code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
from django.contrib import admin # Local Imports import transports.models as trans # Register your models here. @admin.register(trans.ForwardMessage) class ForwardMessageAdmin(admin.ModelAdmin): list_display = ('created','identity','text','fwrd_status','transport','url') list_filter = ('fwrd_status','transport') readonly_fields = ('created','modified')
[ "django.contrib.admin.register" ]
[((115, 151), 'django.contrib.admin.register', 'admin.register', (['trans.ForwardMessage'], {}), '(trans.ForwardMessage)\n', (129, 151), False, 'from django.contrib import admin\n')]
from tensorflow.keras.models import load_model import numpy as np import tensorflow as tf import cv2 def model_prediction(imgpath): class_names = ["Normal", "Pneumonia"] model = load_model("./xray_model_cv2") img_width = 64 img_height = 64 img = cv2.imread(imgpath) img = cv2.resize(img, (img_width, img_height), interpolation=cv2.INTER_AREA) img = np.array(img) img= np.resize(img,(img_height,img_width,3)) img = img.astype('float32') img /= 255 probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()]) img = (np.expand_dims(img,0)) prediction = probability_model.predict(img) return (class_names[np.argmax(prediction[0])], prediction[0][np.argmax(prediction[0])])
[ "numpy.argmax", "numpy.array", "numpy.resize", "tensorflow.keras.models.load_model", "numpy.expand_dims", "tensorflow.keras.layers.Softmax", "cv2.resize", "cv2.imread" ]
[((193, 223), 'tensorflow.keras.models.load_model', 'load_model', (['"""./xray_model_cv2"""'], {}), "('./xray_model_cv2')\n", (203, 223), False, 'from tensorflow.keras.models import load_model\n'), ((275, 294), 'cv2.imread', 'cv2.imread', (['imgpath'], {}), '(imgpath)\n', (285, 294), False, 'import cv2\n'), ((305, 375), 'cv2.resize', 'cv2.resize', (['img', '(img_width, img_height)'], {'interpolation': 'cv2.INTER_AREA'}), '(img, (img_width, img_height), interpolation=cv2.INTER_AREA)\n', (315, 375), False, 'import cv2\n'), ((387, 400), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (395, 400), True, 'import numpy as np\n'), ((410, 452), 'numpy.resize', 'np.resize', (['img', '(img_height, img_width, 3)'], {}), '(img, (img_height, img_width, 3))\n', (419, 452), True, 'import numpy as np\n'), ((636, 658), 'numpy.expand_dims', 'np.expand_dims', (['img', '(0)'], {}), '(img, 0)\n', (650, 658), True, 'import numpy as np\n'), ((596, 621), 'tensorflow.keras.layers.Softmax', 'tf.keras.layers.Softmax', ([], {}), '()\n', (619, 621), True, 'import tensorflow as tf\n'), ((732, 756), 'numpy.argmax', 'np.argmax', (['prediction[0]'], {}), '(prediction[0])\n', (741, 756), True, 'import numpy as np\n'), ((773, 797), 'numpy.argmax', 'np.argmax', (['prediction[0]'], {}), '(prediction[0])\n', (782, 797), True, 'import numpy as np\n')]
import asyncio import functools import time import ray import ray.util from ray import serve import os from tqdm import tqdm from transformers import AutoTokenizer, EvalPrediction from transformers.data.data_collator import ( default_data_collator, ) from torch.utils.data import DataLoader from datasets import load_metric, load_dataset from scipy.special import softmax from utils_qa import postprocess_qa_predictions from hfutils.measure import get_energy_by_group from hfutils.qa import prepare_train_features, prepare_validation_features os.environ['TOKENIZERS_PARALLELISM'] = 'false' task_name = "squad_v2" batch_size = 1 home_dir = "/mnt/raid0nvme1" tokenizer = AutoTokenizer.from_pretrained( f"{home_dir}/HuggingFace/bert-base-uncased", use_fast=True, ) pad_on_right = True max_seq_length = 384 doc_stride = 128 version_2_with_negative = True n_best_size = 20 null_score_diff_threshold = 0.0 max_answer_length = 30 output_dir = "." metric = load_metric("squad_v2") def compute_metrics(p: EvalPrediction): return metric.compute(predictions=p.predictions, references=p.label_ids) val_dataset = load_dataset(task_name)["validation"].select([x for x in range(5000)]) data_collator = default_data_collator column_names = val_dataset.column_names eval_dataset = val_dataset.map( functools.partial( prepare_validation_features, tokenizer=tokenizer, column_names=column_names ), batched=True, remove_columns=column_names, desc="Running tokenizer on training dataset", ) m = functools.partial(softmax, axis=1) eval_dataloader = DataLoader( eval_dataset.remove_columns(["example_id", "offset_mapping"]), shuffle=False, collate_fn=data_collator, batch_size=batch_size, drop_last=True ) inputs_list = [] for step, batch in enumerate(tqdm(eval_dataloader, desc="Prepare")): input_ids = batch["input_ids"].numpy() attention_mask = batch["attention_mask"].numpy() token_type_ids = batch["token_type_ids"].numpy() inputs_list.append((input_ids, token_type_ids, attention_mask)) ray.init(address="ray://172.16.58.3:10001", namespace="bert") # asyncio.run(asyncio.gather(*async_requests)) # async def main(): # handle = serve.get_deployment("hybrid-scheduler").get_handle(sync=False) # async_requests = [] # for step, input in enumerate(tqdm(inputs_list)): # response = handle.ensemble_inference.remote(input) # async_requests.append(response) # for obj in tqdm(async_requests): # ray.get(await obj) # # responses = await asyncio.gather(*async_requests) # # for obj in responses: # # print(ray.get(obj)) # asyncio.run(main()) handle = serve.get_deployment("hybrid-scheduler").get_handle() start_time = time.perf_counter() start_energy = sum(list(get_energy_by_group().values())) async_requests = [] for step, input in enumerate(tqdm(inputs_list)): response = handle.ensemble_inference.remote(input) async_requests.append(response) async_requests = ray.get(async_requests) end_energy = sum(list(get_energy_by_group().values())) end_time = time.perf_counter() print(end_energy - start_energy) print(end_time - start_time) # for idx, async_request in tqdm(enumerate(async_requests), desc=f"bsz{batch_size}-async"): # response = async_request.get_result()
[ "datasets.load_metric", "ray.serve.get_deployment", "ray.get", "tqdm.tqdm", "time.perf_counter", "functools.partial", "datasets.load_dataset", "transformers.AutoTokenizer.from_pretrained", "hfutils.measure.get_energy_by_group", "ray.init" ]
[((678, 771), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['f"""{home_dir}/HuggingFace/bert-base-uncased"""'], {'use_fast': '(True)'}), "(f'{home_dir}/HuggingFace/bert-base-uncased',\n use_fast=True)\n", (707, 771), False, 'from transformers import AutoTokenizer, EvalPrediction\n'), ((964, 987), 'datasets.load_metric', 'load_metric', (['"""squad_v2"""'], {}), "('squad_v2')\n", (975, 987), False, 'from datasets import load_metric, load_dataset\n'), ((1527, 1561), 'functools.partial', 'functools.partial', (['softmax'], {'axis': '(1)'}), '(softmax, axis=1)\n', (1544, 1561), False, 'import functools\n'), ((2064, 2125), 'ray.init', 'ray.init', ([], {'address': '"""ray://172.16.58.3:10001"""', 'namespace': '"""bert"""'}), "(address='ray://172.16.58.3:10001', namespace='bert')\n", (2072, 2125), False, 'import ray\n'), ((2750, 2769), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2767, 2769), False, 'import time\n'), ((3005, 3028), 'ray.get', 'ray.get', (['async_requests'], {}), '(async_requests)\n', (3012, 3028), False, 'import ray\n'), ((3095, 3114), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (3112, 3114), False, 'import time\n'), ((1309, 1407), 'functools.partial', 'functools.partial', (['prepare_validation_features'], {'tokenizer': 'tokenizer', 'column_names': 'column_names'}), '(prepare_validation_features, tokenizer=tokenizer,\n column_names=column_names)\n', (1326, 1407), False, 'import functools\n'), ((1804, 1841), 'tqdm.tqdm', 'tqdm', (['eval_dataloader'], {'desc': '"""Prepare"""'}), "(eval_dataloader, desc='Prepare')\n", (1808, 1841), False, 'from tqdm import tqdm\n'), ((2876, 2893), 'tqdm.tqdm', 'tqdm', (['inputs_list'], {}), '(inputs_list)\n', (2880, 2893), False, 'from tqdm import tqdm\n'), ((2682, 2722), 'ray.serve.get_deployment', 'serve.get_deployment', (['"""hybrid-scheduler"""'], {}), "('hybrid-scheduler')\n", (2702, 2722), False, 'from ray import serve\n'), ((1123, 1146), 'datasets.load_dataset', 'load_dataset', (['task_name'], {}), '(task_name)\n', (1135, 1146), False, 'from datasets import load_metric, load_dataset\n'), ((2794, 2815), 'hfutils.measure.get_energy_by_group', 'get_energy_by_group', ([], {}), '()\n', (2813, 2815), False, 'from hfutils.measure import get_energy_by_group\n'), ((3051, 3072), 'hfutils.measure.get_energy_by_group', 'get_energy_by_group', ([], {}), '()\n', (3070, 3072), False, 'from hfutils.measure import get_energy_by_group\n')]
import pandas as pd import html from bedrock.doc.relation import Relation from bedrock.doc.annotation import Annotation from bedrock.doc.token import Token from bedrock.doc.layer import Layer from bedrock.common import uima import logging from typing import Any import warnings class CAS2DataFrameConverter: def __init__(self, mapping_fns: dict = None, appending_fns: dict = None): if mapping_fns is None: self.__mapping_fns = {} else: self.__mapping_fns = mapping_fns if appending_fns is None: self.__appending_fns = {} else: self.__appending_fns = appending_fns def register_mapping_fn(self, layer_name: str, fn: Any): self.__mapping_fns[layer_name] = fn def register_appending_fn(self, layer_name: str, fn: Any): self.__appending_fns[layer_name] = fn def unregister_mapping_fn(self, layer_name: str): self.__mapping_fns[layer_name] = None def unregister_appending_fn(self, layer_name: str): self.__appending_fns[layer_name] = None # Generates panda df from the UIMA CAS: tokens, annotations, relations, uima (combined) def get_dataframes(self, cas): annotations = pd.DataFrame(columns=Annotation.COLS) relations = pd.DataFrame(columns=Relation.COLS) for element in cas.getAnnotationIndex(): layer = element.FStype.name if element.FStype.name == 'uima.cas.Sofa': cas_text = '"' + html.unescape(element.sofaString) + '"' continue if len(element.getFeatures()) >= 1: row = {} for feature_dict in element.getFeatureValsAsDictList(): for feature_name, feature_value in feature_dict.items(): if feature_name == uima.BEGIN: row[Annotation.BEGIN] = int(feature_value) elif feature_name == uima.END: row[Annotation.END] = int(feature_value) if type(feature_value) is list: if len(feature_value) > 1: # TODO handle multiple values per UIMA feature logging.warning(feature_value) continue feature_value = feature_value[0] if layer in self.__mapping_fns: row = self.__mapping_fns[layer](row, feature_name, feature_value) row[Annotation.ID] = int(element.FSid) row[Annotation.LAYER] = layer if layer in Layer.TOKEN: row[Annotation.FEATURE_VAL] = cas_text[row[Annotation.BEGIN]+1:row[Annotation.END]+1] # add the layer to the data frame if layer in self.__appending_fns: annotations, relations = self.__appending_fns[layer](row, annotations, relations) else: warnings.warn("appending function not implemented for layer: " + layer) tokens = annotations[ (annotations[Annotation.LAYER] == Layer.TOKEN) & (annotations[Annotation.FEATURE] == Token.TEXT) ][[Annotation.ID, Annotation.BEGIN, Annotation.END, Annotation.FEATURE_VAL]] tokens.reset_index(inplace=True, drop=True) tokens.rename(columns={Annotation.FEATURE_VAL: Token.TEXT}, inplace=True) pos_annotations = annotations[ (annotations[Annotation.LAYER] == Layer.POS) & (annotations[Annotation.FEATURE] == Token.POS_VALUE) ][[Annotation.BEGIN, Annotation.END, Annotation.FEATURE_VAL]] # TODO ID could be added if needed pos_annotations.rename(columns={Annotation.FEATURE_VAL: Token.POS_VALUE}, inplace=True) tokens = pd.merge(tokens, pos_annotations, on=[Annotation.BEGIN, Annotation.END], how='left') sentence_annotations = annotations[ annotations[Annotation.LAYER] == Layer.SENTENCE ][[Annotation.BEGIN]] # TODO ID could be added if needed sentence_annotations.loc[:, Token.SENT_START] = True tokens = pd.merge(tokens, sentence_annotations, on=[Annotation.BEGIN], how='left') dependency_annotations = relations[ (relations[Relation.LAYER] == Layer.DEPENDENCY) & (relations[Relation.FEATURE] == Token.DEP_TYPE) ][[Relation.BEGIN, Relation.END, Relation.FEATURE_VAL, Token.GOV_ID]] dependency_annotations.rename(columns={Annotation.FEATURE_VAL: Token.DEP_TYPE}, inplace=True) tokens = pd.merge(tokens, dependency_annotations, on=[Relation.BEGIN, Relation.END], how='left') tokens = tokens.replace({pd.np.nan: None}) # sets ID column as index annotations.set_index(Annotation.ID, inplace=True) relations.set_index(Relation.ID, inplace=True) return tokens, annotations, relations
[ "pandas.merge", "logging.warning", "html.unescape", "pandas.DataFrame", "warnings.warn" ]
[((1225, 1262), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'Annotation.COLS'}), '(columns=Annotation.COLS)\n', (1237, 1262), True, 'import pandas as pd\n'), ((1283, 1318), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'Relation.COLS'}), '(columns=Relation.COLS)\n', (1295, 1318), True, 'import pandas as pd\n'), ((3848, 3936), 'pandas.merge', 'pd.merge', (['tokens', 'pos_annotations'], {'on': '[Annotation.BEGIN, Annotation.END]', 'how': '"""left"""'}), "(tokens, pos_annotations, on=[Annotation.BEGIN, Annotation.END],\n how='left')\n", (3856, 3936), True, 'import pandas as pd\n'), ((4186, 4259), 'pandas.merge', 'pd.merge', (['tokens', 'sentence_annotations'], {'on': '[Annotation.BEGIN]', 'how': '"""left"""'}), "(tokens, sentence_annotations, on=[Annotation.BEGIN], how='left')\n", (4194, 4259), True, 'import pandas as pd\n'), ((4612, 4703), 'pandas.merge', 'pd.merge', (['tokens', 'dependency_annotations'], {'on': '[Relation.BEGIN, Relation.END]', 'how': '"""left"""'}), "(tokens, dependency_annotations, on=[Relation.BEGIN, Relation.END],\n how='left')\n", (4620, 4703), True, 'import pandas as pd\n'), ((3045, 3116), 'warnings.warn', 'warnings.warn', (["('appending function not implemented for layer: ' + layer)"], {}), "('appending function not implemented for layer: ' + layer)\n", (3058, 3116), False, 'import warnings\n'), ((1498, 1531), 'html.unescape', 'html.unescape', (['element.sofaString'], {}), '(element.sofaString)\n', (1511, 1531), False, 'import html\n'), ((2259, 2289), 'logging.warning', 'logging.warning', (['feature_value'], {}), '(feature_value)\n', (2274, 2289), False, 'import logging\n')]
# Copyright 2019 The SQLNet Company GmbH # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import json import os import numpy as np import pandas as pd from getml.placeholder import Placeholder import getml.columns as columns import getml.communication as comm # ----------------------------------------------------------------------------- class DataFrame(object): """ Data storage container for the getml engine. Args: name (str): Name of the DataFrame join_keys (List[str], optional) : Names of the columns that are the join keys. time_stamps (List[str], optional): Names of the columns that are the time stamps. Time stamps can be of type pd.Timestamp or float. If they are a float, the floating point number will be interpreted as the number of days since 1970-01-01 00:00:00. Fractions will be interpreted as fractions of a day. For instance, 2.5 will be interpreted as 1970-01-03 12:00:00. categorical (List[str], optional): Names of the columns that are categorical variables. discrete (List[str]), optional) : Names of the columns that are discrete variables. numerical (List[str]): Names of the columns that are numerical variables. targets (List[str], optional): Target variables. Will be ignored during prediction or if this is peripheral table. units (dict): Mapping of column names to units. All columns containing that column name will be assigned the unit. Columns containing the same unit can be directly compared. """ def __init__( self, name, join_keys=None, time_stamps=None, categorical=None, discrete=None, numerical=None, targets=None, units=None ): # --------------------------------------------------------------------- self.name = name self.units = units or dict() # --------------------------------------------------------------------- join_key_names = join_keys or [] time_stamp_names = time_stamps or [] categorical_names = categorical or [] discrete_names = discrete or [] numerical_names = numerical or [] target_names = targets or [] # --------------------------------------------------------------------- self.__categorical_columns = [] for i, name in enumerate(categorical_names): self.__categorical_columns.append( columns.CategoricalColumn( name=name, role="categorical", num=i, df_name=self.name ) ) # --------------------------------------------------------------------- discrete_units = self.__extract_units(discrete_names) self.__discrete_columns = [] for i, name in enumerate(discrete_names): self.__discrete_columns.append( columns.Column( name=name, unit=discrete_units[i], role="discrete", num=i, df_name=self.name ) ) # --------------------------------------------------------------------- self.__join_key_columns = [] for i, name in enumerate(join_key_names): self.__join_key_columns.append( columns.CategoricalColumn( name=name, role="join_key", num=i, df_name=self.name ) ) # --------------------------------------------------------------------- numerical_units = self.__extract_units(numerical_names) self.__numerical_columns = [] for i, name in enumerate(numerical_names): self.__numerical_columns.append( columns.Column( name=name, unit=numerical_units[i], role="numerical", num=i, df_name=self.name ) ) # --------------------------------------------------------------------- self.__target_columns = [] for i, name in enumerate(target_names): self.__target_columns.append( columns.Column( name=name, role="target", num=i, df_name=self.name ) ) # --------------------------------------------------------------------- self.__time_stamp_columns = [] for i, name in enumerate(time_stamp_names): self.__time_stamp_columns.append( columns.Column( name=name, role="time_stamp", num=i, df_name=self.name ) ) # ------------------------------------------------------------------------- def __add_categorical_column(self, col, name, role, unit): # ------------------------------------------------------ # Send command cmd = dict() cmd["type_"] = "DataFrame.add_categorical_column" cmd["name_"] = name cmd["col_"] = col.thisptr cmd["df_name_"] = self.name cmd["role_"] = role cmd["unit_"] = unit comm.send(cmd) # ------------------------------------------------------ self.refresh() # ------------------------------------------------------------------------- def __add_column(self, col, name, role, unit): # ------------------------------------------------------ # Send command cmd = dict() cmd["type_"] = "DataFrame.add_column" cmd["name_"] = name cmd["col_"] = col.thisptr cmd["df_name_"] = self.name cmd["role_"] = role cmd["unit_"] = unit comm.send(cmd) # ------------------------------------------------------ self.refresh() # ------------------------------------------------------------------------- def __check_plausibility(self, data_frame): # ------------------------------------------------------ if len(self.join_key_names) == 0: raise Exception("You need to provide at least one join key!") if len(self.time_stamp_names) == 0: raise Exception("You need to provide at least one time stamp!") if len(self.categorical_names) != len(np.unique(self.categorical_names)): raise Exception("Categorical columns not unique!") if len(self.discrete_names) != len(np.unique(self.discrete_names)): raise Exception("Discrete columns not unique!") if len(self.join_key_names) != len(np.unique(self.join_key_names)): raise Exception("Join keys not unique!") if len(self.numerical_names) != len(np.unique(self.numerical_names)): raise Exception("Numerical columns not unique!") if len(self.target_names) != len(np.unique(self.target_names)): raise Exception("Target columns not unique!") if len(self.time_stamp_names) != len(np.unique(self.time_stamp_names)): raise Exception("Time stamps not unique!") # ------------------------------------------------------ for col in self.categorical_names: if col not in data_frame.columns: raise ValueError( "Column named '" + col + "' does not exist!") for col in self.discrete_names: if col not in data_frame.columns: raise ValueError( "Column named '" + col + "' does not exist!") for col in self.join_key_names: if col not in data_frame.columns: raise ValueError( "Column named '" + col + "' does not exist!") for col in self.numerical_names: if col not in data_frame.columns: raise ValueError( "Column named '" + col + "' does not exist!") for col in self.target_names: if col not in data_frame.columns: raise ValueError( "Column named '" + col + "' does not exist!") for col in self.time_stamp_names: if col not in data_frame.columns: raise ValueError( "Column named '" + col + "' does not exist!") # ------------------------------------------------------------------------- def __close(self, s): cmd = dict() cmd["type_"] = "DataFrame.close" cmd["name_"] = self.name comm.send_string(s, json.dumps(cmd)) msg = comm.recv_string(s) if msg != "Success!": raise Exception(msg) # ------------------------------------------------------------------------- def __extract_shape(self, cmd, name): shape = cmd[name + "_shape_"] shape = np.asarray(shape).astype(np.int32) return shape.tolist() # ------------------------------------------------------------------------- def __extract_units(self, colnames): return [ self.units[col] if col in self.units else "" for col in colnames ] # ------------------------------------------------------------------------- def __get_column(self, name, columns): for col in columns: if col.name == name: return col raise Exception("Column named '" + name + "' not found.") # ------------------------------------------------------------------------- def __send_data(self, data_frame, s): for col in self.__categorical_columns: col.send( data_frame[[col.name]].values.astype(np.str), s ) for col in self.__discrete_columns: if "time stamp" in col.thisptr["unit_"]: col.send( self.__transform_timestamps( data_frame[[col.name]]), s ) else: col.send( data_frame[[col.name]].apply( pd.to_numeric, errors="coerce" ).values, s ) for col in self.__join_key_columns: col.send( data_frame[[col.name]].values.astype(np.str), s ) for col in self.__numerical_columns: if "time stamp" in col.thisptr["unit_"]: col.send( self.__transform_timestamps( data_frame[[col.name]] ), s ) else: col.send( data_frame[[col.name]].apply( pd.to_numeric, errors="coerce" ).values, s ) for col in self.__target_columns: col.send( data_frame[[col.name]].apply( pd.to_numeric, errors="raise" ).values, s ) for col in self.__time_stamp_columns: col.send( self.__transform_timestamps( data_frame[[col.name]] ), s ) # ------------------------------------------------------------------------- def __rm_col(self, name, role): # ------------------------------------------------------ # Send command cmd = dict() cmd["type_"] = "DataFrame.remove_column" cmd["name_"] = name cmd["df_name_"] = self.name cmd["role_"] = role comm.send(cmd) # ------------------------------------------------------ self.refresh() # ------------------------------------------------------------------------- def __transform_timestamps(self, time_stamps): # Transforming a time stamp using to_numeric # will result in the number of nanoseconds since # the beginning of UNIX time. There are 8.64e+13 nanoseconds # in a day. transformed = pd.DataFrame() for colname in time_stamps.columns: if pd.api.types.is_numeric_dtype(time_stamps[colname]): transformed[colname] = time_stamps[colname] else: transformed[colname] = time_stamps[[colname]].apply( pd.to_datetime, errors="coerce" ).apply( pd.to_numeric, errors="coerce" ).apply( lambda val: val / 8.64e+13 )[colname] return transformed.values # ------------------------------------------------------------------------- def add_categorical(self, col, name, unit=""): """ Adds a categorical column to the DataFrame. Args: col: The column to be added. name (str): Name of the new column in the DataFrame. unit (otional): Unit of the column. """ self.__add_categorical_column(col, name, "categorical", unit) # ------------------------------------------------------------------------- def add_discrete(self, col, name, unit=""): """ Adds a discrete column to the DataFrame. Args: col: The column to be added. name (str): Name of the new column in the DataFrame. unit (otional): Unit of the column. """ self.__add_column(col, name, "discrete", unit) # ------------------------------------------------------------------------- def add_join_key(self, col, name): """ Adds a join key column to the DataFrame. Args: col: The column to be added. name (str): Name of the new column in the DataFrame. """ self.__add_categorical_column(col, name, "join_key", "") # ------------------------------------------------------------------------- def add_numerical(self, col, name, unit=""): """ Adds a numerical column to the DataFrame. Args: col: The column to be added. name (str): Name of the new column in the DataFrame. unit (otional): Unit of the column. """ self.__add_column(col, name, "numerical", unit) # ------------------------------------------------------------------------- def add_target(self, col, name): """ Adds a target column to the DataFrame. Args: col: The column to be added. name (str): Name of the new column in the DataFrame. """ self.__add_column(col, name, "target", "") # ------------------------------------------------------------------------- def add_time_stamp(self, col, name): """ Adds a time stamp column to the DataFrame. Args: col: The column to be added. name (str): Name of the new column in the DataFrame. """ self.__add_column(col, name, "time_stamp", "") # ------------------------------------------------------------------------- def append(self, data_frame, sock=None): """Appends data to tables that already exist on the getml engine. If sock is None, it will call a function to create a new socket, use it for the data transfer and close it afterwards. If, instead, a socket is provided, it just sends all the data but does not close it. Args: data_frame (pandas.DataFrame): Table that you want to be appended to the existing data. sock (optional): Socket connecting the Python API with the getML engine. """ # ------------------------------------------------------ self.__check_plausibility(data_frame) # ------------------------------------------------------ # Create connection. cmd = dict() cmd["type_"] = "DataFrame.append" cmd["name_"] = self.name if sock is None: s = comm.send_and_receive_socket(cmd) else: s = sock comm.send_string(s, json.dumps(cmd)) # ------------------------------------------------------ # Send individual matrices to getml engine self.__send_data(data_frame, s) # ------------------------------------------------------ self.__close(s) if sock is None: s.close() return self # ------------------------------------------------------------------------- def categorical(self, name): """ Handle to a categorical column. Args: name (str): Name of the column. """ return self.__get_column(name, self.__categorical_columns) # ------------------------------------------------------------------------- @property def categorical_names(self): """ List of the names of all categorical columns. """ return [col.name for col in self.__categorical_columns] # ------------------------------------------------------------------------- def delete(self, mem_only=False): """ Deletes the data frame from the engine. Args: mem_only (bool): If True, the data frame will be deleted from memory only, but not from disk. """ # ------------------------------------------- # Send JSON command to getml engine cmd = dict() cmd["type_"] = "DataFrame.delete" cmd["name_"] = self.name cmd["mem_only_"] = mem_only comm.send(cmd) # ------------------------------------------------------------------------- def discrete(self, name): """ Returns a handle to a discrete column. Args: name (str): Name of the column. """ return self.__get_column(name, self.__discrete_columns) # ------------------------------------------------------------------------- @property def discrete_names(self): """ List of the names of all discrete columns. """ return [col.name for col in self.__discrete_columns] # ------------------------------------------------------------------------- def from_db(self, table_name, append=False): """ Fill from Database The DataFrame will be filled from a table in the database. Args: table_name(str): Table from which we want to retrieve the data. append(bool): If a DataFrame already exists, should table be appended? """ # ------------------------------------------- # Send JSON command to getml engine cmd = dict() cmd["type_"] = "DataFrame.from_db" cmd["name_"] = self.name cmd["table_name_"] = table_name cmd["categoricals_"] = self.categorical_names cmd["discretes_"] = self.discrete_names cmd["join_keys_"] = self.join_key_names cmd["numericals_"] = self.numerical_names cmd["targets_"] = self.target_names cmd["time_stamps_"] = self.time_stamp_names cmd["append_"] = append comm.send(cmd) # ------------------------------------------- return self # ------------------------------------------------------------------------- def from_json(self, json_str, append=False, time_formats=["%Y-%m-%dT%H:%M:%s%z", "%Y-%m-%d %H:%M:%S", "%Y-%m-%d"]): """ Fill from JSON Fills the data frame with data from a JSON string. Args: json_str (str): The JSON string containing the data. append (bool): If a DataFrame already exists, should json_str be appended? time_formats (str): The formats tried when parsing time stamps. Refer to https://pocoproject.org/docs/Poco.DateTimeFormatter.html#9946 for the options. """ # ------------------------------------------- # Send JSON command to getml engine cmd = dict() cmd["type_"] = "DataFrame.from_json" cmd["name_"] = self.name cmd["categoricals_"] = self.categorical_names cmd["discretes_"] = self.discrete_names cmd["join_keys_"] = self.join_key_names cmd["numericals_"] = self.numerical_names cmd["targets_"] = self.target_names cmd["time_stamps_"] = self.time_stamp_names cmd["append_"] = append cmd["time_formats_"] = time_formats s = comm.send_and_receive_socket(cmd) # ------------------------------------------- # Send the JSON string comm.send_string(s, json_str) # ------------------------------------------- # Make sure everything went well and close # connection msg = comm.recv_string(s) s.close() if msg != "Success!": raise Exception(msg) # ------------------------------------------- return self # ------------------------------------------------------------------------- def from_query(self, query, append=False): """ Fill from query Fills the data frame with data from a table in the database. Args: query: The query used to retrieve the data. append (bool): If a DataFrame already exists, should table be appended? """ # ------------------------------------------- # Send JSON command to getml engine cmd = dict() cmd["type_"] = "DataFrame.from_query" cmd["name_"] = self.name cmd["query_"] = query cmd["categoricals_"] = self.categorical_names cmd["discretes_"] = self.discrete_names cmd["join_keys_"] = self.join_key_names cmd["numericals_"] = self.numerical_names cmd["targets_"] = self.target_names cmd["time_stamps_"] = self.time_stamp_names cmd["append_"] = append comm.send(cmd) # ------------------------------------------- return self # ------------------------------------------------------------------------- def get(self): """ Get Pandas DataFrame Returns: :class:`pandas.DataFrame` """ # ------------------------------------------- # Send JSON command to getml engine cmd = dict() cmd["type_"] = "DataFrame.get" cmd["name_"] = self.name # ------------------------------------------- # Establish communication with getml engine s = comm.send_and_receive_socket(cmd) # ------------------------------------------- # Receive all columns df = pd.DataFrame() for col in self.__categorical_columns: df[col.name] = col.get(s) for col in self.__discrete_columns: df[col.name] = col.get(s) for col in self.__join_key_columns: df[col.name] = col.get(s) for col in self.__numerical_columns: df[col.name] = col.get(s) for col in self.__target_columns: df[col.name] = col.get(s) for col in self.__time_stamp_columns: df[col.name] = col.get(s) # ------------------------------------------- # Close connection self.__close(s) s.close() # ------------------------------------------- return df # ------------------------------------------------------------------------- def group_by(self, join_key, name, aggregations): """ Creates new DataFrame by grouping over a join key. Args: join_key (str): Name of the join key to group by. name (str): Name of the new DataFrame. aggregations: List containing aggregations. Returns: :class:`~getml.engine.DataFrame` """ # ---------------------------------------------------------------------- # Build command cmd = dict() cmd["name_"] = name cmd["type_"] = "DataFrame.group_by" cmd["join_key_name_"] = join_key cmd["df_name_"] = self.name cmd["aggregations_"] = [agg.thisptr for agg in aggregations] comm.send(cmd) # ---------------------------------------------------------------------- # Create handle for new data frame. new_df = DataFrame(name) return new_df.refresh() # ------------------------------------------------------------------------- def join( self, name, other, join_key, other_join_key=None, cols=None, other_cols=None, how="inner", where=None): """ Create a new DataFrame by joining this DataFrame with another DataFrame. Args: name (str): The name of the new DataFrame. other (DataFrame): The other DataFrame. join_key (str): Name of the join key in this DataFrame. other_join_key (str, optional): Name of the join key in the other table (if not identical to join_key). cols (optional): List of columns from this DataFrame to be included. If left blank, all columns from this DataFrame will be included. other_cols (optional): List of columns from the other DataFrame to be included. If left blank, all columns from the other DataFrame will be included. how (str): Type of the join. Supports "left", "right" and "inner". where (bool): Boolean column that imposes WHERE conditions on the join. """ # ------------------------------------------- # Send JSON command to getml engine cmd = dict() cmd["type_"] = "DataFrame.join" cmd["name_"] = name cmd["df1_name_"] = self.name cmd["df2_name_"] = other.name cmd["join_key_used_"] = join_key cmd["other_join_key_used_"] = other_join_key or join_key cmd["cols1_"] = cols or [] cmd["cols2_"] = other_cols or [] cmd["cols1_"] = [c.thisptr for c in cmd["cols1_"]] cmd["cols2_"] = [c.thisptr for c in cmd["cols2_"]] cmd["how_"] = how if where is not None: cmd["where_"] = where.thisptr comm.send(cmd) # ------------------------------------------- return DataFrame(name=name).refresh() # ------------------------------------------------------------------------- def join_key(self, name): """ Returns a handle to a join key. Args: name (str): Name of the join key. """ return self.__get_column(name, self.__join_key_columns) # ------------------------------------------------------------------------- @property def join_key_names(self): """ List of the names of all join keys. """ return [col.name for col in self.__join_key_columns] # ------------------------------------------------------------------------- def load(self): """ Loads the DataFrame object from the engine. """ # ---------------------------------------------------------------------- cmd = dict() cmd["type_"] = "DataFrame.load" cmd["name_"] = self.name comm.send(cmd) # ---------------------------------------------------------------------- return self.refresh() # ------------------------------------------------------------------------- def n_bytes(self): """ Returns the size of the data stored in the DataFrame in bytes. """ # ------------------------------------------------------ # Build and send JSON command cmd = dict() cmd["type_"] = "DataFrame.nbytes" cmd["name_"] = self.name s = comm.send_and_receive_socket(cmd) # ------------------------------------------------------ # Make sure model exists on getml engine msg = comm.recv_string(s) if msg != "Found!": s.close() raise Exception(msg) # ------------------------------------------------------ # Receive number of bytes from getml engine nbytes = comm.recv_string(s) # ------------------------------------------------------ s.close() return np.uint64(nbytes) # ------------------------------------------------------------------------- @property def n_categorical(self): """ Number of categorical columns. """ return len(self.__categorical_columns) # ------------------------------------------------------------------------- @property def n_discrete(self): """ Number of discrete columns. """ return len(self.__discrete_columns) # ------------------------------------------------------------------------- @property def n_join_keys(self): """ Number of join keys. """ return len(self.__join_key_columns) # ------------------------------------------------------------------------- @property def n_numerical(self): """ Number of numerical columns. """ return len(self.__numerical_columns) # ------------------------------------------------------------------------- def n_rows(self): """ Returns the number of rows in the data frame. """ # ------------------------------------------------------ # Build and send JSON command cmd = dict() cmd["type_"] = "DataFrame.nrows" cmd["name_"] = self.name s = comm.send_and_receive_socket(cmd) # ------------------------------------------------------ # Make sure model exists on getml engine msg = comm.recv_string(s) if msg != "Found!": s.close() raise Exception(msg) # ------------------------------------------------------ # Receive number of rows from getml engine nrows = comm.recv_string(s) # ------------------------------------------------------ s.close() return np.int32(nrows) # ------------------------------------------------------------------------- @property def n_targets(self): """ Number of target columns. """ return len(self.__target_columns) # ------------------------------------------------------------------------- @property def n_time_stamps(self): """ Number of time stamps columns. """ return len(self.__time_stamp_columns) # ------------------------------------------------------------------------- def numerical(self, name): """ Returns a handle to a numerical column. Args: name (str): Name of the column. """ return self.__get_column(name, self.__numerical_columns) # ------------------------------------------------------------------------- @property def numerical_names(self): """ List of the names of all numerical columns. """ return [col.name for col in self.__numerical_columns] # ------------------------------------------------------------------------- def random(self, seed=5849): """ Create random column The numbers will uniformly distributed from 0.0 to 1.0. Args: seed (int)*: Seed used for the random number generator. Returns: col (Column): Column containing random numbers """ col = columns._VirtualColumn( df_name=self.name, operator="random", operand1=None, operand2=None ) col.thisptr["seed_"] = seed return col # ------------------------------------------------------------------------- def read_csv( self, fnames, append=True, quotechar='"', sep=',', time_formats=["%Y-%m-%dT%H:%M:%s%z", "%Y-%m-%d %H:%M:%S", "%Y-%m-%d"]): """ Read CSV file It is assumed that the first line of each CSV file contains the column names. Args: fnames (List[str]): CSV file names to be read. append (bool): If a DataFrame already exists, should the file be appended? quotechar (str): The character used to wrap strings. sep (str): The separator used for separating fields. time_formats (str): The formats tried when parsing time stamps. Refer to https://pocoproject.org/docs/Poco.DateTimeFormatter.html#9946 for the options. """ # ------------------------------------------- # Transform paths fnames_ = [os.path.abspath(_) for _ in fnames] # ------------------------------------------- # Send JSON command to getml engine cmd = dict() cmd["type_"] = "DataFrame.read_csv" cmd["name_"] = self.name cmd["fnames_"] = fnames_ cmd["append_"] = append cmd["quotechar_"] = quotechar cmd["sep_"] = sep cmd["time_formats_"] = time_formats cmd["categoricals_"] = self.categorical_names cmd["discretes_"] = self.discrete_names cmd["join_keys_"] = self.join_key_names cmd["numericals_"] = self.numerical_names cmd["targets_"] = self.target_names cmd["time_stamps_"] = self.time_stamp_names comm.send(cmd) # ------------------------------------------- return self # ------------------------------------------------------------------------- def refresh(self): """ Aligns meta-information of the DataFrame with the engine. This method can be used to avoid encoding conflicts. Note that the .load() method automatically calls refresh. """ # ---------------------------------------------------------------------- cmd = dict() cmd["type_"] = "DataFrame.refresh" cmd["name_"] = self.name s = comm.send_and_receive_socket(cmd) msg = comm.recv_string(s) s.close() if msg[0] != "{": raise Exception(msg) # ---------------------------------------------------------------------- encodings = json.loads(msg) # ---------------------------------------------------------------------- # Extract colnames if encodings["categorical_"] == '': categorical = [] else: categorical = encodings["categorical_"] if encodings["discrete_"] == '': discrete = [] else: discrete = encodings["discrete_"] if encodings["join_keys_"] == '': join_keys = [] else: join_keys = encodings["join_keys_"] if encodings["numerical_"] == '': numerical = [] else: numerical = encodings["numerical_"] if encodings["targets_"] == '': targets = [] else: targets = encodings["targets_"] if encodings["time_stamps_"] == '': time_stamps = [] else: time_stamps = encodings["time_stamps_"] # ---------------------------------------------------------------------- # Re-initialize data frame self.__init__( name=self.name, join_keys=join_keys, time_stamps=time_stamps, categorical=categorical, discrete=discrete, numerical=numerical, targets=targets, units=self.units ) # ---------------------------------------------------------------------- return self # ------------------------------------------------------------------------- def rowid(self): """ Returns a (numerical) column containing the row id, starting with 0. """ return columns._VirtualColumn( df_name=self.name, operator="rowid", operand1=None, operand2=None ) # ------------------------------------------------------------------------- def save(self): """Saves the DataFrame on the engine. To be saved on the engine, it already has to be present there. You can use the :meth:`~getml.engine.DataFrame.send` function to upload it to the engine. Returns: :class:`~getml.engine.DataFrame`: The current instance of the DataFrame class. """ cmd = dict() cmd["type_"] = "DataFrame.save" cmd["name_"] = self.name comm.send(cmd) return self # ------------------------------------------------------------------------- def rm_categorical(self, name): """ Removes a categorical column from the DataFrame. Args: name (str): Name of the column to be removed. """ self.__rm_col(name, "categorical") # ------------------------------------------------------------------------- def rm_discrete(self, name): """ Removes a discrete column from the DataFrame. Args: name (str): Name of the column to be removed. """ self.__rm_col(name, "discrete") # ------------------------------------------------------------------------- def rm_join_key(self, name): """ Removes a join key from the DataFrame. Args: name (str): Name of the column to be removed. """ self.__rm_col(name, "join_key") # ------------------------------------------------------------------------- def rm_numerical(self, name): """ Removes a numerical column from the DataFrame. Args: name (str): Name of the column to be removed. """ self.__rm_col(name, "numerical") # ------------------------------------------------------------------------- def rm_target(self, name): """ Removes a target column from the DataFrame. Args: name (str): Name of the column to be removed. """ self.__rm_col(name, "target") # ------------------------------------------------------------------------- def rm_time_stamp(self, name): """ Removes a time stamp column from the DataFrame. Args: name (str): Name of the column to be removed. """ self.__rm_col(name, "time_stamp") # ------------------------------------------------------------------------- def send(self, data_frame, sock = None): """Send data to the getml engine. If sock is None, it will call a function to create a new socket, use it for the data transfer and close it afterwards. If, instead, a socket is provided, it just sends all the data but does not close it. Args: data_frame (pandas.DataFrame): Data Frame that you want to be appended to the existing data. sock (optional): Socket connecting the Python API with the getML engine. """ # ------------------------------------------------------ if data_frame is not None: self.__check_plausibility(data_frame) # ------------------------------------------------------ # Send data frame itself cmd = dict() cmd["type_"] = "DataFrame" cmd["name_"] = self.name if sock is None: s = comm.send_and_receive_socket(cmd) else: s = sock comm.send_string(s, json.dumps(cmd)) msg = comm.recv_string(s) if msg != "Success!": raise Exception(msg) # ------------------------------------------------------ # Send individual columns to getml engine self.__send_data(data_frame, s) # ------------------------------------------------------ self.__close(s) if sock is None: s.close() return self # ------------------------------------------------------------------------- def target(self, name): """ Returns a handle to a target column. Args: name (str): Name of the column. """ return self.__get_column(name, self.__target_columns) # ------------------------------------------------------------------------- @property def target_names(self): """ List of the names of all target columns. """ return [col.name for col in self.__target_columns] # ------------------------------------------------------------------------- def time_stamp(self, name): """ Returns a handle to a time stamp column. Args: name (str): Name of the column. """ return self.__get_column(name, self.__time_stamp_columns) # ------------------------------------------------------------------------- @property def time_stamp_names(self): """ List of the names of all time stamps. """ return [col.name for col in self.__time_stamp_columns] # ------------------------------------------------------------------------- def to_csv(self, fname, quotechar='"', sep=','): """ Writes the data frame into a newly created CSV file. Args: fname (str): The name of the CSV file. quotechar (str): The character used to wrap strings. sep (str): The separator used for separating fields. """ # ---------------------------------------------------------------------- # Transform path fname_ = os.path.abspath(fname) # ---------------------------------------------------------------------- # Build command cmd = dict() cmd["type_"] = "DataFrame.to_csv" cmd["name_"] = self.name cmd["fname_"] = fname_ cmd["quotechar_"] = quotechar cmd["sep_"] = sep comm.send(cmd) # ------------------------------------------------------------------------- def to_db(self, table_name): """ Writes the data frame into a newly created table in the database. Args: table_name (str): Name of the table to be created. If a table of that name already exists, it will be replaced. """ # ---------------------------------------------------------------------- # Build command cmd = dict() cmd["type_"] = "DataFrame.to_db" cmd["name_"] = self.name cmd["table_name_"] = table_name comm.send(cmd) # ------------------------------------------------------------------------- def to_placeholder(self): """ Generates a placeholder from the data frame. """ self.refresh() return Placeholder( name=self.name, categorical=self.categorical_names, discrete=self.discrete_names, numerical=self.numerical_names, join_keys=self.join_key_names, time_stamps=self.time_stamp_names, targets=self.target_names ) # ------------------------------------------------------------------------- def where(self, name, condition): """ Creates a new DataFrame as a subselection of this one. Args: name (str): Name of the new DataFrame. condition (bool): Boolean column indicating the rows you want to select. """ # ---------------------------------------------------------------------- # Build command cmd = dict() cmd["type_"] = "DataFrame.where" cmd["name_"] = self.name cmd["new_df_"] = name cmd["condition_"] = condition.thisptr comm.send(cmd) # ---------------------------------------------------------------------- # Create handle for new data frame. new_df = DataFrame(name) return new_df.refresh() # ------------------------------------------------------------------------- # -----------------------------------------------------------------------------
[ "json.loads", "numpy.unique", "getml.columns.CategoricalColumn", "pandas.api.types.is_numeric_dtype", "getml.communication.recv_string", "numpy.int32", "getml.communication.send_and_receive_socket", "getml.communication.send", "json.dumps", "getml.columns._VirtualColumn", "numpy.asarray", "numpy.uint64", "getml.communication.send_string", "getml.columns.Column", "pandas.DataFrame", "getml.placeholder.Placeholder", "os.path.abspath" ]
[((6542, 6556), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (6551, 6556), True, 'import getml.communication as comm\n'), ((7101, 7115), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (7110, 7115), True, 'import getml.communication as comm\n'), ((9925, 9944), 'getml.communication.recv_string', 'comm.recv_string', (['s'], {}), '(s)\n', (9941, 9944), True, 'import getml.communication as comm\n'), ((13079, 13093), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (13088, 13093), True, 'import getml.communication as comm\n'), ((13538, 13552), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (13550, 13552), True, 'import pandas as pd\n'), ((19172, 19186), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (19181, 19186), True, 'import getml.communication as comm\n'), ((20779, 20793), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (20788, 20793), True, 'import getml.communication as comm\n'), ((22114, 22147), 'getml.communication.send_and_receive_socket', 'comm.send_and_receive_socket', (['cmd'], {}), '(cmd)\n', (22142, 22147), True, 'import getml.communication as comm\n'), ((22243, 22272), 'getml.communication.send_string', 'comm.send_string', (['s', 'json_str'], {}), '(s, json_str)\n', (22259, 22272), True, 'import getml.communication as comm\n'), ((22415, 22434), 'getml.communication.recv_string', 'comm.recv_string', (['s'], {}), '(s)\n', (22431, 22434), True, 'import getml.communication as comm\n'), ((23574, 23588), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (23583, 23588), True, 'import getml.communication as comm\n'), ((24188, 24221), 'getml.communication.send_and_receive_socket', 'comm.send_and_receive_socket', (['cmd'], {}), '(cmd)\n', (24216, 24221), True, 'import getml.communication as comm\n'), ((24321, 24335), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (24333, 24335), True, 'import pandas as pd\n'), ((25864, 25878), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (25873, 25878), True, 'import getml.communication as comm\n'), ((27951, 27965), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (27960, 27965), True, 'import getml.communication as comm\n'), ((28996, 29010), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (29005, 29010), True, 'import getml.communication as comm\n'), ((29538, 29571), 'getml.communication.send_and_receive_socket', 'comm.send_and_receive_socket', (['cmd'], {}), '(cmd)\n', (29566, 29571), True, 'import getml.communication as comm\n'), ((29702, 29721), 'getml.communication.recv_string', 'comm.recv_string', (['s'], {}), '(s)\n', (29718, 29721), True, 'import getml.communication as comm\n'), ((29942, 29961), 'getml.communication.recv_string', 'comm.recv_string', (['s'], {}), '(s)\n', (29958, 29961), True, 'import getml.communication as comm\n'), ((30063, 30080), 'numpy.uint64', 'np.uint64', (['nbytes'], {}), '(nbytes)\n', (30072, 30080), True, 'import numpy as np\n'), ((31418, 31451), 'getml.communication.send_and_receive_socket', 'comm.send_and_receive_socket', (['cmd'], {}), '(cmd)\n', (31446, 31451), True, 'import getml.communication as comm\n'), ((31582, 31601), 'getml.communication.recv_string', 'comm.recv_string', (['s'], {}), '(s)\n', (31598, 31601), True, 'import getml.communication as comm\n'), ((31820, 31839), 'getml.communication.recv_string', 'comm.recv_string', (['s'], {}), '(s)\n', (31836, 31839), True, 'import getml.communication as comm\n'), ((31941, 31956), 'numpy.int32', 'np.int32', (['nrows'], {}), '(nrows)\n', (31949, 31956), True, 'import numpy as np\n'), ((33417, 33511), 'getml.columns._VirtualColumn', 'columns._VirtualColumn', ([], {'df_name': 'self.name', 'operator': '"""random"""', 'operand1': 'None', 'operand2': 'None'}), "(df_name=self.name, operator='random', operand1=None,\n operand2=None)\n", (33439, 33511), True, 'import getml.columns as columns\n'), ((35351, 35365), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (35360, 35365), True, 'import getml.communication as comm\n'), ((35958, 35991), 'getml.communication.send_and_receive_socket', 'comm.send_and_receive_socket', (['cmd'], {}), '(cmd)\n', (35986, 35991), True, 'import getml.communication as comm\n'), ((36007, 36026), 'getml.communication.recv_string', 'comm.recv_string', (['s'], {}), '(s)\n', (36023, 36026), True, 'import getml.communication as comm\n'), ((36209, 36224), 'json.loads', 'json.loads', (['msg'], {}), '(msg)\n', (36219, 36224), False, 'import json\n'), ((37860, 37953), 'getml.columns._VirtualColumn', 'columns._VirtualColumn', ([], {'df_name': 'self.name', 'operator': '"""rowid"""', 'operand1': 'None', 'operand2': 'None'}), "(df_name=self.name, operator='rowid', operand1=None,\n operand2=None)\n", (37882, 37953), True, 'import getml.columns as columns\n'), ((38599, 38613), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (38608, 38613), True, 'import getml.communication as comm\n'), ((41664, 41683), 'getml.communication.recv_string', 'comm.recv_string', (['s'], {}), '(s)\n', (41680, 41683), True, 'import getml.communication as comm\n'), ((43778, 43800), 'os.path.abspath', 'os.path.abspath', (['fname'], {}), '(fname)\n', (43793, 43800), False, 'import os\n'), ((44120, 44134), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (44129, 44134), True, 'import getml.communication as comm\n'), ((44769, 44783), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (44778, 44783), True, 'import getml.communication as comm\n'), ((45016, 45249), 'getml.placeholder.Placeholder', 'Placeholder', ([], {'name': 'self.name', 'categorical': 'self.categorical_names', 'discrete': 'self.discrete_names', 'numerical': 'self.numerical_names', 'join_keys': 'self.join_key_names', 'time_stamps': 'self.time_stamp_names', 'targets': 'self.target_names'}), '(name=self.name, categorical=self.categorical_names, discrete=\n self.discrete_names, numerical=self.numerical_names, join_keys=self.\n join_key_names, time_stamps=self.time_stamp_names, targets=self.\n target_names)\n', (45027, 45249), False, 'from getml.placeholder import Placeholder\n'), ((45981, 45995), 'getml.communication.send', 'comm.send', (['cmd'], {}), '(cmd)\n', (45990, 45995), True, 'import getml.communication as comm\n'), ((9885, 9900), 'json.dumps', 'json.dumps', (['cmd'], {}), '(cmd)\n', (9895, 9900), False, 'import json\n'), ((13613, 13664), 'pandas.api.types.is_numeric_dtype', 'pd.api.types.is_numeric_dtype', (['time_stamps[colname]'], {}), '(time_stamps[colname])\n', (13642, 13664), True, 'import pandas as pd\n'), ((17566, 17599), 'getml.communication.send_and_receive_socket', 'comm.send_and_receive_socket', (['cmd'], {}), '(cmd)\n', (17594, 17599), True, 'import getml.communication as comm\n'), ((34636, 34654), 'os.path.abspath', 'os.path.abspath', (['_'], {}), '(_)\n', (34651, 34654), False, 'import os\n'), ((41531, 41564), 'getml.communication.send_and_receive_socket', 'comm.send_and_receive_socket', (['cmd'], {}), '(cmd)\n', (41559, 41564), True, 'import getml.communication as comm\n'), ((3582, 3669), 'getml.columns.CategoricalColumn', 'columns.CategoricalColumn', ([], {'name': 'name', 'role': '"""categorical"""', 'num': 'i', 'df_name': 'self.name'}), "(name=name, role='categorical', num=i, df_name=\n self.name)\n", (3607, 3669), True, 'import getml.columns as columns\n'), ((4070, 4166), 'getml.columns.Column', 'columns.Column', ([], {'name': 'name', 'unit': 'discrete_units[i]', 'role': '"""discrete"""', 'num': 'i', 'df_name': 'self.name'}), "(name=name, unit=discrete_units[i], role='discrete', num=i,\n df_name=self.name)\n", (4084, 4166), True, 'import getml.columns as columns\n'), ((4525, 4604), 'getml.columns.CategoricalColumn', 'columns.CategoricalColumn', ([], {'name': 'name', 'role': '"""join_key"""', 'num': 'i', 'df_name': 'self.name'}), "(name=name, role='join_key', num=i, df_name=self.name)\n", (4550, 4604), True, 'import getml.columns as columns\n'), ((5015, 5113), 'getml.columns.Column', 'columns.Column', ([], {'name': 'name', 'unit': 'numerical_units[i]', 'role': '"""numerical"""', 'num': 'i', 'df_name': 'self.name'}), "(name=name, unit=numerical_units[i], role='numerical', num=i,\n df_name=self.name)\n", (5029, 5113), True, 'import getml.columns as columns\n'), ((5466, 5532), 'getml.columns.Column', 'columns.Column', ([], {'name': 'name', 'role': '"""target"""', 'num': 'i', 'df_name': 'self.name'}), "(name=name, role='target', num=i, df_name=self.name)\n", (5480, 5532), True, 'import getml.columns as columns\n'), ((5881, 5951), 'getml.columns.Column', 'columns.Column', ([], {'name': 'name', 'role': '"""time_stamp"""', 'num': 'i', 'df_name': 'self.name'}), "(name=name, role='time_stamp', num=i, df_name=self.name)\n", (5895, 5951), True, 'import getml.columns as columns\n'), ((7687, 7720), 'numpy.unique', 'np.unique', (['self.categorical_names'], {}), '(self.categorical_names)\n', (7696, 7720), True, 'import numpy as np\n'), ((7830, 7860), 'numpy.unique', 'np.unique', (['self.discrete_names'], {}), '(self.discrete_names)\n', (7839, 7860), True, 'import numpy as np\n'), ((7967, 7997), 'numpy.unique', 'np.unique', (['self.join_key_names'], {}), '(self.join_key_names)\n', (7976, 7997), True, 'import numpy as np\n'), ((8098, 8129), 'numpy.unique', 'np.unique', (['self.numerical_names'], {}), '(self.numerical_names)\n', (8107, 8129), True, 'import numpy as np\n'), ((8235, 8263), 'numpy.unique', 'np.unique', (['self.target_names'], {}), '(self.target_names)\n', (8244, 8263), True, 'import numpy as np\n'), ((8370, 8402), 'numpy.unique', 'np.unique', (['self.time_stamp_names'], {}), '(self.time_stamp_names)\n', (8379, 8402), True, 'import numpy as np\n'), ((10203, 10220), 'numpy.asarray', 'np.asarray', (['shape'], {}), '(shape)\n', (10213, 10220), True, 'import numpy as np\n'), ((17667, 17682), 'json.dumps', 'json.dumps', (['cmd'], {}), '(cmd)\n', (17677, 17682), False, 'import json\n'), ((41632, 41647), 'json.dumps', 'json.dumps', (['cmd'], {}), '(cmd)\n', (41642, 41647), False, 'import json\n')]
""" Command to back-populate domain of the site the user account was created on. """ import six from django.contrib.auth.models import User # lint-amnesty, pylint: disable=imported-auth-user from django.contrib.sites.models import Site from django.core.management.base import BaseCommand, CommandError from common.djangoapps.student.models import Registration, UserAttribute CREATED_ON_SITE = 'created_on_site' class Command(BaseCommand): """ This command back-populates domain of the site the user account was created on. """ help = """This command back-populates domain of the site the user account was created on. Example: ./manage.py lms populate_created_on_site_user_attribute --users <user_id1>,<user_id2>... '--activation-keys <key1>,<key2>... --site-domain <site_domain> --settings=devstack_docker""" def add_arguments(self, parser): """ Add arguments to the command parser. """ parser.add_argument( '--users', help='Enter comma-separated user ids.', default='', type=str ) parser.add_argument( '--activation-keys', help='Enter comma-separated activation keys.', default='', type=str ) parser.add_argument( '--site-domain', help='Enter an existing site domain.', required=True ) def handle(self, *args, **options): site_domain = options['site_domain'] user_ids = options['users'].split(',') if options['users'] else [] activation_keys = options['activation_keys'].split(',') if options['activation_keys'] else [] if not user_ids and not activation_keys: raise CommandError('You must provide user ids or activation keys.') try: Site.objects.get(domain__exact=site_domain) except Site.DoesNotExist: question = "The site you specified is not configured as a Site in the system. " \ "Are you sure you want to continue? (y/n):" if str(six.moves.input(question)).lower().strip()[0] != 'y': return for user_id in user_ids: try: user = User.objects.get(id=user_id) if UserAttribute.get_user_attribute(user, CREATED_ON_SITE): self.stdout.write(f"created_on_site attribute already exists for user id: {user_id}") else: UserAttribute.set_user_attribute(user, CREATED_ON_SITE, site_domain) except User.DoesNotExist: self.stdout.write(f"This user id [{user_id}] does not exist in the system.") for key in activation_keys: try: user = Registration.objects.get(activation_key=key).user if UserAttribute.get_user_attribute(user, CREATED_ON_SITE): self.stdout.write(f"created_on_site attribute already exists for user id: {user.id}") else: UserAttribute.set_user_attribute(user, CREATED_ON_SITE, site_domain) except Registration.DoesNotExist: self.stdout.write(f"This activation key [{key}] does not exist in the system.")
[ "common.djangoapps.student.models.UserAttribute.get_user_attribute", "six.moves.input", "common.djangoapps.student.models.Registration.objects.get", "django.contrib.sites.models.Site.objects.get", "django.core.management.base.CommandError", "django.contrib.auth.models.User.objects.get", "common.djangoapps.student.models.UserAttribute.set_user_attribute" ]
[((1773, 1834), 'django.core.management.base.CommandError', 'CommandError', (['"""You must provide user ids or activation keys."""'], {}), "('You must provide user ids or activation keys.')\n", (1785, 1834), False, 'from django.core.management.base import BaseCommand, CommandError\n'), ((1861, 1904), 'django.contrib.sites.models.Site.objects.get', 'Site.objects.get', ([], {'domain__exact': 'site_domain'}), '(domain__exact=site_domain)\n', (1877, 1904), False, 'from django.contrib.sites.models import Site\n'), ((2271, 2299), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (2287, 2299), False, 'from django.contrib.auth.models import User\n'), ((2319, 2374), 'common.djangoapps.student.models.UserAttribute.get_user_attribute', 'UserAttribute.get_user_attribute', (['user', 'CREATED_ON_SITE'], {}), '(user, CREATED_ON_SITE)\n', (2351, 2374), False, 'from common.djangoapps.student.models import Registration, UserAttribute\n'), ((2870, 2925), 'common.djangoapps.student.models.UserAttribute.get_user_attribute', 'UserAttribute.get_user_attribute', (['user', 'CREATED_ON_SITE'], {}), '(user, CREATED_ON_SITE)\n', (2902, 2925), False, 'from common.djangoapps.student.models import Registration, UserAttribute\n'), ((2524, 2592), 'common.djangoapps.student.models.UserAttribute.set_user_attribute', 'UserAttribute.set_user_attribute', (['user', 'CREATED_ON_SITE', 'site_domain'], {}), '(user, CREATED_ON_SITE, site_domain)\n', (2556, 2592), False, 'from common.djangoapps.student.models import Registration, UserAttribute\n'), ((2801, 2845), 'common.djangoapps.student.models.Registration.objects.get', 'Registration.objects.get', ([], {'activation_key': 'key'}), '(activation_key=key)\n', (2825, 2845), False, 'from common.djangoapps.student.models import Registration, UserAttribute\n'), ((3075, 3143), 'common.djangoapps.student.models.UserAttribute.set_user_attribute', 'UserAttribute.set_user_attribute', (['user', 'CREATED_ON_SITE', 'site_domain'], {}), '(user, CREATED_ON_SITE, site_domain)\n', (3107, 3143), False, 'from common.djangoapps.student.models import Registration, UserAttribute\n'), ((2120, 2145), 'six.moves.input', 'six.moves.input', (['question'], {}), '(question)\n', (2135, 2145), False, 'import six\n')]
#!/usr/bin/env python from snapassist.webapp import app app.run(debug=True)
[ "snapassist.webapp.app.run" ]
[((58, 77), 'snapassist.webapp.app.run', 'app.run', ([], {'debug': '(True)'}), '(debug=True)\n', (65, 77), False, 'from snapassist.webapp import app\n')]
from vagrant_ansible_provisioner.cli import Cli def test_cli_missing_command(): assert Cli.from_args([]) == 1
[ "vagrant_ansible_provisioner.cli.Cli.from_args" ]
[((93, 110), 'vagrant_ansible_provisioner.cli.Cli.from_args', 'Cli.from_args', (['[]'], {}), '([])\n', (106, 110), False, 'from vagrant_ansible_provisioner.cli import Cli\n')]
#!/usr/bin/env python3 import argparse import base64 import greenstalk import json import os def do_save(args): client = greenstalk.Client(host=args.host, port=args.port, use="results", watch=["results"]) client.use("results") while True: job = client.reserve() current = json.loads(job.body) name = current['name'] #data = current['data'] path = os.path.join(args.o, name) print(path) #with open(path, 'wb') as fd: #fd.write(base64.decode64(data)) client.delete(job) if __name__ == '__main__': argp = argparse.ArgumentParser() argp.add_argument( "--host", help="Result pipe host") argp.add_argument( "--port", help="Result pipe port") argp.add_argument( "--pipe", help="Result pipe name") argp.add_argument( "-o", help="Output directory") args = argp.parse_args() do_save(args)
[ "greenstalk.Client", "os.path.join", "json.loads", "argparse.ArgumentParser" ]
[((128, 216), 'greenstalk.Client', 'greenstalk.Client', ([], {'host': 'args.host', 'port': 'args.port', 'use': '"""results"""', 'watch': "['results']"}), "(host=args.host, port=args.port, use='results', watch=[\n 'results'])\n", (145, 216), False, 'import greenstalk\n'), ((614, 639), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (637, 639), False, 'import argparse\n'), ((316, 336), 'json.loads', 'json.loads', (['job.body'], {}), '(job.body)\n', (326, 336), False, 'import json\n'), ((416, 442), 'os.path.join', 'os.path.join', (['args.o', 'name'], {}), '(args.o, name)\n', (428, 442), False, 'import os\n')]
from nesta.core.luigihacks.mysqldb import MySqlTarget from nesta.core.luigihacks.autobatch import AutoBatchTask from nesta.core.orms.orm_utils import setup_es, get_es_ids, get_config from nesta.packages.misc_utils.batches import split_batches, put_s3_batch from abc import abstractmethod import luigi import logging import functools class ElasticsearchTask(AutoBatchTask): '''Note: :obj:`done_ids` must be overridden with a function return all document ids which do not require processing. If you want to avoid writing that function see :obj:`LazyElasticsearchTask`. Args: routine_id (str): Label for this routine. db_config_path (str): Database config path. endpoint (str): AWS domain name of the ES endpoint. dataset (str): Name of the ES dataset. entity_type (str): Entity type, for :obj:`ElasticsearchPlus`. kwargs (dict): Any extra parameters to pass to the batchables. index (str): Override the elasticsearch config with this index. process_batch_size (int): Number of documents per batch. intermediate_bucket (str): S3 bucket where batch chunks are stored. sql_config_filename (str): SQL config path/filename in the batch task. ''' routine_id = luigi.Parameter() db_config_path = luigi.Parameter('mysqldb.config') endpoint = luigi.Parameter() dataset = luigi.Parameter() entity_type = luigi.Parameter() kwargs = luigi.DictParameter(default={}) index = luigi.Parameter(default=None) process_batch_size = luigi.IntParameter(default=5000) intermediate_bucket = luigi.Parameter('nesta-production' '-intermediate') sql_config_filename = luigi.Parameter('mysqldb.config') @property @functools.lru_cache() def _done_ids(self): return self.done_ids() @abstractmethod def done_ids(self): '''All document ids which do not require processing. If you want to avoid writing that function see :obj:`LazyElasticsearchTask`. Returns: done_ids (set): A set of document ids, not to be processed. ''' pass def output(self): '''Points to the output database engine''' _id = self.routine_id db_config = get_config(self.db_config_path, "mysqldb") db_config["database"] = ('dev' if self.test else 'production') db_config["table"] = f"{_id} <dummy>" # Fake table update_id = f"{_id}_ElasticsearchTask" return MySqlTarget(update_id=update_id, **db_config) def prepare(self): '''Chunk up elasticsearch data, and submit batch jobs over those chunks.''' if self.test: self.process_batch_size = 1000 logging.warning("Batch size restricted to " f"{self.process_batch_size}" " while in test mode") # Setup elasticsearch and extract all ids es, es_config = setup_es(endpoint=self.endpoint, dataset=self.dataset, production=not self.test, drop_and_recreate=False, increment_version=False) ids = get_es_ids(es, es_config, size=10000) # All ids in this index ids = ids - self._done_ids # Don't repeat done ids # Override the default index if specified es_config['index'] = (self.index if self.index is not None else es_config['index']) # Generate the job params job_params = [] batches = split_batches(ids, self.process_batch_size) for count, batch in enumerate(batches, 1): done = False # Already taken care of with _done_ids # write batch of ids to s3 batch_file = '' if not done: batch_file = put_s3_batch(batch, self.intermediate_bucket, self.routine_id) params = { "batch_file": batch_file, "config": self.sql_config_filename, "bucket": self.intermediate_bucket, "done": done, "count": len(ids), 'outinfo': es_config['host'], 'out_port': es_config['port'], 'index': es_config['index'], 'out_type': es_config['type'], 'aws_auth_region': es_config['region'], 'test': self.test, 'routine_id': self.routine_id, 'entity_type': self.entity_type, **self.kwargs } job_params.append(params) # Test mode if self.test and count > 1: logging.warning("Breaking after 2 batches " "while in test mode.") logging.warning(job_params) break # Done logging.info("Batch preparation completed, " f"with {len(job_params)} batches") return job_params def combine(self, job_params): '''Touch the checkpoint''' self.output().touch() class LazyElasticsearchTask(ElasticsearchTask): '''Same as ElasticsearchTask, except no done_ids''' def done_ids(self): return set()
[ "nesta.core.orms.orm_utils.get_es_ids", "luigi.IntParameter", "luigi.DictParameter", "nesta.core.luigihacks.mysqldb.MySqlTarget", "nesta.core.orms.orm_utils.setup_es", "logging.warning", "nesta.packages.misc_utils.batches.put_s3_batch", "nesta.packages.misc_utils.batches.split_batches", "nesta.core.orms.orm_utils.get_config", "functools.lru_cache", "luigi.Parameter" ]
[((1263, 1280), 'luigi.Parameter', 'luigi.Parameter', ([], {}), '()\n', (1278, 1280), False, 'import luigi\n'), ((1302, 1335), 'luigi.Parameter', 'luigi.Parameter', (['"""mysqldb.config"""'], {}), "('mysqldb.config')\n", (1317, 1335), False, 'import luigi\n'), ((1351, 1368), 'luigi.Parameter', 'luigi.Parameter', ([], {}), '()\n', (1366, 1368), False, 'import luigi\n'), ((1383, 1400), 'luigi.Parameter', 'luigi.Parameter', ([], {}), '()\n', (1398, 1400), False, 'import luigi\n'), ((1419, 1436), 'luigi.Parameter', 'luigi.Parameter', ([], {}), '()\n', (1434, 1436), False, 'import luigi\n'), ((1450, 1481), 'luigi.DictParameter', 'luigi.DictParameter', ([], {'default': '{}'}), '(default={})\n', (1469, 1481), False, 'import luigi\n'), ((1494, 1523), 'luigi.Parameter', 'luigi.Parameter', ([], {'default': 'None'}), '(default=None)\n', (1509, 1523), False, 'import luigi\n'), ((1549, 1581), 'luigi.IntParameter', 'luigi.IntParameter', ([], {'default': '(5000)'}), '(default=5000)\n', (1567, 1581), False, 'import luigi\n'), ((1608, 1656), 'luigi.Parameter', 'luigi.Parameter', (['"""nesta-production-intermediate"""'], {}), "('nesta-production-intermediate')\n", (1623, 1656), False, 'import luigi\n'), ((1728, 1761), 'luigi.Parameter', 'luigi.Parameter', (['"""mysqldb.config"""'], {}), "('mysqldb.config')\n", (1743, 1761), False, 'import luigi\n'), ((1782, 1803), 'functools.lru_cache', 'functools.lru_cache', ([], {}), '()\n', (1801, 1803), False, 'import functools\n'), ((2298, 2340), 'nesta.core.orms.orm_utils.get_config', 'get_config', (['self.db_config_path', '"""mysqldb"""'], {}), "(self.db_config_path, 'mysqldb')\n", (2308, 2340), False, 'from nesta.core.orms.orm_utils import setup_es, get_es_ids, get_config\n'), ((2567, 2612), 'nesta.core.luigihacks.mysqldb.MySqlTarget', 'MySqlTarget', ([], {'update_id': 'update_id'}), '(update_id=update_id, **db_config)\n', (2578, 2612), False, 'from nesta.core.luigihacks.mysqldb import MySqlTarget\n'), ((3033, 3168), 'nesta.core.orms.orm_utils.setup_es', 'setup_es', ([], {'endpoint': 'self.endpoint', 'dataset': 'self.dataset', 'production': '(not self.test)', 'drop_and_recreate': '(False)', 'increment_version': '(False)'}), '(endpoint=self.endpoint, dataset=self.dataset, production=not self.\n test, drop_and_recreate=False, increment_version=False)\n', (3041, 3168), False, 'from nesta.core.orms.orm_utils import setup_es, get_es_ids, get_config\n'), ((3310, 3347), 'nesta.core.orms.orm_utils.get_es_ids', 'get_es_ids', (['es', 'es_config'], {'size': '(10000)'}), '(es, es_config, size=10000)\n', (3320, 3347), False, 'from nesta.core.orms.orm_utils import setup_es, get_es_ids, get_config\n'), ((3683, 3726), 'nesta.packages.misc_utils.batches.split_batches', 'split_batches', (['ids', 'self.process_batch_size'], {}), '(ids, self.process_batch_size)\n', (3696, 3726), False, 'from nesta.packages.misc_utils.batches import split_batches, put_s3_batch\n'), ((2806, 2900), 'logging.warning', 'logging.warning', (['f"""Batch size restricted to {self.process_batch_size} while in test mode"""'], {}), "(\n f'Batch size restricted to {self.process_batch_size} while in test mode')\n", (2821, 2900), False, 'import logging\n'), ((3964, 4026), 'nesta.packages.misc_utils.batches.put_s3_batch', 'put_s3_batch', (['batch', 'self.intermediate_bucket', 'self.routine_id'], {}), '(batch, self.intermediate_bucket, self.routine_id)\n', (3976, 4026), False, 'from nesta.packages.misc_utils.batches import split_batches, put_s3_batch\n'), ((4879, 4942), 'logging.warning', 'logging.warning', (['"""Breaking after 2 batches while in test mode."""'], {}), "('Breaking after 2 batches while in test mode.')\n", (4894, 4942), False, 'import logging\n'), ((4994, 5021), 'logging.warning', 'logging.warning', (['job_params'], {}), '(job_params)\n', (5009, 5021), False, 'import logging\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-04-30 04:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cq', '0003_event_aggregate_type'), ] operations = [ migrations.AddField( model_name='event', name='revision', field=models.PositiveIntegerField(default=1), ), ]
[ "django.db.models.PositiveIntegerField" ]
[((395, 433), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(1)'}), '(default=1)\n', (422, 433), False, 'from django.db import migrations, models\n')]
# IMPORTATION STANDARD import json import logging # IMPORTATION THIRD PARTY import grpc from google.protobuf.empty_pb2 import Empty # from google.protobuf.wrappers_pb2 import * # IMPORTATION INTERNAL from degiro_connector.quotecast.models.quotecast_pb2 import Chart, Quotecast from degiro_connector.quotecast.models.quotecast_relay_pb2 import Config from degiro_connector.quotecast.models.quotecast_relay_pb2_grpc import ( QuotecastRelayStub, ) # SETUP LOGS logging.basicConfig(level=logging.DEBUG) # SETUP CONFIG DICT with open("config/config.json") as config_file: config_dict = json.load(config_file) # SETUP CREDENTIALS user_token = config_dict.get("user_token") # SETUP RELAY relay_channel = grpc.insecure_channel("localhost:50051") relay_stub = QuotecastRelayStub(channel=relay_channel) # RESPONSES DICT responses = dict() # CALL : set_config config = Config() config.user_token = user_token config.auto_connect = True responses["set_config"] = relay_stub.set_config(request=config) # CALL : connect responses["connect"] = relay_stub.connect(request=Empty()) # CALL : subscribe request = Quotecast.Request() request.subscriptions["AAPL.BATS,E"].extend( [ "LastDate", "LastTime", "LastPrice", "LastVolume", "AskPrice", "BidPrice", ] ) responses["subscribe"] = relay_stub.subscribe(request=request) # CALL : fetch_data responses["fetch_data"] = relay_stub.fetch_data(request=Empty()) # CALL : get_chart request = Chart.Request() request.requestid = "1" request.resolution = Chart.Interval.PT1M request.culture = "fr-FR" request.series.append("issueid:360148977") request.series.append("price:issueid:360148977") request.series.append("ohlc:issueid:360148977") request.series.append("volume:issueid:360148977") request.period = Chart.Interval.P1D request.tz = "Europe/Paris" responses["get_chart"] = relay_stub.get_chart( request=request, ) # DISPLAY RESPONSES DICT print(responses)
[ "logging.basicConfig", "degiro_connector.quotecast.models.quotecast_relay_pb2_grpc.QuotecastRelayStub", "grpc.insecure_channel", "degiro_connector.quotecast.models.quotecast_pb2.Chart.Request", "google.protobuf.empty_pb2.Empty", "degiro_connector.quotecast.models.quotecast_relay_pb2.Config", "json.load", "degiro_connector.quotecast.models.quotecast_pb2.Quotecast.Request" ]
[((466, 506), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (485, 506), False, 'import logging\n'), ((712, 752), 'grpc.insecure_channel', 'grpc.insecure_channel', (['"""localhost:50051"""'], {}), "('localhost:50051')\n", (733, 752), False, 'import grpc\n'), ((767, 808), 'degiro_connector.quotecast.models.quotecast_relay_pb2_grpc.QuotecastRelayStub', 'QuotecastRelayStub', ([], {'channel': 'relay_channel'}), '(channel=relay_channel)\n', (785, 808), False, 'from degiro_connector.quotecast.models.quotecast_relay_pb2_grpc import QuotecastRelayStub\n'), ((876, 884), 'degiro_connector.quotecast.models.quotecast_relay_pb2.Config', 'Config', ([], {}), '()\n', (882, 884), False, 'from degiro_connector.quotecast.models.quotecast_relay_pb2 import Config\n'), ((1115, 1134), 'degiro_connector.quotecast.models.quotecast_pb2.Quotecast.Request', 'Quotecast.Request', ([], {}), '()\n', (1132, 1134), False, 'from degiro_connector.quotecast.models.quotecast_pb2 import Chart, Quotecast\n'), ((1498, 1513), 'degiro_connector.quotecast.models.quotecast_pb2.Chart.Request', 'Chart.Request', ([], {}), '()\n', (1511, 1513), False, 'from degiro_connector.quotecast.models.quotecast_pb2 import Chart, Quotecast\n'), ((594, 616), 'json.load', 'json.load', (['config_file'], {}), '(config_file)\n', (603, 616), False, 'import json\n'), ((1076, 1083), 'google.protobuf.empty_pb2.Empty', 'Empty', ([], {}), '()\n', (1081, 1083), False, 'from google.protobuf.empty_pb2 import Empty\n'), ((1458, 1465), 'google.protobuf.empty_pb2.Empty', 'Empty', ([], {}), '()\n', (1463, 1465), False, 'from google.protobuf.empty_pb2 import Empty\n')]
"""Unit tests XACML Context handler. This PIP presents a SAML interface for its Policy Enforcement Point and has a SAML interface to query a remote attribute authority for attributes """ __author__ = "<NAME>" __date__ = "13/08/10" __copyright__ = "(C) 2010 Science and Technology Facilities Council" __license__ = "BSD - see LICENSE file in top-level directory" __contact__ = "<EMAIL>" __revision__ = '$Id$' import logging logging.basicConfig(level=logging.DEBUG) log = logging.getLogger(__name__) from os import path import unittest from configparser import SafeConfigParser from ndg.security.server.test.base import BaseTestCase from ndg.security.server.xacml.ctx_handler.saml_ctx_handler import SamlCtxHandler class SamlCtxHandlerTestCase(BaseTestCase): """Test XACML Context handler. This PIP presents a SAML interface for its Policy Enforcement Point and has a SAML interface to query a remote attribute authority for attributes """ THIS_DIR = path.abspath(path.dirname(__file__)) CONFIG_FILENAME = 'saml_ctx_handler.cfg' CONFIG_FILEPATH = path.join(THIS_DIR, CONFIG_FILENAME) def test01Init(self): handler = SamlCtxHandler() self.assertTrue(handler) def test02InitFromConfigFile(self): # Initialise from settings in a config file handler = SamlCtxHandler.fromConfig(self.__class__.CONFIG_FILEPATH) self.assertTrue(handler) self.assertTrue(handler.policyFilePath) def test03InitFromKeywords(self): # Initialise from a dictionary # Populate by reading from the config file cfg = SafeConfigParser(defaults={'here': self.__class__.THIS_DIR}) cfg.optionxform = str cfg.read(self.__class__.CONFIG_FILEPATH) kw = dict(cfg.items('DEFAULT')) handler = SamlCtxHandler.fromKeywords(**kw) self.assertTrue(handler) self.assertTrue(handler.pip.attributeQuery) self.assertTrue(handler.policyFilePath) self.assertTrue(handler.issuerName) self.assertTrue(handler.issuerFormat) self.assertTrue(handler.assertionLifetime) self.assertTrue(handler.xacmlExtFunc) if __name__ == "__main__": unittest.main()
[ "logging.basicConfig", "logging.getLogger", "ndg.security.server.xacml.ctx_handler.saml_ctx_handler.SamlCtxHandler", "ndg.security.server.xacml.ctx_handler.saml_ctx_handler.SamlCtxHandler.fromKeywords", "os.path.join", "os.path.dirname", "ndg.security.server.xacml.ctx_handler.saml_ctx_handler.SamlCtxHandler.fromConfig", "unittest.main", "configparser.SafeConfigParser" ]
[((425, 465), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (444, 465), False, 'import logging\n'), ((472, 499), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (489, 499), False, 'import logging\n'), ((1081, 1117), 'os.path.join', 'path.join', (['THIS_DIR', 'CONFIG_FILENAME'], {}), '(THIS_DIR, CONFIG_FILENAME)\n', (1090, 1117), False, 'from os import path\n'), ((2249, 2264), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2262, 2264), False, 'import unittest\n'), ((990, 1012), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (1002, 1012), False, 'from os import path\n'), ((1171, 1187), 'ndg.security.server.xacml.ctx_handler.saml_ctx_handler.SamlCtxHandler', 'SamlCtxHandler', ([], {}), '()\n', (1185, 1187), False, 'from ndg.security.server.xacml.ctx_handler.saml_ctx_handler import SamlCtxHandler\n'), ((1340, 1397), 'ndg.security.server.xacml.ctx_handler.saml_ctx_handler.SamlCtxHandler.fromConfig', 'SamlCtxHandler.fromConfig', (['self.__class__.CONFIG_FILEPATH'], {}), '(self.__class__.CONFIG_FILEPATH)\n', (1365, 1397), False, 'from ndg.security.server.xacml.ctx_handler.saml_ctx_handler import SamlCtxHandler\n'), ((1639, 1699), 'configparser.SafeConfigParser', 'SafeConfigParser', ([], {'defaults': "{'here': self.__class__.THIS_DIR}"}), "(defaults={'here': self.__class__.THIS_DIR})\n", (1655, 1699), False, 'from configparser import SafeConfigParser\n'), ((1846, 1879), 'ndg.security.server.xacml.ctx_handler.saml_ctx_handler.SamlCtxHandler.fromKeywords', 'SamlCtxHandler.fromKeywords', ([], {}), '(**kw)\n', (1873, 1879), False, 'from ndg.security.server.xacml.ctx_handler.saml_ctx_handler import SamlCtxHandler\n')]
import torch import torch.nn.functional as F from math import exp import numpy as np # https://github.com/jorge-pessoa/pytorch-msssim # https://github.com/Po-Hsun-Su/pytorch-ssim def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) # gauss.requires_grad = True return gauss/gauss.sum() def create_window(window_size): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = _2D_window.expand(1, 1, window_size, window_size).contiguous() return window def ssim(img1, img2, window_size=11, size_average=True, full=False, val_range=None): # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh). if val_range is None: if torch.max(img1) > 128: max_val = 255 else: max_val = 1 if torch.min(img1) < -0.5: min_val = -1 else: min_val = 0 L = max_val - min_val else: L = val_range padd = 0 (_, channels, height, width) = img1.size() real_size = min(window_size, height, width) window = create_window(real_size) ret_channels = [] cs_channels = [] for ch in range(channels): # loop over channels, then average img1_ch = torch.unsqueeze(img1[:, ch, :, :], 1) img2_ch = torch.unsqueeze(img2[:, ch, :, :], 1) mu1 = F.conv2d(img1_ch, window, padding=padd) mu2 = F.conv2d(img2_ch, window, padding=padd) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1_ch * img1_ch, window, padding=padd) - mu1_sq sigma2_sq = F.conv2d(img2_ch * img2_ch, window, padding=padd) - mu2_sq sigma12 = F.conv2d(img1_ch * img2_ch, window, padding=padd) - mu1_mu2 C1 = (0.01 * L) ** 2 C2 = (0.03 * L) ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) v1 = 2.0 * sigma12 + C2 v2 = sigma1_sq + sigma2_sq + C2 cs = torch.mean(v1 / v2) # contrast sensitivity if size_average: ret = ssim_map.mean() else: ret = ssim_map.mean(1).mean(1).mean(1) cs_channels.append(cs) ret_channels.append(ret) cs_mean = torch.mean(torch.stack(cs_channels), dim=-1) ret_mean = torch.mean(torch.stack(ret_channels), dim=-1) if full: return ret_mean, cs_mean return ret_mean def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False): device = img1.device weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device) levels = weights.size()[0] mssim = [] mcs = [] for _ in range(levels): sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range) mssim.append(sim) mcs.append(cs) img1 = F.avg_pool2d(img1, (2, 2)) img2 = F.avg_pool2d(img2, (2, 2)) mssim = torch.stack(mssim) mcs = torch.stack(mcs) if normalize: # Normalize (to avoid NaNs) mssim = (mssim + 1) / 2 mcs = (mcs + 1) / 2 pow1 = mcs ** weights pow2 = mssim ** weights # output = torch.prod(pow1 * pow2) # From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/ output = torch.prod(pow1[:-1] * pow2[-1]) return output
[ "torch.nn.functional.conv2d", "torch.mean", "torch.unsqueeze", "torch.stack", "torch.max", "torch.nn.functional.avg_pool2d", "torch.min", "torch.prod", "torch.FloatTensor" ]
[((3158, 3176), 'torch.stack', 'torch.stack', (['mssim'], {}), '(mssim)\n', (3169, 3176), False, 'import torch\n'), ((3187, 3203), 'torch.stack', 'torch.stack', (['mcs'], {}), '(mcs)\n', (3198, 3203), False, 'import torch\n'), ((3510, 3542), 'torch.prod', 'torch.prod', (['(pow1[:-1] * pow2[-1])'], {}), '(pow1[:-1] * pow2[-1])\n', (3520, 3542), False, 'import torch\n'), ((1390, 1427), 'torch.unsqueeze', 'torch.unsqueeze', (['img1[:, ch, :, :]', '(1)'], {}), '(img1[:, ch, :, :], 1)\n', (1405, 1427), False, 'import torch\n'), ((1446, 1483), 'torch.unsqueeze', 'torch.unsqueeze', (['img2[:, ch, :, :]', '(1)'], {}), '(img2[:, ch, :, :], 1)\n', (1461, 1483), False, 'import torch\n'), ((1498, 1537), 'torch.nn.functional.conv2d', 'F.conv2d', (['img1_ch', 'window'], {'padding': 'padd'}), '(img1_ch, window, padding=padd)\n', (1506, 1537), True, 'import torch.nn.functional as F\n'), ((1552, 1591), 'torch.nn.functional.conv2d', 'F.conv2d', (['img2_ch', 'window'], {'padding': 'padd'}), '(img2_ch, window, padding=padd)\n', (1560, 1591), True, 'import torch.nn.functional as F\n'), ((2179, 2198), 'torch.mean', 'torch.mean', (['(v1 / v2)'], {}), '(v1 / v2)\n', (2189, 2198), False, 'import torch\n'), ((2439, 2463), 'torch.stack', 'torch.stack', (['cs_channels'], {}), '(cs_channels)\n', (2450, 2463), False, 'import torch\n'), ((2499, 2524), 'torch.stack', 'torch.stack', (['ret_channels'], {}), '(ret_channels)\n', (2510, 2524), False, 'import torch\n'), ((3076, 3102), 'torch.nn.functional.avg_pool2d', 'F.avg_pool2d', (['img1', '(2, 2)'], {}), '(img1, (2, 2))\n', (3088, 3102), True, 'import torch.nn.functional as F\n'), ((3118, 3144), 'torch.nn.functional.avg_pool2d', 'F.avg_pool2d', (['img2', '(2, 2)'], {}), '(img2, (2, 2))\n', (3130, 3144), True, 'import torch.nn.functional as F\n'), ((866, 881), 'torch.max', 'torch.max', (['img1'], {}), '(img1)\n', (875, 881), False, 'import torch\n'), ((965, 980), 'torch.min', 'torch.min', (['img1'], {}), '(img1)\n', (974, 980), False, 'import torch\n'), ((1698, 1747), 'torch.nn.functional.conv2d', 'F.conv2d', (['(img1_ch * img1_ch)', 'window'], {'padding': 'padd'}), '(img1_ch * img1_ch, window, padding=padd)\n', (1706, 1747), True, 'import torch.nn.functional as F\n'), ((1777, 1826), 'torch.nn.functional.conv2d', 'F.conv2d', (['(img2_ch * img2_ch)', 'window'], {'padding': 'padd'}), '(img2_ch * img2_ch, window, padding=padd)\n', (1785, 1826), True, 'import torch.nn.functional as F\n'), ((1854, 1903), 'torch.nn.functional.conv2d', 'F.conv2d', (['(img1_ch * img2_ch)', 'window'], {'padding': 'padd'}), '(img1_ch * img2_ch, window, padding=padd)\n', (1862, 1903), True, 'import torch.nn.functional as F\n'), ((2734, 2793), 'torch.FloatTensor', 'torch.FloatTensor', (['[0.0448, 0.2856, 0.3001, 0.2363, 0.1333]'], {}), '([0.0448, 0.2856, 0.3001, 0.2363, 0.1333])\n', (2751, 2793), False, 'import torch\n')]
""" Utilizes pretrained MTCNN model. References ---------- 1. Weights and implementation: https://github.com/ipazc/mtcnn 2. Original paper: https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf """ from typing import List import cv2 import numpy as np from mtcnn import MTCNN from application.models.detectors.DetectorInterface import DetectorInterface class MTCNNDetector(DetectorInterface): def __init__(self): self.mtcnn = MTCNN() self.name = "mtcnn" def preprocess_frame(self, frame: np.ndarray) -> np.ndarray: """Overrides DetectorInterface.preprocess_frame()""" return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) def detect_faces(self, frame: np.ndarray) -> List[List[int]]: """Overrides DetectorInterface.detect_faces()""" res = self.mtcnn.detect_faces(frame) boxes = [face["box"] for face in res] return boxes
[ "cv2.cvtColor", "mtcnn.MTCNN" ]
[((469, 476), 'mtcnn.MTCNN', 'MTCNN', ([], {}), '()\n', (474, 476), False, 'from mtcnn import MTCNN\n'), ((660, 698), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2RGB'], {}), '(frame, cv2.COLOR_BGR2RGB)\n', (672, 698), False, 'import cv2\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2020 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type import pytest from ansible.module_utils.common.process import get_bin_path def test_get_bin_path(mocker): path = '/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin' mocker.patch.dict('os.environ', {'PATH': path}) mocker.patch('os.pathsep', ':') mocker.patch('os.path.isdir', return_value=False) mocker.patch('ansible.module_utils.common.process.is_executable', return_value=True) # pytest-mock 2.0.0 will throw when os.path.exists is messed with # and then another method is patched afterwards. Likely # something in the pytest-mock chain uses os.path.exists internally, and # since pytest-mock prohibits context-specific patching, there's not a # good solution. For now, just patch os.path.exists last. mocker.patch('os.path.exists', side_effect=[False, True]) assert '/usr/local/bin/notacommand' == get_bin_path('notacommand') def test_get_path_path_raise_valueerror(mocker): mocker.patch.dict('os.environ', {'PATH': ''}) mocker.patch('os.path.exists', return_value=False) mocker.patch('os.path.isdir', return_value=False) mocker.patch('ansible.module_utils.common.process.is_executable', return_value=True) with pytest.raises(ValueError, match='Failed to find required executable notacommand'): get_bin_path('notacommand')
[ "pytest.raises", "ansible.module_utils.common.process.get_bin_path" ]
[((1108, 1135), 'ansible.module_utils.common.process.get_bin_path', 'get_bin_path', (['"""notacommand"""'], {}), "('notacommand')\n", (1120, 1135), False, 'from ansible.module_utils.common.process import get_bin_path\n'), ((1446, 1532), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Failed to find required executable notacommand"""'}), "(ValueError, match=\n 'Failed to find required executable notacommand')\n", (1459, 1532), False, 'import pytest\n'), ((1537, 1564), 'ansible.module_utils.common.process.get_bin_path', 'get_bin_path', (['"""notacommand"""'], {}), "('notacommand')\n", (1549, 1564), False, 'from ansible.module_utils.common.process import get_bin_path\n')]
import os import hashlib import sys from functools import partial def hashItOut(file): hashObj = hashlib.md5() done= False; with open(file, 'rb') as file: while not done: block = file.read(1024) if block: hashObj.update(block) else: hashValue = hashObj.hexdigest().upper() done = True return hashValue def main(): # get file to hash and verifies it exists inputFile = input("Enter the path and file you wish to hash") # hash type MD5 hashType = None hashValueFinal = None done = False inputFile = inputFile.lstrip().strip() hashValueFinal = hashItOut(inputFile) print("File >> ", inputFile, " > hash value: ", hashValueFinal) print("Creating image file") outputFile = input("Enter the name of the ouput file: ") print("writing bytes to new file") # with open(inputFile, "rb") as f1, open (outputFile, "wb") as f2: # # size= f1.__sizeof__() # print("Bytes in inputfile >> ", size) # # bytesLeft = size # print("Both files opened in binary form") # for _bytes in iter(partial(f1.read, 1024), ''): # # #print("Bytes Left >> ",bytesLeft) # print("copying bytes") # f2.write(_bytes) # print(f2.__sizeof__()) # # bytesLeft -= 1024 # f2.close() with open(inputFile, "rb") as f1: with open(outputFile, "wb") as f2: while True: b = f1.read(1024) if b: f2.write(b) else: break f1.close() f2.close() secondHash = hashItOut(outputFile) print("First file >> ",inputFile, " MD5 >> ",hashValueFinal) print("Second file >> ",outputFile," MD5 >> ",secondHash) if hashValueFinal == secondHash: print("Hash values match") else: print("Hash values dont match") if __name__ == '__main__': main()
[ "hashlib.md5" ]
[((105, 118), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (116, 118), False, 'import hashlib\n')]
import time, sys import numpy as np import matplotlib.pyplot as plt sys.path.append('../../') from py2Periodic.physics import twoDimTurbulence from numpy import pi # Instantiate a model for two-dimensional turbulence. turb = twoDimTurbulence.model( nx = 128, Lx = 2.0*pi, dt = 1e-2, nThreads = 1, timeStepper = 'RK4', visc = 1e-4, viscOrder = 2.0, ) turb.describe_model() # Set an initial random vorticity field. q0 = np.random.standard_normal((turb.ny, turb.nx)) turb.set_q(q0) # Step the model forward in time turb.step_nSteps(nSteps=1e4, dnLog=1e3) # Update variables like vorticity, velocity, etc turb.update_state_variables() print("The root-mean-square vorticity is " + \ "{:0.3f}".format(np.sqrt((turb.q**2.0).mean()))) # Plot the result fig = plt.figure('vorticity'); plt.clf() plt.pcolormesh(turb.x, turb.y, turb.q, cmap='YlGnBu_r') plt.axis('square') plt.xlabel('$x$') plt.ylabel('$y$') print("\nClose the figure to end the program.") plt.show()
[ "numpy.random.standard_normal", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.clf", "matplotlib.pyplot.pcolormesh", "matplotlib.pyplot.figure", "matplotlib.pyplot.axis", "py2Periodic.physics.twoDimTurbulence.model", "sys.path.append", "matplotlib.pyplot.show" ]
[((69, 94), 'sys.path.append', 'sys.path.append', (['"""../../"""'], {}), "('../../')\n", (84, 94), False, 'import time, sys\n'), ((227, 342), 'py2Periodic.physics.twoDimTurbulence.model', 'twoDimTurbulence.model', ([], {'nx': '(128)', 'Lx': '(2.0 * pi)', 'dt': '(0.01)', 'nThreads': '(1)', 'timeStepper': '"""RK4"""', 'visc': '(0.0001)', 'viscOrder': '(2.0)'}), "(nx=128, Lx=2.0 * pi, dt=0.01, nThreads=1,\n timeStepper='RK4', visc=0.0001, viscOrder=2.0)\n", (249, 342), False, 'from py2Periodic.physics import twoDimTurbulence\n'), ((455, 500), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(turb.ny, turb.nx)'], {}), '((turb.ny, turb.nx))\n', (480, 500), True, 'import numpy as np\n'), ((800, 823), 'matplotlib.pyplot.figure', 'plt.figure', (['"""vorticity"""'], {}), "('vorticity')\n", (810, 823), True, 'import matplotlib.pyplot as plt\n'), ((825, 834), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (832, 834), True, 'import matplotlib.pyplot as plt\n'), ((836, 891), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['turb.x', 'turb.y', 'turb.q'], {'cmap': '"""YlGnBu_r"""'}), "(turb.x, turb.y, turb.q, cmap='YlGnBu_r')\n", (850, 891), True, 'import matplotlib.pyplot as plt\n'), ((892, 910), 'matplotlib.pyplot.axis', 'plt.axis', (['"""square"""'], {}), "('square')\n", (900, 910), True, 'import matplotlib.pyplot as plt\n'), ((913, 930), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$x$"""'], {}), "('$x$')\n", (923, 930), True, 'import matplotlib.pyplot as plt\n'), ((931, 948), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$y$"""'], {}), "('$y$')\n", (941, 948), True, 'import matplotlib.pyplot as plt\n'), ((998, 1008), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1006, 1008), True, 'import matplotlib.pyplot as plt\n')]
from typing import TYPE_CHECKING, Type, TypeVar, Union from numpy import dtype if TYPE_CHECKING: # pragma: no cover DTypeLike = Union[dtype, None, type, str] else: # pragma: no cover DTypeLike = TypeVar( "DTypeLike", bound=Union[dtype, None, type, str], ) if TYPE_CHECKING: # pragma: no cover DTypeLikeReals = Union[dtype, None, Type[bool], Type[int], Type[float], str] else: # pragma: no cover DTypeLikeReals = TypeVar( "DTypeLikeReals", bound=Union[dtype, None, Type[bool], Type[int], Type[float], str], )
[ "typing.TypeVar" ]
[((207, 264), 'typing.TypeVar', 'TypeVar', (['"""DTypeLike"""'], {'bound': 'Union[dtype, None, type, str]'}), "('DTypeLike', bound=Union[dtype, None, type, str])\n", (214, 264), False, 'from typing import TYPE_CHECKING, Type, TypeVar, Union\n'), ((456, 552), 'typing.TypeVar', 'TypeVar', (['"""DTypeLikeReals"""'], {'bound': 'Union[dtype, None, Type[bool], Type[int], Type[float], str]'}), "('DTypeLikeReals', bound=Union[dtype, None, Type[bool], Type[int],\n Type[float], str])\n", (463, 552), False, 'from typing import TYPE_CHECKING, Type, TypeVar, Union\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # MIT License # # Copyright (c) 2018 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from setuptools import setup, find_packages from pip.req import parse_requirements import plexchange import os # Solution from http://bit.ly/29Yl8VN def resolve_requires(requirements_file): requirements = parse_requirements("./%s" % requirements_file, session=False) return [str(ir.req) for ir in requirements] # Utility function to read the README file. # Used for the long_description. It's nice, because now 1) we have a top level # README file and 2) it's easier to type in the README file than to put a raw # string in below ... # Solution from: http://bit.ly/2mig8RT def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() # We still running: python setup.py sdist upload --repository=testpypi # Twine isn't handling long_descriptions as per: # https://github.com/pypa/twine/issues/262 setup( name="plexchange", version=".".join(map(str,plexchange.__version__)), description="Exchange ActiveSync Multiplexer", long_description=read('README.md'), license="MIT", author="<NAME>", author_email="<EMAIL>", maintainer="<NAME>", maintainer_email="<EMAIL>", install_requires=resolve_requires("requirements/requirements.txt"), #extras_require = { # 'otherthing': resolve_requires("requirements/otherthing.txt"), #}, url="https://github.com/whardier/plexchange", packages=find_packages(), package_dir={'plexchange': "plexchange"}, include_package_data=True, classifiers=[ "Development Status :: 1 - Planning", "Environment :: Console", "Environment :: Web Environment", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Communications :: Email", "Topic :: Internet :: Proxy Servers", "Topic :: Internet :: WWW/HTTP", ], #scripts=["plexchange/bin/plexchange-cli.py"], #entry_points={'console_scripts': [ # "plexchange = plexchange.management:run_from_command_line", #]}, )
[ "os.path.dirname", "pip.req.parse_requirements", "setuptools.find_packages" ]
[((1360, 1421), 'pip.req.parse_requirements', 'parse_requirements', (["('./%s' % requirements_file)"], {'session': '(False)'}), "('./%s' % requirements_file, session=False)\n", (1378, 1421), False, 'from pip.req import parse_requirements\n'), ((2538, 2553), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (2551, 2553), False, 'from setuptools import setup, find_packages\n'), ((1792, 1817), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1807, 1817), False, 'import os\n')]
# coding=utf-8 # Copyright 2020 The Edward2 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """The Bidirectional Encoder Representations from Transformers (BERT) model.""" import json import tensorflow.compat.v2 as tf from tensorflow_models.official.nlp import optimization from tensorflow_models.official.nlp.bert import bert_models from tensorflow_models.official.nlp.bert import configs def create_config(config_dir): """Load a BERT config object from directory.""" with tf.io.gfile.GFile(config_dir) as config_file: bert_config = json.load(config_file) return configs.BertConfig(**bert_config) def create_feature_and_label(inputs, feature_size): """Creates features and labels for a BERT model.""" input_token_ids = inputs['features'] labels = inputs['labels'] num_tokens = inputs['num_tokens'] input_mask = tf.sequence_mask(num_tokens, feature_size, dtype=tf.int32) type_id = tf.sequence_mask(num_tokens, feature_size, dtype=tf.int32) features = [input_token_ids, input_mask, type_id] return features, labels def create_optimizer(initial_lr, steps_per_epoch, epochs, warmup_proportion, end_lr=0.0, optimizer_type='adamw'): """Creates a BERT optimizer with learning rate schedule.""" num_train_steps = steps_per_epoch * epochs num_warmup_steps = int(num_train_steps * warmup_proportion) return optimization.create_optimizer( initial_lr, num_train_steps, num_warmup_steps, end_lr=end_lr, optimizer_type=optimizer_type) def create_model(num_classes, feature_size, bert_config): """Creates a BERT classifier model.""" # TODO(jereliu): Point to a locally implemented BERT for v2. return bert_models.classifier_model( bert_config=bert_config, num_labels=num_classes, max_seq_length=feature_size, )
[ "tensorflow_models.official.nlp.bert.bert_models.classifier_model", "tensorflow.compat.v2.sequence_mask", "tensorflow_models.official.nlp.optimization.create_optimizer", "json.load", "tensorflow.compat.v2.io.gfile.GFile", "tensorflow_models.official.nlp.bert.configs.BertConfig" ]
[((1106, 1139), 'tensorflow_models.official.nlp.bert.configs.BertConfig', 'configs.BertConfig', ([], {}), '(**bert_config)\n', (1124, 1139), False, 'from tensorflow_models.official.nlp.bert import configs\n'), ((1367, 1425), 'tensorflow.compat.v2.sequence_mask', 'tf.sequence_mask', (['num_tokens', 'feature_size'], {'dtype': 'tf.int32'}), '(num_tokens, feature_size, dtype=tf.int32)\n', (1383, 1425), True, 'import tensorflow.compat.v2 as tf\n'), ((1438, 1496), 'tensorflow.compat.v2.sequence_mask', 'tf.sequence_mask', (['num_tokens', 'feature_size'], {'dtype': 'tf.int32'}), '(num_tokens, feature_size, dtype=tf.int32)\n', (1454, 1496), True, 'import tensorflow.compat.v2 as tf\n'), ((1975, 2101), 'tensorflow_models.official.nlp.optimization.create_optimizer', 'optimization.create_optimizer', (['initial_lr', 'num_train_steps', 'num_warmup_steps'], {'end_lr': 'end_lr', 'optimizer_type': 'optimizer_type'}), '(initial_lr, num_train_steps, num_warmup_steps,\n end_lr=end_lr, optimizer_type=optimizer_type)\n', (2004, 2101), False, 'from tensorflow_models.official.nlp import optimization\n'), ((2302, 2413), 'tensorflow_models.official.nlp.bert.bert_models.classifier_model', 'bert_models.classifier_model', ([], {'bert_config': 'bert_config', 'num_labels': 'num_classes', 'max_seq_length': 'feature_size'}), '(bert_config=bert_config, num_labels=\n num_classes, max_seq_length=feature_size)\n', (2330, 2413), False, 'from tensorflow_models.official.nlp.bert import bert_models\n'), ((1010, 1039), 'tensorflow.compat.v2.io.gfile.GFile', 'tf.io.gfile.GFile', (['config_dir'], {}), '(config_dir)\n', (1027, 1039), True, 'import tensorflow.compat.v2 as tf\n'), ((1074, 1096), 'json.load', 'json.load', (['config_file'], {}), '(config_file)\n', (1083, 1096), False, 'import json\n')]
from mongoengine import Document, StringField, EmbeddedDocument, EmbeddedDocumentField, EmbeddedDocumentListField, \ ValidationError, BooleanField from cilantro_audit.constants import SEVERITY_VALUES, TEXT_MAX_LENGTH, TEXT_MIN_LENGTH, TITLE_MIN_LENGTH, \ TITLE_MAX_LENGTH class SeverityEnum: RED = "0:RED" YELLOW = "1:YELLOW" GREEN = "2:GREEN" class Severity(EmbeddedDocument): severity = StringField(required=True) @staticmethod def default(): return Severity.green() @staticmethod def red(): return Severity(SeverityEnum.RED) @staticmethod def yellow(): return Severity(SeverityEnum.YELLOW) @staticmethod def green(): return Severity(SeverityEnum.GREEN) """ Cycles through the different options: GREEN -> YELLOW -> RED -> GREEN -> ... """ def next(self): if SeverityEnum.GREEN == self.severity: return Severity.yellow() elif SeverityEnum.YELLOW == self.severity: return Severity.red() else: return Severity.green() def validate(self, clean=True): super().validate(clean) if self.severity not in SEVERITY_VALUES: raise ValidationError("Severity must be one of { \"0:RED\", \"1:YELLOW\", \"2:GREEN\" }") class Question(EmbeddedDocument): text = StringField(required=True, max_length=TEXT_MAX_LENGTH, min_length=TEXT_MIN_LENGTH) yes = EmbeddedDocumentField(Severity, required=True, default=Severity.default()) no = EmbeddedDocumentField(Severity, required=True, default=Severity.default()) other = EmbeddedDocumentField(Severity, required=True, default=Severity.default()) class AuditTemplateBuilder: def __init__(self): self.title = None self.questions = [] self.locked = False def with_title(self, title): self.title = title return self def with_question(self, question): self.questions.append(question) return self def with_lock(self): self.locked = True return self def build(self): template = AuditTemplate(title=self.title, questions=self.questions, locked=self.locked) template.validate() return template class AuditTemplate(Document): title = StringField(required=True, max_length=TITLE_MAX_LENGTH, min_length=TITLE_MIN_LENGTH) questions = EmbeddedDocumentListField(Question, required=True) locked = BooleanField(required=True, default=False)
[ "mongoengine.EmbeddedDocumentListField", "mongoengine.BooleanField", "mongoengine.StringField", "mongoengine.ValidationError" ]
[((418, 444), 'mongoengine.StringField', 'StringField', ([], {'required': '(True)'}), '(required=True)\n', (429, 444), False, 'from mongoengine import Document, StringField, EmbeddedDocument, EmbeddedDocumentField, EmbeddedDocumentListField, ValidationError, BooleanField\n'), ((1363, 1450), 'mongoengine.StringField', 'StringField', ([], {'required': '(True)', 'max_length': 'TEXT_MAX_LENGTH', 'min_length': 'TEXT_MIN_LENGTH'}), '(required=True, max_length=TEXT_MAX_LENGTH, min_length=\n TEXT_MIN_LENGTH)\n', (1374, 1450), False, 'from mongoengine import Document, StringField, EmbeddedDocument, EmbeddedDocumentField, EmbeddedDocumentListField, ValidationError, BooleanField\n'), ((2308, 2397), 'mongoengine.StringField', 'StringField', ([], {'required': '(True)', 'max_length': 'TITLE_MAX_LENGTH', 'min_length': 'TITLE_MIN_LENGTH'}), '(required=True, max_length=TITLE_MAX_LENGTH, min_length=\n TITLE_MIN_LENGTH)\n', (2319, 2397), False, 'from mongoengine import Document, StringField, EmbeddedDocument, EmbeddedDocumentField, EmbeddedDocumentListField, ValidationError, BooleanField\n'), ((2409, 2459), 'mongoengine.EmbeddedDocumentListField', 'EmbeddedDocumentListField', (['Question'], {'required': '(True)'}), '(Question, required=True)\n', (2434, 2459), False, 'from mongoengine import Document, StringField, EmbeddedDocument, EmbeddedDocumentField, EmbeddedDocumentListField, ValidationError, BooleanField\n'), ((2473, 2515), 'mongoengine.BooleanField', 'BooleanField', ([], {'required': '(True)', 'default': '(False)'}), '(required=True, default=False)\n', (2485, 2515), False, 'from mongoengine import Document, StringField, EmbeddedDocument, EmbeddedDocumentField, EmbeddedDocumentListField, ValidationError, BooleanField\n'), ((1232, 1309), 'mongoengine.ValidationError', 'ValidationError', (['"""Severity must be one of { "0:RED", "1:YELLOW", "2:GREEN" }"""'], {}), '(\'Severity must be one of { "0:RED", "1:YELLOW", "2:GREEN" }\')\n', (1247, 1309), False, 'from mongoengine import Document, StringField, EmbeddedDocument, EmbeddedDocumentField, EmbeddedDocumentListField, ValidationError, BooleanField\n')]
import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.checkpoint as checkpoint try: from torchdiffeq import odeint_adjoint as odeintadjoint from torchdiffeq import odeint odeint_available = True except: odeint_available = False try: from .external.anode.adjoint import odesolver_adjoint as odesolver anode_available = True except: anode_available = False class IntegrationWrapper(nn.Module): def __init__(self,integration_fcn,func): super(IntegrationWrapper, self).__init__() self.func = func self.integration_fcn = integration_fcn def forward(self,t,x0, dummy_arg=None): # this dummy arg needs to be such that it requires gradient, does not need to be used, but otherwise the autograd tape breaks # See # here: https://github.com/prigoyal/pytorch_memonger/blob/master/tutorial/Checkpointing_for_PyTorch_models.ipynb # and here: https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/11 assert dummy_arg is not None assert dummy_arg.requires_grad is True return self.integration_fcn(func=self.func,x0=x0,t=t) class GenericIntegrator(object): def __init__(self,integrator_library = None, integrator_name = None, use_adjoint_integration=False, integrator_options=None, step_size=0.5, rtol=1e-3, atol=1e-5, nr_of_checkpoints=None, checkpointing_time_interval=None, **kwargs): """ Generic integrator class :param integrator_library: 'odeint' (for NODE integrators) or 'anode' (for ANODE integrators) :param integrator_name: string of integrator name ('odeint': 'dopri5','adams','euler','midpoint','rk4','explicit_adams','fixed_adams; 'anode': 'rk2', 'rk4' :param use_adjoint_integration: if true, then ODE is solved backward to compute gradient (only for odeint) :param integrator_options: dictionary with additional integrator option (passed to the integrators) :param step_size: integrator step size (only for fixed steps-size solvers, i.e., not for dopri5/adams) :param rtol: relative integration tolerance (only for adaptive solvers (dopri5/adams)) :param atol: absolute integration tolerance (only for adaptive solvers (dopri5/adams)) :param nr_of_checkpoints: supports more memory efficient inregration by adding checkpoints uniform in time. :param checkpointing_time_interval: intead of defining the number of checkpoints (which dynamically adapts to the integration time, we can also define the desired time-interval between checkpoints :param kwargs: optional arguments passed directly to the integrator """ super(GenericIntegrator, self).__init__() self._available_integrator_libraries = ['odeint','anode'] if integrator_library is None: self.integrator_library = 'odeint' else: self.integrator_library = integrator_library if self.integrator_library not in self._available_integrator_libraries: raise ValueError('Unknown integrator library {}'.format(self.integrator_library)) self._available_integrators = dict() self._available_integrators['odeint'] = ['dopri5','adams','euler','midpoint','rk4','explicit_adams','fixed_adams'] self._available_integrators['anode'] = ['rk2','rk4'] if integrator_name is None: self.integrator_name = self._available_integrators[self.integrator_library][0] else: self.integrator_name = integrator_name if self.integrator_name not in self._available_integrators[self.integrator_library]: raise ValueError('Integrator {} not available for {}'.format(self.integrator_name, self.integrator_library)) self.use_adjoint_integration = use_adjoint_integration self.integrator_options = integrator_options if self.integrator_options is None: self.integrator_options = dict() self.kwargs = kwargs self.rtol = rtol self.atol = atol self.step_size = step_size if step_size is not None: if self.integrator_library == 'odeint': if self.integrator_name not in ['dopri5', 'adams']: if 'step_size' not in self.integrator_options: self.integrator_options['step_size'] = step_size self.nr_of_checkpoints = nr_of_checkpoints self.checkpointing_time_interval = checkpointing_time_interval # dummy tensor to support checkpointing self._dummy_tensor = torch.ones(1, requires_grad=True) # if max_num_steps is not None: # self.integrator_options['max_num_steps'] = max_num_steps def _integrate_odeint(self,func,x0,t): if self.use_adjoint_integration: # odeint(func, y0, t, rtol=1e-7, atol=1e-9, method=None, options=None) res = odeintadjoint(func=func,y0=x0,t=t,rtol=self.rtol, atol=self.atol, method=self.integrator_name,options=self.integrator_options,**self.kwargs) return res else: # odeint(func, y0, t, rtol=1e-7, atol=1e-9, method=None, options=None) res = odeint(func=func,y0=x0,t=t, rtol=self.rtol, atol=self.atol, method=self.integrator_name,options=self.integrator_options,**self.kwargs) return res def _integrate_anode(self,func,x0,t=None): # todo: provide more options for stepsize-control here if self.integrator_options is None: options = dict() else: options = self.integrator_options # check that this is called correctly if t is not None: if len(t)==1: if t!=1.0: raise ValueError('Warning: ANODE always integates to one. Aborting.') elif len(t)>2 or ((t[-1]-t[0])!=1.0): raise ValueError('Warning: ANODE always integrates to unit time and does not provide any intermediate values. Expect trouble when calling it this way. Aborting.') # everything okay, so we can proceed Nt = 10 options.update({'Nt': int(Nt)}) options.update({'method': (self.integrator_name).upper()}) res = odesolver(func=func,z0=x0,options=options) # to conform with odeint, the first dimension should be time, here it only produces one time-point res_reshaped = res.unsqueeze(dim=0) return res_reshaped def create_integration_time_intervals(self,t): if len(t)<2: raise ValueError('Expected a range of time-points, but only got {}'.format(t)) if (self.nr_of_checkpoints is not None) and (self.checkpointing_time_interval is not None): raise ValueError('nr_of_checkpoints and checkpointing_time_interval cannot both be set. Set one or the other') t_from = t[0] t_to = t[-1] if self.nr_of_checkpoints is not None: checkpointing_time_points = torch.linspace(t_from,t_to,self.nr_of_checkpoints+2) # if we want one checkpoint we need three points, hence +2 elif self.checkpointing_time_interval is not None: checkpointing_time_points = torch.arange(t_from,t_to,self.checkpointing_time_interval) if checkpointing_time_points[-1]!=t_to: # append it checkpointing_time_points = torch.cat((checkpointing_time_points, torch.tensor([t_to])), dim=0) else: raise ValueError('Either nr_of_checkpoints or checkpointing_time_interval needs to be set.') # force the last time-points to numericall agree checkpointing_time_points[-1] = t_to # now we need to create the intervals (i.e., match the integration time-points we want to hit, to the checkpoints) time_intervals = [] output_time_points = [] idx_t = 0 nr_t = len(t) idx_checkpoint_t = 0 nr_checkpoint_t = len(checkpointing_time_points) keep_accumulating = True # always starts with the first-timepoint current_time_interval = torch.tensor([t[idx_t]]) current_output_time_point = torch.tensor([True]) if t[idx_t]!=checkpointing_time_points[idx_checkpoint_t]: raise ValueError('Need to start with the same time.') idx_t += 1 idx_checkpoint_t += 1 while keep_accumulating: next_t = t[idx_t] next_cp_t = checkpointing_time_points[idx_checkpoint_t] if next_cp_t>next_t: # case: just keep on adding this time-point to the current time-interval and retain it for the output current_time_interval = torch.cat((current_time_interval,torch.tensor([next_t]))) current_output_time_point = torch.cat((current_output_time_point,torch.tensor([True]))) idx_t += 1 elif next_cp_t<next_t: # case: this is the checkpoint we want, so finalize it and move on to the next one current_time_interval = torch.cat((current_time_interval,torch.tensor([next_cp_t]))) current_output_time_point = torch.cat((current_output_time_point,torch.tensor([False]))) time_intervals.append(current_time_interval) output_time_points.append(current_output_time_point) current_time_interval = torch.tensor([next_cp_t]) current_output_time_point = torch.tensor([False]) idx_checkpoint_t += 1 else: # the same # case: they conincide, so move on to the next for both, but only keep one current_time_interval = torch.cat((current_time_interval,torch.tensor([next_cp_t]))) current_output_time_point = torch.cat((current_output_time_point,torch.tensor([True]))) time_intervals.append(current_time_interval) output_time_points.append(current_output_time_point) current_time_interval = torch.tensor([next_cp_t]) current_output_time_point = torch.tensor([False]) idx_t += 1 idx_checkpoint_t += 1 # let's see if we are at the end if (idx_t>=nr_t) or (idx_checkpoint_t>=nr_checkpoint_t): keep_accumulating = False return time_intervals, output_time_points def _integrate_checkpointed(self,func,x0,t): # first get the checkpointed time-inntervals integration_times, output_time_points = self.create_integration_time_intervals(t=t) current_x0 = x0 overall_integration_results = None # now let's chunk the solutions together integrator = IntegrationWrapper(integration_fcn=self._integrate_direct,func=func) for current_integration_times, current_output_time_points in zip(integration_times,output_time_points): current_res = checkpoint.checkpoint(integrator, current_integration_times, current_x0, self._dummy_tensor) current_x0 = current_res[-1,...] if overall_integration_results is None: overall_integration_results = current_res[current_output_time_points,...] else: overall_integration_results = torch.cat((overall_integration_results,current_res[current_output_time_points,...]),dim=0) return overall_integration_results def _integrate_direct(self, func, x0, t): if self.integrator_library == 'odeint': return self._integrate_odeint(func=func, x0=x0, t=t) elif self.integrator_library == 'anode': return self._integrate_anode(func=func, x0=x0, t=t) def integrate(self,func,x0,t): if (self.nr_of_checkpoints is None) and (self.checkpointing_time_interval is None): return self._integrate_direct(func=func,x0=x0,t=t) else: # do chunk-based-integration return self._integrate_checkpointed(func=func,x0=x0,t=t)
[ "torchdiffeq.odeint_adjoint", "torchdiffeq.odeint", "torch.utils.checkpoint.checkpoint", "torch.tensor", "torch.cat", "torch.arange", "torch.linspace", "torch.ones" ]
[((4637, 4670), 'torch.ones', 'torch.ones', (['(1)'], {'requires_grad': '(True)'}), '(1, requires_grad=True)\n', (4647, 4670), False, 'import torch\n'), ((8137, 8161), 'torch.tensor', 'torch.tensor', (['[t[idx_t]]'], {}), '([t[idx_t]])\n', (8149, 8161), False, 'import torch\n'), ((8198, 8218), 'torch.tensor', 'torch.tensor', (['[True]'], {}), '([True])\n', (8210, 8218), False, 'import torch\n'), ((4969, 5119), 'torchdiffeq.odeint_adjoint', 'odeintadjoint', ([], {'func': 'func', 'y0': 'x0', 't': 't', 'rtol': 'self.rtol', 'atol': 'self.atol', 'method': 'self.integrator_name', 'options': 'self.integrator_options'}), '(func=func, y0=x0, t=t, rtol=self.rtol, atol=self.atol, method\n =self.integrator_name, options=self.integrator_options, **self.kwargs)\n', (4982, 5119), True, 'from torchdiffeq import odeint_adjoint as odeintadjoint\n'), ((5248, 5391), 'torchdiffeq.odeint', 'odeint', ([], {'func': 'func', 'y0': 'x0', 't': 't', 'rtol': 'self.rtol', 'atol': 'self.atol', 'method': 'self.integrator_name', 'options': 'self.integrator_options'}), '(func=func, y0=x0, t=t, rtol=self.rtol, atol=self.atol, method=self.\n integrator_name, options=self.integrator_options, **self.kwargs)\n', (5254, 5391), False, 'from torchdiffeq import odeint\n'), ((7026, 7082), 'torch.linspace', 'torch.linspace', (['t_from', 't_to', '(self.nr_of_checkpoints + 2)'], {}), '(t_from, t_to, self.nr_of_checkpoints + 2)\n', (7040, 7082), False, 'import torch\n'), ((10962, 11058), 'torch.utils.checkpoint.checkpoint', 'checkpoint.checkpoint', (['integrator', 'current_integration_times', 'current_x0', 'self._dummy_tensor'], {}), '(integrator, current_integration_times, current_x0,\n self._dummy_tensor)\n', (10983, 11058), True, 'import torch.utils.checkpoint as checkpoint\n'), ((7237, 7297), 'torch.arange', 'torch.arange', (['t_from', 't_to', 'self.checkpointing_time_interval'], {}), '(t_from, t_to, self.checkpointing_time_interval)\n', (7249, 7297), False, 'import torch\n'), ((11307, 11405), 'torch.cat', 'torch.cat', (['(overall_integration_results, current_res[current_output_time_points, ...])'], {'dim': '(0)'}), '((overall_integration_results, current_res[\n current_output_time_points, ...]), dim=0)\n', (11316, 11405), False, 'import torch\n'), ((9426, 9451), 'torch.tensor', 'torch.tensor', (['[next_cp_t]'], {}), '([next_cp_t])\n', (9438, 9451), False, 'import torch\n'), ((9496, 9517), 'torch.tensor', 'torch.tensor', (['[False]'], {}), '([False])\n', (9508, 9517), False, 'import torch\n'), ((10051, 10076), 'torch.tensor', 'torch.tensor', (['[next_cp_t]'], {}), '([next_cp_t])\n', (10063, 10076), False, 'import torch\n'), ((10121, 10142), 'torch.tensor', 'torch.tensor', (['[False]'], {}), '([False])\n', (10133, 10142), False, 'import torch\n'), ((8760, 8782), 'torch.tensor', 'torch.tensor', (['[next_t]'], {}), '([next_t])\n', (8772, 8782), False, 'import torch\n'), ((8866, 8886), 'torch.tensor', 'torch.tensor', (['[True]'], {}), '([True])\n', (8878, 8886), False, 'import torch\n'), ((7458, 7478), 'torch.tensor', 'torch.tensor', (['[t_to]'], {}), '([t_to])\n', (7470, 7478), False, 'import torch\n'), ((9123, 9148), 'torch.tensor', 'torch.tensor', (['[next_cp_t]'], {}), '([next_cp_t])\n', (9135, 9148), False, 'import torch\n'), ((9232, 9253), 'torch.tensor', 'torch.tensor', (['[False]'], {}), '([False])\n', (9244, 9253), False, 'import torch\n'), ((9749, 9774), 'torch.tensor', 'torch.tensor', (['[next_cp_t]'], {}), '([next_cp_t])\n', (9761, 9774), False, 'import torch\n'), ((9858, 9878), 'torch.tensor', 'torch.tensor', (['[True]'], {}), '([True])\n', (9870, 9878), False, 'import torch\n')]
from django.conf import settings from django.db import models class Profile(models.Model): "Generated Model" user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name="profile_user", ) phone_number = models.CharField( max_length=256, ) is_admin = models.BooleanField() user_type = models.IntegerField()
[ "django.db.models.IntegerField", "django.db.models.CharField", "django.db.models.BooleanField", "django.db.models.ForeignKey" ]
[((126, 228), 'django.db.models.ForeignKey', 'models.ForeignKey', (['settings.AUTH_USER_MODEL'], {'on_delete': 'models.CASCADE', 'related_name': '"""profile_user"""'}), "(settings.AUTH_USER_MODEL, on_delete=models.CASCADE,\n related_name='profile_user')\n", (143, 228), False, 'from django.db import models\n'), ((275, 307), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(256)'}), '(max_length=256)\n', (291, 307), False, 'from django.db import models\n'), ((338, 359), 'django.db.models.BooleanField', 'models.BooleanField', ([], {}), '()\n', (357, 359), False, 'from django.db import models\n'), ((376, 397), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (395, 397), False, 'from django.db import models\n')]
from dataclasses import dataclass import datetime import pytest from jira_offline.utils.serializer import DeserializeError, DataclassSerializer @dataclass class Test(DataclassSerializer): dt: datetime.date def test_date_deserialize(): ''' Test date deserializes ''' obj = Test.deserialize({'dt': '2018-09-24'}) assert isinstance(obj.dt, datetime.date) assert obj.dt.year == 2018 assert obj.dt.month == 9 assert obj.dt.day == 24 def test_date_deserialize_roundtrip(): ''' Test date deserializes/serializes in a loss-less roundtrip ''' json = Test.deserialize({'dt': '2018-09-24'}).serialize() assert json['dt'] == '2018-09-24' def test_date_serialize(): ''' Test date serializes ''' json = Test(dt=datetime.date(2018, 9, 24)).serialize() assert json['dt'] == '2018-09-24' def test_date_serialize_roundtrip(): ''' Test date serializes/deserializes in a loss-less roundtrip ''' obj = Test.deserialize( Test(dt=datetime.date(2018, 9, 24)).serialize() ) assert obj.dt.year == 2018 assert obj.dt.month == 9 assert obj.dt.day == 24 def test_date_bad_deserialize(): ''' Test bad date deserialize raises exception ''' with pytest.raises(DeserializeError): Test.deserialize({'dt': '2018-09-2x'})
[ "pytest.raises", "datetime.date" ]
[((1256, 1287), 'pytest.raises', 'pytest.raises', (['DeserializeError'], {}), '(DeserializeError)\n', (1269, 1287), False, 'import pytest\n'), ((777, 803), 'datetime.date', 'datetime.date', (['(2018)', '(9)', '(24)'], {}), '(2018, 9, 24)\n', (790, 803), False, 'import datetime\n'), ((1016, 1042), 'datetime.date', 'datetime.date', (['(2018)', '(9)', '(24)'], {}), '(2018, 9, 24)\n', (1029, 1042), False, 'import datetime\n')]
import re import unittest from unittest.mock import ANY import boto3 from cloudwanderer import CloudWanderer from cloudwanderer.storage_connectors import MemoryStorageConnector from ..helpers import GenericAssertionHelpers, get_default_mocker from ..mocks import add_infra class TestCloudWandererWriteResources(unittest.TestCase, GenericAssertionHelpers): eu_west_2_resources = [ { "urn": "urn:aws:.*:eu-west-2:ec2:instance:.*", "attr": "BaseResource", "VpcId": "vpc-.*", "SubnetId": "subnet-.*", "InstanceId": "i-.*", } ] us_east_1_resources = [ { "urn": "urn:aws:.*:us-east-1:iam:role:.*", "attr": "BaseResource", "RoleName": "test-role", "Path": re.escape("/"), }, { "urn": "urn:aws:.*:us-east-1:iam:role:.*", "attr": "role_inline_policy_attachments", "PolicyNames": ["test-role-policy"], }, { "urn": "urn:aws:.*:us-east-1:iam:role:.*", "attr": "role_managed_policy_attachments", "AttachedPolicies": [ { "PolicyName": "APIGatewayServiceRolePolicy", "PolicyArn": "arn:aws:iam::aws:policy/aws-service-role/APIGatewayServiceRolePolicy", } ], "IsTruncated": False, }, { "urn": "urn:aws:.*:us-east-1:iam:role_policy:.*", "attr": "BaseResource", "PolicyName": "test-role-policy", "PolicyDocument": ANY, }, { # This is a us-east-1 resource because s3 buckets are discovered from us-east-1 # irrespective of their region. "urn": "urn:aws:.*:eu-west-2:s3:bucket:.*", "attr": "BaseResource", "Name": "test-eu-west-2", }, ] def setUp(self): self.enabled_regions = ["eu-west-2", "us-east-1", "ap-east-1"] get_default_mocker().start_general_mock( restrict_regions=self.enabled_regions, restrict_services=["ec2", "s3", "iam"], limit_resources=[ "ec2:instance", "s3:bucket", "iam:group", "iam:role", ], ) add_infra(regions=self.enabled_regions) self.storage_connector = MemoryStorageConnector() self.wanderer = CloudWanderer(storage_connectors=[self.storage_connector]) def tearDown(self): get_default_mocker().stop_general_mock() def test_write_resources(self): self.wanderer.write_resources() for region_name in self.enabled_regions: self.assert_dictionary_overlap( self.storage_connector.read_all(), [ { "urn": f"urn:aws:.*:{region_name}:ec2:instance:.*", "attr": "BaseResource", "VpcId": "vpc-.*", "SubnetId": "subnet-.*", "InstanceId": "i-.*", }, { "urn": f"urn:aws:.*:{region_name}:s3:bucket:.*", "attr": "BaseResource", "Name": f"test-{region_name}", }, ], ) if region_name == "us-east-1": self.assert_dictionary_overlap(self.storage_connector.read_all(), self.us_east_1_resources) else: self.assert_no_dictionary_overlap( self.storage_connector.read_all(), [ { "urn": f"urn:aws:.*:{region_name}:iam:role:.*", "attr": "BaseResource", "RoleName": "test-role", "Path": re.escape("/"), } ], ) def test_write_resources_exclude_resources(self): self.wanderer.write_resources(exclude_resources=["ec2:instance"]) for region_name in self.enabled_regions: self.assert_no_dictionary_overlap( self.storage_connector.read_all(), [ { "urn": f"urn:aws:.*:{region_name}:ec2:instance:.*", "attr": "BaseResource", "VpcId": "vpc-.*", "SubnetId": "subnet-.*", "InstanceId": "i-.*", } ], ) self.assert_dictionary_overlap(self.storage_connector.read_all(), self.us_east_1_resources) def test_write_resources_eu_west_1(self): self.wanderer.write_resources( regions=["eu-west-2"], ) self.assert_dictionary_overlap(self.storage_connector.read_all(), self.eu_west_2_resources) self.assert_no_dictionary_overlap(self.storage_connector.read_all(), self.us_east_1_resources) def test_write_resources_us_east_1(self): self.wanderer.write_resources(regions=["us-east-1"]) self.assert_dictionary_overlap(self.storage_connector.read_all(), self.us_east_1_resources) self.assert_no_dictionary_overlap(self.storage_connector.read_all(), self.eu_west_2_resources) def test_write_resources_of_service_eu_west_1(self): self.wanderer.write_resources(regions=["eu-west-2"], service_names=["ec2"]) self.wanderer.write_resources(regions=["eu-west-2"], service_names=["s3"]) self.assert_dictionary_overlap(self.storage_connector.read_all(), self.eu_west_2_resources) self.assert_no_dictionary_overlap(self.storage_connector.read_all(), self.us_east_1_resources) def test_write_resources_of_service_us_east_1(self): self.wanderer.write_resources(service_names=["ec2"], regions=["us-east-1"]) self.wanderer.write_resources(service_names=["s3"], regions=["us-east-1"]) self.wanderer.write_resources(service_names=["iam"], regions=["us-east-1"]) self.assert_dictionary_overlap(self.storage_connector.read_all(), self.us_east_1_resources) self.assert_no_dictionary_overlap(self.storage_connector.read_all(), self.eu_west_2_resources) def test_write_resources_of_type_eu_west_1(self): self.wanderer.write_resources(regions=["eu-west-2"], service_names=["s3"], resource_types=["bucket"]) self.wanderer.write_resources(regions=["eu-west-2"], service_names=["ec2"], resource_types=["instance"]) self.wanderer.write_resources(regions=["eu-west-2"], service_names=["iam"], resource_types=["role"]) self.assert_dictionary_overlap(self.storage_connector.read_all(), self.eu_west_2_resources) self.assert_no_dictionary_overlap(self.storage_connector.read_all(), self.us_east_1_resources) def test_write_resources_of_type_us_east_1(self): self.wanderer.write_resources(service_names=["s3"], resource_types=["bucket"], regions=["us-east-1"]) self.wanderer.write_resources(service_names=["ec2"], resource_types=["instance"], regions=["us-east-1"]) self.wanderer.write_resources(service_names=["iam"], resource_types=["role"], regions=["us-east-1"]) self.assert_dictionary_overlap(self.storage_connector.read_all(), self.us_east_1_resources) self.assert_no_dictionary_overlap(self.storage_connector.read_all(), self.eu_west_2_resources) def test_cleanup_resources_of_type_us_east_1(self): self.wanderer.write_resources(service_names=["iam"], resource_types=["role"], regions=["us-east-1"]) self.assert_dictionary_overlap( self.storage_connector.read_all(), [ { "urn": "urn:aws:.*:us-east-1:iam:role:.*", "attr": "role_managed_policy_attachments", "AttachedPolicies": [ { "PolicyName": "APIGatewayServiceRolePolicy", "PolicyArn": "arn:aws:iam::aws:policy/aws-service-role/APIGatewayServiceRolePolicy", } ], "IsTruncated": False, }, { "urn": "urn:aws:.*:us-east-1:iam:role_policy:.*", "attr": "BaseResource", "PolicyName": "test-role-policy", "PolicyDocument": ANY, }, ], ) # Delete the role iam_resource = boto3.resource("iam") iam_resource.Role("test-role").detach_policy( PolicyArn="arn:aws:iam::aws:policy/aws-service-role/APIGatewayServiceRolePolicy" ) iam_resource.Role("test-role").Policy("test-role-policy").delete() iam_resource.Role("test-role").delete() self.wanderer.write_resources(service_names=["iam"], resource_types=["role"], regions=["us-east-1"]) self.assert_no_dictionary_overlap( self.storage_connector.read_all(), [ { "urn": "urn:aws:.*:us-east-1:iam:role:.*", "attr": "role_managed_policy_attachments", "AttachedPolicies": [ { "PolicyName": "APIGatewayServiceRolePolicy", "PolicyArn": "arn:aws:iam::aws:policy/aws-service-role/APIGatewayServiceRolePolicy", } ], "IsTruncated": False, }, { "urn": "urn:aws:.*:us-east-1:iam:role_policy:.*", "attr": "BaseResource", "PolicyName": "test-role-policy", "PolicyDocument": ANY, }, ], )
[ "cloudwanderer.storage_connectors.MemoryStorageConnector", "boto3.resource", "re.escape", "cloudwanderer.CloudWanderer" ]
[((2416, 2440), 'cloudwanderer.storage_connectors.MemoryStorageConnector', 'MemoryStorageConnector', ([], {}), '()\n', (2438, 2440), False, 'from cloudwanderer.storage_connectors import MemoryStorageConnector\n'), ((2465, 2523), 'cloudwanderer.CloudWanderer', 'CloudWanderer', ([], {'storage_connectors': '[self.storage_connector]'}), '(storage_connectors=[self.storage_connector])\n', (2478, 2523), False, 'from cloudwanderer import CloudWanderer\n'), ((8628, 8649), 'boto3.resource', 'boto3.resource', (['"""iam"""'], {}), "('iam')\n", (8642, 8649), False, 'import boto3\n'), ((798, 812), 're.escape', 're.escape', (['"""/"""'], {}), "('/')\n", (807, 812), False, 'import re\n'), ((3941, 3955), 're.escape', 're.escape', (['"""/"""'], {}), "('/')\n", (3950, 3955), False, 'import re\n')]
import argparse import json import math from collections import Counter def load_gold_stardard(gold_path): gold_answers = dict() with open(gold_path) as json_file: data = json.load(json_file) for ques in data: gold_answers[ques['id']] = ques['relations'] print(f"\tgold answers: loaded {len(data)} questions!") return gold_answers def load_system_answers(system_path): system_answers = dict() with open(system_path) as json_file: data = json.load(json_file) for ques in data: if 'relations' in ques: system_answers[ques['id']] = ques['relations'] else: print(f"Missing relations: {ques['id']}") print(f"\tsystem answers: loaded {len(data)} questions!") return system_answers def calculate_f1(precision, recall): if precision + recall == 0: return 0 else: return 2 * ((precision * recall) / (precision + recall)) def evaluate_dbpedia(gold_answers, system_answers): count, total_p, total_r, total_f1 = 0, 0, 0, 0 for ques_id in gold_answers: count += 1 # if an answer is not provided to a question, we just move on if ques_id not in system_answers: continue gold_answer_list = gold_answers[ques_id] system_relations = system_answers[ques_id].copy() sys_rel_count, gold_rel_count, found_count, correct_count = len(system_relations), 0, 0, 0 # collect all gold relations all_gold_rels = set() for gold_rel_set in gold_answer_list: all_gold_rels.update(gold_rel_set) # mark all correct answers from system answers for rel in system_relations: if rel in all_gold_rels: correct_count += 1 # check how many relation sets are covered in system answers. In ground truth, we have multiple correct # relations for a given slot. # For example, {"dbo:locatedInArea", "dbo:city", "dbo:isPartOf", "dbo:location", "dbo:region"} for gold_rel_set in gold_answer_list: gold_rel_count += 1 found_rel = False for rel in gold_rel_set: if rel in system_relations: found_rel = True system_relations.remove(rel) break if found_rel: found_count += 1 # precision, recall and F1 calculation precision = correct_count / sys_rel_count recall = found_count / gold_rel_count total_p += precision total_r += recall total_f1 += calculate_f1(precision, recall) return total_p/count, total_r/count, total_f1/count def evaluate_wikidata(gold_answers, system_answers): count, total_p, total_r, total_f1 = 0, 0, 0, 0 for ques_id in gold_answers: count += 1 # if an answer is not provided to a question, we just move on if ques_id not in system_answers: continue gold_relations = gold_answers[ques_id] system_relations = system_answers[ques_id] if len(system_relations) == 0: continue precision = (sum((Counter(system_relations) & Counter(gold_relations)).values())) / len(system_relations) recall = (sum((Counter(system_relations) & Counter(gold_relations)).values())) / len(gold_relations) f1 = calculate_f1(precision, recall) total_p += precision total_r += recall total_f1 += f1 return total_p/count, total_r/count, total_f1/count def arg_parser(): parser = argparse.ArgumentParser() parser.add_argument('--gt', type=str, help='ground truth JSON file') parser.add_argument('--so', type=str, help='system output JSON file') parser.add_argument('--kb', type=str, help='Knowledge Base', default="dbpedia") args = parser.parse_args() return args def main(args): system_path = args.so gt_path = args.gt kb = args.kb print(f"Config:\n\tGround truth: {gt_path}\n\tSystem path: {system_path}") gold_answers = load_gold_stardard(gt_path) system_answers = load_system_answers(system_path) if kb == "dbpedia": precision, recall, f1 = evaluate_dbpedia(gold_answers, system_answers) elif kb == "wikidata": precision, recall, f1 = evaluate_wikidata(gold_answers, system_answers) else: raise Exception(f"Invalid KB: {kb}") print(f"\nResults:\n\tPrecision: {round(precision, 5)}\n\tRecall: {round(recall, 5)}\n\tF1: {round(f1, 5)}") if __name__ == "__main__": main(arg_parser())
[ "json.load", "collections.Counter", "argparse.ArgumentParser" ]
[((3576, 3601), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3599, 3601), False, 'import argparse\n'), ((188, 208), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (197, 208), False, 'import json\n'), ((492, 512), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (501, 512), False, 'import json\n'), ((3166, 3191), 'collections.Counter', 'Counter', (['system_relations'], {}), '(system_relations)\n', (3173, 3191), False, 'from collections import Counter\n'), ((3194, 3217), 'collections.Counter', 'Counter', (['gold_relations'], {}), '(gold_relations)\n', (3201, 3217), False, 'from collections import Counter\n'), ((3277, 3302), 'collections.Counter', 'Counter', (['system_relations'], {}), '(system_relations)\n', (3284, 3302), False, 'from collections import Counter\n'), ((3305, 3328), 'collections.Counter', 'Counter', (['gold_relations'], {}), '(gold_relations)\n', (3312, 3328), False, 'from collections import Counter\n')]
# all functions related to user accounts import hashlib from models import * from base64 import b64decode, b64encode import json import requests from search_helpers import get_article_object GET = requests.get async def create_pmid(handler, user, repo_name, pmid, github_token): """ Create a file for this PMID. """ p = int(pmid) pmid_data = { "message": "Add {0}.json".format(p), "content": encode_for_github( {})} await handler.github_request(requests.put, "repos/{0}/{1}/contents/{2}.json".format( user, repo_name, p), github_token, pmid_data) return True async def get_or_create_pmid(handler, user, collection_name, pmid, github_token): """ Get the contents of this PMID file, or create it if it doesn't exist. """ p = int(pmid) repo_name = get_repo_name_from_collection(collection_name) try: pmid_contents = await handler.github_request( GET, "repos/{0}/{1}/contents/{2}.json".format( user, repo_name, p), github_token) return pmid_contents except OSError as e: # The article didn't already exist await create_pmid(handler, user, repo_name, p, github_token) pmid_contents = await handler.github_request( requests.get, "repos/{0}/{1}/contents/{2}.json".format( user, repo_name, p), github_token) return pmid_contents def encode_for_github(d): """ Encode with base64 and utf-8. Take a dictionary. """ return b64encode( json.dumps( d, indent=4, sort_keys=True).encode("utf-8")).decode("utf-8") def decode_from_github(s): """ Reverse the encode_dict_for_github function. Return a dictionary. """ return json.loads(b64decode(s).decode("utf-8")) def get_repo_name_from_collection(name): """ Convert a collection name to a repository name for GitHub. """ return "brainspell-neo-collection-" + name.replace(" ", "-") def get_collection_from_repo_name(name): """ Convert a repo name to the user-specified collection name. """ return name[len("brainspell-neo-collection-"):] def get_github_username_from_api_key(api_key): """ Fetch the GitHub username corresponding to a given API key. """ user = User.select().where((User.password == api_key)) user_obj = next(user.execute()) return user_obj.username def valid_api_key(api_key): """ Return whether an API key exists in our database. """ user = User.select().where((User.password == api_key)) return user.execute().count >= 1 def get_user_object_from_api_key(api_key): """ Return a PeeWee user object from an API key. """ return User.select().where(User.password == api_key).execute() def register_github_user(user_dict): """ Add a GitHub user to our database. """ # if the user doesn't already exist if (User.select().where(User.username == user_dict["login"]).execute().count == 0): username = user_dict["login"] email = user_dict["email"] hasher = hashlib.sha1() # password (a.k.a. API key) is a hash of the Github ID hasher.update(str(user_dict["id"]).encode('utf-8')) password = hasher.hexdigest() User.create(username=username, emailaddress=email, password=password) return True else: return False # user already exists def add_collection_to_brainspell_database( collection_name, description, api_key, cold_run=True): """ Create a collection in our database if it doesn't exist, or return false if the collection already exists. """ if valid_api_key(api_key): user = list(get_user_object_from_api_key(api_key))[0] # get the dict of user collections if not user.collections: user_collections = {} else: # unfortunately, because malformatted JSON exists in our database, # we have to use eval instead of using JSON.decode() user_collections = eval(user.collections) # if the collection doesn't already exist if collection_name not in user_collections: # create the collection user_collections[collection_name] = {} user_collections[collection_name]["description"] = str(description) user_collections[collection_name]["pmids"] = [] if not cold_run: q = User.update( collections=json.dumps(user_collections)).where( User.username == user.username) q.execute() return True return False def bulk_add_articles_to_brainspell_database_collection( collection, pmids, api_key, cold_run=True): """ Adds the PMIDs to collection_name, if such a collection exists under the given user. Assumes that the collection exists. Does not add repeats. Takes collection_name *without* "brainspell-collection". Return False if an assumption is violated, True otherwise. """ user = get_user_object_from_api_key(api_key) if user.count > 0: user = list(user)[0] if user.collections: # assumes collections are well-formed JSON target = json.loads(user.collections) if collection not in target: target[collection] = { "description": "None", "pmids": [] } pmid_set = set(map(lambda x: str(x), target[collection]["pmids"])) for pmid in pmids: pmid_set.add(str(pmid)) target[collection]["pmids"] = list(pmid_set) if not cold_run: q = User.update( collections=json.dumps(target)).where( User.password == api_key) q.execute() return True else: return False # user has no collections; violates assumptions return False # user does not exist def remove_all_brainspell_database_collections(api_key): """ Dangerous! Drops all of a user's Brainspell collections from our local database. Does not affect GitHub. Called from CollectionsEndpointHandler.""" if valid_api_key(api_key): q = User.update( collections=json.dumps({})).where( User.password == api_key) q.execute() def get_brainspell_collections_from_api_key(api_key): """ Return a user's collections from Brainspell's database given an API key. May be inconsistent with GitHub. """ response = {} if valid_api_key(api_key): user = list(get_user_object_from_api_key(api_key))[0] if user.collections: return json.loads(user.collections) return response def add_article_to_brainspell_database_collection( collection, pmid, api_key, cold_run=True): """ Add a collection to our local database. Do not add to GitHub in this function. Assumes that the collection already exists. Assumes that the user exists. Takes collection_name *without* "brainspell-collection". Returns False if the article is already in the collection, or if an assumption is violated. This is an O(N) operation with respect to the collection size. If you're adding many articles, it's O(N^2). If you're adding multiple articles, please use bulk_add_articles_to_brainspell_database_collection. Called by AddToCollectionEndpointHandler. """ user = get_user_object_from_api_key(api_key) if user.count > 0: user = list(user)[0] if user.collections: # assumes collections are well-formed JSON target = json.loads(user.collections) if collection not in target: target[collection] = { "description": "None", "pmids": [] } pmids_list = set( map(lambda x: str(x), target[collection]["pmids"])) # provide a check for if the PMID is already in the collection if str(pmid) not in pmids_list: pmids_list.add(str(pmid)) target[collection]["pmids"] = list(pmids_list) if not cold_run: q = User.update( collections=json.dumps(target)).where( User.password == api_key) q.execute() return True else: return False # article already in collection else: return False # user has no collections; violates assumptions return False # user does not exist def remove_article_from_brainspell_database_collection( collection, pmid, api_key, cold_run=True): """ Remove an article from the Brainspell repo. Do not affect GitHub. Takes collection_name *without* "brainspell-collection". Similar implementation to add_article_to_brainspell_database_collection. """ user = get_user_object_from_api_key(api_key) if user.count == 0: return False user = list(user)[0] if not user.collections: return False # assumes collections are well-formed JSON target = json.loads(user.collections) if collection not in target: return False pmids_list = list( map(lambda x: str(x), target[collection]["pmids"])) if str(pmid) not in pmids_list: return False pmids_list.remove(str(pmid)) target[collection]["pmids"] = pmids_list if not cold_run: q = User.update( collections=json.dumps(target)).where( User.password == api_key) q.execute() return True def cache_user_collections(api_key, collections_obj): """ Force overwrite the existing user collection field with the passed collections_object data. """ q = User.update( collections=json.dumps(collections_obj)).where( User.password == api_key) q.execute() def add_unmapped_article_to_cached_collections(api_key, pmid, collection_name): query = list( User.select( User.collections).where( User.password == api_key).execute())[0] collections = json.loads(query.collections) relevant_article = list(get_article_object(pmid))[0] target_collection = [ x for x in collections if x['name'] == collection_name][0] target_collection['unmapped_articles'].append({ 'title': relevant_article.title, 'pmid': relevant_article.pmid, 'authors': relevant_article.authors, 'reference': relevant_article.reference, }) cache_user_collections(api_key, collections)
[ "json.loads", "search_helpers.get_article_object", "json.dumps", "base64.b64decode", "hashlib.sha1" ]
[((9468, 9496), 'json.loads', 'json.loads', (['user.collections'], {}), '(user.collections)\n', (9478, 9496), False, 'import json\n'), ((10466, 10495), 'json.loads', 'json.loads', (['query.collections'], {}), '(query.collections)\n', (10476, 10495), False, 'import json\n'), ((3290, 3304), 'hashlib.sha1', 'hashlib.sha1', ([], {}), '()\n', (3302, 3304), False, 'import hashlib\n'), ((5475, 5503), 'json.loads', 'json.loads', (['user.collections'], {}), '(user.collections)\n', (5485, 5503), False, 'import json\n'), ((6966, 6994), 'json.loads', 'json.loads', (['user.collections'], {}), '(user.collections)\n', (6976, 6994), False, 'import json\n'), ((7934, 7962), 'json.loads', 'json.loads', (['user.collections'], {}), '(user.collections)\n', (7944, 7962), False, 'import json\n'), ((10524, 10548), 'search_helpers.get_article_object', 'get_article_object', (['pmid'], {}), '(pmid)\n', (10542, 10548), False, 'from search_helpers import get_article_object\n'), ((1977, 1989), 'base64.b64decode', 'b64decode', (['s'], {}), '(s)\n', (1986, 1989), False, 'from base64 import b64decode, b64encode\n'), ((10148, 10175), 'json.dumps', 'json.dumps', (['collections_obj'], {}), '(collections_obj)\n', (10158, 10175), False, 'import json\n'), ((1734, 1773), 'json.dumps', 'json.dumps', (['d'], {'indent': '(4)', 'sort_keys': '(True)'}), '(d, indent=4, sort_keys=True)\n', (1744, 1773), False, 'import json\n'), ((6538, 6552), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (6548, 6552), False, 'import json\n'), ((9841, 9859), 'json.dumps', 'json.dumps', (['target'], {}), '(target)\n', (9851, 9859), False, 'import json\n'), ((4714, 4742), 'json.dumps', 'json.dumps', (['user_collections'], {}), '(user_collections)\n', (4724, 4742), False, 'import json\n'), ((5980, 5998), 'json.dumps', 'json.dumps', (['target'], {}), '(target)\n', (5990, 5998), False, 'import json\n'), ((8564, 8582), 'json.dumps', 'json.dumps', (['target'], {}), '(target)\n', (8574, 8582), False, 'import json\n')]
import os DOWNLOAD_IMAGES = True MAX_PROCESS = os.cpu_count() IMAGES_PATH = "tmp/" PAGE_URL = "https://en.wikipedia.org/wiki/List_of_animal_names" TABLE_HEADER_COLS = ["Animal", "Scientific term", "Young", "Female", "Male", "Collateral adjective"] TABLE_CLASS_NAME = "wikitable" ADD_TH_TAG = lambda name: f"<tr>{name}</tr>" HTML_TEMPLATE = lambda body: f""" <!doctype html> <html lang="en"> <head> </head> <body> {body} </body> </html> """
[ "os.cpu_count" ]
[((48, 62), 'os.cpu_count', 'os.cpu_count', ([], {}), '()\n', (60, 62), False, 'import os\n')]
from typing import Optional, Any, Protocol from attr import attrs, attrib class TreeNode(Protocol): key: float y: float parent: Optional["TreeNode"] left: Optional["TreeNode"] right: Optional["TreeNode"] l_count: int l_y: float l_y_sq: float r_count: int r_y: float r_y_sq: float def add(self, val: float, y: float) -> None: ... @attrs(auto_attribs=True, slots=True) class NodeEBST(TreeNode): key: float y: float parent: Optional[TreeNode] = None left: Optional[TreeNode] = attrib(init=False, default=None) right: Optional[TreeNode] = attrib(init=False, default=None) l_count: int = attrib(init=False, default=1) l_y: float = attrib(init=False) l_y_sq: float = attrib(init=False) r_count: int = attrib(init=False, default=0) r_y: float = attrib(init=False, default=0) r_y_sq: float = attrib(init=False, default=0) def __attrs_post_init__(self): self.l_y = self.y self.l_y_sq = self.y**2 def add(self, val: float, y: float) -> None: if val <= self.key: self.l_count += 1 self.l_y += y self.l_y_sq += y**2 if self.left is None and val != self.key: self.left = NodeEBST(val, y, self) elif val == self.key: pass else: self.left.add(val,y) else: self.r_count += 1 self.r_y += y self.r_y_sq += y**2 if self.right is None: self.right = NodeEBST(val, y, self) else: self.right.add(val,y) return @attrs(auto_attribs=True, slots=True) class EBSTree: root: Optional[TreeNode] = None def add(self, key: float, y: float) -> None: if self.root is None: self.root = NodeEBST(key, y) else: self.root.add(key, y)
[ "attr.attrib", "attr.attrs" ]
[((393, 429), 'attr.attrs', 'attrs', ([], {'auto_attribs': '(True)', 'slots': '(True)'}), '(auto_attribs=True, slots=True)\n', (398, 429), False, 'from attr import attrs, attrib\n'), ((1660, 1696), 'attr.attrs', 'attrs', ([], {'auto_attribs': '(True)', 'slots': '(True)'}), '(auto_attribs=True, slots=True)\n', (1665, 1696), False, 'from attr import attrs, attrib\n'), ((554, 586), 'attr.attrib', 'attrib', ([], {'init': '(False)', 'default': 'None'}), '(init=False, default=None)\n', (560, 586), False, 'from attr import attrs, attrib\n'), ((619, 651), 'attr.attrib', 'attrib', ([], {'init': '(False)', 'default': 'None'}), '(init=False, default=None)\n', (625, 651), False, 'from attr import attrs, attrib\n'), ((671, 700), 'attr.attrib', 'attrib', ([], {'init': '(False)', 'default': '(1)'}), '(init=False, default=1)\n', (677, 700), False, 'from attr import attrs, attrib\n'), ((718, 736), 'attr.attrib', 'attrib', ([], {'init': '(False)'}), '(init=False)\n', (724, 736), False, 'from attr import attrs, attrib\n'), ((757, 775), 'attr.attrib', 'attrib', ([], {'init': '(False)'}), '(init=False)\n', (763, 775), False, 'from attr import attrs, attrib\n'), ((795, 824), 'attr.attrib', 'attrib', ([], {'init': '(False)', 'default': '(0)'}), '(init=False, default=0)\n', (801, 824), False, 'from attr import attrs, attrib\n'), ((842, 871), 'attr.attrib', 'attrib', ([], {'init': '(False)', 'default': '(0)'}), '(init=False, default=0)\n', (848, 871), False, 'from attr import attrs, attrib\n'), ((892, 921), 'attr.attrib', 'attrib', ([], {'init': '(False)', 'default': '(0)'}), '(init=False, default=0)\n', (898, 921), False, 'from attr import attrs, attrib\n')]
import numpy as np def generate_profile(npoints, length, alpha, window, h = 1., seed=None): """ Generates fractal fault profile with zero mean and a given amplitude/wavelength ratio Inputs: npoints = number of grid points length = length of fault in physical domain alpha = amplitude to wavelength ratio window = length of minimum wavelength in grid points seed = seed for random number generator Returns: heights of fault profile (array-like) """ npoints = int(npoints) window = int(window) length = float(length) alpha = float(alpha) h = float(h) if not seed is None: seed = int(seed) prng = np.random.RandomState(seed) phase = 2.*np.pi*prng.rand(npoints) k = 2.*np.pi*np.fft.fftfreq(npoints,length/float(npoints-1)) amp = np.zeros(npoints) nflt = npoints//window if npoints%2 == 0: nfreq = npoints//2+1 else: nfreq = (npoints-1)//2+1 amp[1:] = (alpha*(2.*np.pi/np.abs(k[1:]))**(0.5*(1.+2.*h))*np.sqrt(np.pi/length)/2.*float(npoints)) amp[nflt+1:-nflt] = 0. f = amp*np.exp(np.complex(0., 1.)*phase) fund = np.fft.fft(prng.choice([-1., 1.])*alpha*length*np.sin(np.linspace(0., length, npoints)*np.pi/length)) f = np.real(np.fft.ifft(f+fund)) return f-f[0]-(f[-1]-f[0])/length*np.linspace(0., length, npoints) def calc_diff(f, dx): """ Calculates derivative using 4th order finite differences Inputs: f = function dx = grid spacing Returns: derivative (array-like) """ df = (np.roll(f,-3)/60.-np.roll(f,-2)*3./20.+np.roll(f,-1)*3./4.-np.roll(f,1)*3./4.+np.roll(f,2)*3./20.-np.roll(f,3)/60.)/dx df[0] = (-21600./13649.*f[0]+81763./40947.*f[1]+131./27298.*f[2]-9143./13649.*f[3]+20539./81894.*f[4])/dx df[1] = (-81763./180195.*f[0]+7357./36039.*f[2]+30637./72078.*f[3]-2328./12013.*f[4]+6611./360390.*f[5])/dx df[2] = (-131./54220.*f[0]-7357./16266.*f[1]+645./2711.*f[3]+11237./32532.*f[4]-3487./27110.*f[5])/dx df[3] = (9143./53590.*f[0]-30637./64308.*f[1]-645./5359.*f[2]+13733./32154.*f[4]-67./4660.*f[5]+72./5359.*f[6])/dx df[4] = (-20539./236310.*f[0]+2328./7877.*f[1]-11237./47262.*f[2]-13733./23631.*f[3]+89387./118155.*f[5]-1296./7877.*f[6]+144./7877.*f[7])/dx df[5] = (-6611./262806.*f[1]+3487./43801.*f[2]+1541./87602.*f[3]-89387./131403.*f[4]+32400./43801.*f[6]-6480./43801.*f[7]+720./43801.*f[8])/dx df[-1] = -(-21600./13649.*f[-1]+81763./40947.*f[-2]+131./27298.*f[-3]-9143./13649.*f[-4]+20539./81894.*f[-5])/dx df[-2] = -(-81763./180195.*f[-1]+7357./36039.*f[-3]+30637./72078.*f[-4]-2328./12013.*f[-5]+6611./360390.*f[-6])/dx df[-3] = -(-131./54220.*f[-1]-7357./16266.*f[-2]+645./2711.*f[-4]+11237./32532.*f[-5]-3487./27110.*f[-6])/dx df[-4] = -(9143./53590.*f[-1]-30637./64308.*f[-2]-645./5359.*f[-3]+13733./32154.*f[-5]-67./4660.*f[-6]+72./5359.*f[-7])/dx df[-5] = -(-20539./236310.*f[-1]+2328./7877.*f[-2]-11237./47262.*f[-3]-13733./23631.*f[-4]+89387./118155.*f[-6]-1296./7877.*f[-7]+144./7877.*f[-8])/dx df[-6] = -(-6611./262806.*f[-2]+3487./43801.*f[-3]+1541./87602.*f[-4]-89387./131403.*f[-5]+32400./43801.*f[-7]-6480./43801.*f[-8]+720./43801.*f[-9])/dx return df def generate_normals_2d(x, y, direction): """ Returns components of normal vectors given coordinates x and y x and y must be array-like of the same length direction indicates whether the surface has a normal in the 'x' direction or 'y' direction coordinates normal to direction must be evenly spaced nx and ny are array-like and of the same length as x and y """ assert x.shape == y.shape, "x and y must have the same length" assert len(x.shape) == 1 and len(y.shape) == 1, "x and y must be 1d arrays" assert direction == 'x' or direction == 'y', "direction must be 'x' or 'y'" if direction == 'x': dx = y[2]-y[1] assert(dx > 0.) m = calc_diff(x, dx) ny = -m/np.sqrt(1.+m**2) nx = 1./np.sqrt(1.+m**2) else: dx = x[2]-x[1] assert(dx > 0.) m = calc_diff(y, dx) nx = -m/np.sqrt(1.+m**2) ny = 1./np.sqrt(1.+m**2) return nx, ny def rotate_xy2nt_2d(sxx, sxy, syy, n, orientation=None): """ Rotates stress components from xy to normal/tangential to given normal vector Inputs: stress components sxx, sxy, syy (negative in compression), can be arrays n is normal vector for receiver fault (must have length 2) orientation (optional) is a string indicating how you would like to compute the tangent vector In all cases, the hypothetical second tangent vector is in the +z direction "left" or "x" indicates that the tangent vector is defined by n x t1 = z (x is right handed cross product, chosen so that faults with a purely +x normal will give a tangent in the +y direction). This means that a positive Coulomb function leads to left lateral slip on the fault. "right" or "y" indicates that the tangent vector is defined by t1 x n = z (so that a normal in the +y direction will give a tangent vector in the +x direction). This means that a positive Coulomb function leads to right lateral slip on the fault. None indicates that the "right" or "y" convention is used (default) Returns: normal and shear stress in rotated coordinates """ assert len(n) == 2, "normal vector must have length 2" assert np.isclose(np.sqrt(n[0]**2+n[1]**2),1.), "normal vector must be normalized" assert (orientation == "right" or orientation == "left" or orientation == "x" or orientation == "y" or orientation == None) m = tangent_2d(n, orientation) sn = n[0]**2*sxx+2.*n[0]*n[1]*sxy+n[1]**2*syy st = n[0]*m[0]*sxx+(m[0]*n[1]+n[0]*m[1])*sxy+n[1]*m[1]*syy return sn, st def tangent_2d(n, orientation=None): """ Returns vector orthogonal to input vector n (must have length 2) orientation (optional) is a string indicating how you would like to compute the tangent vector In all cases, the hypothetical second tangent vector is in the +z direction "left" or "x" indicates that the tangent vector is defined by n x t1 = z (x is right handed cross product, chosen so that faults with a purely +x normal will give a tangent in the +y direction). This means that a positive Coulomb function leads to left lateral slip on the fault. "right" or "y" indicates that the tangent vector is defined by t1 x n = z (so that a normal in the +y direction will give a tangent vector in the +x direction). This means that a positive Coulomb function leads to right lateral slip on the fault. None indicates that the "right" or "y" convention is used (default) """ assert len(n) == 2, "normal vector must be of length 2" assert np.isclose(np.sqrt(n[0]**2+n[1]**2),1.), "normal vector must be normalized" assert (orientation == "right" or orientation == "left" or orientation == "x" or orientation == "y" or orientation == None) m = np.empty(2) if (orientation == "x" or orientation == "left"): m[1] = n[0]/np.sqrt(n[0]**2+n[1]**2) m[0] = -n[1]/np.sqrt(n[0]**2+n[1]**2) else: m[0] = n[1]/np.sqrt(n[0]**2+n[1]**2) m[1] = -n[0]/np.sqrt(n[0]**2+n[1]**2) return m
[ "numpy.abs", "numpy.sqrt", "numpy.roll", "numpy.complex", "numpy.zeros", "numpy.linspace", "numpy.empty", "numpy.fft.ifft", "numpy.random.RandomState" ]
[((676, 703), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (697, 703), True, 'import numpy as np\n'), ((819, 836), 'numpy.zeros', 'np.zeros', (['npoints'], {}), '(npoints)\n', (827, 836), True, 'import numpy as np\n'), ((7277, 7288), 'numpy.empty', 'np.empty', (['(2)'], {}), '(2)\n', (7285, 7288), True, 'import numpy as np\n'), ((1264, 1285), 'numpy.fft.ifft', 'np.fft.ifft', (['(f + fund)'], {}), '(f + fund)\n', (1275, 1285), True, 'import numpy as np\n'), ((5575, 5605), 'numpy.sqrt', 'np.sqrt', (['(n[0] ** 2 + n[1] ** 2)'], {}), '(n[0] ** 2 + n[1] ** 2)\n', (5582, 5605), True, 'import numpy as np\n'), ((7063, 7093), 'numpy.sqrt', 'np.sqrt', (['(n[0] ** 2 + n[1] ** 2)'], {}), '(n[0] ** 2 + n[1] ** 2)\n', (7070, 7093), True, 'import numpy as np\n'), ((1323, 1356), 'numpy.linspace', 'np.linspace', (['(0.0)', 'length', 'npoints'], {}), '(0.0, length, npoints)\n', (1334, 1356), True, 'import numpy as np\n'), ((3957, 3978), 'numpy.sqrt', 'np.sqrt', (['(1.0 + m ** 2)'], {}), '(1.0 + m ** 2)\n', (3964, 3978), True, 'import numpy as np\n'), ((3990, 4011), 'numpy.sqrt', 'np.sqrt', (['(1.0 + m ** 2)'], {}), '(1.0 + m ** 2)\n', (3997, 4011), True, 'import numpy as np\n'), ((4109, 4130), 'numpy.sqrt', 'np.sqrt', (['(1.0 + m ** 2)'], {}), '(1.0 + m ** 2)\n', (4116, 4130), True, 'import numpy as np\n'), ((4142, 4163), 'numpy.sqrt', 'np.sqrt', (['(1.0 + m ** 2)'], {}), '(1.0 + m ** 2)\n', (4149, 4163), True, 'import numpy as np\n'), ((7364, 7394), 'numpy.sqrt', 'np.sqrt', (['(n[0] ** 2 + n[1] ** 2)'], {}), '(n[0] ** 2 + n[1] ** 2)\n', (7371, 7394), True, 'import numpy as np\n'), ((7410, 7440), 'numpy.sqrt', 'np.sqrt', (['(n[0] ** 2 + n[1] ** 2)'], {}), '(n[0] ** 2 + n[1] ** 2)\n', (7417, 7440), True, 'import numpy as np\n'), ((7465, 7495), 'numpy.sqrt', 'np.sqrt', (['(n[0] ** 2 + n[1] ** 2)'], {}), '(n[0] ** 2 + n[1] ** 2)\n', (7472, 7495), True, 'import numpy as np\n'), ((7511, 7541), 'numpy.sqrt', 'np.sqrt', (['(n[0] ** 2 + n[1] ** 2)'], {}), '(n[0] ** 2 + n[1] ** 2)\n', (7518, 7541), True, 'import numpy as np\n'), ((1022, 1045), 'numpy.sqrt', 'np.sqrt', (['(np.pi / length)'], {}), '(np.pi / length)\n', (1029, 1045), True, 'import numpy as np\n'), ((1109, 1129), 'numpy.complex', 'np.complex', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (1119, 1129), True, 'import numpy as np\n'), ((1657, 1670), 'numpy.roll', 'np.roll', (['f', '(3)'], {}), '(f, 3)\n', (1664, 1670), True, 'import numpy as np\n'), ((1200, 1233), 'numpy.linspace', 'np.linspace', (['(0.0)', 'length', 'npoints'], {}), '(0.0, length, npoints)\n', (1211, 1233), True, 'import numpy as np\n'), ((1637, 1650), 'numpy.roll', 'np.roll', (['f', '(2)'], {}), '(f, 2)\n', (1644, 1650), True, 'import numpy as np\n'), ((990, 1003), 'numpy.abs', 'np.abs', (['k[1:]'], {}), '(k[1:])\n', (996, 1003), True, 'import numpy as np\n'), ((1618, 1631), 'numpy.roll', 'np.roll', (['f', '(1)'], {}), '(f, 1)\n', (1625, 1631), True, 'import numpy as np\n'), ((1559, 1573), 'numpy.roll', 'np.roll', (['f', '(-3)'], {}), '(f, -3)\n', (1566, 1573), True, 'import numpy as np\n'), ((1598, 1612), 'numpy.roll', 'np.roll', (['f', '(-1)'], {}), '(f, -1)\n', (1605, 1612), True, 'import numpy as np\n'), ((1577, 1591), 'numpy.roll', 'np.roll', (['f', '(-2)'], {}), '(f, -2)\n', (1584, 1591), True, 'import numpy as np\n')]
from rich import print from youtubesearchpython import SearchVideos, SearchPlaylists from PyInquirer import style_from_dict, Token, prompt from PyInquirer import Validator, ValidationError from halo import Halo import regex import re import sys import pyperclip # spinner = Halo(text='Searching', spinner='dots') style = style_from_dict({ Token.QuestionMark: '#E91E63 bold', Token.Selected: '#8B64CE bold', Token.Instruction: '#EBF2FA', # default Token.Answer: '#2196f3 bold', Token.Question: '#00ff00 bold', }) # TODO search_video(query) in validator | and create two seprate vaildator of video query and playlist query class queryValidator(Validator): def validate(self, document): query = document.text if len(query) >= 55: raise ValidationError( message='Please be concise. Query should be less than 50 characters.', cursor_position=len(document.text)) # Move cursor to end elif query == "": raise ValidationError( message='Please enter something.', cursor_position=len(document.text)) # Move cursor to end class linkValidator(Validator): def validate(self, document): url = document.text if urlvalidator(url): return True else: raise ValidationError( message='Please enter a valid youtube link', cursor_position=len(document.text)) # Move cursor to end def urlvalidator(url): if regex.match(r'^(http(s)?:\/\/)?((w){3}.)?youtu(be|.be)?(\.com)?\/.+', url): return True else: return False def check_clipboard(): clipboard_content = pyperclip.paste() if urlvalidator(clipboard_content): return True else: return False def search_query(): questions = [ { 'type': 'input', 'name': 'query', 'message': 'Search:', 'validate': queryValidator }] answers = prompt(questions, style=style) if not answers: pass return answers def search_video(query): spinner.start() data = SearchVideos(query, offset=1, mode="dict", max_results=8) final_data = data.result() if not final_data: spinner.stop() print("[bold red] Something went wrong. Try another query or check network connenctivity[bold red]") else: options = [] for i in final_data['search_result']: temp_dict = {} temp_dict.update({'name': i['title'], 'value': i['link']}) options.append(temp_dict) spinner.stop() return options def search_playlist(query): spinner.start() data = SearchPlaylists(query, offset=1, mode='dict', max_results=8) final_data = data.result() if not final_data: spinner.stop() print("[bold red] Something went wrong. Try another query or check network connenctivity[/bold red]") else: options = [] for i in final_data['search_result']: temp_dict = {} temp_dict.update({'name': i['title'], 'value': i['link']}) options.append(temp_dict) spinner.stop() return options def get_options(answers): options = [ { 'name': 'Enter URL', 'value': 'manual' }, { 'name': 'Search Video', 'value': 'video_search' }, { 'name': 'Search Playlist', 'value': 'playlist_search' } ] if check_clipboard(): options[0] = { 'name': 'Enter other URL', 'value': 'manual' } options.insert(0, { 'name': 'URL form clipboard', 'value': 'clipboard', }) return options def start_1(): ques1 = [ { 'type': 'list', 'name': 'source', 'message': 'Select:', 'choices': get_options }, { 'type': 'input', 'name': 'url', 'message': 'Enter Link:', 'validate': linkValidator, 'when': lambda ans1: ans1['source'] == 'manual' }, { 'type': 'input', 'name': 'query', 'message': 'Search:', 'validate': queryValidator, 'when': lambda ans1: ans1['source'] == 'video_search' or ans1['source'] == 'playlist_search' }] ans1 = prompt(ques1, style=style) if not ans1: pass if ans1['source'] == 'video_search': query = ans1['query'] ques2 = { 'type': 'list', 'name': 'url', 'message': 'Results (select):', 'choices': search_video(query) } ans2 = prompt(ques2, style=style) if not ans2: pass return(ans2['url']) elif ans1['source'] == 'playlist_search': query = ans1['query'] ques2 = { 'type': 'list', 'name': 'url', 'message': 'Results (select):', 'choices': search_playlist(query) } ans2 = prompt(ques2, style=style) if not ans2: pass return(ans2['url']) elif ans1['source'] == 'manual': ans2 = {} ans2['url'] = ans1['url'] return(ans2['url']) elif ans1['source'] == 'clipboard': ans2 = {} ans2['url'] = pyperclip.paste() return(ans2['url'])
[ "halo.Halo", "PyInquirer.prompt", "youtubesearchpython.SearchVideos", "regex.match", "youtubesearchpython.SearchPlaylists", "rich.print", "pyperclip.paste", "PyInquirer.style_from_dict" ]
[((275, 313), 'halo.Halo', 'Halo', ([], {'text': '"""Searching"""', 'spinner': '"""dots"""'}), "(text='Searching', spinner='dots')\n", (279, 313), False, 'from halo import Halo\n'), ((323, 508), 'PyInquirer.style_from_dict', 'style_from_dict', (["{Token.QuestionMark: '#E91E63 bold', Token.Selected: '#8B64CE bold', Token.\n Instruction: '#EBF2FA', Token.Answer: '#2196f3 bold', Token.Question:\n '#00ff00 bold'}"], {}), "({Token.QuestionMark: '#E91E63 bold', Token.Selected:\n '#8B64CE bold', Token.Instruction: '#EBF2FA', Token.Answer:\n '#2196f3 bold', Token.Question: '#00ff00 bold'})\n", (338, 508), False, 'from PyInquirer import style_from_dict, Token, prompt\n'), ((1522, 1599), 'regex.match', 'regex.match', (['"""^(http(s)?:\\\\/\\\\/)?((w){3}.)?youtu(be|.be)?(\\\\.com)?\\\\/.+"""', 'url'], {}), "('^(http(s)?:\\\\/\\\\/)?((w){3}.)?youtu(be|.be)?(\\\\.com)?\\\\/.+', url)\n", (1533, 1599), False, 'import regex\n'), ((1698, 1715), 'pyperclip.paste', 'pyperclip.paste', ([], {}), '()\n', (1713, 1715), False, 'import pyperclip\n'), ((2013, 2043), 'PyInquirer.prompt', 'prompt', (['questions'], {'style': 'style'}), '(questions, style=style)\n', (2019, 2043), False, 'from PyInquirer import style_from_dict, Token, prompt\n'), ((2156, 2213), 'youtubesearchpython.SearchVideos', 'SearchVideos', (['query'], {'offset': '(1)', 'mode': '"""dict"""', 'max_results': '(8)'}), "(query, offset=1, mode='dict', max_results=8)\n", (2168, 2213), False, 'from youtubesearchpython import SearchVideos, SearchPlaylists\n'), ((2724, 2784), 'youtubesearchpython.SearchPlaylists', 'SearchPlaylists', (['query'], {'offset': '(1)', 'mode': '"""dict"""', 'max_results': '(8)'}), "(query, offset=1, mode='dict', max_results=8)\n", (2739, 2784), False, 'from youtubesearchpython import SearchVideos, SearchPlaylists\n'), ((4485, 4511), 'PyInquirer.prompt', 'prompt', (['ques1'], {'style': 'style'}), '(ques1, style=style)\n', (4491, 4511), False, 'from PyInquirer import style_from_dict, Token, prompt\n'), ((2299, 2410), 'rich.print', 'print', (['"""[bold red] Something went wrong. Try another query or check network connenctivity[bold red]"""'], {}), "(\n '[bold red] Something went wrong. Try another query or check network connenctivity[bold red]'\n )\n", (2304, 2410), False, 'from rich import print\n'), ((2870, 2982), 'rich.print', 'print', (['"""[bold red] Something went wrong. Try another query or check network connenctivity[/bold red]"""'], {}), "(\n '[bold red] Something went wrong. Try another query or check network connenctivity[/bold red]'\n )\n", (2875, 2982), False, 'from rich import print\n'), ((4799, 4825), 'PyInquirer.prompt', 'prompt', (['ques2'], {'style': 'style'}), '(ques2, style=style)\n', (4805, 4825), False, 'from PyInquirer import style_from_dict, Token, prompt\n'), ((5158, 5184), 'PyInquirer.prompt', 'prompt', (['ques2'], {'style': 'style'}), '(ques2, style=style)\n', (5164, 5184), False, 'from PyInquirer import style_from_dict, Token, prompt\n'), ((5451, 5468), 'pyperclip.paste', 'pyperclip.paste', ([], {}), '()\n', (5466, 5468), False, 'import pyperclip\n')]
from ciphers.caeser_cipher import CaeserCipher from pytest import raises class TestCaeser: def setup_class(self): self.default_cipher = CaeserCipher() self.custom_cipher = CaeserCipher(rotation=1) def test_caeser_cipher_encrypt_default_rotation(self): input_string = "some random string" output_string = self.default_cipher.encrypt(plain_text=input_string) assert output_string == "4c0> e.#qc0 4(e^#[" def test_caeser_cipher_decrypt_default_rotation(self): input_string = "4c0> e.#qc0 4(e^#[" output_string = self.default_cipher.decrypt(encrypted=input_string) assert output_string == "some random string" def test_caeser_cipher_encrypt_custom_rotation(self): input_string = "some random string" output_string = self.custom_cipher.encrypt(plain_text=input_string) assert output_string == ">:.3 =~/2:. >?=7/5" def test_caeser_cipher_decrypt_custom_rotation(self): input_string = ">:.3 =~/2:. >?=7/5" output_string = self.custom_cipher.decrypt(encrypted=input_string) assert output_string == "some random string" def test_get_rotation(self): assert self.custom_cipher.rotation == 1 def test_set_rotation_invalid_input(self): with raises(Exception) as value_error: self.custom_cipher.rotation = "five" assert str(value_error) == "Rotation must be an integer"
[ "pytest.raises", "ciphers.caeser_cipher.CaeserCipher" ]
[((150, 164), 'ciphers.caeser_cipher.CaeserCipher', 'CaeserCipher', ([], {}), '()\n', (162, 164), False, 'from ciphers.caeser_cipher import CaeserCipher\n'), ((194, 218), 'ciphers.caeser_cipher.CaeserCipher', 'CaeserCipher', ([], {'rotation': '(1)'}), '(rotation=1)\n', (206, 218), False, 'from ciphers.caeser_cipher import CaeserCipher\n'), ((1292, 1309), 'pytest.raises', 'raises', (['Exception'], {}), '(Exception)\n', (1298, 1309), False, 'from pytest import raises\n')]
import re from dvc.command.version import CmdVersion from dvc.cli import parse_args def test_run_in_repo(repo_dir, dvc): cmd = CmdVersion(parse_args(["version"])) ret = cmd.run_cmd() assert ret == 0 def test_run_outside_of_repo(repo_dir): cmd = CmdVersion(parse_args(["version"])) ret = cmd.run_cmd() assert ret == 0 def test_info(caplog): cmd = CmdVersion(parse_args(["version"])) cmd.run() assert re.search(re.compile(r"DVC version: \d+\.\d+\.\d+"), caplog.text) assert re.search(re.compile(r"Python version: \d\.\d\.\d"), caplog.text) assert re.search(re.compile(r"Platform: .*"), caplog.text)
[ "dvc.cli.parse_args", "re.compile" ]
[((145, 168), 'dvc.cli.parse_args', 'parse_args', (["['version']"], {}), "(['version'])\n", (155, 168), False, 'from dvc.cli import parse_args\n'), ((277, 300), 'dvc.cli.parse_args', 'parse_args', (["['version']"], {}), "(['version'])\n", (287, 300), False, 'from dvc.cli import parse_args\n'), ((392, 415), 'dvc.cli.parse_args', 'parse_args', (["['version']"], {}), "(['version'])\n", (402, 415), False, 'from dvc.cli import parse_args\n'), ((453, 498), 're.compile', 're.compile', (['"""DVC version: \\\\d+\\\\.\\\\d+\\\\.\\\\d+"""'], {}), "('DVC version: \\\\d+\\\\.\\\\d+\\\\.\\\\d+')\n", (463, 498), False, 'import re\n'), ((530, 575), 're.compile', 're.compile', (['"""Python version: \\\\d\\\\.\\\\d\\\\.\\\\d"""'], {}), "('Python version: \\\\d\\\\.\\\\d\\\\.\\\\d')\n", (540, 575), False, 'import re\n'), ((607, 633), 're.compile', 're.compile', (['"""Platform: .*"""'], {}), "('Platform: .*')\n", (617, 633), False, 'import re\n')]
import text_game_maker from text_game_maker.audio import audio from text_game_maker.utils import utils from text_game_maker.game_objects.base import serialize as base_serialize from text_game_maker.game_objects.base import deserialize as base_deserialize craftables = {} def serialize(): ret = {} for name in craftables: items, item = craftables[name] ret[name] = [base_serialize(items), base_serialize(item)] return ret def deserialize(data, version): d = {} for key in data: items, item = data[key] d[key] = [base_deserialize(items, version), base_deserialize(item, version)] craftables.clear() craftables.update(d) def add(items, item): """ Add new craftable item :param [text_game_maker.game_objects.items.Item] items: list of ingredients :param text_game_maker.game_objects.items.Item item: new item created by\ combining ingredients """ craftables[item.name] = [items, item] def help_text(): """ Retreive human-readable description of all added craftable items :return: description of all added craftable items :rtype: str """ ret = [] for name in craftables: items, item = craftables[name] item_names = utils.list_to_english([str(x) for x in items]) ret.append("%s: requires %s" % (item.name, item_names)) if ret: return '\n'.join(ret) return None def _find_item(item, items): for i in items: if (i.name == item.name) and isinstance(i, item.__class__): return i return None def _find_craftable(name): items = [] item = None if name in craftables: items, item = craftables[name] else: for k in craftables: if k.startswith(name) or k.endswith(name) or (k in name): items, item = craftables[k] break return items, item def _need_items(name, word, items): names = [str(x) for x in items] utils.save_sound(audio.FAILURE_SOUND) utils.game_print("Can't %s %s. Need %s." % (word, name, utils.list_to_english(names))) def can_craft(name): """ Check if player has the ability to craft an item by name. Note this function only checks if player has acquired the blueprint to craft an item, and does not care whether the player has ingredients required to craft the item. :param str name: item name :return: True if player can craft the item, False otherwise :rtype: bool """ _, item = _find_craftable(name) return not (item is None) def craft(name, word, player): """ Craft an item by name. Deletes ingredients from player's inventory and places crafted item into player's inventory. :param str name: name of the item to craft :param str word: command/action word used by player :param text_game_maker.player.player.Player player: player instance :return: crafted item, or None if crafting fails :rtype: text_game_maker.game_objects.items.Item """ items, item = _find_craftable(name) if item is None: utils.save_sound(audio.FAILURE_SOUND) utils.game_print("Don't know how to %s %s" % (word, name)) return None ingredients = [] player_items = [] player_items.extend(player.pockets.items) if player.inventory: player_items.extend(player.inventory.items) for i in items: ingredient = _find_item(i, player_items) if ingredient is None: _need_items(name, word, items) return None ingredients.append(ingredient) for i in ingredients: i.delete() item.prep = "your " + item.name item.add_to_player_inventory(player) utils.save_sound(audio.NEW_ITEM_SOUND) utils.game_print("Created %s." % item.name) return item
[ "text_game_maker.utils.utils.list_to_english", "text_game_maker.utils.utils.game_print", "text_game_maker.utils.utils.save_sound", "text_game_maker.game_objects.base.deserialize", "text_game_maker.game_objects.base.serialize" ]
[((1985, 2022), 'text_game_maker.utils.utils.save_sound', 'utils.save_sound', (['audio.FAILURE_SOUND'], {}), '(audio.FAILURE_SOUND)\n', (2001, 2022), False, 'from text_game_maker.utils import utils\n'), ((3732, 3770), 'text_game_maker.utils.utils.save_sound', 'utils.save_sound', (['audio.NEW_ITEM_SOUND'], {}), '(audio.NEW_ITEM_SOUND)\n', (3748, 3770), False, 'from text_game_maker.utils import utils\n'), ((3775, 3818), 'text_game_maker.utils.utils.game_print', 'utils.game_print', (["('Created %s.' % item.name)"], {}), "('Created %s.' % item.name)\n", (3791, 3818), False, 'from text_game_maker.utils import utils\n'), ((3103, 3140), 'text_game_maker.utils.utils.save_sound', 'utils.save_sound', (['audio.FAILURE_SOUND'], {}), '(audio.FAILURE_SOUND)\n', (3119, 3140), False, 'from text_game_maker.utils import utils\n'), ((3149, 3207), 'text_game_maker.utils.utils.game_print', 'utils.game_print', (['("Don\'t know how to %s %s" % (word, name))'], {}), '("Don\'t know how to %s %s" % (word, name))\n', (3165, 3207), False, 'from text_game_maker.utils import utils\n'), ((392, 413), 'text_game_maker.game_objects.base.serialize', 'base_serialize', (['items'], {}), '(items)\n', (406, 413), True, 'from text_game_maker.game_objects.base import serialize as base_serialize\n'), ((415, 435), 'text_game_maker.game_objects.base.serialize', 'base_serialize', (['item'], {}), '(item)\n', (429, 435), True, 'from text_game_maker.game_objects.base import serialize as base_serialize\n'), ((568, 600), 'text_game_maker.game_objects.base.deserialize', 'base_deserialize', (['items', 'version'], {}), '(items, version)\n', (584, 600), True, 'from text_game_maker.game_objects.base import deserialize as base_deserialize\n'), ((602, 633), 'text_game_maker.game_objects.base.deserialize', 'base_deserialize', (['item', 'version'], {}), '(item, version)\n', (618, 633), True, 'from text_game_maker.game_objects.base import deserialize as base_deserialize\n'), ((2095, 2123), 'text_game_maker.utils.utils.list_to_english', 'utils.list_to_english', (['names'], {}), '(names)\n', (2116, 2123), False, 'from text_game_maker.utils import utils\n')]
# see https://cdn-learn.adafruit.com/downloads/pdf/neopixels-on-raspberry-pi.pdf import board import neopixel class NeoPixel24: pixels = None def __init__(self): self.pixels = neopixel.NeoPixel(board.D10, 24, brightness=0.3, auto_write=False, pixel_order=neopixel.GRB); def fillColor(self, color): print("neo color", color) self.pixels.fill(color) self.pixels.show() def fillColors(self, col1, col2): for i in range(24): if (int(i/3) % 2) == 0: self.pixels[i] = col1 else: self.pixels[i] = col2 self.pixels.show() def rotate(self): first = self.pixels[0] for i in range(0,23): self.pixels[i] = self.pixels[i+1] self.pixels[23] = first self.pixels.show()
[ "neopixel.NeoPixel" ]
[((195, 291), 'neopixel.NeoPixel', 'neopixel.NeoPixel', (['board.D10', '(24)'], {'brightness': '(0.3)', 'auto_write': '(False)', 'pixel_order': 'neopixel.GRB'}), '(board.D10, 24, brightness=0.3, auto_write=False,\n pixel_order=neopixel.GRB)\n', (212, 291), False, 'import neopixel\n')]
import csv from external_rater import n, k, N, join_amazon_external_rater_fleiss_kappa def create_consensus_dataset(dataset_file, external_rater_file, destination_file): kappa, dict_counts = join_amazon_external_rater_fleiss_kappa(dataset_file, external_rater_file, n, N) dataset = open(dataset_file, encoding='utf-8') dataset_reader = csv.reader(dataset, delimiter=',') line_count = 0 dict_content = {} for row in dataset_reader: if line_count == 0: header = row elif row: if row[21] == '' and row[27] not in dict_content: dict_content[row[27]] = row line_count += 1 dataset.close() sentence_list = [] blacklist = [] for sentence, counts in dict_counts.items(): for count in counts: if count in [6, 7, 8] and count == counts[0]: sentence_list.append(dict_content[sentence][:-1] + ['Yes, they share a direct/explicit relation in the sentence.']) elif count in [6, 7, 8] and count == counts[1]: sentence_list.append( dict_content[sentence][:-1] + ['No, they are separate entities with no correlation in the sentence.']) elif count in [6, 7, 8] and count == counts[2]: sentence_list.append(dict_content[sentence][:-1] + ['The entities seem to be illy marked, or something is wrong with the entities/sentence.']) if counts[2] == 4 or counts[2] == 5: blacklist.append(sentence) elif 6 not in counts and 7 not in counts and 8 not in counts and counts[2] != 4 and counts[2] != 5: sentence_list.append(dict_content[sentence][:-1] + ['No, they are separate entities with no correlation in the sentence.']) output_file = open(destination_file, 'w', encoding='utf-8') output_file_writer = csv.writer(output_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL) output_file_writer.writerow(header) for row in sentence_list: output_file_writer.writerow(row) return blacklist #create_consensus_dataset('data/batch_results_30.csv', 'data/external_rater_results.tsv', 'data/batch_results_30_consensus.csv')
[ "external_rater.join_amazon_external_rater_fleiss_kappa", "csv.writer", "csv.reader" ]
[((198, 283), 'external_rater.join_amazon_external_rater_fleiss_kappa', 'join_amazon_external_rater_fleiss_kappa', (['dataset_file', 'external_rater_file', 'n', 'N'], {}), '(dataset_file, external_rater_file, n, N\n )\n', (237, 283), False, 'from external_rater import n, k, N, join_amazon_external_rater_fleiss_kappa\n'), ((352, 386), 'csv.reader', 'csv.reader', (['dataset'], {'delimiter': '""","""'}), "(dataset, delimiter=',')\n", (362, 386), False, 'import csv\n'), ((1836, 1912), 'csv.writer', 'csv.writer', (['output_file'], {'delimiter': '""","""', 'quotechar': '"""\\""""', 'quoting': 'csv.QUOTE_ALL'}), '(output_file, delimiter=\',\', quotechar=\'"\', quoting=csv.QUOTE_ALL)\n', (1846, 1912), False, 'import csv\n')]
import fire from matplotlib import pyplot as plt import numpy as np from scipy.stats import norm, laplace, uniform # True weights for the underlying mixture true_mixture_weights = [.3, .5, .2] N = 100 k = 3 # This function generates N from the true mixture of distributions. # When you use this function to plot your estimated densities, # pass in the weights you obtain instead of the default parameters. def generate_samples(mixture_weights): np.random.seed(1) # Parameters for the distributions in our mixture: N(3, 2^2), U(-1, 2), L(-2, 3) samples = np.vstack([[np.random.normal(3, 2), np.random.uniform(-1, 2), np.random.laplace(-2, 3)] for _ in range(N)]) indices = np.random.choice(list(range(len(mixture_weights))), p=mixture_weights, size=N) samples = np.take_along_axis(samples, indices[:, None], axis=1) return samples.flatten() # This function evaluates a set of univariate samples # under the Gaussian, Uniform, and Laplace densities in the problem. def evaluate_density(samples): # Parameters for the distributions in our mixture: N(3, 2^2), U(-1, 2), L(-2, 3) # Minor note: Scipy uniform.pdf expects the first argument as the start interval and the # second as the length of interval, *not* the endpoint densities = [[norm.pdf(x, 3, 2), uniform.pdf(x, -1, 3), laplace.pdf(x, -2, 3)] for x in samples] densities = np.array(densities) return densities # This function takes as input the estimated mixture weights # and generates a plot of both the estimated and true density # by analytically evaluating the density at each point in a discretized # interval [-20, 20] def plot_estimated_and_true_density(estimated_mixture_weights): discretized_x = np.linspace(-20, 20, num=100) all_densities = evaluate_density(discretized_x) estimated_densities = all_densities @ estimated_mixture_weights true_densities = all_densities @ true_mixture_weights plt.plot(discretized_x, estimated_densities, label="Estimated") plt.plot(discretized_x, true_densities, label="True") plt.title("True vs Estimated Density") plt.legend() plt.show() samples = generate_samples(true_mixture_weights) densities = evaluate_density(samples) import cvxpy as cp def main(): lamb = cp.Variable(k) con = [lamb >= 0., cp.sum(lamb) == 1.] obj = cp.Maximize(sum(cp.log(lamb @ row) for row in densities)) cp.Problem(constraints=con, objective=obj).solve() plot_estimated_and_true_density(lamb.value) print(lamb.value) if __name__ == "__main__": fire.Fire(main)
[ "fire.Fire", "numpy.array", "numpy.take_along_axis", "matplotlib.pyplot.plot", "numpy.linspace", "numpy.random.seed", "numpy.random.laplace", "numpy.random.normal", "cvxpy.Problem", "scipy.stats.laplace.pdf", "scipy.stats.uniform.pdf", "scipy.stats.norm.pdf", "matplotlib.pyplot.title", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "cvxpy.Variable", "cvxpy.sum", "numpy.random.uniform", "cvxpy.log" ]
[((452, 469), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (466, 469), True, 'import numpy as np\n'), ((836, 889), 'numpy.take_along_axis', 'np.take_along_axis', (['samples', 'indices[:, None]'], {'axis': '(1)'}), '(samples, indices[:, None], axis=1)\n', (854, 889), True, 'import numpy as np\n'), ((1465, 1484), 'numpy.array', 'np.array', (['densities'], {}), '(densities)\n', (1473, 1484), True, 'import numpy as np\n'), ((1808, 1837), 'numpy.linspace', 'np.linspace', (['(-20)', '(20)'], {'num': '(100)'}), '(-20, 20, num=100)\n', (1819, 1837), True, 'import numpy as np\n'), ((2020, 2083), 'matplotlib.pyplot.plot', 'plt.plot', (['discretized_x', 'estimated_densities'], {'label': '"""Estimated"""'}), "(discretized_x, estimated_densities, label='Estimated')\n", (2028, 2083), True, 'from matplotlib import pyplot as plt\n'), ((2088, 2141), 'matplotlib.pyplot.plot', 'plt.plot', (['discretized_x', 'true_densities'], {'label': '"""True"""'}), "(discretized_x, true_densities, label='True')\n", (2096, 2141), True, 'from matplotlib import pyplot as plt\n'), ((2146, 2184), 'matplotlib.pyplot.title', 'plt.title', (['"""True vs Estimated Density"""'], {}), "('True vs Estimated Density')\n", (2155, 2184), True, 'from matplotlib import pyplot as plt\n'), ((2189, 2201), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2199, 2201), True, 'from matplotlib import pyplot as plt\n'), ((2206, 2216), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2214, 2216), True, 'from matplotlib import pyplot as plt\n'), ((2351, 2365), 'cvxpy.Variable', 'cp.Variable', (['k'], {}), '(k)\n', (2362, 2365), True, 'import cvxpy as cp\n'), ((2636, 2651), 'fire.Fire', 'fire.Fire', (['main'], {}), '(main)\n', (2645, 2651), False, 'import fire\n'), ((1330, 1347), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(3)', '(2)'], {}), '(x, 3, 2)\n', (1338, 1347), False, 'from scipy.stats import norm, laplace, uniform\n'), ((1367, 1388), 'scipy.stats.uniform.pdf', 'uniform.pdf', (['x', '(-1)', '(3)'], {}), '(x, -1, 3)\n', (1378, 1388), False, 'from scipy.stats import norm, laplace, uniform\n'), ((1408, 1429), 'scipy.stats.laplace.pdf', 'laplace.pdf', (['x', '(-2)', '(3)'], {}), '(x, -2, 3)\n', (1419, 1429), False, 'from scipy.stats import norm, laplace, uniform\n'), ((2389, 2401), 'cvxpy.sum', 'cp.sum', (['lamb'], {}), '(lamb)\n', (2395, 2401), True, 'import cvxpy as cp\n'), ((2481, 2523), 'cvxpy.Problem', 'cp.Problem', ([], {'constraints': 'con', 'objective': 'obj'}), '(constraints=con, objective=obj)\n', (2491, 2523), True, 'import cvxpy as cp\n'), ((581, 603), 'numpy.random.normal', 'np.random.normal', (['(3)', '(2)'], {}), '(3, 2)\n', (597, 603), True, 'import numpy as np\n'), ((631, 655), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(2)'], {}), '(-1, 2)\n', (648, 655), True, 'import numpy as np\n'), ((683, 707), 'numpy.random.laplace', 'np.random.laplace', (['(-2)', '(3)'], {}), '(-2, 3)\n', (700, 707), True, 'import numpy as np\n'), ((2435, 2453), 'cvxpy.log', 'cp.log', (['(lamb @ row)'], {}), '(lamb @ row)\n', (2441, 2453), True, 'import cvxpy as cp\n')]
import subprocess import paths import datetime from functions_recorder import initialize_projector, record_vr_rig, plot_inputs_vr, load_csv from functions_osc import create_and_send from os.path import join from time import sleep from functions_GUI import get_filename_suffix, replace_name_part # configure recording # initialize projector my_device = initialize_projector() # assemble the main body of the file name time_name = datetime.datetime.now().strftime("%m_%d_%Y_%H_%M_%S") # get and format the current time csvName = join(paths.bonsai_out, time_name + r'_social_suffix.csv') videoName = csvName.replace('.csv', '.avi') # launch bonsai tracking bonsai_process = subprocess.Popen([paths.bonsai_path, paths.bonsaiworkflowSOC_path, "-p:csvName="""+csvName+"""""", "-p:videoName="""+videoName+"""""", "--start"]) # launch Unity tracking unity_process = subprocess.Popen([paths.unitySOC_path]) # start recording duration, current_path_sync = record_vr_rig(my_device, paths.sync_path, time_name, '_syncSOC') # close the opened applications create_and_send(paths.bonsai_ip, paths.bonsai_port, paths.bonsai_address, [1]) create_and_send(paths.unity_ip, paths.unity_port, paths.unity_address, [1]) sleep(2) bonsai_process.kill() # plot the timing # load the frame_list print(duration) frame_list = load_csv(current_path_sync) plot_inputs_vr(frame_list) # ask the user for the suffix (animal, result, notes) suffix = get_filename_suffix() # add the suffix to all the file names file_list = [csvName, videoName, current_path_sync] failed_files, _ = replace_name_part(file_list, 'suffix', suffix) print(failed_files) # do the same for the bonsai files unity_file = [paths.unity_temp_path] failed_unity, _ = replace_name_part(unity_file, 'suffix', '_'.join((time_name, suffix))) print(failed_unity)
[ "functions_recorder.initialize_projector", "functions_GUI.get_filename_suffix", "functions_recorder.record_vr_rig", "subprocess.Popen", "functions_recorder.plot_inputs_vr", "functions_recorder.load_csv", "os.path.join", "time.sleep", "datetime.datetime.now", "functions_osc.create_and_send", "functions_GUI.replace_name_part" ]
[((354, 376), 'functions_recorder.initialize_projector', 'initialize_projector', ([], {}), '()\n', (374, 376), False, 'from functions_recorder import initialize_projector, record_vr_rig, plot_inputs_vr, load_csv\n'), ((531, 587), 'os.path.join', 'join', (['paths.bonsai_out', "(time_name + '_social_suffix.csv')"], {}), "(paths.bonsai_out, time_name + '_social_suffix.csv')\n", (535, 587), False, 'from os.path import join\n'), ((676, 823), 'subprocess.Popen', 'subprocess.Popen', (["[paths.bonsai_path, paths.bonsaiworkflowSOC_path, '-p:csvName=' + csvName +\n '', '-p:videoName=' + videoName + '', '--start']"], {}), "([paths.bonsai_path, paths.bonsaiworkflowSOC_path, \n '-p:csvName=' + csvName + '', '-p:videoName=' + videoName + '', '--start'])\n", (692, 823), False, 'import subprocess\n'), ((899, 938), 'subprocess.Popen', 'subprocess.Popen', (['[paths.unitySOC_path]'], {}), '([paths.unitySOC_path])\n', (915, 938), False, 'import subprocess\n'), ((988, 1052), 'functions_recorder.record_vr_rig', 'record_vr_rig', (['my_device', 'paths.sync_path', 'time_name', '"""_syncSOC"""'], {}), "(my_device, paths.sync_path, time_name, '_syncSOC')\n", (1001, 1052), False, 'from functions_recorder import initialize_projector, record_vr_rig, plot_inputs_vr, load_csv\n'), ((1086, 1164), 'functions_osc.create_and_send', 'create_and_send', (['paths.bonsai_ip', 'paths.bonsai_port', 'paths.bonsai_address', '[1]'], {}), '(paths.bonsai_ip, paths.bonsai_port, paths.bonsai_address, [1])\n', (1101, 1164), False, 'from functions_osc import create_and_send\n'), ((1166, 1241), 'functions_osc.create_and_send', 'create_and_send', (['paths.unity_ip', 'paths.unity_port', 'paths.unity_address', '[1]'], {}), '(paths.unity_ip, paths.unity_port, paths.unity_address, [1])\n', (1181, 1241), False, 'from functions_osc import create_and_send\n'), ((1243, 1251), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (1248, 1251), False, 'from time import sleep\n'), ((1346, 1373), 'functions_recorder.load_csv', 'load_csv', (['current_path_sync'], {}), '(current_path_sync)\n', (1354, 1373), False, 'from functions_recorder import initialize_projector, record_vr_rig, plot_inputs_vr, load_csv\n'), ((1374, 1400), 'functions_recorder.plot_inputs_vr', 'plot_inputs_vr', (['frame_list'], {}), '(frame_list)\n', (1388, 1400), False, 'from functions_recorder import initialize_projector, record_vr_rig, plot_inputs_vr, load_csv\n'), ((1465, 1486), 'functions_GUI.get_filename_suffix', 'get_filename_suffix', ([], {}), '()\n', (1484, 1486), False, 'from functions_GUI import get_filename_suffix, replace_name_part\n'), ((1597, 1643), 'functions_GUI.replace_name_part', 'replace_name_part', (['file_list', '"""suffix"""', 'suffix'], {}), "(file_list, 'suffix', suffix)\n", (1614, 1643), False, 'from functions_GUI import get_filename_suffix, replace_name_part\n'), ((432, 455), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (453, 455), False, 'import datetime\n')]
""" This file exists to contain all Django and Python compatibility issues. In order to avoid circular references, nothing should be imported from debug_toolbar. """ from django.conf import settings from django.core.exceptions import ImproperlyConfigured try: from django.template.base import linebreak_iter # NOQA except ImportError: # Django < 1.9 from django.views.debug import linebreak_iter # NOQA try: from django.template.engine import Engine except ImportError: # Django < 1.8 Engine = None from django.template.context import get_standard_processors # NOQA from django.template.loader import find_template_loader # NOQA def get_template_dirs(): """Compatibility method to fetch the template directories.""" if Engine: try: engine = Engine.get_default() except ImproperlyConfigured: template_dirs = [] else: template_dirs = engine.dirs else: # Django < 1.8 template_dirs = settings.TEMPLATE_DIRS return template_dirs def get_template_loaders(): """Compatibility method to fetch the template loaders.""" if Engine: try: engine = Engine.get_default() except ImproperlyConfigured: loaders = [] else: loaders = engine.template_loaders else: # Django < 1.8 loaders = [ find_template_loader(loader_name) for loader_name in settings.TEMPLATE_LOADERS] return loaders def get_template_context_processors(): """Compatibility method to fetch the template context processors.""" if Engine: try: engine = Engine.get_default() except ImproperlyConfigured: context_processors = [] else: context_processors = engine.template_context_processors else: # Django < 1.8 context_processors = get_standard_processors() return context_processors
[ "django.template.loader.find_template_loader", "django.template.context.get_standard_processors", "django.template.engine.Engine.get_default" ]
[((1893, 1918), 'django.template.context.get_standard_processors', 'get_standard_processors', ([], {}), '()\n', (1916, 1918), False, 'from django.template.context import get_standard_processors\n'), ((805, 825), 'django.template.engine.Engine.get_default', 'Engine.get_default', ([], {}), '()\n', (823, 825), False, 'from django.template.engine import Engine\n'), ((1187, 1207), 'django.template.engine.Engine.get_default', 'Engine.get_default', ([], {}), '()\n', (1205, 1207), False, 'from django.template.engine import Engine\n'), ((1388, 1421), 'django.template.loader.find_template_loader', 'find_template_loader', (['loader_name'], {}), '(loader_name)\n', (1408, 1421), False, 'from django.template.loader import find_template_loader\n'), ((1662, 1682), 'django.template.engine.Engine.get_default', 'Engine.get_default', ([], {}), '()\n', (1680, 1682), False, 'from django.template.engine import Engine\n')]
import numpy as np def vee(ss): size = ss.shape[0]*ss.shape[1] ss_round = np.around(ss, decimals=10) if size == 4: if (ss_round[0,1]==ss_round[1,0]): vec = ss[0,1] elif size == 9: if (ss_round[2,1]==-ss_round[1,2] and ss_round[0,2]==-ss_round[2,0] and ss_round[1,0]==-ss_round[0,1]): vec = np.array([[ss[2,1]],[ss[0,2]],[ss[1,0]]]) return vec
[ "numpy.array", "numpy.around" ]
[((83, 109), 'numpy.around', 'np.around', (['ss'], {'decimals': '(10)'}), '(ss, decimals=10)\n', (92, 109), True, 'import numpy as np\n'), ((347, 393), 'numpy.array', 'np.array', (['[[ss[2, 1]], [ss[0, 2]], [ss[1, 0]]]'], {}), '([[ss[2, 1]], [ss[0, 2]], [ss[1, 0]]])\n', (355, 393), True, 'import numpy as np\n')]
from ravestate.context import Context import sys #from hanging_threads import start_monitoring #monitoring_thread = start_monitoring() ctx = Context(*sys.argv[1:]) ctx.run()
[ "ravestate.context.Context" ]
[((143, 165), 'ravestate.context.Context', 'Context', (['*sys.argv[1:]'], {}), '(*sys.argv[1:])\n', (150, 165), False, 'from ravestate.context import Context\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- """ Piader v2 """ from future import standard_library standard_library.install_aliases() from builtins import object import queue import event_server import local_key import time import views.home as home_view import views.options as options_view import views.game as game_view import views.gameover as gameover_view import views.scoreboard as scoreboard_view import configuration as cfg from lcdmanager import display class Piader(object): """Piader main class""" option = { 'game_tick': 0.5, 'game_on': True, 'score': 0, 'objects': [], 'gui_current_tab': 'home' } views = {} def __init__(self, game_manager, score_manager=None): """init class""" self.game_manager = game_manager self.score_manager = score_manager if self.game_manager.width < 6: raise ValueError("Width must be larger than 5") if self.game_manager.height < 4: raise ValueError("Height must be larger than 3") self.cfg = cfg.Configuration() self.queue = queue.Queue() self.event_server = event_server.EventServerThread(self.queue) self.display = display.Display(0.5, True) self.display.add(self.game_manager, 'one') if self.score_manager: self.display.add(self.score_manager, 'two') self.local_keyboard = local_key.Keyboard() self.views['home'] = home_view.Home(self.game_manager, self) self.views['options'] = options_view.Options(self.game_manager, self) self.views['game'] = game_view.Game(self.game_manager, self) self.views['gameover'] = gameover_view.Gameover(self.game_manager, self) if self.score_manager: self.scoreboard_view = scoreboard_view.Scoreboard(self.score_manager, self) def main_loop(self): """main loop""" self.event_server.start() self.display.start() self.set_tab('home') try: while self.option['game_on']: start = time.time() self.local_keyboard.read() action = self._get_action() self.views[self.option['gui_current_tab']].loop(action) if self.score_manager: self.scoreboard_view.loop(action) end = time.time() if end - start < self.option['game_tick']: t_delta = end - start time.sleep(max(0, self.option['game_tick'] - t_delta)) finally: self.local_keyboard.shutdown() self.event_server.join() self.display.join() def _get_action(self): """get event and return it""" try: event = self.queue.get(True, 0.05) except queue.Empty: event = None return event def quit_game(self): """quit game""" self.option['game_on'] = False def set_tab(self, tab): """change views""" for view in self.views: self.views[view].hide() self.views[tab].show() self.option['gui_current_tab'] = tab
[ "local_key.Keyboard", "lcdmanager.display.Display", "views.scoreboard.Scoreboard", "views.gameover.Gameover", "future.standard_library.install_aliases", "views.home.Home", "event_server.EventServerThread", "views.options.Options", "views.game.Game", "queue.Queue", "time.time", "configuration.Configuration" ]
[((97, 131), 'future.standard_library.install_aliases', 'standard_library.install_aliases', ([], {}), '()\n', (129, 131), False, 'from future import standard_library\n'), ((1067, 1086), 'configuration.Configuration', 'cfg.Configuration', ([], {}), '()\n', (1084, 1086), True, 'import configuration as cfg\n'), ((1108, 1121), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (1119, 1121), False, 'import queue\n'), ((1150, 1192), 'event_server.EventServerThread', 'event_server.EventServerThread', (['self.queue'], {}), '(self.queue)\n', (1180, 1192), False, 'import event_server\n'), ((1216, 1242), 'lcdmanager.display.Display', 'display.Display', (['(0.5)', '(True)'], {}), '(0.5, True)\n', (1231, 1242), False, 'from lcdmanager import display\n'), ((1411, 1431), 'local_key.Keyboard', 'local_key.Keyboard', ([], {}), '()\n', (1429, 1431), False, 'import local_key\n'), ((1461, 1500), 'views.home.Home', 'home_view.Home', (['self.game_manager', 'self'], {}), '(self.game_manager, self)\n', (1475, 1500), True, 'import views.home as home_view\n'), ((1533, 1578), 'views.options.Options', 'options_view.Options', (['self.game_manager', 'self'], {}), '(self.game_manager, self)\n', (1553, 1578), True, 'import views.options as options_view\n'), ((1608, 1647), 'views.game.Game', 'game_view.Game', (['self.game_manager', 'self'], {}), '(self.game_manager, self)\n', (1622, 1647), True, 'import views.game as game_view\n'), ((1681, 1728), 'views.gameover.Gameover', 'gameover_view.Gameover', (['self.game_manager', 'self'], {}), '(self.game_manager, self)\n', (1703, 1728), True, 'import views.gameover as gameover_view\n'), ((1795, 1847), 'views.scoreboard.Scoreboard', 'scoreboard_view.Scoreboard', (['self.score_manager', 'self'], {}), '(self.score_manager, self)\n', (1821, 1847), True, 'import views.scoreboard as scoreboard_view\n'), ((2069, 2080), 'time.time', 'time.time', ([], {}), '()\n', (2078, 2080), False, 'import time\n'), ((2356, 2367), 'time.time', 'time.time', ([], {}), '()\n', (2365, 2367), False, 'import time\n')]
__author__ = "<NAME>" __copyright__ = "--" import numpy as np import tensorflow as tf class Capsule(object): def __init__(self, in_dim, r_dim, g_dim): self.in_dim = in_dim self.r_dim = r_dim self.g_dim = g_dim def get_fc_var(self, in_size, out_size, name): # TODO # Store this variable in CPU instead of GPU when multiple GPUs # with tf.device('/cpu:0') initial_value = tf.truncated_normal([in_size, out_size], .0, .001) weights = tf.get_variable(name=name + "_weights", initializer=initial_value) bias_initial_value = tf.truncated_normal([out_size], .0, .001) biases = tf.get_variable(name=name + "_biases", initializer=bias_initial_value) return weights, biases def fc_layer(self, bottom, in_size, out_size, name): with tf.variable_scope(name): weights, biases = self.get_fc_var(in_size, out_size, name) fc = tf.nn.bias_add(tf.matmul(bottom, weights), biases) return fc def build(self, X_in, extra_in): rec = tf.sigmoid(self.fc_layer(X_in, self.in_dim, self.r_dim, 'recog_layer_pre_act'), 'recog_layer') xy_vec = self.fc_layer(rec, self.r_dim, 2, 'xy_prediction') pro = tf.sigmoid(self.fc_layer(rec, self.r_dim, 1, 'probability_lin'), 'probability_prediction') probability_vec = tf.tile(pro, (1, self.in_dim)) xy_extend = tf.add(xy_vec, extra_in) gen = tf.sigmoid(self.fc_layer(xy_extend, 2, self.g_dim, 'gen_pre_act'), 'gen_layer') out = self.fc_layer(gen, self.g_dim, self.in_dim, 'out_prediction') return tf.multiply(out, probability_vec)
[ "tensorflow.tile", "tensorflow.get_variable", "tensorflow.variable_scope", "tensorflow.multiply", "tensorflow.add", "tensorflow.matmul", "tensorflow.truncated_normal" ]
[((445, 497), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['[in_size, out_size]', '(0.0)', '(0.001)'], {}), '([in_size, out_size], 0.0, 0.001)\n', (464, 497), True, 'import tensorflow as tf\n'), ((514, 580), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': "(name + '_weights')", 'initializer': 'initial_value'}), "(name=name + '_weights', initializer=initial_value)\n", (529, 580), True, 'import tensorflow as tf\n'), ((611, 654), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['[out_size]', '(0.0)', '(0.001)'], {}), '([out_size], 0.0, 0.001)\n', (630, 654), True, 'import tensorflow as tf\n'), ((670, 740), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': "(name + '_biases')", 'initializer': 'bias_initial_value'}), "(name=name + '_biases', initializer=bias_initial_value)\n", (685, 740), True, 'import tensorflow as tf\n'), ((1384, 1414), 'tensorflow.tile', 'tf.tile', (['pro', '(1, self.in_dim)'], {}), '(pro, (1, self.in_dim))\n', (1391, 1414), True, 'import tensorflow as tf\n'), ((1436, 1460), 'tensorflow.add', 'tf.add', (['xy_vec', 'extra_in'], {}), '(xy_vec, extra_in)\n', (1442, 1460), True, 'import tensorflow as tf\n'), ((1648, 1681), 'tensorflow.multiply', 'tf.multiply', (['out', 'probability_vec'], {}), '(out, probability_vec)\n', (1659, 1681), True, 'import tensorflow as tf\n'), ((845, 868), 'tensorflow.variable_scope', 'tf.variable_scope', (['name'], {}), '(name)\n', (862, 868), True, 'import tensorflow as tf\n'), ((973, 999), 'tensorflow.matmul', 'tf.matmul', (['bottom', 'weights'], {}), '(bottom, weights)\n', (982, 999), True, 'import tensorflow as tf\n')]
import string import random from model.contact import Contact import os.path import jsonpickle import sys import getopt try: opts, args=getopt.getopt(sys.argv[1:],"n:f",["numbers of contacts","file"]) except getopt.GetoptError as err: getopt.usage() sys.exit(2) n=5 f="data/contacts.json" for o,a in opts: if o== "-n": n=int(a) elif o=="-f": f=a def random_str(prefix,maxlen): symbols= string.ascii_letters + string.digits+' '*100 return prefix+"".join([random.choice(symbols) for i in range(random.randrange(maxlen))]) test_data=[Contact(firstname=random_str('firstname',15), middlename='middle', lastname="lastname", nickname='nickname', title='title', company="sdd", address="we", homephone="500", mobilephone="433", workphone="443", fax="3", byear="1988", ayear="1988",address2="retert", phone2="rr", notes="e", droplist="//div[@id='content']/form/select[1]//option[4]", droplist2="//div[@id='content']/form/select[2]//option[8]", droplist3="//div[@id='content']/form/select[3]//option[3]",droplist4="//div[@id='content']/form/select[4]//option[8]") for i in range(n)] file=os.path.join(os.path.dirname(os.path.abspath(__file__)),"..",f) with open(file,"w") as out: jsonpickle.set_encoder_options('json',indent=2) out.write(jsonpickle.encode(test_data))
[ "jsonpickle.set_encoder_options", "getopt.getopt", "random.choice", "random.randrange", "getopt.usage", "sys.exit", "jsonpickle.encode" ]
[((142, 209), 'getopt.getopt', 'getopt.getopt', (['sys.argv[1:]', '"""n:f"""', "['numbers of contacts', 'file']"], {}), "(sys.argv[1:], 'n:f', ['numbers of contacts', 'file'])\n", (155, 209), False, 'import getopt\n'), ((1426, 1474), 'jsonpickle.set_encoder_options', 'jsonpickle.set_encoder_options', (['"""json"""'], {'indent': '(2)'}), "('json', indent=2)\n", (1456, 1474), False, 'import jsonpickle\n'), ((245, 259), 'getopt.usage', 'getopt.usage', ([], {}), '()\n', (257, 259), False, 'import getopt\n'), ((264, 275), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (272, 275), False, 'import sys\n'), ((1488, 1516), 'jsonpickle.encode', 'jsonpickle.encode', (['test_data'], {}), '(test_data)\n', (1505, 1516), False, 'import jsonpickle\n'), ((503, 525), 'random.choice', 'random.choice', (['symbols'], {}), '(symbols)\n', (516, 525), False, 'import random\n'), ((541, 565), 'random.randrange', 'random.randrange', (['maxlen'], {}), '(maxlen)\n', (557, 565), False, 'import random\n')]
import numpy as np from qsim import Circuit, Executor, Operation # subclass Executor class CustomExecutor(Executor): """ Custom quantum operation executor for external backend, for example, based on GPU. """ def __init__(self, initial_state: np.ndarray): # TODO: implement custom logic for state initialization super().__init__(initial_state=initial_state) def apply_operation(self, operation: Operation): # TODO: implement custom logic for operation execution super().apply_operation(operation=operation) # create circuit c = Circuit(qubit_count=2) # inject custom backend c.executor = CustomExecutor # now use the circuit as usual c.initialize([1, 0]) c.h.on(0) state = c.execute() print(f'one-hot vector state: {state}')
[ "qsim.Circuit" ]
[((584, 606), 'qsim.Circuit', 'Circuit', ([], {'qubit_count': '(2)'}), '(qubit_count=2)\n', (591, 606), False, 'from qsim import Circuit, Executor, Operation\n')]
import time import gym import numpy as np class AutoMonitor(gym.Wrapper): def __init__(self, env): super().__init__(env) # These metrics are never reset: self._episodes = 0 self._steps = 0 # These metrics are reset when an episode ends: self._length = None self._return = None # Metric histories for averaging self._all_lengths = [] self._all_returns = [] # Initial time reference point self._start_time = time.time() # Print the header self._print('episode', 'timestep', 'length', 'return', 'avg_length', 'avg_return', 'hours', sep=',', flush=True) def step(self, action): observation, reward, done, info = super().step(action) self._on_step(reward) if done: self._on_done() return observation, reward, done, info def reset(self, **kwargs): self._on_reset() return super().reset(**kwargs) def _on_step(self, reward): self._steps += 1 self._length += 1 self._return += reward def _on_done(self): self._episodes += 1 self._all_lengths.append(self._length) self._all_returns.append(self._return) hours = (time.time() - self._start_time) / 3600 avg_length = np.mean(self._all_lengths[-100:]) avg_return = np.mean(self._all_returns[-100:]) self._print(self._episodes, self._steps, self._length, self._return, avg_length, avg_return, '{:.3f}'.format(hours), sep=',', flush=True) def _on_reset(self): self._length = 0 self._return = 0.0 def _print(self, *args, **kwargs): print("AM", end=':') print(*args, **kwargs)
[ "numpy.mean", "time.time" ]
[((512, 523), 'time.time', 'time.time', ([], {}), '()\n', (521, 523), False, 'import time\n'), ((1343, 1376), 'numpy.mean', 'np.mean', (['self._all_lengths[-100:]'], {}), '(self._all_lengths[-100:])\n', (1350, 1376), True, 'import numpy as np\n'), ((1398, 1431), 'numpy.mean', 'np.mean', (['self._all_returns[-100:]'], {}), '(self._all_returns[-100:])\n', (1405, 1431), True, 'import numpy as np\n'), ((1283, 1294), 'time.time', 'time.time', ([], {}), '()\n', (1292, 1294), False, 'import time\n')]
import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import scipy.stats import functools import pandas as pd import numpy as np import pymc3 import os from scratch import log_likelihood from scratch import metropolis run_scratch = True save_scratch_trace = True run_pymc3 = False # Make a straight line y = [500, 10] x = np.linspace(0, 20) y_obs = np.array(y[0] + y[1]*x, dtype=int) y_obs_noise = np.random.poisson(y_obs) # General MCMC parameters niter = 30000 nburn = 1000 if run_scratch: #################################### ########### From scratch ########### #################################### print('Running linear regression from scratch example.') # set up MCMC prior = [scipy.stats.uniform(250, 600), scipy.stats.uniform(0, 20)] start = [prior_i.rvs() for prior_i in prior] def target(parameters, x, y_obs): """ Calculates the product of the likelihood and prior """ y = parameters[0] + parameters[1]*x l = log_likelihood.log_poisson_likelihood(y, y_obs) p = np.sum([np.log(prior_i.pdf(p)) for prior_i, p in zip(prior, parameters)]) return l + p def proposal(parameters, proposal_jump=[10, 0.5]): """ Generate a new proposal, or "guess" for the MCMC to try next. The new proposed value is picked from a Normal, centered on the old value given by p. The proposal_jump array specifies the standard deviation of the possible jumps from the prior parameter value. """ new_vals = np.array([scipy.stats.norm(loc=p_i, scale=jump_i).rvs() for p_i, jump_i in zip(parameters, proposal_jump)]) return new_vals target_line = functools.partial(target, x=x, y_obs=y_obs_noise) # Run the MCMC sampler scratch_chain = metropolis.log_metroplis(start, target_line, proposal, niter, nburn=nburn) if save_scratch_trace: if not os.path.exists('./data/'): # Check if data directory exists. os.makedirs('./data/') print('Made a ./data/ directory') df = pd.DataFrame(scratch_chain, columns=['y0', 'y1']) df.to_csv('./data/linear_regression_scratch_trace.csv', index=False) if run_pymc3: #################################### ########### Using pymc3 ############ #################################### print('Running linear regression using pymc3 example.') with pymc3.Model() as model: # Define priors y0 = pymc3.Uniform('y0', 250, 600) y1 = pymc3.Uniform('y1', 0, 20) # Define likelihood likelihood = pymc3.Poisson('f(y)', mu=y0 + y1*x, observed=y_obs_noise) # Inference pymc_chain = pymc3.sample(draws=niter, cores=None, tune=nburn) #################################### ######## Plot the results ########## #################################### if run_scratch: fig = plt.figure(constrained_layout=True, figsize=(8, 5)) gs = gridspec.GridSpec(nrows=2, ncols=4, figure=fig) ax = np.array([ [fig.add_subplot(gs[0, 0]), fig.add_subplot(gs[0, 1])], [fig.add_subplot(gs[1, 0]), fig.add_subplot(gs[1, 1])] ]) bx = fig.add_subplot(gs[:, 2:]) # Plot the chain and posteriors ax[0, 0].plot(scratch_chain[:, 0]); ax[1, 0].plot(scratch_chain[:, 1]) ax[0, 1].hist(scratch_chain[:, 0], density=True) ax[1, 1].hist(scratch_chain[:, 1], density=True) # Overlay a vertical line over the true value ax[0,1].axvline(y[0], c='k') ax[1,1].axvline(y[1], c='k') # Now plot the true line, superposed by the 95% credible interval # estimated from the posterior. ci = np.nan*np.ones((x.shape[0], 2)) for i, x_i in enumerate(x): y_scatter = scratch_chain[:, 0] + x_i*scratch_chain[:, 1] ci[i, :] = np.quantile(y_scatter, (0.025, 0.975)) bx.plot(x, y[0] + y[1]*x, 'b', label='True') bx.scatter(x, y_obs_noise, c='r', label='True+noise') bx.fill_between(x, ci[:, 0], ci[:, 1], color='g', alpha=0.3, label='95% CI') # Lots of plot adjustments and labling fig.suptitle(f'Linear regression from scratch\n' f'f(x) = y[0] + x*y[1] | true values y[0] = {y[0]}, y[1] = {y[1]}') ax[0,0].set(ylabel='y[0]', title='y[0] chain') ax[1,0].set(ylabel='y[1]', xlabel='Iteration', title='y[1] chain') ax[0,1].set(ylabel='probability', title='y[0] posterior') ax[1,1].set(ylabel='probability', title='y[1] posterior') bx.set(xlabel='x', ylabel='f(x)') bx.legend() if run_pymc3: # Plot the pymc3 results for confirmation. # Use the bult in traceplot functionality to visualize the posteriors. lines = [('y0', {}, [y[0]]), ('y1', {}, [y[1]])] # This API is very cumbersome! pymc3.traceplot(pymc_chain[100:], lines=lines) # Now make a plot similar to the from scratch plot I made of the family # of lines picked from the posterior. plt.figure(figsize=(7, 7)) plt.plot(x, y_obs_noise, 'x', label='True+noise') pymc3.plot_posterior_predictive_glm(pymc_chain, samples=100, eval=x, lm=lambda x, sample: sample['y0'] + sample['y1']*x, label='posterior predictive regression lines') plt.plot(x, y[0] + y[1]*x, label='True', lw=3., c='y') plt.title('Posterior predictive regression lines') plt.legend(loc=0) plt.xlabel('x') plt.ylabel('y') # Lastly, make a pairplot, i.e. a corner plot pymc3.plot_joint(pymc_chain, figsize=(5, 5), kind="hexbin") plt.show()
[ "matplotlib.pyplot.ylabel", "numpy.array", "pymc3.sample", "pymc3.plot_posterior_predictive_glm", "os.path.exists", "numpy.random.poisson", "pymc3.Uniform", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.linspace", "matplotlib.gridspec.GridSpec", "pandas.DataFrame", "pymc3.plot_joint", "numpy.ones", "scratch.log_likelihood.log_poisson_likelihood", "scratch.metropolis.log_metroplis", "matplotlib.pyplot.title", "pymc3.Model", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "os.makedirs", "pymc3.traceplot", "matplotlib.pyplot.figure", "numpy.quantile", "functools.partial", "pymc3.Poisson" ]
[((342, 360), 'numpy.linspace', 'np.linspace', (['(0)', '(20)'], {}), '(0, 20)\n', (353, 360), True, 'import numpy as np\n'), ((369, 405), 'numpy.array', 'np.array', (['(y[0] + y[1] * x)'], {'dtype': 'int'}), '(y[0] + y[1] * x, dtype=int)\n', (377, 405), True, 'import numpy as np\n'), ((418, 442), 'numpy.random.poisson', 'np.random.poisson', (['y_obs'], {}), '(y_obs)\n', (435, 442), True, 'import numpy as np\n'), ((5611, 5621), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5619, 5621), True, 'import matplotlib.pyplot as plt\n'), ((1755, 1804), 'functools.partial', 'functools.partial', (['target'], {'x': 'x', 'y_obs': 'y_obs_noise'}), '(target, x=x, y_obs=y_obs_noise)\n', (1772, 1804), False, 'import functools\n'), ((1853, 1927), 'scratch.metropolis.log_metroplis', 'metropolis.log_metroplis', (['start', 'target_line', 'proposal', 'niter'], {'nburn': 'nburn'}), '(start, target_line, proposal, niter, nburn=nburn)\n', (1877, 1927), False, 'from scratch import metropolis\n'), ((2967, 3018), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'constrained_layout': '(True)', 'figsize': '(8, 5)'}), '(constrained_layout=True, figsize=(8, 5))\n', (2977, 3018), True, 'import matplotlib.pyplot as plt\n'), ((3028, 3075), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', ([], {'nrows': '(2)', 'ncols': '(4)', 'figure': 'fig'}), '(nrows=2, ncols=4, figure=fig)\n', (3045, 3075), True, 'import matplotlib.gridspec as gridspec\n'), ((4832, 4878), 'pymc3.traceplot', 'pymc3.traceplot', (['pymc_chain[100:]'], {'lines': 'lines'}), '(pymc_chain[100:], lines=lines)\n', (4847, 4878), False, 'import pymc3\n'), ((5002, 5028), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(7, 7)'}), '(figsize=(7, 7))\n', (5012, 5028), True, 'import matplotlib.pyplot as plt\n'), ((5033, 5082), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_obs_noise', '"""x"""'], {'label': '"""True+noise"""'}), "(x, y_obs_noise, 'x', label='True+noise')\n", (5041, 5082), True, 'import matplotlib.pyplot as plt\n'), ((5087, 5265), 'pymc3.plot_posterior_predictive_glm', 'pymc3.plot_posterior_predictive_glm', (['pymc_chain'], {'samples': '(100)', 'eval': 'x', 'lm': "(lambda x, sample: sample['y0'] + sample['y1'] * x)", 'label': '"""posterior predictive regression lines"""'}), "(pymc_chain, samples=100, eval=x, lm=lambda\n x, sample: sample['y0'] + sample['y1'] * x, label=\n 'posterior predictive regression lines')\n", (5122, 5265), False, 'import pymc3\n'), ((5323, 5380), 'matplotlib.pyplot.plot', 'plt.plot', (['x', '(y[0] + y[1] * x)'], {'label': '"""True"""', 'lw': '(3.0)', 'c': '"""y"""'}), "(x, y[0] + y[1] * x, label='True', lw=3.0, c='y')\n", (5331, 5380), True, 'import matplotlib.pyplot as plt\n'), ((5383, 5433), 'matplotlib.pyplot.title', 'plt.title', (['"""Posterior predictive regression lines"""'], {}), "('Posterior predictive regression lines')\n", (5392, 5433), True, 'import matplotlib.pyplot as plt\n'), ((5438, 5455), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(0)'}), '(loc=0)\n', (5448, 5455), True, 'import matplotlib.pyplot as plt\n'), ((5460, 5475), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (5470, 5475), True, 'import matplotlib.pyplot as plt\n'), ((5480, 5495), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (5490, 5495), True, 'import matplotlib.pyplot as plt\n'), ((5550, 5609), 'pymc3.plot_joint', 'pymc3.plot_joint', (['pymc_chain'], {'figsize': '(5, 5)', 'kind': '"""hexbin"""'}), "(pymc_chain, figsize=(5, 5), kind='hexbin')\n", (5566, 5609), False, 'import pymc3\n'), ((1013, 1060), 'scratch.log_likelihood.log_poisson_likelihood', 'log_likelihood.log_poisson_likelihood', (['y', 'y_obs'], {}), '(y, y_obs)\n', (1050, 1060), False, 'from scratch import log_likelihood\n'), ((2163, 2212), 'pandas.DataFrame', 'pd.DataFrame', (['scratch_chain'], {'columns': "['y0', 'y1']"}), "(scratch_chain, columns=['y0', 'y1'])\n", (2175, 2212), True, 'import pandas as pd\n'), ((2498, 2511), 'pymc3.Model', 'pymc3.Model', ([], {}), '()\n', (2509, 2511), False, 'import pymc3\n'), ((2559, 2588), 'pymc3.Uniform', 'pymc3.Uniform', (['"""y0"""', '(250)', '(600)'], {}), "('y0', 250, 600)\n", (2572, 2588), False, 'import pymc3\n'), ((2602, 2628), 'pymc3.Uniform', 'pymc3.Uniform', (['"""y1"""', '(0)', '(20)'], {}), "('y1', 0, 20)\n", (2615, 2628), False, 'import pymc3\n'), ((2679, 2738), 'pymc3.Poisson', 'pymc3.Poisson', (['"""f(y)"""'], {'mu': '(y0 + y1 * x)', 'observed': 'y_obs_noise'}), "('f(y)', mu=y0 + y1 * x, observed=y_obs_noise)\n", (2692, 2738), False, 'import pymc3\n'), ((2779, 2828), 'pymc3.sample', 'pymc3.sample', ([], {'draws': 'niter', 'cores': 'None', 'tune': 'nburn'}), '(draws=niter, cores=None, tune=nburn)\n', (2791, 2828), False, 'import pymc3\n'), ((3760, 3784), 'numpy.ones', 'np.ones', (['(x.shape[0], 2)'], {}), '((x.shape[0], 2))\n', (3767, 3784), True, 'import numpy as np\n'), ((3902, 3940), 'numpy.quantile', 'np.quantile', (['y_scatter', '(0.025, 0.975)'], {}), '(y_scatter, (0.025, 0.975))\n', (3913, 3940), True, 'import numpy as np\n'), ((2008, 2033), 'os.path.exists', 'os.path.exists', (['"""./data/"""'], {}), "('./data/')\n", (2022, 2033), False, 'import os\n'), ((2081, 2103), 'os.makedirs', 'os.makedirs', (['"""./data/"""'], {}), "('./data/')\n", (2092, 2103), False, 'import os\n')]
from django.conf.urls import url from django.urls import path from . import views from django.conf import settings from django.conf.urls.static import static urlpatterns=[ path('',views.home, name = 'Home'), path('search/',views.search_photo, name = 'search_photo'), path(r'photo/(\d<photo_id>+)',views.photo,name ='photo') ] if settings.DEBUG: urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
[ "django.conf.urls.static.static", "django.urls.path" ]
[((177, 210), 'django.urls.path', 'path', (['""""""', 'views.home'], {'name': '"""Home"""'}), "('', views.home, name='Home')\n", (181, 210), False, 'from django.urls import path\n'), ((217, 273), 'django.urls.path', 'path', (['"""search/"""', 'views.search_photo'], {'name': '"""search_photo"""'}), "('search/', views.search_photo, name='search_photo')\n", (221, 273), False, 'from django.urls import path\n'), ((280, 337), 'django.urls.path', 'path', (['"""photo/(\\\\d<photo_id>+)"""', 'views.photo'], {'name': '"""photo"""'}), "('photo/(\\\\d<photo_id>+)', views.photo, name='photo')\n", (284, 337), False, 'from django.urls import path\n'), ((377, 438), 'django.conf.urls.static.static', 'static', (['settings.MEDIA_URL'], {'document_root': 'settings.MEDIA_ROOT'}), '(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)\n', (383, 438), False, 'from django.conf.urls.static import static\n')]
import os import logging import objectpath from datetime import datetime, timedelta from indra.statements import Concept, Event, Influence, TimeContext, \ RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, \ Migration, QuantitativeState logger = logging.getLogger(__name__) # List out relation types and their default (implied) polarities. polarities = {'causation': 1, 'precondition': 1, 'catalyst': 1, 'mitigation': -1, 'prevention': -1, 'temporallyPrecedes': None} class HumeJsonLdProcessor(object): """This processor extracts INDRA Statements from Hume JSON-LD output. Parameters ---------- json_dict : dict A JSON dictionary containing the Hume extractions in JSON-LD format. Attributes ---------- tree : objectpath.Tree The objectpath Tree object representing the extractions. statements : list[indra.statements.Statement] A list of INDRA Statements that were extracted by the processor. """ def __init__(self, json_dict): self.tree = objectpath.Tree(json_dict) self.statements = [] self.document_dict = {} self.concept_dict = {} self.relation_dict = {} self.eid_stmt_dict = {} self.extractions_by_id = {} self._get_documents() self.relation_subj_obj_ids = [] self._get_extractions_by_id() def _get_extractions_by_id(self): self.extractions_by_id = { extr['@id']: extr for extr in self.tree.execute("$.extractions[(@.@type is 'Extraction')]") if '@id' in extr} def extract_relations(self): relations = self._find_relations() for relation_type, relation in relations: # Extract concepts and contexts. subj = self._get_event_and_context(relation, arg_type='source') obj = self._get_event_and_context(relation, arg_type='destination') if not subj.concept or not obj.concept: continue # Apply the naive polarity from the type of statement. For the # purpose of the multiplication here, if obj.delta.polarity is # None to begin with, we assume it is positive obj_pol = obj.delta.polarity obj_pol = obj_pol if obj_pol is not None else 1 rel_pol = polarities[relation_type] obj.delta.polarity = rel_pol * obj_pol if rel_pol else None evidence = self._get_evidence(relation, get_states(relation)) st = Influence(subj, obj, evidence=evidence) self.eid_stmt_dict[relation['@id']] = st self.statements.append(st) def extract_events(self): events = self._find_events() for event in events: evidence = self._get_evidence(event, get_states(event)) stmt = self._get_event_and_context(event, eid=event['@id'], evidence=evidence) self.eid_stmt_dict[event['@id']] = stmt self.statements.append(stmt) def _find_events(self): """Find standalone events and return them in a list.""" # First populate self.concept_dict and self.relations_subj_obj_ids if not self.relation_dict or not self.concept_dict or \ not self.relation_subj_obj_ids: self._find_relations() # Check if events are part of relations events = [] for e in self.concept_dict.values(): label_set = set(e.get('labels', [])) if 'Event' in label_set: if e['@id'] not in self.relation_subj_obj_ids: events.append(e) if not events: logger.debug('No standalone events found.') else: logger.debug('%d standalone events found.' % len(events)) return events def _find_relations(self): """Find all relevant relation elements and return them in a list.""" # Get relations from extractions relations = [] for eid, e in self.extractions_by_id.items(): label_set = set(e.get('labels', [])) # If this is a DirectedRelation if 'DirectedRelation' in label_set: self.relation_dict[eid] = e subtype = e.get('subtype') if any(t in subtype for t in polarities.keys()): relations.append((subtype, e)) # Save IDs of relation's subject and object if e['arguments']: for a in e['arguments']: if a['type'] == 'source' or \ a['type'] == 'destination': self.relation_subj_obj_ids.append( a['value']['@id']) # If this is an Event or an Entity if {'Event', 'Entity'} & label_set: self.concept_dict[e['@id']] = e if not relations and not self.relation_dict: logger.debug("No relations found.") else: logger.debug('%d relations of types %s found' % (len(relations), ', '.join(polarities.keys()))) logger.debug('%d relations in dict.' % len(self.relation_dict)) logger.debug('%d concepts found.' % len(self.concept_dict)) return relations def _get_documents(self): """Populate sentences attribute with a dict keyed by document id.""" documents = self.tree.execute("$.documents") for doc in documents: sentences = {s['@id']: s['text'] for s in doc.get('sentences', [])} self.document_dict[doc['@id']] = {'sentences': sentences, 'location': doc['location']} def _make_world_context(self, entity): """Get place and time info from the json for this entity.""" loc_context = None time_context = None # Look for time and place contexts. for argument in entity["arguments"]: if argument["type"] in {"has_location", "has_origin_location", "has_destination_location", "has_intermediate_location"}: entity_id = argument["value"]["@id"] loc_entity = self.concept_dict[entity_id] loc_context = _resolve_geo(loc_entity) if argument["type"] in {"has_time", "has_start_time", "has_end_time"}: entity_id = argument["value"]["@id"] temporal_entity = self.concept_dict[entity_id] time_context = _resolve_time(temporal_entity) # Put context together context = None if loc_context or time_context: context = WorldContext(time=time_context, geo_location=loc_context) return context def _make_movement_context(self, entity): movement_locations = list() time_context = None # Use None for quantitative_state if no information found, default # value will be assigned when creating a Statement quantitative_state = None for argument in entity['arguments']: entity_id = argument["value"]["@id"] hume_entity = self.concept_dict[entity_id] if argument['type'] in {"has_actor", "has_affected_actor", "has_active_actor"}: for count in hume_entity.get('counts', list()): quantitative_state = QuantitativeState( entity="person", value=count['value'], unit=count['unit'], modifier=count['modifier']) if argument['type'] == "has_origin_location": movement_locations.append( {'location': _resolve_geo(hume_entity), 'role': 'origin'}) if argument['type'] == 'has_destination_location': movement_locations.append( {'location': _resolve_geo(hume_entity), 'role': 'destination'}) if argument['type'] in {"has_time", "has_start_time", "has_end_time"}: time_context = _resolve_time(hume_entity) return MovementContext(locations=movement_locations, time=time_context), quantitative_state def _make_concept(self, entity): """Return Concept from a Hume entity.""" # Use the canonical name as the name of the Concept by default name = self._sanitize(entity['canonicalName']) # But if there is a trigger head text, we prefer that since # it almost always results in a cleaner name # This is removed for now since the head word seems to be too # minimal for some concepts, e.g. it gives us only "security" # for "food security". """ trigger = entity.get('trigger') if trigger is not None: head_text = trigger.get('head text') if head_text is not None: name = head_text """ # Save raw text and Hume scored groundings as db_refs db_refs = self._get_grounding(entity) concept = Concept(name, db_refs=db_refs) metadata = {arg['type']: arg['value']['@id'] for arg in entity['arguments']} return concept, metadata def _get_bounds(self, ref_dicts): minb = None maxb = None for ref_dict in ref_dicts: bounds = ref_dict.pop('BOUNDS', None) if bounds: minb = min(bounds[0], minb if minb is not None else bounds[0]) maxb = max(bounds[1], maxb if maxb is not None else bounds[1]) return minb, maxb def _get_event_and_context(self, event, eid=None, arg_type=None, evidence=None): """Return an INDRA Event based on an event entry.""" if not eid: eid = _choose_id(event, arg_type) ev = self.concept_dict[eid] concept, metadata = self._make_concept(ev) is_migration_event = False hume_grounding = {x[0] for x in concept.db_refs['WM']} for grounding_en in hume_grounding: if "wm/concept/causal_factor/social_and_political/migration" in \ grounding_en: is_migration_event = True if is_migration_event: movement_context, quantitative_state = ( self._make_movement_context(ev)) event_obj = Migration(concept, delta=quantitative_state, context=movement_context, evidence=evidence) else: ev_delta = QualitativeDelta( polarity=get_polarity(ev), adjectives=None) context = self._make_world_context(ev) event_obj = Event(concept, delta=ev_delta, context=context, evidence=evidence) return event_obj def _get_text_and_bounds(self, provenance): # First try looking up the full sentence through provenance doc_id = provenance['document']['@id'] sent_id = provenance['sentence'] text = self.document_dict[doc_id]['sentences'][sent_id] text = self._sanitize(text) if 'sentenceCharPositions' in provenance: bounds = [provenance['sentenceCharPositions'][k] for k in ['start', 'end']] else: bounds = [] return text, bounds def _get_evidence(self, event, adjectives): """Return the Evidence object for the INDRA Statement.""" provenance = event.get('provenance') # First try looking up the full sentence through provenance text, bounds = self._get_text_and_bounds(provenance[0]) annotations = { 'found_by': event.get('rule'), 'provenance': provenance, 'event_type': os.path.basename(event.get('type')), 'adjectives': adjectives, 'bounds': bounds } ev = Evidence(source_api='hume', text=text, annotations=annotations) return [ev] def _get_grounding(self, entity): """Return Hume grounding.""" db_refs = {'TEXT': entity['text']} groundings = entity.get('grounding') if not groundings: return db_refs # Get rid of leading slash groundings = [(x['ontologyConcept'][1:], x['value']) for x in groundings] grounding_entries = sorted(list(set(groundings)), key=lambda x: (x[1], x[0].count('/'), x[0]), reverse=True) # We could get an empty list here in which case we don't add the # grounding if grounding_entries: db_refs['WM'] = grounding_entries return db_refs @staticmethod def _sanitize(text): """Return sanitized Hume text field for human readability.""" # TODO: any cleanup needed here? if text is None: return None text = text.replace('\n', ' ') return text class HumeJsonLdProcessorCompositional(HumeJsonLdProcessor): def _get_grounding(self, entity): """Return Hume grounding.""" db_refs = {} txt = entity.get('text') if txt: db_refs['TEXT'] = txt groundings = entity.get('grounding') if not groundings: return db_refs # Get rid of leading slash groundings = [(x['ontologyConcept'][1:], x['value']) for x in groundings] grounding_entries = sorted(list(set(groundings)), key=lambda x: (x[1], x[0].count('/'), x[0]), reverse=True) if 'mentions' in entity: prov = entity['mentions'][0]['provenance'][0] else: prov = entity['provenance'][0] _, bounds = self._get_text_and_bounds(prov) db_refs['BOUNDS'] = bounds # We could get an empty list here in which case we don't add the # grounding if grounding_entries: db_refs['WM'] = grounding_entries return db_refs def _get_event_and_context(self, event, eid=None, arg_type=None, evidence=None): """Return an INDRA Event based on an event entry.""" if not eid: eid = _choose_id(event, arg_type) ev = self.concept_dict[eid] concept, metadata = self._make_concept(ev) # is_migration_event = False property_id = _choose_id(event, 'has_property') theme_id = _choose_id(event, 'has_theme') property = self.extractions_by_id[property_id] \ if property_id else None theme = self.extractions_by_id[theme_id] \ if theme_id else None process_grounding = concept.db_refs theme_grounding = self._get_grounding(theme) if theme else {} property_grounding = self._get_grounding(property) if property else {} minb, maxb = self._get_bounds([theme_grounding, process_grounding, property_grounding]) event_sentence, _ = self._get_text_and_bounds(event['provenance'][0]) doc_id = event['provenance'][0]['document']['@id'] sent_id = event['provenance'][0]['sentence'] # If we successfully got within-sentence coordinates, we can use the # entity text from there and overwrite the concept name as well as # the context grounding TEXT entry if minb is not None and maxb is not None: entity_text = \ self.document_dict[doc_id]['sentences'][sent_id][minb:maxb+1] concept.name = entity_text concept.db_refs['TEXT'] = entity_text process_grounding_wm = process_grounding.get('WM') theme_grounding_wm = theme_grounding.get('WM') property_grounding_wm = property_grounding.get('WM') # FIXME: what do we do if there are multiple entries in # theme/property grounding? #assert process_grounding_wm is None or len(process_grounding_wm) == 1 assert property_grounding_wm is None or len(property_grounding_wm) == 1 assert theme_grounding_wm is None or len(theme_grounding_wm) == 1 property_grounding_wm = property_grounding_wm[0] \ if property_grounding_wm else None theme_grounding_wm = theme_grounding_wm[0] \ if theme_grounding_wm else None process_grounding_wm = process_grounding_wm[0] \ if process_grounding_wm else None # For some reason the event's grounding is sometimes duplicated as # property grounding (e.g., price), in this case we treat the grounding # as a property if process_grounding_wm and property_grounding_wm and \ process_grounding_wm[0] == property_grounding_wm[0]: process_grounding_wm = None # First case: we have a theme so we apply the property and the process # to it if theme_grounding: compositional_grounding = [[theme_grounding_wm, property_grounding_wm, process_grounding_wm, None]] # Second case: we don't have a theme so we take the process as the theme # and apply any property to it elif process_grounding_wm: compositional_grounding = [[process_grounding_wm, property_grounding_wm, None, None]] elif property_grounding_wm: compositional_grounding = [[property_grounding_wm, None, None, None]] assert compositional_grounding[0][0] concept.db_refs['WM'] = compositional_grounding # Migrations turned off for now #for grounding_en in process_grounding: # if "wm/concept/causal_factor/social_and_political/migration" in \ # grounding_en: # is_migration_event = True #if is_migration_event: # movement_context, quantitative_state = ( # self._make_movement_context(ev)) # event_obj = Migration(concept, delta=quantitative_state, # context=movement_context, evidence=evidence) #else: ev_delta = QualitativeDelta( polarity=get_polarity(ev)) context = self._make_world_context(ev) event_obj = Event(concept, delta=ev_delta, context=context, evidence=evidence) return event_obj def _choose_id(event, arg_type): args = event.get('arguments', []) obj_tag = [arg for arg in args if arg['type'] == arg_type] if obj_tag: obj_id = obj_tag[0]['value']['@id'] else: obj_id = None return obj_id def get_states(event): ret_list = [] if 'states' in event: for state_property in event['states']: if state_property['type'] != 'polarity': ret_list.append(state_property['text']) return ret_list def get_polarity(event): pol_map = {'Positive': 1, 'Negative': -1} if 'states' in event: for state_property in event['states']: if state_property['type'] == 'polarity': return pol_map[state_property['text']] return None def _resolve_geo(hume_loc_entity): place = hume_loc_entity.get('canonicalName', hume_loc_entity.get('text')) geo_id = hume_loc_entity.get('geoname_id', None) if geo_id is not None: return RefContext(name=place, db_refs={"GEOID": geo_id}) else: return RefContext(place) def _resolve_time(hume_temporal_entity): if 'mentions' in hume_temporal_entity: text = hume_temporal_entity['mentions'][0]['text'] else: text = hume_temporal_entity['text'] if len(hume_temporal_entity.get("timeInterval", [])) < 1: return TimeContext(text=text) time = hume_temporal_entity["timeInterval"][0] start = datetime.strptime(time['start'], '%Y-%m-%dT%H:%M') end = datetime.strptime(time['end'], '%Y-%m-%dT%H:%M') end = end + timedelta(minutes=1) duration = int((end - start).total_seconds()) return TimeContext(text=text, start=start, end=end, duration=duration)
[ "logging.getLogger", "indra.statements.MovementContext", "indra.statements.Influence", "datetime.datetime.strptime", "indra.statements.Event", "indra.statements.Concept", "indra.statements.QuantitativeState", "indra.statements.WorldContext", "objectpath.Tree", "indra.statements.Evidence", "indra.statements.RefContext", "indra.statements.TimeContext", "indra.statements.Migration", "datetime.timedelta" ]
[((278, 305), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (295, 305), False, 'import logging\n'), ((20273, 20323), 'datetime.datetime.strptime', 'datetime.strptime', (["time['start']", '"""%Y-%m-%dT%H:%M"""'], {}), "(time['start'], '%Y-%m-%dT%H:%M')\n", (20290, 20323), False, 'from datetime import datetime, timedelta\n'), ((20334, 20382), 'datetime.datetime.strptime', 'datetime.strptime', (["time['end']", '"""%Y-%m-%dT%H:%M"""'], {}), "(time['end'], '%Y-%m-%dT%H:%M')\n", (20351, 20382), False, 'from datetime import datetime, timedelta\n'), ((20481, 20544), 'indra.statements.TimeContext', 'TimeContext', ([], {'text': 'text', 'start': 'start', 'end': 'end', 'duration': 'duration'}), '(text=text, start=start, end=end, duration=duration)\n', (20492, 20544), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((1079, 1105), 'objectpath.Tree', 'objectpath.Tree', (['json_dict'], {}), '(json_dict)\n', (1094, 1105), False, 'import objectpath\n'), ((9319, 9349), 'indra.statements.Concept', 'Concept', (['name'], {'db_refs': 'db_refs'}), '(name, db_refs=db_refs)\n', (9326, 9349), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((12168, 12231), 'indra.statements.Evidence', 'Evidence', ([], {'source_api': '"""hume"""', 'text': 'text', 'annotations': 'annotations'}), "(source_api='hume', text=text, annotations=annotations)\n", (12176, 12231), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((18729, 18795), 'indra.statements.Event', 'Event', (['concept'], {'delta': 'ev_delta', 'context': 'context', 'evidence': 'evidence'}), '(concept, delta=ev_delta, context=context, evidence=evidence)\n', (18734, 18795), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((19818, 19867), 'indra.statements.RefContext', 'RefContext', ([], {'name': 'place', 'db_refs': "{'GEOID': geo_id}"}), "(name=place, db_refs={'GEOID': geo_id})\n", (19828, 19867), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((19893, 19910), 'indra.statements.RefContext', 'RefContext', (['place'], {}), '(place)\n', (19903, 19910), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((20187, 20209), 'indra.statements.TimeContext', 'TimeContext', ([], {'text': 'text'}), '(text=text)\n', (20198, 20209), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((20399, 20419), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (20408, 20419), False, 'from datetime import datetime, timedelta\n'), ((2556, 2595), 'indra.statements.Influence', 'Influence', (['subj', 'obj'], {'evidence': 'evidence'}), '(subj, obj, evidence=evidence)\n', (2565, 2595), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((6876, 6933), 'indra.statements.WorldContext', 'WorldContext', ([], {'time': 'time_context', 'geo_location': 'loc_context'}), '(time=time_context, geo_location=loc_context)\n', (6888, 6933), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((8356, 8420), 'indra.statements.MovementContext', 'MovementContext', ([], {'locations': 'movement_locations', 'time': 'time_context'}), '(locations=movement_locations, time=time_context)\n', (8371, 8420), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((10645, 10738), 'indra.statements.Migration', 'Migration', (['concept'], {'delta': 'quantitative_state', 'context': 'movement_context', 'evidence': 'evidence'}), '(concept, delta=quantitative_state, context=movement_context,\n evidence=evidence)\n', (10654, 10738), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((10959, 11025), 'indra.statements.Event', 'Event', (['concept'], {'delta': 'ev_delta', 'context': 'context', 'evidence': 'evidence'}), '(concept, delta=ev_delta, context=context, evidence=evidence)\n', (10964, 11025), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n'), ((7619, 7727), 'indra.statements.QuantitativeState', 'QuantitativeState', ([], {'entity': '"""person"""', 'value': "count['value']", 'unit': "count['unit']", 'modifier': "count['modifier']"}), "(entity='person', value=count['value'], unit=count['unit'],\n modifier=count['modifier'])\n", (7636, 7727), False, 'from indra.statements import Concept, Event, Influence, TimeContext, RefContext, WorldContext, Evidence, QualitativeDelta, MovementContext, Migration, QuantitativeState\n')]
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Pre-existing BD Revision ID: bda3c34581e0 Revises: <PASSWORD> Create Date: 2020-08-05 14:18:11.909757 """ # revision identifiers, used by Alembic. revision = 'bda3c34581e0' down_revision = '<PASSWORD>' from alembic import op import sqlalchemy as sa def upgrade(): op.add_column('apic_aim_network_extensions', sa.Column('bridge_domain_dn', sa.String(1024), nullable=True)) def downgrade(): pass
[ "sqlalchemy.String" ]
[((943, 958), 'sqlalchemy.String', 'sa.String', (['(1024)'], {}), '(1024)\n', (952, 958), True, 'import sqlalchemy as sa\n')]
#!/usr/bin/env python import pybullet as p import time import pybullet_data import numpy as np import sys sys.path.append('../../../') from spotmicro.util import pybullet_data as pd physicsClient = p.connect(p.GUI) # or p.DIRECT for non-graphical version p.setAdditionalSearchPath(pybullet_data.getDataPath()) # optionally p.setGravity(0, 0, -9.81) # p.setTimeStep(1./240.) # slow, accurate p.setRealTimeSimulation(0) # we want to be faster than real time :) planeId = p.loadURDF("plane.urdf") StartPos = [0, 0, 0.3] StartOrientation = p.getQuaternionFromEuler([0, 0, 0]) p.resetDebugVisualizerCamera(cameraDistance=0.8, cameraYaw=45, cameraPitch=-30, cameraTargetPosition=[0, 0, 0]) boxId = p.loadURDF(pd.getDataPath() + "/assets/urdf/spot.urdf", StartPos, StartOrientation, flags=p.URDF_USE_SELF_COLLISION_EXCLUDE_PARENT) numj = p.getNumJoints(boxId) numb = p.getNumBodies() Pos, Orn = p.getBasePositionAndOrientation(boxId) print(Pos, Orn) print("Number of joints {}".format(numj)) print("Number of links {}".format(numb)) joint = [] movingJoints = [ 6, 7, 8, # FL 10, 11, 12, # FR 15, 16, 17, # BL 19, 20, 21 # BR ] maxVelocity = 100 mode = p.POSITION_CONTROL p.setJointMotorControlArray(bodyUniqueId=boxId, jointIndices=movingJoints, controlMode=p.POSITION_CONTROL, targetPositions=np.zeros(12), targetVelocities=np.zeros(12), forces=np.ones(12) * np.inf) counter = 0 angle1 = -np.pi / 2.0 angle2 = 0.0 angle = angle1 for i in range(100000000): counter += 1 if counter % 1000 == 0: p.setJointMotorControlArray( bodyUniqueId=boxId, jointIndices=[8, 12, 17, 21], # FWrists controlMode=p.POSITION_CONTROL, targetPositions=np.ones(4) * angle, targetVelocities=np.zeros(4), forces=np.ones(4) * 0.15) counter = 0 if angle == angle1: angle = angle2 else: angle = angle1 p.stepSimulation() p.disconnect()
[ "pybullet.getNumBodies", "pybullet.resetDebugVisualizerCamera", "pybullet_data.getDataPath", "numpy.ones", "pybullet.getBasePositionAndOrientation", "pybullet.connect", "pybullet.getNumJoints", "pybullet.setGravity", "pybullet.getQuaternionFromEuler", "pybullet.disconnect", "numpy.zeros", "spotmicro.util.pybullet_data.getDataPath", "pybullet.stepSimulation", "pybullet.setRealTimeSimulation", "sys.path.append", "pybullet.loadURDF" ]
[((109, 137), 'sys.path.append', 'sys.path.append', (['"""../../../"""'], {}), "('../../../')\n", (124, 137), False, 'import sys\n'), ((202, 218), 'pybullet.connect', 'p.connect', (['p.GUI'], {}), '(p.GUI)\n', (211, 218), True, 'import pybullet as p\n'), ((329, 354), 'pybullet.setGravity', 'p.setGravity', (['(0)', '(0)', '(-9.81)'], {}), '(0, 0, -9.81)\n', (341, 354), True, 'import pybullet as p\n'), ((403, 429), 'pybullet.setRealTimeSimulation', 'p.setRealTimeSimulation', (['(0)'], {}), '(0)\n', (426, 429), True, 'import pybullet as p\n'), ((482, 506), 'pybullet.loadURDF', 'p.loadURDF', (['"""plane.urdf"""'], {}), "('plane.urdf')\n", (492, 506), True, 'import pybullet as p\n'), ((549, 584), 'pybullet.getQuaternionFromEuler', 'p.getQuaternionFromEuler', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (573, 584), True, 'import pybullet as p\n'), ((585, 701), 'pybullet.resetDebugVisualizerCamera', 'p.resetDebugVisualizerCamera', ([], {'cameraDistance': '(0.8)', 'cameraYaw': '(45)', 'cameraPitch': '(-30)', 'cameraTargetPosition': '[0, 0, 0]'}), '(cameraDistance=0.8, cameraYaw=45, cameraPitch=\n -30, cameraTargetPosition=[0, 0, 0])\n', (613, 701), True, 'import pybullet as p\n'), ((989, 1010), 'pybullet.getNumJoints', 'p.getNumJoints', (['boxId'], {}), '(boxId)\n', (1003, 1010), True, 'import pybullet as p\n'), ((1018, 1034), 'pybullet.getNumBodies', 'p.getNumBodies', ([], {}), '()\n', (1032, 1034), True, 'import pybullet as p\n'), ((1046, 1084), 'pybullet.getBasePositionAndOrientation', 'p.getBasePositionAndOrientation', (['boxId'], {}), '(boxId)\n', (1077, 1084), True, 'import pybullet as p\n'), ((2282, 2296), 'pybullet.disconnect', 'p.disconnect', ([], {}), '()\n', (2294, 2296), True, 'import pybullet as p\n'), ((286, 313), 'pybullet_data.getDataPath', 'pybullet_data.getDataPath', ([], {}), '()\n', (311, 313), False, 'import pybullet_data\n'), ((2263, 2281), 'pybullet.stepSimulation', 'p.stepSimulation', ([], {}), '()\n', (2279, 2281), True, 'import pybullet as p\n'), ((803, 819), 'spotmicro.util.pybullet_data.getDataPath', 'pd.getDataPath', ([], {}), '()\n', (817, 819), True, 'from spotmicro.util import pybullet_data as pd\n'), ((1582, 1594), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (1590, 1594), True, 'import numpy as np\n'), ((1641, 1653), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (1649, 1653), True, 'import numpy as np\n'), ((1690, 1701), 'numpy.ones', 'np.ones', (['(12)'], {}), '(12)\n', (1697, 1701), True, 'import numpy as np\n'), ((2092, 2103), 'numpy.zeros', 'np.zeros', (['(4)'], {}), '(4)\n', (2100, 2103), True, 'import numpy as np\n'), ((2043, 2053), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (2050, 2053), True, 'import numpy as np\n'), ((2124, 2134), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (2131, 2134), True, 'import numpy as np\n')]
"""Code for preprocessing Cora/Citeseer/Pubmed datasets.""" import os from gensim.models import doc2vec import networkx as nx import node2vec as n2v import numpy as np import torch from tqdm.auto import tqdm class InitialEdgeFeatureExtractor: """Extracts cos sim of node vectors, word ratios and concat of Doc2vec.""" def __init__(self): """Inits InitialEdgeFeatureExtractor.""" self._cos = torch.nn.CosineSimilarity() def extract( self, g, raw_node_features, d2v_node_features, node_classes, verbose, ): """Implements feature extraction.""" original_edges = sorted(g.edges()) max_cls = node_classes.max().item() edge_fts = {} edge_cls = [] for u, v in tqdm(original_edges, desc='Extracting edge features', disable=not verbose, leave=False): raw_x_u = raw_node_features[u].float() x_u = d2v_node_features[u].float() c_u = node_classes[u].item() raw_x_v = raw_node_features[v].float() x_v = d2v_node_features[v].float() c_v = node_classes[v].item() # Add original edge edge_fts[(u, v)] = self._mk_features( raw_x_u=raw_x_u, raw_x_v=raw_x_v, x_u=x_u, x_v=x_v, is_original_edge=1, ) edge_cls.append(c_u if c_u == c_v else max_cls + 1) # Add reversed edge (for aggregation models) edge_fts[(v, u)] = self._mk_features( raw_x_u=raw_x_v, raw_x_v=raw_x_u, x_u=x_v, x_v=x_u, is_original_edge=0, ) H, edge2idx = self._to_edge_feature_tensor(edge_fts) return original_edges, edge_cls, H, edge2idx def _mk_features(self, raw_x_u, raw_x_v, x_u, x_v, is_original_edge): return [ self._cos_sim(raw_x_u, raw_x_v), self._unique_word_ratio(raw_x_u), self._unique_word_ratio(raw_x_v), *self._concat(x_u, x_v), is_original_edge, ] def _cos_sim(self, a, b): return self._cos(a.unsqueeze(0), b.unsqueeze(0)).item() @staticmethod def _unique_word_ratio(a): return torch.sum(a).item() / a.size(0) @staticmethod def _concat(a, b): return torch.cat([a, b], dim=-1).tolist() @staticmethod def _to_edge_feature_tensor(ef: dict): edges = sorted(ef.keys()) idxs = range(len(ef.keys())) edge2idx = dict(zip(edges, idxs)) idx2edge = dict(zip(idxs, edges)) H = torch.tensor([ef[idx2edge[idx]] for idx in idxs], dtype=torch.float) H = torch.cat([torch.zeros(1, H.size(1)), H], dim=0) edge2idx = {k: v + 1 for k, v in edge2idx.items()} edge2idx[(-1, -1)] = 0 return H, edge2idx class Node2vecExtractor: """Extracts node features using Node2vec.""" def __init__(self, dim): """Inits Node2vecExtractor.""" self._dim = dim def extract(self, g): """Implements feature extraction.""" emb = n2v.Node2Vec( graph=g, dimensions=self._dim, workers=8, p=4, q=1, quiet=True, ).fit() nodes = sorted(g.nodes()) idxs = range(g.number_of_nodes()) node2idx = dict(zip(nodes, idxs)) idx2node = dict(zip(idxs, nodes)) M = torch.tensor([emb.wv[str(idx2node[idx])] for idx in idxs]) M = torch.cat([torch.zeros(1, M.size(1)), M], dim=0) node2idx = {k: v + 1 for k, v in node2idx.items()} node2idx[-1] = 0 return {'M': M, 'node2idx': node2idx} def read_node_info(path): """Reads node features and classes from raw file.""" raw = {} with open(path, 'r') as fin: for line in fin.readlines(): row = line.strip().split('\t') node_id = row[0] fts = [int(f) for f in row[1:-1]] cls = row[-1] raw[node_id] = {'fts': fts, 'cls': cls} unique_cls = set(v['cls'] for v in raw.values()) orig2new_cls = dict(zip( sorted(unique_cls), range(len(unique_cls)) )) for node_info in raw.values(): node_info['cls'] = orig2new_cls[node_info['cls']] return raw def read_graph(path): """Reads the citation links and builds graphs from it.""" cites = [] with open(path, 'r') as fin: for line in tqdm(fin.readlines(), desc='Read raw graph', leave=False): e = line.strip().split('\t') u, v = e[0], e[1] if u == v: # Remove self-loops continue if (v, u) in cites: continue cites.append((u, v)) g = nx.DiGraph() g.add_edges_from(cites) giant_component_nodes = next(nx.connected_components(G=g.to_undirected())) g = g.subgraph(nodes=giant_component_nodes) return g def remove_unknown_nodes(g, node_info): """Removes nodes from graph that are not present in `content` file.""" g_cpy = g.copy() node_to_remove = [ node for node in g_cpy.nodes() if node not in node_info.keys() ] g_cpy.remove_nodes_from(node_to_remove) while True: zero_deg_nodes = [node for node, deg in g_cpy.degree() if deg == 0] if not zero_deg_nodes: break g_cpy.remove_nodes_from(zero_deg_nodes) return g_cpy def read_raw_data(path): """Reads the raw graph data and cleans up unknown nodes.""" raw_graph = read_graph(path=os.path.join(path, 'cites')) raw_node_info = read_node_info(path=os.path.join(path, 'content')) g = remove_unknown_nodes(g=raw_graph, node_info=raw_node_info) orig2new_nodes = dict(zip( sorted(g.nodes()), range(g.number_of_nodes()) )) new2orig_nodes = dict(zip( range(g.number_of_nodes()), sorted(g.nodes()), )) g = nx.relabel_nodes(g, mapping=orig2new_nodes) node_fts = [] node_cls = [] for node_id in sorted(new2orig_nodes.keys()): orig_node_id = new2orig_nodes[node_id] node_fts.append(raw_node_info[orig_node_id]['fts']) node_cls.append(raw_node_info[orig_node_id]['cls']) node_fts = torch.tensor(node_fts) node_cls = torch.tensor(node_cls) return g, node_fts, node_cls def to_doc2vec_emb(node_fts, dim, epochs): """Computes Doc2vec embeddings from node BoW features.""" documents = [ doc2vec.TaggedDocument( words=[str(idx) for idx in range(len(doc)) if doc[idx] == 1], tags=[f'Doc_{doc_idx}'], ) for doc_idx, doc in enumerate(node_fts.tolist()) ] d2v = doc2vec.Doc2Vec(dm=0, vector_size=dim, workers=8) d2v.build_vocab(documents=documents) d2v.train(documents=documents, total_examples=len(documents), epochs=epochs) vecs = torch.tensor([ d2v.docvecs[f'Doc_{idx}'] for idx in range(node_fts.size(0)) ]) return vecs def sample_train_val_test(X, y, num_cls, train_size, val_size, test_size): """Samples train/val/test splits.""" # Train X_train, y_train = [], [] for cls in range(num_cls): xc, yc = X[y == cls], y[y == cls] idxs = np.random.choice( range(xc.shape[0]), size=train_size, replace=False, ) X_train.extend([tuple(x) for x in xc[idxs].tolist()]) y_train.extend(yc[idxs].tolist()) # Val rest_idxs = [i for i in range(X.shape[0]) if tuple(X[i]) not in X_train] val_idxs = np.random.choice(rest_idxs, size=val_size, replace=False) X_val = [tuple(x) for x in X[val_idxs].tolist()] y_val = y[val_idxs].tolist() # Test rest_idxs = [ i for i in range(X.shape[0]) if tuple(X[i]) not in X_train and tuple(X[i]) not in X_val ] test_idxs = np.random.choice(rest_idxs, size=test_size, replace=False) X_test = [tuple(x) for x in X[test_idxs].tolist()] y_test = y[test_idxs].tolist() return { 'train': { 'X': X_train, 'y': y_train, }, 'val': { 'X': X_val, 'y': y_val, }, 'test': { 'X': X_test, 'y': y_test, } } def read_cora_citeseer_pubmed( path: str, node_dim: int, doc2vec_kwargs: dict, split_sizes: dict, num_datasets: int, verbose: bool = False, ): """Reads and preprocesses Cora dataset.""" g, raw_node_fts, node_cls = read_raw_data(path) # Convert node BoW features to Doc2vec embeddings d2v_node_fts = to_doc2vec_emb( node_fts=raw_node_fts, dim=doc2vec_kwargs['dim'], epochs=doc2vec_kwargs['epochs'], ) # Extract edge and new node features edges, edge_labels, H, edge2idx = InitialEdgeFeatureExtractor().extract( g=g, raw_node_features=raw_node_fts, d2v_node_features=d2v_node_fts, node_classes=node_cls, verbose=verbose, ) num_cls = (node_cls.max() + 2).item() # Sample multiple datasets Xy, graphs = [], [] M = [] for _ in tqdm(range(num_datasets), desc='Datasets'): # Train/val/test split tr_val_te = sample_train_val_test( X=np.array(edges), y=np.array(edge_labels), num_cls=num_cls, train_size=split_sizes['train'], val_size=split_sizes['validation'], test_size=split_sizes['test'], ) Xy.append(tr_val_te) # Remove test edges from graph (inductive) g_cpy = g.copy() g_cpy.remove_edges_from(tr_val_te['test']['X']) g_cpy.remove_nodes_from([n for n, d in g_cpy.degree() if d == 0]) graphs.append(g_cpy) # Compute Node2vec features M.append(Node2vecExtractor(dim=node_dim).extract(g_cpy)) M_test = Node2vecExtractor(dim=node_dim).extract(g) return { # Dataset independent 'original_graph': g, 'H': H, 'edge2idx': edge2idx, 'num_cls': num_cls, 'dims': {'node': node_dim, 'edge': H.size(1)}, 'num_datasets': num_datasets, # Dataset dependent 'Xy': Xy, 'graphs': graphs, 'M': M, 'M_test': M_test, }
[ "networkx.relabel_nodes", "torch.nn.CosineSimilarity", "numpy.random.choice", "networkx.DiGraph", "os.path.join", "torch.tensor", "numpy.array", "torch.sum", "tqdm.auto.tqdm", "gensim.models.doc2vec.Doc2Vec", "torch.cat", "node2vec.Node2Vec" ]
[((4857, 4869), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (4867, 4869), True, 'import networkx as nx\n'), ((6052, 6095), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['g'], {'mapping': 'orig2new_nodes'}), '(g, mapping=orig2new_nodes)\n', (6068, 6095), True, 'import networkx as nx\n'), ((6367, 6389), 'torch.tensor', 'torch.tensor', (['node_fts'], {}), '(node_fts)\n', (6379, 6389), False, 'import torch\n'), ((6405, 6427), 'torch.tensor', 'torch.tensor', (['node_cls'], {}), '(node_cls)\n', (6417, 6427), False, 'import torch\n'), ((6813, 6862), 'gensim.models.doc2vec.Doc2Vec', 'doc2vec.Doc2Vec', ([], {'dm': '(0)', 'vector_size': 'dim', 'workers': '(8)'}), '(dm=0, vector_size=dim, workers=8)\n', (6828, 6862), False, 'from gensim.models import doc2vec\n'), ((7685, 7742), 'numpy.random.choice', 'np.random.choice', (['rest_idxs'], {'size': 'val_size', 'replace': '(False)'}), '(rest_idxs, size=val_size, replace=False)\n', (7701, 7742), True, 'import numpy as np\n'), ((7986, 8044), 'numpy.random.choice', 'np.random.choice', (['rest_idxs'], {'size': 'test_size', 'replace': '(False)'}), '(rest_idxs, size=test_size, replace=False)\n', (8002, 8044), True, 'import numpy as np\n'), ((419, 446), 'torch.nn.CosineSimilarity', 'torch.nn.CosineSimilarity', ([], {}), '()\n', (444, 446), False, 'import torch\n'), ((787, 878), 'tqdm.auto.tqdm', 'tqdm', (['original_edges'], {'desc': '"""Extracting edge features"""', 'disable': '(not verbose)', 'leave': '(False)'}), "(original_edges, desc='Extracting edge features', disable=not verbose,\n leave=False)\n", (791, 878), False, 'from tqdm.auto import tqdm\n'), ((2690, 2758), 'torch.tensor', 'torch.tensor', (['[ef[idx2edge[idx]] for idx in idxs]'], {'dtype': 'torch.float'}), '([ef[idx2edge[idx]] for idx in idxs], dtype=torch.float)\n', (2702, 2758), False, 'import torch\n'), ((5672, 5699), 'os.path.join', 'os.path.join', (['path', '"""cites"""'], {}), "(path, 'cites')\n", (5684, 5699), False, 'import os\n'), ((5742, 5771), 'os.path.join', 'os.path.join', (['path', '"""content"""'], {}), "(path, 'content')\n", (5754, 5771), False, 'import os\n'), ((2424, 2449), 'torch.cat', 'torch.cat', (['[a, b]'], {'dim': '(-1)'}), '([a, b], dim=-1)\n', (2433, 2449), False, 'import torch\n'), ((3195, 3271), 'node2vec.Node2Vec', 'n2v.Node2Vec', ([], {'graph': 'g', 'dimensions': 'self._dim', 'workers': '(8)', 'p': '(4)', 'q': '(1)', 'quiet': '(True)'}), '(graph=g, dimensions=self._dim, workers=8, p=4, q=1, quiet=True)\n', (3207, 3271), True, 'import node2vec as n2v\n'), ((9390, 9405), 'numpy.array', 'np.array', (['edges'], {}), '(edges)\n', (9398, 9405), True, 'import numpy as np\n'), ((9421, 9442), 'numpy.array', 'np.array', (['edge_labels'], {}), '(edge_labels)\n', (9429, 9442), True, 'import numpy as np\n'), ((2335, 2347), 'torch.sum', 'torch.sum', (['a'], {}), '(a)\n', (2344, 2347), False, 'import torch\n')]
import logging from models.game import Game from app import db from constants import SERVER_ERROR logger = logging.getLogger(__name__) legal_words = [] with open("models/legal_words.txt") as file: legal_words = {word.strip() for word in file.readlines()} logger.info('populating') class GameController: MAX_GUESSES = 6 MAX_RETRIES = 10 GREEN_SQUARE = '\U0001F7E9' YELLOW_SQUARE = '\U0001F7E8' BLACK_SQUARE = '\U00002B1B' def __init__(self, chat_id): self.chat_id = chat_id self.game = self.retrieve_game() def retrieve_game(self, counter=0): try: return Game.query.filter_by(chat_id=self.chat_id).order_by(Game.id.desc()).first() except Exception as e: logger.error(e) db.session.close() counter += 1 if counter < self.MAX_RETRIES: return self.retrieve_game(counter) else: raise e def try_create_game(self, answer, setter_chat_id, setter_username) -> str: if self.is_game_ongoing(): return 'There is an ongoing game already!' elif not self.is_answer_legal(answer): return 'Please set a valid word! Words must be between 4 to 6 letters and present in the dictionary.' elif not self.create_game(answer, setter_chat_id, setter_username): return SERVER_ERROR return f'{setter_username} has started Wordle with Friends! \nThe word is {len(answer)} letters long. \nUse /guess [word] to guess. \nYou have 6 tries.' def try_guessing(self, word, guesser_username) -> str: word = word.lower() if not self.is_game_ongoing(): return 'There is no ongoing game! Start a new one with /start.' if not self.is_guess_legal(word): return f'"{word}" is invalid! Your guess must be a legal word of {len(self.game.answer)} letters! Use /guess to try again.' if not self.add_guess(word, guesser_username): return SERVER_ERROR return self.display_past_guesses() def is_game_ongoing(self) -> bool: if not self.game: return False guesses = self.game.get_guesses() return not guesses or (len(guesses) < self.MAX_GUESSES and guesses[-1]['guess'] != self.game.answer) def display_past_guesses(self) -> str: if not self.game: return 'No games have been played. Start a new one with /start, or email <EMAIL> with a bug report.' guesses = self.game.get_guesses() if not guesses: return 'There have been no guesses so far. Use /guess to guess.' row = [] for i in range(len(guesses)): row.append(f"""<code>{' '.join([c for c in guesses[i]['guess'].upper()])}</code>""") row.append(self.format_guess_result(guesses[i]['guess'])) row.append(f"({guesses[i]['by']}: {i+1}/{self.MAX_GUESSES})") history = f"Game started by {self.game.setter_username}\n" + "\n".join(row) if guesses[-1]['guess'].lower() == self.game.answer: history += "\nCongratulations! Use /start to play again! #wordlewithfriends" elif len(guesses) == self.MAX_GUESSES: history += f"\nBetter luck next time! The answer was {self.game.answer.upper()}. Use /start to start another game! #wordlewithfriends" else: history += f"\n{self.format_keyboard()}" return history def format_guess_result(self, guess: str) -> str: answer = self.game.answer has_char_in_answer_been_found = [False for _ in guess] guess_result = [self.BLACK_SQUARE for _ in guess] # Check green squares first for i in range(len(guess)): if answer[i] == guess[i]: guess_result[i] = self.GREEN_SQUARE has_char_in_answer_been_found[i] = True # Check for orange squres for i in range(len(guess)): # If it's not in answer or has already been filled, skip if guess_result[i] == self.GREEN_SQUARE or guess[i] not in answer: continue # Search for j in range(len(answer)): # There is a character in answer corresponding to guess if not has_char_in_answer_been_found[j] and guess[i] == answer[j]: has_char_in_answer_been_found[j] = True guess_result[i] = self.YELLOW_SQUARE break return ' '.join(guess_result) def format_keyboard(self): if not self.game or not self.game.get_guesses(): return '' guesses = self.game.get_guesses() answer = self.game.answer # 0 for wrong letter, 1 for wrong position, 2 for right position output_dict = {} for guess in guesses: word = guess['guess'] for i in range(len(word)): c = word[i] if c == answer[i]: output_dict[c] = 2 elif c in answer: output_dict[c] = 2 if output_dict.get(c) == 2 else 1 else: output_dict[c] = 0 keyboard_rows = ['qwertyuiop', 'asdfghjkl', 'zxcvbnm'] output = [] for row in keyboard_rows: output_row = [] for c in row: if c in output_dict: if output_dict[c] == 2: result = f"<u><b>{c}</b></u>" elif output_dict[c] == 1: result = f"<u><i>{c}</i></u>" else: result = " " else: result = c output_row.append(result) output.append(' '.join(output_row)) return '\n'.join(output).upper() def create_game(self, answer: str, setter_chat_id: str, setter_username: str, counter=0) -> bool: try: if self.game: self.game = None game = Game(chat_id=self.chat_id, answer=answer.lower(), setter_chat_id=setter_chat_id, setter_username=setter_username) db.session.add(game) db.session.commit() self.game = game return True except Exception as e: logger.error(e) db.session.rollback() counter += 1 if counter < self.MAX_RETRIES: return self.create_game(answer, setter_chat_id, setter_username, counter) return False def add_guess(self, guess: str, guesser_username: str, counter=0) -> bool: try: self.game.add_guess(guess, guesser_username) db.session.commit() return True except Exception as e: logger.error(e) db.session.rollback() counter += 1 if counter < self.MAX_RETRIES: return self.add_guess(guess, guesser_username, counter) return False def is_guess_legal(self, guess: str) -> bool: answer = self.game.answer return type(guess) == str and len(guess) == len(answer) and guess.lower() in legal_words @classmethod def is_answer_legal(cls, answer: str) -> bool: return type(answer) == str and 4 <= len(answer) <= 6 and answer.lower() in legal_words
[ "logging.getLogger", "app.db.session.commit", "app.db.session.close", "app.db.session.add", "models.game.Game.query.filter_by", "models.game.Game.id.desc", "app.db.session.rollback" ]
[((108, 135), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (125, 135), False, 'import logging\n'), ((6187, 6207), 'app.db.session.add', 'db.session.add', (['game'], {}), '(game)\n', (6201, 6207), False, 'from app import db\n'), ((6220, 6239), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (6237, 6239), False, 'from app import db\n'), ((6731, 6750), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (6748, 6750), False, 'from app import db\n'), ((779, 797), 'app.db.session.close', 'db.session.close', ([], {}), '()\n', (795, 797), False, 'from app import db\n'), ((6364, 6385), 'app.db.session.rollback', 'db.session.rollback', ([], {}), '()\n', (6383, 6385), False, 'from app import db\n'), ((6846, 6867), 'app.db.session.rollback', 'db.session.rollback', ([], {}), '()\n', (6865, 6867), False, 'from app import db\n'), ((684, 698), 'models.game.Game.id.desc', 'Game.id.desc', ([], {}), '()\n', (696, 698), False, 'from models.game import Game\n'), ((632, 674), 'models.game.Game.query.filter_by', 'Game.query.filter_by', ([], {'chat_id': 'self.chat_id'}), '(chat_id=self.chat_id)\n', (652, 674), False, 'from models.game import Game\n')]
# -*- coding: utf-8 -*- """ Created on Sun Aug 30 17:09:46 2020 @author: Daniel """ from sly import Parser from sly.yacc import SlyLogger from lexer import Lex from tree import Op, Func, Int, Str, Var, DeclaredVar from tree import Compare, Wrapper, DeclaredFunc, OtherFunc import error import exec as e import io class Parse(Parser): log = SlyLogger(io.StringIO()) debugfile = 'parser.out' start = 'stmt' tokens = Lex.tokens precedence = ( ('nonassoc', LT, GT, LE, GE, EQ, NE), ('left', PLUS, MINUS), ('left', TIMES, DIVIDE), ('right', 'UMINUS') ) def __init__(self): self.parse_list = [] # Grammar rules and actions @_('expr PLUS expr') def expr(self, p): return Op('+', p.expr0, p.expr1) @_('expr MINUS expr') def expr(self, p): return Op('-', p.expr0, p.expr1) @_('expr TIMES expr') def expr(self, p): return Op('*', p.expr0, p.expr1) @_('expr DIVIDE expr') def expr(self, p): return Op('/', p.expr0, p.expr1) @_('expr LE expr') @_('expr GE expr') @_('expr NE expr') @_('expr EQ expr') @_('expr LT expr') @_('expr GT expr') @_('expr AND expr') @_('expr OR expr') def expr(self, p): return Compare(p.expr0, p[1], p.expr1) @_('NUMBER') def expr(self, p): return Int(p.NUMBER) @_('STRING') def expr(self, p): return Str(p.STRING) @_('ID "." ID') def expr(self, p): return p.ID0 + "." + p.ID1 @_('ID "." expr') def expr(self, p): #print(type(p.expr)) if type(p.expr) != str: print(p.lineno) error.Raise(error.syntaxerror, "Variable name cannot be a non function or keyword") return p.ID + "." + p.expr @_('expr "." expr') def expr(self, p): if type(p.expr0) != str or type(p.expr1) != str: error.Raise(error.syntaxerror, "Variable name cannot be a non function or keyword") return p.expr0 + "." + p.expr1 @_('expr "." ID') def expr(self, p): if type(p.expr) != str: error.Raise(error.syntaxerror, "Variable name cannot be a non function or keyword") return p.expr + "." + p.ID @_('ID') def expr(self, p): return DeclaredVar(p.ID) @_('ID "(" param ")"') @_('ID "(" expr ")"') def expr(self, p): if type(p[2]) != list: d = [p[2].value] else: d = list(p[2]) return DeclaredFunc(p.ID, d) @_('ID "(" ")"') def expr(self, p): return DeclaredFunc(p.ID, []) @_('ID "=" expr') @_('expr "=" expr') @_('PRINT "(" expr ")"') def stmt(self, p): #print(p.expr) if p[1] == "(": return Func(print, [p.expr], builtin=True) else: return Var(p[0], p[2]) @_('RETURN expr') def stmt(self, p): return OtherFunc("return", p.expr) @_('PRINT') @_('INPUT') def expr(self, p): if p[0] == "print": f = print else: f = input return Wrapper("func", ["txt"], [Func(f, ["txt"], builtin=True)]) @_('INPUT "(" expr ")"') def expr(self, p): return Func(e.Input, [p.expr], builtin=True, returns=True) @_('OBJECT') def expr(self, p): return {} @_('WHILE expr "{" stmt "}"') def stmt(self, p): return Wrapper("while", p.expr, p.stmt) @_('IF expr "{" stmt "}"') def stmt(self, p): return Wrapper("if", p.expr, p.stmt) @_('IF expr "{" stmt "}" ELSE "{" stmt "}"') def stmt(self, p): return Wrapper("if", p.expr, p.stmt0, ["else"], [p.stmt1]) @_('FUNC ID param "{" stmt "}"') @_('FUNC ID expr "{" stmt "}"') def stmt(self, p): if type(p[2]) != list and type(p[2]) != Str: error.Raise(error.syntaxerror, "Func only takes strings as parameters") elif type(p[2]) == Str: d = [p[2].value] else: d = list(p[2]) return Wrapper("func", d, p.stmt, [p.ID]) @_('FUNC ID "{" stmt "}"') def stmt(self, p): return Wrapper("func", [], p.stmt, [p.ID]) @_('expr "," expr') def param(self, p): return [p.expr0, p.expr1] @_('expr "," param') def param(self, p): d = [p.expr] d.extend(p.param) return d @_('param "," param') def param(self, p): d = p.param0 d.extend(p.param1) return d @_('stmt ";" stmt') def stmt(self, p): l = [p.stmt0] l.extend(p.stmt1) return l @_('stmt ";"') def stmt(self, p): l = [p.stmt] return l @_('expr ";" stmt') def stmt(self, p): l = [p.expr] l.extend(p.stmt) return l @_('expr ";"') def stmt(self, p): l = [p.expr] return l @_('MINUS expr %prec UMINUS') def expr(self, p): return Int(-p.expr.value) @_('"(" expr ")"') def expr(self, p): return p.expr def error(self, p): if p: error.Raise(error.syntaxerror, "Syntax error at token " + p.type + " line " + str(p.lineno)) else: error.Raise(error.eoferror, "Syntax error at EOF")
[ "tree.DeclaredFunc", "tree.Compare", "tree.Str", "tree.Op", "tree.DeclaredVar", "tree.OtherFunc", "tree.Var", "tree.Func", "error.Raise", "tree.Wrapper", "io.StringIO", "tree.Int" ]
[((357, 370), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (368, 370), False, 'import io\n'), ((772, 797), 'tree.Op', 'Op', (['"""+"""', 'p.expr0', 'p.expr1'], {}), "('+', p.expr0, p.expr1)\n", (774, 797), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((863, 888), 'tree.Op', 'Op', (['"""-"""', 'p.expr0', 'p.expr1'], {}), "('-', p.expr0, p.expr1)\n", (865, 888), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((954, 979), 'tree.Op', 'Op', (['"""*"""', 'p.expr0', 'p.expr1'], {}), "('*', p.expr0, p.expr1)\n", (956, 979), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((1046, 1071), 'tree.Op', 'Op', (['"""/"""', 'p.expr0', 'p.expr1'], {}), "('/', p.expr0, p.expr1)\n", (1048, 1071), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((1300, 1331), 'tree.Compare', 'Compare', (['p.expr0', 'p[1]', 'p.expr1'], {}), '(p.expr0, p[1], p.expr1)\n', (1307, 1331), False, 'from tree import Compare, Wrapper, DeclaredFunc, OtherFunc\n'), ((1388, 1401), 'tree.Int', 'Int', (['p.NUMBER'], {}), '(p.NUMBER)\n', (1391, 1401), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((1462, 1475), 'tree.Str', 'Str', (['p.STRING'], {}), '(p.STRING)\n', (1465, 1475), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((2342, 2359), 'tree.DeclaredVar', 'DeclaredVar', (['p.ID'], {}), '(p.ID)\n', (2353, 2359), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((2557, 2578), 'tree.DeclaredFunc', 'DeclaredFunc', (['p.ID', 'd'], {}), '(p.ID, d)\n', (2569, 2578), False, 'from tree import Compare, Wrapper, DeclaredFunc, OtherFunc\n'), ((2643, 2665), 'tree.DeclaredFunc', 'DeclaredFunc', (['p.ID', '[]'], {}), '(p.ID, [])\n', (2655, 2665), False, 'from tree import Compare, Wrapper, DeclaredFunc, OtherFunc\n'), ((2985, 3012), 'tree.OtherFunc', 'OtherFunc', (['"""return"""', 'p.expr'], {}), "('return', p.expr)\n", (2994, 3012), False, 'from tree import Compare, Wrapper, DeclaredFunc, OtherFunc\n'), ((3305, 3356), 'tree.Func', 'Func', (['e.Input', '[p.expr]'], {'builtin': '(True)', 'returns': '(True)'}), '(e.Input, [p.expr], builtin=True, returns=True)\n', (3309, 3356), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((3497, 3529), 'tree.Wrapper', 'Wrapper', (['"""while"""', 'p.expr', 'p.stmt'], {}), "('while', p.expr, p.stmt)\n", (3504, 3529), False, 'from tree import Compare, Wrapper, DeclaredFunc, OtherFunc\n'), ((3604, 3633), 'tree.Wrapper', 'Wrapper', (['"""if"""', 'p.expr', 'p.stmt'], {}), "('if', p.expr, p.stmt)\n", (3611, 3633), False, 'from tree import Compare, Wrapper, DeclaredFunc, OtherFunc\n'), ((3726, 3777), 'tree.Wrapper', 'Wrapper', (['"""if"""', 'p.expr', 'p.stmt0', "['else']", '[p.stmt1]'], {}), "('if', p.expr, p.stmt0, ['else'], [p.stmt1])\n", (3733, 3777), False, 'from tree import Compare, Wrapper, DeclaredFunc, OtherFunc\n'), ((4133, 4167), 'tree.Wrapper', 'Wrapper', (['"""func"""', 'd', 'p.stmt', '[p.ID]'], {}), "('func', d, p.stmt, [p.ID])\n", (4140, 4167), False, 'from tree import Compare, Wrapper, DeclaredFunc, OtherFunc\n'), ((4237, 4272), 'tree.Wrapper', 'Wrapper', (['"""func"""', '[]', 'p.stmt', '[p.ID]'], {}), "('func', [], p.stmt, [p.ID])\n", (4244, 4272), False, 'from tree import Compare, Wrapper, DeclaredFunc, OtherFunc\n'), ((5079, 5097), 'tree.Int', 'Int', (['(-p.expr.value)'], {}), '(-p.expr.value)\n', (5082, 5097), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((1710, 1797), 'error.Raise', 'error.Raise', (['error.syntaxerror', '"""Variable name cannot be a non function or keyword"""'], {}), "(error.syntaxerror,\n 'Variable name cannot be a non function or keyword')\n", (1721, 1797), False, 'import error\n'), ((1950, 2037), 'error.Raise', 'error.Raise', (['error.syntaxerror', '"""Variable name cannot be a non function or keyword"""'], {}), "(error.syntaxerror,\n 'Variable name cannot be a non function or keyword')\n", (1961, 2037), False, 'import error\n'), ((2167, 2254), 'error.Raise', 'error.Raise', (['error.syntaxerror', '"""Variable name cannot be a non function or keyword"""'], {}), "(error.syntaxerror,\n 'Variable name cannot be a non function or keyword')\n", (2178, 2254), False, 'import error\n'), ((2835, 2870), 'tree.Func', 'Func', (['print', '[p.expr]'], {'builtin': '(True)'}), '(print, [p.expr], builtin=True)\n', (2839, 2870), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((2904, 2919), 'tree.Var', 'Var', (['p[0]', 'p[2]'], {}), '(p[0], p[2])\n', (2907, 2919), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n'), ((3944, 4015), 'error.Raise', 'error.Raise', (['error.syntaxerror', '"""Func only takes strings as parameters"""'], {}), "(error.syntaxerror, 'Func only takes strings as parameters')\n", (3955, 4015), False, 'import error\n'), ((5345, 5395), 'error.Raise', 'error.Raise', (['error.eoferror', '"""Syntax error at EOF"""'], {}), "(error.eoferror, 'Syntax error at EOF')\n", (5356, 5395), False, 'import error\n'), ((3200, 3230), 'tree.Func', 'Func', (['f', "['txt']"], {'builtin': '(True)'}), "(f, ['txt'], builtin=True)\n", (3204, 3230), False, 'from tree import Op, Func, Int, Str, Var, DeclaredVar\n')]
from unittest import TestCase import unittest.mock as mock from orion.handlers.users_handler import UsersHandler from orion.models.location import Location class TestUsersHandler(TestCase): def setUp(self): self.mock_ctx = mock.MagicMock() def test_metadata(self): handler = UsersHandler(ctx=self.mock_ctx) self.assertEqual(handler.methods, ['GET']) self.assertEqual(handler.path, '/api/users') def test_results_valid(self): self.mock_ctx.db.session.query().distinct().all.return_value = [ mock.MagicMock(user='user1', device='device1'), mock.MagicMock(user='user1', device='device2'), mock.MagicMock(user='user1', device='device3'), mock.MagicMock(user='user2', device='device4'), mock.MagicMock(user='user2', device='device5'), ] handler = UsersHandler(ctx=self.mock_ctx) resp, status = handler.run() args, _ = self.mock_ctx.db.session.query.call_args self.assertTrue(resp['success']) self.assertEqual(status, 200) self.assertEqual( resp['data'], [ {'user': 'user1', 'devices': ['device1', 'device2', 'device3']}, {'user': 'user2', 'devices': ['device4', 'device5']}, ], ) def test_results_empty(self): self.mock_ctx.db.session.query().distinct().all.return_value = [] handler = UsersHandler(ctx=self.mock_ctx) resp, status = handler.run() args, _ = self.mock_ctx.db.session.query.call_args self.assertTrue(resp['success']) self.assertEqual(status, 200) self.assertEqual(resp['data'], []) self.assertEqual(args, (Location.user, Location.device))
[ "orion.handlers.users_handler.UsersHandler", "unittest.mock.MagicMock" ]
[((239, 255), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (253, 255), True, 'import unittest.mock as mock\n'), ((304, 335), 'orion.handlers.users_handler.UsersHandler', 'UsersHandler', ([], {'ctx': 'self.mock_ctx'}), '(ctx=self.mock_ctx)\n', (316, 335), False, 'from orion.handlers.users_handler import UsersHandler\n'), ((878, 909), 'orion.handlers.users_handler.UsersHandler', 'UsersHandler', ([], {'ctx': 'self.mock_ctx'}), '(ctx=self.mock_ctx)\n', (890, 909), False, 'from orion.handlers.users_handler import UsersHandler\n'), ((1456, 1487), 'orion.handlers.users_handler.UsersHandler', 'UsersHandler', ([], {'ctx': 'self.mock_ctx'}), '(ctx=self.mock_ctx)\n', (1468, 1487), False, 'from orion.handlers.users_handler import UsersHandler\n'), ((561, 607), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {'user': '"""user1"""', 'device': '"""device1"""'}), "(user='user1', device='device1')\n", (575, 607), True, 'import unittest.mock as mock\n'), ((621, 667), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {'user': '"""user1"""', 'device': '"""device2"""'}), "(user='user1', device='device2')\n", (635, 667), True, 'import unittest.mock as mock\n'), ((681, 727), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {'user': '"""user1"""', 'device': '"""device3"""'}), "(user='user1', device='device3')\n", (695, 727), True, 'import unittest.mock as mock\n'), ((741, 787), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {'user': '"""user2"""', 'device': '"""device4"""'}), "(user='user2', device='device4')\n", (755, 787), True, 'import unittest.mock as mock\n'), ((801, 847), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {'user': '"""user2"""', 'device': '"""device5"""'}), "(user='user2', device='device5')\n", (815, 847), True, 'import unittest.mock as mock\n')]
from setuptools import setup setup(name='kalipto', version='0.1.1', description='A steganographic chat over social media', url='https://github.com/reale/kalipto', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['kalipto'], install_requires=['gossipy','stegano','twitter','wget'], entry_points = { 'console_scripts': ['kalipto=kalipto.cmdline:main'], }, zip_safe=False)
[ "setuptools.setup" ]
[((30, 410), 'setuptools.setup', 'setup', ([], {'name': '"""kalipto"""', 'version': '"""0.1.1"""', 'description': '"""A steganographic chat over social media"""', 'url': '"""https://github.com/reale/kalipto"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'license': '"""MIT"""', 'packages': "['kalipto']", 'install_requires': "['gossipy', 'stegano', 'twitter', 'wget']", 'entry_points': "{'console_scripts': ['kalipto=kalipto.cmdline:main']}", 'zip_safe': '(False)'}), "(name='kalipto', version='0.1.1', description=\n 'A steganographic chat over social media', url=\n 'https://github.com/reale/kalipto', author='<NAME>', author_email=\n '<EMAIL>', license='MIT', packages=['kalipto'], install_requires=[\n 'gossipy', 'stegano', 'twitter', 'wget'], entry_points={\n 'console_scripts': ['kalipto=kalipto.cmdline:main']}, zip_safe=False)\n", (35, 410), False, 'from setuptools import setup\n')]
#!/usr/bin/env python3 # coding: utf-8 from wxpy import * import platform console_qr=(False if platform.system() == 'Windows' else True) bot = Bot('bot.pkl', console_qr=console_qr) bot.enable_puid('wxpy_puid.pkl') def search_group_puid(puid): try: return bot.groups().search(puid=puid)[0] pass except: return "查无此群" pass def search_user_puid(puid): try: return bot.friends().search(puid=puid)[0] pass except: return "查无此人" pass embed()
[ "platform.system" ]
[((98, 115), 'platform.system', 'platform.system', ([], {}), '()\n', (113, 115), False, 'import platform\n')]
"""Pure GRASP solver""" from random import sample from timeit import default_timer from typing import List, Optional, Tuple import numpy as np from tsp_heuristics.heuristics.local_search import local_search_algo from tsp_heuristics.heuristics.utils import get_tour_distance as compute_permutation_distance def solve_tsp_grasp( distance_matrix: np.ndarray, start_position: int = 0, alpha: float = 0.5, perturbation_scheme: str = "two_opt", max_iterations: int = 1, max_processing_time: Optional[float] = None, log_file: Optional[str] = None, ) -> Tuple[List, float, float]: """Solve a TSP problem with a GRASP heuristic """ max_processing_time = max_processing_time or np.inf tic = default_timer() best_Tour = setup(distance_matrix, None)[0] i = 0 while i <= max_iterations: intial_Tour = constructive_phase(distance_matrix, alpha, start_position) optimized_Tour = local_search_algo(intial_Tour, distance_matrix,method='first improvement')[0] f_best_tour = compute_permutation_distance(best_Tour, distance_matrix) f_optimized_tour = compute_permutation_distance(optimized_Tour, distance_matrix) if f_best_tour > f_optimized_tour: best_Tour = optimized_Tour if default_timer() - tic > max_processing_time: i = max_iterations + 1 break i += 1 return best_Tour, compute_permutation_distance(best_Tour, distance_matrix), (default_timer() - tic) def constructive_phase( distance_matrix: np.ndarray, alpha: float, start: int = 0 ) -> List: Tour = [start] for _ in range(distance_matrix.shape[0] - 1): min_index = get_maxmin_index_from_row(distance_matrix, Tour[-1], Tour, 'min') max_index = get_maxmin_index_from_row(distance_matrix, Tour[-1], Tour, 'max') f_min = distance_matrix[Tour[-1]][min_index] f_max = distance_matrix[Tour[-1]][max_index] # List of Restrict Candidates = LRC LRC_index = np.array(range(len(distance_matrix[Tour[-1]]))) LRC_condition = distance_matrix[Tour[-1]] <= f_min + alpha*(f_max - f_min) LRC_condition[Tour[-1]] = False LRC_index = LRC_index[LRC_condition] new_city_index = np.random.choice(LRC_index, 1, replace=False)[0] Tour.append(new_city_index) return Tour def get_maxmin_index_from_row( distance_matrix: np.ndarray, row: int, previous_indexes: List, type: str, )-> int: """Get the minimum/maximum element in the adjusted row array from a distance matrix. We adjust the row array in order to never get the "previous_indexes" list of indexes. """ distance_matrix = distance_matrix.copy() arr = distance_matrix[row].astype(float) aux_list = range(arr.shape[0]) aux_list_2 = [] for i in aux_list: if i in previous_indexes: aux_list_2.append(True) else: aux_list_2.append(False) previous_indexes_bool = aux_list_2 if type == 'max': arr[previous_indexes_bool] = -1 target_index = np.argmax(arr) if type == 'min': arr[previous_indexes_bool] = np.Inf target_index = np.argmin(arr) return target_index def setup( distance_matrix: np.ndarray, x0: Optional[List] = None ) -> Tuple[List[int], float]: """Return initial solution and its objective value Parameters ---------- distance_matrix Distance matrix of shape (n x n) with the (i, j) entry indicating the distance from node i to j x0 Permutation of nodes from 0 to n - 1 indicating the starting solution. If not provided, a random list is created. Returns ------- x0 Permutation with initial solution. If ``x0`` was provided, it is the same list fx0 Objective value of x0 """ if not x0: n = distance_matrix.shape[0] # number of nodes x0 = [0] + sample(range(1, n), n - 1) # ensure 0 is the first node fx0 = compute_permutation_distance(x0, distance_matrix) return x0, fx0
[ "tsp_heuristics.heuristics.utils.get_tour_distance", "numpy.random.choice", "timeit.default_timer", "numpy.argmax", "tsp_heuristics.heuristics.local_search.local_search_algo", "numpy.argmin" ]
[((730, 745), 'timeit.default_timer', 'default_timer', ([], {}), '()\n', (743, 745), False, 'from timeit import default_timer\n'), ((4124, 4173), 'tsp_heuristics.heuristics.utils.get_tour_distance', 'compute_permutation_distance', (['x0', 'distance_matrix'], {}), '(x0, distance_matrix)\n', (4152, 4173), True, 'from tsp_heuristics.heuristics.utils import get_tour_distance as compute_permutation_distance\n'), ((1050, 1106), 'tsp_heuristics.heuristics.utils.get_tour_distance', 'compute_permutation_distance', (['best_Tour', 'distance_matrix'], {}), '(best_Tour, distance_matrix)\n', (1078, 1106), True, 'from tsp_heuristics.heuristics.utils import get_tour_distance as compute_permutation_distance\n'), ((1134, 1195), 'tsp_heuristics.heuristics.utils.get_tour_distance', 'compute_permutation_distance', (['optimized_Tour', 'distance_matrix'], {}), '(optimized_Tour, distance_matrix)\n', (1162, 1195), True, 'from tsp_heuristics.heuristics.utils import get_tour_distance as compute_permutation_distance\n'), ((1451, 1507), 'tsp_heuristics.heuristics.utils.get_tour_distance', 'compute_permutation_distance', (['best_Tour', 'distance_matrix'], {}), '(best_Tour, distance_matrix)\n', (1479, 1507), True, 'from tsp_heuristics.heuristics.utils import get_tour_distance as compute_permutation_distance\n'), ((3185, 3199), 'numpy.argmax', 'np.argmax', (['arr'], {}), '(arr)\n', (3194, 3199), True, 'import numpy as np\n'), ((3289, 3303), 'numpy.argmin', 'np.argmin', (['arr'], {}), '(arr)\n', (3298, 3303), True, 'import numpy as np\n'), ((941, 1016), 'tsp_heuristics.heuristics.local_search.local_search_algo', 'local_search_algo', (['intial_Tour', 'distance_matrix'], {'method': '"""first improvement"""'}), "(intial_Tour, distance_matrix, method='first improvement')\n", (958, 1016), False, 'from tsp_heuristics.heuristics.local_search import local_search_algo\n'), ((1510, 1525), 'timeit.default_timer', 'default_timer', ([], {}), '()\n', (1523, 1525), False, 'from timeit import default_timer\n'), ((2337, 2382), 'numpy.random.choice', 'np.random.choice', (['LRC_index', '(1)'], {'replace': '(False)'}), '(LRC_index, 1, replace=False)\n', (2353, 2382), True, 'import numpy as np\n'), ((1307, 1322), 'timeit.default_timer', 'default_timer', ([], {}), '()\n', (1320, 1322), False, 'from timeit import default_timer\n')]
#!/usr/bin/env python """ Show a VelocityPlot to interactively modify lines in an AbsSystem """ import sys import pdb import warnings # Script to run XAbsSysGui from the command line or ipython def main(*args, **kwargs): """ Runs the XAbsSysGui on input files """ import argparse parser = argparse.ArgumentParser(description='Parse for XAbsSys') parser.add_argument("spec_file", type=str, help="Spectral file") parser.add_argument("abssys_file", type=str, help="AbsSys file (JSON)") parser.add_argument("-outfile", type=str, help="Output filename") parser.add_argument("-llist", type=str, help="Name of LineList") #parser.add_argument("-exten", type=int, help="FITS extension") parser.add_argument("--specdb", help="Spectral file is a SPECDB database", action="store_true") parser.add_argument("--group", type=str, help="SPECDB group name") parser.add_argument("--un_norm", help="Spectrum is NOT normalized", action="store_true") parser.add_argument("--chk_z", help="Check the z limits of your components? [default=False]", action="store_true") pargs = parser.parse_args() from qtpy.QtWidgets import QApplication from linetools.guis.xabssysgui import XAbsSysGui from linetools.isgm.io import abssys_from_json from IPython import embed # Normalized? norm = True if pargs.un_norm: norm = False # Extension #exten = (pargs.exten if hasattr(pargs, 'exten') else 0) # Read spec keywords rsp_kwargs = {} # Line list if pargs.llist is not None: from linetools.lists.linelist import LineList llist = LineList(pargs.llist) else: llist = None # Read AbsSystem from linetools.isgm.abssystem import GenericAbsSystem abs_sys = GenericAbsSystem.from_json(pargs.abssys_file)#, chk_vel=False) if not pargs.chk_z: warnings.warn("Not checking your system's velocity limits. This is the Default but be so warned.") abs_sys = GenericAbsSystem.from_json(pargs.abssys_file, chk_z=pargs.chk_z) if len(abs_sys.list_of_abslines()) == 0: warnings.warn("No absorption lines given. I hope you intended that to be the case!") app = QApplication(sys.argv) # Load spectrum using specdb? if pargs.specdb: # Instantiate from specdb.specdb import SpecDB from specdb import group_utils sdb = SpecDB(db_file=pargs.spec_file) # Grab spectrum if pargs.group is not None: groups = [pargs.group] else: groups = None spec, meta = sdb.spectra_from_coord(abs_sys.coord, groups=groups) if spec.nspec > 1: group_utils.show_group_meta(meta, idkey=sdb.idkey, show_all_keys=False) raise ValueError("Retreived more than 1 spectrum. Choose your GROUP with --group=") spec_file = pargs.spec_file+'_{:s}'.format(meta['GROUP'][0]) else: spec = pargs.spec_file spec_file = pargs.spec_file # Save spectrum filename to AbsSystem abs_sys.spec_file = spec_file # Run gui = XAbsSysGui(spec, abs_sys, norm=norm, llist=llist, outfil=pargs.outfile) gui.show() app.exec_()
[ "qtpy.QtWidgets.QApplication", "argparse.ArgumentParser", "linetools.isgm.abssystem.GenericAbsSystem.from_json", "specdb.specdb.SpecDB", "specdb.group_utils.show_group_meta", "warnings.warn", "linetools.lists.linelist.LineList", "linetools.guis.xabssysgui.XAbsSysGui" ]
[((309, 365), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Parse for XAbsSys"""'}), "(description='Parse for XAbsSys')\n", (332, 365), False, 'import argparse\n'), ((1806, 1851), 'linetools.isgm.abssystem.GenericAbsSystem.from_json', 'GenericAbsSystem.from_json', (['pargs.abssys_file'], {}), '(pargs.abssys_file)\n', (1832, 1851), False, 'from linetools.isgm.abssystem import GenericAbsSystem\n'), ((2015, 2079), 'linetools.isgm.abssystem.GenericAbsSystem.from_json', 'GenericAbsSystem.from_json', (['pargs.abssys_file'], {'chk_z': 'pargs.chk_z'}), '(pargs.abssys_file, chk_z=pargs.chk_z)\n', (2041, 2079), False, 'from linetools.isgm.abssystem import GenericAbsSystem\n'), ((2230, 2252), 'qtpy.QtWidgets.QApplication', 'QApplication', (['sys.argv'], {}), '(sys.argv)\n', (2242, 2252), False, 'from qtpy.QtWidgets import QApplication\n'), ((3117, 3188), 'linetools.guis.xabssysgui.XAbsSysGui', 'XAbsSysGui', (['spec', 'abs_sys'], {'norm': 'norm', 'llist': 'llist', 'outfil': 'pargs.outfile'}), '(spec, abs_sys, norm=norm, llist=llist, outfil=pargs.outfile)\n', (3127, 3188), False, 'from linetools.guis.xabssysgui import XAbsSysGui\n'), ((1659, 1680), 'linetools.lists.linelist.LineList', 'LineList', (['pargs.llist'], {}), '(pargs.llist)\n', (1667, 1680), False, 'from linetools.lists.linelist import LineList\n'), ((1901, 2010), 'warnings.warn', 'warnings.warn', (['"""Not checking your system\'s velocity limits. This is the Default but be so warned."""'], {}), '(\n "Not checking your system\'s velocity limits. This is the Default but be so warned."\n )\n', (1914, 2010), False, 'import warnings\n'), ((2133, 2223), 'warnings.warn', 'warnings.warn', (['"""No absorption lines given. I hope you intended that to be the case!"""'], {}), "(\n 'No absorption lines given. I hope you intended that to be the case!')\n", (2146, 2223), False, 'import warnings\n'), ((2425, 2456), 'specdb.specdb.SpecDB', 'SpecDB', ([], {'db_file': 'pargs.spec_file'}), '(db_file=pargs.spec_file)\n', (2431, 2456), False, 'from specdb.specdb import SpecDB\n'), ((2705, 2776), 'specdb.group_utils.show_group_meta', 'group_utils.show_group_meta', (['meta'], {'idkey': 'sdb.idkey', 'show_all_keys': '(False)'}), '(meta, idkey=sdb.idkey, show_all_keys=False)\n', (2732, 2776), False, 'from specdb import group_utils\n')]
# injector.py # # <NAME> 2017 # # # Contains classes and methods for injectiona nd recovery testing # # import spectroseti.output __author__ = 'nate' import definitions as defs import apf as apf import apfdefinitions as apfdefs #import output import numpy as np from tqdm import tqdm import random gaussian_kernel_4 = np.array([0.02169646, 0.08608803, 0.2514724, 0.54092311, 0.85695116, 1., 0.85957485, 0.54424083, 0.25379, 0.0871478, 0.02203095]) class Injector: fwhm = 4.2 # CHECK THIS injected_lasers = None injected = False spectrum = None spectrum_backup = None def __init__(self): pass def setparams(self,fwhm=4.2,): self.fwhm=fwhm def set_spectrum(self,spectrum): self.spectrum = spectrum #deep copy spectrum for backup #Typecheck spectrum here # Generates flux levels and locations, stores in injected_lasers def gen_lasers(self,per_order = 10, fluxes = [], autodetermine_flux = True): if autodetermine_flux: if self.spectrum: # commpute flux levels from spectrum # base this on order medians? pass else: fluxes = [10, 20, 50, 100, 500, 1000, 5000] acc=[] #this could be cleaner for i in range(79): for j in range(per_order): # Maybe put a flux in here too? acc.append([i,random.randint(500,4300), random.choice(fluxes)]) self.injected_lasers = acc def inject_lasers(self): #check if the lasers have been generated if self.injected_lasers and self.spectrum: for laser in self.injected_lasers: kernel = gen_laser_profile(power=laser[2]) #Update this so that the backup remains low = laser[1]-6 high = laser[1]+6 print(self.spectrum.counts[laser[0],low:high]) self.spectrum.counts[laser[0],low:high] = \ self.spectrum.counts[laser[0],low:high] + kernel print(self.spectrum.counts[laser[0], low:high]) print('Next') self.injected=True else: print('Either spectrum is not set or lasers are not chosen') # Test for recovery of simulated signals def recovery(self, deblaze='both', bypass_threshold=True, repetitions=100, per_order=10,): pass # This should take deblazing parameters, repetitions # Should run the target without any injection, collect positives, mask out these locations # SHould also mask out the locations of stellar emission lines # Should also mask out night sky lines? # Run, record # Inject, record injections # Run, compare recovery, inc overlapping injections # log to a file or to terminal # How to speed this up? It will be very hard to run thousands of trials at a minute each # One possibility is to inject the lasers at the end, pretending that it didn't affect deblazing? # This would allow us to run a bunch of lasers after deblazing, and threshold have been determined. # in fact it makes more sense to add lasers at this stage (post - deblazing) due to flattening ''' So the flow is: deblaze savitzky opt: store (deep copy) spectrum deblaze meanshift run search opt: run search on savitzky spectrum ''' def gen_laser_profile(power=1.0): kernel = np.zeros(12) pixel_offset_weight = random.random() # Assign most of the counts to one pixel, the rest next door kernel[:-1] = kernel[:-1] + gaussian_kernel_4 * power * pixel_offset_weight kernel[1:] = kernel[1:] + gaussian_kernel_4 * power * (1.0 - pixel_offset_weight) return kernel
[ "random.choice", "numpy.array", "numpy.zeros", "random.random", "random.randint" ]
[((324, 459), 'numpy.array', 'np.array', (['[0.02169646, 0.08608803, 0.2514724, 0.54092311, 0.85695116, 1.0, 0.85957485,\n 0.54424083, 0.25379, 0.0871478, 0.02203095]'], {}), '([0.02169646, 0.08608803, 0.2514724, 0.54092311, 0.85695116, 1.0, \n 0.85957485, 0.54424083, 0.25379, 0.0871478, 0.02203095])\n', (332, 459), True, 'import numpy as np\n'), ((3598, 3610), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (3606, 3610), True, 'import numpy as np\n'), ((3637, 3652), 'random.random', 'random.random', ([], {}), '()\n', (3650, 3652), False, 'import random\n'), ((1474, 1499), 'random.randint', 'random.randint', (['(500)', '(4300)'], {}), '(500, 4300)\n', (1488, 1499), False, 'import random\n'), ((1500, 1521), 'random.choice', 'random.choice', (['fluxes'], {}), '(fluxes)\n', (1513, 1521), False, 'import random\n')]
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Example with use of pyqt read 3d image """ import json from loguru import logger import itertools import numpy as np import matplotlib.pyplot as plt import io3d import sed3 ann = {} for item in itertools.product(['sliver07', '3Dircadb1'], ['data3d'], range(1, 2)): print(item) datap1 = io3d.read_dataset(*item) improj = np.sum(datap1["data3d"], axis=1) plt.imshow(improj) pts = plt.ginput(n=2, show_clicks=True) plt.close() print(pts) ann[item] = pts
[ "matplotlib.pyplot.imshow", "matplotlib.pyplot.ginput", "matplotlib.pyplot.close", "numpy.sum", "io3d.read_dataset" ]
[((348, 372), 'io3d.read_dataset', 'io3d.read_dataset', (['*item'], {}), '(*item)\n', (365, 372), False, 'import io3d\n'), ((386, 418), 'numpy.sum', 'np.sum', (["datap1['data3d']"], {'axis': '(1)'}), "(datap1['data3d'], axis=1)\n", (392, 418), True, 'import numpy as np\n'), ((423, 441), 'matplotlib.pyplot.imshow', 'plt.imshow', (['improj'], {}), '(improj)\n', (433, 441), True, 'import matplotlib.pyplot as plt\n'), ((452, 485), 'matplotlib.pyplot.ginput', 'plt.ginput', ([], {'n': '(2)', 'show_clicks': '(True)'}), '(n=2, show_clicks=True)\n', (462, 485), True, 'import matplotlib.pyplot as plt\n'), ((490, 501), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (499, 501), True, 'import matplotlib.pyplot as plt\n')]
# -*- coding: utf-8 -*- """ Created on Thu Dec 2 20:34:47 2021 @author: <NAME> Correction on Gaussian fit of PSF in non-paraxial case Formula from Zhang, 2007: https://doi.org/10.1364/AO.46.001819 """ import numpy as np # Variables n = 1 alpha = np.arcsin(0.5) / n #%% Radial correction # Computes sigma = factor * wavelength. Make dimensionless by dividing by wavelength wavelength = 1 k = 2 * np.pi / wavelength # Formula from Zhang2007 paper # Dimensionless because of deviding by wavelength # So it computes a factor according to sigma = factor * wavelength def non_paraxial_sigma_radial(a, n, k): # n refractive index # k wavenumber # a maximum half angle of light cone fraction = (4 - 7 * np.cos(a)**(3/2) + 3 * np.cos(a)**(7/2)) / (7 * (1 - np.cos(a)**(3/2))) sigma = fraction**(-0.5) / (n * k) return sigma factor_radial = non_paraxial_sigma_radial(alpha, n, k) print(factor_radial) #%% Axial correction # uses eq. from table 3 of same paper Zhang 2007 def non_paraxial_sigma_axial(a, n, k): cos = np.cos(a) numerator = 5 * np.sqrt(7) * (1 - cos**1.5) denominator = np.sqrt(6) * n * k * (4 * cos**5 - 25 * cos**3.5 + 42 * cos**2.5 - 25 * cos**1.5 + 4)**.5 sigma = numerator / denominator return sigma factor_axial = non_paraxial_sigma_axial(alpha, n, k) # We want to convert to the Rayleigh range sigma_axial = factor_axial * 820 rayleigh = sigma_axial * np.sqrt(2 * np.log(2))
[ "numpy.sqrt", "numpy.log", "numpy.arcsin", "numpy.cos" ]
[((253, 267), 'numpy.arcsin', 'np.arcsin', (['(0.5)'], {}), '(0.5)\n', (262, 267), True, 'import numpy as np\n'), ((1060, 1069), 'numpy.cos', 'np.cos', (['a'], {}), '(a)\n', (1066, 1069), True, 'import numpy as np\n'), ((1095, 1105), 'numpy.sqrt', 'np.sqrt', (['(7)'], {}), '(7)\n', (1102, 1105), True, 'import numpy as np\n'), ((1469, 1478), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (1475, 1478), True, 'import numpy as np\n'), ((1141, 1151), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (1148, 1151), True, 'import numpy as np\n'), ((755, 764), 'numpy.cos', 'np.cos', (['a'], {}), '(a)\n', (761, 764), True, 'import numpy as np\n'), ((786, 795), 'numpy.cos', 'np.cos', (['a'], {}), '(a)\n', (792, 795), True, 'import numpy as np\n'), ((732, 741), 'numpy.cos', 'np.cos', (['a'], {}), '(a)\n', (738, 741), True, 'import numpy as np\n')]
import numba as nb import numpy as np def demean_embs(id2pointer: nb.typed.Dict, embeddings: np.ndarray) -> np.ndarray: """ Aggregate word embeddings by averaging on phrase-level. :param id2pointer nb.typed.dict: token id to word embedding pointers :param embeddings np.ndarray: word embedding matrix """ N = len(id2pointer) embs = [] for i in range(N): emb = embeddings[id2pointer[i]] if emb.shape[0] > 1: emb = emb.mean(0, keepdims=True) embs.append(emb) embs = np.vstack(embs) embs /= np.linalg.norm(embs, axis=1, ord=2, keepdims=True) return embs @nb.njit(parallel=True) def preranking(src: np.ndarray, trg: np.ndarray, k: int) -> np.ndarray: """ Prerank using cosine similarity of (averaged) word embeddings. L2-normlization already performed vectorized in 'demean_embs'. :param src np.ndarray: demeaned source language phrase embeddings :param trg np.ndarray: demeaned target language phrase embeddings :param k int: top-k candidates to retain """ N = src.shape[0] argsort = np.empty((N, k), dtype=nb.int64) for i in nb.prange(N): argsort[i] = (src[i] @ trg.T).argsort()[-k:] return argsort
[ "numba.njit", "numpy.empty", "numpy.vstack", "numpy.linalg.norm", "numba.prange" ]
[((635, 657), 'numba.njit', 'nb.njit', ([], {'parallel': '(True)'}), '(parallel=True)\n', (642, 657), True, 'import numba as nb\n'), ((538, 553), 'numpy.vstack', 'np.vstack', (['embs'], {}), '(embs)\n', (547, 553), True, 'import numpy as np\n'), ((566, 616), 'numpy.linalg.norm', 'np.linalg.norm', (['embs'], {'axis': '(1)', 'ord': '(2)', 'keepdims': '(True)'}), '(embs, axis=1, ord=2, keepdims=True)\n', (580, 616), True, 'import numpy as np\n'), ((1102, 1134), 'numpy.empty', 'np.empty', (['(N, k)'], {'dtype': 'nb.int64'}), '((N, k), dtype=nb.int64)\n', (1110, 1134), True, 'import numpy as np\n'), ((1148, 1160), 'numba.prange', 'nb.prange', (['N'], {}), '(N)\n', (1157, 1160), True, 'import numba as nb\n')]
from emails import full_path import pandas as pd from send_emails import login_pitt, open_outlook, new_message id_df = pd.read_csv('/users/madke/downloads/AAPECS Recontacts - Sheet3 (1).csv') full_info = pd.read_csv('/users/madke/downloads/AAPECS Recontacts - Sheet1 (1).csv') ids = id_df.merge(full_info, left_on='ID', right_on='ID', how='left') print(ids.head()) subject = 'Mental Health and Covid-19 Follow-up' def main(df): results = full_path(df) driver = login_pitt() driver = open_outlook(driver) for index, row in results.iterrows(): driver = new_message(driver, row['email'], row['template'], subject) if __name__ == "__main__": main(ids)
[ "send_emails.open_outlook", "pandas.read_csv", "emails.full_path", "send_emails.new_message", "send_emails.login_pitt" ]
[((120, 192), 'pandas.read_csv', 'pd.read_csv', (['"""/users/madke/downloads/AAPECS Recontacts - Sheet3 (1).csv"""'], {}), "('/users/madke/downloads/AAPECS Recontacts - Sheet3 (1).csv')\n", (131, 192), True, 'import pandas as pd\n'), ((205, 277), 'pandas.read_csv', 'pd.read_csv', (['"""/users/madke/downloads/AAPECS Recontacts - Sheet1 (1).csv"""'], {}), "('/users/madke/downloads/AAPECS Recontacts - Sheet1 (1).csv')\n", (216, 277), True, 'import pandas as pd\n'), ((445, 458), 'emails.full_path', 'full_path', (['df'], {}), '(df)\n', (454, 458), False, 'from emails import full_path\n'), ((472, 484), 'send_emails.login_pitt', 'login_pitt', ([], {}), '()\n', (482, 484), False, 'from send_emails import login_pitt, open_outlook, new_message\n'), ((498, 518), 'send_emails.open_outlook', 'open_outlook', (['driver'], {}), '(driver)\n', (510, 518), False, 'from send_emails import login_pitt, open_outlook, new_message\n'), ((578, 637), 'send_emails.new_message', 'new_message', (['driver', "row['email']", "row['template']", 'subject'], {}), "(driver, row['email'], row['template'], subject)\n", (589, 637), False, 'from send_emails import login_pitt, open_outlook, new_message\n')]
from typing import Optional import asyncio import pytest from hypothesis import given from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of from pipelines import Job, MultiQueue, Pipe # Test build pipeline list # Test pipeline list # Property would be a strategy that makes a class # tree and the output of that should # Pipe is number of jobs - 1 # Assumption no orphan nodes # class MockJob(Job): async def start( self, in_q: Optional[asyncio.Queue], out_q: Optional[MultiQueue] ) -> None: print("Running") @composite def job_tree(draw): parent = draw(builds(MockJob)) root = parent depth = draw(integers(min_value=1, max_value=10)) for i in range(depth): children = draw(lists(builds(MockJob))) for c in children: parent.set_downstream(c) if children: parent = children[0] return root def _number_of_pipes(job): """ This should be number of jobs plus all end nodes. """ pipe_count = 0 children = job.children while children: pipe_count += 1 child = children.pop() if child.children == []: pipe_count += 1 children.extend(child.children) if pipe_count == 0: return 1 return pipe_count @pytest.mark.asyncio @given(job_tree()) async def test_build_test_pipeline(s): pipe_list = s._build_ordered_pipe_list(s, None, []) assert len(pipe_list) == _number_of_pipes(s) @composite def pipe(draw): job = draw(builds(MockJob)) queue = draw(one_of(builds(asyncio.Queue), none())) multi_queue = draw(builds(MultiQueue)) return Pipe(parent=job, queue=queue, subscribed_queues=multi_queue) def _num_tasks(pipes): task_count = 0 for i, p in enumerate(pipes): if i == 0: task_count += 1 continue if not p.queue: continue task_count += 1 return task_count def _num_queues(pipes): queue_count = 0 for i, p in enumerate(pipes): if i == 0: continue if p.queue: queue_count += 1 for q in p.subscribed_queues.queues: queue_count += 1 return queue_count # This should test queue length and task length # Which should match worker length @pytest.mark.asyncio @given(lists(pipe(), min_size=1), integers(min_value=0), data()) async def test__build_tasks(pipes, workers, data): job = data.draw(builds(MockJob)) job.workers = workers tasks, queues = job._build_tasks(pipes) assert len(tasks) == _num_tasks(pipes) assert len(queues) == _num_queues(pipes) @pytest.mark.asyncio async def test_single_job(): j = MockJob() await j.execute_jobs() # Test build tasks
[ "hypothesis.strategies.builds", "hypothesis.strategies.none", "hypothesis.strategies.integers", "hypothesis.strategies.data", "pipelines.Pipe" ]
[((1671, 1731), 'pipelines.Pipe', 'Pipe', ([], {'parent': 'job', 'queue': 'queue', 'subscribed_queues': 'multi_queue'}), '(parent=job, queue=queue, subscribed_queues=multi_queue)\n', (1675, 1731), False, 'from pipelines import Job, MultiQueue, Pipe\n'), ((2384, 2405), 'hypothesis.strategies.integers', 'integers', ([], {'min_value': '(0)'}), '(min_value=0)\n', (2392, 2405), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n'), ((2407, 2413), 'hypothesis.strategies.data', 'data', ([], {}), '()\n', (2411, 2413), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n'), ((626, 641), 'hypothesis.strategies.builds', 'builds', (['MockJob'], {}), '(MockJob)\n', (632, 641), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n'), ((678, 713), 'hypothesis.strategies.integers', 'integers', ([], {'min_value': '(1)', 'max_value': '(10)'}), '(min_value=1, max_value=10)\n', (686, 713), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n'), ((1544, 1559), 'hypothesis.strategies.builds', 'builds', (['MockJob'], {}), '(MockJob)\n', (1550, 1559), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n'), ((1640, 1658), 'hypothesis.strategies.builds', 'builds', (['MultiQueue'], {}), '(MultiQueue)\n', (1646, 1658), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n'), ((2486, 2501), 'hypothesis.strategies.builds', 'builds', (['MockJob'], {}), '(MockJob)\n', (2492, 2501), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n'), ((1585, 1606), 'hypothesis.strategies.builds', 'builds', (['asyncio.Queue'], {}), '(asyncio.Queue)\n', (1591, 1606), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n'), ((1608, 1614), 'hypothesis.strategies.none', 'none', ([], {}), '()\n', (1612, 1614), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n'), ((772, 787), 'hypothesis.strategies.builds', 'builds', (['MockJob'], {}), '(MockJob)\n', (778, 787), False, 'from hypothesis.strategies import builds, composite, data, integers, lists, none, one_of\n')]
from rest_framework.serializers import ModelSerializer from rest_framework import serializers from ..models import Lecture class LectureCreateSerializer(ModelSerializer): class Meta: model = Lecture fields = ['lect_id', 'course_id', 'lect_no', 'start_time', 'end_time', 'comment', 'updated', 'created', 'classroom'] class LectureListSerializer(ModelSerializer): class Meta: model = Lecture fields = ['lect_id', 'course_id', 'lect_no', 'start_time', 'end_time', 'isAttendanceTaken', 'comment', 'updated', 'created', 'classroom'] class CalendarDatesSerializer(serializers.Serializer): lect_id = serializers.CharField(read_only=True) course_id = serializers.CharField(read_only=True) lect_no = serializers.CharField(read_only=True) start_time = serializers.CharField(read_only=True) end_time = serializers.CharField(read_only=True) comment = serializers.CharField(read_only=True) updated = serializers.CharField(read_only=True) created = serializers.CharField(read_only=True) is_present=serializers.BooleanField(default=False)
[ "rest_framework.serializers.CharField", "rest_framework.serializers.BooleanField" ]
[((699, 736), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (720, 736), False, 'from rest_framework import serializers\n'), ((753, 790), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (774, 790), False, 'from rest_framework import serializers\n'), ((805, 842), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (826, 842), False, 'from rest_framework import serializers\n'), ((860, 897), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (881, 897), False, 'from rest_framework import serializers\n'), ((913, 950), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (934, 950), False, 'from rest_framework import serializers\n'), ((965, 1002), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (986, 1002), False, 'from rest_framework import serializers\n'), ((1017, 1054), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (1038, 1054), False, 'from rest_framework import serializers\n'), ((1069, 1106), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (1090, 1106), False, 'from rest_framework import serializers\n'), ((1122, 1161), 'rest_framework.serializers.BooleanField', 'serializers.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (1146, 1161), False, 'from rest_framework import serializers\n')]
#!/usr/bin/env python # Copyright (c) <NAME>. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pandas as pd import os with open("data/pwkp.test.orig") as f: original_content = f.readlines() original_content = [t.strip() for t in original_content] # original_content_low = [sent.lower() for sent in original_content] # PWKP dataframe = pd.read_excel("data/pwkp_data.ods", engine="odf",header=[0, 1],) #print(dataframe.columns) current_system = "" for i,row in dataframe.iterrows(): system = row["System", "Unnamed: 0_level_1"] if type(system) == str: current_system = system.strip().split(" (")[0] dataframe.loc[i, [["System", "Unnamed: 0_level_1"]]] = current_system n = 0 m = 0 dataframe["original"] = "" dataframe["simplification"] = "" systems = sorted(list(set(dataframe["System", "Unnamed: 0_level_1"]))) for system in systems: if os.path.exists("data/"+system+".tok"): with open("data/"+system+".tok") as f: content = f.readlines() current_original_content = original_content elif os.path.exists("data/"+system+".tok.low"): with open("data/"+system+".tok.low") as f: content = f.readlines() current_original_content = original_content # todo: _low add lowered sentences else: current_original_content = None print("no data found for system", system) continue content = [t.strip() for t in content if t != "\n"] if len(content) != len(dataframe[dataframe["System", "Unnamed: 0_level_1"] == system]): print(system, len(content),len(dataframe[dataframe["System", "Unnamed: 0_level_1"] == system])) for i, index in enumerate(dataframe[dataframe["System", "Unnamed: 0_level_1"] == system].index): dataframe.loc[index, "simplification"] = content[i].strip() dataframe.loc[index, "original"] = current_original_content[i].strip() dataframe.to_csv("data/pwkp_with_text.csv") def invert_rating(rating): if rating == 3: return 1 elif rating == 2: return 2 elif rating == 1: return 3 else: return None dataframe = pd.read_csv("data/pwkp_with_text.csv", header=[0,1]) new_dataframe = pd.DataFrame(columns = ["original", "simplification", "sentence_id", "sample_id", "system_name", "aspect", "rater_id", "rating"]) annotator_column = sorted(list(set([name for name,level in dataframe.columns if "Annotator" in name]))) aspect_mapping = {"a": "fluency", "d": "structural_simplicity", "e": "meaning"} # "b": "information_gain", "c": "information_loss", # "b": "information_gain", "c": "information_loss", # G: Qa: Is the output grammatical? # MPa: Qb: Does the output add information, compared to the input? # MPb: Qc: Does the output remove important information, compared to the input? # S: Qd: Is the output simpler than the input, ignoring the complexity of the words? j, i = 0, 0 n = 0 for i, row in dataframe.iterrows(): if type(row["original","Unnamed: 23_level_1"]) == str and type(row["simplification","Unnamed: 24_level_1"]) == str and \ not pd.isna(row["original","Unnamed: 23_level_1"]) and not pd.isna(row["simplification", "Unnamed: 24_level_1"]): for annotator in annotator_column: for rating in aspect_mapping: if rating == "e": rating_score = (invert_rating(row[annotator, "c"])+invert_rating(row[annotator, "b"]))/2 else: rating_score = row[annotator, rating] new_dataframe.loc[j] = [row["original","Unnamed: 23_level_1"], row["simplification", "Unnamed: 24_level_1"], row["Sentence", "Unnamed: 1_level_1"], str(row["Sentence", "Unnamed: 1_level_1"])+"_"+row["System", "Unnamed: 0_level_1"], row["System", "Unnamed: 0_level_1"], aspect_mapping[rating], annotator, rating_score] j +=1 if row["original","Unnamed: 23_level_1"] == row["simplification", "Unnamed: 24_level_1"]: n += 1 print(i,j,n) new_dataframe.to_csv("data/pwkp_ratings.csv")
[ "os.path.exists", "pandas.read_csv", "pandas.read_excel", "pandas.DataFrame", "pandas.isna" ]
[((454, 518), 'pandas.read_excel', 'pd.read_excel', (['"""data/pwkp_data.ods"""'], {'engine': '"""odf"""', 'header': '[0, 1]'}), "('data/pwkp_data.ods', engine='odf', header=[0, 1])\n", (467, 518), True, 'import pandas as pd\n'), ((2239, 2292), 'pandas.read_csv', 'pd.read_csv', (['"""data/pwkp_with_text.csv"""'], {'header': '[0, 1]'}), "('data/pwkp_with_text.csv', header=[0, 1])\n", (2250, 2292), True, 'import pandas as pd\n'), ((2308, 2439), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['original', 'simplification', 'sentence_id', 'sample_id', 'system_name',\n 'aspect', 'rater_id', 'rating']"}), "(columns=['original', 'simplification', 'sentence_id',\n 'sample_id', 'system_name', 'aspect', 'rater_id', 'rating'])\n", (2320, 2439), True, 'import pandas as pd\n'), ((980, 1021), 'os.path.exists', 'os.path.exists', (["('data/' + system + '.tok')"], {}), "('data/' + system + '.tok')\n", (994, 1021), False, 'import os\n'), ((1167, 1212), 'os.path.exists', 'os.path.exists', (["('data/' + system + '.tok.low')"], {}), "('data/' + system + '.tok.low')\n", (1181, 1212), False, 'import os\n'), ((3223, 3270), 'pandas.isna', 'pd.isna', (["row['original', 'Unnamed: 23_level_1']"], {}), "(row['original', 'Unnamed: 23_level_1'])\n", (3230, 3270), True, 'import pandas as pd\n'), ((3278, 3331), 'pandas.isna', 'pd.isna', (["row['simplification', 'Unnamed: 24_level_1']"], {}), "(row['simplification', 'Unnamed: 24_level_1'])\n", (3285, 3331), True, 'import pandas as pd\n')]
from django.contrib.postgres.fields import ArrayField from django.db import connection from django.db.models import FloatField from django.utils.html import escape from postgres_stats.aggregates import Percentile from rest_framework.decorators import api_view, permission_classes from rest_framework.response import Response from core.models import ( Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet, ) from core.permissions import IsAdminOrCreator from core.utils.util import irr_heatmap_data, perc_agreement_table_data from core.utils.utils_model import cohens_kappa, fleiss_kappa @api_view(["GET"]) @permission_classes((IsAdminOrCreator,)) def label_distribution(request, project_pk): """This function finds and returns the number of each label per user. This is used by a graph on the front end admin page. Args: request: The POST request project_pk: Primary key of the project Returns: a dictionary of the amount of labels per person per type """ project = Project.objects.get(pk=project_pk) labels = [label for label in project.labels.all()] users = [] users.append(project.creator) users.extend([perm.profile for perm in project.projectpermissions_set.all()]) # Sort labels by the count labels.sort( key=lambda label: DataLabel.objects.filter(label=label).count(), reverse=True ) dataset = [] # Get first labels for label in labels[0:5]: temp_values = [] for u in users: label_count = DataLabel.objects.filter(profile=u, label=label).count() if label_count > 0: temp_values.append({"x": u.__str__(), "y": label_count}) if temp_values != []: dataset.append({"key": label.name, "values": temp_values}) other_values = [] for u in users: other_count = 0 for label in labels[5:]: other_count += DataLabel.objects.filter(profile=u, label=label).count() if other_count > 0: other_values.append({"x": u.__str__(), "y": other_count}) if other_values != []: dataset.append({"key": "other labels", "values": other_values}) return Response(dataset) @api_view(["GET"]) @permission_classes((IsAdminOrCreator,)) def label_timing(request, project_pk): """This function finds and returns the requested label time metrics. This is used by the graphs on the admin page to show how long each labeler is taking. Args: request: The POST request project_pk: Primary key of the project Returns: a dictionary of label timing information. """ project = Project.objects.get(pk=project_pk) users = [] users.append(project.creator) users.extend([perm.profile for perm in project.projectpermissions_set.all()]) dataset = [] yDomain = 0 for u in users: result = DataLabel.objects.filter( data__project=project_pk, profile=u ).aggregate( quartiles=Percentile( "time_to_label", [0.05, 0.25, 0.5, 0.75, 0.95], continuous=False, output_field=ArrayField(FloatField()), ) ) if result["quartiles"]: if result["quartiles"][4] > yDomain: yDomain = result["quartiles"][4] + 10 temp = { "label": u.__str__(), "values": { "Q1": result["quartiles"][1], "Q2": result["quartiles"][2], "Q3": result["quartiles"][3], "whisker_low": result["quartiles"][0], "whisker_high": result["quartiles"][4], }, } dataset.append(temp) return Response({"data": dataset, "yDomain": yDomain}) @api_view(["GET"]) @permission_classes((IsAdminOrCreator,)) def model_metrics(request, project_pk): """This function finds and returns the requested metrics. This is used by the graphs on the front end admin page. Args: request: The POST request project_pk: Primary key of the project Returns: a dictionary of model metric information """ metric = request.GET.get("metric", "accuracy") project = Project.objects.get(pk=project_pk) models = Model.objects.filter(project=project).order_by("training_set__set_number") if metric == "accuracy": values = [] for model in models: values.append({"x": model.training_set.set_number, "y": model.cv_accuracy}) dataset = [{"key": "Accuracy", "values": values}] else: labels = {str(label.pk): label.name for label in project.labels.all()} dataset = [] for label in labels: values = [] for model in models: current_metric = model.cv_metrics[metric][label] values.append({"x": model.training_set.set_number, "y": current_metric}) dataset.append({"key": labels[label], "values": values}) return Response(dataset) @api_view(["GET"]) @permission_classes((IsAdminOrCreator,)) def data_coded_table(request, project_pk): """This returns the labeled data. Args: request: The POST request project_pk: Primary key of the project Returns: data: a list of data information """ project = Project.objects.get(pk=project_pk) data_objs = DataLabel.objects.filter(data__project=project, data__irr_ind=False) data = [] for d in data_objs: temp = { "Text": escape(d.data.text), "Label": d.label.name, "Coder": d.profile.__str__(), } data.append(temp) return Response({"data": data}) @api_view(["GET"]) @permission_classes((IsAdminOrCreator,)) def data_predicted_table(request, project_pk): """This returns the predictions for the unlabeled data. Args: request: The POST request project_pk: Primary key of the project Returns: data: a list of data information """ project = Project.objects.get(pk=project_pk) previous_run = project.get_current_training_set().set_number - 1 sql = """ SELECT d.{data_text_col}, l.{label_name_col}, dp.{pred_prob_col} FROM ( SELECT {pred_data_id_col}, MAX({pred_prob_col}) AS max_prob FROM {pred_table} GROUP BY {pred_data_id_col} ) as tmp LEFT JOIN {pred_table} as dp ON dp.{pred_data_id_col} = tmp.{pred_data_id_col} AND dp.{pred_prob_col} = tmp.max_prob LEFT JOIN {label_table} as l ON l.{label_pk_col} = dp.{pred_label_id_col} LEFT JOIN {data_table} as d ON d.{data_pk_col} = dp.{pred_data_id_col} LEFT JOIN {model_table} as m ON m.{model_pk_col} = dp.{pred_model_id_col} LEFT JOIN {trainingset_table} as ts ON ts.{trainingset_pk_col} = m.{model_trainingset_id_col} WHERE ts.{trainingset_setnumber_col} = {previous_run} AND d.{data_project_id_col} = {project_pk} """.format( data_text_col=Data._meta.get_field("text").column, label_name_col=Label._meta.get_field("name").column, pred_prob_col=DataPrediction._meta.get_field("predicted_probability").column, pred_data_id_col=DataPrediction._meta.get_field("data").column, pred_table=DataPrediction._meta.db_table, label_table=Label._meta.db_table, label_pk_col=Label._meta.pk.name, pred_label_id_col=DataPrediction._meta.get_field("label").column, data_table=Data._meta.db_table, data_pk_col=Data._meta.pk.name, model_table=Model._meta.db_table, model_pk_col=Model._meta.pk.name, pred_model_id_col=DataPrediction._meta.get_field("model").column, trainingset_table=TrainingSet._meta.db_table, trainingset_pk_col=TrainingSet._meta.pk.name, model_trainingset_id_col=Model._meta.get_field("training_set").column, trainingset_setnumber_col=TrainingSet._meta.get_field("set_number").column, previous_run=previous_run, data_project_id_col=Data._meta.get_field("project").column, project_pk=project.pk, ) with connection.cursor() as c: c.execute(sql) data_objs = c.fetchall() data = [] for d in data_objs: temp = {"Text": escape(d[0]), "Label": d[1], "Probability": d[2]} data.append(temp) return Response({"data": data}) @api_view(["GET"]) @permission_classes((IsAdminOrCreator,)) def get_irr_metrics(request, project_pk): """This function takes the current coded IRR and calculates several reliability metrics. Args: request: The POST request project_pk: Primary key of the project Returns: {} """ # need to take the IRRLog and pull out exactly the max_labelers amount # of labels for each datum project = Project.objects.get(pk=project_pk) try: if project.num_users_irr > 2: kappa, perc_agreement = fleiss_kappa(project) else: kappa, perc_agreement = cohens_kappa(project) kappa = round(kappa, 3) perc_agreement = str(round(perc_agreement, 5) * 100) + "%" except ValueError: kappa = "No irr data processed" perc_agreement = "No irr data processed" return Response({"kappa": kappa, "percent agreement": perc_agreement}) @api_view(["GET"]) @permission_classes((IsAdminOrCreator,)) def perc_agree_table(request, project_pk): """Finds the percent agreement between each pair of coders to be displayed on the IRR page as a table.""" project = Project.objects.get(pk=project_pk) irr_data = set( IRRLog.objects.filter(data__project=project).values_list("data", flat=True) ) if len(irr_data) == 0: return Response({"data": []}) user_agree = perc_agreement_table_data(project) return Response({"data": user_agree}) @api_view(["GET"]) @permission_classes((IsAdminOrCreator,)) def heat_map_data(request, project_pk): """Calculates the data for the heat map of irr data and returns the correct one for the pair of coders given. Args: request: the GET request with the pk of the two users project_pk: the Primary key of the project Returns: a list of dictionaries of form {label1, label2, count} """ project = Project.objects.get(pk=project_pk) heatmap_data = irr_heatmap_data(project) labels = list( Label.objects.all().filter(project=project).values_list("name", flat=True) ) labels.append("Skip") coders = [] profiles = ProjectPermissions.objects.filter(project=project) coders.append({"name": str(project.creator), "pk": project.creator.pk}) for p in profiles: coders.append({"name": str(p.profile), "pk": p.profile.pk}) return Response({"data": heatmap_data, "labels": labels, "coders": coders})
[ "core.utils.utils_model.cohens_kappa", "core.models.Label.objects.all", "core.models.Label._meta.get_field", "core.models.Model._meta.get_field", "django.db.models.FloatField", "core.models.Data._meta.get_field", "rest_framework.decorators.api_view", "core.models.DataLabel.objects.filter", "core.utils.utils_model.fleiss_kappa", "core.models.Project.objects.get", "core.models.TrainingSet._meta.get_field", "core.utils.util.perc_agreement_table_data", "django.utils.html.escape", "core.models.ProjectPermissions.objects.filter", "rest_framework.decorators.permission_classes", "core.models.Model.objects.filter", "rest_framework.response.Response", "django.db.connection.cursor", "core.models.DataPrediction._meta.get_field", "core.models.IRRLog.objects.filter", "core.utils.util.irr_heatmap_data" ]
[((670, 687), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (678, 687), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((689, 728), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAdminOrCreator,)'], {}), '((IsAdminOrCreator,))\n', (707, 728), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((2282, 2299), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (2290, 2299), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((2301, 2340), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAdminOrCreator,)'], {}), '((IsAdminOrCreator,))\n', (2319, 2340), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((3901, 3918), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (3909, 3918), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((3920, 3959), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAdminOrCreator,)'], {}), '((IsAdminOrCreator,))\n', (3938, 3959), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((5155, 5172), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (5163, 5172), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((5174, 5213), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAdminOrCreator,)'], {}), '((IsAdminOrCreator,))\n', (5192, 5213), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((5834, 5851), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (5842, 5851), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((5853, 5892), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAdminOrCreator,)'], {}), '((IsAdminOrCreator,))\n', (5871, 5892), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((8507, 8524), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (8515, 8524), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((8526, 8565), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAdminOrCreator,)'], {}), '((IsAdminOrCreator,))\n', (8544, 8565), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((9452, 9469), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (9460, 9469), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((9471, 9510), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAdminOrCreator,)'], {}), '((IsAdminOrCreator,))\n', (9489, 9510), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((9991, 10008), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (9999, 10008), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((10010, 10049), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAdminOrCreator,)'], {}), '((IsAdminOrCreator,))\n', (10028, 10049), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((1097, 1131), 'core.models.Project.objects.get', 'Project.objects.get', ([], {'pk': 'project_pk'}), '(pk=project_pk)\n', (1116, 1131), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((2261, 2278), 'rest_framework.response.Response', 'Response', (['dataset'], {}), '(dataset)\n', (2269, 2278), False, 'from rest_framework.response import Response\n'), ((2720, 2754), 'core.models.Project.objects.get', 'Project.objects.get', ([], {'pk': 'project_pk'}), '(pk=project_pk)\n', (2739, 2754), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((3850, 3897), 'rest_framework.response.Response', 'Response', (["{'data': dataset, 'yDomain': yDomain}"], {}), "({'data': dataset, 'yDomain': yDomain})\n", (3858, 3897), False, 'from rest_framework.response import Response\n'), ((4354, 4388), 'core.models.Project.objects.get', 'Project.objects.get', ([], {'pk': 'project_pk'}), '(pk=project_pk)\n', (4373, 4388), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((5134, 5151), 'rest_framework.response.Response', 'Response', (['dataset'], {}), '(dataset)\n', (5142, 5151), False, 'from rest_framework.response import Response\n'), ((5463, 5497), 'core.models.Project.objects.get', 'Project.objects.get', ([], {'pk': 'project_pk'}), '(pk=project_pk)\n', (5482, 5497), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((5515, 5583), 'core.models.DataLabel.objects.filter', 'DataLabel.objects.filter', ([], {'data__project': 'project', 'data__irr_ind': '(False)'}), '(data__project=project, data__irr_ind=False)\n', (5539, 5583), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((5806, 5830), 'rest_framework.response.Response', 'Response', (["{'data': data}"], {}), "({'data': data})\n", (5814, 5830), False, 'from rest_framework.response import Response\n'), ((6168, 6202), 'core.models.Project.objects.get', 'Project.objects.get', ([], {'pk': 'project_pk'}), '(pk=project_pk)\n', (6187, 6202), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((8479, 8503), 'rest_framework.response.Response', 'Response', (["{'data': data}"], {}), "({'data': data})\n", (8487, 8503), False, 'from rest_framework.response import Response\n'), ((8950, 8984), 'core.models.Project.objects.get', 'Project.objects.get', ([], {'pk': 'project_pk'}), '(pk=project_pk)\n', (8969, 8984), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((9385, 9448), 'rest_framework.response.Response', 'Response', (["{'kappa': kappa, 'percent agreement': perc_agreement}"], {}), "({'kappa': kappa, 'percent agreement': perc_agreement})\n", (9393, 9448), False, 'from rest_framework.response import Response\n'), ((9682, 9716), 'core.models.Project.objects.get', 'Project.objects.get', ([], {'pk': 'project_pk'}), '(pk=project_pk)\n', (9701, 9716), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((9911, 9945), 'core.utils.util.perc_agreement_table_data', 'perc_agreement_table_data', (['project'], {}), '(project)\n', (9936, 9945), False, 'from core.utils.util import irr_heatmap_data, perc_agreement_table_data\n'), ((9957, 9987), 'rest_framework.response.Response', 'Response', (["{'data': user_agree}"], {}), "({'data': user_agree})\n", (9965, 9987), False, 'from rest_framework.response import Response\n'), ((10430, 10464), 'core.models.Project.objects.get', 'Project.objects.get', ([], {'pk': 'project_pk'}), '(pk=project_pk)\n', (10449, 10464), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((10485, 10510), 'core.utils.util.irr_heatmap_data', 'irr_heatmap_data', (['project'], {}), '(project)\n', (10501, 10510), False, 'from core.utils.util import irr_heatmap_data, perc_agreement_table_data\n'), ((10676, 10726), 'core.models.ProjectPermissions.objects.filter', 'ProjectPermissions.objects.filter', ([], {'project': 'project'}), '(project=project)\n', (10709, 10726), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((10906, 10974), 'rest_framework.response.Response', 'Response', (["{'data': heatmap_data, 'labels': labels, 'coders': coders}"], {}), "({'data': heatmap_data, 'labels': labels, 'coders': coders})\n", (10914, 10974), False, 'from rest_framework.response import Response\n'), ((8246, 8265), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (8263, 8265), False, 'from django.db import connection\n'), ((9870, 9892), 'rest_framework.response.Response', 'Response', (["{'data': []}"], {}), "({'data': []})\n", (9878, 9892), False, 'from rest_framework.response import Response\n'), ((4402, 4439), 'core.models.Model.objects.filter', 'Model.objects.filter', ([], {'project': 'project'}), '(project=project)\n', (4422, 4439), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((5660, 5679), 'django.utils.html.escape', 'escape', (['d.data.text'], {}), '(d.data.text)\n', (5666, 5679), False, 'from django.utils.html import escape\n'), ((8391, 8403), 'django.utils.html.escape', 'escape', (['d[0]'], {}), '(d[0])\n', (8397, 8403), False, 'from django.utils.html import escape\n'), ((9069, 9090), 'core.utils.utils_model.fleiss_kappa', 'fleiss_kappa', (['project'], {}), '(project)\n', (9081, 9090), False, 'from core.utils.utils_model import cohens_kappa, fleiss_kappa\n'), ((9141, 9162), 'core.utils.utils_model.cohens_kappa', 'cohens_kappa', (['project'], {}), '(project)\n', (9153, 9162), False, 'from core.utils.utils_model import cohens_kappa, fleiss_kappa\n'), ((2958, 3019), 'core.models.DataLabel.objects.filter', 'DataLabel.objects.filter', ([], {'data__project': 'project_pk', 'profile': 'u'}), '(data__project=project_pk, profile=u)\n', (2982, 3019), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((7123, 7151), 'core.models.Data._meta.get_field', 'Data._meta.get_field', (['"""text"""'], {}), "('text')\n", (7143, 7151), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((7183, 7212), 'core.models.Label._meta.get_field', 'Label._meta.get_field', (['"""name"""'], {}), "('name')\n", (7204, 7212), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((7243, 7298), 'core.models.DataPrediction._meta.get_field', 'DataPrediction._meta.get_field', (['"""predicted_probability"""'], {}), "('predicted_probability')\n", (7273, 7298), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((7332, 7370), 'core.models.DataPrediction._meta.get_field', 'DataPrediction._meta.get_field', (['"""data"""'], {}), "('data')\n", (7362, 7370), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((7539, 7578), 'core.models.DataPrediction._meta.get_field', 'DataPrediction._meta.get_field', (['"""label"""'], {}), "('label')\n", (7569, 7578), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((7777, 7816), 'core.models.DataPrediction._meta.get_field', 'DataPrediction._meta.get_field', (['"""model"""'], {}), "('model')\n", (7807, 7816), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((7966, 8003), 'core.models.Model._meta.get_field', 'Model._meta.get_field', (['"""training_set"""'], {}), "('training_set')\n", (7987, 8003), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((8046, 8087), 'core.models.TrainingSet._meta.get_field', 'TrainingSet._meta.get_field', (['"""set_number"""'], {}), "('set_number')\n", (8073, 8087), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((8159, 8190), 'core.models.Data._meta.get_field', 'Data._meta.get_field', (['"""project"""'], {}), "('project')\n", (8179, 8190), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((9745, 9789), 'core.models.IRRLog.objects.filter', 'IRRLog.objects.filter', ([], {'data__project': 'project'}), '(data__project=project)\n', (9766, 9789), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((1605, 1653), 'core.models.DataLabel.objects.filter', 'DataLabel.objects.filter', ([], {'profile': 'u', 'label': 'label'}), '(profile=u, label=label)\n', (1629, 1653), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((1995, 2043), 'core.models.DataLabel.objects.filter', 'DataLabel.objects.filter', ([], {'profile': 'u', 'label': 'label'}), '(profile=u, label=label)\n', (2019, 2043), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((1393, 1430), 'core.models.DataLabel.objects.filter', 'DataLabel.objects.filter', ([], {'label': 'label'}), '(label=label)\n', (1417, 1430), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((10538, 10557), 'core.models.Label.objects.all', 'Label.objects.all', ([], {}), '()\n', (10555, 10557), False, 'from core.models import Data, DataLabel, DataPrediction, IRRLog, Label, Model, Project, ProjectPermissions, TrainingSet\n'), ((3241, 3253), 'django.db.models.FloatField', 'FloatField', ([], {}), '()\n', (3251, 3253), False, 'from django.db.models import FloatField\n')]
import pytest from eth_utils import encode_hex, remove_0x_prefix from ethereum.tester import keys import os import json from microraiden.utils import privkey_to_addr from microraiden.constants import ( CONTRACTS_ABI_JSON, CHANNEL_MANAGER_ABI_NAME, TOKEN_ABI_NAME, ) @pytest.fixture def proxy_ssl(): return False @pytest.fixture def test_dir(request): return request.fspath.dirname @pytest.fixture def proxy_ssl_certs(test_dir): return os.path.join(test_dir + '/data/key.pem'), os.path.join(test_dir + '/data/cert.pem') @pytest.fixture(scope='session') def use_tester(request): return request.config.getoption('use_tester') @pytest.fixture(scope='session') def clean_channels(request): return request.config.getoption('clean_channels') @pytest.fixture def api_endpoint(): """address of a paywall proxy""" return 'localhost' @pytest.fixture def api_endpoint_port(): """port the paywall proxy listens on""" return 5000 @pytest.fixture def api_endpoint_address(api_endpoint, api_endpoint_port): return api_endpoint + ":" + str(api_endpoint_port) @pytest.fixture def init_contract_address(): return "0x" + "a" * 40 @pytest.fixture(scope='session') def deployer_privkey(): return remove_0x_prefix(encode_hex(keys[3])) @pytest.fixture(scope='session') def deployer_address(deployer_privkey): return privkey_to_addr(deployer_privkey) @pytest.fixture(scope='session') def contract_abi_path(): return os.path.join(os.path.dirname(os.path.dirname(__file__)), "../" + CONTRACTS_ABI_JSON) @pytest.fixture(scope='session') def contract_abis(contract_abi_path): with open(contract_abi_path) as abi_file: return json.load(abi_file) @pytest.fixture(scope='session') def channel_manager_abi(contract_abis): return contract_abis[CHANNEL_MANAGER_ABI_NAME]['abi'] @pytest.fixture(scope='session') def channel_manager_bytecode(contract_abis): return contract_abis[CHANNEL_MANAGER_ABI_NAME]['bytecode'] @pytest.fixture(scope='session') def token_abi(contract_abis): return contract_abis[TOKEN_ABI_NAME]['abi'] @pytest.fixture(scope='session') def token_bytecode(contract_abis): return contract_abis[TOKEN_ABI_NAME]['bytecode'] @pytest.fixture(scope='session') def kovan_block_time(): return 4 @pytest.fixture def state_db_path(tmpdir): return ':memory:' # db = tmpdir.join("state.db") # return db.strpath
[ "os.path.join", "microraiden.utils.privkey_to_addr", "json.load", "os.path.dirname", "eth_utils.encode_hex", "pytest.fixture" ]
[((553, 584), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (567, 584), False, 'import pytest\n'), ((663, 694), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (677, 694), False, 'import pytest\n'), ((1188, 1219), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1202, 1219), False, 'import pytest\n'), ((1296, 1327), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1310, 1327), False, 'import pytest\n'), ((1416, 1447), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1430, 1447), False, 'import pytest\n'), ((1572, 1603), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1586, 1603), False, 'import pytest\n'), ((1726, 1757), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1740, 1757), False, 'import pytest\n'), ((1859, 1890), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1873, 1890), False, 'import pytest\n'), ((2002, 2033), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (2016, 2033), False, 'import pytest\n'), ((2115, 2146), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (2129, 2146), False, 'import pytest\n'), ((2238, 2269), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (2252, 2269), False, 'import pytest\n'), ((1379, 1412), 'microraiden.utils.privkey_to_addr', 'privkey_to_addr', (['deployer_privkey'], {}), '(deployer_privkey)\n', (1394, 1412), False, 'from microraiden.utils import privkey_to_addr\n'), ((466, 506), 'os.path.join', 'os.path.join', (["(test_dir + '/data/key.pem')"], {}), "(test_dir + '/data/key.pem')\n", (478, 506), False, 'import os\n'), ((508, 549), 'os.path.join', 'os.path.join', (["(test_dir + '/data/cert.pem')"], {}), "(test_dir + '/data/cert.pem')\n", (520, 549), False, 'import os\n'), ((1272, 1291), 'eth_utils.encode_hex', 'encode_hex', (['keys[3]'], {}), '(keys[3])\n', (1282, 1291), False, 'from eth_utils import encode_hex, remove_0x_prefix\n'), ((1703, 1722), 'json.load', 'json.load', (['abi_file'], {}), '(abi_file)\n', (1712, 1722), False, 'import json\n'), ((1513, 1538), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1528, 1538), False, 'import os\n')]
from conans import ConanFile, CMake, tools from conans.tools import download, unzip, check_sha256 import os, shutil class SpirvtoolsConan(ConanFile): name = 'spirv-tools' _revision = 'c430a41ae32c24bfc0ea87aac1bb19526caafb4e' version = '2018.0' license = 'Apache 2.0' url = 'https://github.com/koeleck/conan-packages/tree/master/spirv-tools' description = 'SPIRV-Tools package for conan' settings = 'os', 'compiler', 'build_type', 'arch' options = {'fPIC': [True, False]} default_options = 'fPIC=False' generators = 'cmake' def config_options(self): if self.settings.compiler == 'Visual Studio': self.options.remove('fPIC') def source(self): download('https://github.com/KhronosGroup/SPIRV-Tools/archive/v{}.zip'.format(self.version), 'spirv-tools.zip') check_sha256('spirv-tools.zip', '55fd0d446a43839abf5fef4ee01fde938b509fe7574dcae66792e1011fbf1a3a') unzip('spirv-tools.zip') os.unlink('spirv-tools.zip') shutil.move('SPIRV-Tools-{}'.format(self.version), 'spirv-tools') # SPIRV headers spirv_headers_revision = 'ce309203d7eceaf908bea8862c27f3e0749f7d00' download('https://github.com/KhronosGroup/SPIRV-Headers/archive/{}.zip'.format(spirv_headers_revision), 'spirv-headers.zip') check_sha256('spirv-headers.zip', '5747e7851b3559bb19e35cc2c9262bb3fb2c279b908737fa24e48e4ab9cc9db5') unzip('spirv-headers.zip') os.unlink('spirv-headers.zip') shutil.move('SPIRV-Headers-{}'.format(spirv_headers_revision), 'spirv-headers') # This small hack might be useful to guarantee proper /MT /MD linkage in MSVC # if the packaged project doesn't have variables to set it properly tools.replace_in_file('spirv-tools/CMakeLists.txt', 'project(spirv-tools)', '''project(spirv-tools) include(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake) conan_basic_setup()''') def build(self): cmake = CMake(self) cmake.definitions['SPIRV_SKIP_EXECUTABLES'] = True cmake.definitions['SPIRV-Headers_SOURCE_DIR'] = '{}/spirv-headers'.format(self.source_folder) if not self.settings.compiler == 'Visual Studio': cmake.definitions['CMAKE_POSITION_INDEPENDENT_CODE'] = self.options.fPIC cmake.configure(source_folder='spirv-tools') cmake.build() def package(self): self.copy('license*', dst='.', src='{}/spirv-tools'.format(self.source_folder), ignore_case=True, keep_path=False) self.copy('*', dst='include', src='{}/spirv-tools/include'.format(self.source_folder)) # glslang needs this header (when optimizer is enabled) self.copy('message.h', dst='include/spirv-tools', src='{}/spirv-tools/source'.format(self.source_folder), keep_path=False) self.copy('*.lib', dst='lib', keep_path=False) self.copy('*.dll', dst='bin', keep_path=False) self.copy('*.so', dst='lib', keep_path=False) self.copy('*.dylib', dst='lib', keep_path=False) self.copy('*.a', dst='lib', keep_path=False) with open('{}/revision.txt'.format(self.package_folder), 'w') as rev_file: rev_file.write(self._revision) def package_info(self): self.cpp_info.libs = ['SPIRV-Tools', 'SPIRV-Tools-link', 'SPIRV-Tools-opt'] self.user_info.revision = self._revision
[ "conans.tools.replace_in_file", "conans.tools.check_sha256", "conans.CMake", "conans.tools.unzip", "os.unlink" ]
[((842, 945), 'conans.tools.check_sha256', 'check_sha256', (['"""spirv-tools.zip"""', '"""55fd0d446a43839abf5fef4ee01fde938b509fe7574dcae66792e1011fbf1a3a"""'], {}), "('spirv-tools.zip',\n '55fd0d446a43839abf5fef4ee01fde938b509fe7574dcae66792e1011fbf1a3a')\n", (854, 945), False, 'from conans.tools import download, unzip, check_sha256\n'), ((950, 974), 'conans.tools.unzip', 'unzip', (['"""spirv-tools.zip"""'], {}), "('spirv-tools.zip')\n", (955, 974), False, 'from conans.tools import download, unzip, check_sha256\n'), ((983, 1011), 'os.unlink', 'os.unlink', (['"""spirv-tools.zip"""'], {}), "('spirv-tools.zip')\n", (992, 1011), False, 'import os, shutil\n'), ((1328, 1433), 'conans.tools.check_sha256', 'check_sha256', (['"""spirv-headers.zip"""', '"""5747e7851b3559bb19e35cc2c9262bb3fb2c279b908737fa24e48e4ab9cc9db5"""'], {}), "('spirv-headers.zip',\n '5747e7851b3559bb19e35cc2c9262bb3fb2c279b908737fa24e48e4ab9cc9db5')\n", (1340, 1433), False, 'from conans.tools import download, unzip, check_sha256\n'), ((1438, 1464), 'conans.tools.unzip', 'unzip', (['"""spirv-headers.zip"""'], {}), "('spirv-headers.zip')\n", (1443, 1464), False, 'from conans.tools import download, unzip, check_sha256\n'), ((1473, 1503), 'os.unlink', 'os.unlink', (['"""spirv-headers.zip"""'], {}), "('spirv-headers.zip')\n", (1482, 1503), False, 'import os, shutil\n'), ((1763, 1945), 'conans.tools.replace_in_file', 'tools.replace_in_file', (['"""spirv-tools/CMakeLists.txt"""', '"""project(spirv-tools)"""', '"""project(spirv-tools)\ninclude(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)\nconan_basic_setup()"""'], {}), '(\'spirv-tools/CMakeLists.txt\', \'project(spirv-tools)\',\n """project(spirv-tools)\ninclude(${CMAKE_BINARY_DIR}/conanbuildinfo.cmake)\nconan_basic_setup()"""\n )\n', (1784, 1945), False, 'from conans import ConanFile, CMake, tools\n'), ((1975, 1986), 'conans.CMake', 'CMake', (['self'], {}), '(self)\n', (1980, 1986), False, 'from conans import ConanFile, CMake, tools\n')]
from selfdrive.car.tesla.teslacan import TeslaCAN from selfdrive.car.tesla.HUD_module import HUDController from selfdrive.car.tesla.LONG_module import LONGController from selfdrive.car.modules.CFG_module import load_bool_param from opendbc.can.packer import CANPacker from selfdrive.car.tesla.values import DBC, CAR, CarControllerParams, CAN_CHASSIS, CAN_AUTOPILOT, CAN_EPAS, CruiseButtons import cereal.messaging as messaging from common.numpy_fast import clip, interp class CarController(): def __init__(self, dbc_name, CP, VM): self.CP = CP self.last_angle = 0 self.packer = CANPacker(dbc_name) self.pt_packer = None if DBC[CP.carFingerprint]['pt']: self.pt_packer = CANPacker(DBC[CP.carFingerprint]['pt']) self.tesla_can = TeslaCAN(dbc_name, self.packer, self.pt_packer) self.prev_das_steeringControl_counter = -1 self.long_control_counter = 0 #initialize modules self.hud_controller = HUDController(CP,self.packer,self.tesla_can) pedalcan = 2 if load_bool_param("TinklaPedalCanZero", False): pedalcan = 0 self.long_controller = LONGController(CP,self.packer,self.tesla_can,pedalcan) self.cruiseDelayFrame = 0 self.prevCruiseEnabled = False self.lP = messaging.sub_sock('longitudinalPlan') self.rS = messaging.sub_sock('radarState') self.mD = messaging.sub_sock('modelV2') self.long_control_counter = 0 #def update(self, c, enabled, CS, frame, actuators, cruise_cancel): def update(self, c, enabled, CS, frame, actuators, cruise_cancel, pcm_speed, pcm_override, hud_alert, audible_alert, left_line, right_line, lead, left_lane_depart, right_lane_depart): if frame % 100 == 0: CS.autoresumeAcc = load_bool_param("TinklaAutoResumeACC",False) can_sends = [] #add 1 second delay logic to wait for AP which has a status at 2Hz if self.CP.carFingerprint != CAR.PREAP_MODELS: if CS.cruiseEnabled: if not self.prevCruiseEnabled: self.cruiseDelayFrame = frame if frame - self.cruiseDelayFrame > 30: CS.cruiseDelay = True else: self.cruiseDelayFrame = 0 CS.cruiseDelay = False self.prevCruiseEnabled = CS.cruiseEnabled #receive socks long_plan = messaging.recv_one_or_none(self.lP) radar_state = messaging.recv_one_or_none(self.rS) model_data = messaging.recv_one_or_none(self.mD) if not enabled: self.v_target = CS.out.vEgo self.a_target = 1 # Cancel when openpilot is not enabled anymore and no autopilot # BB: do we need to do this? AP/Tesla does not behave this way # LKAS can be disabled by steering and ACC remains engaged #TODO: we need more logic arround this for AP0 if not enabled and bool(CS.out.cruiseState.enabled) and not CS.enableHumanLongControl: cruise_cancel = True if ((frame % 10) == 0 and cruise_cancel): stlk_counter = ((CS.msg_stw_actn_req['MC_STW_ACTN_RQ'] + 1) % 16) can_sends.insert(0,self.tesla_can.create_action_request(CS.msg_stw_actn_req, CruiseButtons.CANCEL, CAN_CHASSIS[self.CP.carFingerprint],stlk_counter)) if (self.CP.carFingerprint in [CAR.AP1_MODELS,CAR.AP2_MODELS]): can_sends.insert(1,self.tesla_can.create_action_request(CS.msg_stw_actn_req, CruiseButtons.CANCEL, CAN_AUTOPILOT[self.CP.carFingerprint],stlk_counter)) #now process controls if enabled and not CS.human_control: apply_angle = actuators.steeringAngleDeg # Angular rate limit based on speed steer_up = (self.last_angle * apply_angle > 0. and abs(apply_angle) > abs(self.last_angle)) rate_limit = CarControllerParams.RATE_LIMIT_UP if steer_up else CarControllerParams.RATE_LIMIT_DOWN max_angle_diff = interp(CS.out.vEgo, rate_limit.speed_points, rate_limit.max_angle_diff_points) apply_angle = clip(apply_angle, (self.last_angle - max_angle_diff), (self.last_angle + max_angle_diff)) # To not fault the EPS apply_angle = clip(apply_angle, (CS.out.steeringAngleDeg - 20), (CS.out.steeringAngleDeg + 20)) else: apply_angle = CS.out.steeringAngleDeg self.last_angle = apply_angle if enabled or (self.CP.carFingerprint == CAR.PREAP_MODELS): can_sends.append(self.tesla_can.create_steering_control(apply_angle, enabled and not CS.human_control and not CS.out.cruiseState.standstill, CAN_EPAS[self.CP.carFingerprint], 1)) #update LONG Control module can_messages = self.long_controller.update(enabled, CS, frame, actuators, cruise_cancel,pcm_speed,pcm_override, long_plan,radar_state) if len(can_messages) > 0: can_sends[0:0] = can_messages #update HUD Integration module can_messages = self.hud_controller.update(enabled, CS, frame, actuators, cruise_cancel, hud_alert, audible_alert, left_line, right_line, lead, left_lane_depart, right_lane_depart,CS.human_control,radar_state,CS.lat_plan,apply_angle,model_data) if len(can_messages) > 0: can_sends.extend(can_messages) new_actuators = actuators.copy() new_actuators.steeringAngleDeg = apply_angle return new_actuators, can_sends
[ "selfdrive.car.tesla.LONG_module.LONGController", "selfdrive.car.tesla.HUD_module.HUDController", "cereal.messaging.recv_one_or_none", "common.numpy_fast.interp", "selfdrive.car.modules.CFG_module.load_bool_param", "common.numpy_fast.clip", "opendbc.can.packer.CANPacker", "cereal.messaging.sub_sock", "selfdrive.car.tesla.teslacan.TeslaCAN" ]
[((595, 614), 'opendbc.can.packer.CANPacker', 'CANPacker', (['dbc_name'], {}), '(dbc_name)\n', (604, 614), False, 'from opendbc.can.packer import CANPacker\n'), ((762, 809), 'selfdrive.car.tesla.teslacan.TeslaCAN', 'TeslaCAN', (['dbc_name', 'self.packer', 'self.pt_packer'], {}), '(dbc_name, self.packer, self.pt_packer)\n', (770, 809), False, 'from selfdrive.car.tesla.teslacan import TeslaCAN\n'), ((947, 993), 'selfdrive.car.tesla.HUD_module.HUDController', 'HUDController', (['CP', 'self.packer', 'self.tesla_can'], {}), '(CP, self.packer, self.tesla_can)\n', (960, 993), False, 'from selfdrive.car.tesla.HUD_module import HUDController\n'), ((1016, 1060), 'selfdrive.car.modules.CFG_module.load_bool_param', 'load_bool_param', (['"""TinklaPedalCanZero"""', '(False)'], {}), "('TinklaPedalCanZero', False)\n", (1031, 1060), False, 'from selfdrive.car.modules.CFG_module import load_bool_param\n'), ((1108, 1165), 'selfdrive.car.tesla.LONG_module.LONGController', 'LONGController', (['CP', 'self.packer', 'self.tesla_can', 'pedalcan'], {}), '(CP, self.packer, self.tesla_can, pedalcan)\n', (1122, 1165), False, 'from selfdrive.car.tesla.LONG_module import LONGController\n'), ((1245, 1283), 'cereal.messaging.sub_sock', 'messaging.sub_sock', (['"""longitudinalPlan"""'], {}), "('longitudinalPlan')\n", (1263, 1283), True, 'import cereal.messaging as messaging\n'), ((1299, 1331), 'cereal.messaging.sub_sock', 'messaging.sub_sock', (['"""radarState"""'], {}), "('radarState')\n", (1317, 1331), True, 'import cereal.messaging as messaging\n'), ((1347, 1376), 'cereal.messaging.sub_sock', 'messaging.sub_sock', (['"""modelV2"""'], {}), "('modelV2')\n", (1365, 1376), True, 'import cereal.messaging as messaging\n'), ((2271, 2306), 'cereal.messaging.recv_one_or_none', 'messaging.recv_one_or_none', (['self.lP'], {}), '(self.lP)\n', (2297, 2306), True, 'import cereal.messaging as messaging\n'), ((2325, 2360), 'cereal.messaging.recv_one_or_none', 'messaging.recv_one_or_none', (['self.rS'], {}), '(self.rS)\n', (2351, 2360), True, 'import cereal.messaging as messaging\n'), ((2378, 2413), 'cereal.messaging.recv_one_or_none', 'messaging.recv_one_or_none', (['self.mD'], {}), '(self.mD)\n', (2404, 2413), True, 'import cereal.messaging as messaging\n'), ((701, 740), 'opendbc.can.packer.CANPacker', 'CANPacker', (["DBC[CP.carFingerprint]['pt']"], {}), "(DBC[CP.carFingerprint]['pt'])\n", (710, 740), False, 'from opendbc.can.packer import CANPacker\n'), ((1741, 1786), 'selfdrive.car.modules.CFG_module.load_bool_param', 'load_bool_param', (['"""TinklaAutoResumeACC"""', '(False)'], {}), "('TinklaAutoResumeACC', False)\n", (1756, 1786), False, 'from selfdrive.car.modules.CFG_module import load_bool_param\n'), ((3753, 3831), 'common.numpy_fast.interp', 'interp', (['CS.out.vEgo', 'rate_limit.speed_points', 'rate_limit.max_angle_diff_points'], {}), '(CS.out.vEgo, rate_limit.speed_points, rate_limit.max_angle_diff_points)\n', (3759, 3831), False, 'from common.numpy_fast import clip, interp\n'), ((3852, 3941), 'common.numpy_fast.clip', 'clip', (['apply_angle', '(self.last_angle - max_angle_diff)', '(self.last_angle + max_angle_diff)'], {}), '(apply_angle, self.last_angle - max_angle_diff, self.last_angle +\n max_angle_diff)\n', (3856, 3941), False, 'from common.numpy_fast import clip, interp\n'), ((3992, 4069), 'common.numpy_fast.clip', 'clip', (['apply_angle', '(CS.out.steeringAngleDeg - 20)', '(CS.out.steeringAngleDeg + 20)'], {}), '(apply_angle, CS.out.steeringAngleDeg - 20, CS.out.steeringAngleDeg + 20)\n', (3996, 4069), False, 'from common.numpy_fast import clip, interp\n')]
# -*- coding: utf-8 -*- """ Author : <NAME> Contact: <EMAIL> Date : 2020/7/13 14:48 Desc : 读取配置文件的类 """ from configparser import ConfigParser class Conf(object): def __init__(self, conf_file): self.conf_obj = ConfigParser(comment_prefixes=";") self.conf_obj.read(conf_file) def getstring(self, section, key, default=""): try: return self.conf_obj.get(section, key) except: return default def getboolean(self, section, key, default=False): try: return self.conf_obj.getboolean(section, key) except: return default def getint(self, section, key, default=0): try: return self.conf_obj.getint(section, key) except: return default def getfloat(self, section, key, default=0.0): try: return self.conf_obj.getfloat(section, key) except: return default def set(self, section, key, value="", default=0): try: return self.conf_obj.set(section, key, value) except: return default def write(self, conf_file): with open(conf_file, 'w+') as wf: self.conf_obj.write(wf)
[ "configparser.ConfigParser" ]
[((228, 262), 'configparser.ConfigParser', 'ConfigParser', ([], {'comment_prefixes': '""";"""'}), "(comment_prefixes=';')\n", (240, 262), False, 'from configparser import ConfigParser\n')]
import re import sys import torch def replace(vars1, vars2): for key in vars2: if key in vars1: sys.stdout.write("copy variable %s\n" % key) vars1[key].copy_(vars2[key]) def replace2(vars1, vars2): for key in vars2: if key == "source_embedding": key1 = "target_embedding" sys.stdout.write("copy variable %s\n" % key1) vars1[key1].copy_(vars2[key]) elif key == "bias": key1 = "autoenc_bias" sys.stdout.write("copy variable %s\n" % key1) vars1[key1].copy_(vars2[key]) else: key1 = key.replace("encoder", "autoenc") if key1 in vars1: sys.stdout.write("copy variable %s\n" % key1) vars1[key1].copy_(vars2[key]) continue if __name__ == "__main__": states_1 = torch.load(sys.argv[1], map_location="cpu") states_2 = torch.load(sys.argv[2], map_location="cpu") states_3 = torch.load(sys.argv[3], map_location="cpu") replace(states_1["model"], states_2["model"]) replace2(states_1["model"], states_3["model"]) torch.save(states_1, sys.argv[1])
[ "torch.load", "torch.save", "sys.stdout.write" ]
[((873, 916), 'torch.load', 'torch.load', (['sys.argv[1]'], {'map_location': '"""cpu"""'}), "(sys.argv[1], map_location='cpu')\n", (883, 916), False, 'import torch\n'), ((932, 975), 'torch.load', 'torch.load', (['sys.argv[2]'], {'map_location': '"""cpu"""'}), "(sys.argv[2], map_location='cpu')\n", (942, 975), False, 'import torch\n'), ((991, 1034), 'torch.load', 'torch.load', (['sys.argv[3]'], {'map_location': '"""cpu"""'}), "(sys.argv[3], map_location='cpu')\n", (1001, 1034), False, 'import torch\n'), ((1142, 1175), 'torch.save', 'torch.save', (['states_1', 'sys.argv[1]'], {}), '(states_1, sys.argv[1])\n', (1152, 1175), False, 'import torch\n'), ((122, 166), 'sys.stdout.write', 'sys.stdout.write', (["('copy variable %s\\n' % key)"], {}), "('copy variable %s\\n' % key)\n", (138, 166), False, 'import sys\n'), ((348, 393), 'sys.stdout.write', 'sys.stdout.write', (["('copy variable %s\\n' % key1)"], {}), "('copy variable %s\\n' % key1)\n", (364, 393), False, 'import sys\n'), ((510, 555), 'sys.stdout.write', 'sys.stdout.write', (["('copy variable %s\\n' % key1)"], {}), "('copy variable %s\\n' % key1)\n", (526, 555), False, 'import sys\n'), ((712, 757), 'sys.stdout.write', 'sys.stdout.write', (["('copy variable %s\\n' % key1)"], {}), "('copy variable %s\\n' % key1)\n", (728, 757), False, 'import sys\n')]
#!/usr/bin/env python # coding=utf-8 from __future__ import unicode_literals __author__ = "<NAME>" __date__ = "2012" import sys import codecs import logging LOG_NAME = 'PyTreex' LOGFORMAT = '%(asctime)-15s %(message)s' logger = logging.getLogger(LOG_NAME) handler = logging.StreamHandler(sys.stderr) handler.setFormatter(logging.Formatter(LOGFORMAT)) logger.addHandler(handler) def log_info(message): "Print an information message" logging.getLogger(LOG_NAME).info('PYTREEX-INFO: ' + message) def log_warn(message): "Print a warning message" logging.getLogger(LOG_NAME).warn('PYTREEX-WARN: ' + message) def log_fatal(message, exc=Exception()): "Print a fatal error message, then raise exception" logging.getLogger(LOG_NAME).warn('PYTREEX-FATAL: ' + message) raise exc
[ "logging.getLogger", "logging.Formatter", "logging.StreamHandler" ]
[((233, 260), 'logging.getLogger', 'logging.getLogger', (['LOG_NAME'], {}), '(LOG_NAME)\n', (250, 260), False, 'import logging\n'), ((271, 304), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stderr'], {}), '(sys.stderr)\n', (292, 304), False, 'import logging\n'), ((326, 354), 'logging.Formatter', 'logging.Formatter', (['LOGFORMAT'], {}), '(LOGFORMAT)\n', (343, 354), False, 'import logging\n'), ((447, 474), 'logging.getLogger', 'logging.getLogger', (['LOG_NAME'], {}), '(LOG_NAME)\n', (464, 474), False, 'import logging\n'), ((567, 594), 'logging.getLogger', 'logging.getLogger', (['LOG_NAME'], {}), '(LOG_NAME)\n', (584, 594), False, 'import logging\n'), ((730, 757), 'logging.getLogger', 'logging.getLogger', (['LOG_NAME'], {}), '(LOG_NAME)\n', (747, 757), False, 'import logging\n')]
""" Copyright 2016 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import subprocess import sys import time processes = 0 dictChannelKeys = {} dictChannelsin = {} dictProcesses = {} def addInstance(channel, processes): if channel in list(dictChannelKeys.keys()): return opener = "open" if sys.platform == "darwin" else "python" process = subprocess.Popen([opener, "StrongLegsBot.py", channel, "info"]) dictProcesses["%s" % processes] = process.pid dictChannelKeys["%s" % channel] = str(processes) processes += 1 def deleteInstance(channel, processes): pid = dictProcesses[dictChannelKeys[channel]] os.system("taskkill /pid %s /f" % str(pid)) processes -= 1 channels_file = open("channels.txt", "r") for channel in channels_file.readlines(): time.sleep(1) addInstance(channel.strip("\n"), processes) user_input = None while user_input != "end": try: user_input = input("End?") except Exception as e: print(str(e)) break
[ "subprocess.Popen", "time.sleep" ]
[((861, 924), 'subprocess.Popen', 'subprocess.Popen', (["[opener, 'StrongLegsBot.py', channel, 'info']"], {}), "([opener, 'StrongLegsBot.py', channel, 'info'])\n", (877, 924), False, 'import subprocess\n'), ((1297, 1310), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1307, 1310), False, 'import time\n')]
#! /usr/bin/env python3 # # Reduce a translation file -- generally, a Timezone translation -- by # dropping untranslated strings. An untranslated string is one that # has an empty translation **and** is marked unfinished. # # This is mostly useful to cut down the size of the source file: # far and away most of the zones are not translated, and it's just a # handful of places that get special treatment. from xml.dom.minidom import parse import sys valid = True dom = parse(sys.argv[1]) for n in dom.getElementsByTagName("translation"): attrs = n.attributes.keys() drop = True if "type" not in attrs: drop = False elif "type" in attrs and n.attributes["type"].value != "unfinished": # In the samples I've seen, only "unfinished" is a valid type; # once something has been translated, the attribute vanishes (see # the if branch, above). print("WARNING ''{!s}'' unknown type".format(n.attributes["type"].value)) drop = False valid = False else: t = n.firstChild if t is None: # Unfinished and empty drop = True else: drop = bool(t.data) if drop: message = n.parentNode message.parentNode.removeChild(message) message.unlink() if valid: for line in dom.toxml().split("\n"): if line.strip(): print(line)
[ "xml.dom.minidom.parse" ]
[((472, 490), 'xml.dom.minidom.parse', 'parse', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (477, 490), False, 'from xml.dom.minidom import parse\n')]
# -*- coding: utf-8 -*- # @Time : 2020-02-07 11:26 # @Author : binger name = "logger_app" version_info = (0, 0, 1, 20061114) __version__ = ".".join([str(v) for v in version_info]) __description__ = '实现对logging的简单扩展' from .model import LoggerApp, register_formatter_tag_mapper, FormatterRule import time def get_flask_unique_request_id(use_md5=True, save=True): """ 获取 flask 请求时一个请求路由的唯一id :param use_md5: 是否md5 :param save: 是否更新到 g :return: """ from flask import g request_id = getattr(g, "_link_id_", None) if not request_id: request_id = id(g._get_current_object()) if use_md5: import hashlib m = hashlib.md5( str(request_id).encode("utf-8") ) m.update(str(time.time()).encode("utf-8")) request_id = m.hexdigest() if save: g._link_id_ = request_id return request_id
[ "flask.g._get_current_object", "time.time" ]
[((597, 620), 'flask.g._get_current_object', 'g._get_current_object', ([], {}), '()\n', (618, 620), False, 'from flask import g\n'), ((785, 796), 'time.time', 'time.time', ([], {}), '()\n', (794, 796), False, 'import time\n')]
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility methods for breaking matrices into useful pieces.""" from typing import Set # pylint: disable=unused-import from typing import Callable, List, Tuple, TypeVar import numpy as np from cirq.linalg import combinators from cirq.linalg import diagonalize from cirq.linalg import predicates from cirq.linalg.tolerance import Tolerance T = TypeVar('T') def _group_similar(items: List[T], comparer: Callable[[T, T], bool]) -> List[List[T]]: """Combines similar items into groups. Args: items: The list of items to group. comparer: Determines if two items are similar. Returns: A list of groups of items. """ groups = [] # type: List[List[T]] used = set() # type: Set[int] for i in range(len(items)): if i not in used: group = [items[i]] for j in range(i + 1, len(items)): if j not in used and comparer(items[i], items[j]): used.add(j) group.append(items[j]) groups.append(group) return groups def _perp_eigendecompose(matrix: np.ndarray, tolerance: Tolerance ) -> Tuple[np.array, List[np.ndarray]]: """An eigendecomposition that ensures eigenvectors are perpendicular. numpy.linalg.eig doesn't guarantee that eigenvectors from the same eigenspace will be perpendicular. This method uses Gram-Schmidt to recover a perpendicular set. It further checks that all eigenvectors are perpendicular and raises an ArithmeticError otherwise. Args: matrix: The matrix to decompose. tolerance: Thresholds for determining whether eigenvalues are from the same eigenspace and whether eigenvectors are perpendicular. Returns: The eigenvalues and column eigenvectors. The i'th eigenvalue is associated with the i'th column eigenvector. Raises: ArithmeticError: Failed to find perpendicular eigenvectors. """ vals, cols = np.linalg.eig(np.mat(matrix)) vecs = [cols[:, i] for i in range(len(cols))] # Group by similar eigenvalue. n = len(vecs) groups = _group_similar( list(range(n)), lambda k1, k2: tolerance.all_close(vals[k1], vals[k2])) # Remove overlap between eigenvectors with the same eigenvalue. for g in groups: q, _ = np.linalg.qr(np.concatenate([vecs[i] for i in g], axis=1)) for i in range(len(g)): vecs[g[i]] = q[:, i] # Ensure no eigenvectors overlap. for i in range(len(vecs)): for j in range(i + 1, len(vecs)): if not tolerance.all_near_zero(np.dot(np.conj(vecs[i].T), vecs[j])): raise ArithmeticError('Eigenvectors overlap.') return vals, vecs def map_eigenvalues( matrix: np.ndarray, func: Callable[[complex], complex], tolerance: Tolerance = Tolerance.DEFAULT ) -> np.ndarray: """Applies a function to the eigenvalues of a matrix. Given M = sum_k a_k |v_k><v_k|, returns f(M) = sum_k f(a_k) |v_k><v_k|. Args: matrix: The matrix to modify with the function. func: The function to apply to the eigenvalues of the matrix. tolerance: Thresholds used when separating eigenspaces. Returns: The transformed matrix. """ vals, vecs = _perp_eigendecompose(matrix, tolerance) pieces = [np.outer(vec, np.conj(vec.T)) for vec in vecs] out_vals = np.vectorize(func)(vals.astype(complex)) total = np.zeros(shape=matrix.shape) for piece, val in zip(pieces, out_vals): total = np.add(total, piece * val) return total def kron_factor_4x4_to_2x2s( matrix: np.ndarray, tolerance: Tolerance = Tolerance.DEFAULT ) -> Tuple[complex, np.ndarray, np.ndarray]: """Splits a 4x4 matrix U = kron(A, B) into A, B, and a global factor. Requires the matrix to be the kronecker product of two 2x2 unitaries. Requires the matrix to have a non-zero determinant. Args: matrix: The 4x4 unitary matrix to factor. tolerance: Acceptable numeric error thresholds. Returns: A scalar factor and a pair of 2x2 unit-determinant matrices. The kronecker product of all three is equal to the given matrix. Raises: ValueError: The given matrix can't be tensor-factored into 2x2 pieces. """ # Use the entry with the largest magnitude as a reference point. a, b = max( ((i, j) for i in range(4) for j in range(4)), key=lambda t: abs(matrix[t])) # Extract sub-factors touching the reference cell. f1 = np.zeros((2, 2), dtype=np.complex128) f2 = np.zeros((2, 2), dtype=np.complex128) for i in range(2): for j in range(2): f1[(a >> 1) ^ i, (b >> 1) ^ j] = matrix[a ^ (i << 1), b ^ (j << 1)] f2[(a & 1) ^ i, (b & 1) ^ j] = matrix[a ^ i, b ^ j] # Rescale factors to have unit determinants. f1 /= (np.sqrt(np.linalg.det(f1)) or 1) f2 /= (np.sqrt(np.linalg.det(f2)) or 1) # Determine global phase. g = matrix[a, b] / (f1[a >> 1, b >> 1] * f2[a & 1, b & 1]) if np.real(g) < 0: f1 *= -1 g = -g restored = g * combinators.kron(f1, f2) if np.any(np.isnan(restored)) or not tolerance.all_close(restored, matrix): raise ValueError("Can't factor into kronecker product.") return g, f1, f2 def so4_to_magic_su2s( mat: np.ndarray, tolerance: Tolerance = Tolerance.DEFAULT ) -> Tuple[np.ndarray, np.ndarray]: """Finds 2x2 special-unitaries A, B where mat = Mag.H @ kron(A, B) @ Mag. Mag is the magic basis matrix: 1 0 0 i 0 i 1 0 0 i -1 0 (times sqrt(0.5) to normalize) 1 0 0 -i Args: mat: A real 4x4 orthogonal matrix. tolerance: Per-matrix-entry tolerance on equality. Returns: A pair (A, B) of matrices in SU(2) such that Mag.H @ kron(A, B) @ Mag is approximately equal to the given matrix. Raises: ValueError: Bad matrix. ArithmeticError: Failed to perform the decomposition to desired tolerance. """ if mat.shape != (4, 4) or not predicates.is_special_orthogonal(mat, tolerance): raise ValueError('mat must be 4x4 special orthogonal.') magic = np.array([[1, 0, 0, 1j], [0, 1j, 1, 0], [0, 1j, -1, 0], [1, 0, 0, -1j]]) * np.sqrt(0.5) ab = combinators.dot(magic, mat, np.conj(magic.T)) _, a, b = kron_factor_4x4_to_2x2s(ab, tolerance) # Check decomposition against desired tolerance. reconstructed = combinators.dot(np.conj(magic.T), combinators.kron(a, b), magic) if not tolerance.all_close(reconstructed, mat): raise ArithmeticError('Failed to decompose to desired tolerance.') return a, b def kak_canonicalize_vector( x: float, y: float, z: float ) -> Tuple[complex, Tuple[np.ndarray, np.ndarray], Tuple[float, float, float], Tuple[np.ndarray, np.ndarray]]: """Canonicalizes an XX/YY/ZZ interaction by swap/negate/shift-ing axes. Args: x: The strength of the XX interaction. y: The strength of the YY interaction. z: The strength of the ZZ interaction. Returns: A nested tuple (g, (a1, a0), (x2, y2, z2), (b1, b0)) containing: 0. A global phase factor. 1. Post-non-local-operation matrices for the second/first qubit. 2. The canonicalized XX/YY/ZZ weights. 3. Pre-non-local-operation matrices for the second/first qubit. Guarantees that the canonicalized x2, y2, z2 satisfy: 0 ≤ abs(z2) ≤ y2 ≤ x2 ≤ π/4 z2 ≠ -π/4 Guarantees that the implied output matrix: g · (a1 ⊗ a0) · exp(i·(x2·XX + y2·YY + z2·ZZ)) · (b1 ⊗ b0) is approximately equal to the implied input matrix: exp(i·(x·XX + y·YY + z·ZZ)) """ phase = [complex(1)] # Accumulated global phase. left = [np.eye(2)] * 2 # Per-qubit left factors. right = [np.eye(2)] * 2 # Per-qubit right factors. v = [x, y, z] # Remaining XX/YY/ZZ interaction vector. # These special-unitary matrices flip the X, Y, and Z axes respectively. flippers = [ np.array([[0, 1], [1, 0]]) * 1j, np.array([[0, -1j], [1j, 0]]) * 1j, np.array([[1, 0], [0, -1]]) * 1j ] # Each of these special-unitary matrices swaps two the roles of two axes. # The matrix at index k swaps the *other two* axes (e.g. swappers[1] is a # Hadamard operation that swaps X and Z). swappers = [ np.array([[1, -1j], [1j, -1]]) * 1j * np.sqrt(0.5), np.array([[1, 1], [1, -1]]) * 1j * np.sqrt(0.5), np.array([[0, 1 - 1j], [1 + 1j, 0]]) * 1j * np.sqrt(0.5) ] # Shifting strength by ½π is equivalent to local ops (e.g. exp(i½π XX)∝XX). def shift(k, step): v[k] += step * np.pi / 2 phase[0] *= 1j**step right[0] = combinators.dot(flippers[k]**(step % 4), right[0]) right[1] = combinators.dot(flippers[k]**(step % 4), right[1]) # Two negations is equivalent to temporarily flipping along the other axis. def negate(k1, k2): v[k1] *= -1 v[k2] *= -1 phase[0] *= -1 s = flippers[3 - k1 - k2] # The other axis' flipper. left[1] = combinators.dot(left[1], s) right[1] = combinators.dot(s, right[1]) # Swapping components is equivalent to temporarily swapping the two axes. def swap(k1, k2): v[k1], v[k2] = v[k2], v[k1] s = swappers[3 - k1 - k2] # The other axis' swapper. left[0] = combinators.dot(left[0], s) left[1] = combinators.dot(left[1], s) right[0] = combinators.dot(s, right[0]) right[1] = combinators.dot(s, right[1]) # Shifts an axis strength into the range (-π/4, π/4]. def canonical_shift(k): while v[k] <= -np.pi / 4: shift(k, +1) while v[k] > np.pi / 4: shift(k, -1) # Sorts axis strengths into descending order by absolute magnitude. def sort(): if abs(v[0]) < abs(v[1]): swap(0, 1) if abs(v[1]) < abs(v[2]): swap(1, 2) if abs(v[0]) < abs(v[1]): swap(0, 1) # Get all strengths to (-¼π, ¼π] in descending order by absolute magnitude. canonical_shift(0) canonical_shift(1) canonical_shift(2) sort() # Move all negativity into z. if v[0] < 0: negate(0, 2) if v[1] < 0: negate(1, 2) canonical_shift(2) return ( phase[0], (left[1], left[0]), (v[0], v[1], v[2]), (right[1], right[0]), ) def kak_decomposition( mat: np.ndarray, tolerance: Tolerance = Tolerance.DEFAULT ) -> Tuple[complex, Tuple[np.ndarray, np.ndarray], Tuple[float, float, float], Tuple[np.ndarray, np.ndarray]]: """Decomposes a 2-qubit unitary into 1-qubit ops and XX/YY/ZZ interactions. Args: mat: The 4x4 unitary matrix to decompose. tolerance: Per-matrix-entry tolerance on equality. Returns: A nested tuple (g, (a1, a0), (x, y, z), (b1, b0)) containing: 0. A global phase factor. 1. The pre-operation matrices to apply to the second/firs qubit. 2. The XX/YY/ZZ weights of the non-local operation. 3. The post-operation matrices to apply to the second/firs qubit. Guarantees that the x2, y2, z2 are canonicalized to satisfy: 0 ≤ abs(z) ≤ y ≤ x ≤ π/4 z ≠ -π/4 Guarantees that the input matrix should approximately equal: g · (a1 ⊗ a0) · exp(i·(x·XX + y·YY + z·ZZ)) · (b1 ⊗ b0) Raises: ValueError: Bad matrix. ArithmeticError: Failed to perform the decomposition. References: 'An Introduction to Cartan's KAK Decomposition for QC Programmers' https://arxiv.org/abs/quant-ph/0507171 """ magic = np.array([[1, 0, 0, 1j], [0, 1j, 1, 0], [0, 1j, -1, 0], [1, 0, 0, -1j]]) * np.sqrt(0.5) gamma = np.array([[1, 1, 1, 1], [1, 1, -1, -1], [-1, 1, -1, 1], [1, -1, -1, 1]]) * 0.25 # Diagonalize in magic basis. left, d, right = ( diagonalize.bidiagonalize_unitary_with_special_orthogonals( combinators.dot(np.conj(magic.T), mat, magic), tolerance)) # Recover pieces. a1, a0 = so4_to_magic_su2s(left.T, tolerance) b1, b0 = so4_to_magic_su2s(right.T, tolerance) w, x, y, z = gamma.dot(np.vstack(np.angle(d))).flatten() g = np.exp(1j * w) # Canonicalize. g2, (c1, c0), (x2, y2, z2), (d1, d0) = kak_canonicalize_vector(x, y, z) return ( g * g2, (a1.dot(c1), a0.dot(c0)), (x2, y2, z2), (d1.dot(b1), d0.dot(b0)) )
[ "numpy.mat", "numpy.eye", "numpy.sqrt", "numpy.add", "cirq.linalg.predicates.is_special_orthogonal", "numpy.conj", "numpy.linalg.det", "numpy.exp", "numpy.real", "numpy.zeros", "numpy.array", "cirq.linalg.combinators.dot", "numpy.isnan", "numpy.concatenate", "numpy.angle", "cirq.linalg.combinators.kron", "numpy.vectorize", "typing.TypeVar" ]
[((934, 946), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (941, 946), False, 'from typing import Callable, List, Tuple, TypeVar\n'), ((4080, 4108), 'numpy.zeros', 'np.zeros', ([], {'shape': 'matrix.shape'}), '(shape=matrix.shape)\n', (4088, 4108), True, 'import numpy as np\n'), ((5200, 5237), 'numpy.zeros', 'np.zeros', (['(2, 2)'], {'dtype': 'np.complex128'}), '((2, 2), dtype=np.complex128)\n', (5208, 5237), True, 'import numpy as np\n'), ((5247, 5284), 'numpy.zeros', 'np.zeros', (['(2, 2)'], {'dtype': 'np.complex128'}), '((2, 2), dtype=np.complex128)\n', (5255, 5284), True, 'import numpy as np\n'), ((13498, 13514), 'numpy.exp', 'np.exp', (['(1.0j * w)'], {}), '(1.0j * w)\n', (13504, 13514), True, 'import numpy as np\n'), ((2597, 2611), 'numpy.mat', 'np.mat', (['matrix'], {}), '(matrix)\n', (2603, 2611), True, 'import numpy as np\n'), ((4026, 4044), 'numpy.vectorize', 'np.vectorize', (['func'], {}), '(func)\n', (4038, 4044), True, 'import numpy as np\n'), ((4170, 4196), 'numpy.add', 'np.add', (['total', '(piece * val)'], {}), '(total, piece * val)\n', (4176, 4196), True, 'import numpy as np\n'), ((5718, 5728), 'numpy.real', 'np.real', (['g'], {}), '(g)\n', (5725, 5728), True, 'import numpy as np\n'), ((5786, 5810), 'cirq.linalg.combinators.kron', 'combinators.kron', (['f1', 'f2'], {}), '(f1, f2)\n', (5802, 5810), False, 'from cirq.linalg import combinators\n'), ((6976, 7061), 'numpy.array', 'np.array', (['[[1, 0, 0, 1.0j], [0, 1.0j, 1, 0], [0, 1.0j, -1, 0], [1, 0, 0, -1.0j]]'], {}), '([[1, 0, 0, 1.0j], [0, 1.0j, 1, 0], [0, 1.0j, -1, 0], [1, 0, 0, -1.0j]]\n )\n', (6984, 7061), True, 'import numpy as np\n'), ((7111, 7123), 'numpy.sqrt', 'np.sqrt', (['(0.5)'], {}), '(0.5)\n', (7118, 7123), True, 'import numpy as np\n'), ((7161, 7177), 'numpy.conj', 'np.conj', (['magic.T'], {}), '(magic.T)\n', (7168, 7177), True, 'import numpy as np\n'), ((7322, 7338), 'numpy.conj', 'np.conj', (['magic.T'], {}), '(magic.T)\n', (7329, 7338), True, 'import numpy as np\n'), ((7376, 7398), 'cirq.linalg.combinators.kron', 'combinators.kron', (['a', 'b'], {}), '(a, b)\n', (7392, 7398), False, 'from cirq.linalg import combinators\n'), ((9763, 9815), 'cirq.linalg.combinators.dot', 'combinators.dot', (['(flippers[k] ** (step % 4))', 'right[0]'], {}), '(flippers[k] ** (step % 4), right[0])\n', (9778, 9815), False, 'from cirq.linalg import combinators\n'), ((9833, 9885), 'cirq.linalg.combinators.dot', 'combinators.dot', (['(flippers[k] ** (step % 4))', 'right[1]'], {}), '(flippers[k] ** (step % 4), right[1])\n', (9848, 9885), False, 'from cirq.linalg import combinators\n'), ((10132, 10159), 'cirq.linalg.combinators.dot', 'combinators.dot', (['left[1]', 's'], {}), '(left[1], s)\n', (10147, 10159), False, 'from cirq.linalg import combinators\n'), ((10179, 10207), 'cirq.linalg.combinators.dot', 'combinators.dot', (['s', 'right[1]'], {}), '(s, right[1])\n', (10194, 10207), False, 'from cirq.linalg import combinators\n'), ((10425, 10452), 'cirq.linalg.combinators.dot', 'combinators.dot', (['left[0]', 's'], {}), '(left[0], s)\n', (10440, 10452), False, 'from cirq.linalg import combinators\n'), ((10471, 10498), 'cirq.linalg.combinators.dot', 'combinators.dot', (['left[1]', 's'], {}), '(left[1], s)\n', (10486, 10498), False, 'from cirq.linalg import combinators\n'), ((10518, 10546), 'cirq.linalg.combinators.dot', 'combinators.dot', (['s', 'right[0]'], {}), '(s, right[0])\n', (10533, 10546), False, 'from cirq.linalg import combinators\n'), ((10566, 10594), 'cirq.linalg.combinators.dot', 'combinators.dot', (['s', 'right[1]'], {}), '(s, right[1])\n', (10581, 10594), False, 'from cirq.linalg import combinators\n'), ((12796, 12881), 'numpy.array', 'np.array', (['[[1, 0, 0, 1.0j], [0, 1.0j, 1, 0], [0, 1.0j, -1, 0], [1, 0, 0, -1.0j]]'], {}), '([[1, 0, 0, 1.0j], [0, 1.0j, 1, 0], [0, 1.0j, -1, 0], [1, 0, 0, -1.0j]]\n )\n', (12804, 12881), True, 'import numpy as np\n'), ((12931, 12943), 'numpy.sqrt', 'np.sqrt', (['(0.5)'], {}), '(0.5)\n', (12938, 12943), True, 'import numpy as np\n'), ((12956, 13028), 'numpy.array', 'np.array', (['[[1, 1, 1, 1], [1, 1, -1, -1], [-1, 1, -1, 1], [1, -1, -1, 1]]'], {}), '([[1, 1, 1, 1], [1, 1, -1, -1], [-1, 1, -1, 1], [1, -1, -1, 1]])\n', (12964, 13028), True, 'import numpy as np\n'), ((2952, 2996), 'numpy.concatenate', 'np.concatenate', (['[vecs[i] for i in g]'], {'axis': '(1)'}), '([vecs[i] for i in g], axis=1)\n', (2966, 2996), True, 'import numpy as np\n'), ((3978, 3992), 'numpy.conj', 'np.conj', (['vec.T'], {}), '(vec.T)\n', (3985, 3992), True, 'import numpy as np\n'), ((5548, 5565), 'numpy.linalg.det', 'np.linalg.det', (['f1'], {}), '(f1)\n', (5561, 5565), True, 'import numpy as np\n'), ((5592, 5609), 'numpy.linalg.det', 'np.linalg.det', (['f2'], {}), '(f2)\n', (5605, 5609), True, 'import numpy as np\n'), ((5825, 5843), 'numpy.isnan', 'np.isnan', (['restored'], {}), '(restored)\n', (5833, 5843), True, 'import numpy as np\n'), ((6782, 6830), 'cirq.linalg.predicates.is_special_orthogonal', 'predicates.is_special_orthogonal', (['mat', 'tolerance'], {}), '(mat, tolerance)\n', (6814, 6830), False, 'from cirq.linalg import predicates\n'), ((8784, 8793), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (8790, 8793), True, 'import numpy as np\n'), ((8839, 8848), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (8845, 8848), True, 'import numpy as np\n'), ((9045, 9071), 'numpy.array', 'np.array', (['[[0, 1], [1, 0]]'], {}), '([[0, 1], [1, 0]])\n', (9053, 9071), True, 'import numpy as np\n'), ((9086, 9119), 'numpy.array', 'np.array', (['[[0, -1.0j], [1.0j, 0]]'], {}), '([[0, -1.0j], [1.0j, 0]])\n', (9094, 9119), True, 'import numpy as np\n'), ((9130, 9157), 'numpy.array', 'np.array', (['[[1, 0], [0, -1]]'], {}), '([[1, 0], [0, -1]])\n', (9138, 9157), True, 'import numpy as np\n'), ((9435, 9447), 'numpy.sqrt', 'np.sqrt', (['(0.5)'], {}), '(0.5)\n', (9442, 9447), True, 'import numpy as np\n'), ((9492, 9504), 'numpy.sqrt', 'np.sqrt', (['(0.5)'], {}), '(0.5)\n', (9499, 9504), True, 'import numpy as np\n'), ((9558, 9570), 'numpy.sqrt', 'np.sqrt', (['(0.5)'], {}), '(0.5)\n', (9565, 9570), True, 'import numpy as np\n'), ((13250, 13266), 'numpy.conj', 'np.conj', (['magic.T'], {}), '(magic.T)\n', (13257, 13266), True, 'import numpy as np\n'), ((9397, 9431), 'numpy.array', 'np.array', (['[[1, -1.0j], [1.0j, -1]]'], {}), '([[1, -1.0j], [1.0j, -1]])\n', (9405, 9431), True, 'import numpy as np\n'), ((9457, 9484), 'numpy.array', 'np.array', (['[[1, 1], [1, -1]]'], {}), '([[1, 1], [1, -1]])\n', (9465, 9484), True, 'import numpy as np\n'), ((9514, 9554), 'numpy.array', 'np.array', (['[[0, 1 - 1.0j], [1 + 1.0j, 0]]'], {}), '([[0, 1 - 1.0j], [1 + 1.0j, 0]])\n', (9522, 9554), True, 'import numpy as np\n'), ((13466, 13477), 'numpy.angle', 'np.angle', (['d'], {}), '(d)\n', (13474, 13477), True, 'import numpy as np\n'), ((3225, 3243), 'numpy.conj', 'np.conj', (['vecs[i].T'], {}), '(vecs[i].T)\n', (3232, 3243), True, 'import numpy as np\n')]
from flask import Flask, render_template from flask import request, jsonify import time import matplotlib import yt import numpy as np matplotlib.use('agg') app = Flask(__name__) app.secret_key = 's3cr3t' app.debug = True @app.route('/') def index(): return render_template('/index.html') @app.route('/background_process') def background_process(): #read the RGB values from the UI redValues = np.asarray(eval(request.args.get('redValues'))) greenValues = np.asarray(eval(request.args.get('greenValues'))) blueValues = np.asarray(eval(request.args.get('blueValues'))) #create a random image name img_name = int(round(time.time() * 1000)) assignValues(redValues, greenValues, blueValues, str(img_name)) #send back to the UI the image name to display return jsonify(result= img_name) def assignValues(redVal, greenVal, blueVal, resultname): ctf = yt.ColorTransferFunction( (-10.0, -5.0) ) ctf.add_layers(8) #assign the recieved RGB values to ColorTransferFunction ctf.red.y = redVal ctf.green.y = greenVal ctf.blue.y = blueVal #plot the img ctf.plot("static/img/"+resultname+".png") if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
[ "flask.render_template", "flask.request.args.get", "flask.Flask", "matplotlib.use", "yt.ColorTransferFunction", "time.time", "flask.jsonify" ]
[((137, 158), 'matplotlib.use', 'matplotlib.use', (['"""agg"""'], {}), "('agg')\n", (151, 158), False, 'import matplotlib\n'), ((166, 181), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (171, 181), False, 'from flask import Flask, render_template\n'), ((267, 297), 'flask.render_template', 'render_template', (['"""/index.html"""'], {}), "('/index.html')\n", (282, 297), False, 'from flask import Flask, render_template\n'), ((810, 834), 'flask.jsonify', 'jsonify', ([], {'result': 'img_name'}), '(result=img_name)\n', (817, 834), False, 'from flask import request, jsonify\n'), ((921, 960), 'yt.ColorTransferFunction', 'yt.ColorTransferFunction', (['(-10.0, -5.0)'], {}), '((-10.0, -5.0))\n', (945, 960), False, 'import yt\n'), ((429, 458), 'flask.request.args.get', 'request.args.get', (['"""redValues"""'], {}), "('redValues')\n", (445, 458), False, 'from flask import request, jsonify\n'), ((495, 526), 'flask.request.args.get', 'request.args.get', (['"""greenValues"""'], {}), "('greenValues')\n", (511, 526), False, 'from flask import request, jsonify\n'), ((562, 592), 'flask.request.args.get', 'request.args.get', (['"""blueValues"""'], {}), "('blueValues')\n", (578, 592), False, 'from flask import request, jsonify\n'), ((653, 664), 'time.time', 'time.time', ([], {}), '()\n', (662, 664), False, 'import time\n')]
from boxwise_flask.db import db from peewee import CharField, IntegerField class SizeRange(db.Model): label = CharField(null=True) seq = IntegerField(null=True) class Meta: table_name = "sizegroup"
[ "peewee.CharField", "peewee.IntegerField" ]
[((116, 136), 'peewee.CharField', 'CharField', ([], {'null': '(True)'}), '(null=True)\n', (125, 136), False, 'from peewee import CharField, IntegerField\n'), ((147, 170), 'peewee.IntegerField', 'IntegerField', ([], {'null': '(True)'}), '(null=True)\n', (159, 170), False, 'from peewee import CharField, IntegerField\n')]
from typing import Any, Union, Optional import discord from discord_slash import SlashContext, cog_ext from discord.ext import commands from ..property_manager import FirestorePropertyManager, Property, InvalidKeyError, InvalidValueError, BooleanProperty, ListProperty from ..utils import send_maybe_hidden class Settings(commands.Cog): PROPERTY_COMMAND_DESCRIPTION = 'Change the bot\'s properties for a channel or server. Use this to change the bot prefix, default text-to-speech language, etc.' PROPERTY_NAME_OPTION = { 'name': 'name', 'description': 'Property name.', 'type': 3, 'required': True, 'choices': [ { 'name': 'text_to_speech', 'value': 'text_to_speech' }, { 'name': 'language', 'value': 'language' }, { 'name': 'prefix', 'value': 'prefix' }, { 'name': 'show_definition_source', 'value': 'show_definition_source' }, { 'name': 'dictionary_apis', 'value': 'dictionary_apis' }, { 'name': 'auto_translate', 'value': 'auto_translate' } ] } def __init__(self): self._scoped_property_manager = FirestorePropertyManager([ Property( 'prefix', default='.', description='The bot\'s prefix. This can be one or more characters. If you forget the prefix, just mention the bot and it will show you the current prefix.' ), Property( 'text_to_speech', choices=['force', 'flag', 'disable'], default='flag', description='Choices:\n' '`force`: All definition requests will use text-to-speech.\n' '`flag`: You must use the flag to use text-to-speech.\n' '`disable`: Text-to-speech is disabled.' ), Property( 'language', default='en', description='The language to use when displaying definitions and speaking. This can be a two-letter language code or a language name.' ), BooleanProperty( 'show_definition_source', default=False, description='Choices:\n' '`true`: The bot will show the definition source at the end of each definition.\n' '`false`: The bot will not show the definition source.' ), ListProperty( 'dictionary_apis', default=['unofficial_google', 'owlbot', 'merriam_webster_collegiate', 'merriam_webster_medical', 'rapid_words'], choices=['owlbot', 'unofficial_google', 'merriam_webster_medical', 'merriam_webster_collegiate', 'rapid_words'], description='A comma-separated list of dictionary APIs to use in order of preference.\n' 'Choices:\n' '`unofficial_google`, `owlbot`, `merriam_webster_collegiate`, `merriam_webster_medical`, `rapid_words`' ), BooleanProperty( 'auto_translate', default=False, description='Choices:\n' '`true`: Automatically translate words before looking up their definition.\n' '`false`: Don\'t translate words before looking up their definition.' ) ]) @property def scoped_property_manager(self): return self._scoped_property_manager @commands.group( name='settings', aliases=['p'], help=PROPERTY_COMMAND_DESCRIPTION, usage='(list <scope> | set <scope> <name> <value> | remove <scope> <name>)' ) async def settings(self, context): if context.invoked_subcommand is None: raise commands.errors.ArgumentParsingError() @settings.command(name='set') async def set(self, context, scope_name: str, key: str, value: str): await self._set(context, scope_name, key, value) @cog_ext.cog_subcommand( base='settings', name='set', description='Set a property.', options=[ { 'name': 'scope', 'description': 'Property scope.', 'type': 3, 'required': True, 'choices': [ { 'name': 'guild', 'value': 'guild' }, { 'name': 'channel', 'value': 'channel' } ] }, PROPERTY_NAME_OPTION, { 'name': 'value', 'description': 'Property value.', 'type': 3, 'required': True } ] ) async def slash_set(self, context: SlashContext, scope: str, name: str, value: str): await self._set(context, scope, name, value) async def _set(self, context: Union[commands.Context, SlashContext], scope_name: str, key: str, value: str): scope = self._get_scope_from_name(scope_name, context) if scope is None: if isinstance(context, SlashContext): await context.defer(hidden=True) await send_maybe_hidden(context, f'Invalid scope: `{scope_name}`! Must be either `guild` or `channel`.') return try: self._scoped_property_manager.set(key, value, scope) if isinstance(context, SlashContext): await context.defer() await context.send(f'Successfully set `{key}` to `{value}` in `{scope_name}`.') except InvalidKeyError as e: if isinstance(context, SlashContext): await context.defer(hidden=True) await send_maybe_hidden(context, f'Invalid key `{e.key}`') except InvalidValueError as e: if isinstance(context, SlashContext): await context.defer(hidden=True) await send_maybe_hidden(context, f'Invalid value `{e.value}` for key `{e.key}`.') @settings.command(name='list') async def list(self, context: commands.Context, scope_name: Optional[str] = 'all'): await self._list(context, scope_name) @cog_ext.cog_subcommand( base='settings', name='list', description='Shows a list of guild or server settings.', options=[ { 'name': 'scope', 'description': 'Property scope.', 'type': 3, 'choices': [ { 'name': 'all', 'value': 'all' }, { 'name': 'guild', 'value': 'guild' }, { 'name': 'channel', 'value': 'channel' } ] } ] ) async def slash_list(self, context: SlashContext, scope: Optional[str] = 'all'): await context.defer(hidden=True) await self._list(context, scope) def get_all(self, scope): properties = {} for p in self._scoped_property_manager.properties: if isinstance(scope, (discord.Guild, discord.DMChannel)): properties[p] = self._scoped_property_manager.get(p.key, scope) elif isinstance(scope, discord.TextChannel): value = self._scoped_property_manager.get(p.key, scope, recursive=False) if value is not None: properties[p] = value return properties async def _list(self, context: Union[commands.Context, SlashContext], scope_name: str = 'all'): if scope_name == 'all': reply = '' for scope_name in ('guild', 'channel'): scope = self._get_scope_from_name(scope_name, context) if scope is not None: properties = self.get_all(scope) if len(properties) > 0: reply += '\n' + self._print_properties(properties, scope) await send_maybe_hidden(context, reply) else: scope = self._get_scope_from_name(scope_name, context) if scope is None: await send_maybe_hidden(context, f'Invalid scope: `{scope_name}`! Must be either `guild` or `channel`.') return properties = self.get_all(scope) await send_maybe_hidden(context, self._print_properties(properties, scope)) @settings.command(name='remove') async def remove(self, context: commands.Context, scope_name: str, key: str): await self._remove(context, scope_name, key) @cog_ext.cog_subcommand( base='settings', name='remove', description='Remove a property.', options=[ { 'name': 'scope', 'description': 'Property scope.', 'type': 3, 'required': True, 'choices': [ { 'name': 'guild', 'value': 'guild' }, { 'name': 'channel', 'value': 'channel' } ] }, PROPERTY_NAME_OPTION ] ) async def slash_remove(self, context: SlashContext, scope: str, name: str): await self._remove(context, scope, name) async def _remove(self, context: Union[commands.Context, SlashContext], scope_name: str, key: str): scope = self._get_scope_from_name(scope_name, context) if scope is None: if isinstance(context, SlashContext): await context.defer(hidden=True) await send_maybe_hidden(context, f'Invalid scope: `{scope_name}`! Must be either `guild` or `channel`.') return try: self._scoped_property_manager.remove(key, scope) except InvalidKeyError: await send_maybe_hidden(context, 'Invalid property name!') return await context.send(f'Successfully removed `{key}` from `{scope_name}`.') @staticmethod def _get_scope_from_name(scope_name: str, context: commands.Context): try: if scope_name == 'channel': return context.channel elif scope_name == 'guild': return context.channel.guild except AttributeError: return None return None @staticmethod def _print_properties(properties: {Property: Any}, scope: Union[discord.Guild, discord.TextChannel, discord.DMChannel]) -> str: reply = '' if isinstance(scope, discord.Guild): reply += '__**Server Settings**__\n' reply += 'These settings affect every channel in your server, unless they are overridden with a channel-specific setting.\n\n' elif isinstance(scope, discord.TextChannel): reply += '__**Channel Settings**__\n' reply += 'These settings only affect this channel and take priority over server settings.\n\n' elif isinstance(scope, discord.DMChannel): reply += '__**DM Settings**__\n' reply += 'Use `help settings` to see more info about settings.\n\n' for p in sorted(properties, key=lambda x: x.key): reply += f'**{p.key}**: `{p.to_string(properties[p])}`\n' if len(properties) == 0: reply += 'No properties set' return reply
[ "discord.ext.commands.group", "discord_slash.cog_ext.cog_subcommand", "discord.ext.commands.errors.ArgumentParsingError" ]
[((3827, 3995), 'discord.ext.commands.group', 'commands.group', ([], {'name': '"""settings"""', 'aliases': "['p']", 'help': 'PROPERTY_COMMAND_DESCRIPTION', 'usage': '"""(list <scope> | set <scope> <name> <value> | remove <scope> <name>)"""'}), "(name='settings', aliases=['p'], help=\n PROPERTY_COMMAND_DESCRIPTION, usage=\n '(list <scope> | set <scope> <name> <value> | remove <scope> <name>)')\n", (3841, 3995), False, 'from discord.ext import commands\n'), ((4338, 4728), 'discord_slash.cog_ext.cog_subcommand', 'cog_ext.cog_subcommand', ([], {'base': '"""settings"""', 'name': '"""set"""', 'description': '"""Set a property."""', 'options': "[{'name': 'scope', 'description': 'Property scope.', 'type': 3, 'required':\n True, 'choices': [{'name': 'guild', 'value': 'guild'}, {'name':\n 'channel', 'value': 'channel'}]}, PROPERTY_NAME_OPTION, {'name':\n 'value', 'description': 'Property value.', 'type': 3, 'required': True}]"}), "(base='settings', name='set', description=\n 'Set a property.', options=[{'name': 'scope', 'description':\n 'Property scope.', 'type': 3, 'required': True, 'choices': [{'name':\n 'guild', 'value': 'guild'}, {'name': 'channel', 'value': 'channel'}]},\n PROPERTY_NAME_OPTION, {'name': 'value', 'description':\n 'Property value.', 'type': 3, 'required': True}])\n", (4360, 4728), False, 'from discord_slash import SlashContext, cog_ext\n'), ((6616, 6940), 'discord_slash.cog_ext.cog_subcommand', 'cog_ext.cog_subcommand', ([], {'base': '"""settings"""', 'name': '"""list"""', 'description': '"""Shows a list of guild or server settings."""', 'options': "[{'name': 'scope', 'description': 'Property scope.', 'type': 3, 'choices':\n [{'name': 'all', 'value': 'all'}, {'name': 'guild', 'value': 'guild'},\n {'name': 'channel', 'value': 'channel'}]}]"}), "(base='settings', name='list', description=\n 'Shows a list of guild or server settings.', options=[{'name': 'scope',\n 'description': 'Property scope.', 'type': 3, 'choices': [{'name': 'all',\n 'value': 'all'}, {'name': 'guild', 'value': 'guild'}, {'name':\n 'channel', 'value': 'channel'}]}])\n", (6638, 6940), False, 'from discord_slash import SlashContext, cog_ext\n'), ((9153, 9463), 'discord_slash.cog_ext.cog_subcommand', 'cog_ext.cog_subcommand', ([], {'base': '"""settings"""', 'name': '"""remove"""', 'description': '"""Remove a property."""', 'options': "[{'name': 'scope', 'description': 'Property scope.', 'type': 3, 'required':\n True, 'choices': [{'name': 'guild', 'value': 'guild'}, {'name':\n 'channel', 'value': 'channel'}]}, PROPERTY_NAME_OPTION]"}), "(base='settings', name='remove', description=\n 'Remove a property.', options=[{'name': 'scope', 'description':\n 'Property scope.', 'type': 3, 'required': True, 'choices': [{'name':\n 'guild', 'value': 'guild'}, {'name': 'channel', 'value': 'channel'}]},\n PROPERTY_NAME_OPTION])\n", (9175, 9463), False, 'from discord_slash import SlashContext, cog_ext\n'), ((4128, 4166), 'discord.ext.commands.errors.ArgumentParsingError', 'commands.errors.ArgumentParsingError', ([], {}), '()\n', (4164, 4166), False, 'from discord.ext import commands\n')]
# thumbget.py from somerandompiggo's superutils under the MIT License from selenium import webdriver from selenium.webdriver.firefox.options import Options wholepage = False # this bool when switched to true will constantly scroll down until the end of the page has been reached. if the site has infinite scroll, this seems to crash. it is disabled by default def getpage(): driver.get("https://en.wikipedia.org/wiki/Main_Page") driver.refresh() if (wholepage == False): height = 720 elif (wholepage == True): height = driver.execute_script("return document.body.parentNode.scrollHeight") driver.set_window_size(original_size['width'], height) driver.save_screenshot("page.png") # end filename driver.close() options = Options() options.add_argument("--headless") # this makes geckodriver headless meaning that no window pops up to screenshot. comment out this line to remove driver = webdriver.Firefox(options=options,executable_path="/usr/bin/geckodriver") driver.set_window_size(1280, 720) original_size = driver.get_window_size() getpage()
[ "selenium.webdriver.firefox.options.Options", "selenium.webdriver.Firefox" ]
[((734, 743), 'selenium.webdriver.firefox.options.Options', 'Options', ([], {}), '()\n', (741, 743), False, 'from selenium.webdriver.firefox.options import Options\n'), ((900, 974), 'selenium.webdriver.Firefox', 'webdriver.Firefox', ([], {'options': 'options', 'executable_path': '"""/usr/bin/geckodriver"""'}), "(options=options, executable_path='/usr/bin/geckodriver')\n", (917, 974), False, 'from selenium import webdriver\n')]
""" (c) Copyright JC 2018-2020 All Rights Reserved ----------------------------------------------------------------------------- File Name : Description : Author : JC Email : <EMAIL> GiitHub : https://github.com/lsdlab ----------------------------------------------------------------------------- """ import factory from faker import Faker fake = Faker("zh_CN") class AddressFactory(factory.django.DjangoModelFactory): class Meta: model = 'profiles.Address' django_get_or_create = ('id', ) name = factory.Sequence(lambda n: 'name{}'.format(n)) mobile = fake.phone_number() address = fake.text()
[ "faker.Faker" ]
[((386, 400), 'faker.Faker', 'Faker', (['"""zh_CN"""'], {}), "('zh_CN')\n", (391, 400), False, 'from faker import Faker\n')]
from dataclasses import dataclass from typing import Optional from logzero import setup_logger from app import logging_setup, https # Setting up logger object log = setup_logger(name="models", **logging_setup) class GQL: class PageInfo: has_next_page = False end_cursor = "null" def __init__(self, headers, endpoint="https://api.github.com/graphql"): self.paging = GQL.PageInfo() self.__endpoint = endpoint self.__headers = headers self.__query = "" self.__query_template = "" self.__query_results = {} # self.__template_name = "" self.__template_path = "app/queries" self.__template_variables = dict( AFTER_CURSOR=f"after: {self.paging.end_cursor}", STARS_FILTER=f"stars:>1" ) @property def endpoint(self): return self.__endpoint @property def headers(self): return self.__headers def set_headers(self, headers): if type(headers) is dict: self.__headers = headers else: log.error(f"{self.__class__}.set_headers(): headers must be a dict") @property def query(self): return self.__query def set_query(self, query): if type(query) is str: self.__query = query else: log.error(f"{self.__class__}.set_query(): query must be a str") @property def query_results(self): return self.__query_results def set_query_results(self, results_json): if type(results_json) is dict: if "pageInfo" in results_json["data"]["search"]: paging = results_json["data"]["search"]["pageInfo"] self.paging.has_next_page = paging["hasNextPage"] self.paging.end_cursor = f'"{paging["endCursor"]}"' self.__query_results = results_json["data"]["search"] else: log.error( f"{self.__class__}.set_query_results(): " f"results_json value must be a dict" ) @property def query_template(self): return self.__query_template @property def template_path(self): return self.__template_path @property def template_variables(self): return self.__template_variables def set_template_variables(self, **kwargs): self.__template_variables = kwargs def load_query(self, template_name): template = self._load_query_template(template_name, self.__template_path) self.set_query(self._setup_query(template, self.template_variables)) def reload_query(self): if self.query_template: self.set_query( self._setup_query(self.query_template, self.template_variables) ) def _load_query_template(self, template_name, template_path): with open(f"{template_path}/{template_name}") as f: self.__query_template = f.read() return self.query_template @staticmethod def _setup_query(query_template, var_dict): query = query_template for key in var_dict.keys(): query = query.replace(f"<{key}>", var_dict[key]) return query def run_query(self, retry=2, raw_response=False): for i in range(-1, retry): response = https.post( url=self.endpoint, headers=self.headers, json=dict(query=self.query) ) if raw_response: return response if "X-RateLimit-Remaining" in response.headers: log.debug( f"{self.__class__}.run_query({self.__hash__()}): " f"X-RateLimit-Remaining={response.headers['X-RateLimit-Remaining']}" ) else: log.debug( f"{self.__class__}.run_query({self.__hash__()}): " f"response[{response.status_code}].text={response.text}" ) if response.status_code == 200: self.set_query_results(response.json()) return self.query_results elif response.status_code == 403: log.debug( f"{self.__class__}.run_query({self.__hash__()}): " f"self.query={self.query}" ) raise ConnectionRefusedError( f"Triggered API abuse mechanism! (hash={self.__hash__()})" ) log.warning( f"Query attempt #{i + 2} failed (status_code={response.status_code})" ) log.error(f"Giving up on query (hash={self.__hash__()})") log.debug( f"{self.__class__}.run_query({self.__hash__()}): self.query={self.query})" ) def next_page(self): if not self.paging.has_next_page: return False self.template_variables["AFTER_CURSOR"] = f"after:{self.paging.end_cursor}" self.reload_query() return self.run_query() @dataclass class Repo: id: str = "" ssh_url: str = "" created_at: str = "" updated_at: str = "" license_info_name: str = "" is_fork: Optional[bool] = None is_in_organization: Optional[bool] = None stargazers_total_count: int = -1 watchers_total_count: int = -1 forks_total_count: int = -1 releases_total_count: int = -1 commit_comments_total_count: int = -1 collaborators_total_count: int = -1 collaborators_direct_count: int = -1 collaborators_outside_count: int = -1 pull_requests_total_count: int = -1 pull_requests_open_count: int = -1 issues_total_count: int = -1 issues_open_count: int = -1 def setup_via_json(self, json): """ json param must correspond to GQL query """ if type(json) is dict: self.id = json["id"] self.ssh_url = json["sshUrl"] self.created_at = json["createdAt"] self.updated_at = json["updatedAt"] self.is_fork = json["isFork"] self.is_in_organization = json["isInOrganization"] if json["licenseInfo"]: self.license_info_name = json["licenseInfo"]["name"] self.stargazers_total_count = json["stargazers"]["totalCount"] self.watchers_total_count = json["watchers"]["totalCount"] if json["watchers"] else 0 self.forks_total_count = json["forks"]["totalCount"] if json["forks"] else 0 self.releases_total_count = json["releases"]["totalCount"] if json["releases"] else 0 self.commit_comments_total_count = json["commitComments"]["totalCount"] if json["commitComments"] else 0 self.collaborators_total_count = json["collaborators"]["totalCount"] if json["collaborators"] else 0 self.collaborators_direct_count = json["collaboratorsDirect"]["totalCount"] if json["collaboratorsDirect"] else 0 self.collaborators_outside_count = json["collaboratorsOutside"]["totalCount"] if json["collaboratorsOutside"] else 0 self.pull_requests_total_count = json["pullRequests"]["totalCount"] if json["pullRequests"] else 0 self.pull_requests_open_count = json["pullRequestsOpen"]["totalCount"] if json["pullRequestsOpen"] else 0 self.issues_total_count = json["issues"]["totalCount"] if json["issues"] else 0 self.issues_open_count = json["issuesOpen"]["totalCount"] if json["issuesOpen"] else 0 else: log.error(f"{self.__class__}.setup_via_json(): json must be a dict") def export_repo_info_as_json(self): return dict( id=self.id, ssh_url=self.ssh_url, created_at=self.created_at, updated_at=self.updated_at, stars=self.stargazers_total_count, license=self.license_info_name, is_fork=self.is_fork, in_org=self.is_in_organization, watchers=self.watchers_total_count, forks=self.forks_total_count, releases=self.releases_total_count, commit_comments=self.commit_comments_total_count, collaborators=self.collaborators_total_count, collab_direct=self.collaborators_direct_count, collab_outside=self.collaborators_outside_count, prs=self.pull_requests_total_count, prs_open=self.pull_requests_open_count, issues=self.issues_total_count, issues_open=self.issues_open_count, ) class Repository: def __init__(self): self.__id = "" self.__owner = "" self.__name = "" self.__url = "" self.__created_at = "" self.__updated_at = "" self.__primary_language_name = "" # self.__license = None self.__license_info_name = "" # self.__stargazers = [] self.__stargazers_total_count = -1 # self.__watchers = [] self.__watchers_total_count = -1 # self.__forks = [] self.__forks_total_count = -1 # self.__releases = [] self.__releases_total_count = -1 self.__pull_requests = [] self.__pull_requests_total_count = -1 self.__pull_requests_open_count = -1 # self.__issues = [] self.__issues_total_count = -1 self.__issues_open_count = -1 self.__issues_open_old_count = -1 @property def id(self): return self.__id def set_id(self, id): self.__id = id @property def owner(self): return self.__owner def set_owner(self, owner): if type(owner) is str: self.__owner = owner else: log.error(f"{self.__class__}.set_owner(): owner must be a str") @property def name(self): return self.__name def set_name(self, name): if type(name) is str: self.__name = name else: log.error(f"{self.__class__}.set_name(): name must be a str") @property def name_with_owner(self): return f"{self.owner}/{self.name}" @property def url(self): return self.__url def set_url(self, url): if type(url) is str: self.__url = url else: log.error(f"{self.__class__}.set_url(): url must be a str") @property def created_at(self): return self.__created_at def set_created_at(self, created_at): self.__created_at = created_at @property def updated_at(self): return self.__updated_at def set_updated_at(self, updated_at): self.__updated_at = updated_at @property def primary_language_name(self): return self.__primary_language_name def set_primary_language_name(self, language_name): if type(language_name) is str: self.__primary_language_name = language_name else: log.error( f"{self.__class__}.set_primary_language_name(): " f"language_name must be a str" ) @property def license_info_name(self): return self.__license_info_name def set_license_info_name(self, license_name): if type(license_name) is str: self.__license_info_name = license_name else: log.error( f"{self.__class__}.set_license_info_name():" f"license_name must be a str" ) @property def stargazers_total_count(self): return self.__stargazers_total_count def set_stargazers_total_count(self, stargazers_count): if type(stargazers_count) is int and stargazers_count >= 0: self.__stargazers_total_count = stargazers_count else: log.error( f"{self.__class__}.set_stargazers_total_count(): " f"stargazers_count must be an int >=0" ) @property def forks_total_count(self): return self.__forks_total_count def set_forks_total_count(self, forks_count): if type(forks_count) is int and forks_count >= 0: self.__forks_total_count = forks_count else: log.error( f"{self.__class__}.set_forks_total_count(): " f"forks_count must be an int >=0" ) @property def releases_total_count(self): return self.__releases_total_count def set_releases_total_count(self, releases_count): if type(releases_count) is int and releases_count >= 0: self.__releases_total_count = releases_count else: log.error( f"{self.__class__}.set_releases_total_count(): " f"releases_count must be an int >=0" ) @property def pull_requests(self): return self.__pull_requests def set_pull_requests(self, pr_list): self.__pull_requests = pr_list @property def pull_requests_total_count(self): return self.__pull_requests_total_count def set_pull_requests_total_count(self, pull_requests_count): if type(pull_requests_count) is int and pull_requests_count >= 0: self.__pull_requests_total_count = pull_requests_count else: log.error( f"{self.__class__}.set_pull_requests_total_count(): " f"pull_requests_count must be an int >=0" ) @property def pull_requests_open_count(self): return self.__pull_requests_open_count def set_pull_requests_open_count(self, pull_requests_count): if type(pull_requests_count) is int and pull_requests_count >= 0: self.__pull_requests_open_count = pull_requests_count else: log.error( f"{self.__class__}.set_pull_requests_open_count(): " f"pull_requests_count must be an int >=0" ) @property def issues_total_count(self): return self.__issues_total_count def set_issues_total_count(self, issues_count): if type(issues_count) is int and issues_count >= 0: self.__issues_total_count = issues_count else: log.error( f"{self.__class__}.set_issues_total_count(): " f"issues_count must be an int >=0" ) @property def issues_open_count(self): return self.__issues_open_count def set_issues_open_count(self, issues_count): if type(issues_count) is int and issues_count >= 0: self.__issues_open_count = issues_count else: log.error( f"{self.__class__}.set_issues_open_count(): " f"issues_count must be an int >=0" ) @property def issues_open_old_count(self): return self.__issues_open_old_count def set_issues_open_old_count(self, issues_count): if type(issues_count) is int and issues_count >= 0: self.__issues_open_old_count = issues_count else: log.error( f"{self.__class__}.set_issues_open_old_count(): " f"issues_count must be an int >=0" ) def setup_via_json(self, json): """ json param must correspond to queries/top_python_repositories.gql GQL query """ if type(json) is dict: self.set_owner(json["nameWithOwner"].split("/")[0]) self.set_name(json["nameWithOwner"].split("/")[1]) self.set_url(json["url"]) self.set_stargazers_total_count(json["stargazers"]["totalCount"]) # if json["primaryLanguage"]: # self.set_primary_language_name(json["primaryLanguage"]["name"]) else: log.error(f"{self.__class__}.setup_via_json(): json must be a dict") def export_repo_info_as_json(self): return dict( repo=self.name_with_owner, url=self.url, stars=self.stargazers_total_count, ) def repository(node_json): repo = Repository() repo.setup_via_json(node_json) return repo def repo_dataclass(node_json): repo = Repo() repo.setup_via_json(node_json) return repo
[ "logzero.setup_logger" ]
[((176, 220), 'logzero.setup_logger', 'setup_logger', ([], {'name': '"""models"""'}), "(name='models', **logging_setup)\n", (188, 220), False, 'from logzero import setup_logger\n')]
from airflow import DAG from airflow.operators.python_operator import PythonOperator, BranchPythonOperator from airflow.operators.dummy_operator import DummyOperator import logging import datetime import twint #directly import # from sensors.gcs_bq_custom_sensor import GoogleCloudStorageBigQueryUpdateSensor #using airflow plugin from airflow.sensors import GoogleCloudStorageBigQueryUpdateSensor from airflow.contrib.operators import gcs_to_bq from google.cloud import storage from google.oauth2 import service_account default_args = { 'owner': 'airflow', 'depends_on_past': False, 'start_date': datetime.datetime(2020, 1, 1), 'email_on_failure': False, 'email_on_retry': False, 'retries': 1 } def scrapeYesterdayTwitter(bucket_name, project, credentials_path: str=None, **kwargs): """setting up the google credentials""" credentials = service_account.Credentials.from_service_account_file(credentials_path) if credentials_path else None storage_client = storage.Client(project=project, credentials=credentials) bucket = storage_client.bucket(bucket_name) #get_yesterday yesterday = datetime.datetime.today() - datetime.timedelta(days=1) #setting up twitter scraper tweetConfig = twint.Config() searchTerm = "coronavirus" tweetConfig.Search = searchTerm tweetConfig.Since = f"{yesterday.strftime('%Y-%m-%d')} 00:00:00" tweetConfig.Until = f"{datetime.datetime.today().strftime('%Y-%m-%d')} 00:00:00" tweetConfig.Lang = "en" tweetConfig.Verified = True #storing the result in the pandas dataframe tweetConfig.Pandas = True tweetConfig.Limit = 100 tweetConfig.Stats = False tweetConfig.Hide_output = True twint.run.Search(tweetConfig) Tweets_df = twint.storage.panda.Tweets_df filename = f"tweet-{searchTerm}-{yesterday.strftime('%Y-%m-%d')}" bucket.blob('{}/{}.csv'.format("airflowTweet", filename)).upload_from_string(Tweets_df.to_csv(), 'text/csv') blob = bucket.get_blob('{}/{}.csv'.format("airflowTweet", filename)) blob.metadata = {'updatedTime': datetime.datetime.now()} blob.patch() logging.info('{}/{}.csv has been uploaded.'.format("airflowTweet", filename)) def checkingYesterdayTweet(bucket_name, project, credentials_path, **kwargs): """ If the data CSV file was saved, it triggers the All_jobs_end task; else it set off the tweeter-today-scraper. """ credentials = service_account.Credentials.from_service_account_file(credentials_path) if credentials_path else None storage_client = storage.Client(project=project, credentials=credentials) bucket_name = "storage-ark2" bucket = storage_client.get_bucket(bucket_name) yesterday = datetime.datetime.today() - datetime.timedelta(days=1) searchTerm = "coronavirus" filename = f"tweet-{searchTerm}-{yesterday.strftime('%Y-%m-%d')}" if bucket.blob(filename).exists(): logging.info('this file exist: {}/{}.csv'.format("airflowTweet", filename)) return "All_jobs_end" logging.info('this file does not exist: {}/{}.csv'.format("airflowTweet", filename)) return "tweeter-yesterday-scraper" dag = DAG('UpdateYesterdayTweet2BigQuery', default_args=default_args, schedule_interval="@daily", catchup=False) with dag: check_modified_date_sensor = GoogleCloudStorageBigQueryUpdateSensor( task_id='check_modified_date_sensor', project='project-ark2', credentials_path='/usr/local/airflow/dags/project-ark2-b9b253cd02fa.json', timeout=60*60*24, # timeout in 1 day poke_interval=60*60*1, # checking files every 1 hours ) GCS_to_BQ = gcs_to_bq.GoogleCloudStorageToBigQueryOperator( task_id='gcs_to_bq', bucket='storage-ark2', source_objects=['airflowTweet/*.csv'], destination_project_dataset_table='tweetScraper.tweet', skip_leading_rows=1, source_format='CSV', create_disposition='CREATE_IF_NEEDED', write_disposition='WRITE_TRUNCATE', bigquery_conn_id='google_cloud_default', allow_quoted_newlines=True, #allows for newlines allow_jagged_rows=True, #allows for missing values autodetect=True ) dummy_shut_down = DummyOperator( task_id='All_jobs_end') checkingYesterdayTweet = BranchPythonOperator( task_id='branching', python_callable=checkingYesterdayTweet, op_kwargs={'bucket_name': 'storage-ark2', 'project': 'project-ark2', 'credentials_path': '/usr/local/airflow/dags/project-ark2-b9b253cd02fa.json'}, provide_context=True) scrapeYesterdayData = PythonOperator( task_id="tweeter-yesterday-scraper", python_callable=scrapeYesterdayTwitter, provide_context=True, op_kwargs={'bucket_name': 'storage-ark2', 'project': 'project-ark2', 'credentials_path': '/usr/local/airflow/dags/project-ark2-b9b253cd02fa.json'}, ) [checkingYesterdayTweet, check_modified_date_sensor] >> GCS_to_BQ >> dummy_shut_down
[ "datetime.datetime", "google.cloud.storage.Client", "twint.Config", "airflow.sensors.GoogleCloudStorageBigQueryUpdateSensor", "google.oauth2.service_account.Credentials.from_service_account_file", "airflow.operators.dummy_operator.DummyOperator", "airflow.operators.python_operator.PythonOperator", "twint.run.Search", "datetime.datetime.now", "airflow.contrib.operators.gcs_to_bq.GoogleCloudStorageToBigQueryOperator", "airflow.DAG", "datetime.datetime.today", "datetime.timedelta", "airflow.operators.python_operator.BranchPythonOperator" ]
[((3172, 3282), 'airflow.DAG', 'DAG', (['"""UpdateYesterdayTweet2BigQuery"""'], {'default_args': 'default_args', 'schedule_interval': '"""@daily"""', 'catchup': '(False)'}), "('UpdateYesterdayTweet2BigQuery', default_args=default_args,\n schedule_interval='@daily', catchup=False)\n", (3175, 3282), False, 'from airflow import DAG\n'), ((613, 642), 'datetime.datetime', 'datetime.datetime', (['(2020)', '(1)', '(1)'], {}), '(2020, 1, 1)\n', (630, 642), False, 'import datetime\n'), ((997, 1053), 'google.cloud.storage.Client', 'storage.Client', ([], {'project': 'project', 'credentials': 'credentials'}), '(project=project, credentials=credentials)\n', (1011, 1053), False, 'from google.cloud import storage\n'), ((1243, 1257), 'twint.Config', 'twint.Config', ([], {}), '()\n', (1255, 1257), False, 'import twint\n'), ((1715, 1744), 'twint.run.Search', 'twint.run.Search', (['tweetConfig'], {}), '(tweetConfig)\n', (1731, 1744), False, 'import twint\n'), ((2567, 2623), 'google.cloud.storage.Client', 'storage.Client', ([], {'project': 'project', 'credentials': 'credentials'}), '(project=project, credentials=credentials)\n', (2581, 2623), False, 'from google.cloud import storage\n'), ((3323, 3561), 'airflow.sensors.GoogleCloudStorageBigQueryUpdateSensor', 'GoogleCloudStorageBigQueryUpdateSensor', ([], {'task_id': '"""check_modified_date_sensor"""', 'project': '"""project-ark2"""', 'credentials_path': '"""/usr/local/airflow/dags/project-ark2-b9b253cd02fa.json"""', 'timeout': '(60 * 60 * 24)', 'poke_interval': '(60 * 60 * 1)'}), "(task_id='check_modified_date_sensor',\n project='project-ark2', credentials_path=\n '/usr/local/airflow/dags/project-ark2-b9b253cd02fa.json', timeout=60 * \n 60 * 24, poke_interval=60 * 60 * 1)\n", (3361, 3561), False, 'from airflow.sensors import GoogleCloudStorageBigQueryUpdateSensor\n'), ((3654, 4092), 'airflow.contrib.operators.gcs_to_bq.GoogleCloudStorageToBigQueryOperator', 'gcs_to_bq.GoogleCloudStorageToBigQueryOperator', ([], {'task_id': '"""gcs_to_bq"""', 'bucket': '"""storage-ark2"""', 'source_objects': "['airflowTweet/*.csv']", 'destination_project_dataset_table': '"""tweetScraper.tweet"""', 'skip_leading_rows': '(1)', 'source_format': '"""CSV"""', 'create_disposition': '"""CREATE_IF_NEEDED"""', 'write_disposition': '"""WRITE_TRUNCATE"""', 'bigquery_conn_id': '"""google_cloud_default"""', 'allow_quoted_newlines': '(True)', 'allow_jagged_rows': '(True)', 'autodetect': '(True)'}), "(task_id='gcs_to_bq', bucket=\n 'storage-ark2', source_objects=['airflowTweet/*.csv'],\n destination_project_dataset_table='tweetScraper.tweet',\n skip_leading_rows=1, source_format='CSV', create_disposition=\n 'CREATE_IF_NEEDED', write_disposition='WRITE_TRUNCATE',\n bigquery_conn_id='google_cloud_default', allow_quoted_newlines=True,\n allow_jagged_rows=True, autodetect=True)\n", (3700, 4092), False, 'from airflow.contrib.operators import gcs_to_bq\n'), ((4240, 4277), 'airflow.operators.dummy_operator.DummyOperator', 'DummyOperator', ([], {'task_id': '"""All_jobs_end"""'}), "(task_id='All_jobs_end')\n", (4253, 4277), False, 'from airflow.operators.dummy_operator import DummyOperator\n'), ((4317, 4585), 'airflow.operators.python_operator.BranchPythonOperator', 'BranchPythonOperator', ([], {'task_id': '"""branching"""', 'python_callable': 'checkingYesterdayTweet', 'op_kwargs': "{'bucket_name': 'storage-ark2', 'project': 'project-ark2',\n 'credentials_path':\n '/usr/local/airflow/dags/project-ark2-b9b253cd02fa.json'}", 'provide_context': '(True)'}), "(task_id='branching', python_callable=\n checkingYesterdayTweet, op_kwargs={'bucket_name': 'storage-ark2',\n 'project': 'project-ark2', 'credentials_path':\n '/usr/local/airflow/dags/project-ark2-b9b253cd02fa.json'},\n provide_context=True)\n", (4337, 4585), False, 'from airflow.operators.python_operator import PythonOperator, BranchPythonOperator\n'), ((4669, 4943), 'airflow.operators.python_operator.PythonOperator', 'PythonOperator', ([], {'task_id': '"""tweeter-yesterday-scraper"""', 'python_callable': 'scrapeYesterdayTwitter', 'provide_context': '(True)', 'op_kwargs': "{'bucket_name': 'storage-ark2', 'project': 'project-ark2',\n 'credentials_path':\n '/usr/local/airflow/dags/project-ark2-b9b253cd02fa.json'}"}), "(task_id='tweeter-yesterday-scraper', python_callable=\n scrapeYesterdayTwitter, provide_context=True, op_kwargs={'bucket_name':\n 'storage-ark2', 'project': 'project-ark2', 'credentials_path':\n '/usr/local/airflow/dags/project-ark2-b9b253cd02fa.json'})\n", (4683, 4943), False, 'from airflow.operators.python_operator import PythonOperator, BranchPythonOperator\n'), ((874, 945), 'google.oauth2.service_account.Credentials.from_service_account_file', 'service_account.Credentials.from_service_account_file', (['credentials_path'], {}), '(credentials_path)\n', (927, 945), False, 'from google.oauth2 import service_account\n'), ((1138, 1163), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (1161, 1163), False, 'import datetime\n'), ((1166, 1192), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (1184, 1192), False, 'import datetime\n'), ((2086, 2109), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2107, 2109), False, 'import datetime\n'), ((2443, 2514), 'google.oauth2.service_account.Credentials.from_service_account_file', 'service_account.Credentials.from_service_account_file', (['credentials_path'], {}), '(credentials_path)\n', (2496, 2514), False, 'from google.oauth2 import service_account\n'), ((2725, 2750), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (2748, 2750), False, 'import datetime\n'), ((2753, 2779), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2771, 2779), False, 'import datetime\n'), ((1421, 1446), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (1444, 1446), False, 'import datetime\n')]
import asyncio from collections import namedtuple from typing import List from jobs.base import BaseFetcher, INotified from jobs.defipulse_job import DefiPulseKeeper from lib.cooldown import OnceADay, Cooldown from lib.datetime import parse_timespan_to_seconds, now_ts, HOUR, MINUTE, DAY, parse_time, \ is_time_to_do from lib.depcont import DepContainer from lib.texts import MessageType from lib.utils import circular_shuffled_iterator from localization import LocalizationManager from models.models import CoinPriceInfo, PriceReport, PriceHistoricalTriplet, DefiPulseEntry, PriceATH PriceAndDate = namedtuple('PriceAndDate', ('timestamp', 'price')) class PriceFetcher(BaseFetcher): ALPHA_GECKO_NAME = 'alpha-finance' COIN_RANK_GECKO = "https://api.coingecko.com/api/v3/coins/{coin}?" \ "localization=false&tickers=false&market_data=false&" \ "community_data=false&developer_data=false&sparkline=false" COIN_PRICE_GECKO = "https://api.coingecko.com/api/v3/simple/price?" \ "ids={coin}&vs_currencies=usd%2Cbtc&include_market_cap=true&include_24hr_change=true" COIN_PRICE_HISTORY_GECKO = "https://api.coingecko.com/api/v3/coins/{coin}/market_chart/range?" \ "vs_currency=usd&from={t_from}&to={t_to}" def __init__(self, deps: DepContainer): cfg = deps.cfg.data_source.coin_gecko super().__init__(deps, parse_timespan_to_seconds(cfg.fetch_period)) async def fetch(self) -> PriceReport: self.logger.info('start job') now = now_ts() rank, price_data, p_1h, p_24h, p_7d = await asyncio.gather( self._fetch_rank(), self._fetch_price(), self._fetch_price_history(t_from=now - HOUR - MINUTE * 5, t_to=now - HOUR + MINUTE * 5), self._fetch_price_history(t_from=now - DAY - MINUTE * 15, t_to=now - DAY + MINUTE * 15), self._fetch_price_history(t_from=now - DAY * 7 - HOUR, t_to=now - DAY * 7 + HOUR), ) price_data: CoinPriceInfo price_data.rank = rank return PriceReport( price_and_cap=price_data, price_change=PriceHistoricalTriplet( price_7d=p_7d[0].price, price_24h=p_24h[0].price, price_1h=p_1h[0].price ), defipulse=DefiPulseEntry(), price_ath=PriceATH(), is_ath=False ) async def _fetch_price(self): url = self.COIN_PRICE_GECKO.format(coin=self.ALPHA_GECKO_NAME) async with self.deps.session.get(url) as reps: response_j = await reps.json() result = CoinPriceInfo(**response_j.get(self.ALPHA_GECKO_NAME, {})) self.logger.info(f'got gecko current price {self.ALPHA_GECKO_NAME!r}: {result}') return result async def _fetch_rank(self) -> int: url = self.COIN_RANK_GECKO.format(coin=self.ALPHA_GECKO_NAME) async with self.deps.session.get(url) as reps: response_j = await reps.json() rank = int(response_j.get('market_cap_rank', 0)) self.logger.info(f'got gecko rank {self.ALPHA_GECKO_NAME!r} -> #{rank}') return rank async def _fetch_price_history(self, t_from, t_to) -> List[PriceAndDate]: url = self.COIN_PRICE_HISTORY_GECKO.format(coin=self.ALPHA_GECKO_NAME, t_from=t_from, t_to=t_to) async with self.deps.session.get(url) as reps: response_j = await reps.json() prices = response_j.get('prices', []) self.logger.info(f'got gecko price range {self.ALPHA_GECKO_NAME!r} from {t_from} to {t_to}') return [PriceAndDate(*p) for p in prices] class PriceHandler(INotified): KEY_ATH = 'alpha:price:ath' def __init__(self, deps: DepContainer): self.deps = deps self.cfg = deps.cfg.notifications.price self.stickers = self.cfg.ath.stickers self.notification_period = parse_timespan_to_seconds(self.cfg.period) self.ath_sticker_iter = circular_shuffled_iterator(self.stickers) self.daily_once = OnceADay(self.deps.db, 'PriceDaily') self.regular_price_cd = Cooldown(self.deps.db, 'regular_price_notification', self.notification_period) async def get_prev_ath(self) -> PriceATH: try: await self.deps.db.get_redis() ath_str = await self.deps.db.redis.get(self.KEY_ATH) if ath_str is None: return PriceATH() else: return PriceATH.from_json(ath_str) except (TypeError, ValueError, AttributeError): return PriceATH() async def reset_ath(self): await self.deps.db.redis.delete(self.KEY_ATH) async def update_ath(self, price): last_ath = await self.get_prev_ath() if price and price > 0 and last_ath.is_new_ath(price): await self.deps.db.get_redis() await self.deps.db.redis.set(self.KEY_ATH, PriceATH( int(now_ts()), price ).to_json()) return True return False async def send_ath_sticker(self): if self.ath_sticker_iter: sticker = next(self.ath_sticker_iter) user_lang_map = self.deps.broadcaster.telegram_chats_from_config(self.deps.loc_man) await self.deps.broadcaster.broadcast(user_lang_map.keys(), sticker, message_type=MessageType.STICKER) async def send_notification(self, p: PriceReport): loc_man: LocalizationManager = self.deps.loc_man text = loc_man.default.notification_text_price_update(p) user_lang_map = self.deps.broadcaster.telegram_chats_from_config(self.deps.loc_man) await self.deps.broadcaster.broadcast(user_lang_map.keys(), text) if p.is_ath: await self.send_ath_sticker() def _is_it_time_for_regular_message(self): h, m = parse_time(self.cfg.time_of_day) return is_time_to_do(h, m) async def on_data(self, sender, p: PriceReport): d: DefiPulseKeeper = self.deps.defipulse # p.price_and_cap.usd = 3.02 # todo: for ATH debugging p.defipulse = await d.get_last_state() p.price_ath = await self.get_prev_ath() p.is_ath = (await self.update_ath(p.price_and_cap.usd)) if p.is_ath: await self.send_notification(p) elif self._is_it_time_for_regular_message(): if await self.regular_price_cd.can_do(): await self.send_notification(p) await self.regular_price_cd.do() # if await self.daily_once.can_do(): # await self.send_notification(p) # await self.daily_once.write_today()
[ "models.models.PriceHistoricalTriplet", "collections.namedtuple", "models.models.PriceATH.from_json", "lib.utils.circular_shuffled_iterator", "lib.cooldown.OnceADay", "lib.cooldown.Cooldown", "lib.datetime.parse_time", "lib.datetime.is_time_to_do", "lib.datetime.now_ts", "models.models.DefiPulseEntry", "models.models.PriceATH", "lib.datetime.parse_timespan_to_seconds" ]
[((606, 656), 'collections.namedtuple', 'namedtuple', (['"""PriceAndDate"""', "('timestamp', 'price')"], {}), "('PriceAndDate', ('timestamp', 'price'))\n", (616, 656), False, 'from collections import namedtuple\n'), ((1586, 1594), 'lib.datetime.now_ts', 'now_ts', ([], {}), '()\n', (1592, 1594), False, 'from lib.datetime import parse_timespan_to_seconds, now_ts, HOUR, MINUTE, DAY, parse_time, is_time_to_do\n'), ((3999, 4041), 'lib.datetime.parse_timespan_to_seconds', 'parse_timespan_to_seconds', (['self.cfg.period'], {}), '(self.cfg.period)\n', (4024, 4041), False, 'from lib.datetime import parse_timespan_to_seconds, now_ts, HOUR, MINUTE, DAY, parse_time, is_time_to_do\n'), ((4074, 4115), 'lib.utils.circular_shuffled_iterator', 'circular_shuffled_iterator', (['self.stickers'], {}), '(self.stickers)\n', (4100, 4115), False, 'from lib.utils import circular_shuffled_iterator\n'), ((4142, 4178), 'lib.cooldown.OnceADay', 'OnceADay', (['self.deps.db', '"""PriceDaily"""'], {}), "(self.deps.db, 'PriceDaily')\n", (4150, 4178), False, 'from lib.cooldown import OnceADay, Cooldown\n'), ((4211, 4289), 'lib.cooldown.Cooldown', 'Cooldown', (['self.deps.db', '"""regular_price_notification"""', 'self.notification_period'], {}), "(self.deps.db, 'regular_price_notification', self.notification_period)\n", (4219, 4289), False, 'from lib.cooldown import OnceADay, Cooldown\n'), ((5932, 5964), 'lib.datetime.parse_time', 'parse_time', (['self.cfg.time_of_day'], {}), '(self.cfg.time_of_day)\n', (5942, 5964), False, 'from lib.datetime import parse_timespan_to_seconds, now_ts, HOUR, MINUTE, DAY, parse_time, is_time_to_do\n'), ((5980, 5999), 'lib.datetime.is_time_to_do', 'is_time_to_do', (['h', 'm'], {}), '(h, m)\n', (5993, 5999), False, 'from lib.datetime import parse_timespan_to_seconds, now_ts, HOUR, MINUTE, DAY, parse_time, is_time_to_do\n'), ((1445, 1488), 'lib.datetime.parse_timespan_to_seconds', 'parse_timespan_to_seconds', (['cfg.fetch_period'], {}), '(cfg.fetch_period)\n', (1470, 1488), False, 'from lib.datetime import parse_timespan_to_seconds, now_ts, HOUR, MINUTE, DAY, parse_time, is_time_to_do\n'), ((2193, 2293), 'models.models.PriceHistoricalTriplet', 'PriceHistoricalTriplet', ([], {'price_7d': 'p_7d[0].price', 'price_24h': 'p_24h[0].price', 'price_1h': 'p_1h[0].price'}), '(price_7d=p_7d[0].price, price_24h=p_24h[0].price,\n price_1h=p_1h[0].price)\n', (2215, 2293), False, 'from models.models import CoinPriceInfo, PriceReport, PriceHistoricalTriplet, DefiPulseEntry, PriceATH\n'), ((2375, 2391), 'models.models.DefiPulseEntry', 'DefiPulseEntry', ([], {}), '()\n', (2389, 2391), False, 'from models.models import CoinPriceInfo, PriceReport, PriceHistoricalTriplet, DefiPulseEntry, PriceATH\n'), ((2415, 2425), 'models.models.PriceATH', 'PriceATH', ([], {}), '()\n', (2423, 2425), False, 'from models.models import CoinPriceInfo, PriceReport, PriceHistoricalTriplet, DefiPulseEntry, PriceATH\n'), ((4513, 4523), 'models.models.PriceATH', 'PriceATH', ([], {}), '()\n', (4521, 4523), False, 'from models.models import CoinPriceInfo, PriceReport, PriceHistoricalTriplet, DefiPulseEntry, PriceATH\n'), ((4565, 4592), 'models.models.PriceATH.from_json', 'PriceATH.from_json', (['ath_str'], {}), '(ath_str)\n', (4583, 4592), False, 'from models.models import CoinPriceInfo, PriceReport, PriceHistoricalTriplet, DefiPulseEntry, PriceATH\n'), ((4668, 4678), 'models.models.PriceATH', 'PriceATH', ([], {}), '()\n', (4676, 4678), False, 'from models.models import CoinPriceInfo, PriceReport, PriceHistoricalTriplet, DefiPulseEntry, PriceATH\n'), ((5041, 5049), 'lib.datetime.now_ts', 'now_ts', ([], {}), '()\n', (5047, 5049), False, 'from lib.datetime import parse_timespan_to_seconds, now_ts, HOUR, MINUTE, DAY, parse_time, is_time_to_do\n')]
import h5py class AuthException(Exception): pass class NotFoundException(Exception): pass class LoginError(Exception): def __init__(self, message, redirect_url=None): super(LoginError, self).__init__(message) self.redirect_url = redirect_url def validate_file(path: str) -> bool: """ Check if the file is an HDF5 file Modify this to allow for other file types! (Note some records can be text or arbitrary binary files but we don't need to validate them) :param path: :return: """ return h5py.is_hdf5(path)
[ "h5py.is_hdf5" ]
[((555, 573), 'h5py.is_hdf5', 'h5py.is_hdf5', (['path'], {}), '(path)\n', (567, 573), False, 'import h5py\n')]
import pygame from pygame import * from random import randint import time pygame.init() window = display.set_mode((700, 500)) display.set_caption('Поняшки') background = transform.scale(image.load("galaxy.jpg"), (700, 500)) FPS = 100 class GameSprite(sprite.Sprite): def __init__(self, player_image, player_x, player_y, player_speed,width,height): super().__init__() self.w = width self.h = height self.image = transform.scale(image.load(player_image), (self.w, self.h)) self.speed = player_speed self.rect = self.image.get_rect() self.rect.x = player_x self.rect.y = player_y def reset(self): window.blit(self.image, (self.rect.x, self.rect.y)) bullets = sprite.Group() monsters = sprite.Group() asteroids = sprite.Group() class Player(GameSprite): def update(self): key_pressed = key.get_pressed() if key_pressed[K_d] and self.rect.x <= 620: self.rect.x += self.speed if key_pressed[K_a] and self.rect.x >= 10: self.rect.x -= self.speed def fire(self): firem.play() bullet = Bullet("bullet.png", self.rect.centerx, self.rect.top, 10,15,15) bullets.add(bullet) lives = 3 lost = 0 kills = 0 num_b = 0 reload_on = False ka = 0 i = 0 class Enemie(GameSprite): def update(self): global lost global i self.rect.y += speed if self.rect.y >= 500: lost += 1 i -= 1 self.rect.y = ycor self.kill() class Asteroid(GameSprite): def update(self): global ka self.rect.y += self.speed if self.rect.y >= 500: ka -= 1 self.rect.y = ycor self.kill() class Bullet(GameSprite): def update(self): self.rect.y -= self.speed mixer.init() mixer.music.load("space.ogg") firem = mixer.Sound('fire.ogg') mixer.music.play() a = 420 rocketa = Player("rocket.png", 350, a, 5,65,65) lose_game = False win_game = False run = True while run: check_time = time.time() key_pressed = key.get_pressed() myfont = font.SysFont("Arial", 30) myfont3 = font.SysFont("Arial", 60) kill_l = myfont.render("Счёт:" + str(kills), 1, (255, 255, 255)) label = myfont.render("Пропущенно:" + str(lost), 1, (255, 255, 255)) lives_label = myfont3.render(str(lives), 1, (255, 15, 87)) reload_label = myfont.render("Перезарядка..." ,1, (255, 0, 0)) myfont1 = font.SysFont("Arial", 100) label1 = myfont1.render("You lose!!", 1, (255, 0, 0)) label2 = myfont1.render("You win!!", 1, (255, 191, 28)) window.blit(background, (0, 0)) rocketa.reset() window.blit(lives_label,(670,0)) window.blit(kill_l,(0,0)) window.blit(label,(0,30)) while i != 5: ycor = randint(-50,0) xcor = randint(80, 620) speed = randint(1,2) monster = Enemie('ufo.png', xcor, ycor,speed,65,65) monsters.add(monster) i += 1 while ka != 3: ycor = randint(-100,0) xcor = randint(80,620) speed = randint(2,3) asteroid = Asteroid('asteroid.png', xcor,ycor,speed,65,65) asteroids.add(asteroid) ka +=1 rocketa.update() bullets.draw(window) monsters.draw(window) asteroids.draw(window) if sprite.groupcollide(monsters,bullets,True,True): i-=1 kills+=1 if sprite.spritecollide(rocketa,monsters,True) or sprite.spritecollide(rocketa,asteroids,True): lives -=1 ka -= 1 if sprite.groupcollide(monsters,asteroids,True,False): i -= 1 if sprite.groupcollide(bullets,asteroids,True,False): pass if key_pressed[K_SPACE] and reload_on == False: num_b +=1 rocketa.fire() if num_b == 5: reload_on = True start_time = time.time() end_time = int(start_time) + 3 for u in bullets: u.update() if reload_on == True: window.blit(reload_label,(300,450)) if check_time >= end_time: num_b = 0 reload_on = False for o in asteroids: o.update() for m in monsters: m.update() for e in event.get(): if e.type == QUIT: run = False if lost == 10 or lives == 0: lose_game=True while lose_game: window.blit(label1, (200, 250)) for e in event.get(): if e.type == QUIT: lose_game = False run = False key_pressed = key.get_pressed() if key_pressed[K_SPACE]: kills = 0 lost = 0 i = 0 run = True lose_game = False display.update() if kills == 5: win_game=True while win_game: window.blit(label2, (200, 250)) for e in event.get(): if e.type == QUIT: win_game = False run = False key_pressed = key.get_pressed() if key_pressed[K_SPACE]: kills = 0 lost = 0 i = 0 run = True win_game = False display.update() display.update()
[ "random.randint", "time.time", "pygame.init" ]
[((75, 88), 'pygame.init', 'pygame.init', ([], {}), '()\n', (86, 88), False, 'import pygame\n'), ((2075, 2086), 'time.time', 'time.time', ([], {}), '()\n', (2084, 2086), False, 'import time\n'), ((2819, 2834), 'random.randint', 'randint', (['(-50)', '(0)'], {}), '(-50, 0)\n', (2826, 2834), False, 'from random import randint\n'), ((2849, 2865), 'random.randint', 'randint', (['(80)', '(620)'], {}), '(80, 620)\n', (2856, 2865), False, 'from random import randint\n'), ((2882, 2895), 'random.randint', 'randint', (['(1)', '(2)'], {}), '(1, 2)\n', (2889, 2895), False, 'from random import randint\n'), ((3040, 3056), 'random.randint', 'randint', (['(-100)', '(0)'], {}), '(-100, 0)\n', (3047, 3056), False, 'from random import randint\n'), ((3071, 3087), 'random.randint', 'randint', (['(80)', '(620)'], {}), '(80, 620)\n', (3078, 3087), False, 'from random import randint\n'), ((3103, 3116), 'random.randint', 'randint', (['(2)', '(3)'], {}), '(2, 3)\n', (3110, 3116), False, 'from random import randint\n'), ((3872, 3883), 'time.time', 'time.time', ([], {}), '()\n', (3881, 3883), False, 'import time\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2019 Civic Knowledge. This file is licensed under the terms of the # MIT License, included in this distribution as LICENSE """ """ from os import environ from pathlib import Path from .exceptions import ConfigurationError import yaml class Config(object): def __init__(self, path=None, **kwargs): """ :param path: A path in which to look for config. Prepended to search paths kwargs set top level value. Special handling for cache keys; kwargs of the form "cache_object" will set the 'object' key of the top level 'cache' dict. So to change the object cache: Config(cache_object="/tmp") Equivalently, the values in the config file in the 'cache" dict are flattened, so 'cache->meta' is translated to 'cache_meta' """ self.parameters = 'client_id secret bbox zone uaa_url metadata_url event_url _config_file ' \ 'start_time timezone cache_meta cache_objects cache_errors'.split() self.env_vars = {e: f"CITYIQ_{e.upper()}" for e in self.parameters} if not path: self._paths = [ Path.cwd().joinpath('.city-iq.yaml'), Path.cwd().joinpath('city-iq.yaml'), Path.home().joinpath('.city-iq.yaml'), ] else: if Path(path).is_dir(): self._paths = [ Path(path).joinpath(e) for e in ['.city-iq.yaml', 'city-iq.yaml']] else: self._paths = [Path(path)] if environ.get('CITYIQ_CONFIG'): self._paths = [Path(environ.get('CITYIQ_CONFIG'))] + self._paths self._kwargs = kwargs self._config = self._load_config() if 'cache' in self._config: for k, v in self._config['cache'].items(): self._config['cache_'+k] = v del self._config['cache'] def _load_config(self): """ Load a YAML configuration from the first configuration file that is found to exist :return: """ for p in self._paths: if p.exists(): with p.open() as f: c = yaml.safe_load(f) if c: c['_config_file'] = str(p) return c else: raise ConfigurationError(f"Didn't find a config file in paths: {self._paths}") return {} @property def which(self): return self._config_file @property def dict(self): d = {k: self[k] for k in self.parameters} for k, v in self._config.items(): if k not in d: d[k] = v return d def __getattr__(self, item): try: return self._kwargs[item] except KeyError: pass try: return environ[self.env_vars[item]] except KeyError: pass try: return self._config[item] except KeyError: pass if item not in self.parameters: raise AttributeError(item) return None def __getitem__(self, item): try: return self.__getattr__(item) except AttributeError: raise IndexError(item) def __str__(self): import yaml return yaml.dump(self.dict, default_flow_style=False)
[ "pathlib.Path", "pathlib.Path.cwd", "yaml.dump", "pathlib.Path.home", "os.environ.get", "yaml.safe_load" ]
[((1566, 1594), 'os.environ.get', 'environ.get', (['"""CITYIQ_CONFIG"""'], {}), "('CITYIQ_CONFIG')\n", (1577, 1594), False, 'from os import environ\n'), ((3368, 3414), 'yaml.dump', 'yaml.dump', (['self.dict'], {'default_flow_style': '(False)'}), '(self.dict, default_flow_style=False)\n', (3377, 3414), False, 'import yaml\n'), ((1373, 1383), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (1377, 1383), False, 'from pathlib import Path\n'), ((1542, 1552), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (1546, 1552), False, 'from pathlib import Path\n'), ((2206, 2223), 'yaml.safe_load', 'yaml.safe_load', (['f'], {}), '(f)\n', (2220, 2223), False, 'import yaml\n'), ((1184, 1194), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (1192, 1194), False, 'from pathlib import Path\n'), ((1238, 1248), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (1246, 1248), False, 'from pathlib import Path\n'), ((1291, 1302), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (1300, 1302), False, 'from pathlib import Path\n'), ((1628, 1656), 'os.environ.get', 'environ.get', (['"""CITYIQ_CONFIG"""'], {}), "('CITYIQ_CONFIG')\n", (1639, 1656), False, 'from os import environ\n'), ((1426, 1436), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (1430, 1436), False, 'from pathlib import Path\n')]
# Sound field reconstruction in rooms: inpainting meets superresolution - 17.12.2019 # Inference.py import sys import os import util import sfun import data import copy import numpy as np sys.path.append('util') def get_latest_checkpoint_path(session_dir): """ Returns the path of the most recent checkpoint in session_dir. Args: session_dir: string Returns: string """ checkpoints_path = os.path.join(session_dir, 'checkpoints') if os.path.exists(checkpoints_path) and util.dir_contains_files(checkpoints_path): checkpoints = os.listdir(checkpoints_path) checkpoints.sort(key=lambda x: os.stat(os.path.join(checkpoints_path, x)).st_mtime) last_checkpoint = checkpoints[-1] return os.path.join(checkpoints_path, last_checkpoint) else: return '' def get_results_dict(): """ Get the dictionary to save results. Returns: dict """ return {'name': [], 'num_file': [], 'xDim': [], 'yDim': [], 'm2': [], 'num_mics': [], 'num_comb': [], 'freq': [], 'NMSE': [], 'SSIM': [], 'pattern': [], 'p_real': [], 'p_predicted': [], 'p_previous': []} def get_test_filenames(test_path): """ Get the .mat filenames given a folder path. Args: test_path: string Returns: string """ filenames = [filename for filename in os.listdir(test_path) if filename.endswith('.mat')] return filenames def reconstruct_soundfield(model, sf_sample, mask, factor, frequencies, filename, num_file, com_num, results_dict): """ Reconstruct and evaluate sound field Args: model: keras model sf_sample: np.ndarray factor: int frequencies: list filename: string num_file: int com_num: int results_dict: dict Returns: dict """ # Create one sample batch. Expand dims sf_sample = np.expand_dims(sf_sample, axis=0) sf_gt = copy.deepcopy(sf_sample) mask = np.expand_dims(mask, axis=0) mask_gt = copy.deepcopy(mask) # preprocessing irregular_sf, mask = util.preprocessing(factor, sf_sample, mask) #predict sound field pred_sf = model.predict([irregular_sf, mask]) #measured observations. To use in postprocessing measured_sf = util.downsampling(factor, copy.deepcopy(sf_gt)) measured_sf = util.apply_mask(measured_sf, mask_gt) #compute csv fields split_filename = filename[:-4].split('_') pattern = np.where(mask_gt[0, :, :, 0].flatten() == 1)[0] num_mic = len(pattern) for freq_num, freq in enumerate(frequencies): #Postprocessing reconstructed_sf_slice = util.postprocessing(pred_sf, measured_sf, freq_num, pattern, factor) #Compute Metrics reconstructed_sf_slice = util.postprocessing(pred_sf, measured_sf, freq_num, pattern, factor) nmse = util.compute_NMSE(sf_gt[0, :, :, freq_num], reconstructed_sf_slice) data_range = sf_gt[0, :, :, freq_num].max() - sf_gt[0, :, :, freq_num].min() ssim = util.compute_SSIM(sf_gt[0, :, :, freq_num].astype('float32'), reconstructed_sf_slice, data_range) average_pressure_real = util.compute_average_pressure(sf_gt[0, :, :, freq_num]) average_pressure_predicted = util.compute_average_pressure(reconstructed_sf_slice) average_pressure_previous = util.compute_average_pressure(measured_sf[0, :, :, freq_num]) #store results results_dict['freq'].append(freq) results_dict['name'].append(filename[:-4]) results_dict['xDim'].append(split_filename[2]) results_dict['yDim'].append(split_filename[3]) results_dict['m2'].append(split_filename[4]) results_dict['num_mics'].append(num_mic) results_dict['num_comb'].append(com_num) results_dict['num_file'].append(num_file) results_dict['pattern'].append(pattern) results_dict['NMSE'].append(nmse) results_dict['SSIM'].append(ssim) results_dict['p_real'].append(average_pressure_real) results_dict['p_predicted'].append(average_pressure_predicted) results_dict['p_previous'].append(average_pressure_previous) return results_dict def real_data_evaluation(config_path): """ Evaluates a trained model on real data. Args: config_path: string """ config = util.load_config(config_path) print('Loaded configuration from: %s' % config_path) session_dir = config_path[:config_path.rfind('/')+1] checkpoint_path = get_latest_checkpoint_path(session_dir) if not checkpoint_path: print('Error: No checkpoint found in same directory as configuration file.') return model = sfun.SFUN(config, train_bn=False) predict_path = os.path.join(session_dir, 'real_data_evaluation', 'min_mics_' + str(config['evaluation']['min_mics']) + '_max_mics_' + str(config['evaluation']['max_mics']) + '_step_mics_' + str(config['evaluation']['step_mics'])) if not os.path.exists(predict_path): os.makedirs(predict_path) filepath = os.path.join(config['dataset']['path'], 'real_soundfields','RoomB_soundfield.mat') # Get Ground Truth soundfield_1 = util.load_RoomB_soundfield(filepath, 0) soundfield_2 = util.load_RoomB_soundfield(filepath, 1) frequencies = util.get_frequencies() results_dict = get_results_dict() print('\nEvaluating model in real sound fields...\n') for num_mics in range(config['evaluation']['min_mics'], config['evaluation']['max_mics'], config['evaluation']['step_mics']): for source_num, source in enumerate(['source_1', 'source_2']): mask_generator = data.MaskGenerator(config['dataset']['xSamples']//config['dataset']['factor'], config['dataset']['ySamples']//config['dataset']['factor'], len(frequencies), num_mics=num_mics, rand_seed=3) for com_num in range(config['evaluation']['num_comb']): print("\twith "+ str(num_mics) + " mics, pattern number " + str(com_num) + " and source position " + str(source_num)) if source_num: input_soundfield = copy.deepcopy(soundfield_2) else: input_soundfield = copy.deepcopy(soundfield_1) mask = mask_generator.sample() filename = str(source_num) + '_d_4.159_6.459_26.862.mat' results_dict = reconstruct_soundfield(model, input_soundfield, mask, config['dataset']['factor'], frequencies, filename, source_num, com_num, results_dict) print('\nWriting real room results...\n') util.write_results(os.path.join(predict_path, 'results_RoomB_Dataset.csv'), results_dict) print('Analysing and plotting results...') util.analyze_and_plot_real_results(os.path.join(predict_path, 'results_RoomB_Dataset.csv'), config) print('Evaluation completed!') def simulated_data_evaluation(config_path): """ Evaluates a trained model on simulated data. Args: config_path: string """ config = util.load_config(config_path) print('Loaded configuration from: %s' % config_path) session_dir = config_path[:config_path.rfind('/')+1] checkpoint_path = get_latest_checkpoint_path(session_dir) if not checkpoint_path: # Model weights are loaded when creating the model object print('Error: No checkpoint found in same directory as configuration file.') return model = sfun.SFUN(config, train_bn=False) evaluation_path = os.path.join(session_dir, 'simulated_data_evaluation', 'min_mics_' + str(config['evaluation']['min_mics']) + '_max_mics_' + str(config['evaluation']['max_mics']) + '_step_mics_' + str(config['evaluation']['step_mics'])) if not os.path.exists(evaluation_path): os.makedirs(evaluation_path) test_path = os.path.join(config['dataset']['path'], 'simulated_soundfields', 'test') filenames = get_test_filenames(test_path) frequencies = util.get_frequencies() for num_file, filename in enumerate(sorted(filenames)): print('\nEvaluating model in simulated room ' + str(num_file) + '...\n') aux_sound = util.load_soundfield(os.path.join(test_path, filename), frequencies) results_dict = get_results_dict() for num_mics in range(config['evaluation']['min_mics'], config['evaluation']['max_mics'], config['evaluation']['step_mics']): mask_generator = data.MaskGenerator(config['dataset']['xSamples']//config['dataset']['factor'], config['dataset']['ySamples']//config['dataset']['factor'], len(frequencies), num_mics=num_mics, rand_seed=3) for com_num in range(config['evaluation']['num_comb']): soundfield_input = copy.deepcopy(aux_sound) mask = mask_generator.sample() print("\twith "+ str(num_mics) + " mics and pattern number " + str(com_num)) results_dict = reconstruct_soundfield(model, soundfield_input, mask, config['dataset']['factor'], frequencies, filename, num_file, com_num, results_dict) com_num += 1 filename = 'results_file_number_' + str(num_file) + '.csv' print('\nWriting simulated room ' + str(num_file) + ' results...\n') util.write_results(os.path.join(evaluation_path, filename), results_dict) print('Analysing and plotting results...') util.analyze_and_plot_simulated_results(evaluation_path, session_dir, config) print('Evaluation completed!') def visualize(config_path): """ Plot predictions of trained model on real data. Args: config_path: string """ config = util.load_config(config_path) print('Loaded configuration from: %s' % config_path) frequencies = util.get_frequencies() session_dir = config_path[:config_path.rfind('/')+1] checkpoint_path = get_latest_checkpoint_path(session_dir) if not checkpoint_path: print('Error: No checkpoint found in same directory as configuration file.') return model = sfun.SFUN(config, train_bn=False) visualization_path = os.path.join(session_dir, 'visualization') if not os.path.exists(visualization_path): os.makedirs(visualization_path) filepath = os.path.join(config['dataset']['path'], 'real_soundfields','RoomB_soundfield.mat') mask_generator = data.MaskGenerator(config['dataset']['xSamples']//config['dataset']['factor'], config['dataset']['ySamples']//config['dataset']['factor'], len(frequencies), num_mics=config['visualization']['num_mics']) # Get measured sound field sf_sample = util.load_RoomB_soundfield(filepath, config['visualization']['source']) sf_gt = np.expand_dims(copy.deepcopy(sf_sample), axis=0) initial_sf = np.expand_dims(sf_sample, axis=0) # Get mask samples mask = mask_generator.sample() mask = np.expand_dims(mask, axis=0) # preprocessing irregular_sf, mask = util.preprocessing(config['dataset']['factor'], initial_sf, mask) # Scale ground truth sound field sf_gt = util.scale(sf_gt) print('\nPlotting Ground Truth Sound Field Scaled...') for num_freq, freq in enumerate(frequencies): print('\tat frequency ' + str(freq)) util.plot_2D(sf_gt[0, ..., num_freq], os.path.join(visualization_path, str(freq) + '_Hz_Ground_Truth.png')) print('\nPlotting Irregular Sound Field...') for num_freq, freq in enumerate(frequencies): print('\tat frequency ' + str(freq)) util.plot_2D(irregular_sf[0, ..., num_freq], os.path.join(visualization_path, str(freq) + '_Hz_Irregular_SF.png')) print('\nPlotting Mask...') for num_freq, freq in enumerate(frequencies): print('\tat frequency ' + str(freq)) util.plot_2D(mask[0, ..., num_freq], os.path.join(visualization_path, str(freq) + '_Hz_Mask.png')) pred_sf = model.predict([irregular_sf, mask]) print('\nPlotting Predicted Sound Field...') for num_freq, freq in enumerate(frequencies): print('\tat frequency ' + str(freq)) util.plot_2D(pred_sf[0, ..., num_freq], os.path.join(visualization_path, str(freq) + '_Hz_Pred_SF.png'))
[ "sfun.SFUN", "util.postprocessing", "util.preprocessing", "util.load_RoomB_soundfield", "copy.deepcopy", "sys.path.append", "os.path.exists", "os.listdir", "util.analyze_and_plot_simulated_results", "util.load_config", "util.get_frequencies", "util.compute_average_pressure", "util.apply_mask", "util.scale", "util.compute_NMSE", "util.dir_contains_files", "os.makedirs", "os.path.join", "numpy.expand_dims" ]
[((190, 213), 'sys.path.append', 'sys.path.append', (['"""util"""'], {}), "('util')\n", (205, 213), False, 'import sys\n'), ((431, 471), 'os.path.join', 'os.path.join', (['session_dir', '"""checkpoints"""'], {}), "(session_dir, 'checkpoints')\n", (443, 471), False, 'import os\n'), ((1921, 1954), 'numpy.expand_dims', 'np.expand_dims', (['sf_sample'], {'axis': '(0)'}), '(sf_sample, axis=0)\n', (1935, 1954), True, 'import numpy as np\n'), ((1967, 1991), 'copy.deepcopy', 'copy.deepcopy', (['sf_sample'], {}), '(sf_sample)\n', (1980, 1991), False, 'import copy\n'), ((2004, 2032), 'numpy.expand_dims', 'np.expand_dims', (['mask'], {'axis': '(0)'}), '(mask, axis=0)\n', (2018, 2032), True, 'import numpy as np\n'), ((2047, 2066), 'copy.deepcopy', 'copy.deepcopy', (['mask'], {}), '(mask)\n', (2060, 2066), False, 'import copy\n'), ((2113, 2156), 'util.preprocessing', 'util.preprocessing', (['factor', 'sf_sample', 'mask'], {}), '(factor, sf_sample, mask)\n', (2131, 2156), False, 'import util\n'), ((2371, 2408), 'util.apply_mask', 'util.apply_mask', (['measured_sf', 'mask_gt'], {}), '(measured_sf, mask_gt)\n', (2386, 2408), False, 'import util\n'), ((4376, 4405), 'util.load_config', 'util.load_config', (['config_path'], {}), '(config_path)\n', (4392, 4405), False, 'import util\n'), ((4725, 4758), 'sfun.SFUN', 'sfun.SFUN', (['config'], {'train_bn': '(False)'}), '(config, train_bn=False)\n', (4734, 4758), False, 'import sfun\n'), ((5148, 5235), 'os.path.join', 'os.path.join', (["config['dataset']['path']", '"""real_soundfields"""', '"""RoomB_soundfield.mat"""'], {}), "(config['dataset']['path'], 'real_soundfields',\n 'RoomB_soundfield.mat')\n", (5160, 5235), False, 'import os\n'), ((5274, 5313), 'util.load_RoomB_soundfield', 'util.load_RoomB_soundfield', (['filepath', '(0)'], {}), '(filepath, 0)\n', (5300, 5313), False, 'import util\n'), ((5333, 5372), 'util.load_RoomB_soundfield', 'util.load_RoomB_soundfield', (['filepath', '(1)'], {}), '(filepath, 1)\n', (5359, 5372), False, 'import util\n'), ((5393, 5415), 'util.get_frequencies', 'util.get_frequencies', ([], {}), '()\n', (5413, 5415), False, 'import util\n'), ((7168, 7197), 'util.load_config', 'util.load_config', (['config_path'], {}), '(config_path)\n', (7184, 7197), False, 'import util\n'), ((7576, 7609), 'sfun.SFUN', 'sfun.SFUN', (['config'], {'train_bn': '(False)'}), '(config, train_bn=False)\n', (7585, 7609), False, 'import sfun\n'), ((8011, 8083), 'os.path.join', 'os.path.join', (["config['dataset']['path']", '"""simulated_soundfields"""', '"""test"""'], {}), "(config['dataset']['path'], 'simulated_soundfields', 'test')\n", (8023, 8083), False, 'import os\n'), ((8149, 8171), 'util.get_frequencies', 'util.get_frequencies', ([], {}), '()\n', (8169, 8171), False, 'import util\n'), ((9603, 9680), 'util.analyze_and_plot_simulated_results', 'util.analyze_and_plot_simulated_results', (['evaluation_path', 'session_dir', 'config'], {}), '(evaluation_path, session_dir, config)\n', (9642, 9680), False, 'import util\n'), ((9869, 9898), 'util.load_config', 'util.load_config', (['config_path'], {}), '(config_path)\n', (9885, 9898), False, 'import util\n'), ((9975, 9997), 'util.get_frequencies', 'util.get_frequencies', ([], {}), '()\n', (9995, 9997), False, 'import util\n'), ((10260, 10293), 'sfun.SFUN', 'sfun.SFUN', (['config'], {'train_bn': '(False)'}), '(config, train_bn=False)\n', (10269, 10293), False, 'import sfun\n'), ((10320, 10362), 'os.path.join', 'os.path.join', (['session_dir', '"""visualization"""'], {}), "(session_dir, 'visualization')\n", (10332, 10362), False, 'import os\n'), ((10458, 10545), 'os.path.join', 'os.path.join', (["config['dataset']['path']", '"""real_soundfields"""', '"""RoomB_soundfield.mat"""'], {}), "(config['dataset']['path'], 'real_soundfields',\n 'RoomB_soundfield.mat')\n", (10470, 10545), False, 'import os\n'), ((10814, 10885), 'util.load_RoomB_soundfield', 'util.load_RoomB_soundfield', (['filepath', "config['visualization']['source']"], {}), "(filepath, config['visualization']['source'])\n", (10840, 10885), False, 'import util\n'), ((10964, 10997), 'numpy.expand_dims', 'np.expand_dims', (['sf_sample'], {'axis': '(0)'}), '(sf_sample, axis=0)\n', (10978, 10997), True, 'import numpy as np\n'), ((11068, 11096), 'numpy.expand_dims', 'np.expand_dims', (['mask'], {'axis': '(0)'}), '(mask, axis=0)\n', (11082, 11096), True, 'import numpy as np\n'), ((11143, 11208), 'util.preprocessing', 'util.preprocessing', (["config['dataset']['factor']", 'initial_sf', 'mask'], {}), "(config['dataset']['factor'], initial_sf, mask)\n", (11161, 11208), False, 'import util\n'), ((11259, 11276), 'util.scale', 'util.scale', (['sf_gt'], {}), '(sf_gt)\n', (11269, 11276), False, 'import util\n'), ((479, 511), 'os.path.exists', 'os.path.exists', (['checkpoints_path'], {}), '(checkpoints_path)\n', (493, 511), False, 'import os\n'), ((516, 557), 'util.dir_contains_files', 'util.dir_contains_files', (['checkpoints_path'], {}), '(checkpoints_path)\n', (539, 557), False, 'import util\n'), ((581, 609), 'os.listdir', 'os.listdir', (['checkpoints_path'], {}), '(checkpoints_path)\n', (591, 609), False, 'import os\n'), ((759, 806), 'os.path.join', 'os.path.join', (['checkpoints_path', 'last_checkpoint'], {}), '(checkpoints_path, last_checkpoint)\n', (771, 806), False, 'import os\n'), ((2331, 2351), 'copy.deepcopy', 'copy.deepcopy', (['sf_gt'], {}), '(sf_gt)\n', (2344, 2351), False, 'import copy\n'), ((2678, 2746), 'util.postprocessing', 'util.postprocessing', (['pred_sf', 'measured_sf', 'freq_num', 'pattern', 'factor'], {}), '(pred_sf, measured_sf, freq_num, pattern, factor)\n', (2697, 2746), False, 'import util\n'), ((2806, 2874), 'util.postprocessing', 'util.postprocessing', (['pred_sf', 'measured_sf', 'freq_num', 'pattern', 'factor'], {}), '(pred_sf, measured_sf, freq_num, pattern, factor)\n', (2825, 2874), False, 'import util\n'), ((2890, 2957), 'util.compute_NMSE', 'util.compute_NMSE', (['sf_gt[0, :, :, freq_num]', 'reconstructed_sf_slice'], {}), '(sf_gt[0, :, :, freq_num], reconstructed_sf_slice)\n', (2907, 2957), False, 'import util\n'), ((3190, 3245), 'util.compute_average_pressure', 'util.compute_average_pressure', (['sf_gt[0, :, :, freq_num]'], {}), '(sf_gt[0, :, :, freq_num])\n', (3219, 3245), False, 'import util\n'), ((3283, 3336), 'util.compute_average_pressure', 'util.compute_average_pressure', (['reconstructed_sf_slice'], {}), '(reconstructed_sf_slice)\n', (3312, 3336), False, 'import util\n'), ((3373, 3434), 'util.compute_average_pressure', 'util.compute_average_pressure', (['measured_sf[0, :, :, freq_num]'], {}), '(measured_sf[0, :, :, freq_num])\n', (3402, 3434), False, 'import util\n'), ((5075, 5103), 'os.path.exists', 'os.path.exists', (['predict_path'], {}), '(predict_path)\n', (5089, 5103), False, 'import os\n'), ((5105, 5130), 'os.makedirs', 'os.makedirs', (['predict_path'], {}), '(predict_path)\n', (5116, 5130), False, 'import os\n'), ((6744, 6799), 'os.path.join', 'os.path.join', (['predict_path', '"""results_RoomB_Dataset.csv"""'], {}), "(predict_path, 'results_RoomB_Dataset.csv')\n", (6756, 6799), False, 'import os\n'), ((6902, 6957), 'os.path.join', 'os.path.join', (['predict_path', '"""results_RoomB_Dataset.csv"""'], {}), "(predict_path, 'results_RoomB_Dataset.csv')\n", (6914, 6957), False, 'import os\n'), ((7932, 7963), 'os.path.exists', 'os.path.exists', (['evaluation_path'], {}), '(evaluation_path)\n', (7946, 7963), False, 'import os\n'), ((7965, 7993), 'os.makedirs', 'os.makedirs', (['evaluation_path'], {}), '(evaluation_path)\n', (7976, 7993), False, 'import os\n'), ((10374, 10408), 'os.path.exists', 'os.path.exists', (['visualization_path'], {}), '(visualization_path)\n', (10388, 10408), False, 'import os\n'), ((10410, 10441), 'os.makedirs', 'os.makedirs', (['visualization_path'], {}), '(visualization_path)\n', (10421, 10441), False, 'import os\n'), ((10913, 10937), 'copy.deepcopy', 'copy.deepcopy', (['sf_sample'], {}), '(sf_sample)\n', (10926, 10937), False, 'import copy\n'), ((1351, 1372), 'os.listdir', 'os.listdir', (['test_path'], {}), '(test_path)\n', (1361, 1372), False, 'import os\n'), ((8355, 8388), 'os.path.join', 'os.path.join', (['test_path', 'filename'], {}), '(test_path, filename)\n', (8367, 8388), False, 'import os\n'), ((9496, 9535), 'os.path.join', 'os.path.join', (['evaluation_path', 'filename'], {}), '(evaluation_path, filename)\n', (9508, 9535), False, 'import os\n'), ((8902, 8926), 'copy.deepcopy', 'copy.deepcopy', (['aux_sound'], {}), '(aux_sound)\n', (8915, 8926), False, 'import copy\n'), ((6208, 6235), 'copy.deepcopy', 'copy.deepcopy', (['soundfield_2'], {}), '(soundfield_2)\n', (6221, 6235), False, 'import copy\n'), ((6297, 6324), 'copy.deepcopy', 'copy.deepcopy', (['soundfield_1'], {}), '(soundfield_1)\n', (6310, 6324), False, 'import copy\n'), ((657, 690), 'os.path.join', 'os.path.join', (['checkpoints_path', 'x'], {}), '(checkpoints_path, x)\n', (669, 690), False, 'import os\n')]
""" Author: <NAME> Date: 15 May 2021 """ import json import pytest from flask import Response from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string @FlaskTestRig.setup_app(n_users=3) def test_get_user_me_no_auth(client_factory, make_users, **kwargs): """ Validate an Unauthorised error is returned when attempting to get a users information on a GET request to /api/v1/user/me endpoint without being authenticated. :endpoint: /api/v1/users/me :method: GET :auth: False :params: None :status: 401 :response: An unauthorised error. """ rig: FlaskTestRig = FlaskTestRig.extract_rig_from_kwargs(kwargs) expected = { "error": "Unauthorised", "message": "Invalid credentials." } # Make request and gather response. res: Response = rig.client.get("/api/v1/users/me") # Get JSON data returned. data = json.loads(res.data) # Verify response matches expected. assert data == expected assert res.status_code == 401 @FlaskTestRig.setup_app(n_users=3) def test_get_user_me_with_auth_user_200(client_factory, make_users, **kwargs): """ Validate the current user's information is returned on a GET request to /users endpoint. :endpoint: /api/v1/user/me :method: GET :auth: True :params: Auth Token :status: 200 :response: A object describing the current user. """ rig: FlaskTestRig = FlaskTestRig.extract_rig_from_kwargs(kwargs) expected = rig.get_first_user() expected.pop("last_login") # Acquire login token for first user. user = rig.get_first_user(keep_password=True) token = login(rig.client, user) # Make request and gather response. res: Response = rig.client.get("/api/v1/users/me", headers=token_auth_header_field(token)) # Get JSON data returned. data = json.loads(res.data) data.pop("last_login") # Verify response matches expected. assert data == expected assert res.status_code == 200 @FlaskTestRig.setup_app(n_users=4) @pytest.mark.parametrize("user_id", [1, 2, 3]) def test_get_user_with_id_with_auth_user(user_id, client_factory, make_users, **kwargs): """ Validate the current user's information is returned on a GET request to /users endpoint as a User. :endpoint: /api/v1/user/<int:id> :method: GET :auth: True :params: Auth Token, A user ID to get information on. :status: 200 :response: A object describing a user given the user's id, including the id, username and last_login time. """ rig: FlaskTestRig = FlaskTestRig.extract_rig_from_kwargs(kwargs) # The expected user information to be returned. expected = rig.get_current_users(keep_email=False)[user_id] print(expected) # Acquire login token for first user. user = rig.get_first_user(keep_password=True) token = login(rig.client, user) # Make request and gather response. res: Response = rig.client.get(f"/api/v1/users/{user_id}", headers=token_auth_header_field(token)) # Get JSON data returned. data = json.loads(res.data) # Add the last_login field to the expected data. expected = [{**user, "last_login": datetime_as_string(user["last_login"])} for user in [expected]][0] # Verify response matches expected. assert data == expected assert res.status_code == 200 @FlaskTestRig.setup_app(n_users=3) def test_get_user_with_id_with_auth_user_404(client_factory, make_users, **kwargs): """ Validate that a 404 error is raised when a non-existing id is queried against the database as a User. :endpoint: /api/v1/user/<int:id> :method: GET :auth: True :params: Auth Token, A user ID to get information on. :status: 404 :response: 404 error due to user not existing. """ rig: FlaskTestRig = FlaskTestRig.extract_rig_from_kwargs(kwargs) user_id = 100 expected = {'error': 'Not Found', 'message': 'User does not exist.'} # Acquire login token for first user. user = rig.get_first_user(keep_password=True) token = login(rig.client, user) # Make request and gather response. res: Response = rig.client.get(f"/api/v1/users/{user_id}", headers=token_auth_header_field(token)) # Get JSON data returned. data = json.loads(res.data) # Verify response matches expected. assert data == expected assert res.status_code == 404 @FlaskTestRig.setup_app(n_users=4) @pytest.mark.parametrize("user_id", [1, 2, 3]) def test_get_users_with_auth_admin(user_id, client_factory, make_users, **kwargs): """ Validate the a user keyed by their ID is returned on a GET request to /users endpoint as an Admin. :endpoint: /api/v1/user/<int:id> :method: GET :auth: True :params: Auth Token, A user ID to get information on. :status: 200 :response: A object describing a user given the user's id, including the id, username and last_login time. """ rig: FlaskTestRig = FlaskTestRig.extract_rig_from_kwargs(kwargs) # The expected user information to be returned. expected = rig.get_current_users(keep_email=True, keep_role_name=user_id)[user_id] expected.pop("last_login") print(expected) # Acquire login token for first user. user = rig.get_first_user(keep_email=True, admin_only=True) token = login(rig.client, user) # Make request and gather response. res: Response = rig.client.get(f"/api/v1/users/{user_id}", headers=token_auth_header_field(token)) # Get JSON data returned. data = json.loads(res.data) data.pop("last_login") # Verify response matches expected. assert data == expected assert res.status_code == 200 @FlaskTestRig.setup_app(n_users=3) def test_get_user_with_id_with_auth_admin_404(client_factory, make_users, **kwargs): """ Validate that a 404 error is raised when a non-existing id is queried against the database as a Admin. :endpoint: /api/v1/user/<int:id> :method: GET :auth: True :params: Auth Token, A user ID to get information on. :status: 404 :response: 404 error due to user not existing. """ rig: FlaskTestRig = FlaskTestRig.extract_rig_from_kwargs(kwargs) user_id = 100 expected = {'error': 'Not Found', 'message': 'User does not exist.'} # Acquire login token for first user. user = rig.get_first_user(keep_password=True, admin_only=True) token = login(rig.client, user) # Make request and gather response. res: Response = rig.client.get(f"/api/v1/users/{user_id}", headers=token_auth_header_field(token)) # Get JSON data returned. data = json.loads(res.data) # Verify response matches expected. assert data == expected assert res.status_code == 404
[ "json.loads", "tests.functional.utils.datetime_as_string", "tests.functional.utils.FlaskTestRig.extract_rig_from_kwargs", "pytest.mark.parametrize", "tests.functional.utils.token_auth_header_field", "tests.functional.utils.FlaskTestRig.setup_app", "tests.functional.utils.login" ]
[((210, 243), 'tests.functional.utils.FlaskTestRig.setup_app', 'FlaskTestRig.setup_app', ([], {'n_users': '(3)'}), '(n_users=3)\n', (232, 243), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((1089, 1122), 'tests.functional.utils.FlaskTestRig.setup_app', 'FlaskTestRig.setup_app', ([], {'n_users': '(3)'}), '(n_users=3)\n', (1111, 1122), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((2088, 2121), 'tests.functional.utils.FlaskTestRig.setup_app', 'FlaskTestRig.setup_app', ([], {'n_users': '(4)'}), '(n_users=4)\n', (2110, 2121), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((2123, 2168), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""user_id"""', '[1, 2, 3]'], {}), "('user_id', [1, 2, 3])\n", (2146, 2168), False, 'import pytest\n'), ((3479, 3512), 'tests.functional.utils.FlaskTestRig.setup_app', 'FlaskTestRig.setup_app', ([], {'n_users': '(3)'}), '(n_users=3)\n', (3501, 3512), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((4540, 4573), 'tests.functional.utils.FlaskTestRig.setup_app', 'FlaskTestRig.setup_app', ([], {'n_users': '(4)'}), '(n_users=4)\n', (4562, 4573), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((4575, 4620), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""user_id"""', '[1, 2, 3]'], {}), "('user_id', [1, 2, 3])\n", (4598, 4620), False, 'import pytest\n'), ((5860, 5893), 'tests.functional.utils.FlaskTestRig.setup_app', 'FlaskTestRig.setup_app', ([], {'n_users': '(3)'}), '(n_users=3)\n', (5882, 5893), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((680, 724), 'tests.functional.utils.FlaskTestRig.extract_rig_from_kwargs', 'FlaskTestRig.extract_rig_from_kwargs', (['kwargs'], {}), '(kwargs)\n', (716, 724), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((962, 982), 'json.loads', 'json.loads', (['res.data'], {}), '(res.data)\n', (972, 982), False, 'import json\n'), ((1514, 1558), 'tests.functional.utils.FlaskTestRig.extract_rig_from_kwargs', 'FlaskTestRig.extract_rig_from_kwargs', (['kwargs'], {}), '(kwargs)\n', (1550, 1558), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((1732, 1755), 'tests.functional.utils.login', 'login', (['rig.client', 'user'], {}), '(rig.client, user)\n', (1737, 1755), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((1934, 1954), 'json.loads', 'json.loads', (['res.data'], {}), '(res.data)\n', (1944, 1954), False, 'import json\n'), ((2694, 2738), 'tests.functional.utils.FlaskTestRig.extract_rig_from_kwargs', 'FlaskTestRig.extract_rig_from_kwargs', (['kwargs'], {}), '(kwargs)\n', (2730, 2738), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((2982, 3005), 'tests.functional.utils.login', 'login', (['rig.client', 'user'], {}), '(rig.client, user)\n', (2987, 3005), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((3192, 3212), 'json.loads', 'json.loads', (['res.data'], {}), '(res.data)\n', (3202, 3212), False, 'import json\n'), ((3960, 4004), 'tests.functional.utils.FlaskTestRig.extract_rig_from_kwargs', 'FlaskTestRig.extract_rig_from_kwargs', (['kwargs'], {}), '(kwargs)\n', (3996, 4004), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((4203, 4226), 'tests.functional.utils.login', 'login', (['rig.client', 'user'], {}), '(rig.client, user)\n', (4208, 4226), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((4413, 4433), 'json.loads', 'json.loads', (['res.data'], {}), '(res.data)\n', (4423, 4433), False, 'import json\n'), ((5140, 5184), 'tests.functional.utils.FlaskTestRig.extract_rig_from_kwargs', 'FlaskTestRig.extract_rig_from_kwargs', (['kwargs'], {}), '(kwargs)\n', (5176, 5184), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((5496, 5519), 'tests.functional.utils.login', 'login', (['rig.client', 'user'], {}), '(rig.client, user)\n', (5501, 5519), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((5706, 5726), 'json.loads', 'json.loads', (['res.data'], {}), '(res.data)\n', (5716, 5726), False, 'import json\n'), ((6343, 6387), 'tests.functional.utils.FlaskTestRig.extract_rig_from_kwargs', 'FlaskTestRig.extract_rig_from_kwargs', (['kwargs'], {}), '(kwargs)\n', (6379, 6387), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((6603, 6626), 'tests.functional.utils.login', 'login', (['rig.client', 'user'], {}), '(rig.client, user)\n', (6608, 6626), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((6813, 6833), 'json.loads', 'json.loads', (['res.data'], {}), '(res.data)\n', (6823, 6833), False, 'import json\n'), ((1860, 1890), 'tests.functional.utils.token_auth_header_field', 'token_auth_header_field', (['token'], {}), '(token)\n', (1883, 1890), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((3118, 3148), 'tests.functional.utils.token_auth_header_field', 'token_auth_header_field', (['token'], {}), '(token)\n', (3141, 3148), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((4339, 4369), 'tests.functional.utils.token_auth_header_field', 'token_auth_header_field', (['token'], {}), '(token)\n', (4362, 4369), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((5632, 5662), 'tests.functional.utils.token_auth_header_field', 'token_auth_header_field', (['token'], {}), '(token)\n', (5655, 5662), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((6739, 6769), 'tests.functional.utils.token_auth_header_field', 'token_auth_header_field', (['token'], {}), '(token)\n', (6762, 6769), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n'), ((3306, 3344), 'tests.functional.utils.datetime_as_string', 'datetime_as_string', (["user['last_login']"], {}), "(user['last_login'])\n", (3324, 3344), False, 'from tests.functional.utils import FlaskTestRig, login, token_auth_header_field, datetime_as_string\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('userprofile', '0001_initial'), ] operations = [ migrations.AddField( model_name='userprofile', name='about_me', field=models.TextField(default=b'Something about myself...'), ), migrations.AddField( model_name='userprofile', name='city', field=models.CharField(default=b'Single City', max_length=20), ), migrations.AlterField( model_name='userprofile', name='gender', field=models.CharField(max_length=1, choices=[(b'M', b'Male'), (b'F', b'Female')]), ), migrations.AlterField( model_name='userprofile', name='proximity', field=models.IntegerField(verbose_name=b'Proximity (km)'), ), ]
[ "django.db.models.IntegerField", "django.db.models.TextField", "django.db.models.CharField" ]
[((350, 404), 'django.db.models.TextField', 'models.TextField', ([], {'default': "b'Something about myself...'"}), "(default=b'Something about myself...')\n", (366, 404), False, 'from django.db import migrations, models\n'), ((527, 582), 'django.db.models.CharField', 'models.CharField', ([], {'default': "b'Single City'", 'max_length': '(20)'}), "(default=b'Single City', max_length=20)\n", (543, 582), False, 'from django.db import migrations, models\n'), ((709, 785), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1)', 'choices': "[(b'M', b'Male'), (b'F', b'Female')]"}), "(max_length=1, choices=[(b'M', b'Male'), (b'F', b'Female')])\n", (725, 785), False, 'from django.db import migrations, models\n'), ((915, 966), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'verbose_name': "b'Proximity (km)'"}), "(verbose_name=b'Proximity (km)')\n", (934, 966), False, 'from django.db import migrations, models\n')]
import json import os from os.path import join, dirname import boto3 import requests from boto3.session import Session from jsonschema import validate, exceptions from requests_aws4auth import AWS4Auth template_config = {"name": "template", "url": "http://example-url.com"} configs_to_test = [] def pytest_html_report_title(report): report.title = "template integration tests" def send_a_request( test_config, url=None, method=None, payload=None, extra_headers=None, content_type=None, ): print(f"Using test_config: {test_config['name']}") headers = { "Content-Type": content_type if content_type else "application/json", } if extra_headers: for h in extra_headers: headers[h["header_name"]] = h["header_value"] if payload: body = json.dumps(payload) else: body = None if "CI" in os.environ: role_name = "integrations-ci" else: role_name = "operator" boto3.setup_default_session(region_name="eu-west-1",) client = boto3.client("sts") client.get_caller_identity()["Account"] role_to_assume = f"arn:aws:iam::288342028542:role/{role_name}" response = client.assume_role( RoleArn=role_to_assume, RoleSessionName="assumed_role" ) session = Session( aws_access_key_id=response["Credentials"]["AccessKeyId"], aws_secret_access_key=response["Credentials"]["SecretAccessKey"], aws_session_token=response["Credentials"]["SessionToken"], ) client = session.client("sts") client.get_caller_identity()["Account"] credentials = session.get_credentials() credentials = credentials.get_frozen_credentials() access_key = credentials.access_key secret_key = credentials.secret_key token = credentials.token auth = AWS4Auth( access_key, secret_key, "eu-west-1", "execute-api", session_token=token, ) response = requests.request(method, url, auth=auth, data=body, headers=headers) print(f"response.status_code: {response.status_code}") print(f"response: {json.dumps(response.json(), indent=4)}") return response.status_code, response.text def is_valid_schema(data, schema_file): """ Checks whether the given data matches the schema """ schema = load_data(schema_file, as_json=False) try: validate(data, schema) result = True except exceptions.ValidationError as e: print("well-formed but invalid JSON:", e) result = False except json.decoder.JSONDecodeError as e: print("poorly-formed text, not JSON:", e) result = False return result def load_data(filename, as_json=True): relative_path = join("response_schemas", filename) absolute_path = join(dirname(__file__), relative_path) with open(absolute_path) as data_file: if as_json: return data_file.read() else: return json.loads(data_file.read())
[ "boto3.setup_default_session", "boto3.session.Session", "boto3.client", "requests_aws4auth.AWS4Auth", "json.dumps", "os.path.join", "requests.request", "os.path.dirname", "jsonschema.validate" ]
[((987, 1039), 'boto3.setup_default_session', 'boto3.setup_default_session', ([], {'region_name': '"""eu-west-1"""'}), "(region_name='eu-west-1')\n", (1014, 1039), False, 'import boto3\n'), ((1055, 1074), 'boto3.client', 'boto3.client', (['"""sts"""'], {}), "('sts')\n", (1067, 1074), False, 'import boto3\n'), ((1307, 1505), 'boto3.session.Session', 'Session', ([], {'aws_access_key_id': "response['Credentials']['AccessKeyId']", 'aws_secret_access_key': "response['Credentials']['SecretAccessKey']", 'aws_session_token': "response['Credentials']['SessionToken']"}), "(aws_access_key_id=response['Credentials']['AccessKeyId'],\n aws_secret_access_key=response['Credentials']['SecretAccessKey'],\n aws_session_token=response['Credentials']['SessionToken'])\n", (1314, 1505), False, 'from boto3.session import Session\n'), ((1832, 1918), 'requests_aws4auth.AWS4Auth', 'AWS4Auth', (['access_key', 'secret_key', '"""eu-west-1"""', '"""execute-api"""'], {'session_token': 'token'}), "(access_key, secret_key, 'eu-west-1', 'execute-api', session_token=\n token)\n", (1840, 1918), False, 'from requests_aws4auth import AWS4Auth\n'), ((1945, 2013), 'requests.request', 'requests.request', (['method', 'url'], {'auth': 'auth', 'data': 'body', 'headers': 'headers'}), '(method, url, auth=auth, data=body, headers=headers)\n', (1961, 2013), False, 'import requests\n'), ((2718, 2752), 'os.path.join', 'join', (['"""response_schemas"""', 'filename'], {}), "('response_schemas', filename)\n", (2722, 2752), False, 'from os.path import join, dirname\n'), ((825, 844), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (835, 844), False, 'import json\n'), ((2357, 2379), 'jsonschema.validate', 'validate', (['data', 'schema'], {}), '(data, schema)\n', (2365, 2379), False, 'from jsonschema import validate, exceptions\n'), ((2778, 2795), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (2785, 2795), False, 'from os.path import join, dirname\n')]
import einops import pytorch_lightning as pl import torch import torch.nn as nn import torch.nn.functional as F def callbacks(args, monitor="val/Accuracy"): callbacks_list = [] # log learning rate callbacks_list.append(pl.callbacks.LearningRateMonitor(logging_interval="step")) # best model checkpoint callbacks_list.append( pl.callbacks.ModelCheckpoint( monitor=monitor, mode="max", save_top_k=1, save_last=True, # filename # new style will be supported in pl-1.3 filename="{epoch:02d}", # auto_insert_metric_name=False, # filename="epoch{epoch:02d}-val_iou{val/IoU:.2f}", ) ) # early stop if "patience" in args: callbacks_list.append( pl.callbacks.early_stopping.EarlyStopping( monitor=monitor, patience=args.patience, mode="max" ) ) return callbacks_list
[ "pytorch_lightning.callbacks.ModelCheckpoint", "pytorch_lightning.callbacks.early_stopping.EarlyStopping", "pytorch_lightning.callbacks.LearningRateMonitor" ]
[((234, 291), 'pytorch_lightning.callbacks.LearningRateMonitor', 'pl.callbacks.LearningRateMonitor', ([], {'logging_interval': '"""step"""'}), "(logging_interval='step')\n", (266, 291), True, 'import pytorch_lightning as pl\n'), ((357, 472), 'pytorch_lightning.callbacks.ModelCheckpoint', 'pl.callbacks.ModelCheckpoint', ([], {'monitor': 'monitor', 'mode': '"""max"""', 'save_top_k': '(1)', 'save_last': '(True)', 'filename': '"""{epoch:02d}"""'}), "(monitor=monitor, mode='max', save_top_k=1,\n save_last=True, filename='{epoch:02d}')\n", (385, 472), True, 'import pytorch_lightning as pl\n'), ((818, 917), 'pytorch_lightning.callbacks.early_stopping.EarlyStopping', 'pl.callbacks.early_stopping.EarlyStopping', ([], {'monitor': 'monitor', 'patience': 'args.patience', 'mode': '"""max"""'}), "(monitor=monitor, patience=args.\n patience, mode='max')\n", (859, 917), True, 'import pytorch_lightning as pl\n')]
import os import subprocess import json from multiprocessing import Pool import numpy as np class Config: def __init__(self, test_number): self.ls_rounds = 5 self.ls_time = 5 self.ml_pruning = 0.95 self.test_number = test_number def write_to_file(self): path = os.path.join(output_directory, self.test_number, "config.json") with open(path, "w") as output_file: json.dump(self.__dict__, output_file) def exec_iterative_ml(config, graph_filename, test_number): args = [executable, f"{graph_directory}/{graph_filename}", f"--output={output_directory}/{test_number}/{graph_filename}.mis", f"--ls_rounds={config.ls_rounds}", f"--ls_time={config.ls_time}", f"--ml_pruning={config.ml_pruning}", "--console_log" ">", f"{output_directory}/{test_number}/{graph_filename}.mis.log" ] subprocess.run(args) print(args) # run tests with Pool(processes=os.cpu_count()) as pool: for graph_filename in os.listdir(graph_directory): graph_filepath = os.path.join(graph_directory, graph_filename) if os.path.isfile(graph_filepath): pool.apply_async(exec_iterative_ml, (Config(), graph_filename, test_number))
[ "os.listdir", "subprocess.run", "os.path.join", "os.path.isfile", "os.cpu_count", "json.dump" ]
[((956, 976), 'subprocess.run', 'subprocess.run', (['args'], {}), '(args)\n', (970, 976), False, 'import subprocess\n'), ((1080, 1107), 'os.listdir', 'os.listdir', (['graph_directory'], {}), '(graph_directory)\n', (1090, 1107), False, 'import os\n'), ((314, 377), 'os.path.join', 'os.path.join', (['output_directory', 'self.test_number', '"""config.json"""'], {}), "(output_directory, self.test_number, 'config.json')\n", (326, 377), False, 'import os\n'), ((1134, 1179), 'os.path.join', 'os.path.join', (['graph_directory', 'graph_filename'], {}), '(graph_directory, graph_filename)\n', (1146, 1179), False, 'import os\n'), ((1191, 1221), 'os.path.isfile', 'os.path.isfile', (['graph_filepath'], {}), '(graph_filepath)\n', (1205, 1221), False, 'import os\n'), ((435, 472), 'json.dump', 'json.dump', (['self.__dict__', 'output_file'], {}), '(self.__dict__, output_file)\n', (444, 472), False, 'import json\n'), ((1029, 1043), 'os.cpu_count', 'os.cpu_count', ([], {}), '()\n', (1041, 1043), False, 'import os\n')]
import csv import numpy as np from matplotlib import pyplot as plt import os log_names = [ '10x5_1S', '10x5_1W', '10x5_3S', '10x5_3W', '5x5_1W', '5x5_1S', '5x5_3W', '5x5_3S', '10x20_1W', '10x20_1S', '10x20_3W', '10x20_3S', '10x2_1W', '10x2_1S', '10x2_3W', '10x2_3S', '50x5_1W', '50x5_1S', '50x5_3W', '50x5_3S', 'BPI2017_50k', ] def _parse_scores(scores_filepath): with open(scores_filepath, 'r') as f: csv_reader = csv.reader(f, delimiter=',', quotechar='|') next(csv_reader, None) line = next(csv_reader, None) activity_id_accuracy = float(line[1]) activity_id_std = float(line[2]) line = next(csv_reader, None) resource_id_accuracy = float(line[1]) resource_id_std = float(line[2]) next(csv_reader, None) line = next(csv_reader, None) time_mse = float(line[1]) time_std = float(line[2]) next(csv_reader, None) next(csv_reader, None) line = next(csv_reader, None) activity_id_nlevenshtein = float(line[1]) activity_id_nlevenshtein_std = float(line[2]) line = next(csv_reader, None) resource_id_nlevenshtein = float(line[1]) resource_id_nlevenshtein_std = float(line[2]) return activity_id_accuracy, activity_id_std, resource_id_accuracy, resource_id_std, time_mse, time_std, activity_id_nlevenshtein, activity_id_nlevenshtein_std, resource_id_nlevenshtein, resource_id_nlevenshtein_std def plot_scores_figure(scores, index, title, top=1): models = sorted(scores.keys()) bar_width = 0.2 axis = np.arange(len(log_names)) plt.figure() plt.title(title) y_min = 1 y_max = 0 for i, model in enumerate(models): model_scores = np.array(scores[model]) plt.bar(axis - bar_width / 2 * len(models) / 2 + i * bar_width, model_scores[:, index], yerr=model_scores[:, index+1], width=bar_width, label=model) y_min_temp = np.min(model_scores[:, index]) y_max_temp = np.max(model_scores[:, index]) if y_min_temp < y_min: y_min = y_min_temp if y_max_temp > y_max: y_max = y_max_temp if top > 0: plt.ylim(top=top) y_min -= 0.1 * (y_max - y_min) plt.ylim(bottom=max(0, y_min)) plt.xticks(axis, log_names, rotation=90) plt.legend() plt.show() def _plot_scores(scores): plot_scores_figure(scores, 0, 'activity_id_accuracy') plot_scores_figure(scores, 2, 'resource_id accuracy') plot_scores_figure(scores, 4, 'time mse', top=0) plot_scores_figure(scores, 6, 'activity_id nlevenshtein') plot_scores_figure(scores, 8, 'resource_id nlevenshtein') def compare_models(model_type): scores = {} models = [f.name for f in os.scandir('/'.join(['..', 'outputs', model_type])) if f.is_dir()] for model in models: scores[model] = [] for log_name in log_names: for model in models: results_filepath = '/'.join(['..', 'outputs', model_type, model, log_name, 'results.csv']) scores[model].append(_parse_scores(results_filepath)) _plot_scores(scores) if __name__ == "__main__": compare_models('sequence')
[ "matplotlib.pyplot.xticks", "numpy.max", "numpy.array", "matplotlib.pyplot.figure", "numpy.min", "matplotlib.pyplot.title", "matplotlib.pyplot.ylim", "csv.reader", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((1696, 1708), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1706, 1708), True, 'from matplotlib import pyplot as plt\n'), ((1713, 1729), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (1722, 1729), True, 'from matplotlib import pyplot as plt\n'), ((2364, 2404), 'matplotlib.pyplot.xticks', 'plt.xticks', (['axis', 'log_names'], {'rotation': '(90)'}), '(axis, log_names, rotation=90)\n', (2374, 2404), True, 'from matplotlib import pyplot as plt\n'), ((2409, 2421), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2419, 2421), True, 'from matplotlib import pyplot as plt\n'), ((2426, 2436), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2434, 2436), True, 'from matplotlib import pyplot as plt\n'), ((515, 558), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '""","""', 'quotechar': '"""|"""'}), "(f, delimiter=',', quotechar='|')\n", (525, 558), False, 'import csv\n'), ((1821, 1844), 'numpy.array', 'np.array', (['scores[model]'], {}), '(scores[model])\n', (1829, 1844), True, 'import numpy as np\n'), ((2039, 2069), 'numpy.min', 'np.min', (['model_scores[:, index]'], {}), '(model_scores[:, index])\n', (2045, 2069), True, 'import numpy as np\n'), ((2091, 2121), 'numpy.max', 'np.max', (['model_scores[:, index]'], {}), '(model_scores[:, index])\n', (2097, 2121), True, 'import numpy as np\n'), ((2271, 2288), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {'top': 'top'}), '(top=top)\n', (2279, 2288), True, 'from matplotlib import pyplot as plt\n')]
#!/usr/bin/env python3 import pywind.lib.timer as timer import freenet.lib.utils as utils class ip6_dgram_proxy(object): """处理IPv6 UDP 和 UDPLite数据分包 """ __ok_packets = None __timer = None __TIMEOUT = 5 __fragdata = None def __init__(self): self.__ok_packets = [] self.__timer = timer.timer() self.__fragdata = {} def add_frag(self, mbuf): mbuf.offset = 8 saddr = mbuf.get_part(16) mbuf.offset = 24 daddr = mbuf.get_part(16) mbuf.offset = 42 frag_off = utils.bytes2number(mbuf.get_part(2)) m_flag = frag_off & 1 frag_off = frag_off >> 3 mbuf.offset = 44 frag_id = mbuf.get_part(4) if frag_off == 0 and m_flag == 0: sport, dport = self.__get_pkt_port_info(mbuf) mbuf.offset = 56 self.__ok_packets.append((saddr, daddr, sport, dport, mbuf.get_data(),)) return uniq_id = b"".join([saddr, frag_id, ]) if frag_off == 0 and m_flag == 1: sport, dport = self.__get_pkt_port_info(mbuf) mbuf.offset = 56 self.__fragdata[uniq_id] = (saddr, daddr, sport, dport, [mbuf.get_data()]) self.__timer.set_timeout(uniq_id, self.__TIMEOUT) return if uniq_id not in self.__fragdata: return mbuf.offset = 48 content = mbuf.get_data() saddr, daddr, sport, dport, data_list = self.__fragdata[uniq_id] data_list.append(content) if m_flag != 0: return self.__ok_packets.append( (saddr, daddr, sport, dport, b"".join(data_list)) ) self.__timer.drop(uniq_id) del self.__fragdata[uniq_id] def __get_pkt_port_info(self, mbuf): mbuf.offset = 48 sport = utils.bytes2number(mbuf.get_part(2)) mbuf.offset = 50 dport = utils.bytes2number(mbuf.get_part(2)) return (sport, dport,) def get_data(self): self.recycle() try: return self.__ok_packets.pop(0) except IndexError: return None def recycle(self): uniq_ids = self.__timer.get_timeout_names() for uniq_id in uniq_ids: if not self.__timer.exists(uniq_id): continue self.__timer.drop(uniq_id) del self.__fragdata[uniq_id] return
[ "pywind.lib.timer.timer" ]
[((325, 338), 'pywind.lib.timer.timer', 'timer.timer', ([], {}), '()\n', (336, 338), True, 'import pywind.lib.timer as timer\n')]
import numpy as np import scipy.stats from scipy import ndimage from scipy.optimize import curve_fit from imutils import nan_to_zero # try to use cv2 for faster image processing try: import cv2 cv2.connectedComponents # relatively recent addition, so check presence opencv_found = True except (ImportError, AttributeError): opencv_found = False def measure_of_chaos(im, nlevels, overwrite=True, statistic=None): """ Compute a measure for the spatial chaos in given image using the level sets method. :param im: 2d array :param nlevels: how many levels to use :type nlevels: int :param overwrite: Whether the input image can be overwritten to save memory :type overwrite: bool :param statistic: callable that calculates a score (a number) for the object counts in the level sets. If specified, this statistic will be used instead of the default one. The callable must take two arguments - the object counts (sequence of ints) and the number of non-zero pixels in the original image (int) - and output a number :return: the measured value :rtype: float :raises ValueError: if nlevels <= 0 or q_val is an invalid percentile or an unknown interp value is used """ statistic = statistic or _default_measure # don't process empty images if np.sum(im) <= 0: return np.nan sum_notnull = np.sum(im > 0) if not overwrite: # don't modify original image, make a copy im = im.copy() notnull_mask = nan_to_zero(im) im_clean = im / np.max(im) # normalize to 1 # Level Sets Calculation object_counts = _level_sets(im_clean, nlevels) return statistic(object_counts, sum_notnull) def measure_of_chaos_fit(im, nlevels, overwrite=True): """ This function is identical to measure_of_chaos except that it uses a different statistic. """ return measure_of_chaos(im, nlevels, overwrite=overwrite, statistic=_fit) def _dilation_and_erosion(im, dilate_mask=None, erode_mask=None): dilate_mask = dilate_mask or [[0, 1, 0], [1, 1, 1], [0, 1, 0]] erode_mask = erode_mask or [[1, 1, 1], [1, 1, 1], [1, 1, 1]] if opencv_found: im = np.asarray(im, dtype=np.uint8) im = cv2.dilate(im, np.asarray(dilate_mask, dtype=np.uint8)) im = cv2.erode(im, np.asarray(erode_mask, dtype=np.uint8)) return im return ndimage.binary_erosion(ndimage.morphology.binary_dilation(im, structure=dilate_mask), structure=erode_mask, border_value=1) def _level_sets(im_clean, nlevels, prep=_dilation_and_erosion): """ Divide the image into level sets and count the number of objects in each of them. :param im_clean: 2d array with :code:`im_clean.max() == 1` :param int nlevels: number of levels to search for objects (positive integer) :param prep: callable that takes a 2d array as its only argument and returns a 2d array :return: sequence with the number of objects in each respective level """ if nlevels <= 0: raise ValueError("nlevels must be positive") prep = prep or (lambda x: x) # if no preprocessing should be done, use the identity function # TODO change the levels. Reason: # - in the for loop, the > operator is used. The highest level is 1, therefore the highest level set will always # be empty. The ndimage.label function then returns 1 as the number of objects in the empty image, although it # should be zero. # Proposed solution: # levels = np.linspace(0, 1, nlevels + 2)[1:-1] # That is, create nlevels + 2 levels, then throw away the zero level and the one level # or: # levels = np.linspace(0, 1, nlevels)[1:-1] # That is, only use nlevels - 2 levels. This means that the output array will have a size of nlevels - 2 levels = np.linspace(0, 1, nlevels+1)[:-1] # np.amin(im), np.amax(im) # Go through levels and calculate number of objects num_objs = [] count_func = (lambda im: cv2.connectedComponents(im, connectivity=4)[0] - 1) if opencv_found else (lambda im: ndimage.label(im)[1]) for lev in levels: # Threshold at level bw = (im_clean > lev) bw = prep(bw) # Record objects at this level num_objs.append(count_func(bw)) return num_objs def _default_measure(num_objs, sum_notnull): """ Calculate a statistic for the object counts. :param num_objs: number of objects found in each level, respectively :param float sum_notnull: sum of all non-zero elements in the original array (positive number) :return: the calculated value between 0 and 1, bigger is better """ num_objs = np.asarray(num_objs, dtype=np.int_) nlevels = len(num_objs) if sum_notnull <= 0: raise ValueError("sum_notnull must be positive") if min(num_objs) < 0: raise ValueError("cannot have negative object counts") if nlevels < 1: raise ValueError("array of object counts is empty") if np.unique(num_objs).shape[0] <= 1: return np.nan sum_vals = float(np.sum(num_objs)) return 1 - sum_vals / (sum_notnull * nlevels) # this updates the scoring function from the main algorithm. def _fit(num_objs, _): """ An alternative statistic for measure_of_chaos. :param num_objs: number of objects found in each level, respectively :param _: unused dummy parameter, kept for signature compatibility with _default_measure :return: the calculated value """ num_objs = np.asarray(num_objs, dtype=np.int_) nlevels = len(num_objs) if min(num_objs) < 0: raise ValueError("must have at least one object in each level") if nlevels < 1: raise ValueError("array of object counts is empty") if np.unique(num_objs).shape[0] < 2: return np.nan def func(x, a, b): return scipy.stats.norm.cdf(x, loc=a, scale=b) # measure_value, im, levels, num_objs = measure_of_chaos(im, nlevels) # if measure_value == np.nan: # if basic algorithm failed then we're going to fail here too # return np.nan cdf_curve = np.cumsum(num_objs) / float(np.sum(num_objs)) popt, pcov = curve_fit(func, np.linspace(0, 1, nlevels), cdf_curve, p0=(0.5, 0.05)) pdf_fitted = func(np.linspace(0, 1, nlevels), popt[0], popt[1]) # return 1-np.sqrt(np.sum((pdf_fitted - cdf_curve)**2)) return 1 - np.sum(np.abs((pdf_fitted - cdf_curve))) def isotope_pattern_match(images_flat, theor_iso_intensities): """ This function calculates a match between a list of isotope ion images and a theoretical intensity vector. :param images_flat: 2d array (or sequence of 1d arrays) of pixel intensities with shape (d1, d2) where d1 is the number of images and d2 is the number of pixels per image, i.e. :code:`images_flat[i]` is the i-th flattened image :param theor_iso_intensities: 1d array (or sequence) of theoretical isotope intensities with shape d1, i.e :code:`theor_iso_intensities[i]` is the theoretical isotope intensity corresponding to the i-th image :return: measure value between 0 and 1, bigger is better :rtype: float :raise TypeError: if images are not 1d :raise ValueError: if images are not equally shaped or if the number of images and the number of intensities differ """ d1 = len(images_flat) if d1 != len(theor_iso_intensities): raise ValueError("amount of images and theoretical intensities must be equal") if any(np.shape(im) != np.shape(images_flat[0]) for im in images_flat): raise ValueError("images are not equally sized") if any(len(np.shape(im)) != 1 for im in images_flat): raise TypeError("images are not 1d") if any(intensity < 0 for intensity in theor_iso_intensities): raise ValueError("intensities must be >= 0") image_ints = [] not_null = images_flat[0] > 0 for ii, _ in enumerate(theor_iso_intensities): image_ints.append(np.sum(images_flat[ii][not_null])) pattern_match = 1 - np.mean(abs(theor_iso_intensities / np.linalg.norm(theor_iso_intensities) - image_ints / np.linalg.norm(image_ints))) if pattern_match == 1.: return 0 return pattern_match def isotope_image_correlation(images_flat, weights=None): """ Function for calculating a weighted average measure of image correlation with the principle image. :param images_flat: 2d array (or sequence of 1d arrays) of pixel intensities with shape (d1, d2) where d1 is the number of images and d2 is the number of pixels per image, i.e. :code:`images_flat[i]` is the i-th flattened image :param weights: 1d array (or sequence) of weights with shape (d1 - 1), i.e :code:`weights[i]` is the weight to put on the correlation between the first and the i-th image. If omitted, all correlations are weighted equally :return: measure_value (zero if less than 2 images are given) :raise TypeError: if images are not 1d :raise ValueError: if images are not equally shaped or if the number of correlations and the number of weights (if given) differ """ if len(images_flat) < 2: return 0 if any(len(np.shape(im)) != 1 for im in images_flat): raise TypeError("images are not 1d") else: # first image mask mask = images_flat[0] > 0 if mask.sum() < 2: return 0 flt_images_flat = [img[mask] for img in images_flat] # slightly faster to compute all correlations and pull the elements needed iso_correlation = np.corrcoef(flt_images_flat)[1:, 0] # when all values are the same (e.g. zeros) then correlation is undefined iso_correlation[np.isinf(iso_correlation) | np.isnan(iso_correlation)] = 0 try: return np.clip(np.average(iso_correlation, weights=weights),0,1)# coerce between [0 1] except TypeError: raise ValueError("Number of images is not equal to the number of weights + 1")
[ "numpy.abs", "numpy.unique", "numpy.corrcoef", "numpy.average", "imutils.nan_to_zero", "numpy.asarray", "scipy.ndimage.label", "numpy.max", "numpy.sum", "numpy.linspace", "numpy.isnan", "cv2.connectedComponents", "scipy.ndimage.morphology.binary_dilation", "numpy.linalg.norm", "numpy.cumsum", "numpy.shape", "numpy.isinf" ]
[((1382, 1396), 'numpy.sum', 'np.sum', (['(im > 0)'], {}), '(im > 0)\n', (1388, 1396), True, 'import numpy as np\n'), ((1514, 1529), 'imutils.nan_to_zero', 'nan_to_zero', (['im'], {}), '(im)\n', (1525, 1529), False, 'from imutils import nan_to_zero\n'), ((4651, 4686), 'numpy.asarray', 'np.asarray', (['num_objs'], {'dtype': 'np.int_'}), '(num_objs, dtype=np.int_)\n', (4661, 4686), True, 'import numpy as np\n'), ((5489, 5524), 'numpy.asarray', 'np.asarray', (['num_objs'], {'dtype': 'np.int_'}), '(num_objs, dtype=np.int_)\n', (5499, 5524), True, 'import numpy as np\n'), ((1325, 1335), 'numpy.sum', 'np.sum', (['im'], {}), '(im)\n', (1331, 1335), True, 'import numpy as np\n'), ((1550, 1560), 'numpy.max', 'np.max', (['im'], {}), '(im)\n', (1556, 1560), True, 'import numpy as np\n'), ((2188, 2218), 'numpy.asarray', 'np.asarray', (['im'], {'dtype': 'np.uint8'}), '(im, dtype=np.uint8)\n', (2198, 2218), True, 'import numpy as np\n'), ((2407, 2468), 'scipy.ndimage.morphology.binary_dilation', 'ndimage.morphology.binary_dilation', (['im'], {'structure': 'dilate_mask'}), '(im, structure=dilate_mask)\n', (2441, 2468), False, 'from scipy import ndimage\n'), ((3808, 3838), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(nlevels + 1)'], {}), '(0, 1, nlevels + 1)\n', (3819, 3838), True, 'import numpy as np\n'), ((5052, 5068), 'numpy.sum', 'np.sum', (['num_objs'], {}), '(num_objs)\n', (5058, 5068), True, 'import numpy as np\n'), ((6085, 6104), 'numpy.cumsum', 'np.cumsum', (['num_objs'], {}), '(num_objs)\n', (6094, 6104), True, 'import numpy as np\n'), ((6164, 6190), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'nlevels'], {}), '(0, 1, nlevels)\n', (6175, 6190), True, 'import numpy as np\n'), ((6241, 6267), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'nlevels'], {}), '(0, 1, nlevels)\n', (6252, 6267), True, 'import numpy as np\n'), ((2247, 2286), 'numpy.asarray', 'np.asarray', (['dilate_mask'], {'dtype': 'np.uint8'}), '(dilate_mask, dtype=np.uint8)\n', (2257, 2286), True, 'import numpy as np\n'), ((2315, 2353), 'numpy.asarray', 'np.asarray', (['erode_mask'], {'dtype': 'np.uint8'}), '(erode_mask, dtype=np.uint8)\n', (2325, 2353), True, 'import numpy as np\n'), ((6113, 6129), 'numpy.sum', 'np.sum', (['num_objs'], {}), '(num_objs)\n', (6119, 6129), True, 'import numpy as np\n'), ((6369, 6399), 'numpy.abs', 'np.abs', (['(pdf_fitted - cdf_curve)'], {}), '(pdf_fitted - cdf_curve)\n', (6375, 6399), True, 'import numpy as np\n'), ((7923, 7956), 'numpy.sum', 'np.sum', (['images_flat[ii][not_null]'], {}), '(images_flat[ii][not_null])\n', (7929, 7956), True, 'import numpy as np\n'), ((9524, 9552), 'numpy.corrcoef', 'np.corrcoef', (['flt_images_flat'], {}), '(flt_images_flat)\n', (9535, 9552), True, 'import numpy as np\n'), ((4058, 4075), 'scipy.ndimage.label', 'ndimage.label', (['im'], {}), '(im)\n', (4071, 4075), False, 'from scipy import ndimage\n'), ((4973, 4992), 'numpy.unique', 'np.unique', (['num_objs'], {}), '(num_objs)\n', (4982, 4992), True, 'import numpy as np\n'), ((5738, 5757), 'numpy.unique', 'np.unique', (['num_objs'], {}), '(num_objs)\n', (5747, 5757), True, 'import numpy as np\n'), ((7447, 7459), 'numpy.shape', 'np.shape', (['im'], {}), '(im)\n', (7455, 7459), True, 'import numpy as np\n'), ((7463, 7487), 'numpy.shape', 'np.shape', (['images_flat[0]'], {}), '(images_flat[0])\n', (7471, 7487), True, 'import numpy as np\n'), ((9666, 9691), 'numpy.isinf', 'np.isinf', (['iso_correlation'], {}), '(iso_correlation)\n', (9674, 9691), True, 'import numpy as np\n'), ((9694, 9719), 'numpy.isnan', 'np.isnan', (['iso_correlation'], {}), '(iso_correlation)\n', (9702, 9719), True, 'import numpy as np\n'), ((9765, 9809), 'numpy.average', 'np.average', (['iso_correlation'], {'weights': 'weights'}), '(iso_correlation, weights=weights)\n', (9775, 9809), True, 'import numpy as np\n'), ((3973, 4016), 'cv2.connectedComponents', 'cv2.connectedComponents', (['im'], {'connectivity': '(4)'}), '(im, connectivity=4)\n', (3996, 4016), False, 'import cv2\n'), ((7584, 7596), 'numpy.shape', 'np.shape', (['im'], {}), '(im)\n', (7592, 7596), True, 'import numpy as np\n'), ((9147, 9159), 'numpy.shape', 'np.shape', (['im'], {}), '(im)\n', (9155, 9159), True, 'import numpy as np\n'), ((8018, 8055), 'numpy.linalg.norm', 'np.linalg.norm', (['theor_iso_intensities'], {}), '(theor_iso_intensities)\n', (8032, 8055), True, 'import numpy as np\n'), ((8107, 8133), 'numpy.linalg.norm', 'np.linalg.norm', (['image_ints'], {}), '(image_ints)\n', (8121, 8133), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import statsmodels.api as sm import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import seaborn as sns import os import sys import scipy.stats from scipy.stats.mstats import gmean import scipy.stats as stats import math import matplotlib as mpl from sklearn.cluster import KMeans mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams["font.sans-serif"] = "Arial" #1.Z-score Normalzie DiseaseSP_DF: Cell='Monocytes' outDir=os.path.join('{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/KmeansCluster'.format(Cell)) if not os.path.exists(outDir): os.mkdir(outDir) DiseaseSP_F='{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/TwoTwoCompare_Merge.sortCol.txt'.format(Cell) DiseaseSP_DF=pd.read_table(DiseaseSP_F,sep='\t',index_col=0) DiseaseSP_DFz= DiseaseSP_DF.apply(scipy.stats.zscore,axis=1,result_type='broadcast') #decide K:1.手肘法(误差平方法SSE);2.轮廓系数法 SSE = [] # 存放每次结果的误差平方和 for k in range(1,10): estimator = KMeans(n_clusters=k) estimator.fit(DiseaseSP_DFz) SSE.append(estimator.inertia_) X = range(1,10) plt.style.use('seaborn-white') fig=plt.figure(figsize=(3.5,2)) ax=fig.add_axes([0.2,0.2,0.7,0.7]) ax.set_ylabel('Sum of the squared errors',fontsize=10) ax.set_xlabel('k number',fontsize=10) ax.tick_params(axis='y',length=7,labelsize=8,direction='out') ax.tick_params(axis='x',length=7,labelsize=8,direction='out') ax.spines['bottom'].set_linewidth(0.5) ax.spines['left'].set_linewidth(0.5) ax.spines['right'].set_linewidth(0.5) ax.spines['top'].set_linewidth(0.5) plt.plot(X,SSE,color='purple', marker='o', linestyle='dashed',linewidth=1, markersize=5) fig.savefig(outDir+'/Kvalue_SSE.pdf') #print '误差平方和:' plt.show() 2.#根据最佳K值进行KMeans聚类 (Kmeans聚类用的ZscoreNorm后的DF!!!) def KMean_Cluster(DF,outDirPrefix,k): #print 'Do KMean Cluster, k={}'.format(k) kmeans=KMeans(n_clusters=k) kmeans.fit(DF) Kcluster=pd.DataFrame(kmeans.labels_,index=list(DF.index),columns=['Cluster']) Kcluster.to_csv(outDir+'/TwoTwoCompareMerge_zscore_k{}.txt'.format(k),sep='\t') #return Kcluster KMean_Cluster(DiseaseSP_DFz,outDir,2) KMean_Cluster(DiseaseSP_DFz,outDir,3) print ('K-means Done !') # In[5]: k='3' Cell='Monocytes' DiseaseSP_F='{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/TwoTwoCompare_Merge.sortCol.txt'.format(Cell) DiseaseSP_DF=pd.read_table(DiseaseSP_F,sep='\t',index_col=0) RAs=[i for i in list(DiseaseSP_DF) if 'RA' in i] OAs=[i for i in list(DiseaseSP_DF) if 'OA' in i] HCs=[i for i in list(DiseaseSP_DF) if 'HC' in i] BedF= '{}/RAOAHC.removeY.bed'.format(Cell) #read PeakBed BedDF=pd.read_table(BedF,sep='\t',header=None) BedDF.index=BedDF[3] def PlotKmeanCluster_K3(k): kmeansDir=os.path.join('{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/KmeansCluster/kvalue_k{}/'.format(Cell,k)) if not os.path.exists(kmeansDir): os.mkdir(kmeansDir) KClusterF='{}/DiffPeaks/mean3_fc2_p0.001_fdr0.05/KmeansCluster/TwoTwoCompareMerge_zscore_k{}.txt'.format(Cell,k) KCluster=pd.read_table(KClusterF,sep='\t',index_col=0) k1=KCluster[KCluster['Cluster']==0] k2=KCluster[KCluster['Cluster']==1] k3=KCluster[KCluster['Cluster']==2] k1DF=DiseaseSP_DF.loc[k1.index] k2DF=DiseaseSP_DF.loc[k2.index] k3DF=DiseaseSP_DF.loc[k3.index] k1Bed=BedDF.loc[k1DF.index] k2Bed=BedDF.loc[k2DF.index] k3Bed=BedDF.loc[k3DF.index] a1=k1DF.iloc[:,-2:-1].mean(axis=0)[0] a2=k2DF.iloc[:,-2:-1].mean(axis=0)[0] a3=k3DF.iloc[:,-2:-1].mean(axis=0)[0] if (a1 < a2) & (a2 < a3): KclusterDF_c1=k1DF.copy() KclusterDF_c2=k2DF.copy() KclusterDF_c3=k3DF.copy() elif (a1 < a3) & (a3 < a2): KclusterDF_c1=k1DF.copy() KclusterDF_c2=k3DF.copy() KclusterDF_c3=k2DF.copy() elif (a2 < a1) & (a1 < a3): KclusterDF_c1=k2DF.copy() KclusterDF_c2=k1DF.copy() KclusterDF_c3=k3DF.copy() elif (a2 < a3) & (a3 < a1): KclusterDF_c1=k2DF.copy() KclusterDF_c2=k3DF.copy() KclusterDF_c3=k1DF.copy() elif (a3 < a1) & (a1 < a2): KclusterDF_c1=k3DF.copy() KclusterDF_c2=k1DF.copy() KclusterDF_c3=k2DF.copy() elif (a3 < a2) & (a2 < a1): KclusterDF_c1=k3DF.copy() KclusterDF_c2=k2DF.copy() KclusterDF_c3=k1DF.copy() KclusterBed_c1=BedDF.loc[KclusterDF_c1.index] KclusterBed_c2=BedDF.loc[KclusterDF_c2.index] KclusterBed_c3=BedDF.loc[KclusterDF_c3.index] KclusterBed_c1.to_csv(kmeansDir+'KmeansCluster_c1.bed',sep='\t',header=False,index=False) KclusterBed_c2.to_csv(kmeansDir+'KmeansCluster_c2.bed',sep='\t',header=False,index=False) KclusterBed_c3.to_csv(kmeansDir+'KmeansCluster_c3.bed',sep='\t',header=False,index=False) KclusterDF_c1.to_csv(kmeansDir+'KmeansCluster_c1.txt',sep='\t') KclusterDF_c2.to_csv(kmeansDir+'KmeansCluster_c2.txt',sep='\t') KclusterDF_c3.to_csv(kmeansDir+'KmeansCluster_c3.txt',sep='\t') KclusterDF_c1c2c3=pd.concat([KclusterDF_c1,KclusterDF_c2,KclusterDF_c3],axis=0) KclusterDF_c1c2c3.to_csv(kmeansDir+'KmeansCluster_all.txt',sep='\t') KclusterBed_c1c2c3=BedDF.loc[KclusterDF_c1c2c3.index] KclusterBed_c1c2c3.to_csv(kmeansDir+'KmeansCluster_all.bed',sep='\t',header=False,index=False) def DFmean(inputDF,C): Df=DiseaseSP_DF.loc[inputDF.index] hc=Df[HCs] oa=Df[OAs] ra=Df[RAs] hcmean=hc.mean(axis=1) hcmeanDF = hcmean.to_frame() hcmeanDF.rename(columns={0:'HC'}, inplace = True) oamean=oa.mean(axis=1) oameanDF = oamean.to_frame() oameanDF.rename(columns={0:'OA'}, inplace = True) ramean=ra.mean(axis=1) rameanDF = ramean.to_frame() rameanDF.rename(columns={0:'RA'}, inplace = True) MergeM = pd.concat([hcmeanDF,oameanDF,rameanDF],axis=1) MergeM.to_csv(kmeansDir+'KmeansCluster_{}.average.txt'.format(C),sep='\t') #Boxplot plt.style.use('seaborn-white') fig=plt.figure(figsize=(1.5,2)) ax=fig.add_axes([0.2,0.2,0.75,0.75]) #sns.violinplot(data=AA,ax=ax1,palette=(['steelblue','gold','orangered'])) sns.boxplot(data=MergeM,ax=ax,palette=(['steelblue','gold','orangered']),whis=0.5,fliersize=0.5,width=0.7,showfliers=False,medianprops={'linewidth':0.5},whiskerprops={'linewidth':0.5},boxprops={'linewidth':0.5},capprops={'linewidth':0.5}) ax.tick_params(labelsize=8,width=0.5,direction='out') #ax.set_ylim([0,10]) ax.spines['bottom'].set_linewidth(0.25) ax.spines['left'].set_linewidth(0.25) ax.spines['right'].set_linewidth(0.25) ax.spines['top'].set_linewidth(0.25) fig.savefig(kmeansDir+'KmeansCluster_{}_average.boxplot.pdf'.format(C)) plt.show() DFmean(KclusterDF_c1,'c1') DFmean(KclusterDF_c2,'c2') DFmean(KclusterDF_c3,'c3') #zcore,plot heatmap: KclusterDFall_Z=KclusterDF_c1c2c3.apply(scipy.stats.zscore,axis=1,result_type='broadcast') KclusterDFc1_Z=KclusterDF_c1.apply(scipy.stats.zscore,axis=1,result_type='broadcast') KclusterDFc2_Z=KclusterDF_c2.apply(scipy.stats.zscore,axis=1,result_type='broadcast') KclusterDFc3_Z=KclusterDF_c3.apply(scipy.stats.zscore,axis=1,result_type='broadcast') fig1=sns.clustermap(KclusterDFall_Z,figsize=(4,5),center=0,vmin=-2,vmax=2,col_cluster=False,row_cluster=False,cmap='RdYlBu_r') fig1.savefig(kmeansDir+'KmeansCluster_all.heatmap.png',dpi=200) plt.show() plt.close('all') fig2=sns.clustermap(KclusterDFc1_Z,figsize=(4,0.0009*len(KclusterDFc1_Z)),center=0,vmin=-2,vmax=2,col_cluster=False,row_cluster=False,cmap='RdYlBu_r') fig2.savefig(kmeansDir+'KmeansCluster_c1.heatmap.png',dpi=500) plt.show() plt.close('all') fig3=sns.clustermap(KclusterDFc2_Z,figsize=(4,0.0009*len(KclusterDFc2_Z)),center=0,vmin=-2,vmax=2,col_cluster=False,row_cluster=False,cmap='RdYlBu_r') fig3.savefig(kmeansDir+'KmeansCluster_c2.heatmap.png',dpi=500) plt.show() plt.close('all') fig4=sns.clustermap(KclusterDFc3_Z,figsize=(4,0.0009*len(KclusterDFc3_Z)),center=0,vmin=-2,vmax=2,col_cluster=False,row_cluster=False,cmap='RdYlBu_r') fig4.savefig(kmeansDir+'KmeansCluster_c3.heatmap.png',dpi=500) plt.show() plt.close('all') HCz=KclusterDFall_Z[HCs] OAz=KclusterDFall_Z[OAs] RAz=KclusterDFall_Z[RAs] HCmean=HCz.mean(axis=1) HCmeanDF = HCmean.to_frame() HCmeanDF.rename(columns={0:'HC'}, inplace = True) OAmean=OAz.mean(axis=1) OAmeanDF = OAmean.to_frame() OAmeanDF.rename(columns={0:'OA'}, inplace = True) RAmean=RAz.mean(axis=1) RAmeanDF = RAmean.to_frame() RAmeanDF.rename(columns={0:'RA'}, inplace = True) KclusterDFall_Z_average = pd.concat([HCmeanDF,OAmeanDF,RAmeanDF],axis=1) fig4=sns.clustermap(KclusterDFall_Z_average,figsize=(1,6),center=0,vmin=-2,vmax=2,col_cluster=False,row_cluster=False,cmap='RdYlBu_r') fig4.savefig(kmeansDir+'KmeansCluster_all.heatmap.average.pdf') plt.show() plt.close('all') # In[6]: k='3' PlotKmeanCluster_K3(k) # In[ ]: # In[ ]: # In[ ]: # In[ ]:
[ "sklearn.cluster.KMeans", "os.path.exists", "seaborn.clustermap", "matplotlib.pyplot.plot", "matplotlib.pyplot.style.use", "matplotlib.pyplot.close", "seaborn.boxplot", "matplotlib.pyplot.figure", "os.mkdir", "pandas.read_table", "pandas.concat", "matplotlib.pyplot.show" ]
[((808, 857), 'pandas.read_table', 'pd.read_table', (['DiseaseSP_F'], {'sep': '"""\t"""', 'index_col': '(0)'}), "(DiseaseSP_F, sep='\\t', index_col=0)\n", (821, 857), True, 'import pandas as pd\n'), ((1144, 1174), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-white"""'], {}), "('seaborn-white')\n", (1157, 1174), True, 'import matplotlib.pyplot as plt\n'), ((1179, 1207), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(3.5, 2)'}), '(figsize=(3.5, 2))\n', (1189, 1207), True, 'import matplotlib.pyplot as plt\n'), ((1609, 1705), 'matplotlib.pyplot.plot', 'plt.plot', (['X', 'SSE'], {'color': '"""purple"""', 'marker': '"""o"""', 'linestyle': '"""dashed"""', 'linewidth': '(1)', 'markersize': '(5)'}), "(X, SSE, color='purple', marker='o', linestyle='dashed', linewidth=\n 1, markersize=5)\n", (1617, 1705), True, 'import matplotlib.pyplot as plt\n'), ((1752, 1762), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1760, 1762), True, 'import matplotlib.pyplot as plt\n'), ((2385, 2434), 'pandas.read_table', 'pd.read_table', (['DiseaseSP_F'], {'sep': '"""\t"""', 'index_col': '(0)'}), "(DiseaseSP_F, sep='\\t', index_col=0)\n", (2398, 2434), True, 'import pandas as pd\n'), ((2645, 2687), 'pandas.read_table', 'pd.read_table', (['BedF'], {'sep': '"""\t"""', 'header': 'None'}), "(BedF, sep='\\t', header=None)\n", (2658, 2687), True, 'import pandas as pd\n'), ((652, 674), 'os.path.exists', 'os.path.exists', (['outDir'], {}), '(outDir)\n', (666, 674), False, 'import os\n'), ((680, 696), 'os.mkdir', 'os.mkdir', (['outDir'], {}), '(outDir)\n', (688, 696), False, 'import os\n'), ((1039, 1059), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'k'}), '(n_clusters=k)\n', (1045, 1059), False, 'from sklearn.cluster import KMeans\n'), ((1909, 1929), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'k'}), '(n_clusters=k)\n', (1915, 1929), False, 'from sklearn.cluster import KMeans\n'), ((3043, 3090), 'pandas.read_table', 'pd.read_table', (['KClusterF'], {'sep': '"""\t"""', 'index_col': '(0)'}), "(KClusterF, sep='\\t', index_col=0)\n", (3056, 3090), True, 'import pandas as pd\n'), ((5002, 5066), 'pandas.concat', 'pd.concat', (['[KclusterDF_c1, KclusterDF_c2, KclusterDF_c3]'], {'axis': '(0)'}), '([KclusterDF_c1, KclusterDF_c2, KclusterDF_c3], axis=0)\n', (5011, 5066), True, 'import pandas as pd\n'), ((7288, 7421), 'seaborn.clustermap', 'sns.clustermap', (['KclusterDFall_Z'], {'figsize': '(4, 5)', 'center': '(0)', 'vmin': '(-2)', 'vmax': '(2)', 'col_cluster': '(False)', 'row_cluster': '(False)', 'cmap': '"""RdYlBu_r"""'}), "(KclusterDFall_Z, figsize=(4, 5), center=0, vmin=-2, vmax=2,\n col_cluster=False, row_cluster=False, cmap='RdYlBu_r')\n", (7302, 7421), True, 'import seaborn as sns\n'), ((7482, 7492), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7490, 7492), True, 'import matplotlib.pyplot as plt\n'), ((7497, 7513), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (7506, 7513), True, 'import matplotlib.pyplot as plt\n'), ((7740, 7750), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7748, 7750), True, 'import matplotlib.pyplot as plt\n'), ((7755, 7771), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (7764, 7771), True, 'import matplotlib.pyplot as plt\n'), ((7998, 8008), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8006, 8008), True, 'import matplotlib.pyplot as plt\n'), ((8013, 8029), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (8022, 8029), True, 'import matplotlib.pyplot as plt\n'), ((8256, 8266), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8264, 8266), True, 'import matplotlib.pyplot as plt\n'), ((8271, 8287), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (8280, 8287), True, 'import matplotlib.pyplot as plt\n'), ((8751, 8800), 'pandas.concat', 'pd.concat', (['[HCmeanDF, OAmeanDF, RAmeanDF]'], {'axis': '(1)'}), '([HCmeanDF, OAmeanDF, RAmeanDF], axis=1)\n', (8760, 8800), True, 'import pandas as pd\n'), ((8808, 8949), 'seaborn.clustermap', 'sns.clustermap', (['KclusterDFall_Z_average'], {'figsize': '(1, 6)', 'center': '(0)', 'vmin': '(-2)', 'vmax': '(2)', 'col_cluster': '(False)', 'row_cluster': '(False)', 'cmap': '"""RdYlBu_r"""'}), "(KclusterDFall_Z_average, figsize=(1, 6), center=0, vmin=-2,\n vmax=2, col_cluster=False, row_cluster=False, cmap='RdYlBu_r')\n", (8822, 8949), True, 'import seaborn as sns\n'), ((9010, 9020), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9018, 9020), True, 'import matplotlib.pyplot as plt\n'), ((9025, 9041), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (9034, 9041), True, 'import matplotlib.pyplot as plt\n'), ((2856, 2881), 'os.path.exists', 'os.path.exists', (['kmeansDir'], {}), '(kmeansDir)\n', (2870, 2881), False, 'import os\n'), ((2891, 2910), 'os.mkdir', 'os.mkdir', (['kmeansDir'], {}), '(kmeansDir)\n', (2899, 2910), False, 'import os\n'), ((5817, 5866), 'pandas.concat', 'pd.concat', (['[hcmeanDF, oameanDF, rameanDF]'], {'axis': '(1)'}), '([hcmeanDF, oameanDF, rameanDF], axis=1)\n', (5826, 5866), True, 'import pandas as pd\n'), ((5972, 6002), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-white"""'], {}), "('seaborn-white')\n", (5985, 6002), True, 'import matplotlib.pyplot as plt\n'), ((6015, 6043), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(1.5, 2)'}), '(figsize=(1.5, 2))\n', (6025, 6043), True, 'import matplotlib.pyplot as plt\n'), ((6179, 6445), 'seaborn.boxplot', 'sns.boxplot', ([], {'data': 'MergeM', 'ax': 'ax', 'palette': "['steelblue', 'gold', 'orangered']", 'whis': '(0.5)', 'fliersize': '(0.5)', 'width': '(0.7)', 'showfliers': '(False)', 'medianprops': "{'linewidth': 0.5}", 'whiskerprops': "{'linewidth': 0.5}", 'boxprops': "{'linewidth': 0.5}", 'capprops': "{'linewidth': 0.5}"}), "(data=MergeM, ax=ax, palette=['steelblue', 'gold', 'orangered'],\n whis=0.5, fliersize=0.5, width=0.7, showfliers=False, medianprops={\n 'linewidth': 0.5}, whiskerprops={'linewidth': 0.5}, boxprops={\n 'linewidth': 0.5}, capprops={'linewidth': 0.5})\n", (6190, 6445), True, 'import seaborn as sns\n'), ((6783, 6793), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6791, 6793), True, 'import matplotlib.pyplot as plt\n')]