """ if name is None: if len(self.light_handles) > 0: name = list(self.light_handles.keys())[-1] else: raise ValueError() if not isinstance(name, str): name = str(name) if name not in self.light_handles: msg = "Light %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None v = np.ascontiguousarray([0, 0, 0], dtype=np.float32) self._optix.get_light_v(name, v.ctypes.data) return v def get_light_r(self, name: Optional[str] = None) -> Optional[float]: """Get spherical light radius. Parameters ---------- name : string, optional Name of the light (last added light if ``None``). Returns ------- out : float, optional Light readius or ``None`` if failed on accessing light data. """ if name is None: if len(self.light_handles) > 0: name = list(self.light_handles.keys())[-1] else: raise ValueError() if not isinstance(name, str): name = str(name) if name not in self.light_handles: msg = "Light %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None return self._optix.get_light_r(name) def get_light(self, name: str) -> Optional[dict]: """Get light source parameters. Parameters ---------- name : string Name of the light source. Returns ------- out : dict, optional Dictionary of the light source parameters or ``None`` if failed on accessing the data. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name not in self.light_handles: msg = "Light %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return None s = self._optix.get_light(name) if len(s) > 2: return json.loads(s) else: msg = "Failed on reading light %s." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) return None def setup_spherical_light(self, name: str, pos: Optional[Any] = None, autofit_camera: Optional[str] = None, color: Optional[Any] = None, radius: float = -1, in_geometry: bool = True) -> None: """Setup new or update existing spherical light. Updating an existing light with this method will not change its visibility. Only ``pos``, ``color``, and ``radius`` values can be updated. Parameters ---------- name : string Name of the new light. pos : array_like, optional 3D position. autofit_camera : string, optional Name of the camera used to compute light position automatically. color : Any, optional RGB color of the light; single value is gray, array_like is RGB color components. Color value range is (0; inf) as it means the light intensity. radius : float, optional Sphere radius. in_geometry: bool, optional Visible in the scene if set to ``True``. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name in self.light_handles: self.update_light(name, pos=pos, color=color, radius=radius) return if color is None: color = 10 * np.ascontiguousarray([1, 1, 1], dtype=np.float32) if radius <= 0: radius = 1.0 autofit = False pos = _make_contiguous_vector(pos, 3) if pos is None: cam_name, _ = self.get_camera_name_handle(autofit_camera) if cam_name is None: msg = "Need 3D coordinates for the new light." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return pos = np.ascontiguousarray([0, 0, 0]) autofit = True color = _make_contiguous_vector(color, 3) if color is None: msg = "Need color (single value or 3-element array/list/tuple)." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return h = self._optix.setup_spherical_light(name, pos.ctypes.data, color.ctypes.data, radius, in_geometry) if h != 0: self._logger.info("Light %s handle: %d.", name, h) self.light_handles[name] = h self.light_names[h] = name if autofit: self.light_fit(name, camera=cam_name) else: msg = "Light %s setup failed." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) def setup_parallelogram_light(self, name: str, pos: Optional[Any] = None, autofit_camera: Optional[str] = None, color: Optional[Any] = None, u: Optional[Any] = None, v: Optional[Any] = None, in_geometry: bool = True) -> None: """Setup new or update existing parallelogram light. Note, the light direction is UxV, the back side is black. Properties that can be updated: ``pos``, ``color``, ``u``, ``v``. Parameters ---------- name : string Name of the new light. pos : array_like, optional 3D position. autofit_camera : string, optional Name of the camera used to compute light position automatically. color : Any, optional RGB color of the light; single value is gray, array_like is RGB color components. Color value range is (0; inf) as it means the light intensity. u : array_like, optional Parallelogram U vector. v : array_like, optional Parallelogram V vector. in_geometry: bool, optional Visible in the scene if set to ``True``. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name in self.light_handles: self.update_light(name, pos=pos, color=color, u=u, v=v) return if color is None: color = 10 * np.ascontiguousarray([1, 1, 1], dtype=np.float32) if u is None: u = np.ascontiguousarray([0, 1, 0], dtype=np.float32) if v is None: v = np.ascontiguousarray([-1, 0, 0], dtype=np.float32) autofit = False pos = _make_contiguous_vector(pos, 3) if pos is None: cam_name, _ = self.get_camera_name_handle(autofit_camera) if cam_name is None: msg = "Need 3D coordinates for the new light." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return pos = np.ascontiguousarray([0, 0, 0]) autofit = True color = _make_contiguous_vector(color, 3) if color is None: msg = "Need color (single value or 3-element array/list/tuple)." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return u = _make_contiguous_vector(u, 3) if u is None: msg = "Need 3D vector U." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return v = _make_contiguous_vector(v, 3) if v is None: msg = "Need 3D vector V." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return h = self._optix.setup_parallelogram_light(name, pos.ctypes.data, color.ctypes.data, u.ctypes.data, v.ctypes.data, in_geometry) if h != 0: self._logger.info("Light %s handle: %d.", name, h) self.light_handles[name] = h self.light_names[h] = name if autofit: self.light_fit(name, camera=cam_name) else: msg = "Light %s setup failed." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def setup_area_light(self, name: str, center: Optional[Any] = None, target: Optional[Any] = None, u: Optional[float] = None, v: Optional[float] = None, color: Optional[Any] = None, in_geometry: bool = True) -> None: """Setup new or update existing area (parallelogram) light. Convenience method to setup parallelogram light with ``center`` and ``target`` 3D points, and scalar lengths of sides ``u`` and ``v``. Parameters ---------- name : string Name of the new light. center : array_like 3D position of the light center. target : array_like 3D position of the light target. u : float Horizontal side length. v : float Vertical side length. color : Any, optional RGB color of the light; single value is gray, array_like is RGB color components. Color value range is (0; inf) as it means the light intensity. in_geometry: bool, optional Visible in the scene if set to ``True``. """ if name in self.light_handles: self.update_area_light(name, center, target, u, v, color) return if center is None or target is None or u is None or v is None: msg = "Need ceter, target, u, and v for the new light." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if color is None: color = 10 * np.ascontiguousarray([1, 1, 1], dtype=np.float32) center = _make_contiguous_vector(center, 3) target = _make_contiguous_vector(target, 3) n = target - center n = n / np.linalg.norm(n) uvec = np.cross(n, [0, 1, 0]) uvec = uvec / np.linalg.norm(uvec) vvec = np.cross(uvec, n) vvec = vvec / np.linalg.norm(vvec) uvec *= -u vvec *= v pos = center - 0.5 * (vvec + uvec) self.setup_parallelogram_light(name, pos=pos, color=color, u=uvec, v=vvec, in_geometry=in_geometry) def setup_light(self, name: str, light_type: Union[Light, str] = Light.Spherical, pos: Optional[Any] = None, autofit_camera: Optional[str] = None, color: Optional[Any] = None, u: Optional[Any] = None, v: Optional[Any] = None, radius: float = -1, in_geometry: bool = True) -> None: """Setup a new light or update an existing light. Note, the parallelogram light direction is UxV, the back side is black. Updating an existing light with this method will not change the type of light, nor its visibility. Only ``pos``, ``color``, ``radius``, ``u``, and ``v`` values can be updated. Parameters ---------- name : string Name of the new light. light_type : Light enum or string Light type (parallelogram, spherical, ...), see :class:`plotoptix.enums.Light` enum. pos : array_like, optional 3D position. autofit_camera : string, optional Name of the camera used to compute light position automatically. color : Any, optional RGB color of the light; single value is gray, array_like is RGB color components. Color value range is (0; inf) as it means the light intensity. u : array_like, optional Parallelogram U vector. v : array_like, optional Parallelogram V vector. radius : float, optional Sphere radius. in_geometry: bool, optional Visible in the scene if set to ``True``. """ if name is None: raise ValueError() if name in self.light_handles: self.update_light(name, pos=pos, color=color, radius=radius, u=u, v=v) return if color is None: color = 10 * np.ascontiguousarray([1, 1, 1], dtype=np.float32) if u is None: u = np.ascontiguousarray([0, 1, 0], dtype=np.float32) if v is None: v = np.ascontiguousarray([-1, 0, 0], dtype=np.float32) if radius <= 0: radius = 1.0 if isinstance(light_type, str): light_type = Light[light_type] if light_type == Light.Spherical: self.setup_spherical_light(name, pos=pos, autofit_camera=autofit_camera, color=color, radius=radius, in_geometry=in_geometry) elif light_type == Light.Parallelogram: self.setup_parallelogram_light(name, pos=pos, autofit_camera=autofit_camera, color=color, u=u, v=v, in_geometry=in_geometry) def update_light(self, name: str, pos: Optional[Any] = None, color: Optional[Any] = None, radius: float = -1, u: Optional[Any] = None, v: Optional[Any] = None) -> None: """Update light parameters. Note, the parallelogram light direction is UxV, the back side is black. Parameters ---------- name : string Name of the light. pos : array_like, optional 3D position. color : Any, optional RGB color of the light; single value is gray, array_like is RGB color components. Color value range is (0; inf) as it means the light intensity. radius : float, optional Sphere radius. u : array_like, optional Parallelogram U vector. v : array_like, optional Parallelogram V vector. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name not in self.light_handles: msg = "Light %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return pos = _make_contiguous_vector(pos, 3) if pos is not None: pos_ptr = pos.ctypes.data else: pos_ptr = 0 color = _make_contiguous_vector(color, 3) if color is not None: color_ptr = color.ctypes.data else: color_ptr = 0 u = _make_contiguous_vector(u, 3) if u is not None: u_ptr = u.ctypes.data else: u_ptr = 0 v = _make_contiguous_vector(v, 3) if v is not None: v_ptr = v.ctypes.data else: v_ptr = 0 if self._optix.update_light(name, pos_ptr, color_ptr, radius, u_ptr, v_ptr): self._logger.info("Light %s updated.", name) else: msg = "Light %s update failed." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def update_area_light(self, name: str, center: Optional[Any] = None, target: Optional[Any] = None, u: Optional[float] = None, v: Optional[float] = None, color: Optional[Any] = None) -> None: """Update area (parallelogram) light. Convenience method to update parallelogram light with ``center`` and ``target`` 3D points, and scalar lengths of sides ``u`` and ``v``. Parameters ---------- name : string Name of the new light. center : array_like, optional 3D position of the light center. target : array_like, optional 3D position of the light target. u : float, optional Horizontal side length. v : float, optional Vertical side length. color : Any, optional RGB color of the light; single value is gray, array_like is RGB color components. Color value range is (0; inf) as it means the light intensity. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name not in self.light_handles: msg = "Light %s does not exists." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if u is None: u = np.linalg.norm(self.get_light_u(name)) if v is None: v = np.linalg.norm(self.get_light_v(name)) if center is None: center = self.get_light_pos(name) + 0.5 * (self.get_light_u(name) + self.get_light_v(name)) if target is None: n = np.cross(self.get_light_u(name), self.get_light_v(name)) target = center + 100 * n center = _make_contiguous_vector(center, 3) target = _make_contiguous_vector(target, 3) n = target - center n = n / np.linalg.norm(n) uvec = np.cross(n, [0, 1, 0]) uvec = uvec / np.linalg.norm(uvec) vvec = np.cross(uvec, n) vvec = vvec / np.linalg.norm(vvec) uvec *= -u vvec *= v pos = center - 0.5 * (vvec + uvec) self.update_light(name, pos=pos, color=color, u=uvec, v=vvec) def light_fit(self, light: str, camera: Optional[str] = None, horizontal_rot: float = 45, vertical_rot: float = 25, dist_scale: float = 1.5) -> None: """Fit light position and direction to the camera. Parameters ---------- name : string Name of the light. camera : string, optional Name of the camera; current camera is used if not provided. horizontal_rot : float, optional Angle: eye - target - light in the camera horizontal plane. vertical_rot : float, optional Angle: eye - target - light in the camera vertical plane. dist_scale : float, optional Light to target distance with reespect to the eye to target distance. """ if light is None: raise ValueError() if not isinstance(light, str): light = str(light) if not light in self.light_handles: msg = "Light %s not found." % light self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) cam_handle = 0 if camera is not None: if not isinstance(camera, str): camera = str(camera) if camera in self.camera_handles: cam_handle = self.camera_handles[camera] horizontal_rot = math.pi * horizontal_rot / 180.0 vertical_rot = math.pi * vertical_rot / 180.0 self._optix.fit_light(light, cam_handle, horizontal_rot, vertical_rot, dist_scale) def get_material(self, name: str) -> Optional[dict]: """Get material parameters. Parameters ---------- name : string Name of the material. Returns ------- out : dict, optional Dictionary of the material parameters or ``None`` if failed on accessing material data. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) s = self._optix.get_material(name) if len(s) > 2: return json.loads(s) else: msg = "Failed on reading material %s." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) return None def setup_material(self, name: str, data: dict) -> None: """Setup new or update existing material. Note: for maximum performance, setup only those materials you need in the scene. Parameters ---------- name : string Name of the material. data : dict Parameters of the material. See Also -------- :py:mod:`plotoptix.materials` """ if name is None or data is None: raise ValueError() if self._optix.setup_material(name, json.dumps(data)): self._logger.info("Configured material %s.", name) else: msg = "Material %s not configured." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def update_material(self, name: str, data: dict, refresh: bool = False) -> None: """Update material properties. Update material properties and optionally refresh the scene. Parameters ---------- name : string Name of the material. data : dict Parameters of the material. refresh : bool, optional Set to ``True`` if the image should be re-computed. See Also -------- :py:mod:`plotoptix.materials` """ self.setup_material(name, data) if refresh: self._optix.refresh_scene() def update_material_texture(self, name: str, data: Any, idx: int = 0, keep_on_host: bool = False, refresh: bool = False) -> None: """Update material texture data. Update texture content/size for material ``name`` data. Texture format has to be RGBA, width/height are deduced from the ``data`` array shape. Use ``keep_on_host=True`` to make a copy of data in the host memory (in addition to GPU memory), this option is required when (small) textures are going to be saved to JSON description of the scene. Parameters ---------- name : string Material name. data : array_like Texture data. idx : int, optional Texture index, the first texture if the default is left. keep_on_host : bool, optional Store texture data copy in the host memory. refresh : bool, optional Set to ``True`` if the image should be re-computed. """ if not isinstance(name, str): name = str(name) if not isinstance(data, np.ndarray): data = np.ascontiguousarray(data, dtype=np.float32) if len(data.shape) != 3 or data.shape[-1] != 4: msg = "Material texture shape should be (height,width,4)." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if data.dtype != np.float32: data = np.ascontiguousarray(data, dtype=np.float32) if not data.flags['C_CONTIGUOUS']: data = np.ascontiguousarray(data, dtype=np.float32) self._logger.info("Set material %s texture %d: %d x %d.", name, idx, data.shape[1], data.shape[0]) if not self._optix.set_material_texture(name, idx, data.ctypes.data, data.shape[1], data.shape[0], RtFormat.Float4.value, keep_on_host, refresh): msg = "Material %s texture not uploaded." % name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def set_correction_curve(self, ctrl_points: Any, channel: Union[Channel, str] = Channel.Gray, n_points: int = 256, range: float = 255, refresh: bool = False) -> None: """Set correction curve. Calculate and setup a color correction curve using control points provided with ``ctrl_points``. Curve is applied in 2D postprocessing stage to the selected ``channel``. Control points should be an array_like set of input-output values (array shape is ``(m,2)``). Control point input and output maximum value can be provided with the ``range`` parameter. Control points are scaled to the range <0;1>, extreme values (0,0) and (1,1) are added if not present in ``ctrl_points`` (use :meth:`plotoptix.NpOptiX.set_texture_1d` if custom correction curve should e.g. start above 0 or saturate at a level lower than 1). Smooth bezier curve is calculated from the control points and stored in 1D texture with ``n_points`` length. Parameters ---------- ctrl_points : array_like Control points to construct curve. channel : Channel or string, optional Destination color for the correction curve. n_points : int, optional Number of curve points to be stored in texture. range : float, optional Maximum input / output value corresponding to provided ``ctrl_points``. refresh : bool, optional Set to ``True`` if the image should be re-computed. See Also -------- :py:mod:`plotoptix.enums.Postprocessing` :py:mod:`plotoptix.enums.Channel` """ if isinstance(channel, str): channel = Channel[channel] if not isinstance(ctrl_points, np.ndarray): ctrl_points = np.ascontiguousarray(ctrl_points, dtype=np.float32) if len(ctrl_points.shape) != 2 or ctrl_points.shape[1] != 2: msg = "Control points shape should be (n,2)." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if ctrl_points.dtype != np.float32: ctrl_points = np.ascontiguousarray(ctrl_points, dtype=np.float32) if not ctrl_points.flags['C_CONTIGUOUS']: ctrl_points = np.ascontiguousarray(ctrl_points, dtype=np.float32) self._logger.info("Set correction curve in %s channel.", channel.name) if not self._optix.set_correction_curve(ctrl_points.ctypes.data, ctrl_points.shape[0], n_points, channel.value, range, refresh): msg = "Correction curve setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def add_postproc(self, stage: Union[Postprocessing, str], refresh: bool = False) -> None: """Add 2D postprocessing stage. Stages are applied to image in the order they are added with this method. Each stage algorithm has its own variables that should be configured before adding the postprocessing stage. Configuration can be updated at any time, but stages cannot be disabled after adding. See :py:mod:`plotoptix.enums.Postprocessing` for algorithms configuration examples. Parameters ---------- stage : Postprocessing or string Postprocessing algorithm to add. refresh : bool, optional Set to ``True`` if the image should be re-computed. See Also -------- :py:mod:`plotoptix.enums.Postprocessing` """ if isinstance(stage, str): stage = Postprocessing[stage] self._logger.info("Add postprocessing stage: %s.", stage.name) if not self._optix.add_postproc(stage.value, refresh): msg = "Configuration of postprocessing stage %s failed." % stage.name self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) def set_data(self, name: str, pos: Optional[Any] = None, r: Optional[Any] = None, c: Optional[Any] = None, u: Optional[Any] = None, v: Optional[Any] = None, w: Optional[Any] = None, geom: Union[Geometry, str] = Geometry.ParticleSet, geom_attr: Union[GeomAttributeProgram, str] = GeomAttributeProgram.Default, mat: Optional[str] = None, rnd: bool = True) -> None: """Create new or update existing geometry for the dataset. Data is provided as an array of 3D positions of data points, with the shape ``(n, 3)``. Additional features can be visualized as a color and size/thickness of the primitives. Note: not all arguments are used to update existing geeometry. Update is available for: ``mat``, ``pos``, ``c``, ``r``, ``u``, ``v``, and ``w`` data. Parameters ---------- name : string Name of the geometry. pos : array_like, optional Positions of data points. c : Any, optional Colors of the primitives. Single value means a constant gray level. 3-component array means constant RGB color. Array with the shape[0] equal to the number of primitives will set individual gray/color for each primitive. r : Any, optional Radii of particles / bezier primitives or U / V / W lengths of parallelograms / parallelepipeds / tetrahedrons (if u / v / w not provided). Single value sets const. size for all primitives. u : array_like, optional U vector(s) of parallelograms / parallelepipeds / tetrahedrons / textured particles. Single vector sets const. value for all primitives. v : array_like, optional V vector(s) of parallelograms / parallelepipeds / tetrahedrons / textured particles. Single vector sets const. value for all primitives. w : array_like, optional W vector(s) of parallelepipeds / tetrahedrons. Single vector sets const. value for all primitives. geom : Geometry enum or string, optional Geometry of primitives (ParticleSet, Tetrahedrons, ...). See :class:`plotoptix.enums.Geometry` enum. geom_attr : GeomAttributeProgram enum or string, optional Geometry attributes program. See :class:`plotoptix.enums.GeomAttributeProgram` enum. mat : string, optional Material name. rnd : bool, optional Randomize not provided U / V / W vectors so regular but randomly rotated primitives are generated using available vectors (default). If set to ``False`` all primitives are aligned in the same direction. See Also -------- :meth:`plotoptix.NpOptiX.update_data` :class:`plotoptix.enums.Geometry` """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if isinstance(geom, str): geom = Geometry[geom] if isinstance(geom_attr, str): geom_attr = GeomAttributeProgram[geom_attr] if name in self.geometry_data: self.update_data(name, mat=mat, pos=pos, c=c, r=r, u=u, v=v, w=w) return if pos is None: msg = "pos argument required for new geometries." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if r is None: r = np.ascontiguousarray([0.05], dtype=np.float32) if c is None: c = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32) if mat is None: mat = "diffuse" n_primitives = -1 # Prepare positions data pos = _make_contiguous_3d(pos) if pos is None: msg = "Positions (pos) are required for the new instances and cannot be left as None." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if (len(pos.shape) != 2) or (pos.shape[0] < 1) or (pos.shape[1] != 3): msg = "Positions (pos) should be an array of shape (n, 3)." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return n_primitives = pos.shape[0] pos_ptr = pos.ctypes.data # Prepare colors data c = np.ascontiguousarray(c, dtype=np.float32) if c.shape == (1,): c = np.ascontiguousarray([c[0], c[0], c[0]], dtype=np.float32) col_const_ptr = c.ctypes.data col_ptr = 0 elif c.shape == (3,): col_const_ptr = c.ctypes.data col_ptr = 0 else: c = _make_contiguous_3d(c, n=n_primitives, extend_scalars=True) assert c.shape == pos.shape, "Colors and data points shapes must be the same." if c is not None: col_ptr = c.ctypes.data else: col_ptr = 0 col_const_ptr = 0 # Prepare radii data if r is not None: if not isinstance(r, np.ndarray): r = np.ascontiguousarray(r, dtype=np.float32) if r.dtype != np.float32: r = np.ascontiguousarray(r, dtype=np.float32) if len(r.shape) > 1: r = r.flatten() if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if r is not None: if r.shape[0] == 1: if n_primitives > 0: r = np.full(n_primitives, r[0], dtype=np.float32) else: msg = "Cannot resolve proper radii (r) shape from preceding data arguments." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if (n_primitives > 0) and (n_primitives != r.shape[0]): msg = "Radii (r) shape does not match shape of preceding data arguments." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return n_primitives = r.shape[0] radii_ptr = r.ctypes.data else: radii_ptr = 0 # Prepare U vectors u = _make_contiguous_3d(u, n=n_primitives) u_ptr = 0 if u is not None: u_ptr = u.ctypes.data # Prepare V vectors v = _make_contiguous_3d(v, n=n_primitives) v_ptr = 0 if v is not None: v_ptr = v.ctypes.data # Prepare W vectors w = _make_contiguous_3d(w, n=n_primitives) w_ptr = 0 if w is not None: w_ptr = w.ctypes.data if n_primitives == -1: msg = "Could not figure out proper data shapes." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return # Configure according to selected geometry is_ok = True if geom == Geometry.ParticleSet: if c is None: msg = "ParticleSet setup failed, colors data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if r is None: msg = "ParticleSet setup failed, radii data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False elif geom == Geometry.ParticleSetTextured: if r is None: msg = "ParticleSetTextured setup failed, radii data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if (u is None) or (v is None): if r is None: msg = "ParticleSetTextured setup failed, need U / V vectors or radii data." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False elif geom == Geometry.Parallelograms: if c is None: msg = "Parallelograms setup failed, colors data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if (u is None) or (v is None): if r is None: msg = "Parallelograms setup failed, need U / V vectors or radii data." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False elif (geom == Geometry.Parallelepipeds) or (geom == Geometry.Tetrahedrons): if c is None: msg = "Plot setup failed, colors data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if (u is None) or (v is None) or (w is None): if r is None: msg = "Plot setup failed, need U, V, W vectors or radii data." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False elif geom == Geometry.BezierChain: if c is None: msg = "BezierChain setup failed, colors data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if r is None: msg = "BezierChain setup failed, radii data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False elif geom == Geometry.SegmentChain: if n_primitives < 2: msg = "SegmentChain requires at least 2 data points." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if c is None: msg = "SegmentChain setup failed, colors data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if r is None: msg = "SegmentChain setup failed, radii data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False elif geom == Geometry.BSplineQuad: if n_primitives < 3: msg = "BSplineQuad requires at least 3 data points." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if c is None: msg = "BSplineQuad setup failed, colors data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if r is None: msg = "BSplineQuad setup failed, radii data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False elif geom == Geometry.BSplineCubic: if n_primitives < 4: msg = "BSplineCubic requires at least 4 data points." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if c is None: msg = "BSplineCubic setup failed, colors data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if r is None: msg = "BSplineCubic setup failed, radii data is missing." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False else: msg = "Unknown geometry" self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) is_ok = False if is_ok: try: self._padlock.acquire() self._logger.info("Create %s %s, %d primitives...", geom.name, name, n_primitives) g_handle = self._optix.setup_geometry(geom.value, geom_attr.value, name, mat, rnd, n_primitives, pos_ptr, col_const_ptr, col_ptr, radii_ptr, u_ptr, v_ptr, w_ptr) if g_handle > 0: self._logger.info("...done, handle: %d", g_handle) self.geometry_data[name] = GeometryMeta(name, g_handle, n_primitives) self.geometry_names[g_handle] = name else: msg = "Geometry setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def update_data(self, name: str, mat: Optional[str] = None, pos: Optional[Any] = None, c: Optional[Any] = None, r: Optional[Any] = None, u: Optional[Any] = None, v: Optional[Any] = None, w: Optional[Any] = None) -> None: """Update data of an existing geometry. Note that on data size changes (``pos`` array size different than provided with :meth:`plotoptix.NpOptiX.set_data`) also other properties must be provided matching the new size, otherwise default values are used. Parameters ---------- name : string Name of the geometry. mat : string, optional Material name. pos : array_like, optional Positions of data points. c : Any, optional Colors of the primitives. Single value means a constant gray level. 3-component array means constant RGB color. Array with the shape[0] equal to the number of primitives will set individual grey/color for each primitive. r : Any, optional Radii of particles / bezier primitives. Single value sets constant radius for all primitives. u : array_like, optional U vector(s) of parallelograms / parallelepipeds / tetrahedrons / textured particles. Single vector sets const. value for all primitives. v : array_like, optional V vector(s) of parallelograms / parallelepipeds / tetrahedrons / textured particles. Single vector sets const. value for all primitives. w : array_like, optional W vector(s) of parallelepipeds / tetrahedrons. Single vector sets const. value for all primitives. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if mat is None: mat = "" if not name in self.geometry_data: msg = "Geometry %s does not exists yet, use set_data() instead." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return n_primitives = self.geometry_data[name]._size size_changed = False # Prepare positions data pos = _make_contiguous_3d(pos) pos_ptr = 0 if pos is not None: if (len(pos.shape) != 2) or (pos.shape[0] < 1) or (pos.shape[1] != 3): msg = "Positions (pos) should be an array of shape (n, 3)." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return n_primitives = pos.shape[0] size_changed = (n_primitives != self.geometry_data[name]._size) pos_ptr = pos.ctypes.data # Prepare colors data col_const_ptr = 0 col_ptr = 0 if size_changed and c is None: c = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32) elif c is not None: c = np.ascontiguousarray(c, dtype=np.float32) if c is not None: if c.shape == (1,): c = np.ascontiguousarray([c[0], c[0], c[0]], dtype=np.float32) col_const_ptr = c.ctypes.data elif c.shape == (3,): col_const_ptr = c.ctypes.data else: c = _make_contiguous_3d(c, n=n_primitives, extend_scalars=True) if c is not None: col_ptr = c.ctypes.data # Prepare radii data if size_changed and r is None: r = np.ascontiguousarray([0.05], dtype=np.float32) if r is not None: if not isinstance(r, np.ndarray): r = np.ascontiguousarray(r, dtype=np.float32) if r.dtype != np.float32: r = np.ascontiguousarray(r, dtype=np.float32) if len(r.shape) > 1: r = r.flatten() if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) radii_ptr = 0 if r is not None: if r.shape[0] == 1: r = np.full(n_primitives, r[0], dtype=np.float32) if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if n_primitives != r.shape[0]: msg = "Radii (r) shape does not match shape of preceding data arguments." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return radii_ptr = r.ctypes.data # Prepare U vectors u = _make_contiguous_3d(u, n=n_primitives) u_ptr = 0 if u is not None: u_ptr = u.ctypes.data # Prepare V vectors v = _make_contiguous_3d(v, n=n_primitives) v_ptr = 0 if v is not None: v_ptr = v.ctypes.data # Prepare W vectors w = _make_contiguous_3d(w, n=n_primitives) w_ptr = 0 if w is not None: w_ptr = w.ctypes.data try: self._padlock.acquire() self._logger.info("Update %s, %d primitives...", name, n_primitives) g_handle = self._optix.update_geometry(name, mat, n_primitives, pos_ptr, col_const_ptr, col_ptr, radii_ptr, u_ptr, v_ptr, w_ptr) if (g_handle > 0) and (g_handle == self.geometry_data[name]._handle): self._logger.info("...done, handle: %d", g_handle) self.geometry_data[name]._size = n_primitives else: msg = "Geometry update failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def set_data_2d(self, name: str, pos: Optional[Any] = None, r: Optional[Any] = None, c: Optional[Any] = None, normals: Optional[Any] = None, range_x: Optional[Tuple[float, float]] = None, range_z: Optional[Tuple[float, float]] = None, floor_y: Optional[float] = None, floor_c: Optional[Any] = None, geom: Union[Geometry, str] = Geometry.Mesh, mat: Optional[str] = None, make_normals: bool = False) -> None: """Create new or update existing surface geometry for the 2D dataset. Data is provided as 2D array of :math:`z = f(x, y)` values, with the shape ``(n, m)``, where ``n`` and ``m`` are at least 2. Additional data features can be visualized with color (array of RGB values, shape ``(n, m, 3)``). Convention of vertical Y and horizontal XZ plane is adopted. Note: not all arguments are used to update existing geeometry. Update is available for: ``mat``, ``pos``, ``c``, ``r``, ``normals``, ``range_x``, ``range_z``, ``floor_y``, and ``floor_c`` data. Parameters ---------- name : string Name of the new surface geometry. pos : array_like, optional Z values of data points. r : Any, optional Radii of vertices for the :attr:`plotoptix.enums.Geometry.Graph` geometry, interpolated along the wireframe edges. Single value sets constant radius for all vertices. c : Any, optional Colors of data points. Single value means a constant gray level. 3-component array means a constant RGB color. Array of the shape ``(n, m, 3)`` will set individual color for each data point, interpolated between points; ``n`` and ``m`` have to be the same as in data points shape. normals : array_like, optional Surface normal vectors at data points. Array shape has to be ``(n, m, 3)``, with ``n`` and ``m`` the same as in data points shape. range_x : tuple (float, float), optional Data range along X axis. Data array indexes are used if range is not provided. range_z : tuple (float, float), optional Data range along Z axis. Data array indexes are used if range is not provided. floor_y : float, optional Y level of XZ plane forming the base of the new geometry. Surface only is created if ``floor_y`` is not provided. floor_c: Any, optional Color of the base volume. Single value or array_like RGB color values. geom : Geometry enum or string, optional Geometry of the surface, only :attr:`plotoptix.enums.Geometry.Mesh` or :attr:`plotoptix.enums.Geometry.Graph` are supported. mat : string, optional Material name. make_normals : bool, optional Calculate normals for data points, only if not provided with ``normals`` argument. Normals of all triangles attached to the point are averaged. See Also -------- :meth:`plotoptix.NpOptiX.update_data_2d` """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name in self.geometry_data: self.update_data_2d(name, mat=mat, pos=pos, r=r, c=c, normals=normals, range_x=range_x, range_z=range_x, floor_y=floor_y, floor_c=floor_c) return if pos is None: msg = "pos argument required for new geometries." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if r is None: r = np.ascontiguousarray([0.05], dtype=np.float32) if c is None: c = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32) if mat is None: mat = "diffuse" if isinstance(geom, str): geom = Geometry[geom] if not geom in [Geometry.Mesh, Geometry.Graph]: msg = "Geometry type %s not supported by the surface plot." % geom.name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if not isinstance(pos, np.ndarray): pos = np.ascontiguousarray(pos, dtype=np.float32) assert len(pos.shape) == 2 and pos.shape[0] > 1 and pos.shape[1] > 1, "Required vertex data shape is (z,x), where z >= 2 and x >= 2." if pos.dtype != np.float32: pos = np.ascontiguousarray(pos, dtype=np.float32) if not pos.flags['C_CONTIGUOUS']: pos = np.ascontiguousarray(pos, dtype=np.float32) pos_ptr = pos.ctypes.data if r is not None and geom == Geometry.Graph: if not isinstance(r, np.ndarray): r = np.ascontiguousarray(r, dtype=np.float32) if r.dtype != np.float32: r = np.ascontiguousarray(r, dtype=np.float32) if len(r.shape) > 1 or r.shape[0] > 1: assert r.shape == pos.shape[:2], "Radii shape must be (v,u), with u and v matching the surface points shape." if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if r is not None and geom == Geometry.Graph: if r.shape[0] == 1: r = np.full(pos.shape[:2], r[0], dtype=np.float32) if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if r.shape != pos.shape[:2]: msg = "Radii (r) shape does not match the shape of preceding data arguments." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return radii_ptr = r.ctypes.data else: radii_ptr = 0 n_ptr = 0 if normals is not None: if not isinstance(normals, np.ndarray): normals = np.ascontiguousarray(normals, dtype=np.float32) assert len(normals.shape) == 3 and normals.shape == pos.shape + (3,), "Normals shape must be (z,x,3), where (z,x) id the vertex data shape." if normals.dtype != np.float32: normals = np.ascontiguousarray(normals, dtype=np.float32) if not normals.flags['C_CONTIGUOUS']: normals = np.ascontiguousarray(normals, dtype=np.float32) n_ptr = normals.ctypes.data make_normals = False c_ptr = 0 c_const = None if c is not None: if isinstance(c, float) or isinstance(c, int): c = np.full(3, c, dtype=np.float32) if not isinstance(c, np.ndarray): c = np.ascontiguousarray(c, dtype=np.float32) if c.shape == (3,): c_const = c cm = np.zeros(pos.shape + (3,), dtype=np.float32) cm[:,:] = c c = cm assert len(c.shape) == 3 and c.shape == pos.shape + (3,), "Colors shape must be (m,n,3), where (m,n) id the vertex data shape." if c.dtype != np.float32: c = np.ascontiguousarray(c, dtype=np.float32) if not c.flags['C_CONTIGUOUS']: c = np.ascontiguousarray(c, dtype=np.float32) c_ptr = c.ctypes.data make_floor = floor_y is not None if not make_floor: floor_y = np.float32(np.nan) cl_ptr = 0 if make_floor: if floor_c is not None: if isinstance(floor_c, float) or isinstance(floor_c, int): floor_c = np.full(3, floor_c, dtype=np.float32) if not isinstance(floor_c, np.ndarray): floor_c = np.ascontiguousarray(floor_c, dtype=np.float32) if floor_c.shape == (3,): if floor_c.dtype != np.float32: floor_c = np.ascontiguousarray(floor_c, dtype=np.float32) if not floor_c.flags['C_CONTIGUOUS']: floor_c = np.ascontiguousarray(floor_c, dtype=np.float32) cl_ptr = floor_c.ctypes.data else: self._logger.warn("Floor color should be a single value or RGB array.") elif c_const is not None: floor_c = np.ascontiguousarray(c_const, dtype=np.float32) cl_ptr = floor_c.ctypes.data if range_x is None: range_x = (np.float32(np.nan), np.float32(np.nan)) if range_z is None: range_z = (np.float32(np.nan), np.float32(np.nan)) try: self._padlock.acquire() self._logger.info("Setup surface %s...", name) g_handle = self._optix.setup_surface(geom.value, name, mat, pos.shape[1], pos.shape[0], pos_ptr, radii_ptr, n_ptr, c_ptr, cl_ptr, range_x[0], range_x[1], range_z[0], range_z[1], floor_y, make_normals) if g_handle > 0: self._logger.info("...done, handle: %d", g_handle) self.geometry_data[name] = GeometryMeta(name, g_handle, pos.shape[0] * pos.shape[1]) self.geometry_names[g_handle] = name else: msg = "Surface setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def update_data_2d(self, name: str, mat: Optional[str] = None, pos: Optional[Any] = None, r: Optional[Any] = None, c: Optional[Any] = None, normals: Optional[Any] = None, range_x: Optional[Tuple[float, float]] = None, range_z: Optional[Tuple[float, float]] = None, floor_y: Optional[float] = None, floor_c: Optional[Any] = None) -> None: """Update surface geometry data or properties. Parameters ---------- name : string Name of the surface geometry. mat : string, optional Material name. pos : array_like, optional Z values of data points. r : Any, optional Radii of vertices for the :attr:`plotoptix.enums.Geometry.Graph` geometry, interpolated along the wireframe edges. Single value sets constant radius for all vertices. c : Any, optional Colors of data points. Single value means a constant gray level. 3-component array means a constant RGB color. Array of the shape ``(n,m,3)`` will set individual color for each data point, interpolated between points; ``n`` and ``m`` have to be the same as in data points shape. normals : array_like, optional Surface normal vectors at data points. Array shape has to be ``(n,m,3)``, with ``n`` and``m`` the same as in data points shape. range_x : tuple (float, float), optional Data range along X axis. range_z : tuple (float, float), optional Data range along Z axis. floor_y : float, optional Y level of XZ plane forming the base of the geometry. floor_c: Any, optional Color of the base volume. Single value or array_like RGB color values. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if mat is None: mat = "" if not name in self.geometry_data: msg = "Surface %s does not exists yet, use set_data_2d() instead." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return s_x = c_uint() s_z = c_uint() if not self._optix.get_surface_size(name, byref(s_x), byref(s_z)): msg = "Cannot get surface %s size." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return size_xz = (s_z.value, s_x.value) size_changed = False pos_ptr = 0 if pos is not None: if not isinstance(pos, np.ndarray): pos = np.ascontiguousarray(pos, dtype=np.float32) assert len(pos.shape) == 2 and pos.shape[0] > 1 and pos.shape[1] > 1, "Required vertex data shape is (z,x), where z >= 2 and x >= 2." if pos.dtype != np.float32: pos = np.ascontiguousarray(pos, dtype=np.float32) if not pos.flags['C_CONTIGUOUS']: pos = np.ascontiguousarray(pos, dtype=np.float32) if pos.shape != size_xz: size_changed = True size_xz = pos.shape pos_ptr = pos.ctypes.data if size_changed and r is None: r = np.ascontiguousarray([0.05], dtype=np.float32) if r is not None: if not isinstance(r, np.ndarray): r = np.ascontiguousarray(r, dtype=np.float32) if r.dtype != np.float32: r = np.ascontiguousarray(r, dtype=np.float32) if len(r.shape) > 1 or r.shape[0] > 1: assert r.shape == size_xz, "Radii shape must be (x,z), with x and z matching the data points shape." if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) radii_ptr = 0 if r is not None: if r.shape[0] == 1: r = np.full(size_xz, r[0], dtype=np.float32) if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if size_xz != r.shape: msg = "Radii (r) shape does not match the number of data points." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return radii_ptr = r.ctypes.data c_ptr = 0 c_const = None if size_changed and c is None: c = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32) if c is not None: if isinstance(c, float) or isinstance(c, int): c = np.full(3, c, dtype=np.float32) if not isinstance(c, np.ndarray): c = np.ascontiguousarray(c, dtype=np.float32) if len(c.shape) == 1 and c.shape[0] == 3: c_const = c cm = np.zeros(size_xz + (3,), dtype=np.float32) cm[:,:] = c c = cm assert len(c.shape) == 3 and c.shape == size_xz + (3,), "Colors shape must be (m,n,3), where (m,n) id the vertex data shape." if c.dtype != np.float32: c = np.ascontiguousarray(c, dtype=np.float32) if not c.flags['C_CONTIGUOUS']: c = np.ascontiguousarray(c, dtype=np.float32) c_ptr = c.ctypes.data n_ptr = 0 if normals is not None: if not isinstance(normals, np.ndarray): normals = np.ascontiguousarray(normals, dtype=np.float32) assert len(normals.shape) == 3 and normals.shape == size_xz + (3,), "Normals shape must be (z,x,3), where (z,x) id the vertex data shape." if normals.dtype != np.float32: normals = np.ascontiguousarray(normals, dtype=np.float32) if not normals.flags['C_CONTIGUOUS']: normals = np.ascontiguousarray(normals, dtype=np.float32) n_ptr = normals.ctypes.data cl_ptr = 0 if floor_c is not None: if isinstance(floor_c, float) or isinstance(floor_c, int): floor_c = np.full(3, floor_c, dtype=np.float32) if not isinstance(floor_c, np.ndarray): floor_c = np.ascontiguousarray(floor_c, dtype=np.float32) if len(floor_c.shape) == 1 and floor_c.shape[0] == 3: if floor_c.dtype != np.float32: floor_c = np.ascontiguousarray(floor_c, dtype=np.float32) if not floor_c.flags['C_CONTIGUOUS']: floor_c = np.ascontiguousarray(floor_c, dtype=np.float32) cl_ptr = floor_c.ctypes.data else: self._logger.warn("Floor color should be a single value or RGB array.") if range_x is None: range_x = (np.float32(np.nan), np.float32(np.nan)) if range_z is None: range_z = (np.float32(np.nan), np.float32(np.nan)) if floor_y is None: floor_y = np.float32(np.nan) try: self._padlock.acquire() self._logger.info("Update surface %s, size (%d, %d)...", name, size_xz[1], size_xz[0]) g_handle = self._optix.update_surface(name, mat, size_xz[1], size_xz[0], pos_ptr, radii_ptr, n_ptr, c_ptr, cl_ptr, range_x[0], range_x[1], range_z[0], range_z[1], floor_y) if (g_handle > 0) and (g_handle == self.geometry_data[name]._handle): self._logger.info("...done, handle: %d", g_handle) self.geometry_data[name]._size = size_xz[0] * size_xz[1] else: msg = "Geometry update failed." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def set_surface(self, name: str, pos: Optional[Any] = None, r: Optional[Any] = None, c: Optional[Any] = None, normals: Optional[Any] = None, geom: Union[Geometry, str] = Geometry.Mesh, mat: Optional[str] = None, wrap_u: bool = False, wrap_v: bool = False, make_normals: bool = False) -> None: """Create new or update existing parametric surface geometry. Data is provided as 2D array of :math:`[x, y, z] = f(u, v)` values, with the shape ``(n, m, 3)``, where ``n`` and ``m`` are at least 2. Additional data features can be visualized with color (array of RGB values, shape ``(n, m, 3)``) or wireframe thickness if the :attr:`plotoptix.enums.Geometry.Graph` geometry is used. Note: not all arguments are used to update existing geeometry. Update is available for: ``mat``, ``pos``, ``c``, ``r``, and ``normals`` data. Parameters ---------- name : string Name of the new surface geometry. pos : array_like, optional XYZ values of surface points. r : Any, optional Radii of vertices for the :attr:`plotoptix.enums.Geometry.Graph` geometry, interpolated along the wireframe edges. Single value sets constant radius for all vertices. c : Any, optional Colors of surface points. Single value means a constant gray level. 3-component array means a constant RGB color. Array of the shape ``(n, m, 3)`` will set individual color for each surface point, interpolated between points; ``n`` and ``m`` have to be the same as in the surface points shape. normals : array_like, optional Normal vectors at provided surface points. Array shape has to be ``(n, m, 3)``, with ``n`` and ``m`` the same as in the surface points shape. geom : Geometry enum or string, optional Geometry of the surface, only :attr:`plotoptix.enums.Geometry.Mesh` or :attr:`plotoptix.enums.Geometry.Graph` are supported. mat : string, optional Material name. wrap_u : bool, optional Stitch surface edges making U axis continuous. wrap_v : bool, optional Stitch surface edges making V axis continuous. make_normals : bool, optional Calculate normals for surface points, only if not provided with ``normals`` argument. Normals of all triangles attached to the point are averaged. See Also -------- :meth:`plotoptix.NpOptiX.update_surface` """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name in self.geometry_data: self.update_surface(name, mat=mat, pos=pos, r=r, c=c, normals=normals) return if pos is None: msg = "pos argument required for new geometries." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if r is None: r = np.ascontiguousarray([0.05], dtype=np.float32) if c is None: c = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32) if mat is None: mat = "diffuse" if isinstance(geom, str): geom = Geometry[geom] if not geom in [Geometry.Mesh, Geometry.Graph]: msg = "Geometry type %s not supported by the parametric surface." % geom.name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if not isinstance(pos, np.ndarray): pos = np.ascontiguousarray(pos, dtype=np.float32) assert len(pos.shape) == 3 and pos.shape[0] > 1 and pos.shape[1] > 1 and pos.shape[2] == 3, "Required surface points shape is (v,u,3), where u >= 2 and v >= 2." if pos.dtype != np.float32: pos = np.ascontiguousarray(pos, dtype=np.float32) if not pos.flags['C_CONTIGUOUS']: pos = np.ascontiguousarray(pos, dtype=np.float32) pos_ptr = pos.ctypes.data if r is not None and geom == Geometry.Graph: if not isinstance(r, np.ndarray): r = np.ascontiguousarray(r, dtype=np.float32) if r.dtype != np.float32: r = np.ascontiguousarray(r, dtype=np.float32) if len(r.shape) > 1 or r.shape[0] > 1: assert r.shape == pos.shape[:2], "Radii shape must be (v,u), with u and v matching the surface points shape." if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if r is not None and geom == Geometry.Graph: if r.shape[0] == 1: r = np.full(pos.shape[:2], r[0], dtype=np.float32) if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if r.shape != pos.shape[:2]: msg = "Radii (r) shape does not match the shape of preceding data arguments." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return radii_ptr = r.ctypes.data else: radii_ptr = 0 n_ptr = 0 if normals is not None and geom == Geometry.Mesh: if not isinstance(normals, np.ndarray): normals = np.ascontiguousarray(normals, dtype=np.float32) assert normals.shape == pos.shape, "Normals shape must be (v,u,3), with u and v matching the surface points shape." if normals.dtype != np.float32: normals = np.ascontiguousarray(normals, dtype=np.float32) if not normals.flags['C_CONTIGUOUS']: normals = np.ascontiguousarray(normals, dtype=np.float32) n_ptr = normals.ctypes.data make_normals = False c_ptr = 0 c_const_ptr = 0 if c is not None: if isinstance(c, float) or isinstance(c, int): c = np.full(3, c, dtype=np.float32) if not isinstance(c, np.ndarray): c = np.ascontiguousarray(c, dtype=np.float32) if c.dtype != np.float32: c = np.ascontiguousarray(c, dtype=np.float32) if not c.flags['C_CONTIGUOUS']: c = np.ascontiguousarray(c, dtype=np.float32) if c.shape == (3,): c_const_ptr = c.ctypes.data elif c.shape == pos.shape: c_ptr = c.ctypes.data else: msg = "Colors shape must be (3,) or (v,u,3), with u and v matching the surface points shape." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) try: self._padlock.acquire() self._logger.info("Setup surface %s...", name) g_handle = self._optix.setup_psurface(geom.value, name, mat, pos.shape[1], pos.shape[0], pos_ptr, radii_ptr, n_ptr, c_const_ptr, c_ptr, wrap_u, wrap_v, make_normals) if g_handle > 0: self._logger.info("...done, handle: %d", g_handle) self.geometry_data[name] = GeometryMeta(name, g_handle, pos.shape[0] * pos.shape[1]) self.geometry_names[g_handle] = name else: msg = "Surface setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def update_surface(self, name: str, mat: Optional[str] = None, pos: Optional[Any] = None, r: Optional[Any] = None, c: Optional[Any] = None, normals: Optional[Any] = None) -> None: """Update surface geometry data or properties. Parameters ---------- name : string Name of the surface geometry. mat : string, optional Material name. pos : array_like, optional XYZ values of surface points. r : Any, optional Radii of vertices for the :attr:`plotoptix.enums.Geometry.Graph` geometry, interpolated along the edges. Single value sets constant radius for all vertices. c : Any, optional Colors of surface points. Single value means a constant gray level. 3-component array means a constant RGB color. Array of the shape ``(n, m, 3)`` will set individual color for each surface point, interpolated between points; ``n`` and ``m`` have to be the same as in the surface points shape. normals : array_like, optional Normal vectors at provided surface points. Array shape has to be ``(n, m, 3)``, with ``n`` and ``m`` the same as in the surface points shape. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if mat is None: mat = "" if not name in self.geometry_data: msg = "Surface %s does not exists yet, use set_surface() instead." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return s_u = c_uint() s_v = c_uint() if not self._optix.get_surface_size(name, byref(s_u), byref(s_v)): msg = "Cannot get surface %s size." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return size_uv3 = (s_v.value, s_u.value, 3) size_uv1 = (s_v.value, s_u.value) size_changed = False pos_ptr = 0 if pos is not None: if not isinstance(pos, np.ndarray): pos = np.ascontiguousarray(pos, dtype=np.float32) assert len(pos.shape) == 3 and pos.shape[0] > 1 and pos.shape[1] > 1 and pos.shape[2] == 3, "Required vertex data shape is (v,u,3), where u >= 2 and v >= 2." if pos.dtype != np.float32: pos = np.ascontiguousarray(pos, dtype=np.float32) if not pos.flags['C_CONTIGUOUS']: pos = np.ascontiguousarray(pos, dtype=np.float32) if pos.shape != size_uv3: size_changed = True size_uv3 = pos.shape pos_ptr = pos.ctypes.data if size_changed and r is None: r = np.ascontiguousarray([0.05], dtype=np.float32) if r is not None: if not isinstance(r, np.ndarray): r = np.ascontiguousarray(r, dtype=np.float32) if r.dtype != np.float32: r = np.ascontiguousarray(r, dtype=np.float32) if len(r.shape) > 1 or r.shape[0] > 1: assert r.shape == size_uv1, "Radii shape must be (v,u), with u and v matching the surface points shape." if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) radii_ptr = 0 if r is not None: if r.shape[0] == 1: r = np.full(size_uv1, r[0], dtype=np.float32) if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if size_uv1 != r.shape: msg = "Radii (r) shape does not match the number of surface points." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return radii_ptr = r.ctypes.data c_ptr = 0 c_const_ptr = 0 if size_changed and c is None: c = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32) if c is not None: if isinstance(c, float) or isinstance(c, int): c = np.full(3, c, dtype=np.float32) if not isinstance(c, np.ndarray): c = np.ascontiguousarray(c, dtype=np.float32) if c.dtype != np.float32: c = np.ascontiguousarray(c, dtype=np.float32) if not c.flags['C_CONTIGUOUS']: c = np.ascontiguousarray(c, dtype=np.float32) if c.shape == (3,): c_const_ptr = c.ctypes.data elif c.shape == size_uv3: c_ptr = c.ctypes.data else: msg = "Colors shape must be (3,) or (v,u,3), with u and v matching the surface points shape." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) n_ptr = 0 if normals is not None: if not isinstance(normals, np.ndarray): normals = np.ascontiguousarray(normals, dtype=np.float32) assert normals.shape == size_uv3, "Normals shape must be (v,u,3), with u and v matching the surface points shape." if normals.dtype != np.float32: normals = np.ascontiguousarray(normals, dtype=np.float32) if not normals.flags['C_CONTIGUOUS']: normals = np.ascontiguousarray(normals, dtype=np.float32) n_ptr = normals.ctypes.data try: self._padlock.acquire() self._logger.info("Update surface %s, size (%d, %d)...", name, size_uv1[1], size_uv1[0]) g_handle = self._optix.update_psurface(name, mat, size_uv1[1], size_uv1[0], pos_ptr, radii_ptr, n_ptr, c_const_ptr, c_ptr) if (g_handle > 0) and (g_handle == self.geometry_data[name]._handle): self._logger.info("...done, handle: %d", g_handle) self.geometry_data[name]._size = size_uv1[0] * size_uv1[1] else: msg = "Geometry update failed." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def set_graph(self, name: str, pos: Optional[Any] = None, edges: Optional[Any] = None, r: Optional[Any] = None, c: Optional[Any] = None, mat: Optional[str] = None) -> None: """Create new or update existing graph (mesh wireframe) geometry. Data is provided as vertices :math:`[x, y, z]`, with the shape ``(n, 3)``, and edges (doublets of vertex indices), with the shape ``(n, 2)`` or ``(m)`` where :math:`m = 2*n`. Data features can be visualized with colors (array of RGB values assigned to the graph vertices, shape ``(n, 3)``) and/or vertex radii. Note: not all arguments are used to update existing geeometry. Update is available for: ``mat``, ``pos``, ``edges``, ``r``, and ``c`` data. Parameters ---------- name : string Name of the new graph geometry. pos : array_like, optional XYZ values of the graph vertices. edges : array_like, optional Graph edges as indices (doublets) to vertices in the ``pos`` array. r : Any, optional Radii of vertices, interpolated along the edges. Single value sets constant radius for all vertices. c : Any, optional Colors of the graph vertices. Single value means a constant gray level. 3-component array means a constant RGB color. Array of the shape ``(n, 3)`` will set individual color for each vertex, interpolated along the edges; ``n`` has to be equal to the vertex number in ``pos`` array. mat : string, optional Material name. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name in self.geometry_data: self.update_graph(name, mat=mat, pos=pos, edges=edges, r=r, c=c) return if pos is None or edges is None: msg = "pos and edges arguments required for new geometries." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if r is None: r = np.ascontiguousarray([0.05], dtype=np.float32) if c is None: c = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32) if mat is None: mat = "diffuse" if not isinstance(pos, np.ndarray): pos = np.ascontiguousarray(pos, dtype=np.float32) assert len(pos.shape) == 2 and pos.shape[0] > 1 and pos.shape[1] == 3, "Required vertex data shape is (n,3), where n >= 2." if pos.dtype != np.float32: pos = np.ascontiguousarray(pos, dtype=np.float32) if not pos.flags['C_CONTIGUOUS']: pos = np.ascontiguousarray(pos, dtype=np.float32) pos_ptr = pos.ctypes.data n_vertices = pos.shape[0] if not isinstance(edges, np.ndarray): edges = np.ascontiguousarray(edges, dtype=np.int32) if edges.dtype != np.int32: edges = np.ascontiguousarray(edges, dtype=np.int32) if not edges.flags['C_CONTIGUOUS']: edges = np.ascontiguousarray(edges, dtype=np.int32) assert (len(edges.shape) == 2 and edges.shape[1] == 2) or (len(edges.shape) == 1 and (edges.shape[0] % 2 == 0)), "Required index shape is (n,2) or (m), where m is a multiple of 2." edges_ptr = edges.ctypes.data n_edges = edges.size // 2 if r is not None: if not isinstance(r, np.ndarray): r = np.ascontiguousarray(r, dtype=np.float32) if r.dtype != np.float32: r = np.ascontiguousarray(r, dtype=np.float32) if len(r.shape) > 1: r = r.flatten() if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if r is not None: if r.shape[0] == 1: if n_vertices > 0: r = np.full(n_vertices, r[0], dtype=np.float32) else: msg = "Cannot resolve proper radii (r) shape from preceding data arguments." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if (n_vertices > 0) and (n_vertices != r.shape[0]): msg = "Radii (r) shape does not match the shape of preceding data arguments." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return radii_ptr = r.ctypes.data else: radii_ptr = 0 c = np.ascontiguousarray(c, dtype=np.float32) if c.shape == (1,): c = np.ascontiguousarray([c[0], c[0], c[0]], dtype=np.float32) col_const_ptr = c.ctypes.data col_ptr = 0 elif c.shape == (3,): col_const_ptr = c.ctypes.data col_ptr = 0 else: c = _make_contiguous_3d(c, n=n_vertices, extend_scalars=True) assert c.shape == pos.shape, "Colors shape must be (n,3), with n matching the number of graph vertices." if c is not None: col_ptr = c.ctypes.data else: col_ptr = 0 col_const_ptr = 0 try: self._padlock.acquire() self._logger.info("Setup graph %s...", name) g_handle = self._optix.setup_graph(name, mat, n_vertices, n_edges, pos_ptr, radii_ptr, edges_ptr, col_const_ptr, col_ptr) if g_handle > 0: self._logger.info("...done, handle: %d", g_handle) self.geometry_data[name] = GeometryMeta(name, g_handle, n_vertices) self.geometry_names[g_handle] = name else: msg = "Graph setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def update_graph(self, name: str, mat: Optional[str] = None, pos: Optional[Any] = None, edges: Optional[Any] = None, r: Optional[Any] = None, c: Optional[Any] = None) -> None: """Update data of an existing graph (mesh wireframe) geometry. All data or only selected arrays may be uptated. If vertices and edges are left unchanged then ``color`` and ``r`` array sizes should match the size of the graph, i.e. existing ``pos`` shape. Parameters ---------- name : string Name of the graph geometry. mat : string, optional Material name. pos : array_like, optional XYZ values of the graph vertices. edges : array_like, optional Graph edges as indices (doublets) to the ``pos`` array. r : Any, optional Radii of vertices, interpolated along the edges. Single value sets constant radius for all vertices. c : Any, optional Colors of graph vertices. Single value means a constant gray level. 3-component array means a constant RGB color. Array of the shape ``(n, 3)`` will set individual color for each vertex, interpolated along edges; ``n`` has to be equal to the vertex number in ``pos`` array. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if mat is None: mat = "" if not name in self.geometry_data: msg = "Graph %s does not exists yet, use set_graph() instead." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return m_vertices = self._optix.get_geometry_size(name) #m_edges = self._optix.get_edges_count(name) size_changed = False pos_ptr = 0 n_vertices = 0 if pos is not None: if not isinstance(pos, np.ndarray): pos = np.ascontiguousarray(pos, dtype=np.float32) assert len(pos.shape) == 2 and pos.shape[0] > 1 and pos.shape[1] == 3, "Required vertex data shape is (n,3), where n >= 2." if pos.dtype != np.float32: pos = np.ascontiguousarray(pos, dtype=np.float32) if not pos.flags['C_CONTIGUOUS']: pos = np.ascontiguousarray(pos, dtype=np.float32) if pos.shape[0] != m_vertices: size_changed = True pos_ptr = pos.ctypes.data n_vertices = pos.shape[0] m_vertices = n_vertices edges_ptr = 0 n_edges = 0 if edges is not None: if not isinstance(edges, np.ndarray): edges = np.ascontiguousarray(edges, dtype=np.int32) if edges.dtype != np.int32: edges = np.ascontiguousarray(edges, dtype=np.int32) if not edges.flags['C_CONTIGUOUS']: edges = np.ascontiguousarray(edges, dtype=np.int32) assert (len(edges.shape) == 2 and edges.shape[1] == 3) or (len(edges.shape) == 1 and (edges.shape[0] % 2 == 0)), "Required index shape is (n,3) or (m), where m is a multiple of 2." edges_ptr = edges.ctypes.data n_edges = edges.size // 2 #m_edges = n_edges if size_changed and r is None: r = np.ascontiguousarray([0.05], dtype=np.float32) if r is not None: if not isinstance(r, np.ndarray): r = np.ascontiguousarray(r, dtype=np.float32) if r.dtype != np.float32: r = np.ascontiguousarray(r, dtype=np.float32) if len(r.shape) > 1: r = r.flatten() if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) radii_ptr = 0 if r is not None: if r.shape[0] == 1: r = np.full(m_vertices, r[0], dtype=np.float32) if not r.flags['C_CONTIGUOUS']: r = np.ascontiguousarray(r, dtype=np.float32) if m_vertices != r.shape[0]: msg = "Radii (r) shape does not match the number of graph vertices." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return radii_ptr = r.ctypes.data c_ptr = 0 c_const_ptr = 0 if size_changed and c is None: c = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32) if c is not None: if isinstance(c, float) or isinstance(c, int): c = np.full(3, c, dtype=np.float32) if not isinstance(c, np.ndarray): c = np.ascontiguousarray(c, dtype=np.float32) if c.dtype != np.float32: c = np.ascontiguousarray(c, dtype=np.float32) if not c.flags['C_CONTIGUOUS']: c = np.ascontiguousarray(c, dtype=np.float32) if c.shape == (3,): c_const_ptr = c.ctypes.data elif c.shape == (m_vertices, 3): c_ptr = c.ctypes.data else: msg = "Colors shape must be (n,3), with n matching the number of graph vertices." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) try: self._padlock.acquire() self._logger.info("Update graph %s...", name) g_handle = self._optix.update_graph(name, mat, m_vertices, n_edges, pos_ptr, radii_ptr, edges_ptr, c_const_ptr, c_ptr) if (g_handle > 0) and (g_handle == self.geometry_data[name]._handle): self._logger.info("...done, handle: %d", g_handle) self.geometry_data[name]._size = m_vertices else: msg = "Graph update failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def set_mesh(self, name: str, pos: Optional[Any] = None, faces: Optional[Any] = None, c: Any = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32), normals: Optional[Any] = None, nidx: Optional[Any] = None, uvmap: Optional[Any] = None, uvidx: Optional[Any] = None, mat: str = "diffuse", make_normals: bool = False) -> None: """Create new or update existing mesh geometry. Data is provided as vertices :math:`[x, y, z]`, with the shape ``(n, 3)``, and faces (triplets of vertex indices), with the shape ``(n, 3)`` or ``(m)`` where :math:`m = 3*n`. Data features can be visualized with color (array of RGB values assigned to the mesh vertices, shape ``(n, 3)``). Mesh ``normals`` can be provided as an array of 3D vectors. Mappng of normals to faces can be provided as an array of ``nidx`` indexes. If mapping is not provided then face vertex data is used (requires same number of vertices and normal vectors). Smooth shading normals can be pre-calculated if ``make_normals=True`` and normals data is not provided. Texture UV mapping ``uvmap`` can be provided as an array of 2D vectors. Mappng of UV coordinates to faces can be provided as an array of ``uvidx`` indexes. If mapping is not provided then face vertex data is used (requires same number of vertices and UV points). Note: not all arguments are used to update existing geeometry. Update is available for: ``mat``, ``pos``, ``faces``, ``c``, ``normals``, ``nidx``, ``uvmap`` and ``uvidx`` data. Parameters ---------- name : string Name of the new mesh geometry. pos : array_like, optional XYZ values of the mesh vertices. faces : array_like, optional Mesh faces as indices (triplets) to the ``pos`` array. c : Any, optional Colors of mesh vertices. Single value means a constant gray level. 3-component array means a constant RGB color. Array of the shape ``(n, 3)`` will set individual color for each vertex, interpolated on face surfaces; ``n`` has to be equal to the vertex number in ``pos`` array. normals : array_like, optional Normal vectors. nidx : array_like, optional Normal to face mapping, ``faces`` is used if not provided. uvmap : array_like, optional Texture UV coordinates. uvidx : array_like, optional Texture UV to face mapping, ``faces`` is used if not provided. mat : string, optional Material name. make_normals : bool, optional Calculate smooth shading of the mesh, only if ``normals`` are not provided. Normals of all triangles attached to the mesh vertex are averaged. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if name in self.geometry_data: self.update_mesh(name, mat=mat, pos=pos, faces=faces, c=c, normals=normals, nidx=nidx, uvmap=uvmap, uvidx=uvidx) return if pos is None or faces is None: msg = "pos and faces arguments required for new geometries." self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) if not isinstance(pos, np.ndarray): pos = np.ascontiguousarray(pos, dtype=np.float32) assert len(pos.shape) == 2 and pos.shape[0] > 2 and pos.shape[1] == 3, "Required vertex data shape is (n,3), where n >= 3." if pos.dtype != np.float32: pos = np.ascontiguousarray(pos, dtype=np.float32) if not pos.flags['C_CONTIGUOUS']: pos = np.ascontiguousarray(pos, dtype=np.float32) pos_ptr = pos.ctypes.data n_vertices = pos.shape[0] if not isinstance(faces, np.ndarray): faces = np.ascontiguousarray(faces, dtype=np.int32) if faces.dtype != np.int32: faces = np.ascontiguousarray(faces, dtype=np.int32) if not faces.flags['C_CONTIGUOUS']: faces = np.ascontiguousarray(faces, dtype=np.int32) assert (len(faces.shape) == 2 and faces.shape[1] == 3) or (len(faces.shape) == 1 and (faces.shape[0] % 3 == 0)), "Required index shape is (n,3) or (m), where m is a multiple of 3." faces_ptr = faces.ctypes.data n_faces = faces.size // 3 n_colors = 0 c = np.ascontiguousarray(c, dtype=np.float32) if c.shape == (1,): c = np.ascontiguousarray([c[0], c[0], c[0]], dtype=np.float32) col_const_ptr = c.ctypes.data col_ptr = 0 elif c.shape == (3,): col_const_ptr = c.ctypes.data col_ptr = 0 else: c = _make_contiguous_3d(c, n=n_vertices, extend_scalars=True) n_colors = c.shape[0] assert n_colors == n_vertices or n_colors == n_faces, "Colors shape must be (n,3), with n matching the number of mesh vertices or faces." if c is not None: col_ptr = c.ctypes.data else: col_ptr = 0 col_const_ptr = 0 n_ptr = 0 n_normals = 0 if normals is not None: if not isinstance(normals, np.ndarray): normals = np.ascontiguousarray(normals, dtype=np.float32) if nidx is None: assert normals.shape == pos.shape, "If normal index data not provided, normals shape must be (n,3), with n matching the mesh vertex positions shape." else: assert len(normals.shape) == 2 and normals.shape[0] > 2 and normals.shape[1] == 3, "Required normals data shape is (n,3), where n >= 3." if normals.dtype != np.float32: normals = np.ascontiguousarray(normals, dtype=np.float32) if not normals.flags['C_CONTIGUOUS']: normals = np.ascontiguousarray(normals, dtype=np.float32) n_ptr = normals.ctypes.data n_normals = normals.shape[0] make_normals = False nidx_ptr = 0 if nidx is not None: if not isinstance(nidx, np.ndarray): nidx = np.ascontiguousarray(nidx, dtype=np.int32) if nidx.dtype != np.int32: nidx = np.ascontiguousarray(nidx, dtype=np.int32) if not nidx.flags['C_CONTIGUOUS']: nidx = np.ascontiguousarray(nidx, dtype=np.int32) assert np.array_equal(nidx.shape, faces.shape), "Required same shape of normal index and face index arrays." nidx_ptr = nidx.ctypes.data uv_ptr = 0 n_uv = 0 if uvmap is not None: if not isinstance(uvmap, np.ndarray): uvmap = np.ascontiguousarray(uvmap, dtype=np.float32) if uvidx is None: assert uvmap.shape[0] == pos.shape[0], "If UV index data not provided, uvmap shape must be (n,2), with n matching the number of mesh vertices." else: assert len(uvmap.shape) == 2 and uvmap.shape[0] > 2 and uvmap.shape[1] == 2, "Required UV data shape is (n,2), where n >= 3." if uvmap.dtype != np.float32: uvmap = np.ascontiguousarray(uvmap, dtype=np.float32) if not uvmap.flags['C_CONTIGUOUS']: uvmap = np.ascontiguousarray(uvmap, dtype=np.float32) uv_ptr = uvmap.ctypes.data n_uv = uvmap.shape[0] uvidx_ptr = 0 if uvidx is not None: if not isinstance(uvidx, np.ndarray): uvidx = np.ascontiguousarray(uvidx, dtype=np.int32) if uvidx.dtype != np.int32: uvidx = np.ascontiguousarray(uvidx, dtype=np.int32) if not uvidx.flags['C_CONTIGUOUS']: uvidx = np.ascontiguousarray(uvidx, dtype=np.int32) assert np.array_equal(uvidx.shape, faces.shape), "Required same shape of UV index and face index arrays." uvidx_ptr = uvidx.ctypes.data try: self._padlock.acquire() self._logger.info("Setup mesh %s...", name) g_handle = self._optix.setup_mesh(name, mat, n_vertices, n_faces, n_colors, n_normals, n_uv, pos_ptr, faces_ptr, col_const_ptr, col_ptr, n_ptr, nidx_ptr, uv_ptr, uvidx_ptr, make_normals) if g_handle > 0: self._logger.info("...done, handle: %d", g_handle) self.geometry_data[name] = GeometryMeta(name, g_handle, n_vertices) self.geometry_names[g_handle] = name else: msg = "Mesh setup failed." self._logger.error(msg) if self._raise_on_error: raise RuntimeError(msg) except Exception as e: self._logger.error(str(e)) if self._raise_on_error: raise finally: self._padlock.release() def update_mesh(self, name: str, mat: Optional[str] = None, pos: Optional[Any] = None, faces: Optional[Any] = None, c: Optional[Any] = None, normals: Optional[Any] = None, nidx: Optional[Any] = None, uvmap: Optional[Any] = None, uvidx: Optional[Any] = None) -> None: """Update data of an existing mesh geometry. All data or only some of arrays may be uptated. If vertices and faces are left unchanged then other arrays sizes should match the sizes of the mesh, i.e. ``c`` shape should match existing ``pos`` shape, ``nidx`` and ``uvidx`` shapes should match ``faces`` shape or if index mapping is not provided then ``normals`` and ``uvmap`` shapes should match ``pos`` shape. Parameters ---------- name : string Name of the mesh geometry. mat : string, optional Material name. pos : array_like, optional XYZ values of the mesh vertices. faces : array_like, optional Mesh faces as indices (triplets) to the ``pos`` array. c : Any, optional Colors of mesh vertices. Single value means a constant gray level. 3-component array means a constant RGB color. Array of the shape ``(n, 3)`` will set individual color for each vertex, interpolated on face surfaces; ``n`` has to be equal to the vertex number in ``pos`` array. normals : array_like, optional Normal vectors. nidx : array_like, optional Normal to face mapping, existing mesh ``faces`` is used if not provided. uvmap : array_like, optional Texture UV coordinates. uvidx : array_like, optional Texture UV to face mapping, existing mesh ``faces`` is used if not provided. """ if name is None: raise ValueError() if not isinstance(name, str): name = str(name) if mat is None: mat = "" if not name in self.geometry_data: msg = "Mesh %s does not exists yet, use set_mesh() instead." % name self._logger.error(msg) if self._raise_on_error: raise ValueError(msg) return m_vertices = self._optix.get_geometry_size(name) m_faces = self._optix.get_faces_count(name) size_changed = False pos_ptr = 0 n_vertices = 0 if pos is not None: if not isinstance(pos, np.ndarray): pos = np.ascontiguousarray(pos, dtype=np.float32) assert len(pos.shape) == 2 and pos.shape[0] > 2 and pos.shape[1] == 3, "Required vertex data shape is (n,3), where n >= 3." if pos.dtype != np.float32: pos = np.ascontiguousarray(pos, dtype=np.float32) if not pos.flags['C_CONTIGUOUS']: pos = np.ascontiguousarray(pos, dtype=np.float32) if pos.shape[0] != m_vertices: size_changed = True pos_ptr = pos.ctypes.data n_vertices = pos.shape[0] m_vertices = n_vertices faces_ptr = 0 n_faces = 0 if faces is not None: if not isinstance(faces, np.ndarray): faces = np.ascontiguousarray(faces, dtype=np.int32) if faces.dtype != np.int32: faces = np.ascontiguousarray(faces, dtype=np.int32) if not faces.flags['C_CONTIGUOUS']: faces = np.ascontiguousarray(faces, dtype=np.int32) assert (len(faces.shape) == 2 and faces.shape[1] == 3) or (len(faces.shape) == 1 and (faces.shape[0] % 3 == 0)), "Required index shape is (n,3) or (m), where m is a multiple of 3." faces_ptr = faces.ctypes.data n_faces = faces.size // 3 m_faces = n_faces c_ptr = 0 c_const_ptr = 0 if size_changed and c is None: c = np.ascontiguousarray([0.94, 0.94, 0.94], dtype=np.float32) if c is not None: if isinstance(c, float) or isinstance(c, int): c = np.full(3, c, dtype=np.float32) if not isinstance(c, np.ndarray): c = np.ascontiguousarray(c, dtype=np.float32) if c.dtype != np.float32: c =
np.ascontiguousarray(c, dtype=np.float32)
numpy.ascontiguousarray
#!/usr/bin/env python import os import copy import pandas as pd import numpy as np import scipy.linalg as scipy_linalg import matplotlib.pyplot as plt # from scipy import signal # import pandas as pd # import datetime # from toopazo_tools.time_series import TimeseriesTools as TSTools from toopazo_tools.matplotlib import PlotTools, FigureTools from toopazo_tools.pandas import PandasTools # Check if this is running inside toopazo_ulg/ or deployed as a module if os.path.isfile('parse_file.py'): from parse_file import UlgParser from plot_basics import UlgPlotBasics else: from toopazo_ulg.parse_file import UlgParser from toopazo_ulg.plot_basics import UlgPlotBasics class UlgPlotMixer(UlgPlotBasics): """ The purpose of plot_mixer.py is to run a linear fit based on least square error for input = xvect = actuator_outputs output = yvect = actuator_controls The important function is [lsq_matrix, lsq_bias, lsq_error] = UlgPlotMixer.least_square_fit(xvect, yvect) And the prediction is output = lsq_matrix*input + lsq_bias The topic toopazo_ctrlalloc contains both the input and output and is used in the calculations firefly_cifer = used by plot_sysid.py firefly_mixer = used by plot_mixer.py for estimation/evaluation housefly_mixer1 = used by plot_mixer.py for estimation/evaluation housefly_mixer2 = used by plot_mixer.py for estimation/evaluation """ @staticmethod def check_data(data, vmin, vmax): # print('[check_data] type(data) %s' % type(data)) data = np.array(data) shape_tuple = data.shape if len(shape_tuple) == 1: UlgPlotMixer.check_data1d(data, vmin, vmax) else: UlgPlotMixer.check_data2d(data, vmin, vmax) @staticmethod def check_data2d(data2d, vmin, vmax): data2d =
np.array(data2d)
numpy.array
from PyQt5 import QtWidgets, QtGui, QtCore, uic from pyqtgraph import PlotWidget import pyqtgraph as pg import sys import math import itertools import numpy as np import pyaudio #import modulated_oscillator as m_o import oscillators import components #import envelopes BUFFER_SIZE = 256 SAMPLE_RATE = 44100 NOTE_AMP = 1 def get_sin_oscillator(freq, amp=1, phase=0, sample_rate=44100): phase = (phase / 360) * 2 * math.pi increment = (2 * math.pi * freq)/ sample_rate return (math.sin(phase + v) * amp for v in itertools.count(start=0, step=increment)) def get_samples(notes_dict, num_samples=BUFFER_SIZE): return [sum([int(next(osc) * 32767) \ for _, osc in notes_dict.items()]) \ for _ in range(num_samples)] def osc_function(freq, amp, sample_rate, attack_duration, decay_duration, sustain_level, \ release_duration=0.3): return iter( components.Chain( oscillators.SineOscillator(freq=freq, amp=amp, sample_rate=sample_rate), components.modifiers.ModulatedVolume( components.envelopes.ADSREnvelope(attack_duration=(float(attack_duration)) / 10000, decay_duration=(float(decay_duration)) / 10000, sustain_level=(float(sustain_level)) / 10, release_duration=(float(release_duration)) / 10000, sample_rate=sample_rate) ) ) ) class MainWindow(QtWidgets.QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) #Load the UI Page uic.loadUi('C:\\Users\\Sam\\AppData\\Local\\Programs\\Python\\Python38\\Music_Programs\\Music_Programs\\ADSR_Grapher\\embeddedGraphTest.ui', self) #TODO change to relative path #freq line edit val self.onlyDouble = QtGui.QDoubleValidator() self.freqLineEdit.setValidator(self.onlyDouble) self.notes_dict = {} self.stream = pyaudio.PyAudio().open( rate=SAMPLE_RATE, channels=1, format=pyaudio.paInt16, output=True, frames_per_buffer=BUFFER_SIZE ) #init graph self.sample_rate = 2048 self.osc = get_sin_oscillator(freq=1, sample_rate=512) self.samples = [next(self.osc) for i in range(self.sample_rate*4)] self.attack_length = self.sample_rate self.decay_length = self.sample_rate self.sustain_level = .4 self.sustain_length = self.sample_rate self.release_length = self.sample_rate self.attack = np.linspace(0, 1, self.attack_length) self.decay = np.linspace(1, self.sustain_level, self.decay_length) self.sustain = np.full((self.sustain_length, ), self.sustain_level) self.release = np.linspace(self.sustain_level, 0, self.release_length) self.adsr = np.concatenate( (self.attack, self.decay,self.sustain,self.release) ) self.graphWidget_ADSR.setTitle("ADSR Curve") self.pen = pg.mkPen(color=(255, 0, 0)) self.attack_start = 0 self.attack_end = len(self.attack) self.attack_line = self.graphWidget_ADSR.plot(range(self.attack_start,self.attack_end), self.attack, pen=self.pen) self.attack_line_main = self.graphWidget_ADSR_SIG.plot(range(self.attack_start,self.attack_end), self.attack, pen=self.pen) self.pen = pg.mkPen(color=(0, 255, 255)) self.decay_start = len(self.attack) self.decay_end = len(self.attack)+len(self.decay) self.decay_line = self.graphWidget_ADSR.plot(range(self.decay_start,self.decay_end), self.decay, pen=self.pen) self.decay_line_main = self.graphWidget_ADSR_SIG.plot(range(self.decay_start,self.decay_end), self.decay, pen=self.pen) self.pen = pg.mkPen(color=(255, 125, 0)) self.sus_start = len(self.attack)+len(self.decay) self.sus_end = len(self.attack)+len(self.decay)+len(self.sustain) self.sus_line = self.graphWidget_ADSR.plot(range(self.sus_start,self.sus_end), self.sustain, pen=self.pen) self.sus_line_main = self.graphWidget_ADSR_SIG.plot(range(self.sus_start,self.sus_end), self.sustain, pen=self.pen) self.pen = pg.mkPen(color=(0, 255, 125)) self.rel_start = len(self.attack)+len(self.decay)+len(self.sustain) self.rel_end = len(self.attack)+len(self.decay)+len(self.sustain)+len(self.release) self.rel_line = self.graphWidget_ADSR.plot(range(self.rel_start,self.rel_end), self.release, pen=self.pen) self.rel_line_main = self.graphWidget_ADSR_SIG.plot(range(self.rel_start,self.rel_end), self.release, pen=self.pen) self.graphWidget_SIG.setTitle("Input Signal Curve") self.SIG_line = self.graphWidget_SIG.plot(range(0,self.sample_rate*4), self.samples) self.graphWidget_ADSR_SIG.setTitle("ADSR * Input Signal Curve") self.ADSR_SIG_line = self.graphWidget_ADSR_SIG.plot(range(0,len(self.adsr)), self.adsr*self.samples) #button to play sound self.b1.clicked.connect(self.play_sound) self.b2.clicked.connect(self.play_ADSRsound) #timer for updating graphs self.timer = QtCore.QTimer() self.timer.setInterval(50) self.timer.timeout.connect(self.update_plot_data) self.timer.start() def play_sound(self): self.notes_dict[0] = get_sin_oscillator(freq=float(self.freqLineEdit.text()), amp=1) #type generator samples = get_samples(self.notes_dict) samples =
np.int16(samples)
numpy.int16
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from batchgenerators.augmentations.utils import random_crop_2D_image_batched, pad_nd_image import numpy as np from batchgenerators.dataloading import SlimDataLoaderBase from multiprocessing import Pool import time from nnunet.configuration import default_num_threads from nnunet.paths import preprocessing_output_dir from batchgenerators.utilities.file_and_folder_operations import * def get_case_identifiers(folder): case_identifiers = [i[:-4] for i in os.listdir(folder) if i.endswith("npz") and (i.find("segFromPrevStage") == -1)] return case_identifiers def get_case_identifiers_from_raw_folder(folder): case_identifiers = np.unique( [i[:-12] for i in os.listdir(folder) if i.endswith(".nii.gz") and (i.find("segFromPrevStage") == -1)]) return case_identifiers def convert_to_npy(args): if not isinstance(args, tuple): key = "data" npz_file = args else: npz_file, key = args if not isfile(npz_file[:-3] + "npy"): a = np.load(npz_file)[key] np.save(npz_file[:-3] + "npy", a) def save_as_npz(args): if not isinstance(args, tuple): key = "data" npy_file = args else: npy_file, key = args d = np.load(npy_file) np.savez_compressed(npy_file[:-3] + "npz", **{key: d}) def unpack_dataset(folder, threads=default_num_threads, key="data"): """ unpacks all npz files in a folder to npy (whatever you want to have unpacked must be saved unter key) :param folder: :param threads: :param key: :return: """ p = Pool(threads) npz_files = subfiles(folder, True, None, ".npz", True) p.map(convert_to_npy, zip(npz_files, [key] * len(npz_files))) p.close() p.join() def pack_dataset(folder, threads=default_num_threads, key="data"): p = Pool(threads) npy_files = subfiles(folder, True, None, ".npy", True) p.map(save_as_npz, zip(npy_files, [key] * len(npy_files))) p.close() p.join() def delete_npy(folder): case_identifiers = get_case_identifiers(folder) npy_files = [join(folder, i + ".npy") for i in case_identifiers] npy_files = [i for i in npy_files if isfile(i)] for n in npy_files: os.remove(n) def load_dataset(folder, num_cases_properties_loading_threshold=1000): # we don't load the actual data but instead return the filename to the np file. print('loading dataset') case_identifiers = get_case_identifiers(folder) case_identifiers.sort() dataset = OrderedDict() for c in case_identifiers: dataset[c] = OrderedDict() dataset[c]['data_file'] = join(folder, "%s.npz" % c) # dataset[c]['properties'] = load_pickle(join(folder, "%s.pkl" % c)) dataset[c]['properties_file'] = join(folder, "%s.pkl" % c) if dataset[c].get('seg_from_prev_stage_file') is not None: dataset[c]['seg_from_prev_stage_file'] = join(folder, "%s_segs.npz" % c) if len(case_identifiers) <= num_cases_properties_loading_threshold: print('loading all case properties') for i in dataset.keys(): dataset[i]['properties'] = load_pickle(dataset[i]['properties_file']) return dataset def crop_2D_image_force_fg(img, crop_size, valid_voxels): """ img must be [c, x, y] img[-1] must be the segmentation with segmentation>0 being foreground :param img: :param crop_size: :param valid_voxels: voxels belonging to the selected class :return: """ assert len(valid_voxels.shape) == 2 if type(crop_size) not in (tuple, list): crop_size = [crop_size] * (len(img.shape) - 1) else: assert len(crop_size) == (len( img.shape) - 1), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)" # we need to find the center coords that we can crop to without exceeding the image border lb_x = crop_size[0] // 2 ub_x = img.shape[1] - crop_size[0] // 2 - crop_size[0] % 2 lb_y = crop_size[1] // 2 ub_y = img.shape[2] - crop_size[1] // 2 - crop_size[1] % 2 if len(valid_voxels) == 0: selected_center_voxel = (np.random.random_integers(lb_x, ub_x), np.random.random_integers(lb_y, ub_y)) else: selected_center_voxel = valid_voxels[np.random.choice(valid_voxels.shape[1]), :] selected_center_voxel = np.array(selected_center_voxel) for i in range(2): selected_center_voxel[i] = max(crop_size[i] // 2, selected_center_voxel[i]) selected_center_voxel[i] = min(img.shape[i + 1] - crop_size[i] // 2 - crop_size[i] % 2, selected_center_voxel[i]) result = img[:, (selected_center_voxel[0] - crop_size[0] // 2):( selected_center_voxel[0] + crop_size[0] // 2 + crop_size[0] % 2), (selected_center_voxel[1] - crop_size[1] // 2):( selected_center_voxel[1] + crop_size[1] // 2 + crop_size[1] % 2)] return result class OriDataLoader3D(SlimDataLoaderBase): def __init__(self, data, patch_size, final_patch_size, batch_size, has_prev_stage=False, oversample_foreground_percent=0.0, memmap_mode="r", pad_mode="edge", pad_kwargs_data=None, pad_sides=None): """ This is the basic data loader for 3D networks. It uses preprocessed data as produced by my (Fabian) preprocessing. You can load the data with load_dataset(folder) where folder is the folder where the npz files are located. If there are only npz files present in that folder, the data loader will unpack them on the fly. This may take a while and increase CPU usage. Therefore, I advise you to call unpack_dataset(folder) first, which will unpack all npz to npy. Don't forget to call delete_npy(folder) after you are done with training? Why all the hassle? Well the decathlon dataset is huge. Using npy for everything will consume >1 TB and that is uncool given that I (Fabian) will have to store that permanently on /datasets and my local computer. With this strategy all data is stored in a compressed format (factor 10 smaller) and only unpacked when needed. :param data: get this with load_dataset(folder, stage=0). Plug the return value in here and you are g2g (good to go) :param patch_size: what patch size will this data loader return? it is common practice to first load larger patches so that a central crop after data augmentation can be done to reduce border artifacts. If unsure, use get_patch_size() from data_augmentation.default_data_augmentation :param final_patch_size: what will the patch finally be cropped to (after data augmentation)? this is the patch size that goes into your network. We need this here because we will pad patients in here so that patches at the border of patients are sampled properly :param batch_size: :param num_batches: how many batches will the data loader produce before stopping? None=endless :param seed: :param stage: ignore this (Fabian only) :param random: Sample keys randomly; CAREFUL! non-random sampling requires batch_size=1, otherwise you will iterate batch_size times over the dataset :param oversample_foreground: half the batch will be forced to contain at least some foreground (equal prob for each of the foreground classes) """ super(OriDataLoader3D, self).__init__(data, batch_size, None) if pad_kwargs_data is None: pad_kwargs_data = OrderedDict() self.pad_kwargs_data = pad_kwargs_data self.pad_mode = pad_mode self.oversample_foreground_percent = oversample_foreground_percent self.final_patch_size = final_patch_size self.has_prev_stage = has_prev_stage self.patch_size = patch_size self.list_of_keys = list(self._data.keys()) # need_to_pad denotes by how much we need to pad the data so that if we sample a patch of size final_patch_size # (which is what the network will get) these patches will also cover the border of the patients self.need_to_pad = (np.array(patch_size) - np.array(final_patch_size)).astype(int) if pad_sides is not None: if not isinstance(pad_sides, np.ndarray): pad_sides = np.array(pad_sides) self.need_to_pad += pad_sides self.memmap_mode = memmap_mode self.num_channels = None self.pad_sides = pad_sides self.data_shape, self.seg_shape = self.determine_shapes() def get_do_oversample(self, batch_idx): return not batch_idx < round(self.batch_size * (1 - self.oversample_foreground_percent)) def determine_shapes(self): if self.has_prev_stage: num_seg = 2 else: num_seg = 1 k = list(self._data.keys())[0] if isfile(self._data[k]['data_file'][:-4] + ".npy"): case_all_data = np.load(self._data[k]['data_file'][:-4] + ".npy", self.memmap_mode) else: case_all_data = np.load(self._data[k]['data_file'])['data'] num_color_channels = case_all_data.shape[0] - 1 data_shape = (self.batch_size, num_color_channels, *self.patch_size) seg_shape = (self.batch_size, num_seg, *self.patch_size) return data_shape, seg_shape def generate_train_batch(self): selected_keys = np.random.choice(self.list_of_keys, self.batch_size, True, None) data = np.zeros(self.data_shape, dtype=np.float32) seg = np.zeros(self.seg_shape, dtype=np.float32) case_properties = [] for j, i in enumerate(selected_keys): # oversampling foreground will improve stability of model training, especially if many patches are empty # (Lung for example) if self.get_do_oversample(j): force_fg = True else: force_fg = False if 'properties' in self._data[i].keys(): properties = self._data[i]['properties'] else: properties = load_pickle(self._data[i]['properties_file']) case_properties.append(properties) # cases are stored as npz, but we require unpack_dataset to be run. This will decompress them into npy # which is much faster to access if isfile(self._data[i]['data_file'][:-4] + ".npy"): case_all_data = np.load(self._data[i]['data_file'][:-4] + ".npy", self.memmap_mode) else: case_all_data = np.load(self._data[i]['data_file'])['data'] # print(np.unique(case_all_data[-1],return_counts=True)) # If we are doing the cascade then we will also need to load the segmentation of the previous stage and # concatenate it. Here it will be concatenates to the segmentation because the augmentations need to be # applied to it in segmentation mode. Later in the data augmentation we move it from the segmentations to # the last channel of the data if self.has_prev_stage: if isfile(self._data[i]['seg_from_prev_stage_file'][:-4] + ".npy"): segs_from_previous_stage = np.load(self._data[i]['seg_from_prev_stage_file'][:-4] + ".npy", mmap_mode=self.memmap_mode)[None] else: segs_from_previous_stage = np.load(self._data[i]['seg_from_prev_stage_file'])['data'][None] # we theoretically support several possible previsous segmentations from which only one is sampled. But # in practice this feature was never used so it's always only one segmentation seg_key = np.random.choice(segs_from_previous_stage.shape[0]) seg_from_previous_stage = segs_from_previous_stage[seg_key:seg_key + 1] assert all([i == j for i, j in zip(seg_from_previous_stage.shape[1:], case_all_data.shape[1:])]), \ "seg_from_previous_stage does not match the shape of case_all_data: %s vs %s" % \ (str(seg_from_previous_stage.shape[1:]), str(case_all_data.shape[1:])) else: seg_from_previous_stage = None # do you trust me? You better do. Otherwise you'll have to go through this mess and honestly there are # better things you could do right now # (above) documentation of the day. Nice. Even myself coming back 1 months later I have not friggin idea # what's going on. I keep the above documentation just for fun but attempt to make things clearer now need_to_pad = self.need_to_pad for d in range(3): # if case_all_data.shape + need_to_pad is still < patch size we need to pad more! We pad on both sides # always if need_to_pad[d] + case_all_data.shape[d + 1] < self.patch_size[d]: need_to_pad[d] = self.patch_size[d] - case_all_data.shape[d + 1] # we can now choose the bbox from -need_to_pad // 2 to shape - patch_size + need_to_pad // 2. Here we # define what the upper and lower bound can be to then sample form them with np.random.randint shape = case_all_data.shape[1:] lb_x = - need_to_pad[0] // 2 ub_x = shape[0] + need_to_pad[0] // 2 + need_to_pad[0] % 2 - self.patch_size[0] lb_y = - need_to_pad[1] // 2 ub_y = shape[1] + need_to_pad[1] // 2 + need_to_pad[1] % 2 - self.patch_size[1] lb_z = - need_to_pad[2] // 2 ub_z = shape[2] + need_to_pad[2] // 2 + need_to_pad[2] % 2 - self.patch_size[2] # if not force_fg then we can just sample the bbox randomly from lb and ub. Else we need to make sure we get # at least one of the foreground classes in the patch if not force_fg: bbox_x_lb =
np.random.randint(lb_x, ub_x + 1)
numpy.random.randint
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import sys import numpy as np from sklearn.utils import shuffle from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, KFold, GridSearchCV from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn_lvq import GrmlvqModel, MrslvqModel, LgmlvqModel, LmrslvqModel from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, cohen_kappa_score, confusion_matrix, make_scorer from imblearn.under_sampling import RandomUnderSampler import GPy import GPyOpt NUM_EVAL_RUNS = 5 NUM_KFOLD_SPLITS = 2 TEST_SIZE = 0.5 scoring_function = f1_score def bayesopt_logisticregression(X, y): domain =[{'name': 'C', 'type': 'continuous', 'domain': (0.0, 10.0)}] def fit_model(x): x = np.atleast_2d(np.exp(x)) fs = np.zeros((x.shape[0],1)) for i in range(x.shape[0]): fs[i] = 0 kf = KFold(n_splits=NUM_KFOLD_SPLITS, shuffle=True) for train_index, test_index in kf.split(X_): X_train, X_test = X_[train_index], X_[test_index] y_train, y_test = y_[train_index], y_[test_index] scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model = LogisticRegression(C=x[i, 0]) model.fit(X_train, y_train) y_test_pred = model.predict(X_test) score = -1.0 * scoring_function(y_test, y_test_pred) fs[i] += score fs[i] *= 1.0 / NUM_KFOLD_SPLITS return fs # Create otimizer opt = GPyOpt.methods.BayesianOptimization(f=fit_model, domain=domain, acquisition_type='EI', acquisition_weight=0.1) opt.run_optimization(max_iter=20) params = np.exp(opt.X[np.argmin(opt.Y)]) return {'C': params[0]} def gridsearch_logisticregression(X, y): params = {'C':
np.logspace(-2, 6, 10)
numpy.logspace
# -*- coding: utf-8 -*- """ Created on Fri Nov 30 16:41:27 2018 @author: eee """ from make_parameter import PreParam import numpy as np from pyomo.opt import SolverFactory from pyomo.opt.parallel import SolverManagerFactory from pyomo.environ import * import pickle from copy import deepcopy, copy from collections import Counter import multiprocessing as mp import time import cvxpy as cp from itertools import combinations from operator import itemgetter from numpy import linalg as LA import mosek class OptLin(PreParam): def __init__(self, path_casedata, set_disturb, mode): super(OptLin,self).__init__(path_casedata, set_disturb, mode) self.optsolver = SolverFactory('ipopt') self.optsolver.set_options('constr_viol_tol=1e-10') if mode == 20: self.opt_lin() elif mode == 21: self.opt_lin_sdp_large() elif mode == 22: self.opt_lin_sdp_small() elif mode == 23: self.opt_lin_sdp_small_admm() elif mode == 24: self.opt_lin_sdp_small_admm_fs() def opt_lin(self): ''' solve the dvid model in centralized method with IPOPT with linearized power flow model ''' opt_sm = ConcreteModel() #===================== variables========================= # problem variables x_ls # index of opt variables and initial values of opt variables index_w = list() index_theta = list() w_0 = dict() theta_0 = dict() for (k, i) in self.set_k_i: for j in range(self.param_dd[k[0]][i][2]+1): # differential variables and algebraic variables for i_bus in self.i_gen: index_w.append( (k[0], k[1], i, j, i_bus) ) w_0[(k[0], k[1], i, j, i_bus)] = self.w_0[i_bus-1] for i_bus in self.i_all: index_theta.append( (k[0], k[1], i, j, i_bus) ) theta_0[(k[0], k[1], i, j, i_bus)] = self.theta_0[i_bus-1] opt_sm.m = Var(self.i_gen, initialize = self.m_0) opt_sm.d = Var(self.i_gen, initialize = self.d_0) opt_sm.w = Var(index_w, initialize = w_0) opt_sm.theta = Var(index_theta, initialize = theta_0) opt_sm.con = ConstraintList() J_ki = dict() for (k, i) in self.set_k_i: ########### J_ki ############### print( k,i) [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, 0) nc = self.param_dd[k[0]][i][2] # order of disturbance k[0] (the same type of disturbances is with the same s_tau= self.param_dd[k[0]][i][3] # collocation points, tau, of disturbance k[0] h = self.param_dd[k[0]][i][1] - self.param_dd[k[0]][i][0] # length of time element i for disturbance k[0] J_theta = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * sum( ( opt_sm.theta[(k[0], k[1], i, j1, i_bus_f)] - opt_sm.theta[(k[0], k[1], i, j1, i_bus_t)] ) * ( opt_sm.theta[(k[0], k[1], i, j2, i_bus_f)] - opt_sm.theta[(k[0], k[1], i, j2, i_bus_t)] ) * ratio_B[i_bus_f - 1, i_bus_t - 1] for (i_bus_f, i_bus_t) in self.ind_branch ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_w = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * sum( ( opt_sm.w[(k[0], k[1], i, j1, i_bus)] ) * ( opt_sm.w[(k[0], k[1], i, j2, i_bus)] ) for i_bus in self.i_gen ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_der_w = (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * sum( ( opt_sm.w[(k[0], k[1], i, j1, i_bus)] ) * ( opt_sm.w[(k[0], k[1], i, j2, i_bus)] ) for i_bus in self.i_gen ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ce_gen = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * ( sum( opt_sm.d[i_bus]**2 * ( opt_sm.w[(k[0], k[1], i, j1, i_bus)] ) * ( opt_sm.w[(k[0], k[1], i, j2, i_bus)] ) for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) \ + (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * ( sum( opt_sm.m[i_bus]**2 * ( opt_sm.w[(k[0], k[1], i, j1, i_bus)] ) * ( opt_sm.w[(k[0], k[1], i, j2, i_bus)] ) for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) \ + 2 *(1/h) * sum( sum( self.int_l[3, nc, s_tau, j1, j2] * ( sum( opt_sm.m[i_bus]* opt_sm.d[i_bus] * ( opt_sm.w[(k[0], k[1], i, j1, i_bus)] ) * ( opt_sm.w[(k[0], k[1], i, j2, i_bus)] ) for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ce_load = (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * ( sum( (self.D[i_bus-1])**2 * ( opt_sm.theta[(k[0], k[1], i, j1, i_bus)] ) * ( opt_sm.theta[(k[0], k[1], i, j2, i_bus)] ) for i_bus in self.i_load ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ki[(k,i)] = h * (J_theta + J_w + J_der_w + J_ce_gen + J_ce_load) * self.casedata['disturbance'][k[0]][k[1]-1][-1] ###########constrains of collocation equations############### for r in range(1, nc+1): # for each colloction point [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) # der(theta) = w for all generator/inverter busese, i.e., i_gen for i_bus in self.i_gen: opt_sm.con.add( sum( opt_sm.theta[(k[0], k[1], i, j, i_bus)] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * opt_sm.w[(k[0], k[1], i, r, i_bus)] ) # der (theta) for load buses. for i_bus in self.i_load: opt_sm.con.add( sum( opt_sm.theta[(k[0], k[1], i, j, i_bus)] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * (1/self.D[i_bus-1]) * (self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * (np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( (opt_sm.theta[(k[0], k[1], i, r, i_bus)] - opt_sm.theta[(k[0], k[1], i, r, j_bus)]) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all) ) ) # der w = for all generators for i_bus in self.i_gen: opt_sm.con.add( sum( opt_sm.w[(k[0], k[1], i, j, i_bus)] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * (1/ opt_sm.m[i_bus]) * ( - opt_sm.d[i_bus] * opt_sm.w[(k[0], k[1], i, r, i_bus)] + self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] *( np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( (opt_sm.theta[(k[0], k[1], i, r, i_bus)] - opt_sm.theta[(k[0], k[1], i, r, j_bus)]) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all)) ) # 0 = g for non load & generator buses if i == 1: ii = 1 else: ii=0 for r in range(ii, nc+1): # for each colloction point including r=0 [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) for i_bus in self.i_non: opt_sm.con.add( 0 == self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * (np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( (opt_sm.theta[(k[0], k[1], i, r, i_bus)] - opt_sm.theta[(k[0], k[1], i, r, j_bus)]) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] )) for j_bus in self.i_all) ) ########### frequency constraints, resources constraints, and also constraints for m and d ################ for r in range(1, nc+1): # for each colloction point [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) # frequency constraints w_l(t) <= w(t) <= w_u(t) for all generator/inverter busese, i.e., i_gen for i_bus in self.i_gen: for key_fb in self.casedata['freq_band'][k[0]]: if self.param_dd[k[0]][i][0] + h * s_tau[r] > key_fb[0] and self.param_dd[k[0]][i][0] + h * s_tau[r] <= key_fb[1]: opt_sm.con.add( opt_sm.w[(k[0], k[1], i, r, i_bus)] >= (self.casedata['freq_band'][k[0]][key_fb][0] - 50) * 2 * np.pi ) opt_sm.con.add( opt_sm.w[(k[0], k[1], i, r, i_bus)] <= (self.casedata['freq_band'][k[0]][key_fb][1] - 50) * 2 * np.pi ) break # branch rotor angle difference constraints for (i_bus_f, i_bus_t) in self.ind_branch: if ratio_B[i_bus_f-1, i_bus_t-1] != 0: opt_sm.con.add( ( opt_sm.theta[(k[0], k[1], i, r, i_bus_f)] - opt_sm.theta[(k[0], k[1], i, r, i_bus_t)] ) <= 135/180*np.pi ) opt_sm.con.add( ( opt_sm.theta[(k[0], k[1], i, r, i_bus_f)] - opt_sm.theta[(k[0], k[1], i, r, i_bus_t)] ) >= -135/180*np.pi ) # resources constraints p_l <= p - m*der(w) - d*w <= p_u for all generators, and also constraints for m and d for i_bus in self.i_gen: i_gc = np.where(self.casedata['gencontrol'][:,0]==i_bus)[0] opt_sm.con.add( self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - (1/h) *opt_sm.m[i_bus] * sum( opt_sm.w[(k[0], k[1], i, j, i_bus)] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) - opt_sm.d[i_bus] * opt_sm.w[(k[0], k[1], i, r, i_bus)] >= self.casedata['gencontrol'][i_gc, 6][0] ) opt_sm.con.add( self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - (1/h) *opt_sm.m[i_bus] * sum( opt_sm.w[(k[0], k[1], i, j, i_bus)] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) - opt_sm.d[i_bus] * opt_sm.w[(k[0], k[1], i, r, i_bus)] <= self.casedata['gencontrol'][i_gc, 7][0] ) for i_bus in self.i_gen: i_gc = np.where(self.casedata['gencontrol'][:,0]==i_bus)[0] opt_sm.con.add( opt_sm.m[i_bus] >= self.casedata['gencontrol'][i_gc, 2][0]) opt_sm.con.add( opt_sm.m[i_bus] <= self.casedata['gencontrol'][i_gc, 3][0]) opt_sm.con.add( opt_sm.d[i_bus] >= self.casedata['gencontrol'][i_gc, 4][0]) opt_sm.con.add( opt_sm.d[i_bus] <= self.casedata['gencontrol'][i_gc, 5][0]) # continuity constraints of differential variable profiles across time element boundaries within the subproblem ls, i.e., x[i, 0] = x[i-1, n_c], and also initial value constraints for the first time element. for (k, i) in self.set_k_i: if i == 1: # whether time element i is the first time element, if yes, add initial value constraints for i_bus in self.i_gen: opt_sm.con.add( opt_sm.w[(k[0], k[1], i, 0, i_bus)] == self.w_0[i_bus-1] ) for i_bus in self.i_gen + self.i_load + self.i_non: opt_sm.con.add( opt_sm.theta[(k[0], k[1], i, 0, i_bus)] == self.theta_0[i_bus-1] ) elif (k, i - 1) in self.set_k_i: # whether two adjacent time elements are in the subproblem. nc = self.param_dd[k[0]][i-1][2] for i_bus in self.i_gen: opt_sm.con.add( opt_sm.w[(k[0], k[1], i, 0, i_bus)] == opt_sm.w[(k[0], k[1], i-1 , nc, i_bus)] ) for i_bus in self.i_gen + self.i_load: opt_sm.con.add( opt_sm.theta[(k[0], k[1], i, 0, i_bus)] == opt_sm.theta[(k[0], k[1], i-1, nc, i_bus)] ) ###### objective function ############### J = sum(J_ki[(k,i)] for (k, i) in self.set_k_i) opt_sm.J = J opt_sm.obj = Objective( expr = opt_sm.J , sense=minimize) ############# solver ################ solver = SolverFactory('ipopt') solver.set_options('constr_viol_tol=1e-10') solver.solve(opt_sm,tee=True) self.opt_result = deepcopy(opt_sm) def opt_lin_sdp_large(self): ''' lineralized power flow mode and SDP ''' X = dict() n_X = dict() for (k, i) in self.set_k_i: n_X = 2 * len(self.i_gen) + (self.param_dd[k[0]][i][2]+1) * (self.n_bus + len(self.i_gen)) + 2 * (self.param_dd[k[0]][i][2]+1) * len(self.i_gen) X[(k[0], k[1], i)] = cp.Variable((1 + n_X, 1 + n_X), symmetric =True) # index map between X and [m, d, theta, w, lm, ld] idm = dict() # index map for (k, i) in self.set_k_i: idm[(k[0], k[1], i)] = dict() i_X = 1 for i_bus in self.i_gen: idm[(k[0], k[1], i)][('m', i_bus)] = i_X i_X += 1 for i_bus in self.i_gen: idm[(k[0], k[1], i)][('d', i_bus)] = i_X i_X += 1 for j in range(self.param_dd[k[0]][i][2]+1): for i_bus in self.i_all: idm[(k[0], k[1], i)][('theta', j, i_bus)] = i_X i_X += 1 for j in range(self.param_dd[k[0]][i][2]+1): for i_bus in self.i_gen: idm[(k[0], k[1], i)][('w', j, i_bus)] = i_X i_X += 1 for j in range(self.param_dd[k[0]][i][2]+1): for i_bus in self.i_gen: idm[(k[0], k[1], i)][('lm', j, i_bus)] = i_X i_X += 1 for j in range(self.param_dd[k[0]][i][2]+1): for i_bus in self.i_gen: idm[(k[0], k[1], i)][('ld', j, i_bus)] = i_X i_X += 1 self.idm = idm constraints = list() J_ki = dict() for (k, i) in self.set_k_i: ########### J_ki ############### print( k,i) [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, 0) nc = self.param_dd[k[0]][i][2] # order of disturbance k[0] (the same type of disturbances is with the same s_tau= self.param_dd[k[0]][i][3] # collocation points, tau, of disturbance k[0] h = self.param_dd[k[0]][i][1] - self.param_dd[k[0]][i][0] # length of time element i for disturbance k[0] J_theta = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * sum( ( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', j1, i_bus_f)], idm[(k[0], k[1], i)][('theta', j2, i_bus_f)]] - X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', j1, i_bus_f)], idm[(k[0], k[1], i)][('theta', j2, i_bus_t)]] - X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', j1, i_bus_t)], idm[(k[0], k[1], i)][('theta', j2, i_bus_f)]] + X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', j1, i_bus_t)], idm[(k[0], k[1], i)][('theta', j2, i_bus_t)]] ) * ratio_B[i_bus_f - 1, i_bus_t - 1] for (i_bus_f, i_bus_t) in self.ind_branch ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_w = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * sum( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('w', j1, i_bus)], idm[(k[0], k[1], i)][('w', j2, i_bus)]] for i_bus in self.i_gen ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_der_w = (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * sum( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('w', j1, i_bus)], idm[(k[0], k[1], i)][('w', j2, i_bus)]] for i_bus in self.i_gen ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ce_gen = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * ( sum( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('ld', j1, i_bus)], idm[(k[0], k[1], i)][('ld', j2, i_bus)]] for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) \ + (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * ( sum( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('lm', j1, i_bus)], idm[(k[0], k[1], i)][('lm', j2, i_bus)]] for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) \ + 2 *(1/h) * sum( sum( self.int_l[3, nc, s_tau, j1, j2] * ( sum( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('lm', j1, i_bus)], idm[(k[0], k[1], i)][('ld', j2, i_bus)]] for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ce_load = (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * ( sum( (self.D[i_bus-1])**2 * X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', j1, i_bus)], idm[(k[0], k[1], i)][('theta', j2, i_bus)]] for i_bus in self.i_load ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ki[(k,i)] = h * (J_theta + J_w + J_der_w + J_ce_gen + J_ce_load) * self.casedata['disturbance'][k[0]][k[1]-1][-1] ###########constrains of collocation equations############### for r in range(1, nc+1): # for each colloction point [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) # der(theta) = w for all generator/inverter busese, i.e., i_gen for i_bus in self.i_gen: constraints.append( sum( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', j, i_bus)]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('w', r, i_bus)]] ) # der (theta) for load buses. for i_bus in self.i_load: constraints.append( sum( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', j, i_bus)]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * (1/self.D[i_bus-1]) * (self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * (np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( ( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, i_bus)]] - X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, j_bus)]] ) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all) ) ) # der w = for all generators for i_bus in self.i_gen: constraints.append( sum( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('m', i_bus)], idm[(k[0], k[1], i)][('w', j, i_bus)]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * ( - X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('d', i_bus)], idm[(k[0], k[1], i)][('w', r, i_bus)]] + self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * ( np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( ( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, i_bus)]] - X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, j_bus)]] ) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all)) ) # 0 = g for non load & generator buses if i == 1: ii = 1 else: ii=0 for r in range(ii, nc+1): # for each colloction point including r=0 [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) for i_bus in self.i_non: constraints.append( 0 == self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * ( np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( ( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, i_bus)]] - X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, j_bus)]] ) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all) ) ########### frequency constraints, resources constraints, and also constraints for m and d ################ for r in range(1, nc+1): # for each colloction point [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) # frequency constraints w_l(t) <= w(t) <= w_u(t) for all generator/inverter busese, i.e., i_gen for i_bus in self.i_gen: for key_fb in self.casedata['freq_band'][k[0]]: if self.param_dd[k[0]][i][0] + h * s_tau[r] > key_fb[0] and self.param_dd[k[0]][i][0] + h * s_tau[r] <= key_fb[1]: constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('w', r, i_bus)]] >= (self.casedata['freq_band'][k[0]][key_fb][0] - 50) * 2 * np.pi ) constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('w', r, i_bus)]] <= (self.casedata['freq_band'][k[0]][key_fb][1] - 50) * 2 * np.pi ) break # branch rotor angle difference constraints for (i_bus_f, i_bus_t) in self.ind_branch: if ratio_B[i_bus_f-1, i_bus_t-1] != 0: constraints.append( ( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, i_bus_f)]] - X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, i_bus_t)]] ) <= 135/180*np.pi ) constraints.append( ( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, i_bus_f)]] - X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', r, i_bus_t)]] ) >= -135/180*np.pi ) # resources constraints p_l <= p - m*der(w) - d*w <= p_u for all generators, and also constraints for m and d for i_bus in self.i_gen: i_gc = np.where(self.casedata['gencontrol'][:,0]==i_bus)[0] constraints.append( self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - (1/h) *sum( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('m', i_bus)], idm[(k[0], k[1], i)][('w', j, i_bus)]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) - X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('d', i_bus)], idm[(k[0], k[1], i)][('w', r, i_bus)]] >= self.casedata['gencontrol'][i_gc, 6][0] ) constraints.append( self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - (1/h) *sum( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('m', i_bus)], idm[(k[0], k[1], i)][('w', j, i_bus)]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) - X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('d', i_bus)], idm[(k[0], k[1], i)][('w', r, i_bus)]] <= self.casedata['gencontrol'][i_gc, 7][0] ) for i_bus in self.i_gen: i_gc = np.where(self.casedata['gencontrol'][:,0]==i_bus)[0] constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('m', i_bus)]] >= self.casedata['gencontrol'][i_gc, 2][0]) constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('m', i_bus)]] <= self.casedata['gencontrol'][i_gc, 3][0]) constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('d', i_bus)]] >= self.casedata['gencontrol'][i_gc, 4][0]) constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('d', i_bus)]] <= self.casedata['gencontrol'][i_gc, 5][0]) # continuity constraints of differential variable profiles across time element boundaries within the subproblem ls, i.e., x[i, 0] = x[i-1, n_c], and also initial value constraints for the first time element. for (k, i) in self.set_k_i: if i == 1: # whether time element i is the first time element, if yes, add initial value constraints for i_bus in self.i_gen: constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('w', 0, i_bus)]] == self.w_0[i_bus-1] ) for i_bus in self.i_gen + self.i_load + self.i_non: constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', 0, i_bus)]] == self.theta_0[i_bus-1] ) elif (k, i - 1) in self.set_k_i: # whether two adjacent time elements are in the subproblem. nc = self.param_dd[k[0]][i-1][2] for i_bus in self.i_gen: constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('w', 0, i_bus)]] == X[(k[0], k[1], i-1)][0, idm[(k[0], k[1], i-1)][('w', nc, i_bus)]] ) for i_bus in self.i_gen + self.i_load: constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', 0, i_bus)]] == X[(k[0], k[1], i-1)][0, idm[(k[0], k[1], i-1)][('theta', nc, i_bus)]] ) # constraints for the lifting variables l_m and l_d for (k, i) in self.set_k_i: nc = self.param_dd[k[0]][i][2] for r in range(0, nc+1): for i_bus in self.i_gen: constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('lm', r, i_bus)]] == X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('m', i_bus)], idm[(k[0], k[1], i)][('w', r, i_bus)]] ) constraints.append( X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('ld', r, i_bus)]] == X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('d', i_bus)], idm[(k[0], k[1], i)][('w', r, i_bus)]] ) # constraints for the first element of matrices X for (k, i) in self.set_k_i: constraints.append( X[(k[0], k[1], i)][0, 0] == 1) # sharing variables in X_[m,d] for different (k,i) for (k, i) in self.set_k_i[1:]: constraints.append(X[(k[0], k[1], i)][0:2*len(self.i_gen)+1+1, 0:2*len(self.i_gen)+1+1] == X[self.set_k_i[0][0][0],self.set_k_i[0][0][1], self.set_k_i[0][1]][0:2*len(self.i_gen)+1+1, 0:2*len(self.i_gen)+1+1]) #semidefine constraints for (k, i) in self.set_k_i: constraints.append( X[(k[0], k[1], i)] >> 0 ) ''' # constraints for tightening the relaxation for (k, i) in self.set_k_i: for i_bus in self.i_gen: for (j1, j2) in list(combinations(range(self.param_dd[k[0]][i][2]+1),2)): constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('lm', j1, i_bus)], idm[(k[0], k[1], i)][('ld', j2, i_bus)]] == X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('lm', j2, i_bus)], idm[(k[0], k[1], i)][('ld', j1, i_bus)]] ) for (k, i) in self.set_k_i: nc = self.param_dd[k[0]][i][2] s_tau= self.param_dd[k[0]][i][3] h = self.param_dd[k[0]][i][1] - self.param_dd[k[0]][i][0] for r in range(1, nc+1): # for each colloction point [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) # frequency constraints for i_bus in self.i_gen: for key_fb in self.casedata['freq_band'][k[0]]: if self.param_dd[k[0]][i][0] + h * s_tau[r] > key_fb[0] and self.param_dd[k[0]][i][0] + h * s_tau[r] <= key_fb[1]: constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('w', r, i_bus)], idm[(k[0], k[1], i)][('w', r, i_bus)]] <= (self.casedata['freq_band'][k[0]][key_fb][1] - 50)**2 ) break # branch rotor angle difference constraints for (i_bus_f, i_bus_t) in self.ind_branch: if ratio_B[i_bus_f-1, i_bus_t-1] != 0: constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', r, i_bus_f)], idm[(k[0], k[1], i)][('theta', r, i_bus_f)]] - X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', r, i_bus_f)], idm[(k[0], k[1], i)][('theta', r, i_bus_t)]] - X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', r, i_bus_t)], idm[(k[0], k[1], i)][('theta', r, i_bus_f)]] + X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', r, i_bus_t)], idm[(k[0], k[1], i)][('theta', r, i_bus_t)]] <= (135/180*np.pi)**2 ) for (k, i) in self.set_k_i: for i_bus in self.i_gen: i_gc = np.where(self.casedata['gencontrol'][:,0]==i_bus)[0] constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('m', i_bus)], idm[(k[0], k[1], i)][('m', i_bus)]] >= (self.casedata['gencontrol'][i_gc, 2][0])**2 ) constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('m', i_bus)], idm[(k[0], k[1], i)][('m', i_bus)]] <= (self.casedata['gencontrol'][i_gc, 3][0])**2 ) constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('d', i_bus)], idm[(k[0], k[1], i)][('d', i_bus)]] >= (self.casedata['gencontrol'][i_gc, 4][0])**2 ) constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('d', i_bus)], idm[(k[0], k[1], i)][('d', i_bus)]] <= (self.casedata['gencontrol'][i_gc, 5][0])**2 ) # continuity constraints of differential variable profiles across time element boundaries within the subproblem ls, i.e., x[i, 0] = x[i-1, n_c], and also initial value constraints for the first time element. for (k, i) in self.set_k_i: if i == 1: # whether time element i is the first time element, if yes, add initial value constraints for j in range(0, self.param_dd[k[0]][i][2] + 1): for i_bus in self.i_gen: constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('w', 0, i_bus)], idm[(k[0], k[1], i)][('w', j, i_bus)]] == (self.w_0[i_bus-1]) * X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('w', j, i_bus)]] ) for i_bus in self.i_gen + self.i_load + self.i_non: constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', 0, i_bus)], idm[(k[0], k[1], i)][('theta', j, i_bus)]] == (self.theta_0[i_bus-1]) * X[(k[0], k[1], i)][0, idm[(k[0], k[1], i)][('theta', j, i_bus)]] ) elif (k, i - 1) in self.set_k_i: # whether two adjacent time elements are in the subproblem. nc = self.param_dd[k[0]][i-1][2] for i_bus in self.i_gen: constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('w', 0, i_bus)], idm[(k[0], k[1], i)][('w', 0, i_bus)]] == X[(k[0], k[1], i-1)][idm[(k[0], k[1], i-1)][('w', nc, i_bus)], idm[(k[0], k[1], i-1)][('w', nc, i_bus)]] ) for i_bus in self.i_gen + self.i_load: constraints.append( X[(k[0], k[1], i)][idm[(k[0], k[1], i)][('theta', 0, i_bus)], idm[(k[0], k[1], i)][('theta', 0, i_bus)]] == X[(k[0], k[1], i-1)][idm[(k[0], k[1], i-1)][('theta', nc, i_bus)], idm[(k[0], k[1], i-1)][('theta', nc, i_bus)]] ) ''' ###### objective function ############### J = sum(J_ki[(k,i)] for (k, i) in self.set_k_i) objective = cp.Minimize(J) opt_sm = cp.Problem(objective, constraints) opt_sm.solve(solver = 'MOSEK', verbose = False) self.opt_result_ln_sdp = deepcopy(opt_sm) self.opt_result_ln_sdp_X = X def opt_lin_sdp_small(self): ''' lineralized power flow mode and SDP ''' X_lmd = dict() X_mdw = dict() X_theta = dict() for (k, i) in self.set_k_i: nc = self.param_dd[k[0]][i][2] for i_bus in self.i_gen: # X_lmd : [1 lm(nc + 1) ld(nc + 1)]^T [1 lm(nc + 1) ld(nc + 1)] n_lmd = 1 + 2*(nc + 1) X_lmd[(k[0], k[1], i, i_bus)] = cp.Variable(( n_lmd, n_lmd), symmetric =True) for i_bus in self.i_gen: # X_mdw : [1 m(1) d(1) w(nc + 1)]^T [1 m(1) d(1) w(nc + 1)] n_mdw = 1 + 2+ (nc + 1) X_mdw[(k[0], k[1], i, i_bus)] = cp.Variable(( n_mdw, n_mdw), symmetric =True) for i_clique in self.clique_tree_theta['node'].keys(): # X_theta : [1 ...] n_theta = 1 + len(self.clique_tree_theta['node'][i_clique]) * (1 + nc) X_theta[(k[0], k[1], i, i_clique)] = cp.Variable(( n_theta, n_theta), symmetric =True) ind_lmd = dict() ind_mdw = dict() ind_theta = dict() for (k, i) in self.set_k_i: nc = self.param_dd[k[0]][i][2] i_lmd = 1 for j in range(0, nc+1): ind_lmd[(k[0], k[1], i, j, 'lm')] = i_lmd i_lmd += 1 for j in range(0, nc+1): ind_lmd[(k[0], k[1], i, j, 'ld')] = i_lmd i_lmd += 1 i_mdw = 1 ind_mdw[(k[0], k[1], i, 'm')] = i_mdw i_mdw += 1 ind_mdw[(k[0], k[1], i, 'd')] = i_mdw i_mdw += 1 for j in range(0, nc+1): ind_mdw[(k[0], k[1], i, j, 'w')] = i_mdw i_mdw += 1 for i_clique in self.clique_tree_theta['node'].keys(): i_theta = 1 for j in range(0, nc+1): for i_bus in self.clique_tree_theta['node'][i_clique]: ind_theta[(k[0], k[1], i, i_clique, j, i_bus)] = i_theta i_theta += 1 constraints = list() J_ki = dict() for (k, i) in self.set_k_i: ########### J_ki ############### print( k,i) [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, 0) nc = self.param_dd[k[0]][i][2] # order of disturbance k[0] (the same type of disturbances is with the same s_tau= self.param_dd[k[0]][i][3] # collocation points, tau, of disturbance k[0] h = self.param_dd[k[0]][i][1] - self.param_dd[k[0]][i][0] # length of time element i for disturbance k[0] J_theta = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * sum( ( X_theta[(k[0], k[1], i, self.bus_clique[i_bus_f])][ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_f], j1, i_bus_f)], ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_f], j2, i_bus_f)]] - X_theta[(k[0], k[1], i, self.branch_clique[(i_bus_f, i_bus_t)])][ind_theta[(k[0], k[1], i, self.branch_clique[(i_bus_f, i_bus_t)], j1, i_bus_f)], ind_theta[(k[0], k[1], i, self.branch_clique[(i_bus_f, i_bus_t)], j2, i_bus_t)]] - X_theta[(k[0], k[1], i, self.branch_clique[(i_bus_t, i_bus_f)])][ind_theta[(k[0], k[1], i, self.branch_clique[(i_bus_t, i_bus_f)], j1, i_bus_t)], ind_theta[(k[0], k[1], i, self.branch_clique[(i_bus_t, i_bus_f)], j2, i_bus_f)]] + X_theta[(k[0], k[1], i, self.bus_clique[i_bus_t])][ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_t], j1, i_bus_t)], ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_t], j2, i_bus_t)]] )* ratio_B[i_bus_f - 1, i_bus_t - 1] for (i_bus_f, i_bus_t) in self.ind_branch ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_w = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * sum( X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, j1, 'w')], ind_mdw[(k[0], k[1], i, j2, 'w')]] for i_bus in self.i_gen ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_der_w = (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * sum( X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, j1, 'w')], ind_mdw[(k[0], k[1], i, j2, 'w')]] for i_bus in self.i_gen ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ce_gen = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * ( sum( X_lmd[(k[0], k[1], i, i_bus)][ind_lmd[(k[0], k[1], i, j1, 'ld')], ind_lmd[(k[0], k[1], i, j2, 'ld')]] for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) \ + (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * ( sum( X_lmd[(k[0], k[1], i, i_bus)][ind_lmd[(k[0], k[1], i, j1, 'lm')], ind_lmd[(k[0], k[1], i, j2, 'lm')]] for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) \ + 2 *(1/h) * sum( sum( self.int_l[3, nc, s_tau, j1, j2] * ( sum( X_lmd[(k[0], k[1], i, i_bus)][ind_lmd[(k[0], k[1], i, j1, 'lm')], ind_lmd[(k[0], k[1], i, j2, 'ld')]] for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ce_load = (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * ( sum( (self.D[i_bus-1])**2 * X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], j1, i_bus)], ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], j2, i_bus)]] for i_bus in self.i_load ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ki[(k,i)] = h * (J_theta + J_w + J_der_w + J_ce_gen + J_ce_load) * self.casedata['disturbance'][k[0]][k[1]-1][-1] ###########constrains of collocation equations############### for r in range(1, nc+1): # for each colloction point [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) # der(theta) = w for all generator/inverter busese, i.e., i_gen for i_bus in self.i_gen: constraints.append( sum( X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], j, i_bus)]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * X_mdw[(k[0], k[1], i, i_bus)][0, ind_mdw[(k[0], k[1], i, r, 'w')]] ) # der (theta) for load buses. for i_bus in self.i_load: constraints.append( sum( X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], j, i_bus)]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * (1/self.D[i_bus-1]) * (self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * (np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( ( X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], r, i_bus)]] - X_theta[(k[0], k[1], i, self.bus_clique[j_bus])][0, ind_theta[(k[0], k[1], i, self.bus_clique[j_bus], r, j_bus)]] ) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all) ) ) # der w = for all generators for i_bus in self.i_gen: constraints.append( sum( X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, 'm')], ind_mdw[(k[0], k[1], i, j, 'w')]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * ( - X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, 'd')], ind_mdw[(k[0], k[1], i, r, 'w')]] + self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * ( np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( ( X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], r, i_bus)]] - X_theta[(k[0], k[1], i, self.bus_clique[j_bus])][0, ind_theta[(k[0], k[1], i, self.bus_clique[j_bus], r, j_bus)]] ) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all)) ) # 0 = g for non load & generator buses if i == 1: ii = 1 else: ii=0 for r in range(ii, nc+1): # for each colloction point including r=0 [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) for i_bus in self.i_non: constraints.append( 0 == self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * ( np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( ( X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], r, i_bus)]] - X_theta[(k[0], k[1], i, self.bus_clique[j_bus])][0, ind_theta[(k[0], k[1], i, self.bus_clique[j_bus], r, j_bus)]] ) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all) ) ########### frequency constraints, resources constraints, and also constraints for m and d ################ for r in range(1, nc+1): # for each colloction point [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) # frequency constraints w_l(t) <= w(t) <= w_u(t) for all generator/inverter busese, i.e., i_gen for i_bus in self.i_gen: for key_fb in self.casedata['freq_band'][k[0]]: if self.param_dd[k[0]][i][0] + h * s_tau[r] > key_fb[0] and self.param_dd[k[0]][i][0] + h * s_tau[r] <= key_fb[1]: constraints.append( X_mdw[(k[0], k[1], i, i_bus)][0, ind_mdw[(k[0], k[1], i, r, 'w')]] >= (self.casedata['freq_band'][k[0]][key_fb][0] - 50) * 2 * np.pi ) constraints.append( X_mdw[(k[0], k[1], i, i_bus)][0, ind_mdw[(k[0], k[1], i, r, 'w')]] <= (self.casedata['freq_band'][k[0]][key_fb][1] - 50) * 2 * np.pi ) break # branch rotor angle difference constraints for (i_bus_f, i_bus_t) in self.ind_branch: if ratio_B[i_bus_f-1, i_bus_t-1] != 0: constraints.append( ( X_theta[(k[0], k[1], i, self.bus_clique[i_bus_f])][0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_f], r, i_bus_f)]] - X_theta[(k[0], k[1], i, self.bus_clique[i_bus_t])][0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_t], r, i_bus_t)]] ) <= 135/180*np.pi ) constraints.append( ( X_theta[(k[0], k[1], i, self.bus_clique[i_bus_f])][0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_f], r, i_bus_f)]] - X_theta[(k[0], k[1], i, self.bus_clique[i_bus_t])][0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_t], r, i_bus_t)]] ) >= -135/180*np.pi ) # resources constraints p_l <= p - m*der(w) - d*w <= p_u for all generators, and also constraints for m and d for i_bus in self.i_gen: i_gc = np.where(self.casedata['gencontrol'][:,0]==i_bus)[0] constraints.append( self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - (1/h) * sum( X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, 'm')], ind_mdw[(k[0], k[1], i, j, 'w')]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) - X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, 'd')], ind_mdw[(k[0], k[1], i, r, 'w')]] >= self.casedata['gencontrol'][i_gc, 6][0] ) constraints.append( self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - (1/h) *sum( X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, 'm')], ind_mdw[(k[0], k[1], i, j, 'w')]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) - X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, 'd')], ind_mdw[(k[0], k[1], i, r, 'w')]] <= self.casedata['gencontrol'][i_gc, 7][0] ) for i_bus in self.i_gen: i_gc = np.where(self.casedata['gencontrol'][:,0]==i_bus)[0] constraints.append( X_mdw[(k[0], k[1], i, i_bus)][0, ind_mdw[(k[0], k[1], i, 'm')]] >= self.casedata['gencontrol'][i_gc, 2][0]) constraints.append( X_mdw[(k[0], k[1], i, i_bus)][0, ind_mdw[(k[0], k[1], i, 'm')]] <= self.casedata['gencontrol'][i_gc, 3][0]) constraints.append( X_mdw[(k[0], k[1], i, i_bus)][0, ind_mdw[(k[0], k[1], i, 'd')]] >= self.casedata['gencontrol'][i_gc, 4][0]) constraints.append( X_mdw[(k[0], k[1], i, i_bus)][0, ind_mdw[(k[0], k[1], i, 'd')]] <= self.casedata['gencontrol'][i_gc, 5][0]) # continuity constraints of differential variable profiles across time element boundaries within the subproblem ls, i.e., x[i, 0] = x[i-1, n_c], and also initial value constraints for the first time element. for (k, i) in self.set_k_i: if i == 1: # whether time element i is the first time element, if yes, add initial value constraints for i_bus in self.i_gen: constraints.append( X_mdw[(k[0], k[1], i, i_bus)][[0, ind_mdw[(k[0], k[1], i, 0, 'w')]],:][:,[0, ind_mdw[(k[0], k[1], i, 0, 'w')]]] == np.array([[1, self.w_0[i_bus-1]]]).T.dot(np.array([[1, self.w_0[i_bus-1]]]))) for i_bus in self.i_gen + self.i_load + self.i_non: constraints.append( X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][[0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], 0, i_bus)]],:][:,[0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], 0, i_bus)]]] == np.array([[1, self.theta_0[i_bus-1] ]]).T.dot(np.array([[1, self.theta_0[i_bus-1] ]]) ) ) elif (k, i - 1) in self.set_k_i: # whether two adjacent time elements are in the subproblem. nc = self.param_dd[k[0]][i-1][2] for i_bus in self.i_gen: constraints.append( X_mdw[(k[0], k[1], i, i_bus)][[0, ind_mdw[(k[0], k[1], i, 0, 'w')]],:][:,[0, ind_mdw[(k[0], k[1], i, 0, 'w')]]] == X_mdw[(k[0], k[1], i-1, i_bus)][[0, ind_mdw[(k[0], k[1], i-1, nc, 'w')]],:][:,[0, ind_mdw[(k[0], k[1], i-1, nc, 'w')]]] ) for i_bus in self.i_gen + self.i_load: constraints.append( X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][[0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], 0, i_bus)]],:][:,[0, ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], 0, i_bus)]]] == X_theta[(k[0], k[1], i-1, self.bus_clique[i_bus])][[0, ind_theta[(k[0], k[1], i-1, self.bus_clique[i_bus], nc, i_bus)]],:][:,[0, ind_theta[(k[0], k[1], i-1, self.bus_clique[i_bus], nc, i_bus)]]] ) # constraints for the lifting variables l_m and l_d for (k, i) in self.set_k_i: nc = self.param_dd[k[0]][i][2] for r in range(0, nc+1): for i_bus in self.i_gen: constraints.append( X_lmd[(k[0], k[1], i, i_bus)][0, ind_lmd[(k[0], k[1], i, r, 'lm')]] == X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, 'm')], ind_mdw[(k[0], k[1], i, r, 'w')]] ) constraints.append( X_lmd[(k[0], k[1], i, i_bus)][0, ind_lmd[(k[0], k[1], i, r, 'ld')]] == X_mdw[(k[0], k[1], i, i_bus)][ind_mdw[(k[0], k[1], i, 'd')], ind_mdw[(k[0], k[1], i, r, 'w')]] ) # constraints for the first element of matrices X for (k, i) in self.set_k_i: for i_bus in self.i_gen: constraints.append(X_lmd[(k[0], k[1], i, i_bus)][0, 0] == 1) constraints.append(X_mdw[(k[0], k[1], i, i_bus)][0, 0] == 1) for i_clique in self.clique_tree_theta['node'].keys(): constraints.append( X_theta[(k[0], k[1], i, i_clique)][0, 0] == 1 ) # sharing variables in X_mdw for different (k,i) for (k, i) in self.set_k_i[1:]: root_k0, root_k1, root_i = self.set_k_i[0][0][0], self.set_k_i[0][0][1], self.set_k_i[0][1] for i_bus in self.i_gen: constraints.append( X_mdw[(k[0], k[1], i, i_bus)][[0, ind_mdw[(k[0], k[1], i, 'm')], ind_mdw[(k[0], k[1], i, 'd')]], :][:, [0, ind_mdw[(k[0], k[1], i, 'm')], ind_mdw[(k[0], k[1], i, 'd')]]] == X_mdw[(root_k0, root_k1, root_i, i_bus)][[0, ind_mdw[(root_k0, root_k1, root_i, 'm')], ind_mdw[(root_k0, root_k1, root_i, 'd')]], :][:, [0, ind_mdw[(root_k0, root_k1, root_i, 'm')], ind_mdw[(root_k0, root_k1, root_i, 'd')]]] ) # sharing variables in X_theta for different cliques. for (k, i) in self.set_k_i: nc = self.param_dd[k[0]][i][2] for edge_clique in self.clique_tree_theta['edge']: share_bus = list(set(self.clique_tree_theta['node'][edge_clique[0]] ).intersection(set(self.clique_tree_theta['node'][edge_clique[1]]))) share_index_0, share_index_1 = [0], [0] for j in range(0, nc+1): for i_bus in share_bus: share_index_0.append(ind_theta[(k[0], k[1], i, edge_clique[0], j, i_bus)]) share_index_1.append(ind_theta[(k[0], k[1], i, edge_clique[1], j, i_bus)]) constraints.append( X_theta[(k[0], k[1], i, edge_clique[0])][share_index_0, :][:,share_index_0] == X_theta[(k[0], k[1], i, edge_clique[1])][share_index_1, :][:,share_index_1] ) #semidefine constraints for (k, i) in self.set_k_i: for i_bus in self.i_gen: constraints.append( X_lmd[(k[0], k[1], i, i_bus)] >> 0 ) constraints.append( X_mdw[(k[0], k[1], i, i_bus)] >> 0 ) for i_clique in self.clique_tree_theta['node'].keys(): constraints.append( X_theta[(k[0], k[1], i, i_clique)] >> 0 ) ###### objective function ############### J = sum(J_ki[(k,i)] for (k, i) in self.set_k_i) objective = cp.Minimize(J) opt_sm = cp.Problem(objective, constraints) opt_sm.solve(solver = 'MOSEK', verbose = True, mosek_params={mosek.iparam.num_threads: 1}) self.opt_result = deepcopy(opt_sm) self.opt_result_X_lmd = dict() self.opt_result_X_mdw = dict() self.opt_result_X_theta = dict() for (k, i) in self.set_k_i: for i_bus in self.i_gen: self.opt_result_X_lmd[(k[0], k[1], i, i_bus)] = X_lmd[(k[0], k[1], i, i_bus)] self.opt_result_X_mdw[(k[0], k[1], i, i_bus)] = X_mdw[(k[0], k[1], i, i_bus)] for i_clique in self.clique_tree_theta['node'].keys(): self.opt_result_X_theta[(k[0], k[1], i, i_clique)] = X_theta[(k[0], k[1], i, i_clique)] #=============================The following is the block for function "opt_ln_sdp_small_admm" ant its subfunction================================# def opt_lin_sdp_small_admm(self, rho = 1, sep_mode = 'i', N_s = 3, N_s_k = 1, N_s_i = 3): # parameters of admm self.rho = rho self.sep_mode = sep_mode self.N_s = N_s self.N_s_k = N_s_k self.N_s_i = N_s_i self.rho_tau = 2#1.2 self.rho_mu = 10 self.epsilon_abs = 1e-5 self.epsilon_rel = 1e-3 # separate the problem self.seperation_compute() self.make_select_array() # define z and lambda self.define_z_lambda() # initialize all the optimization model for x, get self.opt_x = dict() with the opt model for each s \in P self.opt_x_init() # iteration, including modify model, solve opt_x, update z and lambda for self.kappa in range(1): self.opt_x_modify() self.opt_x_solve() self.update_z() self.update_lambda() self.termination() # self.update_rho() def define_z_lambda(self): ''' define z and lambda and initialize ''' # define global variables z self.z_md = dict() # R^{3 x 3} for i_bus in self.i_gen: self.z_md[i_bus] = np.array([[1, self.m_0[i_bus], self.d_0[i_bus]]]).T.dot( np.array([[1, self.m_0[i_bus], self.d_0[i_bus]]]) ) # self.z_w = dict() R^{2 x 2} self.z_w = dict(zip([(ki[0][0], ki[0][1], ki[1], i_bus) for ki in self.M_lower_union for i_bus in self.i_gen], [np.array([[1, self.w_0[i_bus - 1] ]]).T.dot( np.array([[1, self.w_0[i_bus - 1] ]]) ) for ki in self.M_lower_union for i_bus in self.i_gen] )) # self.z_theta = dict() R^{ 1 + number of gen_load buses in clique i_clique} self.z_theta = dict(zip([(ki[0][0], ki[0][1], ki[1], i_clique) for ki in self.M_lower_union for i_clique in self.clique_tree_theta['node_gl'].keys()], [np.array( [[1] + self.theta_0[(np.array(self.clique_tree_theta['node_gl'][i_clique]) - 1).tolist()].tolist() ] ).T.dot( np.array( [[1] + self.theta_0[(np.array(self.clique_tree_theta['node_gl'][i_clique]) - 1).tolist()].tolist() ] ) ) for ki in self.M_lower_union for i_clique in self.clique_tree_theta['node_gl'].keys() ] )) # define Lambda for each s \in P self.Lambda = dict() for s in self.P: self.Lambda[s] = dict() self.Lambda[s]['md'] = dict() for i_bus in self.i_gen: self.Lambda[s]['md'][i_bus] = np.zeros((3,3)) self.Lambda[s]['w'] = dict(zip([(ki[0][0], ki[0][1], ki[1], i_bus) for ki in self.M_lower[s] + self.M_upper[s] for i_bus in self.i_gen], [ np.zeros((2,2)) for ki in self.M_lower[s] + self.M_upper[s] for i_bus in self.i_gen] )) self.Lambda[s]['theta'] = dict(zip([(ki[0][0], ki[0][1], ki[1], i_clique) for ki in self.M_lower[s] + self.M_upper[s] for i_clique in self.clique_tree_theta['node_gl'].keys()], [np.zeros(( 1 + len(self.clique_tree_theta['node_gl'][i_clique]) , 1 + len(self.clique_tree_theta['node_gl'][i_clique]) )) for ki in self.M_lower[s] + self.M_upper[s] for i_clique in self.clique_tree_theta['node_gl'].keys() ] )) def _opt_xs_init(self, s): ''' initialize the optimization model for optimization x_s, for a given s ''' set_k_i_s = self.Xi[s] # set_k_i for the subproblem s # optimization variables for (k, i) in set_k_i_s: nc = self.param_dd[k[0]][i][2] for i_bus in self.i_gen: # X_lmd : [1 lm(nc + 1) ld(nc + 1)]^T [1 lm(nc + 1) ld(nc + 1)] n_lmd = 1 + 2*(nc + 1) self.X_lmd[(k[0], k[1], i, i_bus)] = cp.Variable(( n_lmd, n_lmd), symmetric =True) self.epsilon_n = self.epsilon_n + n_lmd**2 for i_bus in self.i_gen: # X_mdw : [1 m(1) d(1) w(nc + 1)]^T [1 m(1) d(1) w(nc + 1)] n_mdw = 1 + 2+ (nc + 1) self.X_mdw[(k[0], k[1], i, i_bus)] = cp.Variable(( n_mdw, n_mdw), symmetric =True) self.epsilon_n = self.epsilon_n + n_mdw**2 for i_clique in self.clique_tree_theta['node'].keys(): # X_theta : [1 ...] n_theta = 1 + len(self.clique_tree_theta['node'][i_clique]) * (1 + nc) self.X_theta[(k[0], k[1], i, i_clique)] = cp.Variable(( n_theta, n_theta), symmetric =True) self.epsilon_n = self.epsilon_n + n_theta**2 self.phi[s] =dict() self.phi[s]['md'] = dict() self.phi[s]['w'] = dict() self.phi[s]['theta'] = dict() for i_bus in self.i_gen: self.phi[s]['md'][i_bus] = cp.Variable() for ki in self.M_lower[s]: for i_bus in self.i_gen: self.phi[s]['w'][(ki[0][0], ki[0][1], ki[1], i_bus)] = cp.Variable() for ki in self.M_upper[s]: for i_bus in self.i_gen: self.phi[s]['w'][(ki[0][0], ki[0][1], ki[1], i_bus)] = cp.Variable() for ki in self.M_lower[s]: for i_clique in self.clique_tree_theta['node_gl'].keys(): self.phi[s]['theta'][(ki[0][0], ki[0][1], ki[1], i_clique)] = cp.Variable() for ki in self.M_upper[s]: for i_clique in self.clique_tree_theta['node_gl'].keys(): self.phi[s]['theta'][(ki[0][0], ki[0][1], ki[1], i_clique)] = cp.Variable() # index map for (k, i) in set_k_i_s: nc = self.param_dd[k[0]][i][2] i_lmd = 1 for j in range(0, nc+1): self.ind_lmd[(k[0], k[1], i, j, 'lm')] = i_lmd i_lmd += 1 for j in range(0, nc+1): self.ind_lmd[(k[0], k[1], i, j, 'ld')] = i_lmd i_lmd += 1 i_mdw = 1 self.ind_mdw[(k[0], k[1], i, 'm')] = i_mdw i_mdw += 1 self.ind_mdw[(k[0], k[1], i, 'd')] = i_mdw i_mdw += 1 for j in range(0, nc+1): self.ind_mdw[(k[0], k[1], i, j, 'w')] = i_mdw i_mdw += 1 for i_clique in self.clique_tree_theta['node'].keys(): i_theta = 1 for j in range(0, nc+1): for i_bus in self.clique_tree_theta['node'][i_clique]: self.ind_theta[(k[0], k[1], i, i_clique, j, i_bus)] = i_theta i_theta += 1 # parameters self.P_Lambda[s] = dict() self.P_Lambda[s]['md'] = dict() for i_bus in self.i_gen: self.P_Lambda[s]['md'][i_bus] = cp.Parameter((3,3), symmetric=True) self.P_Lambda[s]['w'] = dict(zip([(ki[0][0], ki[0][1], ki[1], i_bus) for ki in self.M_lower[s] + self.M_upper[s] for i_bus in self.i_gen], [ cp.Parameter((2,2), symmetric=True) for ki in self.M_lower[s] + self.M_upper[s] for i_bus in self.i_gen] )) self.P_Lambda[s]['theta'] = dict(zip([(ki[0][0], ki[0][1], ki[1], i_clique) for ki in self.M_lower[s] + self.M_upper[s] for i_clique in self.clique_tree_theta['node_gl'].keys()], [cp.Parameter(( 1 + len(self.clique_tree_theta['node_gl'][i_clique]) , 1 + len(self.clique_tree_theta['node_gl'][i_clique]) ), symmetric=True) for ki in self.M_lower[s] + self.M_upper[s] for i_clique in self.clique_tree_theta['node_gl'].keys() ] )) # optimization model constraints = list() for (k, i) in set_k_i_s: ########### J_ki ############### print( k,i) [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, 0) nc = self.param_dd[k[0]][i][2] # order of disturbance k[0] (the same type of disturbances is with the same s_tau= self.param_dd[k[0]][i][3] # collocation points, tau, of disturbance k[0] h = self.param_dd[k[0]][i][1] - self.param_dd[k[0]][i][0] # length of time element i for disturbance k[0] J_theta = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * sum( ( self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus_f])][self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_f], j1, i_bus_f)], self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_f], j2, i_bus_f)]] - self.X_theta[(k[0], k[1], i, self.branch_clique[(i_bus_f, i_bus_t)])][self.ind_theta[(k[0], k[1], i, self.branch_clique[(i_bus_f, i_bus_t)], j1, i_bus_f)], self.ind_theta[(k[0], k[1], i, self.branch_clique[(i_bus_f, i_bus_t)], j2, i_bus_t)]] - self.X_theta[(k[0], k[1], i, self.branch_clique[(i_bus_t, i_bus_f)])][self.ind_theta[(k[0], k[1], i, self.branch_clique[(i_bus_t, i_bus_f)], j1, i_bus_t)], self.ind_theta[(k[0], k[1], i, self.branch_clique[(i_bus_t, i_bus_f)], j2, i_bus_f)]] + self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus_t])][self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_t], j1, i_bus_t)], self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_t], j2, i_bus_t)]] )* ratio_B[i_bus_f - 1, i_bus_t - 1] for (i_bus_f, i_bus_t) in self.ind_branch ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_w = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * sum( self.X_mdw[(k[0], k[1], i, i_bus)][self.ind_mdw[(k[0], k[1], i, j1, 'w')], self.ind_mdw[(k[0], k[1], i, j2, 'w')]] for i_bus in self.i_gen ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_der_w = (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * sum( self.X_mdw[(k[0], k[1], i, i_bus)][self.ind_mdw[(k[0], k[1], i, j1, 'w')], self.ind_mdw[(k[0], k[1], i, j2, 'w')]] for i_bus in self.i_gen ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ce_gen = sum( sum( self.int_l[1, nc, s_tau, j1, j2] * ( sum( self.X_lmd[(k[0], k[1], i, i_bus)][self.ind_lmd[(k[0], k[1], i, j1, 'ld')], self.ind_lmd[(k[0], k[1], i, j2, 'ld')]] for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) \ + (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * ( sum( self.X_lmd[(k[0], k[1], i, i_bus)][self.ind_lmd[(k[0], k[1], i, j1, 'lm')], self.ind_lmd[(k[0], k[1], i, j2, 'lm')]] for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) \ + 2 *(1/h) * sum( sum( self.int_l[3, nc, s_tau, j1, j2] * ( sum( self.X_lmd[(k[0], k[1], i, i_bus)][self.ind_lmd[(k[0], k[1], i, j1, 'lm')], self.ind_lmd[(k[0], k[1], i, j2, 'ld')]] for i_bus in self.i_gen ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) J_ce_load = (1.0/h)**2 * sum( sum( self.int_l[2, nc, s_tau, j1, j2] * ( sum( (self.D[i_bus-1])**2 * self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], j1, i_bus)], self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], j2, i_bus)]] for i_bus in self.i_load ) ) for j2 in range(0, nc+1) ) for j1 in range(0, nc+1) ) self.J_ki[(k,i)] = h * (J_theta + J_w + J_der_w + J_ce_gen + J_ce_load) * self.casedata['disturbance'][k[0]][k[1]-1][-1] # ( 127.44357370467415 /21.00778069974123 ) 1 # ( 191.14407395083 /13.900200695381915) 2 # ( 74.95065908260192 /26.829236366725194) 3 # ( 46.104854448839994 /8.607371093162719 ) 4 # ( 83.1014925561 /11.757517973459112) 5 # ( 57.599196728337276 /5.9194825682193475) 6 ###########constrains of collocation equations############### for r in range(1, nc+1): # for each colloction point [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) # der(theta) = w for all generator/inverter busese, i.e., i_gen for i_bus in self.i_gen: constraints.append( sum( self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], j, i_bus)]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * self.X_mdw[(k[0], k[1], i, i_bus)][0, self.ind_mdw[(k[0], k[1], i, r, 'w')]] ) # der (theta) for load buses. for i_bus in self.i_load: constraints.append( sum( self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], j, i_bus)]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * (1/self.D[i_bus-1]) * (self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * (np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( ( self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], r, i_bus)]] - self.X_theta[(k[0], k[1], i, self.bus_clique[j_bus])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[j_bus], r, j_bus)]] ) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all) ) ) # der w = for all generators for i_bus in self.i_gen: constraints.append( sum( self.X_mdw[(k[0], k[1], i, i_bus)][self.ind_mdw[(k[0], k[1], i, 'm')], self.ind_mdw[(k[0], k[1], i, j, 'w')]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) == h * ( - self.X_mdw[(k[0], k[1], i, i_bus)][self.ind_mdw[(k[0], k[1], i, 'd')], self.ind_mdw[(k[0], k[1], i, r, 'w')]] + self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * ( np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( ( self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], r, i_bus)]] - self.X_theta[(k[0], k[1], i, self.bus_clique[j_bus])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[j_bus], r, j_bus)]] ) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all)) ) # 0 = g for non load & generator buses if i == 1: ii = 1 else: ii=0 for r in range(ii, nc+1): # for each colloction point including r=0 [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) for i_bus in self.i_non: constraints.append( 0 == self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - self.v_0[i_bus-1]**2 * delta_G[i_bus-1] - self.v_0[i_bus-1] * sum(self.B_0[i_bus-1,j_bus-1] * ratio_B[i_bus-1,j_bus-1] * self.v_0[j_bus-1] * ( np.sin( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) + ( ( self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus], r, i_bus)]] - self.X_theta[(k[0], k[1], i, self.bus_clique[j_bus])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[j_bus], r, j_bus)]] ) - (self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1]) ) * np.cos( self.theta_0[i_bus - 1] - self.theta_0[j_bus - 1] ) ) for j_bus in self.i_all) ) ########### frequency constraints, resources constraints, and also constraints for m and d ################ ''' for r in range(1, nc+1): # for each colloction point [ratio_pg, ratio_pl, delta_G, ratio_B] = self.array_disturbance(k, i, r) # frequency constraints w_l(t) <= w(t) <= w_u(t) for all generator/inverter busese, i.e., i_gen for i_bus in self.i_gen: for key_fb in self.casedata['freq_band'][k[0]]: if self.param_dd[k[0]][i][0] + h * s_tau[r] > key_fb[0] and self.param_dd[k[0]][i][0] + h * s_tau[r] <= key_fb[1]: constraints.append( self.X_mdw[(k[0], k[1], i, i_bus)][0, self.ind_mdw[(k[0], k[1], i, r, 'w')]] >= (self.casedata['freq_band'][k[0]][key_fb][0] - 50) * 2 * np.pi ) constraints.append( self.X_mdw[(k[0], k[1], i, i_bus)][0, self.ind_mdw[(k[0], k[1], i, r, 'w')]] <= (self.casedata['freq_band'][k[0]][key_fb][1] - 50) * 2 * np.pi ) break # branch rotor angle difference constraints for (i_bus_f, i_bus_t) in self.ind_branch: if ratio_B[i_bus_f-1, i_bus_t-1] != 0: constraints.append( ( self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus_f])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_f], r, i_bus_f)]] - self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus_t])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_t], r, i_bus_t)]] ) <= 135/180*np.pi ) constraints.append( ( self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus_f])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_f], r, i_bus_f)]] - self.X_theta[(k[0], k[1], i, self.bus_clique[i_bus_t])][0, self.ind_theta[(k[0], k[1], i, self.bus_clique[i_bus_t], r, i_bus_t)]] ) >= -135/180*np.pi ) # resources constraints p_l <= p - m*der(w) - d*w <= p_u for all generators, and also constraints for m and d for i_bus in self.i_gen: i_gc = np.where(self.casedata['gencontrol'][:,0]==i_bus)[0] constraints.append( self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - (1/h) *sum( self.X_mdw[(k[0], k[1], i, i_bus)][self.ind_mdw[(k[0], k[1], i, 'm')], self.ind_mdw[(k[0], k[1], i, j, 'w')]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) - self.X_mdw[(k[0], k[1], i, i_bus)][self.ind_mdw[(k[0], k[1], i, 'd')], self.ind_mdw[(k[0], k[1], i, r, 'w')]] >= self.casedata['gencontrol'][i_gc, 6][0] ) constraints.append( self.pg_0[i_bus-1] * ratio_pg[i_bus-1] - self.pl_0[i_bus-1] * ratio_pl[i_bus-1] - (1/h) *sum( self.X_mdw[(k[0], k[1], i, i_bus)][self.ind_mdw[(k[0], k[1], i, 'm')], self.ind_mdw[(k[0], k[1], i, j, 'w')]] * self.der_l[nc, s_tau, j, r] for j in range(0, nc+1) ) - self.X_mdw[(k[0], k[1], i, i_bus)][self.ind_mdw[(k[0], k[1], i, 'd')], self.ind_mdw[(k[0], k[1], i, r, 'w')]] <= self.casedata['gencontrol'][i_gc, 7][0] ) ''' for i_bus in self.i_gen: i_gc = np.where(self.casedata['gencontrol'][:,0]==i_bus)[0] constraints.append( self.X_mdw[(k[0], k[1], i, i_bus)][0, self.ind_mdw[(k[0], k[1], i, 'm')]] >= self.casedata['gencontrol'][i_gc, 2][0]) constraints.append( self.X_mdw[(k[0], k[1], i, i_bus)][0, self.ind_mdw[(k[0], k[1], i, 'm')]] <= self.casedata['gencontrol'][i_gc, 3][0]) constraints.append( self.X_mdw[(k[0], k[1], i, i_bus)][0, self.ind_mdw[(k[0], k[1], i, 'd')]] >= self.casedata['gencontrol'][i_gc, 4][0]) constraints.append( self.X_mdw[(k[0], k[1], i, i_bus)][0, self.ind_mdw[(k[0], k[1], i, 'd')]] <= self.casedata['gencontrol'][i_gc, 5][0]) # continuity constraints of differential variable profiles across time element boundaries within the subproblem ls, i.e., x[i, 0] = x[i-1, n_c], and also initial value constraints for the first time element. for (k, i) in set_k_i_s: if i == 1: # whether time element i is the first time element, if yes, add initial value constraints for i_bus in self.i_gen: constraints.append( self.X_mdw[(k[0], k[1], i, i_bus)][[0, self.ind_mdw[(k[0], k[1], i, 0, 'w')]],:][:,[0, self.ind_mdw[(k[0], k[1], i, 0, 'w')]]] ==
np.array([[1, self.w_0[i_bus-1]]])
numpy.array
import numpy as np from docanchors.search.strategies.seed import Seed def test_seed_size(mocker): for size in range(10): candidate = np.zeros(20, dtype=bool) s = Seed(size=size, num_seeds=1) mocker.patch.object(s, "_random") s._random.choice.return_value = np.array([0]) result = s(candidate) assert np.sum(result) == size assert np.sum(result[:size]) == size def test_seed_position(mocker): for position in range(20): candidate = np.zeros(25, dtype=bool) s = Seed(size=1, num_seeds=1) mocker.patch.object(s, "_random") s._random.choice.return_value =
np.array([position])
numpy.array
######################################################################### # (C) 2017 Department of Petroleum Engineering, # # Univeristy of Louisiana at Lafayette, Lafayette, US. # # # # This code is released under the terms of the BSD license, and thus # # free for commercial and research use. Feel free to use the code into # # your own project with a PROPER REFERENCE. # # # # A near wellbore streamline tracking code # # Author: <NAME> # # Email: <EMAIL> # # Reference: <NAME>., <NAME>., <NAME>., et al. (2017) An Embedded # # Grid-Free Approach for Near Wellbore Streamline Simulation. # # doi:10.2118/SPE-182614-MS # ######################################################################### import numpy as np import matplotlib.pyplot as plt ############################### Grid Subdivision Method ################################# def PointOnUnitSquare(NSL,Endpoint=False): '''Genetrating points around a unit square ''' Pts=np.zeros((NSL,2)) NSL_edge=int(NSL/4) if Endpoint==True: dx=np.linspace(0.0,1.0,NSL_edge,endpoint=True) if Endpoint==False: dx=np.linspace(0.0,1.0,NSL_edge,endpoint=True) dx_rev=dx[::-1] for i in range(4): for j in range(NSL_edge): if (i==0): Pts[j+i*NSL_edge,0],Pts[j+i*NSL_edge,1]=dx[j],0 if (i==1): Pts[j+i*NSL_edge,0],Pts[j+i*NSL_edge,1]=1,dx[j] if (i==2): Pts[j+i*NSL_edge,0],Pts[j+i*NSL_edge,1]=dx_rev[j],1 if (i==3): Pts[j+i*NSL_edge,0],Pts[j+i*NSL_edge,1]=0,dx_rev[j] return Pts def PointOnUnitEdge(NSL,Endpoint=False): '''Genetrating points around a unit Edge ''' Pts=np.zeros((NSL,2)) if Endpoint==True: dx=np.linspace(0.0,1.0,NSL,endpoint=True) if Endpoint==False: dx=np.linspace(0.03,0.97,NSL,endpoint=True) for i in range(NSL): Pts[i,0],Pts[i,1]=0,dx[i] return Pts def CalcDist(Pts0=(0,0),Pts1=(1,1)): '''Calculating distance of two points ''' return np.sqrt((Pts1[0]-Pts0[0])**2+(Pts1[1]-Pts0[1])**2) def RotateSL(SL,Single=0,origin=(0.0,0.0),angle=np.pi/2): """ Rotate a point counterclockwise by a given angle around a given origin. The angle should be given in radians. http://stackoverflow.com/questions/34372480/rotate-point-about-another-point-in-degrees-python """ #angle=self.RotateAngle NSL=len(SL) SL_new=SL.copy() ox,oy=origin if (Single==0): for i in range(NSL): for j in range(10): #1 SL have 10 nodes px,py=SL[i][j] qx = ox + np.cos(angle) * (px - ox) - np.sin(angle) * (py - oy) qy = oy + np.sin(angle) * (px - ox) + np.cos(angle) * (py - oy) SL_new[i][j]=qx,qy elif (Single==1): for i in range(10): #1 SL have 10 nodes px,py=SL[i] qx = ox + np.cos(angle) * (px - ox) - np.sin(angle) * (py - oy) qy = oy + np.sin(angle) * (px - ox) + np.cos(angle) * (py - oy) SL_new[i]=qx,qy return SL_new def TranslateSL(SL,Single=0,new_origin=(1.0,1.0),origin=(0.0,0.0)): """ Translate the SL by a given origin Single=0 Treatment multiple streamline Single=1 Treatment single streamline """ #new_origin=self.NewOrigin NSL=len(SL) SL_new=SL.copy() ox_new,oy_new=new_origin ox,oy=origin if (Single==0): for i in range(NSL): for j in range(10): #1 SL have 10 nodes px,py=SL[i][j] qx = px + (ox_new - ox) qy = py + (oy_new - oy) SL_new[i][j]=qx,qy elif(Single==1): for i in range(10): #1 SL have 10 nodes px,py=SL[i] qx = px + (ox_new - ox) qy = py + (oy_new - oy) SL_new[i]=qx,qy return SL_new ############################### Embedded Method ################################# def cosspace(st,ed,N,endpoint=True): """ Auto line segment refinement at end point e.g. --- - - - - - - --- """ #N=N+1 AngleInc=np.pi/(N-1) CurAngle = AngleInc space=np.linspace(0,1,N,endpoint=endpoint) space[0]=st for i in range(N-1): space[i+1] = 0.5*np.abs(ed-st)*(1 - np.cos(CurAngle)); CurAngle += AngleInc if ed<st: space[0]=ed space=space[::-1] return space def centroid2D(Pts): Pts = np.asarray(Pts) Npts=len(Pts) return np.sum(Pts[:,0])/Npts,np.sum(Pts[:,1])/Npts def EndPointOnLine(Pts_a=(0,0),Pts_b=(0,1),Nseg=4,refinement="linspace",Endpoint=True): '''Genetrating endpoints along a line segment algorithm: point with a given distance along a line: x=x_Start+unit_vector_x*distance y=y_Start+unit_vector_y*distance Arguments --------- Pts_a -- The start-point. Pts_b -- The end-point Npts -- Number of endpoints Nseg -- Number of segments unit_vx -- Unit vector for x coordinates unit_vy -- Unit vector for y coordinates interval -- Segment interval uniform - - - - - - - - - - (linspace) refinement -- - - - - - - -- (cosspace) ''' Npts=Nseg+1 Pts=np.zeros((Npts,2)) length=CalcDist(Pts_a,Pts_b) unit_vx=(Pts_b[0]-Pts_a[0])/length unit_vy=(Pts_b[1]-Pts_a[1])/length if (refinement=="linspace"): interval=np.linspace(0.0,length,Npts,endpoint=Endpoint) rinterval=np.linspace(length,0.0,Npts,endpoint=Endpoint) elif (refinement=="cosspace"): interval=cosspace(0.0,length,Npts,endpoint=Endpoint) rinterval=cosspace(length,0.0,Npts,endpoint=Endpoint) for i in range(Npts): Pts[i,0]=Pts_a[0]+interval[i]*unit_vx Pts[i,1]=Pts_a[1]+interval[i]*unit_vy return Pts def EndPointOnCircle(Origin=(0,0),R=1,Nseg=4): '''Genetrating endpoints along a circle Arguments --------- Origin -- The start-point. R -- The end-point Npts -- Number of endpoints Nseg -- Number of segments ''' Npts=Nseg+1 Pts=np.zeros((Npts,2)) interval=np.linspace(0, 2*np.pi, Npts) for i in range(Npts): Pts[i,0]=Origin[0]+np.cos(interval[i])*R Pts[i,1]=Origin[1]+np.sin(interval[i])*R return Pts def LineSegIntersect(Line1=([0,0],[1,1]),Line2=([0,1],[1,0])): #Algorithm from http://bryceboe.com/2006/10/23/line-segment-intersection-algorithm/ #Test whether 2 line segment are intersected xa,ya,xb,yb=Line1[0][0],Line1[0][1],Line1[1][0],Line1[1][1] xc,yc,xd,yd=Line2[0][0],Line2[0][1],Line2[1][0],Line2[1][1] ccw_ACD=(yd-ya)*(xc-xa) > (yc-ya)*(xd-xa) ccw_BCD=(yd-yb)*(xc-xb) > (yc-yb)*(xd-xb) ccw_ABC=(yc-ya)*(xb-xa) > (yb-ya)*(xc-xa) ccw_ABD=(yd-ya)*(xb-xa) > (yb-ya)*(xd-xa) return ccw_ACD != ccw_BCD and ccw_ABC != ccw_ABD ############################### Fill-Grid Method ################################# def PolygonArea(Pts): #Calculate 2D polygon area using Shoelace formula #http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates/30408825 x,y=
np.asarray(Pts)
numpy.asarray
from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import random # Enable font colors class bcolors: """ For the purpose of print in terminal with colors """ HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def obs_to_state(obs, info): """ This function converts observation into state Args: obs: [x, y, v_x, v_y, cos(theta), sin(theta), theta_dot] theta= robot orientation, alpha= angle between r->g and x-axis info: {"goal_position", ...} Returns: state: [r_norm, p_norm, alpha, alpha_dot, beta, beta_dot] r_norm: distance from map origin to robot p_norm: distance from robot to goal alpha: angle from map's x to r beta: angle from robot's x to p *_dot: angular velocity """ # compute states r = obs[:2] p = info["goal_position"] - obs[:2] r_norm = np.linalg.norm(r) # sqrt(x^2+y^2) p_norm = np.linalg.norm(p) alpha = np.arctan2(obs[1], obs[0]) alpha_dot = np.arctan2(obs[3], obs[2]) # comput phi: angle from map's x_axis to p x_axis = np.array([1, 0]) y_axis = np.array([0, 1]) cos_phi = np.dot(p, x_axis) / (np.linalg.norm(p)*np.linalg.norm(x_axis)) sin_phi = np.dot(p, y_axis) / (np.linalg.norm(p)*np.linalg.norm(y_axis)) phi = np.arctan2(sin_phi, cos_phi) # compute beta in [-pi, pi] beta = phi - np.arctan2(obs[-2], obs[-3]) if beta > np.pi: beta -= 2*np.pi elif beta < -np.pi: beta += 2*np.pi beta_dot = obs[-1] state = np.array([r_norm, p_norm, alpha, alpha_dot, beta, beta_dot]).astype(np.float32) return state def discretize_state(state, boxes): """ Converts continuous state into discrete states Args: state: boxes: Returns: index: state index in Q table, represent in tuple """ # match state into box index = [] for i_s, st in enumerate(state): for i_b, box in enumerate(boxes[i_s]): if st >= box[0] and st <= box[1]: index.append(i_b) break assert len(index) == 6 return tuple(index) def generate_action_sequence(num_sequences, len_horizon, num_actions): """ Generate S random action sequences with H horizon """ action_sequences = np.zeros((num_sequences, len_horizon)) for s in range(num_sequences): for h in range(len_horizon): action_sequences[s,h] = random.randrange(num_actions) return action_sequences def sample_to_batch(samples_list, num_states, num_actions): """ Create training batch from sampled memory """ x_batch = np.zeros((len(samples_list), num_states+num_actions)) y_batch = np.zeros((len(samples_list), num_states)) for i, s in enumerate(samples_list): onehot_action = np.zeros(num_actions) onehot_action[s[1]] = 1 x_batch[i] = np.concatenate((s[0], onehot_action)) y_batch[i] = s[-1] return x_batch, y_batch def create_dataset(input_features, output_labels, batch_size, shuffle=True, num_epochs=None): """ Create TF dataset from numpy arrays """ dataset = tf.data.Dataset.from_tensor_slices((input_features, output_labels)) if shuffle: dataset = dataset.shuffle(buffer_size = 1000) dataset = dataset.batch(batch_size) dataset = dataset.repeat(num_epochs) return dataset def shoot_action(model, action_sequences, state, goal): """ Find an action with most reward using random shoot """ sequence_rewards = np.zeros(action_sequences.shape[0]) # Compute reward for every sequence for seq in range(action_sequences.shape[0]): old_state = np.array(state).reshape(1,-1).astype(np.float32) # print("old_state: {}".format(old_state)) # debug reward_in_horizon = 0 for hor in range(action_sequences.shape[1]): action =
np.array([[action_sequences[seq,hor]]])
numpy.array
""" Defines the FOGIDiagram class and supporting functionality. """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import numpy as _np import scipy.linalg as _spl import collections as _collections from ..objects import Basis as _Basis from ..objects.fogistore import FirstOrderGaugeInvariantStore as _FOGIStore from ..tools import matrixtools as _mt import matplotlib.cm as _matplotlibcm from matplotlib.colors import LinearSegmentedColormap as _LinearSegmentedColormap try: import drawSvg as _draw except ImportError: _draw = None #_Hcmap = _matplotlibcm.get_cmap('Reds_r') #_Scmap = _matplotlibcm.get_cmap('Blues_r') _cdict = {'red': [[0.0, 1.0, 1.0], [1.0, 1.0, 1.0]], 'green': [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]], 'blue': [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]} _Hcmap = _LinearSegmentedColormap('lightReds', segmentdata=_cdict, N=256) _cdict = {'red': [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]], 'blue': [[0.0, 1.0, 1.0], [1.0, 1.0, 1.0]], 'green': [[0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]} _Scmap = _LinearSegmentedColormap('lightBlues', segmentdata=_cdict, N=256) ## - create table/heatmap of relational & gate-local strengths - also filter by ham/sto # - create table of all quantities to show structure def _create_errgen_op(vec, list_of_mxs): return sum([c * mx for c, mx in zip(vec, list_of_mxs)]) def _is_dependent(infos_by_type): for typ, infos_by_actedon in infos_by_type.items(): for acted_on, infos in infos_by_actedon.items(): for info in infos: if info['dependent'] is False: return False return True def _dstr(d, joinstr="<br>"): # dict-to-string formatting function if len(d) == 1: return "%.3g" % _np.real_if_close(next(iter(d.values()))) return joinstr.join(["%s: %.3g" % (k, _np.real_if_close(v)) for k, v in d.items()]) def _fmt_tableval(val): if isinstance(val, dict): if len(val) == 1: return _fmt_tableval(next(iter(val.values()))) return " <br> ".join(["%s: %s" % (k, _fmt_tableval(v)) for k, v in val.items()]) if _np.iscomplex(val): val = _np.real_if_close(val) if _np.isreal(val) or _np.iscomplex(val): if abs(val) < 1e-6: val = 0.0 if _np.isreal(val): return "%.3g" % val.real else: return "%.3g + %.3gj" % (val.real, val.imag) return str(val) def _make_table(table_info, rowlbl, title): table_dict, table_rows, table_cols = table_info html = "<table><thead><tr><th colspan=%d>%s</th></tr>\n" % (len(table_cols) + 1, title) html += ("<tr><th>%s<th>" % rowlbl) + "</th><th>".join(table_cols) + "</th></tr></thead><tbody>\n" for row in table_rows: table_row_text = [] for col in table_cols: val = table_dict[row][col] table_row_text.append(_fmt_tableval(val)) html += "<tr><th>" + str(row) + "</th><td>" + "</td><td>".join(table_row_text) + "</td></tr>\n" return html + "</tbody></table>" class FOGIDiagram(object): """ A diagram of the first-order-gauge-invariant (FOGI) quantities of a model. This class encapsulates a way of visualizing a model's FOGI quantities. """ def __init__(self, fogi_stores, op_coefficients, model_dim, op_to_target_qubits=None, impact_mode='current'): # Note: fogi_store can one or multiple (a list of) stores self.impact_mode = impact_mode self.fogi_stores = [fogi_stores] if isinstance(fogi_stores, _FOGIStore) else fogi_stores self.fogi_comps_by_store = [fogi_store.opcoeffs_to_fogi_components_array(op_coefficients) for fogi_store in self.fogi_stores] self.fogi_coeff_offsets = _np.cumsum([0] + [len(coeffs) for coeffs in self.fogi_comps_by_store])[0:-1] self.fogi_comps = _np.concatenate(self.fogi_comps_by_store) self.fogi_infos_by_store = [fogi_store.create_binned_fogi_infos() for fogi_store in self.fogi_stores] self.fogi_infos = _FOGIStore.merge_binned_fogi_infos(self.fogi_infos_by_store, self.fogi_coeff_offsets) #Construct op_to_target_qubits if needed if op_to_target_qubits is None: all_qubits = set() for fogi_store in self.fogi_stores: for op_label in fogi_store.primitive_op_labels: if op_label.sslbls is not None: all_qubits.update(op_label.sslbls) all_qubits = tuple(sorted(all_qubits)) op_to_target_qubits = {op_label: op_label.sslbls if (op_label.sslbls is not None) else all_qubits for op_label in fogi_stores.primitive_op_labels for fogi_store in self.fogi_stores} self.op_to_target_qubits = op_to_target_qubits #We need the gauge basis to construct actual gauge generators for computation of J-angle below. # these are un-normalized when we construct the gauge action in, e.g. first_order_ham_gauge_action_matrix(...) # and so they must be un-normalized (standard Pauli mxs) here. normalized_pauli_basis = _Basis.cast('pp', model_dim) scale = model_dim**(0.25) # to change to standard pauli-product matrices self.gauge_basis_mxs = [mx * scale for mx in normalized_pauli_basis.elements[1:]] # op-sets (sets of operations) correspond to units/nodes on diagrams, so it's useful # to have dictionaries of all the summarized information about all the fogi quantities # living on a given set of operations. self.op_set_info = {} for op_set, op_fogi_infos_by_type in self.fogi_infos.items(): total = {} flat_H_infos = [info for acted_on, infos in op_fogi_infos_by_type.get(('H',), {}).items() for info in infos] flat_S_infos = [info for acted_on, infos in op_fogi_infos_by_type.get(('S',), {}).items() for info in infos] if len(flat_H_infos) > 0: total['H'] = self._contrib(('H',), op_set, flat_H_infos) if len(flat_S_infos) > 0: total['S'] = self._contrib(('S',), op_set, flat_S_infos) total['mag'] = sum([self._extract_mag(contrib) for contrib in total.values()]) self.op_set_info[op_set] = { 'total': total, 'hs_support_table': self._make_coherent_stochastic_by_support_table(op_set, op_fogi_infos_by_type), 'individual_fogi_table': self._make_individual_fogi_table(op_set, op_fogi_infos_by_type), 'abbrev_individual_fogi_table': self._make_abbrev_table(op_set, op_fogi_infos_by_type), 'byweight': self._compute_by_weight_magnitudes(op_set, op_fogi_infos_by_type), 'bytarget': self._compute_by_target_magnitudes(op_set, op_fogi_infos_by_type), 'dependent': _is_dependent(op_fogi_infos_by_type), } assert(('H', 'S') not in op_fogi_infos_by_type) def _contrib(self, typ, op_set, infos_to_aggregate): def _sto_local_contrib(opt_set, infos): error_rate = 0 for info in infos: fogi_vec = info['fogi_dir'] / _np.linalg.norm(info['fogi_dir'])**2 vec_rate = sum(_np.abs(fogi_vec)) # L1 norm gives error rate of vector #sto rates should all have normalized fogi_dirs so rate = 1 == L1 norm of *vec* = *dir* / L2(*dir*)^2 assert(_np.isclose(vec_rate, 1.0)) # if we've normalized correctly, this should be true error_rate += self.fogi_comps[info['fogi_index']] * vec_rate return {'error_rate': error_rate} def _sto_relational_contrib(opt_set, infos): error_rate = 0 for info in infos: fogi_vec = info['fogi_dir'] / _np.linalg.norm(info['fogi_dir'])**2 vec_rate = sum(fogi_vec) # sum of elements gives error rate of vector # HERE - intrinsic relational rate addition is still a bit mysterious -- we should allow for # negative rates to balance positive ones to get an overall error rate, but maybe it's more # complicated than just adding teh elements up as we do above... error_rate += self.fogi_comps[info['fogi_index']] * vec_rate assert(abs(error_rate.imag) < 1e-6) return {'error_rate': error_rate.real} # maybe negative rates are ok (?) -- we could take abs here. def _ham_local_contrib(op_set, infos): assert(len(op_set) == 1) op_label = tuple(op_set)[0] # Compute j-angle(error generated by sum_i(comp_i * e_i)) where # i = info index and e_i = (normalized) fogi direction of i-th fogi qty. if len(infos) == 0: return {op_label: 0.0, 'min_jangle': 0.0} si = infos[0]['store_index'] # all infos must come from same *store* op_indices_slc = self.fogi_stores[si].op_errorgen_indices[op_set[0]] errgen_vec = _np.zeros((op_indices_slc.stop - op_indices_slc.start), complex) for info in infos: assert(set(op_set) == info['op_set']) comp = self.fogi_comps[info['fogi_index']] fogi_vec = info['fogi_dir'] / _np.linalg.norm(info['fogi_dir'])**2 # fogi vec = "inverse" of fogi dir because all local fogi dirs are orthonormal but not necessarily # normalized - so dividing by the norm^2 here => dot(fogi_dir, fogi_vec) = 1.0 as desired. # (we treat fogi_dir as if it were a member of an orthogonal basis when adding contributions) errgen_vec += comp * fogi_vec[op_indices_slc] errgen_op = _create_errgen_op(errgen_vec, self.gauge_basis_mxs) # NOTE: won't work for reduced models j_angle = _mt.jamiolkowski_angle(errgen_op) return {op_label: j_angle, 'min_jangle': j_angle} def _ham_relational_contrib(op_set, infos): if len(infos) == 0: ret = {'min_jangle': 0.0} ret.update({op_label: 0.0 for op_label in op_set}) return ret # Compute j-angle(error generated by gauge-action-on-OP( sum_i(theta_i * gauge_vec_i)) ) # for each OP in op_set, where gauge_vec_i is the (normalized) gauge directions # corresponding to the i-th fogi quantity (info). si = infos[0]['store_index'] # all infos must come from same *store* E = _np.column_stack([info['gauge_dir'] for info in infos]) theta =
_np.array([self.fogi_comps[info['fogi_index']] / info['r_factor'] for info in infos])
numpy.array
import numpy as np import struct import os import re from MiscLibs.common_functions import pol2cart, valid_number, nans class Pd0TRDI(object): """Class to read data from PD0 files Attributes ---------- file_name: str Full name including path of pd0 file to be read Hdr: Hdr Object of Hdr for heading information Inst: Inst Object of Inst to hold instrument information Cfg: Cfg Object of Cfg to hold configuration information Sensor: Sensor Object of Sensor to hold sensor data Wt: Wt Object of Wt to hold water track data Bt: Bt Object of Bt to hold bottom track data Gps: Gps Object of Gps to hold GPS data from previous versions of WR Gps2: Gps2 Object of Gps2 to hold GPS data from WR2 Surface: Surface Object of Surface to hold surface cell data AutoMode: AutoMode Object of AutoMode to hold auto configuration settings Nmea: Nmea Object of Nmea to hold Nmea data """ def __init__(self, file_name): """Constructor initializing instance variables. Parameters ---------- file_name: str Full name including path of pd0 file to be read """ self.file_name = file_name self.Hdr = None self.Inst = None self.Cfg = None self.Sensor = None self.Wt = None self.Bt = None self.Gps = None self.Gps2 = None self.Surface = None self.AutoMode = None self.Nmea = None self.pd0_read(file_name) def create_objects(self, n_ensembles, n_types, n_bins, max_surface_bins, n_velocities, wr2=False): """Create objects for instance variables. Parameters ---------- n_ensembles: int Number of ensembles n_types: int Number of data types n_bins: int Number of bins or depth cells max_surface_bins: int Maximum number of surface cells n_velocities: int Number of velocities wr2: bool Whether WR2 processing of GPS data should be applied """ self.Hdr = Hdr(n_ensembles, n_types) self.Inst = Inst(n_ensembles) self.Cfg = Cfg(n_ensembles) self.Sensor = Sensor(n_ensembles) self.Wt = Wt(n_bins, n_ensembles, n_velocities) self.Bt = Bt(n_ensembles, n_velocities) self.Gps = Gps(n_ensembles) self.Gps2 = Gps2(n_ensembles, wr2) self.Surface = Surface(n_ensembles, n_velocities, max_surface_bins) self.AutoMode = AutoMode(n_ensembles) self.Nmea = Nmea(n_ensembles) def pd0_read(self, fullname, wr2=False): """Reads the binary pd0 file and assigns values to object instance variables. Parameters ---------- fullname: str Full file name including path wr2: bool Determines if WR2 processing should be applied to GPS data """ # Assign default values n_velocities = 4 max_surface_bins = 5 # Check to ensure file exists if os.path.exists(fullname): file_info = os.path.getsize(fullname) if file_info > 0: # Open file for processing with open(fullname, 'rb') as f: # Read leader ID leader_id = hex(np.fromfile(f, np.uint16, count=1)[0]) # Leader ID 7f7f marks beginning of ensemble if leader_id != '0x7f7f': while leader_id != '0x7f7f': f.seek(-1, 1) leader_id = hex(np.fromfile(f, np.uint16, count=1)[0]) # Read header information initial_pos = f.tell()-2 bytes_per_ens = np.fromfile(f, dtype=np.uint16, count=1)[0] f.seek(1, 1) n_types = np.fromfile(f, np.uint8, count=1)[0] offset = np.fromfile(f, np.uint16, count=1)[0] f.seek(initial_pos+offset+8, 0) n_beams = np.fromfile(f, np.uint8, count=1)[0] n_bins = np.fromfile(f, np.uint8, count=1)[0] # Determine number of ensembles in the file to allow pre-allocation of arrays n_ensembles = Pd0TRDI.number_of_ensembles(f, file_info) # Create objects and pre-allocate arrays self.create_objects(n_ensembles=n_ensembles, n_types=n_types, n_bins=n_bins, max_surface_bins=max_surface_bins, n_velocities=n_velocities) # Initialize counters and variables i_ens = -1 end_file_check = 0 end_file = file_info i_data_types = 0 n_data_types = 1 file_loc = 0 i2022 = 0 j100, j101, j102, j103 = -1, -1, -1, -1 rr_bt_depth_correction = np.tile(np.nan, (n_beams, n_ensembles)) # Reset position in file f.seek(initial_pos, 0) # Begin reading file while end_file_check < end_file: # Read leader ID leader_id = hex(np.fromfile(f, np.uint16, count=1)[0]) if i_data_types >= n_data_types and leader_id != '0x7f7f': leader_id = '0x9999' # 7f7f marks the beginning of an ensemble if leader_id == '0x7f7f': i2022 = 0 file_loc = f.tell() - 2 # Check for last ensemble in file if file_loc+bytes_per_ens > end_file and i_ens >= n_ensembles: end_file_check = end_file+1 else: # Process ensemble i_data_types = 0 store_file_loc = f.tell() bytes_per_ens = np.fromfile(f, np.uint16, count=1)[0] # Check check_sum if self.check_sum(f, file_loc, bytes_per_ens): f.seek(file_loc+5, 0) n_data_types = np.fromfile(f, np.uint8, count=1)[0] data_offsets = np.fromfile(f, np.uint16, count=n_data_types) # Find variable leader ID while i_data_types+1 <= n_data_types and leader_id != '0x80': f.seek(data_offsets[i_data_types]+file_loc, 0) leader_id = hex(np.fromfile(f, np.uint16, count=1)[0]) i_data_types += 1 # Check for consecutive ensemble numbers if i_ens > -1 and leader_id == '0x80': ens_num = np.fromfile(f, np.uint16, count=1)[0] ens_num_diff = ens_num - self.Sensor.num[i_ens] if ens_num_diff > 1: for nn in range(0, int(ens_num_diff-1)): if i_ens < n_ensembles: self.Sensor.num[i_ens] = self.Sensor.num[i_ens-1]+1 i_ens += 1 elif ens_num_diff < 1: i_ens -= 1 else: self.bad_check_sum(f, file_loc) # Initialize variables f.seek(store_file_loc, 0) i_data_types = 0 j100, j101, j102, j103 = -1, -1, -1, -1 i_ens += 1 # Read bytes in this ensemble self.Hdr.bytes_per_ens[i_ens] = np.fromfile(f, np.uint16, count=1)[0] # If checksum is valid read header data if self.check_sum(f, file_loc, int(self.Hdr.bytes_per_ens[i_ens])): # Read number of data types f.seek(file_loc+5, 0) self.Hdr.n_data_types[i_ens] = np.fromfile(f, np.uint8, count=1)[0] # Read data offsets test = np.fromfile(f, np.uint16, count=int(self.Hdr.n_data_types[i_ens])) if test.shape[0] > self.Hdr.data_offsets.shape[1]: self.Hdr.data_offsets.resize(n_ensembles, test.shape[0]) self.Hdr.data_offsets[i_ens, 0:int(self.Hdr.n_data_types[i_ens])] = \ test[0:int(self.Hdr.n_data_types[i_ens])] # Check for end of data types self.end_reading(f, file_loc, i_data_types, i_ens, bytes_per_ens) else: self.bad_check_sum(f, file_loc) i_data_types = -1 # Read binary fixed leader data elif leader_id == '0x0': # Update data types counter i_data_types += 1 # Read and decode firmware version self.Inst.firm_ver[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Inst.firm_ver[i_ens] = self.Inst.firm_ver[i_ens] + \ np.fromfile(f, np.uint8, count=1)[0] / 100 # Read and decode instrument characteristics bitls = np.fromfile(f, np.uint8, count=1)[0] bitls = "{0:08b}".format(bitls) val = int(bitls[5:], 2) if val == 0: self.Inst.freq[i_ens] = 75 elif val == 1: self.Inst.freq[i_ens] = 150 elif val == 2: self.Inst.freq[i_ens] = 300 elif val == 3: self.Inst.freq[i_ens] = 600 elif val == 4: self.Inst.freq[i_ens] = 1200 elif val == 5: self.Inst.freq[i_ens] = 2400 else: self.Inst.freq[i_ens] = np.nan val = int(bitls[4], 2) if val == 0: self.Inst.pat[i_ens] = 'Concave' elif val == 1: self.Inst.pat[i_ens] = 'Convex' else: self.Inst.pat[i_ens] = 'n/a' self.Inst.sensor_CFG[i_ens] = int(bitls[2:3], 2) + 1 val = int(bitls[1], 2) if val == 0: self.Inst.xducer[i_ens] = 'Not Attached' elif val == 1: self.Inst.xducer[i_ens] = 'Attached' else: self.Inst.xducer[i_ens] = 'n/a' val = int(bitls[0], 2) if val == 0: self.Sensor.orient[i_ens] = 'Down' elif val == 1: self.Sensor.orient[i_ens] = 'Up' else: self.Sensor.orient[i_ens] = 'n/a' bitms = np.fromfile(f, np.uint8, count=1)[0] bitms = "{0:08b}".format(bitms) val = int(bitms[6:], 2) if val == 0: self.Inst.beam_ang[i_ens] = 15 elif val == 1: self.Inst.beam_ang[i_ens] = 20 elif val == 2: self.Inst.beam_ang[i_ens] = 30 elif val == 3: self.Inst.beam_ang[i_ens] = np.nan else: self.Inst.beam_ang[i_ens] = np.nan val = int(bitms[:4], 2) if val == 4: self.Inst.beams[i_ens] = 4 elif val == 5: self.Inst.beams[i_ens] = 5 self.Inst.demod[i_ens] = 1 elif val == 15: self.Inst.beams[i_ens] = 5 self.Inst.demod[i_ens] = 2 else: self.Inst.beams[i_ens] = np.nan self.Inst.demod[i_ens] = np.nan val = np.fromfile(f, np.uint8, count=1)[0] if val == 0: self.Inst.data_type[i_ens] = 'Real' else: self.Inst.data_type[i_ens] = 'Simu' # Position file pointer and read configuration information f.seek(1, 1) self.Cfg.n_beams[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.wn[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.wp[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Cfg.ws_cm[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Cfg.wf_cm[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Cfg.wm[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.wc[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.code_reps[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.wg_per[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.we_mmps[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Cfg.tp_sec[i_ens] = np.sum(np.fromfile(f, np.uint8, count=3) * np.array([60, 1, 0.01])) self.Cfg.ex[i_ens] = "{0:08b}".format(ord(f.read(1))) val = int(self.Cfg.ex[i_ens][3:5], 2) if val == 0: self.Cfg.coord_sys[i_ens] = 'Beam' elif val == 1: self.Cfg.coord_sys[i_ens] = 'Inst' elif val == 2: self.Cfg.coord_sys[i_ens] = 'Ship' elif val == 3: self.Cfg.coord_sys[i_ens] = 'Earth' else: self.Cfg.coord_sys[i_ens] = "N/a" val = int(self.Cfg.ex[i_ens][5], 2) if val == 0: self.Cfg.use_pr = 'No' elif val == 1: self.Cfg.use_pr = 'Yes' else: self.Cfg.use_pr = 'N/a' val = int(self.Cfg.ex[i_ens][6], 2) if val == 0: self.Cfg.use_3beam = 'No' elif val == 1: self.Cfg.use_3beam = 'Yes' else: self.Cfg.use_3beam = 'N/a' val = int(self.Cfg.ex[i_ens][7], 2) if val == 0: self.Cfg.map_bins = 'No' elif val == 1: self.Cfg.map_bins = 'Yes' else: self.Cfg.map_bins = 'N/a' self.Cfg.ea_deg[i_ens] = np.fromfile(f, np.int16, count=1)[0] * 0.01 self.Cfg.ea_deg[i_ens] = np.fromfile(f, np.uint16, count=1)[0] * 0.01 self.Cfg.ez[i_ens] = "{0:08b}".format(np.fromfile(f, np.uint8, count=1)[0]) val = int(self.Cfg.ez[i_ens][:2], 2) if val == 0: self.Cfg.sos_src[i_ens] = 'Manual EC' elif val == 1: self.Cfg.sos_src[i_ens] = 'Calculated' elif val == 3: self.Cfg.sos_src[i_ens] = 'SVSS Sensor' else: self.Cfg.sos_src[i_ens] = 'N/a' val = int(self.Cfg.ez[i_ens][2], 2) if val == 0: self.Cfg.xdcr_dep_srs[i_ens] = 'Manual ED' if val == 1: self.Cfg.xdcr_dep_srs[i_ens] = 'Sensor' else: self.Cfg.xdcr_dep_srs[i_ens] = 'N/a' val = int(self.Cfg.ez[i_ens][3], 2) if val == 0: self.Cfg.head_src[i_ens] = 'Manual EH' if val == 1: self.Cfg.head_src[i_ens] = 'Int. Sensor' else: self.Cfg.head_src[i_ens] = 'N/a' val = int(self.Cfg.ez[i_ens][4], 2) if val == 0: self.Cfg.pitch_src[i_ens] = 'Manual EP' if val == 1: self.Cfg.pitch_src[i_ens] = 'Int. Sensor' else: self.Cfg.pitch_src[i_ens] = 'N/a' val = int(self.Cfg.ez[i_ens][5], 2) if val == 0: self.Cfg.roll_src[i_ens] = 'Manual ER' if val == 1: self.Cfg.roll_src[i_ens] = 'Int. Sensor' else: self.Cfg.roll_src[i_ens] = 'N/a' val = int(self.Cfg.ez[i_ens][6], 2) if val == 0: self.Cfg.xdcr_dep_srs[i_ens] = 'Manual ES' if val == 1: self.Cfg.xdcr_dep_srs[i_ens] = 'Int. Sensor' else: self.Cfg.xdcr_dep_srs[i_ens] = 'N/a' val = int(self.Cfg.ez[i_ens][7], 2) if val == 0: self.Cfg.temp_src[i_ens] = 'Manual ET' if val == 1: self.Cfg.temp_src[i_ens] = 'Int. Sensor' else: self.Cfg.temp_src[i_ens] = 'N/a' self.Cfg.sensor_avail[i_ens] = "{0:08b}".format(np.fromfile(f, np.uint8, count=1)[0]) self.Cfg.dist_bin1_cm[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Cfg.xmit_pulse_cm[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Cfg.ref_lay_str_cell[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.ref_lay_end_cell[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.wa[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.cx[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.lag_cm[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Cfg.cpu_ser_no[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.wb[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.cq[i_ens] = np.fromfile(f, np.uint8, count=1)[0] # Check if more data types need to be read and position the pointer self.end_reading(f, file_loc, i_data_types, i_ens, bytes_per_ens) # Read variable leader data elif leader_id == '0x80': # Update the data types counter i_data_types += 1 # Read instrument clock and sensor data self.Sensor.num[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Sensor.date_not_y2k[i_ens, :] = np.fromfile(f, np.uint8, count=3) self.Sensor.time[i_ens, :] = np.fromfile(f, np.uint8, count=4) self.Sensor.num_fact[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.num_tot[i_ens] = self.Sensor.num[i_ens] + self.Sensor.num_fact[i_ens]*65535 self.Sensor.bit_test[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Sensor.sos_mps[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Sensor.xdcr_depth_dm[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Sensor.heading_deg[i_ens] = np.fromfile(f, np.uint16, count=1)[0] / 100. self.Sensor.pitch_deg[i_ens] = np.fromfile(f, np.int16, count=1)[0] / 100. self.Sensor.roll_deg[i_ens] = np.fromfile(f, np.int16, count=1)[0] / 100. self.Sensor.salinity_ppt[i_ens] = np.fromfile(f, np.uint16, count=1)[0] self.Sensor.temperature_deg_c[i_ens] = np.fromfile(f, np.int16, count=1)[0] / 100. self.Sensor.mpt_msc[i_ens, :] = np.fromfile(f, np.uint8, count=3) self.Sensor.heading_std_dev_deg[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.pitch_std_dev_deg[i_ens] = np.fromfile(f, np.uint8, count=1)[0] / 10. self.Sensor.roll_std_dev_deg[i_ens] = np.fromfile(f, np.uint8, count=1) / 10. self.Sensor.xmit_current[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.xmit_voltage[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.ambient_temp[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.pressure_pos[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.pressure_neg[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.attitude_temp[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.attitude[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.contam_sensor[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Sensor.error_status_word[i_ens] = ["{0:08b}".format(x) for x in np.fromfile(f, np.uint8, count=4)] f.seek(2, 1) self.Sensor.pressure_pascal[i_ens] = np.fromfile(f, np.uint32, count=1)[0] self.Sensor.pressure_var_pascal[i_ens] = np.fromfile(f, np.uint32, count=1)[0] f.seek(1, 1) self.Sensor.date_y2k[i_ens, :] = np.fromfile(f, np.uint8, count=4) self.Sensor.time_y2k[i_ens, :] = np.fromfile(f, np.uint8, count=4) self.Sensor.date[i_ens, :] = self.Sensor.date_not_y2k[i_ens, :] self.Sensor.date[i_ens, 0] = self.Sensor.date_y2k[i_ens, 0] * 100 + \ self.Sensor.date_y2k[i_ens, 1] self.Cfg.lag_near_bottom[i_ens] = np.fromfile(f, np.uint8, count=1)[0] # Check if more data types need to be read and position the pointer self.end_reading(f, file_loc, i_data_types, i_ens, bytes_per_ens) # Read water-tracking velocity data elif leader_id == '0x100': # Update the data types counter i_data_types += 1 if self.Cfg.wn[i_ens] > self.Wt.vel_mps.shape[1]: append = np.zeros([self.Wt.vel_mps.shape[0], int(self.Cfg.wn[i_ens] - self.Wt.vel_mps.shape[1]), self.Wt.vel_mps.shape[2]]) self.Wt.vel_mps = np.hstack([self.Wt.vel_mps, append]) dummy = np.fromfile(f, np.int16, count=int(self.Cfg.wn[i_ens]*4)) dummy = np.reshape(dummy, [int(self.Cfg.wn[i_ens]), n_velocities]) self.Wt.vel_mps[:n_velocities, :int(self.Cfg.wn[i_ens]), i_ens] = dummy.T # Check if more data types need to be read and position the pointer self.end_reading(f, file_loc, i_data_types, i_ens, bytes_per_ens) # Read correlation magnitude elif leader_id == '0x200': # Update the data types counter i_data_types += 1 if self.Cfg.wn[i_ens] > self.Wt.corr.shape[1]: append = np.zeros([self.Wt.corr.shape[0], int(self.Cfg.wn[i_ens] - self.Wt.corr.shape[1]), self.Wt.corr.shape[2]]) self.Wt.corr = np.hstack([self.Wt.corr, append]) dummy = np.fromfile(f, np.uint8, count=int(self.Cfg.wn[i_ens]*4)) dummy = np.reshape(dummy, [int(self.Cfg.wn[i_ens]), n_velocities]) self.Wt.corr[:n_velocities, :int(self.Cfg.wn[i_ens]), i_ens] = dummy.T # Check if more data types need to be read and position the pointer self.end_reading(f, file_loc, i_data_types, i_ens, bytes_per_ens) # Read echo intensity elif leader_id == '0x300': # Update the data types counter i_data_types += 1 if self.Cfg.wn[i_ens] > self.Wt.rssi.shape[1]: append = np.zeros([self.Wt.rssi.shape[0], int(self.Cfg.wn[i_ens] - self.Wt.rssi.shape[1]), self.Wt.rssi.shape[2]]) self.Wt.rssi = np.hstack([self.Wt.rssi, append]) dummy = np.fromfile(f, np.uint8, count=int(self.Cfg.wn[i_ens]*4)) dummy = np.reshape(dummy, [int(self.Cfg.wn[i_ens]), n_velocities]) self.Wt.rssi[:n_velocities, :int(self.Cfg.wn[i_ens]), i_ens] = dummy.T # Check if more data types need to be read and position the pointer self.end_reading(f, file_loc, i_data_types, i_ens, bytes_per_ens) # Read percent-good data elif leader_id == '0x400': # Update the data types counter i_data_types += 1 if self.Cfg.wn[i_ens] > self.Wt.pergd.shape[1]: self.Cfg.wn[i_ens] = self.Wt.pergd.shape[1] dummy = np.fromfile(f, np.uint8, count=int(self.Cfg.wn[i_ens]*4)) dummy = np.reshape(dummy, [int(self.Cfg.wn[i_ens]), n_velocities]) self.Wt.pergd[:n_velocities, :int(self.Cfg.wn[i_ens]), i_ens] = dummy.T # Check if more data types need to be read and position the pointer self.end_reading(f, file_loc, i_data_types, i_ens, bytes_per_ens) # Read bottom track data elif leader_id == '0x600': # Update the data types counter i_data_types += 1 # Read bottom track configuration data self.Cfg.bp[i_ens] = np.fromfile(f, np.uint16, count=1)[0] long1 = np.fromfile(f, np.uint16, count=1)[0] self.Cfg.bc[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.ba[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.bg[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.bm[i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Cfg.be_mmps[i_ens] = np.fromfile(f, np.uint16, count=1)[0] # Read winriver 10.06 fromat GPS data self.Gps.lat_deg[i_ens] = (np.fromfile(f, np.int32, count=1)[0]/2**31) * 180 # Read the Least Significant Bytes for beam depths dummy = np.fromfile(f, np.uint16, count=4) self.Bt.depth_m[0:4, i_ens] = dummy.T # Read bottom-track velocities dummy = np.fromfile(f, np.int16, count=4) self.Bt.vel_mps[0:4, i_ens] = dummy.T # Read bottom-track correlations dummy = np.fromfile(f, np.uint8, count=4) self.Bt.corr[0:4, i_ens] = dummy.T # Read bottom-track evaluation amplitude dummy = np.fromfile(f, np.uint8, count=4) self.Bt.eval_amp[0:4, i_ens] = dummy.T # Read bottom-track percent good dummy = np.fromfile(f, np.uint8, count=4) self.Bt.pergd[0:4, i_ens] = dummy.T # Read WinRiver 10.06 format GPS data dummy = np.fromfile(f, np.uint16, count=1)[0] if dummy != -32768: self.Gps.alt_m[i_ens] = (dummy-32768)/10 else: self.Gps.altm[i_ens] = np.nan long2 = np.fromfile(f, np.uint16, count=1)[0] self.Gps.long_deg[i_ens] = ((long1+long2*2**16)/2**31)*180 if self.Gps.long_deg[i_ens] > 180: self.Gps.long_deg[i_ens] -= 360 self.Bt.ext_depth_cm[i_ens] = np.fromfile(f, np.int16, count=1)[0] dummy = np.fromfile(f, np.int16, count=1)[0] if dummy != -32768: self.Gps.gga_vel_e_mps[i_ens] = dummy * -1 / 1000 else: self.Gps.gga_vel_e_mps[i_ens] = np.nan dummy = np.fromfile(f, np.int16, count=1)[0] if dummy != -32768: self.Gps.gga_vel_n_mps[i_ens] = dummy * -1 / 1000 else: self.Gps.gga_vel_n_mps[i_ens] = np.nan dummy = np.fromfile(f, np.int16, count=1)[0] if dummy != -32768: self.Gps.vtg_vel_e_mps[i_ens] = dummy * -1 / 1000 else: self.Gps.vtg_vel_e_mps[i_ens] = np.nan dummy = np.fromfile(f, np.int16, count=1)[0] if dummy != -32768: self.Gps.vtg_vel_n_mps[i_ens] = dummy * -1 / 1000 else: self.Gps.vtg_vel_n_mps[i_ens] = np.nan dummy = np.fromfile(f, np.uint8, count=1)[0] if dummy != 0: self.Gps.gsa_v_dop[i_ens] = dummy dummy = np.fromfile(f, np.uint8, count=1)[0] if dummy != 0: self.Gps.gsa_p_dop[i_ens] = dummy dummy = np.fromfile(f, np.uint8, count=1)[0] if dummy != 0: self.Gps.gga_n_stats[i_ens, 0] = dummy f.seek(1, 1) self.Gps.gsa_sat[i_ens, 4] = np.fromfile(f, np.uint8, count=1)[0] self.Gps.gsa_sat[i_ens, 5] = np.fromfile(f, np.uint8, count=1)[0] self.Gps.gga_diff[i_ens] = np.fromfile(f, np.uint8, count=1)[0] dummy = np.fromfile(f, np.uint8, count=1)[0] if dummy != 0: self.Gps.gga_hdop[i_ens] = dummy / 10 self.Gps.gsa_sat[i_ens, 0] = np.fromfile(f, np.uint8, count=1)[0] self.Gps.gsa_sat[i_ens, 1] = np.fromfile(f, np.uint8, count=1)[0] self.Gps.gsa_sat[i_ens, 2] = np.fromfile(f, np.uint8, count=1)[0] self.Gps.gsa_sat[i_ens, 3] = np.fromfile(f, np.uint8, count=1)[0] # Read bx configuration setting self.Cfg.bx_dm[i_ens] = np.fromfile(f, np.uint16, count=1)[0] # Read bottom-tracking RSSI self.Bt.rssi[0, i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Bt.rssi[1, i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Bt.rssi[2, i_ens] = np.fromfile(f, np.uint8, count=1)[0] self.Bt.rssi[3, i_ens] = np.fromfile(f, np.uint8, count=1)[0] # Read wj configuration setting self.Cfg.wj[i_ens] = np.fromfile(f, np.uint8, count=1)[0] # Read most significant byte and compute beam depths dummy = np.fromfile(f, np.uint8, count=1)[0] rr_bt_depth_correction[0:4, i_ens] = dummy.T * 2e16 / 100 # Check if more data types need to be read and position the pointer self.end_reading(f, file_loc, i_data_types, i_ens, bytes_per_ens) # Read General NMEA Structure # Data type '2022' contains sub data types the identify specfic NMEA # 0183 data types that will be decoded. There may be multiple values # for a single ensemble. elif leader_id == '0x2022': i2022 += 1 # Update the data types counter i_data_types += 1 specific_id = np.fromfile(f, np.int16, count=1)[0] msg_size = np.fromfile(f, np.int16, count=1)[0] delta_time = np.fromfile(f, np.double, count=1)[0] # GGA if specific_id == 100: j100 += 1 # If the number of values exceeds 20 expand arrays if j100 > self.Gps2.gga_delta_time.shape[1] - 1: self.Gps2.gga_expand(n_ensembles, i_ens) self.Gps2.gga_delta_time[i_ens, j100] = delta_time self.Gps2.gga_header[i_ens][j100] = ''.join([chr(x) for x in f.read(10)]) try: temp = ''.join([chr(x) for x in f.read(10)]) self.Gps2.utc[i_ens, j100] = float(re.match('[0-9]+\.[0-9]', temp).string.rstrip('\x00')) except ValueError: self.Gps2.utc[i_ens, j100] = np.nan self.Gps2.lat_deg[i_ens, j100] = np.fromfile(f, np.float64, count=1)[0] self.Gps2.lat_ref[i_ens][j100] = chr(f.read(1)[0]) self.Gps2.lon_deg[i_ens, j100] = np.fromfile(f, np.float64, count=1)[0] self.Gps2.lon_ref[i_ens][j100] = chr(f.read(1)[0]) self.Gps2.corr_qual[i_ens, j100] = np.fromfile(f, np.uint8, count=1)[0] self.Gps2.num_sats[i_ens, j100] = np.fromfile(f, np.uint8, count=1)[0] self.Gps2.hdop[i_ens, j100] = np.fromfile(f, np.float32, count=1)[0] self.Gps2.alt[i_ens, j100] = np.fromfile(f, np.float32, count=1)[0] self.Gps2.alt_unit[i_ens][j100] = chr(f.read(1)[0]) self.Gps2.geoid[i_ens, j100] = np.fromfile(f, np.float32, count=1)[0] self.Gps2.geoid_unit[i_ens][j100] = chr(f.read(1)[0]) self.Gps2.d_gps_age[i_ens, j100] = np.fromfile(f, np.float32, count=1)[0] self.Gps2.ref_stat_id[i_ens, j100] = np.fromfile(f, np.int16, count=0)[0] # VTG elif specific_id == 101: j101 += 1 # If the number of values exceeds 20 expand arrays if j101 > self.Gps2.vtg_delta_time.shape[1] - 1: self.Gps2.vtg_expand(n_ensembles, i_ens) self.Gps2.vtg_delta_time[i_ens, j101] = delta_time self.Gps2.vtg_header[i_ens][j101] = ''.join([chr(x) for x in f.read(10)]) self.Gps2.course_true[i_ens, j101] = np.fromfile(f, np.float32, count=1)[0] self.Gps2.true_indicator[i_ens][j101] = chr(f.read(1)[0]) self.Gps2.course_mag[i_ens, j101] = np.fromfile(f, np.float32, count=1)[0] self.Gps2.mag_indicator[i_ens][j101] = chr(f.read(1)[0]) self.Gps2.speed_knots[i_ens, j101] = np.fromfile(f, np.float32, count=1)[0] self.Gps2.kph_indicator[i_ens][j101] = chr(f.read(1)[0]) self.Gps2.mode_indicator[i_ens][j101] = chr(f.read(1)[0]) # Depth sounder elif specific_id == 102: j102 += 1 if j102 > self.Gps2.dbt_delta_time.shape[1] - 1: self.Gps2.dbt_expand(n_ensembles, i_ens) self.Gps2.dbt_delta_time[i_ens, j102] = delta_time self.Gps2.dbt_header[i_ens][j102] = ''.join([chr(x) for x in f.read(10)]) self.Gps2.depth_ft[i_ens, j102] = np.fromfile(f, np.float32, count=1)[0] self.Gps2.ft_indicator[i_ens][j102] = chr(f.read(1)[0]) self.Gps2.depth_m[i_ens, j102] = np.fromfile(f, np.float32, count=1)[0] self.Gps2.m_indicator[i_ens][j102] = chr(f.read(1)[0]) self.Gps2.depth_fath[i_ens, j102] =
np.fromfile(f, np.float32, count=1)
numpy.fromfile
import os import pandas as pd import numpy as np import xgboost as xgb import logging, pickle import joblib from sklearn.svm import SVR, LinearSVR, NuSVR from sklearn.neural_network import MLPRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import ElasticNetCV from Fuzzy_clustering.version3.ClusterCombineManager.GA_param_search import EvolutionaryAlgorithmSearchCV class sklearn_model(object): def __init__(self, static_data, cluster_dir, rated, model_type, njobs, is_combine=False, path_group=None): self.static_data = static_data self.path_group = path_group self.rated=rated self.model_dir = os.path.join(cluster_dir, str.upper(model_type)) if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) self.model_type = model_type self.is_combine = is_combine self.optimizer = 'deap' self.istrained = False self.cluster = os.path.basename(cluster_dir) logger = logging.getLogger('deap_train_' + '_' + self.model_type + self.cluster) logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(self.model_dir, 'log_deap_train_' + self.cluster + '.log'), 'w') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) self.logger=logger try: self.load(self.model_dir) except: pass self.njobs=njobs def compute_metrics(self, pred, y, rated): if rated is None: rated = y.ravel() else: rated = 1 err = np.abs(pred.ravel() - y.ravel()) / rated sse = np.sum(np.square(pred.ravel() - y.ravel())) rms = np.sqrt(np.mean(np.square(err))) mae = np.mean(err) mse = sse / y.shape[0] return [sse, rms, mae, mse] def fit_model1(self, model, params, cvs): model.set_params(**params) rms_val = [] rms_test = [] for cv in cvs: model.fit(cv[0], cv[1].ravel()) ypred = model.predict(cv[2]).ravel() if self.rated is None: acc = np.mean(np.abs(ypred - cv[3].ravel()) / cv[3].ravel()) else: acc = np.mean(np.abs(ypred - cv[3].ravel())) rms_val.append(acc) ypred = model.predict(cv[4]).ravel() if self.rated is None: acc = np.mean(np.abs(ypred - cv[5].ravel()) / cv[5].ravel()) else: acc = np.mean(np.abs(ypred - cv[5].ravel())) rms_test.append(acc) return 0.4 * np.mean(rms_val) + 0.6 * np.mean(rms_test), np.mean(rms_test) def train(self, cvs, init_params=[], FS=False, inner_jobs=1): print('training with deap...') X = np.vstack((cvs[0][0], cvs[0][2], cvs[0][4])) if len(cvs[0][1].shape)==1 and len(cvs[0][5].shape)==1: y = np.hstack((cvs[0][1], cvs[0][3], cvs[0][5])) else: y = np.vstack((cvs[0][1], cvs[0][3], cvs[0][5])).ravel() self.D, self.N = X.shape if 'elasticnet' in str.lower(self.model_type): X_train = cvs[0][0] y_train = cvs[0][1].reshape(-1, 1) X_val = cvs[0][2] y_val = cvs[0][3].reshape(-1, 1) X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) X_train = np.vstack((X_train, X_val, X_test)) y_train = np.vstack((y_train, y_val, y_test)) model = ElasticNetCV(cv=5, max_iter=4000) model.fit(X_train, y_train.ravel()) self.best_params = model.get_params() ypred = model.predict(X_test).ravel() if self.rated is None: self.accuracy = np.mean(np.abs(ypred - y_test.ravel()) / y_test.ravel()) else: self.accuracy = np.mean(np.abs(ypred - y_test.ravel())) self.acc_test = self.accuracy self.model = model self.logger.info('Best params') self.logger.info(self.best_params) self.logger.info('Final mae %s', str(self.acc_test)) self.logger.info('Final rms %s', str(self.accuracy)) self.logger.info('finish train for model %s', self.model_type) self.istrained = True self.save(self.model_dir) return self.to_dict() else: if 'xgb' in str.lower(self.model_type): params = {'learning_rate': np.logspace(-5, -1, num=6, base=10), 'max_depth': np.unique(np.linspace(1, 150, num=50).astype('int')), 'colsample_bytree': np.linspace(0.4, 1.0, num=60), 'colsample_bynode':
np.linspace(0.4, 1.0, num=60)
numpy.linspace
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 19 16:18:38 2021 @author: brsr """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from mapproj import Areal, UnitVector, rodrigues, slerp, triangle_solid_angle abc = np.zeros((3,3)) abc[0, :2] = [-0, -0.5] abc[1, :2] = [ 0.5, -0.25] abc[2, :2] = [-0.5, 0.5] abc[:,2] = np.sqrt(1 - abc[:, 0]**2 - abc[:, 1]**2) abc /= np.linalg.norm(abc, axis=1, keepdims=True) detabc = np.linalg.det(abc) midpoints = np.roll(abc, -1, axis=0) + np.roll(abc, 1, axis=0) midpoints /= np.linalg.norm(midpoints, axis=1, keepdims=True) edgecenters = np.cross(np.roll(abc, -1, axis=0), np.roll(abc, 1, axis=0)) angs = np.sum(np.roll(edgecenters, -1, axis=0)* np.roll(edgecenters, 1, axis=0), axis=1) ncx = np.linalg.norm(edgecenters, axis=1) edgecenters /= np.linalg.norm(edgecenters, axis=1, keepdims=True) bisectors = np.roll(edgecenters, -1, axis=0) - np.roll(edgecenters, 1, axis=0) bisectors /= np.linalg.norm(bisectors, axis=1, keepdims=True) dots = np.sum(np.roll(abc, -1, axis=0)* np.roll(abc, 1, axis=0), axis=1) t = np.linspace(0,1)[:,np.newaxis,np.newaxis] #abcedges = slerp(np.roll(abc, -1, axis=0), np.roll(abc, 1, axis=0), t) alltheta = np.linspace(0, 2*np.pi, 360) #this is easier than figuring out how to make broadcasting cooperate abcedges = np.zeros((len(t),3,3)) for i in range(3): abcedges[:,i] = slerp(abc[i-1], abc[(i+1)%3], t).squeeze() def plotinit(): fig = plt.figure() ax = plt.axes() patch = mpl.patches.Circle((0,0), radius=1, fill = False, edgecolor='k') ax.add_artist(patch) ax.set_xlim(-1,1) ax.set_ylim(-1,1) ax.set_aspect('equal') ax.axis('off') return fig, ax ab = abc[0] @ abc[1] bc = abc[1] @ abc[2] ca = abc[2] @ abc[0] axb = np.cross(abc[0], abc[1]) bxc = np.cross(abc[1], abc[2]) cxa = np.cross(abc[2], abc[0]) naxb =
np.linalg.norm(axb)
numpy.linalg.norm
import time import gym import gym.spaces import numpy as np import numpy.linalg as la from beamngpy import BeamNGpy, Scenario, Vehicle, setup_logging from beamngpy.sensors import Electrics, Damage from shapely import affinity from shapely.geometry import LinearRing, LineString, Polygon, Point def normalise_angle(angle): if angle < 0: angle += np.pi * 2 return angle def calculate_curvature(points, idx): p1 = points[idx - 1] p2 = points[idx + 0] p3 = points[idx + 1] curvature = 2 * ( (p2[0] - p1[0]) * (p3[1] - p2[1]) - (p2[1] - p1[1]) * (p3[0] - p2[0])) / (np.sqrt( (np.square(p2[0] - p1[0]) + np.square(p2[1] - p1[1])) * (np.square(p3[0] - p2[0]) + np.square(p3[1] - p2[1])) * (np.square(p1[0] - p3[0]) + np.square(p1[1] - p3[1]))) + 0.00000001 ) return curvature def calculate_inclination(points, idx): p1 = points[idx - 1] p3 = points[idx + 1] inclination = p3[2] - p1[2] return inclination class WCARaceGeometry(gym.Env): sps = 50 rate = 5 front_dist = 800 front_step = 100 trail_dist = 104 trail_step = 13 starting_proj = 1710 max_damage = 100 def __init__(self, host='localhost', port=64256): self.steps = WCARaceGeometry.sps // WCARaceGeometry.rate self.host = host self.port = port self.action_space = self._action_space() self.observation_space = self._observation_space() self.episode_steps = 0 self.spine = None self.l_edge = None self.r_edge = None self.polygon = None front_factor = WCARaceGeometry.front_dist / WCARaceGeometry.front_step trail_factor = WCARaceGeometry.trail_dist / WCARaceGeometry.trail_step self.front = lambda step: +front_factor * step self.trail = lambda step: -trail_factor * step self.bng = BeamNGpy(self.host, self.port) self.vehicle = Vehicle('racecar', model='sunburst', licence='BEAMNG', colour='red', partConfig='vehicles/sunburst/hillclimb.pc') electrics = Electrics() damage = Damage() self.vehicle.attach_sensor('electrics', electrics) self.vehicle.attach_sensor('damage', damage) scenario = Scenario('west_coast_usa', 'wca_race_geometry_v0') scenario.add_vehicle(self.vehicle, pos=(394.5, -247.925, 145.25), rot=(0, 0, 90)) scenario.make(self.bng) self.bng.open(launch=True) self.bng.set_deterministic() self.bng.set_steps_per_second(WCARaceGeometry.sps) self.bng.load_scenario(scenario) self._build_racetrack() self.observation = None self.last_observation = None self.last_spine_proj = None self.bng.start_scenario() self.bng.pause() def __del__(self): self.bng.close() def _build_racetrack(self): roads = self.bng.get_roads() track = roads['race_ref'] l_vtx = [] s_vtx = [] r_vtx = [] for right, middle, left in track: r_vtx.append(right) s_vtx.append(middle) l_vtx.append(left) self.spine = LinearRing(s_vtx) self.r_edge = LinearRing(r_vtx) self.l_edge = LinearRing(l_vtx) r_vtx = [v[0:2] for v in r_vtx] l_vtx = [v[0:2] for v in l_vtx] self.polygon = Polygon(l_vtx, holes=[r_vtx]) def _action_space(self): action_lo = [-1., -1.] action_hi = [+1., +1.] return gym.spaces.Box(
np.array(action_lo)
numpy.array
import numpy as np def test_n_componets_from_reducer(): from pymks import MKSStructureAnalysis from pymks import DiscreteIndicatorBasis from sklearn.manifold import LocallyLinearEmbedding reducer = LocallyLinearEmbedding(n_components=7) dbasis = DiscreteIndicatorBasis(n_states=3, domain=[0, 2]) model = MKSStructureAnalysis(dimension_reducer=reducer, basis=dbasis) assert model.n_components == 7 def test_n_components_with_reducer(): from pymks import MKSStructureAnalysis from pymks import DiscreteIndicatorBasis from sklearn.manifold import Isomap reducer = Isomap(n_components=7) dbasis = DiscreteIndicatorBasis(n_states=3, domain=[0, 2]) model = MKSStructureAnalysis(dimension_reducer=reducer, basis=dbasis, n_components=9) assert model.n_components == 9 def test_n_components_change(): from pymks import MKSStructureAnalysis from pymks import DiscreteIndicatorBasis dbasis = DiscreteIndicatorBasis(n_states=2) model = MKSStructureAnalysis(basis=dbasis) model.n_components = 27 assert model.n_components == 27 def test_default_n_components(): from pymks import MKSStructureAnalysis from pymks import DiscreteIndicatorBasis dbasis = DiscreteIndicatorBasis(n_states=2) model = MKSStructureAnalysis(basis=dbasis) assert model.n_components == 5 def test_default_dimension_reducer(): from sklearn.decomposition import PCA from pymks import MKSStructureAnalysis from pymks import PrimitiveBasis model = MKSStructureAnalysis(basis=PrimitiveBasis()) assert isinstance(model.dimension_reducer, PCA) def test_default_correlations(): from pymks import PrimitiveBasis from pymks import MKSStructureAnalysis prim_basis = PrimitiveBasis(6) model_prim = MKSStructureAnalysis(basis=prim_basis) assert model_prim.correlations == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)] def test_set_correlations(): from pymks import PrimitiveBasis from pymks import MKSStructureAnalysis test_correlations = [(0, 0), (0, 2), (0, 4)] prim_basis = PrimitiveBasis(6) model_prim = MKSStructureAnalysis(basis=prim_basis, correlations=test_correlations) assert model_prim.correlations == test_correlations def test_reshape_X(): from pymks import MKSStructureAnalysis from pymks import PrimitiveBasis anaylzer = MKSStructureAnalysis(basis=PrimitiveBasis()) X = np.arange(18, dtype='float64').reshape(2, 3, 3) X_test = np.concatenate((np.arange(-4, 5)[None], np.arange(-4, 5)[None])) assert np.allclose(anaylzer._reduce_shape(X), X_test) def test_set_components(): from pymks import MKSStructureAnalysis from pymks import PrimitiveBasis p_basis = PrimitiveBasis(2) model = MKSStructureAnalysis(basis=p_basis) X = np.random.randint(2, size=(50, 10, 10)) model.fit(X) components = model.components_ model.components_ = components * 2 assert np.allclose(model.components_, components * 2) def test_store_correlations(): from pymks import MKSStructureAnalysis from pymks import PrimitiveBasis from pymks.stats import correlate p_basis = PrimitiveBasis(2) model = MKSStructureAnalysis(basis=p_basis, store_correlations=True) X = np.random.randint(2, size=(2, 4, 4)) model.fit(X) X = correlate(X, p_basis, correlations=[(0, 0), (0, 1)]) assert np.allclose(X, model.fit_correlations) X_0 = np.random.randint(2, size=(2, 4, 4)) model.transform(X_0) X_corr_0 = correlate(X_0, p_basis, correlations=[(0, 0), (0, 1)]) assert
np.allclose(X_corr_0, model.transform_correlations)
numpy.allclose
''' Runs unit tests for dimensionality reduction algorithms. To run the unit tests, type the following from the system command line: # python -m spectral.tests.dimensionality ''' from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import spectral as spy from spectral.tests.spytest import SpyTest, test_method class DimensionalityTest(SpyTest): '''Tests various math functions.''' def setup(self): self.data = spy.open_image('92AV3C.lan').load() def test_mnf_all_equals_data(self): '''Test that MNF transform with all components equals original data.''' data = self.data signal = spy.calc_stats(data) noise = spy.noise_from_diffs(data[117: 137, 85: 122, :]) mnfr = spy.mnf(signal, noise) denoised = mnfr.denoise(data, num=data.shape[-1]) assert(np.allclose(denoised, data)) def test_ppi(self): '''Tests that ppi function runs''' data = self.data p = spy.ppi(data, 4) def test_ppi_threshold(self): '''Tests that ppi function runs with threshold arg''' data = self.data p = spy.ppi(data, 4, 10) def test_ppi_continues(self): '''Tests that running ppi with initial indices works as expected.''' data = self.data s = np.random.get_state() p = spy.ppi(data, 4) np.random.set_state(s) p2 = spy.ppi(data, 2) p2 = spy.ppi(data, 2, start=p2) assert(np.all(p == p2)) def test_ppi_centered(self): '''Tests that ppi with mean-subtracted data works as expected.''' data = self.data s = np.random.get_state() p = spy.ppi(data, 4) np.random.set_state(s) data_centered = data - spy.calc_stats(data).mean p2 = spy.ppi(data_centered, 4) assert(np.all(p == p2)) def test_smacc_minimal(self): '''Tests smacc correctness on minimal example.''' H = np.array([ [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 1.0] ]) S, F, R = spy.smacc(H) assert(np.allclose(np.matmul(F, S) + R, H)) assert(np.min(F) == 0.0) expected_S = np.array([ # First two longer ones. [1., 1., 0.], [0., 1., 1.], # First of the two shorted ones. Other can be expressed other 3. [1., 0., 0.], ]) assert(np.array_equal(S, expected_S)) def test_smacc_runs(self): '''Tests that smacc runs without additional arguments.''' # Without scaling numeric errors accumulate. scaled_data = self.data / 10000 S, F, R = spy.smacc(scaled_data) data_shape = scaled_data.shape H = scaled_data.reshape(data_shape[0] * data_shape[1], data_shape[2]) assert(np.allclose(np.matmul(F, S) + R, H)) assert(np.min(F) == 0.0) assert(len(S.shape) == 2 and S.shape[0] == 9 and S.shape[1] == 220) def test_smacc_min_endmembers(self): '''Tests that smacc runs with min_endmember argument.''' # Without scaling numeric errors accumulate. scaled_data = self.data / 10000 S, F, R = spy.smacc(scaled_data, 10) data_shape = scaled_data.shape H = scaled_data.reshape(data_shape[0] * data_shape[1], data_shape[2]) assert(np.allclose(np.matmul(F, S) + R, H)) assert(np.min(F) == 0.0) assert(len(S.shape) == 2 and S.shape[0] == 10 and S.shape[1] == 220) def test_smacc_max_residual_norm(self): '''Tests that smacc runs with max_residual_norm argument.''' # Without scaling numeric errors accumulate. scaled_data = self.data / 10000 S, F, R = spy.smacc(scaled_data, 9, 0.8) data_shape = scaled_data.shape H = scaled_data.reshape(data_shape[0] * data_shape[1], data_shape[2]) assert(np.allclose(np.matmul(F, S) + R, H)) assert(np.min(F) == 0.0) residual_norms = np.einsum('ij,ij->i', R, R) assert(
np.max(residual_norms)
numpy.max
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Generic packages import numpy as np import hjson, json, os from pathlib import Path # For integration times import astropy.units as u # For keep outs and to convert decimal dates into readable dates import EXOSIMS, EXOSIMS.MissionSim from astropy.time import Time from scripts.cgi_etc_star_accessibility import cgi_etc_star_accessibility # (Optional) Plotting the results import matplotlib.pyplot as plt # IMD import pandas as pd # Updated specs for EXOSIMS from scripts.cgi_etc_update_specs import cgi_etc_update_specs # Linear interpolation from scipy import interpolate # CSV file from scripts.store_csv_file import store_csv_file_rv def cgi_etc_rv_shortest_integration_time(CGI_epoch0, CGI_epoch1, filterList, jsonFile, csvFileName, CGI_Observations): # Path with the orbital data of the planets from IMD (https://plandb.sioslab.com/index.php) pathIMD = './imd/' # Meaning of table parameters from IMD (# https://plandb.sioslab.com/docs/html/index.html#planetorbits-table) # t = time in days since 01/01/2026 # r = actual distance planet-host star in AU # s = visual sepraration # beta = orbital phase angle # Remember (See above) that IMD data start at 01/01/2026 (not sure whether it is based on mJD, ISO, or else) imdEpoch0 = 2026.00 # P.S. PName is used later on to read csv files from IMD # P.P.S. Leave a blank space between the name of the star and the planet, e.g., 14 Her b PName = CGI_Observations['PName'] nPlanets = len(PName) # HIP identifiers hipPName = CGI_Observations['hipPName'] # Derive the star's accessibility accessibleDays = cgi_etc_star_accessibility(CGI_epoch0, CGI_epoch1, jsonFile, csvFileName, PName, hipPName) # Write star names starName = [''] * nPlanets starNameCommon = [''] * nPlanets for i_p in np.arange(nPlanets): starName[i_p] = hipPName[i_p][0:len(hipPName[i_p])-2] starNameCommon[i_p] = PName[i_p][0:len(PName[i_p])-2] # Values of the cloud fsed used by IMD cloudFsed = [0.00, 0.01, 0.03, 0.10, 0.30, 1.00, 3.00, 6.00] nFsed = len(cloudFsed) # Table of weights used to average the DMag from IMD (table provided by <NAME> to <NAME>) freqFsed = [0.099, 0.001, 0.005, 0.010, 0.025, 0.280, 0.300, 0.280] # Make sur eit is normalized (it is, just if it gets changed in the future) freqFsed = freqFsed / np.sum(freqFsed) # Filters: Band 1, 3 and 4 # P.S. Technical note for developers: Use 'NF', 'Amici_Spec' and 'WF', respectively, because # these substrings are used when assigning the actual value of # the post-processing value for each mode. Also, EXOSIMS makes use of 'Amici' and 'Spec' in Nemati_2019.py nFilters = len(filterList) # Keeping track of the actual value of the post-processing factor used in the estimations. # Notice that EXOSIMS's ppFact equals (1/kpp), where kpp is the post-processing factor in CGI Perf, # which is the usual way to report it. For instance, for the NF, kpp=2, and then EXOSIMS ppFact is 0.5. kppList = np.empty(nFilters) kppList.fill(np.nan) #################################################### # Deriving expected integration times given an SNR # #################################################### # SNR list SNRRefList = CGI_Observations['SNRList'] nSNRRef = len(SNRRefList) # SNR list to derive the integration times (fast, no worries) # Grid of values of SNR, instead of results for the values in SNRRefList only. # P.S. Small SNR values are used to highlight cases that are not worth # observing SNRList = np.sort(np.concatenate([SNRRefList, np.arange(0.5,20,0.5), np.arange(20,105,5)], axis=0)) nSNR = len(SNRList) # Keeping track of the SNR actually found (in general, it should be the same as # in SNRRefList but they are the values in SNRList closest to SNRRefList) SNRRefFound = np.empty(len(SNRRefList)) SNRRefFound.fill(np.nan) ## First and last indices for the epochs under consideration dayEpoch0 = np.round(365.25 * (CGI_epoch0 - imdEpoch0)).astype(int) dayEpoch1 = np.round(365.25 * (CGI_epoch1 - imdEpoch0)).astype(int) # Imaging Mission Database says that the orbits are computed every 30 days, but there are cases where this is not the case (02/10/21: https://plandb.sioslab.com/plandetail.php?name=47+UMa+d whose CSV table has steps of 141 days) # I just assume it is 1 day, although in general it is larger. No problem. The rest of unused indices are filled with NaN dayEpochArray = np.empty((nPlanets, dayEpoch1 - dayEpoch0 + 1)) dayEpochArray.fill(np.nan) waArcsecArray = np.empty((nPlanets, dayEpoch1 - dayEpoch0 + 1)) waArcsecArray.fill(np.nan) fRatioArray = np.empty((nPlanets, nFilters, dayEpoch1 - dayEpoch0 + 1)) fRatioArray.fill(np.nan) intTimeFilterHours = np.empty((nPlanets, nFilters, nSNR, dayEpoch1 - dayEpoch0 + 1)) intTimeFilterHours.fill(np.nan) sInds = np.empty(nPlanets, dtype=int) sInds.fill(np.nan) # Looping over filters for i_flt in np.arange(nFilters): # Updating the instrumental specs because of the different post-processing factor for each filter. kppTmp, OSTmp, TLTmp, TKTmp = \ cgi_etc_update_specs(jsonFile, filterList[i_flt], CGI_epoch0, CGI_epoch1) kppList[i_flt] = kppTmp mode = list(filter(lambda mode: mode['instName'] == filterList[i_flt], OSTmp.observingModes))[0] # Local zodi fZ = TLTmp.ZodiacalLight.fZ0 # Loop over planets for i_pl in np.arange(nPlanets): # Index where the host star is found in the target list sInds[i_pl] = np.where(TLTmp.Name == starName[i_pl])[0] # Reading the CSV file from IMD PStr = PName[i_pl] # P.S. From IMD: if no inclination available, orbit is assumed edge-on. If no eccentricity is available, orbit is assumed circular. planetDataOrig = pd.read_csv(pathIMD + PStr.replace(' ', '_' ) + '_orbit_data.csv') # IMD documentation (point 11 in https://plandb.sioslab.com/docs/html/index.html#planetorbits-table) # say (sic) "NaN when period of time of periastron passage are undefined" # If this is the case skip the planet if np.isnan(planetDataOrig['t']).all() == True: print('WARNING: Planet ' + PName[i_pl] + ' has undefined Ephemeris. Skipping it ...') continue # Creating a new pandas dataframe for each day using linear interpolation dict_tmp = {} dict_tmp['t'] = dayEpoch0 + np.arange(dayEpoch1-dayEpoch0+1) for column in planetDataOrig.columns: if column == 't': continue if isinstance(planetDataOrig[column][0], float): interpolant = interpolate.interp1d(planetDataOrig['t'], planetDataOrig[column], kind='linear') # IMD ephemeris may have more than 1 orbit try: orbital_period = np.where(planetDataOrig['t']==0)[0] orbital_period_days = \ planetDataOrig['t'][orbital_period[1]-1] - \ planetDataOrig['t'][orbital_period[0]] dict_tmp[column] = \ interpolant(dict_tmp['t'] % orbital_period_days) except: dict_tmp[column] = interpolant(dict_tmp['t']) # database planetDataCgi = pd.DataFrame.from_dict(dict_tmp) dayEpochArray[i_pl,0:len(planetDataCgi)] = planetDataCgi['t'] # Angular visual separation of the planet waArcsec = planetDataCgi['WA'].values / 1000 * u.arcsec waArcsecArray[i_pl,0:len(waArcsec)]=waArcsec.value # Actual planet-star distance (only used for exozodi) r_au = planetDataCgi['r'].values * u.AU # Fiducial visual inclination (only used for exozodi). The CSV files from IMD do not provide it. inc_deg = [20] * u.deg # Exozodi along the orbit fEZ = TLTmp.ZodiacalLight.fEZ(np.array([TLTmp.MV[sInds[i_pl]]]), inc_deg, r_au) fRatio = np.zeros(len(planetDataCgi['t'])) # Looping over cloud fsed to get the average flux ratio for i_fsed in np.arange(nFsed): # Using the center wavelength of each observing mode to select the corresponding data # These values are stored in new columns pPhi_XXXC_YYYNM and dMag_XXXC_YYYNM # where XXX is the cloud fsed scaled by 100 (000 representing no cloud) and # YYY is the wavelength in nm. keyPlanetDataCgi = 'dMag_' + str(format(np.round(cloudFsed[i_fsed] * 100).astype(int),'03d')) + 'C_' + str(mode['lam'].to_value().astype(int)) + 'NM' fRatio = fRatio + freqFsed[i_fsed] * np.power(10,-0.4 * planetDataCgi[keyPlanetDataCgi]) fRatioArray[i_pl, i_flt,0:len(fRatio)]= np.array(fRatio) dMags = -2.5 * np.log10(np.array(fRatio)) # Only consider days that are accessible try: dMags[accessibleDays==False]=np.nan # Pass in case accessibility has not been computed except: pass # Looping over SNR for i_snr in np.arange(nSNR): mode['SNR'] = SNRList[i_snr] intTimeTmp = OSTmp.calc_intTime(TLTmp, np.array([sInds[i_pl]]), fZ, fEZ, dMags, waArcsec, mode, TK=TKTmp).to('hour').value intTimeTmp[np.where(intTimeTmp == 0)] = np.nan intTimeFilterHours[i_pl, i_flt, i_snr, 0:len(fRatio)] = intTimeTmp # Restoring the 'true_divide' error after EXOSIMS run np.seterr(divide='warn', invalid='warn') # Getting the maximum time that the target is accessible and its SNR SNRPlanetMax = np.empty((nPlanets, nFilters)) SNRPlanetMax.fill(np.min(SNRList)) intTimeSNRMax = np.empty((nPlanets, nFilters)) intTimeSNRMax.fill(np.nan) intTmpHours = np.empty((nSNR)) intTmpHours.fill(np.nan) for i_pl in np.arange(nPlanets): # Days that the target is accessible if nPlanets == 1: nDaysPlanet = np.sum(accessibleDays) else: nDaysPlanet = np.sum(accessibleDays[i_pl]) for i_flt in np.arange(nFilters): for i_snr in np.arange(nSNR): # Shortest integration time within accessible times intTmpHours[i_snr] = \ np.nanmin(intTimeFilterHours[i_pl, i_flt, i_snr, :]) # First time that it is not possible to achieve an SNR, # it means that the previous step was the largest value if np.isnan(intTmpHours[i_snr]) == False: # If the integration time fits within the accessibility window if intTmpHours[i_snr] <= (nDaysPlanet*24): SNRPlanetMax[i_pl, i_flt] = SNRList[i_snr] intTimeSNRMax[i_pl, i_flt] = intTmpHours[i_snr] else: SNRInterpolant = interpolate.interp1d( intTmpHours[0:i_snr+1], SNRList[0:i_snr+1], kind='linear') # Round to 1 decimal place (it's SNR) SNRPlanetMax[i_pl, i_flt] = \ np.round(SNRInterpolant(nDaysPlanet*24), decimals=1) intTimeSNRMax[i_pl, i_flt] = nDaysPlanet*24 # Replace bad cases by NaN now for i_pl in np.arange(nPlanets): for i_flt in np.arange(nFilters): if SNRPlanetMax[i_pl, i_flt] == np.min(SNRList): SNRPlanetMax[i_pl, i_flt] = np.nan intTimeSNRMax[i_pl, i_flt]= np.nan # Summarize results nSNRRef = len(SNRRefList) # The Epoch of observation, WA, and flux ratio do not change with SNR dayEpochBestTime = np.empty((nPlanets, nFilters, nSNR, 3)) dayEpochBestTime.fill(np.nan) # Days that are necessary to get the integration time # (e.g., according to some observing sequence, like OS11) dayOperationalBestTime = np.empty((nPlanets, nFilters, nSNR, 3)) dayOperationalBestTime.fill(np.nan) # In the case of OS11, we have that 14 hours out of 24 are dedicated to observing a target fOperation = 14 / 24 ; waMasBestTime = np.empty((nPlanets, nFilters, nSNR, 3)) waMasBestTime.fill(np.nan) fRatioBestTime = np.empty((nPlanets, nFilters, nSNR, 3)) fRatioBestTime.fill(np.nan) # The integration time depends on the SNR intTimeBestHours = np.empty((nPlanets, nFilters, nSNR)) intTimeBestHours.fill(np.nan) for i_pl in np.arange(nPlanets): for i_flt in np.arange(nFilters): i_snr_2 = 0 for snr in SNRRefList: i_snr = int(np.where(np.abs(snr - SNRList) == \ np.min(np.abs(snr - SNRList)))[0][0]) # Finding the shortest integration time # If all are NaN, skip if (np.isnan(intTimeFilterHours[i_pl, i_flt, i_snr]).all()) == True: continue indBest = np.where(intTimeFilterHours[i_pl, i_flt, i_snr] == np.nanmin(intTimeFilterHours[i_pl, i_flt, i_snr])) # Veerify that the integration time is less than the maximum available if (indBest[0].size != 0) and \ (intTimeFilterHours[i_pl, i_flt, i_snr, indBest] < intTimeSNRMax[i_pl, i_flt]): dayEpochBestTime[i_pl, i_flt, i_snr_2, 1] = dayEpochArray[i_pl, indBest] dayOperationalBestTime[i_pl, i_flt, i_snr_2, 1] = dayEpochArray[i_pl, indBest] waMasBestTime[i_pl, i_flt, i_snr_2, 1] = waArcsecArray[i_pl, indBest] * 1000 # arcsec to milli-arcsec fRatioBestTime[i_pl, i_flt, i_snr_2, 1] = fRatioArray[i_pl, i_flt, indBest] intTimeBestHours[i_pl, i_flt, i_snr_2] = intTimeFilterHours[i_pl, i_flt, i_snr, indBest] # Filling out the values before/after the best time dayEpochBestTime[i_pl, i_flt, i_snr_2, 0] = dayEpochBestTime[i_pl, i_flt, i_snr, 1] - intTimeBestHours[i_pl, i_flt, i_snr] / 24 / 2 # In case the first date is before the mission start if dayEpochBestTime[i_pl, i_flt, i_snr_2, 0] < 0: dayEpochBestTime[i_pl, i_flt, i_snr_2, 0] = 0 dayEpochBestTime[i_pl, i_flt, i_snr_2, 2] = dayEpochBestTime[i_pl, i_flt, i_snr_2, 1] + intTimeBestHours[i_pl, i_flt, i_snr_2] / 24 else: dayEpochBestTime[i_pl, i_flt, i_snr_2, 2] = dayEpochBestTime[i_pl, i_flt, i_snr_2, 1] + intTimeBestHours[i_pl, i_flt, i_snr_2] / 24 / 2 # Operational days have a fudge factor dayOperationalBestTime[i_pl, i_flt, i_snr_2, 0] = dayEpochBestTime[i_pl, i_flt, i_snr_2, 1] - ( 1 / fOperation) * intTimeBestHours[i_pl, i_flt, i_snr_2] / 24 / 2 # In case the first date is before the mission start if dayOperationalBestTime[i_pl, i_flt, i_snr_2, 0] < 0: dayOperationalBestTime[i_pl, i_flt, i_snr_2, 0] = 0 dayOperationalBestTime[i_pl, i_flt, i_snr_2, 2] = dayEpochBestTime[i_pl, i_flt, i_snr_2, 1] + ( 1 / fOperation ) * intTimeBestHours[i_pl, i_flt, i_snr_2] / 24 else: dayOperationalBestTime[i_pl, i_flt, i_snr_2, 2] = dayEpochBestTime[i_pl, i_flt, i_snr_2, 1] + ( 1 / fOperation ) * intTimeBestHours[i_pl, i_flt, i_snr_2] / 24 / 2 waMasBestTime[i_pl, i_flt, i_snr_2, 0] = np.interp(dayEpochBestTime[i_pl, i_flt, i_snr_2, 0], dayEpochArray[i_pl,~np.isnan(dayEpochArray[i_pl])], 1000 * waArcsecArray[i_pl,~np.isnan(dayEpochArray[i_pl])]) waMasBestTime[i_pl, i_flt, i_snr_2, 2] = np.interp(dayEpochBestTime[i_pl, i_flt, i_snr_2, 2], dayEpochArray[i_pl,~np.isnan(dayEpochArray[i_pl])], 1000 * waArcsecArray[i_pl,~np.isnan(dayEpochArray[i_pl])]) fRatioBestTime[i_pl, i_flt, i_snr_2, 0] = np.interp(dayEpochBestTime[i_pl, i_flt, i_snr_2, 0], dayEpochArray[i_pl,~np.isnan(dayEpochArray[i_pl])], fRatioArray[i_pl, i_flt, ~np.isnan(dayEpochArray[i_pl])]) fRatioBestTime[i_pl, i_flt, i_snr_2, 2] = np.interp(dayEpochBestTime[i_pl, i_flt, i_snr_2, 2], dayEpochArray[i_pl, ~np.isnan(dayEpochArray[i_pl])], fRatioArray[i_pl, i_flt, ~np.isnan(dayEpochArray[i_pl])]) # Update counter of SNR provided by the user i_snr_2 += 1 # Maximum integration times in hours (used for plotting) maxIntTimeHours = CGI_Observations['maxIntTimeHours'] # maximum CI allocation time for a single target # Create the folder where the figures will be stored dir_figures = './output/figures/' if os.path.exists(dir_figures) == False: os.mkdir(dir_figures) # Selecting the planets with some integration time indPlanetOK = np.empty(0, dtype=int) indPlanetOK.fill(np.nan) # Sentinel i_pl_OK = 0 for i_pl in np.arange(nPlanets): if np.isnan(intTimeFilterHours[i_pl]).all() == False: indPlanetOK = np.append( indPlanetOK, i_pl_OK ) i_pl_OK += 1 # Number of planets with some finite integration times. nPlanetOK = len(indPlanetOK) ################################### # Store the results in a CVS file # ################################### store_csv_file_rv(filterList, kppList, PName, dayEpochBestTime, waMasBestTime, fRatioBestTime, SNRRefList, intTimeBestHours, SNRPlanetMax, intTimeSNRMax, csvFileName) ############################################### # Plotting the results for the most favorable # # time without taking into account the # # accessibility of each target # ############################################### # Useful to extract elements from a list (https://code.activestate.com/recipes/577953-get-multiple-elements-from-a-list/) getVar = lambda searchList, ind: [searchList[i] for i in ind] # Turn off to stop plotting the results # 10/28/21: coming soon if CGI_Observations['bar_plot'].lower() == 'yes': # Font size fontSize = 18 # Number of planets per plot nPlanetPlot = np.min([6,nPlanetOK]) # Number of plots nPlots =
np.ceil(nPlanetOK / nPlanetPlot)
numpy.ceil
import numpy as np from pyDOE import lhs # The experimental design package for python; Latin Hypercube Sampling (LHS) # import sobol_seq # require https://pypi.org/project/sobol_seq/ # Generate coordinates vector for uniform grids over a 2D rectangles. Order starts from left-bottom, row-wise, to right-up def rectspace(a,b,c,d,nx,ny): x = np.linspace(a,b,nx) y = np.linspace(c,d,ny) [X,Y] = np.meshgrid(x,y) Xm = np.concatenate([X.reshape((-1, 1)), Y.reshape((-1, 1))], axis=1) return Xm def rectspace_dis(lb,ub,N,len_ratio=None,adjust=None,rand_rate=None): if len_ratio: ny = np.sqrt(N/len_ratio).astype(int) nx = (N/ny).astype(int) N_new = nx * ny else: ny = np.sqrt(N/2).astype(int) nx = (N/ny).astype(int) N_new = nx * ny a, b, c, d = lb[0], ub[0],lb[1],ub[1] if adjust: a = a + adjust b = b - adjust c = c + adjust d = d - adjust Xm = rectspace(a,b,c,d,nx,ny) if rand_rate: Xm[:,0:1] = Xm[:,0:1] + np.random.normal(0,rand_rate,(N_new,1)) Xm[:,1:2] = Xm[:,1:2] + np.random.normal(0,rand_rate,(N_new,1)) return Xm, N_new # def rect_sob_Dis2d(Nx,Ny,N_k,ny0=None,rand_rate=None): # # Quasi-random: i4_sobol_generate # if ny0: # ny = ny0 # else: # ny = np.sqrt(N_k/2).astype(int) # nx = (N_k/ny).astype(int) # if nx*ny != N_k: # print('Error: nx*ny not equal to N_k, reset N_k') # N_k = nx*ny # sob_k = sobol_seq.i4_sobol_generate(2,Nx*Ny) # Generate a 2-Dim Vecotr # # array = sobol_seq.i4_sobol_generate(2, 10) # XX, YY = np.meshgrid(sob_k[0:nx,0],sob_k[0:ny,1]) # Xm_k = np.zeros((N_k,2)) # if rand_rate: # Xm_k[:,0:1] = XX.reshape((nx*ny,-1)) + np.random.normal(0,rand_rate,(nx*ny,1)) # Xm_k[:,1:2] = YY.reshape((nx*ny,-1)) + np.random.normal(0,rand_rate,(nx*ny,1)) # else: # Xm_k[:,0:1] = XX.reshape((nx*ny,-1)) # Xm_k[:,1:2] = YY.reshape((nx*ny,-1)) # return Xm_k, N_k # def rect_sob_DisIndex(Nx,Ny,N_k,ny0=None): # if ny0: # ny = ny0 # else: # ny = np.sqrt(N_k/2).astype(int) # nx = (N_k/ny).astype(int) # sob_k = sobol_seq.i4_sobol_generate(2,Nx*Ny) # ldx_k = (sob_k[0:nx,0] * Nx).astype(int) # ldy_k = (sob_k[0:ny,1] * Ny).astype(int) # idx_k = [] # for i_loop in ldy_k: # for j_loop in ldx_k: # idx_i = i_loop * Nx + j_loop # idx_k.append(idx_i) # return idx_k def rect_PartitionedDisUni2d(N,Ns,Np_x,Np_y,rand_rate=None): # for [0,1] * [0,1], partioned into Np_x * Np_y domains, and random select locations from these subdomains num_par = Np_x * Np_y Ns_k = Ns // num_par Ns_res = Ns % num_par Index_Ns = (Ns_k * np.ones(num_par)).astype(int) # idx = np.random.choice(num_par,Ns_res,replace=False) Index_Ns[0:Ns_res] += 1 xm = np.linspace(0, 1, Np_x+1) ym = np.linspace(0, 1, Np_y+1) XM =
np.zeros((Ns,2))
numpy.zeros
# Copyright (c) 2008 Carnegie Mellon University # # You may copy and modify this freely under the same terms as # Sphinx-III """ Train generic Gaussian Mixture Models from speech data. This module defines a GMM class which can be used to train generic models of speech for use in speaker identification or VTLN. """ __author__ = "<NAME> <<EMAIL>>" __version__ = "$Revision: 10058 $" import sys import os import s3gau import s3mixw import numpy def logadd(x,y): """Log-add two numbers.""" return x + numpy.log(1 + numpy.exp(y-x)) class GMM(object): """ Class representing a Gaussian Mixture Model. """ def __init__(self, fromdir=None, featlen=13, ndensity=256, mixwfloor=0.001, varfloor=0.001): """ Constructor for GMM class. @param fromdir: Directory to read initial parameters from. @ptype fromdir: string @param featlen: Dimensionality of input features. @ptype featlen: int @param ndensity: Number of Gaussian components. @ptype ndensity: int @param varfloor: Floor value to apply to variances before evaluation. @ptype varfloor: float @param mixwfloor: Floor value to apply to mixture weights before evaluation. @ptype mixwfloor: float """ if fromdir != None: self.read(fromdir) else: self.random_init(featlen, ndensity) self.varfloor = varfloor self.mixwfloor = mixwfloor self.precompute() self.reset() def read(self, fromdir): """ Read GMM parameters from files in a directory. @param fromdir: Directory to read parameters from. The files 'means', 'variances', and 'mixture_weights' will be read from this directory. @ptype fromdir: string """ self.means = s3gau.open(os.path.join(fromdir, "means")) self.variances = s3gau.open(os.path.join(fromdir, "variances")) self.mixw = s3mixw.open(os.path.join(fromdir, "mixture_weights")) self.featlen = self.means.veclen[0] self.ndensity = self.means.density def write(self, todir): """ Write GMM parameters to files in a directory. @param todir: Directory to read parameters from. The files 'means', 'variances', and 'mixture_weights' will be created in this directory. @ptype todir: string """ s3gau.open(os.path.join(todir, "means"),'wb').writeall([[self.means]]) s3gau.open(os.path.join(todir, "variances"),'wb').writeall([[self.variances]]) s3mixw.open(os.path.join(todir, "mixture_weights"),'wb').writeall \ (self.mixw[numpy.newaxis,numpy.newaxis,:]) def random_init(self, featlen=13, ndensity=256): """ Initialize parameters with arbitrary initial values. """ self.means = numpy.random.random((ndensity, featlen)) * 10 - 5 self.variances = numpy.ones((ndensity,featlen)) self.mixw = numpy.random.random(ndensity) self.mixw /= self.mixw.sum() self.featlen = featlen self.ndensity = ndensity def precompute(self): """ Precompute Gaussian invariants for density calculation. """ variances = self.variances.clip(self.varfloor, numpy.inf) mixw = self.mixw.clip(self.mixwfloor, numpy.inf) self.inv_var = 0.5/variances self.log_det_var = (numpy.log(mixw) - # mixw * 1 / 0.5 * # sqrt (self.featlen * numpy.log(2 * numpy.pi) # 2pi ** featlen + numpy.log(variances).sum(1))) # prod(v for v in variances) def reset(self): """ Reset internal accumulators. """ self.mixwacc = numpy.zeros(self.ndensity, 'd') self.meanacc =
numpy.zeros((self.ndensity,self.featlen), 'd')
numpy.zeros
# -*- coding: utf-8 -*- """ Functions required for the Darcy-type liquid water flow scheme @author: Vincent """ import numpy as np def hydrconducsat_Calonne(rad,rho): '''Saturated hydraulic conductivity of Calonne et al. Eq. (6)''' mu = 0.001792 #dynamic viscosity of water at 273.15K [kg m-1 s-1] bigksat = 3*(rad)**2 * 1000*9.81/mu * np.exp(-0.013*rho) #[m s-1] return(bigksat) def vG_Yama(rad,rho,thetaeff): '''Pressure head and relative hydraulic conductivity computations from the van Genuchten (1980) model with the Yamaguchi et al. (2012) parameterisation''' alpha = 4.4e6*(rho/(2*rad))**(-0.98) #.alpha parameter, Yamaguchi 2012 Eq.(6) n = 1+2.7e-3*(rho/(2*rad))**0.61 #n parameter, Yamaguchi 2012 Eq. (7) m = 1-(1/n) #m parameter, Yamaguchi 2012 p.7 head = 1/alpha * (thetaeff**(-1/m)-1)**(1/n) #head pressure, Hirashima 2010 (9) bigkrel = thetaeff**(1/2) * (1-(1-thetaeff**(1/m))**m)**2 # Hirashima 2010 (10) return(head,bigkrel) def thetae_update(absfl,th_i,th_s,LWC,dz): '''Updates effective saturation for a given total water flux absfl [m]''' lw_in = np.append(0,absfl) lw_out = np.append(absfl,0) th_w = (LWC+lw_in-lw_out)/dz th_e = (th_w-th_i)/(th_s-th_i) #effective water saturatin, Hirashima 2010 (5) stab_e = 1e-9 #stabilisation theta_e th_e = np.maximum(stab_e,th_e) #avoid negative effective saturation th_e = np.minimum(1-stab_e,th_e) #avoid effective saturation equal to 1 return(th_e) def thetaeff_equaliser(th_i2,th_s2,LWC2,dz2): ''' Computes the total flow needed to equalise saturation between neighbouring nodes All input arrays must be of two elements ''' th_w = LWC2/dz2 th_e0 = (th_w-th_i2)/(th_s2-th_i2) #effective water saturatin, Hirashima 2010 (5) # lwflux from index[0] to index[1] ensures equal saturation between both volumes # lwflux = ((dz2[0]*(th_s2[0]-th_i2[0]))**(-1)+(dz2[1]*(th_s2[1]-th_i2[1]))**(-1))**(-1) * (th_e0[0]-th_e0[1]) return(lwflux) def vG_Yama_params(rad,rho): '''Computes the van Genuchten parameters following the parameterisation of Yamaguchi et al. (2012)''' alpha = 4.4e6*(rho/(2*rad))**(-0.98) #.alpha parameter, Yamaguchi 2012 Eq.(6) n = 1+2.7e-3*(rho/(2*rad))**0.61 #n parameter, Yamaguchi 2012 Eq. (7) m = 1-(1/n) #m parameter, Yamaguchi 2012 p.7 return(alpha,n,m) def phead_vG(alpha,n,m,thetaeff): '''Computes pressure head according to the van Genuchten model''' head = 1/alpha * (thetaeff**(-1/m)-1)**(1/n) #head pressure, Hirashima 2014 (3) return(head) def krel_vG(m,thetaeff): '''Computes relative hydraulic conductivity according to the van Genuchten model''' bigkrel = thetaeff**(1/2) * (1-(1-thetaeff**(1/m))**m)**2 # Hirashima 2010 (10) return(bigkrel) def dfdg_derivative(th_sfull,th_ifull,th_efull,alphafull,nfull,mfull,dzfull): ''' Computes the derivative of the equilibrium variable (f_eq, defined by setting all terms of Eq.(20) of Hirashima et al. (2010) on the right-hand-side) with respect to the water flux at the interface of two neighbouring nodes ''' th_s,th_i,th_e = th_sfull[0:-1],th_ifull[0:-1],th_efull[0:-1] alpha,n,m,dz = alphafull[0:-1],nfull[0:-1],mfull[0:-1],dzfull[0:-1] th_sd,th_id,th_ed = th_sfull[1:],th_ifull[1:],th_efull[1:] alphad,nd,md,dzd = alphafull[1:],nfull[1:],mfull[1:],dzfull[1:] dfdg = 1/((th_s-th_i)*alpha*n*m*dz) * th_e**(-1*(1+1/m)) * (th_e**(-1/m)-1)**((1-n)/n) + \ 1/((th_sd-th_id)*alphad*nd*md*dzd) * th_ed**(-1*(1+1/md)) * (th_ed**(-1/md)-1)**((1-nd)/nd) return(dfdg) def flux_bisection(gc,LWCav,glwcacm,th_i,th_s,lwc,dz,avG,nvG,mvG,eps_cvg): ''' Bisection algorithm to find guess of water flux (gc) between two neighbouring nodes that brings head pressures close to equilibrium (f_eq, defined by setting all terms of Eq.(20) of Hirashima et al. (2010) on the right-hand-side) ''' bisitmax = 100 #maximum number of iteration for bisection algorithm bisit = 0 #iteration number for bisection algorithm cvg_bis = False #convergence criterion for Bisection dltz = 1/2*sum(dz) #distance between the centres of the two nodes gth_e = thetae_update(gc,th_i,th_s,lwc,dz) ghd = phead_vG(avG,nvG,mvG,gth_e) #pressure head [m] f_eq = ghd[0]-ghd[1]-dltz #Hirashima 2010 Eq.(20) evaluated at interface # Initialise bisection bounds # g0 = 0. #lower bisection bound g1 = min(LWCav[0],glwcacm[1]) #upper bisection bound (limited by lwc available and pore space available) while (cvg_bis==False and bisit<bisitmax): #start Bisection (if cvg_bis is False) gprev0 = np.copy(gc) #flux guess at previous iteration if f_eq<0: #hd[0] too low -> increase outgoing flux g0 =
np.copy(gc)
numpy.copy
# authors_name = '<NAME>' # project_title = 'Multi Sensor-based Human Activity Recognition using OpenCV and Sensor Fusion' # email = '<EMAIL>' import numpy as np import os import pandas as pd import itertools import logging import sklearn.pipeline from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import ParameterGrid logging.getLogger('sklearn').setLevel(logging.FATAL) def list_combinations_generator(modalities: list): """Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list. """ modality_combinations = list() # Iterates across modalities to generate combinations based on length. for length in range(1, len(modalities) + 1): # Generate combinations for the current length. current_length_combinations = itertools.combinations(modalities, length) # Iterates across the generated combinations to convert it into a list. for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): """Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. """ combined_modality_skeleton_information = pd.DataFrame() # Iterates across actions, subject_ids, takes, and modalities to combine skeleton point information. for i in range(1, n_actions + 1): for j in range(len(subject_ids)): for k in range(1, n_takes + 1): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) # Iterates across modalities to import skeleton point information file and adds it to # combined_modality_skeleton_information. If file not found, it moves on to the next combination. try: # Imports 1st modality's skeleton point information for current data_name and skeleton_pose_model. current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue # Since, length of modalities in each combination is different. Hence, if length of modalities is # greater than 1, then the imported skeleton point information for other modalities will be merged to # the skeleton point information for the first modality. if len(modalities) != 1: for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') # Adds data_name to the imported skeleton point information. current_data_name_modality_information['data_name'] = [data_name for _ in range(len( current_data_name_modality_information))] # Removes frame column from the imported skeleton point information. current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) # Adds action column to the imported skeleton point information. current_data_name_modality_information['action'] = [i for _ in range(len( current_data_name_modality_information))] # Appends currently imported & modified skeleton point information to the combined modality skeleton # point information combined_modality_skeleton_information = combined_modality_skeleton_information.append( current_data_name_modality_information) return combined_modality_skeleton_information def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): """Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values. """ return {'accuracy_score': round(accuracy_score(actual_values, predicted_values) * 100, 3), 'balanced_accuracy_score': round(balanced_accuracy_score(actual_values, predicted_values) * 100, 3), 'precision_score': round(precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'recall_score': round(recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'f1_score': round(f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3)} def retrieve_hyperparameters(current_model_name: str): """Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model """ # For support_vector_classifier, the hyperparameter tuned is kernel. if current_model_name == 'support_vector_classifier': parameters = {'kernel': ['linear', 'poly', 'rbf']} # For decision_tree_classifier, the hyperparameters tuned are criterion, splitter, and max_depth. elif current_model_name == 'decision_tree_classifier': parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For random_forest_classifier or extra_trees_classifier, the hyperparameters tuned are n_estimators, criterion, and # max_depth elif current_model_name == 'random_forest_classifier' or current_model_name == 'extra_trees_classifier': parameters = {'n_estimators': [i * 10 for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For gradient_boosting_classifier, the hyperparameters tuned are loss, n_estimators, criterion, and max_depth. elif current_model_name == 'gradient_boosting_classifier': parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [i * 10 for i in range(2, 11, 2)]} # For gaussian_naive_bayes, none of the hyperparameters are tuned. else: parameters = {'None': ['None']} return parameters def split_data_input_target(skeleton_data: pd.DataFrame): """Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets. """ skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return np.array(skeleton_data_input),
np.array(skeleton_data_target)
numpy.array
from __future__ import division, print_function import numpy as np from astropy.stats.funcs import median_absolute_deviation as MAD from scipy.ndimage import label from martinsff import martinsff import extract_lc from photo_test import raw_moment, intertial_axis, plot_bars from ktransit import FitTransit, LCModel import ktransit from planet_params import * def get_label_im(fluxarr,bg_cut): fbg = bg_sub(fluxarr) flatimx = np.nanmedian(fbg,axis=0) vals = flatimx[np.isfinite(flatimx)].flatten() mad_cut = 1.4826 * MAD(vals) * bg_cut flatimx[np.isnan(flatimx)] = 0. region = np.where(flatimx > mad_cut,1,0) lab = label(region)[0] #find the central pixel imshape = np.shape(flatimx) centralpix = [1+imshape[0] // 2,1+imshape[1] // 2] regnum = lab[centralpix[0],centralpix[1]] labim = np.where(lab == regnum, 1, 0) return labim def bg_sub(fla,smear=True): """ subtract the background from a series of images by assuming the aperture is large enough to be predominantly background """ for i in xrange(np.shape(fla)[0]): if smear: fla[i,:,:] = fla[i,:,:] - np.nanmedian(fla[i,:,:], axis=0) else: fla[i,:,:] = fla[i,:,:] - np.nanmedian(fla[i,:,:]) return fla def optimalAperture(t_time, t_fluxarr, t_quality, qual_cut=False, return_qual=False, toss_resat=False, bg_cut=5, skip=0): """ This routine determines an optimal apertures and outputs the flux (i.e. a light curve) from a TPF. Inputs: ------------ t_time = 1D array of 'TIME' from TPF t_fluxarr = 1D array of 'FLUX' from TPF t_quality = 1D array of 'QUALITY' from TPF qual_cut = exclude cadences with a non-zero quality flag; this is False by default return_qual = if True then nothing is returned; this is True by default toss_resat = exclude cadences where there is a wheel resaturation event; this is True by default bg_cut = threshold to find pixels that are bg_cut * MAD above the median skip = index of first cadence that should be used in the time series Outputs: ------------ time = 1D array of time in BKJD lc = 1D array of flux measured in optimal aperture xbar = 1D array of x-coordinate of target centroid ybar = 1D array of y-coordinate of target centroid regnum = integer value of brightest pixel lab = 2D array identifying pixels used in aperture Usage: ------------ tpf,tpf_hdr = ar.getLongTpf(k2id, campaign, header=True) tpf_time = tpf['TIME'] tpf_flux = tpf['FLUX'] tpf_quality = tpf['QUALITY'] time,lc,xbar,ybar,regnum,lab = optimalAperture(tpf_time, tpf_flux, tpf_quality, qual_cut=False, return_qual=False, toss_resat=True, bg_cut=5, skip=0) """ time = t_time[skip:] fluxarr = t_fluxarr[skip:] quality = t_quality[skip:] if qual_cut: time = time[quality == 0] fluxarr = fluxarr[quality == 0,:,:] elif toss_resat: # cadences where there is a wheel resaturation event time = time[quality != 32800] fluxarr = fluxarr[quality != 32800,:,:] #remove any nans try: fluxarr[fluxarr == 0] = np.nan except ValueError: pass #subtract background flux_b = bg_sub(fluxarr) # create a median image to calculate where the pixels to use are flatim = np.nanmedian(flux_b,axis=0) #find pixels that are X MAD above the median vals = flatim[np.isfinite(flatim)].flatten() mad_cut = 1.4826 * MAD(vals) * bg_cut flatim[np.isnan(flatim)] = 0. region = np.where(flatim > mad_cut,1,0) lab = label(region)[0] #find the central pixel imshape = np.shape(flatim) centralpix = [1+imshape[0] // 2,1+imshape[1] // 2] #find brightest pix within 9x9 of central pix #this assumes target is at center of postage stamp which I think is ok centflatim = flatim[centralpix[0]-2:centralpix[0]+2, centralpix[1]-2:centralpix[1]+2] flatimfix = np.where(np.isfinite(centflatim),centflatim,0) brightestpix = np.unravel_index(flatimfix.argmax(), centflatim.shape) bpixy, bpixx = brightestpix #use all pixels in the postage stamp that are X MAD above the median #this identifies location of brightest pixel only regnum = lab[centralpix[0]-2+bpixy,centralpix[1]-2+bpixx] lc = np.zeros_like(time) xbar = np.zeros_like(time) ybar = np.zeros_like(time) #make a rectangular aperture for the moments thing ymin = np.min(np.where(lab == regnum)[0]) ymax = np.max(np.where(lab == regnum)[0]) xmin = np.min(np.where(lab == regnum)[1]) xmax = np.max(np.where(lab == regnum)[1]) momlims = [ymin,ymax+1,xmin,xmax+1] #loop that performs the aperture photometry for i,fl in enumerate(flux_b): lc[i] = np.sum(fl[lab == regnum]) #lc[i] = np.sum(fl[np.where(lab == 1)] momim = fl[momlims[0]:momlims[1], momlims[2]:momlims[3]] momim[~np.isfinite(momim)] == 0.0 xbar[i], ybar[i], cov = intertial_axis(momim) xbar[~np.isfinite(xbar) | ~np.isfinite(ybar)] = np.nan ybar[~np.isfinite(xbar) | ~np.isfinite(ybar)] = np.nan if return_qual: return None else: # TODO: think about whether this should be normalized return (time,lc, xbar - np.nanmean(xbar), ybar - np.nanmean(ybar), regnum, lab) def get_lc(time1, fluxarr1, quality1, n_chunks, bg_cut, flatlc_window, smooth_window): time, lc, xbar, ybar, regnum, lab = optimalAperture( time1, fluxarr1, quality1, qual_cut=False, return_qual=False, toss_resat=False, bg_cut=bg_cut, skip=None) m1 = np.isfinite(lc) * np.isfinite(lc) time = time1[m1][quality1[m1] == 0] lc = lc[m1][quality1[m1] == 0] xbar = xbar[m1][quality1[m1] == 0] ybar = ybar[m1][quality1[m1] == 0] flatlc = extract_lc.medfilt(time,lc,window=flatlc_window) cadstep = np.int(np.floor(len(time) / n_chunks)) #600 zpt = len(time) % cadstep if zpt==cadstep: zpt = 0 outflux, correction, thr_cad = extract_lc.run_C0_detrend( time, flatlc, xbar, ybar, cadstep=cadstep, skip=None) not_thr = ~thr_cad corflux = (lc[zpt:][not_thr]/ np.median(lc[zpt:][not_thr])/ correction[not_thr]) corflatflux = (flatlc[zpt:][not_thr]/ np.median(flatlc[zpt:][not_thr])/ correction[not_thr]) # The 1.4826 and *4 factors make this similar to a 4-sigma cut. mad_cut = 1.4826*MAD(corflatflux-1.) * 4.0 keep = np.abs(corflatflux-1.) < mad_cut # this might not be used m2 = np.ones_like(corflatflux,dtype=bool)#corflatflux < 1.1 t1 = time[zpt:][not_thr][m2] cfflux = extract_lc.medfilt(t1,corflux,window=smooth_window) - 1.0 return time, lc, xbar, ybar, t1, corflux, cfflux def transit_fit(t1, cfflux, cadence='long', rho=50.0): addtime = 4833 # convert from trappist time to kepler time time = t1 [(cfflux < 0.025) * (cfflux > -0.025)] +addtime # you need a time and a flux flux = cfflux[(cfflux < 0.025) * (cfflux > -0.025)] # there are no transits here :( ferr = np.ones_like(time) * 0.001 # uncertainty on the data fitT = FitTransit() fitT.add_guess_star(rho=rho, ld1 = 1.0181, ld2 = -0.0404) # fixed because I'm sleepy for planet in [planetb, planetc, planetd, planete, planetf, planetg, planeth]: fitT.add_guess_planet( period=planet['period_days'][0], impact=planet['impact'][0], T0=planet['t0'][0], rprs=(planet['td_percent'][0]/100)**0.5) if cadence == 'long': fitT.add_data(time=time, flux=flux, ferr=ferr, itime=np.ones_like(time) * 0.0188) elif cadence == 'short': fitT.add_data(time=time, flux=flux, ferr=ferr, itime=np.ones_like(time) * 0.0188 / 30) vary_star = ['rho', 'zpt'] # free stellar parameters vary_planet = (['period', # free planetary parameters 'T0', 'impact', 'rprs']) # free planet parameters are the same for every planet you model fitT.free_parameters(vary_star, vary_planet) fitT.do_fit() # run the fitting return time, flux, fitT def get_qf(time,flux,epoch,period,transitmodel=None): date1 = (time - epoch) + 0.5*period phi1 = (((date1 / period) - np.floor(date1/period)) * period) - 0.5*period q1 = np.sort(phi1) f1 = (flux[
np.argsort(phi1)
numpy.argsort
# -*- coding: utf-8 -*- import numpy as np import scipy.stats as ss import itertools as it from statsmodels.sandbox.stats.multicomp import multipletests from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.stats.libqsturng import psturng from pandas import DataFrame, Categorical, Series def __convert_to_df(a, val_col, group_col): if isinstance(a, DataFrame): x = a.copy() if not all([group_col, val_col]): raise ValueError('group_col, val_col must be explicitly specified') else: x = np.array(a) if not all([group_col, val_col]): try: groups = np.array([len(a) * [i + 1] for i, a in enumerate(x)]) groups = sum(groups.tolist(), []) x = sum(x.tolist(), []) x = np.column_stack([x, groups]) val_col = 0 group_col = 1 except: raise ValueError('array cannot be processed, provide val_col and group_col args') x = DataFrame(x, index=np.arange(x.shape[0]), columns=np.arange(x.shape[1])) x.rename(columns={group_col: 'groups', val_col: 'y'}, inplace=True) group_col = 'groups' val_col = 'y' return x def __convert_to_block_df(a, y_col, group_col, block_col, melted): if isinstance(a, DataFrame) and not melted: group_col = 'groups' block_col = 'blocks' y_col = 'y' x = a.melt(id_vars=block_col, var_name=group_col, value_name=y_col) elif melted: x = DataFrame.from_dict({'groups': a[group_col], 'blocks': a[block_col], 'y': a[y_col]}) elif not isinstance(a, DataFrame): x = np.array(a) x = DataFrame(x, index=np.arange(x.shape[0]), columns=np.arange(x.shape[1])) if not melted: group_col = 'groups' block_col = 'blocks' y_col = 'y' x.columns.name = group_col x.index.name = block_col x = x.reset_index().melt(id_vars=block_col, var_name=group_col, value_name=y_col) else: x.columns[group_col] = 'groups' x.columns[block_col] = 'blocks' x.columns[y_col] = 'y' group_col = 'groups' block_col = 'blocks' y_col = 'y' return x, 'y', 'groups', 'blocks' def posthoc_conover(a, val_col = None, group_col = None, p_adjust = None, sort = True): ''' Post-hoc pairwise test for multiple comparisons of mean rank sums (Conover's test). May be used after Kruskal-Wallis one-way analysis of variance by ranks to do pairwise comparisons [1]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. Second dimension may vary, i.e. groups may have different lengths. val_col : str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains values. group_col : str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col or not. Recommended unless you sort your data manually. Returns ------- Numpy ndarray or pandas DataFrame of p values depending on input data type. Notes ----- A tie correction are employed according to Conover [1]_. References ---------- .. [1] <NAME> and <NAME> (1979), On multiple-comparisons procedures, Tech. Rep. LA-7677-MS, Los Alamos Scientific Laboratory. Examples -------- >>> x = [[1,2,3,5,1], [12,31,54, np.nan], [10,12,6,74,11]] >>> sp.posthoc_conover(x, p_adjust = 'holm') array([ [-1. , 0.00119517, 0.00278329], [ 0.00119517, -1. , 0.18672227], [ 0.00278329, 0.18672227, -1. ]]) ''' def compare_conover(i, j): diff = np.abs(x_ranks_avg[i] - x_ranks_avg[j]) B = (1. / x_lens[i] + 1. / x_lens[j]) D = (x_len_overall - 1. - H) / (x_len_overall - x_len) t_value = diff / np.sqrt(S2 * B * D) p_value = 2. * ss.t.sf(np.abs(t_value), df = x_len_overall - x_len) return p_value def get_ties(x): x_sorted = np.array(np.sort(x)) tie_sum = 0 pos = 0 while pos < x_len_overall: n_ties = len(x_sorted[x_sorted == x_sorted[pos]]) pos = pos + n_ties if n_ties > 1: tie_sum += n_ties ** 3. - n_ties c = np.min([1., 1. - tie_sum / (x_len_overall ** 3. - x_len_overall)]) return c if isinstance(a, DataFrame): x = a.copy() if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x.sort_values(by=[group_col, val_col], ascending=True, inplace=True) x_groups_unique = x[group_col].unique() x_len = x_groups_unique.size x_lens = x.groupby(by=group_col)[val_col].count().values x_flat = x[val_col].values x_lens_cumsum = np.insert(np.cumsum(x_lens), 0, 0)[:-1] x_grouped = np.array([x_flat[j:j + x_lens[i]] for i, j in enumerate(x_lens_cumsum)]) else: x = np.array(a) x_grouped = np.array([np.asarray(a)[~np.isnan(a)] for a in x]) x_flat = np.concatenate(x_grouped) x_len = len(x_grouped) x_lens = np.asarray([len(a) for a in x_grouped]) x_lens_cumsum = np.insert(np.cumsum(x_lens), 0, 0)[:-1] x_len_overall = len(x_flat) if any(x_lens == 0): raise ValueError("All groups must contain data") x_ranks = ss.rankdata(x_flat) x_ranks_grouped = np.array([x_ranks[j:j + x_lens[i]] for i, j in enumerate(x_lens_cumsum)]) x_ranks_avg = [np.mean(z) for z in x_ranks_grouped] x_ties = get_ties(x_ranks) #ss.tiecorrect(x_ranks) H = ss.kruskal(*x_grouped)[0] if x_ties == 1: S2 = x_len_overall * (x_len_overall + 1.) / 12. else: S2 = (1. / (x_len_overall - 1.)) * (np.sum(x_ranks ** 2.) - (x_len_overall * (((x_len_overall + 1.)**2.) / 4.))) vs = np.zeros((x_len, x_len), dtype=np.float) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 combs = it.combinations(range(x_len), 2) for i,j in combs: vs[i, j] = compare_conover(i, j) if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) if isinstance(x, DataFrame): return DataFrame(vs, index=x_groups_unique, columns=x_groups_unique) else: return vs def posthoc_dunn(a, val_col = None, group_col = None, p_adjust = None, sort = True): ''' Post-hoc pairwise test for multiple comparisons of mean rank sums (Dunn's test). May be used after Kruskal-Wallis one-way analysis of variance by ranks to do pairwise comparisons [1]_, [2]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. Second dimension may vary, i.e. groups may have different lengths. val_col : str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains values. group_col : str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col or not. Recommended unless you sort your data manually. Returns ------- Numpy ndarray or pandas DataFrame of p values depending on input data type. Notes ----- A tie correction will be employed according to Glantz (2012). References ---------- .. [1] <NAME> (1964). Multiple comparisons using rank sums. Technometrics, 6, 241-252. .. [2] <NAME> (2012), Primer of Biostatistics. New York: McGraw Hill. Examples -------- >>> x = [[1,2,3,5,1], [12,31,54, np.nan], [10,12,6,74,11]] >>> sp.posthoc_dunn(x, p_adjust = 'holm') array([[-1. 0.01764845 0.04131415] [ 0.01764845 -1. 0.45319956] [ 0.04131415 0.45319956 -1. ]]) ''' def compare_dunn(i, j): diff = np.abs(x_ranks_avg[i] - x_ranks_avg[j]) A = x_len_overall * (x_len_overall + 1.) / 12. B = (1. / x_lens[i] + 1. / x_lens[j]) z_value = diff / np.sqrt((A - x_ties) * B) p_value = 2. * ss.norm.sf(np.abs(z_value)) return p_value def get_ties(x): x_sorted = np.array(np.sort(x)) tie_sum = 0 pos = 0 while pos < x_len_overall: n_ties = len(x_sorted[x_sorted == x_sorted[pos]]) pos = pos + n_ties if n_ties > 1: tie_sum += n_ties ** 3. - n_ties c = tie_sum / (12. * (x_len_overall - 1)) return c if isinstance(a, DataFrame): x = a.copy() if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x.sort_values(by=[group_col, val_col], ascending=True, inplace=True) x_groups_unique = x[group_col].unique() x_len = x_groups_unique.size x_lens = x.groupby(by=group_col)[val_col].count().values x_flat = x[val_col].values else: x = np.array(a) x = np.array([np.asarray(a)[~np.isnan(a)] for a in x]) x_flat = np.concatenate(x) x_len = len(x) x_lens = np.asarray([len(a) for a in x]) x_len_overall = len(x_flat) if any(x_lens == 0): raise ValueError("All groups must contain data") x_lens_cumsum = np.insert(np.cumsum(x_lens), 0, 0)[:-1] x_ranks = ss.rankdata(x_flat) x_ranks_grouped = np.array([x_ranks[j:j + x_lens[i]] for i, j in enumerate(x_lens_cumsum)]) x_ranks_avg = [np.mean(z) for z in x_ranks_grouped] x_ties = get_ties(x_ranks) vs = np.zeros((x_len, x_len), dtype=np.float) combs = it.combinations(range(x_len), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 for i,j in combs: vs[i, j] = compare_dunn(i, j) if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) if isinstance(x, DataFrame): return DataFrame(vs, index=x_groups_unique, columns=x_groups_unique) else: return vs def posthoc_nemenyi(a, val_col = None, group_col = None, dist = 'chi', sort = True): ''' Post-hoc pairwise test for multiple comparisons of mean rank sums (Nemenyi's test). May be used after Kruskal-Wallis one-way analysis of variance by ranks to do pairwise comparisons [1]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. Second dimension may vary, i.e. groups may have different lengths. val_col : str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains values. group_col : str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. dist : str, optional Method for determining the p value. The default distribution is "chi" (chi-squared), else "tukey" (studentized range). sort : bool, optional Specifies whether to sort DataFrame by group_col or not. Recommended unless you sort your data manually. Returns ------- Numpy ndarray or pandas DataFrame of p values depending on input data type. Notes ----- A tie correction will be employed according to Glantz (2012). References ---------- .. [1] <NAME> (1997), Angewandte Statistik. Berlin: Springer. Pages: 395-397, 662-664. Examples -------- >>> x = [[1,2,3,5,1], [12,31,54, np.nan], [10,12,6,74,11]] >>> sp.posthoc_nemenyi(x) array([[-1. , 0.02206238, 0.06770864], [ 0.02206238, -1. , 0.75361555], [ 0.06770864, 0.75361555, -1. ]]) ''' def compare_stats_chi(i, j): diff = np.abs(x_ranks_avg[i] - x_ranks_avg[j]) A = x_len_overall * (x_len_overall + 1.) / 12. B = (1. / x_lens[i] + 1. / x_lens[j]) chi = diff ** 2. / (A * B) return chi def compare_stats_tukey(i, j): diff = np.abs(x_ranks_avg[i] - x_ranks_avg[j]) B = (1. / x_lens[i] + 1. / x_lens[j]) q = diff / np.sqrt((x_len_overall * (x_len_overall + 1.) / 12.) * B) return q def get_ties(x): x_sorted = np.array(np.sort(x)) tie_sum = 0 pos = 0 while pos < x_len_overall: n_ties = len(x_sorted[x_sorted == x_sorted[pos]]) pos = pos + n_ties if n_ties > 1: tie_sum += n_ties ** 3. - n_ties c = np.min([1., 1. - tie_sum / (x_len_overall ** 3. - x_len_overall)]) return c def get_ties_conover(x): x_sorted = np.array(np.sort(x)) tie_sum = 0 pos = 0 while pos < x_len_overall: n_ties = len(x_sorted[x_sorted == x_sorted[pos]]) pos = pos + n_ties if n_ties > 1: tie_sum += n_ties ** 3. - n_ties c = np.min([1., 1. - tie_sum / (x_len_overall ** 3. - x_len_overall)]) return c if isinstance(a, DataFrame): x = a.copy() if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x.sort_values(by=[group_col, val_col], ascending=True, inplace=True) x_groups_unique = x[group_col].unique() x_len = x_groups_unique.size x_lens = x.groupby(by=group_col)[val_col].count().values x_flat = x[val_col].values else: x = np.array(a) x = np.array([np.asarray(a)[~np.isnan(a)] for a in x]) x_flat = np.concatenate(x) x_len = len(x) x_lens = np.asarray([len(a) for a in x]) x_len_overall = len(x_flat) if any(x_lens == 0): raise ValueError("All groups must contain data") x_lens_cumsum = np.insert(np.cumsum(x_lens), 0, 0)[:-1] x_ranks = ss.rankdata(x_flat) x_ranks_grouped = np.array([x_ranks[j:j + x_lens[i]] for i, j in enumerate(x_lens_cumsum)]) x_ranks_avg = [np.mean(z) for z in x_ranks_grouped] x_ties = get_ties(x_ranks) vs = np.zeros((x_len, x_len), dtype=np.float) combs = it.combinations(range(x_len), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 if dist == 'chi': for i,j in combs: vs[i, j] = compare_stats_chi(i, j) / x_ties vs[tri_upper] = ss.chi2.sf(vs[tri_upper], x_len - 1) elif dist == 'tukey': for i,j in combs: vs[i, j] = compare_stats_tukey(i, j) * np.sqrt(2.) vs[tri_upper] = psturng(vs[tri_upper], x_len, np.inf) vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) if isinstance(x, DataFrame): return DataFrame(vs, index=x_groups_unique, columns=x_groups_unique) else: return vs def posthoc_nemenyi_friedman(a, y_col = None, block_col = None, group_col = None, melted = False, sort = False): ''' Calculate pairwise comparisons using Nemenyi post-hoc test for unreplicated blocked data. This test is usually conducted post-hoc after significant results of the Friedman's test. The statistics refer to upper quantiles of the studentized range distribution (Tukey) [1]_, [2]_, [3]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. If `melted` is set to False (default), `a` is a typical matrix of block design, i.e. rows are blocks, and columns are groups. In this case you do not need to specify col arguments. If `a` is an array and `melted` is set to True, y_col, block_col and group_col must specify the indices of columns containing elements of correspondary type. If `a` is a Pandas DataFrame and `melted` is set to True, y_col, block_col and group_col must specify columns names (strings). y_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains y data. block_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains block names. group_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. melted : bool, optional Specifies if data are given as melted columns "y", "blocks", and "groups". sort : bool, optional If True, sort data by block and group columns. Returns ------- Pandas DataFrame containing p values. Notes ----- A one-way ANOVA with repeated measures that is also referred to as ANOVA with unreplicated block design can also be conducted via Friedman's test. The consequent post-hoc pairwise multiple comparison test according to Nemenyi is conducted with this function. This function does not test for ties. References ---------- .. [1] <NAME> (2006), Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, 7, 1-30. .. [2] <NAME> (1963) Distribution-free Multiple Comparisons. Ph.D. thesis, Princeton University. .. [3] <NAME> (1997), Angewandte Statistik. Berlin: Springer. Pages: 668-675. Examples -------- >>> # Non-melted case, x is a block design matrix, i.e. rows are blocks >>> # and columns are groups. >>> x = np.array([[31,27,24],[31,28,31],[45,29,46],[21,18,48],[42,36,46],[32,17,40]]) >>> sp.posthoc_nemenyi_friedman(x) ''' if melted and not all([block_col, group_col, y_col]): raise ValueError('block_col, group_col, y_col should be explicitly specified if using melted data') def compare_stats(i, j): dif = np.abs(R[groups[i]] - R[groups[j]]) qval = dif / np.sqrt(k * (k + 1.) / (6. * n)) return qval x, y_col, group_col, block_col = __convert_to_block_df(a, y_col, group_col, block_col, melted) #if not sort: # x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) # x[block_col] = Categorical(x[block_col], categories=x[block_col].unique(), ordered=True) x.sort_values(by=[group_col, block_col], ascending=True, inplace=True) x.dropna(inplace=True) groups = x[group_col].unique() k = groups.size n = x[block_col].unique().size x['mat'] = x.groupby(block_col)[y_col].rank() R = x.groupby(group_col)['mat'].mean() vs = np.zeros((k, k), dtype=np.float) combs = it.combinations(range(k), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 for i, j in combs: vs[i, j] = compare_stats(i, j) vs *= np.sqrt(2.) vs[tri_upper] = psturng(vs[tri_upper], k, np.inf) vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups) def posthoc_conover_friedman(a, y_col = None, block_col = None, group_col = None, melted = False, sort = False, p_adjust = None): ''' Calculate pairwise comparisons using Conover post-hoc test for unreplicated blocked data. This test is usually conducted post-hoc after significant results of the Friedman test. The statistics refer to the Student t distribution [1]_, [2]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. If `melted` is set to False (default), `a` is a typical matrix of block design, i.e. rows are blocks, and columns are groups. In this case you do not need to specify col arguments. If `a` is an array and `melted` is set to True, y_col, block_col and group_col must specify the indices of columns containing elements of correspondary type. If `a` is a Pandas DataFrame and `melted` is set to True, y_col, block_col and group_col must specify columns names (strings). y_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains y data. block_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains block names. group_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. melted : bool, optional Specifies if data are given as melted columns "y", "blocks", and "groups". sort : bool, optional If True, sort data by block and group columns. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) Returns ------- Pandas DataFrame containing p values. Notes ----- A one-way ANOVA with repeated measures that is also referred to as ANOVA with unreplicated block design can also be conducted via the friedman.test. The consequent post-hoc pairwise multiple comparison test according to Conover is conducted with this function. If y is a matrix, than the columns refer to the treatment and the rows indicate the block. References ---------- .. [1] <NAME> and <NAME> (1979), On multiple-comparisons procedures, Tech. Rep. LA-7677-MS, Los Alamos Scientific Laboratory. .. [2] <NAME> (1999), Practical nonparametric Statistics, 3rd. Edition, Wiley. Examples -------- >>> x = np.array([[31,27,24],[31,28,31],[45,29,46],[21,18,48],[42,36,46],[32,17,40]]) >>> sp.posthoc_conover_friedman(x) ''' if melted and not all([block_col, group_col, y_col]): raise ValueError('block_col, group_col, y_col should be explicitly specified if using melted data') def compare_stats(i, j): dif = np.abs(R[groups[i]] - R[groups[j]]) tval = dif / np.sqrt(A / B) pval = 2. * ss.t.sf(np.abs(tval), df = (n-1)*(k-1)) return pval x, y_col, group_col, block_col = __convert_to_block_df(a, y_col, group_col, block_col, melted) #if not sort: # x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) # x[block_col] = Categorical(x[block_col], categories=x[block_col].unique(), ordered=True) x.sort_values(by=[group_col,block_col], ascending=True, inplace=True) x.dropna(inplace=True) groups = x[group_col].unique() k = groups.size n = x[block_col].unique().size x['mat'] = x.groupby(block_col)[y_col].rank() R = x.groupby(group_col)['mat'].sum() A1 = (x['mat'] ** 2).sum() C1 = (n * k * (k + 1) ** 2) / 4 TT = np.sum([((R[g] - ((n * (k + 1))/2)) ** 2) for g in groups]) T1 = ((k - 1) * TT) / (A1 - C1) A = 2 * k * (1 - T1 / (k * (n-1))) * ( A1 - C1) B = (n - 1) * (k - 1) vs = np.zeros((k, k), dtype=np.float) combs = it.combinations(range(k), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 for i, j in combs: vs[i, j] = compare_stats(i, j) if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups) def posthoc_npm_test(a, y_col = None, group_col = None, sort = False, p_adjust = None): ''' Calculate pairwise comparisons using Nashimoto and Wright's all-pairs comparison procedure (NPM test) for simply ordered mean ranksums. NPM test is basically an extension of Nemenyi's procedure for testing increasingly ordered alternatives [1]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. val_col : str Must be specified if `a` is a pandas DataFrame object. Name of the column that contains y data. group_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. sort : bool, optional If True, sort data by block and group columns. p_adjust : str, optional Method for adjusting p values. See `statsmodels.sandbox.stats.multicomp` for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) Returns ------- Pandas DataFrame containing p values. Notes ----- The p-values are estimated from the studentized range distribution. If the medians are already increasingly ordered, than the NPM-test simplifies to the ordinary Nemenyi test References ---------- .. [1] <NAME>., <NAME>., (2005), Multiple comparison procedures for detecting differences in simply ordered means. Comput. Statist. Data Anal. 48, 291--306. Examples -------- >>> x = np.array([[102,109,114,120,124], [110,112,123,130,145], [132,141,156,160,172]]) >>> sp.posthoc_npm_test(x) ''' x = __convert_to_df(a, y_col, group_col) if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x.sort_values(by=[group_col], ascending=True, inplace=True) x_groups_unique = x[group_col].unique() x['ranks'] = x.rank() Ri = x.groupby(group_col)[val_col].mean() ni = x.groupby(group_col)[val_col].count() k = x[group_col].unique().size n = x.shape[0] sigma = np.sqrt(n * (n + 1) / 12.) df = np.inf def compare(m, u): return (Ri[u] - Ri[m]) / (sigma / np.sqrt(2) * np.sqrt(1. / ni[m] + 1. / ni[u])) stat = np.empty((k-1, k-1)) for i, j in it.combinations(range(k), 2): u = j m = np.arange(i, u-1) tmp = compare(m, u) stat[j-1, i] = np.max(tmp) p_values = psturng(stat, k, np.inf) tri_upper = np.triu_indices(p_values.shape[0], 1) tri_lower = np.tril_indices(p_values.shape[0], -1) p_values[tri_lower] = p_values.T[tri_lower] if p_adjust: p_values[tri_upper] = multipletests(p_values[tri_upper], method = p_adjust)[1] np.fill_diagonal(p_values, -1) return DataFrame(p_values, index=x_groups_unique, columns=x_groups_unique) def posthoc_siegel_friedman(a, y_col = None, block_col = None, group_col = None, melted = False, sort = False, p_adjust = None): ''' Siegel and Castellan's All-Pairs Comparisons Test for Unreplicated Blocked Data. See authors' paper for additional information [1]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. If `melted` is set to False (default), `a` is a typical matrix of block design, i.e. rows are blocks, and columns are groups. In this case you do not need to specify col arguments. If `a` is an array and `melted` is set to True, y_col, block_col and group_col must specify the indices of columns containing elements of correspondary type. If `a` is a Pandas DataFrame and `melted` is set to True, y_col, block_col and group_col must specify columns names (strings). y_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains y data. block_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains block names. group_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. melted : bool, optional Specifies if data are given as melted columns "y", "blocks", and "groups". sort : bool, optional If True, sort data by block and group columns. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) Returns ------- Pandas DataFrame containing p values. Notes ----- For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Siegel and Castellan's test can be performed on Friedman-type ranked data. References ---------- .. [1] <NAME>, <NAME>. (1988), Nonparametric Statistics for the Behavioral Sciences. 2nd ed. New York: McGraw-Hill. Examples -------- >>> x = np.array([[31,27,24],[31,28,31],[45,29,46],[21,18,48],[42,36,46],[32,17,40]]) >>> sp.posthoc_siegel_friedman(x) ''' if melted and not all([block_col, group_col, y_col]): raise ValueError('block_col, group_col, y_col should be explicitly specified if using melted data') def compare_stats(i, j): dif = np.abs(R[groups[i]] - R[groups[j]]) zval = dif / np.sqrt(k * (k + 1.) / (6. * n)) return zval x, y_col, group_col, block_col = __convert_to_block_df(a, y_col, group_col, block_col, melted) #if not sort: # x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) # x[block_col] = Categorical(x[block_col], categories=x[block_col].unique(), ordered=True) x.sort_values(by=[group_col,block_col], ascending=True, inplace=True) x.dropna(inplace=True) groups = x[group_col].unique() k = groups.size n = x[block_col].unique().size x['mat'] = x.groupby(block_col)[y_col].rank() R = x.groupby(group_col)['mat'].mean() vs = np.zeros((k, k), dtype=np.float) combs = it.combinations(range(k), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 for i, j in combs: vs[i, j] = compare_stats(i, j) vs = 2. * ss.norm.sf(np.abs(vs)) vs[vs > 1] = 1. if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups) def posthoc_miller_friedman(a, y_col = None, block_col = None, group_col = None, melted = False, sort = False): ''' Miller's All-Pairs Comparisons Test for Unreplicated Blocked Data. The p-values are computed from the chi-square distribution [1]_, [2]_, [3]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. If `melted` is set to False (default), `a` is a typical matrix of block design, i.e. rows are blocks, and columns are groups. In this case you do not need to specify col arguments. If `a` is an array and `melted` is set to True, y_col, block_col and group_col must specify the indices of columns containing elements of correspondary type. If `a` is a Pandas DataFrame and `melted` is set to True, y_col, block_col and group_col must specify columns names (strings). y_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains y data. block_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains block names. group_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. melted : bool, optional Specifies if data are given as melted columns "y", "blocks", and "groups". sort : bool, optional If True, sort data by block and group columns. Returns ------- Pandas DataFrame containing p values. Notes ----- For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Miller's test can be performed on Friedman-type ranked data. References ---------- .. [1] <NAME>, <NAME>, <NAME> (1990), Verteilungsfreie Methoden in der Biostatistik. Berlin: Springerself. .. [2] <NAME>r. (1996), Simultaneous statistical inference. New York: McGraw-Hill. .. [3] <NAME> (2006), Data Analysis. A Statistical Primer for Psychology Students. New Brunswick: Aldine Transaction. Examples -------- >>> x = np.array([[31,27,24],[31,28,31],[45,29,46],[21,18,48],[42,36,46],[32,17,40]]) >>> sp.posthoc_miller_friedman(x) ''' if melted and not all([block_col, group_col, y_col]): raise ValueError('block_col, group_col, y_col should be explicitly specified if using melted data') def compare_stats(i, j): dif = np.abs(R[groups[i]] - R[groups[j]]) qval = dif / np.sqrt(k * (k + 1.) / (6. * n)) return qval x, y_col, group_col, block_col = __convert_to_block_df(a, y_col, group_col, block_col, melted) #if not sort: # x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) # x[block_col] = Categorical(x[block_col], categories=x[block_col].unique(), ordered=True) x.sort_values(by=[group_col,block_col], ascending=True, inplace=True) x.dropna(inplace=True) groups = x[group_col].unique() k = groups.size n = x[block_col].unique().size x['mat'] = x.groupby(block_col)[y_col].rank() R = x.groupby(group_col)['mat'].mean() vs = np.zeros((k, k), dtype=np.float) combs = it.combinations(range(k), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 for i, j in combs: vs[i, j] = compare_stats(i, j) vs = vs ** 2 vs = ss.chi2.sf(vs, k - 1) vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups) def posthoc_durbin(a, y_col = None, block_col = None, group_col = None, melted = False, sort = False, p_adjust = None): ''' Pairwise post-hoc test for multiple comparisons of rank sums according to Durbin and Conover for a two-way balanced incomplete block design (BIBD). See references for additional information [1]_, [2]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. If `melted` is set to False (default), `a` is a typical matrix of block design, i.e. rows are blocks, and columns are groups. In this case you do not need to specify col arguments. If `a` is an array and `melted` is set to True, y_col, block_col and group_col must specify the indices of columns containing elements of correspondary type. If `a` is a Pandas DataFrame and `melted` is set to True, y_col, block_col and group_col must specify columns names (string). y_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains y data. block_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains block names. group_col : str or int Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. melted : bool, optional Specifies if data are given as melted columns "y", "blocks", and "groups". sort : bool, optional If True, sort data by block and group columns. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) Returns ------- Pandas DataFrame containing p values. References ---------- .. [1] <NAME> and <NAME> (1979), On multiple-comparisons procedures, Tech. Rep. LA-7677-MS, Los Alamos Scientific Laboratory. .. [2] <NAME> (1999), Practical nonparametric Statistics, 3rd. edition, Wiley. Examples -------- >>> x = np.array([[31,27,24],[31,28,31],[45,29,46],[21,18,48],[42,36,46],[32,17,40]]) >>> sp.posthoc_durbin(x) ''' if melted and not all([block_col, group_col, y_col]): raise ValueError('block_col, group_col, y_col should be explicitly specified if using melted data') def compare_stats(i, j): dif = np.abs(Rj[groups[i]] - Rj[groups[j]]) tval = dif / denom pval = 2. * ss.t.sf(np.abs(tval), df = df) return pval x, y_col, group_col, block_col = __convert_to_block_df(a, y_col, group_col, block_col, melted) if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x[block_col] = Categorical(x[block_col], categories=x[block_col].unique(), ordered=True) x.sort_values(by=[block_col, group_col], ascending=True, inplace=True) x.dropna(inplace=True) groups = x[group_col].unique() t = len(groups) b = x[block_col].unique().size r = b k = t x['y_ranked'] = x.groupby(block_col)[y_col].rank() Rj = x.groupby(group_col)['y_ranked'].sum() A = (x['y_ranked'] ** 2).sum() C = (b * k * (k + 1) ** 2) / 4. D = (Rj ** 2).sum() - r * C T1 = (t - 1) / (A - C) * D denom = np.sqrt(((A - C) * 2 * r) / (b * k - b - t + 1) * (1 - T1 / (b * (k -1)))) df = b * k - b - t + 1 vs = np.zeros((t, t), dtype=np.float) combs = it.combinations(range(t), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 for i, j in combs: vs[i, j] = compare_stats(i, j) if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups) def posthoc_anderson(a, val_col = None, group_col = None, midrank = True, sort = False, p_adjust = None): ''' Anderson-Darling Pairwise Test for k-samples. Tests the null hypothesis that k-samples are drawn from the same population without having to specify the distribution function of that population [1]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. val_col : str Must be specified if `a` is a pandas DataFrame object. Name of the column that contains y data. group_col : str Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. midrank : bool, optional Type of Anderson-Darling test which is computed. If set to True (default), the midrank test applicable to continuous and discrete populations is performed. If False, the right side empirical distribution is used. sort : bool, optional If True, sort data by block and group columns. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) Returns ------- Pandas DataFrame containing p values. References ---------- .. [1] <NAME>, <NAME> (1987), K-Sample Anderson-Darling Tests, Journal of the American Statistical Association, Vol. 82, pp. 918-924. Examples -------- >>> x = np.array([[2.9, 3.0, 2.5, 2.6, 3.2], [3.8, 2.7, 4.0, 2.4], [2.8, 3.4, 3.7, 2.2, 2.0]]) >>> sp.posthoc_anderson(x) ''' x = __convert_to_df(a, val_col, group_col) if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x.sort_values(by=[group_col], ascending=True, inplace=True) groups = x[group_col].unique() k = groups.size vs = np.zeros((k, k), dtype=np.float) combs = it.combinations(range(k), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 for i, j in combs: vs[i, j] = ss.anderson_ksamp([x.loc[x[group_col] == groups[i], val_col], x.loc[x[group_col] == groups[j], val_col]])[2] if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups) def posthoc_quade(a, y_col = None, block_col = None, group_col = None, dist = 't', melted = False, sort = False, p_adjust = None): ''' Calculate pairwise comparisons using Quade's post-hoc test for unreplicated blocked data. This test is usually conducted if significant results were obtained by the omnibus test [1]_, [2]_, [3]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. If `melted` is set to False (default), `a` is a typical matrix of block design, i.e. rows are blocks, and columns are groups. In this case you do not need to specify col arguments. If `a` is an array and `melted` is set to True, y_col, block_col and group_col must specify the indices of columns containing elements of correspondary type. If `a` is a Pandas DataFrame and `melted` is set to True, y_col, block_col and group_col must specify columns names (string). y_col : str or int, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains y data. block_col : str or int, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains block names. group_col : str or int, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. dist : str, optional Method for determining p values. The default distribution is "t", else "normal". melted : bool, optional Specifies if data are given as melted columns "y", "blocks", and "groups". sort : bool, optional If True, sort data by block and group columns. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) Returns ------- Pandas DataFrame containing p values. References ---------- .. [1] <NAME> (1999), Practical nonparametric Statistics, 3rd. Edition, Wiley. .. [2] <NAME> and <NAME> (2003). NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions. National Institute of Standards and Technology Handbook Series, June 2003. .. [3] <NAME> (1979), Using weighted rankings in the analysis of complete blocks with additive block effects. Journal of the American Statistical Association, 74, 680-683. Examples -------- >>> x = np.array([[31,27,24],[31,28,31],[45,29,46],[21,18,48],[42,36,46],[32,17,40]]) >>> sp.posthoc_quade(x) ''' if melted and not all([block_col, group_col, y_col]): raise ValueError('block_col, group_col, y_col should be explicitly specified if using melted data') def compare_stats_t(i, j): dif = np.abs(S[groups[i]] - S[groups[j]]) tval = dif / denom pval = 2. * ss.t.sf(np.abs(tval), df = (b - 1) * (k - 1)) return pval def compare_stats_norm(i, j): dif = np.abs(W[groups[i]] * ff - W[groups[j]] * ff) zval = dif / denom pval = 2. * ss.norm.sf(np.abs(zval)) return pval x, y_col, group_col, block_col = __convert_to_block_df(a, y_col, group_col, block_col, melted) if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x[block_col] = Categorical(x[block_col], categories=x[block_col].unique(), ordered=True) x.sort_values(by=[block_col, group_col], ascending=True, inplace=True) x.dropna(inplace=True) groups = x[group_col].unique() k = len(groups) b = x[block_col].unique().size x['r'] = x.groupby(block_col)[y_col].rank() q = (x.groupby(block_col)[y_col].max() - x.groupby(block_col)[y_col].min()).rank() x['rr'] = x['r'] - (k + 1)/2 x['s'] = x.apply(lambda x, y: x['rr'] * y[x['blocks']], axis=1, args=(q,)) x['w'] = x.apply(lambda x, y: x['r'] * y[x['blocks']], axis=1, args=(q,)) A = (x['s'] ** 2).sum() S = x.groupby(group_col)['s'].sum() B = np.sum(S ** 2) / b W = x.groupby(group_col)['w'].sum() vs = np.zeros((k, k), dtype=np.float) combs = it.combinations(range(k), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 if dist == 't': denom = np.sqrt((2 * b * (A - B)) / ((b - 1) * (k - 1))) for i, j in combs: vs[i, j] = compare_stats_t(i, j) else: n = b * k denom = np.sqrt((k * (k + 1) * (2 * n + 1) * (k-1)) / (18 * n * (n + 1))) ff = 1. / (b * (b + 1)/2) for i, j in combs: vs[i, j] = compare_stats_norm(i, j) if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups) def posthoc_mackwolfe(a, val_col, group_col, p = None, n_perm = 100, sort = False, p_adjust = None): ''' Mack-Wolfe Test for Umbrella Alternatives. In dose-finding studies one may assume an increasing treatment effect with increasing dose level. However, the test subject may actually succumb to toxic effects at high doses, which leads to decresing treatment effects [1]_, [2]_. The scope of the Mack-Wolfe Test is to test for umbrella alternatives for either a known or unknown point P (i.e. dose-level), where the peak (umbrella point) is present. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. val_col : str or int Name (string) or index (int) of a column in a pandas DataFrame or an array that contains quantitative data. group_col : str or int Name (string) or index (int) of a column in a pandas DataFrame or an array that contains group names. p : int, optional The a-priori known peak as an ordinal number of the treatment group including the zero dose level, i.e. p = {1, ..., k}. Defaults to None. sort : bool, optional If True, sort data by block and group columns. Returns ------- Pandas DataFrame containing p values. References ---------- .. [1] <NAME>. (1991) Notes on the Mack-Wolfe and Chen-Wolfe Tests for Umbrella Alternatives. Biom. J., 33, 281-290. .. [2] <NAME>., <NAME>. (1981) K-sample rank tests for umbrella alternatives. J. Amer. Statist. Assoc., 76, 175-181. Examples -------- >>> x = np.array([[10,'a'], [59,'a'], [76,'b'], [10, 'b']]) >>> sp.posthoc_mackwolfe(x, val_col = 0, group_col = 1) ''' x = __convert_to_df(a, val_col, group_col) if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x.sort_values(by=[group_col], ascending=True, inplace=True) k = x[group_col].unique().size if p: if p > k: print("Selected 'p' > number of groups:", str(p), " > ", str(k)) return False elif p < 1: print("Selected 'p' < 1: ", str(p)) return False Rij = x[val_col].rank() n = x.groupby(group_col)[val_col].count() def _fn(Ri, Rj): return np.sum(Ri.apply(lambda x: Rj[Rj > x].size)) def _ustat(Rij, g, k): levels = np.unique(g) U = np.identity(k) for i in range(k): for j in range(i): U[i,j] = _fn(Rij[x[group_col] == levels[i]], Rij[x[group_col] == levels[j]]) U[j,i] = _fn(Rij[x[group_col] == levels[j]], Rij[x[group_col] == levels[i]]) return U def _ap(p, U): tmp1 = 0 if p > 0: for i in range(p): for j in range(i+1, p+1): tmp1 += U[i,j] tmp2 = 0 if p < k: for i in range(p, k): for j in range(i+1, k): tmp2 += U[j,i] return tmp1 + tmp2 def _n1(p, n): return np.sum(n[:p+1]) def _n2(p, n): return np.sum(n[p:k]) def _mean_at(p, n): N1 = _n1(p, n) N2 = _n2(p, n) return (N1**2 + N2**2 - np.sum(n**2) - n.iloc[p]**2)/4 def _var_at(p, n): N1 = _n1(p, n) N2 = _n2(p, n) N = np.sum(n) var = (2 * (N1**3 + N2**3) + 3 * (N1**2 + N2**2) -\ np.sum(n**2 * (2*n + 3)) - n.iloc[p]**2 * (2 * n.iloc[p] + 3) +\ 12. * n.iloc[p] * N1 * N2 - 12. * n.iloc[p] ** 2 * N) / 72. return var if p: if (x.groupby(val_col).count() > 1).any().any(): print("Ties are present") U = _ustat(Rij, x[group_col], k) est = _ap(p, U) mean = _mean_at(p, n) sd = np.sqrt(_var_at(p, n)) stat = (est - mean)/sd p_value = ss.norm.sf(stat) else: U = _ustat(Rij, x[group_col], k) Ap = np.array([_ap(i, U) for i in range(k)]).ravel() mean = np.array([_mean_at(i, n) for i in range(k)]).ravel() var = np.array([_var_at(i, n) for i in range(k)]).ravel() A = (Ap - mean) / np.sqrt(var) stat = np.max(A) p = A == stat est = None mt = [] for i in range(n_perm): ix = Series(np.random.permutation(Rij)) Uix = _ustat(ix, x[group_col], k) Apix = np.array([_ap(i, Uix) for i in range(k)]) Astarix = (Apix - mean) / np.sqrt(var) mt.append(np.max(Astarix)) mt = np.array(mt) p_value = mt[mt > stat] / n_perm return p_value, stat def posthoc_vanwaerden(a, val_col, group_col, sort = False, p_adjust = None): ''' Van der Waerden's test for pairwise multiple comparisons between group levels. See references for additional information [1]_, [2]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. val_col : str or int Name (string) or index (int) of a column in a pandas DataFrame or an array that contains quantitative data. group_col : str or int Name (string) or index (int) of a column in a pandas DataFrame or an array that contains group names. sort : bool, optional If True, sort data by block and group columns. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) Returns ------- Pandas DataFrame containing p values. Notes ----- For one-factorial designs with samples that do not meet the assumptions for one-way-ANOVA and subsequent post-hoc tests, the van der Waerden test vanWaerden.test using normal scores can be employed. Provided that significant differences were detected by this global test, one may be interested in applying post-hoc tests according to van der Waerden for pairwise multiple comparisons of the group levels. There is no tie correction applied in this function. References ---------- .. [1] <NAME> and <NAME> (1979), On multiple-comparisons procedures, Tech. Rep. LA-7677-MS, Los Alamos Scientific Laboratory. .. [2] <NAME> (1952) Order tests for the two-sample problem and their power, Indagationes Mathematicae, 14, 453-458. Examples -------- >>> x = np.array([[10,'a'], [59,'a'], [76,'b'], [10, 'b']]) >>> sp.posthoc_vanwaerden(x, val_col = 0, group_col = 1) ''' x = __convert_to_df(a, val_col, group_col) if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x.sort_values(by=[group_col], ascending=True, inplace=True) groups = x[group_col].unique() n = x[val_col].size k = groups.size r = ss.rankdata(x[val_col]) x['z_scores'] = ss.norm.ppf(r / (n + 1)) aj = x.groupby(group_col)['z_scores'].sum() nj = x.groupby(group_col)['z_scores'].count() s2 = (1. / (n - 1.)) * (x['z_scores'] ** 2.).sum() sts = (1. / s2) * np.sum(aj ** 2. / nj) param = k - 1 A = aj / nj vs = np.zeros((k, k), dtype=np.float) combs = it.combinations(range(k), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 def compare_stats(i, j): dif = np.abs(A[groups[i]] - A[groups[j]]) B = 1. / nj[groups[i]] + 1. / nj[groups[j]] tval = dif / np.sqrt(s2 * (n - 1. - sts)/(n - k) * B) pval = 2. * ss.t.sf(np.abs(tval), df = n - k) return pval for i, j in combs: vs[i, j] = compare_stats(i, j) if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return DataFrame(vs, index=groups, columns=groups) def posthoc_ttest(a, val_col = None, group_col = None, pool_sd = False, equal_var = True, p_adjust = None, sort = True): ''' Pairwise T test for multiple comparisons of independent groups. May be used after an ordinary ANOVA to do pairwise comparisons. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. val_col : str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains values. group_col : str, optional Must be specified if `a` is a pandas DataFrame object. Name of the column that contains group names. equal_var : bool, optional If True (default), perform a standard independent test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. pool_sd : bool, optional Calculate a common SD for all groups and use that for all comparisons (this can be useful if some groups are small). This method does not actually call scipy ttest_ind() function, so extra arguments are ignored. Default is False. p_adjust : str, optional Method for adjusting p values. See statsmodels.sandbox.stats.multicomp for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col or not. Recommended unless you sort your data manually. Returns ------- Numpy ndarray or pandas DataFrame of p values depending on input data type. References ---------- .. [1] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] http://en.wikipedia.org/wiki/Welch%27s_t_test Examples -------- >>> x = [[1,2,3,5,1], [12,31,54, np.nan], [10,12,6,74,11]] >>> sp.posthoc_ttest(x, p_adjust = 'holm') array([[-1. , 0.04600899, 0.31269089], [ 0.04600899, -1. , 0.6327077 ], [ 0.31269089, 0.6327077 , -1. ]]) ''' if isinstance(a, DataFrame): x = a.copy() if not sort: x[group_col] = Categorical(x[group_col], categories=x[group_col].unique(), ordered=True) x.sort_values(by=[group_col, val_col], ascending=True, inplace=True) x_lens = x.groupby(by=group_col)[val_col].count().values x_lens_cumsum = np.insert(np.cumsum(x_lens), 0, 0)[:-1] x_grouped = np.array([x[val_col][j:(j + x_lens[i])] for i, j in enumerate(x_lens_cumsum)]) #x_grouped = [x.loc[v, val_col].values.tolist() for g, v in x.groupby(group_col, sort=False).groups.items()] else: x =
np.array(a)
numpy.array
"""Bearing Element module. This module defines the BearingElement classes which will be used to represent the rotor bearings and seals. There are 7 different classes to represent bearings options, and 2 element options with 8 or 12 degrees of freedom. """ import os import warnings from inspect import signature import numpy as np import toml from plotly import graph_objects as go from scipy import interpolate as interpolate from ross.element import Element from ross.fluid_flow import fluid_flow as flow from ross.fluid_flow.fluid_flow_coefficients import ( calculate_stiffness_and_damping_coefficients, ) from ross.units import Q_, check_units from ross.utils import read_table_file __all__ = [ "BearingElement", "SealElement", "BallBearingElement", "RollerBearingElement", "BearingFluidFlow", "BearingElement6DoF", "MagneticBearingElement", ] class BearingElement(Element): """A bearing element. This class will create a bearing element. Parameters can be a constant value or speed dependent. For speed dependent parameters, each argument should be passed as an array and the correspondent speed values should also be passed as an array. Values for each parameter will be_interpolated for the speed. Parameters ---------- n : int Node which the bearing will be located in kxx : float, array, pint.Quantity Direct stiffness in the x direction (N/m). cxx : float, array, pint.Quantity Direct damping in the x direction (N*s/m). kyy : float, array, pint.Quantity, optional Direct stiffness in the y direction (N/m). (defaults to kxx) cyy : float, array, pint.Quantity, optional Direct damping in the y direction (N*s/m). (defaults to cxx) kxy : float, array, pint.Quantity, optional Cross coupled stiffness in the x direction (N/m). (defaults to 0) cxy : float, array, pint.Quantity, optional Cross coupled damping in the x direction (N*s/m). (defaults to 0) kyx : float, array, pint.Quantity, optional Cross coupled stiffness in the y direction (N/m). (defaults to 0) cyx : float, array, pint.Quantity, optional Cross coupled damping in the y direction (N*s/m). (defaults to 0) frequency : array, pint.Quantity, optional Array with the frequencies (rad/s). tag : str, optional A tag to name the element Default is None. n_link : int, optional Node to which the bearing will connect. If None the bearing is connected to ground. Default is None. scale_factor : float, optional The scale factor is used to scale the bearing drawing. Default is 1. color : str, optional A color to be used when the element is represented. Default is '#355d7a' (Cardinal). Examples -------- >>> # A bearing element located in the first rotor node, with these >>> # following stiffness and damping coefficients and speed range from >>> # 0 to 200 rad/s >>> import ross as rs >>> kxx = 1e6 >>> kyy = 0.8e6 >>> cxx = 2e2 >>> cyy = 1.5e2 >>> frequency = np.linspace(0, 200, 11) >>> bearing0 = rs.BearingElement(n=0, kxx=kxx, kyy=kyy, cxx=cxx, cyy=cyy, frequency=frequency) >>> bearing0.K(frequency) # doctest: +ELLIPSIS array([[[1000000., 1000000., ... >>> bearing0.C(frequency) # doctest: +ELLIPSIS array([[[200., 200., ... """ @check_units def __init__( self, n, kxx, cxx, kyy=None, kxy=0, kyx=0, cyy=None, cxy=0, cyx=0, frequency=None, tag=None, n_link=None, scale_factor=1, color="#355d7a", **kwargs, ): if frequency is not None: self.frequency = np.array(frequency, dtype=np.float64) else: self.frequency = frequency args = ["kxx", "kyy", "kxy", "kyx", "cxx", "cyy", "cxy", "cyx"] # all args to coefficients args_dict = locals() if kyy is None: args_dict["kyy"] = kxx if cyy is None: args_dict["cyy"] = cxx # check coefficients len for consistency coefficients_len = [] for arg in args: coefficient, interpolated = self._process_coefficient(args_dict[arg]) setattr(self, arg, coefficient) setattr(self, f"{arg}_interpolated", interpolated) coefficients_len.append(len(coefficient)) if frequency is not None and type(frequency) != float: coefficients_len.append(len(args_dict["frequency"])) if len(set(coefficients_len)) > 1: raise ValueError( "Arguments (coefficients and frequency)" " must have the same dimension" ) else: for c in coefficients_len: if c != 1: raise ValueError( "Arguments (coefficients and frequency)" " must have the same dimension" ) self.n = n self.n_link = n_link self.n_l = n self.n_r = n self.tag = tag self.color = color self.scale_factor = scale_factor self.dof_global_index = None def _process_coefficient(self, coefficient): """Helper function used to process the coefficient data.""" interpolated = None if isinstance(coefficient, (int, float)): if self.frequency is not None and type(self.frequency) != float: coefficient = [coefficient for _ in range(len(self.frequency))] else: coefficient = [coefficient] if len(coefficient) > 1: try: with warnings.catch_warnings(): warnings.simplefilter("ignore") interpolated = interpolate.UnivariateSpline( self.frequency, coefficient ) # dfitpack.error is not exposed by scipy # so a bare except is used except: try: if len(self.frequency) in (2, 3): interpolated = interpolate.interp1d( self.frequency, coefficient, kind=len(self.frequency) - 1, fill_value="extrapolate", ) except: raise ValueError( "Arguments (coefficients and frequency)" " must have the same dimension" ) else: interpolated = interpolate.interp1d( [0, 1], [coefficient[0], coefficient[0]], kind="linear", fill_value="extrapolate", ) return coefficient, interpolated def plot( self, coefficients=None, frequency_units="rad/s", stiffness_units="N/m", damping_units="N*s/m", fig=None, **kwargs, ): """Plot coefficient vs frequency. Parameters ---------- coefficients : list, str List or str with the coefficients to plot. frequency_units : str Frequency units. Default is rad/s. y_units : str **kwargs : optional Additional key word arguments can be passed to change the plot layout only (e.g. width=1000, height=800, ...). *See Plotly Python Figure Reference for more information. Returns ------- fig : Plotly graph_objects.Figure() The figure object with the plot. Example ------- >>> bearing = bearing_example() >>> fig = bearing.plot('kxx') >>> # fig.show() """ if fig is None: fig = go.Figure() if isinstance(coefficients, str): coefficients = [coefficients] # check coefficients consistency coefficients_set = set([coeff[0] for coeff in coefficients]) if len(coefficients_set) > 1: raise ValueError("Can only plot stiffness or damping in the same plot.") coeff_to_plot = coefficients_set.pop() if coeff_to_plot == "k": default_units = "N/m" y_units = stiffness_units else: default_units = "N*s/m" y_units = damping_units frequency_range = np.linspace(min(self.frequency), max(self.frequency), 30) for coeff in coefficients: y_value = ( Q_( getattr(self, f"{coeff}_interpolated")(frequency_range), default_units, ) .to(y_units) .m ) frequency_range = Q_(frequency_range, "rad/s").to(frequency_units).m fig.add_trace( go.Scatter( x=frequency_range, y=y_value, mode="lines", showlegend=False, hovertemplate=f"Frequency ({frequency_units}): %{{x:.2f}}<br> Coefficient ({y_units}): %{{y:.3e}}", ) ) fig.update_xaxes(title_text=f"Frequency ({frequency_units})") fig.update_yaxes(exponentformat="power") fig.update_layout(**kwargs) return fig def __repr__(self): """Return a string representation of a bearing element. Returns ------- A string representation of a bearing element object. Examples -------- >>> bearing = bearing_example() >>> bearing # doctest: +ELLIPSIS BearingElement(n=0, n_link=None, kxx=[... """ return ( f"{self.__class__.__name__}" f"(n={self.n}, n_link={self.n_link},\n" f" kxx={self.kxx}, kxy={self.kxy},\n" f" kyx={self.kyx}, kyy={self.kyy},\n" f" cxx={self.cxx}, cxy={self.cxy},\n" f" cyx={self.cyx}, cyy={self.cyy},\n" f" frequency={self.frequency}, tag={self.tag!r})" ) def __eq__(self, other): """Equality method for comparasions. Parameters ---------- other: object The second object to be compared with. Returns ------- bool True if the comparison is true; False otherwise. Examples -------- >>> bearing1 = bearing_example() >>> bearing2 = bearing_example() >>> bearing1 == bearing2 True """ compared_attributes = [ "kxx", "kyy", "kxy", "kyx", "cxx", "cyy", "cxy", "cyx", "frequency", ] if isinstance(other, self.__class__): init_args = [] for arg in signature(self.__init__).parameters: if arg not in ["kwargs"]: init_args.append(arg) init_args_comparison = [] for arg in init_args: comparison = getattr(self, arg) == getattr(other, arg) try: comparison = all(comparison) except TypeError: pass init_args_comparison.append(comparison) init_args_comparison = all(init_args_comparison) attributes_comparison = all( ( ( np.array(getattr(self, attr)) == np.array(getattr(other, attr)) ).all() for attr in compared_attributes ) ) return init_args_comparison and attributes_comparison return False def __hash__(self): return hash(self.tag) def save(self, file): try: data = toml.load(file) except FileNotFoundError: data = {} # save initialization args and coefficients args = list(signature(self.__init__).parameters) args += [ "kxx", "kyy", "kxy", "kyx", "cxx", "cyy", "cxy", "cyx", ] brg_data = {} for arg in args: if arg not in ["kwargs"]: brg_data[arg] = self.__dict__[arg] # change np.array to lists so that we can save in .toml as list(floats) for k, v in brg_data.items(): if isinstance(v, np.generic): brg_data[k] = brg_data[k].item() elif isinstance(v, np.ndarray): brg_data[k] = brg_data[k].tolist() # case for a container with np.float (e.g. list(np.float)) else: try: brg_data[k] = [i.item() for i in brg_data[k]] except (TypeError, AttributeError): pass data[f"{self.__class__.__name__}_{self.tag}"] = brg_data with open(file, "w") as f: toml.dump(data, f) def dof_mapping(self): """Degrees of freedom mapping. Returns a dictionary with a mapping between degree of freedom and its index. Returns ------- dof_mapping : dict A dictionary containing the degrees of freedom and their indexes. Examples -------- The numbering of the degrees of freedom for each node. Being the following their ordering for a node: x_0 - horizontal translation y_0 - vertical translation >>> bearing = bearing_example() >>> bearing.dof_mapping() {'x_0': 0, 'y_0': 1} """ return dict(x_0=0, y_0=1) def M(self): """Mass matrix for an instance of a bearing element. This method returns the mass matrix for an instance of a bearing element. Returns ------- M : np.ndarray Mass matrix (kg). Examples -------- >>> bearing = bearing_example() >>> bearing.M() array([[0., 0.], [0., 0.]]) """ M = np.zeros_like(self.K(0)) return M def K(self, frequency): """Stiffness matrix for an instance of a bearing element. This method returns the stiffness matrix for an instance of a bearing element. Parameters ---------- frequency : float The excitation frequency (rad/s). Returns ------- K : np.ndarray A 2x2 matrix of floats containing the kxx, kxy, kyx, and kyy values. Examples -------- >>> bearing = bearing_example() >>> bearing.K(0) array([[1000000., 0.], [ 0., 800000.]]) """ kxx = self.kxx_interpolated(frequency) kyy = self.kyy_interpolated(frequency) kxy = self.kxy_interpolated(frequency) kyx = self.kyx_interpolated(frequency) K = np.array([[kxx, kxy], [kyx, kyy]]) if self.n_link is not None: # fmt: off K = np.vstack((
np.hstack([K, -K])
numpy.hstack