code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
import sys import os import argparse import time import numpy as np from os.path import dirname from sklearn import svm from sklearn.externals import joblib from matplotlib import image as img from lib.utils.dr_utils import invert_dr from lib.utils.dr_utils import gradient_transform from lib.attacks.svm_attacks import min_dist_calc def resolve_path(): return dirname(dirname(dirname(os.path.abspath(__file__)))) #------------------------------------------------------------------------------# def resolve_path_m(model_dict): """ Resolve absolute paths of models for different datasets Parameters ---------- model_dict : dictionary contains model's parameters Returns ------- absolute path to models directory """ dataset = model_dict['dataset'] channels = model_dict['channels'] script_dir = resolve_path() rel_path_m = 'svm_models/' + dataset if dataset == 'GTSRB': rel_path_m += str(channels) abs_path_m = os.path.join(script_dir, rel_path_m + '/') if not os.path.exists(abs_path_m): os.makedirs(abs_path_m) return abs_path_m #------------------------------------------------------------------------------# def resolve_path_o(model_dict): """ Resolve absolute paths of output data for different datasets Parameters ---------- model_dict : dictionary contains model's parameters Returns ------- absolute path to output directory """ dataset = model_dict['dataset'] channels = model_dict['channels'] script_dir = resolve_path() rel_path_o = 'svm_output_data/' + dataset if dataset == 'GTSRB': rel_path_o += str(channels) abs_path_o = os.path.join(script_dir, rel_path_o + '/') if not os.path.exists(abs_path_o): os.makedirs(abs_path_o) return abs_path_o #------------------------------------------------------------------------------# def resolve_path_v(model_dict): """ Resolve absolute paths of visual data for different datasets Parameters ---------- model_dict : dictionary contains model's parameters Returns ------- absolute path to output directory """ model_name = get_svm_model_name(model_dict) dataset = model_dict['dataset'] channels = model_dict['channels'] script_dir = resolve_path() rel_path_v = 'svm_visual_data/' + dataset + '/' + model_name if dataset == 'GTSRB': rel_path_v += str(channels) abs_path_v = os.path.join(script_dir, rel_path_v + '/') if not os.path.exists(abs_path_v): os.makedirs(abs_path_v) return abs_path_v #------------------------------------------------------------------------------# def svm_model_dict_create(): """ Parse arguments to strategic_svm.py and create model_dict containing the parameters """ # Parse arguments parser = argparse.ArgumentParser() parser.add_argument( '-st', '--svm_type', default='linear', type=str, help='Specify type of SVM to be used (default: linear)') parser.add_argument('--dataset', default='MNIST', type=str, help='Specify dataset (default: MNIST)') parser.add_argument( '-c', '--channels', default=1, type=int, help='Specify number of input channels (1 (default) or 3)') parser.add_argument( '--two_classes', action='store_true', help='Train SVM on two classes instead of all available classes') parser.add_argument('-dr', '--dim_red', default='pca', type=str, help='Specify dimension reduction (default: pca)') parser.add_argument( '--rev', action='store_true', help='Train SVM and attack on DR sample reverted to original space') parser.add_argument('-C', '--penconst', default=1.0, type=float, help='Specify penalty parameter C (default: 1.0)') parser.add_argument( '-p', '--penalty', default='l2', type=str, help='Specify norm to use in penalization (l1 or l2 (default))') parser.add_argument( '-pp', '--preprocess', default=None, type=str, help='Specify preprocessing on dataset (std, whiten, antiwhiten(*)) \ (default: None) \n (*) is degree of covariance (>= -1)') args = parser.parse_args() # Create and update model_dict model_dict = {} model_dict.update({'svm_type': args.svm_type}) model_dict.update({'dataset': args.dataset}) model_dict.update({'channels': args.channels}) model_dict.update({'dim_red': args.dim_red}) model_dict.update({'penconst': args.penconst}) model_dict.update({'penalty': args.penalty}) model_dict.update({'preprocess': args.preprocess}) if args.rev: model_dict.update({'rev': 1}) else: model_dict.update({'rev': None}) if args.two_classes: model_dict.update({'classes': 2}) else: # TODO: preferrably put this somehere else dataset = model_dict['dataset'] if (dataset == 'MNIST'): model_dict.update({'classes': 10}) elif (dataset == 'GTSRB'): model_dict.update({'classes': 43}) elif (dataset == 'HAR'): model_dict.update({'classes': 6}) return model_dict #------------------------------------------------------------------------------# def get_svm_model_name(model_dict, rd=None, rev=None): """ Helper function to get model name from <model_dict>, <rd> and <rev> """ model_name = 'svm_{}_cls{}'.format( model_dict['svm_type'], model_dict['classes']) if model_dict['preprocess'] is not None: model_name += ('_' + model_dict['preprocess']) if rd is not None: model_name += '_{}{}'.format(model_dict['dim_red'], rd) if rev is not None: model_name += '_rev' model_name += '_{}_C{:.0e}'.format(model_dict['penalty'], model_dict['penconst']) return model_name #------------------------------------------------------------------------------# def model_loader(model_dict, rd=None, rev=None): """ Returns a classifier object if it already exists. Returns None, otherwise. """ print('Loading model...') abs_path_m = resolve_path_m(model_dict) try: clf = joblib.load(abs_path_m + get_svm_model_name(model_dict, rd, rev) + '.pkl') except BaseException: clf = None return clf #------------------------------------------------------------------------------# def model_trainer(model_dict, X_train, y_train, rd=None, rev=None): """Trains and returns SVM. Also save SVM to file.""" print('Training model...') start_time = time.time() abs_path_m = resolve_path_m(model_dict) svm_model = model_dict['svm_type'] C = model_dict['penconst'] penalty = model_dict['penalty'] # Create model based on parameters if svm_model == 'linear': dual = False # if penalty == 'l1': # dual = False clf = svm.LinearSVC(C=C, penalty=penalty, dual=dual) elif svm_model != 'linear': clf = svm.SVC(C=C, kernel=svm_model) # Train model clf.fit(X_train, y_train) print('Finish training in {:d}s'.format(int(time.time() - start_time))) # Save model joblib.dump(clf, abs_path_m + get_svm_model_name(model_dict, rd, rev) + '.pkl') return clf #------------------------------------------------------------------------------# def model_creator(model_dict, X_train, y_train, rd=None, rev=None): """Returns a SVM classifier""" # Load model based on model_dict clf = model_loader(model_dict, rd, rev) # If model does not exist, train a new SVM if clf is None: clf = model_trainer(model_dict, X_train, y_train, rd, rev) return clf #------------------------------------------------------------------------------# def model_transform(model_dict, clf, dr_alg): """ Modify SVM's decision function to take into account transformation matrix to transform input data in original space """ A = gradient_transform(model_dict, dr_alg) clf.coef_ = np.dot(clf.coef_, A) return clf #------------------------------------------------------------------------------# def model_tester(model_dict, clf, X_test, y_test, rd=None, rev=None): """ Calculate model's accuracy and average normalized distance from correctly classified samples to separating hyperplane of corresponding class """ predicted_labels = clf.predict(X_test) if model_dict['svm_type'] == 'linear': # Magnitude of weight vectors for each class norm = np.linalg.norm(clf.coef_, axis=1) else: # norm is arbritarily set to one for kernel SVM norm = np.ones(model_dict['classes']) test_len = len(X_test) sum_dist = 0 n_correct = 0 for i in range(test_len): if predicted_labels[i] == y_test[i]: n_correct += 1 # Sum normalized distance to sept. hyperplane _, min_dist = min_dist_calc(X_test[i], clf) sum_dist += min_dist DR = model_dict['dim_red'] # Resolve path to utility output file abs_path_o = resolve_path_o(model_dict) fname = 'utility_' + get_svm_model_name(model_dict) if rd != None: fname += '_' + DR if rev != None: fname += '_rev' ofile = open(abs_path_o + fname + '.txt', 'a') DR=model_dict['dim_red'] if rd == None: ofile.write('No_'+DR+' ') else: ofile.write( str(rd) + ' ') # Format: <dimensions> <accuracy> <avg. dist.> ofile.write('{:.2f} {:.3f} \n'.format(clf.score(X_test,y_test), sum_dist / n_correct)) ofile.write('\n\n') #------------------------------------------------------------------------------# def acc_calc_all(clf, X_adv, y_test, y_ini): """ Return attack success rate on <clf> based on initially correctly predicted samples """ o_list = [] y_adv = clf.predict(X_adv) # Accuracy vs. true labels atk_success = (y_adv != y_test) acc_t = np.sum(atk_success) / float(len(X_adv)) o_list.append(acc_t) # Accuracy vs. predicted labels atk_success = (y_adv != y_ini) acc_p = np.sum(atk_success) / float(len(X_adv)) o_list.append(acc_p) # Accuracy for adv. examples generated from correctly classified examples i_c = np. where(y_ini == y_test) atk_success = (y_adv[i_c] != y_test[i_c]) acc_c = np.sum(atk_success) / float(len(y_adv[i_c])) o_list.append(acc_c) return o_list #------------------------------------------------------------------------------# def file_create(model_dict, rd=None, strat=None, rev=None): """ Creates and returns a file descriptor, named corresponding to model, attack type, strat, and rev """ # Resolve absolute path to output directory abs_path_o = resolve_path_o(model_dict) fname = get_svm_model_name(model_dict) if strat is not None: fname += '_strat' if rd is not None: fname += '_' + model_dict['dim_red'] if rev is not None: fname += '_rev' plotfile = open(abs_path_o + fname + '.txt', 'a') return plotfile, fname #------------------------------------------------------------------------------# def print_svm_output(model_dict, output_list, dev_list, rd=None, strat=None, rev=None): """ Creates an output file reporting accuracy and confidence of attack """ plotfile, fname = file_create(model_dict, rd, strat, rev) plotfile.write('\\\\small{{{}}}\n'.format(rd)) for i in range(len(dev_list)): plotfile.write('{0:.3f}'.format(dev_list[i])) for item in output_list[i]: plotfile.write(' {0:.3f}'.format(item)) plotfile.write('\n') plotfile.write('\n\n') plotfile.close() return fname #------------------------------------------------------------------------------# def save_svm_images(model_dict, data_dict, X_test, adv_x, dev_mag, rd=None, dr_alg=None, rev=None): """ Save <no_of_img> adv. samples as image files in visual_data folder """ no_of_img = 1 # Number of images to save indices = range(no_of_img) X_curr = X_test[indices] dataset = model_dict['dataset'] DR = model_dict['dim_red'] abs_path_v = resolve_path_v(model_dict) no_of_features = data_dict['no_of_features'] height = int(np.sqrt(no_of_features)) width = height # TODO: invert preprocessing # if model_dict['preprocess'] is not None: channels = 1 if channels == 1: if (rd is not None) and (rev is None): # Invert dr samples to their original space adv_x_curr = adv_x[indices, :] + dr_alg.mean_ for i in indices: adv = adv_x_curr[i].reshape((height, width)) orig = X_curr[i].reshape((height, width)) img.imsave( abs_path_v + '{}_{}_{}_mag{}.png'.format(i, DR, rd, dev_mag), adv * 255, vmin=0, vmax=255, cmap='gray') img.imsave(abs_path_v + '{}_{}_{}_orig.png'.format(i, DR, rd), orig * 255, vmin=0, vmax=255, cmap='gray') elif (rd is None) or (rev is not None): adv_x_curr = adv_x[indices, :] for i in indices: adv = adv_x_curr[i].reshape((height, width)) orig = X_curr[i].reshape((height, width)) if rd is not None: fname = abs_path_v + '{}_{}_rev_{}'.format(i, DR, rd) elif rd is None: fname = abs_path_v + '{}'.format(i) img.imsave(fname + '_mag{}.png'.format(dev_mag), adv * 255, vmin=0, vmax=255, cmap='gray') img.imsave(fname + '_orig.png', orig * 255, vmin=0, vmax=255, cmap='gray') else: adv = adv_x[i].swapaxes(0, 2).swapaxes(0, 1) orig = X_test[i].swapaxes(0, 2).swapaxes(0, 1) #------------------------------------------------------------------------------# # def plotter(acc_def, acc, dev_list, rd_list, recons_flag=0, strat_flag=0): # # import matplotlib # matplotlib.use('Agg') # import matplotlib.pyplot as plt # from matplotlib.lines import Line2D # import glob as glob # import os # from matplotlib.pyplot import cm # from cycler import cycler # # if strat_flag == 1: title = 'Strategic gradient ' # elif strat_flag == 0: title = 'Gradient ' # title += 'on DCA reduced dimensions for MNIST data with ' # fname ='MNIST_svm_dca' # if recons_flag == 1: # title += 'recons defense' # fname += '_recon.png' # elif recons_flag == 0: # title += 'retrain defense' # fname += '_retrain' # if strat_flag == 1: fname += '_strat' # fname += '.png' # # font = {'size': 17} # matplotlib.rc('font', **font) # cm = plt.get_cmap('gist_rainbow') # fig, ax = plt.subplots(1, 1, figsize=(12,9)) # ax.get_xaxis().tick_bottom() # ax.get_yaxis().tick_left() # colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k') # markers = ('o', '^', 'x', 'D', 's', '|', 'v') # handle_list = [] # count = 0 # for item in rd_list: # count += 1 # color = colors[count % len(colors)] # style = markers[count % len(markers)] # handle_list.append(plt.plot(dev_list, np.multiply(100, acc_def[count-1, :]), # linestyle='-', marker=style, color=color, markersize=10, label=item)) # handle_list.append(plt.plot(dev_list, np.multiply(100, acc), # linestyle='-', marker='o', color='b', markersize=10, label='No defense')) # # plt.xlabel(r'Adversarial perturbation') # plt.ylabel('Adversarial success') # plt.title(title) # plt.xticks() # plt.legend(loc=2, fontsize=14) # plt.ylim(0, 100) # plt.savefig(fname, bbox_inches='tight') # plt.show() # #------------------------------------------------------------------------------#
[ "os.path.exists", "numpy.sqrt", "numpy.ones", "argparse.ArgumentParser", "os.makedirs", "numpy.where", "sklearn.svm.LinearSVC", "os.path.join", "matplotlib.image.imsave", "numpy.sum", "numpy.dot", "lib.attacks.svm_attacks.min_dist_calc", "numpy.linalg.norm", "os.path.abspath", "lib.utils.dr_utils.gradient_transform", "time.time", "sklearn.svm.SVC" ]
[((1007, 1049), 'os.path.join', 'os.path.join', (['script_dir', "(rel_path_m + '/')"], {}), "(script_dir, rel_path_m + '/')\n", (1019, 1049), False, 'import os\n'), ((1739, 1781), 'os.path.join', 'os.path.join', (['script_dir', "(rel_path_o + '/')"], {}), "(script_dir, rel_path_o + '/')\n", (1751, 1781), False, 'import os\n'), ((2538, 2580), 'os.path.join', 'os.path.join', (['script_dir', "(rel_path_v + '/')"], {}), "(script_dir, rel_path_v + '/')\n", (2550, 2580), False, 'import os\n'), ((2930, 2955), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2953, 2955), False, 'import argparse\n'), ((6890, 6901), 'time.time', 'time.time', ([], {}), '()\n', (6899, 6901), False, 'import time\n'), ((8275, 8313), 'lib.utils.dr_utils.gradient_transform', 'gradient_transform', (['model_dict', 'dr_alg'], {}), '(model_dict, dr_alg)\n', (8293, 8313), False, 'from lib.utils.dr_utils import gradient_transform\n'), ((8331, 8351), 'numpy.dot', 'np.dot', (['clf.coef_', 'A'], {}), '(clf.coef_, A)\n', (8337, 8351), True, 'import numpy as np\n'), ((10593, 10618), 'numpy.where', 'np.where', (['(y_ini == y_test)'], {}), '(y_ini == y_test)\n', (10601, 10618), True, 'import numpy as np\n'), ((1061, 1087), 'os.path.exists', 'os.path.exists', (['abs_path_m'], {}), '(abs_path_m)\n', (1075, 1087), False, 'import os\n'), ((1097, 1120), 'os.makedirs', 'os.makedirs', (['abs_path_m'], {}), '(abs_path_m)\n', (1108, 1120), False, 'import os\n'), ((1793, 1819), 'os.path.exists', 'os.path.exists', (['abs_path_o'], {}), '(abs_path_o)\n', (1807, 1819), False, 'import os\n'), ((1829, 1852), 'os.makedirs', 'os.makedirs', (['abs_path_o'], {}), '(abs_path_o)\n', (1840, 1852), False, 'import os\n'), ((2592, 2618), 'os.path.exists', 'os.path.exists', (['abs_path_v'], {}), '(abs_path_v)\n', (2606, 2618), False, 'import os\n'), ((2628, 2651), 'os.makedirs', 'os.makedirs', (['abs_path_v'], {}), '(abs_path_v)\n', (2639, 2651), False, 'import os\n'), ((7214, 7260), 'sklearn.svm.LinearSVC', 'svm.LinearSVC', ([], {'C': 'C', 'penalty': 'penalty', 'dual': 'dual'}), '(C=C, penalty=penalty, dual=dual)\n', (7227, 7260), False, 'from sklearn import svm\n'), ((8841, 8874), 'numpy.linalg.norm', 'np.linalg.norm', (['clf.coef_'], {'axis': '(1)'}), '(clf.coef_, axis=1)\n', (8855, 8874), True, 'import numpy as np\n'), ((8956, 8986), 'numpy.ones', 'np.ones', (["model_dict['classes']"], {}), "(model_dict['classes'])\n", (8963, 8986), True, 'import numpy as np\n'), ((10292, 10311), 'numpy.sum', 'np.sum', (['atk_success'], {}), '(atk_success)\n', (10298, 10311), True, 'import numpy as np\n'), ((10440, 10459), 'numpy.sum', 'np.sum', (['atk_success'], {}), '(atk_success)\n', (10446, 10459), True, 'import numpy as np\n'), ((10678, 10697), 'numpy.sum', 'np.sum', (['atk_success'], {}), '(atk_success)\n', (10684, 10697), True, 'import numpy as np\n'), ((12656, 12679), 'numpy.sqrt', 'np.sqrt', (['no_of_features'], {}), '(no_of_features)\n', (12663, 12679), True, 'import numpy as np\n'), ((7307, 7337), 'sklearn.svm.SVC', 'svm.SVC', ([], {'C': 'C', 'kernel': 'svm_model'}), '(C=C, kernel=svm_model)\n', (7314, 7337), False, 'from sklearn import svm\n'), ((9236, 9265), 'lib.attacks.svm_attacks.min_dist_calc', 'min_dist_calc', (['X_test[i]', 'clf'], {}), '(X_test[i], clf)\n', (9249, 9265), False, 'from lib.attacks.svm_attacks import min_dist_calc\n'), ((391, 416), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (406, 416), False, 'import os\n'), ((7435, 7446), 'time.time', 'time.time', ([], {}), '()\n', (7444, 7446), False, 'import time\n'), ((14121, 14195), 'matplotlib.image.imsave', 'img.imsave', (["(fname + '_orig.png')", '(orig * 255)'], {'vmin': '(0)', 'vmax': '(255)', 'cmap': '"""gray"""'}), "(fname + '_orig.png', orig * 255, vmin=0, vmax=255, cmap='gray')\n", (14131, 14195), True, 'from matplotlib import image as img\n')]
#################################################################### # ## NATURAL AND ADVERSARIAL TRAINING FOR WIDERESNET CLASSIFIER ## # #################################################################### import torch as t import torch.nn as nn from torch.utils.data import DataLoader import json import datetime from nets import WideResNet, conv_init from utils import setup_exp, import_data # json file with experiment config CONFIG_FILE = './config_train_clf/cifar10_nat.json' ############### # ## SETUP ## # ############### # load experiment config with open(CONFIG_FILE) as file: config = json.load(file) # directory for experiment results exp_dir = config['exp_dir'] + '_' + datetime.datetime.now().strftime('%d-%m-%Y_%I-%M-%S_%p') + '_/' # setup folders, save code, set seed and get device setup_exp(exp_dir, config['seed'], ['checkpoints'], ['train_clf.py', 'nets.py', 'utils.py', CONFIG_FILE]) print('Processing data...') # import train and test datasets and set up data loaders train_data, num_classes = import_data(config['data_type'], True, True) train_data_loader = DataLoader(train_data, config['batch_size'], shuffle=True, num_workers=config['num_workers']) test_data = import_data(config['data_type'], False, False)[0] test_data_loader = DataLoader(test_data, config['batch_size'], shuffle=False, num_workers=config['num_workers']) print('Setting up network and optimizer...') # network structure and weight init clf = WideResNet(num_classes=num_classes).cuda() clf.apply(conv_init) # initialize optim assert len(config['lr_list']) == len(config['lr_schedule']), 'lr_list and lr_schedule must have the same length' optim = t.optim.SGD(clf.parameters(), config['lr_list'][0], config['momentum'], weight_decay=config['weight_decay']) # loss criterion for logits criterion = nn.CrossEntropyLoss() # rescale adversarial parameters for attacks on images with pixel intensities in the range [-1, 1] config['adv_eps'] *= 2.0 / 255.0 config['adv_eta'] *= 2.0 / 255.0 ############################################### # ## FUNCTIONS FOR ATTACK, TRAIN, AND TEST ## # ############################################### # l_inf pgd attack def attack(X, y, adv_steps): min_mask = t.clamp(X - config['adv_eps'], min=-1.0, max=1.0) max_mask = t.clamp(X + config['adv_eps'], min=-1.0, max=1.0) # random initialization in epsilon ball X_adv = t.clamp(X + config['adv_eps']*(2*t.rand_like(X)-1), min=-1.0, max=1.0) X_adv = t.autograd.Variable(X_adv, requires_grad=True) for step in range(adv_steps): # l_infinity attack on images by climbing loss within epsilon-ball attack_grad = t.autograd.grad(criterion(clf(X_adv), y), [X_adv])[0] X_adv.data += config['adv_eta'] * t.sign(attack_grad) X_adv.data = t.min(max_mask, other=t.max(min_mask, other=X_adv.data)) return X_adv.detach() # train model for single epoch through data def train(epoch): clf.train() train_loss = 0 correct = 0 total = 0 # update learning rate if (epoch + 1) in config['lr_schedule']: lr_ind = config['lr_schedule'].index(epoch + 1) for lr_gp in optim.param_groups: lr_gp['lr'] = config['lr_list'][lr_ind] for batch, (X_batch, y_batch) in enumerate(train_data_loader): X_train, y_train = X_batch.clone().cuda(), y_batch.cuda() if config['adv_steps_train'] > 0 and (epoch+1) >= config['adv_train_start']: # adversarial attacks on input images X_train = attack(X_train, y_train, config['adv_steps_train']) # logits for prediction and loss for weight update logits = clf(X_train) loss = criterion(logits, y_train) # update classifier weights optim.zero_grad() loss.backward() optim.step() # record batch info train_loss += loss.item() _, y_pred = t.max(logits.detach(), 1) correct += t.eq(y_pred, y_train).sum().cpu() total += y_train.nelement() # get and print train accuracy train_acc = 100 * float(correct) / float(total) print('Epoch {}: Train Loss={} Train Acc={}%'.format(epoch+1, train_loss / (batch+1), train_acc)) # test model on withheld data def test(epoch): clf.eval() test_loss = 0 correct = 0 total = 0 for batch, (X_batch, y_batch) in enumerate(test_data_loader): X_test, y_test = X_batch.clone().cuda(), y_batch.cuda() if config['adv_steps_test'] > 0: # attack images X_test = attack(X_test, y_test, config['adv_steps_test']) # check test images with t.no_grad(): logits = clf(X_test) loss = criterion(logits, y_test) # record batch info test_loss += loss.item() _, y_pred = t.max(logits, 1) correct += t.eq(y_pred, y_test).sum().cpu() total += y_test.nelement() # get and print test accuracy test_acc = 100 * float(correct) / float(total) print('Epoch {}: Test Loss={} Test Acc={}%'.format(epoch+1, test_loss / (batch+1), test_acc)) ####################### # ## LEARNING LOOP # ## ####################### print('Training has begun.') for epoch in range(config['num_epochs']): train(epoch) if (epoch+1) % config['test_and_log_freq'] == 0: # save checkpoint t.save(clf.state_dict(), exp_dir + 'checkpoints/clf_' + str(epoch + 1) + '.pth') # save optim t.save(optim.state_dict(), exp_dir + 'checkpoints/optim.pth') # evaluate test data test(epoch)
[ "utils.setup_exp", "torch.nn.CrossEntropyLoss", "torch.autograd.Variable", "torch.rand_like", "nets.WideResNet", "torch.max", "torch.sign", "torch.eq", "datetime.datetime.now", "torch.utils.data.DataLoader", "json.load", "torch.no_grad", "utils.import_data", "torch.clamp" ]
[((810, 919), 'utils.setup_exp', 'setup_exp', (['exp_dir', "config['seed']", "['checkpoints']", "['train_clf.py', 'nets.py', 'utils.py', CONFIG_FILE]"], {}), "(exp_dir, config['seed'], ['checkpoints'], ['train_clf.py',\n 'nets.py', 'utils.py', CONFIG_FILE])\n", (819, 919), False, 'from utils import setup_exp, import_data\n'), ((1028, 1072), 'utils.import_data', 'import_data', (["config['data_type']", '(True)', '(True)'], {}), "(config['data_type'], True, True)\n", (1039, 1072), False, 'from utils import setup_exp, import_data\n'), ((1093, 1191), 'torch.utils.data.DataLoader', 'DataLoader', (['train_data', "config['batch_size']"], {'shuffle': '(True)', 'num_workers': "config['num_workers']"}), "(train_data, config['batch_size'], shuffle=True, num_workers=\n config['num_workers'])\n", (1103, 1191), False, 'from torch.utils.data import DataLoader\n'), ((1268, 1366), 'torch.utils.data.DataLoader', 'DataLoader', (['test_data', "config['batch_size']"], {'shuffle': '(False)', 'num_workers': "config['num_workers']"}), "(test_data, config['batch_size'], shuffle=False, num_workers=\n config['num_workers'])\n", (1278, 1366), False, 'from torch.utils.data import DataLoader\n'), ((1804, 1825), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1823, 1825), True, 'import torch.nn as nn\n'), ((607, 622), 'json.load', 'json.load', (['file'], {}), '(file)\n', (616, 622), False, 'import json\n'), ((1199, 1245), 'utils.import_data', 'import_data', (["config['data_type']", '(False)', '(False)'], {}), "(config['data_type'], False, False)\n", (1210, 1245), False, 'from utils import setup_exp, import_data\n'), ((2202, 2251), 'torch.clamp', 't.clamp', (["(X - config['adv_eps'])"], {'min': '(-1.0)', 'max': '(1.0)'}), "(X - config['adv_eps'], min=-1.0, max=1.0)\n", (2209, 2251), True, 'import torch as t\n'), ((2267, 2316), 'torch.clamp', 't.clamp', (["(X + config['adv_eps'])"], {'min': '(-1.0)', 'max': '(1.0)'}), "(X + config['adv_eps'], min=-1.0, max=1.0)\n", (2274, 2316), True, 'import torch as t\n'), ((2456, 2502), 'torch.autograd.Variable', 't.autograd.Variable', (['X_adv'], {'requires_grad': '(True)'}), '(X_adv, requires_grad=True)\n', (2475, 2502), True, 'import torch as t\n'), ((1450, 1485), 'nets.WideResNet', 'WideResNet', ([], {'num_classes': 'num_classes'}), '(num_classes=num_classes)\n', (1460, 1485), False, 'from nets import WideResNet, conv_init\n'), ((2730, 2749), 'torch.sign', 't.sign', (['attack_grad'], {}), '(attack_grad)\n', (2736, 2749), True, 'import torch as t\n'), ((4601, 4612), 'torch.no_grad', 't.no_grad', ([], {}), '()\n', (4610, 4612), True, 'import torch as t\n'), ((4786, 4802), 'torch.max', 't.max', (['logits', '(1)'], {}), '(logits, 1)\n', (4791, 4802), True, 'import torch as t\n'), ((694, 717), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (715, 717), False, 'import datetime\n'), ((2793, 2826), 'torch.max', 't.max', (['min_mask'], {'other': 'X_adv.data'}), '(min_mask, other=X_adv.data)\n', (2798, 2826), True, 'import torch as t\n'), ((2406, 2420), 'torch.rand_like', 't.rand_like', (['X'], {}), '(X)\n', (2417, 2420), True, 'import torch as t\n'), ((3915, 3936), 'torch.eq', 't.eq', (['y_pred', 'y_train'], {}), '(y_pred, y_train)\n', (3919, 3936), True, 'import torch as t\n'), ((4826, 4846), 'torch.eq', 't.eq', (['y_pred', 'y_test'], {}), '(y_pred, y_test)\n', (4830, 4846), True, 'import torch as t\n')]
from os import path, remove from .settings import Settings import arrow class Export: def __init__(self, settings: Settings): self.settings = settings def export_to_file(self, filename): curdatestr = arrow.now().format() if path.exists(filename): remove(filename) with open(filename, mode='wt') as fp: fp.write('# Settings Exported\n') fp.write('# on: ' + curdatestr + '\n') fp.write('# for appname = ' + self.settings.appname + '\n' ) for item in self.settings.items: s = f"{item['name']}={item['value']}\n" fp.write(s) return
[ "os.path.exists", "arrow.now", "os.remove" ]
[((259, 280), 'os.path.exists', 'path.exists', (['filename'], {}), '(filename)\n', (270, 280), False, 'from os import path, remove\n'), ((294, 310), 'os.remove', 'remove', (['filename'], {}), '(filename)\n', (300, 310), False, 'from os import path, remove\n'), ((227, 238), 'arrow.now', 'arrow.now', ([], {}), '()\n', (236, 238), False, 'import arrow\n')]
from .MobileAgent import MobileAgent import numpy as np from cvxopt import solvers, matrix from numpy.matlib import repmat from numpy import zeros, eye, ones, sqrt, asscalar, log class BarrierFunction(MobileAgent): def __init__(self): self.t = 0.5 self.gamma = 2 self.half_plane_ABC = [] self.d_min = 2 MobileAgent.__init__(self); self.safe_set = [0,0,0] def calc_control_input(self, dT, goal, fx, fu, Xr, Xh, dot_Xr, dot_Xh, Mr, Mh, p_Mr_p_Xr, p_Mh_p_Xh, u0, min_u, max_u): dim = np.shape(Mr)[0] // 2 p_idx = np.arange(dim) v_idx = p_idx + dim d = np.linalg.norm(Mr[p_idx] - Mh[p_idx]) dot_Mr = p_Mr_p_Xr * dot_Xr dot_Mh = p_Mh_p_Xh * dot_Xh dM = Mr - Mh dot_dM = dot_Mr - dot_Mh dp = dM[p_idx,0] dv = dM[v_idx,0] dot_dp = dot_dM[p_idx,0] dot_dv = dot_dM[v_idx,0] #dot_d is the component of velocity lies in the dp direction dot_d = asscalar(dp.T * dv / d) d = 1e-3 if d == 0 else d dot_d = 1e-3 if dot_d == 0 else dot_d p_d_p_Mr = np.vstack([ dp / d, zeros((dim,1))]) p_d_p_Xr = p_Mr_p_Xr.T * p_d_p_Mr p_dot_d_p_dp = dv / d - asscalar(dp.T * dv) * dp / (d**3) p_dot_d_p_dv = dp / d p_dp_p_Mr = np.hstack([eye(dim), zeros((dim,dim))]) p_dv_p_Mr = np.hstack([zeros((dim,dim)), eye(dim)]) p_dot_d_p_Mr = p_dp_p_Mr.T * p_dot_d_p_dp + p_dv_p_Mr.T * p_dot_d_p_dv h = (d ** 2 + dot_d * self.t - self.d_min) h = 1e-100 if h < 0 else h p_h_p_Mr = (2 * d * p_d_p_Mr + p_dot_d_p_Mr * self.t) p_h_p_Mh = -p_h_p_Mr B = -1*log(h / (1+h)) p_B_p_h = (-1 / (h+1) / h) p_B_p_Xr = p_B_p_h * p_Mr_p_Xr.T * p_h_p_Mr p_B_p_Xh = p_B_p_h * p_Mh_p_Xh.T * p_h_p_Mh LfB = p_B_p_Xr.T * fx LgB = p_B_p_Xr.T * fu A = matrix(LgB) b = matrix(self.gamma / B - LfB - p_B_p_Xh.T * dot_Xh) A = A / abs(b) b = b / abs(b) Q = matrix(eye(np.shape(u0)[0])) p = matrix(- 2 * u0) nu = np.shape(u0)[0] G = matrix(np.vstack([eye(nu), -eye(nu)])) r = matrix(np.vstack([max_u, -min_u])) A = matrix([[A,G]]) b = matrix([[b,r]]) u = u0 self.fuck = False try: solvers.options['feastol']=1e-9 solvers.options['show_progress'] = False sol=solvers.qp(Q, p, A, b) u = np.vstack(sol['x']) except: pass self.half_plane_ABC = matrix([[A],[-b - A[:,0]*Mr[0,0] - A[:,1]*Mr[1,0]]]) self.ABC = matrix([[A],[-b]]) return u
[ "numpy.eye", "numpy.log", "numpy.asscalar", "numpy.zeros", "numpy.vstack", "cvxopt.matrix", "numpy.linalg.norm", "cvxopt.solvers.qp", "numpy.shape", "numpy.arange" ]
[((605, 619), 'numpy.arange', 'np.arange', (['dim'], {}), '(dim)\n', (614, 619), True, 'import numpy as np\n'), ((661, 698), 'numpy.linalg.norm', 'np.linalg.norm', (['(Mr[p_idx] - Mh[p_idx])'], {}), '(Mr[p_idx] - Mh[p_idx])\n', (675, 698), True, 'import numpy as np\n'), ((1031, 1054), 'numpy.asscalar', 'asscalar', (['(dp.T * dv / d)'], {}), '(dp.T * dv / d)\n', (1039, 1054), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n'), ((1997, 2008), 'cvxopt.matrix', 'matrix', (['LgB'], {}), '(LgB)\n', (2003, 2008), False, 'from cvxopt import solvers, matrix\n'), ((2021, 2071), 'cvxopt.matrix', 'matrix', (['(self.gamma / B - LfB - p_B_p_Xh.T * dot_Xh)'], {}), '(self.gamma / B - LfB - p_B_p_Xh.T * dot_Xh)\n', (2027, 2071), False, 'from cvxopt import solvers, matrix\n'), ((2173, 2188), 'cvxopt.matrix', 'matrix', (['(-2 * u0)'], {}), '(-2 * u0)\n', (2179, 2188), False, 'from cvxopt import solvers, matrix\n'), ((2331, 2347), 'cvxopt.matrix', 'matrix', (['[[A, G]]'], {}), '([[A, G]])\n', (2337, 2347), False, 'from cvxopt import solvers, matrix\n'), ((2359, 2375), 'cvxopt.matrix', 'matrix', (['[[b, r]]'], {}), '([[b, r]])\n', (2365, 2375), False, 'from cvxopt import solvers, matrix\n'), ((2687, 2748), 'cvxopt.matrix', 'matrix', (['[[A], [-b - A[:, 0] * Mr[0, 0] - A[:, 1] * Mr[1, 0]]]'], {}), '([[A], [-b - A[:, 0] * Mr[0, 0] - A[:, 1] * Mr[1, 0]]])\n', (2693, 2748), False, 'from cvxopt import solvers, matrix\n'), ((2759, 2778), 'cvxopt.matrix', 'matrix', (['[[A], [-b]]'], {}), '([[A], [-b]])\n', (2765, 2778), False, 'from cvxopt import solvers, matrix\n'), ((1770, 1786), 'numpy.log', 'log', (['(h / (1 + h))'], {}), '(h / (1 + h))\n', (1773, 1786), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n'), ((2204, 2216), 'numpy.shape', 'np.shape', (['u0'], {}), '(u0)\n', (2212, 2216), True, 'import numpy as np\n'), ((2290, 2316), 'numpy.vstack', 'np.vstack', (['[max_u, -min_u]'], {}), '([max_u, -min_u])\n', (2299, 2316), True, 'import numpy as np\n'), ((2543, 2565), 'cvxopt.solvers.qp', 'solvers.qp', (['Q', 'p', 'A', 'b'], {}), '(Q, p, A, b)\n', (2553, 2565), False, 'from cvxopt import solvers, matrix\n'), ((2582, 2601), 'numpy.vstack', 'np.vstack', (["sol['x']"], {}), "(sol['x'])\n", (2591, 2601), True, 'import numpy as np\n'), ((568, 580), 'numpy.shape', 'np.shape', (['Mr'], {}), '(Mr)\n', (576, 580), True, 'import numpy as np\n'), ((1176, 1191), 'numpy.zeros', 'zeros', (['(dim, 1)'], {}), '((dim, 1))\n', (1181, 1191), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n'), ((1381, 1389), 'numpy.eye', 'eye', (['dim'], {}), '(dim)\n', (1384, 1389), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n'), ((1391, 1408), 'numpy.zeros', 'zeros', (['(dim, dim)'], {}), '((dim, dim))\n', (1396, 1408), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n'), ((1442, 1459), 'numpy.zeros', 'zeros', (['(dim, dim)'], {}), '((dim, dim))\n', (1447, 1459), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n'), ((1460, 1468), 'numpy.eye', 'eye', (['dim'], {}), '(dim)\n', (1463, 1468), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n'), ((1277, 1296), 'numpy.asscalar', 'asscalar', (['(dp.T * dv)'], {}), '(dp.T * dv)\n', (1285, 1296), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n'), ((2143, 2155), 'numpy.shape', 'np.shape', (['u0'], {}), '(u0)\n', (2151, 2155), True, 'import numpy as np\n'), ((2250, 2257), 'numpy.eye', 'eye', (['nu'], {}), '(nu)\n', (2253, 2257), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n'), ((2260, 2267), 'numpy.eye', 'eye', (['nu'], {}), '(nu)\n', (2263, 2267), False, 'from numpy import zeros, eye, ones, sqrt, asscalar, log\n')]
# -*- encoding: utf-8 -*- # # Copyright (c) 2021 <NAME> <<EMAIL>> # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. import os import uuid import fnmatch class BatchFile(): def __init__(self, filename_dbrecord, filename, email, model_name): self.filename_dbrecord = filename_dbrecord self.filename = filename self.email = email self.model_name = model_name class BatchFilesDB(): ENTRIES = '/srv/data/entries' SEPARATOR = "\t" g_check_directory = True def create(self, filename, email, model_name): if self.g_check_directory: self.g_check_directory = False if not os.path.exists(self.ENTRIES): os.makedirs(self.ENTRIES) filename_dbrecord = str(uuid.uuid4()) filename_dbrecord = os.path.join(self.ENTRIES, filename_dbrecord) with open(filename_dbrecord, "w") as fh: line = f"{filename}{self.SEPARATOR}{email}{self.SEPARATOR}{model_name}" fh.write(line) return filename_dbrecord def _find(self, directory, pattern): filelist = [] for root, dirs, files in os.walk(directory): for basename in files: if fnmatch.fnmatch(basename, pattern): filename = os.path.join(root, basename) filelist.append(filename) return filelist def _read_record(self, filename_dbrecord): with open(filename_dbrecord, "r") as fh: line = fh.readline() components = line.split(self.SEPARATOR) return BatchFile(filename_dbrecord, components[0], components[1], components[2]) def select(self): filenames = self._find(self.ENTRIES, "*") records = [] for filename in filenames: record = self._read_record(filename) records.append(record) return records def delete(self, filename): os.remove(filename)
[ "os.path.exists", "os.makedirs", "os.path.join", "uuid.uuid4", "fnmatch.fnmatch", "os.walk", "os.remove" ]
[((1478, 1523), 'os.path.join', 'os.path.join', (['self.ENTRIES', 'filename_dbrecord'], {}), '(self.ENTRIES, filename_dbrecord)\n', (1490, 1523), False, 'import os\n'), ((1817, 1835), 'os.walk', 'os.walk', (['directory'], {}), '(directory)\n', (1824, 1835), False, 'import os\n'), ((2611, 2630), 'os.remove', 'os.remove', (['filename'], {}), '(filename)\n', (2620, 2630), False, 'import os\n'), ((1436, 1448), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1446, 1448), False, 'import uuid\n'), ((1331, 1359), 'os.path.exists', 'os.path.exists', (['self.ENTRIES'], {}), '(self.ENTRIES)\n', (1345, 1359), False, 'import os\n'), ((1377, 1402), 'os.makedirs', 'os.makedirs', (['self.ENTRIES'], {}), '(self.ENTRIES)\n', (1388, 1402), False, 'import os\n'), ((1891, 1925), 'fnmatch.fnmatch', 'fnmatch.fnmatch', (['basename', 'pattern'], {}), '(basename, pattern)\n', (1906, 1925), False, 'import fnmatch\n'), ((1958, 1986), 'os.path.join', 'os.path.join', (['root', 'basename'], {}), '(root, basename)\n', (1970, 1986), False, 'import os\n')]
from kata.calculator import stringCalculator def test_shouldBeZeroIfInputIsEmpty(): sc = stringCalculator() sum = sc.add("") assert sum == 0
[ "kata.calculator.stringCalculator" ]
[((95, 113), 'kata.calculator.stringCalculator', 'stringCalculator', ([], {}), '()\n', (111, 113), False, 'from kata.calculator import stringCalculator\n')]
""" Make a basic DataObject. We will make a class and call it `MyFavoriteStuff`. We will inherit the DataObject class to gain all its wonderful features. Here you can see we must define the '_restrictions' attribute. """ from do_py import DataObject, R class MyFavoriteStuff(DataObject): """ A DataObject that contains all of my favorite items. :restriction favorite_number: The number I favor the most. Strings not allowed. :restriction favorite_candy: My favorite candy, this is restricted by value. :restriction favorite_movie: My favorite movie. This is optional because a `None` IS allowed! """ # There are two kinds of restrictions, type and value. _restrictions = { # Type restrictions restrict the type a value can have: int, str, bool, or other DataObjects's 'favorite_number': R.INT, # Value restrictions restrict the value to a specific value in a list. 'favorite_candy': R('Jolly Ranchers', 'Nerds'), # This is a type restriction that allows `None` as a value. 'favorite_movie': R.NULL_STR } # Instantiate your new DataObject. instance = MyFavoriteStuff({ 'favorite_number': 1985, 'favorite_candy': '<NAME>', 'favorite_movie': 'Jolly Green Giant' }) print(instance) # output: MyFavoriteStuff{"favorite_candy": "<NAME>", "favorite_number": 1985, "favorite_movie": "Jolly Green Giant"} # You can access values using dot notation or like a `dict`. print(instance.favorite_number == instance['favorite_number']) # output: True print(instance.favorite_number) print(instance.favorite_candy) print(instance.favorite_movie) # output: 1985 # output: Jolly Ranchers # output: Jolly Green Giant # Editing the values can also be done very easily. instance.favorite_number = 2013 print(instance.favorite_number) # output: 2013
[ "do_py.R" ]
[((949, 977), 'do_py.R', 'R', (['"""Jolly Ranchers"""', '"""Nerds"""'], {}), "('Jolly Ranchers', 'Nerds')\n", (950, 977), False, 'from do_py import DataObject, R\n')]
"""This script tunes the simulator's hyperparameters by utilizing Bayesian Optimization, and measures a hyperparameter set's fitness according to Sweden's death data with the simulator output's time to peak and the difference over the rise of the curve. The hyperparameters that are tuned in the script include spread rate and social distancing rate """ import dataclasses from dataclasses import dataclass from typing import cast, Optional import GPyOpt import matplotlib.pyplot as plt import numpy as np from pandas import read_csv from tqdm import trange import pandemic_simulator as ps SEED = 30 MAX_EVAL_TRIALS_TO_VALID = 5 np.random.seed(SEED) @dataclass class CalibrationData: deaths: np.ndarray hospitalizations: np.ndarray def is_valid(self) -> bool: return bool(np.sum(self.deaths) > 0) def reset_patient_capacity(sim_config: ps.env.PandemicSimConfig) -> None: for lc in sim_config.location_configs: if issubclass(lc.location_type, ps.env.Hospital): lc.state_opts['patient_capacity'] = sim_config.num_persons sim_config.__post_init__() def eval_params(params: np.ndarray, max_episode_length: int, trial_cnt: int = 0) -> CalibrationData: """Evaluate the params and return the result :param params: spread rate and social distancing rate :param max_episode_length: length of simulation run in days :param trial_cnt: evaluation trial count :returns: CalibrationData instance """ if trial_cnt >= MAX_EVAL_TRIALS_TO_VALID: raise Exception(f'Could not find a valid evaluation for the params: {params} within the specified number' f'of trials: {MAX_EVAL_TRIALS_TO_VALID}.') spread_rate = np.round(params[:, 0][0], decimals=3) social_distancing = np.round(params[:, 1][0], decimals=3) deaths = [] hospitalizations = [] seed = SEED + trial_cnt if trial_cnt == 0: print(f'Running with spread rate: {spread_rate} and social distancing: {social_distancing}') else: print(f'Re-Running with a different seed: {seed}') ps.init_globals(seed=seed) sim_config = ps.sh.small_town_config reset_patient_capacity(sim_config) sim_opts = ps.env.PandemicSimOpts(infection_spread_rate_mean=spread_rate) sim = ps.env.PandemicSim.from_config(sim_config, sim_opts) # using swedish stage 1 regulation with the given social distancing to calibrate covid_regulation = dataclasses.replace(ps.sh.swedish_regulations[1], social_distancing=social_distancing) sim.impose_regulation(regulation=covid_regulation) hospital_ids = sim.registry.location_ids_of_type(ps.env.Hospital) hospital_weekly = 0 for i in trange(max_episode_length, desc='Simulating day'): sim.step_day() state = sim.state num_deaths = state.global_infection_summary[ps.env.InfectionSummary.DEAD] deaths.append(num_deaths) num_hospitalizations = sum([cast(ps.env.HospitalState, state.id_to_location_state[loc_id]).num_admitted_patients for loc_id in hospital_ids]) hospital_weekly += num_hospitalizations if i % 7 == 0: hospitalizations.append(hospital_weekly) hospital_weekly = 0 deaths_arr = np.asarray(deaths) deaths_arr = deaths_arr[1:] - deaths_arr[:-1] hosp_arr = np.asarray(hospitalizations) hosp_arr = hosp_arr[1:] - hosp_arr[:-1] eval_result = CalibrationData(deaths=deaths_arr, hospitalizations=hosp_arr) return eval_result if eval_result.is_valid() else eval_params(params, max_episode_length, trial_cnt=trial_cnt + 1) def real_world_data() -> CalibrationData: """Extract and treat real-world data from WHO :returns: real-world death data """ # using Sweden's death and hospitalization data deaths_url = 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/ecdc/new_deaths.csv' deaths_df = read_csv(deaths_url, header=0) real_deaths = deaths_df['Sweden'].values real_deaths = real_deaths[~np.isnan(real_deaths)] hosp_url = 'https://raw.githubusercontent.com/owid/covid-19-data/master/scripts/grapher/' \ 'COVID-2019%20-%20Hospital%20&%20ICU.csv' hosp_df = read_csv(hosp_url, header=0) real_hosp = np.array(hosp_df[hosp_df['entity'] == 'Sweden']['Weekly new ICU admissions']) real_hosp = np.round(real_hosp[~np.isnan(real_hosp)]).astype('int') return CalibrationData(deaths=real_deaths, hospitalizations=np.asarray(real_hosp)) def process_data(data: np.ndarray, data_len: Optional[int] = None, five_day_average: bool = False) -> np.ndarray: # trim initial zeros data = np.trim_zeros(data, 'f')[:data_len] # calculate sliding average if five_day_average: data = np.convolve(data, np.ones(5) / 5, mode='same') # normalize data = data / np.max(data) return data def obj_func(params: np.ndarray) -> float: """Objective function calculates fitness score for a given parameter set :param params: spread rate and social distancing rate to be evaluated :returns: fitness score of parameter set """ # get sim data sim_result: CalibrationData = eval_params(params, 60) sim_data = process_data(sim_result.hospitalizations) # get real data real_result: CalibrationData = real_world_data() real_data = process_data(real_result.hospitalizations, data_len=len(sim_data)) # compare only until the rise of real_peak real_peak = np.argmax(real_data).item() real_data = real_data[:real_peak + 1] sim_data = sim_data[:real_peak + 1] # get score score = np.linalg.norm(real_data - sim_data) print('score: ', score) return float(score) def make_plots(params: np.ndarray) -> None: """Plot final parameter set output against real world data :param params: resulting spread rate and social distancing rate """ # get sim data sim_result: CalibrationData = eval_params(params, 100) sim_data = process_data(sim_result.hospitalizations) # get real data real_result: CalibrationData = real_world_data() real_data = process_data(real_result.hospitalizations, len(sim_data)) # plot calibrated simulator run against real-world data plt.plot(sim_data) plt.plot(real_data) plt.legend(["Simulated", "Real world (Sweden)"]) plt.xlabel("Weeks Passed") plt.ylabel("Hospitalizations Per Week (normalized)") plt.show() if __name__ == '__main__': bounds2d = [{'name': 'spread rate', 'type': 'continuous', 'domain': (0.005, 0.03)}, {'name': 'contact rate', 'type': 'continuous', 'domain': (0., 0.4)}] myBopt_2d = GPyOpt.methods.BayesianOptimization(obj_func, domain=bounds2d) myBopt_2d.run_optimization() print("=" * 20) print("Value of (spread rate, contact rate) that minimises the objective:" + str(myBopt_2d.x_opt)) print("Minimum value of the objective: " + str(myBopt_2d.fx_opt)) print("=" * 20) make_plots(np.array([[myBopt_2d.x_opt[0], myBopt_2d.x_opt[1]]], dtype=np.float64)) myBopt_2d.plot_acquisition()
[ "pandas.read_csv", "matplotlib.pyplot.ylabel", "GPyOpt.methods.BayesianOptimization", "numpy.array", "pandemic_simulator.init_globals", "numpy.linalg.norm", "pandemic_simulator.env.PandemicSimOpts", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.asarray", "numpy.max", "numpy.random.seed", "numpy.round", "numpy.trim_zeros", "numpy.ones", "numpy.argmax", "numpy.isnan", "dataclasses.replace", "pandemic_simulator.env.PandemicSim.from_config", "tqdm.trange", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "typing.cast", "numpy.sum" ]
[((633, 653), 'numpy.random.seed', 'np.random.seed', (['SEED'], {}), '(SEED)\n', (647, 653), True, 'import numpy as np\n'), ((1748, 1785), 'numpy.round', 'np.round', (['params[:, 0][0]'], {'decimals': '(3)'}), '(params[:, 0][0], decimals=3)\n', (1756, 1785), True, 'import numpy as np\n'), ((1810, 1847), 'numpy.round', 'np.round', (['params[:, 1][0]'], {'decimals': '(3)'}), '(params[:, 1][0], decimals=3)\n', (1818, 1847), True, 'import numpy as np\n'), ((2118, 2144), 'pandemic_simulator.init_globals', 'ps.init_globals', ([], {'seed': 'seed'}), '(seed=seed)\n', (2133, 2144), True, 'import pandemic_simulator as ps\n'), ((2240, 2302), 'pandemic_simulator.env.PandemicSimOpts', 'ps.env.PandemicSimOpts', ([], {'infection_spread_rate_mean': 'spread_rate'}), '(infection_spread_rate_mean=spread_rate)\n', (2262, 2302), True, 'import pandemic_simulator as ps\n'), ((2313, 2365), 'pandemic_simulator.env.PandemicSim.from_config', 'ps.env.PandemicSim.from_config', (['sim_config', 'sim_opts'], {}), '(sim_config, sim_opts)\n', (2343, 2365), True, 'import pandemic_simulator as ps\n'), ((2475, 2566), 'dataclasses.replace', 'dataclasses.replace', (['ps.sh.swedish_regulations[1]'], {'social_distancing': 'social_distancing'}), '(ps.sh.swedish_regulations[1], social_distancing=\n social_distancing)\n', (2494, 2566), False, 'import dataclasses\n'), ((2726, 2775), 'tqdm.trange', 'trange', (['max_episode_length'], {'desc': '"""Simulating day"""'}), "(max_episode_length, desc='Simulating day')\n", (2732, 2775), False, 'from tqdm import trange\n'), ((3301, 3319), 'numpy.asarray', 'np.asarray', (['deaths'], {}), '(deaths)\n', (3311, 3319), True, 'import numpy as np\n'), ((3386, 3414), 'numpy.asarray', 'np.asarray', (['hospitalizations'], {}), '(hospitalizations)\n', (3396, 3414), True, 'import numpy as np\n'), ((3978, 4008), 'pandas.read_csv', 'read_csv', (['deaths_url'], {'header': '(0)'}), '(deaths_url, header=0)\n', (3986, 4008), False, 'from pandas import read_csv\n'), ((4276, 4304), 'pandas.read_csv', 'read_csv', (['hosp_url'], {'header': '(0)'}), '(hosp_url, header=0)\n', (4284, 4304), False, 'from pandas import read_csv\n'), ((4321, 4398), 'numpy.array', 'np.array', (["hosp_df[hosp_df['entity'] == 'Sweden']['Weekly new ICU admissions']"], {}), "(hosp_df[hosp_df['entity'] == 'Sweden']['Weekly new ICU admissions'])\n", (4329, 4398), True, 'import numpy as np\n'), ((5675, 5711), 'numpy.linalg.norm', 'np.linalg.norm', (['(real_data - sim_data)'], {}), '(real_data - sim_data)\n', (5689, 5711), True, 'import numpy as np\n'), ((6300, 6318), 'matplotlib.pyplot.plot', 'plt.plot', (['sim_data'], {}), '(sim_data)\n', (6308, 6318), True, 'import matplotlib.pyplot as plt\n'), ((6323, 6342), 'matplotlib.pyplot.plot', 'plt.plot', (['real_data'], {}), '(real_data)\n', (6331, 6342), True, 'import matplotlib.pyplot as plt\n'), ((6347, 6395), 'matplotlib.pyplot.legend', 'plt.legend', (["['Simulated', 'Real world (Sweden)']"], {}), "(['Simulated', 'Real world (Sweden)'])\n", (6357, 6395), True, 'import matplotlib.pyplot as plt\n'), ((6400, 6426), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Weeks Passed"""'], {}), "('Weeks Passed')\n", (6410, 6426), True, 'import matplotlib.pyplot as plt\n'), ((6431, 6483), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Hospitalizations Per Week (normalized)"""'], {}), "('Hospitalizations Per Week (normalized)')\n", (6441, 6483), True, 'import matplotlib.pyplot as plt\n'), ((6488, 6498), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6496, 6498), True, 'import matplotlib.pyplot as plt\n'), ((6717, 6779), 'GPyOpt.methods.BayesianOptimization', 'GPyOpt.methods.BayesianOptimization', (['obj_func'], {'domain': 'bounds2d'}), '(obj_func, domain=bounds2d)\n', (6752, 6779), False, 'import GPyOpt\n'), ((4710, 4734), 'numpy.trim_zeros', 'np.trim_zeros', (['data', '"""f"""'], {}), "(data, 'f')\n", (4723, 4734), True, 'import numpy as np\n'), ((4901, 4913), 'numpy.max', 'np.max', (['data'], {}), '(data)\n', (4907, 4913), True, 'import numpy as np\n'), ((7043, 7113), 'numpy.array', 'np.array', (['[[myBopt_2d.x_opt[0], myBopt_2d.x_opt[1]]]'], {'dtype': 'np.float64'}), '([[myBopt_2d.x_opt[0], myBopt_2d.x_opt[1]]], dtype=np.float64)\n', (7051, 7113), True, 'import numpy as np\n'), ((4085, 4106), 'numpy.isnan', 'np.isnan', (['real_deaths'], {}), '(real_deaths)\n', (4093, 4106), True, 'import numpy as np\n'), ((4535, 4556), 'numpy.asarray', 'np.asarray', (['real_hosp'], {}), '(real_hosp)\n', (4545, 4556), True, 'import numpy as np\n'), ((5536, 5556), 'numpy.argmax', 'np.argmax', (['real_data'], {}), '(real_data)\n', (5545, 5556), True, 'import numpy as np\n'), ((799, 818), 'numpy.sum', 'np.sum', (['self.deaths'], {}), '(self.deaths)\n', (805, 818), True, 'import numpy as np\n'), ((4837, 4847), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (4844, 4847), True, 'import numpy as np\n'), ((2978, 3040), 'typing.cast', 'cast', (['ps.env.HospitalState', 'state.id_to_location_state[loc_id]'], {}), '(ps.env.HospitalState, state.id_to_location_state[loc_id])\n', (2982, 3040), False, 'from typing import cast, Optional\n'), ((4435, 4454), 'numpy.isnan', 'np.isnan', (['real_hosp'], {}), '(real_hosp)\n', (4443, 4454), True, 'import numpy as np\n')]
import graphene import random from graphql_ws.pubsub import GeventRxPubsub from rx import Observable pubsub = GeventRxPubsub() class Query(graphene.ObjectType): base = graphene.String() def resolve_base(root, info): return 'Hello World!' class MutationExample(graphene.Mutation): class Arguments: input_text = graphene.String() output_text = graphene.String() def mutate(self, info, input_text): pubsub.publish('BASE', input_text) return MutationExample(output_text=input_text) class Mutations(graphene.ObjectType): mutation_example = MutationExample.Field() class RandomType(graphene.ObjectType): seconds = graphene.Int() random_int = graphene.Int() class Subscription(graphene.ObjectType): count_seconds = graphene.Int(up_to=graphene.Int()) random_int = graphene.Field(RandomType) mutation_example = graphene.String() def resolve_mutation_example(root, info): # subscribe_to_channel method returns an observable return pubsub.subscribe_to_channel('BASE')\ .map(lambda i: "{0}".format(i)) def resolve_count_seconds(root, info, up_to=5): return Observable.interval(1000)\ .map(lambda i: "{0}".format(i))\ .take_while(lambda i: int(i) <= up_to) def resolve_random_int(root, info): return Observable.interval(1000).map( lambda i: RandomType(seconds=i, random_int=random.randint(0, 500))) schema = graphene.Schema(query=Query, mutation=Mutations, subscription=Subscription)
[ "graphene.String", "graphene.Field", "rx.Observable.interval", "graphql_ws.pubsub.GeventRxPubsub", "graphene.Int", "graphene.Schema", "random.randint" ]
[((112, 128), 'graphql_ws.pubsub.GeventRxPubsub', 'GeventRxPubsub', ([], {}), '()\n', (126, 128), False, 'from graphql_ws.pubsub import GeventRxPubsub\n'), ((1522, 1597), 'graphene.Schema', 'graphene.Schema', ([], {'query': 'Query', 'mutation': 'Mutations', 'subscription': 'Subscription'}), '(query=Query, mutation=Mutations, subscription=Subscription)\n', (1537, 1597), False, 'import graphene\n'), ((176, 193), 'graphene.String', 'graphene.String', ([], {}), '()\n', (191, 193), False, 'import graphene\n'), ((382, 399), 'graphene.String', 'graphene.String', ([], {}), '()\n', (397, 399), False, 'import graphene\n'), ((681, 695), 'graphene.Int', 'graphene.Int', ([], {}), '()\n', (693, 695), False, 'import graphene\n'), ((713, 727), 'graphene.Int', 'graphene.Int', ([], {}), '()\n', (725, 727), False, 'import graphene\n'), ((843, 869), 'graphene.Field', 'graphene.Field', (['RandomType'], {}), '(RandomType)\n', (857, 869), False, 'import graphene\n'), ((893, 910), 'graphene.String', 'graphene.String', ([], {}), '()\n', (908, 910), False, 'import graphene\n'), ((345, 362), 'graphene.String', 'graphene.String', ([], {}), '()\n', (360, 362), False, 'import graphene\n'), ((810, 824), 'graphene.Int', 'graphene.Int', ([], {}), '()\n', (822, 824), False, 'import graphene\n'), ((1400, 1425), 'rx.Observable.interval', 'Observable.interval', (['(1000)'], {}), '(1000)\n', (1419, 1425), False, 'from rx import Observable\n'), ((1195, 1220), 'rx.Observable.interval', 'Observable.interval', (['(1000)'], {}), '(1000)\n', (1214, 1220), False, 'from rx import Observable\n'), ((1486, 1508), 'random.randint', 'random.randint', (['(0)', '(500)'], {}), '(0, 500)\n', (1500, 1508), False, 'import random\n')]
import numpy as np import matplotlib.pyplot as plt import pymongo # Make chart of comments vs upvotes for all the flair # All charts in graph folder def intilise_database(): """ Initilse the database and make a table instance Returns pymongo object of the table """ myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb=myclient['subreddit'] maintable = mydb["posts2"] return maintable def make_graph(c,u, xx): N = 11 ind = np.arange(N) # the x locations for the groups width = 0.27 # the width of the bars fig = plt.figure() ax = fig.add_subplot(111) yvals = u rects1 = ax.bar(ind, yvals, width, color='c') zvals = c rects2 = ax.bar(ind+width, zvals, width, color='y') ax.set_ylabel('Average Number') ax.set_xticks(ind+width/2) ax.set_xticklabels( xx) ax.legend( (rects1[0], rects2[0]), ('Upvotes', 'Comments') ) def autolabel(rects): for rect in rects: h = rect.get_height() ax.text(rect.get_x()+rect.get_width()/2., 1.05*h, '%d'%int(h), ha='center', va='bottom') autolabel(rects1) autolabel(rects2) plt.show() flairs = ['Photography','Politics', 'Non-Political', 'AskIndia', '[R]eddiquette', 'Policy/Economy', 'Business/Finance', 'Science/Technology', 'Scheduled', 'Sports', 'Food' ] if __name__ == "__main__": xticket = tuple(flairs) db = intilise_database() final_comment = [] final_upv = [] for flair in flairs: count = db.find({'flair':flair}).count() comment = 0 upvotes = 0 for post in db.find({'flair':flair}): comment += post['no_comments'] upvotes += post['upvote'] comment = int(comment/count) upvotes = int(upvotes/count) final_comment.append(comment) final_upv.append(upvotes) make_graph(final_comment,final_upv,xticket)
[ "pymongo.MongoClient", "matplotlib.pyplot.figure", "numpy.arange", "matplotlib.pyplot.show" ]
[((309, 358), 'pymongo.MongoClient', 'pymongo.MongoClient', (['"""mongodb://localhost:27017/"""'], {}), "('mongodb://localhost:27017/')\n", (328, 358), False, 'import pymongo\n'), ((491, 503), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (500, 503), True, 'import numpy as np\n'), ((596, 608), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (606, 608), True, 'import matplotlib.pyplot as plt\n'), ((1195, 1205), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1203, 1205), True, 'import matplotlib.pyplot as plt\n')]
import random import re class CharmmBond: # (bond)\s+(\d+)\s+(\d+)\s+([-+]?[0-9]*\.?[0-9]+)\s+([-+]?[0-9]*\.?[0-9]+) def __init__(self, atom_class1, atom_class2, uk1, uk2): self.type = "bond" self.atom_class1 = int(atom_class1) self.atom_class2 = int(atom_class2) self.uk1 = float(uk1) self.uk2 = float(uk2) def __str__(self): # bond 1 10 330.00 1.1000 return '{:>4} {:>5}{:>5} {:>11.2f} {:>11.4f}'.format(self.type, self.atom_class1, self.atom_class2, self.uk1, self.uk2) @staticmethod def parse(string): match = re.match(r'(bond)\s+(\d+)\s+(\d+)\s+([-+]?[0-9]*\.?[0-9]+)\s+([-+]?[0-9]*\.?[0-9]+)', string) if match: return CharmmBond(match.group(2), match.group(3), match.group(4), match.group(5)) else: raise ValueError("Invalid Bond input: ", string) def random_edit(self, percentage): rand = random.uniform(-percentage, percentage) change = rand / 100.0 return CharmmBond(self.atom_class1, self.atom_class2, (1 + change) * self.uk1, (1 + change) * self.uk2) # f = open('charmm22_2380.prm', 'r') # param_file = f.read().split('\n') # # charmm_atoms = [] # # for line in param_file: # if "bond " in line: # charmm_atoms.append(CharmmBond.parse(line)) # # for atom in charmm_atoms: # print(atom)
[ "random.uniform", "re.match" ]
[((716, 826), 're.match', 're.match', (['"""(bond)\\\\s+(\\\\d+)\\\\s+(\\\\d+)\\\\s+([-+]?[0-9]*\\\\.?[0-9]+)\\\\s+([-+]?[0-9]*\\\\.?[0-9]+)"""', 'string'], {}), "(\n '(bond)\\\\s+(\\\\d+)\\\\s+(\\\\d+)\\\\s+([-+]?[0-9]*\\\\.?[0-9]+)\\\\s+([-+]?[0-9]*\\\\.?[0-9]+)'\n , string)\n", (724, 826), False, 'import re\n'), ((1052, 1091), 'random.uniform', 'random.uniform', (['(-percentage)', 'percentage'], {}), '(-percentage, percentage)\n', (1066, 1091), False, 'import random\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals import six from . import fake class BackendTestMixin(object): def put_file(self, filename, content): raise NotImplementedError('You must implement this method') def get_file(self, filename): raise NotImplementedError('You must implement this method') def file_exists(self, filename): raise NotImplementedError('You must implement this method') def assert_bin_equal(self, filename, expected): data = self.get_file(filename) self.assertEqual(data, self.b(expected)) def assert_text_equal(self, filename, expected): data = self.get_file(filename) self.assertEqual(data, six.b(expected)) def test_exists(self): self.put_file('file.test', 'test') self.assertTrue(self.backend.exists('file.test')) self.assertFalse(self.backend.exists('other.test')) def test_open_read(self): content = self.text() self.put_file('file.test', content) with self.backend.open('file.test') as f: data = f.read() self.assertIsInstance(data, six.text_type) self.assertEqual(data, content) def test_open_read_binary(self): content = self.binary() self.put_file('file.test', content) with self.backend.open('file.test', 'rb') as f: data = f.read() self.assertIsInstance(data, six.binary_type) self.assertEqual(data, content) def test_open_write_new_file(self): filename = 'test.text' content = self.text() with self.backend.open(filename, 'w') as f: f.write(content) self.assert_text_equal(filename, content) def test_open_write_new_binary_file(self): filename = 'test.bin' content = self.binary() with self.backend.open(filename, 'wb') as f: f.write(content) self.assert_bin_equal(filename, content) def test_open_write_existing_file(self): filename = 'test.txt' content = self.text() self.put_file(filename, self.text()) with self.backend.open(filename, 'w') as f: f.write(content) self.assert_text_equal(filename, content) def test_read(self): content = self.text() self.put_file('file.test', content) self.assertEqual(self.backend.read('file.test'), six.b(content)) def test_write_text(self): content = self.text() self.backend.write('test.txt', content) self.assert_text_equal('test.txt', content) def test_write_binary(self): content = self.binary() self.backend.write('test.bin', content) self.assert_bin_equal('test.bin', content) def test_write_file(self): content = self.binary() self.backend.write('test.bin', self.file(content)) self.assert_bin_equal('test.bin', content) def test_delete(self): content = fake.sentence() self.put_file('file.test', content) self.backend.delete('file.test') self.assertFalse(self.file_exists('file.test')) def test_save_content(self): content = self.text() storage = self.filestorage('test.txt', content) self.backend.save(storage, 'test.txt') self.assert_text_equal('test.txt', content) def test_save_from_file(self): content = self.binary() f = self.file(content) self.backend.save(f, 'test.png') f.seek(0) self.assert_bin_equal('test.png', content) def test_save_with_filename(self): filename = 'somewhere/test.test' content = self.text() storage = self.filestorage('test.txt', content) self.backend.save(storage, filename) self.assert_text_equal(filename, content)
[ "six.b" ]
[((716, 731), 'six.b', 'six.b', (['expected'], {}), '(expected)\n', (721, 731), False, 'import six\n'), ((2425, 2439), 'six.b', 'six.b', (['content'], {}), '(content)\n', (2430, 2439), False, 'import six\n')]
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "<NAME>" at 21:41, 16/03/2020 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 % # Github: https://github.com/thieunguyen5991 % #-------------------------------------------------------------------------------------------------------% from pandas import DataFrame from mealpy.evolutionary_based.DE import BaseDE from examples.setting_function import func_paras, func_names, problem_size from os import getcwd, path, makedirs model_name = "DE" num_runs = 5 PATH_RESULTS = "history/results/" check_dir1 = getcwd() + "/" + PATH_RESULTS if not path.exists(check_dir1): makedirs(check_dir1) ## Setting parameters epoch = 10 pop_size = 50 wf = 0.8 cr = 0.9 ## Run model best_fit_full = {} best_fit_columns = [] error_full = {} error_columns = [] for id_paras in range(len(func_paras)): md = BaseDE(func_paras[id_paras], epoch, pop_size, wf, cr) _, best_fit, list_loss = md._train__() error_full[func_names[id_paras]] = list_loss error_columns.append(func_names[id_paras]) best_fit_full[func_names[id_paras]] = [best_fit] best_fit_columns.append(func_names[id_paras]) df_err = DataFrame(error_full, columns=error_columns) df_err.to_csv(PATH_RESULTS + str(problem_size) + "D_" + model_name + "_error.csv", header=True, index=False) df_fit = DataFrame(best_fit_full, columns=best_fit_columns) df_fit.to_csv(PATH_RESULTS + str(problem_size) + "D_" + model_name + "_best_fit.csv", header=True, index=False)
[ "os.path.exists", "os.makedirs", "mealpy.evolutionary_based.DE.BaseDE", "os.getcwd", "pandas.DataFrame" ]
[((1611, 1655), 'pandas.DataFrame', 'DataFrame', (['error_full'], {'columns': 'error_columns'}), '(error_full, columns=error_columns)\n', (1620, 1655), False, 'from pandas import DataFrame\n'), ((1775, 1825), 'pandas.DataFrame', 'DataFrame', (['best_fit_full'], {'columns': 'best_fit_columns'}), '(best_fit_full, columns=best_fit_columns)\n', (1784, 1825), False, 'from pandas import DataFrame\n'), ((1047, 1070), 'os.path.exists', 'path.exists', (['check_dir1'], {}), '(check_dir1)\n', (1058, 1070), False, 'from os import getcwd, path, makedirs\n'), ((1076, 1096), 'os.makedirs', 'makedirs', (['check_dir1'], {}), '(check_dir1)\n', (1084, 1096), False, 'from os import getcwd, path, makedirs\n'), ((1303, 1356), 'mealpy.evolutionary_based.DE.BaseDE', 'BaseDE', (['func_paras[id_paras]', 'epoch', 'pop_size', 'wf', 'cr'], {}), '(func_paras[id_paras], epoch, pop_size, wf, cr)\n', (1309, 1356), False, 'from mealpy.evolutionary_based.DE import BaseDE\n'), ((1010, 1018), 'os.getcwd', 'getcwd', ([], {}), '()\n', (1016, 1018), False, 'from os import getcwd, path, makedirs\n')]
"""Imitate the .websocket_server functionality using RS232 instead of TCP/IP. """ import logging from typing import Callable import serial from .decoder import Decoder from .. import logger LOGGER = logging.getLogger("serial_server") class SerialServer: """A server that listens on and sends through a serial port.""" def __init__(self, device: str, received_msg_callback: Callable[[str], None] = None, baudrate: int = 19200) -> None: try: self._dev = serial.Serial(port=device, baudrate=baudrate) except (FileNotFoundError, serial.SerialException): LOGGER.error("Failed to open serial connection for serving.") raise ConnectionError("Starting serial connection for server " "failed.") self._rcv_callback = received_msg_callback LOGGER.info("Creating instance. Do call the async_init() fcn.") def publish(self, data: str) -> None: """Send the given string over the serial interface.""" bytestream = data.encode() n_bytes = len(bytestream) n_transmitted_bytes = self._dev.write(bytestream) if n_transmitted_bytes == n_bytes: LOGGER.debug("Sent message: %s", logger.ellipsicate(data)) else: LOGGER.warning("Error transmitting Message: %s", logger.ellipsicate(data)) def serve(self) -> None: """Start listening. This blocks indefinitely. Use threading.""" LOGGER.info("Listening on port %s", self._dev.port) collector = Decoder() while True: # Receive data. This will block until some data is received. # This will avoid busy waiting. data = self._dev.read(1) data += self._dev.read(self._dev.in_waiting) collector.feed(data) if collector.n_pending() > 0: messages = collector.harvest() for msg in messages: LOGGER.debug("Received message: %s", msg) if callable(self._rcv_callback): self._rcv_callback(msg)
[ "logging.getLogger", "serial.Serial" ]
[((202, 236), 'logging.getLogger', 'logging.getLogger', (['"""serial_server"""'], {}), "('serial_server')\n", (219, 236), False, 'import logging\n'), ((520, 565), 'serial.Serial', 'serial.Serial', ([], {'port': 'device', 'baudrate': 'baudrate'}), '(port=device, baudrate=baudrate)\n', (533, 565), False, 'import serial\n')]
import pickle from typing import List from bee.data.option import Options, Option from bee.data.map import Map from bee.errors.error import CodedError from bee.net.rpc.codec import Stream, IClientCodec, IServerCodec, CodecBuilder, Request as _Request, RequestHead as _RequestHead, ResponseHead as _ResponseHead, \ Response as _Response, Result as _Result, register_codec from bee.data import const # 缺省最大值 from bee.net.rpc.codecs.proto.msg_pb2 import Label, Response, Request const.default_max_message_size = 2 << 20 def reset_req(req: Request): if req.args != None: req.args = req.args[:0] if req.labels != None: req.labels = req.labels[:0] def reset_resp(resp: Response): resp.result = None resp.error = None class ClientCodec(IClientCodec): """ 客户端编解码 """ def __init__(self, s: Stream, req: Request = None, resp: Response = None, max_msg_size=0): self.s = s self.req = req self.resp = resp self.max_msg_size = max_msg_size def stream(self) -> Stream: return self.s def encode(self, req: _Request): self.req.id = req.head.id self.req.service = req.head.service self.req.method = req.head.method if len(req.args) > 0: for v in req.args: # convert v to bytes, v is object self.req.args.append(pickle.dumps(v)) if len(req.head.labels) > 0: for v in req.head.labels: self.req.labels.append(Label(name=v.name, value=v.value)) self._write(self.req.SerializeToString()) def _write(self, data: bytes): # wtire data's length, occupy 4 bytes self.s.write(len(data).to_bytes(4, byteorder='little')) # write data self.s.write(data) self.s.flush() def decode_head(self, head: _ResponseHead): length_bytes = self.s.read(4); length = int.from_bytes(length_bytes, byteorder="little") if length > self.max_msg_size: raise BaseException("message too big: %s" % length) data = self.s.read(length) self.resp.ParseFromString(data) head.id = self.resp.id def decode_result(self, result: _Result): if self.resp.result != None: result.error = None result.value = pickle.loads(self.resp.result) else: result.error = CodedError(self.resp.error) def discard_result(self): return None class ServerCodec(IServerCodec): """ 服务端编解码 """ def __init__(self, s: Stream, req: Request = None, resp: Response = None, max_msg_size=0): self.s = s self.req = req self.resp = resp self.max_msg_size = max_msg_size def stream(self) -> Stream: return self.s def encode(self, resp: _Response): self.resp.id = resp.head.id if resp.result.error == None: if resp.result.value != None: self.resp.result = pickle.dumps(resp.result.value) else: self.resp.result = None self.resp.error = resp.result.error self._write(self.resp.SerializeToString()) def _write(self, data: bytes): # wtire data's length, occupy 4 bytes self.s.write(len(data).to_bytes(4, byteorder='little')) # write data self.s.write(data) self.s.flush() def decode_head(self, head: _RequestHead): length_bytes = self.s.read(4); length = int.from_bytes(length_bytes, byteorder="little") if length > self.max_msg_size: raise BaseException("message too big: %s" % length) data = self.s.read(length) self.req.ParseFromString(data) head.id = self.req.id head.service = self.req.service head.method = self.req.method if self.req.labels: opts = Options() for v in self.req.labels: opts.append(Option(name=v.name, value=v.value)) head.labels = opts if head.id != None and head.id > 0: print("%s, %s.%s(%s), labels(%s)" % (head.id, head.service, head.method, "", head.labels)) def decode_args(self, args: List[object]): if self.req.args != None: for i, v in enumerate(self.req.args): args.insert(i, pickle.loads(v)) def discard_args(self): return None class Builder(CodecBuilder): name="proto" def new_client_codec(self, s: Stream, opts: Map) -> ClientCodec: max_msg_size = self.max_msg_size(opts) return ClientCodec(s=s, req=Request(), resp=Response(), max_msg_size=max_msg_size) def new_server_codec(self, s: Stream, opts: Map) -> ServerCodec: max_msg_size = self.max_msg_size(opts) return ServerCodec(s=s, req=Request(), resp=Response(), max_msg_size=max_msg_size) def max_msg_size(self, opts: Map): size = None if opts != None: if opts.get("max_msg_size") != None: size = int(opts.get("max_msg_size")) if size == None or size == 0: size = const.default_max_message_size return size def init(): register_codec("proto", Builder())
[ "bee.errors.error.CodedError", "pickle.dumps", "bee.data.option.Option", "bee.net.rpc.codecs.proto.msg_pb2.Response", "bee.net.rpc.codecs.proto.msg_pb2.Label", "bee.net.rpc.codecs.proto.msg_pb2.Request", "pickle.loads", "bee.data.option.Options" ]
[((2325, 2355), 'pickle.loads', 'pickle.loads', (['self.resp.result'], {}), '(self.resp.result)\n', (2337, 2355), False, 'import pickle\n'), ((2397, 2424), 'bee.errors.error.CodedError', 'CodedError', (['self.resp.error'], {}), '(self.resp.error)\n', (2407, 2424), False, 'from bee.errors.error import CodedError\n'), ((3874, 3883), 'bee.data.option.Options', 'Options', ([], {}), '()\n', (3881, 3883), False, 'from bee.data.option import Options, Option\n'), ((2989, 3020), 'pickle.dumps', 'pickle.dumps', (['resp.result.value'], {}), '(resp.result.value)\n', (3001, 3020), False, 'import pickle\n'), ((4595, 4604), 'bee.net.rpc.codecs.proto.msg_pb2.Request', 'Request', ([], {}), '()\n', (4602, 4604), False, 'from bee.net.rpc.codecs.proto.msg_pb2 import Label, Response, Request\n'), ((4611, 4621), 'bee.net.rpc.codecs.proto.msg_pb2.Response', 'Response', ([], {}), '()\n', (4619, 4621), False, 'from bee.net.rpc.codecs.proto.msg_pb2 import Label, Response, Request\n'), ((4803, 4812), 'bee.net.rpc.codecs.proto.msg_pb2.Request', 'Request', ([], {}), '()\n', (4810, 4812), False, 'from bee.net.rpc.codecs.proto.msg_pb2 import Label, Response, Request\n'), ((4819, 4829), 'bee.net.rpc.codecs.proto.msg_pb2.Response', 'Response', ([], {}), '()\n', (4827, 4829), False, 'from bee.net.rpc.codecs.proto.msg_pb2 import Label, Response, Request\n'), ((1383, 1398), 'pickle.dumps', 'pickle.dumps', (['v'], {}), '(v)\n', (1395, 1398), False, 'import pickle\n'), ((1515, 1548), 'bee.net.rpc.codecs.proto.msg_pb2.Label', 'Label', ([], {'name': 'v.name', 'value': 'v.value'}), '(name=v.name, value=v.value)\n', (1520, 1548), False, 'from bee.net.rpc.codecs.proto.msg_pb2 import Label, Response, Request\n'), ((3950, 3984), 'bee.data.option.Option', 'Option', ([], {'name': 'v.name', 'value': 'v.value'}), '(name=v.name, value=v.value)\n', (3956, 3984), False, 'from bee.data.option import Options, Option\n'), ((4327, 4342), 'pickle.loads', 'pickle.loads', (['v'], {}), '(v)\n', (4339, 4342), False, 'import pickle\n')]
""" Path library for the template engine. """ __author__ = "<NAME>" __copyright__ = "Copyright 2016-2019" __license__ = "Apache License 2.0" import os class _PathLib(object): """ Path based functions. """ @property def sep(self): """ The path separator for the current platform. """ return os.sep def join(self, *parts): """ Join a path. """ return os.path.join(*parts) def split(self, path): """ Split a path into a head and a tail. """ return os.path.split(path) def splitext(self, path): """ Split the extension out of the path. """ return os.path.splitext(path) def dirname(self, path): """ Return the directory name of a path. """ return os.path.dirname(path) def basename(self, path): """ Return the base name of a path. """ return os.path.basename(path) def relpath(self, target, fromdir): """ Return a relative path to target from the directory fromdir. """ return os.path.relpath(target, fromdir) FACTORY = _PathLib
[ "os.path.splitext", "os.path.join", "os.path.split", "os.path.dirname", "os.path.basename", "os.path.relpath" ]
[((415, 435), 'os.path.join', 'os.path.join', (['*parts'], {}), '(*parts)\n', (427, 435), False, 'import os\n'), ((532, 551), 'os.path.split', 'os.path.split', (['path'], {}), '(path)\n', (545, 551), False, 'import os\n'), ((651, 673), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (667, 673), False, 'import os\n'), ((772, 793), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (787, 793), False, 'import os\n'), ((888, 910), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (904, 910), False, 'import os\n'), ((1044, 1076), 'os.path.relpath', 'os.path.relpath', (['target', 'fromdir'], {}), '(target, fromdir)\n', (1059, 1076), False, 'import os\n')]
from django.contrib import admin from .models import System, State, Event, Transition admin.site.register(System) admin.site.register(State) admin.site.register(Event) admin.site.register(Transition)
[ "django.contrib.admin.site.register" ]
[((88, 115), 'django.contrib.admin.site.register', 'admin.site.register', (['System'], {}), '(System)\n', (107, 115), False, 'from django.contrib import admin\n'), ((116, 142), 'django.contrib.admin.site.register', 'admin.site.register', (['State'], {}), '(State)\n', (135, 142), False, 'from django.contrib import admin\n'), ((143, 169), 'django.contrib.admin.site.register', 'admin.site.register', (['Event'], {}), '(Event)\n', (162, 169), False, 'from django.contrib import admin\n'), ((170, 201), 'django.contrib.admin.site.register', 'admin.site.register', (['Transition'], {}), '(Transition)\n', (189, 201), False, 'from django.contrib import admin\n')]
# -*- coding: utf-8 -*- # Copyright 2015 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Simple log collection script for Mob* Monitor""" from __future__ import print_function import glob import os import tempfile import shutil from chromite.lib import cros_build_lib from chromite.lib import osutils TMPDIR = '/mnt/moblab/tmp' TMPDIR_PREFIX = 'moblab_logs_' LOG_DIRS = { 'apache_errors': '/var/log/apache2/error_log', 'devserver_logs': '/var/log/devserver', 'dhcp_leases': '/var/lib/dhcp', 'messages': '/var/log/messages', 'mysql': '/var/log/mysql', 'servod': '/var/log/servod.log', 'scheduler': '/usr/local/autotest/logs/scheduler.latest' } def remove_old_tarballs(): paths = glob.iglob(os.path.join(TMPDIR, '%s*.tgz' % TMPDIR_PREFIX)) for path in paths: os.remove(path) def collect_logs(): remove_old_tarballs() osutils.SafeMakedirs(TMPDIR) tempdir = tempfile.mkdtemp(prefix=TMPDIR_PREFIX, dir=TMPDIR) os.chmod(tempdir, 0o777) try: for name, path in LOG_DIRS.iteritems(): if not os.path.exists(path): continue if os.path.isdir(path): shutil.copytree(path, os.path.join(tempdir, name)) else: shutil.copyfile(path, os.path.join(tempdir, name)) cmd = ['mobmoncli', 'GetStatus'] cros_build_lib.RunCommand( cmd, log_stdout_to_file=os.path.join(tempdir, 'mobmonitor_getstatus') ) finally: tarball = '%s.tgz' % tempdir cros_build_lib.CreateTarball(tarball, tempdir) osutils.RmDir(tempdir, ignore_missing=True) return tarball
[ "os.path.exists", "chromite.lib.cros_build_lib.CreateTarball", "os.path.join", "os.chmod", "chromite.lib.osutils.RmDir", "os.path.isdir", "tempfile.mkdtemp", "chromite.lib.osutils.SafeMakedirs", "os.remove" ]
[((967, 995), 'chromite.lib.osutils.SafeMakedirs', 'osutils.SafeMakedirs', (['TMPDIR'], {}), '(TMPDIR)\n', (987, 995), False, 'from chromite.lib import osutils\n'), ((1008, 1058), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {'prefix': 'TMPDIR_PREFIX', 'dir': 'TMPDIR'}), '(prefix=TMPDIR_PREFIX, dir=TMPDIR)\n', (1024, 1058), False, 'import tempfile\n'), ((1061, 1083), 'os.chmod', 'os.chmod', (['tempdir', '(511)'], {}), '(tempdir, 511)\n', (1069, 1083), False, 'import os\n'), ((829, 876), 'os.path.join', 'os.path.join', (['TMPDIR', "('%s*.tgz' % TMPDIR_PREFIX)"], {}), "(TMPDIR, '%s*.tgz' % TMPDIR_PREFIX)\n", (841, 876), False, 'import os\n'), ((903, 918), 'os.remove', 'os.remove', (['path'], {}), '(path)\n', (912, 918), False, 'import os\n'), ((1559, 1605), 'chromite.lib.cros_build_lib.CreateTarball', 'cros_build_lib.CreateTarball', (['tarball', 'tempdir'], {}), '(tarball, tempdir)\n', (1587, 1605), False, 'from chromite.lib import cros_build_lib\n'), ((1610, 1653), 'chromite.lib.osutils.RmDir', 'osutils.RmDir', (['tempdir'], {'ignore_missing': '(True)'}), '(tempdir, ignore_missing=True)\n', (1623, 1653), False, 'from chromite.lib import osutils\n'), ((1199, 1218), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (1212, 1218), False, 'import os\n'), ((1151, 1171), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1165, 1171), False, 'import os\n'), ((1459, 1504), 'os.path.join', 'os.path.join', (['tempdir', '"""mobmonitor_getstatus"""'], {}), "(tempdir, 'mobmonitor_getstatus')\n", (1471, 1504), False, 'import os\n'), ((1250, 1277), 'os.path.join', 'os.path.join', (['tempdir', 'name'], {}), '(tempdir, name)\n', (1262, 1277), False, 'import os\n'), ((1321, 1348), 'os.path.join', 'os.path.join', (['tempdir', 'name'], {}), '(tempdir, name)\n', (1333, 1348), False, 'import os\n')]
# Функції вищого порядку # Зведення у другу ступінь кожного числа з послідовності за допомого циклу for numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] result = [] for number in numbers: result.append(number**2) print(result) # Зведення у другу ступінь кожного числа з послідовності # за допомого циклу for та винесенням частини логіку у окрему функцію numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] def pow_number(x): return x**2 result = [] for number in numbers: result.append(pow_number(number)) print(result) # Зведення у другу ступінь кожного числа з послідовності # за допомого циклу for та винесенням частини логіку у окрему lambda функцію numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] def pow_number(x): return x**2 result = [] result_lambda = [] for number in numbers: result.append(pow_number(number)) result_lambda.append((lambda x: x**2)(number)) print(result) # Зведення у другу ступінь кожного числа з послідовності за допомого функції map() numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] result = list(map(lambda x: x**2, numbers)) print(result) # Фільтрування послідовності чисел для отримання тільки парних чисел за допомогою циклу з умовою import sys numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] filtered_numbers = [] for number in numbers: if number % 2 == 0: filtered_numbers.append(number) result = list(map(lambda x: x**2, filtered_numbers)) print(sys.getsizeof(filtered_numbers)) print(result) # Фільтрування послідовності чисел для отримання тільки парних чисел за допомогою функції filter() numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] filtered_numbers = filter(lambda x: x % 2 == 0, numbers) print(sys.getsizeof(filtered_numbers)) print(sys.getsizeof(list(filtered_numbers))) result = list(map(lambda x: x**2, filtered_numbers)) print(result) # Фільтрування послідовності чисел, використання функцій map() та filter() у одному рядку numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] result = list(map(lambda x: x**2, filter(lambda x: x % 2 == 0, numbers))) print(result) # Отримання суми квадратів парних чисел пурших десяти чисел з послідовності Фібоначчі numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] result = list(map(lambda x: x**2, filter(lambda x: x % 2 == 0, numbers))) print(result) sum_ = 0 for number in result: sum_ += number print(sum_) # Отримання суми квадратів парних чисел пурших десяти чисел з послідовності Фібоначчі за допомогою функції reduce() from functools import reduce numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] result = reduce(lambda x, y: x + y, map(lambda x: x**2, filter(lambda x: x % 2 == 0, numbers))) print(result) # Отримання факторіалу числа за допомогою функції reduce() from functools import reduce numbers = range(1, 10) def f(x, y): return x * y result = reduce(f, numbers) result_lambda = reduce(lambda x, y: x * y, numbers) print(result) print(result_lambda)
[ "functools.reduce", "sys.getsizeof" ]
[((2811, 2829), 'functools.reduce', 'reduce', (['f', 'numbers'], {}), '(f, numbers)\n', (2817, 2829), False, 'from functools import reduce\n'), ((2847, 2882), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'numbers'], {}), '(lambda x, y: x * y, numbers)\n', (2853, 2882), False, 'from functools import reduce\n'), ((1429, 1460), 'sys.getsizeof', 'sys.getsizeof', (['filtered_numbers'], {}), '(filtered_numbers)\n', (1442, 1460), False, 'import sys\n'), ((1685, 1716), 'sys.getsizeof', 'sys.getsizeof', (['filtered_numbers'], {}), '(filtered_numbers)\n', (1698, 1716), False, 'import sys\n')]
import os from torch.utils.data import Dataset, DataLoader import torch import numpy as np from .base import print_loaded_dataset_shapes, log_call_parameters class DSpritesDataset(Dataset): def __init__(self, indices, classification=False, colored=False, data_file=None): super(DSpritesDataset, self).__init__() if data_file is None: data_file = os.path.join(os.environ['DATA_DIR'], 'dsprites-dataset', 'dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz') data = np.load(data_file, encoding='latin1', allow_pickle=True) self.indices = indices # color related stuff self.colored = colored self.colors = None self.n_colors = 1 indices_without_color = indices if colored: color_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'resources/rainbow-7.npy') self.colors = np.load(color_file) self.n_colors = len(self.colors) indices_without_color = [idx // self.n_colors for idx in indices] # factor_names and factor_sizes meta = data['metadata'].item() self.factor_names = list(meta['latents_names'][1:]) self.factor_sizes = list(meta['latents_sizes'][1:]) if colored: self.factor_names.append('color') self.factor_sizes.append(self.n_colors) self.n_factors = len(self.factor_names) # save relevant part of the grid self.imgs = data['imgs'][indices_without_color] # factor values, classes, possible_values self.factor_values = data['latents_values'][indices_without_color] self.factor_values = [arr[1:] for arr in self.factor_values] self.factor_classes = data['latents_classes'][indices_without_color] self.factor_classes = [arr[1:] for arr in self.factor_classes] self.possible_values = [] for name in ['shape', 'scale', 'orientation', 'posX', 'posY']: self.possible_values.append(meta['latents_possible_values'][name]) if colored: for i, idx in enumerate(self.indices): color_class = idx % self.n_colors color_value = color_class / (self.n_colors - 1.0) self.factor_classes[i] = np.append(self.factor_classes[i], color_class) self.factor_values[i] = np.append(self.factor_values[i], color_value) self.possible_values.append(list(np.arange(0, self.n_colors) / (self.n_colors - 1.0))) self.classification = classification # dataset name self.dataset_name = 'dsprites' if self.colored: self.dataset_name += '-colored' # factor types self.is_categorical = [True, False, False, False, False] if self.colored: self.is_categorical.append(True) # normalization values means = torch.tensor([0.456]) stds = torch.tensor([0.224]) if self.colored: means = torch.tensor([0.485, 0.456, 0.406]) stds = torch.tensor([0.229, 0.224, 0.225]) self.statistics = (means, stds) def __len__(self): return len(self.imgs) def __getitem__(self, idx): sample = self.imgs[idx] sample = torch.tensor(sample, dtype=torch.float).unsqueeze(dim=0) # (1, H, W) factors = (self.factor_classes[idx] if self.classification else self.factor_values[idx]) factors = torch.tensor(factors, dtype=torch.float) if self.colored: color_class = self.factor_classes[idx][-1] color = self.colors[color_class] sample = torch.cat([sample * color[0], sample * color[1], sample * color[2]], dim=0) # (3, H, W) means, stds = self.statistics sample = ((sample - means.unsqueeze(dim=-1).unsqueeze(dim=-1)) / stds.unsqueeze(dim=-1).unsqueeze(dim=-1)) return sample, factors @print_loaded_dataset_shapes @log_call_parameters def load_dsprites_datasets(val_ratio=0.2, test_ratio=0.2, seed=42, classification=False, colored=False, data_file=None, **kwargs): N = 737280 if colored: N *= 7 val_cnt = int(val_ratio * N) test_cnt = int(test_ratio * N) train_cnt = N - val_cnt - test_cnt np.random.seed(seed) perm = np.random.permutation(N) train_indices = perm[:train_cnt] val_indices = perm[train_cnt:train_cnt + val_cnt] test_indices = perm[train_cnt + val_cnt:] train_dataset = DSpritesDataset(indices=train_indices, colored=colored, classification=classification, data_file=data_file) val_dataset = DSpritesDataset(indices=val_indices, colored=colored, classification=classification, data_file=data_file) test_dataset = DSpritesDataset(indices=test_indices, colored=colored, classification=classification, data_file=data_file) return train_dataset, val_dataset, test_dataset, None @log_call_parameters def load_dsprites_loaders(val_ratio=0.2, test_ratio=0.2, batch_size=128, seed=42, classification=False, colored=False, drop_last=False, **kwargs): train_dataset, val_dataset, test_dataset, info = load_dsprites_datasets( val_ratio=val_ratio, test_ratio=test_ratio, seed=seed, classification=classification, colored=colored, **kwargs) train_loader = None val_loader = None test_loader = None if len(train_dataset) > 0: train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, drop_last=drop_last) if len(val_dataset) > 0: val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4, drop_last=drop_last) if len(test_dataset) > 0: test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4, drop_last=drop_last) return train_loader, val_loader, test_loader, info
[ "numpy.arange", "os.path.join", "numpy.append", "torch.tensor", "numpy.random.seed", "torch.utils.data.DataLoader", "os.path.abspath", "numpy.load", "torch.cat", "numpy.random.permutation" ]
[((4367, 4387), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (4381, 4387), True, 'import numpy as np\n'), ((4399, 4423), 'numpy.random.permutation', 'np.random.permutation', (['N'], {}), '(N)\n', (4420, 4423), True, 'import numpy as np\n'), ((542, 598), 'numpy.load', 'np.load', (['data_file'], {'encoding': '"""latin1"""', 'allow_pickle': '(True)'}), "(data_file, encoding='latin1', allow_pickle=True)\n", (549, 598), True, 'import numpy as np\n'), ((2961, 2982), 'torch.tensor', 'torch.tensor', (['[0.456]'], {}), '([0.456])\n', (2973, 2982), False, 'import torch\n'), ((2998, 3019), 'torch.tensor', 'torch.tensor', (['[0.224]'], {}), '([0.224])\n', (3010, 3019), False, 'import torch\n'), ((3518, 3558), 'torch.tensor', 'torch.tensor', (['factors'], {'dtype': 'torch.float'}), '(factors, dtype=torch.float)\n', (3530, 3558), False, 'import torch\n'), ((5658, 5761), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': '(4)', 'drop_last': 'drop_last'}), '(train_dataset, batch_size=batch_size, shuffle=True, num_workers=\n 4, drop_last=drop_last)\n', (5668, 5761), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((5841, 5942), 'torch.utils.data.DataLoader', 'DataLoader', (['val_dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(4)', 'drop_last': 'drop_last'}), '(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4,\n drop_last=drop_last)\n', (5851, 5942), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((6023, 6126), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(4)', 'drop_last': 'drop_last'}), '(test_dataset, batch_size=batch_size, shuffle=False, num_workers=\n 4, drop_last=drop_last)\n', (6033, 6126), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((383, 493), 'os.path.join', 'os.path.join', (["os.environ['DATA_DIR']", '"""dsprites-dataset"""', '"""dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz"""'], {}), "(os.environ['DATA_DIR'], 'dsprites-dataset',\n 'dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz')\n", (395, 493), False, 'import os\n'), ((979, 998), 'numpy.load', 'np.load', (['color_file'], {}), '(color_file)\n', (986, 998), True, 'import numpy as np\n'), ((3065, 3100), 'torch.tensor', 'torch.tensor', (['[0.485, 0.456, 0.406]'], {}), '([0.485, 0.456, 0.406])\n', (3077, 3100), False, 'import torch\n'), ((3120, 3155), 'torch.tensor', 'torch.tensor', (['[0.229, 0.224, 0.225]'], {}), '([0.229, 0.224, 0.225])\n', (3132, 3155), False, 'import torch\n'), ((3706, 3781), 'torch.cat', 'torch.cat', (['[sample * color[0], sample * color[1], sample * color[2]]'], {'dim': '(0)'}), '([sample * color[0], sample * color[1], sample * color[2]], dim=0)\n', (3715, 3781), False, 'import torch\n'), ((2344, 2390), 'numpy.append', 'np.append', (['self.factor_classes[i]', 'color_class'], {}), '(self.factor_classes[i], color_class)\n', (2353, 2390), True, 'import numpy as np\n'), ((2431, 2476), 'numpy.append', 'np.append', (['self.factor_values[i]', 'color_value'], {}), '(self.factor_values[i], color_value)\n', (2440, 2476), True, 'import numpy as np\n'), ((3332, 3371), 'torch.tensor', 'torch.tensor', (['sample'], {'dtype': 'torch.float'}), '(sample, dtype=torch.float)\n', (3344, 3371), False, 'import torch\n'), ((860, 885), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (875, 885), False, 'import os\n'), ((2522, 2549), 'numpy.arange', 'np.arange', (['(0)', 'self.n_colors'], {}), '(0, self.n_colors)\n', (2531, 2549), True, 'import numpy as np\n')]
import os from pygame import * from Hover import Hover from PaintLayout import PaintLayout class MusicBox(object): def __init__(self, surface): super().__init__() self.noSound = False self.surface = surface try: mixer.init() except Exception as _: self.noSound = True # music box self.musicNameRect = Rect(810, 10, 180, 25) draw.rect(surface, (0, 0, 0), self.musicNameRect, 1) PaintLayout.drawText(surface, "Music Box", (0, 0, 0), self.musicNameRect, 25) # play and stop box self.musicPlayRect = Rect(815, 36, 84, 43) self.musicStopRect = Rect(900, 36, 84, 43) Hover.addHover(self.musicPlayRect) Hover.addHover(self.musicStopRect) PaintLayout.drawText(surface, "Play", (0, 0, 0), self.musicPlayRect, 25) PaintLayout.drawText(surface, "Stop", (0, 0, 0), self.musicStopRect, 25) self.musicNextRect = Rect(900, 80, 84, 25) self.musicBackRect = Rect(815, 80, 84, 25) PaintLayout.createNextBox(surface, self.musicNextRect) PaintLayout.createBackBox(surface, self.musicBackRect) self.curSong = 0 self.songs = [] def setup(self): self.songs = [] path = "Resources/music box/Songs" files = os.listdir(path) files.sort() # because listdir does not guarantee order for file in files: if file.endswith(".ogg"): self.songs.append(f"{path}/{file}") def handle(self): if self.noSound: return None PaintLayout.drawText(self.surface, f"Music Box: {self.curSong + 1}", (0, 0, 0), self.musicNameRect, 25) mx, my = mouse.get_pos() if self.musicNextRect.collidepoint(mx, my): self.curSong += 1 elif self.musicBackRect.collidepoint(mx, my): self.curSong += len(self.songs) - 1 elif self.musicPlayRect.collidepoint(mx, my): mixer.music.stop() mixer.music.load(self.songs[self.curSong]) mixer.music.play(-1) elif self.musicStopRect.collidepoint(mx, my): mixer.music.stop()
[ "PaintLayout.PaintLayout.createNextBox", "os.listdir", "PaintLayout.PaintLayout.createBackBox", "PaintLayout.PaintLayout.drawText", "Hover.Hover.addHover" ]
[((482, 559), 'PaintLayout.PaintLayout.drawText', 'PaintLayout.drawText', (['surface', '"""Music Box"""', '(0, 0, 0)', 'self.musicNameRect', '(25)'], {}), "(surface, 'Music Box', (0, 0, 0), self.musicNameRect, 25)\n", (502, 559), False, 'from PaintLayout import PaintLayout\n'), ((700, 734), 'Hover.Hover.addHover', 'Hover.addHover', (['self.musicPlayRect'], {}), '(self.musicPlayRect)\n', (714, 734), False, 'from Hover import Hover\n'), ((743, 777), 'Hover.Hover.addHover', 'Hover.addHover', (['self.musicStopRect'], {}), '(self.musicStopRect)\n', (757, 777), False, 'from Hover import Hover\n'), ((786, 858), 'PaintLayout.PaintLayout.drawText', 'PaintLayout.drawText', (['surface', '"""Play"""', '(0, 0, 0)', 'self.musicPlayRect', '(25)'], {}), "(surface, 'Play', (0, 0, 0), self.musicPlayRect, 25)\n", (806, 858), False, 'from PaintLayout import PaintLayout\n'), ((867, 939), 'PaintLayout.PaintLayout.drawText', 'PaintLayout.drawText', (['surface', '"""Stop"""', '(0, 0, 0)', 'self.musicStopRect', '(25)'], {}), "(surface, 'Stop', (0, 0, 0), self.musicStopRect, 25)\n", (887, 939), False, 'from PaintLayout import PaintLayout\n'), ((1051, 1105), 'PaintLayout.PaintLayout.createNextBox', 'PaintLayout.createNextBox', (['surface', 'self.musicNextRect'], {}), '(surface, self.musicNextRect)\n', (1076, 1105), False, 'from PaintLayout import PaintLayout\n'), ((1114, 1168), 'PaintLayout.PaintLayout.createBackBox', 'PaintLayout.createBackBox', (['surface', 'self.musicBackRect'], {}), '(surface, self.musicBackRect)\n', (1139, 1168), False, 'from PaintLayout import PaintLayout\n'), ((1323, 1339), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (1333, 1339), False, 'import os\n'), ((1590, 1697), 'PaintLayout.PaintLayout.drawText', 'PaintLayout.drawText', (['self.surface', 'f"""Music Box: {self.curSong + 1}"""', '(0, 0, 0)', 'self.musicNameRect', '(25)'], {}), "(self.surface, f'Music Box: {self.curSong + 1}', (0, 0,\n 0), self.musicNameRect, 25)\n", (1610, 1697), False, 'from PaintLayout import PaintLayout\n')]
import sys from matplotlib import pyplot as plt import numpy as npx import torch from torch import nn from torch.utils import data from torchvision import transforms, datasets from .utils import * from .chaos import import_np, load_array as _load_array _name = __name__.split('.')[-1] np = import_np(_name) np.pi = torch.tensor(npx.pi) # np.acos(np.zeros(1)) * 2 xint = sys.modules[__name__] # ====================================== # 特定于框架的类,函数等 def get_dataloader_workers(): """在非Windows的平台上,使用4个进程来读取的数据。""" return 0 if sys.platform.startswith('win') else 4 def load_data_fashion_mnist(batch_size, resize=None): """下载Fashion-MNIST数据集,然后将其加载到内存中。""" trans = [transforms.ToTensor()] if resize: trans.insert(0, transforms.Resize(resize)) trans = transforms.Compose(trans) mnist_train = datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True) mnist_test = datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True) return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()), data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers())) def load_data_mnist(batch_size, resize=None): """下载 MNIST 数据集,然后将其加载到内存中。""" trans = [transforms.ToTensor()] if resize: trans.insert(0, transforms.Resize(resize)) trans = transforms.Compose(trans) mnist_train = datasets.MNIST(root="../data", train=True, transform=trans, download=True) mnist_test = datasets.MNIST(root="../data", train=False, transform=trans, download=True) return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()), data.DataLoader(mnist_test, batch_size, shuffle=False, num_workers=get_dataloader_workers())) def accuracy(y_hat, y): """计算预测正确的数量。""" if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: y_hat = y_hat.argmax(axis=1) cmp = y_hat.type(y.dtype) == y return float(sum(cmp.type(y.dtype))) def train_epoch(net, train_iter, loss, updater, num_classes=10): """训练模型一个迭代周期(定义见第3章)。""" # 将模型设置为训练模式 if isinstance(net, nn.Module): net.train() # 训练损失总和、训练准确度总和、样本数 metric = Accumulator(3) for X, y in train_iter: # 计算梯度并更新参数 y_hat = net(X) if isinstance(loss, nn.MSELoss): y_ = nn.functional.one_hot(y, num_classes=num_classes) y_ = y_.type(torch.float) l = loss(y_hat, y_) else: l = loss(y_hat, y) if isinstance(updater, torch.optim.Optimizer): # 使用PyTorch内置的优化器和损失函数 updater.zero_grad() l.backward() updater.step() metric.add( float(l) * len(y), accuracy(y_hat, y), y.size().numel()) else: # 使用PyTorch内置的优化器和损失函数 l.sum().backward() updater(X.shape[0]) metric.add(float(l.sum()), accuracy(y_hat, y), y.numel()) # 返回训练损失和训练准确率 return metric[0] / metric[2], metric[1] / metric[2] def sgd(params, lr, batch_size): """小批量随机梯度下降。""" with torch.no_grad(): for param in params: param -= lr * param.grad / batch_size param.grad.zero_() def updater(params, lr, batch_size): return sgd(params, lr, batch_size) def try_gpu(i=0): """如果存在,则返回gpu(i),否则返回cpu()。""" if torch.cuda.device_count() >= i + 1: return torch.device(f'cuda:{i}') return torch.device('cpu') def try_all_gpus(): """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]。""" devices = [ torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())] return devices if devices else [torch.device('cpu')] try_gpu(), try_gpu(10), try_all_gpus() # ====================================== ## 共同 API def load_array(data_arrays, batch_size, is_train=True): return _load_array(_name, data_arrays, batch_size, is_train) def normal(x, mu, sigma): p = 1 / np.sqrt(2 * np.pi * sigma**2) return p * np.exp(-0.5 / sigma**2 * (x - mu)**2) def one_hot(arr, num_classes): return np.eye(num_classes)[arr] def softmax(X): X_exp = np.exp(X) partition = np.sum(X_exp, axis=1, keepdims=True) return X_exp / partition # 这里应用了广播机制 def cross_entropy(y_hat, y): return -np.log(y_hat[range(len(y_hat)), y]) def evaluate_accuracy(net, data_iter): """计算在指定数据集上模型的精度""" metric = Accumulator(2) # 正确预测数、预测总数 for X, y in data_iter: metric.add(accuracy(net(X), y), len(y)) return metric[0] / metric[1] def evaluate_loss(net, data_iter, loss): """Evaluate the loss of a model on the given dataset.""" metric = Accumulator(2) # Sum of losses, no. of examples for X, y in data_iter: l = loss(net(X), y) metric.add(float(sum(l)), len(l)) return metric[0] / metric[1] def train(net, train_iter, test_iter, loss, num_epochs, updater, ylim=None): """训练模型(定义见第3章)。""" animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=ylim, legend=['train loss', 'train acc', 'test acc']) for epoch in range(num_epochs): train_metrics = train_epoch(net, train_iter, loss, updater) test_acc = evaluate_accuracy(net, test_iter) animator.add(epoch + 1, train_metrics + (test_acc,)) #train_loss, train_acc = train_metrics
[ "torchvision.datasets.FashionMNIST", "sys.platform.startswith", "torch.cuda.device_count", "torch.tensor", "torch.nn.functional.one_hot", "torchvision.datasets.MNIST", "torchvision.transforms.Resize", "torch.no_grad", "torchvision.transforms.ToTensor", "torchvision.transforms.Compose", "torch.device" ]
[((319, 339), 'torch.tensor', 'torch.tensor', (['npx.pi'], {}), '(npx.pi)\n', (331, 339), False, 'import torch\n'), ((789, 814), 'torchvision.transforms.Compose', 'transforms.Compose', (['trans'], {}), '(trans)\n', (807, 814), False, 'from torchvision import transforms, datasets\n'), ((833, 919), 'torchvision.datasets.FashionMNIST', 'datasets.FashionMNIST', ([], {'root': '"""../data"""', 'train': '(True)', 'transform': 'trans', 'download': '(True)'}), "(root='../data', train=True, transform=trans, download\n =True)\n", (854, 919), False, 'from torchvision import transforms, datasets\n'), ((1052, 1138), 'torchvision.datasets.FashionMNIST', 'datasets.FashionMNIST', ([], {'root': '"""../data"""', 'train': '(False)', 'transform': 'trans', 'download': '(True)'}), "(root='../data', train=False, transform=trans,\n download=True)\n", (1073, 1138), False, 'from torchvision import transforms, datasets\n'), ((1717, 1742), 'torchvision.transforms.Compose', 'transforms.Compose', (['trans'], {}), '(trans)\n', (1735, 1742), False, 'from torchvision import transforms, datasets\n'), ((1761, 1835), 'torchvision.datasets.MNIST', 'datasets.MNIST', ([], {'root': '"""../data"""', 'train': '(True)', 'transform': 'trans', 'download': '(True)'}), "(root='../data', train=True, transform=trans, download=True)\n", (1775, 1835), False, 'from torchvision import transforms, datasets\n'), ((1952, 2027), 'torchvision.datasets.MNIST', 'datasets.MNIST', ([], {'root': '"""../data"""', 'train': '(False)', 'transform': 'trans', 'download': '(True)'}), "(root='../data', train=False, transform=trans, download=True)\n", (1966, 2027), False, 'from torchvision import transforms, datasets\n'), ((4085, 4104), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (4097, 4104), False, 'import torch\n'), ((540, 570), 'sys.platform.startswith', 'sys.platform.startswith', (['"""win"""'], {}), "('win')\n", (563, 570), False, 'import sys\n'), ((688, 709), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (707, 709), False, 'from torchvision import transforms, datasets\n'), ((1616, 1637), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1635, 1637), False, 'from torchvision import transforms, datasets\n'), ((3729, 3744), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3742, 3744), False, 'import torch\n'), ((3997, 4022), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (4020, 4022), False, 'import torch\n'), ((4048, 4073), 'torch.device', 'torch.device', (['f"""cuda:{i}"""'], {}), "(f'cuda:{i}')\n", (4060, 4073), False, 'import torch\n'), ((4193, 4218), 'torch.device', 'torch.device', (['f"""cuda:{i}"""'], {}), "(f'cuda:{i}')\n", (4205, 4218), False, 'import torch\n'), ((750, 775), 'torchvision.transforms.Resize', 'transforms.Resize', (['resize'], {}), '(resize)\n', (767, 775), False, 'from torchvision import transforms, datasets\n'), ((1678, 1703), 'torchvision.transforms.Resize', 'transforms.Resize', (['resize'], {}), '(resize)\n', (1695, 1703), False, 'from torchvision import transforms, datasets\n'), ((2955, 3004), 'torch.nn.functional.one_hot', 'nn.functional.one_hot', (['y'], {'num_classes': 'num_classes'}), '(y, num_classes=num_classes)\n', (2976, 3004), False, 'from torch import nn\n'), ((4298, 4317), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (4310, 4317), False, 'import torch\n'), ((4234, 4259), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (4257, 4259), False, 'import torch\n')]
"""Views for the django ``Brewery`` application. """ # pylint: disable=too-many-ancestors from django.core.exceptions import ObjectDoesNotExist from django.http import HttpResponse from django.http import HttpResponseForbidden from django.http import JsonResponse import logging from rest_framework import filters from rest_framework import generics from rest_framework import status from joulia.filters import SearchOrIdFilter from rest_framework.permissions import IsAuthenticated from rest_framework.views import APIView from brewery import models from brewery import permissions from brewery import serializers from joulia import http LOGGER = logging.getLogger(__name__) class JouliaControllerReleaseApiMixin(APIView): """Common REST API view information for ``JouliaControllerRelease`` model. """ serializer_class = serializers.JouliaControllerReleaseSerializers queryset = models.JouliaControllerRelease.objects.all() permission_classes = ( IsAuthenticated, permissions.IsContinuousIntegrationToEdit) class JouliaControllerReleaseListView(JouliaControllerReleaseApiMixin, generics.ListCreateAPIView): """List REST API view for ``JouliaControllerRelease`` model.""" # TODO(willjschmitt): Add Create functionality for release software to # programmatically update this. pass class JouliaControllerReleaseDetailView(JouliaControllerReleaseApiMixin, generics.RetrieveAPIView): """Retrieve REST API view for ``JouliaControllerRelease`` model.""" pass class BrewingStateAPIMixin(APIView): """Common REST API view information for ``BrewingState`` model.""" serializer_class = serializers.BrewingStateSerializer queryset = models.BrewingState.objects.all().order_by('index') filter_fields = ('id', 'software_release',) permission_classes = ( IsAuthenticated, permissions.IsContinuousIntegrationToEdit) class BrewingStateListCreateView(BrewingStateAPIMixin, generics.ListCreateAPIView): """List/create REST API view for ``BrewingState`` model. Ordering is guaranteed to be sorted by index in the List view. """ pass class BrewingStateDetailView(BrewingStateAPIMixin, generics.RetrieveAPIView): """Get REST API view for ``BrewingState`` model.""" pass class BrewingCompanyApiMixin(APIView): """Common REST API view information for ``BrewingCompany`` model.""" serializer_class = serializers.BrewingCompanySerializer permission_classes = (IsAuthenticated, permissions.IsMember) def get_queryset(self): return models.BrewingCompany.objects.filter( group__user=self.request.user) class BrewingCompanyListView(BrewingCompanyApiMixin, generics.ListCreateAPIView): """List and Create REST API view for ``BrewingCompany`` model.""" pass class BrewingCompanyDetailView(BrewingCompanyApiMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``BrewingCompany``model. """ pass class BreweryApiMixin(APIView): """Common REST API view information for ``Brewery`` model.""" serializer_class = serializers.BrewerySerializer permission_classes = (IsAuthenticated, permissions.IsMemberOfBrewingCompany) def get_queryset(self): return models.Brewery.objects.filter( company__group__user=self.request.user) class BreweryListView(BreweryApiMixin, generics.ListCreateAPIView): """List and Create REST API view for ``Brewery`` model.""" pass class BreweryDetailView(BreweryApiMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``Brewery``model.""" pass class BrewhouseApiMixin(APIView): """Common REST API view information for ``Brewhouse`` model.""" serializer_class = serializers.BrewhouseSerializer permission_classes = (IsAuthenticated, permissions.IsMemberOfBrewery) filter_fields = ('id', 'brewery',) def get_queryset(self): return models.Brewhouse.objects.filter( brewery__company__group__user=self.request.user) class BrewhouseListView(BrewhouseApiMixin, generics.ListCreateAPIView): """List and Create REST API view for ``Brewhouse`` model.""" pass class BrewhouseDetailView(BrewhouseApiMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``Brewhouse``model.""" pass class BeerStyleApiMixin(APIView): """Common REST API view information for ``BeerStyle`` model.""" queryset = models.BeerStyle.objects.all() serializer_class = serializers.BeerStyleSerializer permission_classes = (IsAuthenticated, permissions.IsAdminToEdit) class BeerStyleListView(BeerStyleApiMixin, generics.ListAPIView): """List REST API view for ``BeerStyle`` model.""" filter_backends = (SearchOrIdFilter,) search_fields = ('name',) class BeerStyleDetailView(BeerStyleApiMixin, generics.RetrieveAPIView): """Retrieve REST API view for ``BeerStyle``model.""" pass class YeastIngredientAPIMixin(APIView): """Common REST API view information for ``YeastIngredient`` model.""" serializer_class = serializers.YeastIngredientSerializer permission_classes = (IsAuthenticated, permissions.IsAdminToEdit) queryset = models.YeastIngredient.objects.all() class YeastIngredientListView(YeastIngredientAPIMixin, generics.ListCreateAPIView): """List and Create REST API view for ``YeastIngredient`` model.""" filter_backends = (SearchOrIdFilter,) search_fields = ('name',) class YeastIngredientDetailView(YeastIngredientAPIMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``YeastIngredient`` model.""" pass class MaltIngredientAPIMixin(APIView): """Common REST API view information for ``MaltIngredient`` model.""" serializer_class = serializers.MaltIngredientSerializer permission_classes = (IsAuthenticated, permissions.IsAdminToEdit) queryset = models.MaltIngredient.objects.all() class MaltIngredientListView(MaltIngredientAPIMixin, generics.ListCreateAPIView): """List and Create REST API view for ``MaltIngredient`` model.""" filter_backends = (SearchOrIdFilter,) search_fields = ('name',) class MaltIngredientDetailView(MaltIngredientAPIMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``MaltIngredient`` model.""" pass class BitteringIngredientAPIMixin(APIView): """Common REST API view information for ``BitteringIngredient`` model.""" serializer_class = serializers.BitteringIngredientSerializer permission_classes = (IsAuthenticated, permissions.IsAdminToEdit) queryset = models.BitteringIngredient.objects.all() class BitteringIngredientListView(BitteringIngredientAPIMixin, generics.ListCreateAPIView): """List and Create REST API view for ``BitteringIngredient`` model.""" filter_backends = (SearchOrIdFilter,) search_fields = ('name',) class BitteringIngredientDetailView(BitteringIngredientAPIMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``BitteringIngredient`` model.""" pass class MaltIngredientAdditionAPIMixin(APIView): """Common REST API view information for ``MaltIngredientAddition`` model.""" filter_fields = ('id', 'recipe',) serializer_class = serializers.MaltIngredientAdditionSerializer permission_classes = (IsAuthenticated, permissions.OwnsRecipe) queryset = models.MaltIngredientAddition.objects.all() class MaltIngredientAdditionListView(MaltIngredientAdditionAPIMixin, generics.ListCreateAPIView): """List and Create REST API view for ``MaltIngredientAddition`` model.""" pass class MaltIngredientAdditionDetailView(MaltIngredientAdditionAPIMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``MaltIngredientAddition`` model. """ pass class BitteringIngredientAdditionAPIMixin(APIView): """Common REST API view information for ``BitteringIngredientAddition`` model. """ filter_fields = ('id', 'recipe',) serializer_class = serializers.BitteringIngredientAdditionSerializer permission_classes = (IsAuthenticated, permissions.OwnsRecipe) queryset = models.BitteringIngredientAddition.objects.all() class BitteringIngredientAdditionListView(BitteringIngredientAdditionAPIMixin, generics.ListCreateAPIView): """List and Create REST API view for ``BitteringIngredientAddition`` model.""" pass class BitteringIngredientAdditionDetailView( BitteringIngredientAdditionAPIMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``BitteringIngredientAddition`` model.""" pass class RecipeAPIMixin(APIView): """Common REST API view information for ``Recipe`` model.""" serializer_class = serializers.RecipeSerializer permission_classes = (IsAuthenticated, permissions.IsMemberOfBrewingCompany) def get_queryset(self): return models.Recipe.objects.filter( company__group__user=self.request.user) class RecipeListView(RecipeAPIMixin, generics.ListCreateAPIView): """List and Create REST API view for ``Recipe`` model.""" pass class RecipeDetailView(RecipeAPIMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``Recipe`` model.""" pass class MashPointAPIMixin(APIView): """Common REST API view information for ``MashPoint`` model.""" serializer_class = serializers.MashPointSerializer permission_classes = (IsAuthenticated, permissions.OwnsRecipe) filter_fields = ('id', 'recipe',) def get_queryset(self): return models.MashPoint.objects.filter( recipe__company__group__user=self.request.user).order_by('index') class MashPointListView(MashPointAPIMixin, generics.ListCreateAPIView): """List and create REST API for ``MashPoint`` model.""" pass class MashPointDetailView(MashPointAPIMixin, generics.RetrieveUpdateDestroyAPIView): """Retrieve, Update, and Destroy REST API view for ``MashPoint`` model.""" pass class RecipeInstanceApiMixin(APIView): """Common REST API view information for ``RecipeInstance`` model.""" serializer_class = serializers.RecipeInstanceSerializer permission_classes = (IsAuthenticated, permissions.OwnsRecipe) filter_backends = (filters.DjangoFilterBackend, filters.OrderingFilter) filter_fields = ('id', 'active', 'brewhouse',) ordering_fields = ('date',) def get_queryset(self): return models.RecipeInstance.objects.filter( recipe__company__group__user=self.request.user) class RecipeInstanceListView(RecipeInstanceApiMixin, generics.ListCreateAPIView): """List and Create REST API view for ``RecipeInstance`` model.""" pass class RecipeInstanceDetailView(RecipeInstanceApiMixin, generics.RetrieveUpdateAPIView): """Retrieve and Update REST API view for ``RecipeInstance`` model.""" pass class TimeSeriesNewHandler(generics.CreateAPIView): """Create REST API view for ``TimeSeriesDataPoint`` model.""" serializer_class = serializers.TimeSeriesDataPointSerializer permission_classes = (IsAuthenticated, permissions.OwnsSensor) def get_queryset(self): return models.TimeSeriesDataPoint.objects.filter( sensor__brewhouse__brewery__company__group__user= self.request.user) class TimeSeriesIdentifyHandler(APIView): """Identifies a time series group by the name of an AssetSensor. Can only be handled as a POST request. """ @staticmethod def post(request): """Identifies a time series group by the name of an AssetSensor. If the AssetSensor does not yet exist, creates it. Args: recipe_instance: (Optional) POST argument with the recipe_instance pk. Used to retrieve the Brewhouse equipment associated with the request. Used for some cases when the equipment has more readily available access to the recipe_instance rather than the Brewhouse directly. brewhouse: (Optional): POST argument with the Brewhouse pk. Required if recipe_instance is not submitted. name: Name for the AssetSensor to be used in the time series data. See AssetSensor for more information on naming. variable_type: Type of AssetSensor to be used (e.g. "value" or "override"). Defaults to 'value'. Returns: JsonResponse with the pk to the sensor as the property "sensor". Response status is 200 if just returning object and 201 if needed to create a new AssetSensor. """ name = request.data['name'] variable_type = request.data.get('variable_type', 'value') if 'recipe_instance' in request.data: recipe_instance_id = request.data['recipe_instance'] recipe_instance = models.RecipeInstance.objects.get( id=recipe_instance_id) brewhouse = recipe_instance.brewhouse else: brewhouse_id = request.data['brewhouse'] brewhouse = models.Brewhouse.objects.get(id=brewhouse_id) if not permissions.is_member_of_brewing_company( request.user, brewhouse.brewery.company): return HttpResponseForbidden( 'Access not permitted to brewing equipment.') # See if we can get an existing AssetSensor. try: sensor = models.AssetSensor.objects.get(name=name, brewhouse=brewhouse, variable_type=variable_type) status_code = status.HTTP_200_OK # Otherwise create one for recording data except ObjectDoesNotExist: LOGGER.debug('Creating new asset sensor %s for asset %s', name, brewhouse) sensor = models.AssetSensor.objects.create( name=name, brewhouse=brewhouse, variable_type=variable_type) status_code = status.HTTP_201_CREATED response = JsonResponse({'sensor': sensor.pk}) response.status_code = status_code return response class BrewhouseIdByToken(APIView): """Retrieves the brewhouse ID for a user authenticated with a Token.""" @staticmethod def get(request): try: brewhouse = request.user.auth_token.brewhouse return JsonResponse({'brewhouse': brewhouse.pk}) except ObjectDoesNotExist: return HttpResponseForbidden() class BrewhouseLaunchView(APIView): """Launches a recipe instance on a Brewhouse.""" @staticmethod def post(request): brewhouse_pk = http.get_data_value_or_400(request, 'brewhouse') recipe_pk = http.get_data_value_or_400(request, 'recipe') brewhouse = http.get_object_or_404(models.Brewhouse, brewhouse_pk) if not permissions.IsMemberOfBrewery().has_object_permission( request, None, brewhouse): raise http.HTTP403("No permission to access requested brewhouse.") recipe = http.get_object_or_404(models.Recipe, recipe_pk) if not permissions.IsMemberOfBrewingCompany().has_object_permission( request, None, recipe): raise http.HTTP403("No permission to access requested recipe.") recipe_instance = models.RecipeInstance.objects.create( brewhouse=brewhouse, recipe=recipe, active=True) return JsonResponse({"id": recipe_instance.pk}) class BrewhouseEndView(APIView): """Ends a recipe instance on a Brewhouse.""" @staticmethod def post(request): recipe_instance_pk = http.get_data_value_or_400(request, 'recipe_instance') recipe_instance = http.get_object_or_404(models.RecipeInstance, recipe_instance_pk) if not permissions.OwnsRecipe().has_object_permission( request, None, recipe_instance): raise http.HTTP403( "No permission to access requested recipe_instance.") recipe_instance.active = False recipe_instance.save() return HttpResponse()
[ "logging.getLogger", "brewery.models.BitteringIngredient.objects.all", "brewery.models.Brewhouse.objects.filter", "brewery.models.JouliaControllerRelease.objects.all", "brewery.models.BeerStyle.objects.all", "brewery.models.YeastIngredient.objects.all", "brewery.models.MashPoint.objects.filter", "brewery.models.AssetSensor.objects.get", "django.http.HttpResponse", "brewery.models.Recipe.objects.filter", "brewery.models.Brewery.objects.filter", "brewery.permissions.IsMemberOfBrewingCompany", "brewery.models.BrewingState.objects.all", "brewery.models.BitteringIngredientAddition.objects.all", "joulia.http.get_data_value_or_400", "brewery.models.Brewhouse.objects.get", "brewery.permissions.IsMemberOfBrewery", "brewery.models.BrewingCompany.objects.filter", "django.http.JsonResponse", "brewery.models.AssetSensor.objects.create", "brewery.models.RecipeInstance.objects.get", "joulia.http.HTTP403", "brewery.models.MaltIngredient.objects.all", "brewery.models.TimeSeriesDataPoint.objects.filter", "brewery.models.RecipeInstance.objects.filter", "brewery.models.RecipeInstance.objects.create", "brewery.permissions.OwnsRecipe", "joulia.http.get_object_or_404", "django.http.HttpResponseForbidden", "brewery.models.MaltIngredientAddition.objects.all", "brewery.permissions.is_member_of_brewing_company" ]
[((653, 680), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (670, 680), False, 'import logging\n'), ((903, 947), 'brewery.models.JouliaControllerRelease.objects.all', 'models.JouliaControllerRelease.objects.all', ([], {}), '()\n', (945, 947), False, 'from brewery import models\n'), ((4740, 4770), 'brewery.models.BeerStyle.objects.all', 'models.BeerStyle.objects.all', ([], {}), '()\n', (4768, 4770), False, 'from brewery import models\n'), ((5492, 5528), 'brewery.models.YeastIngredient.objects.all', 'models.YeastIngredient.objects.all', ([], {}), '()\n', (5526, 5528), False, 'from brewery import models\n'), ((6276, 6311), 'brewery.models.MaltIngredient.objects.all', 'models.MaltIngredient.objects.all', ([], {}), '()\n', (6309, 6311), False, 'from brewery import models\n'), ((7066, 7106), 'brewery.models.BitteringIngredient.objects.all', 'models.BitteringIngredient.objects.all', ([], {}), '()\n', (7104, 7106), False, 'from brewery import models\n'), ((7945, 7988), 'brewery.models.MaltIngredientAddition.objects.all', 'models.MaltIngredientAddition.objects.all', ([], {}), '()\n', (7986, 7988), False, 'from brewery import models\n'), ((8817, 8865), 'brewery.models.BitteringIngredientAddition.objects.all', 'models.BitteringIngredientAddition.objects.all', ([], {}), '()\n', (8863, 8865), False, 'from brewery import models\n'), ((2694, 2761), 'brewery.models.BrewingCompany.objects.filter', 'models.BrewingCompany.objects.filter', ([], {'group__user': 'self.request.user'}), '(group__user=self.request.user)\n', (2730, 2761), False, 'from brewery import models\n'), ((3470, 3539), 'brewery.models.Brewery.objects.filter', 'models.Brewery.objects.filter', ([], {'company__group__user': 'self.request.user'}), '(company__group__user=self.request.user)\n', (3499, 3539), False, 'from brewery import models\n'), ((4179, 4264), 'brewery.models.Brewhouse.objects.filter', 'models.Brewhouse.objects.filter', ([], {'brewery__company__group__user': 'self.request.user'}), '(brewery__company__group__user=self.request.user\n )\n', (4210, 4264), False, 'from brewery import models\n'), ((9639, 9707), 'brewery.models.Recipe.objects.filter', 'models.Recipe.objects.filter', ([], {'company__group__user': 'self.request.user'}), '(company__group__user=self.request.user)\n', (9667, 9707), False, 'from brewery import models\n'), ((11233, 11322), 'brewery.models.RecipeInstance.objects.filter', 'models.RecipeInstance.objects.filter', ([], {'recipe__company__group__user': 'self.request.user'}), '(recipe__company__group__user=self.\n request.user)\n', (11269, 11322), False, 'from brewery import models\n'), ((12023, 12137), 'brewery.models.TimeSeriesDataPoint.objects.filter', 'models.TimeSeriesDataPoint.objects.filter', ([], {'sensor__brewhouse__brewery__company__group__user': 'self.request.user'}), '(\n sensor__brewhouse__brewery__company__group__user=self.request.user)\n', (12064, 12137), False, 'from brewery import models\n'), ((14946, 14981), 'django.http.JsonResponse', 'JsonResponse', (["{'sensor': sensor.pk}"], {}), "({'sensor': sensor.pk})\n", (14958, 14981), False, 'from django.http import JsonResponse\n'), ((15569, 15617), 'joulia.http.get_data_value_or_400', 'http.get_data_value_or_400', (['request', '"""brewhouse"""'], {}), "(request, 'brewhouse')\n", (15595, 15617), False, 'from joulia import http\n'), ((15638, 15683), 'joulia.http.get_data_value_or_400', 'http.get_data_value_or_400', (['request', '"""recipe"""'], {}), "(request, 'recipe')\n", (15664, 15683), False, 'from joulia import http\n'), ((15705, 15759), 'joulia.http.get_object_or_404', 'http.get_object_or_404', (['models.Brewhouse', 'brewhouse_pk'], {}), '(models.Brewhouse, brewhouse_pk)\n', (15727, 15759), False, 'from joulia import http\n'), ((15969, 16017), 'joulia.http.get_object_or_404', 'http.get_object_or_404', (['models.Recipe', 'recipe_pk'], {}), '(models.Recipe, recipe_pk)\n', (15991, 16017), False, 'from joulia import http\n'), ((16238, 16327), 'brewery.models.RecipeInstance.objects.create', 'models.RecipeInstance.objects.create', ([], {'brewhouse': 'brewhouse', 'recipe': 'recipe', 'active': '(True)'}), '(brewhouse=brewhouse, recipe=recipe,\n active=True)\n', (16274, 16327), False, 'from brewery import models\n'), ((16353, 16393), 'django.http.JsonResponse', 'JsonResponse', (["{'id': recipe_instance.pk}"], {}), "({'id': recipe_instance.pk})\n", (16365, 16393), False, 'from django.http import JsonResponse\n'), ((16549, 16603), 'joulia.http.get_data_value_or_400', 'http.get_data_value_or_400', (['request', '"""recipe_instance"""'], {}), "(request, 'recipe_instance')\n", (16575, 16603), False, 'from joulia import http\n'), ((16686, 16751), 'joulia.http.get_object_or_404', 'http.get_object_or_404', (['models.RecipeInstance', 'recipe_instance_pk'], {}), '(models.RecipeInstance, recipe_instance_pk)\n', (16708, 16751), False, 'from joulia import http\n'), ((17102, 17116), 'django.http.HttpResponse', 'HttpResponse', ([], {}), '()\n', (17114, 17116), False, 'from django.http import HttpResponse\n'), ((1777, 1810), 'brewery.models.BrewingState.objects.all', 'models.BrewingState.objects.all', ([], {}), '()\n', (1808, 1810), False, 'from brewery import models\n'), ((13736, 13792), 'brewery.models.RecipeInstance.objects.get', 'models.RecipeInstance.objects.get', ([], {'id': 'recipe_instance_id'}), '(id=recipe_instance_id)\n', (13769, 13792), False, 'from brewery import models\n'), ((13951, 13996), 'brewery.models.Brewhouse.objects.get', 'models.Brewhouse.objects.get', ([], {'id': 'brewhouse_id'}), '(id=brewhouse_id)\n', (13979, 13996), False, 'from brewery import models\n'), ((14013, 14099), 'brewery.permissions.is_member_of_brewing_company', 'permissions.is_member_of_brewing_company', (['request.user', 'brewhouse.brewery.company'], {}), '(request.user, brewhouse.brewery.\n company)\n', (14053, 14099), False, 'from brewery import permissions\n'), ((14132, 14199), 'django.http.HttpResponseForbidden', 'HttpResponseForbidden', (['"""Access not permitted to brewing equipment."""'], {}), "('Access not permitted to brewing equipment.')\n", (14153, 14199), False, 'from django.http import HttpResponseForbidden\n'), ((14305, 14400), 'brewery.models.AssetSensor.objects.get', 'models.AssetSensor.objects.get', ([], {'name': 'name', 'brewhouse': 'brewhouse', 'variable_type': 'variable_type'}), '(name=name, brewhouse=brewhouse,\n variable_type=variable_type)\n', (14335, 14400), False, 'from brewery import models\n'), ((15293, 15334), 'django.http.JsonResponse', 'JsonResponse', (["{'brewhouse': brewhouse.pk}"], {}), "({'brewhouse': brewhouse.pk})\n", (15305, 15334), False, 'from django.http import JsonResponse\n'), ((15891, 15951), 'joulia.http.HTTP403', 'http.HTTP403', (['"""No permission to access requested brewhouse."""'], {}), "('No permission to access requested brewhouse.')\n", (15903, 15951), False, 'from joulia import http\n'), ((16153, 16210), 'joulia.http.HTTP403', 'http.HTTP403', (['"""No permission to access requested recipe."""'], {}), "('No permission to access requested recipe.')\n", (16165, 16210), False, 'from joulia import http\n'), ((16932, 16998), 'joulia.http.HTTP403', 'http.HTTP403', (['"""No permission to access requested recipe_instance."""'], {}), "('No permission to access requested recipe_instance.')\n", (16944, 16998), False, 'from joulia import http\n'), ((10334, 10413), 'brewery.models.MashPoint.objects.filter', 'models.MashPoint.objects.filter', ([], {'recipe__company__group__user': 'self.request.user'}), '(recipe__company__group__user=self.request.user)\n', (10365, 10413), False, 'from brewery import models\n'), ((14764, 14862), 'brewery.models.AssetSensor.objects.create', 'models.AssetSensor.objects.create', ([], {'name': 'name', 'brewhouse': 'brewhouse', 'variable_type': 'variable_type'}), '(name=name, brewhouse=brewhouse,\n variable_type=variable_type)\n', (14797, 14862), False, 'from brewery import models\n'), ((15389, 15412), 'django.http.HttpResponseForbidden', 'HttpResponseForbidden', ([], {}), '()\n', (15410, 15412), False, 'from django.http import HttpResponseForbidden\n'), ((15775, 15806), 'brewery.permissions.IsMemberOfBrewery', 'permissions.IsMemberOfBrewery', ([], {}), '()\n', (15804, 15806), False, 'from brewery import permissions\n'), ((16033, 16071), 'brewery.permissions.IsMemberOfBrewingCompany', 'permissions.IsMemberOfBrewingCompany', ([], {}), '()\n', (16069, 16071), False, 'from brewery import permissions\n'), ((16817, 16841), 'brewery.permissions.OwnsRecipe', 'permissions.OwnsRecipe', ([], {}), '()\n', (16839, 16841), False, 'from brewery import permissions\n')]
import math import turtle SQRT2 = math.sqrt(2) def house(length): """ Draw a nice house where the base is length long and put the turtle back to its original position at the end. """ inside = SQRT2 * length roof = inside / 2. turtle.forward(length) turtle.left(90) turtle.forward(length) # roof turtle.left(45) turtle.forward(roof) turtle.left(90) turtle.forward(roof) turtle.left(45) # interior turtle.forward(length) turtle.left(135) turtle.forward(inside) turtle.left(135) turtle.forward(length) turtle.left(135) turtle.forward(inside) # back into position turtle.left(45) turtle.backward(length) turtle.shape("turtle") house(100) turtle.penup() turtle.forward(120) turtle.pendown() house(80) turtle.exitonclick()
[ "turtle.shape", "turtle.pendown", "turtle.penup", "math.sqrt", "turtle.forward", "turtle.exitonclick", "turtle.left", "turtle.backward" ]
[((35, 47), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (44, 47), False, 'import math\n'), ((712, 734), 'turtle.shape', 'turtle.shape', (['"""turtle"""'], {}), "('turtle')\n", (724, 734), False, 'import turtle\n'), ((747, 761), 'turtle.penup', 'turtle.penup', ([], {}), '()\n', (759, 761), False, 'import turtle\n'), ((762, 781), 'turtle.forward', 'turtle.forward', (['(120)'], {}), '(120)\n', (776, 781), False, 'import turtle\n'), ((782, 798), 'turtle.pendown', 'turtle.pendown', ([], {}), '()\n', (796, 798), False, 'import turtle\n'), ((811, 831), 'turtle.exitonclick', 'turtle.exitonclick', ([], {}), '()\n', (829, 831), False, 'import turtle\n'), ((257, 279), 'turtle.forward', 'turtle.forward', (['length'], {}), '(length)\n', (271, 279), False, 'import turtle\n'), ((284, 299), 'turtle.left', 'turtle.left', (['(90)'], {}), '(90)\n', (295, 299), False, 'import turtle\n'), ((304, 326), 'turtle.forward', 'turtle.forward', (['length'], {}), '(length)\n', (318, 326), False, 'import turtle\n'), ((343, 358), 'turtle.left', 'turtle.left', (['(45)'], {}), '(45)\n', (354, 358), False, 'import turtle\n'), ((363, 383), 'turtle.forward', 'turtle.forward', (['roof'], {}), '(roof)\n', (377, 383), False, 'import turtle\n'), ((388, 403), 'turtle.left', 'turtle.left', (['(90)'], {}), '(90)\n', (399, 403), False, 'import turtle\n'), ((408, 428), 'turtle.forward', 'turtle.forward', (['roof'], {}), '(roof)\n', (422, 428), False, 'import turtle\n'), ((433, 448), 'turtle.left', 'turtle.left', (['(45)'], {}), '(45)\n', (444, 448), False, 'import turtle\n'), ((469, 491), 'turtle.forward', 'turtle.forward', (['length'], {}), '(length)\n', (483, 491), False, 'import turtle\n'), ((496, 512), 'turtle.left', 'turtle.left', (['(135)'], {}), '(135)\n', (507, 512), False, 'import turtle\n'), ((517, 539), 'turtle.forward', 'turtle.forward', (['inside'], {}), '(inside)\n', (531, 539), False, 'import turtle\n'), ((544, 560), 'turtle.left', 'turtle.left', (['(135)'], {}), '(135)\n', (555, 560), False, 'import turtle\n'), ((565, 587), 'turtle.forward', 'turtle.forward', (['length'], {}), '(length)\n', (579, 587), False, 'import turtle\n'), ((592, 608), 'turtle.left', 'turtle.left', (['(135)'], {}), '(135)\n', (603, 608), False, 'import turtle\n'), ((613, 635), 'turtle.forward', 'turtle.forward', (['inside'], {}), '(inside)\n', (627, 635), False, 'import turtle\n'), ((666, 681), 'turtle.left', 'turtle.left', (['(45)'], {}), '(45)\n', (677, 681), False, 'import turtle\n'), ((686, 709), 'turtle.backward', 'turtle.backward', (['length'], {}), '(length)\n', (701, 709), False, 'import turtle\n')]
# Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph import ufora.native.Cumulus as CumulusNative import ufora.native.FORA as ForaNative import ufora.BackendGateway.ComputedValue.ComputedValueGateway as ComputedValueGateway import time import ufora.BackendGateway.ComputedGraph.BackgroundUpdateQueue as BackgroundUpdateQueue getGateway = ComputedValueGateway.getGateway class ViewOfEntireCumulusSystem(ComputedGraph.Location): viewOfSystem_ = ComputedGraph.Mutable(object, lambda: ()) recentGlobalUserFacingLogMessages_ = ComputedGraph.Mutable(object, lambda: ()) totalMessageCountsEver_ = ComputedGraph.Mutable(object, lambda: 0) @ComputedGraph.ExposedProperty() def mostRecentMessages(self): return self.recentGlobalUserFacingLogMessages_ @ComputedGraph.ExposedProperty() def totalMessagesEver(self): return self.totalMessageCountsEver_ @ComputedGraph.ExposedFunction() def clearMostRecentMessages(self, arg): self.recentGlobalUserFacingLogMessages_ = () @ComputedGraph.ExposedFunction() def clearAndReturnMostRecentMessages(self, arg): messages = self.recentGlobalUserFacingLogMessages_ self.recentGlobalUserFacingLogMessages_ = () return messages @ComputedGraph.ExposedProperty() def viewOfCumulusSystem(self): return self.viewOfSystem_ @ComputedGraph.ExposedFunction() def pushNewGlobalUserFacingLogMessage(self, msg): self.totalMessageCountsEver_ = self.totalMessageCountsEver_ + 1 self.recentGlobalUserFacingLogMessages_ = ( self.recentGlobalUserFacingLogMessages_ + \ ({"timestamp": msg.timestamp, "message": msg.message, "isDeveloperFacing": msg.isDeveloperFacing, },) )
[ "ufora.BackendGateway.ComputedGraph.ComputedGraph.ExposedProperty", "ufora.BackendGateway.ComputedGraph.ComputedGraph.ExposedFunction", "ufora.BackendGateway.ComputedGraph.ComputedGraph.Mutable" ]
[((1064, 1106), 'ufora.BackendGateway.ComputedGraph.ComputedGraph.Mutable', 'ComputedGraph.Mutable', (['object', '(lambda : ())'], {}), '(object, lambda : ())\n', (1085, 1106), True, 'import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph\n'), ((1147, 1189), 'ufora.BackendGateway.ComputedGraph.ComputedGraph.Mutable', 'ComputedGraph.Mutable', (['object', '(lambda : ())'], {}), '(object, lambda : ())\n', (1168, 1189), True, 'import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph\n'), ((1219, 1260), 'ufora.BackendGateway.ComputedGraph.ComputedGraph.Mutable', 'ComputedGraph.Mutable', (['object', '(lambda : 0)'], {}), '(object, lambda : 0)\n', (1240, 1260), True, 'import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph\n'), ((1266, 1297), 'ufora.BackendGateway.ComputedGraph.ComputedGraph.ExposedProperty', 'ComputedGraph.ExposedProperty', ([], {}), '()\n', (1295, 1297), True, 'import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph\n'), ((1393, 1424), 'ufora.BackendGateway.ComputedGraph.ComputedGraph.ExposedProperty', 'ComputedGraph.ExposedProperty', ([], {}), '()\n', (1422, 1424), True, 'import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph\n'), ((1508, 1539), 'ufora.BackendGateway.ComputedGraph.ComputedGraph.ExposedFunction', 'ComputedGraph.ExposedFunction', ([], {}), '()\n', (1537, 1539), True, 'import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph\n'), ((1643, 1674), 'ufora.BackendGateway.ComputedGraph.ComputedGraph.ExposedFunction', 'ComputedGraph.ExposedFunction', ([], {}), '()\n', (1672, 1674), True, 'import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph\n'), ((1870, 1901), 'ufora.BackendGateway.ComputedGraph.ComputedGraph.ExposedProperty', 'ComputedGraph.ExposedProperty', ([], {}), '()\n', (1899, 1901), True, 'import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph\n'), ((1977, 2008), 'ufora.BackendGateway.ComputedGraph.ComputedGraph.ExposedFunction', 'ComputedGraph.ExposedFunction', ([], {}), '()\n', (2006, 2008), True, 'import ufora.BackendGateway.ComputedGraph.ComputedGraph as ComputedGraph\n')]
# -*- coding: utf-8 -*- """ Created on Thu Jan 27 11:27:20 2022 @author: samue """ import pandas as pd import re amenitiesList = ["Internet", "Air conditioning", "Breakfast", "TV", "Bathub", "Dryer", "Elevator in building", "Parking", "Gym", "Heating", "Kitchen", "Pets allowed", "Pool", "Smoking allowed", "Washer", "Wheelchair accessible"] def getColEncoded(name, dataset): return [x for x in dataset.columns if re.search(name + " \d+", str(x))] def GetDataSet(path): dataset = pd.read_csv(path, dtype={'Zipcode': "string"}) dataset = dataset[dataset["Review Scores Value"].notna()] neiColEncodedNeighbourhood = getColEncoded("Neighbourhood", dataset) neiColEncodedPropertyType = getColEncoded("Property Type", dataset) neiColEncodedRoomType = getColEncoded("Room Type", dataset) neiColEncodedBedType = getColEncoded("Bed Type", dataset) X = dataset[["Square Meter"] + ["Accommodates"] + ["Bathrooms"] + ["Bedrooms"] + ["Review Scores Value"] + amenitiesList + neiColEncodedNeighbourhood + neiColEncodedPropertyType + neiColEncodedRoomType + neiColEncodedBedType].values y = dataset['Price'] return X, y, dataset
[ "pandas.read_csv" ]
[((513, 559), 'pandas.read_csv', 'pd.read_csv', (['path'], {'dtype': "{'Zipcode': 'string'}"}), "(path, dtype={'Zipcode': 'string'})\n", (524, 559), True, 'import pandas as pd\n')]
import errno import os import pickle from abc import ABCMeta, abstractmethod from pathlib import Path import numpy as np from sklearn.utils import resample from stat_test import perform_t_test, get_box_plots_mod from util.util import twitter_datetime_str_to_object class BaseFeatureHelper(metaclass=ABCMeta): @abstractmethod def get_feature_group_name(self): pass @abstractmethod def get_micro_feature_method_references(self): pass @abstractmethod def get_micro_feature_method_names(self): pass @abstractmethod def get_micro_feature_short_names(self): pass @abstractmethod def get_macro_feature_method_references(self): pass @abstractmethod def get_macro_feature_method_names(self): pass @abstractmethod def get_macro_feature_short_names(self): pass def get_dump_file_name(self, news_source, micro_features, macro_features, label, file_dir): file_tags = [news_source, label, self.get_feature_group_name()] if micro_features: file_tags.append("micro") if macro_features: file_tags.append("macro") return "{}/{}.pkl".format(file_dir, "_".join(file_tags)) def get_features_array(self, prop_graphs, micro_features, macro_features, news_source=None, label=None, file_dir="/content/FakeNewsPropagation/data/features", use_cache=False): function_refs = [] file_name = self.get_dump_file_name(news_source, micro_features, macro_features, label, file_dir) data_file = Path(file_name) if use_cache and data_file.is_file(): return pickle.load(open(file_name, "rb")) if micro_features: function_refs.extend(self.get_micro_feature_method_references()) if macro_features: function_refs.extend(self.get_macro_feature_method_references()) if len(function_refs) == 0: return None all_features = [] for function_reference in function_refs: features_set = get_sample_feature_value(prop_graphs, function_reference) all_features.append(features_set) feature_array = np.transpose(get_numpy_array(all_features)) pickle.dump(feature_array, open(file_name, "wb")) return feature_array def get_feature_names(self, micro_features, macro_features): features_names = [] short_feature_names = [] if micro_features: features_names.extend(self.get_micro_feature_method_names()) short_feature_names.extend(self.get_micro_feature_short_names()) if macro_features: features_names.extend(self.get_macro_feature_method_names()) short_feature_names.extend(self.get_macro_feature_short_names()) return features_names, short_feature_names def print_statistics_for_all_features(self, feature_array=None, prop_graphs=None, micro_features=None, macro_features=None): if feature_array is None: feature_array = self.get_features_array(prop_graphs, micro_features, macro_features) [feature_names, short_feature_names] = self.get_feature_names(micro_features, macro_features) for idx in range(len(feature_names)): feature_values = feature_array[:, idx] print_stat_values(feature_names[idx], feature_values, short_feature_names[idx]) def save_blox_plots_for_features(self, fake_feature_array=None, real_feature_array=None, fake_prop_graphs=None, real_prop_graphs=None, micro_features=None, macro_features=None, save_folder=None): if fake_feature_array is None: fake_feature_array = self.get_features_array(fake_prop_graphs, micro_features, macro_features) real_feature_array = self.get_features_array(real_prop_graphs, micro_features, macro_features) [feature_names, short_feature_names] = self.get_feature_names(micro_features, macro_features) for idx in range(len(feature_names)): fake_feature_values = fake_feature_array[:, idx] real_feature_values = real_feature_array[:, idx] get_box_plots_mod(fake_feature_values, real_feature_values, save_folder, feature_names[idx], short_feature_names[idx]) def get_feature_significance_t_tests(self, fake_feature_array, real_feature_array, micro_features=None, macro_features=None): [feature_names, short_feature_names] = self.get_feature_names(micro_features, macro_features) for idx in range(len(feature_names)): fake_feature_values = fake_feature_array[:, idx] real_feature_values = real_feature_array[:, idx] print("Feature {} : {}".format(short_feature_names[idx], feature_names[idx])) perform_t_test(fake_feature_values, real_feature_values) def get_feature_significance_bootstrap_tests(self, fake_feature_array, real_feature_array, micro_features=None, macro_features=None): [feature_names, short_feature_names] = self.get_feature_names(micro_features, macro_features) for idx in range(len(feature_names)): fake_feature_values = fake_feature_array[:, idx] real_feature_values = real_feature_array[:, idx] perms_fake = [] perms_real = [] combined = np.concatenate((fake_feature_values, real_feature_values), axis=0) print("combined shape : ", combined.shape) for i in range(10000): np.random.seed(i) perms_fake.append(resample(combined, n_samples=len(fake_feature_values))) perms_real.append(resample(combined, n_samples=len(real_feature_values))) dif_bootstrap_means = (np.mean(perms_fake, axis=1) - np.mean(perms_real, axis=1)) print("diff bootstrap means : ", dif_bootstrap_means.shape) obs_difs = (np.mean(fake_feature_values) - np.mean(real_feature_values)) p_value = dif_bootstrap_means[dif_bootstrap_means >= obs_difs].shape[0] / 10000 print("Feature {} : {}".format(short_feature_names[idx], feature_names[idx])) print("t- value : {} p-value : {}".format(obs_difs, p_value)) def get_sample_feature_value(news_graps: list, get_feature_fun_ref): result = [] for graph in news_graps: result.append(get_feature_fun_ref(graph)) return result def create_dir(dir_name): if not os.path.exists(dir_name): try: os.makedirs(dir_name) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise def get_epoch_timestamp_from_retweet(retweet): return twitter_datetime_str_to_object(retweet["created_at"]) def sort_retweet_object_by_time(retweets: list): retweets.sort(key=get_epoch_timestamp_from_retweet) return retweets def get_noise_news_ids(): with open("data/news_id_ignore_list") as file: lines = file.readlines() return [line.strip() for line in lines] def load_prop_graph(data_folder, news_source, news_label): news_graphs = pickle.load(open("{}/{}_{}_news_prop_graphs.pkl".format(data_folder, news_source, news_label), "rb")) return news_graphs def remove_prop_graph_noise(news_graphs, noise_ids): noise_ids = set(noise_ids) return [graph for graph in news_graphs if graph.tweet_id not in noise_ids] def sort_tweet_node_object_by_created_time(tweet_nodes: list): tweet_nodes.sort(key=lambda x: x.created_time) return tweet_nodes def equal_samples(sample1, sample2): target_len = min(len(sample1), len(sample2)) np.random.seed(0) np.random.shuffle(sample1) np.random.shuffle(sample2) return sample1[:target_len], sample2[:target_len] # def get_propagation_graphs(data_folder, news_source): # fake_propagation_graphs = load_prop_graph(data_folder, news_source, "fake") # real_propagation_graphs = load_prop_graph(data_folder, news_source, "real") # # print("Before filtering no. of FAKE prop graphs: {}".format(len(fake_propagation_graphs))) # print("Before filtering no. of REAL prop graphs: {}".format(len(real_propagation_graphs))) # # fake_propagation_graphs = remove_prop_graph_noise(fake_propagation_graphs, get_noise_news_ids()) # real_propagation_graphs = remove_prop_graph_noise(real_propagation_graphs, get_noise_news_ids()) # # print("After filtering no. of FAKE prop graphs: {}".format(len(fake_propagation_graphs))) # print("After filtering no. of REAL prop graphs: {}".format(len(real_propagation_graphs))) # print(flush=True) # # return fake_propagation_graphs, real_propagation_graphs def get_numpy_array(list_of_list): np_array_lists = [] for list_obj in list_of_list: np_array_lists.append(np.array(list_obj)) return np.array(np_array_lists) def print_stat_values(feature_name, values, short_feature_name=""): print("=========================================") print("Feature {} : {}".format(short_feature_name, feature_name)) print("Min value : {}".format(min(values))) print("Max value : {}".format(max(values))) print("Mean value : {}".format(np.mean(np.array(values)))) print("=========================================")
[ "os.path.exists", "numpy.mean", "stat_test.perform_t_test", "os.makedirs", "pathlib.Path", "stat_test.get_box_plots_mod", "numpy.array", "numpy.random.seed", "numpy.concatenate", "util.util.twitter_datetime_str_to_object", "numpy.random.shuffle" ]
[((6924, 6977), 'util.util.twitter_datetime_str_to_object', 'twitter_datetime_str_to_object', (["retweet['created_at']"], {}), "(retweet['created_at'])\n", (6954, 6977), False, 'from util.util import twitter_datetime_str_to_object\n'), ((7868, 7885), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (7882, 7885), True, 'import numpy as np\n'), ((7891, 7917), 'numpy.random.shuffle', 'np.random.shuffle', (['sample1'], {}), '(sample1)\n', (7908, 7917), True, 'import numpy as np\n'), ((7922, 7948), 'numpy.random.shuffle', 'np.random.shuffle', (['sample2'], {}), '(sample2)\n', (7939, 7948), True, 'import numpy as np\n'), ((9069, 9093), 'numpy.array', 'np.array', (['np_array_lists'], {}), '(np_array_lists)\n', (9077, 9093), True, 'import numpy as np\n'), ((1602, 1617), 'pathlib.Path', 'Path', (['file_name'], {}), '(file_name)\n', (1606, 1617), False, 'from pathlib import Path\n'), ((6663, 6687), 'os.path.exists', 'os.path.exists', (['dir_name'], {}), '(dir_name)\n', (6677, 6687), False, 'import os\n'), ((4265, 4387), 'stat_test.get_box_plots_mod', 'get_box_plots_mod', (['fake_feature_values', 'real_feature_values', 'save_folder', 'feature_names[idx]', 'short_feature_names[idx]'], {}), '(fake_feature_values, real_feature_values, save_folder,\n feature_names[idx], short_feature_names[idx])\n', (4282, 4387), False, 'from stat_test import perform_t_test, get_box_plots_mod\n'), ((4955, 5011), 'stat_test.perform_t_test', 'perform_t_test', (['fake_feature_values', 'real_feature_values'], {}), '(fake_feature_values, real_feature_values)\n', (4969, 5011), False, 'from stat_test import perform_t_test, get_box_plots_mod\n'), ((5553, 5619), 'numpy.concatenate', 'np.concatenate', (['(fake_feature_values, real_feature_values)'], {'axis': '(0)'}), '((fake_feature_values, real_feature_values), axis=0)\n', (5567, 5619), True, 'import numpy as np\n'), ((6714, 6735), 'os.makedirs', 'os.makedirs', (['dir_name'], {}), '(dir_name)\n', (6725, 6735), False, 'import os\n'), ((9037, 9055), 'numpy.array', 'np.array', (['list_obj'], {}), '(list_obj)\n', (9045, 9055), True, 'import numpy as np\n'), ((5728, 5745), 'numpy.random.seed', 'np.random.seed', (['i'], {}), '(i)\n', (5742, 5745), True, 'import numpy as np\n'), ((5962, 5989), 'numpy.mean', 'np.mean', (['perms_fake'], {'axis': '(1)'}), '(perms_fake, axis=1)\n', (5969, 5989), True, 'import numpy as np\n'), ((5992, 6019), 'numpy.mean', 'np.mean', (['perms_real'], {'axis': '(1)'}), '(perms_real, axis=1)\n', (5999, 6019), True, 'import numpy as np\n'), ((6118, 6146), 'numpy.mean', 'np.mean', (['fake_feature_values'], {}), '(fake_feature_values)\n', (6125, 6146), True, 'import numpy as np\n'), ((6149, 6177), 'numpy.mean', 'np.mean', (['real_feature_values'], {}), '(real_feature_values)\n', (6156, 6177), True, 'import numpy as np\n'), ((9428, 9444), 'numpy.array', 'np.array', (['values'], {}), '(values)\n', (9436, 9444), True, 'import numpy as np\n')]
import firebase_admin from firebase_admin import storage import asyncio import logging import functools import random import subprocess import discord from discord.ext import commands from tle.util import codeforces_api as cf from tle.util import db logger = logging.getLogger(__name__) _CF_COLORS = (0xFFCA1F, 0x198BCC, 0xFF2020) _SUCCESS_GREEN = 0x28A745 _ALERT_AMBER = 0xFFBF00 def embed_neutral(desc, color=discord.Embed.Empty): return discord.Embed(description=str(desc), color=color) def embed_success(desc): return discord.Embed(description=str(desc), color=_SUCCESS_GREEN) def embed_alert(desc): return discord.Embed(description=str(desc), color=_ALERT_AMBER) def cf_color_embed(**kwargs): return discord.Embed(**kwargs, color=random.choice(_CF_COLORS)) def attach_image(embed, img_file): embed.set_image(url=f'attachment://{img_file.filename}') def set_author_footer(embed, user): embed.set_footer(text=f'Requested by {user}', icon_url=user.avatar_url) def send_error_if(*error_cls): """Decorator for `cog_command_error` methods. Decorated methods send the error in an alert embed when the error is an instance of one of the specified errors, otherwise the wrapped function is invoked. """ def decorator(func): @functools.wraps(func) async def wrapper(cog, ctx, error): if isinstance(error, error_cls): await ctx.send(embed=embed_alert(error)) error.handled = True else: await func(cog, ctx, error) return wrapper return decorator async def bot_error_handler(ctx, exception): if getattr(exception, 'handled', False): # Errors already handled in cogs should have .handled = True return if isinstance(exception, db.DatabaseDisabledError): await ctx.send(embed=embed_alert('Sorry, the database is not available. Some features are disabled.')) elif isinstance(exception, commands.NoPrivateMessage): await ctx.send(embed=embed_alert('Commands are disabled in private channels')) elif isinstance(exception, commands.DisabledCommand): await ctx.send(embed=embed_alert('Sorry, this command is temporarily disabled')) elif isinstance(exception, cf.CodeforcesApiError): await ctx.send(embed=embed_alert(exception)) else: exc_info = type(exception), exception, exception.__traceback__ logger.exception('Ignoring exception in command {}:'.format(ctx.command), exc_info=exc_info) def uploadData(): cred = firebase_admin.credentials.Certificate('key.json') firebase_admin.initialize_app(cred, { 'databaseURL': 'https://smart-india-hackathon-d1f21.appspot.com/', 'storageBucket': 'smart-india-hackathon-d1f21.appspot.com/', }) blob = storage.bucket('smart-india-hackathon-d1f21.appspot.com').blob('data.zip') # intended name of file in Firebase Storage blob.upload_from_filename('data.zip') # path to file on local disk async def presence(bot): await bot.change_presence(activity=discord.Activity( type=discord.ActivityType.listening, name='your commands')) await asyncio.sleep(60) while True: target = random.choice([ member for member in bot.get_all_members() if 'Purgatory' not in {role.name for role in member.roles} ]) Activity_Type = random.randint(0, 2) if Activity_Type == 0: await bot.change_presence(activity=discord.Activity( type=discord.ActivityType.listening, name="Kalasala")) elif Activity_Type == 1: await bot.change_presence(activity=discord.Game( name=f'{target.display_name} orz')) elif Activity_Type == 2: await bot.change_presence(activity=discord.Activity( type=discord.ActivityType.watching, name="Hariyali")) logger.info(f"Starting Backup...") bashCommand = "zip data.zip data/db/cache.db data/db/user.db" output, error = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE).communicate() logger.info(f"Uploading to cloud...") uploadData() bashCommand = "rm data.zip" output, error = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE).communicate() logger.info(f"Backup Complete") await asyncio.sleep(10 * 60)
[ "logging.getLogger", "random.choice", "firebase_admin.initialize_app", "discord.Game", "functools.wraps", "firebase_admin.credentials.Certificate", "discord.Activity", "asyncio.sleep", "random.randint", "firebase_admin.storage.bucket" ]
[((262, 289), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (279, 289), False, 'import logging\n'), ((2559, 2609), 'firebase_admin.credentials.Certificate', 'firebase_admin.credentials.Certificate', (['"""key.json"""'], {}), "('key.json')\n", (2597, 2609), False, 'import firebase_admin\n'), ((2614, 2787), 'firebase_admin.initialize_app', 'firebase_admin.initialize_app', (['cred', "{'databaseURL': 'https://smart-india-hackathon-d1f21.appspot.com/',\n 'storageBucket': 'smart-india-hackathon-d1f21.appspot.com/'}"], {}), "(cred, {'databaseURL':\n 'https://smart-india-hackathon-d1f21.appspot.com/', 'storageBucket':\n 'smart-india-hackathon-d1f21.appspot.com/'})\n", (2643, 2787), False, 'import firebase_admin\n'), ((1291, 1312), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (1306, 1312), False, 'import functools\n'), ((3170, 3187), 'asyncio.sleep', 'asyncio.sleep', (['(60)'], {}), '(60)\n', (3183, 3187), False, 'import asyncio\n'), ((3398, 3418), 'random.randint', 'random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (3412, 3418), False, 'import random\n'), ((763, 788), 'random.choice', 'random.choice', (['_CF_COLORS'], {}), '(_CF_COLORS)\n', (776, 788), False, 'import random\n'), ((2811, 2868), 'firebase_admin.storage.bucket', 'storage.bucket', (['"""smart-india-hackathon-d1f21.appspot.com"""'], {}), "('smart-india-hackathon-d1f21.appspot.com')\n", (2825, 2868), False, 'from firebase_admin import storage\n'), ((4382, 4404), 'asyncio.sleep', 'asyncio.sleep', (['(10 * 60)'], {}), '(10 * 60)\n', (4395, 4404), False, 'import asyncio\n'), ((3066, 3141), 'discord.Activity', 'discord.Activity', ([], {'type': 'discord.ActivityType.listening', 'name': '"""your commands"""'}), "(type=discord.ActivityType.listening, name='your commands')\n", (3082, 3141), False, 'import discord\n'), ((3497, 3567), 'discord.Activity', 'discord.Activity', ([], {'type': 'discord.ActivityType.listening', 'name': '"""Kalasala"""'}), "(type=discord.ActivityType.listening, name='Kalasala')\n", (3513, 3567), False, 'import discord\n'), ((3666, 3713), 'discord.Game', 'discord.Game', ([], {'name': 'f"""{target.display_name} orz"""'}), "(name=f'{target.display_name} orz')\n", (3678, 3713), False, 'import discord\n'), ((3812, 3881), 'discord.Activity', 'discord.Activity', ([], {'type': 'discord.ActivityType.watching', 'name': '"""Hariyali"""'}), "(type=discord.ActivityType.watching, name='Hariyali')\n", (3828, 3881), False, 'import discord\n')]
# -------------- # Importing header files import numpy as np import pandas as pd from scipy.stats import mode import warnings warnings.filterwarnings('ignore') #Reading file bank_data = pd.read_csv(path) bank = pd.DataFrame(bank_data) categorical_var = bank.select_dtypes(include = 'object') print(categorical_var) numerical_var = bank.select_dtypes(include = 'number') print(numerical_var) banks = bank.drop(columns = ['Loan_ID']) print(banks.isnull().sum()) bank_mode = banks.mode() banks.fillna(bank_mode,inplace = True) print(banks.isnull().sum()) avg_loan_amount = pd.pivot_table(banks,index=['Gender','Married','Self_Employed'],values=["LoanAmount"],aggfunc=np.mean) print(avg_loan_amount) loan_approved_se = banks.loc[(banks["Self_Employed"]=="Yes") & (banks["Loan_Status"]=="Y"),["Loan_Status"]].count() loan_approved_nse = banks.loc[(banks["Self_Employed"]=="No") & (banks["Loan_Status"]=="Y"),["Loan_Status"]].count() percentage_se = (loan_approved_se * 100) / 614 print("%.2f"%percentage_se) percentage_nse = (loan_approved_nse * 100) / 614 print("%.2f"%percentage_nse) loan_term = banks['Loan_Amount_Term'].apply(lambda x : x/12) big_loan_term=len(loan_term[loan_term>=25]) print(big_loan_term) loan_groupby = banks.groupby('Loan_Status') loan_groupby = loan_groupby['ApplicantIncome','Credit_History'] mean_values = loan_groupby.mean() print("%.2f"%mean_values.iloc[1,0],2) #Code starts here
[ "pandas.DataFrame", "pandas.pivot_table", "warnings.filterwarnings", "pandas.read_csv" ]
[((135, 168), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (158, 168), False, 'import warnings\n'), ((201, 218), 'pandas.read_csv', 'pd.read_csv', (['path'], {}), '(path)\n', (212, 218), True, 'import pandas as pd\n'), ((227, 250), 'pandas.DataFrame', 'pd.DataFrame', (['bank_data'], {}), '(bank_data)\n', (239, 250), True, 'import pandas as pd\n'), ((606, 718), 'pandas.pivot_table', 'pd.pivot_table', (['banks'], {'index': "['Gender', 'Married', 'Self_Employed']", 'values': "['LoanAmount']", 'aggfunc': 'np.mean'}), "(banks, index=['Gender', 'Married', 'Self_Employed'], values=\n ['LoanAmount'], aggfunc=np.mean)\n", (620, 718), True, 'import pandas as pd\n')]
from pritunl_api import * import pprint pprint.pprint(json) pri = Pritunl(url="https://yoursite.com", token="###", secret="###") # delete user org_id = "" users = pri.user.get(org_id=org_id) email_delete = "<EMAIL>" for user in users: if user["name"] == email_delete: pri.user.delete(org_id=user["organization"], usr_id=user["id"]) print(pri.ping()) # view org q = pri.user.get(org_id="") # View users id q = pri.user.get(org_id=x[0]['id']) # Delete users pri.user.delete(org_id=x[0]['id'], user_id=q[1]['id']) print(q)
[ "pprint.pprint" ]
[((40, 59), 'pprint.pprint', 'pprint.pprint', (['json'], {}), '(json)\n', (53, 59), False, 'import pprint\n')]
import sys import csv import datetime def log(message): script_name = sys.argv[0] print(str(datetime.datetime.now()) + '\t'+ script_name + ': ' + message) class Sorter: field_indices = {} field_names_dict = {} def read_from_stream_into_dict(self, file_name): dict = {} fieldnames = None with open(file_name, 'r', newline='') as infile: reader = csv.DictReader(infile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) fieldnames = reader.fieldnames for record in reader: if not record.get('geo_coord_original'): continue key = record['geo_coord_original'] if (len(key) < 6): continue record['geo_coord_original'] = key[2:6] + key[0:2] dict[record['resource_name']] = record log(str("{: >4d}".format(len(dict))) + ' records read from ' + file_name) return fieldnames, dict def get_record_key(self, array_record): return array_record[self.field_indices['geo_coord_original']] + ' ' + array_record[self.field_indices['resource_name']] def to_array(self, dict_record): arr = [] for key, value in dict_record.items(): arr.insert(self.field_indices[key], value) return arr def to_dict(self, array_record): dict_record = {} i = 0 for v in array_record: dict_record[self.field_names_dict[i]] = v i += 1 return dict_record def main(self): fieldnames, dict_records = self.read_from_stream_into_dict('data/transformed.csv') i = 0 for f in fieldnames: self.field_indices[f] = i self.field_names_dict[i] = f i += 1 array_records = [] for r in dict_records.values(): array_records.append(self.to_array(r)) sorted_by_value = sorted(array_records, key=self.get_record_key) with open('data/sorted.csv', 'w', newline='') as outfile: writer = csv.DictWriter(outfile, fieldnames, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) writer.writeheader() for record in sorted_by_value: writer.writerow(self.to_dict(record)) log(str("{: >4d}".format(len(sorted_by_value))) + ' records written to sorted.csv') if '__main__' == __name__: print('sorter.py functionality now merged into mapper.py') # Sorter().main()
[ "csv.DictWriter", "datetime.datetime.now", "csv.DictReader" ]
[((405, 484), 'csv.DictReader', 'csv.DictReader', (['infile'], {'delimiter': '""","""', 'quotechar': '"""\\""""', 'quoting': 'csv.QUOTE_MINIMAL'}), '(infile, delimiter=\',\', quotechar=\'"\', quoting=csv.QUOTE_MINIMAL)\n', (419, 484), False, 'import csv\n'), ((2088, 2185), 'csv.DictWriter', 'csv.DictWriter', (['outfile', 'fieldnames'], {'delimiter': '""","""', 'quotechar': '"""\\""""', 'quoting': 'csv.QUOTE_MINIMAL'}), '(outfile, fieldnames, delimiter=\',\', quotechar=\'"\', quoting=\n csv.QUOTE_MINIMAL)\n', (2102, 2185), False, 'import csv\n'), ((101, 124), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (122, 124), False, 'import datetime\n')]
import pyflann import scipy.io as sio import numpy as np import cv2 as cv from util.synthetic_util import SyntheticUtil from util.iou_util import IouUtil from util.projective_camera import ProjectiveCamera from util.iou_util import ut_homography_warp from utils import mouse_handler from utils import get_two_points from options.test_options import TestOptions from models.models import create_model import os import argparse import torch import torchvision.transforms as transforms import torch.backends.cudnn as cudnn import time from PIL import Image from deep.siamese import BranchNetwork, SiameseNetwork from deep.camera_dataset import CameraDataset def generate_HOG_feature(edge_map): # Generate HoG feature from testset edge images # HoG parameters win_size = (128, 128) block_size = (32, 32) block_stride = (32, 32) cell_size = (32, 32) n_bins = 9 im_h, im_w = 180, 320 hog = cv.HOGDescriptor(win_size, block_size, block_stride, cell_size, n_bins) h, w, c = edge_map.shape #n number of test images features = [] edge_image = edge_map[:,:,:] edge_image = cv.resize(edge_image, (im_w, im_h)) edge_image = cv.cvtColor(edge_image, cv.COLOR_BGR2GRAY) feat = hog.compute(edge_image) features.append(feat) features = np.squeeze(np.asarray(features), axis=2) return features def initialize_deep_feature(deep_model_directory): cuda_id = -1 #use -1 for CPU and 0 for GPU # 2: load network branch = BranchNetwork() net = SiameseNetwork(branch) if os.path.isfile(deep_model_directory): checkpoint = torch.load(deep_model_directory, map_location=lambda storage, loc: storage) net.load_state_dict(checkpoint['state_dict']) print('load model file from {}.'.format(deep_model_directory)) else: print('Error: file not found at {}'.format(deep_model_directory)) # 3: setup computation device device = 'cpu' if torch.cuda.is_available(): device = torch.device('cuda:{}'.format(cuda_id)) net = net.to(device) cudnn.benchmark = True print('computation device: {}'.format(device)) normalize = transforms.Normalize(mean=[0.0188], std=[0.128]) data_transform = transforms.Compose( [ transforms.ToTensor(), normalize, ] ) return net,data_transform , device def generate_deep_feature(edge_map,net,data_transform, device): """ Extract feature from a siamese network input: network and edge images output: feature and camera """ #parameters batch_size = 1 #resize image pivot_image = edge_map pivot_image = cv.resize(pivot_image ,(320,180)) pivot_image = cv.cvtColor(pivot_image, cv.COLOR_RGB2GRAY) pivot_images = np.reshape(pivot_image,(1,pivot_image.shape[0],pivot_image.shape[1])) print('Note: assume input image resolution is 180 x 320 (h x w)') data_loader = CameraDataset(pivot_images, pivot_images, batch_size, -1, data_transform, is_train=False) features = [] with torch.no_grad(): for i in range(len(data_loader)): x, _ = data_loader[i] x = x.to(device) feat = net.feature_numpy(x) # N x C features.append(feat) # append to the feature list features = np.vstack((features)) return features, pivot_image def initialize_two_GAN(directory): opt = TestOptions().parse(directory) opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.serial_batches = True # no shuffle opt.no_flip = True # no flip opt.continue_train = False model = create_model(opt) return model def testing_two_GAN(image, model): # test if __name__ == '__main__': image=Image.fromarray(image) osize = [512,256] cropsize = osize image=transforms.Compose([transforms.Scale(osize, Image.BICUBIC),transforms.RandomCrop(cropsize),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])(image) image=image.unsqueeze(0) model.set_input(image) model.test() visuals = model.get_current_visuals() edge_map= visuals['fake_D'] seg_map = visuals['fake_C'] edge_map = cv.resize(edge_map,(1280,720),interpolation=5) seg_map = cv.resize(seg_map,(1280,720)) return edge_map,seg_map ################################### STEP 0 : get the addresses ########################################### address_parser = argparse.ArgumentParser() address_parser.add_argument('--image', required=True, type=str, help='sth like "./my_pic.png" ') address_parser.add_argument('--advertising_image', required=False, type=str, help='sth like "./my_billboard.png" ') address_args = address_parser.parse_args() ######################################################################################################### ################################## The base parameter which you have to set ############################################ feature_type ='deep' print(feature_type) ######################################################################################################################### query_index = 0 """ Estimate an homogrpahy using edge images """ ######################## Step 1: get the current directory working:###################################################### from pathlib import Path current_directory = str(Path(__file__).resolve().parent) # like this /home/skovorodkin/stack/scripts print("current_directory is: "+ current_directory) # ##################################################### Step 2: load data ############################################### # database if feature_type == "deep": deep_database_directory = current_directory + "/data_2/features/feature_camera_91k.mat" data=sio.loadmat(deep_database_directory) database_features = data['features'] database_cameras = data['cameras'] deep_model_directory = current_directory + "/deep/deep_network.pth" net,data_transform ,device= initialize_deep_feature(deep_model_directory) else: #HOG feature database HOG_database_directory = current_directory + "/data_2/features/database_camera_feature_HoG.mat" data = sio.loadmat(HOG_database_directory) database_features=data['features'] database_cameras = data['cameras'] #------------------------------------------------------------------------------------------------------------- # testing edge image from two-GAN model = initialize_two_GAN(current_directory) cap = cv.VideoCapture(address_args.image) warped_out = cv.VideoWriter(current_directory + r"/warped_output.avi",cv.VideoWriter_fourcc('M','J','P','G'), 1, (460,296)) retrieved_out = cv.VideoWriter(current_directory + r"/retrieved_output.avi",cv.VideoWriter_fourcc('M','J','P','G'), 1, (1280,720)) if address_args.advertising_image : overlayed_out = cv.VideoWriter(current_directory + r"/overlayed_output.avi",cv.VideoWriter_fourcc('M','J','P','G'), 1, (1280,720)) #ret1=cap.set(cv.CAP_PROP_FRAME_WIDTH,1024) #ret2=cap.set(cv.CAP_PROP_FRAME_HEIGHT,720) print(cap.get(3)) print(cap.get(4)) print(cap.get(7)) while(cap.isOpened()): start_time = time.time() ## ===> for measuring execution time for i in range(int(cap.get(5))): ##just every second ret, frame = cap.read() if cap.get(3)!= 1280.0 or cap.get(4)!= 720.0 : frame = cv.resize(frame,(1280,720))# ===> for videos which resolutions are greater cv.waitKey(1) edge_map ,seg_map = testing_two_GAN (frame,model) ######################################################################################## if feature_type == "deep": test_features , reduced_edge_map = generate_deep_feature(edge_map ,net,data_transform,device) else: #HOG feature test_features = generate_HOG_feature(edge_map) #-------------------------------------------------------------------------------------------------------- # World Cup soccer template data = sio.loadmat(current_directory + "/data_2/worldcup2014.mat") model_points = data['points'] model_line_index = data['line_segment_index'] template_h = 74 # yard, soccer template template_w = 115 ########################################################################################################################################## ############################################ Step 2: retrieve a camera using deep features ################################################ flann = pyflann.FLANN() result, _ = flann.nn(database_features, test_features[query_index], 1, algorithm="kdtree", trees=8, checks=64) retrieved_index = result[0] """ Retrieval camera: get the nearest-neighbor camera from database """ retrieved_camera_data = database_cameras[retrieved_index] u, v, fl = retrieved_camera_data[0:3] rod_rot = retrieved_camera_data[3:6] cc = retrieved_camera_data[6:9] retrieved_camera = ProjectiveCamera(fl, u, v, cc, rod_rot) retrieved_h = IouUtil.template_to_image_homography_uot(retrieved_camera, template_h, template_w) retrieved_image = SyntheticUtil.camera_to_edge_image(retrieved_camera_data, model_points, model_line_index, im_h=720, im_w=1280, line_width=2) """ Refine camera: refine camera pose using Lucas-Kanade algorithm """ dist_threshold = 50 query_dist = SyntheticUtil.distance_transform(edge_map) retrieved_dist = SyntheticUtil.distance_transform(retrieved_image) query_dist[query_dist > dist_threshold] = dist_threshold retrieved_dist[retrieved_dist > dist_threshold] = dist_threshold h_retrieved_to_query = SyntheticUtil.find_transform(retrieved_dist, query_dist) refined_h = h_retrieved_to_query@retrieved_h #################################################################################################################### ## Warp source image to destination based on homography im_out = cv.warpPerspective(seg_map, np.linalg.inv(refined_h), (115,74), borderMode=cv.BORDER_CONSTANT) frame = cv.resize(frame,(1280,720),interpolation = cv.INTER_CUBIC) ################################################### advertisement overlaying ####################################### if address_args.advertising_image : billboard = cv.imread(address_args.advertising_image) billboard= np.tile(billboard, (1,2, 1)) billboard = cv.resize(billboard,(115,74),interpolation = cv.INTER_CUBIC) im_out_2 = cv.warpPerspective(billboard,refined_h, (1280,720), borderMode=cv.BORDER_CONSTANT) im_out_2 = cv.addWeighted(frame,0.9,im_out_2,0.2,0.0) #cv.imshow("ss",im_out_2 ) #cv.waitKey() ################################################################################################################### model_address=current_directory + "/model.jpg" model_image=cv.imread(model_address) model_image=cv.resize(model_image,(115,74)) new_image=cv.addWeighted(model_image,1,im_out,1,0) new_image=cv.resize(new_image,(460,296),interpolation=1) # Display images """cv.waitKey(200) cv.imshow('frame',frame) cv.waitKey() cv.imshow('overlayed image', im_out_2) cv.waitKey() cv.imshow('Edge image of retrieved camera', retrieved_image) cv.waitKey() cv.imshow("Warped Source Image", new_image) cv.waitKey()""" if address_args.advertising_image : overlayed_out.write(im_out_2) retrieved_out.write(retrieved_image) warped_out.write(new_image) print("--- %s seconds ---" % (time.time() - start_time)) if cv.waitKey(1) & 0xFF == ord('q'): break cap.release() warped_out.release() retrieved_out.release() if address_args.advertising_image : overlayed_out.release() cv.destroyAllWindows()
[ "util.synthetic_util.SyntheticUtil.distance_transform", "scipy.io.loadmat", "deep.camera_dataset.CameraDataset", "deep.siamese.SiameseNetwork", "cv2.warpPerspective", "torch.cuda.is_available", "cv2.destroyAllWindows", "numpy.reshape", "argparse.ArgumentParser", "util.synthetic_util.SyntheticUtil.camera_to_edge_image", "pathlib.Path", "numpy.asarray", "deep.siamese.BranchNetwork", "cv2.addWeighted", "numpy.vstack", "cv2.VideoWriter_fourcc", "torchvision.transforms.ToTensor", "cv2.waitKey", "numpy.tile", "torchvision.transforms.Scale", "os.path.isfile", "options.test_options.TestOptions", "cv2.cvtColor", "torchvision.transforms.Normalize", "cv2.resize", "time.time", "cv2.imread", "PIL.Image.fromarray", "torch.load", "util.projective_camera.ProjectiveCamera", "models.models.create_model", "cv2.HOGDescriptor", "torchvision.transforms.RandomCrop", "pyflann.FLANN", "numpy.linalg.inv", "cv2.VideoCapture", "torch.no_grad", "util.synthetic_util.SyntheticUtil.find_transform", "util.iou_util.IouUtil.template_to_image_homography_uot" ]
[((4924, 4949), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4947, 4949), False, 'import argparse\n'), ((6984, 7019), 'cv2.VideoCapture', 'cv.VideoCapture', (['address_args.image'], {}), '(address_args.image)\n', (6999, 7019), True, 'import cv2 as cv\n'), ((12394, 12416), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (12414, 12416), True, 'import cv2 as cv\n'), ((934, 1005), 'cv2.HOGDescriptor', 'cv.HOGDescriptor', (['win_size', 'block_size', 'block_stride', 'cell_size', 'n_bins'], {}), '(win_size, block_size, block_stride, cell_size, n_bins)\n', (950, 1005), True, 'import cv2 as cv\n'), ((1138, 1173), 'cv2.resize', 'cv.resize', (['edge_image', '(im_w, im_h)'], {}), '(edge_image, (im_w, im_h))\n', (1147, 1173), True, 'import cv2 as cv\n'), ((1191, 1233), 'cv2.cvtColor', 'cv.cvtColor', (['edge_image', 'cv.COLOR_BGR2GRAY'], {}), '(edge_image, cv.COLOR_BGR2GRAY)\n', (1202, 1233), True, 'import cv2 as cv\n'), ((1514, 1529), 'deep.siamese.BranchNetwork', 'BranchNetwork', ([], {}), '()\n', (1527, 1529), False, 'from deep.siamese import BranchNetwork, SiameseNetwork\n'), ((1540, 1562), 'deep.siamese.SiameseNetwork', 'SiameseNetwork', (['branch'], {}), '(branch)\n', (1554, 1562), False, 'from deep.siamese import BranchNetwork, SiameseNetwork\n'), ((1571, 1607), 'os.path.isfile', 'os.path.isfile', (['deep_model_directory'], {}), '(deep_model_directory)\n', (1585, 1607), False, 'import os\n'), ((1988, 2013), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2011, 2013), False, 'import torch\n'), ((2211, 2259), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.0188]', 'std': '[0.128]'}), '(mean=[0.0188], std=[0.128])\n', (2231, 2259), True, 'import torchvision.transforms as transforms\n'), ((2752, 2786), 'cv2.resize', 'cv.resize', (['pivot_image', '(320, 180)'], {}), '(pivot_image, (320, 180))\n', (2761, 2786), True, 'import cv2 as cv\n'), ((2819, 2862), 'cv2.cvtColor', 'cv.cvtColor', (['pivot_image', 'cv.COLOR_RGB2GRAY'], {}), '(pivot_image, cv.COLOR_RGB2GRAY)\n', (2830, 2862), True, 'import cv2 as cv\n'), ((2887, 2959), 'numpy.reshape', 'np.reshape', (['pivot_image', '(1, pivot_image.shape[0], pivot_image.shape[1])'], {}), '(pivot_image, (1, pivot_image.shape[0], pivot_image.shape[1]))\n', (2897, 2959), True, 'import numpy as np\n'), ((3051, 3144), 'deep.camera_dataset.CameraDataset', 'CameraDataset', (['pivot_images', 'pivot_images', 'batch_size', '(-1)', 'data_transform'], {'is_train': '(False)'}), '(pivot_images, pivot_images, batch_size, -1, data_transform,\n is_train=False)\n', (3064, 3144), False, 'from deep.camera_dataset import CameraDataset\n'), ((3573, 3592), 'numpy.vstack', 'np.vstack', (['features'], {}), '(features)\n', (3582, 3592), True, 'import numpy as np\n'), ((3952, 3969), 'models.models.create_model', 'create_model', (['opt'], {}), '(opt)\n', (3964, 3969), False, 'from models.models import create_model\n'), ((6256, 6292), 'scipy.io.loadmat', 'sio.loadmat', (['deep_database_directory'], {}), '(deep_database_directory)\n', (6267, 6292), True, 'import scipy.io as sio\n'), ((6666, 6701), 'scipy.io.loadmat', 'sio.loadmat', (['HOG_database_directory'], {}), '(HOG_database_directory)\n', (6677, 6701), True, 'import scipy.io as sio\n'), ((7091, 7132), 'cv2.VideoWriter_fourcc', 'cv.VideoWriter_fourcc', (['"""M"""', '"""J"""', '"""P"""', '"""G"""'], {}), "('M', 'J', 'P', 'G')\n", (7112, 7132), True, 'import cv2 as cv\n'), ((7221, 7262), 'cv2.VideoWriter_fourcc', 'cv.VideoWriter_fourcc', (['"""M"""', '"""J"""', '"""P"""', '"""G"""'], {}), "('M', 'J', 'P', 'G')\n", (7242, 7262), True, 'import cv2 as cv\n'), ((7634, 7645), 'time.time', 'time.time', ([], {}), '()\n', (7643, 7645), False, 'import time\n'), ((7935, 7948), 'cv2.waitKey', 'cv.waitKey', (['(1)'], {}), '(1)\n', (7945, 7948), True, 'import cv2 as cv\n'), ((8492, 8551), 'scipy.io.loadmat', 'sio.loadmat', (["(current_directory + '/data_2/worldcup2014.mat')"], {}), "(current_directory + '/data_2/worldcup2014.mat')\n", (8503, 8551), True, 'import scipy.io as sio\n'), ((9003, 9018), 'pyflann.FLANN', 'pyflann.FLANN', ([], {}), '()\n', (9016, 9018), False, 'import pyflann\n'), ((9462, 9501), 'util.projective_camera.ProjectiveCamera', 'ProjectiveCamera', (['fl', 'u', 'v', 'cc', 'rod_rot'], {}), '(fl, u, v, cc, rod_rot)\n', (9478, 9501), False, 'from util.projective_camera import ProjectiveCamera\n'), ((9521, 9607), 'util.iou_util.IouUtil.template_to_image_homography_uot', 'IouUtil.template_to_image_homography_uot', (['retrieved_camera', 'template_h', 'template_w'], {}), '(retrieved_camera, template_h,\n template_w)\n', (9561, 9607), False, 'from util.iou_util import IouUtil\n'), ((9627, 9755), 'util.synthetic_util.SyntheticUtil.camera_to_edge_image', 'SyntheticUtil.camera_to_edge_image', (['retrieved_camera_data', 'model_points', 'model_line_index'], {'im_h': '(720)', 'im_w': '(1280)', 'line_width': '(2)'}), '(retrieved_camera_data, model_points,\n model_line_index, im_h=720, im_w=1280, line_width=2)\n', (9661, 9755), False, 'from util.synthetic_util import SyntheticUtil\n'), ((9932, 9974), 'util.synthetic_util.SyntheticUtil.distance_transform', 'SyntheticUtil.distance_transform', (['edge_map'], {}), '(edge_map)\n', (9964, 9974), False, 'from util.synthetic_util import SyntheticUtil\n'), ((9996, 10045), 'util.synthetic_util.SyntheticUtil.distance_transform', 'SyntheticUtil.distance_transform', (['retrieved_image'], {}), '(retrieved_image)\n', (10028, 10045), False, 'from util.synthetic_util import SyntheticUtil\n'), ((10205, 10261), 'util.synthetic_util.SyntheticUtil.find_transform', 'SyntheticUtil.find_transform', (['retrieved_dist', 'query_dist'], {}), '(retrieved_dist, query_dist)\n', (10233, 10261), False, 'from util.synthetic_util import SyntheticUtil\n'), ((10615, 10674), 'cv2.resize', 'cv.resize', (['frame', '(1280, 720)'], {'interpolation': 'cv.INTER_CUBIC'}), '(frame, (1280, 720), interpolation=cv.INTER_CUBIC)\n', (10624, 10674), True, 'import cv2 as cv\n'), ((11479, 11503), 'cv2.imread', 'cv.imread', (['model_address'], {}), '(model_address)\n', (11488, 11503), True, 'import cv2 as cv\n'), ((11520, 11553), 'cv2.resize', 'cv.resize', (['model_image', '(115, 74)'], {}), '(model_image, (115, 74))\n', (11529, 11553), True, 'import cv2 as cv\n'), ((11567, 11611), 'cv2.addWeighted', 'cv.addWeighted', (['model_image', '(1)', 'im_out', '(1)', '(0)'], {}), '(model_image, 1, im_out, 1, 0)\n', (11581, 11611), True, 'import cv2 as cv\n'), ((11623, 11672), 'cv2.resize', 'cv.resize', (['new_image', '(460, 296)'], {'interpolation': '(1)'}), '(new_image, (460, 296), interpolation=1)\n', (11632, 11672), True, 'import cv2 as cv\n'), ((1322, 1342), 'numpy.asarray', 'np.asarray', (['features'], {}), '(features)\n', (1332, 1342), True, 'import numpy as np\n'), ((1630, 1705), 'torch.load', 'torch.load', (['deep_model_directory'], {'map_location': '(lambda storage, loc: storage)'}), '(deep_model_directory, map_location=lambda storage, loc: storage)\n', (1640, 1705), False, 'import torch\n'), ((3311, 3326), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3324, 3326), False, 'import torch\n'), ((4104, 4126), 'PIL.Image.fromarray', 'Image.fromarray', (['image'], {}), '(image)\n', (4119, 4126), False, 'from PIL import Image\n'), ((4643, 4692), 'cv2.resize', 'cv.resize', (['edge_map', '(1280, 720)'], {'interpolation': '(5)'}), '(edge_map, (1280, 720), interpolation=5)\n', (4652, 4692), True, 'import cv2 as cv\n'), ((4708, 4739), 'cv2.resize', 'cv.resize', (['seg_map', '(1280, 720)'], {}), '(seg_map, (1280, 720))\n', (4717, 4739), True, 'import cv2 as cv\n'), ((7393, 7434), 'cv2.VideoWriter_fourcc', 'cv.VideoWriter_fourcc', (['"""M"""', '"""J"""', '"""P"""', '"""G"""'], {}), "('M', 'J', 'P', 'G')\n", (7414, 7434), True, 'import cv2 as cv\n'), ((7855, 7884), 'cv2.resize', 'cv.resize', (['frame', '(1280, 720)'], {}), '(frame, (1280, 720))\n', (7864, 7884), True, 'import cv2 as cv\n'), ((10535, 10559), 'numpy.linalg.inv', 'np.linalg.inv', (['refined_h'], {}), '(refined_h)\n', (10548, 10559), True, 'import numpy as np\n'), ((10856, 10897), 'cv2.imread', 'cv.imread', (['address_args.advertising_image'], {}), '(address_args.advertising_image)\n', (10865, 10897), True, 'import cv2 as cv\n'), ((10917, 10946), 'numpy.tile', 'np.tile', (['billboard', '(1, 2, 1)'], {}), '(billboard, (1, 2, 1))\n', (10924, 10946), True, 'import numpy as np\n'), ((10966, 11027), 'cv2.resize', 'cv.resize', (['billboard', '(115, 74)'], {'interpolation': 'cv.INTER_CUBIC'}), '(billboard, (115, 74), interpolation=cv.INTER_CUBIC)\n', (10975, 11027), True, 'import cv2 as cv\n'), ((11055, 11144), 'cv2.warpPerspective', 'cv.warpPerspective', (['billboard', 'refined_h', '(1280, 720)'], {'borderMode': 'cv.BORDER_CONSTANT'}), '(billboard, refined_h, (1280, 720), borderMode=cv.\n BORDER_CONSTANT)\n', (11073, 11144), True, 'import cv2 as cv\n'), ((11175, 11221), 'cv2.addWeighted', 'cv.addWeighted', (['frame', '(0.9)', 'im_out_2', '(0.2)', '(0.0)'], {}), '(frame, 0.9, im_out_2, 0.2, 0.0)\n', (11189, 11221), True, 'import cv2 as cv\n'), ((2350, 2371), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2369, 2371), True, 'import torchvision.transforms as transforms\n'), ((3674, 3687), 'options.test_options.TestOptions', 'TestOptions', ([], {}), '()\n', (3685, 3687), False, 'from options.test_options import TestOptions\n'), ((12219, 12232), 'cv2.waitKey', 'cv.waitKey', (['(1)'], {}), '(1)\n', (12229, 12232), True, 'import cv2 as cv\n'), ((5861, 5875), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (5865, 5875), False, 'from pathlib import Path\n'), ((12181, 12192), 'time.time', 'time.time', ([], {}), '()\n', (12190, 12192), False, 'import time\n'), ((4213, 4251), 'torchvision.transforms.Scale', 'transforms.Scale', (['osize', 'Image.BICUBIC'], {}), '(osize, Image.BICUBIC)\n', (4229, 4251), True, 'import torchvision.transforms as transforms\n'), ((4252, 4283), 'torchvision.transforms.RandomCrop', 'transforms.RandomCrop', (['cropsize'], {}), '(cropsize)\n', (4273, 4283), True, 'import torchvision.transforms as transforms\n'), ((4284, 4305), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (4303, 4305), True, 'import torchvision.transforms as transforms\n'), ((4306, 4360), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.5, 0.5, 0.5)', '(0.5, 0.5, 0.5)'], {}), '((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n', (4326, 4360), True, 'import torchvision.transforms as transforms\n')]
import os, pickle from glob import glob from document import Document, Paragraph, Table from utils import * # declare global variable for the demo data_dir = "O:/SU_March_Valeurs/Centre d'Excellence en Dérivés/Lab Fintech/Réglementation/Atelier CRM/" ressource_lst = ["Assurances et institutions de dépôt", "Distribution de produits et services financiers", "Instruments dérivés", "Valeurs mobilières"] consitituion_lst = ["Loi", "Règlement", "Avis", "Directive", "Guide"] langauge_lst = ["anglais", "français"] def read_consitituion(ressource, consitituion, langauge): def keep_file(filename): return ressource in filename and consitituion in filename and langauge in filename print("Reading file in pickle format") file_lst = [y for x in os.walk(data_dir) for y in glob(os.path.join(x[0], '*pkl'))] file_lst = [filename for filename in file_lst if keep_file(filename)] for filename in file_lst: print("print the content of %s" % filename) read_pkl(filename) print("Reading file in docx format") file_lst = [y for x in os.walk(data_dir) for y in glob(os.path.join(x[0], '*docx'))] file_lst = [filename for filename in file_lst if keep_file(filename)] for filename in file_lst: print("print the content of %s" % filename) read_docx(filename) def read_pkl(filename): # opening the pickle with open(filename, 'rb') as fp: chapter_lst = pickle.load(fp) # File written in pkl format are list of chapters for chap_id, chapter in enumerate(chapter_lst): # each chapter have a header and section list that # can be empty header = chapter.header section_lst = chapter.section_lst # print header id (e.g. CHAPTER I) and the title (e.g. SPECIAL PROVISION) print(header.tid) print(header.text) for section in section_lst: print("Begin of Section", "\n") # each section is composed of subsection_lst for subsection in section.subsection_lst: # a sub section can be a list of paragraph if isinstance(subsection, list): for paragraph in subsection: print(paragraph.tid, paragraph.text) # or a single paragraph else: print(subsection.tid, subsection.text) # Also each section has historical_note or simply footnotes # those refer to other part in the law or even to other law for historical_note in section.historical_note_lst: print(historical_note.text) print("End of Section", "\n") def read_docs_from_pkl(filename): doc_string = "" # opening the pickle with open(filename, 'rb') as fp: chapter_lst = pickle.load(fp) # File written in pkl format are list of chapters for chap_id, chapter in enumerate(chapter_lst): # each chapter have a header and section list that # can be empty header = chapter.header section_lst = chapter.section_lst # print header id (e.g. CHAPTER I) and the title (e.g. SPECIAL PROVISION) #print(header.tid) #print(header.text) doc_string += header.text doc_string += "\n" for section in section_lst: #print("Begin of Section", "\n") # each section is composed of subsection_lst for subsection in section.subsection_lst: # a sub section can be a list of paragraph if isinstance(subsection, list): for paragraph in subsection: #print(paragraph.tid, paragraph.text) doc_string += paragraph.text doc_string += "\n" # or a single paragraph else: #print(subsection.tid, subsection.text) doc_string += paragraph.text doc_string += "\n" # Also each section has historical_note or simply footnotes # those refer to other part in the law or even to other law for historical_note in section.historical_note_lst: #print(historical_note.text) doc_string += historical_note.text doc_string += "\n" #print("End of Section", "\n") return doc_string def read_pass_from_pkl(filename): passages = [] # opening the pickle with open(filename, 'rb') as fp: chapter_lst = pickle.load(fp) # File written in pkl format are list of chapters for chap_id, chapter in enumerate(chapter_lst): # each chapter have a header and section list that # can be empty header = chapter.header section_lst = chapter.section_lst # print header id (e.g. CHAPTER I) and the title (e.g. SPECIAL PROVISION) #print(header.tid) #print(header.text) doc_tid = header.tid doc_header = header.text for section in section_lst: #print("Begin of Section", "\n") sec_string = doc_tid + " " + doc_header + "\n" # each section is composed of subsection_lst for subsection in section.subsection_lst: # a sub section can be a list of paragraph if isinstance(subsection, list): for paragraph in subsection: #print(paragraph.tid, paragraph.text) sec_string += paragraph.tid + " " + paragraph.text + "\n" # or a single paragraph else: #print(subsection.tid, subsection.text) sec_string += paragraph.tid + " " + paragraph.text + "\n" # Also each section has historical_note or simply footnotes # those refer to other part in the law or even to other law for historical_note in section.historical_note_lst: #print(historical_note.text) sec_string += historical_note.text + "\n" passages.append(sec_string) return passages def read_docx(filename): doc = Document(filename=filename, meta={}) # this function will print the document doc_elements = doc.print() # a docx file is a lst of blocks (Paragraph or Table) for idx, block in enumerate(doc.story): if isinstance(block, Paragraph): #block.text # a paragraph contains a list of Run for run in block.runs: # Run contains .text attribute text = run.text #and a Font class (attrs: blod, italic, etc ...) is_bold = run.font.bold elif isinstance(block, Table): # Table contains a rows attrbute ( a list of lists) # iterating on each row in the table for row in block.rows: # iterating on each cell in the row for run in row: # Run contains .text attribute text = run.text # and a Font class (attrs: blod, italic, etc ...) is_bold = run.font.bold return doc_elements def read_pass_from_docx(filename): doc = Document(filename=filename, meta={}) # this function will print the document doc_elements = doc.print() # a docx file is a lst of blocks (Paragraph or Table) for idx, block in enumerate(doc.story): if isinstance(block, Paragraph): #print(block.text) # a paragraph contains a list of Run for run in block.runs: # Run contains .text attribute text = run.text #and a Font class (attrs: blod, italic, etc ...) is_bold = run.font.bold elif isinstance(block, Table): # Table contains a rows attrbute ( a list of lists) # iterating on each row in the table for row in block.rows: # iterating on each cell in the row for run in row: # Run contains .text attribute text = run.text # and a Font class (attrs: blod, italic, etc ...) is_bold = run.font.bold return doc_elements def decompose_docx(filename): def cond(block): if any([run.font.size and run.font.bold for run in block.runs]): return True letter = [c for c in block.text if c.isalpha()] if len(letter) > 15 and len([c for c in letter if c.isupper()]) == len(letter): return True return False doc = Document(filename=filename, meta={}) sections, par_lst = [], [] for idx, block in enumerate(doc.story): if isinstance(block, Paragraph): if cond(block) and len(par_lst) > 4: sections.append(par_lst) par_lst = [] if block.text: par_lst.append(block.text) if par_lst: sections.append(par_lst) return sections #filename = "full/path/to/file.docx" #sections = decompose_docx(filename) #for par_lst in sections: # print("\n".join(par_lst)) # print("\n\n\n\n\n\n") # demo to read .pkl files #read_consitituion("Valeurs mobilières", "Loi", "anglais") # demo to read .docx file #read_consitituion("Valeurs mobilières", "Règlement", "anglais")
[ "os.path.join", "document.Document", "pickle.load", "os.walk" ]
[((6419, 6455), 'document.Document', 'Document', ([], {'filename': 'filename', 'meta': '{}'}), '(filename=filename, meta={})\n', (6427, 6455), False, 'from document import Document, Paragraph, Table\n'), ((7542, 7578), 'document.Document', 'Document', ([], {'filename': 'filename', 'meta': '{}'}), '(filename=filename, meta={})\n', (7550, 7578), False, 'from document import Document, Paragraph, Table\n'), ((8955, 8991), 'document.Document', 'Document', ([], {'filename': 'filename', 'meta': '{}'}), '(filename=filename, meta={})\n', (8963, 8991), False, 'from document import Document, Paragraph, Table\n'), ((1531, 1546), 'pickle.load', 'pickle.load', (['fp'], {}), '(fp)\n', (1542, 1546), False, 'import os, pickle\n'), ((2954, 2969), 'pickle.load', 'pickle.load', (['fp'], {}), '(fp)\n', (2965, 2969), False, 'import os, pickle\n'), ((4740, 4755), 'pickle.load', 'pickle.load', (['fp'], {}), '(fp)\n', (4751, 4755), False, 'import os, pickle\n'), ((841, 858), 'os.walk', 'os.walk', (['data_dir'], {}), '(data_dir)\n', (848, 858), False, 'import os, pickle\n'), ((1163, 1180), 'os.walk', 'os.walk', (['data_dir'], {}), '(data_dir)\n', (1170, 1180), False, 'import os, pickle\n'), ((873, 899), 'os.path.join', 'os.path.join', (['x[0]', '"""*pkl"""'], {}), "(x[0], '*pkl')\n", (885, 899), False, 'import os, pickle\n'), ((1195, 1222), 'os.path.join', 'os.path.join', (['x[0]', '"""*docx"""'], {}), "(x[0], '*docx')\n", (1207, 1222), False, 'import os, pickle\n')]
# ========================================================================= # Copyright 2020 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #========================================================================== import json import os.path import asyncio class File_Builder(): ''' This class allows to work with files ''' # Async write and rewrite json files async def writeToFileAsync(self, file, data): sites = [] count = 0 if os.path.exists(file): sites = await self.readFromFileAsync(file) if 'manga_sites.json' in file: for index, site in enumerate(sites): if site['name'] == data['name']: sites[index] = data else: count += 1 if count == len(sites): sites.append(data) elif 'manga.json' in file: # if type(data) is list: sites = self.fromMangaToDict(data) # else: sites.append(data) for index, site in enumerate(sites): if site['url'] == data['url']: sites[index] = data else: count += 1 if count == len(sites): sites.append(data) try: with open(file, 'w', encoding='utf-8') as f: json.dump(sites, f, ensure_ascii=False) except: raise Exception('Failed to async write data to the file!') # Write and rewrite json files def writeToFile(self, file, data): sites = [] count = 0 if os.path.exists(file): sites = self.readFromFile(file) if 'manga_sites.json' in file: for index, site in enumerate(sites): if site['name'] == data['name']: sites[index] = data else: count += 1 if count == len(sites): sites.append(data) elif 'manga.json' in file: for index, site in enumerate(sites): if site['url'] == data['url']: sites[index] = data else: count += 1 if count == len(sites): sites.append(data) try: with open(file, 'w', encoding='utf-8') as f: json.dump(sites, f, ensure_ascii=False) except: raise Exception('Failed to write data to the file!') # Async read data from json file async def readFromFileAsync(self, file): if os.path.exists(file): try: with open(file, 'r', encoding='utf-8') as f: data = json.load(f) return data except: raise Exception('Failed to async load data!') else: return None # Read data from json file def readFromFile(self, file): if os.path.exists(file): try: with open(file, 'r', encoding='utf-8') as f: data = json.load(f) return data except: raise Exception('Failed to load data!') else: return None # Delete data from file def deleteFromFile(self, file, data): if 'manga_sites.json' in file: deleted_item = self.manga_site_to_dict(list([data])) elif 'manga.json' in file: deleted_item = self.manga_to_dict(list([data])) file_content = self.readFromFile(file) file_content.remove(deleted_item[0]) with open(file, 'w', encoding='utf-8') as f: json.dump(file_content, f, ensure_ascii=False) # Convert manga objects to dict def manga_to_dict(self, manga_list): list_of_dict = [] for manga in manga_list: manga_dict = { 'url': manga.data['url'], 'name': manga.data['name'], 'site': manga.site.name, 'info': { 'descr': manga.data['info']['descr'], 'img': manga.data['info']['img'], 'latest': manga.data['info']['latest'] } } list_of_dict.append(manga_dict) return list_of_dict # Convert manga objects to dict def manga_site_to_dict(self, site_list): list_of_dict = [] for site in site_list: data = { 'name': site.name, 'optimized': site.optimized, 'test_link': site.test_link, 'xpaths': { 'title': site.xpaths['title'], 'descr': site.xpaths['descr'], 'img': site.xpaths['img'], 'latest': site.xpaths['latest'] } } list_of_dict.append(data) return list_of_dict
[ "json.load", "json.dump" ]
[((3981, 4027), 'json.dump', 'json.dump', (['file_content', 'f'], {'ensure_ascii': '(False)'}), '(file_content, f, ensure_ascii=False)\n', (3990, 4027), False, 'import json\n'), ((1785, 1824), 'json.dump', 'json.dump', (['sites', 'f'], {'ensure_ascii': '(False)'}), '(sites, f, ensure_ascii=False)\n', (1794, 1824), False, 'import json\n'), ((2714, 2753), 'json.dump', 'json.dump', (['sites', 'f'], {'ensure_ascii': '(False)'}), '(sites, f, ensure_ascii=False)\n', (2723, 2753), False, 'import json\n'), ((3056, 3068), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3065, 3068), False, 'import json\n'), ((3409, 3421), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3418, 3421), False, 'import json\n')]
from src.utils.initialize import * import pprint import pickle with open('data/processed/movies_with_overviews.pkl','rb') as f: movies_with_overviews=pickle.load(f) print("Loaded the list of movies that have overviews from data/processed/movies_with_overviews.pkl.\n") # list of genres and movie ids in prep for binarizination print("Extracting the genres and movie ids in prep for binarizination...") genres=[] all_ids=[] for i in range(len(movies_with_overviews)): movie=movies_with_overviews[i] id=movie['id'] genre_ids=movie['genre_ids'] genres.append(genre_ids) all_ids.extend(genre_ids) with open('data/processed/genre_ids.pkl','wb') as f: pickle.dump(genres,f) print('Saved the genre ids as data/processed/genre_ids.pkl.\n') # tmdb package provides a method that will propvide a dictionary that maps genre ids to genre name. # we may need to add something if that list is incorrect. print("Creating a mapping from the genre ids to the genre names...") genres=tmdb.Genres() # the movie_list() method of the Genres() class returns a listing of all genres in the form of a dictionary. list_of_genres=genres.movie_list()['genres'] Genre_ID_to_name={} for i in range(len(list_of_genres)): genre_id=list_of_genres[i]['id'] genre_name=list_of_genres[i]['name'] Genre_ID_to_name[genre_id]=genre_name for i in set(all_ids): if i not in Genre_ID_to_name.keys(): print(i) if i == 10769: Genre_ID_to_name[10769]="Foreign" # look up what the above genre ids are. see if there's a programmatic way to do it print("Mapping from genre id to genre name is saved in the Genre_ID_to_name dictionary:") pprint.pprint(Genre_ID_to_name, indent=4) print('\n') with open('data/processed/genre_id_to_name_dict.pkl','wb') as f: pickle.dump(Genre_ID_to_name,f) print('Saved the mapping from genre id to genre name as data/processed/genre_id_to_name_dict.pkl.')
[ "pickle.dump", "pickle.load", "pprint.pprint" ]
[((1680, 1721), 'pprint.pprint', 'pprint.pprint', (['Genre_ID_to_name'], {'indent': '(4)'}), '(Genre_ID_to_name, indent=4)\n', (1693, 1721), False, 'import pprint\n'), ((155, 169), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (166, 169), False, 'import pickle\n'), ((677, 699), 'pickle.dump', 'pickle.dump', (['genres', 'f'], {}), '(genres, f)\n', (688, 699), False, 'import pickle\n'), ((1804, 1836), 'pickle.dump', 'pickle.dump', (['Genre_ID_to_name', 'f'], {}), '(Genre_ID_to_name, f)\n', (1815, 1836), False, 'import pickle\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: test_emaillib.py # # Copyright 2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # """ Tests for `emaillib` module. .. _Google Python Style Guide: http://google.github.io/styleguide/pyguide.html """ from betamax.fixtures import unittest from emaillib.emaillib import Message, SmtpServer, EasySender __author__ = '''<NAME> <<EMAIL>>''' __docformat__ = '''google''' __date__ = '''16-09-2017''' __copyright__ = '''Copyright 2017, <NAME>''' __credits__ = ["<NAME>"] __license__ = '''MIT''' __maintainer__ = '''<NAME>''' __email__ = '''<<EMAIL>>''' __status__ = '''Development''' # "Prototype", "Development", "Production". class TestEmaillib(unittest.BetamaxTestCase): def setUp(self): """ Test set up This is where you can setup things that you use throughout the tests. This method is called before every test. """ pass def testNoSender(self): info = {'sender': '', 'recipients': '<EMAIL>', 'cc': ['<EMAIL>'], 'bcc': '<EMAIL>,<EMAIL>', 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8'} with self.assertRaises(ValueError): message = Message(**info) def testInvalidSender(self): invalid = ['a', 'a@', '@.', '@a.', '.@', 'a@@', 'a@@.'] for sender in invalid: info = {'sender': sender, 'recipients': '<EMAIL>', 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8'} with self.assertRaises(ValueError): message = Message(**info) def testNoRecipient(self): info = {'sender': '<EMAIL>', 'recipients': '', 'cc': ['<EMAIL>'], 'bcc': '<EMAIL>,<EMAIL>', 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8'} with self.assertRaises(ValueError): message = Message(**info) def testInvalidRecipient(self): invalid = ['a', 'a@', '@.', '@a.', '.@', 'a@@', 'a@@.', '<EMAIL>,a.', 'inv.domain.com,<EMAIL>'] for recipients in invalid: info = {'sender': '<EMAIL>', 'recipients': recipients, 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8'} with self.assertRaises(ValueError): print(recipients) message = Message(**info) def testInvalidCC(self): invalid = ['a', 'a@', '@.', '@a.', '.@', 'a@@', 'a@@.', '<EMAIL>,a.', 'inv.domain.com,<EMAIL>'] for cc in invalid: info = {'sender': '<EMAIL>', 'recipients': '<EMAIL>', 'cc': cc, 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8'} with self.assertRaises(ValueError): message = Message(**info) def testInvalidBCC(self): invalid = ['a', 'a@', '@.', '@a.', '.@', 'a@@', 'a@@.', '<EMAIL>,a.', 'inv.<EMAIL>,<EMAIL>'] for bcc in invalid: info = {'sender': '<EMAIL>', 'recipients': '<EMAIL>', 'bcc': bcc, 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8'} with self.assertRaises(ValueError): message = Message(**info) def testValid(self): info = {'sender': '<EMAIL>', 'recipients': '<EMAIL>', 'cc': ['<EMAIL>'], 'bcc': '<EMAIL>,<EMAIL>', 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8'} message = Message(**info) self.assertTrue(message.subject == u'Τεστ test') self.assertTrue(message.body == u'This is a τεστ on utf8') def testInvalidContent(self): info = {'sender': '', 'recipients': '<EMAIL>', 'cc': ['<EMAIL>'], 'bcc': '<EMAIL>,<EMAIL>', 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8', 'content': 'Texd'} with self.assertRaises(ValueError): message = Message(**info) def testHtmlContent(self): info = {'sender': '<EMAIL>', 'recipients': '<EMAIL>', 'cc': ['<EMAIL>'], 'bcc': '<EMAIL>,<EMAIL>', 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8', 'content': 'html'} message = Message(**info) self.assertTrue(message.subject == u'Τεστ test') self.assertTrue(message.body == u'This is a τεστ on utf8') def testTextContent(self): info = {'sender': '<EMAIL>', 'recipients': '<EMAIL>', 'cc': ['<EMAIL>'], 'bcc': '<EMAIL>,<EMAIL>', 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8', 'content': 'text'} message = Message(**info) self.assertTrue(message.subject == u'Τεστ test') self.assertTrue(message.body == u'This is a τεστ on utf8') def testRecipients(self): info = {'sender': '<EMAIL>', 'recipients': '<EMAIL>', 'cc': ['<EMAIL>'], 'bcc': '<EMAIL>,<EMAIL>', 'subject': 'Τεστ test', 'body': 'This is a τεστ on utf8', 'content': 'html'} message = Message(**info) self.assertTrue(message.recipients == ['<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL>']) def testSmtpInstance(self): info = {'smtp_address': 'smtp.test.com', 'username': 'hacker', 'password': '<PASSWORD>', 'ssl': False, 'tls': True, 'port': 587} smtp = SmtpServer(**info) self.assertTrue(smtp.address == 'smtp.<EMAIL>') self.assertTrue(smtp.username == 'hacker') self.assertTrue(smtp.password == '<PASSWORD>') self.assertFalse(smtp.ssl) self.assertTrue(smtp.tls) self.assertTrue(smtp.port == 587) self.assertFalse(smtp.connected) def tearDown(self): """ Test tear down This is where you should tear down what you've setup in setUp before. This method is called after every test. """ pass
[ "emaillib.emaillib.Message", "emaillib.emaillib.SmtpServer" ]
[((5336, 5351), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (5343, 5351), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((6196, 6211), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (6203, 6211), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((6666, 6681), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (6673, 6681), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((7135, 7150), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (7142, 7150), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((7649, 7667), 'emaillib.emaillib.SmtpServer', 'SmtpServer', ([], {}), '(**info)\n', (7659, 7667), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((2293, 2308), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (2300, 2308), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((3159, 3174), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (3166, 3174), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((5850, 5865), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (5857, 5865), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((2807, 2822), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (2814, 2822), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((3796, 3811), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (3803, 3811), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((4413, 4428), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (4420, 4428), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n'), ((5031, 5046), 'emaillib.emaillib.Message', 'Message', ([], {}), '(**info)\n', (5038, 5046), False, 'from emaillib.emaillib import Message, SmtpServer, EasySender\n')]
from .graphs import build_Syk, build_receptor, recruit_to_receptor, recruit_to_ligand from .templates import TransPhosphorylationModel from wc_rules.modeling.pattern import GraphContainer, Pattern from wc_rules.modeling.model import AggregateModel gRecSyk = recruit_to_receptor(build_receptor(['alpha','gamma']), build_Syk(['tsh2','aloop'])) gSykOnSyk = recruit_to_ligand(2,gRecSyk,gRecSyk.duplicate()) class SykKinaseModel(TransPhosphorylationModel): def __init__(self,name,aloop_state): g = Pattern(gSykOnSyk, constraints = [f'aloop_1.ph == {aloop_state}']) super().__init__(name,'aloop_2',g) self.verify(self.defaults) model = AggregateModel( name = 'syk_kinase', models = [ SykKinaseModel(name='aloop_unphosphorylated',aloop_state=False), SykKinaseModel(name='aloop_phosphorylated',aloop_state=True) ] ) data = { 'aloop_unphosphorylated': {'phosphorylation_rate': 100}, 'aloop_phosphorylated': {'phosphorylation_rate': 200}, } model.verify(data) model.defaults = data
[ "wc_rules.modeling.pattern.Pattern" ]
[((500, 564), 'wc_rules.modeling.pattern.Pattern', 'Pattern', (['gSykOnSyk'], {'constraints': "[f'aloop_1.ph == {aloop_state}']"}), "(gSykOnSyk, constraints=[f'aloop_1.ph == {aloop_state}'])\n", (507, 564), False, 'from wc_rules.modeling.pattern import GraphContainer, Pattern\n')]
# -*- coding: utf-8 -*- ## Kookmin University ## School of Computer Science ## Capstone #4 Flex Ads ## 20132651 <NAME> # username_dynamodb.py 는 외부에서 user_name 과 user_id 를 입력받아, # user_id 에 해당되는 dynamodb 의 user_name 값을 입력받은 값으로 변경하는 코드이다. # 이를 위해 AWS 에 연결하기 위한 boto3 패키지와 값을 입력받기 위한 sys 패키지를 가져온다. import boto3 import sys # dynamo_credential 이라는 추가적인 python 파일을 생성하여 # dynamodb 접근 보안에 관련된 데이터를 분리하여 저장한다. import dynamo_credential # shell script 에서 전달받은 user_name 과 user_id 를 가져온다. user_name = sys.argv[1] user_id = sys.argv[2] # 위에서 import 한 패키지에서 id 와 key 를 가져와 변수에 입력한다. dynamo_id = dynamo_credential.key_id() dynamo_key = dynamo_credential.access_key() # 해당되는 변수를 이용하여 dynamodb 의 resource 를 생성하고, 접근한다. # 이 때, region 은 oregon 인 us-west-2 로 설정한다. dynamodb = boto3.resource( 'dynamodb', aws_access_key_id=dynamo_id, aws_secret_access_key=dynamo_key, region_name = 'us-west-2' ) # dynamodb 의 Recommendation 테이블을 지정한다. table = dynamodb.Table('Recommendation') # 해당 테이블에 update_item 을 이용하여, user_id 로 접근한 다음 # user_name 을 입력받은 user_name 으로 변환한다. response = table.update_item( Key={ 'user_id':user_id, 'update_ver' : 1 }, UpdateExpression="set user_name = :u", ExpressionAttributeValues={ ':u': user_name }, ReturnValues="UPDATED_NEW" ) # 정확하게 이름이 들어갔는지 확인하기 위해, get_item 을 이용하여 체크한다. check_response = table.get_item( Key={ 'user_id' : user_id, 'update_ver': 1 } ) check_username = check_response['Item']['user_name'] print('<<', check_username, '>> name has registered to <<', user_id, '>> user number.')
[ "boto3.resource", "dynamo_credential.access_key", "dynamo_credential.key_id" ]
[((588, 614), 'dynamo_credential.key_id', 'dynamo_credential.key_id', ([], {}), '()\n', (612, 614), False, 'import dynamo_credential\n'), ((628, 658), 'dynamo_credential.access_key', 'dynamo_credential.access_key', ([], {}), '()\n', (656, 658), False, 'import dynamo_credential\n'), ((764, 882), 'boto3.resource', 'boto3.resource', (['"""dynamodb"""'], {'aws_access_key_id': 'dynamo_id', 'aws_secret_access_key': 'dynamo_key', 'region_name': '"""us-west-2"""'}), "('dynamodb', aws_access_key_id=dynamo_id,\n aws_secret_access_key=dynamo_key, region_name='us-west-2')\n", (778, 882), False, 'import boto3\n')]
"""Unit of Work""" import abc from functools import singledispatch import logging import typing from karp.domain import errors, index, network, repository RepositoryType = typing.TypeVar( "RepositoryType", repository.Repository, index.Index, network.Network ) logger = logging.getLogger("karp") class UnitOfWork(typing.Generic[RepositoryType], abc.ABC): def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.rollback() def commit(self): self._commit() def collect_new_events(self) -> typing.Iterable: for entity in self.repo.seen: while entity.events: yield entity.events.pop(0) @abc.abstractmethod def _commit(self): pass @abc.abstractmethod def rollback(self): pass @property @abc.abstractmethod def repo(self) -> RepositoryType: pass class ResourceUnitOfWork(UnitOfWork[repository.ResourceRepository]): @property def resources(self) -> repository.ResourceRepository: return self.repo class EntryUnitOfWork(UnitOfWork[repository.EntryRepository]): _registry = {} type = None def __init_subclass__( cls, entry_repository_type: str, is_default: bool = False, **kwargs ) -> None: super().__init_subclass__(**kwargs) print( f"""EntryUnitOfWork.__init_subclass__ called with: entry_repository_type={entry_repository_type} and is_default={is_default}""" ) if entry_repository_type is None: raise RuntimeError( "Unallowed entry_repository_type: entry_repository_type = None" ) if entry_repository_type in cls._registry: raise RuntimeError( f"An EntryUnitOfWork with type '{entry_repository_type}' already exists: {cls._registry[entry_repository_type]!r}" ) # if is_default and None in cls._registry: # raise RuntimeError(f"A default EntryRepository is already set. Default type is {cls._registry[None]!r}") cls.type = entry_repository_type cls._registry[entry_repository_type] = cls if is_default or None not in cls._registry: logger.info( "Setting default EntryUnitOfWork type to '%s'", entry_repository_type ) cls._registry[None] = entry_repository_type @classmethod def get_default_entry_repository_type(cls) -> typing.Optional[str]: return cls._registry[None] @classmethod def create( cls, entry_repository_type: typing.Optional[str], settings: typing.Dict, resource_config: typing.Dict, **kwargs, ): print(f"_registry={cls._registry}") if entry_repository_type is None: entry_repository_type = cls._registry[None] try: uow_cls = cls._registry[entry_repository_type] except KeyError as err: raise errors.ConfigurationError( f"Can't create an EntryUnitOfWork with type '{entry_repository_type}'" ) from err print(f"kwargs = {kwargs}") return uow_cls.from_dict(settings, resource_config, **kwargs) @property def entries(self) -> repository.EntryRepository: return self.repo class IndexUnitOfWork(UnitOfWork[index.Index]): _registry = {} type = None def __init_subclass__( cls, index_type: str, is_default: bool = False, **kwargs ) -> None: super().__init_subclass__(**kwargs) print( f"""IndexUnitOfWork.__init_subclass__ called with: index_type={index_type} and is_default={is_default}""" ) if index_type is None: raise RuntimeError("Unallowed index_type: index_type = None") if index_type in cls._registry: raise RuntimeError( f"An IndexUnitOfWork with type '{index_type}' already exists: {cls._registry[index_type]!r}" ) # if is_default and None in cls._registry: # raise RuntimeError(f"A default EntryRepository is already set. Default type is {cls._registry[None]!r}") cls.type = index_type cls._registry[index_type] = cls if is_default or None not in cls._registry: logger.info("Setting default IndexUnitOfWork type to '%s'", index_type) cls._registry[None] = index_type @classmethod def get_default_index_type(cls) -> typing.Optional[str]: return cls._registry[None] @classmethod def create( cls, index_type: typing.Optional[str], **kwargs ): # , settings: typing.Dict, **kwargs): print(f"_registry={cls._registry}") if index_type is None: index_type = cls._registry[None] try: uow_cls = cls._registry[index_type] except KeyError as err: raise errors.ConfigurationError( f"Can't create an IndexUnitOfWork with type '{index_type}'" ) from err print(f"kwargs = {kwargs}") return uow_cls.from_dict(**kwargs) class EntriesUnitOfWork: def __init__(self, entry_uows=None): self.entry_uows: typing.Dict[str, EntryUnitOfWork] = ( {key: uow for key, uow in entry_uows} if entry_uows else {} ) def get(self, resource_id: str) -> EntryUnitOfWork: return self.entry_uows[resource_id] def get_uow(self, resource_id: str) -> EntryUnitOfWork: return self.entry_uows[resource_id] def set_uow(self, resource_id: str, uow: EntryUnitOfWork): self.entry_uows[resource_id] = uow @property def repo(self): return self def collect_new_events(self) -> typing.Iterable: for uow in self.entry_uows.values(): yield from uow.collect_new_events() class EntryUowFactory(abc.ABC): @abc.abstractmethod def create( self, resource_id: str, resource_config: typing.Dict, entry_repository_settings: typing.Optional[typing.Dict], ) -> EntryUnitOfWork: raise NotImplementedError class DefaultEntryUowFactory(EntryUowFactory): def create( self, resource_id: str, resource_config: typing.Dict, entry_repository_settings: typing.Optional[typing.Dict], ) -> EntryUnitOfWork: entry_repository_type = resource_config["entry_repository_type"] if not entry_repository_settings: entry_repository_settings = ( repository.EntryRepository.create_repository_settings( resource_id=resource_id, repository_type=entry_repository_type, resource_config=resource_config, ) ) # entry_repository = repository.EntryRepository.create( # entry_repository_type, settings=entry_repository_settings # ) return EntryUnitOfWork.create( entry_repository_type=entry_repository_type, settings=entry_repository_settings, resource_config=resource_config, ) # return create_entry_unit_of_work(entry_repository) @singledispatch def create_entry_unit_of_work(repo) -> EntryUnitOfWork: raise NotImplementedError(f"Can't handle repository '{repo!r}'")
[ "logging.getLogger", "karp.domain.repository.EntryRepository.create_repository_settings", "karp.domain.errors.ConfigurationError", "typing.TypeVar" ]
[((174, 263), 'typing.TypeVar', 'typing.TypeVar', (['"""RepositoryType"""', 'repository.Repository', 'index.Index', 'network.Network'], {}), "('RepositoryType', repository.Repository, index.Index,\n network.Network)\n", (188, 263), False, 'import typing\n'), ((277, 302), 'logging.getLogger', 'logging.getLogger', (['"""karp"""'], {}), "('karp')\n", (294, 302), False, 'import logging\n'), ((6567, 6727), 'karp.domain.repository.EntryRepository.create_repository_settings', 'repository.EntryRepository.create_repository_settings', ([], {'resource_id': 'resource_id', 'repository_type': 'entry_repository_type', 'resource_config': 'resource_config'}), '(resource_id=\n resource_id, repository_type=entry_repository_type, resource_config=\n resource_config)\n', (6620, 6727), False, 'from karp.domain import errors, index, network, repository\n'), ((3007, 3109), 'karp.domain.errors.ConfigurationError', 'errors.ConfigurationError', (['f"""Can\'t create an EntryUnitOfWork with type \'{entry_repository_type}\'"""'], {}), '(\n f"Can\'t create an EntryUnitOfWork with type \'{entry_repository_type}\'")\n', (3032, 3109), False, 'from karp.domain import errors, index, network, repository\n'), ((4950, 5041), 'karp.domain.errors.ConfigurationError', 'errors.ConfigurationError', (['f"""Can\'t create an IndexUnitOfWork with type \'{index_type}\'"""'], {}), '(\n f"Can\'t create an IndexUnitOfWork with type \'{index_type}\'")\n', (4975, 5041), False, 'from karp.domain import errors, index, network, repository\n')]
from __future__ import annotations import os import glob import pathlib from typing import Dict, Iterable, List, Union, TypeVar # import itertools from functools import wraps # import inspect from parse import parse as parse_ from pformat import * from .util import * Ps = TypeVar('Ps', bound='Paths') P = TypeVar('P', bound='Path') _TREE_DEF_TYPE = Dict[str, Union[str, Dict]] def tree(root: Union[str, _TREE_DEF_TYPE]=None, paths: Union[str, _TREE_DEF_TYPE]=None, data: Dict=None): '''Build paths from a directory spec. Arguments: root (str): the root directory. paths (dict): the directory structure. Returns: The initialized Paths object .. code-block:: python import pathtrees # define the file structure path = pathtrees.tree('{project}', { 'data': { '{sensor_id}': { '': 'sensor', 'audio': { '{file_id:04d}.flac': 'audio' }, 'spl': { 'spl_{file_id:04d}.csv': 'spl' }, 'embeddings': { 'emb_{file_id:04d}.csv': 'embeddings' }, }, }, }) .. note:: use empty strings to reference the directory. This works because ``os.path.join(path, '') == path`` ''' if root is not None and not isinstance(root, (str, os.PathLike)): root, paths = paths, root paths = paths or {} if isinstance(paths, Paths): return paths.rjoinpath(root) if root else paths root = root or '.' if isinstance(paths, (list, tuple, set)): paths = {k: k for k in paths} # if isinstance(): # pass return Paths( {v: Path(*k) for k, v in _get_keys({str(root or ''): paths})}, data or {}) def _get_keys(data: _TREE_DEF_TYPE, keys: tuple=None, iters_as_keys: bool=False): '''Recursively traverse a nested dict and return the trail of keys, and the final value''' keys = tuple(keys or ()) for key, value in data.items(): ks = keys + (key,) if isinstance(value, dict): for ksi, val in _get_keys(value, ks, iters_as_keys): yield ksi, val elif iters_as_keys and isinstance(value, (tuple, list, set)): for val in value: yield ks, val else: yield ks, value class Underspecified(KeyError): '''Raised when you try to format a Path without enough data. It's basically a KeyError with more information. ''' class Paths: '''A hierarchy of paths in your project. You can arbitrarily nest them and it will join all of the keys leading down to that path. The value is the name that you can refer to it by. .. code-block:: python # define your file structure. # a common ML experiment structure (for me anyways) paths = Paths.define('./logs', { '{log_id}': { 'model.h5': 'model', 'model_spec.pkl': 'model_spec', 'plots': { 'epoch_{step_name}': { '{plot_name}.png': 'plot', '': 'plot_dir' } }, # a path join hack that gives you: log_dir > ./logs/{log_id} '', 'log_dir', } }) paths.update(log_id='test1', step_name='epoch_100') # get paths by name paths.model # logs/test1/model.h5 paths.model_spec # logs/test1/model_spec.pkl paths.plot # logs/test1/plots/{step_name}/{plot_name}.png # for example, a keras callback that saves a matplotlib plot every epoch class MyCallback(Callback): def on_epoch_end(self, epoch, logs): # creates a copy of the path tree that has step_name=epoch epoch_paths = paths.specify(step_name=epoch) ... # save one plot plt.imsave(epoch_paths.plot.specify(plot_name='confusion_matrix')) ... # save another plot plt.imsave(epoch_paths.plot.specify(plot_name='auc')) # you can glob over any missing data (e.g. step_name => '*') # equivalent to: glob("logs/test1/plots/{step_name}/auc.png") for path in paths.plot.specify(plot_name='auc').glob(): print(path) ''' def __init__(self, paths: Dict[str, 'Path'], data: dict=None): self.paths = paths for path in paths.values(): path._tree = self self.data = {} if data is None else data def __repr__(self) -> str: return '<Paths data={} \n{}\n>'.format(self.data, '\n'.join([ '\t{} : {}'.format(name, p.partial_format()) for name, p in self.paths.items() ])) @classmethod def define(cls, paths: _TREE_DEF_TYPE=None, root: P=None, data: dict=None) -> 'Paths': return tree(paths, root, data) define.__doc__ = tree.__doc__ def __contains__(self, name: str) -> bool: '''Check if a label is in the tree.''' return name in self.paths def __iter__(self) -> Iterable['Path']: '''Iterate over paths in the tree.''' return iter(self.paths.values()) # def __call__(self, **kw): # return self.specify(**kw) def keys(self) -> Iterable[str]: '''Iterate over path names in the tree.''' return self.paths.keys() def __getattr__(self, name) -> 'Path': '''Get a path by name.''' if name in self.paths: return self.paths[name] raise AttributeError(name) def __getitem__(self, name) -> 'Path': '''Get a path by name.''' if isinstance(name, tuple): return Paths({n: self._paths[n] for n in name}, data=dict(self.data)) return self.paths[name] def add(self: Ps, root=None, paths=None) -> Ps: '''Build paths from a directory spec. Arguments: root (str): the root directory. paths (dict): the directory structure. Returns: The initialized Paths object ''' paths = tree(root, paths) children = {k: p.copy for k, p in paths.paths.items()} self.paths.update(**children) for path in children.values(): path._tree = self return self def rjoinpath(self: Ps, path) -> Ps: """Give these paths a new root! Basically doing root / path for all paths in this tree. This is useful if you want to nest a folder inside another.py """ return Paths({name: p.rjoinpath(path) for name, p in self.paths.items()}, dict(self.data)) def relative_to(self: Ps, path) -> Ps: """Make these paths relative to another path! Basically doing path.relative_to(root) for all paths in this tree. Use this with ``with_root`` to change the root directory of the paths. """ return Paths({name: p.relative_to(path) for name, p in self.paths.items()}, dict(self.data)) def parse(self, path, name) -> dict: '''Parse data from a formatted string (reverse of string format) Arguments: path (str): the string to parse name (str): the name of the path pattern to use. ''' return self[name].parse(path) def translate(self, file, name, to, **kw) -> 'Path': '''''' return self.paths[to].specify(**self.paths[name].parse(file, **kw)) @property def copy(self: Ps) -> Ps: """Create a copy of a path tree and its paths.""" return Paths({name: path.copy for name, path in self.paths.items()}, dict(self.data)) def update(self: Ps, **kw) -> Ps: '''Update specified data in place. .. code-block:: python paths = pathtrees.tree({'{a}': aaa}) assert not paths.fully_specified paths.update(a=5) assert paths.fully_specified assert paths.data['a'] == 5 ''' self.data.update(kw) return self def specify(self: Ps, **kw) -> Ps: '''Creates a copy of the path tree then updates the copy's data. .. code-block:: python paths = pathtrees.tree({'{a}': aaa}) paths2 = paths.specify(a=5) assert not paths.fully_specified assert paths2.fully_specified assert 'a' not in paths.data assert paths2.data['a'] == 5 Equivalent to: .. code-block:: python paths.copy.update(**kw) ''' return self.copy.update(**kw) def unspecify(self: Ps, *keys, inplace=False, children=True) -> Ps: '''Remove keys from paths dictionary. .. code-block:: python paths = pathtrees.tree({'{a}': aaa}) paths.update(a=5) assert paths.fully_specified assert paths.data['a'] == 5 paths.unspecify('a') assert not paths.fully_specified assert 'a' not in paths.data ''' p = self if inplace else self.copy for key in keys: p.data.pop(key, None) if children: for p in self: p.unspecify(*keys, parent=False) return p @property def fully_specified(self) -> bool: '''Are all paths fully specified? .. code-block:: python paths = pathtrees.tree({'{a}': aaa}) assert not paths.fully_specified paths.update(a=5) assert paths.fully_specified ''' return all(p.fully_specified for p in self.paths.values()) def format(self, **kw) -> Dict[str, str]: '''Try to format all paths as strings. Raises Underspecified if data is missing. Arguments: **kw: additional data specified for formatting. Returns: dict: key is the name of the path, and the value is the formatted ``pathlib.Path``. ''' return {name: self[name]._format(**kw) for name in self.paths} def maybe_format(self, **kw) -> Dict[str, Union[str, 'Path']]: '''Return a dictionary where all fully specified paths are converted to strings and underspecified strings are left as Path objects. Arguments: **kw: additional data specified for formatting. ''' return {name: self[name].maybe_format(**kw) for name in self.paths} def partial_format(self, **kw) -> Dict[str, str]: '''Return a dictionary where all paths are converted to strings and underspecified fields are left in for later formatting. Arguments: **kw: additional data specified for formatting. ''' return {name: self[name]._partial_format(**kw) for name in self.paths} BuiltinPath = type(pathlib.Path()) class Path(BuiltinPath): '''Represents a ``pathlib.Path`` with placeholders for bits of data. It uses python string formatting to let you fill in the missing bits at a later date. .. code-block:: path = pathtrees.Path('projects/{name}/images/frame_{frame_id:04d}.jpg') path.update(name='my_project') # loop over all frames for f in path.glob(): # print out some info about each frame data = path.parse(f) print("frame ID:", data['frame_id']) print("path:", f) ... # do something - load an image idk There are quite a few methods that had to be wrapped from the original path object so that if we manipulate the path in any way that it can copy the extra attributes needed to manage the data. ''' __slots__ = ['data', '_tree'] #, '_tree_root' def __new__(cls, *args, data: dict=None, tree: Paths=None): # , root=None p = super().__new__(cls, *args) p.data = {} if data is None else data p._tree = tree # p._tree_root = root return p # str representations def _add_extra_parts(self, p: 'Path', copy_data: bool=False) -> 'Path': p.data = dict(self.data) if copy_data else self.data p._tree = self._tree # p._tree_root = self._tree_root return p def __repr__(self) -> str: return 'Path({}, data={}, parent_data={})'.format(super().__str__(), self.data, self._tree.data if self._tree else None) def __fspath__(self) -> str: return self._format() def __str__(self) -> str: return self._partial_format() def __hash__(self): return hash(self._partial_format()) def __call__(self, **kw) -> BuiltinPath: return self.format(**kw) def __eq__(self, __o) -> bool: if isinstance(__o, str): return self._partial_format() == __o return super().__eq__(__o) @property def raw(self) -> str: return super().__str__() def rjoinpath(self, root: BuiltinPath) -> 'Path': '''Return an absolute form of the path. TODO: is there a better way? ''' return Path(root / self, data=self.data, tree=self._tree) # data management @property def copy(self: P) -> P: '''Creates a copy of the path object so that data can be altered without affecting the original object.''' return self._add_extra_parts( self._from_parsed_parts(self._drv, self._root, self._parts), copy_data=True) def update(self: P, **kw) -> P: '''Update specified data in place''' self.data.update(kw) return self def specify(self: P, **kw) -> P: '''Update specified data and return a new object.''' return self.copy.update(**kw) def unspecify(self: P, *keys, inplace: bool=True, parent: bool=True) -> P: '''Remove keys from path dictionary''' p = self if inplace else self.copy if parent and p._tree: p._tree = p._tree.unspecify(*keys, children=False) for key in keys: p.data.pop(key, None) return p @property def fully_specified(self) -> bool: '''Check if the path is fully specified (if True, it can be formatted without raising an Underspecified error.).''' try: self._format() return True except KeyError: return False # formatting def _get_data(self, **kw) -> dict: return {**(self._tree.data if self._tree else {}), **self.data, **kw} def get(self, key, default=None): if key in self.data: return self.data[key] if self._tree: return self._tree.data.get(key, default) return default def _format(self, **kw) -> str: return fformat(super().__str__(), **self._get_data(**kw)) def _partial_format(self, **kw) -> str: return pformat(super().__str__(), **self._get_data(**kw)) def _glob_format(self, **kw) -> str: return gformat(super().__str__(), **self._get_data(**kw)) def _format_path(self, **kw) -> BuiltinPath: return BuiltinPath(self._format(**kw)) def _partial_format_path(self: P, **kw) -> P: return Path(self._partial_format(**kw), data=self.data, tree=self._tree) def _glob_format_path(self, **kw) -> BuiltinPath: return BuiltinPath(self._glob_format(**kw)) def format(self, **kw) -> str: '''Insert data into the path string. (Works like string format.) Raises: KeyError if the format string is underspecified. ''' return self._format(**kw) def partial_format(self, **kw) -> str: '''Format a field, leaving all unspecified fields to be filled later.''' return self._partial_format(**kw) def glob_format(self, **kw) -> str: '''Format a field, setting all unspecified fields as a wildcard (asterisk).''' return self._glob_format(**kw) def format_path(self, **kw) -> BuiltinPath: '''Insert data into the path string. (Works like string format.) Raises: KeyError if the format string is underspecified. ''' return self._format_path(**kw) def partial_format_path(self: P, **kw) -> P: '''Format a field, setting all unspecified fields as a wildcard (asterisk).''' return self._partial_format_path(**kw) def glob_format_path(self, **kw) -> BuiltinPath: '''Format a field, setting all unspecified fields as a wildcard (asterisk).''' return self._glob_format_path(**kw) def maybe_format(self: p, **kw) -> Union[str, P]: '''Try to format a field. If it fails, return as a Path object.''' p = self.specify(**kw) if kw else self try: return p.format() except KeyError: return p # glob def glob(self, *fs) -> List[str]: '''Glob over all unspecified variables. Arguments: *path (str): additional paths to join. e.g. for a directory you can use ``"*.txt"`` to get all .txt files. Returns: list: The paths matching the glob pattern. ''' return glob.glob(os.path.join(self._glob_format(), *fs)) def iglob(self, *fs) -> Iterable[str]: '''Iterable glob over all unspecified variables. See :func:`glob` for signature.''' return glob.iglob(os.path.join(self._glob_format(), *fs)) def rglob(self, *fs) -> List[str]: '''Recursive glob over all unspecified variables. See :func:`glob` for signature.''' return glob.glob(os.path.join(self._glob_format(), *fs), recursive=True) def irglob(self, *fs) -> Iterable[str]: '''Iterable, recursive glob over all unspecified variables. See :func:`glob` for signature.''' return glob.iglob(os.path.join(self._glob_format(), *fs), recursive=True) def parse(self, path: str, use_data: bool=True) -> dict: '''Extract variables from a compiled path. See ``parse`` to understand the amazing witchery that makes this possible! https://pypi.org/project/parse/ Arguments: path (str): The path containing data to parse. use_data (bool): Should we fill in the data we already have before parsing? This means fewer variables that need to be parsed. Set False if you do not wish to use the data. ''' path = str(path) pattern = self._partial_format() if use_data else super().__str__() r = parse_(pattern, path) if r is None: raise ValueError('''Could not parse path using pattern. path: {} pattern: {} `path.parse(path)` will call self.partial_format() by default before parsing so any specified keys will be fixed. This is helpful to dodge ambiguous parsing cases. To disable this pass `use_data=False` to parse.'''.format(path, pattern)) return self._get_data(**r.named) def translate(self: P, path: str, to: str, **kw) -> P: '''Translate the paths to another pattern''' return self._tree[to].specify(**self.parse(path, **kw)) # fixes @property def parents(self) -> _PathParents: return _PathParents(self) def fformat(x: str, **kw) -> str: try: return x.format(**kw) except KeyError as e: raise Underspecified( f'Path "{pformat(x, **kw)}" is missing a value for "{str(e)[1:-1]}" in data {set(kw)}.') # hot fix for copying over data def _fix_parts(func): @wraps(func) def inner(self, *a, **kw): return self._add_extra_parts(func(self, *a, **kw)) return inner _uses_parsed_parts = ['_make_child', '_make_child_relpath', 'with_name', 'with_suffix', 'relative_to'] _uses_parts = ['__rtruediv__', 'absolute', 'resolve', 'readlink', 'expanduser'] for _method in _uses_parsed_parts + _uses_parts: try: setattr(Path, _method, _fix_parts(getattr(BuiltinPath, _method))) except AttributeError: pass Path.parent = property(_fix_parts(BuiltinPath.parent.fget)) class _PathParents(pathlib._PathParents): __slots__ = ['data', 'parent'] def __init__(self, path): super().__init__(path) self.data = path.data self.parent = path.parents _add_extra_parts = Path._add_extra_parts def __getitem__(self, i): x = super().__getitem__(i) return x if isinstance(i, slice) else self._add_extra_parts(x) if __name__ == '__main__': def main(): p = Path("path/{hello}/{hi}.txt") import fire fire.Fire(main)
[ "parse.parse", "fire.Fire", "pathlib.Path", "functools.wraps", "typing.TypeVar" ]
[((274, 302), 'typing.TypeVar', 'TypeVar', (['"""Ps"""'], {'bound': '"""Paths"""'}), "('Ps', bound='Paths')\n", (281, 302), False, 'from typing import Dict, Iterable, List, Union, TypeVar\n'), ((307, 333), 'typing.TypeVar', 'TypeVar', (['"""P"""'], {'bound': '"""Path"""'}), "('P', bound='Path')\n", (314, 333), False, 'from typing import Dict, Iterable, List, Union, TypeVar\n'), ((10867, 10881), 'pathlib.Path', 'pathlib.Path', ([], {}), '()\n', (10879, 10881), False, 'import pathlib\n'), ((19566, 19577), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (19571, 19577), False, 'from functools import wraps\n'), ((20597, 20612), 'fire.Fire', 'fire.Fire', (['main'], {}), '(main)\n', (20606, 20612), False, 'import fire\n'), ((18573, 18594), 'parse.parse', 'parse_', (['pattern', 'path'], {}), '(pattern, path)\n', (18579, 18594), True, 'from parse import parse as parse_\n')]
from datamart.upload.store import Datamart_dataset # this sample will save the following online csv datasets into datamart in blaze graph a = Datamart_dataset() all_dir = ["https://raw.githubusercontent.com/usc-isi-i2/datamart-userend/master/example_datasets/List_of_United_States_counties_by_per_capita_income.csv", "https://raw.githubusercontent.com/usc-isi-i2/datamart-userend/master/example_datasets/Most-Recent-Cohorts-Scorecard-Elements.csv", "https://raw.githubusercontent.com/usc-isi-i2/datamart-userend/master/example_datasets/Unemployment.csv", "https://raw.githubusercontent.com/usc-isi-i2/datamart-userend/master/example_datasets/educate.csv", "https://raw.githubusercontent.com/usc-isi-i2/datamart-userend/master/example_datasets/population.csv", "https://raw.githubusercontent.com/usc-isi-i2/datamart-userend/master/example_datasets/poverty.csv" ] for input_dir in all_dir: df,meta=a.load_and_preprocess(input_dir=input_dir,file_type="online_csv") # there should only have one table extracted from one online csv address a.model_data(df, meta, 0) a.upload() all_dir_wikipedia_test = ["https://en.wikipedia.org/wiki/1962_Washington_Senators_season", "https://en.wikipedia.org/wiki/2017%E2%80%9318_New_Orleans_Privateers_women%27s_basketball_team", "https://en.wikipedia.org/wiki/List_of_Asian_Games_medalists_in_cue_sports"] for input_dir in all_dir_wikipedia_test: df,meta=a.load_and_preprocess(input_dir=input_dir,file_type="wikitable") for i in range(len(df)): a.model_data(df, meta, i) a.upload() # input_dir = "/Users/minazuki/Downloads/usda/population_new.csv" # df,meta=a.load_and_preprocess(input_dir) # a.model_data(df, meta) # a.output_to_ttl("2") # input_dir = "/Users/minazuki/Downloads/usda/poverty_new.csv" # df,meta=a.load_and_preprocess(input_dir) # a.model_data(df, meta) # a.output_to_ttl("3") # input_dir = "/Users/minazuki/Downloads/usda/Unemployment_new.csv" # df,meta=a.load_and_preprocess(input_dir) # a.model_data(df, meta) # a.output_to_ttl("4")
[ "datamart.upload.store.Datamart_dataset" ]
[((142, 160), 'datamart.upload.store.Datamart_dataset', 'Datamart_dataset', ([], {}), '()\n', (158, 160), False, 'from datamart.upload.store import Datamart_dataset\n')]
# Refer to pytorch/examples/VAE from model.abstract_VAE import VAE import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from scipy.stats import norm class StableBCELoss(nn.modules.Module): def __init__(self): super(StableBCELoss, self).__init__() def forward(self, input, target): neg_abs = - input.abs() loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() return loss.sum() # All MLP! class NaiveVAE(VAE): def __init__(self, input_dims, code_dims, hidden=400, activacation="lrelu", decoder="Bernoulli"): super(NaiveVAE, self).__init__(input_dims, code_dims) self.name = "NaiveVAE" self.nx = int(np.prod(input_dims)) self.nz = int(np.prod(code_dims)) if activacation == "lrelu": self.act = nn.LeakyReLU() else: self.act = nn.ReLU() if decoder == "Bernoulli": self.reconstruct_loss = StableBCELoss() else: self.reconstruct_loss = nn.MSELoss() # encoding part self.fc1 = nn.Linear(self.nx, hidden) # mu and sigma self.fc21 = nn.Linear(hidden, self.nz) self.fc22 = nn.Linear(hidden, self.nz) # decoding part self.fc3 = nn.Linear(self.nz, hidden) self.fc4 = nn.Linear(hidden, self.nx) def encode(self, x): x = x.view(x.size(0), -1) h1 = self.act(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparametrize(self, mu, logvar): std = logvar.mul(0.5).exp_() if isinstance(mu, torch.cuda.FloatTensor): eps = torch.cuda.FloatTensor(std.size()).normal_() else: eps = torch.FloatTensor(std.size()).normal_() eps = Variable(eps) return eps.mul(std).add_(mu) def decode(self, z): h3 = self.act(self.fc3(z)) return self.fc4(h3) def forward(self, x): mu, logvar = self.encode(x.view(x.size(0), -1)) z = self.reparametrize(mu, logvar) return self.decode(z), mu, logvar, z def loss(self, recon_x, x, mu, logvar, z): x = x.view(x.size(0), -1) BCE = self.reconstruct_loss(recon_x, x) / x.size(0) # see Appendix B from VAE paper: # <NAME>. Auto-Encoding Variational Bayes. ICLR, 2014 # https://arxiv.org/abs/1312.6114 # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar) KLD = torch.sum(KLD_element).mul_(-0.5) / x.size(0) return BCE + KLD, BCE, KLD def mutual_info_q(self, x): mu, logvar = self.encode(x.view(x.size(0), -1)) z = self.reparametrize(mu, logvar) l = z.size(0) z = z.repeat(l, 1, 1) mu = mu.unsqueeze(2).repeat(1,1,l).transpose(1,2) logvar = logvar.unsqueeze(2).repeat(1,1,l).transpose(1,2) p_matrix = ( - torch.sum((z - mu) ** 2 / logvar.exp(), dim=2) / 2.0 - 0.5 * torch.sum(logvar, dim=2)).exp_() p_split_matrix = (- (z - mu) ** 2 / logvar.exp() / 2.0 - 0.5 * logvar ).exp_() p_split_vector = torch.sum(p_split_matrix, dim=1) p_vector = torch.sum(p_matrix, dim=1) I = torch.FloatTensor([np.log(l)]) I_split = torch.FloatTensor([np.log(l)] * int(z.size(2))) for i in range(l): I += (p_matrix[i][i].log() - p_vector[i].log()).data / l I_split += (p_split_matrix[i][i].log() - p_split_vector[i].log()).data / l # q(z_i) is not independent.. # assert np.allclose(I.numpy(), np.sum(I_split.numpy())) return I, I_split # more flexiable VAE class BetaVAE(NaiveVAE): def __init__(self, input_dims, code_dims, layers=[2, 2], beta=1.0, hidden=400, activacation="lrelu", decoder="Bernoulli"): super(BetaVAE, self).__init__(input_dims, code_dims, hidden=400, activacation="lrelu", decoder="Bernoulli") self.beta = beta self.encode_layers = nn.ModuleList([self.fc1]) for i in range(layers[0]-2): l = nn.Linear(hidden, hidden) self.encode_layers.append(l) self.decode_layers = nn.ModuleList([self.fc3]) for i in range(layers[0]-2): l = nn.Linear(hidden, hidden) self.decode_layers.append(l) def encode(self, x): h = x.view(x.size(0), -1) for fc in self.encode_layers: h = self.act(fc(h)) return self.fc21(h), self.fc22(h) def decode(self, z): h = z for fc in self.decode_layers: h = self.act(fc(z)) return self.fc4(h) def loss(self, recon_x, x, mu, logvar, z): x = x.view(x.size(0), -1) BCE = self.reconstruct_loss(recon_x, x) / x.size(0) KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar) KLD = torch.sum(KLD_element).mul_(-0.5) / x.size(0) return BCE + self.beta * KLD, BCE, KLD class MMDVAE(BetaVAE): def compute_kernel(self, x, y): x_size = x.size(0) y_size = y.size(0) dim = x.size(1) tiled_x = x.unsqueeze(1).repeat(1, y_size, 1) tiled_y = y.unsqueeze(0).repeat(x_size, 1, 1) return ((-(tiled_x - tiled_y) ** 2).mean(dim=2) / float(dim)).exp_() def compute_mmd(self, x, y, sigma_sqr=1.0): x_kernel = self.compute_kernel(x, x) y_kernel = self.compute_kernel(y, y) xy_kernel = self.compute_kernel(x, y) return torch.mean(x_kernel) + torch.mean(y_kernel) - 2 * torch.mean(xy_kernel) def loss(self, recon_x, x, mu, logvar, z): x = x.view(x.size(0), -1) BCE = self.reconstruct_loss(recon_x, x) / x.size(0) true_samples = Variable(torch.FloatTensor(x.size(0), self.nz).normal_()) MMD = self.compute_mmd(true_samples, z) return BCE + self.beta * MMD , BCE, MMD
[ "numpy.prod", "torch.nn.ReLU", "torch.nn.LeakyReLU", "torch.nn.ModuleList", "torch.mean", "numpy.log", "torch.nn.MSELoss", "torch.sum", "torch.nn.Linear", "torch.autograd.Variable" ]
[((1219, 1245), 'torch.nn.Linear', 'nn.Linear', (['self.nx', 'hidden'], {}), '(self.nx, hidden)\n', (1228, 1245), True, 'import torch.nn as nn\n'), ((1289, 1315), 'torch.nn.Linear', 'nn.Linear', (['hidden', 'self.nz'], {}), '(hidden, self.nz)\n', (1298, 1315), True, 'import torch.nn as nn\n'), ((1336, 1362), 'torch.nn.Linear', 'nn.Linear', (['hidden', 'self.nz'], {}), '(hidden, self.nz)\n', (1345, 1362), True, 'import torch.nn as nn\n'), ((1407, 1433), 'torch.nn.Linear', 'nn.Linear', (['self.nz', 'hidden'], {}), '(self.nz, hidden)\n', (1416, 1433), True, 'import torch.nn as nn\n'), ((1453, 1479), 'torch.nn.Linear', 'nn.Linear', (['hidden', 'self.nx'], {}), '(hidden, self.nx)\n', (1462, 1479), True, 'import torch.nn as nn\n'), ((1898, 1911), 'torch.autograd.Variable', 'Variable', (['eps'], {}), '(eps)\n', (1906, 1911), False, 'from torch.autograd import Variable\n'), ((3272, 3304), 'torch.sum', 'torch.sum', (['p_split_matrix'], {'dim': '(1)'}), '(p_split_matrix, dim=1)\n', (3281, 3304), False, 'import torch\n'), ((3325, 3351), 'torch.sum', 'torch.sum', (['p_matrix'], {'dim': '(1)'}), '(p_matrix, dim=1)\n', (3334, 3351), False, 'import torch\n'), ((4269, 4294), 'torch.nn.ModuleList', 'nn.ModuleList', (['[self.fc1]'], {}), '([self.fc1])\n', (4282, 4294), True, 'import torch.nn as nn\n'), ((4444, 4469), 'torch.nn.ModuleList', 'nn.ModuleList', (['[self.fc3]'], {}), '([self.fc3])\n', (4457, 4469), True, 'import torch.nn as nn\n'), ((824, 843), 'numpy.prod', 'np.prod', (['input_dims'], {}), '(input_dims)\n', (831, 843), True, 'import numpy as np\n'), ((867, 885), 'numpy.prod', 'np.prod', (['code_dims'], {}), '(code_dims)\n', (874, 885), True, 'import numpy as np\n'), ((955, 969), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {}), '()\n', (967, 969), True, 'import torch.nn as nn\n'), ((1007, 1016), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1014, 1016), True, 'import torch.nn as nn\n'), ((1163, 1175), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (1173, 1175), True, 'import torch.nn as nn\n'), ((4348, 4373), 'torch.nn.Linear', 'nn.Linear', (['hidden', 'hidden'], {}), '(hidden, hidden)\n', (4357, 4373), True, 'import torch.nn as nn\n'), ((4523, 4548), 'torch.nn.Linear', 'nn.Linear', (['hidden', 'hidden'], {}), '(hidden, hidden)\n', (4532, 4548), True, 'import torch.nn as nn\n'), ((3383, 3392), 'numpy.log', 'np.log', (['l'], {}), '(l)\n', (3389, 3392), True, 'import numpy as np\n'), ((5766, 5786), 'torch.mean', 'torch.mean', (['x_kernel'], {}), '(x_kernel)\n', (5776, 5786), False, 'import torch\n'), ((5789, 5809), 'torch.mean', 'torch.mean', (['y_kernel'], {}), '(y_kernel)\n', (5799, 5809), False, 'import torch\n'), ((5816, 5837), 'torch.mean', 'torch.mean', (['xy_kernel'], {}), '(xy_kernel)\n', (5826, 5837), False, 'import torch\n'), ((2651, 2673), 'torch.sum', 'torch.sum', (['KLD_element'], {}), '(KLD_element)\n', (2660, 2673), False, 'import torch\n'), ((3432, 3441), 'numpy.log', 'np.log', (['l'], {}), '(l)\n', (3438, 3441), True, 'import numpy as np\n'), ((5146, 5168), 'torch.sum', 'torch.sum', (['KLD_element'], {}), '(KLD_element)\n', (5155, 5168), False, 'import torch\n'), ((3126, 3150), 'torch.sum', 'torch.sum', (['logvar'], {'dim': '(2)'}), '(logvar, dim=2)\n', (3135, 3150), False, 'import torch\n')]
from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean from sqlalchemy.dialects.postgresql import JSON from sqlalchemy.orm import backref, relationship from datetime import datetime from database import Base class Users(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) email = Column(String(250), nullable=False, unique=True) given_name = Column(String(250)) family_name = Column(String(250)) role = Column(Integer) #catalogs = relationship("catalog", backref="user") def __repr__(self): return '["{}","{}","{}","{}","{}"]'.format(self.id,self.email,self.given_name,self.family_name,self.role) class Catalog(Base): __tablename__ = 'catalog' id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey('users.id')) status = Column(String(250), default="Draft") status2 = Column(String(250)) title = Column(String(250)) number = Column(String(250)) created = Column(DateTime, default=datetime.now()) updated = Column(DateTime, default=datetime.now()) collection = Column(Boolean) publish_r = Column(Boolean, default=False) publish_a = Column(Boolean, default=False) published = Column(Boolean, default=False) archive = Column(Boolean, default=False) def __repr__(self): return '["{}","{}","{}","{}","{}","{}","{}"."{}","{}","{}","{}","{}","{}"]'.format(self.id,self.user_id,self.status,self.status2, self.title, self.number, self.created, self.updated, self.collection, self.publish_r, self.publish_a, self.published, self.archive) class Meta(Base): __tablename__ = 'meta' id = Column(Integer,primary_key=True) def __repr__(self): return '["{}"]'.format(self.id) class Apikeys(Base): __tablename__ = 'apikeys' id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey('users.id')) api_url = Column(String(250)) api_key = Column(String(250)) def __repr__(self): return '["{}","{}","{}","{}"]'.format(self.id,self.user_id,self.api_url,self.api_key)
[ "sqlalchemy.String", "datetime.datetime.now", "sqlalchemy.ForeignKey", "sqlalchemy.Column" ]
[((294, 327), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (300, 327), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((475, 490), 'sqlalchemy.Column', 'Column', (['Integer'], {}), '(Integer)\n', (481, 490), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((749, 782), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (755, 782), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1113, 1128), 'sqlalchemy.Column', 'Column', (['Boolean'], {}), '(Boolean)\n', (1119, 1128), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1145, 1175), 'sqlalchemy.Column', 'Column', (['Boolean'], {'default': '(False)'}), '(Boolean, default=False)\n', (1151, 1175), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1192, 1222), 'sqlalchemy.Column', 'Column', (['Boolean'], {'default': '(False)'}), '(Boolean, default=False)\n', (1198, 1222), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1239, 1269), 'sqlalchemy.Column', 'Column', (['Boolean'], {'default': '(False)'}), '(Boolean, default=False)\n', (1245, 1269), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1284, 1314), 'sqlalchemy.Column', 'Column', (['Boolean'], {'default': '(False)'}), '(Boolean, default=False)\n', (1290, 1314), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1676, 1709), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (1682, 1709), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1839, 1872), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (1845, 1872), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((347, 358), 'sqlalchemy.String', 'String', (['(250)'], {}), '(250)\n', (353, 358), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((413, 424), 'sqlalchemy.String', 'String', (['(250)'], {}), '(250)\n', (419, 424), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((451, 462), 'sqlalchemy.String', 'String', (['(250)'], {}), '(250)\n', (457, 462), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((813, 835), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""users.id"""'], {}), "('users.id')\n", (823, 835), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((857, 868), 'sqlalchemy.String', 'String', (['(250)'], {}), '(250)\n', (863, 868), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((908, 919), 'sqlalchemy.String', 'String', (['(250)'], {}), '(250)\n', (914, 919), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((940, 951), 'sqlalchemy.String', 'String', (['(250)'], {}), '(250)\n', (946, 951), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((973, 984), 'sqlalchemy.String', 'String', (['(250)'], {}), '(250)\n', (979, 984), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1903, 1925), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""users.id"""'], {}), "('users.id')\n", (1913, 1925), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1948, 1959), 'sqlalchemy.String', 'String', (['(250)'], {}), '(250)\n', (1954, 1959), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1982, 1993), 'sqlalchemy.String', 'String', (['(250)'], {}), '(250)\n', (1988, 1993), False, 'from sqlalchemy import Column, DateTime, ForeignKey, Integer, String, func, Boolean\n'), ((1025, 1039), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1037, 1039), False, 'from datetime import datetime\n'), ((1080, 1094), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1092, 1094), False, 'from datetime import datetime\n')]
import fnmatch import re import os import mkdocs import mkdocs.plugins import mkdocs.structure.files class Include(mkdocs.plugins.BasePlugin): """A mkdocs plugin that adds all matching files from the input list.""" config_scheme = ( ('ext', mkdocs.config.config_options.Type((str, list), default=[ ".md", ".markdown", ".mdown", ".mkdn", ".mkd", ".css", ".js", ".javascript", ".html", ".htm", ".xml", ".json", ".bmp", ".tif", ".tiff", ".gif", ".svg", ".jpeg", ".jpg", ".jif", ".jfif", ".jp2", ".jpx", ".j2k", ".j2c", ".fpx", ".pcd", ".png", ".pdf", "CNAME", ".snippet", ".pages" ])), ('glob', mkdocs.config.config_options.Type((str, list), default=None)), ('regex', mkdocs.config.config_options.Type((str, list), default=None)), ) def on_files(self, files, config): exts = self.config['ext'] or [] if not isinstance(exts, list): exts = [exts] globs = self.config['glob'] or [] if not isinstance(globs, list): globs = [globs] regexes = self.config['regex'] or [] if not isinstance(regexes, list): regexes = [regexes] out = [] def include(name): if os.path.splitext(name)[1] in exts: return True for g in globs: if fnmatch.fnmatchcase(name, g): return True for r in regexes: if re.match(r, name): return True return False for i in files: name = i.src_path if not include(name): continue # Windows reports filenames as eg. a\\b\\c instead of a/b/c. # To make the same globs/regexes match filenames on Windows and # other OSes, let's try matching against converted filenames. # On the other hand, Unix actually allows filenames to contain # literal \\ characters (although it is rare), so we won't # always convert them. We only convert if os.sep reports # something unusual. Conversely, some future mkdocs might # report Windows filenames using / separators regardless of # os.sep, so we *always* test with / above. if os.sep != '/': namefix = name.replace(os.sep, '/') if not include(namefix): continue out.append(i) return mkdocs.structure.files.Files(out)
[ "fnmatch.fnmatchcase", "os.path.splitext", "re.match", "mkdocs.structure.files.Files", "mkdocs.config.config_options.Type" ]
[((2527, 2560), 'mkdocs.structure.files.Files', 'mkdocs.structure.files.Files', (['out'], {}), '(out)\n', (2555, 2560), False, 'import mkdocs\n'), ((260, 613), 'mkdocs.config.config_options.Type', 'mkdocs.config.config_options.Type', (['(str, list)'], {'default': "['.md', '.markdown', '.mdown', '.mkdn', '.mkd', '.css', '.js',\n '.javascript', '.html', '.htm', '.xml', '.json', '.bmp', '.tif',\n '.tiff', '.gif', '.svg', '.jpeg', '.jpg', '.jif', '.jfif', '.jp2',\n '.jpx', '.j2k', '.j2c', '.fpx', '.pcd', '.png', '.pdf', 'CNAME',\n '.snippet', '.pages']"}), "((str, list), default=['.md', '.markdown',\n '.mdown', '.mkdn', '.mkd', '.css', '.js', '.javascript', '.html',\n '.htm', '.xml', '.json', '.bmp', '.tif', '.tiff', '.gif', '.svg',\n '.jpeg', '.jpg', '.jif', '.jfif', '.jp2', '.jpx', '.j2k', '.j2c',\n '.fpx', '.pcd', '.png', '.pdf', 'CNAME', '.snippet', '.pages'])\n", (293, 613), False, 'import mkdocs\n'), ((699, 759), 'mkdocs.config.config_options.Type', 'mkdocs.config.config_options.Type', (['(str, list)'], {'default': 'None'}), '((str, list), default=None)\n', (732, 759), False, 'import mkdocs\n'), ((780, 840), 'mkdocs.config.config_options.Type', 'mkdocs.config.config_options.Type', (['(str, list)'], {'default': 'None'}), '((str, list), default=None)\n', (813, 840), False, 'import mkdocs\n'), ((1393, 1421), 'fnmatch.fnmatchcase', 'fnmatch.fnmatchcase', (['name', 'g'], {}), '(name, g)\n', (1412, 1421), False, 'import fnmatch\n'), ((1504, 1521), 're.match', 're.match', (['r', 'name'], {}), '(r, name)\n', (1512, 1521), False, 'import re\n'), ((1283, 1305), 'os.path.splitext', 'os.path.splitext', (['name'], {}), '(name)\n', (1299, 1305), False, 'import os\n')]
import sys arguments = sys.argv test_case = open(arguments[1], "r").read() team_output = open(arguments[2], "r").read() if team_output != test_case: sys.exit(43) else: sys.exit(42)
[ "sys.exit" ]
[((156, 168), 'sys.exit', 'sys.exit', (['(43)'], {}), '(43)\n', (164, 168), False, 'import sys\n'), ((179, 191), 'sys.exit', 'sys.exit', (['(42)'], {}), '(42)\n', (187, 191), False, 'import sys\n')]
from flask import Blueprint blueprint = Blueprint( "account", __name__, url_prefix="/account", static_folder="../static" ) from app.account import views, admin
[ "flask.Blueprint" ]
[((41, 126), 'flask.Blueprint', 'Blueprint', (['"""account"""', '__name__'], {'url_prefix': '"""/account"""', 'static_folder': '"""../static"""'}), "('account', __name__, url_prefix='/account', static_folder='../static'\n )\n", (50, 126), False, 'from flask import Blueprint\n')]
__author__ = "<NAME>" __copyright__ = "Copyright 2019, <NAME>" __email__ = "<EMAIL>" __license__ = "MIT" __version__ = "0.0.1" # Imports from snakemake.shell import shell import tempfile import os # Shortcuts opt = snakemake.params.get("opt", "") threads = snakemake.threads if snakemake.threads >= 4 else 4 view_threads = sort_threads = threads//4 align_threads = threads - (view_threads + sort_threads) outdir = os.path.dirname(os.path.abspath(snakemake.output.bam)) fastq = snakemake.input.fastq ref = snakemake.input.ref bam = snakemake.output.bam # Run shell commands shell("echo '#### NGMLR + SAMTOOLS VIEW & SORT LOG ####' > {snakemake.log}") with tempfile.TemporaryDirectory(dir=outdir) as temp_dir: shell("ngmlr -t {align_threads} {opt} -r {ref} -q {fastq} 2>> {snakemake.log}|\ samtools view -@ {view_threads} -bh 2>> {snakemake.log} |\ samtools sort -@ {sort_threads} -T {temp_dir} -O bam > {bam} 2>> {snakemake.log}") shell("samtools index {bam}")
[ "os.path.abspath", "snakemake.shell.shell", "tempfile.TemporaryDirectory" ]
[((576, 652), 'snakemake.shell.shell', 'shell', (['"""echo \'#### NGMLR + SAMTOOLS VIEW & SORT LOG ####\' > {snakemake.log}"""'], {}), '("echo \'#### NGMLR + SAMTOOLS VIEW & SORT LOG ####\' > {snakemake.log}")\n', (581, 652), False, 'from snakemake.shell import shell\n'), ((956, 985), 'snakemake.shell.shell', 'shell', (['"""samtools index {bam}"""'], {}), "('samtools index {bam}')\n", (961, 985), False, 'from snakemake.shell import shell\n'), ((432, 469), 'os.path.abspath', 'os.path.abspath', (['snakemake.output.bam'], {}), '(snakemake.output.bam)\n', (447, 469), False, 'import os\n'), ((659, 698), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {'dir': 'outdir'}), '(dir=outdir)\n', (686, 698), False, 'import tempfile\n'), ((716, 960), 'snakemake.shell.shell', 'shell', (['"""ngmlr -t {align_threads} {opt} -r {ref} -q {fastq} 2>> {snakemake.log}| samtools view -@ {view_threads} -bh 2>> {snakemake.log} | samtools sort -@ {sort_threads} -T {temp_dir} -O bam > {bam} 2>> {snakemake.log}"""'], {}), "(\n 'ngmlr -t {align_threads} {opt} -r {ref} -q {fastq} 2>> {snakemake.log}| samtools view -@ {view_threads} -bh 2>> {snakemake.log} | samtools sort -@ {sort_threads} -T {temp_dir} -O bam > {bam} 2>> {snakemake.log}'\n )\n", (721, 960), False, 'from snakemake.shell import shell\n')]
import numpy as np from classification.classifier import Classifier class NaiveBayes(Classifier): def __init__(self, name='Naive Bayes'): super().__init__(1,1,name,_type=3) self.name = name def _predict(self, x): if len(self._labels) == 0: print("It is necessary to train the classifier before using it to make predictions") return # it might look complex but it's just prior + posterior probabilities for each label probs = np.array([np.log(self.P_C[i])+np.sum(np.log(self.gaussian(x,i))) for i in range(self.M)]) return self._labels[np.argmax(probs)] def fit(self, X, Y, *args, **kwargs): if not isinstance(Y, np.ndarray): Y = np.array(Y) self._labels = np.unique(Y) self.N = X.shape[1] self.M = len(self._labels) self.mean = np.zeros(X.shape) self.var = np.zeros(X.shape) self.P_C = np.array([len(np.where(Y==i)[0])/float(len(Y)) for i in self._labels]) # for each class for idx, cl in enumerate(self._labels): indexes = np.where(Y==cl)[0] self.mean[idx,: ] = np.mean(X[indexes], axis=0) self.var[idx,:] = np.var(X[indexes], axis=0) def gaussian(self, x, idx): return np.exp(-((x-self.mean[idx])**2/(2*self.var[idx])))/np.sqrt(2*np.pi*self.var[idx]) def _save(self, file): file.create_dataset('labels', self._labels.shape, self._labels.dtype, self._labels, compression="gzip") file.create_dataset('mean', self.mean.shape, self.mean.dtype, self.mean, compression="gzip") file.create_dataset('variance', self.var.shape, self.var.dtype, self.var, compression="gzip") file.create_dataset('priors', self.P_C.shape, self.P_C.dtype, self.P_C, compression="gzip") def _load(self, file): self._labels = np.array(file['labels']) self.mean = np.array(file['mean']) self.var = np.array(file['variance']) self.P_C = np.array(file['priors'])
[ "numpy.mean", "numpy.sqrt", "numpy.unique", "numpy.where", "numpy.log", "numpy.argmax", "numpy.exp", "numpy.array", "numpy.zeros", "numpy.var" ]
[((794, 806), 'numpy.unique', 'np.unique', (['Y'], {}), '(Y)\n', (803, 806), True, 'import numpy as np\n'), ((893, 910), 'numpy.zeros', 'np.zeros', (['X.shape'], {}), '(X.shape)\n', (901, 910), True, 'import numpy as np\n'), ((931, 948), 'numpy.zeros', 'np.zeros', (['X.shape'], {}), '(X.shape)\n', (939, 948), True, 'import numpy as np\n'), ((1914, 1938), 'numpy.array', 'np.array', (["file['labels']"], {}), "(file['labels'])\n", (1922, 1938), True, 'import numpy as np\n'), ((1960, 1982), 'numpy.array', 'np.array', (["file['mean']"], {}), "(file['mean'])\n", (1968, 1982), True, 'import numpy as np\n'), ((2003, 2029), 'numpy.array', 'np.array', (["file['variance']"], {}), "(file['variance'])\n", (2011, 2029), True, 'import numpy as np\n'), ((2050, 2074), 'numpy.array', 'np.array', (["file['priors']"], {}), "(file['priors'])\n", (2058, 2074), True, 'import numpy as np\n'), ((633, 649), 'numpy.argmax', 'np.argmax', (['probs'], {}), '(probs)\n', (642, 649), True, 'import numpy as np\n'), ((756, 767), 'numpy.array', 'np.array', (['Y'], {}), '(Y)\n', (764, 767), True, 'import numpy as np\n'), ((1192, 1219), 'numpy.mean', 'np.mean', (['X[indexes]'], {'axis': '(0)'}), '(X[indexes], axis=0)\n', (1199, 1219), True, 'import numpy as np\n'), ((1251, 1277), 'numpy.var', 'np.var', (['X[indexes]'], {'axis': '(0)'}), '(X[indexes], axis=0)\n', (1257, 1277), True, 'import numpy as np\n'), ((1329, 1387), 'numpy.exp', 'np.exp', (['(-((x - self.mean[idx]) ** 2 / (2 * self.var[idx])))'], {}), '(-((x - self.mean[idx]) ** 2 / (2 * self.var[idx])))\n', (1335, 1387), True, 'import numpy as np\n'), ((1380, 1414), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi * self.var[idx])'], {}), '(2 * np.pi * self.var[idx])\n', (1387, 1414), True, 'import numpy as np\n'), ((1140, 1157), 'numpy.where', 'np.where', (['(Y == cl)'], {}), '(Y == cl)\n', (1148, 1157), True, 'import numpy as np\n'), ((524, 543), 'numpy.log', 'np.log', (['self.P_C[i]'], {}), '(self.P_C[i])\n', (530, 543), True, 'import numpy as np\n'), ((983, 999), 'numpy.where', 'np.where', (['(Y == i)'], {}), '(Y == i)\n', (991, 999), True, 'import numpy as np\n')]
import pytest def test_noun_chunks_is_parsed_nb(nb_tokenizer): """Test that noun_chunks raises Value Error for 'nb' language if Doc is not parsed.""" doc = nb_tokenizer("Smørsausen brukes bl.a. til") with pytest.raises(ValueError): list(doc.noun_chunks)
[ "pytest.raises" ]
[((219, 244), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (232, 244), False, 'import pytest\n')]
from unittest import TestCase import unittest from app import format_dimension_result, DUMMY, get_power_of_dummy_var, \ get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word from pint import UnitRegistry, formatter, pi_theorem class TestFormat_dimension_result(TestCase): def test_format_dimension_result(self): #dummy top res = DUMMY + " / L" self.assertEqual(format_dimension_result(res).strip(), "L") res = "( " + DUMMY + " * T ) / L" self.assertEqual(format_dimension_result(res).strip(), "L / T") res = "( T * " + DUMMY + " ) / L" self.assertEqual(format_dimension_result(res).strip(), "L / T") #dummy bottom res = " T / ( V * " + DUMMY + ")" self.assertEqual(format_dimension_result(res).strip(), "T / V") res = " T / ( " + DUMMY + " * V )" self.assertEqual(format_dimension_result(res).strip(), "T / V") res = " T / " + DUMMY self.assertEqual(format_dimension_result(res).strip(), "T") #dummy power on bottom res = " T * V / " + DUMMY + "^5" self.assertEqual(format_dimension_result(res).strip(), "(T * V)^(1/5)") res = " T / ( V * " + DUMMY + "^5 )" self.assertEqual(format_dimension_result(res).strip(), "(T / V)^(1/5)") res = " T / " + DUMMY + "^5" self.assertEqual(format_dimension_result(res).strip(), "T^(1/5)") res = DUMMY + "^5 / T " self.assertEqual(format_dimension_result(res).strip(), "T^(1/5)") res = DUMMY + "^5 * V / T " self.assertEqual(format_dimension_result(res).strip(), "(T / V)^(1/5)") res = "V * " + DUMMY + "^5 / T " self.assertEqual(format_dimension_result(res).strip(), "(T / V)^(1/5)") def test_get_complete_dim_word(self): for key in SHORTCUT_DICT: self.assertEqual(get_complete_dim_word(key), SHORTCUT_DICT[key]) key_with_spaces = " ".join(key) self.assertEqual(get_complete_dim_word(key_with_spaces), SHORTCUT_DICT[key]) def test_get_word_partition(self): self.assertEqual(get_word_partition("[T] / [V]"), ["[T]", " / " , "[V]"]) self.assertEqual(get_word_partition("[T] * [M] / [V]"), ["[T]", " * ", "[M]"," / ", "[V]"]) def test_replace_acronyms_and_return_word(self): self.assertEqual(replace_acronyms_and_return_word(["[t]"]),"[time]") self.assertEqual(replace_acronyms_and_return_word(["[t]", " * ", "[M]"]), "[time] * [mass]") def test_pi_theorem(self): ureg = UnitRegistry() quantities = {"Va": "[time]", "Vb": "[length]", "Vc": "[length] / [time]"} pi = pi_theorem(quantities, ureg) pretty_result = formatter(pi[0].items(), single_denominator=True, power_fmt='{}^{}') self.assertEqual(pretty_result, "Va * Vc / Vb") quantities = {"Va" : "[time]", "Vb" : "[length]", "Vc" : "[acceleration]"} pi = pi_theorem(quantities, ureg) pretty_result = formatter(pi[0].items(), single_denominator=True, power_fmt='{}^{}') self.assertEqual(pretty_result, "Va^2 * Vc / Vb") def test_get_power_of_dummy_var(self): res = DUMMY + "^10" self.assertEqual(get_power_of_dummy_var(res), "10") res = DUMMY self.assertEqual(get_power_of_dummy_var(res), "") res = "V * " + DUMMY + "^5" self.assertEqual(get_power_of_dummy_var(res), "5") if __name__ == "__main__": unittest.main()
[ "pint.pi_theorem", "app.get_power_of_dummy_var", "app.get_complete_dim_word", "app.get_word_partition", "app.format_dimension_result", "unittest.main", "app.replace_acronyms_and_return_word", "pint.UnitRegistry" ]
[((3478, 3493), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3491, 3493), False, 'import unittest\n'), ((2574, 2588), 'pint.UnitRegistry', 'UnitRegistry', ([], {}), '()\n', (2586, 2588), False, 'from pint import UnitRegistry, formatter, pi_theorem\n'), ((2685, 2713), 'pint.pi_theorem', 'pi_theorem', (['quantities', 'ureg'], {}), '(quantities, ureg)\n', (2695, 2713), False, 'from pint import UnitRegistry, formatter, pi_theorem\n'), ((2960, 2988), 'pint.pi_theorem', 'pi_theorem', (['quantities', 'ureg'], {}), '(quantities, ureg)\n', (2970, 2988), False, 'from pint import UnitRegistry, formatter, pi_theorem\n'), ((2138, 2169), 'app.get_word_partition', 'get_word_partition', (['"""[T] / [V]"""'], {}), "('[T] / [V]')\n", (2156, 2169), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((2220, 2257), 'app.get_word_partition', 'get_word_partition', (['"""[T] * [M] / [V]"""'], {}), "('[T] * [M] / [V]')\n", (2238, 2257), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((2374, 2415), 'app.replace_acronyms_and_return_word', 'replace_acronyms_and_return_word', (["['[t]']"], {}), "(['[t]'])\n", (2406, 2415), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((2451, 2506), 'app.replace_acronyms_and_return_word', 'replace_acronyms_and_return_word', (["['[t]', ' * ', '[M]']"], {}), "(['[t]', ' * ', '[M]'])\n", (2483, 2506), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((3237, 3264), 'app.get_power_of_dummy_var', 'get_power_of_dummy_var', (['res'], {}), '(res)\n', (3259, 3264), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((3317, 3344), 'app.get_power_of_dummy_var', 'get_power_of_dummy_var', (['res'], {}), '(res)\n', (3339, 3344), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((3411, 3438), 'app.get_power_of_dummy_var', 'get_power_of_dummy_var', (['res'], {}), '(res)\n', (3433, 3438), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((1892, 1918), 'app.get_complete_dim_word', 'get_complete_dim_word', (['key'], {}), '(key)\n', (1913, 1918), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((2013, 2051), 'app.get_complete_dim_word', 'get_complete_dim_word', (['key_with_spaces'], {}), '(key_with_spaces)\n', (2034, 2051), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((433, 461), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (456, 461), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((543, 571), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (566, 571), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((657, 685), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (680, 685), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((794, 822), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (817, 822), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((909, 937), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (932, 937), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((1011, 1039), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (1034, 1039), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((1152, 1180), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (1175, 1180), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((1277, 1305), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (1300, 1305), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((1394, 1422), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (1417, 1422), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((1500, 1528), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (1523, 1528), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((1610, 1638), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (1633, 1638), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n'), ((1731, 1759), 'app.format_dimension_result', 'format_dimension_result', (['res'], {}), '(res)\n', (1754, 1759), False, 'from app import format_dimension_result, DUMMY, get_power_of_dummy_var, get_complete_dim_word, SHORTCUT_DICT, get_word_partition, replace_acronyms_and_return_word\n')]
import random from typing import List from google.protobuf import wrappers_pb2 from google.protobuf.wrappers_pb2 import BytesValue from dialog_bot_sdk.entities.Avatar import Avatar from dialog_bot_sdk.entities.Group import Group from dialog_bot_sdk.entities.Permissions import Permissions, GroupPermission from dialog_bot_sdk.entities.User import User from dialog_bot_sdk.entities.Peer import Peer, PeerType from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer from .service import ManagedService from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2 class Groups(ManagedService): """Class for handling groups """ @async_dec() def create_public_group(self, title: str, short_name: str) -> Group: """Create public group :param title: title of group :param short_name: group name :return: Group """ request = groups_pb2.RequestCreateGroup( title=title, username=wrappers_pb2.StringValue(value=short_name), group_type=groups_pb2.GROUPTYPE_GROUP ) return self.__create_group(request) @async_dec() def create_private_group(self, title: str) -> Group: """Create private group :param title: title of group :return: Group """ request = groups_pb2.RequestCreateGroup( title=title, group_type=groups_pb2.GROUPTYPE_GROUP ) return self.__create_group(request) @async_dec() def create_public_channel(self, title: str, short_name: str) -> Group: """Create public channel :param title: title of group :param short_name: group name :return: Group """ request = groups_pb2.RequestCreateGroup( title=title, username=wrappers_pb2.StringValue(value=short_name), group_type=groups_pb2.GROUPTYPE_CHANNEL ) return self.__create_group(request) @async_dec() def create_private_channel(self, title: str) -> Group: """Create private channel :param title: title of group :return: Group """ request = groups_pb2.RequestCreateGroup( title=title, group_type=groups_pb2.GROUPTYPE_CHANNEL ) return self.__create_group(request) @async_dec() def find_group_by_short_name(self, short_name: str) -> Group or None: """Find a Group by short_name :param short_name: short_name of group :return: Group or None if could not find """ request = search_pb2.RequestPeerSearch( query=[ search_pb2.SearchCondition( searchPeerTypeCondition=search_pb2.SearchPeerTypeCondition( peer_type=search_pb2.SEARCHPEERTYPE_GROUPS ) ), search_pb2.SearchCondition( searchPieceText=search_pb2.SearchPieceText(query=short_name) ) ] ) response = self.internal.search.PeerSearch(request).search_results for result in response: if result.peer.type == PeerType.PEERTYPE_GROUP and hasattr(result, 'shortname') and \ result.shortname.value == short_name: return self.find_group_by_id(result.peer.id).wait() @async_dec() def find_group_by_id(self, group_id: int) -> Group or None: """Find and return Group by id :param group_id: group's :return: Group or None if could not find """ out_peer = self.__get_out_peer(Peer(group_id, PeerType.PEERTYPE_GROUP)) if out_peer is None: return None request = sequence_and_updates_pb2.RequestGetReferencedEntitites( groups=[out_peer] ) result = self.internal.updates.GetReferencedEntitites(request).groups self.manager.add_out_peer(peers_pb2.OutPeer(id=result[0].id, type=PeerType.PEERTYPE_GROUP, access_hash=result[0].access_hash)) return Group.from_api(result[0]) @async_dec() def load_members(self, group_peer: Peer or AsyncTask, limit: int = 0, cursor: bytes = b"", cursor_flag: bool = False) -> List[User] or List[User] and bytes or None: """Load Group members by peer :param group_peer: Peer or AsyncTask (in which located Group) :param limit: count members :param cursor: bytes object that specify to the user from whom to start (returned from this method) :param cursor_flag: returned cursor? (True/False) :return: list of User's """ group_peer = get_peer(group_peer) out_peer = self.__get_out_peer(group_peer) if out_peer is None: return None request = groups_pb2.RequestLoadMembers( group=out_peer, limit=limit, next=BytesValue(value=cursor) ) response = self.internal.groups.LoadMembers(request) members = response.members cursor = response.cursor.value request = sequence_and_updates_pb2.RequestGetReferencedEntitites( group_members=[ sequence_and_updates_pb2.GroupMembersSubset( group_peer=out_peer, member_ids=[member.uid for member in members] ) ] ) if cursor_flag: return [User.from_api(x) for x in self.internal.updates.GetReferencedEntitites(request).users], cursor return [User.from_api(x) for x in self.internal.updates.GetReferencedEntitites(request).users] @async_dec() def kick_user(self, group_peer: Peer or AsyncTask, user_peer: Peer or AsyncTask) -> None: """Kick user from Group :param group_peer: Peer or AsyncTask (in which located Group) :param user_peer: Peer or AsyncTask (in which located User) :return: None """ group_peer, user_peer = get_peer(group_peer), get_peer(user_peer) group_out_peer, user_out_peer = self.__get_out_peer(group_peer), self.__get_out_peer(user_peer) request = groups_pb2.RequestKickUser( group_peer=group_out_peer, user=user_out_peer, rid=random.randint(0, 100000000), ) self.internal.groups.KickUser(request) @async_dec() def invite_user(self, group_peer: Peer or AsyncTask, user_peer: Peer or AsyncTask) -> None: """Invite user in Group :param group_peer: Peer or AsyncTask (in which located Group) :param user_peer: Peer or AsyncTask (in which located User) :return: None """ group_peer, user_peer = get_peer(group_peer), get_peer(user_peer) group_out_peer, user_out_peer = self.__get_out_peer(group_peer), self.__get_out_peer(user_peer) request = groups_pb2.RequestInviteUser( group_peer=group_out_peer, user=user_out_peer, rid=random.randint(0, 100000000), ) self.internal.groups.InviteUser(request) @async_dec() def set_default_group_permissions(self, group_peer: Peer or AsyncTask, add_permissions: List[GroupPermission] = None, del_permissions: List[GroupPermission] = None) -> None: """add/del default group permissions :param group_peer: Peer or AsyncTask (in which located Group) :param add_permissions: list of permissions to add :param del_permissions: list of permissions to delete :return: None """ group_peer = get_peer(group_peer) if del_permissions is None: del_permissions = [] if add_permissions is None: add_permissions = [] group_out_peer = self.__get_out_peer(group_peer) add_request = groups_pb2.RequestEditGroupBasePermissions( group_peer=group_out_peer, random_id=random.randint(0, 100000000), granted_permissions=[x for x in add_permissions] ) del_request = groups_pb2.RequestEditGroupBasePermissions( group_peer=group_out_peer, random_id=random.randint(0, 100000000), revoked_permissions=[x for x in del_permissions] ) self.internal.groups.EditGroupBasePermissions(add_request) self.internal.groups.EditGroupBasePermissions(del_request) @async_dec() def set_member_permissions(self, group_peer: Peer or AsyncTask, user_peer: Peer or AsyncTask, add_permissions: List[GroupPermission] = None, del_permissions: List[GroupPermission] = None) -> None: """add/del group's member permissions :param group_peer: Peer or AsyncTask (in which located Group) :param user_peer: Peer or AsyncTask (in which located User) :param add_permissions: list of permissions to add :param del_permissions: list of permissions to delete :return: None """ group_peer, user_peer = get_peer(group_peer), get_peer(user_peer) if del_permissions is None: del_permissions = [] if add_permissions is None: add_permissions = [] group_out_peer, user_out_peer = self.__get_out_peer(group_peer), self.__get_out_peer(user_peer) add_request = groups_pb2.RequestEditMemberPermissions( group_peer=group_out_peer, user_peer=user_out_peer, granted_permissions=[x for x in add_permissions] ) del_request = groups_pb2.RequestEditMemberPermissions( group_peer=group_out_peer, user_peer=user_out_peer, revoked_permissions=[x for x in del_permissions] ) self.internal.groups.EditMemberPermissions(add_request) self.internal.groups.EditMemberPermissions(del_request) @async_dec() def get_group_member_permissions(self, group_peer: Peer or AsyncTask, user_peers: List[Peer or AsyncTask]) \ -> List[Permissions]: """return group member's permissions :param group_peer: Peer or AsyncTask (in which located Group) :param user_peers: Peer or AsyncTask (in which located User) :return: group member's permissions """ group_peer, user_peers = get_peer(group_peer), [get_peer(x) for x in user_peers] request = groups_pb2.RequestGetGroupMemberPermissions( group_id=group_peer.id, user_ids=[peer.id for peer in user_peers] ) return [Permissions.from_api(x) for x in self.internal.groups.GetGroupMemberPermissions(request).permissions] @async_dec() def edit_group_title(self, group_peer: Peer or AsyncTask, title: str) -> None: """change group's title :param group_peer: Peer or AsyncTask (in which located Group) :param title: new title :return: None """ group_peer = get_peer(group_peer) out_peer = self.__get_out_peer(group_peer) request = groups_pb2.RequestEditGroupTitle( group_peer=out_peer, rid=random.randint(0, 100000000), title=title ) self.internal.groups.EditGroupTitle(request) @async_dec() def edit_avatar(self, group_peer: Peer or AsyncTask, file: str) -> Avatar or None: """change group's avatar :param group_peer: Peer or AsyncTask (in which located Group) :param file: file path :return: Avatar """ group_peer = get_peer(group_peer) out_peer = self.__get_out_peer(group_peer) location = self.internal.uploading.upload_file(file).wait() if location is None: return None request = groups_pb2.RequestEditGroupAvatar( group_peer=out_peer, rid=random.randint(0, 100000000), file_location=location.to_api() ) return Avatar.from_api(self.internal.groups.EditGroupAvatar(request).avatar) @async_dec() def remove_group_avatar(self, group_peer: Peer or AsyncTask) -> None: """deleted group's avatar :param group_peer: Peer or AsyncTask (in which located User) :return: None """ group_peer = get_peer(group_peer) out_peer = self.__get_out_peer(group_peer) request = groups_pb2.RequestRemoveGroupAvatar( group_peer=out_peer, rid=random.randint(0, 100000000), ) self.internal.groups.RemoveGroupAvatar(request) @async_dec() def edit_group_about(self, group_peer: Peer or AsyncTask, about: str) -> None: """change group's "about" :param group_peer: Peer or AsyncTask (in which located User) :param about: about text :return: None """ group_peer = get_peer(group_peer) out_peer = self.__get_out_peer(group_peer) request = groups_pb2.RequestEditGroupAbout( group_peer=out_peer, rid=random.randint(0, 100000000), about=wrappers_pb2.StringValue(value=about) ) self.internal.groups.EditGroupAbout(request) @async_dec() def leave_group(self, group_peer: Peer or AsyncTask) -> None: """leave from group :param group_peer: Peer or AsyncTask (in which located Group) :return: None """ group_peer = get_peer(group_peer) out_peer = self.__get_out_peer(group_peer) request = groups_pb2.RequestLeaveGroup( group_peer=out_peer, rid=random.randint(0, 100000000), ) self.internal.groups.LeaveGroup(request) @async_dec() def make_user_admin(self, group_peer: Peer or AsyncTask, user_peer: Peer or AsyncTask, permissions: List[GroupPermission]) -> None: """Set new user's permissions (old permissions will be revoke) :param group_peer: Peer or AsyncTask (in which located Group) :param user_peer: Peer or AsyncTask (in which located User) :param permissions: permissions list (for admin) :return: None """ group_peer, user_peer = get_peer(group_peer), get_peer(user_peer) group_out_peer, user_out_peer = self.__get_out_peer(group_peer), self.__get_out_peer(user_peer) request = groups_pb2.RequestMakeUserAdmin( group_peer=group_out_peer, user_peer=user_out_peer, permissions=permissions ) self.internal.groups.MakeUserAdmin(request) @async_dec() def transfer_ownership(self, group_peer: Peer or AsyncTask, user_peer: Peer or AsyncTask) -> None: """change group's owner to user :param group_peer: Peer or AsyncTask (in which located Group) :param user_peer: Peer or AsyncTask (in which located User) :return: None """ group_peer, user_peer = get_peer(group_peer), get_peer(user_peer) out_peer = self.__get_out_peer(group_peer) request = groups_pb2.RequestTransferOwnership( group_peer=out_peer, new_owner=user_peer.id ) self.internal.groups.TransferOwnership(request) @async_dec() def get_group_invite_url(self, group_peer: Peer or AsyncTask) -> str: """return group's invite url :param group_peer: Peer or AsyncTask (in which located Group) :return: invite url """ group_peer = get_peer(group_peer) out_peer = self.__get_out_peer(group_peer) request = groups_pb2.RequestGetGroupInviteUrl( group_peer=out_peer ) return self.internal.groups.GetGroupInviteUrl(request).url @async_dec() def get_group_invite_url_base(self) -> str: """return group's invite url without token/short_name (example https://domain/@) :return: invite url (string) """ request = groups_pb2.RequestGetGroupInviteUrlBase() return self.internal.groups.GetGroupInviteUrlBase(request).url @async_dec() def revoke_invite_url(self, group_peer: Peer or AsyncTask) -> str: """revoke current invite url and return new group's invite url :return: invite url """ group_peer = get_peer(group_peer) out_peer = self.__get_out_peer(group_peer) request = groups_pb2.RequestRevokeInviteUrl( group_peer=out_peer ) return self.internal.groups.RevokeInviteUrl(request).url @async_dec() def join_group(self, token_or_url: str) -> Group: """join to group by token or invite url (used for private groups) :param token_or_url: group's token or invite url :return: Group """ request = groups_pb2.RequestJoinGroup( token=token_or_url ) response = self.internal.groups.JoinGroup(request) self.manager.add_out_peer(peers_pb2.OutPeer(id=response.group.id, access_hash=response.group.access_hash, type=PeerType.PEERTYPE_GROUP)) return Group.from_api(response.group) @async_dec() def join_group_by_peer(self, group_peer: Peer or AsyncTask) -> None: """join to group by group's peer (used for public groups) :param group_peer: Peer or AsyncTask (in which located Group) :return: None """ group_peer = get_peer(group_peer) out_peer = self.__get_out_peer(group_peer) request = groups_pb2.RequestJoinGroupByPeer( peer=out_peer ) self.internal.groups.JoinGroupByPeer(request) def __get_out_peer(self, peer: peers_pb2.Peer) -> peers_pb2.GroupOutPeer or peers_pb2.UserOutPeer or None: out_peer = self.manager.get_out_peer(peer) if out_peer is None: return None if peer.type == PeerType.PEERTYPE_GROUP: return peers_pb2.GroupOutPeer(group_id=out_peer.id, access_hash=out_peer.access_hash) elif peer.type == PeerType.PEERTYPE_PRIVATE: return peers_pb2.UserOutPeer(uid=out_peer.id, access_hash=out_peer.access_hash) def __create_group(self, request: groups_pb2.RequestCreateGroup) -> Group: group = self.internal.groups.CreateGroup(request).group self.manager.add_out_peer( peers_pb2.OutPeer(id=group.id, access_hash=group.access_hash, type=PeerType.PEERTYPE_GROUP)) return Group.from_api(group)
[ "dialog_api.peers_pb2.OutPeer", "google.protobuf.wrappers_pb2.BytesValue", "dialog_api.peers_pb2.UserOutPeer", "dialog_bot_sdk.utils.get_peer", "dialog_api.groups_pb2.RequestGetGroupMemberPermissions", "dialog_api.search_pb2.SearchPieceText", "dialog_bot_sdk.utils.async_dec", "dialog_api.sequence_and_updates_pb2.GroupMembersSubset", "dialog_bot_sdk.entities.Group.Group.from_api", "random.randint", "dialog_api.peers_pb2.GroupOutPeer", "dialog_api.groups_pb2.RequestGetGroupInviteUrlBase", "dialog_api.search_pb2.SearchPeerTypeCondition", "dialog_api.groups_pb2.RequestMakeUserAdmin", "dialog_api.groups_pb2.RequestEditMemberPermissions", "dialog_api.groups_pb2.RequestGetGroupInviteUrl", "dialog_api.groups_pb2.RequestCreateGroup", "google.protobuf.wrappers_pb2.StringValue", "dialog_bot_sdk.entities.Peer.Peer", "dialog_api.groups_pb2.RequestTransferOwnership", "dialog_api.groups_pb2.RequestRevokeInviteUrl", "dialog_bot_sdk.entities.Permissions.Permissions.from_api", "dialog_api.groups_pb2.RequestJoinGroup", "dialog_api.groups_pb2.RequestJoinGroupByPeer", "dialog_api.sequence_and_updates_pb2.RequestGetReferencedEntitites", "dialog_bot_sdk.entities.User.User.from_api" ]
[((672, 683), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (681, 683), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((1148, 1159), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (1157, 1159), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((1506, 1517), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (1515, 1517), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((1989, 2000), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (1998, 2000), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((2354, 2365), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (2363, 2365), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((3391, 3402), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (3400, 3402), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((4161, 4172), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (4170, 4172), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((5714, 5725), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (5723, 5725), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((6430, 6441), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (6439, 6441), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((7152, 7163), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (7161, 7163), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((8524, 8535), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (8533, 8535), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((10010, 10021), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (10019, 10021), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((10786, 10797), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (10795, 10797), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((11367, 11378), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (11376, 11378), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((12128, 12139), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (12137, 12139), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((12651, 12662), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (12660, 12662), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((13266, 13277), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (13275, 13277), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((13762, 13773), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (13771, 13773), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((14644, 14655), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (14653, 14655), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((15292, 15303), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (15301, 15303), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((15789, 15800), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (15798, 15800), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((16125, 16136), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (16134, 16136), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((16579, 16590), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (16588, 16590), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((17208, 17219), 'dialog_bot_sdk.utils.async_dec', 'async_dec', ([], {}), '()\n', (17217, 17219), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((1340, 1426), 'dialog_api.groups_pb2.RequestCreateGroup', 'groups_pb2.RequestCreateGroup', ([], {'title': 'title', 'group_type': 'groups_pb2.GROUPTYPE_GROUP'}), '(title=title, group_type=groups_pb2.\n GROUPTYPE_GROUP)\n', (1369, 1426), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((2186, 2274), 'dialog_api.groups_pb2.RequestCreateGroup', 'groups_pb2.RequestCreateGroup', ([], {'title': 'title', 'group_type': 'groups_pb2.GROUPTYPE_CHANNEL'}), '(title=title, group_type=groups_pb2.\n GROUPTYPE_CHANNEL)\n', (2215, 2274), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((3753, 3826), 'dialog_api.sequence_and_updates_pb2.RequestGetReferencedEntitites', 'sequence_and_updates_pb2.RequestGetReferencedEntitites', ([], {'groups': '[out_peer]'}), '(groups=[out_peer])\n', (3807, 3826), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((4129, 4154), 'dialog_bot_sdk.entities.Group.Group.from_api', 'Group.from_api', (['result[0]'], {}), '(result[0])\n', (4143, 4154), False, 'from dialog_bot_sdk.entities.Group import Group\n'), ((4739, 4759), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (4747, 4759), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((7710, 7730), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (7718, 7730), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((9477, 9622), 'dialog_api.groups_pb2.RequestEditMemberPermissions', 'groups_pb2.RequestEditMemberPermissions', ([], {'group_peer': 'group_out_peer', 'user_peer': 'user_out_peer', 'granted_permissions': '[x for x in add_permissions]'}), '(group_peer=group_out_peer,\n user_peer=user_out_peer, granted_permissions=[x for x in add_permissions])\n', (9516, 9622), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((9687, 9832), 'dialog_api.groups_pb2.RequestEditMemberPermissions', 'groups_pb2.RequestEditMemberPermissions', ([], {'group_peer': 'group_out_peer', 'user_peer': 'user_out_peer', 'revoked_permissions': '[x for x in del_permissions]'}), '(group_peer=group_out_peer,\n user_peer=user_out_peer, revoked_permissions=[x for x in del_permissions])\n', (9726, 9832), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((10517, 10631), 'dialog_api.groups_pb2.RequestGetGroupMemberPermissions', 'groups_pb2.RequestGetGroupMemberPermissions', ([], {'group_id': 'group_peer.id', 'user_ids': '[peer.id for peer in user_peers]'}), '(group_id=group_peer.id,\n user_ids=[peer.id for peer in user_peers])\n', (10560, 10631), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((11071, 11091), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (11079, 11091), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((11658, 11678), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (11666, 11678), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((12373, 12393), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (12381, 12393), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((12938, 12958), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (12946, 12958), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((13498, 13518), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (13506, 13518), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((14431, 14544), 'dialog_api.groups_pb2.RequestMakeUserAdmin', 'groups_pb2.RequestMakeUserAdmin', ([], {'group_peer': 'group_out_peer', 'user_peer': 'user_out_peer', 'permissions': 'permissions'}), '(group_peer=group_out_peer, user_peer=\n user_out_peer, permissions=permissions)\n', (14462, 14544), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((15115, 15200), 'dialog_api.groups_pb2.RequestTransferOwnership', 'groups_pb2.RequestTransferOwnership', ([], {'group_peer': 'out_peer', 'new_owner': 'user_peer.id'}), '(group_peer=out_peer, new_owner=user_peer.id\n )\n', (15150, 15200), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((15547, 15567), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (15555, 15567), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((15637, 15693), 'dialog_api.groups_pb2.RequestGetGroupInviteUrl', 'groups_pb2.RequestGetGroupInviteUrl', ([], {'group_peer': 'out_peer'}), '(group_peer=out_peer)\n', (15672, 15693), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((16006, 16047), 'dialog_api.groups_pb2.RequestGetGroupInviteUrlBase', 'groups_pb2.RequestGetGroupInviteUrlBase', ([], {}), '()\n', (16045, 16047), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((16341, 16361), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (16349, 16361), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((16431, 16485), 'dialog_api.groups_pb2.RequestRevokeInviteUrl', 'groups_pb2.RequestRevokeInviteUrl', ([], {'group_peer': 'out_peer'}), '(group_peer=out_peer)\n', (16464, 16485), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((16830, 16877), 'dialog_api.groups_pb2.RequestJoinGroup', 'groups_pb2.RequestJoinGroup', ([], {'token': 'token_or_url'}), '(token=token_or_url)\n', (16857, 16877), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((17171, 17201), 'dialog_bot_sdk.entities.Group.Group.from_api', 'Group.from_api', (['response.group'], {}), '(response.group)\n', (17185, 17201), False, 'from dialog_bot_sdk.entities.Group import Group\n'), ((17485, 17505), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (17493, 17505), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((17575, 17623), 'dialog_api.groups_pb2.RequestJoinGroupByPeer', 'groups_pb2.RequestJoinGroupByPeer', ([], {'peer': 'out_peer'}), '(peer=out_peer)\n', (17608, 17623), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((18507, 18528), 'dialog_bot_sdk.entities.Group.Group.from_api', 'Group.from_api', (['group'], {}), '(group)\n', (18521, 18528), False, 'from dialog_bot_sdk.entities.Group import Group\n'), ((3640, 3679), 'dialog_bot_sdk.entities.Peer.Peer', 'Peer', (['group_id', 'PeerType.PEERTYPE_GROUP'], {}), '(group_id, PeerType.PEERTYPE_GROUP)\n', (3644, 3679), False, 'from dialog_bot_sdk.entities.Peer import Peer, PeerType\n'), ((3961, 4064), 'dialog_api.peers_pb2.OutPeer', 'peers_pb2.OutPeer', ([], {'id': 'result[0].id', 'type': 'PeerType.PEERTYPE_GROUP', 'access_hash': 'result[0].access_hash'}), '(id=result[0].id, type=PeerType.PEERTYPE_GROUP,\n access_hash=result[0].access_hash)\n', (3978, 4064), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((5621, 5637), 'dialog_bot_sdk.entities.User.User.from_api', 'User.from_api', (['x'], {}), '(x)\n', (5634, 5637), False, 'from dialog_bot_sdk.entities.User import User\n'), ((6057, 6077), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (6065, 6077), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((6079, 6098), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['user_peer'], {}), '(user_peer)\n', (6087, 6098), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((6775, 6795), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (6783, 6795), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((6797, 6816), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['user_peer'], {}), '(user_peer)\n', (6805, 6816), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((9171, 9191), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (9179, 9191), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((9193, 9212), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['user_peer'], {}), '(user_peer)\n', (9201, 9212), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((10443, 10463), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (10451, 10463), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((10678, 10701), 'dialog_bot_sdk.entities.Permissions.Permissions.from_api', 'Permissions.from_api', (['x'], {}), '(x)\n', (10698, 10701), False, 'from dialog_bot_sdk.entities.Permissions import Permissions, GroupPermission\n'), ((14267, 14287), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (14275, 14287), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((14289, 14308), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['user_peer'], {}), '(user_peer)\n', (14297, 14308), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((15004, 15024), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['group_peer'], {}), '(group_peer)\n', (15012, 15024), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((15026, 15045), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['user_peer'], {}), '(user_peer)\n', (15034, 15045), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((16993, 17107), 'dialog_api.peers_pb2.OutPeer', 'peers_pb2.OutPeer', ([], {'id': 'response.group.id', 'access_hash': 'response.group.access_hash', 'type': 'PeerType.PEERTYPE_GROUP'}), '(id=response.group.id, access_hash=response.group.\n access_hash, type=PeerType.PEERTYPE_GROUP)\n', (17010, 17107), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((17984, 18062), 'dialog_api.peers_pb2.GroupOutPeer', 'peers_pb2.GroupOutPeer', ([], {'group_id': 'out_peer.id', 'access_hash': 'out_peer.access_hash'}), '(group_id=out_peer.id, access_hash=out_peer.access_hash)\n', (18006, 18062), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((18399, 18495), 'dialog_api.peers_pb2.OutPeer', 'peers_pb2.OutPeer', ([], {'id': 'group.id', 'access_hash': 'group.access_hash', 'type': 'PeerType.PEERTYPE_GROUP'}), '(id=group.id, access_hash=group.access_hash, type=PeerType\n .PEERTYPE_GROUP)\n', (18416, 18495), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((994, 1036), 'google.protobuf.wrappers_pb2.StringValue', 'wrappers_pb2.StringValue', ([], {'value': 'short_name'}), '(value=short_name)\n', (1018, 1036), False, 'from google.protobuf import wrappers_pb2\n'), ((1833, 1875), 'google.protobuf.wrappers_pb2.StringValue', 'wrappers_pb2.StringValue', ([], {'value': 'short_name'}), '(value=short_name)\n', (1857, 1875), False, 'from google.protobuf import wrappers_pb2\n'), ((4984, 5008), 'google.protobuf.wrappers_pb2.BytesValue', 'BytesValue', ([], {'value': 'cursor'}), '(value=cursor)\n', (4994, 5008), False, 'from google.protobuf.wrappers_pb2 import BytesValue\n'), ((6337, 6365), 'random.randint', 'random.randint', (['(0)', '(100000000)'], {}), '(0, 100000000)\n', (6351, 6365), False, 'import random\n'), ((7057, 7085), 'random.randint', 'random.randint', (['(0)', '(100000000)'], {}), '(0, 100000000)\n', (7071, 7085), False, 'import random\n'), ((8054, 8082), 'random.randint', 'random.randint', (['(0)', '(100000000)'], {}), '(0, 100000000)\n', (8068, 8082), False, 'import random\n'), ((8282, 8310), 'random.randint', 'random.randint', (['(0)', '(100000000)'], {}), '(0, 100000000)\n', (8296, 8310), False, 'import random\n'), ((10466, 10477), 'dialog_bot_sdk.utils.get_peer', 'get_peer', (['x'], {}), '(x)\n', (10474, 10477), False, 'from dialog_bot_sdk.utils import async_dec, AsyncTask, get_peer\n'), ((11244, 11272), 'random.randint', 'random.randint', (['(0)', '(100000000)'], {}), '(0, 100000000)\n', (11258, 11272), False, 'import random\n'), ((11953, 11981), 'random.randint', 'random.randint', (['(0)', '(100000000)'], {}), '(0, 100000000)\n', (11967, 11981), False, 'import random\n'), ((12549, 12577), 'random.randint', 'random.randint', (['(0)', '(100000000)'], {}), '(0, 100000000)\n', (12563, 12577), False, 'import random\n'), ((13111, 13139), 'random.randint', 'random.randint', (['(0)', '(100000000)'], {}), '(0, 100000000)\n', (13125, 13139), False, 'import random\n'), ((13159, 13196), 'google.protobuf.wrappers_pb2.StringValue', 'wrappers_pb2.StringValue', ([], {'value': 'about'}), '(value=about)\n', (13183, 13196), False, 'from google.protobuf import wrappers_pb2\n'), ((13667, 13695), 'random.randint', 'random.randint', (['(0)', '(100000000)'], {}), '(0, 100000000)\n', (13681, 13695), False, 'import random\n'), ((18135, 18207), 'dialog_api.peers_pb2.UserOutPeer', 'peers_pb2.UserOutPeer', ([], {'uid': 'out_peer.id', 'access_hash': 'out_peer.access_hash'}), '(uid=out_peer.id, access_hash=out_peer.access_hash)\n', (18156, 18207), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((5272, 5388), 'dialog_api.sequence_and_updates_pb2.GroupMembersSubset', 'sequence_and_updates_pb2.GroupMembersSubset', ([], {'group_peer': 'out_peer', 'member_ids': '[member.uid for member in members]'}), '(group_peer=out_peer, member_ids\n =[member.uid for member in members])\n', (5315, 5388), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((5510, 5526), 'dialog_bot_sdk.entities.User.User.from_api', 'User.from_api', (['x'], {}), '(x)\n', (5523, 5526), False, 'from dialog_bot_sdk.entities.User import User\n'), ((2743, 2821), 'dialog_api.search_pb2.SearchPeerTypeCondition', 'search_pb2.SearchPeerTypeCondition', ([], {'peer_type': 'search_pb2.SEARCHPEERTYPE_GROUPS'}), '(peer_type=search_pb2.SEARCHPEERTYPE_GROUPS)\n', (2777, 2821), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n'), ((2967, 3011), 'dialog_api.search_pb2.SearchPieceText', 'search_pb2.SearchPieceText', ([], {'query': 'short_name'}), '(query=short_name)\n', (2993, 3011), False, 'from dialog_api import search_pb2, groups_pb2, peers_pb2, sequence_and_updates_pb2\n')]
from rest_framework import serializers from posts.models import Post from comments.comments_api.serializers import CommentSerializer from comments.models import Comment class PostListSerializer(serializers.ModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='posts_api:pk_detail', lookup_field='pk' ) delete_url = serializers.HyperlinkedIdentityField( view_name='posts_api:delete', lookup_field='pk' ) user = serializers.SerializerMethodField() image = serializers.SerializerMethodField() markdown = serializers.SerializerMethodField() comments = serializers.SerializerMethodField() def get_comments(self, obj): content_type = obj.get_content_type object_id = obj.id comments_queryset = Comment.objects.filter_by_instance(obj) comments = CommentSerializer(comments_queryset, many=True).data return comments def get_user(self, obj): return str(obj.user.username) def get_markdown(self, obj): return obj.get_markdown() def get_image(self, obj): try: img = obj.image.url except: img = None return img class Meta: model = Post fields = ['url', 'user', 'id', 'title', 'markdown', 'image', 'delete_url', 'comments'] class PostSerializer(serializers.ModelSerializer): class Meta: model = Post fields = ['id', 'title', 'slug', 'content', 'publish'] class PostCreateSerializer(serializers.ModelSerializer): class Meta: model = Post fields = [ "title", "content", "publish", ]
[ "comments.comments_api.serializers.CommentSerializer", "comments.models.Comment.objects.filter_by_instance", "rest_framework.serializers.SerializerMethodField", "rest_framework.serializers.HyperlinkedIdentityField" ]
[((236, 328), 'rest_framework.serializers.HyperlinkedIdentityField', 'serializers.HyperlinkedIdentityField', ([], {'view_name': '"""posts_api:pk_detail"""', 'lookup_field': '"""pk"""'}), "(view_name='posts_api:pk_detail',\n lookup_field='pk')\n", (272, 328), False, 'from rest_framework import serializers\n'), ((356, 445), 'rest_framework.serializers.HyperlinkedIdentityField', 'serializers.HyperlinkedIdentityField', ([], {'view_name': '"""posts_api:delete"""', 'lookup_field': '"""pk"""'}), "(view_name='posts_api:delete',\n lookup_field='pk')\n", (392, 445), False, 'from rest_framework import serializers\n'), ((467, 502), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (500, 502), False, 'from rest_framework import serializers\n'), ((515, 550), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (548, 550), False, 'from rest_framework import serializers\n'), ((566, 601), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (599, 601), False, 'from rest_framework import serializers\n'), ((617, 652), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (650, 652), False, 'from rest_framework import serializers\n'), ((786, 825), 'comments.models.Comment.objects.filter_by_instance', 'Comment.objects.filter_by_instance', (['obj'], {}), '(obj)\n', (820, 825), False, 'from comments.models import Comment\n'), ((845, 892), 'comments.comments_api.serializers.CommentSerializer', 'CommentSerializer', (['comments_queryset'], {'many': '(True)'}), '(comments_queryset, many=True)\n', (862, 892), False, 'from comments.comments_api.serializers import CommentSerializer\n')]
import os import logging import argparse import builtins from ghcopy.utils import set_config, activate_virtual_environment, set_localization, get_logger ######################################################################################################################## # Configuration # ######################################################################################################################## parser = argparse.ArgumentParser(prog='ghcopy') home = os.getenv("HOME") parser.add_argument('-c', '--config', help='config file', default='~/.ghcopy/config.json') parser.add_argument('-o', '--output', help='output directory', default='~/RemoteCopies') parser.add_argument('-b', '--hub', help='repository type: github, bitbucket') parser.add_argument('-u', '--user', help='user name') parser.add_argument('-p', '--password', help='password') parser.add_argument('-t', '--token', help='token') parser.add_argument('-l', '--log_level', help='logging level: CRITICAL, ERROR, WARNING, INFO, DEBUG or NOTSET', default='INFO') cmd_args = parser.parse_args() config_args = set_config(cmd_args.config.replace('~', home)) cmd_args.output = cmd_args.output.replace('~', home) ######################################################################################################################## # Localization # ######################################################################################################################## set_localization(**config_args) translate = _ = builtins.__dict__.get('_', lambda x: x) ######################################################################################################################## # Logging # ######################################################################################################################## try: log_level, level_error = logging._nameToLevel[cmd_args.log_level], False except KeyError: level_error = True log_level = logging._nameToLevel['INFO'] logger = get_logger('ghcopy', config_args.get("log_format", "%(levelname)-10s|%(asctime)s|" "%(process)d|%(thread)d| %(name)s --- " "%(message)s"), config_args.get('log_file', '~/.report/report.log').replace('~', home), log_level) if level_error: logger.warning('%s \'%s\', %s \'INFO\' %s' % (_('incorrect logging level'), cmd_args.log_level, _('used'), _('by default'))) cmd_args.log_level = 'INFO' ######################################################################################################################## # Virtual environment # ######################################################################################################################## if config_args.get('environment') != "": activate_virtual_environment(**config_args) logger.info('%s \'%s\'' % (_('activated virtual environment'), config_args.get('environment')))
[ "argparse.ArgumentParser", "os.getenv", "ghcopy.utils.set_localization", "builtins.__dict__.get", "ghcopy.utils.activate_virtual_environment" ]
[((527, 565), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""ghcopy"""'}), "(prog='ghcopy')\n", (550, 565), False, 'import argparse\n'), ((573, 590), 'os.getenv', 'os.getenv', (['"""HOME"""'], {}), "('HOME')\n", (582, 590), False, 'import os\n'), ((1670, 1701), 'ghcopy.utils.set_localization', 'set_localization', ([], {}), '(**config_args)\n', (1686, 1701), False, 'from ghcopy.utils import set_config, activate_virtual_environment, set_localization, get_logger\n'), ((1718, 1757), 'builtins.__dict__.get', 'builtins.__dict__.get', (['"""_"""', '(lambda x: x)'], {}), "('_', lambda x: x)\n", (1739, 1757), False, 'import builtins\n'), ((3300, 3343), 'ghcopy.utils.activate_virtual_environment', 'activate_virtual_environment', ([], {}), '(**config_args)\n', (3328, 3343), False, 'from ghcopy.utils import set_config, activate_virtual_environment, set_localization, get_logger\n')]
from abc import ABC, abstractmethod import logging import re from typing import Iterable, Mapping, Optional, Tuple from sciencebeam_parser.document.semantic_document import ( SemanticContentFactoryProtocol, SemanticContentWrapper, SemanticNote ) from sciencebeam_parser.document.layout_document import EMPTY_BLOCK, LayoutBlock, LayoutTokensText LOGGER = logging.getLogger(__name__) class ModelSemanticExtractor(ABC): @abstractmethod def iter_semantic_content_for_entity_blocks( self, entity_tokens: Iterable[Tuple[str, LayoutBlock]], **kwargs ) -> Iterable[SemanticContentWrapper]: pass def get_regex_cleaned_layout_block_with_prefix_suffix( layout_block: LayoutBlock, regex_pattern: Optional[str] ) -> Tuple[LayoutBlock, LayoutBlock, LayoutBlock]: if not layout_block or not layout_block.lines or not regex_pattern: return EMPTY_BLOCK, layout_block, EMPTY_BLOCK layout_tokens_text = LayoutTokensText(layout_block) text = str(layout_tokens_text) m = re.match(regex_pattern, text, re.IGNORECASE) if not m: LOGGER.debug('text does not match regex: %r', text) return EMPTY_BLOCK, layout_block, EMPTY_BLOCK start = m.start(1) end = m.end(1) LOGGER.debug('start: %d, end: %d, len: %d (text: %r)', start, end, len(text), text) return ( LayoutBlock.for_tokens(list( layout_tokens_text.iter_layout_tokens_between(0, start) )), LayoutBlock.for_tokens(list( layout_tokens_text.iter_layout_tokens_between(start, end) )), LayoutBlock.for_tokens(list( layout_tokens_text.iter_layout_tokens_between(end, len(text)) )) ) class SimpleModelSemanticExtractor(ModelSemanticExtractor): def __init__( self, semantic_content_class_by_tag: Optional[ Mapping[str, SemanticContentFactoryProtocol] ] = None ): super().__init__() self.semantic_content_class_by_tag = semantic_content_class_by_tag or {} def get_semantic_content_for_entity_name( self, name: str, layout_block: LayoutBlock ) -> SemanticContentWrapper: semantic_content_class = self.semantic_content_class_by_tag.get(name) if semantic_content_class: return semantic_content_class(layout_block=layout_block) return SemanticNote( layout_block=layout_block, note_type=name )
[ "logging.getLogger", "sciencebeam_parser.document.semantic_document.SemanticNote", "sciencebeam_parser.document.layout_document.LayoutTokensText", "re.match" ]
[((369, 396), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (386, 396), False, 'import logging\n'), ((971, 1001), 'sciencebeam_parser.document.layout_document.LayoutTokensText', 'LayoutTokensText', (['layout_block'], {}), '(layout_block)\n', (987, 1001), False, 'from sciencebeam_parser.document.layout_document import EMPTY_BLOCK, LayoutBlock, LayoutTokensText\n'), ((1045, 1089), 're.match', 're.match', (['regex_pattern', 'text', 're.IGNORECASE'], {}), '(regex_pattern, text, re.IGNORECASE)\n', (1053, 1089), False, 'import re\n'), ((2401, 2456), 'sciencebeam_parser.document.semantic_document.SemanticNote', 'SemanticNote', ([], {'layout_block': 'layout_block', 'note_type': 'name'}), '(layout_block=layout_block, note_type=name)\n', (2413, 2456), False, 'from sciencebeam_parser.document.semantic_document import SemanticContentFactoryProtocol, SemanticContentWrapper, SemanticNote\n')]
from visual_tools.visualize import display_segmentation from .gui_viewer import GuiViewer class GuiKittiViewer(GuiViewer): def __init__(self, figurename, dataset): super(GuiKittiViewer, self).__init__(figurename) self.dataset = dataset self.num_images = self.dataset.num_images self.create_slider() self.create_textbox() self.display() def display(self): should_update = super(GuiKittiViewer, self).display() if should_update: image = self.dataset.load_image(self.image_id) masks = self.dataset.load_mask(self.image_id) display_segmentation(image, masks, self.dataset.class_names, ax=self.ax) title = "ID: {}\nImage file name: {}".format( self.image_id, self.dataset.image_files[self.image_id] ) self.fig.suptitle(title, fontsize=20) self.fig.canvas.draw_idle()
[ "visual_tools.visualize.display_segmentation" ]
[((635, 707), 'visual_tools.visualize.display_segmentation', 'display_segmentation', (['image', 'masks', 'self.dataset.class_names'], {'ax': 'self.ax'}), '(image, masks, self.dataset.class_names, ax=self.ax)\n', (655, 707), False, 'from visual_tools.visualize import display_segmentation\n')]
import matplotlib.pyplot as plt import pyshtools import numpy as np import sys import gmi_misc import convert_shtools_grids try: #raw_grid = gmi_misc.read_tess_output_global_grid_from_file(sys.argv[1]) raw_grid = gmi_misc.read_global_grid_from_xyz_file(sys.argv[1]) except IOError as err: print("CAN NOT OPEN OBSERVED DATAFILE: {0}".format(err)) exit(-1) shtools_inp_grid = pyshtools.SHGrid.from_array(raw_grid) #get SH coefficients shtools_coeff = shtools_inp_grid.expand(normalization='schmidt') shtools_coeff_filt = gmi_misc.remove_lw_sh_coeff(shtools_coeff, 16) shtools_grd_filt = shtools_coeff_filt.expand(grid='DH2') shtools_grd_filt.to_file(sys.argv[1][0:len(sys.argv[1])-4]+'_filt.dat') convert_shtools_grids.conv_grid(sys.argv[1][0:len(sys.argv[1])-4]+'_filt.dat')
[ "pyshtools.SHGrid.from_array", "gmi_misc.read_global_grid_from_xyz_file", "gmi_misc.remove_lw_sh_coeff" ]
[((383, 420), 'pyshtools.SHGrid.from_array', 'pyshtools.SHGrid.from_array', (['raw_grid'], {}), '(raw_grid)\n', (410, 420), False, 'import pyshtools\n'), ((529, 575), 'gmi_misc.remove_lw_sh_coeff', 'gmi_misc.remove_lw_sh_coeff', (['shtools_coeff', '(16)'], {}), '(shtools_coeff, 16)\n', (556, 575), False, 'import gmi_misc\n'), ((219, 271), 'gmi_misc.read_global_grid_from_xyz_file', 'gmi_misc.read_global_grid_from_xyz_file', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (258, 271), False, 'import gmi_misc\n')]
import json def respond(err, res=None): response = { "statusCode": "400" if err else "200", "body": str(err) if err else json.dumps(res), "headers": { "Content-Type": "application/json", "Access-Control-Allow-Origin": "https://example.com", # <- Also have to set CORS Headers in function response "Access-Control-Allow-Credentials": True, }, } return response def lambda_handler(event, context): """Sample HelloWorld Function""" try: # Accessing the principalId set via Cookie Authorizer username = event["requestContext"]["authorizer"]["principalId"] res = {"message": f"Hello {username}"} return respond(None, res) except Exception as e: print(e) return respond
[ "json.dumps" ]
[((143, 158), 'json.dumps', 'json.dumps', (['res'], {}), '(res)\n', (153, 158), False, 'import json\n')]
# -*- coding: utf-8 -*- import os from django.core.management import call_command from django.core.management.base import BaseCommand class Command(BaseCommand): def handle(self, *args, **options): base_dir = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) file_path = os.path.join(base_dir, 'fixtures/cidades.json.zip') print(file_path) call_command('loaddata', file_path)
[ "os.path.dirname", "os.path.join", "django.core.management.call_command" ]
[((321, 372), 'os.path.join', 'os.path.join', (['base_dir', '"""fixtures/cidades.json.zip"""'], {}), "(base_dir, 'fixtures/cidades.json.zip')\n", (333, 372), False, 'import os\n'), ((406, 441), 'django.core.management.call_command', 'call_command', (['"""loaddata"""', 'file_path'], {}), "('loaddata', file_path)\n", (418, 441), False, 'from django.core.management import call_command\n'), ((272, 297), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (287, 297), False, 'import os\n')]
"""Asyncio helper.""" import asyncio from typing import Callable, Any, Coroutine from pnp import validator from pnp.typing import T from pnp.utils import StopCycleError SleepInterruptPredicate = Callable[[], Coroutine[Any, Any, bool]] SleepInterruptCallback = Callable[[], Coroutine[Any, Any, None]] async def async_interruptible_sleep( wait: float, callback: SleepInterruptCallback, interval: float = 0.1 ) -> None: """ Waits the specified amount of time. The waiting can be interrupted when the callback raises a `StopCycleError`. The argument `interval` defines after how much waiting time the callback should be called to determine if the sleep should be interrupted or not. """ wait = float(wait) interval = float(interval) complete_cycles = int(wait // interval) try: for _ in range(0, complete_cycles): await callback() # Should raise a StopCycleError error when waiting should be aborted await asyncio.sleep(interval) await asyncio.sleep(wait % interval) except StopCycleError: pass async def async_sleep_until_interrupt( sleep_time: float, interrupt_fun: SleepInterruptPredicate, interval: float = 0.1 ) -> None: """Call this method to sleep an interruptable sleep until the interrupt co-routine returns True.""" validator.is_function(interrupt_fun=interrupt_fun) async def callback() -> None: if await interrupt_fun(): raise StopCycleError() await async_interruptible_sleep(sleep_time, callback, interval=interval) async def run_sync(func: Callable[..., T], *args: Any) -> T: """Runs sync code in an async compatible non-blocking way using an executor.""" loop = asyncio.get_event_loop() return await loop.run_in_executor(None, func, *args)
[ "pnp.utils.StopCycleError", "asyncio.get_event_loop", "pnp.validator.is_function", "asyncio.sleep" ]
[((1340, 1390), 'pnp.validator.is_function', 'validator.is_function', ([], {'interrupt_fun': 'interrupt_fun'}), '(interrupt_fun=interrupt_fun)\n', (1361, 1390), False, 'from pnp import validator\n'), ((1730, 1754), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (1752, 1754), False, 'import asyncio\n'), ((1020, 1050), 'asyncio.sleep', 'asyncio.sleep', (['(wait % interval)'], {}), '(wait % interval)\n', (1033, 1050), False, 'import asyncio\n'), ((1478, 1494), 'pnp.utils.StopCycleError', 'StopCycleError', ([], {}), '()\n', (1492, 1494), False, 'from pnp.utils import StopCycleError\n'), ((981, 1004), 'asyncio.sleep', 'asyncio.sleep', (['interval'], {}), '(interval)\n', (994, 1004), False, 'import asyncio\n')]
import unittest import os from link.wrappers import DBConnectionWrapper, SqliteDBConnectionWrapper from mock import Mock, MagicMock from link.tests import * class TestDBConnectionWrapper(unittest.TestCase): """ Test that we are wrapping DB connections correctly """ def setUp(self): self.cw = DBConnectionWrapper() #create a fake connection that is a mock as well self.cw._wrapped = Mock() self.cw.execute = MagicMock() self.cw.execute.return_value = MagicMock() self.cw.execute.return_value.fetchall = MagicMock() self.cw.description = MagicMock() def test_select_dataframe(self): return_val = [(1,2), (3,4)] headers = [['Col1'], ['col2']] self.cw.execute.return_value.fetchall.return_value = return_val self.cw.execute.return_value.description = headers query = 'my select statement' results = self.cw.select_dataframe(query) #check to see that the headers match but all lower case self.assertEquals([d for d in results.columns], [c[0].lower() for c in headers]) def test_select(self): query = 'my select statement' results = self.cw.select(query) expected = ((1,2), (3,4)) results._data = expected self.assertEquals(query, results.query) self.assertEquals(results.data, expected) def check_chunk(self): self.cw.chunks = {'this_chunk':True} self.assertTrue(self.cw.chunk('this_chunk')) class TestSqliteConnection(unittest.TestCase): db_path = tst_db_path('test_db') db_path_with_default = tst_db_path('test_db.db') def setUp(self): self.cw = SqliteDBConnectionWrapper(path = self.db_path, chunked = True) self.cw_db = SqliteDBConnectionWrapper(path = self.db_path_with_default, chunked = True) self.cw_no_chunk = SqliteDBConnectionWrapper(path = self.db_path_with_default) def test_db_created(self): # don't change this table please data = self.cw_db.select('select * from test_table where column = 1').data self.assertEquals(data[0][0], 1) self.assertTrue(self.cw._wrapped == None) def test_db_chunk_created(self): # don't change this table please data = self.cw_db.select('select * from test_table_chunk where column = 1', chunk_name = 'my_chunk.db').data self.assertEquals(data[0][0], 1) data = self.cw_db.select('select * from test_table_chunk where column = 1', chunk_name = 'my_chunk.db').data self.assertEquals(data[0][0], 1) def test_db_created(self): # don't change this table please data = self.cw_no_chunk.select('select * from test_table where column = 1').data self.assertEquals(data[0][0], 1) self.assertRaises(Exception, self.cw_no_chunk.select, 'select * from test_table_chunk where column = 1',chunk_name = 'my_chunk.db') if __name__ == '__main__': import nose nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'], exit=False) #class TestSqliteConnection(unittest.TestCase): #TEST_DB = 'test_sqlite.db' #def setUp(self): ## if it already exists then just remove it #if os.path.exists(TEST_DB): #os.remove(TEST_DB) ##create a new connection to the db #self.connection = SqlLiteDBConnectionWrapper(path=TEST_DB) #def test_execute(self): #self.connection.execute("""create table test_table #(col1 int, col2 int)""") #self.assertTrue(True) #def test_false(self): #self.assertTrue(True)
[ "link.wrappers.SqliteDBConnectionWrapper", "mock.Mock", "nose.runmodule", "link.wrappers.DBConnectionWrapper", "mock.MagicMock" ]
[((3098, 3185), 'nose.runmodule', 'nose.runmodule', ([], {'argv': "[__file__, '-vvs', '-x', '--pdb', '--pdb-failure']", 'exit': '(False)'}), "(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'],\n exit=False)\n", (3112, 3185), False, 'import nose\n'), ((318, 339), 'link.wrappers.DBConnectionWrapper', 'DBConnectionWrapper', ([], {}), '()\n', (337, 339), False, 'from link.wrappers import DBConnectionWrapper, SqliteDBConnectionWrapper\n'), ((424, 430), 'mock.Mock', 'Mock', ([], {}), '()\n', (428, 430), False, 'from mock import Mock, MagicMock\n'), ((457, 468), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (466, 468), False, 'from mock import Mock, MagicMock\n'), ((508, 519), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (517, 519), False, 'from mock import Mock, MagicMock\n'), ((568, 579), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (577, 579), False, 'from mock import Mock, MagicMock\n'), ((610, 621), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (619, 621), False, 'from mock import Mock, MagicMock\n'), ((1720, 1778), 'link.wrappers.SqliteDBConnectionWrapper', 'SqliteDBConnectionWrapper', ([], {'path': 'self.db_path', 'chunked': '(True)'}), '(path=self.db_path, chunked=True)\n', (1745, 1778), False, 'from link.wrappers import DBConnectionWrapper, SqliteDBConnectionWrapper\n'), ((1804, 1875), 'link.wrappers.SqliteDBConnectionWrapper', 'SqliteDBConnectionWrapper', ([], {'path': 'self.db_path_with_default', 'chunked': '(True)'}), '(path=self.db_path_with_default, chunked=True)\n', (1829, 1875), False, 'from link.wrappers import DBConnectionWrapper, SqliteDBConnectionWrapper\n'), ((1907, 1964), 'link.wrappers.SqliteDBConnectionWrapper', 'SqliteDBConnectionWrapper', ([], {'path': 'self.db_path_with_default'}), '(path=self.db_path_with_default)\n', (1932, 1964), False, 'from link.wrappers import DBConnectionWrapper, SqliteDBConnectionWrapper\n')]
import bookworm.execute_command as execute_command import bookworm.detect_user as detect_user import bookworm_main.arg_processor as arg_processor import sys def warning(*objs): """ The function ``warning`` is a helper method for printing warnings. """ print('WARNING: ', *objs, file=sys.stderr) def main(argv=sys.argv): """ The main pdf operations are: 1. Unpack a PDF. 2. Change image resolution. 3. Rescale image. 4. Expand image with fill. """ parser = arg_processor.arg_processor() if detect_user.is_admin(): warning('You are currently running bookworm as superuser. ' 'You really should not run this program with elevated privileges.') if len(argv) < 2: parser.print_help() # An exit code of 2 is standard unix convention. sys.exit(2) args = parser.parse_args(argv[1:]) command = argv[1] try: command_dict = dict(command=command, args=vars(args)) action = execute_command.process_command(command_dict) execute_command.run_command([action]) except Exception as e: print(e) sys.exit(1) except ValueError as e: print(e) sys.exit(1)
[ "bookworm_main.arg_processor.arg_processor", "bookworm.execute_command.run_command", "bookworm.detect_user.is_admin", "sys.exit", "bookworm.execute_command.process_command" ]
[((519, 548), 'bookworm_main.arg_processor.arg_processor', 'arg_processor.arg_processor', ([], {}), '()\n', (546, 548), True, 'import bookworm_main.arg_processor as arg_processor\n'), ((557, 579), 'bookworm.detect_user.is_admin', 'detect_user.is_admin', ([], {}), '()\n', (577, 579), True, 'import bookworm.detect_user as detect_user\n'), ((849, 860), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (857, 860), False, 'import sys\n'), ((1012, 1057), 'bookworm.execute_command.process_command', 'execute_command.process_command', (['command_dict'], {}), '(command_dict)\n', (1043, 1057), True, 'import bookworm.execute_command as execute_command\n'), ((1066, 1103), 'bookworm.execute_command.run_command', 'execute_command.run_command', (['[action]'], {}), '([action])\n', (1093, 1103), True, 'import bookworm.execute_command as execute_command\n'), ((1156, 1167), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1164, 1167), False, 'import sys\n'), ((1221, 1232), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1229, 1232), False, 'import sys\n')]
import argparse import glob import logging import os import json import random import pickle as pkl import numpy as np import torch from tqdm import tqdm, trange from transformers import AlbertConfig, AlbertForTokenClassification, AutoTokenizer, AlbertForQuestionAnswering from .config import * from .logging_handler import logger class AlbertQA: def __init__(self, path, device='cpu'): if not os.path.exists(path): raise NotADirectoryError( f"{os.path.abspath(path)} must be a directory containing the model files: config, tokenizer, weights.") files = os.listdir(path) if CONFIG_JSON_FILE not in files: raise FileNotFoundError(f"{CONFIG_JSON_FILE} must be in {path}.") if WEIGHTS_FILE not in files: raise FileNotFoundError(f"{WEIGHTS_FILE} must be in {path}.") with open(os.path.join(path, CONFIG_JSON_FILE), "r") as f: config = json.load(f) self.tokenizer = AutoTokenizer.from_pretrained(path) weights = torch.load(os.path.join(path, WEIGHTS_FILE), map_location=lambda storage, loc: storage) # Load pretrained model/tokenizer config = AlbertConfig.from_dict(config) self.model = AlbertForQuestionAnswering(config) self.model.load_state_dict(weights) self.model = self.model.eval() self.args = albert_args_squad if device == "cuda": logger.debug("Setting model with CUDA") self.args['device'] = 'cuda' self.model.to('cuda') def answer(self, question, context, **kwargs): for key in kwargs: if key in self.args: self.args[key] = kwargs[key] inputs = self.tokenizer.encode_plus(question, context, **self.args) for key in inputs.keys(): inputs[key] = inputs[key].to(self.args['device']) input_ids = inputs["input_ids"].tolist()[0] answer_start_scores, answer_end_scores = self.model(**inputs) answer_start = torch.argmax(answer_start_scores) # Get the most likely beginning of answer answer_end = torch.argmax(answer_end_scores) + 1 # Get the most likely end of answer answer = self.tokenizer.convert_tokens_to_string( self.tokenizer.convert_ids_to_tokens( input_ids[answer_start:answer_end] ) ) answer = answer.replace("[CLS]", "").replace("[SEP]", " ").replace("<s>", "").replace("</s>", "") return answer class AlbertNER: def __init__(self, path ,device='cpu'): """ Method for pretrained model loading. """ if not os.path.exists(path): raise NotADirectoryError( f"{os.path.abspath(path)} must be a directory containing the model files: config, tokenizer, weights.") files = os.listdir(path) if CONFIG_JSON_FILE not in files: raise FileNotFoundError(f"{CONFIG_JSON_FILE} must be in {path}.") if WEIGHTS_FILE not in files: raise FileNotFoundError(f"{WEIGHTS_FILE} must be in {path}.") with open(os.path.join(path, CONFIG_JSON_FILE), "r") as f: config = json.load(f) self.tokenizer = AutoTokenizer.from_pretrained(path) weights = torch.load(os.path.join(path, WEIGHTS_FILE), map_location=lambda storage, loc: storage) # Load pretrained model/tokenizer config = AlbertConfig.from_dict(config) self.model = AlbertForTokenClassification(config) self.model.load_state_dict(weights) self.model = self.model.eval() self.args = albert_args_ner if device == "cuda": logger.debug("Setting model with CUDA") self.args['device'] = 'cuda' self.model.to('cuda') def extract(self, text, **kwargs): for key in kwargs: if key in self.args: self.args[key] = kwargs[key] tokens = self.tokenizer.tokenize(self.tokenizer.decode(self.tokenizer.encode(text))) inputs = self.tokenizer.encode(text, return_tensors="pt") outputs = self.model(inputs, **kwargs)[0] predictions = torch.argmax(outputs, dim=2) return [(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].tolist())]
[ "os.path.exists", "os.listdir", "transformers.AlbertConfig.from_dict", "transformers.AlbertForQuestionAnswering", "os.path.join", "transformers.AutoTokenizer.from_pretrained", "json.load", "os.path.abspath", "transformers.AlbertForTokenClassification", "torch.argmax" ]
[((608, 624), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (618, 624), False, 'import os\n'), ((984, 1019), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['path'], {}), '(path)\n', (1013, 1019), False, 'from transformers import AlbertConfig, AlbertForTokenClassification, AutoTokenizer, AlbertForQuestionAnswering\n'), ((1219, 1249), 'transformers.AlbertConfig.from_dict', 'AlbertConfig.from_dict', (['config'], {}), '(config)\n', (1241, 1249), False, 'from transformers import AlbertConfig, AlbertForTokenClassification, AutoTokenizer, AlbertForQuestionAnswering\n'), ((1271, 1305), 'transformers.AlbertForQuestionAnswering', 'AlbertForQuestionAnswering', (['config'], {}), '(config)\n', (1297, 1305), False, 'from transformers import AlbertConfig, AlbertForTokenClassification, AutoTokenizer, AlbertForQuestionAnswering\n'), ((2059, 2092), 'torch.argmax', 'torch.argmax', (['answer_start_scores'], {}), '(answer_start_scores)\n', (2071, 2092), False, 'import torch\n'), ((2870, 2886), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (2880, 2886), False, 'import os\n'), ((3246, 3281), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['path'], {}), '(path)\n', (3275, 3281), False, 'from transformers import AlbertConfig, AlbertForTokenClassification, AutoTokenizer, AlbertForQuestionAnswering\n'), ((3481, 3511), 'transformers.AlbertConfig.from_dict', 'AlbertConfig.from_dict', (['config'], {}), '(config)\n', (3503, 3511), False, 'from transformers import AlbertConfig, AlbertForTokenClassification, AutoTokenizer, AlbertForQuestionAnswering\n'), ((3533, 3569), 'transformers.AlbertForTokenClassification', 'AlbertForTokenClassification', (['config'], {}), '(config)\n', (3561, 3569), False, 'from transformers import AlbertConfig, AlbertForTokenClassification, AutoTokenizer, AlbertForQuestionAnswering\n'), ((4221, 4249), 'torch.argmax', 'torch.argmax', (['outputs'], {'dim': '(2)'}), '(outputs, dim=2)\n', (4233, 4249), False, 'import torch\n'), ((411, 431), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (425, 431), False, 'import os\n'), ((946, 958), 'json.load', 'json.load', (['f'], {}), '(f)\n', (955, 958), False, 'import json\n'), ((1049, 1081), 'os.path.join', 'os.path.join', (['path', 'WEIGHTS_FILE'], {}), '(path, WEIGHTS_FILE)\n', (1061, 1081), False, 'import os\n'), ((2157, 2188), 'torch.argmax', 'torch.argmax', (['answer_end_scores'], {}), '(answer_end_scores)\n', (2169, 2188), False, 'import torch\n'), ((2673, 2693), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (2687, 2693), False, 'import os\n'), ((3208, 3220), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3217, 3220), False, 'import json\n'), ((3311, 3343), 'os.path.join', 'os.path.join', (['path', 'WEIGHTS_FILE'], {}), '(path, WEIGHTS_FILE)\n', (3323, 3343), False, 'import os\n'), ((876, 912), 'os.path.join', 'os.path.join', (['path', 'CONFIG_JSON_FILE'], {}), '(path, CONFIG_JSON_FILE)\n', (888, 912), False, 'import os\n'), ((3138, 3174), 'os.path.join', 'os.path.join', (['path', 'CONFIG_JSON_FILE'], {}), '(path, CONFIG_JSON_FILE)\n', (3150, 3174), False, 'import os\n'), ((490, 511), 'os.path.abspath', 'os.path.abspath', (['path'], {}), '(path)\n', (505, 511), False, 'import os\n'), ((2752, 2773), 'os.path.abspath', 'os.path.abspath', (['path'], {}), '(path)\n', (2767, 2773), False, 'import os\n')]
# Generated by Django 2.1.5 on 2020-02-24 22:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('events', '0014_auto_20200219_2322'), ] operations = [ migrations.AddField( model_name='event', name='registration_type', field=models.PositiveSmallIntegerField(choices=[(1, 'Register to attend event'), (2, 'Apply to attend event'), (3, 'Visit event website')], default=1), ), ]
[ "django.db.models.PositiveSmallIntegerField" ]
[((343, 491), 'django.db.models.PositiveSmallIntegerField', 'models.PositiveSmallIntegerField', ([], {'choices': "[(1, 'Register to attend event'), (2, 'Apply to attend event'), (3,\n 'Visit event website')]", 'default': '(1)'}), "(choices=[(1, 'Register to attend event'),\n (2, 'Apply to attend event'), (3, 'Visit event website')], default=1)\n", (375, 491), False, 'from django.db import migrations, models\n')]
""" make sure server.py is running before passing a message as commandline \ argument after client.py. for example, a user will pass a message in terminal as below: python client.py this message will be echoed back Once you enter the message, it will be printed on server terminal as well as \ client terminal. And subsequently the socket on client terminal will be closed. """ import socket import time import sys def client(): socket.getaddrinfo('127.0.0.1', 3000) infos = socket.getaddrinfo('127.0.0.1', 3000) len(infos) stream_info = [i for i in infos if i[1] == socket.SOCK_STREAM][0] socket.getaddrinfo('127.0.0.1', 3000) stream_info client = socket.socket(*stream_info[:3]) client client.connect(stream_info[-1]) buffer_size = 8 now = time.strftime('%H:%M:%S %d/%m/%Y') print('Starting server on port 3000 at {}'.format(now)) try: message = sys.argv[1:] message = ' '.join(message) message = message.encode('utf8') print('sending {}'.format(message)) client.sendall(message + b'\r') amount_received = 0 amount_expected = len(message) echo_message = b'' while amount_received < amount_expected: data = client.recv(buffer_size) amount_received += len(data) echo_message += data now = time.strftime('%H:%M:%S %d/%m/%Y') print('[{}] Echoed: {}'.format(now, echo_message.decode('utf8'))) finally: print('closing socket') client.close() if __name__ == "__main__": client()
[ "time.strftime", "socket.getaddrinfo", "socket.socket" ]
[((442, 479), 'socket.getaddrinfo', 'socket.getaddrinfo', (['"""127.0.0.1"""', '(3000)'], {}), "('127.0.0.1', 3000)\n", (460, 479), False, 'import socket\n'), ((492, 529), 'socket.getaddrinfo', 'socket.getaddrinfo', (['"""127.0.0.1"""', '(3000)'], {}), "('127.0.0.1', 3000)\n", (510, 529), False, 'import socket\n'), ((619, 656), 'socket.getaddrinfo', 'socket.getaddrinfo', (['"""127.0.0.1"""', '(3000)'], {}), "('127.0.0.1', 3000)\n", (637, 656), False, 'import socket\n'), ((686, 717), 'socket.socket', 'socket.socket', (['*stream_info[:3]'], {}), '(*stream_info[:3])\n', (699, 717), False, 'import socket\n'), ((795, 829), 'time.strftime', 'time.strftime', (['"""%H:%M:%S %d/%m/%Y"""'], {}), "('%H:%M:%S %d/%m/%Y')\n", (808, 829), False, 'import time\n'), ((1368, 1402), 'time.strftime', 'time.strftime', (['"""%H:%M:%S %d/%m/%Y"""'], {}), "('%H:%M:%S %d/%m/%Y')\n", (1381, 1402), False, 'import time\n')]
import abc from collections.abc import Iterable from copy import deepcopy import numpy as np import mujoco_py from scipy.linalg import expm import robosuite.utils.macros as macros import robosuite.utils.angle_transformation as at from robosuite.utils.control_utils import * import robosuite.utils.transform_utils as T from scipy.spatial.transform import Rotation as R import matplotlib.pyplot as plt from scipy.integrate import odeint from scipy.interpolate import interp1d class Controller(object, metaclass=abc.ABCMeta): """ General controller interface. Requires reference to mujoco sim object, eef_name of specific robot, relevant joint_indexes to that robot, and whether an initial_joint is used for nullspace torques or not Args: sim (MjSim): Simulator instance this controller will pull robot state updates from eef_name (str): Name of controlled robot arm's end effector (from robot XML) joint_indexes (dict): Each key contains sim reference indexes to relevant robot joint information, namely: :`'joints'`: list of indexes to relevant robot joints :`'qpos'`: list of indexes to relevant robot joint positions :`'qvel'`: list of indexes to relevant robot joint velocities actuator_range (2-tuple of array of float): 2-Tuple (low, high) representing the robot joint actuator range """ def __init__(self, sim, eef_name, joint_indexes, actuator_range, plotting, collect_data, simulation_total_time, ): # Actuator range self.actuator_min = actuator_range[0] self.actuator_max = actuator_range[1] # Attributes for scaling / clipping inputs to outputs self.action_scale = None self.action_input_transform = None self.action_output_transform = None # Private property attributes self.control_dim = None self.output_min = None self.output_max = None self.input_min = None self.input_max = None # mujoco simulator state self.sim = sim self.model_timestep = macros.SIMULATION_TIMESTEP self.eef_name = eef_name self.joint_index = joint_indexes["joints"] self.qpos_index = joint_indexes["qpos"] self.qvel_index = joint_indexes["qvel"] # robot states self.ee_pos = None self.ee_ori_mat = None self.ee_pos_vel = None self.ee_ori_vel = None self.joint_pos = None self.joint_vel = None # dynamics and kinematics self.J_pos = None self.J_ori = None self.J_full = None self.mass_matrix = None self.interaction_forces = None self.interaction_forces_vec = [] self.PD_force_command = [] self.desired_frame_FT_vec = [] self.desired_frame_imp_position_vec = [] self.desired_frame_imp_ori_vec = [] self.desired_frame_imp_vel_vec = [] self.desired_frame_imp_ang_vel_vec = [] # Joint dimension self.joint_dim = len(joint_indexes["joints"]) # Torques being outputted by the controller self.torques = None # Update flag to prevent redundant update calls self.new_update = True # Move forward one timestep to propagate updates before taking first update self.sim.forward() # Initialize controller by updating internal state and setting the initial joint, pos, and ori self.update() self.initial_joint = self.joint_pos self.initial_ee_pos = self.ee_pos self.initial_ee_ori_mat = self.ee_ori_mat # minimum jerk specification - EC self.initial_position = self.initial_ee_pos self.final_position = np.array(self.sim.data.site_xpos[self.sim.model.site_name2id("hole_middle_cylinder")]) self.final_position = [self.initial_position[0], self.initial_position[1]-0.2, self.initial_position[2]] self.initial_orientation = self.initial_ee_ori_mat # self.final_orientation = np.array([[1, 0, 0], # [0, 0, 1], # [0, -1, 0]]) # peg horizantal self.final_orientation = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]) # peg vertical (pointing down) self.euler_initial_orientation = R.from_matrix(self.initial_orientation).as_euler('xyz', degrees=False) self.euler_final_orientation = R.from_matrix(self.final_orientation).as_euler('xyz', degrees=False) indexes_for_correction = np.abs(self.euler_final_orientation - self.euler_initial_orientation) > np.pi correction = np.sign(self.euler_final_orientation) * (2 * np.pi) * indexes_for_correction self.euler_final_orientation = self.euler_final_orientation - correction self.simulation_total_time = simulation_total_time # from main # EC - Run further definition and class variables self._specify_constants() # EC - this is the vector for the impedance equations self.X_m = np.zeros((12, 1)) self.is_contact = False # becomes true when the peg hits the table self.contact_time = 0.0 self.first_contact = True self.Delta_T = 0.002 self.f_0 = np.array([0, 0, 0, 0, 0, 0]) self.K = 5000 self.M = 5 Wn = np.sqrt(self.K / self.M) zeta = 0.707 # zeta = 1 self.C = 2 * self.M * zeta * Wn # C = 0 self.K_imp = self.K * np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]) self.C_imp = self.C * np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]) self.M_imp = self.M * np.array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]) # define if you want to plot some data self.collect_data = collect_data self.plotting = plotting def impedance_computations(self): # EC - compute next impedance Xm(n+1) and Vm(n+1) in world base frame. # state space formulation # X=[xm;thm;xm_d;thm_d] U=[F_int;M_int] M_inv = np.linalg.pinv(self.M_imp) A_1 = np.concatenate((np.zeros([6, 6], dtype=int), np.identity(6)), axis=1) A_2 = np.concatenate((np.dot(-M_inv, self.K_imp), np.dot(-M_inv, self.C_imp)), axis=1) A = np.concatenate((A_1, A_2), axis=0) B_1 = np.zeros([6, 6], dtype=int) B_2 = M_inv B = np.concatenate((B_1, B_2), axis=0) # discrete state space A, B matrices interaction_forces A_d = expm(A * self.Delta_T) B_d = np.dot(np.dot(np.linalg.pinv(A), (A_d - np.identity(A_d.shape[0]))), B) # convert the forces and torques to the desired frame Rotation_world_to_desired = R.from_euler("xyz", self.min_jerk_orientation, degrees=False).as_matrix() Rotation_desired_to_world = Rotation_world_to_desired.T F_d = Rotation_desired_to_world @ self.interaction_forces[:3] M_d = Rotation_desired_to_world @ self.interaction_forces[3:6] f_0 = np.concatenate((Rotation_desired_to_world @ self.f_0[:3], Rotation_desired_to_world @ self.f_0[3:6]), axis=0) U = (f_0 + np.concatenate((F_d, M_d), axis=0)).reshape(6, 1) # only for graphs! if self.collect_data: self.desired_frame_FT_vec.append(np.array(U)) self.desired_frame_imp_position_vec.append(np.array((self.X_m[:3]).reshape(3, ))) self.desired_frame_imp_ori_vec.append(np.array((self.X_m[3:6]).reshape(3, ))) self.desired_frame_imp_vel_vec.append(np.array((self.X_m[6:9]).reshape(3, ))) self.desired_frame_imp_ang_vel_vec.append(np.array((self.X_m[9:12]).reshape(3, ))) # discrete state solution X(k+1)=Ad*X(k)+Bd*U(k) X_m_next = np.dot(A_d, self.X_m.reshape(12, 1)) + np.dot(B_d, U) self.X_m = deepcopy(X_m_next) return def _min_jerk(self): """ EC Compute the value of position velocity and acceleration in a minimum jerk trajectory """ t = self.time x_traj = (self.X_final - self.X_init) / (self.tfinal ** 3) * ( 6 * (t ** 5) / (self.tfinal ** 2) - 15 * (t ** 4) / self.tfinal + 10 * (t ** 3)) + self.X_init y_traj = (self.Y_final - self.Y_init) / (self.tfinal ** 3) * ( 6 * (t ** 5) / (self.tfinal ** 2) - 15 * (t ** 4) / self.tfinal + 10 * (t ** 3)) + self.Y_init z_traj = (self.Z_final - self.Z_init) / (self.tfinal ** 3) * ( 6 * (t ** 5) / (self.tfinal ** 2) - 15 * (t ** 4) / self.tfinal + 10 * (t ** 3)) + self.Z_init self.min_jerk_position = np.array([x_traj, y_traj, z_traj]) # velocities vx = (self.X_final - self.X_init) / (self.tfinal ** 3) * ( 30 * (t ** 4) / (self.tfinal ** 2) - 60 * (t ** 3) / self.tfinal + 30 * (t ** 2)) vy = (self.Y_final - self.Y_init) / (self.tfinal ** 3) * ( 30 * (t ** 4) / (self.tfinal ** 2) - 60 * (t ** 3) / self.tfinal + 30 * (t ** 2)) vz = (self.Z_final - self.Z_init) / (self.tfinal ** 3) * ( 30 * (t ** 4) / (self.tfinal ** 2) - 60 * (t ** 3) / self.tfinal + 30 * (t ** 2)) self.min_jerk_velocity = np.array([vx, vy, vz]) # acceleration ax = (self.X_final - self.X_init) / (self.tfinal ** 3) * ( 120 * (t ** 3) / (self.tfinal ** 2) - 180 * (t ** 2) / self.tfinal + 60 * t) ay = (self.Y_final - self.Y_init) / (self.tfinal ** 3) * ( 120 * (t ** 3) / (self.tfinal ** 2) - 180 * (t ** 2) / self.tfinal + 60 * t) az = (self.Z_final - self.Z_init) / (self.tfinal ** 3) * ( 120 * (t ** 3) / (self.tfinal ** 2) - 180 * (t ** 2) / self.tfinal + 60 * t) self.min_jerk_acceleration = np.array([ax, ay, az]) # euler xyz representation alfa = (self.euler_final_orientation[0] - self.euler_initial_orientation[0]) / (self.tfinal ** 3) * ( 6 * (t ** 5) / (self.tfinal ** 2) - 15 * (t ** 4) / self.tfinal + 10 * (t ** 3)) + \ self.euler_initial_orientation[0] beta = (self.euler_final_orientation[1] - self.euler_initial_orientation[1]) / (self.tfinal ** 3) * ( 6 * (t ** 5) / (self.tfinal ** 2) - 15 * (t ** 4) / self.tfinal + 10 * (t ** 3)) + \ self.euler_initial_orientation[1] gamma = (self.euler_final_orientation[2] - self.euler_initial_orientation[2]) / (self.tfinal ** 3) * ( 6 * (t ** 5) / (self.tfinal ** 2) - 15 * (t ** 4) / self.tfinal + 10 * (t ** 3)) + \ self.euler_initial_orientation[2] alfa_dot = (self.euler_final_orientation[0] - self.euler_initial_orientation[0]) / (self.tfinal ** 3) * ( 30 * (t ** 4) / (self.tfinal ** 2) - 60 * (t ** 3) / self.tfinal + 30 * (t ** 2)) beta_dot = (self.euler_final_orientation[1] - self.euler_initial_orientation[1]) / (self.tfinal ** 3) * ( 30 * (t ** 4) / (self.tfinal ** 2) - 60 * (t ** 3) / self.tfinal + 30 * (t ** 2)) gamma_dot = (self.euler_final_orientation[2] - self.euler_initial_orientation[2]) / (self.tfinal ** 3) * ( 30 * (t ** 4) / (self.tfinal ** 2) - 60 * (t ** 3) / self.tfinal + 30 * (t ** 2)) self.min_jerk_orientation = np.array([alfa, beta, gamma]) self.min_jerk_orientation_dot = np.array([alfa_dot, beta_dot, gamma_dot]) R_world_to_body = R.from_euler('xyz', self.min_jerk_orientation, degrees=False).as_matrix() # w = T*V -- the angular velocity self.min_jerk_ang_vel = R_world_to_body @ (T.T_mat(self.min_jerk_orientation) @ self.min_jerk_orientation_dot.T) return def _specify_constants(self): """ EC Assign constants in class variables """ self.X_init = self.initial_position[0] self.Y_init = self.initial_position[1] self.Z_init = self.initial_position[2] self.X_final = self.final_position[0] self.Y_final = self.final_position[1] self.Z_final = self.final_position[2] self.min_jerk_position = None self.min_jerk_velocity = None self.min_jerk_acceleration = None self.min_jerk_orientation = None self.min_jerk_orientation_dot = None self.min_jerk_ang_vel = None self.min_jerk_ang_acc = None self.min_jerk_position_vec = [] self.min_jerk_velocity_vec = [] self.min_jerk_acceleration_vec = [] self.min_jerk_orientation_vec = [] self.min_jerk_orientation_dot_vec = [] self.min_jerk_angle_velocity_vec = [] self.tfinal = 2 # this is for the minimum jerk self.time = 0.0 self.time_vec = [] self.real_position = None self.real_velocity = None self.real_orientation = None self.real_angle_velocity = None self.real_position_vec = [] self.real_velocity_vec = [] self.real_orientation_vec = [] self.real_angle_velocity_vec = [] self.impedance_orientation = [] self.impedance_position_vec = [] self.impedance_velocity_vec = [] self.impedance_acceleration_vec = [] self.impedance_orientation_vec = [] self.impedance_angle_velocity_vec = [] @abc.abstractmethod def run_controller(self): """ Abstract method that should be implemented in all subclass controllers, and should convert a given action into torques (pre gravity compensation) to be executed on the robot. Additionally, resets the self.new_update flag so that the next self.update call will occur """ self.new_update = True def scale_action(self, action): """ Clips @action to be within self.input_min and self.input_max, and then re-scale the values to be within the range self.output_min and self.output_max Args: action (Iterable): Actions to scale Returns: np.array: Re-scaled action """ if self.action_scale is None: self.action_scale = abs(self.output_max - self.output_min) / abs(self.input_max - self.input_min) self.action_output_transform = (self.output_max + self.output_min) / 2.0 self.action_input_transform = (self.input_max + self.input_min) / 2.0 action = np.clip(action, self.input_min, self.input_max) transformed_action = (action - self.action_input_transform) * self.action_scale + self.action_output_transform return transformed_action def update(self, force=False): """ Updates the state of the robot arm, including end effector pose / orientation / velocity, joint pos/vel, jacobian, and mass matrix. By default, since this is a non-negligible computation, multiple redundant calls will be ignored via the self.new_update attribute flag. However, if the @force flag is set, the update will occur regardless of that state of self.new_update. This base class method of @run_controller resets the self.new_update flag Args: force (bool): Whether to force an update to occur or not """ # Only run update if self.new_update or force flag is set # if self.new_update or force: self.sim.forward() self.time = self.sim.data.time self.peg_edge = np.array(self.sim.data.site_xpos[self.sim.model.site_name2id("peg_site")]) self.ee_pos = np.array(self.sim.data.site_xpos[self.sim.model.site_name2id(self.eef_name)]) self.ee_ori_mat = np.array(self.sim.data.site_xmat[self.sim.model.site_name2id(self.eef_name)].reshape([3, 3])) self.ee_pos_vel = np.array(self.sim.data.site_xvelp[self.sim.model.site_name2id(self.eef_name)]) self.ee_ori_vel = np.array(self.sim.data.site_xvelr[self.sim.model.site_name2id(self.eef_name)]) self.joint_pos = np.array(self.sim.data.qpos[self.qpos_index]) self.joint_vel = np.array(self.sim.data.qvel[self.qvel_index]) self.J_pos = np.array(self.sim.data.get_site_jacp(self.eef_name).reshape((3, -1))[:, self.qvel_index]) self.J_ori = np.array(self.sim.data.get_site_jacr(self.eef_name).reshape((3, -1))[:, self.qvel_index]) self.J_full = np.array(np.vstack([self.J_pos, self.J_ori])) mass_matrix = np.ndarray(shape=(len(self.sim.data.qvel) ** 2,), dtype=np.float64, order='C') mujoco_py.cymj._mj_fullM(self.sim.model, mass_matrix, self.sim.data.qM) mass_matrix = np.reshape(mass_matrix, (len(self.sim.data.qvel), len(self.sim.data.qvel))) self.mass_matrix = mass_matrix[self.qvel_index, :][:, self.qvel_index] # EC - force readings # the forces needs to be transform to the world base frame # the minus sign is because the measured forces are the forces that the robot apply on the environment forces_world = np.dot(self.ee_ori_mat, -self.sim.data.sensordata[:3]) torques_world = np.dot(self.ee_ori_mat, -self.sim.data.sensordata[3:6]) self.interaction_forces = np.concatenate((forces_world, torques_world), axis=0) # Clear self.new_update self.new_update = False def update_base_pose(self, base_pos, base_ori): """ Optional function to implement in subclass controllers that will take in @base_pos and @base_ori and update internal configuration to account for changes in the respective states. Useful for controllers e.g. IK, which is based on pybullet and requires knowledge of simulator state deviations between pybullet and mujoco Args: base_pos (3-tuple): x,y,z position of robot base in mujoco world coordinates base_ori (4-tuple): x,y,z,w orientation or robot base in mujoco world coordinates """ pass def update_initial_joints(self, initial_joints): """ Updates the internal attribute self.initial_joints. This is useful for updating changes in controller-specific behavior, such as with OSC where self.initial_joints is used for determine nullspace actions This function can also be extended by subclassed controllers for additional controller-specific updates Args: initial_joints (Iterable): Array of joint position values to update the initial joints """ self.initial_joint = np.array(initial_joints) self.update(force=True) self.initial_ee_pos = self.ee_pos self.initial_ee_ori_mat = self.ee_ori_mat def clip_torques(self, torques): """ Clips the torques to be within the actuator limits Args: torques (Iterable): Torques to clip Returns: np.array: Clipped torques """ return np.clip(torques, self.actuator_min, self.actuator_max) def reset_goal(self): """ Resets the goal -- usually by setting to the goal to all zeros, but in some cases may be different (e.g.: OSC) """ raise NotImplementedError @staticmethod def nums2array(nums, dim): """ Convert input @nums into numpy array of length @dim. If @nums is a single number, broadcasts it to the corresponding dimension size @dim before converting into a numpy array Args: nums (numeric or Iterable): Either single value or array of numbers dim (int): Size of array to broadcast input to env.sim.data.actuator_force Returns: np.array: Array filled with values specified in @nums """ # First run sanity check to make sure no strings are being inputted if isinstance(nums, str): raise TypeError("Error: Only numeric inputs are supported for this function, nums2array!") # Check if input is an Iterable, if so, we simply convert the input to np.array and return # Else, input is a single value, so we map to a numpy array of correct size and return return np.array(nums) if isinstance(nums, Iterable) else np.ones(dim) * nums @property def torque_compensation(self): """ Gravity compensation for this robot arm Returns: np.array: torques """ return self.sim.data.qfrc_bias[self.qvel_index] @property def actuator_limits(self): """ Torque limits for this controller Returns: 2-tuple: - (np.array) minimum actuator torques - (np.array) maximum actuator torques """ return self.actuator_min, self.actuator_max @property def control_limits(self): """ Limits over this controller's action space, which defaults to input min/max Returns: 2-tuple: - (np.array) minimum action values - (np.array) maximum action values """ return self.input_min, self.input_max @property def name(self): """ Name of this controller Returns: str: controller name """ raise NotImplementedError # EC def add_path_parameter(self): self.time_vec.append(self.time) self.min_jerk_position_vec.append(self.min_jerk_position) self.min_jerk_velocity_vec.append(self.min_jerk_velocity) self.min_jerk_acceleration_vec.append(self.min_jerk_acceleration) # self.min_jerk_orientation_vec.append(self.min_jerk_orientation) self.min_jerk_orientation_vec.append(R.from_euler("xyz", self.min_jerk_orientation, degrees=False).as_rotvec()) self.min_jerk_orientation_dot_vec.append(self.min_jerk_orientation_dot) self.min_jerk_angle_velocity_vec.append(self.min_jerk_ang_vel) self.real_position_vec.append(self.real_position) self.real_velocity_vec.append(self.real_velocity) self.real_orientation_vec.append(self.real_orientation) self.real_angle_velocity_vec.append(self.real_angle_velocity) self.interaction_forces_vec.append(np.array(self.interaction_forces)) def plotter(self): time = np.array(self.time_vec) min_jerk_position = np.array(self.min_jerk_position_vec) min_jerk_velocity = np.array(self.min_jerk_velocity_vec) min_jerk_acceleration = np.array(self.min_jerk_acceleration_vec) min_jerk_orientation = np.array(self.min_jerk_orientation_vec) min_jerk_angle_velocity = np.array(self.min_jerk_angle_velocity_vec) impedance_position = np.array(self.impedance_position_vec) impedance_velocity = np.array(self.impedance_velocity_vec) impedance_orientation = np.array(self.impedance_orientation_vec) impedance_angle_velocity = np.array(self.impedance_angle_velocity_vec) real_position = np.array(self.real_position_vec) real_velocity = np.array(self.real_velocity_vec) real_orientation = np.array(self.real_orientation_vec) real_angle_velocity = np.array(self.real_angle_velocity_vec) interaction_forces = np.array(self.interaction_forces_vec) PD_force_command = np.array(self.PD_force_command) plt.figure() ax1 = plt.subplot(311) ax1.plot(time, min_jerk_position[:, 0], 'g', label=" X reference") ax1.plot(time, impedance_position[:, 0], 'b--', label=" X impedance") ax1.plot(time, real_position[:, 0], 'r--', label=" X real") ax1.legend() ax1.set_title("X [m]") ax2 = plt.subplot(312) ax2.plot(time, min_jerk_position[:, 1], 'g', label=" Y reference") ax2.plot(time, impedance_position[:, 1], 'b--', label=" Y impedance") ax2.plot(time, real_position[:, 1], 'r--', label=" Y real") ax2.legend() ax2.set_title("Y [m]") ax3 = plt.subplot(313) ax3.plot(time, min_jerk_position[:, 2], 'g', label=" Z reference") ax3.plot(time, impedance_position[:, 2], 'b--', label=" Z impedance") ax3.plot(time, real_position[:, 2], 'r--', label=" Z real") ax3.legend() ax3.set_title("Z [m]") plt.tight_layout() # ---------------------------------------------------------------------- plt.figure() ax1 = plt.subplot(311) ax1.plot(time, min_jerk_velocity[:, 0], 'g', label="$\dot X$ minimum jerk") ax1.plot(time, impedance_velocity[:, 0], 'b--', label="$\dot X$ impedance") ax1.plot(time, real_velocity[:, 0], 'r--', label=" $\dot X$ real") ax1.legend() ax1.set_title("$\dot X$ [m/s]") ax2 = plt.subplot(312) ax2.plot(time, min_jerk_velocity[:, 1], 'g', label=" $\dot Y$ minimum jerk") ax2.plot(time, impedance_velocity[:, 1], 'b--', label="$\dot X$ impedance") ax2.plot(time, real_velocity[:, 1], 'r--', label=" $\dot Y$ real") ax2.legend() ax2.set_title("$\dot Y$ [m/s]") ax3 = plt.subplot(313) ax3.plot(time, min_jerk_velocity[:, 2], 'g', label=" $\dot Z$ minimum jerk") ax3.plot(time, impedance_velocity[:, 2], 'b--', label="$\dot X$ impedance") ax3.plot(time, real_velocity[:, 2], 'r--', label=" $\dot Z$ real") ax3.legend() ax3.set_title("$\dot Z$ [m/s]") plt.tight_layout() # ---------------------------------------------------------------------- plt.figure() ax1 = plt.subplot(311) ax1.plot(time, min_jerk_orientation[:, 0], 'g', label="orientation 1st element - minimum jerk") ax1.plot(time, impedance_orientation[:, 0], 'b--', label="orientation 1st element - impedance") ax1.plot(time, real_orientation[:, 0], 'r--', label="orientation 1st element - real") ax1.legend() ax1.set_title("orientation 1st element") ax2 = plt.subplot(312) ax2.plot(time, min_jerk_orientation[:, 1], 'g', label="orientation 2nd element - minimum jerk") ax2.plot(time, impedance_orientation[:, 1], 'b--', label="orientation 2nd element - impedance") ax2.plot(time, real_orientation[:, 1], 'r--', label="orientation 2nd element - real") ax2.legend() ax2.set_title("orientation 2nd element") ax3 = plt.subplot(313) ax3.plot(time, min_jerk_orientation[:, 2], 'g', label="orientation 3rd element - minimum jerk") ax3.plot(time, impedance_orientation[:, 2], 'b--', label="orientation 3rd element - impedance") ax3.plot(time, real_orientation[:, 2], 'r--', label="orientation 3rd element - real") ax3.legend() ax3.set_title("orientation 3rd element") plt.tight_layout() # ------------------------------------------------------------- plt.figure() ax1 = plt.subplot(311) ax1.plot(time, min_jerk_angle_velocity[:, 0], 'g', label="Wx - minimum jerk") ax1.plot(time, impedance_angle_velocity[:, 0], 'b--', label="orientation 1st element - impedance") ax1.plot(time, real_angle_velocity[:, 0], 'r--', label="Wx - real") ax1.legend() ax1.set_title("Wx") ax2 = plt.subplot(312) ax2.plot(time, min_jerk_angle_velocity[:, 1], 'g', label="Wy - minimum jerk") ax2.plot(time, impedance_angle_velocity[:, 1], 'b--', label="orientation 2nd element - impedance") ax2.plot(time, real_angle_velocity[:, 1], 'r--', label="Wy - real") ax2.legend() ax2.set_title("Wy") ax3 = plt.subplot(313) ax3.plot(time, min_jerk_angle_velocity[:, 2], 'g', label="Wz - minimum jerk") ax3.plot(time, impedance_angle_velocity[:, 2], 'b--', label="orientation 3rd element - impedance") ax3.plot(time, real_angle_velocity[:, 2], 'r--', label="Wz - real") ax3.legend() ax3.set_title("Wz") plt.tight_layout() # ------------------------------------------------------------- plt.figure() ax1 = plt.subplot(311) ax1.plot(time, interaction_forces[:, 0], 'r--', label="from sensor") ax1.plot(time, PD_force_command[:, 0], 'g--', label="from PD") ax1.legend() ax1.set_title("Fx [N]") ax2 = plt.subplot(312) ax2.plot(time, interaction_forces[:, 1], 'r--', label="from sensor") ax2.plot(time, PD_force_command[:, 1], 'g--', label="from PD") ax2.legend() ax2.set_title("Fy [N]") ax3 = plt.subplot(313) ax3.plot(time, interaction_forces[:, 1], 'r--', label="from sensor") ax3.plot(time, PD_force_command[:, 1], 'g--', label="from PD") ax3.legend() ax3.set_title("Fz [N]") plt.tight_layout() # ------------------------------------------------------------- plt.figure() ax1 = plt.subplot(311) ax1.plot(time, interaction_forces[:, 3], 'r--', label="from sensor") ax1.plot(time, PD_force_command[:, 3], 'g--', label="from PD") ax1.legend() ax1.set_title("Mx [Nm]") ax2 = plt.subplot(312) ax2.plot(time, interaction_forces[:, 4], 'r--', label="from sensor") ax2.plot(time, PD_force_command[:, 4], 'g--', label="from PD") ax2.legend() ax2.set_title("My [Nm]") ax3 = plt.subplot(313) ax3.plot(time, interaction_forces[:, 5], 'r--', label="from sensor") ax3.plot(time, PD_force_command[:, 5], 'g--', label="from PD") ax3.legend() ax3.set_title("Mz [Nm]") plt.tight_layout() # plt.show() # contact_time = self.contact_time # contact_index = np.where(np.array(time) == contact_time) # contact_index = int(contact_index[0]) # time = time[contact_index:] # t = np.array(time) # K = self.K # M = self.M # C = self.C # FT = np.array(self.desired_frame_FT_vec) # F = FT[:, 1] # # F = FT[:, 3] # y0 = [0, 0] # pos = np.array(self.desired_frame_imp_position_vec) # ori = np.array(self.desired_frame_imp_ori_vec) # vel = np.array(self.desired_frame_imp_vel_vec) # ang_vel = np.array(self.desired_frame_imp_ang_vel_vec) # # sol = odeint(self.pend, y0, t, args=(F, time, K, C, M)) # plt.figure() # plt.plot(t, sol[:, 0], 'b', label='pos from ODE') # plt.plot(time, pos[:, 1], 'g', # label='from simulation') # # plt.plot(time, ori[:, 0], 'g', # # label='from simulation') # # plt.plot(time, min_jerk_position[contact_index:, 0] - impedance_position[contact_index:, 0], 'g', # # label='from simulation') # plt.legend(loc='best') # plt.xlabel('t') # plt.grid() # # plt.figure() # plt.plot(t, sol[:, 1], 'b', label='vel from ODE') # plt.plot(time, vel[:, 1], # 'g', # label='from simulation') # # plt.plot(time, ang_vel[:, 0], # # 'g', # # label='from simulation') # plt.legend(loc='best') # plt.xlabel('t') # plt.grid() plt.show() return def pend(self, y, t, F, time, K, C, M): x, x_dot = y f_interp = interp1d(time, F, axis=0, fill_value="extrapolate") f = f_interp(t) dydt = [x_dot, -K / M * x - C / M * x_dot + f / M] return dydt # EC def get_path_info(self): """ Returns: """ info = { "time": self.time_vec, "min_jerk_position_vec": self.min_jerk_position_vec, "min_jerk_velocity_vec": self.min_jerk_velocity_vec, "min_jerk_acceleration_vec": self.min_jerk_acceleration_vec, "min_jerk_orientation_vec": self.min_jerk_orientation_vec, "min_jerk_angle_velocity_vec": self.min_jerk_angle_velocity_vec, "impedance_position_vec": self.impedance_position_vec, "impedance_velocity_vec": self.impedance_velocity_vec, "impedance_orientation_vec": self.impedance_orientation_vec, "impedance_angle_velocity_vec": self.impedance_angle_velocity_vec, "real_position_vec": self.real_position_vec, "real_velocity_vec": self.real_velocity_vec, "real_orientation_vec": self.real_orientation_vec, "real_angle_velocity_vec": self.real_angle_velocity_vec, "interaction_forces_vec": self.interaction_forces_vec, "K_imp": self.K, "M_imp": self.M, "C_imp": self.C, "contact_time": self.contact_time, "min_jerk_orientation_dot": self.min_jerk_orientation_dot_vec, } return info
[ "numpy.clip", "numpy.sqrt", "numpy.linalg.pinv", "scipy.interpolate.interp1d", "numpy.array", "copy.deepcopy", "robosuite.utils.transform_utils.T_mat", "scipy.spatial.transform.Rotation.from_euler", "scipy.linalg.expm", "numpy.dot", "numpy.vstack", "numpy.concatenate", "mujoco_py.cymj._mj_fullM", "numpy.identity", "numpy.abs", "numpy.ones", "scipy.spatial.transform.Rotation.from_matrix", "numpy.sign", "matplotlib.pyplot.show", "numpy.zeros", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplot" ]
[((4356, 4401), 'numpy.array', 'np.array', (['[[1, 0, 0], [0, -1, 0], [0, 0, -1]]'], {}), '([[1, 0, 0], [0, -1, 0], [0, 0, -1]])\n', (4364, 4401), True, 'import numpy as np\n'), ((5279, 5296), 'numpy.zeros', 'np.zeros', (['(12, 1)'], {}), '((12, 1))\n', (5287, 5296), True, 'import numpy as np\n'), ((5487, 5515), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 0, 0]'], {}), '([0, 0, 0, 0, 0, 0])\n', (5495, 5515), True, 'import numpy as np\n'), ((5571, 5595), 'numpy.sqrt', 'np.sqrt', (['(self.K / self.M)'], {}), '(self.K / self.M)\n', (5578, 5595), True, 'import numpy as np\n'), ((7114, 7140), 'numpy.linalg.pinv', 'np.linalg.pinv', (['self.M_imp'], {}), '(self.M_imp)\n', (7128, 7140), True, 'import numpy as np\n'), ((7332, 7366), 'numpy.concatenate', 'np.concatenate', (['(A_1, A_2)'], {'axis': '(0)'}), '((A_1, A_2), axis=0)\n', (7346, 7366), True, 'import numpy as np\n'), ((7382, 7409), 'numpy.zeros', 'np.zeros', (['[6, 6]'], {'dtype': 'int'}), '([6, 6], dtype=int)\n', (7390, 7409), True, 'import numpy as np\n'), ((7442, 7476), 'numpy.concatenate', 'np.concatenate', (['(B_1, B_2)'], {'axis': '(0)'}), '((B_1, B_2), axis=0)\n', (7456, 7476), True, 'import numpy as np\n'), ((7556, 7578), 'scipy.linalg.expm', 'expm', (['(A * self.Delta_T)'], {}), '(A * self.Delta_T)\n', (7560, 7578), False, 'from scipy.linalg import expm\n'), ((8057, 8171), 'numpy.concatenate', 'np.concatenate', (['(Rotation_desired_to_world @ self.f_0[:3], Rotation_desired_to_world @ self\n .f_0[3:6])'], {'axis': '(0)'}), '((Rotation_desired_to_world @ self.f_0[:3], \n Rotation_desired_to_world @ self.f_0[3:6]), axis=0)\n', (8071, 8171), True, 'import numpy as np\n'), ((8902, 8920), 'copy.deepcopy', 'deepcopy', (['X_m_next'], {}), '(X_m_next)\n', (8910, 8920), False, 'from copy import deepcopy\n'), ((9693, 9727), 'numpy.array', 'np.array', (['[x_traj, y_traj, z_traj]'], {}), '([x_traj, y_traj, z_traj])\n', (9701, 9727), True, 'import numpy as np\n'), ((10278, 10300), 'numpy.array', 'np.array', (['[vx, vy, vz]'], {}), '([vx, vy, vz])\n', (10286, 10300), True, 'import numpy as np\n'), ((10842, 10864), 'numpy.array', 'np.array', (['[ax, ay, az]'], {}), '([ax, ay, az])\n', (10850, 10864), True, 'import numpy as np\n'), ((12358, 12387), 'numpy.array', 'np.array', (['[alfa, beta, gamma]'], {}), '([alfa, beta, gamma])\n', (12366, 12387), True, 'import numpy as np\n'), ((12428, 12469), 'numpy.array', 'np.array', (['[alfa_dot, beta_dot, gamma_dot]'], {}), '([alfa_dot, beta_dot, gamma_dot])\n', (12436, 12469), True, 'import numpy as np\n'), ((15483, 15530), 'numpy.clip', 'np.clip', (['action', 'self.input_min', 'self.input_max'], {}), '(action, self.input_min, self.input_max)\n', (15490, 15530), True, 'import numpy as np\n'), ((17043, 17088), 'numpy.array', 'np.array', (['self.sim.data.qpos[self.qpos_index]'], {}), '(self.sim.data.qpos[self.qpos_index])\n', (17051, 17088), True, 'import numpy as np\n'), ((17114, 17159), 'numpy.array', 'np.array', (['self.sim.data.qvel[self.qvel_index]'], {}), '(self.sim.data.qvel[self.qvel_index])\n', (17122, 17159), True, 'import numpy as np\n'), ((17561, 17632), 'mujoco_py.cymj._mj_fullM', 'mujoco_py.cymj._mj_fullM', (['self.sim.model', 'mass_matrix', 'self.sim.data.qM'], {}), '(self.sim.model, mass_matrix, self.sim.data.qM)\n', (17585, 17632), False, 'import mujoco_py\n'), ((18042, 18096), 'numpy.dot', 'np.dot', (['self.ee_ori_mat', '(-self.sim.data.sensordata[:3])'], {}), '(self.ee_ori_mat, -self.sim.data.sensordata[:3])\n', (18048, 18096), True, 'import numpy as np\n'), ((18121, 18176), 'numpy.dot', 'np.dot', (['self.ee_ori_mat', '(-self.sim.data.sensordata[3:6])'], {}), '(self.ee_ori_mat, -self.sim.data.sensordata[3:6])\n', (18127, 18176), True, 'import numpy as np\n'), ((18211, 18264), 'numpy.concatenate', 'np.concatenate', (['(forces_world, torques_world)'], {'axis': '(0)'}), '((forces_world, torques_world), axis=0)\n', (18225, 18264), True, 'import numpy as np\n'), ((19516, 19540), 'numpy.array', 'np.array', (['initial_joints'], {}), '(initial_joints)\n', (19524, 19540), True, 'import numpy as np\n'), ((19920, 19974), 'numpy.clip', 'np.clip', (['torques', 'self.actuator_min', 'self.actuator_max'], {}), '(torques, self.actuator_min, self.actuator_max)\n', (19927, 19974), True, 'import numpy as np\n'), ((23263, 23286), 'numpy.array', 'np.array', (['self.time_vec'], {}), '(self.time_vec)\n', (23271, 23286), True, 'import numpy as np\n'), ((23315, 23351), 'numpy.array', 'np.array', (['self.min_jerk_position_vec'], {}), '(self.min_jerk_position_vec)\n', (23323, 23351), True, 'import numpy as np\n'), ((23380, 23416), 'numpy.array', 'np.array', (['self.min_jerk_velocity_vec'], {}), '(self.min_jerk_velocity_vec)\n', (23388, 23416), True, 'import numpy as np\n'), ((23449, 23489), 'numpy.array', 'np.array', (['self.min_jerk_acceleration_vec'], {}), '(self.min_jerk_acceleration_vec)\n', (23457, 23489), True, 'import numpy as np\n'), ((23521, 23560), 'numpy.array', 'np.array', (['self.min_jerk_orientation_vec'], {}), '(self.min_jerk_orientation_vec)\n', (23529, 23560), True, 'import numpy as np\n'), ((23595, 23637), 'numpy.array', 'np.array', (['self.min_jerk_angle_velocity_vec'], {}), '(self.min_jerk_angle_velocity_vec)\n', (23603, 23637), True, 'import numpy as np\n'), ((23668, 23705), 'numpy.array', 'np.array', (['self.impedance_position_vec'], {}), '(self.impedance_position_vec)\n', (23676, 23705), True, 'import numpy as np\n'), ((23735, 23772), 'numpy.array', 'np.array', (['self.impedance_velocity_vec'], {}), '(self.impedance_velocity_vec)\n', (23743, 23772), True, 'import numpy as np\n'), ((23805, 23845), 'numpy.array', 'np.array', (['self.impedance_orientation_vec'], {}), '(self.impedance_orientation_vec)\n', (23813, 23845), True, 'import numpy as np\n'), ((23881, 23924), 'numpy.array', 'np.array', (['self.impedance_angle_velocity_vec'], {}), '(self.impedance_angle_velocity_vec)\n', (23889, 23924), True, 'import numpy as np\n'), ((23950, 23982), 'numpy.array', 'np.array', (['self.real_position_vec'], {}), '(self.real_position_vec)\n', (23958, 23982), True, 'import numpy as np\n'), ((24007, 24039), 'numpy.array', 'np.array', (['self.real_velocity_vec'], {}), '(self.real_velocity_vec)\n', (24015, 24039), True, 'import numpy as np\n'), ((24067, 24102), 'numpy.array', 'np.array', (['self.real_orientation_vec'], {}), '(self.real_orientation_vec)\n', (24075, 24102), True, 'import numpy as np\n'), ((24133, 24171), 'numpy.array', 'np.array', (['self.real_angle_velocity_vec'], {}), '(self.real_angle_velocity_vec)\n', (24141, 24171), True, 'import numpy as np\n'), ((24201, 24238), 'numpy.array', 'np.array', (['self.interaction_forces_vec'], {}), '(self.interaction_forces_vec)\n', (24209, 24238), True, 'import numpy as np\n'), ((24266, 24297), 'numpy.array', 'np.array', (['self.PD_force_command'], {}), '(self.PD_force_command)\n', (24274, 24297), True, 'import numpy as np\n'), ((24307, 24319), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (24317, 24319), True, 'import matplotlib.pyplot as plt\n'), ((24335, 24351), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (24346, 24351), True, 'import matplotlib.pyplot as plt\n'), ((24640, 24656), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (24651, 24656), True, 'import matplotlib.pyplot as plt\n'), ((24945, 24961), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (24956, 24961), True, 'import matplotlib.pyplot as plt\n'), ((25244, 25262), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (25260, 25262), True, 'import matplotlib.pyplot as plt\n'), ((25353, 25365), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (25363, 25365), True, 'import matplotlib.pyplot as plt\n'), ((25381, 25397), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (25392, 25397), True, 'import matplotlib.pyplot as plt\n'), ((25717, 25733), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (25728, 25733), True, 'import matplotlib.pyplot as plt\n'), ((26054, 26070), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (26065, 26070), True, 'import matplotlib.pyplot as plt\n'), ((26385, 26403), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (26401, 26403), True, 'import matplotlib.pyplot as plt\n'), ((26493, 26505), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (26503, 26505), True, 'import matplotlib.pyplot as plt\n'), ((26521, 26537), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (26532, 26537), True, 'import matplotlib.pyplot as plt\n'), ((26925, 26941), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (26936, 26941), True, 'import matplotlib.pyplot as plt\n'), ((27329, 27345), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (27340, 27345), True, 'import matplotlib.pyplot as plt\n'), ((27727, 27745), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (27743, 27745), True, 'import matplotlib.pyplot as plt\n'), ((27826, 27838), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (27836, 27838), True, 'import matplotlib.pyplot as plt\n'), ((27854, 27870), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (27865, 27870), True, 'import matplotlib.pyplot as plt\n'), ((28205, 28221), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (28216, 28221), True, 'import matplotlib.pyplot as plt\n'), ((28555, 28571), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (28566, 28571), True, 'import matplotlib.pyplot as plt\n'), ((28899, 28917), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (28915, 28917), True, 'import matplotlib.pyplot as plt\n'), ((28998, 29010), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (29008, 29010), True, 'import matplotlib.pyplot as plt\n'), ((29026, 29042), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (29037, 29042), True, 'import matplotlib.pyplot as plt\n'), ((29259, 29275), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (29270, 29275), True, 'import matplotlib.pyplot as plt\n'), ((29492, 29508), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (29503, 29508), True, 'import matplotlib.pyplot as plt\n'), ((29719, 29737), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (29735, 29737), True, 'import matplotlib.pyplot as plt\n'), ((29818, 29830), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (29828, 29830), True, 'import matplotlib.pyplot as plt\n'), ((29846, 29862), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (29857, 29862), True, 'import matplotlib.pyplot as plt\n'), ((30080, 30096), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (30091, 30096), True, 'import matplotlib.pyplot as plt\n'), ((30314, 30330), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (30325, 30330), True, 'import matplotlib.pyplot as plt\n'), ((30542, 30560), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (30558, 30560), True, 'import matplotlib.pyplot as plt\n'), ((32202, 32212), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (32210, 32212), True, 'import matplotlib.pyplot as plt\n'), ((32313, 32364), 'scipy.interpolate.interp1d', 'interp1d', (['time', 'F'], {'axis': '(0)', 'fill_value': '"""extrapolate"""'}), "(time, F, axis=0, fill_value='extrapolate')\n", (32321, 32364), False, 'from scipy.interpolate import interp1d\n'), ((4774, 4843), 'numpy.abs', 'np.abs', (['(self.euler_final_orientation - self.euler_initial_orientation)'], {}), '(self.euler_final_orientation - self.euler_initial_orientation)\n', (4780, 4843), True, 'import numpy as np\n'), ((5723, 5857), 'numpy.array', 'np.array', (['[[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0,\n 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]'], {}), '([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0,\n 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]])\n', (5731, 5857), True, 'import numpy as np\n'), ((6084, 6218), 'numpy.array', 'np.array', (['[[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0,\n 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]'], {}), '([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0,\n 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]])\n', (6092, 6218), True, 'import numpy as np\n'), ((6445, 6579), 'numpy.array', 'np.array', (['[[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0,\n 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]'], {}), '([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0,\n 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]])\n', (6453, 6579), True, 'import numpy as np\n'), ((8867, 8881), 'numpy.dot', 'np.dot', (['B_d', 'U'], {}), '(B_d, U)\n', (8873, 8881), True, 'import numpy as np\n'), ((17414, 17449), 'numpy.vstack', 'np.vstack', (['[self.J_pos, self.J_ori]'], {}), '([self.J_pos, self.J_ori])\n', (17423, 17449), True, 'import numpy as np\n'), ((21132, 21146), 'numpy.array', 'np.array', (['nums'], {}), '(nums)\n', (21140, 21146), True, 'import numpy as np\n'), ((23188, 23221), 'numpy.array', 'np.array', (['self.interaction_forces'], {}), '(self.interaction_forces)\n', (23196, 23221), True, 'import numpy as np\n'), ((4562, 4601), 'scipy.spatial.transform.Rotation.from_matrix', 'R.from_matrix', (['self.initial_orientation'], {}), '(self.initial_orientation)\n', (4575, 4601), True, 'from scipy.spatial.transform import Rotation as R\n'), ((4672, 4709), 'scipy.spatial.transform.Rotation.from_matrix', 'R.from_matrix', (['self.final_orientation'], {}), '(self.final_orientation)\n', (4685, 4709), True, 'from scipy.spatial.transform import Rotation as R\n'), ((4873, 4910), 'numpy.sign', 'np.sign', (['self.euler_final_orientation'], {}), '(self.euler_final_orientation)\n', (4880, 4910), True, 'import numpy as np\n'), ((7171, 7198), 'numpy.zeros', 'np.zeros', (['[6, 6]'], {'dtype': 'int'}), '([6, 6], dtype=int)\n', (7179, 7198), True, 'import numpy as np\n'), ((7200, 7214), 'numpy.identity', 'np.identity', (['(6)'], {}), '(6)\n', (7211, 7214), True, 'import numpy as np\n'), ((7255, 7281), 'numpy.dot', 'np.dot', (['(-M_inv)', 'self.K_imp'], {}), '(-M_inv, self.K_imp)\n', (7261, 7281), True, 'import numpy as np\n'), ((7283, 7309), 'numpy.dot', 'np.dot', (['(-M_inv)', 'self.C_imp'], {}), '(-M_inv, self.C_imp)\n', (7289, 7309), True, 'import numpy as np\n'), ((7607, 7624), 'numpy.linalg.pinv', 'np.linalg.pinv', (['A'], {}), '(A)\n', (7621, 7624), True, 'import numpy as np\n'), ((7764, 7825), 'scipy.spatial.transform.Rotation.from_euler', 'R.from_euler', (['"""xyz"""', 'self.min_jerk_orientation'], {'degrees': '(False)'}), "('xyz', self.min_jerk_orientation, degrees=False)\n", (7776, 7825), True, 'from scipy.spatial.transform import Rotation as R\n'), ((8369, 8380), 'numpy.array', 'np.array', (['U'], {}), '(U)\n', (8377, 8380), True, 'import numpy as np\n'), ((12496, 12557), 'scipy.spatial.transform.Rotation.from_euler', 'R.from_euler', (['"""xyz"""', 'self.min_jerk_orientation'], {'degrees': '(False)'}), "('xyz', self.min_jerk_orientation, degrees=False)\n", (12508, 12557), True, 'from scipy.spatial.transform import Rotation as R\n'), ((12664, 12698), 'robosuite.utils.transform_utils.T_mat', 'T.T_mat', (['self.min_jerk_orientation'], {}), '(self.min_jerk_orientation)\n', (12671, 12698), True, 'import robosuite.utils.transform_utils as T\n'), ((21182, 21194), 'numpy.ones', 'np.ones', (['dim'], {}), '(dim)\n', (21189, 21194), True, 'import numpy as np\n'), ((7633, 7658), 'numpy.identity', 'np.identity', (['A_d.shape[0]'], {}), '(A_d.shape[0])\n', (7644, 7658), True, 'import numpy as np\n'), ((8216, 8250), 'numpy.concatenate', 'np.concatenate', (['(F_d, M_d)'], {'axis': '(0)'}), '((F_d, M_d), axis=0)\n', (8230, 8250), True, 'import numpy as np\n'), ((22668, 22729), 'scipy.spatial.transform.Rotation.from_euler', 'R.from_euler', (['"""xyz"""', 'self.min_jerk_orientation'], {'degrees': '(False)'}), "('xyz', self.min_jerk_orientation, degrees=False)\n", (22680, 22729), True, 'from scipy.spatial.transform import Rotation as R\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2011, <NAME> <<EMAIL>> # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ test_setup ========== Test the setup procedure of the extension, make sure that everything is installed at the proper place after the extension setup finished. .. moduleauthor:: <NAME> <<EMAIL>> """ from __future__ import (print_function, division, unicode_literals, absolute_import) import re BUILTIN_TRACKER_NAME_PATTERN = re.compile('lookup_(.*)_issue') import pytest from sphinx.environment import SphinxStandaloneReader from sphinxcontrib import issuetracker from sphinxcontrib.issuetracker import resolvers def pytest_funcarg__content(request): """ Dummy content for this test module, overrides the global ``content`` funcarg. This test module doesn't need issue references, but just a loaded and ready-to-build sphinx application. Thus the content doesn't matter, but still a sphinx application needs some content to build. """ return 'dummy content' def test_builtin_issue_trackers(): """ Test that all builtin issue trackers are really declared in the BUILTIN_ISSUE_TRACKERS dict. """ trackers = dict(resolvers.BUILTIN_ISSUE_TRACKERS) for attr in dir(resolvers): match = BUILTIN_TRACKER_NAME_PATTERN.match(attr) if match: tracker_name = match.group(1).replace('_', ' ') assert tracker_name in trackers trackers.pop(tracker_name) assert not trackers def test_unknown_tracker(app): """ Test that setting ``issuetracker`` to an unknown tracker fails. """ app.config.issuetracker = 'spamtracker' with pytest.raises(KeyError): issuetracker.connect_builtin_tracker(app) def test_add_stylesheet(app): """ Test that the stylesheet is properly added. """ from sphinx.builders.html import StandaloneHTMLBuilder assert '_static/issuetracker.css' in StandaloneHTMLBuilder.css_files def test_transform_added(app): """ Test that the transformer is properly added. """ assert issuetracker.IssueReferences in SphinxStandaloneReader.transforms @pytest.mark.confoverrides(issuetracker_plaintext_issues=False) def test_transform_not_added(app): """ Test that the transformer is not added if transformations are disabled. """ transforms = SphinxStandaloneReader.transforms assert issuetracker.IssueReferences not in transforms
[ "pytest.mark.confoverrides", "pytest.raises", "sphinxcontrib.issuetracker.connect_builtin_tracker", "re.compile" ]
[((1748, 1779), 're.compile', 're.compile', (['"""lookup_(.*)_issue"""'], {}), "('lookup_(.*)_issue')\n", (1758, 1779), False, 'import re\n'), ((3452, 3514), 'pytest.mark.confoverrides', 'pytest.mark.confoverrides', ([], {'issuetracker_plaintext_issues': '(False)'}), '(issuetracker_plaintext_issues=False)\n', (3477, 3514), False, 'import pytest\n'), ((2971, 2994), 'pytest.raises', 'pytest.raises', (['KeyError'], {}), '(KeyError)\n', (2984, 2994), False, 'import pytest\n'), ((3004, 3045), 'sphinxcontrib.issuetracker.connect_builtin_tracker', 'issuetracker.connect_builtin_tracker', (['app'], {}), '(app)\n', (3040, 3045), False, 'from sphinxcontrib import issuetracker\n')]
''' Urls for shortener app urlshortener/urls.py ''' from django.urls import path from .views import home_view, redirect_url_view appname = "shortener" urlpatterns = [ # Home view path('', home_view, name='home'), path('<str:shortened_part>', redirect_url_view, name='redirect'), ]
[ "django.urls.path" ]
[((190, 222), 'django.urls.path', 'path', (['""""""', 'home_view'], {'name': '"""home"""'}), "('', home_view, name='home')\n", (194, 222), False, 'from django.urls import path\n'), ((228, 292), 'django.urls.path', 'path', (['"""<str:shortened_part>"""', 'redirect_url_view'], {'name': '"""redirect"""'}), "('<str:shortened_part>', redirect_url_view, name='redirect')\n", (232, 292), False, 'from django.urls import path\n')]
import random #Importing all the words for the game from words python file. from words import word_list #defining a function , which will return a word for our game. def get_word(): word = random.choice(word_list) # "random.choice()" method returns a list with the randomly selected element from the specified sequence. return word.upper() #upper() is a built-in method used for string handling. It will return all the words/strings in uppercase format. #This "play" function is for the actual interactive game_play. def play(word): word_completion = "_" * len(word) #This will contain the same "_(dash)" as tehe random chosen word. It will initially contain only underscores. guessed = False #Initialzed to false #Creating two lists, where "guessed_letters[] will hold the letters user guessed & "guesses_words" will hold the words user guessed. guessed_letters = [] guessed_words=[] tries = 6 #Total tries given to the user. print("Let's play Hangman!") print(display_hangman(tries)) #Print the number of tries available for the user print(word_completion) #Print the underscores for guessing the letter. print('\n') while not guessed and tries > 0: # Case -> When we haven't entered any letter(when we haven't guessed anything) guess = input("Please guess a letter or word: ").upper() # Taking input from user for guessing or asking to input letters , which will be taken in UpperCase. # If only one letter is guessed & isalpha() method returns True if all the characters are alphabet letters. if len(guess) == 1 and guess.isalpha(): if guess in guessed_letters: #If our guess is right print("You already guessed the letter", guess) elif guess not in word: #If our guess is wrong or not included in the random word generated, then print this print(guess, "is not in the word.") tries -= 1 # Reducing our tries by minus 1 for incoreect guessing guessed_letters.append(guess) else: print("Good Job,", guess, "is in the word!") # Case -> If guess is right. guessed_letters.append(guess) word_as_list =list(word_completion) #Here guess occurs in a word, if word is correct [ CASE -> RIGHT ] indices = [ i for i, letter in enumerate(word) if letter == guess] for index in indices: word_as_list[index] = guess #Traversing through the loop to compare each index alphabet with our guessed alphabets. word_completion = "".join(word_as_list) #Then joining all the alphabets together if "_" not in word_completion: guessed = True elif len(guess) == len(word) and guess.isalpha(): if guess in guessed_words: print("You already guessed the word", guess) elif guess !=word: print(guess, "is not the word.") #For Incorrect Case tries -=1 guessed_words.append(guess) else: guessed = True word_completion = word else: print("Not a valid guess.") print(display_hangman(tries)) #Always remember indexing is very important in Python. print(word_completion) print('\n') if guessed: print("Congrats, you guessed the word! You win!") else: print("Sorry, you ran out of tries. The word was" + word + ". Maybe next time!") def display_hangman(tries): stages = [ #final state: head, torso, both arms, and both legs """ -------- | | | O | \|/ | | | / \ - """, #head, torso, and both arms """ -------- | | | O | \\|/ | | | / - """, # head, torso, and both arms """ -------- | | | O | \\|/ | | | - """, # head, torso, and one arm """ -------- | | | O | \\| | | | - """, # head and torso """ -------- | | | O | | | | | - """, # head """ -------- | | | O | | | - """, # initial empty state """ -------- | | | | | | - """ ] return stages[tries] def main(): word = get_word() play(word) while input("Play Again? (Y/N) ").upper() == "Y": word = get_word() play(word) if __name__ == "__main__": main()
[ "random.choice" ]
[((194, 218), 'random.choice', 'random.choice', (['word_list'], {}), '(word_list)\n', (207, 218), False, 'import random\n')]
#!/usr/bin/env python3 import json import sys animation_filename = sys.argv[1] num_boxes = int(sys.argv[2]) with open(animation_filename, 'r') as animation_file: animation_data = animation_file.readlines() json_data = {} json_data['timeStep'] = float(animation_data[2]) json_data['name'] = "Jared's Animation" # Setup objects color = [1.0, 0.4, 0.3, 1.0] names = [] json_data['objects'] = [] for i, primitive in enumerate(animation_data[4:4+num_boxes]): primitive = primitive.split(',') obj_mesh = 'cube' obj_scale = [float(v) for v in primitive[4:7]] obj_name = obj_mesh + str(i) names.append(obj_name) json_data['objects'].append({ 'name': obj_name, 'mesh': obj_mesh, 'scale': obj_scale, 'material': { 'color': color }, }) # Setup frames json_data['frames'] = [] for pos, rot in zip(animation_data[4+num_boxes+1::2], animation_data[4+num_boxes+2::2]): frame = {} for i, name in enumerate(names): obj_t = [float(v) for v in pos.split(',')[i*3:i*3+3]] obj_r = [float(v) for v in rot.split(',')[i*4:i*4+4]] obj_r = [obj_r[1], obj_r[2], obj_r[3], obj_r[0]] frame[name] = { 't': obj_t, 'r': obj_r } json_data['frames'].append(frame) json_data['timeStep'] = json_data['duration'] / (len(json_data['frames']) - 1) print(json.dumps(json_data, indent=2, separators=(',', ': ')))
[ "json.dumps" ]
[((1374, 1429), 'json.dumps', 'json.dumps', (['json_data'], {'indent': '(2)', 'separators': "(',', ': ')"}), "(json_data, indent=2, separators=(',', ': '))\n", (1384, 1429), False, 'import json\n')]
import warnings import os import numpy as np import pytest from pytopomat.irvsp_caller import IRVSPOutput from pytopomat.analyzer import BandParity test_dir = os.path.join(os.path.dirname(__file__), "../../test_files/") class TestIrvsp(object): @pytest.fixture def bp(self): """Returns BandParity instance on test data.""" irvsp_out = IRVSPOutput(test_dir + "CrO2_outir.txt") band_parity = BandParity(irvsp_out, spin_polarized=True, efermi=3.3923) return band_parity def test_compute_z2(self, bp): z2 = bp.compute_z2(tol=2) tz2 = np.array([0., 0., 0., 0.]) np.testing.assert_array_equal(z2, tz2) def test_compute_z4(self, bp): z4 = bp.compute_z4() assert z4 == 3.0 if __name__ == "__main__": pytest.main()
[ "pytopomat.irvsp_caller.IRVSPOutput", "pytest.main", "os.path.dirname", "numpy.array", "pytopomat.analyzer.BandParity", "numpy.testing.assert_array_equal" ]
[((174, 199), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (189, 199), False, 'import os\n'), ((780, 793), 'pytest.main', 'pytest.main', ([], {}), '()\n', (791, 793), False, 'import pytest\n'), ((363, 403), 'pytopomat.irvsp_caller.IRVSPOutput', 'IRVSPOutput', (["(test_dir + 'CrO2_outir.txt')"], {}), "(test_dir + 'CrO2_outir.txt')\n", (374, 403), False, 'from pytopomat.irvsp_caller import IRVSPOutput\n'), ((426, 483), 'pytopomat.analyzer.BandParity', 'BandParity', (['irvsp_out'], {'spin_polarized': '(True)', 'efermi': '(3.3923)'}), '(irvsp_out, spin_polarized=True, efermi=3.3923)\n', (436, 483), False, 'from pytopomat.analyzer import BandParity\n'), ((590, 620), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0, 0.0])\n', (598, 620), True, 'import numpy as np\n'), ((623, 661), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['z2', 'tz2'], {}), '(z2, tz2)\n', (652, 661), True, 'import numpy as np\n')]
from functools import reduce from itertools import groupby # ========= Mapping ========== words = ['Deer', 'Bear', 'River', 'Car', 'Car', 'River', 'Deer', 'Car', 'Bear'] mapping = map((lambda x: (x, 1)), words) print(mapping) # output: # [('Deer', 1), ('Bear', 1), ('River', 1), ('Car', 1), # ('Car', 1), ('River', 1), ('Deer', 1), ('Car', 1), ('Bear', 1)] # ========= Shuffling ========== sorted_mapping = sorted(mapping) print(sorted_mapping) # output: # [('Bear', 1), ('Bear', 1), ('Car', 1), ('Car', 1), # ('Car', 1), ('Deer', 1), ('Deer', 1), ('River', 1), ('River', 1)] # ========= Reducing ========== grouper = groupby(sorted_mapping, lambda p: p[0]) final = map(lambda l: (l[0], reduce(lambda x, y: x + y, map(lambda p: p[1], l[1]))), grouper) print(list(final)) # output: # [('Bear', 2), ('Car', 3), ('Deer', 2), ('River', 2)]
[ "itertools.groupby" ]
[((650, 689), 'itertools.groupby', 'groupby', (['sorted_mapping', '(lambda p: p[0])'], {}), '(sorted_mapping, lambda p: p[0])\n', (657, 689), False, 'from itertools import groupby\n')]
import discord import urllib.request import json import re import os #トークン TOKEN = os.environ['DISCORD_BOT_TOKEN'] client = discord.Client() ModeFlag = 0 citycodes = { "土浦": '080020', "水戸": '080010', "札幌": '016010', "仙台": '040010', "東京": '130010', "横浜": '140010', "名古屋": '230010', "大阪": '270000', "広島": '340010', "福岡": '400010', "鹿児島": '460010', "那覇": '471010' } taio = "札幌、仙台、土浦、水戸、東京、横浜、名古屋、大阪、広島、福岡、鹿児島、那覇" @client.event async def on_ready(): print("logged in as " + client.user.name) await client.change_presence(status=discord.Status.idle,activity=discord.Game(name='創成の女神')) @client.event async def on_message(message): if message.content == '対応都市': await message.channel.send(taio) if message.author != client.user: reg_res = re.compile(u"ノア、(.+)の天気は?").search(message.content) if reg_res: if reg_res.group(1) in citycodes.keys(): citycode = citycodes[reg_res.group(1)] resp = urllib.request.urlopen('http://weather.livedoor.com/forecast/webservice/json/v1?city=%s'%citycode).read() resp = json.loads(resp.decode('utf-8')) msg = resp['location']['city'] msg += "の天気は、\n" for f in resp['forecasts']: msg += f['dateLabel'] + "が" + f['telop'] + "\n" msg += "です。\n```" msg += resp['description']['text'] msg += "```" await message.channel.send(message.author.mention + msg) else: await message.channel.send("そこの天気はわかりません...") client.run(TOKEN)
[ "discord.Client", "re.compile", "discord.Game" ]
[((126, 142), 'discord.Client', 'discord.Client', ([], {}), '()\n', (140, 142), False, 'import discord\n'), ((611, 637), 'discord.Game', 'discord.Game', ([], {'name': '"""創成の女神"""'}), "(name='創成の女神')\n", (623, 637), False, 'import discord\n'), ((807, 834), 're.compile', 're.compile', (['u"""ノア、(.+)の天気は?"""'], {}), "(u'ノア、(.+)の天気は?')\n", (817, 834), False, 'import re\n')]
# UDP server example import socket import sys server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) if len(sys.argv) > 1: port = int(sys.argv[1]) else: port = 12345 server_socket.bind(("", port)) #http://stackoverflow.com/questions/166506/finding-local-ip-addresses-using-pythons-stdlib print("Internal : ") print([(s.connect(('8.8.8.8', 80)), s.getsockname()[0], s.close()) for s in [socket.socket(socket.AF_INET, socket.SOCK_DGRAM)]][0][1]) print("UDPServer Waiting for client on port {}...".format(port)) while 1: data, address = server_socket.recvfrom(256) print("( {}:{} ) said {}".format(address[0], address[1], data))
[ "socket.socket" ]
[((67, 115), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (80, 115), False, 'import socket\n'), ((415, 463), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (428, 463), False, 'import socket\n')]
#! /usr/bin/env python3 import os import readline import importlib from importlib import util import xml.etree.ElementTree as ET spec = importlib.util.find_spec('.subserv', package='lib') m = spec.loader.load_module() tree = ET.parse('./src/xssAttacks.xml') root = tree.getroot() def ListPayload(): print("\t**************************************************\n") print(m.bcolors.GREEN + m.bcolors.BOLD + m.bcolors.UNDERLINE +"\tHere is the List of possible XSS Payloads\n" + m.bcolors.ENDC) for attack in root.findall('attack'): name = attack.find('name').text print("\tName of XSS Attack: " + m.bcolors.ERROR + m.bcolors.BOLD + name + m.bcolors.ENDC) def complete(text,state): xss = ('XSS_Locator','XSS_Quick_Test','SCRIPT_w/Alert()', 'SCRIPT_w/Source_File','SCRIPT_w/Char_Code','BASE','BGSOUND','BODY_background-image','BODY_ONLOAD','DIV_background-image_1', 'DIV_background-image_2','DIV_expression','FRAME','IFRAME','INPUT_Image','IMG_w/JavaScript_Directive', 'IMG_No_Quotes/Semicolon','IMG_Dynsrc','IMG_Lowsrc','IMG_Embedded_commands_1', 'IMG_Embedded_commands_2','IMG_STYLE_w/expression','List-style-image','IMG_w/VBscript','LAYER','Livescript','US-ASCII_encoding','META', 'META_w/data:URL','META_w/additional_URL_parameter','Mocha','OBJECT','OBJECT_w/Embedded_XSS','Embed_Flash','OBJECT_w/Flash_2', 'STYLE','STYLE_w/Comment','STYLE_w/Anonymous_HTML','STYLE_w/background-image','STYLE_w/background','Stylesheet','Remote_Stylesheet_1', 'Remote_Stylesheet_2','Remote_Stylesheet_3','Remote_Stylesheet_4','TABLE','TD','XML_namespace','XML_data_island_w/CDATA', 'XML_data_island_w/comment','XML(locally-hosted)','XML_HTML+TIME','Commented-out_Block','Cookie_Manipulation','Local_.htc_file', 'Rename_.js_to_.jpg','SSI','PHP','JavaScript_Includes','Character_Encoding_Example','Case_Insensitive','HTML_Entities','Grave_Accents', 'Image_w/CharCode','UTF-8_Unicode_Encoding','Long_UTF-8_Unicode_w/out_Semicolons','DIV_w/Unicode', 'Hex_Encoding_w/out_Semicolons','UTF-7_Encoding','Escaping_JavaScript_escapes','End_title_tag','STYLE_w/broken_up_JavaScript','Embedded_Tab', 'Embedded_Encoded_Tab','Embedded_Newline','Embedded_Carriage_Return','Multiline_w/Carriage_Returns','Null_Chars_1','Null_Chars_2','Spaces/Meta_Chars', 'Non-Alpha/Non-Digit','Non-Alpha/Non-Digit_Part_2','No_Closing_Script_Tag','Protocol_resolution_in_script_tags','Half-Open_HTML/JavaScript','Double_open_angle_brackets', 'Extraneous_Open_Brackets','Malformed_IMG_Tags','No_Quotes/Semicolons','Event_Handlers_List_1','Event_Handlers_List_2','Event_Handlers_List_3', 'Evade_Regex_Filter_1','Evade_Regex_Filter_2','Evade_Regex_Filter_3','Evade_Regex_Filter_4','Evade_Regex_Filter_5','Filter_Evasion_1', 'Filter_Evasion_2','IP_Encoding','URL_Encoding','Dword_Encoding','Hex_Encoding','Octal_Encoding','Mixed_Encoding','Protocol_Resolution_Bypass', 'Firefox_Lookups_1','Firefox_Lookups_2','Firefox_Lookups_3','Removing_Cnames','Extra_dot_for_Absolute_DNS','JavaScript_Link_Location','Content_Replace' ) options = [i for i in xss if i.startswith(text)] if state < len(options): return options[state] else: return None def PickPayload(): readline.parse_and_bind("tab: complete") readline.set_completer(complete) print("\t**************************************************\n") choice = input("\tWhich Payload do you want to use?: ") for attack in root.findall('attack'): name = attack.find('name').text code = attack.find('code').text desc = attack.find('desc').text if name == choice: print("\tName of XSS Attack: " + m.bcolors.ERROR + m.bcolors.BOLD + name + m.bcolors.ENDC) print("\n\n\tThe C0de is: " + m.bcolors.ERROR + m.bcolors.BOLD + code + m.bcolors.ENDC) print("\n\n\tDescription of attack: " + m.bcolors.ERROR + m.bcolors.BOLD + desc + m.bcolors.ENDC) input("Press any key to go back to the menu!") def XSS(): os.system("clear") while (1): print(m.bcolors.BLUE + "\t*******************************************************************" + m.bcolors.ENDC) print(m.bcolors.BOLD + m.bcolors.GREEN + """ ******************************************************************* _ _ _ _ _ _ _ _ _ _ _ _ _ _ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ ( X | S | S ) ( P | a | y | l | o | a | d ) ( M | e | n | u ) \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ \_/ """ + m.bcolors.ENDC) print( m.bcolors.ERROR + "\t*******************************************************************" + m.bcolors.ENDC) print("\t(1)\tList XSS Payloads") print("\t(2)\tPick XSS Payload") print("\t(99)\tGo back to the Custom Main Menu") print(m.bcolors.BLUE + "\t*******************************************************************" + m.bcolors.ENDC) options = input("\nW4@+ Payload R U W@^t1ng Broliath: ") if options == "1": ListPayload() elif options == "2": PickPayload() elif options == "99": os.system("clear") break else: input("GO CHIEFS! Come on pick something... ")
[ "readline.set_completer", "readline.parse_and_bind", "xml.etree.ElementTree.parse", "importlib.util.find_spec", "os.system" ]
[((136, 187), 'importlib.util.find_spec', 'importlib.util.find_spec', (['""".subserv"""'], {'package': '"""lib"""'}), "('.subserv', package='lib')\n", (160, 187), False, 'import importlib\n'), ((225, 257), 'xml.etree.ElementTree.parse', 'ET.parse', (['"""./src/xssAttacks.xml"""'], {}), "('./src/xssAttacks.xml')\n", (233, 257), True, 'import xml.etree.ElementTree as ET\n'), ((3164, 3204), 'readline.parse_and_bind', 'readline.parse_and_bind', (['"""tab: complete"""'], {}), "('tab: complete')\n", (3187, 3204), False, 'import readline\n'), ((3207, 3239), 'readline.set_completer', 'readline.set_completer', (['complete'], {}), '(complete)\n', (3229, 3239), False, 'import readline\n'), ((3915, 3933), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (3924, 3933), False, 'import os\n'), ((5127, 5145), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (5136, 5145), False, 'import os\n')]
#!/usr/bin/env python import shlex from prompt_toolkit import PromptSession from prompt_toolkit.shortcuts import CompleteStyle from prompt_toolkit.key_binding import KeyBindings from prompt_toolkit.completion import Completion, Completer from scripts.cli_command_list import context import scripts.cli_command_exec class NestedCompleter(Completer): def __init__(self, words_dic=None, meta_dict=None, ignore_case=True, match_middle=False): if meta_dict is None: meta_dict = {} if words_dic is None: words_dic = {} self.ignore_case = ignore_case self.match_middle = match_middle self.words_dic = words_dic self.meta_dict = meta_dict self.cmd_list = [] self.last_cmd = [] pass def get_completions(self, document, complete_event): text_before_cursor = document.text_before_cursor if self.ignore_case: text_before_cursor = text_before_cursor.lower() text_before_cursor = str(text_before_cursor) # Moved to shlex.split to keep quoted strings together # text_arr = text_before_cursor.split(' ') text_arr = shlex.split(text_before_cursor) last_words = text_arr[-1] words = self.__get_current_words(text_arr[:-1]) def word_matches(word): """ True when the word before the cursor matches. """ if self.ignore_case: word = word.lower() # # Always return True if this is an open text match (%W) and something has been provided # if word == "%w" and last_words != "": # return True # # print(word, last_words) if self.match_middle: return last_words in word else: return word.startswith(last_words) if words: self.last_cmd = [] for tmpa in words: # print("get_completions:2", tmpa) a = tmpa["command"] if word_matches(a): display_meta = self.meta_dict.get(a, '') self.last_cmd.append(a) yield Completion(a, -len(last_words), display_meta=display_meta) def __get_current_words(self, text_arr): current_dic = self.words_dic for tmp in text_arr: if tmp == ' ' or tmp == '': continue try: for c in current_dic: if len(tmp) > 0 and c["command"] == "%W": self.cmd_list.append(c["command"]) if "subcommands" in c: current_dic = c["subcommands"] if tmp in c["command"]: if c["command"] not in self.cmd_list: self.cmd_list.append(c["command"]) if "subcommands" in c: current_dic = c["subcommands"] else: return [] # print(tmp, c["command"], self.cmd_list) except Exception: return [] if current_dic: return list(current_dic) def join_contexts(curcontext): """ This function will join the global context with the current context. It will overwrite any commands in the global context with any commands that are defined in the current context. I.e., so if you have a command that generally functions one way, you can define it in the global context to always behave that way. Then, you can over-ride it in one or more specific contexts which will over-ride that default global behavior. It will also merge the first layer of sub-commands, so if you have "show" in global and "show" in a given context, it will merge whatever subcommands are part of both contexts. :param curcontext: the current context that is selected :return: combined list of current commands """ ctx_dict = {} sub_dict = {} ctx_join = context["global"][:] for c in range(0, len(ctx_join)): # if ctx_join[c].get("special"): # print(ctx_join[c].get("special")) sub_list = ctx_join[c].get("subcommands", {}) for s in range(0, len(sub_list)): sub_dict[sub_list[s]["command"]] = {"num": c} ctx_dict[ctx_join[c]["command"]] = {"num": c, "sub": sub_dict} for c in context[curcontext]: # if c.get("special"): # print(c.get("special")) if c["command"] in ctx_dict: if "subcommands" in c: for sc in c["subcommands"]: # if sc.get("special"): # print(sc.get("special")) if sc["command"] in ctx_dict[c["command"]]["sub"]: pass else: ctx_join[ctx_dict[c["command"]]["num"]]["subcommands"] += [sc] else: ctx_join[ctx_dict[c["command"]]["num"]] = c else: ctx_join.append(c) # check for special merge_context requests for c in ctx_join: if c.get("special") and "merge_context" in c.get("special"): special_fxn = c.get("special").split("=")[1].split(":") import_cxt = context[special_fxn[0]] merge_cmds = special_fxn[1].split(";") for cxt_cmds in import_cxt: if cxt_cmds["command"] in merge_cmds: if "subcommands" not in c: c["subcommands"] = [] if cxt_cmds not in c["subcommands"]: c["subcommands"].append(cxt_cmds) # check for special request to merge commands into the "no" operator do_merge_no = False no_commands = [] merge_no_commands = None for c in ctx_join: if c.get("special") == "supports_no": no_commands.append(c) if c.get("special") and "merge_no_commands" in c.get("special"): do_merge_no = True merge_no_commands = c if do_merge_no and merge_no_commands: merge_no_commands["subcommands"] = no_commands # print(ctx_join) return ctx_join def parse_input(strinput, curcontext, gethelp=False): """ This function is designed to parse the currently typed input to determine what has been typed. It is called when the user presses ? or when they press Enter. :param strinput: Currently typed text at prompt :param contextchain: Full context chain the user is in :param gethelp: True if the user enters ?, otherwise False :return: String that will be printed to screen """ modifiers = ["begin", "include", "exclude", "section"] basic_cmd_list = strinput.split(" ") cmd_list = shlex.split(strinput) temp_cmd = join_contexts(curcontext) add_modifiers = False mod_text = [] sel_modifier = "" command_chain = [] cur_commands = [] out_help = [] out_command = {} last_func = None leftovers = None # print(basic_cmd_list, len(basic_cmd_list), basic_cmd_list[len(basic_cmd_list) - 1]) # shlex.split cuts of trailing whitespace, so leverage the regular split to detect those # print(len(cmd_list), len(basic_cmd_list)) # if cmd_list[len(cmd_list) - 1] == "" or # disabled if basic_cmd_list[len(basic_cmd_list) - 1] == "": showhelp = True else: showhelp = False # print(showhelp, cmd_list, len(cmd_list) - 1, cmd_list[len(cmd_list) - 1]) for c in cmd_list: cur_commands = [] for a in temp_cmd: # print(a["command"], c, a["command"].find(c)) if c != "" and (a["command"].find(c) == 0 or a["command"] == "%W"): command_chain.append(a["command"]) cur_commands.append(a["command"]) out_command = a temp_cmd = a.get("subcommands", {}) if a.get("function", None) is not None: last_func = a.get("function", None) leftovers = "".join(strinput.split(c)[-1:]).strip() if out_command == {} and not strinput == "": return "% Invalid input detected" # at '^' marker." if sel_modifier != "": mod_text.append(c) if add_modifiers: for m in modifiers: if m.find(c) == 0 and c != "": sel_modifier = m add_modifiers = False if c == "|": add_modifiers = True # generate the unabbreviated version of the command that the user typed curcmd = "" for cc in range(0, len(command_chain)): # if the position is a variable, show the user input instead of the variable # print(cc, command_chain[cc], cmd_list[cc]) if command_chain[cc] == "%W": curcmd += "'" + cmd_list[cc] + "' " else: curcmd += command_chain[cc] + " " if gethelp: msg = "" # print(gethelp, showhelp, temp_cmd) if showhelp: if temp_cmd == {} or temp_cmd[0].get("optional"): # for optional subcommands, list the subcommands first if isinstance(temp_cmd, list) and temp_cmd[0].get("optional"): for x in temp_cmd: outcmd = x["command"].replace("%W", "WORD") out_help.append(["", outcmd, "", x.get("help", "no help available")]) if sel_modifier != "": out_help.append(["", "LINE", "", "Regular Expression"]) elif add_modifiers: out_help.append(["", "begin", "", "Begin with the line that matches"]) out_help.append(["", "exclude", "", "Exclude lines that match"]) out_help.append(["", "include", "", "Include lines that match"]) out_help.append(["", "section", "", "Filter a section of output"]) else: out_help.append(["", "|", "", "Output modifiers"]) out_help.append(["", "<cr>", "", ""]) else: for x in temp_cmd: outcmd = x["command"].replace("%W", "WORD") # hide commands that are flagged as special=hidden if x.get("special") == "hidden": continue out_help.append(["", outcmd, "", x.get("help", "no help available")]) msg += "?\n" + scripts.cli_command_exec.format_data(out_help) else: if add_modifiers: out_help.append("|") msg += "?\n" + " ".join(out_help) + "\n" elif sel_modifier != "": out_help.append(["", "LINE", "", "Search Text"]) msg += "?\n" + scripts.cli_command_exec.format_data(out_help) else: # print(cur_commands) for cc in cur_commands: out_help.append(cc.replace("%W", "WORD")) msg += "?\n" + " ".join(out_help) + "\n" return msg else: if temp_cmd != {} and not (temp_cmd[0].get("optional") or (temp_cmd[0].get("optional_on_no") and command_chain[0] == "no")): if curcmd == "": return "" else: return '% Incomplete command. Type "' + curcmd + '?" for a list of subcommands' else: if len(cur_commands) > 1: return "% Ambiguous command: " + strinput else: return {"command": out_command, "function": last_func, "context": curcontext, "remains": leftovers, "chain": command_chain} def add_filters(input, output): """ This function is designed to filter output when using include, exclude, etc. :param input: Raw output string :param output: Raw output from command :return: Filtered string """ if "|" in input: newout = "" incmd = input.split("|")[1].strip() filterlist = incmd.split(" ") outlist = output.split("\n") # newout = outlist[0] + "\n" if filterlist[0] in ["i", "in", "inc", "incl", "inclu", "includ", "include"]: for o in outlist: # print(" ".join(filterlist[1:]).lower(), o.lower()) if " ".join(filterlist[1:]).lower() in o.lower(): newout += o + "\n" elif filterlist[0] in ["e", "ex", "exc", "excl", "exclu", "exclud", "exclude"]: for o in outlist: if " ".join(filterlist[1:]).lower() not in o.lower(): newout += o + "\n" elif filterlist[0] in ["b", "be", "beg", "begi", "begin"]: foundbeg = False for o in outlist: if " ".join(filterlist[1:]).lower() in o.lower(): foundbeg = True if foundbeg: newout += o + "\n" elif filterlist[0] in ["s", "se", "sec", "sect", "secti", "sectio", "section"]: foundbeg = False for o in outlist: filter_str = " ".join(filterlist[1:]).lower() if foundbeg and o.lower()[0:1] not in [" ", "!"]: foundbeg = False # if o.lower()[0:len(filter_str)] == filter_str: if o.lower()[0:1] not in [" ", "!"] and filter_str in o.lower(): foundbeg = True if foundbeg: newout += o + "\n" if newout[-2:] == "\n\n": return newout[0:-1] else: return newout return output def main(): curcontextdesc = "#" curcontext = "root" contextchain = [{"prompt": curcontextdesc, "contextname": curcontext, "elements": None, "selected": None, "selected_data": None}] bindings = KeyBindings() @bindings.add('?') def _(event): i = parse_input(session.app.current_buffer.text, contextchain[len(contextchain)-1]["contextname"], gethelp=True) print(i, end="") print("\n" + contextchain[len(contextchain)-1]["prompt"] + " " + session.app.current_buffer.text, end="") print('Welcome to the AdP Sync shell. Type help or ? to list commands.\n') session = PromptSession() while True: try: n = NestedCompleter(words_dic=join_contexts(contextchain[len(contextchain)-1]["contextname"])) text = session.prompt(contextchain[len(contextchain)-1]["prompt"] + " ", key_bindings=bindings, completer=n, complete_style=CompleteStyle.READLINE_LIKE) except KeyboardInterrupt: # Ctrl-C continue except EOFError: # Ctrl-D break else: pi = parse_input(text, contextchain[len(contextchain)-1]["contextname"]) if pi != "": if isinstance(pi, dict) and pi["command"]: fxn = pi.get("function") execfx = getattr(scripts.cli_command_exec, fxn) result, contextchain = execfx(pi, text, contextchain) if result != "": print(add_filters(text, result)) if contextchain == []: exit() else: print(pi) if __name__ == '__main__': main() def run(): # pragma: no cover main()
[ "shlex.split", "prompt_toolkit.PromptSession", "prompt_toolkit.key_binding.KeyBindings" ]
[((6793, 6814), 'shlex.split', 'shlex.split', (['strinput'], {}), '(strinput)\n', (6804, 6814), False, 'import shlex\n'), ((13908, 13921), 'prompt_toolkit.key_binding.KeyBindings', 'KeyBindings', ([], {}), '()\n', (13919, 13921), False, 'from prompt_toolkit.key_binding import KeyBindings\n'), ((14318, 14333), 'prompt_toolkit.PromptSession', 'PromptSession', ([], {}), '()\n', (14331, 14333), False, 'from prompt_toolkit import PromptSession\n'), ((1167, 1198), 'shlex.split', 'shlex.split', (['text_before_cursor'], {}), '(text_before_cursor)\n', (1178, 1198), False, 'import shlex\n')]
from django.shortcuts import render, HttpResponse, redirect, \ get_object_or_404, reverse from django.views.generic import ListView,DetailView,View from django.contrib import messages from django import forms from django.conf import settings from decimal import Decimal from .models import Payment,Address from django.contrib.auth.decorators import login_required from django.views.decorators.csrf import csrf_exempt from .forms import CheckoutForm from paypal.standard.forms import PayPalPaymentsForm from django.contrib import messages from contacts.models import Whatsapp from page_edits.models import GmailLink,InstagramAccount,TwitterAccount,FacebookAccount,PhoneNumber from jobs.models import Order # Create your views here. #checkout view @login_required() def checkout_view(request,slug): order = Order.objects.get(reference_code=slug) gmail_links = GmailLink.objects.all() instagram_accounts = InstagramAccount.objects.all() fb_accounts = FacebookAccount.objects.all() twitter_accounts = TwitterAccount.objects.all() phone_numbers = PhoneNumber.objects.all() whatsapp = Whatsapp.objects.all() context = { 'gmail_links':gmail_links, 'instagram_accounts':instagram_accounts, 'fb_accounts':fb_accounts, 'twitter_accounts':twitter_accounts, 'phone_numbers':phone_numbers, 'whatsapp':whatsapp, 'order':order, } billing_address_qs = Address.objects.filter( user=request.user, default=True ) if billing_address_qs.exists(): context.update( {'default_billing_address': billing_address_qs[0]}) if request.method == 'POST': form =CheckoutForm(request.POST) if form.is_valid(): use_default_billing = form.cleaned_data.get( 'use_default_billing') if use_default_billing: print("Using the defualt billing address") address_qs = Address.objects.filter( user=request.user, default=True ) if address_qs.exists(): billing_address = address_qs[0] order.billing_address = billing_address order.save() messages.success(request,"Using default Billing address. Click the Buy button to complete payment") return redirect('/payments/payment/'+order.reference_code+'/') else: messages.warning( request, "No default billing address available") return redirect('/payments/checkout/'+order.reference_code+'/') else: # User is entering a new billing Address m_billing_address = form.cleaned_data['billing_address'] m_billing_address2 = form.cleaned_data['billing_address2'] m_billing_zip = form.cleaned_data['billing_zip'] m_first_name = form.cleaned_data['first_name'] m_last_name = form.cleaned_data['last_name'] try: user = request.user if user.first_name and user.last_name: address = Address( user = request.user, street_address=m_billing_address, apartment_address=m_billing_address2, first_name=m_first_name, last_name=m_last_name, zip=m_billing_zip) address.save() else: user.first_name = m_first_name user.save() user.last_name = m_last_name user.save() address = Address( user = request.user, street_address=m_billing_address, apartment_address=m_billing_address2, first_name=m_first_name, last_name=m_last_name, zip=m_billing_zip) address.save() # Setting default billing address set_default_billing = form.cleaned_data.get( 'set_default_billing') if set_default_billing: address.default = True address.save() order.billing_address = address order.save() messages.success(request,"Billing address saved succesfully. Click the Buy button to complete payment") return redirect('/payments/payment/'+order.reference_code+'/') except Exception as e: messages.warning(request,"Please enter all the required fields") print(e) return redirect('/payments/checkout/'+order.reference_code+'/') else: messages.warning(request,"Plese complete all the required fields") print("exception occured or something") return redirect('/payments/checkout/'+order.reference_code+'/') else: form = CheckoutForm() context.update({ 'form':form }) return render(request,'payments/checkout.htm',context) @login_required() def payment_view(request,slug): order = Order.objects.get(reference_code=slug) order_id = request.session.get('order_id') host = request.get_host() gmail_links = GmailLink.objects.all() instagram_accounts = InstagramAccount.objects.all() fb_accounts = FacebookAccount.objects.all() twitter_accounts = TwitterAccount.objects.all() phone_numbers = PhoneNumber.objects.all() whatsapp = Whatsapp.objects.all() paypal_dict = { 'business': settings.PAYPAL_RECEIVER_EMAIL, 'amount': '%.2f' % order.price, 'item_name': 'Order {}'.format(order.reference_code), 'invoice': str(order.reference_code), 'currency_code': 'USD', 'notify_url': 'http://{}{}'.format(host, reverse('paypal-ipn')), 'return_url': 'http://{}{}'.format(host, reverse('payment_done')), 'cancel_return': 'http://{}{}'.format(host, reverse('payment_cancelled')), } form = PayPalPaymentsForm(initial=paypal_dict) context = { 'gmail_links':gmail_links, 'instagram_accounts':instagram_accounts, 'fb_accounts':fb_accounts, 'twitter_accounts':twitter_accounts, 'phone_numbers':phone_numbers, 'whatsapp':whatsapp, 'order':order, 'form':form, } return render(request,'payments/payment.htm',context) @csrf_exempt def payment_done(request): messages.success(request, "Your payment has been completed succesfully") return redirect('/dashboard') @csrf_exempt def payment_canceled(request): messages.warning(request, "Your payment has been cancelled. Please try again later") return redirect('/dashboard')
[ "django.shortcuts.render", "contacts.models.Whatsapp.objects.all", "page_edits.models.InstagramAccount.objects.all", "page_edits.models.TwitterAccount.objects.all", "page_edits.models.PhoneNumber.objects.all", "paypal.standard.forms.PayPalPaymentsForm", "django.contrib.messages.warning", "django.shortcuts.redirect", "page_edits.models.FacebookAccount.objects.all", "jobs.models.Order.objects.get", "django.contrib.auth.decorators.login_required", "django.contrib.messages.success", "django.shortcuts.reverse", "page_edits.models.GmailLink.objects.all" ]
[((754, 770), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {}), '()\n', (768, 770), False, 'from django.contrib.auth.decorators import login_required\n'), ((5660, 5676), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {}), '()\n', (5674, 5676), False, 'from django.contrib.auth.decorators import login_required\n'), ((817, 855), 'jobs.models.Order.objects.get', 'Order.objects.get', ([], {'reference_code': 'slug'}), '(reference_code=slug)\n', (834, 855), False, 'from jobs.models import Order\n'), ((874, 897), 'page_edits.models.GmailLink.objects.all', 'GmailLink.objects.all', ([], {}), '()\n', (895, 897), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((923, 953), 'page_edits.models.InstagramAccount.objects.all', 'InstagramAccount.objects.all', ([], {}), '()\n', (951, 953), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((972, 1001), 'page_edits.models.FacebookAccount.objects.all', 'FacebookAccount.objects.all', ([], {}), '()\n', (999, 1001), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((1025, 1053), 'page_edits.models.TwitterAccount.objects.all', 'TwitterAccount.objects.all', ([], {}), '()\n', (1051, 1053), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((1074, 1099), 'page_edits.models.PhoneNumber.objects.all', 'PhoneNumber.objects.all', ([], {}), '()\n', (1097, 1099), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((1115, 1137), 'contacts.models.Whatsapp.objects.all', 'Whatsapp.objects.all', ([], {}), '()\n', (1135, 1137), False, 'from contacts.models import Whatsapp\n'), ((5610, 5659), 'django.shortcuts.render', 'render', (['request', '"""payments/checkout.htm"""', 'context'], {}), "(request, 'payments/checkout.htm', context)\n", (5616, 5659), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((5721, 5759), 'jobs.models.Order.objects.get', 'Order.objects.get', ([], {'reference_code': 'slug'}), '(reference_code=slug)\n', (5738, 5759), False, 'from jobs.models import Order\n'), ((5856, 5879), 'page_edits.models.GmailLink.objects.all', 'GmailLink.objects.all', ([], {}), '()\n', (5877, 5879), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((5905, 5935), 'page_edits.models.InstagramAccount.objects.all', 'InstagramAccount.objects.all', ([], {}), '()\n', (5933, 5935), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((5954, 5983), 'page_edits.models.FacebookAccount.objects.all', 'FacebookAccount.objects.all', ([], {}), '()\n', (5981, 5983), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((6007, 6035), 'page_edits.models.TwitterAccount.objects.all', 'TwitterAccount.objects.all', ([], {}), '()\n', (6033, 6035), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((6056, 6081), 'page_edits.models.PhoneNumber.objects.all', 'PhoneNumber.objects.all', ([], {}), '()\n', (6079, 6081), False, 'from page_edits.models import GmailLink, InstagramAccount, TwitterAccount, FacebookAccount, PhoneNumber\n'), ((6097, 6119), 'contacts.models.Whatsapp.objects.all', 'Whatsapp.objects.all', ([], {}), '()\n', (6117, 6119), False, 'from contacts.models import Whatsapp\n'), ((6754, 6793), 'paypal.standard.forms.PayPalPaymentsForm', 'PayPalPaymentsForm', ([], {'initial': 'paypal_dict'}), '(initial=paypal_dict)\n', (6772, 6793), False, 'from paypal.standard.forms import PayPalPaymentsForm\n'), ((7182, 7230), 'django.shortcuts.render', 'render', (['request', '"""payments/payment.htm"""', 'context'], {}), "(request, 'payments/payment.htm', context)\n", (7188, 7230), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((7276, 7348), 'django.contrib.messages.success', 'messages.success', (['request', '"""Your payment has been completed succesfully"""'], {}), "(request, 'Your payment has been completed succesfully')\n", (7292, 7348), False, 'from django.contrib import messages\n'), ((7360, 7382), 'django.shortcuts.redirect', 'redirect', (['"""/dashboard"""'], {}), "('/dashboard')\n", (7368, 7382), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((7433, 7521), 'django.contrib.messages.warning', 'messages.warning', (['request', '"""Your payment has been cancelled. Please try again later"""'], {}), "(request,\n 'Your payment has been cancelled. Please try again later')\n", (7449, 7521), False, 'from django.contrib import messages\n'), ((7529, 7551), 'django.shortcuts.redirect', 'redirect', (['"""/dashboard"""'], {}), "('/dashboard')\n", (7537, 7551), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((5304, 5371), 'django.contrib.messages.warning', 'messages.warning', (['request', '"""Plese complete all the required fields"""'], {}), "(request, 'Plese complete all the required fields')\n", (5320, 5371), False, 'from django.contrib import messages\n'), ((5442, 5502), 'django.shortcuts.redirect', 'redirect', (["('/payments/checkout/' + order.reference_code + '/')"], {}), "('/payments/checkout/' + order.reference_code + '/')\n", (5450, 5502), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((6465, 6486), 'django.shortcuts.reverse', 'reverse', (['"""paypal-ipn"""'], {}), "('paypal-ipn')\n", (6472, 6486), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((6581, 6604), 'django.shortcuts.reverse', 'reverse', (['"""payment_done"""'], {}), "('payment_done')\n", (6588, 6604), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((6705, 6733), 'django.shortcuts.reverse', 'reverse', (['"""payment_cancelled"""'], {}), "('payment_cancelled')\n", (6712, 6733), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((2363, 2467), 'django.contrib.messages.success', 'messages.success', (['request', '"""Using default Billing address. Click the Buy button to complete payment"""'], {}), "(request,\n 'Using default Billing address. Click the Buy button to complete payment')\n", (2379, 2467), False, 'from django.contrib import messages\n'), ((2490, 2549), 'django.shortcuts.redirect', 'redirect', (["('/payments/payment/' + order.reference_code + '/')"], {}), "('/payments/payment/' + order.reference_code + '/')\n", (2498, 2549), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((2588, 2653), 'django.contrib.messages.warning', 'messages.warning', (['request', '"""No default billing address available"""'], {}), "(request, 'No default billing address available')\n", (2604, 2653), False, 'from django.contrib import messages\n'), ((2706, 2766), 'django.shortcuts.redirect', 'redirect', (["('/payments/checkout/' + order.reference_code + '/')"], {}), "('/payments/checkout/' + order.reference_code + '/')\n", (2714, 2766), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((4853, 4966), 'django.contrib.messages.success', 'messages.success', (['request', '"""Billing address saved succesfully. Click the Buy button to complete payment"""'], {}), "(request,\n 'Billing address saved succesfully. Click the Buy button to complete payment'\n )\n", (4869, 4966), False, 'from django.contrib import messages\n'), ((4984, 5043), 'django.shortcuts.redirect', 'redirect', (["('/payments/payment/' + order.reference_code + '/')"], {}), "('/payments/payment/' + order.reference_code + '/')\n", (4992, 5043), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n'), ((5100, 5165), 'django.contrib.messages.warning', 'messages.warning', (['request', '"""Please enter all the required fields"""'], {}), "(request, 'Please enter all the required fields')\n", (5116, 5165), False, 'from django.contrib import messages\n'), ((5221, 5281), 'django.shortcuts.redirect', 'redirect', (["('/payments/checkout/' + order.reference_code + '/')"], {}), "('/payments/checkout/' + order.reference_code + '/')\n", (5229, 5281), False, 'from django.shortcuts import render, HttpResponse, redirect, get_object_or_404, reverse\n')]
""" Check compliance with some rules of rhythm, voice leading, and harmony. Author: <NAME> """ from math import ceil from typing import Callable, Dict, List from rlmusician.utils.music_theory import ScaleElement, check_consonance N_EIGHTHS_PER_MEASURE = 8 # Rhythm rules. def check_validity_of_rhythmic_pattern(durations: List[int], **kwargs) -> bool: """ Check that current measure is properly divided by notes. :param durations: durations (in eighths) of all notes from a current measure (including a new note); if a new note prolongs to the next measure, its full duration is included; however, if the first note starts in the previous measure, only its duration within the current measure is included :return: indicator whether a continuation is in accordance with the rule """ valid_patterns = [ [4, 4], [4, 2, 2], [4, 2, 1, 1], [2, 2, 2, 2], [2, 2, 2, 1, 1], [2, 1, 1, 2, 2], [4, 8], [2, 2, 8], [2, 1, 1, 8], ] for valid_pattern in valid_patterns: if valid_pattern[:len(durations)] == durations: return True return False # Voice leading rules. def check_stability_of_rearticulated_pitch( counterpoint_continuation: 'LineElement', movement: int, **kwargs ) -> bool: """ Check that a pitch to be rearticulated (repeated) is stable. :param counterpoint_continuation: current continuation of counterpoint line :param movement: melodic interval (in scale degrees) for line continuation :return: indicator whether a continuation is in accordance with the rule """ if movement != 0: return True return counterpoint_continuation.scale_element.is_from_tonic_triad def check_absence_of_stalled_pitches( movement: int, past_movements: List[int], max_n_repetitions: int = 2, **kwargs ) -> bool: """ Check that a pitch is not excessively repeated. :param movement: melodic interval (in scale degrees) for line continuation :param past_movements: list of past movements :param max_n_repetitions: maximum allowed number of repetitions in a row :return: indicator whether a continuation is in accordance with the rule """ if movement != 0: return True if len(past_movements) < max_n_repetitions - 1: return True changes = [x for x in past_movements[-max_n_repetitions+1:] if x != 0] return len(changes) > 0 def check_absence_of_monotonous_long_motion( counterpoint_continuation: 'LineElement', current_motion_start_element: 'LineElement', max_distance_in_semitones: int = 9, **kwargs ) -> bool: """ Check that line does not move too far without any changes in direction. :param counterpoint_continuation: current continuation of counterpoint line :param current_motion_start_element: element of counterpoint line such that there are no changes in direction after it :param max_distance_in_semitones: maximum allowed distance (in semitones) :return: indicator whether a continuation is in accordance with the rule """ current = counterpoint_continuation.scale_element.position_in_semitones start = current_motion_start_element.scale_element.position_in_semitones if abs(current - start) > max_distance_in_semitones: return False return True def check_absence_of_skip_series( movement: int, past_movements: List[int], max_n_skips: int = 2, **kwargs ) -> bool: """ Check that there are no long series of skips. :param movement: melodic interval (in scale degrees) for line continuation :param past_movements: list of past movements :param max_n_skips: maximum allowed number of skips in a row :return: indicator whether a continuation is in accordance with the rule """ if abs(movement) <= 1: return True if len(past_movements) < max_n_skips: return True only_skips = all(abs(x) > 1 for x in past_movements[-max_n_skips:]) return not only_skips def check_that_skip_is_followed_by_opposite_step_motion( movement: int, past_movements: List[int], min_n_scale_degrees: int = 3, **kwargs ) -> bool: """ Check that after a large skip there is a step motion in opposite direction. :param movement: melodic interval (in scale degrees) for line continuation :param past_movements: list of past movements :param min_n_scale_degrees: minimum size of a large enough skip (in scale degrees) :return: indicator whether a continuation is in accordance with the rule """ if len(past_movements) == 0: return True previous_movement = past_movements[-1] if abs(previous_movement) < min_n_scale_degrees: return True return movement == -previous_movement / abs(previous_movement) def check_resolution_of_submediant_and_leading_tone( line: List['LineElement'], movement: int, **kwargs ) -> bool: """ Check that a sequence of submediant and leading tone properly resolves. If a line has submediant followed by leading tone, tonic must be used after leading tone, because there is strong attraction to it; similarly, if a line has leading tone followed by submediant, dominant must be used after submediant. :param line: counterpoint line in progress :param movement: melodic interval (in scale degrees) for line continuation :return: indicator whether a continuation is in accordance with the rule """ if len(line) < 2: return True elif line[-1].scale_element.degree == 6 and line[-2].scale_element.degree == 7: return movement == -1 elif line[-1].scale_element.degree == 7 and line[-2].scale_element.degree == 6: return movement == 1 return True def check_step_motion_to_final_pitch( counterpoint_continuation: 'LineElement', counterpoint_end: ScaleElement, piece_duration: int, prohibit_rearticulation: bool = True, **kwargs ) -> bool: """ Check that there is a way to reach final pitch with step motion. :param counterpoint_continuation: current continuation of counterpoint line :param counterpoint_end: element that ends counterpoint line :param piece_duration: total duration of piece (in eighths) :param prohibit_rearticulation: if it is set to `True`, the last but one pitch can not be the same as the final pitch :return: indicator whether a continuation is in accordance with the rule """ degrees_to_end_note = abs( counterpoint_continuation.scale_element.position_in_degrees - counterpoint_end.position_in_degrees ) eighths_left = ( (piece_duration - N_EIGHTHS_PER_MEASURE) - counterpoint_continuation.end_time_in_eighths ) quarters_left = ceil(eighths_left / 2) if quarters_left == 0 and degrees_to_end_note == 0: return not prohibit_rearticulation return degrees_to_end_note <= quarters_left + 1 # Harmony rules. def check_consonance_on_strong_beat( counterpoint_continuation: 'LineElement', cantus_firmus_elements: List['LineElement'], **kwargs ) -> bool: """ Check that there is consonance if current beat is strong. :param counterpoint_continuation: current continuation of counterpoint line :param cantus_firmus_elements: list of elements from cantus firmus that sound simultaneously with the counterpoint element :return: indicator whether a continuation is in accordance with the rule """ if counterpoint_continuation.start_time_in_eighths % 4 != 0: return True return check_consonance( counterpoint_continuation.scale_element, cantus_firmus_elements[0].scale_element ) def check_step_motion_to_dissonance( counterpoint_continuation: 'LineElement', cantus_firmus_elements: List['LineElement'], movement: int, **kwargs ) -> bool: """ Check that there is step motion to a dissonating element. Note that this rule prohibits double neighboring tones. :param counterpoint_continuation: current continuation of counterpoint line :param cantus_firmus_elements: list of elements from cantus firmus that sound simultaneously with the counterpoint element :param movement: melodic interval (in scale degrees) for line continuation :return: indicator whether a continuation is in accordance with the rule """ ctp_scale_element = counterpoint_continuation.scale_element cf_scale_element = cantus_firmus_elements[0].scale_element if check_consonance(ctp_scale_element, cf_scale_element): return True return movement in [-1, 1] def check_step_motion_from_dissonance( movement: int, is_last_element_consonant: bool, **kwargs ) -> bool: """ Check that there is step motion from a dissonating element. Note that this rule prohibits double neighboring tones. :param movement: melodic interval (in scale degrees) for line continuation :param is_last_element_consonant: indicator whether last element of counterpoint line (not including a new continuation in question) forms consonance with cantus firmus :return: indicator whether a continuation is in accordance with the rule """ if is_last_element_consonant: return True return movement in [-1, 1] def check_resolution_of_suspended_dissonance( line: List['LineElement'], movement: int, counterpoint_continuation: 'LineElement', cantus_firmus_elements: List['LineElement'], is_last_element_consonant: bool, **kwargs ) -> bool: """ Check that suspended dissonance is resolved by downward step motion. :param line: counterpoint line in progress :param movement: melodic interval (in scale degrees) for line continuation :param counterpoint_continuation: current continuation of counterpoint line :param cantus_firmus_elements: list of elements from cantus firmus that sound simultaneously with the counterpoint element :param is_last_element_consonant: indicator whether last element of counterpoint line (not including a new continuation in question) forms consonance with cantus firmus :return: indicator whether a continuation is in accordance with the rule """ last_note_start = line[-1].start_time_in_eighths last_note_end = line[-1].end_time_in_eighths last_note_duration = last_note_end - last_note_start if last_note_duration != N_EIGHTHS_PER_MEASURE: return True if is_last_element_consonant: return True if movement != -1: return False return check_consonance( counterpoint_continuation.scale_element, cantus_firmus_elements[-1].scale_element ) def check_absence_of_large_intervals( counterpoint_continuation: 'LineElement', cantus_firmus_elements: List['LineElement'], max_n_semitones: int = 16, **kwargs ) -> bool: """ Check that there are no large intervals between adjacent pitches. :param counterpoint_continuation: current continuation of counterpoint line :param cantus_firmus_elements: list of elements from cantus firmus that sound simultaneously with the counterpoint element :param max_n_semitones: maximum allowed interval in semitones between two simultaneously sounding pitches :return: indicator whether a continuation is in accordance with the rule """ cpt_pitch = counterpoint_continuation.scale_element.position_in_semitones for cantus_firmus_element in cantus_firmus_elements: cf_pitch = cantus_firmus_element.scale_element.position_in_semitones if abs(cpt_pitch - cf_pitch) > max_n_semitones: return False return True def check_absence_of_lines_crossing( counterpoint_continuation: 'LineElement', cantus_firmus_elements: List['LineElement'], is_counterpoint_above: bool, prohibit_unisons: bool = True, **kwargs ) -> bool: """ Check that there are no lines crossings. :param counterpoint_continuation: current continuation of counterpoint line :param cantus_firmus_elements: list of elements from cantus firmus that sound simultaneously with the counterpoint element :param is_counterpoint_above: indicator whether counterpoint must be above cantus firmus :param prohibit_unisons: if it is set to `True`, unison are considered a special case of lines crossing :return: indicator whether a continuation is in accordance with the rule """ initial_sign = 1 if is_counterpoint_above else -1 cpt_pitch = counterpoint_continuation.scale_element.position_in_semitones for cantus_firmus_element in cantus_firmus_elements: cf_pitch = cantus_firmus_element.scale_element.position_in_semitones if prohibit_unisons and cpt_pitch == cf_pitch: return False elif initial_sign * (cpt_pitch - cf_pitch) < 0: return False return True def check_absence_of_overlapping_motion( counterpoint_continuation: 'LineElement', previous_cantus_firmus_element: 'LineElement', is_counterpoint_above: bool, **kwargs ) -> bool: """ Check that there is no overlapping motion. :param counterpoint_continuation: current continuation of counterpoint line :param previous_cantus_firmus_element: the latest element of cantus firmus that sounds simultaneously with the last counterpoint element (excluding its continuation) :param is_counterpoint_above: indicator whether counterpoint must be above cantus firmus :return: indicator whether a continuation is in accordance with the rule """ initial_sign = 1 if is_counterpoint_above else -1 cpt_pitch = counterpoint_continuation.scale_element.position_in_semitones cf_pitch = previous_cantus_firmus_element.scale_element.position_in_semitones return initial_sign * (cpt_pitch - cf_pitch) > 0 # Registry. def get_rules_registry() -> Dict[str, Callable]: """ Get mapping from names to corresponding functions that check rules. :return: registry of functions checking rules of rhythm, voice leading, and harmony """ registry = { # Rhythm rules: 'rhythmic_pattern_validity': check_validity_of_rhythmic_pattern, # Voice leading rules: 'rearticulation_stability': check_stability_of_rearticulated_pitch, 'absence_of_stalled_pitches': check_absence_of_stalled_pitches, 'absence_of_long_motion': check_absence_of_monotonous_long_motion, 'absence_of_skip_series': check_absence_of_skip_series, 'turn_after_skip': check_that_skip_is_followed_by_opposite_step_motion, 'VI_VII_resolution': check_resolution_of_submediant_and_leading_tone, 'step_motion_to_end': check_step_motion_to_final_pitch, # Harmony rules: 'consonance_on_strong_beat': check_consonance_on_strong_beat, 'step_motion_to_dissonance': check_step_motion_to_dissonance, 'step_motion_from_dissonance': check_step_motion_from_dissonance, 'resolution_of_suspended_dissonance': check_resolution_of_suspended_dissonance, 'absence_of_large_intervals': check_absence_of_large_intervals, 'absence_of_lines_crossing': check_absence_of_lines_crossing, 'absence_of_overlapping_motion': check_absence_of_overlapping_motion, } return registry
[ "rlmusician.utils.music_theory.check_consonance", "math.ceil" ]
[((7208, 7230), 'math.ceil', 'ceil', (['(eighths_left / 2)'], {}), '(eighths_left / 2)\n', (7212, 7230), False, 'from math import ceil\n'), ((8061, 8163), 'rlmusician.utils.music_theory.check_consonance', 'check_consonance', (['counterpoint_continuation.scale_element', 'cantus_firmus_elements[0].scale_element'], {}), '(counterpoint_continuation.scale_element,\n cantus_firmus_elements[0].scale_element)\n', (8077, 8163), False, 'from rlmusician.utils.music_theory import ScaleElement, check_consonance\n'), ((9052, 9105), 'rlmusician.utils.music_theory.check_consonance', 'check_consonance', (['ctp_scale_element', 'cf_scale_element'], {}), '(ctp_scale_element, cf_scale_element)\n', (9068, 9105), False, 'from rlmusician.utils.music_theory import ScaleElement, check_consonance\n'), ((11234, 11337), 'rlmusician.utils.music_theory.check_consonance', 'check_consonance', (['counterpoint_continuation.scale_element', 'cantus_firmus_elements[-1].scale_element'], {}), '(counterpoint_continuation.scale_element,\n cantus_firmus_elements[-1].scale_element)\n', (11250, 11337), False, 'from rlmusician.utils.music_theory import ScaleElement, check_consonance\n')]
# Generated by Django 4.0.3 on 2022-03-06 08:19 import django.utils.timezone from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("api", "0006_rename_athletemodel_athlete_and_more"), ] operations = [ migrations.RemoveField( model_name="lift", name="session", ), migrations.AddField( model_name="lift", name="session_datetime", field=models.DateTimeField(blank=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name="lift", name="session_number", field=models.IntegerField(blank=True, default=0), preserve_default=False, ), migrations.AlterField( model_name="competition", name="date_end", field=models.DateField(blank=True), ), migrations.AlterField( model_name="competition", name="date_start", field=models.DateField(blank=True), ), migrations.DeleteModel( name="Session", ), ]
[ "django.db.migrations.DeleteModel", "django.db.models.DateField", "django.db.models.IntegerField", "django.db.models.DateTimeField", "django.db.migrations.RemoveField" ]
[((278, 335), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""lift"""', 'name': '"""session"""'}), "(model_name='lift', name='session')\n", (300, 335), False, 'from django.db import migrations, models\n'), ((1131, 1169), 'django.db.migrations.DeleteModel', 'migrations.DeleteModel', ([], {'name': '"""Session"""'}), "(name='Session')\n", (1153, 1169), False, 'from django.db import migrations, models\n'), ((487, 554), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'default': 'django.utils.timezone.now'}), '(blank=True, default=django.utils.timezone.now)\n', (507, 554), False, 'from django.db import migrations, models\n'), ((716, 758), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'default': '(0)'}), '(blank=True, default=0)\n', (735, 758), False, 'from django.db import migrations, models\n'), ((923, 951), 'django.db.models.DateField', 'models.DateField', ([], {'blank': '(True)'}), '(blank=True)\n', (939, 951), False, 'from django.db import migrations, models\n'), ((1082, 1110), 'django.db.models.DateField', 'models.DateField', ([], {'blank': '(True)'}), '(blank=True)\n', (1098, 1110), False, 'from django.db import migrations, models\n')]
# Copyright <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from logging.handlers import TimedRotatingFileHandler from flask import Flask, session from flask_cors import CORS from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager # init Flask app = Flask(__name__) app.config.from_pyfile('../app_config.py') # init logging logger_formatter = logging.Formatter(fmt='[%(levelname)s] %(asctime)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') logger_handler = TimedRotatingFileHandler(filename=app.config['LOG_FILE_LOC'], when='midnight') logger_handler.setFormatter(logger_formatter) logger = logging.getLogger() logger.setLevel(logging.WARNING) logger.addHandler(logger_handler) # allow CORS cors = CORS(app, supports_credentials=True, expose_headers=['Content-Disposition'], regex={r'/api/*': {'origins': '*'}}) # init SQLAlchemy db = SQLAlchemy(app) from app.database.entities import * db.create_all() # create upload directory if it doesn't already exist is_debug_mode = app.config['DEBUG'] if is_debug_mode: upload_directory_path = app.config['UPLOAD_FOLDER'] upload_directory_exists = os.path.exists(upload_directory_path) if not upload_directory_exists: os.mkdir(upload_directory_path) # register blueprints from app.api import login_resource from app.api import logout_resource from app.api import file_resource from app.api import admin_resource app.register_blueprint(login_resource) app.register_blueprint(logout_resource) app.register_blueprint(file_resource) app.register_blueprint(admin_resource) # init Flask-Login login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.init_app(app) # implement session callback functions from app.database.entities import PiFillingUser @login_manager.user_loader def load_user(user_id: int) -> PiFillingUser: """ Callback function that gets the user object whose ID is stored in the session. This function gets called every time an endpoint is decorated with the @login_required decorator function :param user_id: the user's ID :return: the PiFillingUser object """ return PiFillingUser.query.get(user_id) @app.before_request def set_session_details() -> None: """ Callback function that sets the user's session details before every request that is made. This function ensures that the user's session will expire in the amount of time designated by the configuration variable SESSION_DURATION, but it also ensures that when the user makes a request, their session will continue to stay alive and will reset to the amount of time designated by the same configuration variable mentioned above. :return: """ session.permanent = True session.modified = True app.permanent_session_lifetime = app.config['SESSION_DURATION']
[ "logging.getLogger", "flask_login.LoginManager", "os.path.exists", "flask_cors.CORS", "flask.Flask", "logging.Formatter", "logging.handlers.TimedRotatingFileHandler", "app.database.entities.PiFillingUser.query.get", "os.mkdir", "flask_sqlalchemy.SQLAlchemy" ]
[((806, 821), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (811, 821), False, 'from flask import Flask, session\n'), ((900, 1002), 'logging.Formatter', 'logging.Formatter', ([], {'fmt': '"""[%(levelname)s] %(asctime)s: %(message)s"""', 'datefmt': '"""%m/%d/%Y %I:%M:%S %p"""'}), "(fmt='[%(levelname)s] %(asctime)s: %(message)s', datefmt=\n '%m/%d/%Y %I:%M:%S %p')\n", (917, 1002), False, 'import logging\n'), ((1015, 1093), 'logging.handlers.TimedRotatingFileHandler', 'TimedRotatingFileHandler', ([], {'filename': "app.config['LOG_FILE_LOC']", 'when': '"""midnight"""'}), "(filename=app.config['LOG_FILE_LOC'], when='midnight')\n", (1039, 1093), False, 'from logging.handlers import TimedRotatingFileHandler\n'), ((1150, 1169), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (1167, 1169), False, 'import logging\n'), ((1258, 1374), 'flask_cors.CORS', 'CORS', (['app'], {'supports_credentials': '(True)', 'expose_headers': "['Content-Disposition']", 'regex': "{'/api/*': {'origins': '*'}}"}), "(app, supports_credentials=True, expose_headers=['Content-Disposition'],\n regex={'/api/*': {'origins': '*'}})\n", (1262, 1374), False, 'from flask_cors import CORS\n'), ((1408, 1423), 'flask_sqlalchemy.SQLAlchemy', 'SQLAlchemy', (['app'], {}), '(app)\n', (1418, 1423), False, 'from flask_sqlalchemy import SQLAlchemy\n'), ((2143, 2157), 'flask_login.LoginManager', 'LoginManager', ([], {}), '()\n', (2155, 2157), False, 'from flask_login import LoginManager\n'), ((1673, 1710), 'os.path.exists', 'os.path.exists', (['upload_directory_path'], {}), '(upload_directory_path)\n', (1687, 1710), False, 'import os\n'), ((2694, 2726), 'app.database.entities.PiFillingUser.query.get', 'PiFillingUser.query.get', (['user_id'], {}), '(user_id)\n', (2717, 2726), False, 'from app.database.entities import PiFillingUser\n'), ((1755, 1786), 'os.mkdir', 'os.mkdir', (['upload_directory_path'], {}), '(upload_directory_path)\n', (1763, 1786), False, 'import os\n')]
from ariadne import QueryType, make_executable_schema type_defs = """ type Query { hello: String! } """ query = QueryType() @query.field("hello") def resolve_hello(*_): return "Hello world!" schema = make_executable_schema(type_defs, query)
[ "ariadne.make_executable_schema", "ariadne.QueryType" ]
[((130, 141), 'ariadne.QueryType', 'QueryType', ([], {}), '()\n', (139, 141), False, 'from ariadne import QueryType, make_executable_schema\n'), ((224, 264), 'ariadne.make_executable_schema', 'make_executable_schema', (['type_defs', 'query'], {}), '(type_defs, query)\n', (246, 264), False, 'from ariadne import QueryType, make_executable_schema\n')]
# Python from typing import Any, Dict # Django from django import http from django.http.response import HttpResponse, HttpResponseNotAllowed, HttpResponseRedirect from django.forms.models import BaseModelForm from django.urls.base import reverse_lazy from django.views.generic.edit import CreateView from django.contrib.auth.mixins import LoginRequiredMixin # Apps from systemtest.users.forms import SignUpForm class SignUpView(LoginRequiredMixin, CreateView): template_name = "users/signup.html" success_url = reverse_lazy("users:login") form_class = SignUpForm def dispatch(self, request: http.HttpRequest, *args: Any, **kwargs: Any) -> http.HttpResponse: if not self.request.user.is_staff: return HttpResponseNotAllowed(["GET", "POST"]) return super().dispatch(request, *args, **kwargs) def get_form_kwargs(self) -> Dict[str, Any]: kwargs = super().get_form_kwargs() kwargs["user"] = self.request.user return kwargs def form_valid(self, form: BaseModelForm) -> HttpResponse: new_user = form.save() new_user.department = self.request.user.department new_user.shift = self.request.user.shift new_user.groups.add(form.cleaned_data["groups"]) new_user.save() return HttpResponseRedirect(str(self.success_url))
[ "django.urls.base.reverse_lazy", "django.http.response.HttpResponseNotAllowed" ]
[((526, 553), 'django.urls.base.reverse_lazy', 'reverse_lazy', (['"""users:login"""'], {}), "('users:login')\n", (538, 553), False, 'from django.urls.base import reverse_lazy\n'), ((744, 783), 'django.http.response.HttpResponseNotAllowed', 'HttpResponseNotAllowed', (["['GET', 'POST']"], {}), "(['GET', 'POST'])\n", (766, 783), False, 'from django.http.response import HttpResponse, HttpResponseNotAllowed, HttpResponseRedirect\n')]
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' # coding: utf-8 from sos_trades_core.tools.post_processing.charts.two_axes_instanciated_chart import InstanciatedSeries, TwoAxesInstanciatedChart from sos_trades_core.tools.post_processing.charts.chart_filter import ChartFilter import numpy as np from climateeconomics.core.core_witness.policy_model import PolicyModel from sos_trades_core.execution_engine.sos_discipline import SoSDiscipline from climateeconomics.core.core_witness.climateeco_discipline import ClimateEcoDiscipline class PolicyDiscipline(SoSDiscipline): # ontology information _ontology_data = { 'label': 'Policy Model', 'type': 'Research', 'source': 'SoSTrades Project', 'validated': '', 'validated_by': 'SoSTrades Project', 'last_modification_date': '', 'category': '', 'definition': '', 'icon': 'fas fa-balance-scale fa-fw', 'version': '', } _maturity = 'Research' years = np.arange(2020, 2101) DESC_IN = { 'year_start': ClimateEcoDiscipline.YEAR_START_DESC_IN, 'year_end': ClimateEcoDiscipline.YEAR_END_DESC_IN, 'CCS_price': {'type': 'dataframe', 'unit': '$/tCO2', 'visibility': SoSDiscipline.SHARED_VISIBILITY, 'namespace': 'ns_witness'}, 'CO2_damage_price': {'type': 'dataframe', 'unit': '$/tCO2', 'visibility': SoSDiscipline.SHARED_VISIBILITY, 'namespace': 'ns_witness'}, 'ccs_price_percentage': {'type': 'float', 'default': 100., 'unit': '%', 'visibility': SoSDiscipline.SHARED_VISIBILITY, 'namespace': 'ns_witness', 'user_level': 2}, 'co2_damage_price_percentage': {'type': 'float', 'default': 100., 'unit': '%', 'visibility': SoSDiscipline.SHARED_VISIBILITY, 'namespace': 'ns_witness', 'user_level': 2}, } DESC_OUT = { 'CO2_taxes': {'type': 'dataframe', 'visibility': 'Shared', 'namespace': 'ns_witness', 'unit': '$/tCO2'} } def init_execution(self): param_in = self.get_sosdisc_inputs() self.policy_model = PolicyModel() def run(self): param_in = self.get_sosdisc_inputs() self.policy_model.compute_smax(param_in) dict_values = { 'CO2_taxes': self.policy_model.CO2_tax} # store data self.store_sos_outputs_values(dict_values) def compute_sos_jacobian(self): """ Compute sos jacobian """ dCO2_tax_dCO2_damage, dCO2_tax_dCCS_price = self.policy_model.compute_CO2_tax_dCCS_dCO2_damage_smooth() self.set_partial_derivative_for_other_types( ('CO2_taxes', 'CO2_tax'), ('CO2_damage_price', 'CO2_damage_price'), np.identity(len(dCO2_tax_dCO2_damage)) * np.array(dCO2_tax_dCO2_damage)) self.set_partial_derivative_for_other_types( ('CO2_taxes', 'CO2_tax'), ('CCS_price', 'ccs_price_per_tCO2'), np.identity(len(dCO2_tax_dCCS_price)) * np.array(dCO2_tax_dCCS_price)) def get_chart_filter_list(self): # For the outputs, making a graph for tco vs year for each range and for specific # value of ToT with a shift of five year between then chart_filters = [] chart_list = ['CO2 tax'] # First filter to deal with the view : program or actor chart_filters.append(ChartFilter( 'Charts', chart_list, chart_list, 'charts')) return chart_filters def get_post_processing_list(self, chart_filters=None): # For the outputs, making a graph for tco vs year for each range and for specific # value of ToT with a shift of five year between then instanciated_charts = [] # Overload default value with chart filter if chart_filters is not None: for chart_filter in chart_filters: if chart_filter.filter_key == 'charts': chart_list = chart_filter.selected_values if 'CO2 tax' in chart_list: CCS_price = self.get_sosdisc_inputs('CCS_price') CO2_damage_price = self.get_sosdisc_inputs('CO2_damage_price') CO2_tax = self.get_sosdisc_outputs('CO2_taxes') years = list(CCS_price['years'].values) chart_name = 'CO2 tax chart' new_chart = TwoAxesInstanciatedChart('years', 'CO2 tax ($/tCO2)', chart_name=chart_name) new_series = InstanciatedSeries( years, list(CCS_price['ccs_price_per_tCO2'].values), 'CCS price', 'lines') new_series2 = InstanciatedSeries( years, list(CO2_damage_price['CO2_damage_price'].values), 'CO2 damage', 'lines') new_series3 = InstanciatedSeries( years, list(CO2_tax['CO2_tax'].values), 'CO2 tax', 'lines') new_chart.series.append(new_series) new_chart.series.append(new_series2) new_chart.series.append(new_series3) instanciated_charts.append(new_chart) return instanciated_charts
[ "sos_trades_core.tools.post_processing.charts.two_axes_instanciated_chart.TwoAxesInstanciatedChart", "numpy.array", "climateeconomics.core.core_witness.policy_model.PolicyModel", "numpy.arange", "sos_trades_core.tools.post_processing.charts.chart_filter.ChartFilter" ]
[((1509, 1530), 'numpy.arange', 'np.arange', (['(2020)', '(2101)'], {}), '(2020, 2101)\n', (1518, 1530), True, 'import numpy as np\n'), ((2686, 2699), 'climateeconomics.core.core_witness.policy_model.PolicyModel', 'PolicyModel', ([], {}), '()\n', (2697, 2699), False, 'from climateeconomics.core.core_witness.policy_model import PolicyModel\n'), ((3923, 3978), 'sos_trades_core.tools.post_processing.charts.chart_filter.ChartFilter', 'ChartFilter', (['"""Charts"""', 'chart_list', 'chart_list', '"""charts"""'], {}), "('Charts', chart_list, chart_list, 'charts')\n", (3934, 3978), False, 'from sos_trades_core.tools.post_processing.charts.chart_filter import ChartFilter\n'), ((4877, 4953), 'sos_trades_core.tools.post_processing.charts.two_axes_instanciated_chart.TwoAxesInstanciatedChart', 'TwoAxesInstanciatedChart', (['"""years"""', '"""CO2 tax ($/tCO2)"""'], {'chart_name': 'chart_name'}), "('years', 'CO2 tax ($/tCO2)', chart_name=chart_name)\n", (4901, 4953), False, 'from sos_trades_core.tools.post_processing.charts.two_axes_instanciated_chart import InstanciatedSeries, TwoAxesInstanciatedChart\n'), ((3344, 3374), 'numpy.array', 'np.array', (['dCO2_tax_dCO2_damage'], {}), '(dCO2_tax_dCO2_damage)\n', (3352, 3374), True, 'import numpy as np\n'), ((3546, 3575), 'numpy.array', 'np.array', (['dCO2_tax_dCCS_price'], {}), '(dCO2_tax_dCCS_price)\n', (3554, 3575), True, 'import numpy as np\n')]
from django.contrib import admin from django.urls import path, include from django.conf.urls.static import static from django.conf import settings urlpatterns = [ path('admin/', admin.site.urls), path('' , include('guardian.urls')), path('account/' , include('account.urls')), path('address/' , include('address.urls')), path('pharmacy/' , include('pharmacy.urls')), path('counsellor/' , include('counsellor.urls')), path('froala_editor/', include('froala_editor.urls')), path('store/', include('store.urls')), path('cart/', include('cart.urls')), path('counselor/', include('counselor.urls')), path('blog/', include('blog.urls')), path('booking/', include('booking.urls')), path('orders/', include('orders.urls')), path('orders/', include('rating.urls')), path('prescription/' , include('prescription.urls')), ]+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "django.conf.urls.static.static", "django.urls.path", "django.urls.include" ]
[((876, 937), 'django.conf.urls.static.static', 'static', (['settings.MEDIA_URL'], {'document_root': 'settings.MEDIA_ROOT'}), '(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)\n', (882, 937), False, 'from django.conf.urls.static import static\n'), ((168, 199), 'django.urls.path', 'path', (['"""admin/"""', 'admin.site.urls'], {}), "('admin/', admin.site.urls)\n", (172, 199), False, 'from django.urls import path, include\n'), ((215, 239), 'django.urls.include', 'include', (['"""guardian.urls"""'], {}), "('guardian.urls')\n", (222, 239), False, 'from django.urls import path, include\n'), ((264, 287), 'django.urls.include', 'include', (['"""account.urls"""'], {}), "('account.urls')\n", (271, 287), False, 'from django.urls import path, include\n'), ((312, 335), 'django.urls.include', 'include', (['"""address.urls"""'], {}), "('address.urls')\n", (319, 335), False, 'from django.urls import path, include\n'), ((361, 385), 'django.urls.include', 'include', (['"""pharmacy.urls"""'], {}), "('pharmacy.urls')\n", (368, 385), False, 'from django.urls import path, include\n'), ((413, 439), 'django.urls.include', 'include', (['"""counsellor.urls"""'], {}), "('counsellor.urls')\n", (420, 439), False, 'from django.urls import path, include\n'), ((470, 499), 'django.urls.include', 'include', (['"""froala_editor.urls"""'], {}), "('froala_editor.urls')\n", (477, 499), False, 'from django.urls import path, include\n'), ((521, 542), 'django.urls.include', 'include', (['"""store.urls"""'], {}), "('store.urls')\n", (528, 542), False, 'from django.urls import path, include\n'), ((563, 583), 'django.urls.include', 'include', (['"""cart.urls"""'], {}), "('cart.urls')\n", (570, 583), False, 'from django.urls import path, include\n'), ((609, 634), 'django.urls.include', 'include', (['"""counselor.urls"""'], {}), "('counselor.urls')\n", (616, 634), False, 'from django.urls import path, include\n'), ((655, 675), 'django.urls.include', 'include', (['"""blog.urls"""'], {}), "('blog.urls')\n", (662, 675), False, 'from django.urls import path, include\n'), ((699, 722), 'django.urls.include', 'include', (['"""booking.urls"""'], {}), "('booking.urls')\n", (706, 722), False, 'from django.urls import path, include\n'), ((745, 767), 'django.urls.include', 'include', (['"""orders.urls"""'], {}), "('orders.urls')\n", (752, 767), False, 'from django.urls import path, include\n'), ((790, 812), 'django.urls.include', 'include', (['"""rating.urls"""'], {}), "('rating.urls')\n", (797, 812), False, 'from django.urls import path, include\n'), ((842, 870), 'django.urls.include', 'include', (['"""prescription.urls"""'], {}), "('prescription.urls')\n", (849, 870), False, 'from django.urls import path, include\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-10-24 18:53 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('orders', '0006_auto_20161024_1127'), ] operations = [ migrations.AddField( model_name='orderdetails', name='approved', field=models.BooleanField(default=False), ), migrations.AddField( model_name='orderdetails', name='delivered', field=models.BooleanField(default=False), ), migrations.AddField( model_name='orderdetails', name='processed', field=models.BooleanField(default=False), ), migrations.AddField( model_name='orderdetails', name='returned', field=models.BooleanField(default=False), ), migrations.AddField( model_name='orderdetails', name='shipped', field=models.BooleanField(default=False), ), ]
[ "django.db.models.BooleanField" ]
[((405, 439), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (424, 439), False, 'from django.db import migrations, models\n'), ((568, 602), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (587, 602), False, 'from django.db import migrations, models\n'), ((731, 765), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (750, 765), False, 'from django.db import migrations, models\n'), ((893, 927), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (912, 927), False, 'from django.db import migrations, models\n'), ((1054, 1088), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (1073, 1088), False, 'from django.db import migrations, models\n')]
from bs4 import BeautifulSoup import requests from flask import Flask app = Flask(__name__) url ='https://www.worldometers.info/world-population/world-population-by-year/' year = [] population = [] @app.route('/') def main(): r = requests.get(url).text soup = BeautifulSoup(r, 'html.parser') for data in soup.find('tbody'): ''' Get every year then append every data on the year list ''' year.append(data.td.get_text()) ''' Get every data, split the whitespaces get the second one which is the year then replace , with a blank string ''' population.append(data.text.split()[1].replace(',', '')) ''' Reverse the lists then put it on a dict and return it to the user ''' year.reverse() population.reverse() json = {'info': f'this api is scraping {url} all of these are in order, it is optimized for a javascript library called Chart.js | Made by Yoshiinri | License: MIT | Repo: https://github.com/Yoshiinori/human-population-api','year': year, 'population': population} return json if '__main__' == __name__: app.run(debug=True)
[ "bs4.BeautifulSoup", "requests.get", "flask.Flask" ]
[((77, 92), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (82, 92), False, 'from flask import Flask\n'), ((269, 300), 'bs4.BeautifulSoup', 'BeautifulSoup', (['r', '"""html.parser"""'], {}), "(r, 'html.parser')\n", (282, 300), False, 'from bs4 import BeautifulSoup\n'), ((237, 254), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (249, 254), False, 'import requests\n')]
""" A convenient global store for application default values. This is *not* a config file - more on what to do about that coming here soon. """ import os import pathlib from datetime import datetime # Data Locations ROOT_DIR = str(pathlib.Path(__file__).parents[1].absolute()) # Project root TRAIN_DATA_DIR = os.path.join( ROOT_DIR, "data/array/pendulum" ) # Directories containing audio files OUTPUT_DIR = os.path.join( ROOT_DIR, "data/output" ) # Generated files (audio, images, etc.) go here LOG_DIR = os.path.join(ROOT_DIR, "data/logs") # Python logs go here TENSORBOARD_DIR = os.path.join( ROOT_DIR, "data/tensorboard/" + datetime.now().strftime("%Y%m%d-%H%M%S") ) MODEL_WEIGHTS = os.path.join(ROOT_DIR, "models", "cvae_pendulum_keras.h5") # ======================================================================== # Don't modify anything below this line unless you know what you're doing. # ======================================================================== # Program Defaults - Best not to touch these NUM_CPUS = int(round(os.cpu_count() * 0.75)) # Use a portion of available CPUs SAMPLE_RATE = 32768 # Audio files are resampled to this many samples per second RESAMPLE_TYPE = "kaiser_fast" # Resampling algorithm used by Librosa N_FFT = 4096 # STFT window size (in samples) HOP_LENGTH = 256 # STFT stride length (in samples) N_MELS = 512 # Number of frequency bins per frame (timestep) TOP_DB = 80 AUDIO_FORMAT = "wav" # Default Hyperparameters TEST_FRACTION = 0.2 EPOCHS = 100 LATENT_DIMS = 64 BATCH_SIZE = 1 # Number of windows per data sample WINDOW_SIZE = 1 # Number of spectrogram chunks per window EXAMPLES_TO_GENERATE = 16 # Data Options CHANNELS_LAST = True SHUFFLE_BUFFER = 1024 # Buffer size for shuffling data samples PREFETCH_DATA = ( 32 # Data samples to prefetch (resource intensive, but uses GPU more efficiently) ) DATA_PARALLEL = True # Parallelize data pre-processing (can be resource-intensive) # CLI Defaults AUDIO_OFFSET = 0.0 AUDIO_DURATION = None CHUNK_SIZE = 640 # Number of frames per spectrogram chunk TRUNCATE = True IMAGE_FLIP = True
[ "datetime.datetime.now", "os.path.join", "os.cpu_count", "pathlib.Path" ]
[((311, 356), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""data/array/pendulum"""'], {}), "(ROOT_DIR, 'data/array/pendulum')\n", (323, 356), False, 'import os\n'), ((414, 451), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""data/output"""'], {}), "(ROOT_DIR, 'data/output')\n", (426, 451), False, 'import os\n'), ((517, 552), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""data/logs"""'], {}), "(ROOT_DIR, 'data/logs')\n", (529, 552), False, 'import os\n'), ((703, 761), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""models"""', '"""cvae_pendulum_keras.h5"""'], {}), "(ROOT_DIR, 'models', 'cvae_pendulum_keras.h5')\n", (715, 761), False, 'import os\n'), ((1054, 1068), 'os.cpu_count', 'os.cpu_count', ([], {}), '()\n', (1066, 1068), False, 'import os\n'), ((644, 658), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (656, 658), False, 'from datetime import datetime\n'), ((232, 254), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (244, 254), False, 'import pathlib\n')]
''' Created on Jul 2, 2013 @author: <NAME> All rights reserved. ''' import time from multiprocessing.pool import Pool parallelSolve = False INF = 1 << 31 def solve(par): def match(c1, c2): return c1[0] == c2[0] or c1[1] == c2[1] deck = par piles = [] for c in deck: piles.append([c]) isMoved = True while isMoved: isMoved = False P = list(piles) for i, p in enumerate(P): if i - 3 >= 0 and match(p[-1], piles[i - 3][-1]): piles[i - 3].append(p.pop()) isMoved = True if len(p) == 0: del piles[i] break if i - 1 >= 0 and match(p[-1], piles[i - 1][-1]): piles[i - 1].append(p.pop()) isMoved = True if len(p) == 0: del piles[i] break result = [len(p) for p in piles] return ('%d piles remaining' % len(result)) + ' ' + ' '.join(str(e) for e in result) class Solver: def getInput(self): self.numOfTests = 0 self.input = [] while True: deck = self.fIn.readline().split() if deck[0] == '#': break self.numOfTests += 1 deck += self.fIn.readline().split() self.input.append((deck)) def __init__(self): self.fIn = open('input.txt') self.fOut = open('output.txt', 'w') self.results = [] def parallel(self): self.getInput() p = Pool(4) millis1 = int(round(time.time() * 1000)) self.results = p.map(solve, self.input) millis2 = int(round(time.time() * 1000)) print("Time in milliseconds: %d " % (millis2 - millis1)) self.makeOutput() def sequential(self): self.getInput() millis1 = int(round(time.time() * 1000)) for i in self.input: self.results.append(solve(i)) millis2 = int(round(time.time() * 1000)) print("Time in milliseconds: %d " % (millis2 - millis1)) self.makeOutput() def makeOutput(self): for test in range(self.numOfTests): self.fOut.write("%s\n" % self.results[test]) self.fIn.close() self.fOut.close() if __name__ == '__main__': solver = Solver() if parallelSolve: solver.parallel() else: solver.sequential()
[ "time.time", "multiprocessing.pool.Pool" ]
[((1545, 1552), 'multiprocessing.pool.Pool', 'Pool', (['(4)'], {}), '(4)\n', (1549, 1552), False, 'from multiprocessing.pool import Pool\n'), ((1581, 1592), 'time.time', 'time.time', ([], {}), '()\n', (1590, 1592), False, 'import time\n'), ((1678, 1689), 'time.time', 'time.time', ([], {}), '()\n', (1687, 1689), False, 'import time\n'), ((1869, 1880), 'time.time', 'time.time', ([], {}), '()\n', (1878, 1880), False, 'import time\n'), ((1989, 2000), 'time.time', 'time.time', ([], {}), '()\n', (1998, 2000), False, 'import time\n')]
import os import keras import tensorflow as tf from dotenv import load_dotenv def get_model(path_or_name): if type(path_or_name) is str: model = tf.keras.models.load_model(path_or_name) name = os.path.basename(path_or_name) if type(path_or_name) is keras.Model: model = path_or_name if type(path_or_name) is keras.Sequential: return path_or_name raise Exception("can not find any model") if __name__ == '__main__': load_dotenv() p1 = "/media/andy/z/python/毕业实习/app/deep_learning/model/1646726472" print(get_model(p1).name) from deep_learning.models import TransferLearningModel m = TransferLearningModel()("tf2-preview_mobilenet_v2_classification_4") print(type(m)) print(get_model(m).name)
[ "tensorflow.keras.models.load_model", "os.path.basename", "deep_learning.models.TransferLearningModel", "dotenv.load_dotenv" ]
[((480, 493), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (491, 493), False, 'from dotenv import load_dotenv\n'), ((160, 200), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['path_or_name'], {}), '(path_or_name)\n', (186, 200), True, 'import tensorflow as tf\n'), ((216, 246), 'os.path.basename', 'os.path.basename', (['path_or_name'], {}), '(path_or_name)\n', (232, 246), False, 'import os\n'), ((663, 686), 'deep_learning.models.TransferLearningModel', 'TransferLearningModel', ([], {}), '()\n', (684, 686), False, 'from deep_learning.models import TransferLearningModel\n')]
from __future__ import absolute_import, annotations import csv import importlib.metadata import itertools import json import logging import re import typing as t from enum import Enum from pathlib import Path import graphviz as gv import networkx as nx from arg_services.graph.v1 import graph_pb2 from arguebuf.models import Userdata from arguebuf.models.analyst import Analyst from arguebuf.models.edge import Edge from arguebuf.models.metadata import Metadata from arguebuf.models.node import (AtomNode, Attack, Node, Rephrase, SchemeNode, Support) from arguebuf.models.participant import Participant from arguebuf.models.reference import Reference from arguebuf.models.resource import Resource from arguebuf.schema import aif, ova from arguebuf.services import utils from arguebuf.services.utils import ImmutableDict, ImmutableSet from google.protobuf.json_format import MessageToDict, ParseDict from lxml import html log = logging.getLogger(__name__) class GraphFormat(str, Enum): ARGUEBUF = "arguebuf" AIF = "aif" # noinspection PyProtectedMember class Graph: """Graph in AIF format. No attribute is mandatory. All nodes and edges attributes are read-only. """ __slots__ = ( "name", "_nodes", "_atom_nodes", "_scheme_nodes", "_edges", "_incoming_nodes", "_incoming_edges", "_outgoing_nodes", "_outgoing_edges", "_major_claim", "_resources", "_participants", "_analysts", "metadata", "userdata", "library_version", "schema_version", ) name: str _nodes: ImmutableDict[str, Node] _atom_nodes: ImmutableDict[str, AtomNode] _scheme_nodes: ImmutableDict[str, SchemeNode] _edges: ImmutableDict[str, Edge] _incoming_nodes: ImmutableDict[Node, ImmutableSet[Node]] _incoming_edges: ImmutableDict[Node, ImmutableSet[Edge]] _outgoing_nodes: ImmutableDict[Node, ImmutableSet[Node]] _outgoing_edges: ImmutableDict[Node, ImmutableSet[Edge]] _resources: ImmutableDict[str, Resource] _participants: ImmutableDict[str, Participant] _major_claim: t.Optional[AtomNode] _analysts: ImmutableDict[str, Analyst] library_version: t.Optional[str] schema_version: t.Optional[int] metadata: Metadata userdata: Userdata @property def edges(self) -> t.Mapping[str, Edge]: return self._edges @property def nodes(self) -> t.Mapping[str, Node]: return self._nodes @property def atom_nodes(self) -> t.Mapping[str, AtomNode]: return self._atom_nodes @property def scheme_nodes(self) -> t.Mapping[str, SchemeNode]: return self._scheme_nodes def incoming_nodes(self, node: t.Union[str, Node]) -> t.AbstractSet[Node]: if isinstance(node, str): node = self._nodes[node] return self._incoming_nodes[node] def incoming_atom_nodes(self, node: t.Union[str, Node]) -> t.AbstractSet[AtomNode]: if isinstance(node, str): node = self._nodes[node] incoming_nodes = list(self._incoming_nodes[node]) incoming_atom_nodes = set() while incoming_nodes: incoming_node = incoming_nodes.pop() if isinstance(incoming_node, AtomNode): incoming_atom_nodes.add(incoming_node) else: incoming_nodes.extend(self._incoming_nodes[incoming_node]) return incoming_atom_nodes def outgoing_nodes(self, node: t.Union[str, Node]) -> t.AbstractSet[Node]: if isinstance(node, str): node = self._nodes[node] return self._outgoing_nodes[node] def outgoing_atom_nodes(self, node: t.Union[str, Node]) -> t.AbstractSet[AtomNode]: if isinstance(node, str): node = self._nodes[node] outgoing_nodes = list(self._outgoing_nodes[node]) outgoing_atom_nodes = set() while outgoing_nodes: outgoing_node = outgoing_nodes.pop() if isinstance(outgoing_node, AtomNode): outgoing_atom_nodes.add(outgoing_node) else: outgoing_nodes.extend(self._outgoing_nodes[outgoing_node]) return outgoing_atom_nodes def incoming_edges(self, node: t.Union[str, Node]) -> t.AbstractSet[Edge]: if isinstance(node, str): node = self._nodes[node] return self._incoming_edges[node] def outgoing_edges(self, node: t.Union[str, Node]) -> t.AbstractSet[Edge]: if isinstance(node, str): node = self._nodes[node] return self._outgoing_edges[node] def scheme_between( self, premise: AtomNode, claim: AtomNode ) -> t.Optional[SchemeNode]: candidates = set(self._outgoing_nodes[premise]).intersection( self._incoming_nodes[claim] ) if len(candidates) == 1: scheme = next(iter(candidates)) if isinstance(scheme, SchemeNode): return scheme return None @property def resources(self) -> t.Mapping[str, Resource]: return self._resources @property def major_claim(self) -> t.Optional[AtomNode]: if self._major_claim: return self._major_claim @property def root_node(self) -> t.Optional[AtomNode]: # If no major claim explicitly set, try to find one node with no outgoing edges. # It is only returned if there exists exactly one node without connections. # Otherwise, nothing is returned. nodes = { node for node in self._atom_nodes.values() if len(self._outgoing_nodes[node]) == 0 } if len(nodes) == 1: return next(iter(nodes)) return None @major_claim.setter def major_claim(self, value: t.Union[str, AtomNode, None]) -> None: if isinstance(value, str): value = self._atom_nodes[value] elif not (value is None or isinstance(value, AtomNode)): raise TypeError(utils.type_error(type(value), AtomNode)) self._major_claim = value # self._metadata.update() @property def leaf_nodes(self) -> t.Set[Node]: return { node for node in self.nodes.values() if len(self.incoming_nodes(node)) == 0 } @property def leaf_atom_nodes(self) -> t.Set[AtomNode]: return { node for node in self.atom_nodes.values() if len(self.incoming_nodes(node)) == 0 } @property def leaf_scheme_nodes(self) -> t.Set[SchemeNode]: return { node for node in self.scheme_nodes.values() if len(self.incoming_nodes(node)) == 0 } @property def participants(self) -> t.Mapping[str, Participant]: return self._participants @property def analysts(self) -> t.Mapping[str, Analyst]: return self._analysts def __init__(self, name: t.Optional[str] = None): """Create a graph from scratch.""" self.name = name or utils.uuid() self._nodes = ImmutableDict() self._atom_nodes = ImmutableDict() self._scheme_nodes = ImmutableDict() self._edges = ImmutableDict() self._analysts = ImmutableDict() self.userdata = {} self._resources = ImmutableDict() self._participants = ImmutableDict() self.metadata = Metadata() self._major_claim = None self._incoming_nodes = ImmutableDict() self._incoming_edges = ImmutableDict() self._outgoing_nodes = ImmutableDict() self._outgoing_edges = ImmutableDict() self.library_version = None self.schema_version = None self.__post_init__() def __post_init__(self): pass def __repr__(self): return utils.class_repr(self, [self.name]) def add_node(self, node: Node) -> None: """Add a node to the graph. Args: node: Node object that is not already part of the graph. Examples: >>> g = Graph() >>> g.add_node(AtomNode("Exemplary node")) >>> len(g.nodes) 1 >>> g.add_node(SchemeNode(Support.DEFAULT)) >>> len(g.nodes) 2 >>> g.add_node("Test") Traceback (most recent call last): TypeError: Expected type '<class 'arguebuf.node.Node'>', but got '<class 'str'>'. Make sure that you are passing the correct method arguments. """ if not isinstance(node, Node): raise TypeError(utils.type_error(type(node), Node)) if node.id in self._nodes: raise ValueError(utils.duplicate_key_error(self.name, node.id)) self._nodes._store[node.id] = node if isinstance(node, AtomNode): self._atom_nodes._store[node.id] = node if node.participant and node.participant.id not in self._participants: self.add_participant(node.participant) if ( node.reference and node.reference.resource and node.reference.resource.id not in self._resources ): self.add_resource(node.reference.resource) elif isinstance(node, SchemeNode): self._scheme_nodes._store[node.id] = node self._incoming_nodes._store[node] = ImmutableSet() self._incoming_edges._store[node] = ImmutableSet() self._outgoing_nodes._store[node] = ImmutableSet() self._outgoing_edges._store[node] = ImmutableSet() def remove_node(self, node: Node) -> None: """Remove a node and its corresponding edges from the graph. Args: node: Node object that is part of the graph. Examples: >>> g = Graph() >>> n1 = AtomNode("Node1") >>> n2 = SchemeNode(Support.DEFAULT) >>> e = Edge(n1, n2) >>> g.add_edge(e) >>> len(g.nodes) 2 >>> len(g.edges) 1 >>> g.remove_node(n1) >>> len(g.nodes) 1 >>> len(g.edges) 0 >>> g.remove_node(n1) Traceback (most recent call last): KeyError: Node not in graph. """ if node.id not in self.nodes: raise KeyError(utils.missing_key_error(self.name, node.id)) del self._nodes._store[node.id] if isinstance(node, AtomNode): del self._atom_nodes._store[node.id] elif isinstance(node, SchemeNode): del self._scheme_nodes._store[node.id] neighbor_edges = list(self._incoming_edges[node]) + list( self._outgoing_edges[node] ) for edge in neighbor_edges: self.remove_edge(edge) del self._incoming_nodes._store[node] del self._incoming_edges._store[node] del self._outgoing_nodes._store[node] del self._outgoing_edges._store[node] def add_edge(self, edge: Edge) -> None: """Add an edge and its nodes (if not already added). Args: edge: Edge object that is not part of the graph. Examples: >>> g = Graph() >>> n1 = AtomNode("Premise") >>> n2 = SchemeNode(Support.DEFAULT) >>> n3 = AtomNode("Claim") >>> e1 = Edge(n1, n2) >>> e2 = Edge(n2, n3) >>> g.add_edge(e1) >>> len(g.edges) 1 >>> g.add_edge(e2) >>> len(g.edges) 2 """ if not isinstance(edge, Edge): raise TypeError(utils.type_error(type(edge), Edge)) if edge.id in self._edges: raise ValueError(utils.duplicate_key_error(self.name, edge.id)) self._edges._store[edge.id] = edge if edge.source.id not in self.nodes: self.add_node(edge.source) if edge.target.id not in self.nodes: self.add_node(edge.target) self._outgoing_edges[edge.source]._store.add(edge) self._incoming_edges[edge.target]._store.add(edge) self._outgoing_nodes[edge.source]._store.add(edge.target) self._incoming_nodes[edge.target]._store.add(edge.source) def remove_edge(self, edge: Edge) -> None: """Remove an edge. Args: edge: Edge object that is part of the graph. Examples: >>> g = Graph() >>> n1 = AtomNode("Node1") >>> n2 = SchemeNode(Support.DEFAULT) >>> e = Edge(n1, n2) >>> g.add_edge(e) >>> len(g.edges) 1 >>> len(g.nodes) 2 >>> g.remove_edge(e) >>> len(g.edges) 0 >>> len(g.nodes) 2 """ if not isinstance(edge, Edge): raise TypeError(utils.type_error(type(edge), Edge)) if edge.id not in self._edges: raise KeyError(utils.missing_key_error(self.name, edge.id)) del self._edges._store[edge.id] self._outgoing_edges[edge.source]._store.remove(edge) self._incoming_edges[edge.target]._store.remove(edge) self._outgoing_nodes[edge.source]._store.remove(edge.target) self._incoming_nodes[edge.target]._store.remove(edge.source) ##What does a Resource look like? def add_resource(self, resource: Resource) -> None: """Add a resource. Args: resource: Resource object that is not part of the graph. Examples: >>> g = Graph() >>> r1 = Resource("Resource1") >>> g.add_resource(r1) >>> len(g.resources) 1 """ if not isinstance(resource, Resource): raise TypeError(utils.type_error(type(resource), Resource)) if resource.id in self._resources: raise ValueError(utils.duplicate_key_error(self.name, resource.id)) self._resources._store[resource.id] = resource def remove_resource(self, resource: Resource) -> None: """Add a resource. Args: resource: Resource object that is part of the graph. Examples: >>> g = Graph() >>> r1 = Resource("Resource1") >>> g.add_resource(r1) >>> len(g.resources) 1 >>> g.remove_resource(r1) >>> len(g.resources) 0 """ if not isinstance(resource, Resource): raise TypeError(utils.type_error(type(resource), Resource)) if resource.id not in self._resources: raise ValueError(utils.missing_key_error(self.name, resource.id)) del self._resources._store[resource.id] for node in self._atom_nodes.values(): if node.reference and node.reference.resource == resource: node.reference._resource = None node.reference.offset = None def clean_resources(self) -> None: """Remove resources from the graph that are used by no nodes""" node_resources = { node.reference.resource.id for node in self._atom_nodes.values() if node.reference and node.reference.resource } for resource_id in set(self._resources): if resource_id not in node_resources: del self._resources._store[resource_id] def add_participant(self, participant: Participant) -> None: """Add a resource. Args: participant: Participant object that is not part of the graph. Examples: >>> g = Graph() >>> p1 = Participant("Participant1") >>> g.add_participant(p1) >>> len(g.participants) 1 """ if not isinstance(participant, Participant): raise TypeError(utils.type_error(type(participant), Participant)) if participant.id in self._participants: raise ValueError(utils.duplicate_key_error(self.name, participant.id)) self._participants._store[participant.id] = participant def remove_participant(self, participant: Participant) -> None: """Add a resource. Args: participant: Participant object that is part of the graph. Examples: >>> g = Graph() >>> p1 = Participant("Participant1") >>> g.add_participant(p1) >>> len(g.participants) 1 >>> g.remove_participant(p1) >>> len(g.participants) 0 """ if not isinstance(participant, Participant): raise TypeError(utils.type_error(type(participant), Participant)) if participant.id not in self._participants: raise ValueError(utils.missing_key_error(self.name, participant.id)) del self._participants._store[participant.id] for node in self._atom_nodes.values(): if node.participant == participant: node._participant = None def clean_participants(self) -> None: """Remove resources from the graph that are used by no nodes""" node_participants = { node.participant.id for node in self._atom_nodes.values() if node.participant } for participant in set(self._participants): if participant not in node_participants: del self._participants._store[participant] def add_analyst(self, analyst: Analyst) -> None: """Add a resource. Args: analyst: analyst object that is not part of the graph. Examples: >>> g = Graph() >>> p1 = Analyst("Name") >>> g.add_analyst(p1) >>> len(g.analysts) 1 """ if not isinstance(analyst, Analyst): raise TypeError(utils.type_error(type(analyst), Analyst)) if analyst.id in self._analysts: raise ValueError(utils.duplicate_key_error(self.name, analyst.id)) self._analysts._store[analyst.id] = analyst def remove_analyst(self, analyst: Analyst) -> None: """Add a resource. Args: analyst: analyst object that is part of the graph. Examples: >>> import arguebuf >>> g = Graph() >>> p1 = Analyst("Name") >>> g.add_analyst(p1) >>> len(g.analysts) 1 >>> g.remove_analyst(p1) >>> len(g.analysts) 0 """ if not isinstance(analyst, Analyst): raise TypeError(utils.type_error(type(analyst), Analyst)) if analyst.id not in self._analysts: raise ValueError(utils.missing_key_error(self.name, analyst.id)) del self._analysts._store[analyst.id] def node_distance( self, start_node: Node, end_node: Node, max_distance: t.Optional[int] = None, directed: bool = True, ignore_schemes: bool = False, ) -> t.Optional[int]: """Get the distance between `start_node` and `end_node` in the graph. Args: start_node: Node object that is part of the graph. end_node: Node object that is part of the graph. max_distance: Only search for nodes having at most a distance of this argument. Especially helpful when dealing with large graphs where shorts paths are searched for. directed: If `False`, also search for the direction `end_node` -> `start_node`. Returns: `None` if no path between Examples: >>> g = Graph() >>> n1 = AtomNode("Premise") >>> n2 = SchemeNode(Support.DEFAULT) >>> n3 = AtomNode("Claim") >>> e1 = Edge(n1, n2) >>> e2 = Edge(n2, n3) >>> g.add_node(n1) >>> g.add_node(n2) >>> len(g.nodes) 2 >>> g.add_edge(e1) >>> g.add_edge(e2) >>> len(g.edges) 2 >>> g.node_distance(n1, n3) 2 >>> g.node_distance(n3, n1) """ if start_node in self.nodes.values() and end_node in self.nodes.values(): if start_node == end_node: return 0 connections = ( self.outgoing_atom_nodes if ignore_schemes else self.outgoing_nodes ) dist = _node_distance(start_node, end_node, connections, max_distance) if dist is None and not directed: dist = _node_distance(end_node, start_node, connections, max_distance) return dist return None @classmethod def from_ova( cls, obj: ova.Graph, name: t.Optional[str] = None, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: """Generate Graph structure from OVA argument graph file (reference: http://ova.uni-trier.de/).""" g = cls(name) resource = Resource.from_ova(obj["analysis"], nlp) g.add_resource(resource) for participant in obj["participants"]: g.add_participant(Participant.from_ova(participant)) if analyst_name := obj["analysis"].get("annotatorName"): g.add_analyst(Analyst(name=analyst_name)) for ova_node in obj["nodes"]: node = ( atom_class.from_ova(ova_node, nlp) if ova_node.get("type") == "I" else scheme_class.from_ova(ova_node, nlp) ) if node: g.add_node(node) if ova_node.get("major_claim") and isinstance(node, AtomNode): g._major_claim = node for ova_edge in obj["edges"]: if edge := edge_class.from_ova(ova_edge, g._nodes): g.add_edge(edge) if (analysis := obj.get("analysis")) and (raw_text := analysis.get("txt")): _inject_original_text(raw_text, g._atom_nodes, resource, nlp) return g @classmethod def from_aif( cls, obj: aif.Graph, name: t.Optional[str] = None, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: """Generate Graph structure from AIF argument graph file (reference: http://www.wi2.uni-trier.de/shared/publications/2019_LenzOllingerSahitajBergmann_ICCBR.pdf) """ g = cls(name) for aif_node in obj["nodes"]: node = ( atom_class.from_aif(aif_node, nlp) if aif_node["type"] == "I" else scheme_class.from_aif(aif_node, nlp) ) if node: g.add_node(node) for aif_edge in obj["edges"]: if edge := edge_class.from_aif(aif_edge, g._nodes): g.add_edge(edge) return g def to_aif(self) -> aif.Graph: """Export structure of Graph instance to AIF argument graph format.""" return { "nodes": [node.to_aif() for node in self._nodes.values()], "edges": [edge.to_aif() for edge in self._edges.values()], "locutions": [], } def to_protobuf(self) -> graph_pb2.Graph: """Export structure of Graph instance to PROTOBUF argument graph format.""" try: version = importlib.metadata.version("arg_services") except importlib.metadata.PackageNotFoundError: version = "" g = graph_pb2.Graph( schema_version=1, library_version=version, metadata=self.metadata.to_protobuf(), ) for node_id, node in self._nodes.items(): g.nodes[node_id].CopyFrom(node.to_protobuf()) for edge_id, edge in self._edges.items(): g.edges[edge_id].CopyFrom(edge.to_protobuf()) if self._major_claim: g.major_claim = self._major_claim.id for resource_id, resource in self._resources.items(): g.resources[resource_id].CopyFrom(resource.to_protobuf()) for participant_id, participant in self._participants.items(): g.participants[participant_id].CopyFrom(participant.to_protobuf()) for analyst_id, analyst in self._analysts.items(): g.analysts[analyst_id].CopyFrom(analyst.to_protobuf()) g.userdata.update(self.userdata) return g @classmethod def from_protobuf( cls, obj: graph_pb2.Graph, name: t.Optional[str] = None, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, participant_class: t.Type[Participant] = Participant, analyst_class: t.Type[Analyst] = Analyst, resource_class: t.Type[Resource] = Resource, reference_class: t.Type[Reference] = Reference, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: """Generate Graph structure from PROTOBUF argument graph file.(Link?)""" g = cls(name) for resource_id, resource in obj.resources.items(): g.add_resource(resource_class.from_protobuf(resource_id, resource, nlp)) for participant_id, participant in obj.participants.items(): g.add_participant( participant_class.from_protobuf(participant_id, participant) ) for analyst_id, analyst in obj.analysts.items(): g.add_analyst(analyst_class.from_protobuf(analyst_id, analyst)) for node_id, node in obj.nodes.items(): if node.WhichOneof("type") == "atom": g.add_node( atom_class.from_protobuf( node_id, node, g._resources, g._participants, reference_class, nlp, ) ) elif node.WhichOneof("type") == "scheme": g.add_node( scheme_class.from_protobuf( node_id, node, g._resources, g._participants, reference_class, nlp, ) ) # TODO: Raise error if node is neither scheme nor atom for edge_id, edge in obj.edges.items(): g.add_edge(edge_class.from_protobuf(edge_id, edge, g._nodes)) major_claim = g._nodes[obj.major_claim] if obj.major_claim else None if major_claim and isinstance(major_claim, AtomNode): g._major_claim = major_claim g.userdata.update(obj.userdata) g.metadata = Metadata.from_protobuf(obj.metadata) g.library_version = obj.library_version g.schema_version = obj.schema_version return g @classmethod def from_dict( cls, obj: t.Mapping[str, t.Any], name: t.Optional[str] = None, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: """Generate Graph structure from DICT argument graph file(Link?).""" if "analysis" in obj: return cls.from_ova( t.cast(ova.Graph, obj), name, atom_class, scheme_class, edge_class, nlp ) if "locutions" in obj: return cls.from_aif( t.cast(aif.Graph, obj), name, atom_class, scheme_class, edge_class, nlp ) return cls.from_protobuf( ParseDict(obj, graph_pb2.Graph()), name, atom_class, scheme_class, edge_class, nlp=nlp, ) def to_dict(self, format: GraphFormat) -> t.Dict[str, t.Any]: """Export structure of Graph instance to DICT argument graph format.""" if format == GraphFormat.AIF: return t.cast(t.Dict[str, t.Any], self.to_aif()) return MessageToDict(self.to_protobuf(), including_default_value_fields=False) @classmethod def from_json( cls, obj: t.IO, name: t.Optional[str] = None, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: """Generate Graph structure from JSON argument graph file(Link?).""" return cls.from_dict( json.load(obj), name, atom_class, scheme_class, edge_class, nlp ) def to_json( self, obj: t.IO, format: GraphFormat = GraphFormat.ARGUEBUF, pretty: bool = False, ) -> None: """Export structure of Graph instance to JSON argument graph format.""" json.dump( self.to_dict(format), obj, ensure_ascii=False, indent=4 if pretty else None ) @classmethod def from_brat( cls, obj: t.IO, name: t.Optional[str] = None, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: """Generate Graph structure from BRAT argument graph file (reference: https://brat.nlplab.org/)""" reader = csv.reader(obj, delimiter="\t") g = cls(name) atom_nodes = {} mc = atom_class(utils.parse("", nlp)) g.add_node(mc) g._major_claim = mc for row in reader: userdata = row[1].split() if row[0].startswith("T"): if userdata[0] == "MajorClaim": mc.text = utils.parse(f"{mc.plain_text}. {row[2]}", nlp) else: atom = atom_class(utils.parse(row[2], nlp)) g.add_node(atom) atom_nodes[row[0]] = atom elif row[0].startswith("A") or row[0].startswith("R"): if row[0].startswith("A"): scheme_type = ( Attack.DEFAULT if userdata[2] == "Against" else Support.DEFAULT ) source = atom_nodes[userdata[1]] target = mc else: scheme_type = ( Attack.DEFAULT if userdata[0] == "attacks" else Support.DEFAULT ) source = atom_nodes[userdata[1].split(":")[1]] target = atom_nodes[userdata[2].split(":")[1]] scheme = scheme_class(scheme_type) g.add_node(scheme) g.add_edge(edge_class(source, scheme)) g.add_edge(edge_class(scheme, target)) return g @classmethod def from_kialo( cls, obj: t.IO, name: t.Optional[str] = None, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: if name_match := re.search(r"Discussion Title: (.*)", obj.readline()): name = name_match[1] # After the title, an empty line should follow assert obj.readline().strip() == "" g = cls(name) # Example: 1.1. Pro: Gold is better than silver. # Pattern: {ID}.{ID}. {STANCE (OPTIONAL)}: {TEXT} pattern = re.compile(r"^(1\.(?:\d+\.)+) (?:(Con|Pro): )?(.*)") current_line = obj.readline() next_line = obj.readline() mc_match = re.search(r"^((?:\d+\.)+) (.*)", current_line) if not mc_match: raise ValueError("The major claim is not present in the third line!") mc_id = mc_match[1] mc_text = mc_match[2] # See in the following while loop for explanation of this block while next_line and not pattern.search(next_line): mc_text = f"{mc_text}\n{next_line.strip()}" next_line = obj.readline() mc = _kialo_atom_node(mc_id, mc_text, nlp, atom_class) g.add_node(mc) g.major_claim = mc current_line = next_line next_line = obj.readline() while current_line: if current_match := pattern.search(current_line): source_id = current_match[1] source_id_parts = source_id[:-1].split(".") level = len(source_id_parts) stance = current_match[2] text = current_match[3] # The text of a node is allowed to span multiple lines. # Thus, we need to look ahead to concatenate the complete text. # As long as the pattern is not found in the next line, # we assume that the text belongs to the previous statement. while next_line and not pattern.search(next_line): text = f"{text}\n{next_line.strip()}" next_line = obj.readline() assert source_id assert text if id_ref_match := re.search(r"^-> See ((?:\d+\.)+)", text): id_ref = id_ref_match[1] source = g.atom_nodes[id_ref] else: source = _kialo_atom_node(source_id, text, nlp, atom_class) g.add_node(source) if stance: stance = stance.lower() scheme = scheme_class( Attack.DEFAULT if stance == "con" else Support.DEFAULT, id=f"{source_id}scheme", ) else: scheme = scheme_class(Rephrase.DEFAULT, id=f"{source_id}scheme") target_id = ".".join(source_id_parts[:-1] + [""]) target = g.atom_nodes[target_id] g.add_node(scheme) g.add_edge(edge_class(source, scheme, id=f"{source.id}->{scheme.id}")) g.add_edge(edge_class(scheme, target, id=f"{scheme.id}->{target.id}")) current_line = next_line next_line = obj.readline() return g @classmethod def from_io( cls, obj: t.IO, suffix: str, name: t.Optional[str] = None, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: """Generate Graph structure from IO argument graph file(Link?).""" args = (obj, name, atom_class, scheme_class, edge_class, nlp) if suffix == ".ann": return cls.from_brat(*args) if suffix == ".txt": return cls.from_kialo(*args) return cls.from_json(*args) def to_io( self, obj: t.IO, format: GraphFormat = GraphFormat.ARGUEBUF, pretty: bool = False, ) -> None: """Export structure of Graph instance to IO argument graph format.""" self.to_json(obj, format, pretty) @classmethod def from_file( cls, path: Path, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: """Generate Graph structure from a File.""" with path.open("r", encoding="utf-8") as file: return cls.from_io( file, path.suffix, path.stem, atom_class, scheme_class, edge_class, nlp ) def to_file( self, path: Path, format: GraphFormat = GraphFormat.ARGUEBUF, pretty: bool = False, ) -> None: """Export strucure of Graph instance into structure of File/Folder format.""" if path.is_dir() or not path.suffix: path = path / f"{self.name}.json" with path.open("w", encoding="utf-8") as file: self.to_io(file, format, pretty) to_folder = to_file @classmethod def from_folder( cls, path: Path, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, suffixes: t.Iterable[str] = (".json"), ) -> t.List[Graph]: "Generate Graph structure from Folder." return [ cls.from_file(file, atom_class, scheme_class, edge_class, nlp) for suffix in suffixes for file in sorted(path.rglob(f"*{suffix}")) ] def to_nx( self, atom_label: t.Optional[t.Callable[[AtomNode], str]] = None, scheme_label: t.Optional[t.Callable[[SchemeNode], str]] = None, ) -> nx.DiGraph: """Transform a Graph instance into an instance of networkx directed graph. Refer to the networkx library for additional information. Examples: >>> g = Graph("Test") >>> n1 = AtomNode("Node1") >>> n2 = AtomNode("Node2") >>> e = Edge(n1, n2) >>> g.add_edge(e) >>> gnx = g.to_nx() >>> gnx.number_of_nodes() 2 """ g = nx.DiGraph() for node in self._atom_nodes.values(): node.to_nx(g, atom_label) for node in self._scheme_nodes.values(): node.to_nx(g, scheme_label) for edge in self._edges.values(): edge.to_nx(g) return g def to_gv( self, format: t.Optional[str] = None, engine: t.Optional[str] = None, nodesep: t.Optional[float] = None, ranksep: t.Optional[float] = None, wrap_col: t.Optional[int] = None, margin: t.Optional[t.Tuple[float, float]] = None, font_name: t.Optional[str] = None, font_size: t.Optional[float] = None, atom_label: t.Optional[t.Callable[[AtomNode], str]] = None, scheme_label: t.Optional[t.Callable[[SchemeNode], str]] = None, graph_attr: t.Optional[t.Mapping[str, str]] = None, node_attr: t.Optional[t.Mapping[str, str]] = None, edge_attr: t.Optional[t.Mapping[str, str]] = None, ) -> gv.Digraph: """Transform a Graph instance into an instance of GraphViz directed graph. Make sure that a GraphViz Executable path is set on your machine for visualization. Refer to the GraphViz library for additional information.""" gv_margin = lambda x: f"{x[0]},{x[1]}" if not graph_attr: graph_attr = {} if not node_attr: node_attr = {} if not edge_attr: edge_attr = {} g = gv.Digraph( name=str(self.name), strict=True, format=format or "pdf", engine=engine or "dot", node_attr={ "fontname": font_name or "Arial", "fontsize": str(font_size or 11), "margin": gv_margin(margin or (0.15, 0.1)), "style": "filled", "shape": "box", "width": "0", "height": "0", **node_attr, }, edge_attr={"color": "#666666", **edge_attr}, graph_attr={ "rankdir": "BT", "margin": "0", "nodesep": str(nodesep or 0.25), "ranksep": str(ranksep or 0.5), **graph_attr, }, ) for node in self._atom_nodes.values(): node.to_gv( g, self.major_claim == node, label_func=atom_label, wrap_col=wrap_col or 36, ) for node in self._scheme_nodes.values(): node.to_gv( g, self.major_claim == node, label_func=scheme_label, wrap_col=wrap_col or 36, ) for edge in self._edges.values(): edge.to_gv(g) return g def strip_snodes(self) -> None: """Remove scheme nodes from graph and merge respective edges into singular edge""" snodes = list(self._scheme_nodes.values()) for snode in snodes: for incoming, outgoing in itertools.product( self._incoming_edges[snode], self._outgoing_edges[snode] ): if isinstance(incoming.source, AtomNode) and isinstance( outgoing.target, AtomNode ): self.add_edge( Edge( incoming.source, outgoing.target, id=f"{incoming.id}-{outgoing.id}", ) ) self.remove_node(snode) def copy( self, atom_class: t.Type[AtomNode] = AtomNode, scheme_class: t.Type[SchemeNode] = SchemeNode, edge_class: t.Type[Edge] = Edge, nlp: t.Optional[t.Callable[[str], t.Any]] = None, ) -> Graph: """Contents of Graph instance are copied into new Graph object.""" return Graph.from_dict( self.to_dict(format=GraphFormat.ARGUEBUF), self.name, atom_class, scheme_class, edge_class, nlp, ) def _node_distance( node1: Node, node2: Node, connections: t.Callable[[Node], t.Iterable[Node]], max_distance: t.Optional[int], ) -> t.Optional[int]: expansion: t.List[t.Tuple[Node, int]] = [(n, 1) for n in connections(node1)] while len(expansion) > 0: candidate, distance = expansion.pop() if max_distance is not None and distance > max_distance: continue elif candidate == node2: return distance else: expansion.extend((n, distance + 1) for n in connections(candidate)) return None def _kialo_atom_node( id: str, text: str, nlp: t.Optional[t.Callable[[str], t.Any]], atom_class: t.Type[AtomNode], ) -> AtomNode: # Remove backslashes before parentheses/brackets text = re.sub(r"\\([\[\]\(\)])", r"\1", text) # Remove markdown links text = re.sub( r"\[(.*?)\]\(.*?\)", r"\1", text, ) # Apply user-provided nlp function text = utils.parse(text, nlp) return atom_class(text, id=id) def render( g: t.Union[gv.Graph, gv.Digraph], path: Path, view: bool = False, ) -> None: """Visualize a Graph instance using a GraphViz backend. Make sure that a GraphViz Executable path is set on your machine for visualization.""" filename = path.stem directory = path.parent try: g.render( filename=filename, directory=str(directory), cleanup=True, view=view, ) except gv.ExecutableNotFound: log.error("Rendering not possible. GraphViz might not be installed.") def _inject_original_text( raw_text: str, nodes: t.Mapping[str, AtomNode], resource: Resource, nlp: t.Optional[t.Callable[[str], t.Any]], ) -> None: doc = html.fromstring(f"<html><head></head><body>{raw_text}</body></html>") text = "" for elem in doc.body.iter(): # Span elements need special handling if elem.tag == "span": # The id is prefixed with 'node', e.g. 'node5'. node_key = elem.attrib["id"].replace("node", "") if node := nodes.get(node_key): node._reference = Reference( resource, len(text), utils.parse(elem.text, nlp) ) if elem.text: text += elem.text elif elem.tag == "br": text += "\n" elif elem.text: text += elem.text # Text after a tag should always be added to the overall text if elem.tail: text += elem.tail
[ "logging.getLogger", "arguebuf.models.metadata.Metadata.from_protobuf", "arguebuf.models.edge.Edge", "re.compile", "arguebuf.models.participant.Participant.from_ova", "arguebuf.services.utils.duplicate_key_error", "re.search", "networkx.DiGraph", "itertools.product", "arg_services.graph.v1.graph_pb2.Graph", "arguebuf.services.utils.missing_key_error", "arguebuf.services.utils.parse", "arguebuf.models.metadata.Metadata", "csv.reader", "arguebuf.services.utils.ImmutableSet", "arguebuf.services.utils.ImmutableDict", "re.sub", "arguebuf.models.analyst.Analyst", "arguebuf.models.resource.Resource.from_ova", "typing.cast", "lxml.html.fromstring", "arguebuf.services.utils.class_repr", "arguebuf.services.utils.uuid", "json.load" ]
[((964, 991), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (981, 991), False, 'import logging\n'), ((42921, 42964), 're.sub', 're.sub', (['"""\\\\\\\\([\\\\[\\\\]\\\\(\\\\)])"""', '"""\\\\1"""', 'text'], {}), "('\\\\\\\\([\\\\[\\\\]\\\\(\\\\)])', '\\\\1', text)\n", (42927, 42964), False, 'import re\n'), ((43000, 43043), 're.sub', 're.sub', (['"""\\\\[(.*?)\\\\]\\\\(.*?\\\\)"""', '"""\\\\1"""', 'text'], {}), "('\\\\[(.*?)\\\\]\\\\(.*?\\\\)', '\\\\1', text)\n", (43006, 43043), False, 'import re\n'), ((43123, 43145), 'arguebuf.services.utils.parse', 'utils.parse', (['text', 'nlp'], {}), '(text, nlp)\n', (43134, 43145), False, 'from arguebuf.services import utils\n'), ((43930, 43999), 'lxml.html.fromstring', 'html.fromstring', (['f"""<html><head></head><body>{raw_text}</body></html>"""'], {}), "(f'<html><head></head><body>{raw_text}</body></html>')\n", (43945, 43999), False, 'from lxml import html\n'), ((7167, 7182), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7180, 7182), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7210, 7225), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7223, 7225), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7255, 7270), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7268, 7270), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7293, 7308), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7306, 7308), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7334, 7349), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7347, 7349), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7403, 7418), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7416, 7418), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7448, 7463), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7461, 7463), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7488, 7498), 'arguebuf.models.metadata.Metadata', 'Metadata', ([], {}), '()\n', (7496, 7498), False, 'from arguebuf.models.metadata import Metadata\n'), ((7564, 7579), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7577, 7579), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7611, 7626), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7624, 7626), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7658, 7673), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7671, 7673), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7705, 7720), 'arguebuf.services.utils.ImmutableDict', 'ImmutableDict', ([], {}), '()\n', (7718, 7720), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((7905, 7940), 'arguebuf.services.utils.class_repr', 'utils.class_repr', (['self', '[self.name]'], {}), '(self, [self.name])\n', (7921, 7940), False, 'from arguebuf.services import utils\n'), ((9470, 9484), 'arguebuf.services.utils.ImmutableSet', 'ImmutableSet', ([], {}), '()\n', (9482, 9484), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((9529, 9543), 'arguebuf.services.utils.ImmutableSet', 'ImmutableSet', ([], {}), '()\n', (9541, 9543), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((9588, 9602), 'arguebuf.services.utils.ImmutableSet', 'ImmutableSet', ([], {}), '()\n', (9600, 9602), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((9647, 9661), 'arguebuf.services.utils.ImmutableSet', 'ImmutableSet', ([], {}), '()\n', (9659, 9661), False, 'from arguebuf.services.utils import ImmutableDict, ImmutableSet\n'), ((21330, 21369), 'arguebuf.models.resource.Resource.from_ova', 'Resource.from_ova', (["obj['analysis']", 'nlp'], {}), "(obj['analysis'], nlp)\n", (21347, 21369), False, 'from arguebuf.models.resource import Resource\n'), ((27233, 27269), 'arguebuf.models.metadata.Metadata.from_protobuf', 'Metadata.from_protobuf', (['obj.metadata'], {}), '(obj.metadata)\n', (27255, 27269), False, 'from arguebuf.models.metadata import Metadata\n'), ((29988, 30019), 'csv.reader', 'csv.reader', (['obj'], {'delimiter': '"""\t"""'}), "(obj, delimiter='\\t')\n", (29998, 30019), False, 'import csv\n'), ((32120, 32174), 're.compile', 're.compile', (['"""^(1\\\\.(?:\\\\d+\\\\.)+) (?:(Con|Pro): )?(.*)"""'], {}), "('^(1\\\\.(?:\\\\d+\\\\.)+) (?:(Con|Pro): )?(.*)')\n", (32130, 32174), False, 'import re\n'), ((32266, 32313), 're.search', 're.search', (['"""^((?:\\\\d+\\\\.)+) (.*)"""', 'current_line'], {}), "('^((?:\\\\d+\\\\.)+) (.*)', current_line)\n", (32275, 32313), False, 'import re\n'), ((38003, 38015), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (38013, 38015), True, 'import networkx as nx\n'), ((7132, 7144), 'arguebuf.services.utils.uuid', 'utils.uuid', ([], {}), '()\n', (7142, 7144), False, 'from arguebuf.services import utils\n'), ((29119, 29133), 'json.load', 'json.load', (['obj'], {}), '(obj)\n', (29128, 29133), False, 'import json\n'), ((30091, 30111), 'arguebuf.services.utils.parse', 'utils.parse', (['""""""', 'nlp'], {}), "('', nlp)\n", (30102, 30111), False, 'from arguebuf.services import utils\n'), ((41042, 41117), 'itertools.product', 'itertools.product', (['self._incoming_edges[snode]', 'self._outgoing_edges[snode]'], {}), '(self._incoming_edges[snode], self._outgoing_edges[snode])\n', (41059, 41117), False, 'import itertools\n'), ((8768, 8813), 'arguebuf.services.utils.duplicate_key_error', 'utils.duplicate_key_error', (['self.name', 'node.id'], {}), '(self.name, node.id)\n', (8793, 8813), False, 'from arguebuf.services import utils\n'), ((10455, 10498), 'arguebuf.services.utils.missing_key_error', 'utils.missing_key_error', (['self.name', 'node.id'], {}), '(self.name, node.id)\n', (10478, 10498), False, 'from arguebuf.services import utils\n'), ((11851, 11896), 'arguebuf.services.utils.duplicate_key_error', 'utils.duplicate_key_error', (['self.name', 'edge.id'], {}), '(self.name, edge.id)\n', (11876, 11896), False, 'from arguebuf.services import utils\n'), ((13095, 13138), 'arguebuf.services.utils.missing_key_error', 'utils.missing_key_error', (['self.name', 'edge.id'], {}), '(self.name, edge.id)\n', (13118, 13138), False, 'from arguebuf.services import utils\n'), ((14026, 14075), 'arguebuf.services.utils.duplicate_key_error', 'utils.duplicate_key_error', (['self.name', 'resource.id'], {}), '(self.name, resource.id)\n', (14051, 14075), False, 'from arguebuf.services import utils\n'), ((14765, 14812), 'arguebuf.services.utils.missing_key_error', 'utils.missing_key_error', (['self.name', 'resource.id'], {}), '(self.name, resource.id)\n', (14788, 14812), False, 'from arguebuf.services import utils\n'), ((16117, 16169), 'arguebuf.services.utils.duplicate_key_error', 'utils.duplicate_key_error', (['self.name', 'participant.id'], {}), '(self.name, participant.id)\n', (16142, 16169), False, 'from arguebuf.services import utils\n'), ((16919, 16969), 'arguebuf.services.utils.missing_key_error', 'utils.missing_key_error', (['self.name', 'participant.id'], {}), '(self.name, participant.id)\n', (16942, 16969), False, 'from arguebuf.services import utils\n'), ((18123, 18171), 'arguebuf.services.utils.duplicate_key_error', 'utils.duplicate_key_error', (['self.name', 'analyst.id'], {}), '(self.name, analyst.id)\n', (18148, 18171), False, 'from arguebuf.services import utils\n'), ((18869, 18915), 'arguebuf.services.utils.missing_key_error', 'utils.missing_key_error', (['self.name', 'analyst.id'], {}), '(self.name, analyst.id)\n', (18892, 18915), False, 'from arguebuf.services import utils\n'), ((21482, 21515), 'arguebuf.models.participant.Participant.from_ova', 'Participant.from_ova', (['participant'], {}), '(participant)\n', (21502, 21515), False, 'from arguebuf.models.participant import Participant\n'), ((21609, 21635), 'arguebuf.models.analyst.Analyst', 'Analyst', ([], {'name': 'analyst_name'}), '(name=analyst_name)\n', (21616, 21635), False, 'from arguebuf.models.analyst import Analyst\n'), ((27881, 27903), 'typing.cast', 't.cast', (['ova.Graph', 'obj'], {}), '(ova.Graph, obj)\n', (27887, 27903), True, 'import typing as t\n'), ((28048, 28070), 'typing.cast', 't.cast', (['aif.Graph', 'obj'], {}), '(aif.Graph, obj)\n', (28054, 28070), True, 'import typing as t\n'), ((28196, 28213), 'arg_services.graph.v1.graph_pb2.Graph', 'graph_pb2.Graph', ([], {}), '()\n', (28211, 28213), False, 'from arg_services.graph.v1 import graph_pb2\n'), ((30348, 30394), 'arguebuf.services.utils.parse', 'utils.parse', (['f"""{mc.plain_text}. {row[2]}"""', 'nlp'], {}), "(f'{mc.plain_text}. {row[2]}', nlp)\n", (30359, 30394), False, 'from arguebuf.services import utils\n'), ((33785, 33826), 're.search', 're.search', (['"""^-> See ((?:\\\\d+\\\\.)+)"""', 'text'], {}), "('^-> See ((?:\\\\d+\\\\.)+)', text)\n", (33794, 33826), False, 'import re\n'), ((44376, 44403), 'arguebuf.services.utils.parse', 'utils.parse', (['elem.text', 'nlp'], {}), '(elem.text, nlp)\n', (44387, 44403), False, 'from arguebuf.services import utils\n'), ((30455, 30479), 'arguebuf.services.utils.parse', 'utils.parse', (['row[2]', 'nlp'], {}), '(row[2], nlp)\n', (30466, 30479), False, 'from arguebuf.services import utils\n'), ((41346, 41419), 'arguebuf.models.edge.Edge', 'Edge', (['incoming.source', 'outgoing.target'], {'id': 'f"""{incoming.id}-{outgoing.id}"""'}), "(incoming.source, outgoing.target, id=f'{incoming.id}-{outgoing.id}')\n", (41350, 41419), False, 'from arguebuf.models.edge import Edge\n')]
"""XJTU dataset.""" import os from pathlib import Path import itertools import json import numpy as np import tensorflow as tf import tensorflow_datasets as tfds import pandas as pd # from scipy.io import loadmat _METAINFO = pd.read_csv(Path(__file__).parent/'metainfo.csv') _DESCRIPTION = """ XJTU-SY Bearing Datasets. Description =========== XJTU-SY bearing datasets are provided by the Institute of Design Science and Basic Component at Xi’an Jiaotong University (XJTU), Shaanxi, P.R. China (http://gr.xjtu.edu.cn/web/yaguolei) and the Changxing Sumyoung Technology Co., Ltd. (SY), Zhejiang, P.R. China (https://www.sumyoungtech.com.cn). The datasets contain complete run-to-failure data of 15 rolling element bearings that were acquired by conducting many accelerated degradation experiments. These datasets are publicly available and anyone can use them to validate prognostics algorithms of rolling element bearings. Publications making use of the XJTU-SY bearing datasets are requested to cite the following paper. Citation -------- <NAME>, <NAME>, <NAME>, <NAME>, “A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings”, IEEE Transactions on Reliability, pp. 1-12, 2018. DOI: 10.1109/TR.2018.2882682. Homepage -------- https://biaowang.tech/xjtu-sy-bearing-datasets/ Original data ============= Sampling rate: 25.6 kHz Duration: 1.28 seconds Signal length: 32768 Sampling period: 1 minute Number of channels: 2, horizontal and vertical acceleration Original split: 3 operating conditions (rotating speed and radial force) on 5 bearings - 1) 2100 rpm (35 Hz) and 12 kN; - 2) 2250 rpm (37.5 Hz) and 11 kN; - 3) 2400 rpm (40 Hz) and 10 kN. Download -------- https://www.dropbox.com/sh/qka3b73wuvn5l7a/AADdQk8ZCsNkzjz11JewU7cBa/Data?dl=0&subfolder_nav_tracking=1 Notes ===== The original dataset contains 6 rar files which needs to be extracted all together. """ _CITATION = """ @article{wang2018hybrid, title={A hybrid prognostics approach for estimating remaining useful life of rolling element bearings}, author={<NAME> and <NAME> and <NAME> and <NAME>}, journal={IEEE Transactions on Reliability}, volume={69}, number={1}, pages={401--412}, year={2018}, publisher={IEEE} } """ _SPLIT_PATH_MATCH = { 'contidion1': '35Hz12kN', 'contidion2': '37.5Hz11kN', 'contidion3': '40Hz10kN', } # _PARSER_MATCH = { # # 'file name pattern': # } # _DATA_URLS = '' class XJTU(tfds.core.GeneratorBasedBuilder): """DatasetBuilder for XJTU dataset.""" VERSION = tfds.core.Version('1.0.0') RELEASE_NOTES = { '1.0.0': 'Initial release.', } MANUAL_DOWNLOAD_INSTRUCTIONS = """ Please download all data via the following link: https://www.dropbox.com/sh/qka3b73wuvn5l7a/AADdQk8ZCsNkzjz11JewU7cBa/Data?dl=0&subfolder_nav_tracking=1 or via any other links listed on the author's website: https://biaowang.tech/xjtu-sy-bearing-datasets/ and extract all 6 rar files located in the subfolder `Data` (unrar the first one `XJTU-SY_Bearing_Datasets.part01.rar` will automatically extract all other files). Then proceed the installation manually e.g. from the terminal via the command `$ tfds build xjtu --manual_dir $PATH_TO_EXTRACTED_FILES` """ def _info(self) -> tfds.core.DatasetInfo: """Returns the dataset metadata.""" return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ # Number of channels is fixed and length is fixed 'signal': tfds.features.Tensor(shape=(None, 2), dtype=tf.float64), # 'label': tfds.features.ClassLabel(names=['Healthy', 'Faulty', 'Unknown']), 'metadata': { 'OperatingCondition': tf.int32, # Operating condition 'BearingID': tf.int32, # ID of the bearing 'FaultComponent': tf.string, # Component of the fault, e.g. {'Roller', 'InnerRing'} 'Lifetime': tf.float32, 'FileName': tf.string, # Original filename with path } }), # If there's a common (input, target) tuple from the # features, specify them here. They'll be used if # `as_supervised=True` in `builder.as_dataset`. # supervised_keys=('signal', 'label'), # Set to `None` to disable supervised_keys=None, homepage='', citation=_CITATION, ) def _split_generators(self, dl_manager: tfds.download.DownloadManager): if dl_manager._manual_dir.exists(): # prefer to use manually downloaded data datadir = dl_manager._manual_dir else: # automatically download data # For too large dataset or unsupported format raise FileNotFoundError(self.MANUAL_DOWNLOAD_INSTRUCTIONS) return { sp: self._generate_examples(datadir/fn) for sp, fn in _SPLIT_PATH_MATCH.items() # 'train': self._generate_examples_all(datadir), } def _generate_examples(self, path): # assert path.exists() # If the download files are extracted for fp in path.rglob('*.csv'): # print(fp) # parse the filename _condition, _bearing = fp.parent.name[7:].split('_') # print(int(_condition), int(_bearing)) metadata = _METAINFO.loc[(_METAINFO['OperatingCondition']==int(_condition)) & (_METAINFO['BearingID']==int(_bearing))].iloc[0].to_dict() metadata['FileName'] = os.path.join(*fp.parts[-3:]) x = pd.read_csv(fp).values yield hash(frozenset(metadata.items())), { 'signal': x, # 'label': 'Faulty', 'metadata': metadata } @staticmethod def get_references(): try: with open(Path(__file__).parent / 'Exported Items.bib') as fp: return fp.read() except: pass
[ "pandas.read_csv", "tensorflow_datasets.features.Tensor", "pathlib.Path", "os.path.join", "tensorflow_datasets.core.Version" ]
[((2536, 2562), 'tensorflow_datasets.core.Version', 'tfds.core.Version', (['"""1.0.0"""'], {}), "('1.0.0')\n", (2553, 2562), True, 'import tensorflow_datasets as tfds\n'), ((239, 253), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (243, 253), False, 'from pathlib import Path\n'), ((5372, 5400), 'os.path.join', 'os.path.join', (['*fp.parts[-3:]'], {}), '(*fp.parts[-3:])\n', (5384, 5400), False, 'import os\n'), ((5412, 5427), 'pandas.read_csv', 'pd.read_csv', (['fp'], {}), '(fp)\n', (5423, 5427), True, 'import pandas as pd\n'), ((3536, 3591), 'tensorflow_datasets.features.Tensor', 'tfds.features.Tensor', ([], {'shape': '(None, 2)', 'dtype': 'tf.float64'}), '(shape=(None, 2), dtype=tf.float64)\n', (3556, 3591), True, 'import tensorflow_datasets as tfds\n'), ((5638, 5652), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (5642, 5652), False, 'from pathlib import Path\n')]
import redis import sys if sys.argv[1] == "prod": HOST = 'redis_master_1' else: HOST = 'XX' db = redis.Redis(host=HOST, port=6379, db=0, password='<PASSWORD>', decode_responses=True)
[ "redis.Redis" ]
[((107, 196), 'redis.Redis', 'redis.Redis', ([], {'host': 'HOST', 'port': '(6379)', 'db': '(0)', 'password': '"""<PASSWORD>"""', 'decode_responses': '(True)'}), "(host=HOST, port=6379, db=0, password='<PASSWORD>',\n decode_responses=True)\n", (118, 196), False, 'import redis\n')]
import logging from flask import Blueprint from burgeon.api.tracks.create_track_api import CreateTrackAPI from burgeon.api.tracks.update_track_api import UpdateTrackAPI from burgeon.api.tracks.delete_track_api import DeleteTrackAPI from burgeon.api.tracks.get_track_api import GetTrackAPI from burgeon.api.tracks.get_tracks_api import GetTracksAPI log = logging.getLogger('burgeon.tracks') tracks_blueprint = Blueprint('tracks', __name__) # API resources get_tracks_api_view = GetTracksAPI.as_view('get_tracks_api') get_track_api_view = GetTrackAPI.as_view('get_track_api') create_track_api_view = CreateTrackAPI.as_view('create_tracks_api') update_track_api_view = UpdateTrackAPI.as_view('update_tracks_api') delete_track_api_view = DeleteTrackAPI.as_view('delete_tracks_api') ### API Endpoints ## GET tracks_blueprint.add_url_rule( '/tracks', view_func=get_tracks_api_view, methods=['GET'] ) tracks_blueprint.add_url_rule( '/tracks/<int:track_id>', view_func=get_track_api_view, methods=['GET'] ) ## POST tracks_blueprint.add_url_rule( '/tracks', view_func=create_track_api_view, methods=['POST'] ) tracks_blueprint.add_url_rule( '/tracks/<int:track_id>', view_func=update_track_api_view, methods=['PUT'] ) tracks_blueprint.add_url_rule( '/tracks/<int:track_id>', view_func=delete_track_api_view, methods=['DELETE'] )
[ "logging.getLogger", "burgeon.api.tracks.create_track_api.CreateTrackAPI.as_view", "burgeon.api.tracks.delete_track_api.DeleteTrackAPI.as_view", "burgeon.api.tracks.get_track_api.GetTrackAPI.as_view", "burgeon.api.tracks.get_tracks_api.GetTracksAPI.as_view", "burgeon.api.tracks.update_track_api.UpdateTrackAPI.as_view", "flask.Blueprint" ]
[((356, 391), 'logging.getLogger', 'logging.getLogger', (['"""burgeon.tracks"""'], {}), "('burgeon.tracks')\n", (373, 391), False, 'import logging\n'), ((412, 441), 'flask.Blueprint', 'Blueprint', (['"""tracks"""', '__name__'], {}), "('tracks', __name__)\n", (421, 441), False, 'from flask import Blueprint\n'), ((483, 521), 'burgeon.api.tracks.get_tracks_api.GetTracksAPI.as_view', 'GetTracksAPI.as_view', (['"""get_tracks_api"""'], {}), "('get_tracks_api')\n", (503, 521), False, 'from burgeon.api.tracks.get_tracks_api import GetTracksAPI\n'), ((546, 582), 'burgeon.api.tracks.get_track_api.GetTrackAPI.as_view', 'GetTrackAPI.as_view', (['"""get_track_api"""'], {}), "('get_track_api')\n", (565, 582), False, 'from burgeon.api.tracks.get_track_api import GetTrackAPI\n'), ((607, 650), 'burgeon.api.tracks.create_track_api.CreateTrackAPI.as_view', 'CreateTrackAPI.as_view', (['"""create_tracks_api"""'], {}), "('create_tracks_api')\n", (629, 650), False, 'from burgeon.api.tracks.create_track_api import CreateTrackAPI\n'), ((675, 718), 'burgeon.api.tracks.update_track_api.UpdateTrackAPI.as_view', 'UpdateTrackAPI.as_view', (['"""update_tracks_api"""'], {}), "('update_tracks_api')\n", (697, 718), False, 'from burgeon.api.tracks.update_track_api import UpdateTrackAPI\n'), ((743, 786), 'burgeon.api.tracks.delete_track_api.DeleteTrackAPI.as_view', 'DeleteTrackAPI.as_view', (['"""delete_tracks_api"""'], {}), "('delete_tracks_api')\n", (765, 786), False, 'from burgeon.api.tracks.delete_track_api import DeleteTrackAPI\n')]
# ResNet # when tuning start with learning rate->mini_batch_size -> # momentum-> #hidden_units -> # learning_rate_decay -> #layers import tensorflow.keras as keras import numpy as np import pandas as pd import time import matplotlib class Classifier_RESNET: def __init__(self, input_shape, nb_classes): self.model = self.build_model(input_shape, nb_classes) def build_model(self, input_shape, nb_classes): n_feature_maps = 64 input_layer = keras.layers.Input(input_shape) # BLOCK 1 conv_x = keras.layers.Conv1D(filters=n_feature_maps, kernel_size=8, padding='same')(input_layer) conv_x = keras.layers.BatchNormalization()(conv_x) conv_x = keras.layers.Activation('relu')(conv_x) conv_y = keras.layers.Conv1D(filters=n_feature_maps, kernel_size=5, padding='same')(conv_x) conv_y = keras.layers.BatchNormalization()(conv_y) conv_y = keras.layers.Activation('relu')(conv_y) conv_z = keras.layers.Conv1D(filters=n_feature_maps, kernel_size=3, padding='same')(conv_y) conv_z = keras.layers.BatchNormalization()(conv_z) # expand channels for the sum 1 x 1 卷积 shortcut_y = keras.layers.Conv1D(filters=n_feature_maps, kernel_size=1, padding='same')(input_layer) shortcut_y = keras.layers.BatchNormalization()(shortcut_y) output_block_1 = keras.layers.add([shortcut_y, conv_z]) output_block_1 = keras.layers.Activation('relu')(output_block_1) # BLOCK 2 conv_x = keras.layers.Conv1D(filters=n_feature_maps * 2, kernel_size=8, padding='same')(output_block_1) conv_x = keras.layers.BatchNormalization()(conv_x) conv_x = keras.layers.Activation('relu')(conv_x) conv_y = keras.layers.Conv1D(filters=n_feature_maps * 2, kernel_size=5, padding='same')(conv_x) conv_y = keras.layers.BatchNormalization()(conv_y) conv_y = keras.layers.Activation('relu')(conv_y) conv_z = keras.layers.Conv1D(filters=n_feature_maps * 2, kernel_size=3, padding='same')(conv_y) conv_z = keras.layers.BatchNormalization()(conv_z) # expand channels for the sum shortcut_y = keras.layers.Conv1D(filters=n_feature_maps * 2, kernel_size=1, padding='same')(output_block_1) shortcut_y = keras.layers.BatchNormalization()(shortcut_y) output_block_2 = keras.layers.add([shortcut_y, conv_z]) output_block_2 = keras.layers.Activation('relu')(output_block_2) # BLOCK 3 conv_x = keras.layers.Conv1D(filters=n_feature_maps * 2, kernel_size=8, padding='same')(output_block_2) conv_x = keras.layers.BatchNormalization()(conv_x) conv_x = keras.layers.Activation('relu')(conv_x) conv_y = keras.layers.Conv1D(filters=n_feature_maps * 2, kernel_size=5, padding='same')(conv_x) conv_y = keras.layers.BatchNormalization()(conv_y) conv_y = keras.layers.Activation('relu')(conv_y) conv_z = keras.layers.Conv1D(filters=n_feature_maps * 2, kernel_size=3, padding='same')(conv_y) conv_z = keras.layers.BatchNormalization()(conv_z) # no need to expand channels because they are equal shortcut_y = keras.layers.BatchNormalization()(output_block_2) output_block_3 = keras.layers.add([shortcut_y, conv_z]) output_block_3 = keras.layers.Activation('relu')(output_block_3) # FINAL gap_layer = keras.layers.GlobalAveragePooling1D()(output_block_3) # GlobalAveragePooling1D 对于时序数据的全局平均池化。 output_layer = keras.layers.Dense(nb_classes, activation='softmax')(gap_layer) model = keras.models.Model(inputs=input_layer, outputs=output_layer) return model
[ "tensorflow.keras.layers.Input", "tensorflow.keras.layers.add", "tensorflow.keras.layers.BatchNormalization", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.GlobalAveragePooling1D", "tensorflow.keras.models.Model", "tensorflow.keras.layers.Activation", "tensorflow.keras.layers.Conv1D" ]
[((480, 511), 'tensorflow.keras.layers.Input', 'keras.layers.Input', (['input_shape'], {}), '(input_shape)\n', (498, 511), True, 'import tensorflow.keras as keras\n'), ((1384, 1422), 'tensorflow.keras.layers.add', 'keras.layers.add', (['[shortcut_y, conv_z]'], {}), '([shortcut_y, conv_z])\n', (1400, 1422), True, 'import tensorflow.keras as keras\n'), ((2377, 2415), 'tensorflow.keras.layers.add', 'keras.layers.add', (['[shortcut_y, conv_z]'], {}), '([shortcut_y, conv_z])\n', (2393, 2415), True, 'import tensorflow.keras as keras\n'), ((3280, 3318), 'tensorflow.keras.layers.add', 'keras.layers.add', (['[shortcut_y, conv_z]'], {}), '([shortcut_y, conv_z])\n', (3296, 3318), True, 'import tensorflow.keras as keras\n'), ((3637, 3697), 'tensorflow.keras.models.Model', 'keras.models.Model', ([], {'inputs': 'input_layer', 'outputs': 'output_layer'}), '(inputs=input_layer, outputs=output_layer)\n', (3655, 3697), True, 'import tensorflow.keras as keras\n'), ((549, 623), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': 'n_feature_maps', 'kernel_size': '(8)', 'padding': '"""same"""'}), "(filters=n_feature_maps, kernel_size=8, padding='same')\n", (568, 623), True, 'import tensorflow.keras as keras\n'), ((654, 687), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (685, 687), True, 'import tensorflow.keras as keras\n'), ((713, 744), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""relu"""'], {}), "('relu')\n", (736, 744), True, 'import tensorflow.keras as keras\n'), ((771, 845), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': 'n_feature_maps', 'kernel_size': '(5)', 'padding': '"""same"""'}), "(filters=n_feature_maps, kernel_size=5, padding='same')\n", (790, 845), True, 'import tensorflow.keras as keras\n'), ((871, 904), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (902, 904), True, 'import tensorflow.keras as keras\n'), ((930, 961), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""relu"""'], {}), "('relu')\n", (953, 961), True, 'import tensorflow.keras as keras\n'), ((988, 1062), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': 'n_feature_maps', 'kernel_size': '(3)', 'padding': '"""same"""'}), "(filters=n_feature_maps, kernel_size=3, padding='same')\n", (1007, 1062), True, 'import tensorflow.keras as keras\n'), ((1088, 1121), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (1119, 1121), True, 'import tensorflow.keras as keras\n'), ((1203, 1277), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': 'n_feature_maps', 'kernel_size': '(1)', 'padding': '"""same"""'}), "(filters=n_feature_maps, kernel_size=1, padding='same')\n", (1222, 1277), True, 'import tensorflow.keras as keras\n'), ((1312, 1345), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (1343, 1345), True, 'import tensorflow.keras as keras\n'), ((1448, 1479), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""relu"""'], {}), "('relu')\n", (1471, 1479), True, 'import tensorflow.keras as keras\n'), ((1533, 1611), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': '(n_feature_maps * 2)', 'kernel_size': '(8)', 'padding': '"""same"""'}), "(filters=n_feature_maps * 2, kernel_size=8, padding='same')\n", (1552, 1611), True, 'import tensorflow.keras as keras\n'), ((1645, 1678), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (1676, 1678), True, 'import tensorflow.keras as keras\n'), ((1704, 1735), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""relu"""'], {}), "('relu')\n", (1727, 1735), True, 'import tensorflow.keras as keras\n'), ((1762, 1840), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': '(n_feature_maps * 2)', 'kernel_size': '(5)', 'padding': '"""same"""'}), "(filters=n_feature_maps * 2, kernel_size=5, padding='same')\n", (1781, 1840), True, 'import tensorflow.keras as keras\n'), ((1866, 1899), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (1897, 1899), True, 'import tensorflow.keras as keras\n'), ((1925, 1956), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""relu"""'], {}), "('relu')\n", (1948, 1956), True, 'import tensorflow.keras as keras\n'), ((1983, 2061), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': '(n_feature_maps * 2)', 'kernel_size': '(3)', 'padding': '"""same"""'}), "(filters=n_feature_maps * 2, kernel_size=3, padding='same')\n", (2002, 2061), True, 'import tensorflow.keras as keras\n'), ((2087, 2120), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (2118, 2120), True, 'import tensorflow.keras as keras\n'), ((2189, 2267), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': '(n_feature_maps * 2)', 'kernel_size': '(1)', 'padding': '"""same"""'}), "(filters=n_feature_maps * 2, kernel_size=1, padding='same')\n", (2208, 2267), True, 'import tensorflow.keras as keras\n'), ((2305, 2338), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (2336, 2338), True, 'import tensorflow.keras as keras\n'), ((2441, 2472), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""relu"""'], {}), "('relu')\n", (2464, 2472), True, 'import tensorflow.keras as keras\n'), ((2526, 2604), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': '(n_feature_maps * 2)', 'kernel_size': '(8)', 'padding': '"""same"""'}), "(filters=n_feature_maps * 2, kernel_size=8, padding='same')\n", (2545, 2604), True, 'import tensorflow.keras as keras\n'), ((2638, 2671), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (2669, 2671), True, 'import tensorflow.keras as keras\n'), ((2697, 2728), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""relu"""'], {}), "('relu')\n", (2720, 2728), True, 'import tensorflow.keras as keras\n'), ((2755, 2833), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': '(n_feature_maps * 2)', 'kernel_size': '(5)', 'padding': '"""same"""'}), "(filters=n_feature_maps * 2, kernel_size=5, padding='same')\n", (2774, 2833), True, 'import tensorflow.keras as keras\n'), ((2859, 2892), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (2890, 2892), True, 'import tensorflow.keras as keras\n'), ((2918, 2949), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""relu"""'], {}), "('relu')\n", (2941, 2949), True, 'import tensorflow.keras as keras\n'), ((2976, 3054), 'tensorflow.keras.layers.Conv1D', 'keras.layers.Conv1D', ([], {'filters': '(n_feature_maps * 2)', 'kernel_size': '(3)', 'padding': '"""same"""'}), "(filters=n_feature_maps * 2, kernel_size=3, padding='same')\n", (2995, 3054), True, 'import tensorflow.keras as keras\n'), ((3080, 3113), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (3111, 3113), True, 'import tensorflow.keras as keras\n'), ((3204, 3237), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (3235, 3237), True, 'import tensorflow.keras as keras\n'), ((3344, 3375), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""relu"""'], {}), "('relu')\n", (3367, 3375), True, 'import tensorflow.keras as keras\n'), ((3430, 3467), 'tensorflow.keras.layers.GlobalAveragePooling1D', 'keras.layers.GlobalAveragePooling1D', ([], {}), '()\n', (3465, 3467), True, 'import tensorflow.keras as keras\n'), ((3556, 3608), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['nb_classes'], {'activation': '"""softmax"""'}), "(nb_classes, activation='softmax')\n", (3574, 3608), True, 'import tensorflow.keras as keras\n')]
"""Defines common utilities for creating pluggable Order models.""" from django.conf import settings from django.db import models try: from django.dispatch import Signal except ImportError: from mauveinternet.signals import Signal # base set of order status options; # these are expected to be present for payment handlers to use STATUS_OPTIONS=[ ('N', 'New'), ('P', 'Paid'), ('C', 'Completed'), # ie. paid and fulfilled ('D', 'Declined'), # declined by payment gateway ('F', 'Failed'), # error from payment gateway ('R', 'Rejected'), # manually rejected by user or administrator ] class OrderManager(models.Manager): def for_order_number(self, number): try: id = int(number) - settings.ORDER_NUMBER_BASE except ValueError: from mauveinternet.ordering.models import get_order_model model = get_order_model() raise model.DoesNotExist("Not a valid order number") return self.get(id=id) def new(self): return self.exclude(status__in=['R', 'C']) class OrderBase(object): """Mix-in class providing some additional methods for order implementations""" # Signal so that apps can opt to receive order status change events status_change = Signal(providing_args=['status', 'previous_status']) def order_number(self): return '%05d' % (self.id + settings.ORDER_NUMBER_BASE) def get_total(self): return self.total def set_status(self, status, message): prevstatus = self.status self.orderstatuschange_set.create(previous_status=prevstatus, message=message) self.status = status self.save() # Dispatch signal if status != prevstatus: self.status_change.send(sender=self, status=status, previous_status=prevstatus) def history(self): return self.orderstatuschange_set.order_by('date')
[ "mauveinternet.signals.Signal", "mauveinternet.ordering.models.get_order_model" ]
[((1357, 1409), 'mauveinternet.signals.Signal', 'Signal', ([], {'providing_args': "['status', 'previous_status']"}), "(providing_args=['status', 'previous_status'])\n", (1363, 1409), False, 'from mauveinternet.signals import Signal\n'), ((968, 985), 'mauveinternet.ordering.models.get_order_model', 'get_order_model', ([], {}), '()\n', (983, 985), False, 'from mauveinternet.ordering.models import get_order_model\n')]
import os import unicodedata import discord # type: ignore from discord.ext import commands # type: ignore import botto from botto.core.models.kanjidic2 import Kanji, KanjiMeaningsReadings from botto.utils import kanjivg_gif, kanimaji class KanjiSearch(commands.Cog): def __init__(self, bot: botto.Botto) -> None: self.bot: botto.Botto = bot async def get_stroke_diagram(self, character: str) -> discord.File: codepoint = f"{ord(character):05x}" # filename = f"resources/data/kanjivg_gif/{codepoint}.gif" # if os.path.isfile(filename): # return discord.File( # filename, f"{unicodedata.name(character)}.gif".replace(" ", "_") # ) # else: # return await self.create_kanji_vg_gif(character) filename = f"resources/data/kanjivg_kanimaji_gif/{codepoint}_anim.gif" if os.path.isfile(filename): return discord.File( filename, f"{unicodedata.name(character)}.gif".replace(" ", "_") ) else: return await self.create_kanimaji_gif(character) async def create_kanji_vg_gif(self, character: str) -> discord.File: codepoint = f"{ord(character):05x}" filename = f"resources/data/kanjivg_svg/{codepoint}.svg" if not os.path.isfile(filename): raise ValueError("No stroke diagram found.") output = f"resources/data/kanjivg_gif/{codepoint}.gif" await self.bot.loop.run_in_executor( None, kanjivg_gif.create_gif, filename, output ) return discord.File( output, f"{unicodedata.name(character)}.gif".replace(" ", "_") ) async def create_kanimaji_gif(self, character: str) -> discord.File: codepoint = f"{ord(character):05x}" filename = f"resources/data/kanjivg_svg/{codepoint}.svg" if not os.path.isfile(filename): raise ValueError("No stroke diagram found.") output = f"resources/data/kanjivg_kanimaji_gif/{codepoint}_anim.gif" await self.bot.loop.run_in_executor( None, kanimaji.create_gif, filename, output ) return discord.File( output, f"{unicodedata.name(character)}.gif".replace(" ", "_") ) @botto.command(name="kanji", aliases=["k", "かんじ", "漢字"]) async def kanji_search(self, ctx: botto.Context, kanji: str) -> None: """Look up a kanji character.""" if len(kanji) > 1: await ctx.send("Try doing one character at a time.") return legal_prefixes = ("CJK UNIFIED IDEOGRAPH", "CJK COMPATIBILITY IDEOGRAPH") if not unicodedata.name(kanji, "").startswith(legal_prefixes): await ctx.send( "Not found in the Japanese Industrial Standard (JIS) X kanji sets." ) return _kanji = await Kanji.query.where(Kanji.character == kanji).gino.first() if _kanji is None: await ctx.send( "Not found in the Japanese Industrial Standard (JIS) X kanji sets." ) return meanings_readings = await KanjiMeaningsReadings.query.where( KanjiMeaningsReadings.character == kanji ).gino.all() embed: discord.Embed = discord.Embed(colour=botto.config["MAIN_COLOUR"]) embed.set_author(name=f"Kanji Lookup - {_kanji}") embed.description = f"Stroke count: {_kanji.stroke_count}" if _kanji.grade: embed.description += f"\nGrade: {_kanji.grade}" if _kanji.frequency_rank: embed.description += f"\nFrequency rank: #{_kanji.frequency_rank}" if _kanji.old_jlpt_level: embed.description += f"\nFormer JLPT level: {_kanji.old_jlpt_level}" lines = [] for i, mr_object in enumerate(meanings_readings): if mr_object.meanings: lines.append("__" + "/".join(mr_object.meanings) + "__") else: lines.append("*(miscellaneous readings)*") if mr_object.kun_readings: lines.append( "**kun:** " + "\N{IDEOGRAPHIC COMMA}".join(mr_object.kun_readings) ) if mr_object.on_readings: lines.append( "**on:** " + "\N{IDEOGRAPHIC COMMA}".join(mr_object.on_readings) ) if i + 1 != len(meanings_readings): lines.append("\n") if meanings_readings: embed.add_field( name="Meanings and Readings", value="\n".join(lines), inline=False ) if _kanji.nanori: embed.add_field( name="Nanori (Pronunciation in names)", value="\N{IDEOGRAPHIC COMMA}".join(_kanji.nanori), inline=False, ) other_kwargs = {} try: stroke_diagram = await self.get_stroke_diagram(kanji) embed.set_thumbnail(url=f"attachment://{stroke_diagram.filename}") other_kwargs["file"] = stroke_diagram except ValueError: pass await ctx.send(embed=embed, **other_kwargs) @kanji_search.help_embed async def kanji_help_embed(self, help_command) -> discord.Embed: embed: discord.Embed = discord.Embed(colour=botto.config["MAIN_COLOUR"]) embed.set_author(name=self.kanji_search.name + " " + self.kanji_search.signature) embed.description = ( f"{self.kanji_search.short_doc}\n\n" # pylint: disable=no-member f"Kanji are the adopted logographic Chinese characters that are used in " f"the Japanese writing system. They are used alongside the Japanese " f"syllabic scripts hiragana and katakana. " f"The Japanese term kanji for the Chinese characters literally means " f'"Han characters". It is written with the same characters in the Chinese ' f"language to refer to the character writing system, hanzi (漢字).\n\n" f"Tango looks through " f"[KANJIDIC2](http://www.edrdg.org/wiki/index.php/KANJIDIC_Project) " f"to provide you information on a kanji character.\n\n" f"Animated stroke diagrams, when available, are generated using " f"data from [KanjiVG](https://kanjivg.tagaini.net/) and " f"[Yorwba's script](https://github.com/Yorwba/kanjivg-gif).\n\n" f"You can also use the Jisho command to look up more information regarding " f"a kanji character and its usages. To learn more, type " f"`tango help jisho`." ) embed.add_field( name="Command Aliases", value=" / ".join(self.kanji_search.aliases), # pylint: disable=no-member ) return embed @botto.command(aliases=["so", "ひつじゅん", "筆順", "かきじゅん", "書き順"]) async def strokeorder(self, ctx: botto.Context, kanji: str) -> None: """View an animated stroke diagram of a kanji.""" if len(kanji) > 1: await ctx.send("Try doing one character at a time.") return legal_prefixes = ("CJK UNIFIED IDEOGRAPH", "CJK COMPATIBILITY IDEOGRAPH") if not unicodedata.name(kanji, "").startswith(legal_prefixes): await ctx.send( "Not found in the Japanese Industrial Standard (JIS) X kanji sets." ) return async with ctx.typing(): try: stroke_diagram = await self.get_stroke_diagram(kanji) except ValueError as exc: await ctx.send(exc) return await ctx.send(file=stroke_diagram) @strokeorder.help_embed async def strokeorder_help_embed(self, help_command) -> discord.Embed: embed: discord.Embed = discord.Embed(colour=botto.config["MAIN_COLOUR"]) embed.set_author(name=self.strokeorder.name + " " + self.strokeorder.signature) embed.description = ( f"{self.strokeorder.short_doc}\n\n" # pylint: disable=no-member f"Animated stroke diagrams are generated using data from " f"[KanjiVG](https://kanjivg.tagaini.net/) and " f"[Yorwba's script](https://github.com/Yorwba/kanjivg-gif)." ) embed.add_field( name="Command Aliases", value=" / ".join(self.strokeorder.aliases), # pylint: disable=no-member ) return embed def setup(bot: botto.Botto) -> None: # Temporary solution to issue where commands in cog instances lose their help embed cog = KanjiSearch(bot) cog.kanji_search.help_embed(cog.kanji_help_embed) cog.strokeorder.help_embed(cog.strokeorder_help_embed) bot.add_cog(cog)
[ "botto.core.models.kanjidic2.KanjiMeaningsReadings.query.where", "os.path.isfile", "unicodedata.name", "botto.command", "discord.Embed", "botto.core.models.kanjidic2.Kanji.query.where" ]
[((2276, 2331), 'botto.command', 'botto.command', ([], {'name': '"""kanji"""', 'aliases': "['k', 'かんじ', '漢字']"}), "(name='kanji', aliases=['k', 'かんじ', '漢字'])\n", (2289, 2331), False, 'import botto\n'), ((6834, 6894), 'botto.command', 'botto.command', ([], {'aliases': "['so', 'ひつじゅん', '筆順', 'かきじゅん', '書き順']"}), "(aliases=['so', 'ひつじゅん', '筆順', 'かきじゅん', '書き順'])\n", (6847, 6894), False, 'import botto\n'), ((886, 910), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (900, 910), False, 'import os\n'), ((3287, 3336), 'discord.Embed', 'discord.Embed', ([], {'colour': "botto.config['MAIN_COLOUR']"}), "(colour=botto.config['MAIN_COLOUR'])\n", (3300, 3336), False, 'import discord\n'), ((5310, 5359), 'discord.Embed', 'discord.Embed', ([], {'colour': "botto.config['MAIN_COLOUR']"}), "(colour=botto.config['MAIN_COLOUR'])\n", (5323, 5359), False, 'import discord\n'), ((7834, 7883), 'discord.Embed', 'discord.Embed', ([], {'colour': "botto.config['MAIN_COLOUR']"}), "(colour=botto.config['MAIN_COLOUR'])\n", (7847, 7883), False, 'import discord\n'), ((1313, 1337), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (1327, 1337), False, 'import os\n'), ((1885, 1909), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (1899, 1909), False, 'import os\n'), ((2656, 2683), 'unicodedata.name', 'unicodedata.name', (['kanji', '""""""'], {}), "(kanji, '')\n", (2672, 2683), False, 'import unicodedata\n'), ((7235, 7262), 'unicodedata.name', 'unicodedata.name', (['kanji', '""""""'], {}), "(kanji, '')\n", (7251, 7262), False, 'import unicodedata\n'), ((2881, 2924), 'botto.core.models.kanjidic2.Kanji.query.where', 'Kanji.query.where', (['(Kanji.character == kanji)'], {}), '(Kanji.character == kanji)\n', (2898, 2924), False, 'from botto.core.models.kanjidic2 import Kanji, KanjiMeaningsReadings\n'), ((3146, 3221), 'botto.core.models.kanjidic2.KanjiMeaningsReadings.query.where', 'KanjiMeaningsReadings.query.where', (['(KanjiMeaningsReadings.character == kanji)'], {}), '(KanjiMeaningsReadings.character == kanji)\n', (3179, 3221), False, 'from botto.core.models.kanjidic2 import Kanji, KanjiMeaningsReadings\n'), ((1625, 1652), 'unicodedata.name', 'unicodedata.name', (['character'], {}), '(character)\n', (1641, 1652), False, 'import unicodedata\n'), ((2208, 2235), 'unicodedata.name', 'unicodedata.name', (['character'], {}), '(character)\n', (2224, 2235), False, 'import unicodedata\n'), ((974, 1001), 'unicodedata.name', 'unicodedata.name', (['character'], {}), '(character)\n', (990, 1001), False, 'import unicodedata\n')]
import tensorflow as tf import numpy as np import Net import os import matplotlib # OSX fix matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns plainTextLength = 8 keyLength = 8 N = plainTextLength / 2 batch = 4096 learningRate = 0.0008 TRAIN_STEP= 10000 iterations = 1 def get_random_block(N, batch): return 2 * np.random.randint(2, size=(batch, N)) - 1 def train(): with tf.name_scope('input_variable'): plain = tf.placeholder(tf.float32, shape=[None, plainTextLength], name='plainText') key = tf.placeholder(tf.float32, shape=[None, keyLength], name='keyText') Zeros = tf.zeros_like(plain, dtype=tf.float32, name='zeroVector') # Alice_output, Bob_output = Net._build_Network(plain, key, plainTextLength, keyLength) reshape_Bob_output = tf.reshape(Bob_output, shape=[-1, plainTextLength]) # Bob L1 loss with tf.name_scope('Bob_loss'): Bob_loss = tf.reduce_mean(tf.abs(reshape_Bob_output - plain)) tf.summary.scalar('Bob_loss_value', Bob_loss) # error boolean_P = tf.greater(plain, Zeros) boolean_B = tf.greater_equal(reshape_Bob_output, Zeros) accuracy_B = tf.reduce_mean(tf.cast(tf.equal(boolean_B, boolean_P), dtype=tf.float32)) Bob_bits_wrong = plainTextLength - accuracy_B * plainTextLength tf.summary.scalar('accuracy_B_value', accuracy_B) tf.summary.scalar('Bob_bits_wrong', Bob_bits_wrong) A_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Alice') B_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Bob') AB_vars = A_vars + B_vars Alice_Bob_optimizer = tf.train.AdamOptimizer(learningRate).minimize(Bob_loss, var_list=AB_vars) merged = tf.summary.merge_all() with tf.Session() as session: session.run(tf.global_variables_initializer()) bob01_bits_wrong = [] bob_acc = [] train_writer = tf.summary.FileWriter('./adver_logs', session.graph) if not os.path.exists('adver_logs'): os.makedirs('adver_logs') for step in range(TRAIN_STEP): # train Bob print ('Training Alice and Bob, Epoch:', step + 1) feedDict = {plain: get_random_block(plainTextLength, batch), key: get_random_block(keyLength, batch)} for index in range(iterations): _, Bob_error, Bob_accuracy, Bob_wrong_bits,summary = session.run( [Alice_Bob_optimizer, Bob_loss, accuracy_B, Bob_bits_wrong, merged], feed_dict=feedDict) Bob_accuracy_bits = Bob_accuracy * plainTextLength bob01_bits_wrong.append(Bob_wrong_bits) bob_acc.append(Bob_accuracy_bits) res_a = session.run([Alice_output], feedDict) print(Bob_accuracy_bits) print(Bob_wrong_bits) train_writer.add_summary(summary, step) sns.set_style("darkgrid") plt.plot(bob01_bits_wrong) plt.legend(['bob']) plt.xlabel('Epoch') plt.ylabel('bits_wrong achieved') plt.savefig("Graphname.png") saver = tf.train.Saver() saver.save(session,'model/save_net.ckpt',global_step=TRAIN_STEP) def main(argv=None): train() if __name__ == '__main__': tf.app.run()
[ "tensorflow.equal", "matplotlib.pyplot.ylabel", "seaborn.set_style", "tensorflow.app.run", "os.path.exists", "tensorflow.placeholder", "tensorflow.Session", "matplotlib.pyplot.plot", "matplotlib.pyplot.xlabel", "tensorflow.greater", "tensorflow.zeros_like", "tensorflow.summary.scalar", "tensorflow.train.AdamOptimizer", "tensorflow.summary.merge_all", "matplotlib.pyplot.savefig", "matplotlib.use", "tensorflow.reshape", "tensorflow.summary.FileWriter", "matplotlib.pyplot.legend", "os.makedirs", "tensorflow.train.Saver", "Net._build_Network", "tensorflow.global_variables_initializer", "numpy.random.randint", "tensorflow.name_scope", "tensorflow.abs", "tensorflow.greater_equal", "tensorflow.get_collection" ]
[((93, 114), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (107, 114), False, 'import matplotlib\n'), ((631, 688), 'tensorflow.zeros_like', 'tf.zeros_like', (['plain'], {'dtype': 'tf.float32', 'name': '"""zeroVector"""'}), "(plain, dtype=tf.float32, name='zeroVector')\n", (644, 688), True, 'import tensorflow as tf\n'), ((727, 785), 'Net._build_Network', 'Net._build_Network', (['plain', 'key', 'plainTextLength', 'keyLength'], {}), '(plain, key, plainTextLength, keyLength)\n', (745, 785), False, 'import Net\n'), ((811, 862), 'tensorflow.reshape', 'tf.reshape', (['Bob_output'], {'shape': '[-1, plainTextLength]'}), '(Bob_output, shape=[-1, plainTextLength])\n', (821, 862), True, 'import tensorflow as tf\n'), ((991, 1036), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""Bob_loss_value"""', 'Bob_loss'], {}), "('Bob_loss_value', Bob_loss)\n", (1008, 1036), True, 'import tensorflow as tf\n'), ((1066, 1090), 'tensorflow.greater', 'tf.greater', (['plain', 'Zeros'], {}), '(plain, Zeros)\n', (1076, 1090), True, 'import tensorflow as tf\n'), ((1107, 1150), 'tensorflow.greater_equal', 'tf.greater_equal', (['reshape_Bob_output', 'Zeros'], {}), '(reshape_Bob_output, Zeros)\n', (1123, 1150), True, 'import tensorflow as tf\n'), ((1314, 1363), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""accuracy_B_value"""', 'accuracy_B'], {}), "('accuracy_B_value', accuracy_B)\n", (1331, 1363), True, 'import tensorflow as tf\n'), ((1368, 1419), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""Bob_bits_wrong"""', 'Bob_bits_wrong'], {}), "('Bob_bits_wrong', Bob_bits_wrong)\n", (1385, 1419), True, 'import tensorflow as tf\n'), ((1434, 1494), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.TRAINABLE_VARIABLES', '"""Alice"""'], {}), "(tf.GraphKeys.TRAINABLE_VARIABLES, 'Alice')\n", (1451, 1494), True, 'import tensorflow as tf\n'), ((1508, 1566), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.TRAINABLE_VARIABLES', '"""Bob"""'], {}), "(tf.GraphKeys.TRAINABLE_VARIABLES, 'Bob')\n", (1525, 1566), True, 'import tensorflow as tf\n'), ((1712, 1734), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (1732, 1734), True, 'import tensorflow as tf\n'), ((3256, 3268), 'tensorflow.app.run', 'tf.app.run', ([], {}), '()\n', (3266, 3268), True, 'import tensorflow as tf\n'), ((411, 442), 'tensorflow.name_scope', 'tf.name_scope', (['"""input_variable"""'], {}), "('input_variable')\n", (424, 442), True, 'import tensorflow as tf\n'), ((460, 535), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, plainTextLength]', 'name': '"""plainText"""'}), "(tf.float32, shape=[None, plainTextLength], name='plainText')\n", (474, 535), True, 'import tensorflow as tf\n'), ((550, 617), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, keyLength]', 'name': '"""keyText"""'}), "(tf.float32, shape=[None, keyLength], name='keyText')\n", (564, 617), True, 'import tensorflow as tf\n'), ((890, 915), 'tensorflow.name_scope', 'tf.name_scope', (['"""Bob_loss"""'], {}), "('Bob_loss')\n", (903, 915), True, 'import tensorflow as tf\n'), ((1745, 1757), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1755, 1757), True, 'import tensorflow as tf\n'), ((1900, 1952), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['"""./adver_logs"""', 'session.graph'], {}), "('./adver_logs', session.graph)\n", (1921, 1952), True, 'import tensorflow as tf\n'), ((2887, 2912), 'seaborn.set_style', 'sns.set_style', (['"""darkgrid"""'], {}), "('darkgrid')\n", (2900, 2912), True, 'import seaborn as sns\n'), ((2921, 2947), 'matplotlib.pyplot.plot', 'plt.plot', (['bob01_bits_wrong'], {}), '(bob01_bits_wrong)\n', (2929, 2947), True, 'import matplotlib.pyplot as plt\n'), ((2956, 2975), 'matplotlib.pyplot.legend', 'plt.legend', (["['bob']"], {}), "(['bob'])\n", (2966, 2975), True, 'import matplotlib.pyplot as plt\n'), ((2984, 3003), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (2994, 3003), True, 'import matplotlib.pyplot as plt\n'), ((3012, 3045), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""bits_wrong achieved"""'], {}), "('bits_wrong achieved')\n", (3022, 3045), True, 'import matplotlib.pyplot as plt\n'), ((3054, 3082), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Graphname.png"""'], {}), "('Graphname.png')\n", (3065, 3082), True, 'import matplotlib.pyplot as plt\n'), ((3100, 3116), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (3114, 3116), True, 'import tensorflow as tf\n'), ((346, 383), 'numpy.random.randint', 'np.random.randint', (['(2)'], {'size': '(batch, N)'}), '(2, size=(batch, N))\n', (363, 383), True, 'import numpy as np\n'), ((951, 985), 'tensorflow.abs', 'tf.abs', (['(reshape_Bob_output - plain)'], {}), '(reshape_Bob_output - plain)\n', (957, 985), True, 'import tensorflow as tf\n'), ((1191, 1221), 'tensorflow.equal', 'tf.equal', (['boolean_B', 'boolean_P'], {}), '(boolean_B, boolean_P)\n', (1199, 1221), True, 'import tensorflow as tf\n'), ((1624, 1660), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['learningRate'], {}), '(learningRate)\n', (1646, 1660), True, 'import tensorflow as tf\n'), ((1790, 1823), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1821, 1823), True, 'import tensorflow as tf\n'), ((1968, 1996), 'os.path.exists', 'os.path.exists', (['"""adver_logs"""'], {}), "('adver_logs')\n", (1982, 1996), False, 'import os\n'), ((2010, 2035), 'os.makedirs', 'os.makedirs', (['"""adver_logs"""'], {}), "('adver_logs')\n", (2021, 2035), False, 'import os\n')]
import mdtraj as md import networkx as nx import numpy as np from msibi.utils.general import get_fn from msibi.utils.find_exclusions import find_1_n_exclusions from msibi.utils.find_exclusions import is_1_n def test_select_pair_no_exclusions(): """Test pair selection without exclusions""" top = md.load(get_fn('2chains.hoomdxml')).top pairs = top.select_pairs("name 'tail'", "name 'tail'") assert pairs.shape[0] == 190 def test_find_1_n_exclusions(): top = md.load(get_fn('2chains.hoomdxml')).top pairs = top.select_pairs("name 'tail'", "name 'tail'") to_delete = find_1_n_exclusions(top, pairs, 3) assert to_delete.shape[0] == 28 def test_select_pair_with_exclusions(): traj = md.load(get_fn('2chains.hoomdxml')) pairs = traj.top.select_pairs("name 'tail'", "name 'tail'") to_delete = find_1_n_exclusions(traj.top, pairs, 3) pairs = np.delete(pairs, to_delete, axis=0) assert pairs.shape[0] == 162 def test_is_exclusion(): top = md.load(get_fn('2chains.hoomdxml')).top G = nx.Graph() G.add_nodes_from([a.index for a in top.atoms]) bonds = [b for b in top.bonds] bonds_by_index = [(b[0].index, b[1].index) for b in bonds] G.add_edges_from(bonds_by_index) tail_tail = top.select_pairs("name 'tail'", "name 'tail'") assert is_1_n(tail_tail[0], 3, G) assert is_1_n(tail_tail[0], 2, G) assert is_1_n(tail_tail[0], 4, G) assert is_1_n(tail_tail[2], 4, G) assert not is_1_n(tail_tail[2], 3, G)
[ "numpy.delete", "networkx.Graph", "msibi.utils.find_exclusions.find_1_n_exclusions", "msibi.utils.general.get_fn", "msibi.utils.find_exclusions.is_1_n" ]
[((598, 632), 'msibi.utils.find_exclusions.find_1_n_exclusions', 'find_1_n_exclusions', (['top', 'pairs', '(3)'], {}), '(top, pairs, 3)\n', (617, 632), False, 'from msibi.utils.find_exclusions import find_1_n_exclusions\n'), ((838, 877), 'msibi.utils.find_exclusions.find_1_n_exclusions', 'find_1_n_exclusions', (['traj.top', 'pairs', '(3)'], {}), '(traj.top, pairs, 3)\n', (857, 877), False, 'from msibi.utils.find_exclusions import find_1_n_exclusions\n'), ((890, 925), 'numpy.delete', 'np.delete', (['pairs', 'to_delete'], {'axis': '(0)'}), '(pairs, to_delete, axis=0)\n', (899, 925), True, 'import numpy as np\n'), ((1044, 1054), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (1052, 1054), True, 'import networkx as nx\n'), ((1315, 1341), 'msibi.utils.find_exclusions.is_1_n', 'is_1_n', (['tail_tail[0]', '(3)', 'G'], {}), '(tail_tail[0], 3, G)\n', (1321, 1341), False, 'from msibi.utils.find_exclusions import is_1_n\n'), ((1353, 1379), 'msibi.utils.find_exclusions.is_1_n', 'is_1_n', (['tail_tail[0]', '(2)', 'G'], {}), '(tail_tail[0], 2, G)\n', (1359, 1379), False, 'from msibi.utils.find_exclusions import is_1_n\n'), ((1391, 1417), 'msibi.utils.find_exclusions.is_1_n', 'is_1_n', (['tail_tail[0]', '(4)', 'G'], {}), '(tail_tail[0], 4, G)\n', (1397, 1417), False, 'from msibi.utils.find_exclusions import is_1_n\n'), ((1429, 1455), 'msibi.utils.find_exclusions.is_1_n', 'is_1_n', (['tail_tail[2]', '(4)', 'G'], {}), '(tail_tail[2], 4, G)\n', (1435, 1455), False, 'from msibi.utils.find_exclusions import is_1_n\n'), ((730, 756), 'msibi.utils.general.get_fn', 'get_fn', (['"""2chains.hoomdxml"""'], {}), "('2chains.hoomdxml')\n", (736, 756), False, 'from msibi.utils.general import get_fn\n'), ((1471, 1497), 'msibi.utils.find_exclusions.is_1_n', 'is_1_n', (['tail_tail[2]', '(3)', 'G'], {}), '(tail_tail[2], 3, G)\n', (1477, 1497), False, 'from msibi.utils.find_exclusions import is_1_n\n'), ((315, 341), 'msibi.utils.general.get_fn', 'get_fn', (['"""2chains.hoomdxml"""'], {}), "('2chains.hoomdxml')\n", (321, 341), False, 'from msibi.utils.general import get_fn\n'), ((491, 517), 'msibi.utils.general.get_fn', 'get_fn', (['"""2chains.hoomdxml"""'], {}), "('2chains.hoomdxml')\n", (497, 517), False, 'from msibi.utils.general import get_fn\n'), ((1004, 1030), 'msibi.utils.general.get_fn', 'get_fn', (['"""2chains.hoomdxml"""'], {}), "('2chains.hoomdxml')\n", (1010, 1030), False, 'from msibi.utils.general import get_fn\n')]
from oc_util.email_util import fix_garbled_mail fix_garbled_mail()
[ "oc_util.email_util.fix_garbled_mail" ]
[((49, 67), 'oc_util.email_util.fix_garbled_mail', 'fix_garbled_mail', ([], {}), '()\n', (65, 67), False, 'from oc_util.email_util import fix_garbled_mail\n')]
from Bio.Seq import Seq from Bio.Alphabet import IUPAC from Bio.Seq import MutableSeq # Seq doesn't inherit from String print(Seq.__bases__) # Example of f string formatting using Seq my_seq = Seq("AGTACACTGGT", IUPAC.unambiguous_dna) print(f"The value of my_seq is {my_seq}.") # Example of using the format method on a Seq object print("my_seq can be expressed as a string using the format method: {}".format(my_seq)) # Can Seq objects be overwritten by reverse complements or are they immutable? my_seq = my_seq.reverse_complement() print(f"The value of my_seq is {my_seq}.") # What methods are available from MutableSeq print(f"MutableSeq attributes and methods are {dir(MutableSeq)}.")
[ "Bio.Seq.Seq" ]
[((195, 236), 'Bio.Seq.Seq', 'Seq', (['"""AGTACACTGGT"""', 'IUPAC.unambiguous_dna'], {}), "('AGTACACTGGT', IUPAC.unambiguous_dna)\n", (198, 236), False, 'from Bio.Seq import Seq\n')]
import adv_test from adv import * import copy from module.fsalt import * def module(): return Albert class Albert(Adv): conf = { 'mod_a1':('fs','passive',0.5), #'mod_wp':('s','passive',0.35), } def init(this): this.fsa_conf = copy.deepcopy(this.conf) this.fsa_conf.update( { 'fs_dmg':1.02, 'fs_sp':330, 'fs_recovery':26/60.0, 'x1fs_recovery':26/60.0, }) this.s2timer = Timer(this.s2autocharge,1,1).on() this.paralyze_count=3 this.s2buff = Selfbuff("s2_shapshift",1, 20,'ss','ss') this.a2buff = Selfbuff('a2_str_passive',0.25,20,'att','passive') this.fsalttimer = Timer(this.altend) fs_alt_init(this, this.fsa_conf) def altend(this,t): fs_back(this) def s2autocharge(this, t): if not this.a2buff.get(): this.s2.charge(160000.0/40) log('sp','s2autocharge') def pre(this): if this.condition('3s1 in on s2'): this.conf['acl'] = """ `s2, s1.charged>=s1.sp-300 `s1 `s3, not this.s2buff.get() `fs, seq=2 """ if this.condition('big hitbox'): this.s1_proc = this.c_s1_proc def c_s1_proc(this, e): if this.s2buff.get(): this.dmg_make("o_s1_s2boost",12.38-0.825+0.83*5) def s1_proc(this, e): if this.s2buff.get(): this.dmg_make("o_s1_s2boost",12.38-0.825+0.83*1) def fs_proc(this, e): if this.paralyze_count > 0: if this.s2buff.get(): this.paralyze_count -= 1 this.dmg_make("o_s1_paralyze",0.803*3) def s2_proc(this, e): this.s2timer.on() this.s2buff.on() this.a2buff.on() fs_alt(this) this.fsalttimer(20) if __name__ == '__main__': conf = {} conf['acl'] = """ `s2 `s1, this.s2.charged > 900 `s3 `fs, seq=2 and not this.s2buff.get() """ adv_test.test(module(), conf,verbose=0, mass=0)
[ "copy.deepcopy" ]
[((287, 311), 'copy.deepcopy', 'copy.deepcopy', (['this.conf'], {}), '(this.conf)\n', (300, 311), False, 'import copy\n')]