code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
''' Context: Given: linkedlist Objective: delete middle node Definitions: middle node = any node bu the head and tail node Assumptions: linkedlist has > 2 nodes middle node to delete exists in linkedlist middle node is not the head nor the tail node Constraints: only have access to the middle node access = only node I am given Example: linkedlist = a->b->c->d->e->f result => linkedlist = a->b->d->e->f Flow: prior_node = find node before middle_node prior_node.next = prior_node.next.next Performance: Time = O(1) constant time to copy data and shift pointers Space = O(N) Space to store linkedlist ''' from impl.linkedlist import LinkedList, Node def delete_middle_node(target_node): target_node.data = target_node.next.data target_node.next = target_node.next.next def main(): linkedlist = LinkedList() numbers = [1, 2, 4, 6, 1, 6, 8, 5] linkedlist.initialise_from_array(numbers) print("before delete") linkedlist.toString() target_node = None target_node_value = 6 current_node = linkedlist.head while(current_node.next is not None): if(current_node.data == target_node_value): target_node = current_node current_node = current_node.next delete_middle_node(target_node) print("after delete") linkedlist.toString() main()
[ "impl.linkedlist.LinkedList" ]
[((904, 916), 'impl.linkedlist.LinkedList', 'LinkedList', ([], {}), '()\n', (914, 916), False, 'from impl.linkedlist import LinkedList, Node\n')]
#----------------------------------------------------------------------------- # Copyright (c) 2014-2020, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) #----------------------------------------------------------------------------- from PyInstaller.utils.hooks import collect_data_files # Hook tested with scikit-image (skimage) 0.9.3 on Mac OS 10.9 and Windows 7 # 64-bit hiddenimports = ['skimage.draw.draw', 'skimage._shared.geometry', 'skimage._shared.transform', 'skimage.filters.rank.core_cy'] datas = collect_data_files('skimage')
[ "PyInstaller.utils.hooks.collect_data_files" ]
[((836, 865), 'PyInstaller.utils.hooks.collect_data_files', 'collect_data_files', (['"""skimage"""'], {}), "('skimage')\n", (854, 865), False, 'from PyInstaller.utils.hooks import collect_data_files\n')]
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ Este programa gestiona el archivo de datos enunciados.csv author: <NAME> email: <EMAIL> last edited: marzo 2018 """ __author__ = '<NAME>' __version__ = "1.0" import pandas as pd from PyQt5.QtCore import pyqtSignal, QEvent, QObject from PyQt5 import QtCore, uic, QtWidgets from PyQt5.QtCore import (QTranslator, QLibraryInfo, QLocale) from PyQt5.QtWidgets import QMessageBox, QDesktopWidget QTCREATORFILE = "enunciados_ui.ui" # Nombre del archivo aquí. Ui_MainWindow, QtBaseClass = uic.loadUiType(QTCREATORFILE) def actualizaModelo(self): model = PandasModel(self.ui.data) self.ui.tableView.setModel(model) self.ui.tableView.update() def clickable(widget): class Filter(QObject): clicked = pyqtSignal() def eventFilter(self, obj, event): if obj == widget: if event.type() == QEvent.MouseButtonRelease: if obj.rect().contains(event.pos()): self.clicked.emit() # The developer can opt for .emit(obj) to get the object within the slot. return True return False filter = Filter(widget) widget.installEventFilter(filter) return filter.clicked class PandasModel(QtCore.QAbstractTableModel): def __init__(self, data, parent=None): QtCore.QAbstractTableModel.__init__(self, parent) self._data = data def rowCount(self, parent=None): return len(self._data.values) def columnCount(self, parent=None): return self._data.columns.size def data(self, index, role=QtCore.Qt.DisplayRole): if index.isValid(): if role == QtCore.Qt.DisplayRole: return QtCore.QVariant(str( self._data.values[index.row()][index.column()])) return QtCore.QVariant() class Modelo(QtWidgets.QMainWindow, Ui_MainWindow): def __init__(self): super(Modelo, self).__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) self.center() self.setWindowTitle('Gestor de Enunciados') self.ui.data = pd.read_csv('enunciados124.csv', sep=';', encoding="ISO-8859-1") self.ui.sel = 0 clickable(self.ui.txtEnunc).connect(self.limpiartxtenunc) clickable(self.ui.txtMod).connect(self.limpiartxtmod) clickable(self.ui.txtListVarIndep).connect(self.limpiartxtlistvarindep) clickable(self.ui.txtListVarDep).connect(self.limpiartxtlistvardep) clickable(self.ui.txtRef).connect(self.limpiartxtref) clickable(self.ui.txtPag).connect(self.limpiartxtpag) clickable(self.ui.txtNro).connect(self.limpiartxtnro) self.ui.btnAgregar.clicked.connect(self.agregardatos) self.ui.btnModificar.clicked.connect(self.modificardatos) self.ui.btnEliminar.clicked.connect(self.eliminardatos) self.ui.tableView.clicked.connect(self.click_table) actualizaModelo(self) self.ui.btnAgregar.setEnabled(False) self.ui.btnModificar.setEnabled(False) self.ui.btnEliminar.setEnabled(False) print(self.ui.txtEnunc.toPlainText()) def limpiartxtenunc(self): print(self.ui.txtEnunc.toPlainText()) if self.ui.txtEnunc.toPlainText() == 'Enunciado': self.ui.txtEnunc.clear() def limpiartxtmod(self): if self.ui.txtMod.toPlainText() == 'Modelo': self.ui.txtMod.clear() def limpiartxtlistvarindep(self): if self.ui.txtListVarIndep.toPlainText() == 'Lista de Variables Independientes': self.ui.txtListVarIndep.clear() def limpiartxtlistvardep(self): if self.ui.txtListVarDep.toPlainText() == 'Lista de Variables Dependientes': self.ui.txtListVarDep.clear() def limpiartxtref(self): if self.ui.txtRef.toPlainText() == 'Referencia': self.ui.txtRef.clear() def limpiartxtpag(self): if self.ui.txtPag.text() == 'Página': self.ui.txtPag.clear() def limpiartxtnro(self): print(self.ui.txtNro.text()) if self.ui.txtNro.text() == 'Número del Ejercicio': self.ui.txtNro.clear() self.ui.btnAgregar.setEnabled(True) def agregardatos(self): self.ui.data = self.ui.data.append({'enunc':self.ui.txtEnunc.toPlainText(), 'mod':self.ui.txtMod.toPlainText(), 'listvarindep':self.ui.txtListVarIndep.toPlainText(), 'listvardep':self.ui.txtListVarDep.toPlainText(), 'ref':self.ui.txtRef.toPlainText(), 'pag':self.ui.txtPag.Text(), 'nro':self.ui.txtNro.Text(), }, ignore_index=True) actualizaModelo(self) self.ui.data.to_csv('modelos.csv', sep=';', encoding="ISO-8859-1", header=True, index=False) self.ui.btnAgregar.setEnabled(False) self.ui.txtEnunc.setPlainText('Enunciado') self.ui.txtMod.setPlainText('Modelo') self.ui.txtListVarIndep.setPlainText('Lista de Variables Independientes') self.ui.txtListVarDep.setPlainText('Lista de Variables Dependientes') self.ui.txtRef.setPlainText('Referencia') self.ui.txtPag.setText('Página') self.ui.txtNro.setText('Número del Ejercicio') self.ui.txtMod.setFocus() def center(self): qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) def closeEvent(self, event): reply = QMessageBox.question(self, 'Mensaje', "¿Esta seguro de salir?", QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if reply == QMessageBox.Yes: event.accept() else: event.ignore() def click_table(self): index = self.ui.tableView.selectedIndexes()[0] self.ui.sel = index.row() self.ui.txtEnunc.setPlainText(self.ui.data['enunc'][index.row()]) self.ui.txtMod.setPlainText(self.ui.data['mod'][index.row()]) self.ui.txtListVarIndep.setPlainText(self.ui.data['listvarindep'][index.row()]) self.ui.txtListVarDep.setPlainText(self.ui.data['listvardep'][index.row()]) self.ui.txtRef.setPlainText(self.ui.data['ref'][index.row()]) self.ui.txtPag.setText(self.ui.data['pag'][index.row()]) self.ui.txtNro.setText(self.ui.data['nro'][index.row()]) self.ui.btnModificar.setEnabled(True) self.ui.btnEliminar.setEnabled(True) def eliminardatos(self): self.ui.data = self.ui.data.drop(self.ui.sel) actualizaModelo(self) self.ui.data.to_csv('modelos.csv', sep=';', encoding="ISO-8859-1", header=True, index=False) self.ui.btnAgregar.setEnabled(True) self.ui.btnModificar.setEnabled(False) self.ui.btnEliminar.setEnabled(False) self.ui.txtEnunc.clear() self.ui.txtMod.clear() self.ui.txtListVarIndep.clear() self.ui.txtListVarDep.clear() self.ui.txtRef.clear() self.ui.txtPag.clear() self.ui.txtNro.clear() self.ui.txtEnunciado.setFocus() def getCSV(self): ''' Esta función abre el archivo CSV ''' filePath, _ = QtWidgets.QFileDialog.getOpenFileName(self, 'Open file', '/home') if filePath != "": print("Dirección", filePath) #Opcional imprimir la dirección del archivo self.ui.df = pd.read_csv(str(filePath)) def modificardatos(self): self.ui.data.loc[self.ui.sel, 'enunc'] = self.ui.txtEnunciado.toPlainText() self.ui.data.loc[self.ui.sel, 'mod'] = self.ui.txtMod.toPlainText() self.ui.data.loc[self.ui.sel, 'listvarindep'] = self.ui.txtListVarIndep.toPlainText() self.ui.data.loc[self.ui.sel, 'listvardep'] = self.ui.txtListVarDep.toPlainText() self.ui.data.loc[self.ui.sel, 'ref'] = self.ui.txtRef.toPlainText() self.ui.data.loc[self.ui.sel, 'pag'] = self.ui.txtPag.Text() self.ui.data.loc[self.ui.sel, 'nro'] = self.ui.txtNro.Text() actualizaModelo(self) self.ui.data.to_csv('modelos.csv', sep=';', encoding="ISO-8859-1", header=True, index=False) self.ui.btnAgregar.setEnabled(True) self.ui.btnModificar.setEnabled(False) self.ui.btnEliminar.setEnabled(False) self.ui.txtEnunc.clear() self.ui.txtMod.clear() self.ui.txtListVarIndep.clear() self.ui.txtListVarDep.clear() self.ui.txtRef.clear() self.ui.txtPag.clear() self.ui.txtNro.clear() self.ui.txtEnunc.setFocus() if __name__ == '__main__': import sys APP = QtWidgets.QApplication(sys.argv) QT_TRADUCTOR = QTranslator() QT_TRADUCTOR.load("qtbase_" + QLocale.system().name(), QLibraryInfo.location(QLibraryInfo.TranslationsPath)) APP.installTranslator(QT_TRADUCTOR) WINDOW = Modelo() WINDOW.show() sys.exit(APP.exec_())
[ "PyQt5.QtCore.QAbstractTableModel.__init__", "PyQt5.QtCore.pyqtSignal", "pandas.read_csv", "PyQt5.QtCore.QVariant", "PyQt5.uic.loadUiType", "PyQt5.QtWidgets.QMessageBox.question", "PyQt5.QtCore.QLocale.system", "PyQt5.QtWidgets.QApplication", "PyQt5.QtCore.QLibraryInfo.location", "PyQt5.QtCore.QTranslator", "PyQt5.QtWidgets.QFileDialog.getOpenFileName", "PyQt5.QtWidgets.QDesktopWidget" ]
[((536, 565), 'PyQt5.uic.loadUiType', 'uic.loadUiType', (['QTCREATORFILE'], {}), '(QTCREATORFILE)\n', (550, 565), False, 'from PyQt5 import QtCore, uic, QtWidgets\n'), ((8911, 8943), 'PyQt5.QtWidgets.QApplication', 'QtWidgets.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (8933, 8943), False, 'from PyQt5 import QtCore, uic, QtWidgets\n'), ((8964, 8977), 'PyQt5.QtCore.QTranslator', 'QTranslator', ([], {}), '()\n', (8975, 8977), False, 'from PyQt5.QtCore import QTranslator, QLibraryInfo, QLocale\n'), ((775, 787), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', ([], {}), '()\n', (785, 787), False, 'from PyQt5.QtCore import pyqtSignal, QEvent, QObject\n'), ((1379, 1428), 'PyQt5.QtCore.QAbstractTableModel.__init__', 'QtCore.QAbstractTableModel.__init__', (['self', 'parent'], {}), '(self, parent)\n', (1414, 1428), False, 'from PyQt5 import QtCore, uic, QtWidgets\n'), ((1869, 1886), 'PyQt5.QtCore.QVariant', 'QtCore.QVariant', ([], {}), '()\n', (1884, 1886), False, 'from PyQt5 import QtCore, uic, QtWidgets\n'), ((2168, 2232), 'pandas.read_csv', 'pd.read_csv', (['"""enunciados124.csv"""'], {'sep': '""";"""', 'encoding': '"""ISO-8859-1"""'}), "('enunciados124.csv', sep=';', encoding='ISO-8859-1')\n", (2179, 2232), True, 'import pandas as pd\n'), ((5789, 5907), 'PyQt5.QtWidgets.QMessageBox.question', 'QMessageBox.question', (['self', '"""Mensaje"""', '"""¿Esta seguro de salir?"""', '(QMessageBox.Yes | QMessageBox.No)', 'QMessageBox.No'], {}), "(self, 'Mensaje', '¿Esta seguro de salir?', QMessageBox\n .Yes | QMessageBox.No, QMessageBox.No)\n", (5809, 5907), False, 'from PyQt5.QtWidgets import QMessageBox, QDesktopWidget\n'), ((7493, 7558), 'PyQt5.QtWidgets.QFileDialog.getOpenFileName', 'QtWidgets.QFileDialog.getOpenFileName', (['self', '"""Open file"""', '"""/home"""'], {}), "(self, 'Open file', '/home')\n", (7530, 7558), False, 'from PyQt5 import QtCore, uic, QtWidgets\n'), ((9059, 9111), 'PyQt5.QtCore.QLibraryInfo.location', 'QLibraryInfo.location', (['QLibraryInfo.TranslationsPath'], {}), '(QLibraryInfo.TranslationsPath)\n', (9080, 9111), False, 'from PyQt5.QtCore import QTranslator, QLibraryInfo, QLocale\n'), ((9012, 9028), 'PyQt5.QtCore.QLocale.system', 'QLocale.system', ([], {}), '()\n', (9026, 9028), False, 'from PyQt5.QtCore import QTranslator, QLibraryInfo, QLocale\n'), ((5634, 5650), 'PyQt5.QtWidgets.QDesktopWidget', 'QDesktopWidget', ([], {}), '()\n', (5648, 5650), False, 'from PyQt5.QtWidgets import QMessageBox, QDesktopWidget\n')]
import datetime def current_time_string(): timing = str(datetime.datetime.now()) current_time = timing.split()[1] return "[" + current_time + "] "
[ "datetime.datetime.now" ]
[((62, 85), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (83, 85), False, 'import datetime\n')]
import torch import sys from torch.utils import data from torch.utils.data.sampler import SubsetRandomSampler from torch.utils.tensorboard import SummaryWriter from torch.cuda.amp import autocast,GradScaler import torchvision as tv import torch.nn as nn import matplotlib.pyplot as plt import subprocess import os import numpy as np from datetime import datetime import argparse import zipfile from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM from nets.XLFMNet import XLFMNet import utils.pytorch_shot_noise as pytorch_shot_noise from utils.XLFMDataset import XLFMDatasetFull from utils.misc_utils import * # Arguments parser = argparse.ArgumentParser() parser.add_argument('--data_folder', nargs='?', default= '') parser.add_argument('--data_folder_test', nargs='?', default='') parser.add_argument('--lenslet_file', nargs='?', default= "lenslet_centers_python.txt") parser.add_argument('--files_to_store', nargs='+', default=['mainTrainXLFMNet.py','mainTrainSLNet.py','mainCreateDataset.py','utils/XLFMDataset.py','utils/misc_utils.py','nets/extra_nets.py','nets/XLFMNet.py','nets/SLNet.py']) parser.add_argument('--psf_file', nargs='?', default= "PSF_2.5um_processed.mat") parser.add_argument('--prefix', nargs='?', default= "fishy") parser.add_argument('--checkpoint', nargs='?', default= "") parser.add_argument('--checkpoint_XLFMNet', nargs='?', default= "") parser.add_argument('--checkpoint_SLNet', nargs='?', default="") parser.add_argument('--images_to_use', nargs='+', type=int, default=list(range(0,50,1))) parser.add_argument('--images_to_use_test', nargs='+', type=int, default=list(range(0,10,1))) parser.add_argument('--batch_size', type=int, default=2) parser.add_argument('--max_epochs', type=int, default=501) parser.add_argument('--validation_split', type=float, default=0.1) parser.add_argument('--eval_every', type=int, default=25) parser.add_argument('--shuffle_dataset', type=int, default=1) parser.add_argument('--learning_rate', type=float, default=0.0001) parser.add_argument('--use_bias', type=int, default=0) parser.add_argument('--use_random_shifts', nargs='+', type=int, default=0, help='Randomize the temporal shifts to use? 0 or 1') # Noise arguments parser.add_argument('--add_noise', type=int, default=0, help='Apply noise to images? 0 or 1') parser.add_argument('--signal_power_max', type=float, default=30**2, help='Max signal value to control signal to noise ratio when applyting noise.') parser.add_argument('--signal_power_min', type=float, default=60**2, help='Min signal value to control signal to noise ratio when applyting noise.') parser.add_argument('--norm_type', type=float, default=1, help='Normalization type, see the normalize_type function for more info.') parser.add_argument('--dark_current', type=float, default=106, help='Dark current value of camera.') parser.add_argument('--dark_current_sparse', type=float, default=0, help='Dark current value of camera.') parser.add_argument('--use_sparse', type=int, default=1) parser.add_argument('--use_img_loss', type=float, default=1.0) parser.add_argument('--unet_depth', type=int, default=2) parser.add_argument('--unet_wf', type=int, default=7) parser.add_argument('--unet_drop_out', type=float, default=0) parser.add_argument('--output_path', nargs='?', default='') parser.add_argument('--main_gpu', nargs='+', type=int, default=[1]) parser.add_argument('--gpu_repro', nargs='+', type=int, default=[]) parser.add_argument('--n_split', type=int, default=20) debug = False n_threads = 0 args = parser.parse_args() if len(args.main_gpu)>0: device = "cuda:" + str(args.main_gpu[0]) device_repro = "cuda:" + str(args.main_gpu[0]+1) else: device = "cuda" device_repro = "cuda" args.main_gpu = [1] args.gpu_repro = [1] if len(args.gpu_repro)==0: device_repro = "cpu" else: device_repro = "cuda:" + str(args.gpu_repro[0]) if n_threads!=0: torch.set_num_threads(n_threads) torch.manual_seed(261290) # Load previous checkpoints if len(args.checkpoint_XLFMNet)>0: checkpoint_XLFMNet = torch.load(args.checkpoint_XLFMNet, map_location=device) args_deconv = checkpoint_XLFMNet['args'] args.unet_depth = args_deconv.unet_depth args.unet_wf = args_deconv.unet_wf if len(args.checkpoint_SLNet)>0: checkpoint_SL = torch.load(args.checkpoint_SLNet, map_location=device) argsSLNet = checkpoint_SL['args'] args.temporal_shifts = checkpoint_SL['args'].temporal_shifts # If there is no output_path specified, write with the dataset and SLNet training if len(args.output_path)==0: head, tail = os.path.split(args.checkpoint_SLNet) args.output_path = head # Get commit number label = subprocess.check_output(["git", "describe", "--always"]).strip() save_folder = args.output_path + '/XLFMNet_train__' + datetime.now().strftime('%Y_%m_%d__%H:%M:%S') + '__' + str(label) + '_commit__' + args.prefix # Get size of the volume subimage_shape = argsSLNet.subimage_shape # if args.train_who==2: # args.n_frames = 1 dataset = XLFMDatasetFull(args.data_folder, args.lenslet_file, subimage_shape, img_shape=[2160,2160], images_to_use=args.images_to_use, divisor=1, isTiff=True, n_frames_net=argsSLNet.n_frames, lenslets_offset=0, load_all=True, load_vols=True, load_sparse=True, temporal_shifts=args.temporal_shifts, use_random_shifts=args.use_random_shifts, eval_video=False) dataset_test = XLFMDatasetFull(args.data_folder_test, args.lenslet_file, subimage_shape, img_shape=[2160,2160], images_to_use=args.images_to_use_test, divisor=1, isTiff=True, n_frames_net=argsSLNet.n_frames, lenslets_offset=0, load_all=True, load_vols=True, load_sparse=True, temporal_shifts=args.temporal_shifts, use_random_shifts=args.use_random_shifts, eval_video=False) n_depths = dataset.get_n_depths() args.output_shape = subimage_shape + [n_depths] # Get normalization values max_images,max_images_sparse,max_volumes = dataset.get_max() if args.use_sparse: # Use statistics of sparse images mean_imgs,std_images,mean_imgs_sparse,std_images_sparse,mean_vols,std_vols = dataset.get_statistics() else: mean_imgs,std_images,mean_vols,std_vols = dataset.get_statistics() n_lenslets = dataset.len_lenslets() # Creating data indices for training and validation splits: dataset_size = len(dataset) indices = list(range(dataset_size)) split = int(np.ceil(args.validation_split * dataset_size)) if args.shuffle_dataset : # np.random.seed(261290) np.random.shuffle(indices) train_indices, val_indices = indices[split:], indices[:split] # Create dataloaders train_sampler = SubsetRandomSampler(train_indices) valid_sampler = SubsetRandomSampler(val_indices) data_loaders = \ {'train' : \ data.DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, pin_memory=False, num_workers=n_threads), \ 'val' : \ data.DataLoader(dataset, batch_size=args.batch_size, sampler=valid_sampler, pin_memory=False, num_workers=n_threads), \ 'test' : \ data.DataLoader(dataset_test, batch_size=1, pin_memory=False, num_workers=n_threads, shuffle=True) } def init_weights(m): if type(m) == nn.Conv2d or type(m) == nn.Conv3d or type(m) == nn.ConvTranspose2d: torch.nn.init.xavier_uniform(m.weight) # torch.nn.init.kaiming_uniform_(m.weight,a=math.sqrt(2)) # m.weight.data *= 20 # m.weight.data = m.weight.data.abs() # m.bias.data.fill_(0.01) unet_settings = {'depth':args.unet_depth, 'wf':args.unet_wf, 'drop_out':args.unet_drop_out} args.unet_settings = unet_settings # Create net net = XLFMNet(n_lenslets, args.output_shape, n_temporal_frames=dataset.n_frames, dataset=dataset, use_bias=args.use_bias, unet_settings=unet_settings).to(device) net.apply(init_weights) # Trainable parameters # mean_imgs = mean_imgs_sparse # std_images = std_images_sparse trainable_params = [{'params': net.deconv.parameters()}] params = sum([np.prod(p.size()) for p in net.parameters()]) # Normalization statistics stats = {'norm_type':args.norm_type, 'norm_type_img':args.norm_type, 'mean_imgs':mean_imgs, 'std_images':std_images, 'max_images':max_images, 'mean_vols':mean_vols, 'std_vols':std_vols, 'max_vols':max_volumes} # Create loss function and optimizer loss = nn.MSELoss() if args.use_img_loss>0: loss_img = nn.MSELoss() # reuse the gaussian kernel with SSIM & MS_SSIM. ssim_module = SSIM(data_range=1, size_average=True, channel=n_lenslets).to(device_repro) optimizer = torch.optim.Adam(trainable_params, lr=args.learning_rate) # timers start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) # create gradient scaler for mixed precision training scaler = GradScaler() start_epoch = 0 if len(args.checkpoint_XLFMNet)>0: net.load_state_dict(checkpoint_XLFMNet['model_state_dict'], strict=False) optimizer.load_state_dict(checkpoint_XLFMNet['optimizer_state_dict']) start_epoch = checkpoint_XLFMNet['epoch']-1 save_folder += '_C' if len(args.checkpoint_SLNet)>0 and dataset.n_frames>1: net.tempConv.load_state_dict(checkpoint_SL['model_state_dict']) stats_SLNet = checkpoint_SL['statistics'] stats['norm_type_img'] = checkpoint_SL['args'].norm_type stats['mean_imgs'] = stats_SLNet[0] stats['std_images'] = stats_SLNet[1] else: net.tempConv = None # Create summary writer to log stuff if debug is False: writer = SummaryWriter(log_dir=save_folder) writer.add_text('arguments',str(vars(args)),0) writer.flush() writer.add_scalar('params/', params) # Store files zf = zipfile.ZipFile(save_folder + "/files.zip", "w") for ff in args.files_to_store: zf.write(ff) zf.close() import time if len(args.gpu_repro)>0: S = time.time() # Load PSF and compute OTF n_split = args.n_split if debug: n_split=60 OTF,psf_shape = load_PSF_OTF(args.psf_file, args.output_shape, n_depths=n_depths, n_split=n_split, device="cpu") OTF = OTF.to(device) gc.collect() torch.cuda.empty_cache() E = time.time() print(E - S) gc.collect() torch.cuda.empty_cache() OTF_options = {'OTF':OTF, 'psf_shape':psf_shape, 'dataset':dataset, 'n_split':n_split, 'loss_img':loss_img} net.OTF_options = OTF_options # Update noramlization stats for SLNet inside network net.stats = stats if len(args.main_gpu)>1: net = nn.DataParallel(net, args.main_gpu, args.main_gpu[0]) print("Let's use", torch.cuda.device_count(), "GPUs!") lr = args.learning_rate # Loop over epochs for epoch in range(start_epoch, args.max_epochs): for curr_train_stage in ['train','val','test']: # Grab current data_loader curr_loader = data_loaders[curr_train_stage] curr_loader_len = curr_loader.sampler.num_samples if curr_train_stage=='test' else len(curr_loader.batch_sampler.sampler.indices) if curr_train_stage=='train': net.train() net.tempConv.eval() torch.set_grad_enabled(True) if curr_train_stage=='val' or curr_train_stage=='test': if epoch%args.eval_every!=0: continue net.eval() torch.set_grad_enabled(False) # Store loss mean_volume_loss = 0 max_grad = 0 mean_psnr = 0 mean_time = 0 mean_repro = 0 mean_repro_ssim = 0 # Training for ix,(curr_img_stack, local_volumes) in enumerate(curr_loader): # If empty or nan in volumes, don't use these for training if curr_img_stack.float().sum()==0 or torch.isnan(curr_img_stack.float().max()): continue # Normalize volumes if ill posed if local_volumes.float().max()>=20000: local_volumes = local_volumes.float() local_volumes = local_volumes / local_volumes.max() * 4500.0 local_volumes = local_volumes.half() # curr_img_stack returns both the dense and the sparse images, here we only need the sparse. if net.tempConv is None: assert len(curr_img_stack.shape)>=5, "If sparse is used curr_img_stack should contain both images, dense and sparse stacked in the last dim." curr_img_sparse = curr_img_stack[...,-1].clone().to(device) curr_img_stack = curr_img_stack[...,-1].clone().to(device) else: curr_img_sparse = curr_img_stack[...,-1].clone().to(device) curr_img_stack = curr_img_stack[...,0].clone().to(device) curr_img_stack = curr_img_stack.half() curr_img_stack -= args.dark_current curr_img_stack = F.relu(curr_img_stack).detach() if args.add_noise==1 and curr_train_stage!='test': curr_max = curr_img_stack.max() # Update new signal power signal_power = (args.signal_power_min + (args.signal_power_max-args.signal_power_min) * torch.rand(1)).item() curr_img_stack = signal_power/curr_max * curr_img_stack # Add noise curr_img_stack = pytorch_shot_noise.add_camera_noise(curr_img_stack) curr_img_stack = curr_img_stack.float().to(device) local_volumes = local_volumes.half().to(device) # if conversion to half precission messed up the volumes, continue if torch.isinf(local_volumes.max()): curr_loader_len -= local_volumes.shape[0] continue # Images are already normalized from mainCreateDataset.py # curr_img_stack, local_volumes = normalize_type(curr_img_stack, local_volumes, args.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes) _, local_volumes = normalize_type(curr_img_stack, local_volumes, stats['norm_type'], stats['mean_imgs'], stats['std_images'], stats['mean_vols'], stats['std_vols'], stats['max_images'], stats['max_vols']) curr_img_stack, _ = normalize_type(curr_img_stack, local_volumes, stats['norm_type_img'], stats['mean_imgs'], stats['std_images'], stats['mean_vols'], stats['std_vols'], stats['max_images'], stats['max_vols']) # curr_img_sparse, _ = normalize_type(curr_img_sparse, local_volumes, args.norm_type, mean_imgs_sparse, std_images_sparse, mean_vols, std_vols, max_images, max_volumes) start.record() if curr_train_stage=='train': net.zero_grad() optimizer.zero_grad() # with autocast(): # Run batch of predicted images in discriminator prediction,sparse_prediction = net(curr_img_stack) if not all([prediction.shape[i] == subimage_shape[i-2] for i in range(2,4)]): diffY = (subimage_shape[0] - prediction.size()[2]) diffX = (subimage_shape[1] - prediction.size()[3]) prediction = F.pad(prediction, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) # Use only first sparse image, corresponding to the selected volume. if net_get_params(net).n_frames>1: curr_img_sparse = curr_img_sparse[:,0,...].unsqueeze(1) # Extract lenslet images curr_img_sparse = dataset.extract_views(curr_img_sparse, dataset.lenslet_coords, dataset.subimage_shape)[:,0,...] # curr_img_sparse, _ = normalize_type(curr_img_sparse, local_volumes, args.norm_type, mean_imgs_sparse, std_images_sparse, mean_vols, std_vols, max_images, max_volumes, inverse=True) volume_loss = loss(local_volumes, prediction) if curr_train_stage=='test' and len(args.gpu_repro)>0: with torch.no_grad(): reproj_loss, reproj,curr_views,_ = reprojection_loss(sparse_prediction, prediction.float(), OTF, psf_shape, dataset, n_split, device_repro) mean_repro += reproj_loss.item() mean_repro_ssim += ssim_module((sparse_prediction/sparse_prediction.max()).to(device_repro).float(), (reproj/reproj.max()).float().to(device_repro)).cpu().item() mean_volume_loss += volume_loss.mean().detach().item() if curr_train_stage=='train': scaler.scale(volume_loss).backward() scaler.step(optimizer) scaler.update() # Record training time end.record() torch.cuda.synchronize() end_time = start.elapsed_time(end) mean_time += end_time # detach tensors local_volumes = local_volumes.detach().cpu().float() prediction = prediction.detach().cpu().float() curr_img_sparse = curr_img_sparse.detach() curr_img_stack = curr_img_stack.detach() # Normalize back # curr_img_stack, local_volumes = normalize_type(curr_img_stack, local_volumes, args.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True) # _, prediction = normalize_type(curr_img_stack, prediction, args.norm_type, mean_imgs, std_images, mean_vols, std_vols, max_images, max_volumes, inverse=True) if torch.isinf(torch.tensor(mean_volume_loss)): print('inf') curr_img_sparse /= curr_img_sparse.max() local_volumes -= local_volumes.min() prediction -= prediction.min() prediction /= max_volumes local_volumes /= max_volumes curr_img_stack -= curr_img_stack.min() curr_img_stack /= curr_img_stack.max() # mean_psnr += psnr(local_volumes.detach(), prediction.detach()) mean_volume_loss /= curr_loader_len mean_psnr = 20 * torch.log10(max_volumes / torch.sqrt(torch.tensor(mean_volume_loss))) #/= curr_loader_len mean_time /= curr_loader_len mean_repro /= curr_loader_len mean_repro_ssim /= curr_loader_len # if epoch%args.eval_every==0: # plt.imshow(volume_2_projections(prediction.permute(0,2,3,1).unsqueeze(1))[0,0,...].float().detach().cpu().numpy()) # plt.show() if epoch%args.eval_every==0: # plot_param_grads(writer, net, epoch, curr_train_stage+'_') # plt.subplot(1,3,1) # plt.imshow(curr_views[0,10,...].cpu().detach().numpy()) # plt.subplot(1,3,2) # plt.imshow(reproj[0,10,...].cpu().detach().numpy()) # plt.subplot(1,3,3) # plt.imshow((curr_views-reproj)[0,10,...].abs().cpu().detach().float().numpy()) # plt.title(str(image_loss)) # plt.show() if local_volumes.shape == prediction.shape: writer.add_image('max_GT_'+curr_train_stage, tv.utils.make_grid(volume_2_projections(local_volumes.permute(0,2,3,1).unsqueeze(1))[0,...], normalize=True, scale_each=True), epoch) writer.add_image('sum_GT_'+curr_train_stage, tv.utils.make_grid(volume_2_projections(local_volumes.permute(0,2,3,1).unsqueeze(1), proj_type=torch.sum)[0,...], normalize=True, scale_each=True), epoch) writer.add_image('max_prediction_'+curr_train_stage, tv.utils.make_grid(volume_2_projections(prediction.permute(0,2,3,1).unsqueeze(1))[0,...], normalize=True, scale_each=True), epoch) writer.add_image('sum_prediction_'+curr_train_stage, tv.utils.make_grid(volume_2_projections(prediction.permute(0,2,3,1).unsqueeze(1), proj_type=torch.sum)[0,...], normalize=True, scale_each=True), epoch) # input_noisy_grid = tv.utils.make_grid(curr_img_stack[0,0,...].float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False) sparse_prediction = sparse_prediction- sparse_prediction.min() sparse_prediction /= sparse_prediction.max() input_intermediate_sparse_grid = tv.utils.make_grid(sparse_prediction[0,10,...].float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False) input_GT_sparse_grid = tv.utils.make_grid(curr_img_sparse[0,10,...].float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False) if curr_train_stage=='test' and len(args.gpu_repro)>0: repro_grid = tv.utils.make_grid(reproj[0,...].sum(0).float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False) writer.add_image('reproj_'+curr_train_stage, repro_grid, epoch) repro_grid = tv.utils.make_grid(curr_img_sparse[0,...].sum(0).float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False) writer.add_image('reproj_GT_'+curr_train_stage, repro_grid, epoch) repro_grid = tv.utils.make_grid((curr_views-reproj)[0,10,...].abs().float().unsqueeze(0).cpu().data.detach(), normalize=True, scale_each=False) writer.add_image('reproj_error_'+curr_train_stage, repro_grid, epoch) writer.add_scalar('reproj/ssim/'+curr_train_stage, mean_repro_ssim, epoch) writer.add_scalar('reproj/Loss/'+curr_train_stage, mean_repro, epoch) # volGTHist,volPredHist,inputHist = compute_histograms(local_volumes[0,...].float(), prediction[0,...].float(), curr_img_stack[0,...].float()) # writer.add_image('input_noisy_'+curr_train_stage, input_noisy_grid, epoch) writer.add_image('image_intermediate_sparse'+curr_train_stage, input_intermediate_sparse_grid, epoch) writer.add_image('image_intermediate_sparse_GT'+curr_train_stage, input_GT_sparse_grid, epoch) writer.add_scalar('Loss/'+curr_train_stage, mean_volume_loss, epoch) writer.add_scalar('psnr/'+curr_train_stage, mean_psnr, epoch) writer.add_scalar('times/'+curr_train_stage, mean_time, epoch) # writer.add_scalar('grads/'+curr_train_stage, max_grad, epoch) writer.add_scalar('lr/'+curr_train_stage, lr, epoch) # if epoch%2==0: print(str(epoch) + ' ' + curr_train_stage + " loss: " + str(mean_volume_loss) + " time: " + str(mean_time)) if os.path.isfile(main_folder+'exit_file.txt'): torch.cuda.empty_cache() sys.exit(0) if epoch%25==0: torch.save({ 'epoch': epoch, 'args' : args, 'args_SLNet' : argsSLNet, 'statistics' : stats, 'model_state_dict': net_get_params(net).state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'scaler_state_dict' : scaler.state_dict(), 'loss': mean_volume_loss}, save_folder + '/model_')#+str(epoch)) if epoch%50==0: torch.save({ 'epoch': epoch, 'args' : args, 'args_SLNet' : argsSLNet, 'statistics' : stats, 'model_state_dict': net_get_params(net).state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'scaler_state_dict' : scaler.state_dict(), 'loss': mean_volume_loss}, save_folder + '/model_'+str(epoch))
[ "zipfile.ZipFile", "torch.cuda.device_count", "utils.pytorch_shot_noise.add_camera_noise", "torch.cuda.synchronize", "torch.nn.MSELoss", "torch.nn.init.xavier_uniform", "sys.exit", "torch.utils.tensorboard.SummaryWriter", "pytorch_msssim.SSIM", "torch.cuda.amp.GradScaler", "argparse.ArgumentParser", "nets.XLFMNet.XLFMNet", "torch.set_num_threads", "os.path.split", "torch.cuda.amp.autocast", "torch.utils.data.sampler.SubsetRandomSampler", "torch.cuda.Event", "numpy.ceil", "subprocess.check_output", "os.path.isfile", "torch.no_grad", "time.time", "torch.cuda.empty_cache", "torch.manual_seed", "torch.optim.Adam", "torch.load", "utils.XLFMDataset.XLFMDatasetFull", "torch.nn.DataParallel", "torch.tensor", "datetime.datetime.now", "torch.utils.data.DataLoader", "torch.set_grad_enabled", "torch.rand", "numpy.random.shuffle" ]
[((637, 662), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (660, 662), False, 'import argparse\n'), ((3919, 3944), 'torch.manual_seed', 'torch.manual_seed', (['(261290)'], {}), '(261290)\n', (3936, 3944), False, 'import torch\n'), ((4999, 5370), 'utils.XLFMDataset.XLFMDatasetFull', 'XLFMDatasetFull', (['args.data_folder', 'args.lenslet_file', 'subimage_shape'], {'img_shape': '[2160, 2160]', 'images_to_use': 'args.images_to_use', 'divisor': '(1)', 'isTiff': '(True)', 'n_frames_net': 'argsSLNet.n_frames', 'lenslets_offset': '(0)', 'load_all': '(True)', 'load_vols': '(True)', 'load_sparse': '(True)', 'temporal_shifts': 'args.temporal_shifts', 'use_random_shifts': 'args.use_random_shifts', 'eval_video': '(False)'}), '(args.data_folder, args.lenslet_file, subimage_shape,\n img_shape=[2160, 2160], images_to_use=args.images_to_use, divisor=1,\n isTiff=True, n_frames_net=argsSLNet.n_frames, lenslets_offset=0,\n load_all=True, load_vols=True, load_sparse=True, temporal_shifts=args.\n temporal_shifts, use_random_shifts=args.use_random_shifts, eval_video=False\n )\n', (5014, 5370), False, 'from utils.XLFMDataset import XLFMDatasetFull\n'), ((5389, 5771), 'utils.XLFMDataset.XLFMDatasetFull', 'XLFMDatasetFull', (['args.data_folder_test', 'args.lenslet_file', 'subimage_shape'], {'img_shape': '[2160, 2160]', 'images_to_use': 'args.images_to_use_test', 'divisor': '(1)', 'isTiff': '(True)', 'n_frames_net': 'argsSLNet.n_frames', 'lenslets_offset': '(0)', 'load_all': '(True)', 'load_vols': '(True)', 'load_sparse': '(True)', 'temporal_shifts': 'args.temporal_shifts', 'use_random_shifts': 'args.use_random_shifts', 'eval_video': '(False)'}), '(args.data_folder_test, args.lenslet_file, subimage_shape,\n img_shape=[2160, 2160], images_to_use=args.images_to_use_test, divisor=\n 1, isTiff=True, n_frames_net=argsSLNet.n_frames, lenslets_offset=0,\n load_all=True, load_vols=True, load_sparse=True, temporal_shifts=args.\n temporal_shifts, use_random_shifts=args.use_random_shifts, eval_video=False\n )\n', (5404, 5771), False, 'from utils.XLFMDataset import XLFMDatasetFull\n'), ((6598, 6632), 'torch.utils.data.sampler.SubsetRandomSampler', 'SubsetRandomSampler', (['train_indices'], {}), '(train_indices)\n', (6617, 6632), False, 'from torch.utils.data.sampler import SubsetRandomSampler\n'), ((6649, 6681), 'torch.utils.data.sampler.SubsetRandomSampler', 'SubsetRandomSampler', (['val_indices'], {}), '(val_indices)\n', (6668, 6681), False, 'from torch.utils.data.sampler import SubsetRandomSampler\n'), ((8359, 8371), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (8369, 8371), True, 'import torch.nn as nn\n'), ((8577, 8634), 'torch.optim.Adam', 'torch.optim.Adam', (['trainable_params'], {'lr': 'args.learning_rate'}), '(trainable_params, lr=args.learning_rate)\n', (8593, 8634), False, 'import torch\n'), ((8653, 8689), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (8669, 8689), False, 'import torch\n'), ((8696, 8732), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (8712, 8732), False, 'import torch\n'), ((8797, 8809), 'torch.cuda.amp.GradScaler', 'GradScaler', ([], {}), '()\n', (8807, 8809), False, 'from torch.cuda.amp import autocast, GradScaler\n'), ((3886, 3918), 'torch.set_num_threads', 'torch.set_num_threads', (['n_threads'], {}), '(n_threads)\n', (3907, 3918), False, 'import torch\n'), ((4035, 4091), 'torch.load', 'torch.load', (['args.checkpoint_XLFMNet'], {'map_location': 'device'}), '(args.checkpoint_XLFMNet, map_location=device)\n', (4045, 4091), False, 'import torch\n'), ((4276, 4330), 'torch.load', 'torch.load', (['args.checkpoint_SLNet'], {'map_location': 'device'}), '(args.checkpoint_SLNet, map_location=device)\n', (4286, 4330), False, 'import torch\n'), ((4563, 4599), 'os.path.split', 'os.path.split', (['args.checkpoint_SLNet'], {}), '(args.checkpoint_SLNet)\n', (4576, 4599), False, 'import os\n'), ((6364, 6409), 'numpy.ceil', 'np.ceil', (['(args.validation_split * dataset_size)'], {}), '(args.validation_split * dataset_size)\n', (6371, 6409), True, 'import numpy as np\n'), ((6472, 6498), 'numpy.random.shuffle', 'np.random.shuffle', (['indices'], {}), '(indices)\n', (6489, 6498), True, 'import numpy as np\n'), ((6729, 6849), 'torch.utils.data.DataLoader', 'data.DataLoader', (['dataset'], {'batch_size': 'args.batch_size', 'sampler': 'train_sampler', 'pin_memory': '(False)', 'num_workers': 'n_threads'}), '(dataset, batch_size=args.batch_size, sampler=train_sampler,\n pin_memory=False, num_workers=n_threads)\n', (6744, 6849), False, 'from torch.utils import data\n'), ((6910, 7030), 'torch.utils.data.DataLoader', 'data.DataLoader', (['dataset'], {'batch_size': 'args.batch_size', 'sampler': 'valid_sampler', 'pin_memory': '(False)', 'num_workers': 'n_threads'}), '(dataset, batch_size=args.batch_size, sampler=valid_sampler,\n pin_memory=False, num_workers=n_threads)\n', (6925, 7030), False, 'from torch.utils import data\n'), ((7094, 7197), 'torch.utils.data.DataLoader', 'data.DataLoader', (['dataset_test'], {'batch_size': '(1)', 'pin_memory': '(False)', 'num_workers': 'n_threads', 'shuffle': '(True)'}), '(dataset_test, batch_size=1, pin_memory=False, num_workers=\n n_threads, shuffle=True)\n', (7109, 7197), False, 'from torch.utils import data\n'), ((8411, 8423), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (8421, 8423), True, 'import torch.nn as nn\n'), ((9500, 9534), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'save_folder'}), '(log_dir=save_folder)\n', (9513, 9534), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((9674, 9722), 'zipfile.ZipFile', 'zipfile.ZipFile', (["(save_folder + '/files.zip')", '"""w"""'], {}), "(save_folder + '/files.zip', 'w')\n", (9689, 9722), False, 'import zipfile\n'), ((9842, 9853), 'time.time', 'time.time', ([], {}), '()\n', (9851, 9853), False, 'import time\n'), ((10108, 10132), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (10130, 10132), False, 'import torch\n'), ((10141, 10152), 'time.time', 'time.time', ([], {}), '()\n', (10150, 10152), False, 'import time\n'), ((10192, 10216), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (10214, 10216), False, 'import torch\n'), ((10556, 10609), 'torch.nn.DataParallel', 'nn.DataParallel', (['net', 'args.main_gpu', 'args.main_gpu[0]'], {}), '(net, args.main_gpu, args.main_gpu[0])\n', (10571, 10609), True, 'import torch.nn as nn\n'), ((4657, 4713), 'subprocess.check_output', 'subprocess.check_output', (["['git', 'describe', '--always']"], {}), "(['git', 'describe', '--always'])\n", (4680, 4713), False, 'import subprocess\n'), ((7315, 7353), 'torch.nn.init.xavier_uniform', 'torch.nn.init.xavier_uniform', (['m.weight'], {}), '(m.weight)\n', (7343, 7353), False, 'import torch\n'), ((7680, 7828), 'nets.XLFMNet.XLFMNet', 'XLFMNet', (['n_lenslets', 'args.output_shape'], {'n_temporal_frames': 'dataset.n_frames', 'dataset': 'dataset', 'use_bias': 'args.use_bias', 'unet_settings': 'unet_settings'}), '(n_lenslets, args.output_shape, n_temporal_frames=dataset.n_frames,\n dataset=dataset, use_bias=args.use_bias, unet_settings=unet_settings)\n', (7687, 7828), False, 'from nets.XLFMNet import XLFMNet\n'), ((8489, 8546), 'pytorch_msssim.SSIM', 'SSIM', ([], {'data_range': '(1)', 'size_average': '(True)', 'channel': 'n_lenslets'}), '(data_range=1, size_average=True, channel=n_lenslets)\n', (8493, 8546), False, 'from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM\n'), ((10633, 10658), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (10656, 10658), False, 'import torch\n'), ((22621, 22666), 'os.path.isfile', 'os.path.isfile', (["(main_folder + 'exit_file.txt')"], {}), "(main_folder + 'exit_file.txt')\n", (22635, 22666), False, 'import os\n'), ((11148, 11176), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (11170, 11176), False, 'import torch\n'), ((11342, 11371), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (11364, 11371), False, 'import torch\n'), ((16860, 16884), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (16882, 16884), False, 'import torch\n'), ((22678, 22702), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (22700, 22702), False, 'import torch\n'), ((22715, 22726), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (22723, 22726), False, 'import sys\n'), ((13313, 13364), 'utils.pytorch_shot_noise.add_camera_noise', 'pytorch_shot_noise.add_camera_noise', (['curr_img_stack'], {}), '(curr_img_stack)\n', (13348, 13364), True, 'import utils.pytorch_shot_noise as pytorch_shot_noise\n'), ((14791, 14801), 'torch.cuda.amp.autocast', 'autocast', ([], {}), '()\n', (14799, 14801), False, 'from torch.cuda.amp import autocast, GradScaler\n'), ((17663, 17693), 'torch.tensor', 'torch.tensor', (['mean_volume_loss'], {}), '(mean_volume_loss)\n', (17675, 17693), False, 'import torch\n'), ((16099, 16114), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (16112, 16114), False, 'import torch\n'), ((18248, 18278), 'torch.tensor', 'torch.tensor', (['mean_volume_loss'], {}), '(mean_volume_loss)\n', (18260, 18278), False, 'import torch\n'), ((4776, 4790), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4788, 4790), False, 'from datetime import datetime\n'), ((13158, 13171), 'torch.rand', 'torch.rand', (['(1)'], {}), '(1)\n', (13168, 13171), False, 'import torch\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-11-08 05:57 from __future__ import unicode_literals import datetime from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import re class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='EmailVerification', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(default=django.utils.timezone.now, verbose_name='created')), ('sent', models.DateTimeField(null=True, verbose_name='sent')), ('key', models.CharField(max_length=64, unique=True, verbose_name='key')), ], options={ 'verbose_name': 'email confirmation', 'verbose_name_plural': 'email confirmations', }, ), migrations.CreateModel( name='Feedback', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('remembered_password', models.BooleanField()), ('message', models.TextField(max_length=500)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='LoginAttempt', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=50)), ('entry', models.CharField(max_length=30)), ('keystroke', models.CharField(max_length=50)), ('keystroke_intervals', models.CharField(max_length=200, validators=[django.core.validators.RegexValidator(re.compile('^\\d+(?:\\,\\d+)*\\Z'), code='invalid', message='Enter only digits separated by commas.')])), ('user_agent', models.CharField(max_length=30)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='PasswordRequest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('timestamp', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=30)), ('last_login', models.DateTimeField(default=datetime.datetime(2017, 1, 1, 0, 0), verbose_name='last_login')), ('login_days', models.PositiveIntegerField(default=0)), ('best_timing', models.DecimalField(decimal_places=3, default=None, max_digits=8, null=True)), ('last_timing', models.DecimalField(decimal_places=3, default=None, max_digits=8, null=True)), ('verified', models.BooleanField(default=False, verbose_name='verified')), ('pseudonym', models.CharField(max_length=15, null=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='emailverification', name='user_profile', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='account.UserProfile'), ), ]
[ "datetime.datetime", "django.db.models.TextField", "django.db.models.ForeignKey", "re.compile", "django.db.models.BooleanField", "django.db.models.AutoField", "django.db.models.PositiveIntegerField", "django.db.models.DateTimeField", "django.db.models.DecimalField", "django.db.migrations.swappable_dependency", "django.db.models.CharField" ]
[((397, 454), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (428, 454), False, 'from django.db import migrations, models\n'), ((4174, 4267), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""account.UserProfile"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'account.UserProfile')\n", (4191, 4267), False, 'from django.db import migrations, models\n'), ((596, 689), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (612, 689), False, 'from django.db import migrations, models\n'), ((716, 795), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'django.utils.timezone.now', 'verbose_name': '"""created"""'}), "(default=django.utils.timezone.now, verbose_name='created')\n", (736, 795), False, 'from django.db import migrations, models\n'), ((823, 875), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)', 'verbose_name': '"""sent"""'}), "(null=True, verbose_name='sent')\n", (843, 875), False, 'from django.db import migrations, models\n'), ((902, 966), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(64)', 'unique': '(True)', 'verbose_name': '"""key"""'}), "(max_length=64, unique=True, verbose_name='key')\n", (918, 966), False, 'from django.db import migrations, models\n'), ((1253, 1346), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1269, 1346), False, 'from django.db import migrations, models\n'), ((1385, 1406), 'django.db.models.BooleanField', 'models.BooleanField', ([], {}), '()\n', (1404, 1406), False, 'from django.db import migrations, models\n'), ((1437, 1469), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(500)'}), '(max_length=500)\n', (1453, 1469), False, 'from django.db import migrations, models\n'), ((1502, 1541), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1522, 1541), False, 'from django.db import migrations, models\n'), ((1569, 1665), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (1586, 1665), False, 'from django.db import migrations, models\n'), ((1798, 1891), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1814, 1891), False, 'from django.db import migrations, models\n'), ((1919, 1950), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (1935, 1950), False, 'from django.db import migrations, models\n'), ((1979, 2010), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)'}), '(max_length=30)\n', (1995, 2010), False, 'from django.db import migrations, models\n'), ((2043, 2074), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (2059, 2074), False, 'from django.db import migrations, models\n'), ((2337, 2368), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)'}), '(max_length=30)\n', (2353, 2368), False, 'from django.db import migrations, models\n'), ((2401, 2440), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (2421, 2440), False, 'from django.db import migrations, models\n'), ((2468, 2587), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, to=settings.AUTH_USER_MODEL)\n', (2485, 2587), False, 'from django.db import migrations, models\n'), ((2723, 2816), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (2739, 2816), False, 'from django.db import migrations, models\n'), ((2845, 2884), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (2865, 2884), False, 'from django.db import migrations, models\n'), ((2912, 3008), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (2929, 3008), False, 'from django.db import migrations, models\n'), ((3140, 3233), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (3156, 3233), False, 'from django.db import migrations, models\n'), ((3261, 3292), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)'}), '(max_length=30)\n', (3277, 3292), False, 'from django.db import migrations, models\n'), ((3452, 3490), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(0)'}), '(default=0)\n', (3479, 3490), False, 'from django.db import migrations, models\n'), ((3525, 3601), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'decimal_places': '(3)', 'default': 'None', 'max_digits': '(8)', 'null': '(True)'}), '(decimal_places=3, default=None, max_digits=8, null=True)\n', (3544, 3601), False, 'from django.db import migrations, models\n'), ((3636, 3712), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'decimal_places': '(3)', 'default': 'None', 'max_digits': '(8)', 'null': '(True)'}), '(decimal_places=3, default=None, max_digits=8, null=True)\n', (3655, 3712), False, 'from django.db import migrations, models\n'), ((3744, 3803), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)', 'verbose_name': '"""verified"""'}), "(default=False, verbose_name='verified')\n", (3763, 3803), False, 'from django.db import migrations, models\n'), ((3836, 3878), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(15)', 'null': '(True)'}), '(max_length=15, null=True)\n', (3852, 3878), False, 'from django.db import migrations, models\n'), ((3906, 4026), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""profile"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='profile', to=settings.AUTH_USER_MODEL)\n", (3923, 4026), False, 'from django.db import migrations, models\n'), ((3355, 3390), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(1)', '(0)', '(0)'], {}), '(2017, 1, 1, 0, 0)\n', (3372, 3390), False, 'import datetime\n'), ((2200, 2234), 're.compile', 're.compile', (['"""^\\\\d+(?:\\\\,\\\\d+)*\\\\Z"""'], {}), "('^\\\\d+(?:\\\\,\\\\d+)*\\\\Z')\n", (2210, 2234), False, 'import re\n')]
#solution_python1_chapter10_regex.py import re cc = "1234-5678-1234-5678" regex = re.compile(r'''( (\d{4}) #match 4 digits (\s*|\-*) #matches either a white space \s or a dash (\d{4}) (\s*|\-*) (\d{4}) )''',re.VERBOSE) #validation: does it even look like a credit card? m = regex.match(cc) if not m: print("Sorry, that's not a credit card number") #if it is, we'll make a substitution of the first 12 numbers fixed = re.sub(m.group(), "****-****-****",cc) print("Success. Changed {} \n\tto the much safer {}.".format (cc, fixed))
[ "re.compile" ]
[((84, 241), 're.compile', 're.compile', (['"""(\n(\\\\d{4}) #match 4 digits\n(\\\\s*|\\\\-*) #matches either a white space \\\\s or a dash\n(\\\\d{4})\n(\\\\s*|\\\\-*)\n(\\\\d{4})\n\n)"""', 're.VERBOSE'], {}), '(\n """(\n(\\\\d{4}) #match 4 digits\n(\\\\s*|\\\\-*) #matches either a white space \\\\s or a dash\n(\\\\d{4})\n(\\\\s*|\\\\-*)\n(\\\\d{4})\n\n)"""\n , re.VERBOSE)\n', (94, 241), False, 'import re\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> """Main class for sosia.""" from warnings import warn from sosia.classes import Scientist from sosia.processing import find_matches, inform_matches,\ maybe_add_source_names, search_group_from_sources from sosia.utils import accepts, custom_print class Original(Scientist): @property def matches(self): """List of Scopus IDs or list of namedtuples representing matches of the original scientist in the treatment year. Notes ----- Property is initiated via .find_matches(). """ try: return self._matches except AttributeError: return None @property def search_group(self): """The set of authors that might be matches to the scientist. The set contains the intersection of all authors publishing in the treatment year as well as authors publishing around the year of first publication. Some authors with too many publications in the treatment year and authors having published too early are removed. Notes ----- Property is initiated via .define_search_group(). """ try: return self._search_group except AttributeError: return None @property def search_sources(self): """The set of sources (journals, books) comparable to the sources the scientist published in until the treatment year. A sources is comparable if is belongs to the scientist's main field but not to fields alien to the scientist, and if the types of the sources are the same as the types of the sources in the scientist's main field where she published in. Notes ----- Property is initiated via .define_search_sources(). """ try: return self._search_sources except AttributeError: return None @search_sources.setter @accepts((set, list, tuple)) def search_sources(self, val): self._search_sources = maybe_add_source_names(val, self.source_names) def __init__(self, scientist, treatment_year, first_year_margin=2, pub_margin=0.2, cits_margin=0.2, coauth_margin=0.2, affiliations=None, period=None, first_year_search="ID", eids=None, refresh=False, sql_fname=None): """Representation of a scientist for whom to find a control scientist. Parameters ---------- scientist : str, int or list of str or int Scopus Author ID, or list of Scopus Author IDs, of the scientist to find a control scientist for. treatment_year : str or numeric Year of the event. Control scientist will be matched on trends and characteristics of the original scientist up to this year. first_year_margin : numeric (optional, default=2) Number of years by which the search for authors publishing around the year of the original scientist's year of first publication should be extend in both directions. pub_margin : numeric (optional, default=0.2) The left and right margin for the number of publications to match possible matches and the scientist on. If the value is a float, it is interpreted as percentage of the scientists number of publications and the resulting value is rounded up. If the value is an integer it is interpreted as fixed number of publications. cits_margin : numeric (optional, default=0.2) The left and right margin for the number of citations to match possible matches and the scientist on. If the value is a float, it is interpreted as percentage of the scientists number of publications and the resulting value is rounded up. If the value is an integer it is interpreted as fixed number of citations. coauth_margin : numeric (optional, default=0.2) The left and right margin for the number of coauthors to match possible matches and the scientist on. If the value is a float, it is interpreted as percentage of the scientists number of coauthors and the resulting value is rounded up. If the value is an integer it is interpreted as fixed number of coauthors. affiliations : list (optional, default=None) A list of Scopus affiliation IDs. If provided, sosia conditions the match procedure on affiliation with these IDs in the treatment year. period: int (optional, default=None) An additional period prior to the publication year on which to match scientists. Note: If the value is larger than the publication range, period sets back to None. first_year_search: str (optional, default="ID") How to determine characteristics of possible control scientists in the first year of publication. Mode "ID" uses Scopus Author IDs only. Mode "name" will select relevant profiles based on their surname and first name but only when "period" is not None. Select this mode to counter potential incompleteness of author profiles. eids : list (optional, default=None) A list of scopus EIDs of the publications of the scientist you want to find a control for. If it is provided, the scientist properties and the control group are set based on this list of publications, instead of the list of publications obtained from the Scopus Author ID. refresh : boolean (optional, default=False) Whether to refresh cached results (if they exist) or not. If int is passed, results will be refreshed if they are older than that value in number of days. sql_fname : str (optional, default=None) The path of the SQLite database to connect to. If None, will use the path specified in config.ini. """ # Internal checks if not isinstance(first_year_margin, (int, float)): raise Exception("Argument first_year_margin must be float or integer.") if not isinstance(pub_margin, (int, float)): raise Exception("Argument pub_margin must be float or integer.") if not isinstance(coauth_margin, (int, float)): raise Exception("Argument coauth_margin must be float or integer.") if first_year_search not in ("ID", "name"): raise Exception("Argument first_year_search must be either ID or name.") if first_year_search == "name" and not period: first_year_search = "ID" text = "Argument first_year_search set to ID: Argument period "\ "must not be None" warn(text) # Variables if not isinstance(scientist, list): scientist = [scientist] self.identifier = [str(auth_id) for auth_id in scientist] self.treatment_year = int(treatment_year) self.first_year_margin = first_year_margin self.pub_margin = pub_margin self.cits_margin = cits_margin self.coauth_margin = coauth_margin self.period = period self.first_year_name_search = first_year_search == "name" self.eids = eids if isinstance(affiliations, (int, str)): affiliations = [affiliations] if affiliations: affiliations = [int(a) for a in affiliations] self.search_affiliations = affiliations self.refresh = refresh self.sql_fname = sql_fname # Instantiate superclass to load private variables Scientist.__init__(self, self.identifier, treatment_year, refresh=refresh, period=period, sql_fname=self.sql_fname) def define_search_group(self, stacked=False, verbose=False, refresh=False): """Define search_group. Parameters ---------- stacked : bool (optional, default=False) Whether to combine searches in few queries or not. Cached files with most likely not be reusable. Set to True if you query in distinct fields or you want to minimize API key usage. verbose : bool (optional, default=False) Whether to report on the progress of the process. refresh : bool (optional, default=False) Whether to refresh cached results (if they exist) or not. """ # Checks if not self.search_sources: text = "No search sources defined. Please run "\ ".define_search_sources() first." raise Exception(text) # Query journals params = {"original": self, "stacked": stacked, "refresh": refresh, "verbose": verbose} search_group = search_group_from_sources(**params) # Remove own IDs and coauthors search_group -= set(self.identifier) search_group -= {str(i) for i in self.coauthors} # Finalize self._search_group = sorted(search_group) text = f"Found {len(search_group):,} authors for search_group" custom_print(text, verbose) return self def define_search_sources(self, verbose=False): """Define .search_sources. Within the list of search sources sosia will search for matching scientists. A search source is of the same main field as the original scientist, the same types (journal, conference proceeding, etc.), and must not be related to fields alien to the original scientist. Parameters ---------- verbose : bool (optional, default=False) Whether to report on the progress of the process. """ df = self.field_source # Sources in scientist's main field same_field = df["asjc"] == self.main_field[0] # Types of Scientist's sources own_source_ids, _ = zip(*self.sources) same_sources = df["source_id"].isin(own_source_ids) main_types = df[same_sources]["type"].unique() same_type = df["type"].isin(main_types) # Select source IDs selected_ids = df[same_field & same_type]["source_id"].unique() selected = df[df["source_id"].isin(selected_ids)].copy() selected["asjc"] = selected["asjc"].astype(int).astype(str) + " " grouped = (selected.groupby("source_id") .sum()["asjc"] .to_frame()) # Deselect sources with alien fields grouped["asjc"] = grouped["asjc"].astype(str).str.split().apply(set) fields = set(str(f) for f in self.fields) no_alien_field = grouped["asjc"].apply(lambda s: len(s - fields) == 0) grouped = grouped[no_alien_field] # Add source names sources = set((s, self.source_names.get(s)) for s in grouped.index) # Add own sources sources.update(self.sources) # Finalize self._search_sources = sorted(sources) text = f"Found {len(sources):,} sources matching main field "\ f"{self.main_field[0]} and source type(s) {'; '.join(main_types)}" custom_print(text, verbose) return self def find_matches(self, stacked=False, verbose=False, refresh=False): """Find matches within search_group based on four criteria: 1. Started publishing in about the same year 2. Has about the same number of publications in the treatment year 3. Has about the same number of coauthors in the treatment year 4. Has about the same number of citations in the treatment year 5. Works in the same field as the scientist's main field Parameters ---------- stacked : bool (optional, default=False) Whether to combine searches in few queries or not. Cached files will most likely not be reusable. Set to True if you query in distinct fields or you want to minimize API key usage. verbose : bool (optional, default=False) Whether to report on the progress of the process. refresh : bool (optional, default=False) Whether to refresh cached results (if they exist) or not. If int is passed and stacked=False, results will be refreshed if they are older than that value in number of days. Notes ----- Matches are available through property `.matches`. """ # Checks if not self.search_group: text = "No search group defined. Please run "\ ".define_search_group() first." raise Exception(text) if not isinstance(refresh, bool) and stacked: refresh = False warn("refresh parameter must be boolean when stacked=True. " "Continuing with refresh=False.") # Find matches matches = find_matches(self, stacked, verbose, refresh) text = f"Found {len(matches):,} author(s) matching all criteria" custom_print(text, verbose) self._matches = sorted([str(auth_id) for auth_id in matches]) def inform_matches(self, fields=None, verbose=False, refresh=False, stop_words=None, **tfidf_kwds): """Add information to matches to aid in selection process. Parameters ---------- fields : iterable (optional, default=None) Which information to provide. Allowed values are "first_year", "num_coauthors", "num_publications", "num_citations", "country", "language", "reference_sim", "abstract_sim". If None, will use all available fields. verbose : bool (optional, default=False) Whether to report on the progress of the process. refresh : bool (optional, default=False) Whether to refresh cached results (if they exist) or not. If int is passed and stacked=False, results will be refreshed if they are older than that value in number of days. stop_words : list (optional, default=None) A list of words that should be filtered in the analysis of abstracts. If None uses the list of English stopwords by nltk, augmented with numbers and interpunctuation. tfidf_kwds : keywords Parameters to pass to TfidfVectorizer from the sklearn package for abstract vectorization. Not used when `information=False` or or when "abstract_sim" is not in `information`. See https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html for possible values. Notes ----- Matches including corresponding information are available through property `.matches`. Raises ------ fields If fields contains invalid keywords. """ # Checks if not self._matches: text = "No matches defined. Please run .find_matches() first." raise Exception(text) allowed_fields = ["first_name", "surname", "first_year", "num_coauthors", "num_publications", "num_citations", "num_coauthors_period", "num_publications_period", "num_citations_period", "subjects", "country", "affiliation_id", "affiliation", "language", "reference_sim", "abstract_sim"] if fields: invalid = [x for x in fields if x not in allowed_fields] if invalid: text = "Parameter fields contains invalid keywords: " +\ ", ".join(invalid) raise ValueError(text) else: fields = allowed_fields custom_print("Providing additional information...", verbose) matches = inform_matches(self, fields, stop_words, verbose, refresh, **tfidf_kwds) self._matches = matches
[ "sosia.classes.Scientist.__init__", "sosia.utils.custom_print", "sosia.utils.accepts", "sosia.processing.search_group_from_sources", "sosia.processing.inform_matches", "warnings.warn", "sosia.processing.maybe_add_source_names", "sosia.processing.find_matches" ]
[((2055, 2082), 'sosia.utils.accepts', 'accepts', (['(set, list, tuple)'], {}), '((set, list, tuple))\n', (2062, 2082), False, 'from sosia.utils import accepts, custom_print\n'), ((2149, 2195), 'sosia.processing.maybe_add_source_names', 'maybe_add_source_names', (['val', 'self.source_names'], {}), '(val, self.source_names)\n', (2171, 2195), False, 'from sosia.processing import find_matches, inform_matches, maybe_add_source_names, search_group_from_sources\n'), ((7931, 8050), 'sosia.classes.Scientist.__init__', 'Scientist.__init__', (['self', 'self.identifier', 'treatment_year'], {'refresh': 'refresh', 'period': 'period', 'sql_fname': 'self.sql_fname'}), '(self, self.identifier, treatment_year, refresh=refresh,\n period=period, sql_fname=self.sql_fname)\n', (7949, 8050), False, 'from sosia.classes import Scientist\n'), ((9103, 9138), 'sosia.processing.search_group_from_sources', 'search_group_from_sources', ([], {}), '(**params)\n', (9128, 9138), False, 'from sosia.processing import find_matches, inform_matches, maybe_add_source_names, search_group_from_sources\n'), ((9430, 9457), 'sosia.utils.custom_print', 'custom_print', (['text', 'verbose'], {}), '(text, verbose)\n', (9442, 9457), False, 'from sosia.utils import accepts, custom_print\n'), ((11472, 11499), 'sosia.utils.custom_print', 'custom_print', (['text', 'verbose'], {}), '(text, verbose)\n', (11484, 11499), False, 'from sosia.utils import accepts, custom_print\n'), ((13222, 13267), 'sosia.processing.find_matches', 'find_matches', (['self', 'stacked', 'verbose', 'refresh'], {}), '(self, stacked, verbose, refresh)\n', (13234, 13267), False, 'from sosia.processing import find_matches, inform_matches, maybe_add_source_names, search_group_from_sources\n'), ((13349, 13376), 'sosia.utils.custom_print', 'custom_print', (['text', 'verbose'], {}), '(text, verbose)\n', (13361, 13376), False, 'from sosia.utils import accepts, custom_print\n'), ((16164, 16224), 'sosia.utils.custom_print', 'custom_print', (['"""Providing additional information..."""', 'verbose'], {}), "('Providing additional information...', verbose)\n", (16176, 16224), False, 'from sosia.utils import accepts, custom_print\n'), ((16243, 16315), 'sosia.processing.inform_matches', 'inform_matches', (['self', 'fields', 'stop_words', 'verbose', 'refresh'], {}), '(self, fields, stop_words, verbose, refresh, **tfidf_kwds)\n', (16257, 16315), False, 'from sosia.processing import find_matches, inform_matches, maybe_add_source_names, search_group_from_sources\n'), ((7057, 7067), 'warnings.warn', 'warn', (['text'], {}), '(text)\n', (7061, 7067), False, 'from warnings import warn\n'), ((13067, 13169), 'warnings.warn', 'warn', (['"""refresh parameter must be boolean when stacked=True. Continuing with refresh=False."""'], {}), "(\n 'refresh parameter must be boolean when stacked=True. Continuing with refresh=False.'\n )\n", (13071, 13169), False, 'from warnings import warn\n')]
""" Role tests """ import os import pytest from testinfra.utils.ansible_runner import AnsibleRunner testinfra_hosts = AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') @pytest.mark.parametrize('name', [ ('vsftpd'), ('db5.3-util'), ]) def test_installed_packages(host, name): """ Test if packages installed """ assert host.package(name).is_installed def test_service(host): """ Test service state """ service = host.service('vsftpd') assert service.is_enabled # if host.system_info.codename in ['jessie', 'xenial']: if host.file('/etc/init.d/vsftpd').exists: assert 'is running' in host.check_output('/etc/init.d/vsftpd status') else: assert service.is_running def test_process(host): """ Test process state """ assert len(host.process.filter(comm='vsftpd')) == 1 def test_socket(host): """ Test ports """ assert host.socket('tcp://127.0.0.1:21').is_listening def test_user(host): """ Test ftp user exists """ ftp_user = host.user('ftp') assert ftp_user.exists assert ftp_user.shell in ['/usr/sbin/nologin', '/bin/false']
[ "testinfra.utils.ansible_runner.AnsibleRunner", "pytest.mark.parametrize" ]
[((198, 255), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name"""', "['vsftpd', 'db5.3-util']"], {}), "('name', ['vsftpd', 'db5.3-util'])\n", (221, 255), False, 'import pytest\n'), ((120, 172), 'testinfra.utils.ansible_runner.AnsibleRunner', 'AnsibleRunner', (["os.environ['MOLECULE_INVENTORY_FILE']"], {}), "(os.environ['MOLECULE_INVENTORY_FILE'])\n", (133, 172), False, 'from testinfra.utils.ansible_runner import AnsibleRunner\n')]
from regolith.helpers.basehelper import SoutHelperBase from regolith.fsclient import _id_key from regolith.tools import ( all_docs_from_collection, get_pi_id, get_person_contact ) TARGET_COLL = "presentations" HELPER_TARGET = "l_abstract" def subparser(subpi): subpi.add_argument( "run", help='run the lister. To see allowed optional arguments, type ' '"regolith helper l_abstract"') subpi.add_argument( "-a", "--author", help='authors group ID(single argument only) to use to find ' 'presentation abstract') subpi.add_argument( "-y", "--year", help='start or end year of the presentation (single argument only) to ' 'use to find presentation') subpi.add_argument( "-l", "--loc_inst", help='location of presentation, either a fragment of an institution, ' 'country, city, state, or university. If an institution is entered,' 'the search will be for seminars or colloquiums, otherwise the ' 'search will be for all other meetings') subpi.add_argument( "-t", "--title", help='fragment of the title of the abstract or talk to use to ' 'filter presentations') return subpi class AbstractListerHelper(SoutHelperBase): """Helper for finding and listing abstracts from the presentations.yml file """ # btype must be the same as helper target in helper.py btype = HELPER_TARGET needed_dbs = [f'{TARGET_COLL}', 'people', 'contacts'] def construct_global_ctx(self): """Constructs the global context""" super().construct_global_ctx() gtx = self.gtx rc = self.rc if "groups" in self.needed_dbs: rc.pi_id = get_pi_id(rc) rc.coll = f"{TARGET_COLL}" try: if not rc.database: rc.database = rc.databases[0] except BaseException: pass colls = [ sorted( all_docs_from_collection(rc.client, collname), key=_id_key ) for collname in self.needed_dbs ] for db, coll in zip(self.needed_dbs, colls): gtx[db] = coll gtx["all_docs_from_collection"] = all_docs_from_collection gtx["float"] = float gtx["str"] = str gtx["zip"] = zip def sout(self): rc = self.rc presentations = self.gtx["presentations"] SEMINAR_TYPES = ['seminar', 'colloquium'] filtered_title, filtered_authors, filtered_years, filtered_inst, filtered_loc = ([] for i in range(5)) if (not rc.author) and (not rc.year) and (not rc.loc_inst) and (not rc.title): return None if rc.title: filtered_title = [presentation for presentation in presentations if rc.title.casefold() in presentation.get('title').casefold()] if rc.author: filtered_authors = [presentation for presentation in presentations if rc.author in presentation.get('authors')] if rc.year: filtered_years = [presentation for presentation in presentations if int(rc.year) == presentation.get('begin_year', 'begin_date') or int(rc.year) == presentation.get('end_year', 'end_date')] if rc.loc_inst: filtered_inst = [presentation for presentation in presentations if presentation.get('type') in SEMINAR_TYPES and rc.loc_inst.casefold() in presentation.get('institution').casefold()] filtered_loc = [presentation for presentation in presentations if rc.loc_inst.casefold() in presentation.get('location', 'institution').casefold() and rc.loc_inst.casefold() not in presentation.get('institution').casefold()] filtered_presentations_by_args = [filtered_inst, filtered_years, filtered_title, filtered_authors, filtered_loc] nonempty_filtered_presentations_by_args = [filtered_presentations for filtered_presentations in filtered_presentations_by_args if filtered_presentations] filtered_presentations = [talk for presentations in nonempty_filtered_presentations_by_args for talk in presentations if all(talk in presentations for presentations in nonempty_filtered_presentations_by_args)] flat_filtered_presentations = list({talk['_id']: talk for talk in filtered_presentations}.values()) for presentation in flat_filtered_presentations: print("---------------------------------------") print(f"Title: {presentation.get('title')}\n") author_list = [author if not get_person_contact(author, self.gtx["people"], self.gtx["contacts"]) else get_person_contact(author, self.gtx["people"], self.gtx["contacts"]).get('name') for author in presentation.get('authors')] print(", ".join(author_list)) print(f"\nAbstract: {presentation.get('abstract')}") return
[ "regolith.tools.get_pi_id", "regolith.tools.get_person_contact", "regolith.tools.all_docs_from_collection" ]
[((1815, 1828), 'regolith.tools.get_pi_id', 'get_pi_id', (['rc'], {}), '(rc)\n', (1824, 1828), False, 'from regolith.tools import all_docs_from_collection, get_pi_id, get_person_contact\n'), ((2056, 2101), 'regolith.tools.all_docs_from_collection', 'all_docs_from_collection', (['rc.client', 'collname'], {}), '(rc.client, collname)\n', (2080, 2101), False, 'from regolith.tools import all_docs_from_collection, get_pi_id, get_person_contact\n'), ((5106, 5174), 'regolith.tools.get_person_contact', 'get_person_contact', (['author', "self.gtx['people']", "self.gtx['contacts']"], {}), "(author, self.gtx['people'], self.gtx['contacts'])\n", (5124, 5174), False, 'from regolith.tools import all_docs_from_collection, get_pi_id, get_person_contact\n'), ((5207, 5275), 'regolith.tools.get_person_contact', 'get_person_contact', (['author', "self.gtx['people']", "self.gtx['contacts']"], {}), "(author, self.gtx['people'], self.gtx['contacts'])\n", (5225, 5275), False, 'from regolith.tools import all_docs_from_collection, get_pi_id, get_person_contact\n')]
""" ## NAME Arrays.py ## VERSION [1.0] ## AUTHOR <NAME> <<EMAIL>> ## DATE [25/10/2021] ## GITHUB LINK https://github.com/zara-ms/python_class/tree/master/Tareas-BioPython """ import numpy as np # Crear arrays estructurados especificando los tipos de datos produccion = np.array([('Gen1', 30, 5), ('Gen2', 30, 11), ('Gen3', 30, 4), ('Gen4', 30, 2), ('Gen1', 35, 3), ('Gen2', 35, 7), ('Gen3', 35, 9), ('Gen4', 35, 6)], dtype=[('gen', (np.str_, 5)), ('temperatura', np.int32), ('produccion', np.int32)]) inductor = np.array([('Gen1', 3.5), ('Gen2', 5), ('Gem3', 7), ('Gen4', 4.3)], dtype=[('gen', np.str_, 5), ('costo', np.float64)]) costo = np.array([('Gen1', 30, 0.7), ('Gen2', 30, 0.45454545), ('Gen3', 30, 1.75), ('Gen4', 30, 2.15), ('Gen1', 35, 1.16666667), ('Gen2', 35, 0.71428571), ('Gen3', 35, 0.77777778), ('Gen4', 35, 0.71666667)], dtype=[('gen', (np.str_, 5)), ('temperatura', np.int32), ('costo por 1g/L', np.float64)])
[ "numpy.array" ]
[((287, 531), 'numpy.array', 'np.array', (["[('Gen1', 30, 5), ('Gen2', 30, 11), ('Gen3', 30, 4), ('Gen4', 30, 2), (\n 'Gen1', 35, 3), ('Gen2', 35, 7), ('Gen3', 35, 9), ('Gen4', 35, 6)]"], {'dtype': "[('gen', (np.str_, 5)), ('temperatura', np.int32), ('produccion', np.int32)]"}), "([('Gen1', 30, 5), ('Gen2', 30, 11), ('Gen3', 30, 4), ('Gen4', 30, \n 2), ('Gen1', 35, 3), ('Gen2', 35, 7), ('Gen3', 35, 9), ('Gen4', 35, 6)],\n dtype=[('gen', (np.str_, 5)), ('temperatura', np.int32), ('produccion',\n np.int32)])\n", (295, 531), True, 'import numpy as np\n'), ((576, 699), 'numpy.array', 'np.array', (["[('Gen1', 3.5), ('Gen2', 5), ('Gem3', 7), ('Gen4', 4.3)]"], {'dtype': "[('gen', np.str_, 5), ('costo', np.float64)]"}), "([('Gen1', 3.5), ('Gen2', 5), ('Gem3', 7), ('Gen4', 4.3)], dtype=[(\n 'gen', np.str_, 5), ('costo', np.float64)])\n", (584, 699), True, 'import numpy as np\n'), ((724, 1026), 'numpy.array', 'np.array', (["[('Gen1', 30, 0.7), ('Gen2', 30, 0.45454545), ('Gen3', 30, 1.75), ('Gen4', \n 30, 2.15), ('Gen1', 35, 1.16666667), ('Gen2', 35, 0.71428571), ('Gen3',\n 35, 0.77777778), ('Gen4', 35, 0.71666667)]"], {'dtype': "[('gen', (np.str_, 5)), ('temperatura', np.int32), ('costo por 1g/L', np.\n float64)]"}), "([('Gen1', 30, 0.7), ('Gen2', 30, 0.45454545), ('Gen3', 30, 1.75),\n ('Gen4', 30, 2.15), ('Gen1', 35, 1.16666667), ('Gen2', 35, 0.71428571),\n ('Gen3', 35, 0.77777778), ('Gen4', 35, 0.71666667)], dtype=[('gen', (np\n .str_, 5)), ('temperatura', np.int32), ('costo por 1g/L', np.float64)])\n", (732, 1026), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 25 09:46:47 2019 @author: yujijun Description: This is a script to convert file from bigwig to bedfile in kraken. we can choose different chromosome and resolution to generate different bigwig file. Input: /homes/jjyu/higlass_projects/Input/DNase_bw_v1/* Output: /homes/jjyu/higlass_projects/Output/1308_manysample """ import pyBigWig import numpy as np import pandas as pd import math import datetime import sys #--------------hyperparameter-------------------- basic_path = '/homes/jjyu/higlass_projects' Input_bw_path = '%s/Input/DNase_bw_v1' %basic_path Output_path = '%s/Output/' %basic_path filter_data = pd.read_csv('%s/Input/04-Homo_sapiens_ca_DNase_QC(906)_non-info-tissue_FRiP0p25(543).csv' % basic_path,sep=",") seletedsample = pd.read_csv("%s/Input/seletedsample_recluster(222).txt" %basic_path, sep='\t',header=None, index_col=None) allchrinfo = pd.read_csv("%s/Input/chromInfo.txt.allchr" %basic_path, sep='\t',header=None, index_col=None) resolution = 1000 #------------------------------------------------ #all bw name list: sample_list = seletedsample.iloc[:,0].tolist() sample_ID = [sample.split(',')[3] for sample in sample_list] bw_name = [sampleid + "_treat.bw" for sampleid in sample_ID] #all chr name list: allchrname_list = allchrinfo.iloc[0:24,0].tolist() allchrname_length = allchrinfo.iloc[0:24,1].tolist() #defind a normalization function def normalization(x): Whole_mean = sum(x)/len(x) new_series = pd.Series(x)/Whole_mean new_list = new_series.tolist() return(new_list) #test bw_name = bw_name[0:222] sample_list = sample_list[0:222] print(int(sys.argv[1])) allchrname_list = [[allchrname] for allchrname in allchrname_list] #this just for run chr one by one allchrname_list = allchrname_list[int(sys.argv[1])] allchrname_length = [[i] for i in allchrname_length] allchrname_length = allchrname_length[int(sys.argv[1])] for a in range(len(allchrname_list)): starttime = datetime.datetime.now() chromo = allchrname_list[0] #Firsthalf length_chromo = allchrname_length[0] #Firsthalf_empty df_Firsthalf_empty = pd.DataFrame(columns=["chr_name", "start", "end"]) df_Firsthalf_empty.chr_name = [chromo] * math.ceil(length_chromo/resolution) df_Firsthalf_empty.start = np.arange(0,length_chromo,resolution) df_Firsthalf_empty.end = np.append(np.arange(resolution,length_chromo,resolution),length_chromo) #lasthalf_empty df_lasthalf_empty = pd.DataFrame(columns = sample_list) for b in range(len(bw_name)): bw_file = bw_name[b] print("This is %s.th file:%s in %s" %(b+1,bw_file,chromo)) #input_folder = 'dataset' + str(filter_data.DatsetId[i]) input_file = '%s/%s' %(Input_bw_path, bw_file) try: bw = pyBigWig.open(input_file) except RuntimeError: print("This is a error file.") continue if (chromo in bw.chroms().keys()): chromo_values = bw.values(chromo,0,bw.chroms(chromo)) chromo_values_array = np.array(chromo_values) chromo_values_array = np.nan_to_num(chromo_values_array) chromo_values = chromo_values_array.tolist() #print(chromo_values) chromo_values_split16 = [chromo_values[i:i + resolution] for i in range(0, len(chromo_values), resolution)] #chromo_values_split16_mean = [np.mean(x) for x in chromo_values_split16] def listmean(x): x_mean = np.mean(x) return(x_mean) chromo_values_split16_mean = list(map(listmean,chromo_values_split16)) chromo_values_split16_mean_norm = normalization(chromo_values_split16_mean) #add speed #print(sum(chromo_values_split16_mean_norm)) #print(chromo_values_split16_mean_norm[0:10]) df_lasthalf_empty.iloc[:,b] = chromo_values_split16_mean_norm bw.close() print("\t") else: print("%s is not in the %s" %(chromo, bw)) df_lasthalf_empty.iloc[:,b] = [0]*math.ceil(length_chromo/resolution) bw.close() print("\t") #concat two dataframe df_merge = pd.concat([df_Firsthalf_empty, df_lasthalf_empty], axis=1) print("This is the shape of %s matrix: %s" %(chromo,df_merge.shape)) df_merge.to_csv('%s/bedfile_1000_222_%s.csv' %(Output_path,chromo), sep='\t',index=False, header=True) endtime = datetime.datetime.now() print (endtime - starttime)
[ "pandas.Series", "numpy.mean", "math.ceil", "pyBigWig.open", "pandas.read_csv", "numpy.nan_to_num", "datetime.datetime.now", "numpy.array", "pandas.DataFrame", "pandas.concat", "numpy.arange" ]
[((694, 816), 'pandas.read_csv', 'pd.read_csv', (["('%s/Input/04-Homo_sapiens_ca_DNase_QC(906)_non-info-tissue_FRiP0p25(543).csv'\n % basic_path)"], {'sep': '""","""'}), "(\n '%s/Input/04-Homo_sapiens_ca_DNase_QC(906)_non-info-tissue_FRiP0p25(543).csv'\n % basic_path, sep=',')\n", (705, 816), True, 'import pandas as pd\n'), ((822, 935), 'pandas.read_csv', 'pd.read_csv', (["('%s/Input/seletedsample_recluster(222).txt' % basic_path)"], {'sep': '"""\t"""', 'header': 'None', 'index_col': 'None'}), "('%s/Input/seletedsample_recluster(222).txt' % basic_path, sep=\n '\\t', header=None, index_col=None)\n", (833, 935), True, 'import pandas as pd\n'), ((942, 1043), 'pandas.read_csv', 'pd.read_csv', (["('%s/Input/chromInfo.txt.allchr' % basic_path)"], {'sep': '"""\t"""', 'header': 'None', 'index_col': 'None'}), "('%s/Input/chromInfo.txt.allchr' % basic_path, sep='\\t', header=\n None, index_col=None)\n", (953, 1043), True, 'import pandas as pd\n'), ((2011, 2034), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2032, 2034), False, 'import datetime\n'), ((2169, 2219), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['chr_name', 'start', 'end']"}), "(columns=['chr_name', 'start', 'end'])\n", (2181, 2219), True, 'import pandas as pd\n'), ((2332, 2371), 'numpy.arange', 'np.arange', (['(0)', 'length_chromo', 'resolution'], {}), '(0, length_chromo, resolution)\n', (2341, 2371), True, 'import numpy as np\n'), ((2515, 2548), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'sample_list'}), '(columns=sample_list)\n', (2527, 2548), True, 'import pandas as pd\n'), ((4244, 4302), 'pandas.concat', 'pd.concat', (['[df_Firsthalf_empty, df_lasthalf_empty]'], {'axis': '(1)'}), '([df_Firsthalf_empty, df_lasthalf_empty], axis=1)\n', (4253, 4302), True, 'import pandas as pd\n'), ((4497, 4520), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4518, 4520), False, 'import datetime\n'), ((1522, 1534), 'pandas.Series', 'pd.Series', (['x'], {}), '(x)\n', (1531, 1534), True, 'import pandas as pd\n'), ((2265, 2302), 'math.ceil', 'math.ceil', (['(length_chromo / resolution)'], {}), '(length_chromo / resolution)\n', (2274, 2302), False, 'import math\n'), ((2409, 2457), 'numpy.arange', 'np.arange', (['resolution', 'length_chromo', 'resolution'], {}), '(resolution, length_chromo, resolution)\n', (2418, 2457), True, 'import numpy as np\n'), ((2831, 2856), 'pyBigWig.open', 'pyBigWig.open', (['input_file'], {}), '(input_file)\n', (2844, 2856), False, 'import pyBigWig\n'), ((3093, 3116), 'numpy.array', 'np.array', (['chromo_values'], {}), '(chromo_values)\n', (3101, 3116), True, 'import numpy as np\n'), ((3151, 3185), 'numpy.nan_to_num', 'np.nan_to_num', (['chromo_values_array'], {}), '(chromo_values_array)\n', (3164, 3185), True, 'import numpy as np\n'), ((3537, 3547), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (3544, 3547), True, 'import numpy as np\n'), ((4112, 4149), 'math.ceil', 'math.ceil', (['(length_chromo / resolution)'], {}), '(length_chromo / resolution)\n', (4121, 4149), False, 'import math\n')]
import traceback from datetime import datetime def print_graphql_exception(error): from tornado.options import options as opts with open(opts.graphql_error_log_file, 'a') as file: file.write(f"Date: {datetime.now().isoformat()}\n") traceback.print_exception(None, error, error.__traceback__, file=file)
[ "datetime.datetime.now", "traceback.print_exception" ]
[((259, 329), 'traceback.print_exception', 'traceback.print_exception', (['None', 'error', 'error.__traceback__'], {'file': 'file'}), '(None, error, error.__traceback__, file=file)\n', (284, 329), False, 'import traceback\n'), ((219, 233), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (231, 233), False, 'from datetime import datetime\n')]
from matplotlib import pyplot as plt import sys import numpy as np from collections import defaultdict import pandas as pd import os transpose = { 'Googlenet': 'output/coco/transpose_cv/TP_Googlenet_256x192_d256_h1024_enc4_mh8/TP_Googlenet_256x192_d256_h1024_enc4_mh8_2022-01-09-00-29_train.log', 'InceptionV3': 'output/coco/transpose_cv/TP_InceptionV3_256x192_d256_h1024_enc4_mh8/TP_InceptionV3_256x192_d256_h1024_enc4_mh8_2022-01-09-00-29_train.log', 'LinearProjection': 'output/coco/transpose_cv/TP_LinearProjection_256x192_d256_h1024_enc4_mh8/TP_LinearProjection_256x192_d256_h1024_enc4_mh8_2022-01-12-00-24_train.log', 'MobileNetV1': 'output/coco/transpose_cv/TP_M_256x192_d256_h1024_enc3_mh8_M1/TP_M_256x192_d256_h1024_enc3_mh8_M1_2021-12-19-16-18_train.log', 'MobileNetV2': 'output/coco/transpose_cv/TP_M_256x192_d256_h1024_enc3_mh8_M2/TP_M_256x192_d256_h1024_enc3_mh8_M2_2021-12-15-23-02_train.log', 'MobileNetV3Small': 'output/coco/transpose_cv/TP_M_256x192_d256_h1024_enc3_mh8_M3L/TP_M_256x192_d256_h1024_enc3_mh8_M3L_2021-12-15-23-04_train.log', 'MobileNetV3Large': 'output/coco/transpose_cv/TP_M_256x192_d256_h1024_enc3_mh8_M3S/TP_M_256x192_d256_h1024_enc3_mh8_M3S_2021-12-15-23-03_train.log', 'ShuffleNetV2': 'output/coco/transpose_cv/TP_ShuffleNetV2_256x192_d256_h1024_enc4_mh8/TP_ShuffleNetV2_256x192_d256_h1024_enc4_mh8_2022-01-09-00-33_train.log', 'SqueezeNet': 'output/coco/transpose_cv/TP_SqueezeNet_256x192_d256_h1024_enc4_mh8/TP_SqueezeNet_256x192_d256_h1024_enc4_mh8_2022-01-09-00-31_train.log', 'Xception': 'output/coco/transpose_cv/TP_Xception_256x192_d256_h1024_enc4_mh8/TP_Xception_256x192_d256_h1024_enc4_mh8_2022-01-09-00-33_train.log', 'HRNet': 'output/coco/transpose_h/TP_H_w48_256x192_stage3_1_4_d96_h192_relu_enc3_mh1/TP_H_w48_256x192_stage3_1_4_d96_h192_relu_enc3_mh1_2021-12-30-15-07_train.log', 'ResNet50': 'output/coco/transpose_r/TP_R_256x192_d256_h1024_enc3_mh8/TP_R_256x192_d256_h1024_enc3_mh8_2021-12-30-15-05_train.log', } swin_transpose = { 'Googlenet': 'output/coco/swin_transpose/STP_Googlenet_256x192_d256_h1024_enc4_mh8/STP_Googlenet_256x192_d256_h1024_enc4_mh8_2022-01-16-07-01_train.log', 'InceptionV3': 'output/coco/swin_transpose/STP_InceptionV3_256x192_d256_h1024_enc4_mh8/STP_InceptionV3_256x192_d256_h1024_enc4_mh8_2022-01-15-09-56_train.log', 'LinearProjection': 'output/coco/swin_transpose/STP_LinearProjection_256x192_d256_h1024_enc4_mh8/STP_LinearProjection_256x192_d256_h1024_enc4_mh8_2022-01-16-10-09_train.log', 'MobileNetV1': 'output/coco/swin_transpose/STP_M_256x192_d256_h1024_enc3_mh8_M1/STP_M_256x192_d256_h1024_enc3_mh8_M1_2022-01-12-21-14_train.log', 'MobileNetV2': 'output/coco/swin_transpose/STP_M_256x192_d256_h1024_enc3_mh8_M2/STP_M_256x192_d256_h1024_enc3_mh8_M2_2022-01-12-21-14_train.log', 'MobileNetV3Small': 'output/coco/swin_transpose/STP_M_256x192_d256_h1024_enc3_mh8_M3S/STP_M_256x192_d256_h1024_enc3_mh8_M3S_2022-01-12-21-15_train.log', 'MobileNetV3Large': 'output/coco/swin_transpose/STP_M_256x192_d256_h1024_enc3_mh8_M3L/STP_M_256x192_d256_h1024_enc3_mh8_M3L_2022-01-12-21-15_train.log', 'ShuffleNetV2': 'output/coco/swin_transpose/STP_ShuffleNetV2_256x192_d256_h1024_enc4_mh8/STP_ShuffleNetV2_256x192_d256_h1024_enc4_mh8_2022-01-16-10-13_train.log', 'SqueezeNet': 'output/coco/swin_transpose/STP_SqueezeNet_256x192_d256_h1024_enc4_mh8/STP_SqueezeNet_256x192_d256_h1024_enc4_mh8_2022-01-15-10-01_train.log', 'Xception': 'output/coco/swin_transpose/STP_Xception_256x192_d256_h1024_enc4_mh8/STP_Xception_256x192_d256_h1024_enc4_mh8_2022-01-15-09-57_train.log', 'HRNet': 'output/coco/swin_transposeH/STP_H_w48_256x192_stage3_1_4_d96_h192_relu_enc3_mh1/STP_H_w48_256x192_stage3_1_4_d96_h192_relu_enc3_mh1_2022-01-16-07-28_train.log', 'ResNet50': 'output/coco/swin_transpose/STP_ResNet50_256x192_d256_h1024_enc4_mh8/STP_ResNet50_256x192_d256_h1024_enc4_mh8_2022-01-16-07-04_train.log', } tags = ['AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', 'AR .75', 'AR (M)', 'AR (L)'] result = {} def plot_figure(which): plt_tags = { 'AP': 'b', 'AP (M)': 'r', 'AR': 'k', 'AR (M)': 'g' } plt_backbones = { 'MobileNetV1': 'b', 'MobileNetV3Large': 'k', 'ResNet50': 'r', 'Xception': 'g', 'HRNet': 'grey', 'LinearProjection': 'orange' } save_dir = f'output/images/{which}' os.makedirs(save_dir, exist_ok=True) print(f'=========== begin plot {which}, save to {save_dir} ==============') for k in result: plt.figure() for tag in plt_tags: plt.plot(result[k][tag], label=tag, color=plt_tags[tag]) plt.xlabel('epoch', fontsize=30) plt.xticks([0, 40, 80, 120], fontsize=30) plt.yticks(np.arange(0, 1, 0.2), fontsize=30) # plt.legend(fontsize=20) plt.savefig(f'{save_dir}/{k}.pdf', bbox_inches='tight', pad_inches=0) for tag in plt_tags: plt.figure() for k in plt_backbones: plt.plot(result[k][tag], label=k, color=plt_backbones[k]) plt.xlabel('epoch', fontsize=30) plt.xticks([0, 40, 80, 120], fontsize=30) plt.yticks(np.arange(0, 1, 0.2), fontsize=30) # plt.legend(fontsize=20) plt.savefig(f'{save_dir}/{tag}.pdf', bbox_inches='tight', pad_inches=0) print(f'=========== finish plot {which}, save to {save_dir} ==============') for which in ['transpose', 'swin_transpose']: result = {} if which == 'transpose': files = transpose else: files = swin_transpose for k, v in files.items(): speeds = [] d = defaultdict(list) with open(v) as f: for line in f: if all([i in line for i in ['Epoch', 'Time', 'Speed', 'samples/s Data', 'Loss', 'Accuracy']]): speeds.append(float(line.split('Speed')[1].split()[0].strip())) if f'| {v.split("/")[2]} |' in line and len(d[tags[0]]) < 120: line = line.strip().split('|')[:-1] for i in range(-1, -len(tags)-1, -1): d[tags[i]].append(float(line[i].strip())) os.makedirs(f'output/data/{which}', exist_ok=True) pd.DataFrame(d).to_csv(f'output/data/{which}/{k}.csv', index=None) result[k] = d # print(k, f'{np.mean(speeds[1:]):.1f}', *[d[t][-1] for t in ['AP', 'AP (M)', 'AR', 'AR (M)']], sep=' & ') # skip the first value to avoid cold start plot_figure(which) print() tp_res = {} for k, v in transpose.items(): speeds = [] d = defaultdict(list) with open(v) as f: for line in f: if all([i in line for i in ['Epoch', 'Time', 'Speed', 'samples/s Data', 'Loss', 'Accuracy']]): speeds.append(float(line.split('Speed')[1].split()[0].strip())) if f'| {v.split("/")[2]} |' in line and len(d[tags[0]]) < 120: line = line.strip().split('|')[:-1] for i in range(-1, -len(tags)-1, -1): d[tags[i]].append(float(line[i].strip())) d['speed'] = np.mean(speeds[1:]) tp_res[k] = d stp_res = {} for k, v in swin_transpose.items(): speeds = [] d = defaultdict(list) with open(v) as f: for line in f: if all([i in line for i in ['Epoch', 'Time', 'Speed', 'samples/s Data', 'Loss', 'Accuracy']]): speeds.append(float(line.split('Speed')[1].split()[0].strip())) if f'| {v.split("/")[2]} |' in line and len(d[tags[0]]) < 120: line = line.strip().split('|')[:-1] for i in range(-1, -len(tags)-1, -1): d[tags[i]].append(float(line[i].strip())) d['speed'] = np.mean(speeds[1:]) stp_res[k] = d print(f'=========== begin draw table: impact of backbone ================') for k in stp_res: tp, stp = tp_res[k], stp_res[k] print(k, f'{tp["speed"]:.1f}', *[f'{tp[t][-1]:.3f}' for t in ['AP', 'AP (M)', 'AR', 'AR (M)']], r'\\', sep=' & ') print(f'=========== finish draw table: impact of backbone ================') print() print(f'=========== begin draw table: impact of transformer ================') for k in stp_res: tp, stp = tp_res[k], stp_res[k] print(k, f'{stp["speed"]:.1f}({stp["speed"] - tp["speed"]:.1f})', *[f'{stp[t][-1]:.3f}({stp[t][-1]-tp[t][-1]:.3f})' for t in ['AP', 'AP (M)', 'AR', 'AR (M)']], r'\\', sep=' & ') print(f'=========== finish draw table: impact of transformer ================')
[ "numpy.mean", "matplotlib.pyplot.savefig", "os.makedirs", "matplotlib.pyplot.xticks", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.figure", "collections.defaultdict", "pandas.DataFrame", "numpy.arange" ]
[((4432, 4468), 'os.makedirs', 'os.makedirs', (['save_dir'], {'exist_ok': '(True)'}), '(save_dir, exist_ok=True)\n', (4443, 4468), False, 'import os\n'), ((6621, 6638), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (6632, 6638), False, 'from collections import defaultdict\n'), ((7132, 7151), 'numpy.mean', 'np.mean', (['speeds[1:]'], {}), '(speeds[1:])\n', (7139, 7151), True, 'import numpy as np\n'), ((7244, 7261), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (7255, 7261), False, 'from collections import defaultdict\n'), ((7755, 7774), 'numpy.mean', 'np.mean', (['speeds[1:]'], {}), '(speeds[1:])\n', (7762, 7774), True, 'import numpy as np\n'), ((4579, 4591), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4589, 4591), True, 'from matplotlib import pyplot as plt\n'), ((4698, 4730), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {'fontsize': '(30)'}), "('epoch', fontsize=30)\n", (4708, 4730), True, 'from matplotlib import pyplot as plt\n'), ((4739, 4780), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 40, 80, 120]'], {'fontsize': '(30)'}), '([0, 40, 80, 120], fontsize=30)\n', (4749, 4780), True, 'from matplotlib import pyplot as plt\n'), ((4877, 4946), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""{save_dir}/{k}.pdf"""'], {'bbox_inches': '"""tight"""', 'pad_inches': '(0)'}), "(f'{save_dir}/{k}.pdf', bbox_inches='tight', pad_inches=0)\n", (4888, 4946), True, 'from matplotlib import pyplot as plt\n'), ((4985, 4997), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4995, 4997), True, 'from matplotlib import pyplot as plt\n'), ((5108, 5140), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {'fontsize': '(30)'}), "('epoch', fontsize=30)\n", (5118, 5140), True, 'from matplotlib import pyplot as plt\n'), ((5149, 5190), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 40, 80, 120]'], {'fontsize': '(30)'}), '([0, 40, 80, 120], fontsize=30)\n', (5159, 5190), True, 'from matplotlib import pyplot as plt\n'), ((5287, 5358), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""{save_dir}/{tag}.pdf"""'], {'bbox_inches': '"""tight"""', 'pad_inches': '(0)'}), "(f'{save_dir}/{tag}.pdf', bbox_inches='tight', pad_inches=0)\n", (5298, 5358), True, 'from matplotlib import pyplot as plt\n'), ((5676, 5693), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (5687, 5693), False, 'from collections import defaultdict\n'), ((6210, 6260), 'os.makedirs', 'os.makedirs', (['f"""output/data/{which}"""'], {'exist_ok': '(True)'}), "(f'output/data/{which}', exist_ok=True)\n", (6221, 6260), False, 'import os\n'), ((4633, 4689), 'matplotlib.pyplot.plot', 'plt.plot', (['result[k][tag]'], {'label': 'tag', 'color': 'plt_tags[tag]'}), '(result[k][tag], label=tag, color=plt_tags[tag])\n', (4641, 4689), True, 'from matplotlib import pyplot as plt\n'), ((4800, 4820), 'numpy.arange', 'np.arange', (['(0)', '(1)', '(0.2)'], {}), '(0, 1, 0.2)\n', (4809, 4820), True, 'import numpy as np\n'), ((5042, 5099), 'matplotlib.pyplot.plot', 'plt.plot', (['result[k][tag]'], {'label': 'k', 'color': 'plt_backbones[k]'}), '(result[k][tag], label=k, color=plt_backbones[k])\n', (5050, 5099), True, 'from matplotlib import pyplot as plt\n'), ((5210, 5230), 'numpy.arange', 'np.arange', (['(0)', '(1)', '(0.2)'], {}), '(0, 1, 0.2)\n', (5219, 5230), True, 'import numpy as np\n'), ((6269, 6284), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (6281, 6284), True, 'import pandas as pd\n')]
# Copyright (c) 2018 <NAME>, <NAME>. # # See the NOTICE file(s) distributed with this work for additional # information regarding copyright ownership. # # This program and the accompanying materials are made available under the # terms of the Eclipse Public License 2.0 which is available at # http://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0 # which is available at https://www.apache.org/licenses/LICENSE-2.0. # # SPDX-License-Identifier: Apache-2.0 # # Contributors: <NAME>, <NAME> '''Haskell-style MVars using threading primitives.''' import contextlib import threading import typing T = typing.TypeVar('T') class MVar(typing.Generic[T]): ''' Haskell-style MVars. At its core functionality are methods `take()`, `get()`, and `put()`, which closely reflect their haskell counterparts. This implementation also adds a few more methods which enable a more pythonic style of programming. In particular, `wait()` and `locked()` by supporting the context manager protocol allow you to perform atomic operations on the MVar using `with` syntax. Using `with` syntax on MVar itself is equivalent to using `locked()` without arguments. It is safe to nest `with` syntax on the same MVar (it uses a recursive lock). For most of the functions, the documentation indicates whether they are blocking or not; this refers to the underlying recursive lock. ''' __lock: threading.RLock __condition: threading.Condition __full: bool __value: typing.Optional[T] def __init__(self): self.__lock = threading.RLock() self.__condition = threading.Condition(lock=self.__lock) self.__full = False self.__value = None def __enter__(self) -> typing.Tuple[bool, typing.Optional[T]]: self.__lock.__enter__() return (self.__full, self.__value) def __exit__(self, *args): return self.__lock.__exit__(*args) def is_full(self) -> bool: '''Whether the value is there (non-blocking)''' return self.__full def is_empty(self) -> bool: '''Inverse of 'is_full' (non-blocking)''' return not self.__full def get(self, timeout: typing.Optional[float] = None) -> T: ''' Wait for the value and get it without emptying the MVar (blocking). Does not cause other waiting threads to wake up. ''' with self.__lock: if not self.__condition.wait_for(self.is_full, timeout=timeout): raise TimeoutError('MVar.get: timeout') return self.__value def take(self, timeout: typing.Optional[float] = None) -> T: ''' Wait for the value and take it (blocking). Empties the MVar and wakes up all waiting threads. ''' with self.__lock: if not self.__condition.wait_for(self.is_full, timeout=timeout): raise TimeoutError('MVar.take: timeout') v = self.__value self.__value = None self.__full = False self.__condition.notify_all() return v def take_nowait(self) -> T: ''' Try to take the value without waiting (blocking). Empties the MVar and wakes up all waiting threads if the MVar was full. Otherwise, throws the ValueError. ''' with self.__lock: if self.is_empty(): raise ValueError("MVar.take_nowait: empty") v = self.__value self.__value = None self.__full = False self.__condition.notify_all() return v def put(self, value: T, timeout: typing.Optional[float] = None) -> None: ''' Wait for MVar to become empty and put a value in there (blocking). Wakes up all waiting threads. ''' with self.__lock: if not self.__condition.wait_for(self.is_empty, timeout=timeout): raise TimeoutError('MVar.put: timeout') self.__value = value self.__full = True self.__condition.notify_all() @contextlib.contextmanager def wait(self, timeout: typing.Optional[float] = None) -> bool: ''' Wait for any changes in the state, or for the timeout event (blocking). Returns whether it's awaken within the specified time. ''' with self.__lock: yield self.__condition.wait(timeout=timeout) @contextlib.contextmanager def locked(self, timeout: typing.Optional[float] = None) -> typing.Tuple[bool, typing.Optional[T]]: ''' Use the MVar's lock independently of the MVar's state. Returns a tuple (is_full, Optional[value]). Note, the type of the value `T` may itself be optional, that is why this method returns the tuple with the explicit indication of whether it's full. ''' if self.__lock.acquire(True, **({'timeout': timeout} if timeout is not None else {})): try: yield (self.__full, self.__value) finally: self.__lock.release() else: raise TimeoutError('MVar.locked: timeout') def notify_all(self) -> None: '''Low-level function: wakeup all threads waiting for this MVar (blocking).''' with self.__lock: self.__condition.notify_all()
[ "threading.Condition", "threading.RLock", "typing.TypeVar" ]
[((617, 636), 'typing.TypeVar', 'typing.TypeVar', (['"""T"""'], {}), "('T')\n", (631, 636), False, 'import typing\n'), ((1591, 1608), 'threading.RLock', 'threading.RLock', ([], {}), '()\n', (1606, 1608), False, 'import threading\n'), ((1636, 1673), 'threading.Condition', 'threading.Condition', ([], {'lock': 'self.__lock'}), '(lock=self.__lock)\n', (1655, 1673), False, 'import threading\n')]
# -*- coding: utf-8 -*- import os import csv pathM =r"C:\Users\<NAME>as\Desktop\nofakes project\FALdetector-master\val\modified" path =r"C:\Users\<NAME>as\Desktop\nofakes project\FALdetector-master\val\original" with open('train.csv', 'w', newline='') as csvfile: #Loop through path and add all files matching *.jpg to array files files = [] for r,d,f in os.walk(path): for _file in f: if '.png' in _file: files.append(_file) writer = csv.writer(csvfile, delimiter=',') #Create a writer from csv module for f in files: #find type of file t=0 #cut off the number and .jpg from file, leaving only the type (this may have to be changed.) writer.writerow([f, t]) #write the row to the file output.csv files = [] for r,d,f in os.walk(pathM): for _file in f: if '.png' in _file: files.append(_file) writer = csv.writer(csvfile, delimiter=',') #Create a writer from csv module for f in files: #find type of file t=1 #cut off the number and .jpg from file, leaving only the type (this may have to be changed.) writer.writerow([f, t]) #write the row to the file output.csv
[ "csv.writer", "os.walk" ]
[((372, 385), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (379, 385), False, 'import os\n'), ((502, 536), 'csv.writer', 'csv.writer', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (512, 536), False, 'import csv\n'), ((831, 845), 'os.walk', 'os.walk', (['pathM'], {}), '(pathM)\n', (838, 845), False, 'import os\n'), ((962, 996), 'csv.writer', 'csv.writer', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (972, 996), False, 'import csv\n')]
from time import time import requests import asyncio urls = ["https://www.naver.com", "http://www.google.com", "https://www.nytimes.com", "https://www.mlb.com", "https://www.kakaocorp.com"] async def fetch(url): response = await loop.run_in_executor(None, requests.get, url) # run_in_executor 사용 page = response.text return "{0} Bytes".format(len(page)) async def main(): futures = [asyncio.ensure_future(fetch(url)) for url in urls] # 태스크(퓨처) 객체를 리스트로 만듦 result = await asyncio.gather(*futures) # 결과를 한꺼번에 가져옴 print(result) begin = time() loop = asyncio.get_event_loop() # 이벤트 루프를 얻음 loop.run_until_complete(main()) # main이 끝날 때까지 기다림 loop.close() # 이벤트 루프를 닫음 end = time() print('실행 시간: {0:.3f}초'.format(end - begin))
[ "asyncio.get_event_loop", "time.time", "asyncio.gather" ]
[((570, 576), 'time.time', 'time', ([], {}), '()\n', (574, 576), False, 'from time import time\n'), ((584, 608), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (606, 608), False, 'import asyncio\n'), ((708, 714), 'time.time', 'time', ([], {}), '()\n', (712, 714), False, 'from time import time\n'), ((501, 525), 'asyncio.gather', 'asyncio.gather', (['*futures'], {}), '(*futures)\n', (515, 525), False, 'import asyncio\n')]
""" square root birch """ import time import random def main(): """ this program sexes up numbie wumbies """ x = int(input("Number: "))#Takes the number you want to square root y = int(input("To which Number: "))#And to which power you want the root to be z = random.randint(5, 10)#gets a random number while True: if round((z ** y), 5) == round(x, 5):#If the number works print it and end z = round(z, 4) z = str(z) print(z.rstrip(z[:-4])) return elif round((z ** y), 5) <= round(x, 5):#if its to small add a small amount z += .0001 print(z, end="\r") elif round((z ** y), 5) >= round(x, 5):#if its to big subtract small amount z -= .0001 print(z, end="\r") time.sleep(.001) if __name__ == "__main__": main()
[ "random.randint", "time.sleep" ]
[((278, 299), 'random.randint', 'random.randint', (['(5)', '(10)'], {}), '(5, 10)\n', (292, 299), False, 'import random\n'), ((816, 833), 'time.sleep', 'time.sleep', (['(0.001)'], {}), '(0.001)\n', (826, 833), False, 'import time\n')]
# pylint: disable=missing-docstring from __future__ import absolute_import, division, print_function, unicode_literals from resdk.analysis import differential_expressions from resdk.tests.functional.base import BaseResdkFunctionalTest class TestExpressions(BaseResdkFunctionalTest): def test_cuffdiff(self): collection_1 = self.res.collection.create(name='Test collection 1') collection_2 = self.res.collection.create(name='Test collection 2') # pylint: disable=unbalanced-tuple-unpacking cuffquant_1, cuffquant_2, cuffquant_3, cuffquant_4 = self.get_cuffquants(4, collection_1) self.get_cuffquants(1, collection_1) cuffquant_6, cuffquant_7, cuffquant_8, cuffquant_9 = self.get_cuffquants(4, collection_2) cuffquant_10, cuffquant_11 = self.get_cuffquants(2, collection_2) # pylint: enable=unbalanced-tuple-unpacking gff = self.get_gtf() relation = collection_1.create_compare_relation( samples=[ cuffquant_1.sample, cuffquant_2.sample, cuffquant_3.sample, cuffquant_4.sample, ], positions=['control', 'control', 'case', 'case'], label='case-control' ) collection_2.create_compare_relation( samples=[ cuffquant_6.sample, cuffquant_7.sample, cuffquant_8.sample, cuffquant_9.sample, ], positions=['control', 'control', 'case', 'case'], label='case-control' ) collection_2.create_compare_relation( samples=[ cuffquant_6.sample, cuffquant_7.sample, cuffquant_10.sample, cuffquant_11.sample, ], positions=['control', 'control', 'case', 'case'], label='case-control' ) samples = [ cuffquant_1.sample, cuffquant_2.sample, cuffquant_3.sample, cuffquant_4.sample, ] # Run cuffdiff on a collection (one sample not in any relation) cuffdiff = collection_1.run_cuffdiff(annotation=gff) self.assertEqual(len(cuffdiff), 1) self.assertEqual(cuffdiff[0].input['case'], [cuffquant_3.id, cuffquant_4.id]) self.assertEqual(cuffdiff[0].input['control'], [cuffquant_1.id, cuffquant_2.id]) self.assertEqual(cuffdiff[0].input['annotation'], gff.id) # Run cuffdiff on a relation cuffdiff = relation.run_cuffdiff(annotation=gff) self.assertEqual(len(cuffdiff), 1) self.assertEqual(cuffdiff[0].input['case'], [cuffquant_3.id, cuffquant_4.id]) self.assertEqual(cuffdiff[0].input['control'], [cuffquant_1.id, cuffquant_2.id]) self.assertEqual(cuffdiff[0].input['annotation'], gff.id) # Run cuffdiff on a list of samples cuffdiff = differential_expressions.cuffdiff(samples, annotation=gff) self.assertEqual(len(cuffdiff), 1) self.assertEqual(cuffdiff[0].input['case'], [cuffquant_3.id, cuffquant_4.id]) self.assertEqual(cuffdiff[0].input['control'], [cuffquant_1.id, cuffquant_2.id]) self.assertEqual(cuffdiff[0].input['annotation'], gff.id) # Run cuffdiff on a collection (two different relation) cuffdiff = collection_2.run_cuffdiff(annotation=gff) self.assertEqual(len(cuffdiff), 2) self.assertEqual(cuffdiff[0].input['case'], [cuffquant_8.id, cuffquant_9.id]) self.assertEqual(cuffdiff[0].input['control'], [cuffquant_6.id, cuffquant_7.id]) self.assertEqual(cuffdiff[1].input['case'], [cuffquant_10.id, cuffquant_11.id]) self.assertEqual(cuffdiff[1].input['control'], [cuffquant_6.id, cuffquant_7.id]) self.assertEqual(cuffdiff[0].input['annotation'], gff.id) self.assertEqual(cuffdiff[1].input['annotation'], gff.id)
[ "resdk.analysis.differential_expressions.cuffdiff" ]
[((2950, 3008), 'resdk.analysis.differential_expressions.cuffdiff', 'differential_expressions.cuffdiff', (['samples'], {'annotation': 'gff'}), '(samples, annotation=gff)\n', (2983, 3008), False, 'from resdk.analysis import differential_expressions\n')]
import os from flask import Flask, request from flask_restful import Resource, reqparse from com.medicom.health.diabetes.services.file_handler import FileHandler class UserFileuploadscontroller(Resource): def get(self): return '' def post(self): print("UserFileuploadscontroller post called") FileHandler().save(request) return "file successfully saved"
[ "com.medicom.health.diabetes.services.file_handler.FileHandler" ]
[((328, 341), 'com.medicom.health.diabetes.services.file_handler.FileHandler', 'FileHandler', ([], {}), '()\n', (339, 341), False, 'from com.medicom.health.diabetes.services.file_handler import FileHandler\n')]
from pyrsistent import freeze, m from testtools import TestCase from testtools.matchers import Contains, Equals, Is, MatchesListwise from testtools.twistedsupport import succeeded from twisted.python.failure import Failure from fugue.adapters.nevow import nevow_adapter_resource from fugue.interceptors import before, handler from fugue.interceptors.nevow import NEVOW_REQUEST from fugue.test.interceptors.test_nevow import fake_nevow_request from fugue.test.util import depends_on from fugue.util import constantly def ok(body, headers=m(), status=200): return m(status=status, body=body, headers=freeze(headers)) class NevowAdapterResourceTests(TestCase): """ Tests for `nevow_adapter_resource`. """ @depends_on('nevow') def test_leaf(self): """ The resource identifies as a leaf. """ resource = nevow_adapter_resource() self.assertThat( resource.locateChild(None, None), MatchesListwise([ Is(resource), Equals(())])) @depends_on('nevow') def test_nevow_request(self): """ Rendering the resource returns a successful deferred and inserted a `NEVOW_REQUEST` value into the context. """ def _spy(res): def _spy_inner(context): res.append(context) return context return before(_spy_inner) requests = [] resource = nevow_adapter_resource([_spy(requests)]) req = fake_nevow_request() self.assertThat( resource.renderHTTP(req), succeeded(Equals(b''))) self.assertThat( requests, MatchesListwise([Contains(NEVOW_REQUEST)])) @depends_on('nevow') def test_body_status(self): """ Write a response body and status to the Nevow request. """ resource = nevow_adapter_resource( [handler(lambda _: ok(b'Hello world!', status=201))]) req = fake_nevow_request() self.assertThat( resource.renderHTTP(req), succeeded(Equals(b''))) self.assertThat( req.code, Equals(201)) req.channel.transport.written.seek(0) self.assertThat( req.channel.transport.written.read(), Contains(b'Hello world!')) @depends_on('nevow') def test_response_headers(self): """ Write response headers to the Nevow request. """ resource = nevow_adapter_resource( [handler(lambda _: ok(b'', headers={b'X-Foo': [b'foo'], b'X-Bar': b'bar'}))]) req = fake_nevow_request() self.assertThat( resource.renderHTTP(req), succeeded(Equals(b''))) self.assertThat( req.responseHeaders.getRawHeaders(b'X-Foo'), Equals([b'foo'])) self.assertThat( req.responseHeaders.getRawHeaders(b'X-Bar'), Equals([b'bar'])) @depends_on('nevow') def test_error(self): """ If an exception is unhandled, set the response body and status accordingly. """ f = Failure(RuntimeError('Nope')) resource = nevow_adapter_resource([before(constantly(f))]) req = fake_nevow_request() self.assertThat( resource.renderHTTP(req), succeeded(Equals(b''))) req.channel.transport.written.seek(0) self.assertThat( req.channel.transport.written.read(), Contains(b'Internal server error: exception')) self.assertThat( req.code, Equals(500))
[ "pyrsistent.freeze", "testtools.matchers.Is", "pyrsistent.m", "fugue.util.constantly", "fugue.interceptors.before", "testtools.matchers.Equals", "fugue.adapters.nevow.nevow_adapter_resource", "testtools.matchers.Contains", "fugue.test.interceptors.test_nevow.fake_nevow_request", "fugue.test.util.depends_on" ]
[((540, 543), 'pyrsistent.m', 'm', ([], {}), '()\n', (541, 543), False, 'from pyrsistent import freeze, m\n'), ((728, 747), 'fugue.test.util.depends_on', 'depends_on', (['"""nevow"""'], {}), "('nevow')\n", (738, 747), False, 'from fugue.test.util import depends_on\n'), ((1051, 1070), 'fugue.test.util.depends_on', 'depends_on', (['"""nevow"""'], {}), "('nevow')\n", (1061, 1070), False, 'from fugue.test.util import depends_on\n'), ((1744, 1763), 'fugue.test.util.depends_on', 'depends_on', (['"""nevow"""'], {}), "('nevow')\n", (1754, 1763), False, 'from fugue.test.util import depends_on\n'), ((2364, 2383), 'fugue.test.util.depends_on', 'depends_on', (['"""nevow"""'], {}), "('nevow')\n", (2374, 2383), False, 'from fugue.test.util import depends_on\n'), ((3043, 3062), 'fugue.test.util.depends_on', 'depends_on', (['"""nevow"""'], {}), "('nevow')\n", (3053, 3062), False, 'from fugue.test.util import depends_on\n'), ((859, 883), 'fugue.adapters.nevow.nevow_adapter_resource', 'nevow_adapter_resource', ([], {}), '()\n', (881, 883), False, 'from fugue.adapters.nevow import nevow_adapter_resource\n'), ((1515, 1535), 'fugue.test.interceptors.test_nevow.fake_nevow_request', 'fake_nevow_request', ([], {}), '()\n', (1533, 1535), False, 'from fugue.test.interceptors.test_nevow import fake_nevow_request\n'), ((2006, 2026), 'fugue.test.interceptors.test_nevow.fake_nevow_request', 'fake_nevow_request', ([], {}), '()\n', (2024, 2026), False, 'from fugue.test.interceptors.test_nevow import fake_nevow_request\n'), ((2693, 2713), 'fugue.test.interceptors.test_nevow.fake_nevow_request', 'fake_nevow_request', ([], {}), '()\n', (2711, 2713), False, 'from fugue.test.interceptors.test_nevow import fake_nevow_request\n'), ((3328, 3348), 'fugue.test.interceptors.test_nevow.fake_nevow_request', 'fake_nevow_request', ([], {}), '()\n', (3346, 3348), False, 'from fugue.test.interceptors.test_nevow import fake_nevow_request\n'), ((605, 620), 'pyrsistent.freeze', 'freeze', (['headers'], {}), '(headers)\n', (611, 620), False, 'from pyrsistent import freeze, m\n'), ((1399, 1417), 'fugue.interceptors.before', 'before', (['_spy_inner'], {}), '(_spy_inner)\n', (1405, 1417), False, 'from fugue.interceptors import before, handler\n'), ((2185, 2196), 'testtools.matchers.Equals', 'Equals', (['(201)'], {}), '(201)\n', (2191, 2196), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((2331, 2356), 'testtools.matchers.Contains', 'Contains', (["b'Hello world!'"], {}), "(b'Hello world!')\n", (2339, 2356), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((2907, 2923), 'testtools.matchers.Equals', 'Equals', (["[b'foo']"], {}), "([b'foo'])\n", (2913, 2923), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((3019, 3035), 'testtools.matchers.Equals', 'Equals', (["[b'bar']"], {}), "([b'bar'])\n", (3025, 3035), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((3581, 3626), 'testtools.matchers.Contains', 'Contains', (["b'Internal server error: exception'"], {}), "(b'Internal server error: exception')\n", (3589, 3626), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((3687, 3698), 'testtools.matchers.Equals', 'Equals', (['(500)'], {}), '(500)\n', (3693, 3698), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((1621, 1632), 'testtools.matchers.Equals', 'Equals', (["b''"], {}), "(b'')\n", (1627, 1632), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((2112, 2123), 'testtools.matchers.Equals', 'Equals', (["b''"], {}), "(b'')\n", (2118, 2123), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((2799, 2810), 'testtools.matchers.Equals', 'Equals', (["b''"], {}), "(b'')\n", (2805, 2810), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((3434, 3445), 'testtools.matchers.Equals', 'Equals', (["b''"], {}), "(b'')\n", (3440, 3445), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((1001, 1013), 'testtools.matchers.Is', 'Is', (['resource'], {}), '(resource)\n', (1003, 1013), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((1031, 1041), 'testtools.matchers.Equals', 'Equals', (['()'], {}), '(())\n', (1037, 1041), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((1711, 1734), 'testtools.matchers.Contains', 'Contains', (['NEVOW_REQUEST'], {}), '(NEVOW_REQUEST)\n', (1719, 1734), False, 'from testtools.matchers import Contains, Equals, Is, MatchesListwise\n'), ((3297, 3310), 'fugue.util.constantly', 'constantly', (['f'], {}), '(f)\n', (3307, 3310), False, 'from fugue.util import constantly\n')]
import re import ruamel.yaml from typing import Optional yaml = ruamel.yaml.YAML() def lights_manipulations(room: Optional[str] = None, todo: Optional[str] = None): if room is None and todo is None: return with open('home_devices/light_groups.yaml') as f: data = yaml.load(f) changes = False for group in data: if bool(re.compile(room, re.I).search(group['name'])) or room == 'all': for light in group['entities']: key = list(light.keys())[0] # check if the light is dimmable if not bool(re.compile(r'dimmable', re.I).search(key)): light[key] = todo changes = True else: # full brightness if turning on light[key] = 100 if todo == 'on' else 0 changes = True if changes: with open('home_devices/light_groups.yaml', 'w') as f: yaml.dump(data, f) def dimmable_lights_manipulations(room: Optional[str] = None, todo: Optional[int] = None): if room is None and todo is None: return with open('home_devices/light_groups.yaml') as f: data = yaml.load(f) changes = False for group in data: if bool(re.compile(room, re.I).search(group['name'])): for light in group['entities']: key = list(light.keys())[0] # check if the light is dimmable if bool(re.compile(r'dimmable', re.I).search(key)): if todo is None: return True light[key] = todo changes = True if todo is None: return False if changes: with open('home_devices/light_groups.yaml', 'w') as f: yaml.dump(data, f) def check_dimmable(room) -> bool: return dimmable_lights_manipulations(room=room) if room else False def set_the_temp(room: Optional[str] = None, todo: Optional[int] = None): if room is None and todo is None: return with open('home_devices/climate_group.yaml') as f: data = yaml.load(f) changes = False for group in data: if bool(re.compile(room, re.I).search(group['name'])): for temp in group['entities']: key = list(temp.keys())[0] temp[key] = todo changes = True if changes: with open('home_devices/climate_group.yaml', 'w') as f: yaml.dump(data, f) def heat_cool_the_temp(room: Optional[str] = None, todo: Optional[str] = None): if room is None: return "Unavailable" with open('home_devices/climate_group.yaml') as f1: data = yaml.load(f1) with open('home_devices/temperature_sensors.yaml') as f2: sensors = yaml.load(f2) changes = False cur_temp = None for area in sensors: if bool(re.compile(room, re.I).search(area['name'])): cur_temp = int(area['temperature']) if cur_temp is None: return "Unavailable" for group in data: if bool(re.compile(room, re.I).search(group['name'])): for temp in group['entities']: key = list(temp.keys())[0] temp[key] = cur_temp + 5 if todo == "heat" else cur_temp - 5 changes = True if changes: with open('home_devices/climate_group.yaml', 'w') as f: yaml.dump(data, f) return cur_temp + 5 if todo == "heat" else cur_temp - 5 def heat_floor(room: Optional[str] = None): if room is None: return with open('home_devices/climate_group.yaml') as f: data = yaml.load(f) for group in data: if bool(re.compile(room, re.I).search(group['name'])): for temp in group['entities']: key = list(temp.keys())[0] temp[key] = 35 with open('home_devices/climate_group.yaml', 'w') as f: yaml.dump(data, f)
[ "re.compile" ]
[((1274, 1296), 're.compile', 're.compile', (['room', 're.I'], {}), '(room, re.I)\n', (1284, 1296), False, 'import re\n'), ((2202, 2224), 're.compile', 're.compile', (['room', 're.I'], {}), '(room, re.I)\n', (2212, 2224), False, 'import re\n'), ((2904, 2926), 're.compile', 're.compile', (['room', 're.I'], {}), '(room, re.I)\n', (2914, 2926), False, 'import re\n'), ((3093, 3115), 're.compile', 're.compile', (['room', 're.I'], {}), '(room, re.I)\n', (3103, 3115), False, 'import re\n'), ((3712, 3734), 're.compile', 're.compile', (['room', 're.I'], {}), '(room, re.I)\n', (3722, 3734), False, 'import re\n'), ((362, 384), 're.compile', 're.compile', (['room', 're.I'], {}), '(room, re.I)\n', (372, 384), False, 'import re\n'), ((1482, 1510), 're.compile', 're.compile', (['"""dimmable"""', 're.I'], {}), "('dimmable', re.I)\n", (1492, 1510), False, 'import re\n'), ((591, 619), 're.compile', 're.compile', (['"""dimmable"""', 're.I'], {}), "('dimmable', re.I)\n", (601, 619), False, 'import re\n')]
# Description """ MSF dataclasses and marshmallow schemas Author: <NAME> License: MIT Copyright 2021, Python Metasploit Library """ # Import from typing import List, Dict, Optional, Union from dataclasses import dataclass, field from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE from marshmallow import Schema as MarshmallowSchema from datetime import datetime from ipaddress import IPv4Address, IPv6Address, ip_address from pathlib import Path from os import path from configparser import ConfigParser # Authorship information __author__ = "<NAME>" __copyright__ = "Copyright 2021, Python Metasploit Library" __credits__ = [""] __license__ = "MIT" __version__ = "0.2.4" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" class Msf: @dataclass class Config: file: str = f"{str(Path.home())}/.msf4/config" url: Optional[str] = None cert: Optional[str] = None skip_verify: bool = False api_token: Optional[str] = None class Schema(MarshmallowSchema): url = fields.String(missing=None) cert = fields.String(missing=None) skip_verify = fields.Boolean(missing=False) api_token = fields.String(missing=None) @post_load def make_config(self, data, **kwargs): return Msf.Config(**data) @dataclass class Workspace: id: int = 1 name: str = "default" created_at: Optional[datetime] = None updated_at: Optional[datetime] = None boundary: Optional[str] = None description: Optional[str] = None owner_id: Optional[str] = None limit_to_network: bool = False import_fingerprint: bool = False class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) name = fields.String(required=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) boundary = fields.String(missing=None) description = fields.String(missing=None) owner_id = fields.String(missing=None, load_only=True) limit_to_network = fields.Boolean(missing=False) import_fingerprint = fields.Boolean(missing=False) @post_dump(pass_many=False) def clean_missing_fields(self, data, many, **kwargs): clean_data = data.copy() for key in filter(lambda key: data[key] is None, data): del clean_data[key] for key in filter(lambda key: data[key] == -1, data): del clean_data[key] return clean_data @post_load def make_workspace(self, data, **kwargs): return Msf.Workspace(**data) @dataclass class Host: id: int = -1 workspace: Optional[str] = None workspace_id: int = 1 created_at: Optional[datetime] = None updated_at: Optional[datetime] = None host: Optional[str] = None address: Union[None, IPv4Address, IPv6Address] = None mac: Optional[str] = None comm: Optional[str] = None name: Optional[str] = None state: Optional[str] = None os_name: Optional[str] = None os_flavor: Optional[str] = None os_sp: Optional[str] = None os_lang: Optional[str] = None arch: Optional[str] = None purpose: Optional[str] = None info: Optional[str] = None comments: Optional[str] = None scope: Optional[str] = None virtual_host: Optional[str] = None note_count: int = 0 vuln_count: int = 0 service_count: int = 0 host_detail_count: int = 0 exploit_attempt_count: int = 0 cred_count: int = 0 detected_arch: Optional[str] = None os_family: Optional[str] = None class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) workspace = fields.String(dump_only=True) workspace_id = fields.Integer(missing=1, load_only=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) host = fields.String(missing=None) address = fields.String(missing=None, load_only=True) mac = fields.String(missing=None) comm = fields.String(missing=None) name = fields.String(missing=None) state = fields.String(missing=None) os_name = fields.String(missing=None) os_flavor = fields.String(missing=None) os_sp = fields.String(missing=None) os_lang = fields.String(missing=None) arch = fields.String(missing=None) purpose = fields.String(missing=None) info = fields.String(missing=None) comments = fields.String(missing=None) scope = fields.String(missing=None) virtual_host = fields.String(missing=None) note_count = fields.Integer(missing=0, load_only=True) vuln_count = fields.Integer(missing=0, load_only=True) service_count = fields.Integer(missing=0, load_only=True) host_detail_count = fields.Integer(missing=0, load_only=True) exploit_attempt_count = fields.Integer(missing=0, load_only=True) cred_count = fields.Integer(missing=0, load_only=True) detected_arch = fields.String(missing=None) os_family = fields.String(missing=None) @pre_dump(pass_many=False) def pre_dump_host(self, data, **kwargs): if data.host is None: data.host = data.address return data @post_dump(pass_many=False) def clean_missing_fields(self, data, many, **kwargs): clean_data = data.copy() for key in filter(lambda key: data[key] is None, data): del clean_data[key] for key in filter(lambda key: data[key] == -1, data): del clean_data[key] return clean_data @post_load def make_host(self, data, **kwargs): host = Msf.Host(**data) host.address = ip_address(host.address) return host @dataclass class Service: id: int = -1 workspace: Optional[str] = None workspace_id: int = 1 host: Union[None, IPv4Address, IPv6Address, "Msf.Host"] = None host_id: int = -1 created_at: Optional[datetime] = None updated_at: Optional[datetime] = None port: int = -1 proto: Optional[str] = None state: Optional[str] = None name: Optional[str] = None info: Optional[str] = None class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) workspace = fields.String(dump_only=True) workspace_id = fields.Integer(missing=1, load_only=True) host = fields.Raw(missing=None) host_id = fields.Integer(missing=-1, load_only=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) port = fields.Integer(missing=-1) proto = fields.String(missing=None) state = fields.String(missing=None) name = fields.String(missing=None) info = fields.String(missing=None) @pre_dump(pass_many=False) def convert_host_address_to_string(self, data, many, **kwargs): if isinstance(data.host, IPv4Address) or isinstance( data.host, IPv6Address ): data.host = str(data.host) return data @post_dump(pass_many=False) def clean_missing_fields(self, data, many, **kwargs): clean_data = data.copy() for key in filter(lambda key: data[key] is None, data): del clean_data[key] for key in filter(lambda key: data[key] == -1, data): del clean_data[key] return clean_data @post_load def make_service(self, data, **kwargs): result = Msf.Service(**data) if isinstance(result.host, Dict): result.host = Msf.Host.Schema().load(result.host) return result @dataclass class Vuln: id: int = -1 workspace: Optional[str] = None workspace_id: int = 1 host: Union[None, IPv4Address, IPv6Address, "Msf.Host"] = None host_id: int = -1 created_at: Optional[datetime] = None updated_at: Optional[datetime] = None port: int = -1 service_id: int = -1 name: Optional[str] = None info: Optional[str] = None exploited_at: Optional[datetime] = None vuln_detail_count: int = 0 vuln_attempt_count: int = 0 origin_id: Optional[str] = None origin_type: Optional[str] = None refs: Optional[List] = field(default_factory=lambda: []) module_refs: Optional[List] = field(default_factory=lambda: []) class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) workspace = fields.String(dump_only=True) workspace_id = fields.Integer(missing=1, load_only=True) host = fields.Raw(missing=None) host_id = fields.Integer(missing=-1, load_only=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) port = fields.Integer(missing=-1) service_id = fields.Integer(missing=-1, load_only=True, allow_none=True) name = fields.String(missing=None) info = fields.String(missing=None) exploited_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) vuln_detail_count = fields.Integer(missing=0, load_only=True) vuln_attempt_count = fields.Integer(missing=0, load_only=True) origin_id = fields.String(missing=None) origin_type = fields.String(missing=None) refs = fields.List(fields.String, missing=[]) module_refs = fields.List(fields.String, missing=[], load_only=True) @pre_dump(pass_many=False) def convert_host_address_to_string(self, data, many, **kwargs): if isinstance(data.host, IPv4Address) or isinstance( data.host, IPv6Address ): data.host = str(data.host) return data @post_dump(pass_many=False) def clean_missing_fields(self, data, many, **kwargs): clean_data = data.copy() for key in filter(lambda key: data[key] is None, data): del clean_data[key] for key in filter(lambda key: data[key] == -1, data): del clean_data[key] return clean_data @pre_load(pass_many=False) def pre_load_vuln(self, data, **kwargs): result = data.copy() result["refs"] = list() result["module_refs"] = list() for reference in data["refs"]: if "name" in reference: result["refs"].append(reference["name"]) for reference in data["module_refs"]: if "name" in reference: result["refs"].append(reference["name"]) return result @post_load def make_vuln(self, data, **kwargs): result = Msf.Vuln(**data) if isinstance(result.host, Dict): result.host = Msf.Host.Schema().load(result.host) return result @dataclass class Loot: id: int = -1 workspace: Optional[str] = None workspace_id: int = 1 host: Union[None, IPv4Address, IPv6Address, "Msf.Host"] = None host_id: int = -1 created_at: Optional[datetime] = None updated_at: Optional[datetime] = None port: int = -1 service_id: int = -1 ltype: Optional[str] = None path: Optional[str] = None data: Optional[str] = None content_type: Optional[str] = None name: Optional[str] = None info: Optional[str] = None module_run_id: Optional[str] = None class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True, allow_none=True) workspace = fields.String(dump_only=True) workspace_id = fields.Integer(missing=1, load_only=True) host = fields.Raw(missing=None) host_id = fields.Integer(missing=-1, load_only=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) port = fields.Integer(missing=-1) service_id = fields.Integer(missing=-1, load_only=True, allow_none=True) ltype = fields.String(missing=None) path = fields.String(missing=None) data = fields.String(missing=None) content_type = fields.String(missing=None) name = fields.String(missing=None) info = fields.String(missing=None) module_run_id = fields.String(missing=None) @pre_dump(pass_many=False) def convert_host_address_to_string(self, data, many, **kwargs): if isinstance(data.host, IPv4Address) or isinstance( data.host, IPv6Address ): data.host = str(data.host) return data @post_dump(pass_many=False) def clean_missing_fields(self, data, many, **kwargs): clean_data = data.copy() for key in filter(lambda key: data[key] is None, data): del clean_data[key] for key in filter(lambda key: data[key] == -1, data): del clean_data[key] return clean_data @post_load def make_loot(self, data, **kwargs): result = Msf.Loot(**data) if isinstance(result.host, Dict): result.host = Msf.Host.Schema().load(result.host) return result @dataclass class Note: id: int = -1 workspace: Optional[str] = None workspace_id: int = 1 host: Union[None, IPv4Address, IPv6Address, "Msf.Host"] = None host_id: int = -1 created_at: Optional[datetime] = None updated_at: Optional[datetime] = None port: int = -1 service_id: int = -1 vuln_id: int = -1 ntype: Optional[str] = None data: Optional[str] = None critical: bool = False seen: bool = False class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) workspace = fields.String(dump_only=True) workspace_id = fields.Integer(missing=1, load_only=True) host = fields.Raw(missing=None) host_id = fields.Integer(missing=-1, load_only=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) port = fields.Integer(missing=-1, allow_none=True) service_id = fields.Integer(missing=-1, load_only=True, allow_none=True) vuln_id = fields.Integer(missing=-1, load_only=True, allow_none=True) ntype = fields.String(missing=None) data = fields.String(missing=None) critical = fields.Boolean(missing=False, allow_none=True) seen = fields.Boolean(missing=False, allow_none=True) @pre_dump(pass_many=False) def convert_host_address_to_string(self, data, many, **kwargs): if isinstance(data.host, IPv4Address) or isinstance( data.host, IPv6Address ): data.host = str(data.host) return data @post_dump(pass_many=False) def clean_missing_fields(self, data, many, **kwargs): clean_data = data.copy() for key in filter(lambda key: data[key] is None, data): del clean_data[key] for key in filter(lambda key: data[key] == -1, data): del clean_data[key] return clean_data @pre_load(pass_many=False) def pre_make_note(self, data, many, **kwargs): if "data" in data: if isinstance(data["data"], Dict): if "output" in data["data"]: data["data"] = str(data["data"]["output"]) else: data["data"] = str(data["data"]) else: data["data"] = str(data["data"]) return data @post_load def make_note(self, data, **kwargs): result = Msf.Note(**data) if isinstance(result.host, Dict): result.host = Msf.Host.Schema().load(result.host) return result @dataclass class Cred: id: int = -1 workspace_id: int = 1 username: Optional[str] = None private_data: Optional[str] = None private_type: Optional[str] = None jtr_format: Optional[str] = None address: Union[None, IPv4Address, IPv6Address] = None port: int = -1 service_name: Optional[str] = None protocol: Optional[str] = None origin_type: str = "service" module_fullname: Optional[str] = None created_at: Optional[datetime] = None updated_at: Optional[datetime] = None origin_id: int = -1 private_id: int = -1 public_id: int = -1 realm_id: int = -1 logins_count: int = -1 logins: Optional[List["Msf.Login"]] = field(default_factory=lambda: []) public: Optional["Msf.Public"] = None private: Optional["Msf.Private"] = None origin: Optional["Msf.Origin"] = None class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) workspace_id = fields.Integer(required=True) username = fields.String(missing=None) private_data = fields.String(missing=None) private_type = fields.String(missing=None) jtr_format = fields.String(missing=None) address = fields.String(missing=None) port = fields.Integer(missing=-1) service_name = fields.String(missing=None) protocol = fields.String(missing=None) origin_type = fields.String(missing="service") module_fullname = fields.String(missing=None) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) origin_id = fields.Integer(missing=-1, load_only=True) private_id = fields.Integer(missing=-1, load_only=True) public_id = fields.Integer(missing=-1, load_only=True) realm_id = fields.Integer(missing=-1, load_only=True, allow_none=True) logins_count = fields.Integer(missing=-1, load_only=True) logins = fields.Nested( lambda: Msf.Login.Schema, many=True, missing=[], load_only=True ) public = fields.Nested( lambda: Msf.Public.Schema, many=False, missing=None, load_only=True ) private = fields.Nested( lambda: Msf.Private.Schema, many=False, missing=None, load_only=True ) origin = fields.Nested( lambda: Msf.Origin.Schema, many=False, missing=None, load_only=True ) @pre_dump(pass_many=False) def convert_host_address_to_string(self, data, many, **kwargs): if isinstance(data.address, IPv4Address) or isinstance( data.address, IPv6Address ): data.address = str(data.address) return data @post_dump(pass_many=False) def clean_missing_fields(self, data, many, **kwargs): clean_data = data.copy() for key in filter(lambda key: data[key] is None, data): del clean_data[key] for key in filter(lambda key: data[key] == -1, data): del clean_data[key] return clean_data @post_load def make_cred(self, data, **kwargs): return Msf.Cred(**data) @dataclass class Login: id: int = -1 workspace_id: int = 1 created_at: Optional[datetime] = None updated_at: Optional[datetime] = None last_attempted_at: Optional[datetime] = None core_id: int = -1 service_id: int = -1 address: Optional[str] = None service_name: str = "ssh" port: int = -1 protocol: str = "tcp" status: str = "Successful" access_level: Optional[str] = None public: Optional[str] = None private: Optional[str] = None class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) workspace_id = fields.Integer(required=True, dump_only=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) last_attempted_at = fields.DateTime("%Y-%m-%dT%H:%M:%S.%fZ", missing=None) core_id = fields.Integer(missing=-1) service_id = fields.Integer(missing=-1, load_only=True, allow_none=True) address = fields.String(missing=None) service_name = fields.String(missing=None) port = fields.Integer(missing=-1) protocol = fields.String(missing=None) status = fields.String(missing=None) access_level = fields.String(missing=None) public = fields.String(missing=None, load_only=True) private = fields.String(missing=None, load_only=True) @pre_dump(pass_many=False) def convert_host_address_to_string(self, data, many, **kwargs): if isinstance(data.address, IPv4Address) or isinstance( data.address, IPv6Address ): data.address = str(data.address) return data @post_dump(pass_many=False) def post_dump_login(self, data, many, **kwargs): if "core_id" in data: data["core"] = {"id": data["core_id"]} del data["core_id"] return data @post_dump(pass_many=False) def clean_missing_fields(self, data, many, **kwargs): clean_data = data.copy() for key in filter(lambda key: data[key] is None, data): del clean_data[key] for key in filter(lambda key: data[key] == -1, data): del clean_data[key] return clean_data @post_load def make_login(self, data, **kwargs): return Msf.Login(**data) @dataclass class Public: id: int = -1 created_at: Optional[datetime] = None updated_at: Optional[datetime] = None username: Optional[str] = None type: Optional[str] = None class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) username = fields.String(missing=None, load_only=True) type = fields.String(missing=None, load_only=True) @post_load def make_public(self, data, **kwargs): return Msf.Public(**data) @dataclass class Private: id: int = -1 created_at: Optional[datetime] = None updated_at: Optional[datetime] = None data: Optional[str] = None jtr_format: Optional[str] = None type: Optional[str] = None class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) data = fields.String(missing=None, load_only=True) jtr_format = fields.String(missing=None, load_only=True) type = fields.String(missing=None, load_only=True) @post_load def make_private(self, data, **kwargs): return Msf.Private(**data) @dataclass class Origin: id: int = -1 created_at: Optional[datetime] = None updated_at: Optional[datetime] = None service_id: int = -1 module_full_name: Optional[str] = None type: Optional[str] = None class Schema(MarshmallowSchema): id = fields.Integer(required=True, load_only=True) created_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) updated_at = fields.DateTime( "%Y-%m-%dT%H:%M:%S.%fZ", missing=None, load_only=True ) service_id = fields.Integer(missing=-1, load_only=True) module_full_name = fields.String(missing=None, load_only=True) type = fields.String(missing=None, load_only=True) @post_load def make_origin(self, data, **kwargs): return Msf.Origin(**data) @staticmethod def load_config() -> Config: config: Msf.Config = Msf.Config() config_parser: ConfigParser = ConfigParser() if path.isfile(config.file) and path.getsize(config.file) > 0: config_parser.read(config.file) default_db: Optional[str] = None if "framework/database" in config_parser.sections(): if "default_db" in config_parser["framework/database"]: default_db = config_parser["framework/database"]["default_db"] if default_db is not None: if f"framework/database/{default_db}": config = Msf.Config.Schema(unknown=EXCLUDE).load( config_parser[f"framework/database/{default_db}"] ) return config @dataclass class MsfData: workspace: Optional[str] = None workspaces: Optional[List[Msf.Workspace]] = field(default_factory=lambda: []) hosts: Optional[List[Msf.Host]] = field(default_factory=lambda: []) services: Optional[List[Msf.Service]] = field(default_factory=lambda: []) vulns: Optional[List[Msf.Vuln]] = field(default_factory=lambda: []) loots: Optional[List[Msf.Loot]] = field(default_factory=lambda: []) notes: Optional[List[Msf.Note]] = field(default_factory=lambda: []) creds: Optional[List[Msf.Cred]] = field(default_factory=lambda: []) logins: Optional[List[Msf.Login]] = field(default_factory=lambda: [])
[ "marshmallow.post_dump", "os.path.getsize", "configparser.ConfigParser", "marshmallow.fields.Boolean", "pathlib.Path.home", "marshmallow.fields.Nested", "marshmallow.fields.Raw", "marshmallow.fields.DateTime", "os.path.isfile", "marshmallow.fields.List", "marshmallow.pre_load", "marshmallow.fields.String", "ipaddress.ip_address", "marshmallow.fields.Integer", "marshmallow.pre_dump", "dataclasses.field" ]
[((28479, 28513), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (28484, 28513), False, 'from dataclasses import dataclass, field\n'), ((28551, 28585), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (28556, 28585), False, 'from dataclasses import dataclass, field\n'), ((28629, 28663), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (28634, 28663), False, 'from dataclasses import dataclass, field\n'), ((28701, 28735), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (28706, 28735), False, 'from dataclasses import dataclass, field\n'), ((28773, 28807), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (28778, 28807), False, 'from dataclasses import dataclass, field\n'), ((28845, 28879), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (28850, 28879), False, 'from dataclasses import dataclass, field\n'), ((28917, 28951), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (28922, 28951), False, 'from dataclasses import dataclass, field\n'), ((28991, 29025), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (28996, 29025), False, 'from dataclasses import dataclass, field\n'), ((9678, 9712), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (9683, 9712), False, 'from dataclasses import dataclass, field\n'), ((9750, 9784), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (9755, 9784), False, 'from dataclasses import dataclass, field\n'), ((19234, 19268), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : [])'}), '(default_factory=lambda : [])\n', (19239, 19268), False, 'from dataclasses import dataclass, field\n'), ((27690, 27704), 'configparser.ConfigParser', 'ConfigParser', ([], {}), '()\n', (27702, 27704), False, 'from configparser import ConfigParser\n'), ((1085, 1112), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (1098, 1112), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((1132, 1159), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (1145, 1159), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((1186, 1215), 'marshmallow.fields.Boolean', 'fields.Boolean', ([], {'missing': '(False)'}), '(missing=False)\n', (1200, 1215), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((1240, 1267), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (1253, 1267), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((1823, 1868), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (1837, 1868), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((1888, 1916), 'marshmallow.fields.String', 'fields.String', ([], {'required': '(True)'}), '(required=True)\n', (1901, 1916), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((1942, 2012), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (1957, 2012), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((2068, 2138), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (2083, 2138), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((2192, 2219), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (2205, 2219), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((2246, 2273), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (2259, 2273), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((2297, 2340), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (2310, 2340), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((2372, 2401), 'marshmallow.fields.Boolean', 'fields.Boolean', ([], {'missing': '(False)'}), '(missing=False)\n', (2386, 2401), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((2435, 2464), 'marshmallow.fields.Boolean', 'fields.Boolean', ([], {'missing': '(False)'}), '(missing=False)\n', (2449, 2464), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((2479, 2505), 'marshmallow.post_dump', 'post_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (2488, 2505), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4154, 4199), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (4168, 4199), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4224, 4253), 'marshmallow.fields.String', 'fields.String', ([], {'dump_only': '(True)'}), '(dump_only=True)\n', (4237, 4253), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4281, 4322), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(1)', 'load_only': '(True)'}), '(missing=1, load_only=True)\n', (4295, 4322), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4348, 4418), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (4363, 4418), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4474, 4544), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (4489, 4544), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4594, 4621), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (4607, 4621), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4644, 4687), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (4657, 4687), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4706, 4733), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (4719, 4733), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4753, 4780), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (4766, 4780), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4800, 4827), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (4813, 4827), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4848, 4875), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (4861, 4875), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4898, 4925), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (4911, 4925), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4950, 4977), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (4963, 4977), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((4998, 5025), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5011, 5025), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5048, 5075), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5061, 5075), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5095, 5122), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5108, 5122), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5145, 5172), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5158, 5172), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5192, 5219), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5205, 5219), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5243, 5270), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5256, 5270), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5291, 5318), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5304, 5318), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5346, 5373), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5359, 5373), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5399, 5440), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(0)', 'load_only': '(True)'}), '(missing=0, load_only=True)\n', (5413, 5440), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5466, 5507), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(0)', 'load_only': '(True)'}), '(missing=0, load_only=True)\n', (5480, 5507), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5536, 5577), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(0)', 'load_only': '(True)'}), '(missing=0, load_only=True)\n', (5550, 5577), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5610, 5651), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(0)', 'load_only': '(True)'}), '(missing=0, load_only=True)\n', (5624, 5651), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5688, 5729), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(0)', 'load_only': '(True)'}), '(missing=0, load_only=True)\n', (5702, 5729), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5755, 5796), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(0)', 'load_only': '(True)'}), '(missing=0, load_only=True)\n', (5769, 5796), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5825, 5852), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5838, 5852), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5877, 5904), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (5890, 5904), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((5919, 5944), 'marshmallow.pre_dump', 'pre_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (5927, 5944), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((6123, 6149), 'marshmallow.post_dump', 'post_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (6132, 6149), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7249, 7294), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (7263, 7294), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7319, 7348), 'marshmallow.fields.String', 'fields.String', ([], {'dump_only': '(True)'}), '(dump_only=True)\n', (7332, 7348), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7376, 7417), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(1)', 'load_only': '(True)'}), '(missing=1, load_only=True)\n', (7390, 7417), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7437, 7461), 'marshmallow.fields.Raw', 'fields.Raw', ([], {'missing': 'None'}), '(missing=None)\n', (7447, 7461), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7484, 7526), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)'}), '(missing=-1, load_only=True)\n', (7498, 7526), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7552, 7622), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (7567, 7622), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7678, 7748), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (7693, 7748), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7798, 7824), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)'}), '(missing=-1)\n', (7812, 7824), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7845, 7872), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (7858, 7872), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7893, 7920), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (7906, 7920), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7940, 7967), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (7953, 7967), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((7987, 8014), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (8000, 8014), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((8029, 8054), 'marshmallow.pre_dump', 'pre_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (8037, 8054), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((8351, 8377), 'marshmallow.post_dump', 'post_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (8360, 8377), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((9843, 9888), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (9857, 9888), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((9913, 9942), 'marshmallow.fields.String', 'fields.String', ([], {'dump_only': '(True)'}), '(dump_only=True)\n', (9926, 9942), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((9970, 10011), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(1)', 'load_only': '(True)'}), '(missing=1, load_only=True)\n', (9984, 10011), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10031, 10055), 'marshmallow.fields.Raw', 'fields.Raw', ([], {'missing': 'None'}), '(missing=None)\n', (10041, 10055), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10078, 10120), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)'}), '(missing=-1, load_only=True)\n', (10092, 10120), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10146, 10216), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (10161, 10216), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10272, 10342), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (10287, 10342), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10392, 10418), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)'}), '(missing=-1)\n', (10406, 10418), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10444, 10503), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)', 'allow_none': '(True)'}), '(missing=-1, load_only=True, allow_none=True)\n', (10458, 10503), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10523, 10550), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (10536, 10550), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10570, 10597), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (10583, 10597), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10625, 10695), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (10640, 10695), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10758, 10799), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(0)', 'load_only': '(True)'}), '(missing=0, load_only=True)\n', (10772, 10799), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10833, 10874), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(0)', 'load_only': '(True)'}), '(missing=0, load_only=True)\n', (10847, 10874), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10899, 10926), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (10912, 10926), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((10953, 10980), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (10966, 10980), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((11000, 11038), 'marshmallow.fields.List', 'fields.List', (['fields.String'], {'missing': '[]'}), '(fields.String, missing=[])\n', (11011, 11038), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((11065, 11119), 'marshmallow.fields.List', 'fields.List', (['fields.String'], {'missing': '[]', 'load_only': '(True)'}), '(fields.String, missing=[], load_only=True)\n', (11076, 11119), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((11134, 11159), 'marshmallow.pre_dump', 'pre_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (11142, 11159), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((11456, 11482), 'marshmallow.post_dump', 'post_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (11465, 11482), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((11860, 11885), 'marshmallow.pre_load', 'pre_load', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (11868, 11885), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((13363, 13425), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)', 'allow_none': '(True)'}), '(required=True, load_only=True, allow_none=True)\n', (13377, 13425), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((13450, 13479), 'marshmallow.fields.String', 'fields.String', ([], {'dump_only': '(True)'}), '(dump_only=True)\n', (13463, 13479), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((13507, 13548), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(1)', 'load_only': '(True)'}), '(missing=1, load_only=True)\n', (13521, 13548), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((13568, 13592), 'marshmallow.fields.Raw', 'fields.Raw', ([], {'missing': 'None'}), '(missing=None)\n', (13578, 13592), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((13615, 13657), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)'}), '(missing=-1, load_only=True)\n', (13629, 13657), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((13683, 13753), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (13698, 13753), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((13809, 13879), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (13824, 13879), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((13929, 13955), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)'}), '(missing=-1)\n', (13943, 13955), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((13981, 14040), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)', 'allow_none': '(True)'}), '(missing=-1, load_only=True, allow_none=True)\n', (13995, 14040), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((14061, 14088), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (14074, 14088), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((14108, 14135), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (14121, 14135), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((14155, 14182), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (14168, 14182), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((14210, 14237), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (14223, 14237), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((14257, 14284), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (14270, 14284), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((14304, 14331), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (14317, 14331), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((14360, 14387), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (14373, 14387), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((14402, 14427), 'marshmallow.pre_dump', 'pre_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (14410, 14427), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((14724, 14750), 'marshmallow.post_dump', 'post_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (14733, 14750), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((15957, 16002), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (15971, 16002), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16027, 16056), 'marshmallow.fields.String', 'fields.String', ([], {'dump_only': '(True)'}), '(dump_only=True)\n', (16040, 16056), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16084, 16125), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(1)', 'load_only': '(True)'}), '(missing=1, load_only=True)\n', (16098, 16125), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16145, 16169), 'marshmallow.fields.Raw', 'fields.Raw', ([], {'missing': 'None'}), '(missing=None)\n', (16155, 16169), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16192, 16234), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)'}), '(missing=-1, load_only=True)\n', (16206, 16234), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16260, 16330), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (16275, 16330), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16386, 16456), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (16401, 16456), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16506, 16549), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'allow_none': '(True)'}), '(missing=-1, allow_none=True)\n', (16520, 16549), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16575, 16634), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)', 'allow_none': '(True)'}), '(missing=-1, load_only=True, allow_none=True)\n', (16589, 16634), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16657, 16716), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)', 'allow_none': '(True)'}), '(missing=-1, load_only=True, allow_none=True)\n', (16671, 16716), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16737, 16764), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (16750, 16764), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16784, 16811), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (16797, 16811), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16835, 16881), 'marshmallow.fields.Boolean', 'fields.Boolean', ([], {'missing': '(False)', 'allow_none': '(True)'}), '(missing=False, allow_none=True)\n', (16849, 16881), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16901, 16947), 'marshmallow.fields.Boolean', 'fields.Boolean', ([], {'missing': '(False)', 'allow_none': '(True)'}), '(missing=False, allow_none=True)\n', (16915, 16947), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((16962, 16987), 'marshmallow.pre_dump', 'pre_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (16970, 16987), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((17284, 17310), 'marshmallow.post_dump', 'post_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (17293, 17310), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((17688, 17713), 'marshmallow.pre_load', 'pre_load', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (17696, 17713), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19467, 19512), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (19481, 19512), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19540, 19569), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)'}), '(required=True)\n', (19554, 19569), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19593, 19620), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (19606, 19620), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19648, 19675), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (19661, 19675), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19703, 19730), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (19716, 19730), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19756, 19783), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (19769, 19783), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19806, 19833), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (19819, 19833), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19853, 19879), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)'}), '(missing=-1)\n', (19867, 19879), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19907, 19934), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (19920, 19934), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((19958, 19985), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (19971, 19985), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20012, 20044), 'marshmallow.fields.String', 'fields.String', ([], {'missing': '"""service"""'}), "(missing='service')\n", (20025, 20044), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20075, 20102), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (20088, 20102), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20128, 20198), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (20143, 20198), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20254, 20324), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (20269, 20324), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20379, 20421), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)'}), '(missing=-1, load_only=True)\n', (20393, 20421), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20447, 20489), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)'}), '(missing=-1, load_only=True)\n', (20461, 20489), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20514, 20556), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)'}), '(missing=-1, load_only=True)\n', (20528, 20556), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20580, 20639), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)', 'allow_none': '(True)'}), '(missing=-1, load_only=True, allow_none=True)\n', (20594, 20639), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20667, 20709), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)'}), '(missing=-1, load_only=True)\n', (20681, 20709), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20731, 20810), 'marshmallow.fields.Nested', 'fields.Nested', (['(lambda : Msf.Login.Schema)'], {'many': '(True)', 'missing': '[]', 'load_only': '(True)'}), '(lambda : Msf.Login.Schema, many=True, missing=[], load_only=True)\n', (20744, 20810), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20861, 20948), 'marshmallow.fields.Nested', 'fields.Nested', (['(lambda : Msf.Public.Schema)'], {'many': '(False)', 'missing': 'None', 'load_only': '(True)'}), '(lambda : Msf.Public.Schema, many=False, missing=None,\n load_only=True)\n', (20874, 20948), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((20996, 21084), 'marshmallow.fields.Nested', 'fields.Nested', (['(lambda : Msf.Private.Schema)'], {'many': '(False)', 'missing': 'None', 'load_only': '(True)'}), '(lambda : Msf.Private.Schema, many=False, missing=None,\n load_only=True)\n', (21009, 21084), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((21131, 21218), 'marshmallow.fields.Nested', 'fields.Nested', (['(lambda : Msf.Origin.Schema)'], {'many': '(False)', 'missing': 'None', 'load_only': '(True)'}), '(lambda : Msf.Origin.Schema, many=False, missing=None,\n load_only=True)\n', (21144, 21218), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((21258, 21283), 'marshmallow.pre_dump', 'pre_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (21266, 21283), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((21592, 21618), 'marshmallow.post_dump', 'post_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (21601, 21618), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((22716, 22761), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (22730, 22761), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((22789, 22834), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'dump_only': '(True)'}), '(required=True, dump_only=True)\n', (22803, 22834), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((22860, 22930), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (22875, 22930), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((22986, 23056), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (23001, 23056), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23119, 23173), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None)\n", (23134, 23173), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23196, 23222), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)'}), '(missing=-1)\n', (23210, 23222), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23248, 23307), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)', 'allow_none': '(True)'}), '(missing=-1, load_only=True, allow_none=True)\n', (23262, 23307), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23330, 23357), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (23343, 23357), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23385, 23412), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (23398, 23412), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23432, 23458), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)'}), '(missing=-1)\n', (23446, 23458), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23482, 23509), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (23495, 23509), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23531, 23558), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (23544, 23558), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23586, 23613), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None'}), '(missing=None)\n', (23599, 23613), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23635, 23678), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (23648, 23678), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23701, 23744), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (23714, 23744), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((23759, 23784), 'marshmallow.pre_dump', 'pre_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (23767, 23784), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((24093, 24119), 'marshmallow.post_dump', 'post_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (24102, 24119), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((24360, 24386), 'marshmallow.post_dump', 'post_dump', ([], {'pass_many': '(False)'}), '(pass_many=False)\n', (24369, 24386), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((25145, 25190), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (25159, 25190), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((25216, 25286), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (25231, 25286), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((25342, 25412), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (25357, 25412), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((25466, 25509), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (25479, 25509), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((25529, 25572), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (25542, 25572), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((26008, 26053), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (26022, 26053), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((26079, 26149), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (26094, 26149), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((26205, 26275), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (26220, 26275), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((26325, 26368), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (26338, 26368), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((26394, 26437), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (26407, 26437), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((26457, 26500), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (26470, 26500), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((26937, 26982), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'required': '(True)', 'load_only': '(True)'}), '(required=True, load_only=True)\n', (26951, 26982), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((27008, 27078), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (27023, 27078), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((27134, 27204), 'marshmallow.fields.DateTime', 'fields.DateTime', (['"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {'missing': 'None', 'load_only': '(True)'}), "('%Y-%m-%dT%H:%M:%S.%fZ', missing=None, load_only=True)\n", (27149, 27204), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((27260, 27302), 'marshmallow.fields.Integer', 'fields.Integer', ([], {'missing': '(-1)', 'load_only': '(True)'}), '(missing=-1, load_only=True)\n', (27274, 27302), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((27334, 27377), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (27347, 27377), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((27397, 27440), 'marshmallow.fields.String', 'fields.String', ([], {'missing': 'None', 'load_only': '(True)'}), '(missing=None, load_only=True)\n', (27410, 27440), False, 'from marshmallow import fields, pre_load, post_load, pre_dump, post_dump, EXCLUDE\n'), ((27716, 27740), 'os.path.isfile', 'path.isfile', (['config.file'], {}), '(config.file)\n', (27727, 27740), False, 'from os import path\n'), ((6657, 6681), 'ipaddress.ip_address', 'ip_address', (['host.address'], {}), '(host.address)\n', (6667, 6681), False, 'from ipaddress import IPv4Address, IPv6Address, ip_address\n'), ((27745, 27770), 'os.path.getsize', 'path.getsize', (['config.file'], {}), '(config.file)\n', (27757, 27770), False, 'from os import path\n'), ((854, 865), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (863, 865), False, 'from pathlib import Path\n')]
# coding:utf-8 """ """ import os import sys import cv2 import csv import fire import time import json import tarfile import torch import torch.nn as nn from torchvision import models from torchvision.models.vgg import VGG from torch.utils.data import Dataset from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import ImageFolder import pretrainedmodels from glob import glob from PIL import Image import numpy as np import matplotlib.pyplot as plt import pandas as pd data_dir = 'D:/workspace/udacity/MLND/capstone/distracted_driver_detection/data/' ON_CLIENT = True NUM_CLASSES = 10 DROPOUT = 0.5 DEVICE_ID = 0 CROP_SIZE = (320, 480) IMG_SIZE = (224, 224) BATCH_SIZE = 32 IMG_MEAN = (0.3184719383716583, 0.3813590109348297, 0.37875279784202576) IMG_VAR = (0.3184719383716583, 0.3813589811325073, 0.37875282764434814) IMG_STD = (0.5643, 0.6175, 0.6154) KEEP_LAYER = None CUDA = torch.cuda.is_available() # DEVICE = torch.device("cuda" if CUDA else "cpu") DEVICE_MASKER = torch.device("cpu") def device_setting(on_client): if on_client is True: DEVICE_MASKER = torch.device("cuda:0") else: DEVICE_MASKER = torch.device("cuda:3") ranges = { 'vgg11': ((0, 3), (3, 6), (6, 11), (11, 16), (16, 21)), 'vgg13': ((0, 5), (5, 10), (10, 15), (15, 20), (20, 25)), 'vgg16': ((0, 5), (5, 10), (10, 17), (17, 24), (24, 31)), 'vgg19': ((0, 5), (5, 10), (10, 19), (19, 28), (28, 37)) } cfg = { 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) class VGGNet(VGG): def __init__(self, pretrained=True, model='vgg16'): super().__init__(make_layers(cfg[model])) self.ranges = ranges[model] if pretrained: exec("self.load_state_dict(models.%s(pretrained=True).state_dict())" % model) def forward(self, x): output = {} # get the output of each maxpooling layer (5 maxpool in VGG net) for idx, (begin, end) in enumerate(self.ranges): # self.ranges = ((0, 5), (5, 10), (10, 17), (17, 24), (24, 31)) (vgg16 examples) for layer in range(begin, end): x = self.features[layer](x) output["x%d" % (idx+1)] = x return output class MaskNet(nn.Module): def __init__(self, model=None, dropout=DROPOUT, num_classes=NUM_CLASSES, keep_layer=KEEP_LAYER): super(MaskNet, self).__init__() if model is None: self.featurer = VGGNet() else: self.featurer = model self.dropout = dropout self.num_classes = num_classes self.keep_layer = keep_layer for name, param in self.featurer.named_parameters(): param.requires_grad = self.check_keep_layer(name) self.relu = nn.ReLU(inplace=True) self.deconv1 = nn.ConvTranspose2d( 512, 512, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1) self.bn1 = nn.BatchNorm2d(512) self.deconv2 = nn.ConvTranspose2d( 512, 256, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1) self.bn2 = nn.BatchNorm2d(256) self.deconv3 = nn.ConvTranspose2d( 256, 128, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1) self.bn3 = nn.BatchNorm2d(128) self.deconv4 = nn.ConvTranspose2d( 128, 64, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1) self.bn4 = nn.BatchNorm2d(64) self.deconv5 = nn.ConvTranspose2d( 64, 32, kernel_size=3, stride=2, padding=1, dilation=1, output_padding=1) self.bn5 = nn.BatchNorm2d(32) self.masker = nn.Sequential( nn.Conv2d(32, 1, kernel_size=3, stride=1, padding=1) ) self.make_classifier('xception', 'imagenet') def extract_mask_image(self, x, show=False, show_index=0): feature_image = self.extract_feature_image( x, show=show, show_index=show_index) mask = self.make_mask(feature_image, show=show, show_index=show_index) mask_feature_image = self.make_image( x, mask, show=show, show_index=show_index) return mask_feature_image def extract_feature_image(self, x, show=False, show_index=0): output = self.featurer(x) x5 = output['x5'] x4 = output['x4'] x3 = output['x3'] x2 = output['x2'] x1 = output['x1'] feature = self.bn1(self.relu(self.deconv1(x5))) feature = feature + x4 feature = self.bn2(self.relu(self.deconv2(feature))) feature = feature + x3 feature = self.bn3(self.relu(self.deconv3(feature))) feature = feature + x2 feature = self.bn4(self.relu(self.deconv4(feature))) feature = feature + x1 feature = self.bn5(self.relu(self.deconv5(feature))) if show is True: image = transforms.functional.to_pil_image( feature[show_index].cpu().detach()) image.show() return feature def make_mask(self, feature, show=False, show_index=0): mask = self.masker(feature) self.tensor_filter(mask) mask[mask > mask.mean()] = 0 mask[mask < mask.mean()] = 1 if show is True: image = transforms.functional.to_pil_image( mask[show_index].cpu().detach()) image.show() return mask def make_image(self, x, mask, show=False, show_index=0): # show image after masked image = x * mask #show = transforms.functional.to_pil_image(image[0].cpu().detach()) # show.show() if show is True: show_image = transforms.functional.to_pil_image( image[show_index].cpu().detach()) show_image.show() return image def forward(self, x): #x = self.extract_feature_image(x) pred = self.classifier(x) return pred def make_classifier(self, model_name='xception', pretrained='imagenet'): self.classifier = pretrainedmodels.__dict__[ model_name](pretrained=pretrained) for param in self.classifier.parameters(): param.requires_grad = False in_dim = self.classifier.last_linear.in_features self.classifier_last_linear = nn.Sequential( nn.Dropout(self.dropout), nn.Linear(in_dim, 4096), nn.ReLU(True), nn.Dropout(self.dropout), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(self.dropout), nn.Linear(4096, self.num_classes) ) self.classifier.last_linear = self.classifier_last_linear def ModePool2d(self, input_tensor, kernel_size=3): row_size = input_tensor.size(0) col_size = input_tensor.size(1) row_count = row_size // kernel_size col_count = col_size // kernel_size for i in range(0, row_count): for j in range(0, col_count): m = input_tensor[i*kernel_size: i*kernel_size + kernel_size, j*kernel_size: j*kernel_size+kernel_size] feature_value = m.mode()[0].mode()[0] input_tensor[i*kernel_size: i*kernel_size + kernel_size, j*kernel_size: j*kernel_size+kernel_size] = feature_value return input_tensor def tensor_filter(self, tensors_items): for item in tensors_items: for tensor in item: self.ModePool2d(tensor) def check_keep_layer(self, name): if self.keep_layer is None: return False if len(self.keep_layer) == 0: return False for kl in self.keep_layer: if kl in name: return True return False class DriverDataset(Dataset): def __init__(self, data_dir, data_frame, subject): super(DriverDataset, self).__init__() self.data_dir = os.path.abspath(data_dir) self.df = data_frame self.count = 0 self.transorms_gen = transforms.Compose([ transforms.CenterCrop(CROP_SIZE), transforms.Resize(IMG_SIZE), transforms.ToTensor(), transforms.Normalize(IMG_MEAN, IMG_STD) ]) self.image_paths = {} self.image_paths_ = [] for s in range(0, 10): state = 'c{}'.format(s) self.image_paths[state] = [] items = self.df[(self.df["subject"] == subject)] for _, row in items.iterrows(): subpath = row["classname"] + "/" + row["img"] path = os.path.join(self.data_dir, subpath) self.image_paths[state].append(path) path_state = (path, s) self.image_paths_.append(path_state) self.count += 1 print("{} number of {}'s image loaded.".format(self.count, subject)) def __len__(self): return self.count def __getitem__(self, index): # assert index >= len(self.image_paths), 'index, out of range' path = self.image_paths_[index][0] image = Image.open(path) filename = os.path.basename(path) # image_tensor = transforms.functional.to_tensor(image) label = self.image_paths_[index][1] transorms_image = self.transorms_gen(image) return (transorms_image, (label, filename)) class ClassDataset(Dataset): def __init__(self, data_dir, sub_dir='train'): super(ClassDataset, self).__init__() read_dir = os.path.join(data_dir, sub_dir) self.data_dir = os.path.abspath(read_dir) self.test = True if sub_dir == 'test' else False self.transorms_gen = transforms.Compose([ transforms.CenterCrop(CROP_SIZE), transforms.Resize(IMG_SIZE), transforms.ToTensor(), transforms.Normalize(IMG_MEAN, IMG_STD) ]) self.image_paths = {} self.image_paths_ = [] if sub_dir == 'test': self.image_paths_ = glob(os.path.join(self.data_dir, '*.jpg')) self.image_paths = self.image_paths_ else: for s in range(0, 10): state = 'c{}'.format(s) read_path = os.path.join(self.data_dir, state) self.image_paths[state] = glob( os.path.join(read_path, '*.jpg')) path_states = [(path, s) for path in self.image_paths[state]] self.image_paths_.extend(path_states) print("{} number of image loaded.".format(len(self.image_paths_))) def __len__(self): return len(self.image_paths_) def __getitem__(self, index): # assert index >= len(self.image_paths), 'index, out of range' if self.test is False: path = self.image_paths_[index][0] image = Image.open(path) filename = os.path.basename(path) # image_tensor = transforms.functional.to_tensor(image) label = self.image_paths_[index][1] transorms_image = self.transorms_gen(image) else: path = self.image_paths_[index] image = Image.open(path) filename = os.path.basename(path) label = 0 transorms_image = self.transorms_gen(image) return (transorms_image, (label, filename)) def generate_mask_image(data_dir='../data/', save_dir='../data/mask/', sub_dir='train', batch_size=64, model_path=None, on_client=ON_CLIENT): device_setting(on_client) data_dir = os.path.abspath(data_dir) if model_path is not None: model_path = os.path.abspath(model_path) save_dir = os.path.abspath(save_dir) masker_model = MaskNet() masker_model.to(DEVICE_MASKER) if model_path is not None: masker_model.load_state_dict(torch.load( model_path, map_location=DEVICE_MASKER)) print('[INFO]load model ok') # mask_gen = ImageFolder(os.path.join( # data_dir, sub_dir), transform=transorms_gen) image_dataset = ClassDataset(data_dir=data_dir, sub_dir=sub_dir) mask_dataiter = DataLoader( image_dataset, batch_size=batch_size, shuffle=False) print('[INFO]generate datasets ok') output_dir = os.path.join(save_dir, sub_dir) masker_model.eval() for i, data in enumerate(mask_dataiter): print('Batch {}'.format(i)) images = data[0] labels = data[1][0] filenames = data[1][1] images = images.to(DEVICE_MASKER) masked_images = masker_model.extract_mask_image(images, show=False) for i, masked_image in enumerate(masked_images): filename = filenames[i] output_name = 'masked_{}'.format(filename) if sub_dir == 'test': output_path = os.path.join(output_dir, output_name) else: label = labels[i] output_path = os.path.join(output_dir, 'c{}'.format(label)) output_image = transforms.functional.to_pil_image( masked_image.cpu()) output_image.save(output_path) print('save {} to {}'.format(output_name, output_path)) # ======================================================================================================== #generate_mask_image(data_dir=data_dir+'../data/', batch_size=1, on_client=True) if __name__ == '__main__': fire.Fire()
[ "torch.nn.ReLU", "torch.nn.Dropout", "fire.Fire", "torch.nn.Sequential", "torch.cuda.is_available", "torch.nn.BatchNorm2d", "torchvision.transforms.ToTensor", "torchvision.transforms.Normalize", "torchvision.transforms.Resize", "torch.device", "torchvision.transforms.CenterCrop", "PIL.Image.open", "torch.load", "os.path.join", "torch.nn.Conv2d", "torch.nn.MaxPool2d", "os.path.basename", "torch.nn.Linear", "torch.utils.data.DataLoader", "os.path.abspath", "torch.nn.ConvTranspose2d" ]
[((933, 958), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (956, 958), False, 'import torch\n'), ((1027, 1046), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (1039, 1046), False, 'import torch\n'), ((2356, 2378), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (2369, 2378), True, 'import torch.nn as nn\n'), ((12483, 12508), 'os.path.abspath', 'os.path.abspath', (['data_dir'], {}), '(data_dir)\n', (12498, 12508), False, 'import os\n'), ((12604, 12629), 'os.path.abspath', 'os.path.abspath', (['save_dir'], {}), '(save_dir)\n', (12619, 12629), False, 'import os\n'), ((13049, 13112), 'torch.utils.data.DataLoader', 'DataLoader', (['image_dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)'}), '(image_dataset, batch_size=batch_size, shuffle=False)\n', (13059, 13112), False, 'from torch.utils.data import DataLoader\n'), ((13180, 13211), 'os.path.join', 'os.path.join', (['save_dir', 'sub_dir'], {}), '(save_dir, sub_dir)\n', (13192, 13211), False, 'import os\n'), ((14329, 14340), 'fire.Fire', 'fire.Fire', ([], {}), '()\n', (14338, 14340), False, 'import fire\n'), ((1130, 1152), 'torch.device', 'torch.device', (['"""cuda:0"""'], {}), "('cuda:0')\n", (1142, 1152), False, 'import torch\n'), ((1187, 1209), 'torch.device', 'torch.device', (['"""cuda:3"""'], {}), "('cuda:3')\n", (1199, 1209), False, 'import torch\n'), ((3627, 3648), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3634, 3648), True, 'import torch.nn as nn\n'), ((3672, 3770), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(512)', '(512)'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)', 'dilation': '(1)', 'output_padding': '(1)'}), '(512, 512, kernel_size=3, stride=2, padding=1, dilation=1,\n output_padding=1)\n', (3690, 3770), True, 'import torch.nn as nn\n'), ((3799, 3818), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(512)'], {}), '(512)\n', (3813, 3818), True, 'import torch.nn as nn\n'), ((3842, 3940), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(512)', '(256)'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)', 'dilation': '(1)', 'output_padding': '(1)'}), '(512, 256, kernel_size=3, stride=2, padding=1, dilation=1,\n output_padding=1)\n', (3860, 3940), True, 'import torch.nn as nn\n'), ((3969, 3988), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(256)'], {}), '(256)\n', (3983, 3988), True, 'import torch.nn as nn\n'), ((4012, 4110), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(256)', '(128)'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)', 'dilation': '(1)', 'output_padding': '(1)'}), '(256, 128, kernel_size=3, stride=2, padding=1, dilation=1,\n output_padding=1)\n', (4030, 4110), True, 'import torch.nn as nn\n'), ((4139, 4158), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(128)'], {}), '(128)\n', (4153, 4158), True, 'import torch.nn as nn\n'), ((4182, 4279), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(128)', '(64)'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)', 'dilation': '(1)', 'output_padding': '(1)'}), '(128, 64, kernel_size=3, stride=2, padding=1, dilation=1,\n output_padding=1)\n', (4200, 4279), True, 'import torch.nn as nn\n'), ((4308, 4326), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (4322, 4326), True, 'import torch.nn as nn\n'), ((4350, 4446), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(64)', '(32)'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)', 'dilation': '(1)', 'output_padding': '(1)'}), '(64, 32, kernel_size=3, stride=2, padding=1, dilation=1,\n output_padding=1)\n', (4368, 4446), True, 'import torch.nn as nn\n'), ((4475, 4493), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(32)'], {}), '(32)\n', (4489, 4493), True, 'import torch.nn as nn\n'), ((8822, 8847), 'os.path.abspath', 'os.path.abspath', (['data_dir'], {}), '(data_dir)\n', (8837, 8847), False, 'import os\n'), ((10003, 10019), 'PIL.Image.open', 'Image.open', (['path'], {}), '(path)\n', (10013, 10019), False, 'from PIL import Image\n'), ((10039, 10061), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (10055, 10061), False, 'import os\n'), ((10420, 10451), 'os.path.join', 'os.path.join', (['data_dir', 'sub_dir'], {}), '(data_dir, sub_dir)\n', (10432, 10451), False, 'import os\n'), ((10476, 10501), 'os.path.abspath', 'os.path.abspath', (['read_dir'], {}), '(read_dir)\n', (10491, 10501), False, 'import os\n'), ((12561, 12588), 'os.path.abspath', 'os.path.abspath', (['model_path'], {}), '(model_path)\n', (12576, 12588), False, 'import os\n'), ((2085, 2136), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', 'v'], {'kernel_size': '(3)', 'padding': '(1)'}), '(in_channels, v, kernel_size=3, padding=1)\n', (2094, 2136), True, 'import torch.nn as nn\n'), ((4544, 4596), 'torch.nn.Conv2d', 'nn.Conv2d', (['(32)', '(1)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(32, 1, kernel_size=3, stride=1, padding=1)\n', (4553, 4596), True, 'import torch.nn as nn\n'), ((7186, 7210), 'torch.nn.Dropout', 'nn.Dropout', (['self.dropout'], {}), '(self.dropout)\n', (7196, 7210), True, 'import torch.nn as nn\n'), ((7224, 7247), 'torch.nn.Linear', 'nn.Linear', (['in_dim', '(4096)'], {}), '(in_dim, 4096)\n', (7233, 7247), True, 'import torch.nn as nn\n'), ((7261, 7274), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (7268, 7274), True, 'import torch.nn as nn\n'), ((7288, 7312), 'torch.nn.Dropout', 'nn.Dropout', (['self.dropout'], {}), '(self.dropout)\n', (7298, 7312), True, 'import torch.nn as nn\n'), ((7326, 7347), 'torch.nn.Linear', 'nn.Linear', (['(4096)', '(4096)'], {}), '(4096, 4096)\n', (7335, 7347), True, 'import torch.nn as nn\n'), ((7361, 7374), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (7368, 7374), True, 'import torch.nn as nn\n'), ((7388, 7412), 'torch.nn.Dropout', 'nn.Dropout', (['self.dropout'], {}), '(self.dropout)\n', (7398, 7412), True, 'import torch.nn as nn\n'), ((7426, 7459), 'torch.nn.Linear', 'nn.Linear', (['(4096)', 'self.num_classes'], {}), '(4096, self.num_classes)\n', (7435, 7459), True, 'import torch.nn as nn\n'), ((11740, 11756), 'PIL.Image.open', 'Image.open', (['path'], {}), '(path)\n', (11750, 11756), False, 'from PIL import Image\n'), ((11780, 11802), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (11796, 11802), False, 'import os\n'), ((12053, 12069), 'PIL.Image.open', 'Image.open', (['path'], {}), '(path)\n', (12063, 12069), False, 'from PIL import Image\n'), ((12093, 12115), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (12109, 12115), False, 'import os\n'), ((12764, 12814), 'torch.load', 'torch.load', (['model_path'], {'map_location': 'DEVICE_MASKER'}), '(model_path, map_location=DEVICE_MASKER)\n', (12774, 12814), False, 'import torch\n'), ((2011, 2048), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(2)', 'stride': '(2)'}), '(kernel_size=2, stride=2)\n', (2023, 2048), True, 'import torch.nn as nn\n'), ((8963, 8995), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['CROP_SIZE'], {}), '(CROP_SIZE)\n', (8984, 8995), False, 'from torchvision import transforms\n'), ((9009, 9036), 'torchvision.transforms.Resize', 'transforms.Resize', (['IMG_SIZE'], {}), '(IMG_SIZE)\n', (9026, 9036), False, 'from torchvision import transforms\n'), ((9050, 9071), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (9069, 9071), False, 'from torchvision import transforms\n'), ((9085, 9124), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['IMG_MEAN', 'IMG_STD'], {}), '(IMG_MEAN, IMG_STD)\n', (9105, 9124), False, 'from torchvision import transforms\n'), ((9496, 9532), 'os.path.join', 'os.path.join', (['self.data_dir', 'subpath'], {}), '(self.data_dir, subpath)\n', (9508, 9532), False, 'import os\n'), ((10622, 10654), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['CROP_SIZE'], {}), '(CROP_SIZE)\n', (10643, 10654), False, 'from torchvision import transforms\n'), ((10668, 10695), 'torchvision.transforms.Resize', 'transforms.Resize', (['IMG_SIZE'], {}), '(IMG_SIZE)\n', (10685, 10695), False, 'from torchvision import transforms\n'), ((10709, 10730), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (10728, 10730), False, 'from torchvision import transforms\n'), ((10744, 10783), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['IMG_MEAN', 'IMG_STD'], {}), '(IMG_MEAN, IMG_STD)\n', (10764, 10783), False, 'from torchvision import transforms\n'), ((10925, 10961), 'os.path.join', 'os.path.join', (['self.data_dir', '"""*.jpg"""'], {}), "(self.data_dir, '*.jpg')\n", (10937, 10961), False, 'import os\n'), ((11129, 11163), 'os.path.join', 'os.path.join', (['self.data_dir', 'state'], {}), '(self.data_dir, state)\n', (11141, 11163), False, 'import os\n'), ((13732, 13769), 'os.path.join', 'os.path.join', (['output_dir', 'output_name'], {}), '(output_dir, output_name)\n', (13744, 13769), False, 'import os\n'), ((2199, 2216), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['v'], {}), '(v)\n', (2213, 2216), True, 'import torch.nn as nn\n'), ((2218, 2239), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2225, 2239), True, 'import torch.nn as nn\n'), ((2294, 2315), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2301, 2315), True, 'import torch.nn as nn\n'), ((11232, 11264), 'os.path.join', 'os.path.join', (['read_path', '"""*.jpg"""'], {}), "(read_path, '*.jpg')\n", (11244, 11264), False, 'import os\n')]
import socket import struct import threading import numpy as np from Online.AmpInterface import AmpDataClient class Neuracle(AmpDataClient): UPDATE_INTERVAL = 0.04 BYTES_PER_NUM = 4 BUFFER_LEN = 4 # in secondes def __init__(self, n_channel=9, samplerate=1000, host='localhost', port=8712): self.n_channel = n_channel self.chunk_size = int(self.UPDATE_INTERVAL * samplerate * self.BYTES_PER_NUM * n_channel) self.__sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) self.buffer = [] self.max_buffer_length = int(self.BUFFER_LEN / self.UPDATE_INTERVAL) self._host = host self._port = port # thread lock self.lock = threading.Lock() self.__datathread = threading.Thread(target=self.__recv_loop) # start client self.config() def config(self): self.__sock.connect((self._host, self._port)) self.__run_forever() def is_active(self): return self.__sock.fileno() != -1 def close(self): self.__sock.close() self.__datathread.join() def __recv_loop(self): while self.__sock.fileno() != -1: try: data = self.__sock.recv(self.chunk_size) except OSError: break if len(data) % 4 != 0: continue self.lock.acquire() self.buffer.append(data) # remove old data if len(self.buffer) == self.max_buffer_length: del self.buffer[0] self.lock.release() def __run_forever(self): self.__datathread.start() def get_trial_data(self): """ called to copy trial data from buffer :return: timestamps: list of timestamp data: ndarray with shape of (channels, timesteps) """ self.lock.acquire() raw_data = self.buffer.copy() self.buffer.clear() self.lock.release() total_data = b''.join(raw_data) byte_data = bytearray(total_data) if len(byte_data) % 4 != 0: raise ValueError data = np.frombuffer(byte_data, dtype='<f') data = np.reshape(data, (-1, self.n_channel)) timestamps = np.nonzero(data[:, -1])[0].tolist() return timestamps, data[:, :-1].T
[ "numpy.reshape", "socket.socket", "threading.Lock", "numpy.nonzero", "numpy.frombuffer", "threading.Thread" ]
[((467, 519), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM', '(0)'], {}), '(socket.AF_INET, socket.SOCK_STREAM, 0)\n', (480, 519), False, 'import socket\n'), ((716, 732), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (730, 732), False, 'import threading\n'), ((761, 802), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.__recv_loop'}), '(target=self.__recv_loop)\n', (777, 802), False, 'import threading\n'), ((2147, 2183), 'numpy.frombuffer', 'np.frombuffer', (['byte_data'], {'dtype': '"""<f"""'}), "(byte_data, dtype='<f')\n", (2160, 2183), True, 'import numpy as np\n'), ((2199, 2237), 'numpy.reshape', 'np.reshape', (['data', '(-1, self.n_channel)'], {}), '(data, (-1, self.n_channel))\n', (2209, 2237), True, 'import numpy as np\n'), ((2259, 2282), 'numpy.nonzero', 'np.nonzero', (['data[:, -1]'], {}), '(data[:, -1])\n', (2269, 2282), True, 'import numpy as np\n')]
import jwt private_key = open('keys/privatekey').read() claims = { 'sub': 'Too5BdPayTQACdw1AJK1rD4nKUD0Ag7J', 'data_payload': 'payload data', 'iss': 'ambulance', 'aud': 'dps' } token = jwt.encode(claims, private_key, algorithm='RS256').decode('UTF-8') print(token)
[ "jwt.encode" ]
[((204, 254), 'jwt.encode', 'jwt.encode', (['claims', 'private_key'], {'algorithm': '"""RS256"""'}), "(claims, private_key, algorithm='RS256')\n", (214, 254), False, 'import jwt\n')]
# Copyright 2018 GoDaddy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_log import log as logging import pecan from wsme import types as wtypes from wsmeext import pecan as wsme_pecan from octavia.api.v2.controllers import base from octavia.api.v2.types import usage as usage_types from octavia.common import constants CONF = cfg.CONF LOG = logging.getLogger(__name__) class UsageController(base.BaseController): RBAC_TYPE = constants.RBAC_USAGE def __init__(self): super(UsageController, self).__init__() def _get_usage(self, project_id=None): context = pecan.request.context.get('octavia_context') rbac = constants.RBAC_GET_ALL_GLOBAL if project_id: rbac = constants.RBAC_GET_ONE self._auth_validate_action(context, context.project_id, rbac) db_usage = self._get_db_usage(context.session, project_id) usage_model = usage_types.UsageResponse(db_usage) return usage_types.UsageRootResponse(usage=usage_model) @wsme_pecan.wsexpose(usage_types.UsageRootResponse, wtypes.text) def get_one(self, project_id): """Gets a single project's usage details.""" return self._get_usage(project_id) @wsme_pecan.wsexpose(usage_types.UsageRootResponse) def get_all(self): """Gets usage details for the entire system.""" return self._get_usage()
[ "octavia.api.v2.types.usage.UsageResponse", "pecan.request.context.get", "wsmeext.pecan.wsexpose", "octavia.api.v2.types.usage.UsageRootResponse", "oslo_log.log.getLogger" ]
[((913, 940), 'oslo_log.log.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (930, 940), True, 'from oslo_log import log as logging\n'), ((1581, 1644), 'wsmeext.pecan.wsexpose', 'wsme_pecan.wsexpose', (['usage_types.UsageRootResponse', 'wtypes.text'], {}), '(usage_types.UsageRootResponse, wtypes.text)\n', (1600, 1644), True, 'from wsmeext import pecan as wsme_pecan\n'), ((1782, 1832), 'wsmeext.pecan.wsexpose', 'wsme_pecan.wsexpose', (['usage_types.UsageRootResponse'], {}), '(usage_types.UsageRootResponse)\n', (1801, 1832), True, 'from wsmeext import pecan as wsme_pecan\n'), ((1159, 1203), 'pecan.request.context.get', 'pecan.request.context.get', (['"""octavia_context"""'], {}), "('octavia_context')\n", (1184, 1203), False, 'import pecan\n'), ((1475, 1510), 'octavia.api.v2.types.usage.UsageResponse', 'usage_types.UsageResponse', (['db_usage'], {}), '(db_usage)\n', (1500, 1510), True, 'from octavia.api.v2.types import usage as usage_types\n'), ((1526, 1574), 'octavia.api.v2.types.usage.UsageRootResponse', 'usage_types.UsageRootResponse', ([], {'usage': 'usage_model'}), '(usage=usage_model)\n', (1555, 1574), True, 'from octavia.api.v2.types import usage as usage_types\n')]
""" Aries Cloud Agent No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v0.7.2 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from acapy_client.api_client import ApiClient, Endpoint as _Endpoint from acapy_client.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types, ) from acapy_client.model.create_wallet_request import CreateWalletRequest from acapy_client.model.create_wallet_response import CreateWalletResponse from acapy_client.model.create_wallet_token_request import CreateWalletTokenRequest from acapy_client.model.create_wallet_token_response import CreateWalletTokenResponse from acapy_client.model.remove_wallet_request import RemoveWalletRequest from acapy_client.model.update_wallet_request import UpdateWalletRequest from acapy_client.model.wallet_list import WalletList from acapy_client.model.wallet_record import WalletRecord class MultitenancyApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client self.multitenancy_wallet_post_endpoint = _Endpoint( settings={ "response_type": (CreateWalletResponse,), "auth": ["AuthorizationHeader"], "endpoint_path": "/multitenancy/wallet", "operation_id": "multitenancy_wallet_post", "http_method": "POST", "servers": None, }, params_map={ "all": [ "body", ], "required": [], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "body": (CreateWalletRequest,), }, "attribute_map": {}, "location_map": { "body": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, ) self.multitenancy_wallet_wallet_id_get_endpoint = _Endpoint( settings={ "response_type": (WalletRecord,), "auth": ["AuthorizationHeader"], "endpoint_path": "/multitenancy/wallet/{wallet_id}", "operation_id": "multitenancy_wallet_wallet_id_get", "http_method": "GET", "servers": None, }, params_map={ "all": [ "wallet_id", ], "required": [ "wallet_id", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "wallet_id": (str,), }, "attribute_map": { "wallet_id": "wallet_id", }, "location_map": { "wallet_id": "path", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, ) self.multitenancy_wallet_wallet_id_put_endpoint = _Endpoint( settings={ "response_type": (WalletRecord,), "auth": ["AuthorizationHeader"], "endpoint_path": "/multitenancy/wallet/{wallet_id}", "operation_id": "multitenancy_wallet_wallet_id_put", "http_method": "PUT", "servers": None, }, params_map={ "all": [ "wallet_id", "body", ], "required": [ "wallet_id", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "wallet_id": (str,), "body": (UpdateWalletRequest,), }, "attribute_map": { "wallet_id": "wallet_id", }, "location_map": { "wallet_id": "path", "body": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, ) self.multitenancy_wallet_wallet_id_remove_post_endpoint = _Endpoint( settings={ "response_type": ( bool, date, datetime, dict, float, int, list, str, none_type, ), "auth": ["AuthorizationHeader"], "endpoint_path": "/multitenancy/wallet/{wallet_id}/remove", "operation_id": "multitenancy_wallet_wallet_id_remove_post", "http_method": "POST", "servers": None, }, params_map={ "all": [ "wallet_id", "body", ], "required": [ "wallet_id", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "wallet_id": (str,), "body": (RemoveWalletRequest,), }, "attribute_map": { "wallet_id": "wallet_id", }, "location_map": { "wallet_id": "path", "body": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, ) self.multitenancy_wallet_wallet_id_token_post_endpoint = _Endpoint( settings={ "response_type": (CreateWalletTokenResponse,), "auth": ["AuthorizationHeader"], "endpoint_path": "/multitenancy/wallet/{wallet_id}/token", "operation_id": "multitenancy_wallet_wallet_id_token_post", "http_method": "POST", "servers": None, }, params_map={ "all": [ "wallet_id", "body", ], "required": [ "wallet_id", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "wallet_id": (str,), "body": (CreateWalletTokenRequest,), }, "attribute_map": { "wallet_id": "wallet_id", }, "location_map": { "wallet_id": "path", "body": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, ) self.multitenancy_wallets_get_endpoint = _Endpoint( settings={ "response_type": (WalletList,), "auth": ["AuthorizationHeader"], "endpoint_path": "/multitenancy/wallets", "operation_id": "multitenancy_wallets_get", "http_method": "GET", "servers": None, }, params_map={ "all": [ "wallet_name", ], "required": [], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "wallet_name": (str,), }, "attribute_map": { "wallet_name": "wallet_name", }, "location_map": { "wallet_name": "query", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, ) def multitenancy_wallet_post(self, **kwargs): """Create a subwallet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.multitenancy_wallet_post(async_req=True) >>> result = thread.get() Keyword Args: body (CreateWalletRequest): [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: CreateWalletResponse If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get("_return_http_data_only", True) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_spec_property_naming"] = kwargs.get("_spec_property_naming", False) kwargs["_content_type"] = kwargs.get("_content_type") kwargs["_host_index"] = kwargs.get("_host_index") return self.multitenancy_wallet_post_endpoint.call_with_http_info(**kwargs) def multitenancy_wallet_wallet_id_get(self, wallet_id, **kwargs): """Get a single subwallet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.multitenancy_wallet_wallet_id_get(wallet_id, async_req=True) >>> result = thread.get() Args: wallet_id (str): Subwallet identifier Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: WalletRecord If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get("_return_http_data_only", True) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_spec_property_naming"] = kwargs.get("_spec_property_naming", False) kwargs["_content_type"] = kwargs.get("_content_type") kwargs["_host_index"] = kwargs.get("_host_index") kwargs["wallet_id"] = wallet_id return self.multitenancy_wallet_wallet_id_get_endpoint.call_with_http_info( **kwargs ) def multitenancy_wallet_wallet_id_put(self, wallet_id, **kwargs): """Update a subwallet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.multitenancy_wallet_wallet_id_put(wallet_id, async_req=True) >>> result = thread.get() Args: wallet_id (str): Subwallet identifier Keyword Args: body (UpdateWalletRequest): [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: WalletRecord If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get("_return_http_data_only", True) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_spec_property_naming"] = kwargs.get("_spec_property_naming", False) kwargs["_content_type"] = kwargs.get("_content_type") kwargs["_host_index"] = kwargs.get("_host_index") kwargs["wallet_id"] = wallet_id return self.multitenancy_wallet_wallet_id_put_endpoint.call_with_http_info( **kwargs ) def multitenancy_wallet_wallet_id_remove_post(self, wallet_id, **kwargs): """Remove a subwallet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.multitenancy_wallet_wallet_id_remove_post(wallet_id, async_req=True) >>> result = thread.get() Args: wallet_id (str): Subwallet identifier Keyword Args: body (RemoveWalletRequest): [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: bool, date, datetime, dict, float, int, list, str, none_type If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get("_return_http_data_only", True) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_spec_property_naming"] = kwargs.get("_spec_property_naming", False) kwargs["_content_type"] = kwargs.get("_content_type") kwargs["_host_index"] = kwargs.get("_host_index") kwargs["wallet_id"] = wallet_id return ( self.multitenancy_wallet_wallet_id_remove_post_endpoint.call_with_http_info( **kwargs ) ) def multitenancy_wallet_wallet_id_token_post(self, wallet_id, **kwargs): """Get auth token for a subwallet # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.multitenancy_wallet_wallet_id_token_post(wallet_id, async_req=True) >>> result = thread.get() Args: wallet_id (str): Keyword Args: body (CreateWalletTokenRequest): [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: CreateWalletTokenResponse If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get("_return_http_data_only", True) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_spec_property_naming"] = kwargs.get("_spec_property_naming", False) kwargs["_content_type"] = kwargs.get("_content_type") kwargs["_host_index"] = kwargs.get("_host_index") kwargs["wallet_id"] = wallet_id return ( self.multitenancy_wallet_wallet_id_token_post_endpoint.call_with_http_info( **kwargs ) ) def multitenancy_wallets_get(self, **kwargs): """Query subwallets # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.multitenancy_wallets_get(async_req=True) >>> result = thread.get() Keyword Args: wallet_name (str): Wallet name. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: WalletList If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get("_return_http_data_only", True) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_spec_property_naming"] = kwargs.get("_spec_property_naming", False) kwargs["_content_type"] = kwargs.get("_content_type") kwargs["_host_index"] = kwargs.get("_host_index") return self.multitenancy_wallets_get_endpoint.call_with_http_info(**kwargs)
[ "acapy_client.api_client.ApiClient", "acapy_client.api_client.Endpoint" ]
[((1518, 2141), 'acapy_client.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (CreateWalletResponse,), 'auth': ['AuthorizationHeader'],\n 'endpoint_path': '/multitenancy/wallet', 'operation_id':\n 'multitenancy_wallet_post', 'http_method': 'POST', 'servers': None}", 'params_map': "{'all': ['body'], 'required': [], 'nullable': [], 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'body': (\n CreateWalletRequest,)}, 'attribute_map': {}, 'location_map': {'body':\n 'body'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client'}), "(settings={'response_type': (CreateWalletResponse,), 'auth': [\n 'AuthorizationHeader'], 'endpoint_path': '/multitenancy/wallet',\n 'operation_id': 'multitenancy_wallet_post', 'http_method': 'POST',\n 'servers': None}, params_map={'all': ['body'], 'required': [],\n 'nullable': [], 'enum': [], 'validation': []}, root_map={'validations':\n {}, 'allowed_values': {}, 'openapi_types': {'body': (\n CreateWalletRequest,)}, 'attribute_map': {}, 'location_map': {'body':\n 'body'}, 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client)\n", (1527, 2141), True, 'from acapy_client.api_client import ApiClient, Endpoint as _Endpoint\n'), ((2717, 3390), 'acapy_client.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (WalletRecord,), 'auth': ['AuthorizationHeader'],\n 'endpoint_path': '/multitenancy/wallet/{wallet_id}', 'operation_id':\n 'multitenancy_wallet_wallet_id_get', 'http_method': 'GET', 'servers': None}", 'params_map': "{'all': ['wallet_id'], 'required': ['wallet_id'], 'nullable': [], 'enum': [\n ], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'wallet_id': (\n str,)}, 'attribute_map': {'wallet_id': 'wallet_id'}, 'location_map': {\n 'wallet_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client'}), "(settings={'response_type': (WalletRecord,), 'auth': [\n 'AuthorizationHeader'], 'endpoint_path':\n '/multitenancy/wallet/{wallet_id}', 'operation_id':\n 'multitenancy_wallet_wallet_id_get', 'http_method': 'GET', 'servers':\n None}, params_map={'all': ['wallet_id'], 'required': ['wallet_id'],\n 'nullable': [], 'enum': [], 'validation': []}, root_map={'validations':\n {}, 'allowed_values': {}, 'openapi_types': {'wallet_id': (str,)},\n 'attribute_map': {'wallet_id': 'wallet_id'}, 'location_map': {\n 'wallet_id': 'path'}, 'collection_format_map': {}}, headers_map={\n 'accept': ['application/json'], 'content_type': []}, api_client=api_client)\n", (2726, 3390), True, 'from acapy_client.api_client import ApiClient, Endpoint as _Endpoint\n'), ((4040, 4774), 'acapy_client.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (WalletRecord,), 'auth': ['AuthorizationHeader'],\n 'endpoint_path': '/multitenancy/wallet/{wallet_id}', 'operation_id':\n 'multitenancy_wallet_wallet_id_put', 'http_method': 'PUT', 'servers': None}", 'params_map': "{'all': ['wallet_id', 'body'], 'required': ['wallet_id'], 'nullable': [],\n 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'wallet_id': (\n str,), 'body': (UpdateWalletRequest,)}, 'attribute_map': {'wallet_id':\n 'wallet_id'}, 'location_map': {'wallet_id': 'path', 'body': 'body'},\n 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client'}), "(settings={'response_type': (WalletRecord,), 'auth': [\n 'AuthorizationHeader'], 'endpoint_path':\n '/multitenancy/wallet/{wallet_id}', 'operation_id':\n 'multitenancy_wallet_wallet_id_put', 'http_method': 'PUT', 'servers':\n None}, params_map={'all': ['wallet_id', 'body'], 'required': [\n 'wallet_id'], 'nullable': [], 'enum': [], 'validation': []}, root_map={\n 'validations': {}, 'allowed_values': {}, 'openapi_types': {'wallet_id':\n (str,), 'body': (UpdateWalletRequest,)}, 'attribute_map': {'wallet_id':\n 'wallet_id'}, 'location_map': {'wallet_id': 'path', 'body': 'body'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client)\n", (4049, 4774), True, 'from acapy_client.api_client import ApiClient, Endpoint as _Endpoint\n'), ((5487, 6288), 'acapy_client.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (bool, date, datetime, dict, float, int, list, str,\n none_type), 'auth': ['AuthorizationHeader'], 'endpoint_path':\n '/multitenancy/wallet/{wallet_id}/remove', 'operation_id':\n 'multitenancy_wallet_wallet_id_remove_post', 'http_method': 'POST',\n 'servers': None}", 'params_map': "{'all': ['wallet_id', 'body'], 'required': ['wallet_id'], 'nullable': [],\n 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'wallet_id': (\n str,), 'body': (RemoveWalletRequest,)}, 'attribute_map': {'wallet_id':\n 'wallet_id'}, 'location_map': {'wallet_id': 'path', 'body': 'body'},\n 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client'}), "(settings={'response_type': (bool, date, datetime, dict, float,\n int, list, str, none_type), 'auth': ['AuthorizationHeader'],\n 'endpoint_path': '/multitenancy/wallet/{wallet_id}/remove',\n 'operation_id': 'multitenancy_wallet_wallet_id_remove_post',\n 'http_method': 'POST', 'servers': None}, params_map={'all': [\n 'wallet_id', 'body'], 'required': ['wallet_id'], 'nullable': [], 'enum':\n [], 'validation': []}, root_map={'validations': {}, 'allowed_values': {\n }, 'openapi_types': {'wallet_id': (str,), 'body': (RemoveWalletRequest,\n )}, 'attribute_map': {'wallet_id': 'wallet_id'}, 'location_map': {\n 'wallet_id': 'path', 'body': 'body'}, 'collection_format_map': {}},\n headers_map={'accept': ['application/json'], 'content_type': []},\n api_client=api_client)\n", (5496, 6288), True, 'from acapy_client.api_client import ApiClient, Endpoint as _Endpoint\n'), ((7195, 7960), 'acapy_client.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (CreateWalletTokenResponse,), 'auth': [\n 'AuthorizationHeader'], 'endpoint_path':\n '/multitenancy/wallet/{wallet_id}/token', 'operation_id':\n 'multitenancy_wallet_wallet_id_token_post', 'http_method': 'POST',\n 'servers': None}", 'params_map': "{'all': ['wallet_id', 'body'], 'required': ['wallet_id'], 'nullable': [],\n 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'wallet_id': (\n str,), 'body': (CreateWalletTokenRequest,)}, 'attribute_map': {\n 'wallet_id': 'wallet_id'}, 'location_map': {'wallet_id': 'path', 'body':\n 'body'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client'}), "(settings={'response_type': (CreateWalletTokenResponse,), 'auth':\n ['AuthorizationHeader'], 'endpoint_path':\n '/multitenancy/wallet/{wallet_id}/token', 'operation_id':\n 'multitenancy_wallet_wallet_id_token_post', 'http_method': 'POST',\n 'servers': None}, params_map={'all': ['wallet_id', 'body'], 'required':\n ['wallet_id'], 'nullable': [], 'enum': [], 'validation': []}, root_map=\n {'validations': {}, 'allowed_values': {}, 'openapi_types': {'wallet_id':\n (str,), 'body': (CreateWalletTokenRequest,)}, 'attribute_map': {\n 'wallet_id': 'wallet_id'}, 'location_map': {'wallet_id': 'path', 'body':\n 'body'}, 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client)\n", (7204, 7960), True, 'from acapy_client.api_client import ApiClient, Endpoint as _Endpoint\n'), ((8657, 9304), 'acapy_client.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (WalletList,), 'auth': ['AuthorizationHeader'],\n 'endpoint_path': '/multitenancy/wallets', 'operation_id':\n 'multitenancy_wallets_get', 'http_method': 'GET', 'servers': None}", 'params_map': "{'all': ['wallet_name'], 'required': [], 'nullable': [], 'enum': [],\n 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'wallet_name':\n (str,)}, 'attribute_map': {'wallet_name': 'wallet_name'},\n 'location_map': {'wallet_name': 'query'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client'}), "(settings={'response_type': (WalletList,), 'auth': [\n 'AuthorizationHeader'], 'endpoint_path': '/multitenancy/wallets',\n 'operation_id': 'multitenancy_wallets_get', 'http_method': 'GET',\n 'servers': None}, params_map={'all': ['wallet_name'], 'required': [],\n 'nullable': [], 'enum': [], 'validation': []}, root_map={'validations':\n {}, 'allowed_values': {}, 'openapi_types': {'wallet_name': (str,)},\n 'attribute_map': {'wallet_name': 'wallet_name'}, 'location_map': {\n 'wallet_name': 'query'}, 'collection_format_map': {}}, headers_map={\n 'accept': ['application/json'], 'content_type': []}, api_client=api_client)\n", (8666, 9304), True, 'from acapy_client.api_client import ApiClient, Endpoint as _Endpoint\n'), ((1420, 1431), 'acapy_client.api_client.ApiClient', 'ApiClient', ([], {}), '()\n', (1429, 1431), False, 'from acapy_client.api_client import ApiClient, Endpoint as _Endpoint\n')]
import sys import os from cx_Freeze import setup, Executable os.environ['TCL_LIBRARY'] = r'C:\Users\John\AppData\Local\Programs\Python\Python36\tcl\tcl8.6' os.environ['TK_LIBRARY'] = r'C:\Users\John\AppData\Local\Programs\Python\Python36\tcl\tk8.6' base = None if sys.platform=='win32': base="WIN32GUI" executables = [ Executable("SynthesiaToKK.py", base=base) ] buildOptions = dict( includes = ["mido.backends.rtmidi"], include_files = [r'C:\Users\John\AppData\Local\Programs\Python\Python36\DLLs\tcl86t.dll', r'C:\Users\John\AppData\Local\Programs\Python\Python36\DLLs\tk86t.dll'] ) setup( name = "SynthesiaToKK", version = "1.0", description = "Let Synthesia control Komplete Kontrol keyboards Light Guide", options = dict(build_exe = buildOptions), executables = executables )
[ "cx_Freeze.Executable" ]
[((338, 379), 'cx_Freeze.Executable', 'Executable', (['"""SynthesiaToKK.py"""'], {'base': 'base'}), "('SynthesiaToKK.py', base=base)\n", (348, 379), False, 'from cx_Freeze import setup, Executable\n')]
import json from enum import Enum class BaseCommand(Enum): LEARN = "LEARN" # TEACH IN UPDATE = "UPDATE" # trigger updated notification @classmethod def extract_json(cls, text: str): data = json.loads(text) sections = ["command", "cmd", "COMMAND", "CMD"] for section in sections: text = data.get(section) if text is not None: break if text: text = text.strip() return text
[ "json.loads" ]
[((218, 234), 'json.loads', 'json.loads', (['text'], {}), '(text)\n', (228, 234), False, 'import json\n')]
from cartopy.crs import Globe, Stereographic from shapely import geometry class Amersfoort(Stereographic): """ Amersfoort projection for the Netherlands. Ellipsoid is Bessel 1841. https://epsg.io/28992 """ def __init__(self): globe = Globe(ellipse="bessel") super(Amersfoort, self).__init__( 52.15616055555555, 5.38763888888889, false_easting=155000, false_northing=463000, true_scale_latitude=0.9999079, globe=globe, ) @property def x_limits(self): return (-100000, 330000) @property def y_limits(self): return (150000, 650000) @property def boundary(self): x0, x1 = self.x_limits y0, y1 = self.y_limits return geometry.LineString( [(x0, y0), (x0, y1), (x1, y1), (x1, y0), (x0, y0)] )
[ "shapely.geometry.LineString", "cartopy.crs.Globe" ]
[((269, 292), 'cartopy.crs.Globe', 'Globe', ([], {'ellipse': '"""bessel"""'}), "(ellipse='bessel')\n", (274, 292), False, 'from cartopy.crs import Globe, Stereographic\n'), ((802, 873), 'shapely.geometry.LineString', 'geometry.LineString', (['[(x0, y0), (x0, y1), (x1, y1), (x1, y0), (x0, y0)]'], {}), '([(x0, y0), (x0, y1), (x1, y1), (x1, y0), (x0, y0)])\n', (821, 873), False, 'from shapely import geometry\n')]
# Follow resnet implementation at: # https://github.com/deepmind/dm-haiku/blob/main/haiku/_src/nets/resnet.py # which is under Apache License, Version 2.0. """Resnet Modules.""" from typing import Sequence, Tuple import jax import jax.numpy as jnp from ..core import Module from ..nn import BatchNorm2D, Conv2D, Linear, max_pool class ResnetBlock(Module): """ResnetBlock""" layers: Sequence[Tuple[Conv2D, BatchNorm2D]] def __init__( self, in_channels: int, out_channels: int, stride, use_projection: bool, bottleneck: bool, ): super().__init__() self.use_projection = use_projection if self.use_projection: self.proj_conv = Conv2D( in_channels, out_channels, kernel_shape=1, stride=stride, with_bias=False, padding=[(0, 0), (0, 0)], data_format="NCHW", name="proj_conv", ) self.proj_batchnorm = BatchNorm2D( out_channels, True, True, 0.9, data_format="NCHW", name="proj_bn" ) channel_div = 4 if bottleneck else 1 conv_0 = Conv2D( in_features=in_channels, out_features=out_channels // channel_div, kernel_shape=1 if bottleneck else 3, stride=1 if bottleneck else stride, with_bias=False, padding=[(0, 0), (0, 0)] if bottleneck else [(1, 1), (1, 1)], data_format="NCHW", name="conv1", ) bn_0 = BatchNorm2D( out_channels // channel_div, True, True, 0.9, data_format="NCHW", name="bn1" ) conv_1 = Conv2D( in_features=out_channels // channel_div, out_features=out_channels, kernel_shape=3, stride=stride if bottleneck else 1, with_bias=False, padding=[(1, 1), (1, 1)], data_format="NCHW", name="conv2", ) bn_1 = BatchNorm2D( out_channels, True, True, 0.9, data_format="NCHW", name="bn2" ) layers = ((conv_0, bn_0), (conv_1, bn_1)) if bottleneck: conv_2 = Conv2D( in_features=out_channels, out_features=out_channels, kernel_shape=1, stride=1, with_bias=False, padding=[(0, 0), (0, 0)], data_format="NCHW", name="conv3", ) bn_2 = BatchNorm2D( out_channels, True, True, 0.9, data_format="NCHW", name="bn3", ) layers = layers + ((conv_2, bn_2),) self.layers = layers def __call__(self, inputs): out = shortcut = inputs if self.use_projection: shortcut = self.proj_conv(shortcut) shortcut = self.proj_batchnorm(shortcut) for i, (conv_i, bn_i) in enumerate(self.layers): out = conv_i(out) out = bn_i(out) if i < len(self.layers) - 1: out = jax.nn.relu(out) return jax.nn.relu(out + shortcut) class BlockGroup(Module): """Group of Blocks.""" def __init__( self, in_channels: int, out_channels: int, num_blocks: int, stride, bottleneck: bool, use_projection, ): super().__init__() blocks = [] for i in range(num_blocks): blocks.append( ResnetBlock( in_channels=(in_channels if i == 0 else out_channels), out_channels=out_channels, stride=(1 if i else stride), use_projection=(i == 0 and use_projection), bottleneck=bottleneck, ) ) self.blocks = blocks def __call__(self, inputs): out = inputs for block in self.blocks: out = block(out) return out def check_length(length, value, name): if len(value) != length: raise ValueError(f"`{name}` must be of length 4 not {len(value)}") class ResNet(Module): """A generic ResNet module.""" CONFIGS = { 18: { "blocks_per_group": (2, 2, 2, 2), "bottleneck": False, "channels_per_group": (64, 128, 256, 512), "use_projection": (False, True, True, True), }, 34: { "blocks_per_group": (3, 4, 6, 3), "bottleneck": False, "channels_per_group": (64, 128, 256, 512), "use_projection": (False, True, True, True), }, 50: { "blocks_per_group": (3, 4, 6, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, 101: { "blocks_per_group": (3, 4, 23, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, 152: { "blocks_per_group": (3, 8, 36, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, 200: { "blocks_per_group": (3, 24, 36, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, } def __init__( self, input_channels: int, blocks_per_group: Sequence[int], num_classes: int, bottleneck: bool = True, channels_per_group: Sequence[int] = (256, 512, 1024, 2048), use_projection: Sequence[bool] = (True, True, True, True), logits_config=None, initial_conv_config=None, name=None, ): super().__init__(name=name) check_length(4, blocks_per_group, "blocks_per_group") check_length(4, channels_per_group, "channels_per_group") logits_config = dict(logits_config or {}) logits_config.setdefault("w_init", jax.nn.initializers.zeros) initial_conv_config = dict(initial_conv_config or {}) initial_conv_config.setdefault("in_features", input_channels) initial_conv_config.setdefault("out_features", 64) initial_conv_config.setdefault("kernel_shape", 7) initial_conv_config.setdefault("stride", 2) initial_conv_config.setdefault("with_bias", False) initial_conv_config.setdefault("padding", [(3, 3), (3, 3)]) initial_conv_config.setdefault("data_format", "NCHW") self.initial_conv = Conv2D(**initial_conv_config, name="conv1") self.initial_batchnorm = BatchNorm2D( initial_conv_config["out_features"], True, True, 0.9, data_format="NCHW", name="bn1", ) block_groups = [] strides = (1, 2, 2, 2) for i in range(4): block_groups.append( BlockGroup( in_channels=( initial_conv_config["out_features"] if i == 0 else channels_per_group[i - 1] ), out_channels=channels_per_group[i], num_blocks=blocks_per_group[i], stride=strides[i], bottleneck=bottleneck, use_projection=use_projection[i], ) ) self.block_groups = block_groups self.logits = Linear( channels_per_group[-1], num_classes, **logits_config, name="fc" ) def __call__(self, inputs): out = inputs out = self.initial_conv(out) out = self.initial_batchnorm(out) out = jax.nn.relu(out) out = jnp.pad(out, [(0, 0), (0, 0), (1, 1), (1, 1)]) out = max_pool( out, window_shape=(1, 1, 3, 3), strides=(1, 1, 2, 2), padding="VALID", channel_axis=1, ) for block_group in self.block_groups: out = block_group(out) out = jnp.mean(out, axis=(2, 3)) return self.logits(out) class ResNet18(ResNet): """ResNet18.""" def __init__( self, input_channels: int, num_classes: int, logits_config=None, initial_conv_config=None, ): super().__init__( input_channels=input_channels, num_classes=num_classes, initial_conv_config=initial_conv_config, logits_config=logits_config, **ResNet.CONFIGS[18], name="ResNet18", ) class ResNet34(ResNet): """ResNet34.""" def __init__( self, input_channels: int, num_classes: int, logits_config=None, initial_conv_config=None, ): super().__init__( input_channels=input_channels, num_classes=num_classes, initial_conv_config=initial_conv_config, logits_config=logits_config, **ResNet.CONFIGS[34], ) class ResNet50(ResNet): """ResNet50.""" def __init__( self, input_channels: int, num_classes: int, logits_config=None, initial_conv_config=None, ): super().__init__( input_channels=input_channels, num_classes=num_classes, initial_conv_config=initial_conv_config, logits_config=logits_config, **ResNet.CONFIGS[50], ) class ResNet101(ResNet): """ResNet101.""" def __init__( self, input_channels: int, num_classes: int, logits_config=None, initial_conv_config=None, ): super().__init__( input_channels=input_channels, num_classes=num_classes, initial_conv_config=initial_conv_config, logits_config=logits_config, **ResNet.CONFIGS[101], ) class ResNet152(ResNet): """ResNet152.""" def __init__( self, input_channels: int, num_classes: int, logits_config=None, initial_conv_config=None, ): super().__init__( input_channels=input_channels, num_classes=num_classes, initial_conv_config=initial_conv_config, logits_config=logits_config, **ResNet.CONFIGS[152], ) class ResNet200(ResNet): """ResNet200.""" def __init__( self, input_channels: int, num_classes: int, logits_config=None, initial_conv_config=None, ): super().__init__( input_channels=input_channels, num_classes=num_classes, initial_conv_config=initial_conv_config, logits_config=logits_config, **ResNet.CONFIGS[200], )
[ "jax.nn.relu", "jax.numpy.mean", "jax.numpy.pad" ]
[((3262, 3289), 'jax.nn.relu', 'jax.nn.relu', (['(out + shortcut)'], {}), '(out + shortcut)\n', (3273, 3289), False, 'import jax\n'), ((8065, 8081), 'jax.nn.relu', 'jax.nn.relu', (['out'], {}), '(out)\n', (8076, 8081), False, 'import jax\n'), ((8096, 8142), 'jax.numpy.pad', 'jnp.pad', (['out', '[(0, 0), (0, 0), (1, 1), (1, 1)]'], {}), '(out, [(0, 0), (0, 0), (1, 1), (1, 1)])\n', (8103, 8142), True, 'import jax.numpy as jnp\n'), ((8420, 8446), 'jax.numpy.mean', 'jnp.mean', (['out'], {'axis': '(2, 3)'}), '(out, axis=(2, 3))\n', (8428, 8446), True, 'import jax.numpy as jnp\n'), ((3229, 3245), 'jax.nn.relu', 'jax.nn.relu', (['out'], {}), '(out)\n', (3240, 3245), False, 'import jax\n')]
# [1] import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # [2] import cv2 import matplotlib.pyplot as plt import seaborn as sns import os from PIL import Image from keras.preprocessing.image import img_to_array from keras.preprocessing.image import load_img from keras.utils import np_utils # [3] parasitized_data = os.listdir('../input/cell_images/cell_images/Parasitized/') print(parasitized_data[:10]) #the output we get are the .png files uninfected_data = os.listdir('../input/cell_images/cell_images/Uninfected/') print('\n') print(uninfected_data[:10]) # [4] plt.figure(figsize = (12,12)) for i in range(4): plt.subplot(1, 4, i+1) img = cv2.imread('../input/cell_images/cell_images/Parasitized' + "/" + parasitized_data[i]) plt.imshow(img) plt.title('PARASITIZED : 1') plt.tight_layout() plt.show() # [5] plt.figure(figsize = (12,12)) for i in range(4): plt.subplot(1, 4, i+1) img = cv2.imread('../input/cell_images/cell_images/Uninfected' + "/" + uninfected_data[i+1]) plt.imshow(img) plt.title('UNINFECTED : 0') plt.tight_layout() plt.show() # [6] data = [] labels = [] for img in parasitized_data: try: img_read = plt.imread('../input/cell_images/cell_images/Parasitized/' + "/" + img) img_resize = cv2.resize(img_read, (50, 50)) img_array = img_to_array(img_resize) data.append(img_array) labels.append(1) except: None for img in uninfected_data: try: img_read = plt.imread('../input/cell_images/cell_images/Uninfected' + "/" + img) img_resize = cv2.resize(img_read, (50, 50)) img_array = img_to_array(img_resize) data.append(img_array) labels.append(0) except: None # [7] plt.imshow(data[0]) plt.show() # [8] image_data = np.array(data) labels = np.array(labels) # [9] idx = np.arange(image_data.shape[0]) np.random.shuffle(idx) image_data = image_data[idx] labels = labels[idx] # [10] from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(image_data, labels, test_size = 0.2, random_state = 101) # [11] y_train = np_utils.to_categorical(y_train, num_classes = 2) y_test = np_utils.to_categorical(y_test, num_classes = 2) # [12] print(f'SHAPE OF TRAINING IMAGE DATA : {x_train.shape}') print(f'SHAPE OF TESTING IMAGE DATA : {x_test.shape}') print(f'SHAPE OF TRAINING LABELS : {y_train.shape}') print(f'SHAPE OF TESTING LABELS : {y_test.shape}') # [13] import keras from keras.layers import Dense, Conv2D from keras.layers import Flatten from keras.layers import MaxPooling2D, GlobalAveragePooling2D from keras.layers import Activation from keras.layers import BatchNormalization from keras.layers import Dropout from keras.models import Sequential from keras import backend as K from keras import optimizers # [14] def CNNbuild(height, width, classes, channels): model = Sequential() inputShape = (height, width, channels) chanDim = -1 if K.image_data_format() == 'channels_first': inputShape = (channels, height, width) model.add(Conv2D(32, (3,3), activation = 'relu', input_shape = inputShape)) model.add(MaxPooling2D(2,2)) model.add(BatchNormalization(axis = chanDim)) model.add(Dropout(0.2)) model.add(Conv2D(32, (3,3), activation = 'relu')) model.add(MaxPooling2D(2,2)) model.add(BatchNormalization(axis = chanDim)) model.add(Dropout(0.2)) model.add(Conv2D(32, (3,3), activation = 'relu')) model.add(MaxPooling2D(2,2)) model.add(BatchNormalization(axis = chanDim)) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(512, activation = 'relu')) model.add(BatchNormalization(axis = chanDim)) model.add(Dropout(0.5)) model.add(Dense(classes, activation = 'softmax')) return model # [15] height = 50 width = 50 classes = 2 channels = 3 model = CNNbuild(height = height, width = width, classes = classes, channels = channels) model.summary() # [16] #compile the model model.compile(loss = 'categorical_crossentropy', optimizer = 'Adam', metrics = ['accuracy']) # [17] #fit the model onto the dataset h = model.fit(x_train, y_train, epochs = 20, batch_size = 32) # [18] plt.figure(figsize = (18,8)) plt.plot(range(20), h.history['acc'], label = 'Training Accuracy') plt.plot(range(20), h.history['loss'], label = 'Taining Loss') #ax1.set_xticks(np.arange(0, 31, 5)) plt.xlabel("Number of Epoch's") plt.ylabel('Accuracy/Loss Value') plt.title('Training Accuracy and Training Loss') plt.legend(loc = "best") # ax2.plot(range(20), h.history['loss'], label = 'Training Loss') # ax2.plot(range(20), h.history['val_loss'], label = 'Validation Loss') # #ax2.set_xticks(np.arange(0, 31, 5)) # ax2.set_xlabel("Number of Epoch's") # ax2.set_ylabel('Loss Value') # ax2.set_title('Training Loss vs Validation Loss') # ax2.legend(loc = "best") # [19] #evaluate the model on test data predictions = model.evaluate(x_test, y_test) # [20] print(f'LOSS : {predictions[0]}') print(f'ACCURACY : {predictions[1]}') # [21] from keras.preprocessing.image import ImageDataGenerator # [22] train_datagen = ImageDataGenerator(rescale = 1/255., horizontal_flip = True, width_shift_range = 0.2, height_shift_range = 0.2, fill_mode = 'nearest', zoom_range = 0.3, rotation_range = 30) val_datagen = ImageDataGenerator(rescale = 1/255.) train_generator = train_datagen.flow(x_train, y_train, batch_size = 64, shuffle = False) val_generator = val_datagen.flow(x_test, y_test, batch_size = 64, shuffle = False) # [23] #calling the same model as above model_aug = CNNbuild(height = height, width = width, classes = classes, channels = channels) # [24] #compile the model optim = optimizers.Adam(lr = 0.001, decay = 0.001 / 64) model_aug.compile(loss = 'categorical_crossentropy', optimizer = optim, metrics = ['accuracy']) # [25] #fit the model on the augmented dataset h_aug = model_aug.fit_generator(train_generator, steps_per_epoch = len(x_train) // 64, epochs = 50) # [26] #evaluate the model on augmented test data predict = model_aug.evaluate_generator(val_generator, steps = 5) # [27] print(f'LOSS ON TEST DATA AFTER DATA AUGMENTATION : {predict[0]}') print(f'ACCURACY ON TEST DATA AFTER DATA AUGMENTATION : {predict[1]}') model.save('model_95.h5') model_aug.save('model_97.h5')
[ "keras.preprocessing.image.img_to_array", "keras.layers.Conv2D", "matplotlib.pyplot.ylabel", "keras.preprocessing.image.ImageDataGenerator", "numpy.array", "keras.layers.Dense", "numpy.arange", "matplotlib.pyplot.imshow", "os.listdir", "keras.backend.image_data_format", "matplotlib.pyplot.xlabel", "keras.optimizers.Adam", "keras.layers.Flatten", "keras.layers.MaxPooling2D", "sklearn.model_selection.train_test_split", "keras.models.Sequential", "matplotlib.pyplot.title", "cv2.resize", "keras.layers.BatchNormalization", "cv2.imread", "keras.layers.Dropout", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "matplotlib.pyplot.imread", "matplotlib.pyplot.figure", "keras.utils.np_utils.to_categorical", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplot", "numpy.random.shuffle" ]
[((375, 434), 'os.listdir', 'os.listdir', (['"""../input/cell_images/cell_images/Parasitized/"""'], {}), "('../input/cell_images/cell_images/Parasitized/')\n", (385, 434), False, 'import os\n'), ((521, 579), 'os.listdir', 'os.listdir', (['"""../input/cell_images/cell_images/Uninfected/"""'], {}), "('../input/cell_images/cell_images/Uninfected/')\n", (531, 579), False, 'import os\n'), ((627, 655), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 12)'}), '(figsize=(12, 12))\n', (637, 655), True, 'import matplotlib.pyplot as plt\n'), ((876, 886), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (884, 886), True, 'import matplotlib.pyplot as plt\n'), ((894, 922), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 12)'}), '(figsize=(12, 12))\n', (904, 922), True, 'import matplotlib.pyplot as plt\n'), ((1142, 1152), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1150, 1152), True, 'import matplotlib.pyplot as plt\n'), ((1809, 1828), 'matplotlib.pyplot.imshow', 'plt.imshow', (['data[0]'], {}), '(data[0])\n', (1819, 1828), True, 'import matplotlib.pyplot as plt\n'), ((1829, 1839), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1837, 1839), True, 'import matplotlib.pyplot as plt\n'), ((1860, 1874), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (1868, 1874), True, 'import numpy as np\n'), ((1884, 1900), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (1892, 1900), True, 'import numpy as np\n'), ((1914, 1944), 'numpy.arange', 'np.arange', (['image_data.shape[0]'], {}), '(image_data.shape[0])\n', (1923, 1944), True, 'import numpy as np\n'), ((1945, 1967), 'numpy.random.shuffle', 'np.random.shuffle', (['idx'], {}), '(idx)\n', (1962, 1967), True, 'import numpy as np\n'), ((2114, 2183), 'sklearn.model_selection.train_test_split', 'train_test_split', (['image_data', 'labels'], {'test_size': '(0.2)', 'random_state': '(101)'}), '(image_data, labels, test_size=0.2, random_state=101)\n', (2130, 2183), False, 'from sklearn.model_selection import train_test_split\n'), ((2206, 2253), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['y_train'], {'num_classes': '(2)'}), '(y_train, num_classes=2)\n', (2229, 2253), False, 'from keras.utils import np_utils\n'), ((2265, 2311), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['y_test'], {'num_classes': '(2)'}), '(y_test, num_classes=2)\n', (2288, 2311), False, 'from keras.utils import np_utils\n'), ((4297, 4324), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(18, 8)'}), '(figsize=(18, 8))\n', (4307, 4324), True, 'import matplotlib.pyplot as plt\n'), ((4493, 4524), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Epoch\'s"""'], {}), '("Number of Epoch\'s")\n', (4503, 4524), True, 'import matplotlib.pyplot as plt\n'), ((4525, 4558), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Accuracy/Loss Value"""'], {}), "('Accuracy/Loss Value')\n", (4535, 4558), True, 'import matplotlib.pyplot as plt\n'), ((4559, 4607), 'matplotlib.pyplot.title', 'plt.title', (['"""Training Accuracy and Training Loss"""'], {}), "('Training Accuracy and Training Loss')\n", (4568, 4607), True, 'import matplotlib.pyplot as plt\n'), ((4608, 4630), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (4618, 4630), True, 'import matplotlib.pyplot as plt\n'), ((5214, 5384), 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1 / 255.0)', 'horizontal_flip': '(True)', 'width_shift_range': '(0.2)', 'height_shift_range': '(0.2)', 'fill_mode': '"""nearest"""', 'zoom_range': '(0.3)', 'rotation_range': '(30)'}), "(rescale=1 / 255.0, horizontal_flip=True,\n width_shift_range=0.2, height_shift_range=0.2, fill_mode='nearest',\n zoom_range=0.3, rotation_range=30)\n", (5232, 5384), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), ((5606, 5643), 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1 / 255.0)'}), '(rescale=1 / 255.0)\n', (5624, 5643), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), ((5985, 6028), 'keras.optimizers.Adam', 'optimizers.Adam', ([], {'lr': '(0.001)', 'decay': '(0.001 / 64)'}), '(lr=0.001, decay=0.001 / 64)\n', (6000, 6028), False, 'from keras import optimizers\n'), ((680, 704), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(4)', '(i + 1)'], {}), '(1, 4, i + 1)\n', (691, 704), True, 'import matplotlib.pyplot as plt\n'), ((713, 803), 'cv2.imread', 'cv2.imread', (["('../input/cell_images/cell_images/Parasitized' + '/' + parasitized_data[i])"], {}), "('../input/cell_images/cell_images/Parasitized' + '/' +\n parasitized_data[i])\n", (723, 803), False, 'import cv2\n'), ((804, 819), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (814, 819), True, 'import matplotlib.pyplot as plt\n'), ((824, 852), 'matplotlib.pyplot.title', 'plt.title', (['"""PARASITIZED : 1"""'], {}), "('PARASITIZED : 1')\n", (833, 852), True, 'import matplotlib.pyplot as plt\n'), ((857, 875), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (873, 875), True, 'import matplotlib.pyplot as plt\n'), ((947, 971), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(4)', '(i + 1)'], {}), '(1, 4, i + 1)\n', (958, 971), True, 'import matplotlib.pyplot as plt\n'), ((980, 1072), 'cv2.imread', 'cv2.imread', (["('../input/cell_images/cell_images/Uninfected' + '/' + uninfected_data[i + 1])"], {}), "('../input/cell_images/cell_images/Uninfected' + '/' +\n uninfected_data[i + 1])\n", (990, 1072), False, 'import cv2\n'), ((1071, 1086), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (1081, 1086), True, 'import matplotlib.pyplot as plt\n'), ((1091, 1118), 'matplotlib.pyplot.title', 'plt.title', (['"""UNINFECTED : 0"""'], {}), "('UNINFECTED : 0')\n", (1100, 1118), True, 'import matplotlib.pyplot as plt\n'), ((1123, 1141), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1139, 1141), True, 'import matplotlib.pyplot as plt\n'), ((2971, 2983), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2981, 2983), False, 'from keras.models import Sequential\n'), ((1239, 1310), 'matplotlib.pyplot.imread', 'plt.imread', (["('../input/cell_images/cell_images/Parasitized/' + '/' + img)"], {}), "('../input/cell_images/cell_images/Parasitized/' + '/' + img)\n", (1249, 1310), True, 'import matplotlib.pyplot as plt\n'), ((1332, 1362), 'cv2.resize', 'cv2.resize', (['img_read', '(50, 50)'], {}), '(img_read, (50, 50))\n', (1342, 1362), False, 'import cv2\n'), ((1383, 1407), 'keras.preprocessing.image.img_to_array', 'img_to_array', (['img_resize'], {}), '(img_resize)\n', (1395, 1407), False, 'from keras.preprocessing.image import img_to_array\n'), ((1554, 1623), 'matplotlib.pyplot.imread', 'plt.imread', (["('../input/cell_images/cell_images/Uninfected' + '/' + img)"], {}), "('../input/cell_images/cell_images/Uninfected' + '/' + img)\n", (1564, 1623), True, 'import matplotlib.pyplot as plt\n'), ((1645, 1675), 'cv2.resize', 'cv2.resize', (['img_read', '(50, 50)'], {}), '(img_read, (50, 50))\n', (1655, 1675), False, 'import cv2\n'), ((1696, 1720), 'keras.preprocessing.image.img_to_array', 'img_to_array', (['img_resize'], {}), '(img_resize)\n', (1708, 1720), False, 'from keras.preprocessing.image import img_to_array\n'), ((3061, 3082), 'keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (3080, 3082), True, 'from keras import backend as K\n'), ((3165, 3226), 'keras.layers.Conv2D', 'Conv2D', (['(32)', '(3, 3)'], {'activation': '"""relu"""', 'input_shape': 'inputShape'}), "(32, (3, 3), activation='relu', input_shape=inputShape)\n", (3171, 3226), False, 'from keras.layers import Dense, Conv2D\n'), ((3245, 3263), 'keras.layers.MaxPooling2D', 'MaxPooling2D', (['(2)', '(2)'], {}), '(2, 2)\n', (3257, 3263), False, 'from keras.layers import MaxPooling2D, GlobalAveragePooling2D\n'), ((3278, 3310), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'chanDim'}), '(axis=chanDim)\n', (3296, 3310), False, 'from keras.layers import BatchNormalization\n'), ((3328, 3340), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (3335, 3340), False, 'from keras.layers import Dropout\n'), ((3357, 3394), 'keras.layers.Conv2D', 'Conv2D', (['(32)', '(3, 3)'], {'activation': '"""relu"""'}), "(32, (3, 3), activation='relu')\n", (3363, 3394), False, 'from keras.layers import Dense, Conv2D\n'), ((3411, 3429), 'keras.layers.MaxPooling2D', 'MaxPooling2D', (['(2)', '(2)'], {}), '(2, 2)\n', (3423, 3429), False, 'from keras.layers import MaxPooling2D, GlobalAveragePooling2D\n'), ((3444, 3476), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'chanDim'}), '(axis=chanDim)\n', (3462, 3476), False, 'from keras.layers import BatchNormalization\n'), ((3494, 3506), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (3501, 3506), False, 'from keras.layers import Dropout\n'), ((3523, 3560), 'keras.layers.Conv2D', 'Conv2D', (['(32)', '(3, 3)'], {'activation': '"""relu"""'}), "(32, (3, 3), activation='relu')\n", (3529, 3560), False, 'from keras.layers import Dense, Conv2D\n'), ((3577, 3595), 'keras.layers.MaxPooling2D', 'MaxPooling2D', (['(2)', '(2)'], {}), '(2, 2)\n', (3589, 3595), False, 'from keras.layers import MaxPooling2D, GlobalAveragePooling2D\n'), ((3610, 3642), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'chanDim'}), '(axis=chanDim)\n', (3628, 3642), False, 'from keras.layers import BatchNormalization\n'), ((3660, 3672), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (3667, 3672), False, 'from keras.layers import Dropout\n'), ((3689, 3698), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (3696, 3698), False, 'from keras.layers import Flatten\n'), ((3719, 3748), 'keras.layers.Dense', 'Dense', (['(512)'], {'activation': '"""relu"""'}), "(512, activation='relu')\n", (3724, 3748), False, 'from keras.layers import Dense, Conv2D\n'), ((3766, 3798), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'chanDim'}), '(axis=chanDim)\n', (3784, 3798), False, 'from keras.layers import BatchNormalization\n'), ((3816, 3828), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (3823, 3828), False, 'from keras.layers import Dropout\n'), ((3844, 3880), 'keras.layers.Dense', 'Dense', (['classes'], {'activation': '"""softmax"""'}), "(classes, activation='softmax')\n", (3849, 3880), False, 'from keras.layers import Dense, Conv2D\n')]
import pandas as pd import argparse from estimators import ConstantImputedLR,\ EMLR,\ MICELR from mlp import MLP_reg from neumannS0_mlp import Neumann_mlp from learning_curves import run parser = argparse.ArgumentParser() parser.add_argument('data_type', help='type of simulation', choices=['gaussian_sm', 'probit_sm', 'MCAR', 'MAR_logistic']) args = parser.parse_args() n_iter = 20 n_jobs = 40 n_sizes = [1e4, 2e4, 1e5] n_sizes = [int(i) for i in n_sizes] n_test = int(1e4) n_val = int(1e4) # First fill in data_desc with all default values. if args.data_type == 'gaussian_sm': data_type = 'selfmasking' filename = 'gaussian_sm' compute_br = True default_values = {'n_features': 10, 'missing_rate': 0.5, 'prop_latent': 0.5, 'sm_type': 'gaussian', 'sm_param': 2, 'snr': 10, 'perm': False} elif args.data_type == 'probit_sm': data_type = 'selfmasking' filename = 'probit_sm' compute_br = False default_values = {'n_features': 10, 'missing_rate': 0.5, 'prop_latent': 0.5, 'sm_type': 'probit', 'sm_param': 0.5, 'snr': 10, 'perm': False} elif args.data_type == 'MCAR': data_type = 'MCAR' filename = 'MCAR' compute_br = True default_values = {'n_features': 10, 'missing_rate': 0.5, 'prop_latent': 0.5, 'snr': 10, 'masking': 'MCAR'} elif args.data_type == 'MAR_logistic': data_type = 'MAR_logistic' filename = 'MAR_logistic' compute_br = True default_values = {'n_features': 10, 'missing_rate': 0.5, 'prop_latent': 0.5, 'snr': 10, 'masking': 'MAR_logistic', 'prop_for_masking': 0.1} # Define the list of parameters that should be tested and their range of values other_values = {'n_features': [20, 50]} # Then vary parameters one by one while the other parameters remain constant, # and equal to their default values. data_descs = [pd.DataFrame([default_values])] for param, vals in other_values.items(): n = len(vals) data = pd.DataFrame([default_values]*n) data.loc[:, param] = vals data_descs.append(data) data_descs = pd.concat(data_descs, axis=0) methods = [] methods.append({'name': 'ConstantImputedLR', 'est': ConstantImputedLR}) methods.append({'name': 'EMLR', 'est': EMLR}) methods.append({'name': 'MICELR', 'est': MICELR}) for q in [1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 100]: methods.append({'name': 'torchMLP', 'est': MLP_reg, 'type_width': 'linear', 'width': q, 'depth': 1, 'n_epochs': 2000, 'batch_size': 200, 'early_stopping': True, 'verbose': False}) for d in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: for residual_connection in [False, True]: for early_stopping in [False, True]: methods.append( {'name': 'Neumann', 'est': Neumann_mlp, 'depth': d, 'n_epochs': 100, 'batch_size': 10, 'early_stopping': early_stopping, 'residual_connection': residual_connection, 'verbose': False}) run_params = { 'n_iter': n_iter, 'n_sizes': n_sizes, 'n_test': n_test, 'n_val': n_val, 'data_type': data_type, 'data_descs': data_descs, 'methods': methods, 'compute_br': compute_br, 'filename': filename, 'n_jobs': n_jobs} run(**run_params)
[ "pandas.DataFrame", "pandas.concat", "learning_curves.run", "argparse.ArgumentParser" ]
[((243, 268), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (266, 268), False, 'import argparse\n'), ((2277, 2306), 'pandas.concat', 'pd.concat', (['data_descs'], {'axis': '(0)'}), '(data_descs, axis=0)\n', (2286, 2306), True, 'import pandas as pd\n'), ((3523, 3540), 'learning_curves.run', 'run', ([], {}), '(**run_params)\n', (3526, 3540), False, 'from learning_curves import run\n'), ((2070, 2100), 'pandas.DataFrame', 'pd.DataFrame', (['[default_values]'], {}), '([default_values])\n', (2082, 2100), True, 'import pandas as pd\n'), ((2172, 2206), 'pandas.DataFrame', 'pd.DataFrame', (['([default_values] * n)'], {}), '([default_values] * n)\n', (2184, 2206), True, 'import pandas as pd\n')]
"""Module supporting unification of types and type variables instantiated as :class:`discopy.closed.Ty` instances """ from discopy.biclosed import Box, Ty, Under from discopy.cat import Arrow, Ob, AxiomError import functools from typing import Generic, TypeVar import uuid class TyVar(Ty): """Represents a type variable identified by a name, as a subclass of the :class:`discopy.biclosed.Ty` class :param str name: A name for the type variable """ def __init__(self, name): super().__init__(name) def pretty_type(ty, parenthesize=False): """Represents a type in nice LaTeX math formatting :param ty: A type to represent :type ty: :class:`discopy.biclosed.Ty` :param bool parenthesize: Whether to enclose the result in parentheses :return: LaTeX math formatted representation of `ty` :rtype: str """ if isinstance(ty, Under): result = '%s >> %s' % (pretty_type(ty.left, True), pretty_type(ty.right)) if parenthesize: result = '(%s)' % result else: if not ty.objects: result = '\\top' result = ' \\times '.join([str(obj) for obj in ty.objects]) return result def type_compound(ty): """Predicate describing whether a type is compound or not :param ty: A type :type ty: :class:`discopy.biclosed.Ty` :return: Whether `ty` is compound (a :class:`discopy.biclosed.Under` or a monoidal product type) :rtype: bool """ return isinstance(ty, Under) or len(ty) > 1 def base_elements(ty): """Compute the set of primitive :class:`discopy.biclosed.Ty` elements within a type :param ty: A type :type ty: :class:`discopy.biclosed.Ty` :return: Set of `ty`'s primitive elements :rtype: set """ if not isinstance(ty, Ty): return Ty(ty) if isinstance(ty, Under): return base_elements(ty.left) | base_elements(ty.right) bases = {ob for ob in ty.objects if not isinstance(ob, Under)} recursives = set().union(*[base_elements(ob) for ob in ty.objects]) return bases | recursives def unique_identifier(): """Generate a universally unique identifier seven hex digits long :return: A seven-digit universally unique identifier in hex :rtype: str """ return uuid.uuid4().hex[:7] def unique_ty(): """Generate a type with a universally unique name :return: A type with a universally unique name :rtype: :class:`discopy.biclosed.Ty` """ return Ty(unique_identifier()) UNIFICATION_EXCEPTION_MSG = 'Could not unify %s with %s' SUBSTITUTION_EXCEPTION_MSG = 'to substitute for %s' class UnificationException(Exception): """Unification failure :param x: Type on left side of unification equation :type x: :class:`discopy.biclosed.Ty` :param y: Type on right side of unification equation :type y: :class:`discopy.biclosed.Ty` :param k: Substitution key whose resolution was subject to the equation :type k: str or None """ def __init__(self, x, y, k=None): self.key = k self.vals = (x, y) if k: msg = UNIFICATION_EXCEPTION_MSG + ' ' + SUBSTITUTION_EXCEPTION_MSG self.message = msg % (x, y, k) else: self.message = UNIFICATION_EXCEPTION_MSG % (x, y) def try_merge_substitution(lsub, rsub): """Try to merge two substitutions by unifying their shared variables :param dict lsub: Left substitution :param dict rsub: Right substitution :raises UnificationException: Failure to unify a shared variable's substituted values :return: A substitution enriched by unifying shared variables :rtype: dict """ subst = {} for k in {**lsub, **rsub}.keys(): if k in lsub and k in rsub: _, sub = try_unify(lsub[k], rsub[k]) subst.update(sub) elif k in lsub: subst[k] = lsub[k] elif k in rsub: subst[k] = rsub[k] return subst def try_unify(a, b, subst={}): """Try to unify two types, potentially raising an exception with the incompatible components. :param a: Left type :type a: :class:`discopy.closed.Ty` :param b: Right type :type b: :class:`discopy.closed.Ty` :param dict subst: An initial substitution from which to fill in variables :raises UnificationException: Failure to unify elements of a type :return: A unified type and the substitution under which it was unified :rtype: tuple """ if isinstance(a, Under) and isinstance(b, Under): l, lsub = try_unify(a.left, b.left) r, rsub = try_unify(a.right, b.right) subst = try_merge_substitution(lsub, rsub) return l >> r, subst if a == b: return a, {} if isinstance(a, TyVar): return b, {a.name: b} if isinstance(b, TyVar): return a, {b.name: a} if isinstance(a, Ty) and isinstance(b, Ty) and\ len(a.objects) == len(b.objects): results = [try_unify(ak, bk) for ak, bk in zip(a.objects, b.objects)] ty = Ty(*[ty for ty, _ in results]) subst = functools.reduce(try_merge_substitution, [subst for _, subst in results], subst) return ty, subst raise UnificationException(a, b) def unify(a, b, substitution={}): """Unify two types, returning their merger or None :param a: Left type :type a: :class:`discopy.closed.Ty` :param b: Right type :type b: :class:`discopy.closed.Ty` :param dict substitution: An initial substitution from which to fill in variables :return: A unified type, or None :rtype: :class:`discopy.closed.Ty` or None """ try: result, substitution = try_unify(a, b, substitution) return substitute(result, substitution) except UnificationException: return None def unifier(a, b, substitution={}): """Unify two types, returning the substitution on success, or None :param a: Left type :type a: :class:`discopy.closed.Ty` :param b: Right type :type b: :class:`discopy.closed.Ty` :param dict substitution: An initial substitution from which to fill in variables :return: A substitution, or None :rtype: dict or None """ try: _, substitution = try_unify(a, b, substitution) return substitution except UnificationException: return None def substitute(t, sub): """Substitute away the type variables in `t` under `sub` :param t: A type :type t: :class:`discopy.closed.Ty` :param dict sub: A substitution :return: A type with all variables found in `sub` substituted away :rtype: :class:`discopy.closed.Ty` """ if isinstance(t, Under): return substitute(t.left, sub) >> substitute(t.right, sub) if isinstance(t, Ty): return Ty(*[substitute(ty, sub) for ty in t.objects]) if isinstance(t, TyVar) and t.name in sub: return sub[t.name] return t def fold_arrow(ts): """Combine a list of types into an arrow type :param list ts: A list of :class:`discopy.closed.Ty`'s :return: An accumulated arrow type, or the sole type in the list :rtype: :class:`discopy.closed.Ty` """ if len(ts) == 1: return ts[-1] return fold_arrow(ts[:-2] + [ts[-2] >> ts[-1]]) def unfold_arrow(arrow): """Extract a list of types from an arrow type :param arrow: A type, preferably an arrow type :type arrow: :class:`discopy.closed.Ty` :return: A list of the arrow's components, or of the original type :rtype: list """ if isinstance(arrow, Under): return [arrow.left] + unfold_arrow(arrow.right) return [arrow] def fold_product(ts): """Combine a list of types into a product type :param list ts: A list of :class:`discopy.closed.Ty`'s :return: An accumulated product type, or the sole type in the list :rtype: :class:`discopy.closed.Ty` """ if len(ts) == 1: return ts[0] return Ty(*ts) def unfold_product(ty): """Extract a list of types from a product type :param ty: A type, preferably a product type :type ty: :class:`discopy.closed.Ty` :return: A list of the product's components, or of the original type :rtype: list """ if isinstance(ty, Under): return [ty] return [Ty(ob) for ob in ty.objects]
[ "functools.reduce", "discopy.biclosed.Ty", "uuid.uuid4" ]
[((8119, 8126), 'discopy.biclosed.Ty', 'Ty', (['*ts'], {}), '(*ts)\n', (8121, 8126), False, 'from discopy.biclosed import Box, Ty, Under\n'), ((1861, 1867), 'discopy.biclosed.Ty', 'Ty', (['ty'], {}), '(ty)\n', (1863, 1867), False, 'from discopy.biclosed import Box, Ty, Under\n'), ((5125, 5155), 'discopy.biclosed.Ty', 'Ty', (['*[ty for ty, _ in results]'], {}), '(*[ty for ty, _ in results])\n', (5127, 5155), False, 'from discopy.biclosed import Box, Ty, Under\n'), ((5172, 5257), 'functools.reduce', 'functools.reduce', (['try_merge_substitution', '[subst for _, subst in results]', 'subst'], {}), '(try_merge_substitution, [subst for _, subst in results], subst\n )\n', (5188, 5257), False, 'import functools\n'), ((8455, 8461), 'discopy.biclosed.Ty', 'Ty', (['ob'], {}), '(ob)\n', (8457, 8461), False, 'from discopy.biclosed import Box, Ty, Under\n'), ((2327, 2339), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (2337, 2339), False, 'import uuid\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation def update(idx): pt.set_data(x[idx],y[idx]) return pt x = np.linspace(0,2*np.pi,200) y = np.sin(x) fig, ax = plt.subplots() ln, = ax.plot(x,y) pt, = ax.plot(x[0], y[0], marker='o', markersize=5, color='r') ax.grid() ani = animation.FuncAnimation(fig,update,frames=np.arange(0,len(x)), interval=10, repeat=False) ani.save('test.mp4',dpi=600) plt.show()
[ "numpy.sin", "numpy.linspace", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((162, 192), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(200)'], {}), '(0, 2 * np.pi, 200)\n', (173, 192), True, 'import numpy as np\n'), ((193, 202), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (199, 202), True, 'import numpy as np\n'), ((215, 229), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (227, 229), True, 'import matplotlib.pyplot as plt\n'), ((447, 457), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (455, 457), True, 'import matplotlib.pyplot as plt\n')]
from django.contrib import auth from rest_framework import serializers from models import GameLog, Bet, TeamOpponent, TeamPersonnal USER_MODEL = auth.get_user_model() class UserSerializer: @classmethod def get_user_as_dict(cls, user): if user is None: return dict(id=None, first_name=None, last_name=None, username=None, email=None) return { 'id': user.id, 'first_name': user.first_name, 'last_name': user.last_name, 'username': user.username, 'email': user.email, } @classmethod def get_info_from_user(cls, user, fields): user_as_dict = cls.get_user_as_dict(user) return { attr: user_as_dict[attr] for attr in fields } class GameLogSerializer(serializers.ModelSerializer): class Meta: model = GameLog fields = '__all__' class BetSerializer(serializers.ModelSerializer): class Meta: model = Bet fields = '__all__'
[ "django.contrib.auth.get_user_model" ]
[((147, 168), 'django.contrib.auth.get_user_model', 'auth.get_user_model', ([], {}), '()\n', (166, 168), False, 'from django.contrib import auth\n')]
from django.contrib import admin from django.urls import path, include from .views import home_page, about_page, contact_page from blog import urls urlpatterns = [ path("draggle-admin-dash/", admin.site.urls), path("", home_page), path("about/", about_page), path("contact/", contact_page), path("blog/", include(urls)), ]
[ "django.urls.path", "django.urls.include" ]
[((170, 214), 'django.urls.path', 'path', (['"""draggle-admin-dash/"""', 'admin.site.urls'], {}), "('draggle-admin-dash/', admin.site.urls)\n", (174, 214), False, 'from django.urls import path, include\n'), ((220, 239), 'django.urls.path', 'path', (['""""""', 'home_page'], {}), "('', home_page)\n", (224, 239), False, 'from django.urls import path, include\n'), ((245, 271), 'django.urls.path', 'path', (['"""about/"""', 'about_page'], {}), "('about/', about_page)\n", (249, 271), False, 'from django.urls import path, include\n'), ((277, 307), 'django.urls.path', 'path', (['"""contact/"""', 'contact_page'], {}), "('contact/', contact_page)\n", (281, 307), False, 'from django.urls import path, include\n'), ((327, 340), 'django.urls.include', 'include', (['urls'], {}), '(urls)\n', (334, 340), False, 'from django.urls import path, include\n')]
from tkinter import * from main import Mysql_db import db_info if __name__ == '__main__': row, column = 0, 0 with Mysql_db(**db_info.db_connect) as db: sql = "SELECT * from book_item" book_item = db.search(sql) row = len(book_item) column = len(book_item[0]) print(row, column) for i in range(row): for j in range(column): e = Entry(relief=GROOVE) e.grid(row=i, column=j, sticky=NSEW) # NSEW='nsew' e.insert(END, '%s' % (book_item[i][j])) mainloop()
[ "main.Mysql_db" ]
[((124, 154), 'main.Mysql_db', 'Mysql_db', ([], {}), '(**db_info.db_connect)\n', (132, 154), False, 'from main import Mysql_db\n')]
#!/usr/bin/env python3 # You are probably well aware of the 'birthday paradox' # https://en.wikipedia.org/wiki/Birthday_problem # Let's try simulating it # You will need a list for the 365 day calendar # You will need a set number of people (e.g. 25) # During each 'trial' you do the following # Choose a person # Git them a random birthday # Store it in the calendar # Once you have stored all birthdays, check to see if any have the same day # Do this for many trials to see what the probability of sharing a birthday is import random people = 25 days = 365 trial = 10000 dup = 0 for i in range(trial): #create empty cal of 0s calendar = [] #new calander each time for j in range(days): calendar.append(0) #print(calendar) #fill with random birthdays for j in range(people): bday = random.randint(0, days-1) calendar[bday] += 1 #print(calendar) #check for duplications for day in calendar: if day > 1: dup += 1 break # if calendar had collusion, then stop print(dup, trial) """ Repeat trial create empty calendar fill with random birthdays check for duplicates record report duplicates/trial """ """ python3 birthday.py 0.571 """
[ "random.randint" ]
[((828, 855), 'random.randint', 'random.randint', (['(0)', '(days - 1)'], {}), '(0, days - 1)\n', (842, 855), False, 'import random\n')]
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//div[@class='details']/h3[@class='tieude']", 'price' : "//div[@class='info_detail']/p[@class='price']", 'category' : "//ul[@class='breacrum']/li/a", 'description' : "//div[@class='tech']/div[@class='technology']", 'images' : "//div[@class='details']/div[@class='images']/a/@href", 'canonical' : "", 'base_url' : "", 'brand' : "" } name = 'khabinh.vn' allowed_domains = ['khabinh.vn'] start_urls = ['http://khabinh.vn'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [] rules = [ Rule(LinkExtractor(allow=['/[a-zA-Z0-9-_]+_pro+\d+\.html']), 'parse_item'), Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+-c+\d+\.html', 'page='], deny=['attr=','letter=','/phim/','\?']), 'parse'), #Rule(LinkExtractor(), 'parse_item_and_links'), ]
[ "scrapy.linkextractors.LinkExtractor" ]
[((744, 800), 'scrapy.linkextractors.LinkExtractor', 'LinkExtractor', ([], {'allow': "['/[a-zA-Z0-9-_]+_pro+\\\\d+\\\\.html']"}), "(allow=['/[a-zA-Z0-9-_]+_pro+\\\\d+\\\\.html'])\n", (757, 800), False, 'from scrapy.linkextractors import LinkExtractor\n'), ((824, 935), 'scrapy.linkextractors.LinkExtractor', 'LinkExtractor', ([], {'allow': "['/[a-zA-Z0-9-]+-c+\\\\d+\\\\.html', 'page=']", 'deny': "['attr=', 'letter=', '/phim/', '\\\\?']"}), "(allow=['/[a-zA-Z0-9-]+-c+\\\\d+\\\\.html', 'page='], deny=[\n 'attr=', 'letter=', '/phim/', '\\\\?'])\n", (837, 935), False, 'from scrapy.linkextractors import LinkExtractor\n')]
import networkx as nx import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import unittest import random #define a class that generates a 2D grid,size=m*, dx=dy=1, x, y start from 0 class init_grid(object): def __init__(self, m): self.nodes = m #generate grid def generate(self): self.nxx, self.nyy = (self.nodes, self.nodes) self.x = np.linspace(0, self.nodes-1, self.nxx) self.y = np.linspace(0, self.nodes-1, self.nyy) self.xv, self.yv = np.meshgrid(self.x, self.y) #used to define node/vertex index in a grid #pick up m points in the grid as nodes. e.g. #0 (0,0) #1 (1,2) #2 (1,3) #3 (3,2) #4 (4,4) #xrange denotes nodes' x index in the grid #yrange denotes nodes' y index in the grid def coord(self, xrange, yrange): self.xrange=xrange self.yrange=yrange
[ "matplotlib.use", "numpy.meshgrid", "numpy.linspace" ]
[((40, 61), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (54, 61), False, 'import matplotlib\n'), ((412, 452), 'numpy.linspace', 'np.linspace', (['(0)', '(self.nodes - 1)', 'self.nxx'], {}), '(0, self.nodes - 1, self.nxx)\n', (423, 452), True, 'import numpy as np\n'), ((468, 508), 'numpy.linspace', 'np.linspace', (['(0)', '(self.nodes - 1)', 'self.nyy'], {}), '(0, self.nodes - 1, self.nyy)\n', (479, 508), True, 'import numpy as np\n'), ((534, 561), 'numpy.meshgrid', 'np.meshgrid', (['self.x', 'self.y'], {}), '(self.x, self.y)\n', (545, 561), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-11-18 09:32 from __future__ import unicode_literals from django.conf import settings import django.contrib.auth.models from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0008_alter_user_username_max_length'), ] operations = [ migrations.CreateModel( name='Address', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_line', models.CharField(blank=True, default='default text', max_length=10, null=True)), ], ), migrations.CreateModel( name='Customer', fields=[ ('user_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to=settings.AUTH_USER_MODEL)), ('name', models.CharField(max_length=10)), ], options={ 'abstract': False, 'verbose_name': 'user', 'verbose_name_plural': 'users', }, bases=('auth.user',), managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.AddField( model_name='address', name='customer', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='myapp.Customer'), ), ]
[ "django.db.models.OneToOneField", "django.db.models.AutoField", "django.db.models.CharField", "django.db.models.ForeignKey" ]
[((1533, 1621), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""myapp.Customer"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'myapp.Customer')\n", (1550, 1621), False, 'from django.db import migrations, models\n'), ((525, 618), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (541, 618), False, 'from django.db import migrations, models\n'), ((648, 726), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'default': '"""default text"""', 'max_length': '(10)', 'null': '(True)'}), "(blank=True, default='default text', max_length=10, null=True)\n", (664, 726), False, 'from django.db import migrations, models\n'), ((866, 1042), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'auto_created': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'parent_link': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'to': 'settings.AUTH_USER_MODEL'}), '(auto_created=True, on_delete=django.db.models.deletion\n .CASCADE, parent_link=True, primary_key=True, serialize=False, to=\n settings.AUTH_USER_MODEL)\n', (886, 1042), False, 'from django.db import migrations, models\n'), ((1060, 1091), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)'}), '(max_length=10)\n', (1076, 1091), False, 'from django.db import migrations, models\n')]
import os from setuptools import setup def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="dirtools", version="0.2.0", author="<NAME>", author_email="<EMAIL>", description="Exclude/ignore files in a directory (using .gitignore like syntax), compute hash, search projects for an entire directory tree and gzip compression.", license="MIT", keywords="exclude exclusion directory hash compression gzip", url="https://github.com/tsileo/dirtools", py_modules=["dirtools"], long_description=read("README.rst"), install_requires=["globster"], tests_require=["pyfakefs"], test_suite="test_dirtools", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python", ], scripts=["dirtools.py"], )
[ "os.path.dirname" ]
[((87, 112), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (102, 112), False, 'import os\n')]
# -*- coding: utf-8 -*- ############################################################################# # __________ # # __ __/ ____/ __ \__ __ This file is part of MicroGP4 v1.0 "Kiwi" # # / / / / / __/ /_/ / // / (!) by <NAME> and <NAME> # # / /_/ / /_/ / ____/ // /_ https://github.com/squillero/microgp4 # # \__ /\____/_/ /__ __/ # # /_/ --MicroGP4-- /_/ "You don't need a big goal, be μ-ambitious!!" # # # ############################################################################# # Copyright 2020 <NAME> and <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. from microgp import * from ..utils import logging from .abstract import Parameter from microgp import random_generator import microgp as ugp4 class Categorical(Parameter): """Categorical parameter. It can take values in 'alternatives'. **Example:** >>> registers = ugp4.make_parameter(ugp4.parameter.Categorical, alternatives=['ax', 'bx', 'cx', 'dx']) Args: alternatives (list): list of possible values """ def is_valid(self, value): if value is None: return True return value in self.alternatives def mutate(self, strength: float = 0.5): assert 0 <= strength <= 1, "Invalid strength: " + str(strength) + " (should be 0 <= s <= 1)" if strength == 0: logging.debug("strength == 0") else: self.value = random_generator.choice(self.alternatives) def run_paranoia_checks(self) -> bool: assert getattr(self, 'alternatives', None), "Illegal or missing alternatives list (not using make_parameter?)" return super().run_paranoia_checks() class CategoricalSorted(Categorical): """CategoricalSorted parameter. It can take values in 'alternatives'. It behaves differently during the mutation phase. **Example:** >>> cat_sor = ugp4.make_parameter(ugp4.parameter.CategoricalSorted, alternatives=['e', 'f', 'g', 'h', 'i', 'l']) Args: alternatives (list): sorted list of possible values """ def mutate(self, strength: float = 0.5): assert getattr(self, 'alternatives', None), "Illegal or missing alternatives list (not using make_parameter?)" assert 0 <= strength <= 1, "Invalid strength: " + str(strength) + " (should be 0 <= s <= 1)" if strength == 0: logging.debug("strength == 0") else: self.value = random_generator.choice(self.alternatives, self.alternatives.index(self._value), strength=strength) def run_paranoia_checks(self) -> bool: assert getattr(self, 'alternatives', None), "Illegal or missing alternatives list (not using make_parameter?)" assert len(self.alternatives) == len(set( self.alternatives)), f"Found duplicated values in alternatives: {self.alternatives}" return super().run_paranoia_checks()
[ "microgp.random_generator.choice" ]
[((2113, 2155), 'microgp.random_generator.choice', 'random_generator.choice', (['self.alternatives'], {}), '(self.alternatives)\n', (2136, 2155), False, 'from microgp import random_generator\n')]
#!/usr/bin/python from googleapiclient import discovery from oauth2client import client from oauth2client import file from oauth2client import tools from datetime import datetime, timedelta import sys import re import json import os import httplib2 class Logger: def debug(self, message): self._log('DEBUG', message) def info(self, message): self._log('INFO', message) def warn(self, message): self._log('WARNING', message) def error(self, message): self._log('ERROR', message) def _log(self, level, message): print('[%s] %s: %s' % (datetime.now(), level, message)) class Expando(object): pass class Configuration: hours = 10 blacklist = [] contentBlacklist = [] removalMethod = 'markAsSpam' blogId = '' lastRunOverlapMinutes = 1 def __init__(self, directory): file = os.path.join(os.path.dirname(directory),'config.json') with open(file) as h: cfg = json.load(h) self.blogId = self._getValue(cfg, 'blogId', self.blogId) self.hours = self._getValue(cfg, 'hours', self.hours) self.blacklist = self._getValue(cfg, 'blacklist', self.blacklist) self.contentBlacklist = self._getValue(cfg, 'contentBlacklist', self.contentBlacklist) self.removalMethod = self._getValue(cfg, 'removalMethod', self.removalMethod) self.lastRunOverlapMinutes = int(self._getValue(cfg, 'lastRunOverlapMinutes', self.lastRunOverlapMinutes)) def _getValue(self, cfg, propertyName, default): if propertyName in cfg and not (cfg[propertyName] is None): return cfg[propertyName] else: return default class CommentBot: scannedPosts = 0 scannedComments = 0 removedComments = 0 useThreading = True _maxResults = 200 _hasErrors = False def __init__(self, log, config, directory): self._log = log self._config = config self._directory = directory credentials, service = self.initCredentialsAndService('blogger','v3') self._credentials = credentials self._service = service self._posts = service.posts() self._comments = service.comments() self._removalMethod = self.getRemovalMethod(self._comments) self.loadState() def scanBlog(self, blogUrl): blogId = self.getBlogId(blogUrl) posts = self.getPosts(blogId) comments = self.getComments(posts) pendingRemoval = self.getCommentsToRemove(comments) self.removeComments(pendingRemoval) self.scannedPosts = len(posts) self.scannedComments = len(comments) if self._hasErrors: self._log.error('At least one error occured. utcLastRun will not be updated.') else: self.saveState() def getBlogId(self, blogUrl): if re.match('^[0-9]+$', blogUrl): return blogUrl blogId = self._service.blogs().getByUrl(url=blogUrl).execute()['id'] self._log.warn('Increase performance by replacing url `blogId` configuration with id %s'%blogId) return blogId def getPosts(self, blogId): startDate = '%sZ'%(datetime.utcnow()-timedelta(hours=self._config.hours)).isoformat('T') request = self._posts.list(blogId=blogId,startDate=startDate,maxResults=self._maxResults,fields='items(id,blog),nextPageToken') posts = [] while request != None: resp = request.execute() if 'items' in resp and not (resp['items'] is None): posts.extend(resp['items']) request = self._posts.list_next(request, resp) return posts def getComments(self, posts): fields = 'items(author/id,blog,content,id,post),nextPageToken' comments = [] current_requests = [] next_requests = [] if self._utcLastRun is not None and self._config.lastRunOverlapMinutes > -1: startDate = '%sZ' % (self._utcLastRun - timedelta(minutes=self._config.lastRunOverlapMinutes)).isoformat() else: startDate = None for post in posts: next_requests.append(self._comments.list(blogId=post['blog']['id'],postId=post['id'],status='live',startDate=startDate,maxResults=self._maxResults)) def on_comments(request_id, response, exception): if exception is not None: if exception.resp.status == 404: return self._log.error(exception) self._hasErrors = True return request = current_requests[int(request_id)] next_request = self._posts.list_next(request, response) if next_request != None: next_requests.append(next_request) if 'items' in response and not (response['items'] is None): comments.extend(response['items']) batch = self._service.new_batch_http_request(callback=on_comments) while batch != None: for i,request in enumerate(next_requests): batch.add(request, request_id=str(i)) current_requests = next_requests next_requests = [] batch.execute() if len(next_requests) > 0: batch = self._service.new_batch_http_request(callback=on_comments) else: batch = None return comments def getCommentsToRemove(self, comments): toRemove = [] for comment in comments: reason = self.hasReasonToRemove(comment) if reason: toRemove.append((comment,reason)) return toRemove def removeComments(self, removals): def on_removed(request_id, response, exception): if exception is not None: self._log.error(exception) self._hasErrors = True return comment,reason = removals[int(request_id)] self._log.info('Removed (%s) comment %s in post %s by author %s: %s' % (self._config.removalMethod,comment['id'],comment['post']['id'],comment['author']['id'],reason)) self.removedComments += 1 batch = self._service.new_batch_http_request(callback=on_removed) for i,removal in enumerate(removals): comment,reason=removal batch.add(self._removalMethod( blogId=comment['blog']['id'], postId=comment['post']['id'], commentId=comment['id'] ), request_id=str(i)) batch.execute() def getRemovalMethod(self,comments): try: return getattr(comments, self._config.removalMethod) except AttributeError: print('Check configuration: removalMethod not valid: %s' % self._config.removalMethod) sys.exit(1) def hasReasonToRemove(self,comment): if comment['author']['id'] in self._config.blacklist: return 'Author is blacklisted' if comment['content']: for term in self._config.contentBlacklist: if term in comment['content']: return 'Content contains blacklisted term: %s' % term return None def initCredentialsAndService(self, name, version, scope = None, discovery_filename = None): if scope is None: scope = 'https://www.googleapis.com/auth/' + name client_secrets = os.path.join(self._directory, 'client_secrets.json') flow = client.flow_from_clientsecrets(client_secrets, scope=scope, message=tools.message_if_missing(client_secrets)) storage = file.Storage(name + '.dat') credentials = storage.get() if credentials is None or credentials.invalid: flags = Expando() flags.nonoauth_local_webserver = True credentials = tools.run_flow(flow, storage, flags) http = credentials.authorize(http=httplib2.Http()) if discovery_filename is None: service = discovery.build(name, version, http=http) else: with open(discovery_filename) as discovery_file: service = discovery.build_from_document( discovery_file.read(), base='https://www.googleapis.com/', http=http) return (credentials, service) def loadState(self): file = self.getStateFile() if os.path.isfile(file): with open(file, 'r') as handle: self._state = json.load(handle) else: self._state = {} if 'utcLastRun' in self._state and not (self._state['utcLastRun'] is None): self._utcLastRun = datetime.strptime(self._state['utcLastRun'], '%Y-%m-%dT%H:%M:%S.%fZ') else: self._utcLastRun = None def saveState(self): self._state['utcLastRun'] = '%sZ' % datetime.utcnow().isoformat('T') with open(self.getStateFile(), 'w') as handle: json.dump(self._state, handle, indent=4, sort_keys=True) def getStateFile(self): return os.path.join(self._directory, 'client.state.json') def main(argv): directory = os.path.dirname(__file__) log = Logger() config = Configuration(os.path.join(directory, 'config.json')) try: bot = CommentBot(log, config, directory) bot.scanBlog(config.blogId) log.info('%d scanned posts, %d scanned comments, %d removed comments' %(bot.scannedPosts, bot.scannedComments, bot.removedComments)) except client.AccessTokenRefreshError: print('[%s] ERROR: The credentials have been revoked or expired, please re-run the application to re-authorize.'%(now())) if __name__ == '__main__': main(sys.argv)
[ "httplib2.Http", "sys.exit", "datetime.datetime.utcnow", "datetime.datetime.strptime", "os.path.join", "re.match", "oauth2client.tools.message_if_missing", "os.path.isfile", "os.path.dirname", "googleapiclient.discovery.build", "datetime.datetime.now", "oauth2client.file.Storage", "json.load", "oauth2client.tools.run_flow", "datetime.timedelta", "json.dump" ]
[((9227, 9252), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (9242, 9252), False, 'import os\n'), ((2885, 2914), 're.match', 're.match', (['"""^[0-9]+$"""', 'blogUrl'], {}), "('^[0-9]+$', blogUrl)\n", (2893, 2914), False, 'import re\n'), ((7456, 7508), 'os.path.join', 'os.path.join', (['self._directory', '"""client_secrets.json"""'], {}), "(self._directory, 'client_secrets.json')\n", (7468, 7508), False, 'import os\n'), ((7678, 7705), 'oauth2client.file.Storage', 'file.Storage', (["(name + '.dat')"], {}), "(name + '.dat')\n", (7690, 7705), False, 'from oauth2client import file\n'), ((8477, 8497), 'os.path.isfile', 'os.path.isfile', (['file'], {}), '(file)\n', (8491, 8497), False, 'import os\n'), ((9142, 9192), 'os.path.join', 'os.path.join', (['self._directory', '"""client.state.json"""'], {}), "(self._directory, 'client.state.json')\n", (9154, 9192), False, 'import os\n'), ((9299, 9337), 'os.path.join', 'os.path.join', (['directory', '"""config.json"""'], {}), "(directory, 'config.json')\n", (9311, 9337), False, 'import os\n'), ((885, 911), 'os.path.dirname', 'os.path.dirname', (['directory'], {}), '(directory)\n', (900, 911), False, 'import os\n'), ((975, 987), 'json.load', 'json.load', (['h'], {}), '(h)\n', (984, 987), False, 'import json\n'), ((7903, 7939), 'oauth2client.tools.run_flow', 'tools.run_flow', (['flow', 'storage', 'flags'], {}), '(flow, storage, flags)\n', (7917, 7939), False, 'from oauth2client import tools\n'), ((8062, 8103), 'googleapiclient.discovery.build', 'discovery.build', (['name', 'version'], {'http': 'http'}), '(name, version, http=http)\n', (8077, 8103), False, 'from googleapiclient import discovery\n'), ((8750, 8819), 'datetime.datetime.strptime', 'datetime.strptime', (["self._state['utcLastRun']", '"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {}), "(self._state['utcLastRun'], '%Y-%m-%dT%H:%M:%S.%fZ')\n", (8767, 8819), False, 'from datetime import datetime, timedelta\n'), ((9041, 9097), 'json.dump', 'json.dump', (['self._state', 'handle'], {'indent': '(4)', 'sort_keys': '(True)'}), '(self._state, handle, indent=4, sort_keys=True)\n', (9050, 9097), False, 'import json\n'), ((6856, 6867), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (6864, 6867), False, 'import sys\n'), ((7617, 7657), 'oauth2client.tools.message_if_missing', 'tools.message_if_missing', (['client_secrets'], {}), '(client_secrets)\n', (7641, 7657), False, 'from oauth2client import tools\n'), ((7983, 7998), 'httplib2.Http', 'httplib2.Http', ([], {}), '()\n', (7996, 7998), False, 'import httplib2\n'), ((8573, 8590), 'json.load', 'json.load', (['handle'], {}), '(handle)\n', (8582, 8590), False, 'import json\n'), ((594, 608), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (606, 608), False, 'from datetime import datetime, timedelta\n'), ((8940, 8957), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (8955, 8957), False, 'from datetime import datetime, timedelta\n'), ((3208, 3225), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (3223, 3225), False, 'from datetime import datetime, timedelta\n'), ((3226, 3261), 'datetime.timedelta', 'timedelta', ([], {'hours': 'self._config.hours'}), '(hours=self._config.hours)\n', (3235, 3261), False, 'from datetime import datetime, timedelta\n'), ((4012, 4065), 'datetime.timedelta', 'timedelta', ([], {'minutes': 'self._config.lastRunOverlapMinutes'}), '(minutes=self._config.lastRunOverlapMinutes)\n', (4021, 4065), False, 'from datetime import datetime, timedelta\n')]
import spherical_kde.utils as utils import pytest import numpy from numpy.testing import assert_allclose test_polar = numpy.array([[numpy.pi/3, numpy.pi/3], [numpy.pi/6, numpy.pi/4], [numpy.pi/4, numpy.pi/4]]) test_decra = numpy.array([[60., 30.], [30., 45.], [45., 45.]]) test_cartesian = numpy.array([[3.**0.5/4, 3./4, 1./2], [(3./8)**0.5, (8.)**-0.5, (2.)**-0.5], [1./2, 1./2, (2.)**-0.5]]) def test_cartesian_from_polar_scalar(): for ang, cart0 in zip(test_polar, test_cartesian): cart1 = utils.cartesian_from_polar(*ang) assert_allclose(cart0, cart1) def test_cartesian_from_polar_array(): cart1 = utils.cartesian_from_polar(*test_polar.T) assert_allclose(test_cartesian.T, cart1) def test_polar_from_cartesian_scalar(): for ang0, cart in zip(test_polar, test_cartesian): # Test straightforward ang1 = utils.polar_from_cartesian(cart) assert_allclose(ang0, ang1) # Test normalisation doesn't matter cart = 3*numpy.array(cart) ang2 = utils.polar_from_cartesian(cart) assert_allclose(ang0, ang2) def test_polar_from_cartesian_array(): ang1 = utils.polar_from_cartesian(test_cartesian.T) assert_allclose(test_polar.T, ang1) def test_decra_from_polar_scalar(): for ang, decra0 in zip(test_polar, test_decra): decra1 = utils.decra_from_polar(*ang) assert_allclose(decra0, decra1) def test_decra_from_polar_array(): decra1 = utils.decra_from_polar(*test_polar.T) assert_allclose(test_decra.T, decra1) def test_polar_from_decra_scalar(): for ang0, decra in zip(test_polar, test_decra): ang1 = utils.polar_from_decra(*decra) assert_allclose(ang0, ang1) def test_polar_from_decra_array(): polar1 = utils.polar_from_decra(*test_decra.T) assert_allclose(test_polar.T, polar1) def test_logsinh(): numpy.random.seed(seed=0) for i in range(100): if i > 90: x = numpy.random.rand(10) else: x = numpy.random.rand() a = utils.logsinh(x) b = numpy.log(numpy.sinh(x)) assert_allclose(a, b) def test_logsinh_positive_arg(): with pytest.raises(ValueError): utils.logsinh(-1) with pytest.raises(ValueError): utils.logsinh(numpy.array([1, -1])) def test_rotation_matrix(): numpy.random.seed(seed=0) theta = numpy.random.rand(10, 2)*numpy.pi phi = numpy.random.rand(10, 2)*2*numpy.pi for (p1, p2), (t1, t2) in zip(phi, theta): n1 = utils.cartesian_from_polar(p1, t1) n2 = utils.cartesian_from_polar(p2, t2) M = utils.rotation_matrix(n1, n2) assert_allclose(M.dot(n1), n2) assert_allclose(M.T.dot(n2), n1) M = utils.rotation_matrix(n1, n1) assert_allclose(M, numpy.identity(3)) def test_spherical_integrate(): ans = utils.spherical_integrate(lambda theta, phi: 1) assert_allclose(ans, 4*numpy.pi) ans = utils.spherical_integrate(lambda theta, phi: theta*phi) assert_allclose(ans, 2*numpy.pi**3) ans = utils.spherical_integrate(lambda theta, phi: theta*numpy.cos(phi)) assert_allclose(ans, 0, atol=1e-7) def test_spherical_kullback_liebler(): def logp(phi, theta): return numpy.log(numpy.sin(theta)/numpy.pi**2) def logq(phi, theta): return numpy.log(1/numpy.pi/4) assert_allclose(utils.spherical_integrate(logp, log=True), 1) assert_allclose(utils.spherical_integrate(logq, log=True), 1) KL = utils.spherical_kullback_liebler(logp, logq) assert_allclose(KL, 1./2 - numpy.log(numpy.pi/2))
[ "spherical_kde.utils.spherical_kullback_liebler", "numpy.identity", "spherical_kde.utils.cartesian_from_polar", "numpy.random.rand", "numpy.testing.assert_allclose", "numpy.log", "spherical_kde.utils.polar_from_cartesian", "spherical_kde.utils.rotation_matrix", "numpy.sinh", "numpy.array", "spherical_kde.utils.polar_from_decra", "pytest.raises", "numpy.random.seed", "numpy.cos", "numpy.sin", "spherical_kde.utils.spherical_integrate", "spherical_kde.utils.logsinh", "spherical_kde.utils.decra_from_polar" ]
[((119, 227), 'numpy.array', 'numpy.array', (['[[numpy.pi / 3, numpy.pi / 3], [numpy.pi / 6, numpy.pi / 4], [numpy.pi / 4,\n numpy.pi / 4]]'], {}), '([[numpy.pi / 3, numpy.pi / 3], [numpy.pi / 6, numpy.pi / 4], [\n numpy.pi / 4, numpy.pi / 4]])\n', (130, 227), False, 'import numpy\n'), ((277, 332), 'numpy.array', 'numpy.array', (['[[60.0, 30.0], [30.0, 45.0], [45.0, 45.0]]'], {}), '([[60.0, 30.0], [30.0, 45.0], [45.0, 45.0]])\n', (288, 332), False, 'import numpy\n'), ((397, 530), 'numpy.array', 'numpy.array', (['[[3.0 ** 0.5 / 4, 3.0 / 4, 1.0 / 2], [(3.0 / 8) ** 0.5, 8.0 ** -0.5, 2.0 **\n -0.5], [1.0 / 2, 1.0 / 2, 2.0 ** -0.5]]'], {}), '([[3.0 ** 0.5 / 4, 3.0 / 4, 1.0 / 2], [(3.0 / 8) ** 0.5, 8.0 ** \n -0.5, 2.0 ** -0.5], [1.0 / 2, 1.0 / 2, 2.0 ** -0.5]])\n', (408, 530), False, 'import numpy\n'), ((798, 839), 'spherical_kde.utils.cartesian_from_polar', 'utils.cartesian_from_polar', (['*test_polar.T'], {}), '(*test_polar.T)\n', (824, 839), True, 'import spherical_kde.utils as utils\n'), ((844, 884), 'numpy.testing.assert_allclose', 'assert_allclose', (['test_cartesian.T', 'cart1'], {}), '(test_cartesian.T, cart1)\n', (859, 884), False, 'from numpy.testing import assert_allclose\n'), ((1313, 1357), 'spherical_kde.utils.polar_from_cartesian', 'utils.polar_from_cartesian', (['test_cartesian.T'], {}), '(test_cartesian.T)\n', (1339, 1357), True, 'import spherical_kde.utils as utils\n'), ((1362, 1397), 'numpy.testing.assert_allclose', 'assert_allclose', (['test_polar.T', 'ang1'], {}), '(test_polar.T, ang1)\n', (1377, 1397), False, 'from numpy.testing import assert_allclose\n'), ((1624, 1661), 'spherical_kde.utils.decra_from_polar', 'utils.decra_from_polar', (['*test_polar.T'], {}), '(*test_polar.T)\n', (1646, 1661), True, 'import spherical_kde.utils as utils\n'), ((1666, 1703), 'numpy.testing.assert_allclose', 'assert_allclose', (['test_decra.T', 'decra1'], {}), '(test_decra.T, decra1)\n', (1681, 1703), False, 'from numpy.testing import assert_allclose\n'), ((1926, 1963), 'spherical_kde.utils.polar_from_decra', 'utils.polar_from_decra', (['*test_decra.T'], {}), '(*test_decra.T)\n', (1948, 1963), True, 'import spherical_kde.utils as utils\n'), ((1968, 2005), 'numpy.testing.assert_allclose', 'assert_allclose', (['test_polar.T', 'polar1'], {}), '(test_polar.T, polar1)\n', (1983, 2005), False, 'from numpy.testing import assert_allclose\n'), ((2032, 2057), 'numpy.random.seed', 'numpy.random.seed', ([], {'seed': '(0)'}), '(seed=0)\n', (2049, 2057), False, 'import numpy\n'), ((2497, 2522), 'numpy.random.seed', 'numpy.random.seed', ([], {'seed': '(0)'}), '(seed=0)\n', (2514, 2522), False, 'import numpy\n'), ((2890, 2919), 'spherical_kde.utils.rotation_matrix', 'utils.rotation_matrix', (['n1', 'n1'], {}), '(n1, n1)\n', (2911, 2919), True, 'import spherical_kde.utils as utils\n'), ((3006, 3053), 'spherical_kde.utils.spherical_integrate', 'utils.spherical_integrate', (['(lambda theta, phi: 1)'], {}), '(lambda theta, phi: 1)\n', (3031, 3053), True, 'import spherical_kde.utils as utils\n'), ((3058, 3092), 'numpy.testing.assert_allclose', 'assert_allclose', (['ans', '(4 * numpy.pi)'], {}), '(ans, 4 * numpy.pi)\n', (3073, 3092), False, 'from numpy.testing import assert_allclose\n'), ((3102, 3159), 'spherical_kde.utils.spherical_integrate', 'utils.spherical_integrate', (['(lambda theta, phi: theta * phi)'], {}), '(lambda theta, phi: theta * phi)\n', (3127, 3159), True, 'import spherical_kde.utils as utils\n'), ((3162, 3201), 'numpy.testing.assert_allclose', 'assert_allclose', (['ans', '(2 * numpy.pi ** 3)'], {}), '(ans, 2 * numpy.pi ** 3)\n', (3177, 3201), False, 'from numpy.testing import assert_allclose\n'), ((3280, 3315), 'numpy.testing.assert_allclose', 'assert_allclose', (['ans', '(0)'], {'atol': '(1e-07)'}), '(ans, 0, atol=1e-07)\n', (3295, 3315), False, 'from numpy.testing import assert_allclose\n'), ((3646, 3690), 'spherical_kde.utils.spherical_kullback_liebler', 'utils.spherical_kullback_liebler', (['logp', 'logq'], {}), '(logp, logq)\n', (3678, 3690), True, 'import spherical_kde.utils as utils\n'), ((674, 706), 'spherical_kde.utils.cartesian_from_polar', 'utils.cartesian_from_polar', (['*ang'], {}), '(*ang)\n', (700, 706), True, 'import spherical_kde.utils as utils\n'), ((715, 744), 'numpy.testing.assert_allclose', 'assert_allclose', (['cart0', 'cart1'], {}), '(cart0, cart1)\n', (730, 744), False, 'from numpy.testing import assert_allclose\n'), ((1028, 1060), 'spherical_kde.utils.polar_from_cartesian', 'utils.polar_from_cartesian', (['cart'], {}), '(cart)\n', (1054, 1060), True, 'import spherical_kde.utils as utils\n'), ((1069, 1096), 'numpy.testing.assert_allclose', 'assert_allclose', (['ang0', 'ang1'], {}), '(ang0, ang1)\n', (1084, 1096), False, 'from numpy.testing import assert_allclose\n'), ((1192, 1224), 'spherical_kde.utils.polar_from_cartesian', 'utils.polar_from_cartesian', (['cart'], {}), '(cart)\n', (1218, 1224), True, 'import spherical_kde.utils as utils\n'), ((1233, 1260), 'numpy.testing.assert_allclose', 'assert_allclose', (['ang0', 'ang2'], {}), '(ang0, ang2)\n', (1248, 1260), False, 'from numpy.testing import assert_allclose\n'), ((1505, 1533), 'spherical_kde.utils.decra_from_polar', 'utils.decra_from_polar', (['*ang'], {}), '(*ang)\n', (1527, 1533), True, 'import spherical_kde.utils as utils\n'), ((1542, 1573), 'numpy.testing.assert_allclose', 'assert_allclose', (['decra0', 'decra1'], {}), '(decra0, decra1)\n', (1557, 1573), False, 'from numpy.testing import assert_allclose\n'), ((1809, 1839), 'spherical_kde.utils.polar_from_decra', 'utils.polar_from_decra', (['*decra'], {}), '(*decra)\n', (1831, 1839), True, 'import spherical_kde.utils as utils\n'), ((1848, 1875), 'numpy.testing.assert_allclose', 'assert_allclose', (['ang0', 'ang1'], {}), '(ang0, ang1)\n', (1863, 1875), False, 'from numpy.testing import assert_allclose\n'), ((2202, 2218), 'spherical_kde.utils.logsinh', 'utils.logsinh', (['x'], {}), '(x)\n', (2215, 2218), True, 'import spherical_kde.utils as utils\n'), ((2264, 2285), 'numpy.testing.assert_allclose', 'assert_allclose', (['a', 'b'], {}), '(a, b)\n', (2279, 2285), False, 'from numpy.testing import assert_allclose\n'), ((2330, 2355), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2343, 2355), False, 'import pytest\n'), ((2365, 2382), 'spherical_kde.utils.logsinh', 'utils.logsinh', (['(-1)'], {}), '(-1)\n', (2378, 2382), True, 'import spherical_kde.utils as utils\n'), ((2392, 2417), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2405, 2417), False, 'import pytest\n'), ((2536, 2560), 'numpy.random.rand', 'numpy.random.rand', (['(10)', '(2)'], {}), '(10, 2)\n', (2553, 2560), False, 'import numpy\n'), ((2676, 2710), 'spherical_kde.utils.cartesian_from_polar', 'utils.cartesian_from_polar', (['p1', 't1'], {}), '(p1, t1)\n', (2702, 2710), True, 'import spherical_kde.utils as utils\n'), ((2724, 2758), 'spherical_kde.utils.cartesian_from_polar', 'utils.cartesian_from_polar', (['p2', 't2'], {}), '(p2, t2)\n', (2750, 2758), True, 'import spherical_kde.utils as utils\n'), ((2771, 2800), 'spherical_kde.utils.rotation_matrix', 'utils.rotation_matrix', (['n1', 'n2'], {}), '(n1, n2)\n', (2792, 2800), True, 'import spherical_kde.utils as utils\n'), ((2943, 2960), 'numpy.identity', 'numpy.identity', (['(3)'], {}), '(3)\n', (2957, 2960), False, 'import numpy\n'), ((3479, 3506), 'numpy.log', 'numpy.log', (['(1 / numpy.pi / 4)'], {}), '(1 / numpy.pi / 4)\n', (3488, 3506), False, 'import numpy\n'), ((3524, 3565), 'spherical_kde.utils.spherical_integrate', 'utils.spherical_integrate', (['logp'], {'log': '(True)'}), '(logp, log=True)\n', (3549, 3565), True, 'import spherical_kde.utils as utils\n'), ((3590, 3631), 'spherical_kde.utils.spherical_integrate', 'utils.spherical_integrate', (['logq'], {'log': '(True)'}), '(logq, log=True)\n', (3615, 3631), True, 'import spherical_kde.utils as utils\n'), ((1159, 1176), 'numpy.array', 'numpy.array', (['cart'], {}), '(cart)\n', (1170, 1176), False, 'import numpy\n'), ((2118, 2139), 'numpy.random.rand', 'numpy.random.rand', (['(10)'], {}), '(10)\n', (2135, 2139), False, 'import numpy\n'), ((2170, 2189), 'numpy.random.rand', 'numpy.random.rand', ([], {}), '()\n', (2187, 2189), False, 'import numpy\n'), ((2241, 2254), 'numpy.sinh', 'numpy.sinh', (['x'], {}), '(x)\n', (2251, 2254), False, 'import numpy\n'), ((2441, 2461), 'numpy.array', 'numpy.array', (['[1, -1]'], {}), '([1, -1])\n', (2452, 2461), False, 'import numpy\n'), ((2580, 2604), 'numpy.random.rand', 'numpy.random.rand', (['(10)', '(2)'], {}), '(10, 2)\n', (2597, 2604), False, 'import numpy\n'), ((3722, 3745), 'numpy.log', 'numpy.log', (['(numpy.pi / 2)'], {}), '(numpy.pi / 2)\n', (3731, 3745), False, 'import numpy\n'), ((3260, 3274), 'numpy.cos', 'numpy.cos', (['phi'], {}), '(phi)\n', (3269, 3274), False, 'import numpy\n'), ((3407, 3423), 'numpy.sin', 'numpy.sin', (['theta'], {}), '(theta)\n', (3416, 3423), False, 'import numpy\n')]
from copy import copy class GameBoard: EMPTY_PIECE = 0 RED_PIECE = 1 BLACK_PIECE = 2 def __init__(self, num_columns, num_rows): self.num_columns = num_columns self.num_rows = num_rows self.pieces = None self.total_pieces = 0 self.reset_board() def make_copy(self): pieces = self.pieces.copy() total_pieces = copy(self.total_pieces) game_board = GameBoard(self.num_columns, self.num_rows) game_board.pieces = pieces game_board.total_pieces = total_pieces return game_board def reset_board(self): self.total_pieces = 0 self.pieces = [self.EMPTY_PIECE] * (self.num_columns * self.num_rows) def get_num_columns(self): return self.num_columns def get_num_rows(self): return self.num_rows def get_board_size(self): return self.get_num_columns(), self.get_num_rows() def can_make_move(self, column): if column is None: return False if column < 0 or column >= self.num_columns: return False top_row = self.num_rows - 1 return self.get_piece(column, top_row) == self.EMPTY_PIECE def get_all_possible_moves(self): moves = [] for column in range(self.num_columns): if self.can_make_move(column): moves.append(column) return moves def make_move(self, column, player_color): row = self.get_first_empty_row(column) if row is None: raise Exception(f"Row is none given column {column}") index = self.get_piece_index(column, row) self.pieces[index] = player_color self.total_pieces += 1 def get_first_empty_row(self, column): if column is None: raise Exception("Column cannot be None!") for row in range(self.num_rows): if self.get_piece(column, row) == GameBoard.EMPTY_PIECE: return row return None def get_row(self, column): row = self.get_first_empty_row(column) row = self.num_rows - 1 if row is None else row - 1 return row def get_piece(self, column, row): index = self.get_piece_index(column, row) return self.pieces[index] def get_piece_index(self, column, row): index = column * self.num_rows + row return index def print_board(self): for y in range(self.num_rows - 1, -1, -1): for x in range(self.num_columns): print(str(self.get_piece(x, y)) + ' ', end='') print() def is_full_board(self): board_size = self.num_columns * self.num_rows return self.total_pieces >= board_size
[ "copy.copy" ]
[((388, 411), 'copy.copy', 'copy', (['self.total_pieces'], {}), '(self.total_pieces)\n', (392, 411), False, 'from copy import copy\n')]
import numpy as np import ndhist import sys # Construct a histogram with 2 bins of type int64 having edges at 0, 1, and 2, # which are also of type int64 class Value(object): def __init__(self, v=0): self._v = v def __lt__(self, rhs): print("%f < %f"%(self._v, rhs._v)) return self._v < rhs._v def __add__(self, rhs): print("%f + %f"%(self._v, rhs._v)) self._v += rhs._v return self h1 = ndhist.ndhist((np.array([-1, 0,1,2,3,4,5,6,7,8,9], dtype=np.dtype(np.float64)),), dtype=np.dtype(np.float64)) vs = np.random.uniform(-3, 11, size=100) vs = vs.astype(np.dtype(np.float64)) vs = np.reshape(vs, (vs.shape[0],1)) h1.fill(vs, 1) print("h1.get_bin_edges(0) = ", h1.get_bin_edges(0)) print("h1.bincontent =", h1.bincontent) h2 = ndhist.ndhist((np.array([0,1,2,3,4,5,6,7,8,9], dtype=np.dtype(np.float64)),), dtype=np.dtype(np.float64)) values = np.array([1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,0]) vs = values.astype(np.dtype(np.float64)) vs = np.reshape(vs, (vs.shape[0],1)) h2.fill(vs, 1) print(h2.bincontent) print("Create object histogram.") h3 = ndhist.ndhist((np.array([0,1,2,3,4,5,6,7,8,9,10], dtype=np.dtype(np.float64)),), dtype=np.dtype(Value), bc_class=Value) print("edges h3=", h3.get_bin_edges()) print("h3.ndim=", h3.ndim) values = np.array([1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1,0]) vs = values.astype(np.dtype(np.float64)) vs = np.reshape(vs, (vs.shape[0],1)) h3.fill(vs, Value(1)) print(h3.bincontent) print("[") for i in range(0, 10): print("%f,"%h3.bincontent[i]._v) print("]") h4 = ndhist.ndhist((np.array([Value(0),Value(1),Value(2)], dtype=np.dtype(object)),), dtype=np.dtype(np.float64)) vs = np.array([Value(0.1),Value(1.2),Value(2.3)]) h4.fill((vs,), 1.0) print("h4.bincontent = ", h4.bincontent)
[ "numpy.array", "numpy.dtype", "numpy.reshape", "numpy.random.uniform" ]
[((586, 621), 'numpy.random.uniform', 'np.random.uniform', (['(-3)', '(11)'], {'size': '(100)'}), '(-3, 11, size=100)\n', (603, 621), True, 'import numpy as np\n'), ((664, 696), 'numpy.reshape', 'np.reshape', (['vs', '(vs.shape[0], 1)'], {}), '(vs, (vs.shape[0], 1))\n', (674, 696), True, 'import numpy as np\n'), ((947, 1014), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]'], {}), '([1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])\n', (955, 1014), True, 'import numpy as np\n'), ((1043, 1075), 'numpy.reshape', 'np.reshape', (['vs', '(vs.shape[0], 1)'], {}), '(vs, (vs.shape[0], 1))\n', (1053, 1075), True, 'import numpy as np\n'), ((1385, 1456), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]'], {}), '([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])\n', (1393, 1456), True, 'import numpy as np\n'), ((1484, 1516), 'numpy.reshape', 'np.reshape', (['vs', '(vs.shape[0], 1)'], {}), '(vs, (vs.shape[0], 1))\n', (1494, 1516), True, 'import numpy as np\n'), ((637, 657), 'numpy.dtype', 'np.dtype', (['np.float64'], {}), '(np.float64)\n', (645, 657), True, 'import numpy as np\n'), ((1016, 1036), 'numpy.dtype', 'np.dtype', (['np.float64'], {}), '(np.float64)\n', (1024, 1036), True, 'import numpy as np\n'), ((1457, 1477), 'numpy.dtype', 'np.dtype', (['np.float64'], {}), '(np.float64)\n', (1465, 1477), True, 'import numpy as np\n'), ((558, 578), 'numpy.dtype', 'np.dtype', (['np.float64'], {}), '(np.float64)\n', (566, 578), True, 'import numpy as np\n'), ((915, 935), 'numpy.dtype', 'np.dtype', (['np.float64'], {}), '(np.float64)\n', (923, 935), True, 'import numpy as np\n'), ((1257, 1272), 'numpy.dtype', 'np.dtype', (['Value'], {}), '(Value)\n', (1265, 1272), True, 'import numpy as np\n'), ((1753, 1773), 'numpy.dtype', 'np.dtype', (['np.float64'], {}), '(np.float64)\n', (1761, 1773), True, 'import numpy as np\n'), ((508, 528), 'numpy.dtype', 'np.dtype', (['np.float64'], {}), '(np.float64)\n', (516, 528), True, 'import numpy as np\n'), ((865, 885), 'numpy.dtype', 'np.dtype', (['np.float64'], {}), '(np.float64)\n', (873, 885), True, 'import numpy as np\n'), ((1207, 1227), 'numpy.dtype', 'np.dtype', (['np.float64'], {}), '(np.float64)\n', (1215, 1227), True, 'import numpy as np\n'), ((1707, 1723), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (1715, 1723), True, 'import numpy as np\n')]
from bs4 import BeautifulSoup import urllib import matplotlib.pyplot as plt import threading import smtplib import os cached_posts = [] def find_new_posts(_cached_posts=cached_posts): t = 10 page = urllib.request.urlopen('http://www.jlawrence.co/tb').read() soup = BeautifulSoup(page, "html5lib") posts = soup.find_all("div",class_="post") cant_send = not(_cached_posts) # initialization of email server mail = smtplib.SMTP('smtp.gmail.com', 587) # initialization of the mail driver mail.ehlo() mail.starttls() senderEmail = '' senderPass = '' recieverEmail = '<EMAIL>' mail.login(senderEmail, senderPass) for post in posts: if(not(post in _cached_posts)): _cached_posts.append(post) if(not(cant_send)): mail.sendmail(senderEmail,recieverEmail,'New post at jlawrence.co/tb') threading.Timer(t, find_new_posts).start() find_new_posts()
[ "bs4.BeautifulSoup", "threading.Timer", "smtplib.SMTP", "urllib.request.urlopen" ]
[((281, 312), 'bs4.BeautifulSoup', 'BeautifulSoup', (['page', '"""html5lib"""'], {}), "(page, 'html5lib')\n", (294, 312), False, 'from bs4 import BeautifulSoup\n'), ((446, 481), 'smtplib.SMTP', 'smtplib.SMTP', (['"""smtp.gmail.com"""', '(587)'], {}), "('smtp.gmail.com', 587)\n", (458, 481), False, 'import smtplib\n'), ((209, 261), 'urllib.request.urlopen', 'urllib.request.urlopen', (['"""http://www.jlawrence.co/tb"""'], {}), "('http://www.jlawrence.co/tb')\n", (231, 261), False, 'import urllib\n'), ((898, 932), 'threading.Timer', 'threading.Timer', (['t', 'find_new_posts'], {}), '(t, find_new_posts)\n', (913, 932), False, 'import threading\n')]
from collections import defaultdict, deque class CPU(object): def __init__(self, instructions, _id): self.instructions = instructions self.ip = 0 self.registers = defaultdict(lambda: 0) self.registers['p'] = _id self._id = _id self.outqueue = deque() self.inqueue = [] #TODO self.sent = 0 def step(self): if 0 <= self.ip < len(self.instructions): instruction = self.instructions[self.ip] else: print("DONE") return False, False name = instruction[0] if name == 'snd': self.snd(instruction) elif name == 'set': self.set(instruction) elif name == 'mul': self.mul(instruction) elif name == 'add': self.add(instruction) elif name == 'mod': self.mod(instruction) elif name == 'rcv': if not self.rcv(instruction): # We need to switch cpu sides return True, True elif name == 'jgz': self.jgz(instruction) else: print("unknown instruction") self.ip += 1 return True, False def get_value(self, name): try: value = int(name) except: value = self.registers[name] return value def snd(self, i): self.outqueue.append(self.get_value(i[1])) if self._id == 1: self.sent += 1 print(f's = {self.sent}') pass def set(self, i): self.registers[i[1]] = self.get_value(i[2]) def mul(self, i): self.registers[i[1]] *= self.get_value(i[2]) def mod(self, i): self.registers[i[1]] = self.get_value(i[1]) % self.get_value(i[2]) def add(self, i): self.registers[i[1]] += self.get_value(i[2]) def rcv(self, i): if len(self.inqueue) == 0: return False else: self.registers[i[1]] = self.inqueue.popleft() return True def jgz(self, i): if self.get_value(i[1]) > 0: self.ip += self.get_value(i[2]) - 1 def continue_rcv(self): i = self.instructions[self.ip] if len(self.inqueue) == 0: return False else: self.registers[i[1]] = self.inqueue.popleft() self.ip += 1 return True def do_things(): with open('input.txt') as ifile: instructions = [ins.strip().split(' ') for ins in ifile.readlines()] c0 = CPU(instructions, 0) c1 = CPU(instructions, 1) c1.inqueue = c0.outqueue c0.inqueue = c1.outqueue while True: running0, waiting0 = c0.step() if waiting0: while not(c0.continue_rcv()): running1, waiting1 = c1.step() if waiting1 or not running1: print('deadlock') return True running1, waiting1 = c1.step() if waiting1: while not(c1.continue_rcv()): running0, waiting0 = c0.step() if waiting0 or not running0: print('deadlock') return True if not (running0 and running1): print("stopped") print(c0.ip) print(c1.ip) return True do_things()
[ "collections.deque", "collections.defaultdict" ]
[((192, 215), 'collections.defaultdict', 'defaultdict', (['(lambda : 0)'], {}), '(lambda : 0)\n', (203, 215), False, 'from collections import defaultdict, deque\n'), ((296, 303), 'collections.deque', 'deque', ([], {}), '()\n', (301, 303), False, 'from collections import defaultdict, deque\n')]
from exceptions import InvalidUsage, NotCorrectDirection, ErrorOnBoardCoding from gameserver.types.direction import Direction from enum import Enum class BoardNaming(Enum): Empty = 0 Dino = 1 Robot_Up = 2 Robot_Right = 3 Robot_Down = 4 Robot_Left = 5 def __str__(self): if self.name == 'Dino': return 'X' if self.name == 'Robot_Up': return Direction.UP.value if self.name == 'Robot_Down': return Direction.DOWN.value if self.name == 'Robot_Left': return Direction.LEFT.value if self.name == 'Robot_Right': return Direction.RIGHT.value if self.name == 'Empty': return '-' @classmethod def has_value(cls, value): return value in cls._value2member_map_ ROBOT_VALUES = [ BoardNaming.Robot_Right, BoardNaming.Robot_Left, BoardNaming.Robot_Up, BoardNaming.Robot_Down ] def direction_to_robot_naming(direction: Direction) -> BoardNaming: if direction not in list(Direction): raise NotCorrectDirection if direction == Direction.UP: return BoardNaming.Robot_Up.value elif direction == Direction.DOWN: return BoardNaming.Robot_Down.value elif direction == Direction.LEFT: return BoardNaming.Robot_Left.value else: return BoardNaming.Robot_Right.value def robot_naming_to_direction(naming: BoardNaming) -> Direction: if naming not in ROBOT_VALUES: raise ErrorOnBoardCoding if naming == BoardNaming.Robot_Up: return Direction.UP if naming == BoardNaming.Robot_Down: return Direction.DOWN if naming == BoardNaming.Robot_Left: return Direction.LEFT if naming == BoardNaming.Robot_Right: return Direction.RIGHT def is_robot(name: BoardNaming) -> bool: if name in ROBOT_VALUES: return True return False def string_board_to_array(string: str, size: int) -> list: return [string[i:i + size] for i in range(0, len(string), size)] def print_for_response(string: str, size: int) -> list: keys = BoardNaming._value2member_map_.keys() values = [str(BoardNaming(x)) for x in BoardNaming._value2member_map_.keys()] for key, val in zip(keys, values): string = string.replace(str(key), val) return string_board_to_array(string, size) def request_direction_conversion(request_direction: str) -> Direction: valid_directions = [str.lower(e) for e in Direction.__members__.keys()] if str.lower(request_direction) not in valid_directions: raise NotCorrectDirection return Direction.__members__[str.upper(request_direction)]
[ "gameserver.types.direction.Direction.__members__.keys" ]
[((2489, 2517), 'gameserver.types.direction.Direction.__members__.keys', 'Direction.__members__.keys', ([], {}), '()\n', (2515, 2517), False, 'from gameserver.types.direction import Direction\n')]
""" :mod:`zsl.db.model.app_model_json_decoder` ------------------------------------------ .. moduleauthor:: <NAME> """ from __future__ import unicode_literals from json.decoder import WHITESPACE, JSONDecoder from zsl.utils.import_helper import fetch_class def get_json_decoder(full_class_name, hints=None): class AppModelJSONDecoder(JSONDecoder): def decode(self, s, _w=WHITESPACE.match): values = JSONDecoder.decode(self, s, _w=_w) model = fetch_class(full_class_name)(values, 'id', hints) return model return AppModelJSONDecoder
[ "zsl.utils.import_helper.fetch_class", "json.decoder.JSONDecoder.decode" ]
[((427, 461), 'json.decoder.JSONDecoder.decode', 'JSONDecoder.decode', (['self', 's'], {'_w': '_w'}), '(self, s, _w=_w)\n', (445, 461), False, 'from json.decoder import WHITESPACE, JSONDecoder\n'), ((482, 510), 'zsl.utils.import_helper.fetch_class', 'fetch_class', (['full_class_name'], {}), '(full_class_name)\n', (493, 510), False, 'from zsl.utils.import_helper import fetch_class\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Simple Script for augmenting our images. - Takes *.JPG images and applies image augmentations with imgaug - Takes all *.JPG images in the cwd - Manipulates them with imgaug augmenters - Saves augmented images in the cwd with the augmentation prefixed to its original file name Requirements: * See requirements.txt in https://github.com/aleju/imgaug * opencv (conda) or python-opencv (pip) * imgaug Suggested setup: * Create new conda environment * Get requirements.txt from above source -> cat requirements.txt | xargs -i conda [install|add] {} * Install opencv in env * Install imgaug from git: - /env_path/bin/pip install git+https://github.com/aleju/imgaug How to use: * Copy this script into directory with training images * (Source) Activate environment * Run script ''' import cv2 import os from imgaug import augmenters as iaa def get_files(postfix): ''' Returns all files in the current working directory with the specified postfix It's sorted to ensure determinism ''' filenames = os.listdir(os.getcwd()) return sorted([filename for filename in filenames if filename.endswith(postfix)]) def save_augmented_images(prefix, aug_images, paths): ''' aug_images - list of numpy.ndarray's ''' for i in range(len(paths)): cv2.imwrite(prefix + "_" + paths[i], aug_images[i]) def get_images(paths): ''' Images of shape := (height, width, channels = 3) in BGR Format paths - [str] ''' images = [] for path in paths: images.append(cv2.imread(path)) return images def main(): ''' Dirty image augmentation to get better recognition for systems presentation. ''' augs = ["superpixel","colorspace","grayscale","gaussian_blur", "average_blur","median_blur","edge_detect","add","add_eltwise","invert","contrast_norm","dropout"] superpixel = iaa.Superpixels(p_replace=(0.4, 0.6), n_segments=(16, 64)) #colorspace = iaa.Sequential([iaa.ChangeColorspace(from_colorspace="BGR", to_colorspace="HSV"), iaa.WithChannels(0, iaa.Add(-50, 50), iaa.ChangeColorspace(from_colorspace="BGR", to_colorspace="BGR")]) grayscale = iaa.Grayscale(alpha = (0.0, 1.0)) gaussian_blur = iaa.GaussianBlur(sigma = (0.0, 3.0)) average_blur = iaa.AverageBlur(k = (2, 10)) median_blur = iaa.MedianBlur(k = (5, 11)) edge_detect = iaa.EdgeDetect(alpha = (0.0 , 1.0)) add = iaa.Add((-50, 50), per_channel = 0.5) add_eltwise = iaa.AddElementwise((-50, 50), per_channel = 0.5) invert = iaa.Invert(0.25, per_channel = 0.5) contrast_norm = iaa.ContrastNormalization((0.5, 1.5), per_channel = 0.5) dropout = iaa.Dropout(p = (0, 0.3), per_channel = 0.5) image_paths = get_files("JPG") cv_images = get_images(image_paths) for augmentation in augs: if augmentation == "superpixel": aug_images = superpixel.augment_images(cv_images) save_augmented_images("superpixel", aug_images, image_paths) #elif augmentation == "colorspace": # aug_images = colorspace.augment_images(cv_images) # save_augmented_images("colorspace", aug_images, image_paths) elif augmentation == "grayscale": aug_images = grayscale.augment_images(cv_images) save_augmented_images("grayscale", aug_images, image_paths) elif augmentation == "gaussian_blur": aug_images = gaussian_blur.augment_images(cv_images) save_augmented_images("gaussian_blur", aug_images, image_paths) elif augmentation == "average_blur": aug_images = average_blur.augment_images(cv_images) save_augmented_images("average_blur", aug_images, image_paths) elif augmentation == "edge_detect": aug_images = edge_detect.augment_images(cv_images) save_augmented_images("edge_detect", aug_images, image_paths) elif augmentation == "add": aug_images = add.augment_images(cv_images) save_augmented_images("add", aug_images, image_paths) elif augmentation == "add_eltwise": aug_images = add_eltwise.augment_images(cv_images) save_augmented_images("add_eltwise", aug_images, image_paths) elif augmentation == "invert": aug_images = invert.augment_images(cv_images) save_augmented_images("invert", aug_images, image_paths) elif augmentation == "contrast_norm": aug_images = contrast_norm.augment_images(cv_images) save_augmented_images("contrast_norm", aug_images, image_paths) elif augmentation == "dropout": aug_images = dropout.augment_images(cv_images) save_augmented_images("dropout", aug_images, image_paths) if __name__ == '__main__': main()
[ "imgaug.augmenters.Grayscale", "imgaug.augmenters.AverageBlur", "imgaug.augmenters.AddElementwise", "cv2.imwrite", "imgaug.augmenters.GaussianBlur", "imgaug.augmenters.Invert", "os.getcwd", "imgaug.augmenters.Superpixels", "imgaug.augmenters.EdgeDetect", "imgaug.augmenters.ContrastNormalization", "cv2.imread", "imgaug.augmenters.Dropout", "imgaug.augmenters.Add", "imgaug.augmenters.MedianBlur" ]
[((2087, 2145), 'imgaug.augmenters.Superpixels', 'iaa.Superpixels', ([], {'p_replace': '(0.4, 0.6)', 'n_segments': '(16, 64)'}), '(p_replace=(0.4, 0.6), n_segments=(16, 64))\n', (2102, 2145), True, 'from imgaug import augmenters as iaa\n'), ((2375, 2406), 'imgaug.augmenters.Grayscale', 'iaa.Grayscale', ([], {'alpha': '(0.0, 1.0)'}), '(alpha=(0.0, 1.0))\n', (2388, 2406), True, 'from imgaug import augmenters as iaa\n'), ((2429, 2463), 'imgaug.augmenters.GaussianBlur', 'iaa.GaussianBlur', ([], {'sigma': '(0.0, 3.0)'}), '(sigma=(0.0, 3.0))\n', (2445, 2463), True, 'from imgaug import augmenters as iaa\n'), ((2486, 2512), 'imgaug.augmenters.AverageBlur', 'iaa.AverageBlur', ([], {'k': '(2, 10)'}), '(k=(2, 10))\n', (2501, 2512), True, 'from imgaug import augmenters as iaa\n'), ((2535, 2560), 'imgaug.augmenters.MedianBlur', 'iaa.MedianBlur', ([], {'k': '(5, 11)'}), '(k=(5, 11))\n', (2549, 2560), True, 'from imgaug import augmenters as iaa\n'), ((2583, 2615), 'imgaug.augmenters.EdgeDetect', 'iaa.EdgeDetect', ([], {'alpha': '(0.0, 1.0)'}), '(alpha=(0.0, 1.0))\n', (2597, 2615), True, 'from imgaug import augmenters as iaa\n'), ((2639, 2674), 'imgaug.augmenters.Add', 'iaa.Add', (['(-50, 50)'], {'per_channel': '(0.5)'}), '((-50, 50), per_channel=0.5)\n', (2646, 2674), True, 'from imgaug import augmenters as iaa\n'), ((2697, 2743), 'imgaug.augmenters.AddElementwise', 'iaa.AddElementwise', (['(-50, 50)'], {'per_channel': '(0.5)'}), '((-50, 50), per_channel=0.5)\n', (2715, 2743), True, 'from imgaug import augmenters as iaa\n'), ((2766, 2799), 'imgaug.augmenters.Invert', 'iaa.Invert', (['(0.25)'], {'per_channel': '(0.5)'}), '(0.25, per_channel=0.5)\n', (2776, 2799), True, 'from imgaug import augmenters as iaa\n'), ((2822, 2876), 'imgaug.augmenters.ContrastNormalization', 'iaa.ContrastNormalization', (['(0.5, 1.5)'], {'per_channel': '(0.5)'}), '((0.5, 1.5), per_channel=0.5)\n', (2847, 2876), True, 'from imgaug import augmenters as iaa\n'), ((2899, 2939), 'imgaug.augmenters.Dropout', 'iaa.Dropout', ([], {'p': '(0, 0.3)', 'per_channel': '(0.5)'}), '(p=(0, 0.3), per_channel=0.5)\n', (2910, 2939), True, 'from imgaug import augmenters as iaa\n'), ((1228, 1239), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1237, 1239), False, 'import os\n'), ((1489, 1540), 'cv2.imwrite', 'cv2.imwrite', (["(prefix + '_' + paths[i])", 'aug_images[i]'], {}), "(prefix + '_' + paths[i], aug_images[i])\n", (1500, 1540), False, 'import cv2\n'), ((1739, 1755), 'cv2.imread', 'cv2.imread', (['path'], {}), '(path)\n', (1749, 1755), False, 'import cv2\n')]
""" SOLID-принципы Принцип единственной ответственности (The Single Responsibility Principle): у каждого объекта должна быть только одна ответственность. Все поведение этого объекта должно быть направлено на обеспечение этой ответственности и никаких других. """ # Неправильно class EventHandler: # Обработчик событий def handle_event_1(self, event): # Обработчик первого события pass def handle_event_2(self, event): # Обработчик второго события pass def handle_event_3(self, event): # Обработчик третьего события pass def database_logger(self, event): # Метод для записи логов в базу данных pass # Правильно class EventHandler: # Обработчик событий def handle_event_1(self, event): # Обработчик первого события pass def handle_event_2(self, event): # Обработчик второго события pass def handle_event_3(self, event): # Обработчик третьего события pass class DatabaseLogger: def database_logger(self, event): # Метод для записи логов в базу данных pass """ Принцип открытости/закрытости (The Open Closed Principle): классы должны быть открыты для расширения, но закрыты для изменения. Этот принцип является важным, потому что внесение изменений в существующие компоненты системы может также привести к непредвиденным изменения в работе самой этой системы. Однако поведение существующих объектов при необходимости можно расширить при помощи создания новых сущностей. Рассмотрим на примере. Пусть существует класс Robot. У этого класса есть метод brake. Мы хотим создать робота, который при поломке кроме всего прочего включает аварийную сигнализацию alarm. При этом мы не должны переписывать сам класс Robot, а должны создать потомка AlarmRobot, который при вызове break после вызова соответствующего метода родительского класса будет так же вызывать метод alarm. """ """ Принцип подстановки Барбары Лисков (The Liskov Substitution Principle): функции, которые используют базовый тип должны иметь возможность использовать его подтипы не зная об этом. """ # Неправильный код / Wrong code class Parent: def __init__(self, value): self.value = value def do_something(self): print("Function was called") class Child(Parent): def do_something(self): super().do_something() self.value = 0 def function(obj: Parent): obj.do_something() if obj.value > 0: print("All correct!") else: print("SOMETHING IS GOING WRONG!") # Посмотрим на поведение parent = Parent(5) function(parent) print() # Данный код должен работать корректно, если вместо родителя подставить потомка child = Child(5) function(child) print() """ Принцип разделения интерфейса (The Interface Segregation Principle): клиенты не должны зависеть от методов, которые они не используют. """ import math # Неправильно / Wrong class AllScoresCalculator: def calculate_accuracy(self, y_true, y_pred): return sum(int(x == y) for x, y in zip(y_true, y_pred)) / len(y_true) def log_loss(self, y_true, y_pred): return sum((x * math.log(y) + (1 - x) * math.log(1 - y)) for x, y in zip(y_true, y_pred)) / len(y_true) # Правильно / Correct class CalculateLosses: def log_loss(self, y_true, y_pred): return sum((x * math.log(y) + (1 - x) * math.log(1 - y)) for x, y in zip(y_true, y_pred)) / len(y_true) class CalculateMetrics: def calculate_accuracy(self, y_true, y_pred): return sum(int(x == y) for x, y in zip(y_true, y_pred)) / len(y_true) """ Принцип инверсии зависимостей (The Dependency Inversion Principle): * Модули верхних уровней не должны зависеть от модулей нижних уровней. Оба типа модулей должны зависеть от абстракций. * Абстракции не должны зависеть от деталей. Детали должны зависеть от абстракций. Приведем пример. Пусть у вас есть базовый класс Distributer, который может отправлять сообщения в различные социальные сети. У этого класса есть несколько реализаций, например VKDistributer и OKDistributer. Согласно принципу инверсии зависимостей, эти реализации не должны зависеть от методов класса Distributer (например VK_send_message и OK_send_message). Вместо этого у класса Destributor должен быть объявлен общий абстрактный метод send_message, который и будет реализован отдельно в каждом из потомков. """
[ "math.log" ]
[((3176, 3187), 'math.log', 'math.log', (['y'], {}), '(y)\n', (3184, 3187), False, 'import math\n'), ((3200, 3215), 'math.log', 'math.log', (['(1 - y)'], {}), '(1 - y)\n', (3208, 3215), False, 'import math\n'), ((3394, 3405), 'math.log', 'math.log', (['y'], {}), '(y)\n', (3402, 3405), False, 'import math\n'), ((3418, 3433), 'math.log', 'math.log', (['(1 - y)'], {}), '(1 - y)\n', (3426, 3433), False, 'import math\n')]
import numpy as np import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots from ipdb import set_trace as breakpoint def parallel_coordinates_and_hist(*args, **kwargs): """ Augment parallel_coordinates with histograms Args: df: dataframe dimensions: column names color: the column name for coloring the parallel coordinate plot color_hist: the column name for coloring the hist TODO: 1. Now we color hist by labels. We should generalize to any feature. See "Augmenting parallel coordinates plots with color-coded stacked histograms" (Bok 2020). One function to consider is go.Bar. See the following sample code from ["Continuous Color Scales and Color Bars in Python "](https://plotly.com/python/colorscales/): ```python import plotly.express as px df = px.data.gapminder().query("year == 2007").sort_values(by="lifeExp") fig = px.bar(df, y="continent", x="pop", color="lifeExp", orientation="h", color_continuous_scale='Bluered_r', hover_name="country") fig.show() ``` 2. Responsive histogram. Hover on one axis show its histogram. Show the histogram of only highlighted lines. Visualize the images of the highlighted images. One potential tool is FigureWidget. https://community.plotly.com/t/linking-and-brushing-between-parallel-coordinate-and-scatterplot/38047 """ df = args[0] #df['label'] = df['label'].astype(int) # should be done outside dimensions = kwargs['dimensions'] color_hist = kwargs.pop('color_hist', None) #'label' if color_hist is None: labels = np.zeros(len(df)) elif isinstance(color_hist, str): labels = df[color_hist] else: # e.g., series or ndarray labels = color_hist labels_unique = np.unique(labels) # after this labels would be series or ndarray # Make subplots cols = len(dimensions) fig = go.FigureWidget(make_subplots(rows=2, cols=cols, specs=[ [{'type': 'domain', 'colspan': cols}] + [None] * (cols - 1), [{} for _ in range(cols)], ])) # Parallel coordinates pc = px.parallel_coordinates(*args, **kwargs) fig.add_trace(pc.data[0], row=1, col=1) fig.update_layout(pc.layout) # Histograms for j in range(cols): fig_hist = px.histogram( df, y=dimensions[j], color=labels, color_discrete_map={0: 'steelblue', 1: 'firebrick'} ) fig_hist.data = sorted(fig_hist.data, key=lambda hist: hist.legendgroup) fig_hist.update_traces(bingroup=None) fig.add_traces(fig_hist.data, rows=2, cols=j+1) fig.update_xaxes(title_text=dimensions[j], row=2, col=j+1) fig.update_yaxes(title_text=None, row=2, col=j+1) fig.update_layout(barmode='stack', showlegend=False) # 'group', 'relative', 'overlay' def update_highlight(dimension, constraintrange): masks = [] for d in fig.data[0].dimensions: if d.constraintrange is not None: crs = np.array(d.constraintrange) if crs.ndim == 1: crs = np.expand_dims(crs, axis=0) masks_dim = [] for cr in crs: #labels_rev = {v: k for k, v in labels.items()} #key = labels_rev[d.label] key = d.label masks_dim.append(df[key].between(*cr)) masks.append(np.logical_or.reduce(masks_dim)) mask = np.logical_and.reduce(masks) # Pool doesn't work here probabily because fig are copied to each worker with fig.batch_update(): for i, d in enumerate(fig.data[0].dimensions): for j, label in enumerate(labels_unique): fig.data[i*(len(labels_unique))+j+1].y = df.loc[mask & (labels == label), d.label] for d in fig.data[0].dimensions: d.on_change(update_highlight, 'constraintrange') return fig#, update_highlight (return the handle to debug) def test_parallel_coordinates_and_hist(data_frame, columns): """ assigngroup=True, use the same bin size ```python columns = ['USFLUXL', 'Ensemble prob'] test_parallel_coordinates_and_hist(df_test, columns=columns) ``` """ fig = make_subplots(rows=1, cols=len(columns)) for j in range(len(columns)): #breakpoint() hist = px.histogram( data_frame, x=columns[j], #color='label', nbins=10, ) fig.add_trace(hist.data[0], row=1, col=j+1) return fig
[ "plotly.express.histogram", "numpy.unique", "numpy.array", "numpy.logical_and.reduce", "numpy.expand_dims", "plotly.express.parallel_coordinates", "numpy.logical_or.reduce" ]
[((1834, 1851), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (1843, 1851), True, 'import numpy as np\n'), ((2167, 2207), 'plotly.express.parallel_coordinates', 'px.parallel_coordinates', (['*args'], {}), '(*args, **kwargs)\n', (2190, 2207), True, 'import plotly.express as px\n'), ((2348, 2456), 'plotly.express.histogram', 'px.histogram', (['df'], {'y': 'dimensions[j]', 'color': 'labels', 'color_discrete_map': "{(0): 'steelblue', (1): 'firebrick'}"}), "(df, y=dimensions[j], color=labels, color_discrete_map={(0):\n 'steelblue', (1): 'firebrick'})\n", (2360, 2456), True, 'import plotly.express as px\n'), ((3551, 3579), 'numpy.logical_and.reduce', 'np.logical_and.reduce', (['masks'], {}), '(masks)\n', (3572, 3579), True, 'import numpy as np\n'), ((4448, 4496), 'plotly.express.histogram', 'px.histogram', (['data_frame'], {'x': 'columns[j]', 'nbins': '(10)'}), '(data_frame, x=columns[j], nbins=10)\n', (4460, 4496), True, 'import plotly.express as px\n'), ((3088, 3115), 'numpy.array', 'np.array', (['d.constraintrange'], {}), '(d.constraintrange)\n', (3096, 3115), True, 'import numpy as np\n'), ((3176, 3203), 'numpy.expand_dims', 'np.expand_dims', (['crs'], {'axis': '(0)'}), '(crs, axis=0)\n', (3190, 3203), True, 'import numpy as np\n'), ((3503, 3534), 'numpy.logical_or.reduce', 'np.logical_or.reduce', (['masks_dim'], {}), '(masks_dim)\n', (3523, 3534), True, 'import numpy as np\n')]
x = [int(input('please input a integer: ')), int(input('please input a integer: '))] x2 = max(x) x1 = min(x) print(x2) import math a = math.sqrt(x2) for i in range(x1, x2+1): print(x1)
[ "math.sqrt" ]
[((144, 157), 'math.sqrt', 'math.sqrt', (['x2'], {}), '(x2)\n', (153, 157), False, 'import math\n')]
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo.tests import tagged, Form from odoo.addons.mail.tests.common import mail_new_test_user from odoo.addons.test_mail.tests.common import TestMailCommon from odoo.exceptions import AccessError, ValidationError, UserError from odoo.tools import mute_logger, formataddr @tagged('mail_channel') class TestChannelAccessRights(TestMailCommon): @classmethod def setUpClass(cls): super(TestChannelAccessRights, cls).setUpClass() Channel = cls.env['mail.channel'].with_context(cls._test_context) cls.user_public = mail_new_test_user(cls.env, login='bert', groups='base.group_public', name='<NAME>') cls.user_portal = mail_new_test_user(cls.env, login='chell', groups='base.group_portal', name='<NAME>') # Pigs: base group for tests cls.group_pigs = Channel.create({ 'name': 'Pigs', 'public': 'groups', 'group_public_id': cls.env.ref('base.group_user').id}) # Jobs: public group cls.group_public = Channel.create({ 'name': 'Jobs', 'description': 'NotFalse', 'public': 'public'}) # Private: private group cls.group_private = Channel.create({ 'name': 'Private', 'public': 'private'}) @mute_logger('odoo.addons.base.models.ir_model', 'odoo.models') def test_access_rights_public(self): # Read public group -> ok self.group_public.with_user(self.user_public).read() # Read Pigs -> ko, restricted to employees with self.assertRaises(AccessError): self.group_pigs.with_user(self.user_public).read() # Read a private group when being a member: ok self.group_private.write({'channel_partner_ids': [(4, self.user_public.partner_id.id)]}) self.group_private.with_user(self.user_public).read() # Create group: ko, no access rights with self.assertRaises(AccessError): self.env['mail.channel'].with_user(self.user_public).create({'name': 'Test'}) # Update group: ko, no access rights with self.assertRaises(AccessError): self.group_public.with_user(self.user_public).write({'name': 'Broutouschnouk'}) # Unlink group: ko, no access rights with self.assertRaises(AccessError): self.group_public.with_user(self.user_public).unlink() @mute_logger('odoo.addons.base.models.ir_model', 'odoo.models', 'odoo.models.unlink') def test_access_rights_groups(self): # Employee read employee-based group: ok self.group_pigs.with_user(self.user_employee).read() # Employee can create a group self.env['mail.channel'].with_user(self.user_employee).create({'name': 'Test'}) # Employee update employee-based group: ok self.group_pigs.with_user(self.user_employee).write({'name': 'modified'}) # Employee unlink employee-based group: ok self.group_pigs.with_user(self.user_employee).unlink() # Employee cannot read a private group with self.assertRaises(AccessError): self.group_private.with_user(self.user_employee).read() # Employee cannot write on private with self.assertRaises(AccessError): self.group_private.with_user(self.user_employee).write({'name': 're-modified'}) @mute_logger('odoo.addons.base.models.ir_model', 'odoo.models') def test_access_rights_followers_ko(self): # self.group_private.name has been put in the cache during the setup as sudo # It must therefore be removed from the cache in other to validate the fact user_portal can't read it. self.group_private.invalidate_cache(['name']) with self.assertRaises(AccessError): self.group_private.with_user(self.user_portal).name def test_access_rights_followers_portal(self): # Do: Chell is added into Pigs members and browse it -> ok for messages, ko for partners (no read permission) self.group_private.write({'channel_partner_ids': [(4, self.user_portal.partner_id.id)]}) chell_pigs = self.group_private.with_user(self.user_portal) trigger_read = chell_pigs.name for message in chell_pigs.message_ids: trigger_read = message.subject with self.assertRaises(AccessError): chell_pigs.message_partner_ids for partner in self.group_private.message_partner_ids: if partner.id == self.user_portal.partner_id.id: # Chell can read her own partner record continue with self.assertRaises(AccessError): trigger_read = partner.with_user(self.user_portal).name @tagged('mail_channel') class TestChannelFeatures(TestMailCommon): @classmethod def setUpClass(cls): super(TestChannelFeatures, cls).setUpClass() cls.test_channel = cls.env['mail.channel'].with_context(cls._test_context).create({ 'name': 'Test', 'description': 'Description', 'alias_name': 'test', 'public': 'public', }) cls.test_partner = cls.env['res.partner'].with_context(cls._test_context).create({ 'name': '<NAME>', 'email': '<EMAIL>', }) def _join_channel(self, channel, partners): for partner in partners: channel.write({'channel_last_seen_partner_ids': [(0, 0, {'partner_id': partner.id})]}) channel.invalidate_cache() def _leave_channel(self, channel, partners): for partner in partners: channel._action_unfollow(partner) def test_channel_listeners(self): self.assertEqual(self.test_channel.message_channel_ids, self.test_channel) self.assertEqual(self.test_channel.message_partner_ids, self.env['res.partner']) self.assertEqual(self.test_channel.channel_partner_ids, self.env['res.partner']) self._join_channel(self.test_channel, self.test_partner) self.assertEqual(self.test_channel.message_channel_ids, self.test_channel) self.assertEqual(self.test_channel.message_partner_ids, self.env['res.partner']) self.assertEqual(self.test_channel.channel_partner_ids, self.test_partner) self._leave_channel(self.test_channel, self.test_partner) self.assertEqual(self.test_channel.message_channel_ids, self.test_channel) self.assertEqual(self.test_channel.message_partner_ids, self.env['res.partner']) self.assertEqual(self.test_channel.channel_partner_ids, self.env['res.partner']) def test_channel_post_nofollow(self): self.test_channel.message_post(body='Test', message_type='comment', subtype_xmlid='mail.mt_comment') self.assertEqual(self.test_channel.message_channel_ids, self.test_channel) self.assertEqual(self.test_channel.message_partner_ids, self.env['res.partner']) @mute_logger('odoo.addons.mail.models.mail_mail', 'odoo.models.unlink') def test_channel_mailing_list_recipients(self): """ Posting a message on a mailing list should send one email to all recipients """ self.env['ir.config_parameter'].set_param('mail.catchall.domain', 'schlouby.fr') self.test_channel.write({'email_send': True}) self.user_employee.write({'notification_type': 'email'}) # Subscribe an user without email. We shouldn't try to send email to them. nomail = self.env['res.users'].create({ "login": "nomail", "name": "<NAME>", "email": False, "notification_type": "email", }) self._join_channel(self.test_channel, self.user_employee.partner_id | self.test_partner | nomail.partner_id) with self.mock_mail_gateway(): self.test_channel.message_post(body="Test", message_type='comment', subtype_xmlid='mail.mt_comment') self.assertSentEmail(self.test_channel.env.user.partner_id, [self.partner_employee, self.test_partner]) @mute_logger('odoo.addons.mail.models.mail_mail', 'odoo.models.unlink') def test_channel_chat_recipients(self): """ Posting a message on a chat should not send emails """ self.env['ir.config_parameter'].set_param('mail.catchall.domain', 'schlouby.fr') self.test_channel.write({'email_send': False}) self._join_channel(self.test_channel, self.user_employee.partner_id | self.test_partner) with self.mock_mail_gateway(): self.test_channel.message_post(body="Test", message_type='comment', subtype_xmlid='mail.mt_comment') self.assertNotSentEmail() self.assertEqual(len(self._mails), 0) @mute_logger('odoo.addons.mail.models.mail_mail', 'odoo.models.unlink') def test_channel_classic_recipients(self): """ Posting a message on a classic channel should work like classic post """ self.test_channel.write({'alias_name': False}) self.test_channel.message_subscribe([self.user_employee.partner_id.id, self.test_partner.id]) with self.mock_mail_gateway(): self.test_channel.message_post(body="Test", message_type='comment', subtype_xmlid='mail.mt_comment') self.assertSentEmail(self.test_channel.env.user.partner_id, [self.test_partner]) def test_channel_creation(self): """A user that create a private channel should be able to read it.""" channel_form = Form(self.env['mail.channel'].with_user(self.user_employee)) channel_form.name = 'Test private channel' channel_form.public = 'private' channel = channel_form.save() self.assertEqual(channel.name, 'Test private channel', 'Must be able to read the created channel') def test_channel_get(self): current_user = self.env['res.users'].create({ "login": "adam", "name": "Jonas", }) current_user = current_user.with_user(current_user) current_partner = current_user.partner_id other_partner = self.test_partner # `channel_get` should return a new channel the first time a partner is given initial_channel_info = current_user.env['mail.channel'].channel_get(partners_to=other_partner.ids) self.assertEqual(set(p['id'] for p in initial_channel_info['members']), {current_partner.id, other_partner.id}) # `channel_get` should return the existing channel every time the same partner is given same_channel_info = current_user.env['mail.channel'].channel_get(partners_to=other_partner.ids) self.assertEqual(same_channel_info['id'], initial_channel_info['id']) # `channel_get` should return the existing channel when the current partner is given together with the other partner together_channel_info = current_user.env['mail.channel'].channel_get(partners_to=(current_partner + other_partner).ids) self.assertEqual(together_channel_info['id'], initial_channel_info['id']) # `channel_get` should return a new channel the first time just the current partner is given, # even if a channel containing the current partner together with other partners already exists solo_channel_info = current_user.env['mail.channel'].channel_get(partners_to=current_partner.ids) self.assertNotEqual(solo_channel_info['id'], initial_channel_info['id']) self.assertEqual(set(p['id'] for p in solo_channel_info['members']), {current_partner.id}) # `channel_get` should return the existing channel every time the current partner is given same_solo_channel_info = current_user.env['mail.channel'].channel_get(partners_to=current_partner.ids) self.assertEqual(same_solo_channel_info['id'], solo_channel_info['id']) def test_channel_seen(self): """ In case of concurrent channel_seen RPC, ensure the oldest call has no effect. """ self.test_channel.write({'channel_type': 'chat'}) self.test_channel.action_follow() msg_1 = self._add_messages(self.test_channel, 'Body1', author=self.user_employee.partner_id, channel_ids=[self.test_channel.id]) msg_2 = self._add_messages(self.test_channel, 'Body2', author=self.user_employee.partner_id, channel_ids=[self.test_channel.id]) ChannelAsUser = self.test_channel.with_user(self.user_employee).browse(self.test_channel.id) self.test_channel.channel_seen(msg_2.id) self.assertEqual( ChannelAsUser.channel_info()[0]['seen_partners_info'][0]['seen_message_id'], msg_2.id, "Last message id should have been updated" ) self.test_channel.channel_seen(msg_1.id) self.assertEqual( ChannelAsUser.channel_info()[0]['seen_partners_info'][0]['seen_message_id'], msg_2.id, "Last message id should stay the same after mark channel as seen with an older message" ) @mute_logger('odoo.models.unlink') def test_channel_auto_unsubscribe_archived_or_deleted_users(self): """Archiving / deleting a user should automatically unsubscribe related partner from private channels""" test_channel_private = self.env['mail.channel'].with_context(self._test_context).create({ 'name': 'Winden caves', 'description': 'Channel to travel through time', 'public': 'private', }) test_channel_group = self.env['mail.channel'].with_context(self._test_context).create({ 'name': '<NAME>', 'public': 'groups', 'group_public_id': self.env.ref('base.group_user').id}) test_user = self.env['res.users'].create({ "login": "adam", "name": "Jonas", }) test_partner = test_user.partner_id test_chat = self.env['mail.channel'].with_context(self._test_context).create({ 'name': 'test', 'channel_type': 'chat', 'public': 'private', 'channel_partner_ids': [(4, self.user_employee.partner_id.id), (4, test_partner.id)], }) self._join_channel(self.test_channel, self.user_employee.partner_id | test_partner) self._join_channel(test_channel_private, self.user_employee.partner_id | test_partner) self._join_channel(test_channel_group, self.user_employee.partner_id | test_partner) # Unsubscribe archived user from the private channels, but not from public channels and not from chat self.user_employee.active = False self.assertEqual(test_channel_private.channel_partner_ids, test_partner) self.assertEqual(test_channel_group.channel_partner_ids, test_partner) self.assertEqual(self.test_channel.channel_partner_ids, self.user_employee.partner_id | test_partner) self.assertEqual(test_chat.channel_partner_ids, self.user_employee.partner_id | test_partner) # Unsubscribe deleted user from the private channels, but not from public channels and not from chat test_user.unlink() self.assertEqual(test_channel_private.channel_partner_ids, self.env['res.partner']) self.assertEqual(test_channel_group.channel_partner_ids, self.env['res.partner']) self.assertEqual(self.test_channel.channel_partner_ids, self.user_employee.partner_id | test_partner) self.assertEqual(test_chat.channel_partner_ids, self.user_employee.partner_id | test_partner) def test_channel_unfollow_should_also_unsubscribe_the_partner(self): self.test_channel.message_subscribe(self.test_partner.ids) self.test_channel._action_unfollow(self.test_partner) self.assertFalse(self.test_channel.message_partner_ids) def test_channel_unfollow_should_not_post_message_if_the_partner_has_been_removed(self): ''' When a partner leaves a channel, the system will help post a message under that partner's name in the channel to notify others if `email_sent` is set `False`. The message should only be posted when the partner is still a member of the channel before method `_action_unfollow()` is called. If the partner has been removed earlier, no more messages will be posted even if `_action_unfollow()` is called again. ''' self.test_channel.write({'email_send': False}) self._join_channel(self.test_channel, self.test_partner) self.test_channel.message_subscribe(self.partner_employee.ids) # a message should be posted to notify others when a partner is about to leave with self.assertSinglePostNotifications([{'partner': self.partner_employee, 'type': 'inbox'}], { 'message_type': 'notification', 'subtype': 'mail.mt_comment', }): self.test_channel._action_unfollow(self.test_partner) # no more messages should be posted if the partner has been removed before. with self.assertNoNotifications(): self.test_channel._action_unfollow(self.test_partner) def test_multi_company_chat(self): company_A = self.env['res.company'].create({'name': 'Company A'}) company_B = self.env['res.company'].create({'name': 'Company B'}) test_user_1 = self.env['res.users'].create({ 'login': 'user1', 'name': 'My First New User', 'company_ids': [(6, 0, company_A.ids)], 'company_id': company_A.id }) test_user_2 = self.env['res.users'].create({ 'login': 'user2', 'name': '<NAME> New User', 'company_ids': [(6, 0, company_B.ids)], 'company_id': company_B.id }) initial_channel_info = self.env['mail.channel'].with_user(test_user_1).with_context(allowed_company_ids=company_A.ids).channel_get(test_user_2.partner_id.ids) self.assertTrue(initial_channel_info, 'should be able to chat with multi company user') def test_multi_company_message_post_notifications(self): company_1 = self.company_admin company_2 = self.env['res.company'].create({'name': 'Company 2'}) # Company 1 and notification_type == "inbox" user_1 = self.user_employee # Company 1 and notification_type == "email" user_2 = self.user_admin user_2.notification_type = 'email' user_3 = mail_new_test_user( self.env, login='user3', email='<EMAIL>', groups='base.group_user', company_id=company_2.id, company_ids=[(6, 0, company_2.ids)], name='user3', notification_type='inbox') user_4 = mail_new_test_user( self.env, login='user4', email='<EMAIL>', groups='base.group_user', company_id=company_2.id, company_ids=[(6, 0, company_2.ids)], name='user4', notification_type='email') partner_without_user = self.env['res.partner'].create({ 'name': 'Partner', 'email': '<EMAIL>', }) mail_channel = self.env['mail.channel'].with_user(user_1).create({ 'name': 'Channel', 'channel_partner_ids': [ (4, user_1.partner_id.id), (4, user_2.partner_id.id), (4, user_3.partner_id.id), (4, user_4.partner_id.id), (4, partner_without_user.id), ], 'email_send': True, }) mail_channel.invalidate_cache() (user_1 | user_2 | user_3 | user_4).invalidate_cache() with self.mock_mail_gateway(): mail_channel.with_user(user_1).with_company(company_1).message_post( body='Test body message 1337', channel_ids=mail_channel.ids, ) self.assertSentEmail(user_1.partner_id, [user_2.partner_id]) self.assertSentEmail(user_1.partner_id, [user_4.partner_id]) self.assertEqual(len(self._mails), 3, 'Should have send only 3 emails to user 2, user 4 and the partner') self.assertBusNotifications([(self.cr.dbname, 'mail.channel', mail_channel.id)]) # Should not create mail notifications for user 1 & 3 self.assertFalse(self.env['mail.notification'].search([('res_partner_id', '=', user_1.partner_id.id)])) self.assertFalse(self.env['mail.notification'].search([('res_partner_id', '=', user_3.partner_id.id)])) # Should create mail notifications for user 2 & 4 self.assertTrue(self.env['mail.notification'].search([('res_partner_id', '=', user_2.partner_id.id)])) self.assertTrue(self.env['mail.notification'].search([('res_partner_id', '=', user_4.partner_id.id)])) # Check that we did not send a "channel_seen" notifications # for the users which receive the notifications by email notification_seen_user_2 = self.env['bus.bus'].search([('create_uid', '=', user_2.id)]) self.assertFalse(notification_seen_user_2, 'Should not have sent a notification as user 2') notification_seen_user_4 = self.env['bus.bus'].search([('create_uid', '=', user_4.id)]) self.assertFalse(notification_seen_user_4, 'Should not have sent a notification as user 4') @tagged('moderation', 'mail_channel') class TestChannelModeration(TestMailCommon): @classmethod def setUpClass(cls): super(TestChannelModeration, cls).setUpClass() cls.channel_1 = cls.env['mail.channel'].create({ 'name': 'Moderation_1', 'email_send': True, 'moderation': True, 'channel_partner_ids': [(4, cls.partner_employee.id)], 'moderator_ids': [(4, cls.user_employee.id)], }) # ensure initial data cls.user_employee_2 = mail_new_test_user( cls.env, login='employee2', groups='base.group_user', company_id=cls.company_admin.id, name='<NAME>', notification_type='inbox', signature='--\nEnguerrand' ) cls.partner_employee_2 = cls.user_employee_2.partner_id cls.user_portal = cls._create_portal_user() def test_moderator_consistency(self): # moderators should be channel members with self.assertRaises(ValidationError): self.channel_1.write({'moderator_ids': [(4, self.user_admin.id)]}) # member -> moderator or self.channel_1.write({'channel_partner_ids': [(4, self.partner_admin.id)]}) self.channel_1.write({'moderator_ids': [(4, self.user_admin.id)]}) # member -> moderator ko if no email self.channel_1.write({'moderator_ids': [(3, self.partner_admin.id)]}) self.user_admin.write({'email': False}) with self.assertRaises(ValidationError): self.channel_1.write({'moderator_ids': [(4, self.user_admin.id)]}) def test_moderation_consistency(self): # moderation enabled channels are restricted to mailing lists with self.assertRaises(ValidationError): self.channel_1.write({'email_send': False}) # moderation enabled channels should always have moderators with self.assertRaises(ValidationError): self.channel_1.write({'moderator_ids': [(5, 0)]}) def test_moderation_count(self): self.assertEqual(self.channel_1.moderation_count, 0) self.channel_1.write({'moderation_ids': [ (0, 0, {'email': '<EMAIL>', 'status': 'allow'}), (0, 0, {'email': '<EMAIL>', 'status': 'ban'}) ]}) self.assertEqual(self.channel_1.moderation_count, 2) @mute_logger('odoo.addons.mail.models.mail_channel', 'odoo.models.unlink') def test_send_guidelines(self): self.channel_1.write({'channel_partner_ids': [(4, self.partner_portal.id), (4, self.partner_admin.id)]}) self.channel_1._update_moderation_email([self.partner_admin.email], 'ban') with self.mock_mail_gateway(): self.channel_1.with_user(self.user_employee).send_guidelines() for mail in self._new_mails: self.assertEqual(mail.author_id, self.partner_employee) self.assertEqual(mail.subject, 'Guidelines of channel %s' % self.channel_1.name) self.assertEqual(mail.state, 'outgoing') self.assertEqual(mail.email_from, self.user_employee.company_id.catchall_formatted) self.assertEqual(self._new_mails.mapped('recipient_ids'), self.partner_employee | self.partner_portal) def test_send_guidelines_crash(self): self.channel_1.write({ 'channel_partner_ids': [(4, self.partner_admin.id)], 'moderator_ids': [(4, self.user_admin.id), (3, self.user_employee.id)] }) with self.assertRaises(UserError): self.channel_1.with_user(self.user_employee).send_guidelines() def test_update_moderation_email(self): self.channel_1.write({'moderation_ids': [ (0, 0, {'email': '<EMAIL>', 'status': 'allow'}), (0, 0, {'email': '<EMAIL>', 'status': 'ban'}) ]}) self.channel_1._update_moderation_email(['<EMAIL>', '<EMAIL>'], 'ban') self.assertEqual(len(self.channel_1.moderation_ids), 3) self.assertTrue(all(status == 'ban' for status in self.channel_1.moderation_ids.mapped('status'))) def test_moderation_reset(self): self.channel_2 = self.env['mail.channel'].create({ 'name': 'Moderation_1', 'email_send': True, 'moderation': True, 'channel_partner_ids': [(4, self.partner_employee.id)], 'moderator_ids': [(4, self.user_employee.id)], }) self.msg_c1_1 = self._add_messages(self.channel_1, 'Body11', author=self.partner_admin, moderation_status='accepted') self.msg_c1_2 = self._add_messages(self.channel_1, 'Body12', author=self.partner_admin, moderation_status='pending_moderation') self.msg_c2_1 = self._add_messages(self.channel_2, 'Body21', author=self.partner_admin, moderation_status='pending_moderation') self.assertEqual(self.env['mail.message'].search_count([ ('moderation_status', '=', 'pending_moderation'), ('model', '=', 'mail.channel'), ('res_id', '=', self.channel_1.id) ]), 1) self.channel_1.write({'moderation': False}) self.assertEqual(self.env['mail.message'].search_count([ ('moderation_status', '=', 'pending_moderation'), ('model', '=', 'mail.channel'), ('res_id', '=', self.channel_1.id) ]), 0) self.assertEqual(self.env['mail.message'].search_count([ ('moderation_status', '=', 'pending_moderation'), ('model', '=', 'mail.channel'), ('res_id', '=', self.channel_2.id) ]), 1) self.channel_2.write({'moderation': False}) self.assertEqual(self.env['mail.message'].search_count([ ('moderation_status', '=', 'pending_moderation'), ('model', '=', 'mail.channel'), ('res_id', '=', self.channel_2.id) ]), 0) @mute_logger('odoo.models.unlink') def test_message_post(self): email1 = '<EMAIL>' email2 = '<EMAIL>' self.channel_1._update_moderation_email([email1], 'ban') self.channel_1._update_moderation_email([email2], 'allow') msg_admin = self.channel_1.message_post(message_type='email', subtype_xmlid='mail.mt_comment', author_id=self.partner_admin.id) msg_moderator = self.channel_1.message_post(message_type='comment', subtype_xmlid='mail.mt_comment', author_id=self.partner_employee.id) msg_email1 = self.channel_1.message_post(message_type='comment', subtype_xmlid='mail.mt_comment', email_from=formataddr(("MyName", email1))) msg_email2 = self.channel_1.message_post(message_type='email', subtype_xmlid='mail.mt_comment', email_from=email2) msg_notif = self.channel_1.message_post() messages = self.env['mail.message'].search([('model', '=', 'mail.channel'), ('res_id', '=', self.channel_1.id)]) pending_messages = messages.filtered(lambda m: m.moderation_status == 'pending_moderation') accepted_messages = messages.filtered(lambda m: m.moderation_status == 'accepted') self.assertFalse(msg_email1) self.assertEqual(msg_admin, pending_messages) self.assertEqual(accepted_messages, msg_moderator | msg_email2 | msg_notif) self.assertFalse(msg_admin.channel_ids) self.assertEqual(msg_email2.channel_ids, self.channel_1) def test_user_is_moderator(self): self.assertTrue(self.user_employee.is_moderator) self.assertFalse(self.user_employee_2.is_moderator) self.channel_1.write({ 'channel_partner_ids': [(4, self.partner_employee_2.id)], 'moderator_ids': [(4, self.user_employee_2.id)], }) self.assertTrue(self.user_employee_2.is_moderator) def test_user_moderation_counter(self): self._add_messages(self.channel_1, 'B', moderation_status='pending_moderation', author=self.partner_employee_2) self._add_messages(self.channel_1, 'B', moderation_status='accepted', author=self.partner_employee_2) self._add_messages(self.channel_1, 'B', moderation_status='accepted', author=self.partner_employee) self._add_messages(self.channel_1, 'B', moderation_status='pending_moderation', author=self.partner_employee) self._add_messages(self.channel_1, 'B', moderation_status='accepted', author=self.partner_employee) self.assertEqual(self.user_employee.moderation_counter, 2) self.assertEqual(self.user_employee_2.moderation_counter, 0) self.channel_1.write({ 'channel_partner_ids': [(4, self.partner_employee_2.id)], 'moderator_ids': [(4, self.user_employee_2.id)] }) self.assertEqual(self.user_employee.moderation_counter, 2) self.assertEqual(self.user_employee_2.moderation_counter, 0)
[ "odoo.tests.tagged", "odoo.tools.mute_logger", "odoo.tools.formataddr", "odoo.addons.mail.tests.common.mail_new_test_user" ]
[((377, 399), 'odoo.tests.tagged', 'tagged', (['"""mail_channel"""'], {}), "('mail_channel')\n", (383, 399), False, 'from odoo.tests import tagged, Form\n'), ((4788, 4810), 'odoo.tests.tagged', 'tagged', (['"""mail_channel"""'], {}), "('mail_channel')\n", (4794, 4810), False, 'from odoo.tests import tagged, Form\n'), ((21155, 21191), 'odoo.tests.tagged', 'tagged', (['"""moderation"""', '"""mail_channel"""'], {}), "('moderation', 'mail_channel')\n", (21161, 21191), False, 'from odoo.tests import tagged, Form\n'), ((1374, 1436), 'odoo.tools.mute_logger', 'mute_logger', (['"""odoo.addons.base.models.ir_model"""', '"""odoo.models"""'], {}), "('odoo.addons.base.models.ir_model', 'odoo.models')\n", (1385, 1436), False, 'from odoo.tools import mute_logger, formataddr\n'), ((2476, 2564), 'odoo.tools.mute_logger', 'mute_logger', (['"""odoo.addons.base.models.ir_model"""', '"""odoo.models"""', '"""odoo.models.unlink"""'], {}), "('odoo.addons.base.models.ir_model', 'odoo.models',\n 'odoo.models.unlink')\n", (2487, 2564), False, 'from odoo.tools import mute_logger, formataddr\n'), ((3436, 3498), 'odoo.tools.mute_logger', 'mute_logger', (['"""odoo.addons.base.models.ir_model"""', '"""odoo.models"""'], {}), "('odoo.addons.base.models.ir_model', 'odoo.models')\n", (3447, 3498), False, 'from odoo.tools import mute_logger, formataddr\n'), ((6977, 7047), 'odoo.tools.mute_logger', 'mute_logger', (['"""odoo.addons.mail.models.mail_mail"""', '"""odoo.models.unlink"""'], {}), "('odoo.addons.mail.models.mail_mail', 'odoo.models.unlink')\n", (6988, 7047), False, 'from odoo.tools import mute_logger, formataddr\n'), ((8061, 8131), 'odoo.tools.mute_logger', 'mute_logger', (['"""odoo.addons.mail.models.mail_mail"""', '"""odoo.models.unlink"""'], {}), "('odoo.addons.mail.models.mail_mail', 'odoo.models.unlink')\n", (8072, 8131), False, 'from odoo.tools import mute_logger, formataddr\n'), ((8722, 8792), 'odoo.tools.mute_logger', 'mute_logger', (['"""odoo.addons.mail.models.mail_mail"""', '"""odoo.models.unlink"""'], {}), "('odoo.addons.mail.models.mail_mail', 'odoo.models.unlink')\n", (8733, 8792), False, 'from odoo.tools import mute_logger, formataddr\n'), ((12977, 13010), 'odoo.tools.mute_logger', 'mute_logger', (['"""odoo.models.unlink"""'], {}), "('odoo.models.unlink')\n", (12988, 13010), False, 'from odoo.tools import mute_logger, formataddr\n'), ((23474, 23547), 'odoo.tools.mute_logger', 'mute_logger', (['"""odoo.addons.mail.models.mail_channel"""', '"""odoo.models.unlink"""'], {}), "('odoo.addons.mail.models.mail_channel', 'odoo.models.unlink')\n", (23485, 23547), False, 'from odoo.tools import mute_logger, formataddr\n'), ((26908, 26941), 'odoo.tools.mute_logger', 'mute_logger', (['"""odoo.models.unlink"""'], {}), "('odoo.models.unlink')\n", (26919, 26941), False, 'from odoo.tools import mute_logger, formataddr\n'), ((648, 737), 'odoo.addons.mail.tests.common.mail_new_test_user', 'mail_new_test_user', (['cls.env'], {'login': '"""bert"""', 'groups': '"""base.group_public"""', 'name': '"""<NAME>"""'}), "(cls.env, login='bert', groups='base.group_public', name=\n '<NAME>')\n", (666, 737), False, 'from odoo.addons.mail.tests.common import mail_new_test_user\n'), ((759, 849), 'odoo.addons.mail.tests.common.mail_new_test_user', 'mail_new_test_user', (['cls.env'], {'login': '"""chell"""', 'groups': '"""base.group_portal"""', 'name': '"""<NAME>"""'}), "(cls.env, login='chell', groups='base.group_portal', name\n ='<NAME>')\n", (777, 849), False, 'from odoo.addons.mail.tests.common import mail_new_test_user\n'), ((18353, 18551), 'odoo.addons.mail.tests.common.mail_new_test_user', 'mail_new_test_user', (['self.env'], {'login': '"""user3"""', 'email': '"""<EMAIL>"""', 'groups': '"""base.group_user"""', 'company_id': 'company_2.id', 'company_ids': '[(6, 0, company_2.ids)]', 'name': '"""user3"""', 'notification_type': '"""inbox"""'}), "(self.env, login='user3', email='<EMAIL>', groups=\n 'base.group_user', company_id=company_2.id, company_ids=[(6, 0,\n company_2.ids)], name='user3', notification_type='inbox')\n", (18371, 18551), False, 'from odoo.addons.mail.tests.common import mail_new_test_user\n'), ((18598, 18796), 'odoo.addons.mail.tests.common.mail_new_test_user', 'mail_new_test_user', (['self.env'], {'login': '"""user4"""', 'email': '"""<EMAIL>"""', 'groups': '"""base.group_user"""', 'company_id': 'company_2.id', 'company_ids': '[(6, 0, company_2.ids)]', 'name': '"""user4"""', 'notification_type': '"""email"""'}), "(self.env, login='user4', email='<EMAIL>', groups=\n 'base.group_user', company_id=company_2.id, company_ids=[(6, 0,\n company_2.ids)], name='user4', notification_type='email')\n", (18616, 18796), False, 'from odoo.addons.mail.tests.common import mail_new_test_user\n'), ((21690, 21874), 'odoo.addons.mail.tests.common.mail_new_test_user', 'mail_new_test_user', (['cls.env'], {'login': '"""employee2"""', 'groups': '"""base.group_user"""', 'company_id': 'cls.company_admin.id', 'name': '"""<NAME>"""', 'notification_type': '"""inbox"""', 'signature': '"""--\nEnguerrand"""'}), "(cls.env, login='employee2', groups='base.group_user',\n company_id=cls.company_admin.id, name='<NAME>', notification_type=\n 'inbox', signature='--\\nEnguerrand')\n", (21708, 21874), False, 'from odoo.addons.mail.tests.common import mail_new_test_user\n'), ((27561, 27591), 'odoo.tools.formataddr', 'formataddr', (["('MyName', email1)"], {}), "(('MyName', email1))\n", (27571, 27591), False, 'from odoo.tools import mute_logger, formataddr\n')]
""" awschecker.pyc Inspects an AWS account for ACM certificates. Reports on invalid certificates, pending certificates, and certificates with certificate transparency enabled. """ import logging import logging.config from os import path import constants def log_path(): """Gets the OS and environment independent path to the logger configuration file.""" log_file_path = path.join(path.dirname( path.abspath(__file__)), constants.LOGCONFIG) return log_file_path logging.config.fileConfig(log_path(), disable_existing_loggers=False) LOGGER = logging.getLogger(__name__) from awschecker import ec2instances from awschecker import certs from awschecker.decorator_logging import logged @logged(logging.DEBUG) def main(): """Applicationentry point.""" ec2instances.check_items() certs.check_items() logging.shutdown() if __name__ == "__main__": main()
[ "logging.getLogger", "logging.shutdown", "awschecker.decorator_logging.logged", "awschecker.certs.check_items", "os.path.abspath", "awschecker.ec2instances.check_items" ]
[((575, 602), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (592, 602), False, 'import logging\n'), ((721, 742), 'awschecker.decorator_logging.logged', 'logged', (['logging.DEBUG'], {}), '(logging.DEBUG)\n', (727, 742), False, 'from awschecker.decorator_logging import logged\n'), ((794, 820), 'awschecker.ec2instances.check_items', 'ec2instances.check_items', ([], {}), '()\n', (818, 820), False, 'from awschecker import ec2instances\n'), ((825, 844), 'awschecker.certs.check_items', 'certs.check_items', ([], {}), '()\n', (842, 844), False, 'from awschecker import certs\n'), ((850, 868), 'logging.shutdown', 'logging.shutdown', ([], {}), '()\n', (866, 868), False, 'import logging\n'), ((418, 440), 'os.path.abspath', 'path.abspath', (['__file__'], {}), '(__file__)\n', (430, 440), False, 'from os import path\n')]
#! /usr/bin/env python # The line above tells some systems (e.g. Linux/Apple shells) what program to # use to execute this script. ############################################################################## # You don't need to understand most of this yet- you can just skip to the # # large comment section below if this is all a bit daunting! # ############################################################################## # Import the libraries we need import sys from music21 import ( environment, metadata, note, stream, ) # Tell music21 what to use to play midi and display score environment.set('midiPath', '/usr/bin/timidity') environment.set('musicxmlPath', '/usr/bin/musescore') ############################################################################## # LESSON 2 STARTS HERE # ############################################################################# # This is our first lesson, so play a scale with our right hand # Let's play the first bar, in the default 4/4 time bar1_right = stream.Measure() # Now we need to add the notes to it for next_note in ('c4', 'd4', 'e4', 'f4', 'g4', 'a4', 'b4', 'c5'): bar1_right.append(note.Note( next_note, quarterLength=0.5, )) # You can try putting in the bars to play back down to middle C here. # Try to make them be faster, or slower. # Don't forget to add them to the right hand's bars below! # Add both of these bars to the right hand's part right_hand = stream.Part() right_hand.append(bar1_right) # Add the right hand to the score tune = stream.Score(right_hand) # Add a title tune.metadata = metadata.Metadata(title='Python TTTGLS: Lesson 2') ########################################################################## # LESSON 2 ENDS HERE # ########################################################################## # Only run this if the script is executed directly, not imported if __name__ == '__main__': # Complain if there were no arguments passed by the user if len(sys.argv) == 1: # First, print a helpful message print('add a "score" argument to see the score.') print('add a "text" argument to see the python objects.') print('add a "midi" argument to hear it.') print('e.g. To hear the tune: {command} midi'.format( command=sys.argv[0], )) # Now exit without doing anything sys.exit() # See if the user put the word 'midi' in the arguments if 'midi' in sys.argv: # The stream.Score (tune) object knows how to play itself using the # environment set midi player and will do so when its show method is # called with a 'midi' argument. tune.show('midi') # See if the user put the word 'text' in the arguments if 'text' in sys.argv: # The stream.Score (tune) object knows how to display itself as python # objects in text, and will do so when its show method is called with # a 'text' argument. tune.show('text') # See if the user put the word 'score' in the arguments if 'score' in sys.argv: # The stream.Score (tune) object knows how to display itself as # musical score, and will do so by default when its show method is # called with no arguments. tune.show()
[ "music21.stream.Measure", "music21.metadata.Metadata", "music21.note.Note", "music21.stream.Score", "music21.environment.set", "music21.stream.Part", "sys.exit" ]
[((631, 679), 'music21.environment.set', 'environment.set', (['"""midiPath"""', '"""/usr/bin/timidity"""'], {}), "('midiPath', '/usr/bin/timidity')\n", (646, 679), False, 'from music21 import environment, metadata, note, stream\n'), ((680, 733), 'music21.environment.set', 'environment.set', (['"""musicxmlPath"""', '"""/usr/bin/musescore"""'], {}), "('musicxmlPath', '/usr/bin/musescore')\n", (695, 733), False, 'from music21 import environment, metadata, note, stream\n'), ((1102, 1118), 'music21.stream.Measure', 'stream.Measure', ([], {}), '()\n', (1116, 1118), False, 'from music21 import environment, metadata, note, stream\n'), ((1548, 1561), 'music21.stream.Part', 'stream.Part', ([], {}), '()\n', (1559, 1561), False, 'from music21 import environment, metadata, note, stream\n'), ((1634, 1658), 'music21.stream.Score', 'stream.Score', (['right_hand'], {}), '(right_hand)\n', (1646, 1658), False, 'from music21 import environment, metadata, note, stream\n'), ((1690, 1740), 'music21.metadata.Metadata', 'metadata.Metadata', ([], {'title': '"""Python TTTGLS: Lesson 2"""'}), "(title='Python TTTGLS: Lesson 2')\n", (1707, 1740), False, 'from music21 import environment, metadata, note, stream\n'), ((1245, 1284), 'music21.note.Note', 'note.Note', (['next_note'], {'quarterLength': '(0.5)'}), '(next_note, quarterLength=0.5)\n', (1254, 1284), False, 'from music21 import environment, metadata, note, stream\n'), ((2524, 2534), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2532, 2534), False, 'import sys\n')]
import numpy as np from matplotlib import pyplot as plt import csv from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5.QtGui import * #from PyQt5.QtWebEngineWidgets import QWebEngineView from PyQt5.QtPrintSupport import * import time def graph(a): none=[] name=[] rollno=[] mob=[] email=[] gender=[] hostelite=[] ut1dbms=[] ut1sepm=[] ut1cn=[] ut1isee=[] ut1toc=[] ut2dbms=[] ut2sepm=[] ut2cn=[] ut2isee=[] ut2toc=[] with open('result.csv','r') as csvfile: plots=csv.reader(csvfile,delimiter=',') for row in plots: none.append(row[0]) name.append(row[1]) rollno.append(row[2]) mob.append(row[3]) email.append(row[4]) gender.append(row[5]) hostelite.append(row[6]) ut1dbms.append(row[7]) ut1sepm.append(row[8]) ut1cn.append(row[9]) ut1isee.append(row[10]) ut1toc.append(row[11]) ut2dbms.append(row[12]) ut2sepm.append(row[13]) ut2cn.append(row[14]) ut2isee.append(row[15]) ut2toc.append(row[16]) if a=="DBMS": x=ut1dbms y=ut2dbms elif a=="SEPM": x=ut1sepm y=ut2sepm elif a=="CN": x=ut1cn y=ut2cn elif a=="TOC": x=ut1toc y=ut2toc elif a=="ISEE": x=ut1isee y=ut2isee w=0.3 plt.ion() index=np.arange(len(name)) plt.scatter(rollno,x,label="UNIT TEST MARKS 1",color="blue",marker="*",s=150) plt.scatter(rollno,y,label="UNIT TEST MARKS 2",color="red",marker="*",s=150) minut1dbms=min(ut1dbms) minut1toc=min(ut1toc) minut1isee=min(ut1isee) minut1cn=min(ut1cn) minut1sepm=min(ut1sepm) minut2dbms=min(ut2dbms) plt.show() ''' time.sleep(5) plt.close("all") ''' #graph("TOC") def pie_chart (self) : none=[] name=[] rollno=[] mob=[] email=[] gender=[] hostelite=[] ut1dbms=[] ut1sepm=[] ut1cn=[] ut1isee=[] ut1toc=[] ut2dbms=[] ut2sepm=[] ut2cn=[] ut2isee=[] ut2toc=[] with open('result.csv','r') as csvfile: plots=csv.reader(csvfile,delimiter=',') for row in plots: none.append(row[0]) name.append(row[1]) rollno.append(row[2]) mob.append(row[3]) email.append(row[4]) gender.append(row[5]) hostelite.append(row[6]) ut1dbms.append(row[7]) ut1sepm.append(row[8]) ut1cn.append(row[9]) ut1isee.append(row[10]) ut1toc.append(row[11]) ut2dbms.append(row[12]) ut2sepm.append(row[13]) ut2cn.append(row[14]) ut2isee.append(row[15]) ut2toc.append(row[16]) count_male=0 count_female=0 for i in gender : if i=="male": count_male+=1 else : count_female+=1 slices=[count_male,count_female] color = ['cyan', 'pink']#, 'g', 'b'] l=['male','female'] plt.pie(slices,labels=l,colors=color,startangle=90,autopct='%.1f%%', shadow = True) plt.title("GENDER DISTRIBUTION") plt.legend() plt.show() def host (self) : none=[] name=[] rollno=[] mob=[] email=[] gender=[] hostelite=[] ut1dbms=[] ut1sepm=[] ut1cn=[] ut1isee=[] ut1toc=[] ut2dbms=[] ut2sepm=[] ut2cn=[] ut2isee=[] ut2toc=[] with open('result.csv','r') as csvfile: plots=csv.reader(csvfile,delimiter=',') for row in plots: none.append(row[0]) name.append(row[1]) rollno.append(row[2]) mob.append(row[3]) email.append(row[4]) gender.append(row[5]) hostelite.append(row[6]) ut1dbms.append(row[7]) ut1sepm.append(row[8]) ut1cn.append(row[9]) ut1isee.append(row[10]) ut1toc.append(row[11]) ut2dbms.append(row[12]) ut2sepm.append(row[13]) ut2cn.append(row[14]) ut2isee.append(row[15]) ut2toc.append(row[16]) count_yes=0 count_no=0 for i in hostelite : if i=="yes": count_yes+=1 else : count_no+=1 slices=[count_yes,count_no] color = ['blue', 'green']#, 'g', 'b'] l=['hostelite','not hostelite'] plt.pie(slices,labels=l,colors=color,startangle=90,autopct='%.1f%%', shadow = True) plt.title("HOSTELITE STATUS ") plt.legend() plt.show()
[ "matplotlib.pyplot.pie", "matplotlib.pyplot.scatter", "matplotlib.pyplot.ion", "matplotlib.pyplot.title", "csv.reader", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((1221, 1230), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (1228, 1230), True, 'from matplotlib import pyplot as plt\n'), ((1260, 1346), 'matplotlib.pyplot.scatter', 'plt.scatter', (['rollno', 'x'], {'label': '"""UNIT TEST MARKS 1"""', 'color': '"""blue"""', 'marker': '"""*"""', 's': '(150)'}), "(rollno, x, label='UNIT TEST MARKS 1', color='blue', marker='*',\n s=150)\n", (1271, 1346), True, 'from matplotlib import pyplot as plt\n'), ((1339, 1424), 'matplotlib.pyplot.scatter', 'plt.scatter', (['rollno', 'y'], {'label': '"""UNIT TEST MARKS 2"""', 'color': '"""red"""', 'marker': '"""*"""', 's': '(150)'}), "(rollno, y, label='UNIT TEST MARKS 2', color='red', marker='*',\n s=150)\n", (1350, 1424), True, 'from matplotlib import pyplot as plt\n'), ((1561, 1571), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1569, 1571), True, 'from matplotlib import pyplot as plt\n'), ((2596, 2685), 'matplotlib.pyplot.pie', 'plt.pie', (['slices'], {'labels': 'l', 'colors': 'color', 'startangle': '(90)', 'autopct': '"""%.1f%%"""', 'shadow': '(True)'}), "(slices, labels=l, colors=color, startangle=90, autopct='%.1f%%',\n shadow=True)\n", (2603, 2685), True, 'from matplotlib import pyplot as plt\n'), ((2681, 2713), 'matplotlib.pyplot.title', 'plt.title', (['"""GENDER DISTRIBUTION"""'], {}), "('GENDER DISTRIBUTION')\n", (2690, 2713), True, 'from matplotlib import pyplot as plt\n'), ((2715, 2727), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2725, 2727), True, 'from matplotlib import pyplot as plt\n'), ((2730, 2740), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2738, 2740), True, 'from matplotlib import pyplot as plt\n'), ((3699, 3788), 'matplotlib.pyplot.pie', 'plt.pie', (['slices'], {'labels': 'l', 'colors': 'color', 'startangle': '(90)', 'autopct': '"""%.1f%%"""', 'shadow': '(True)'}), "(slices, labels=l, colors=color, startangle=90, autopct='%.1f%%',\n shadow=True)\n", (3706, 3788), True, 'from matplotlib import pyplot as plt\n'), ((3784, 3814), 'matplotlib.pyplot.title', 'plt.title', (['"""HOSTELITE STATUS """'], {}), "('HOSTELITE STATUS ')\n", (3793, 3814), True, 'from matplotlib import pyplot as plt\n'), ((3816, 3828), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3826, 3828), True, 'from matplotlib import pyplot as plt\n'), ((3831, 3841), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3839, 3841), True, 'from matplotlib import pyplot as plt\n'), ((511, 545), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (521, 545), False, 'import csv\n'), ((1899, 1933), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (1909, 1933), False, 'import csv\n'), ((3002, 3036), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (3012, 3036), False, 'import csv\n')]
from pathlib import Path import numpy as np import matplotlib.pyplot as plt from ._colors import * from ._Profiles import Profiles from ._Fitting import HSW_Fitting class CVA(HSW_Fitting): def __init__(self, InputFile, **kwargs): """ Class for carrying out a first Cosmic Voids Analysis (CVA). The analysis can be carried out for several cosmology at the same time. Parameters: ----------- InputFile : str Path to the catalog directory Other parameters: ----------------- **kwargs Omega_M_array : 1-D float array bins : 1-D array Catalog_Omega_M : float fast : boolean new : boolean """ print(f"{col.HEADER2}**************************************************{col.END}") print(f"{col.HEADER2}Initializing Comic Voids Analysis{col.END}") self.InputFile = InputFile self.CreateDirectories(self.InputFile) self.Omega_M_array = kwargs.get('Omega_M_array', None) if np.any(self.Omega_M_array == None): raise InputError('No Omega_M_array inserted') self.ranges = kwargs.get('ranges', None) if np.any(self.ranges == None): self.ranges = np.arange(40,161,20) print(f'{col.NOTICE}Standard voids radii ranges used!{col.END}') self.bins = kwargs.get('bins', None) if np.any(self.bins == None): self.bins = np.append(0,np.cumsum(np.flip(np.diff(np.logspace(0,np.log10(4),41)-1)))) print(f'{col.NOTICE}Standard bins values used!{col.END}') if kwargs.get('Omega_M',None) != None: raise InputError("Don't use Omega_M as kwargs but Omega_M_array") print(f"{col.HEADER2}**************************************************{col.END}") def profiles_analysis(self, **kwargs): print(f"{col.HEADER2}**************************************************{col.END}") print(f"{col.HEADER2}Analysis:{col.END}") self.compare_same = kwargs.get('compare_same',False) estimator=kwargs.get('estimator', '') n_Om = np.size(self.Omega_M_array) n_r = np.size(self.ranges[:-1]) n_b = np.size(self.bins) # Initialize profiles_tot self.profiles_tot = np.zeros((n_Om*n_r,n_b-1)) self.profiles_errors_tot = np.zeros((n_Om*n_r,n_b-1)) self.profiles_bins_tot = np.zeros((n_Om*n_r,n_b)) self.studied_ranges = '_R'+str(int(n_r))+'_'+str(int(self.ranges[0]))+'_'+str(int(self.ranges[1]-self.ranges[0])) for i, Om in enumerate(self.Omega_M_array): self.add_M = '_M' + str(Om).split('.')[-1] print(f"{col.NOTICE}--------------------------------------------------{col.END}") print(f"{col.NOTICE}Omega_M: {Om}{col.END}") if self.compare_same: text = r"\Omega_M" print(f"{col.NOTICE}Binning voids' radii for {text} = 0.270{col.END}") nameFile_Profiles = self.folder_profiles+'/Profile_sameR'+estimator+self.studied_ranges+self.add_M+'.h5' else: nameFile_Profiles = self.folder_profiles+'/Profile'+estimator+self.studied_ranges+self.add_M+'.h5' # Retrieve profiles or calculate it new_computation = True if Path(nameFile_Profiles).is_file(): data = self.Upload(nameFile_Profiles) if np.all(data['profiles']['bins'] == self.bins): print(f'{col.NOTICE}Retrieving Profiles: {col.END}', nameFile_Profiles) catalog, voids, tracers = self.LoadCatalog(self.InputFile, Omega_M = Om, **kwargs) self.profiles = data['profiles']['profiles'] self.profiles_errors = data['profiles']['profiles_errors'] self.profiles_bins = data['profiles']['profiles_bins'] new_computation = False new_computation = True if new_computation: catalog, voids, tracers = self.LoadCatalog(self.InputFile, Omega_M = Om, **kwargs) # fsky key in MeanDensity to consider masked part self.MeanDensity() self.CreateRandoms() #self.DistanceVoidsTracers() #self.StackVoids(self.ranges, bins=self.bins, compare_same= self.compare_same) #self.randoms = self.tracers self.CorrelationVoidsTracersRandoms() data_temp = { 'bins':self.bins, 'profiles':self.profiles, 'profiles_errors':self.profiles_errors, 'profiles_bins':self.profiles_bins } self.Save(nameFile_Profiles, profiles=data_temp) ii=0 for j in np.arange(i*n_r, i*n_r+n_r, 1): self.profiles_tot[j] = self.profiles[ii] self.profiles_errors_tot[j] = self.profiles_errors[ii] self.profiles_bins_tot[j] = self.profiles_bins[ii] ii += 1 print(f"{col.NOTICE}--------------------------------------------------{col.END}") print(f"{col.HEADER2}**************************************************{col.END}") def profiles_plot(self, xmax=3.0, estimator=''): print(f"{col.HEADER2}**************************************************{col.END}") print(f"{col.HEADER2}Plotting:{col.END}") if self.compare_same: nameFile_ProfilesPlot = self.folder_results+'/PlotProfiles_sameR'+estimator+self.studied_ranges+self.add_M+'.pdf' else: nameFile_ProfilesPlot = self.folder_results+'/PlotProfiles'+estimator+self.studied_ranges+self.add_M+'.pdf' n_r = np.size(self.ranges[:-1]) n_Om = np.size(self.Omega_M_array) styles = ['.','x','v', '^', '+', 'p'] lin_styles = ['-', '-.',':','--'] # Cycling over Omegas and Ranges for i, Om in enumerate(self.Omega_M_array): for j in np.arange(n_r): k = i*n_r+j profile = self.profiles_tot[k] profile_errors = self.profiles_errors_tot[k] x = (self.profiles_bins_tot[k][1:]+self.profiles_bins_tot[k][:-1])/2. label = 'Radii range: ['+str(self.ranges[j])+','+str(self.ranges[j+1])+') Mpc/h' if n_Om >1: label2 = r'$\Omega_M$: '+str(Om) label = label +'\n'+label2 style = styles[j] lin_style = lin_styles[j] shades = col.colors(n_Om) colo = shades[i] else: style = '.' lin_style = '-' shades2 = col.colors(n_r) colo = shades2[j] plt.plot(x, profile, linewidth=0.2, linestyle=lin_style, color=colo) plt.errorbar(x, profile, yerr=profile_errors, fmt=style, markersize=2, color= colo, ecolor=colo, elinewidth=0.2, label=label) plt.grid() plt.legend(bbox_to_anchor=(1.05,1), loc='upper left', prop={'size':8}) plt.xlabel(r'$R/R_v$') plt.ylabel(r'$d(x)/d_{mean}-1$') plt.xlim(0.0, xmax) print('Saving on '+self.print_folder(nameFile_ProfilesPlot, last=1, start='')+' ...') plt.savefig(nameFile_ProfilesPlot, format='pdf', bbox_inches='tight') print('Done!') print(f"{col.HEADER2}**************************************************{col.END}") def profiles_fitting(self,**kwargs): ## Kwargs: # General: # method : fit, MCMC, both # new : default False # fitting_limits : Radii range in which to fit # MCMC: # n_walkers : int (default 64) # n_iteration : int (default 5000) method = kwargs.get('method', '') print(f"{col.HEADER2}**************************************************{col.END}") print(f"{col.HEADER2}Fitting {method}:{col.END}") if method == 'fit': HSW_Fitting.fitting(self, **kwargs) HSW_Fitting.plot(self, **kwargs) elif method == 'MCMC': HSW_Fitting.fitting_MCMC(self, **kwargs) HSW_Fitting.plot(self, **kwargs) elif method == 'both': HSW_Fitting.fitting_MCMC(self, **kwargs) print(self.parameters) print(self.parameters_errors) self.parameters_MCMC = self.parameters HSW_Fitting.fitting(self, **kwargs) print(self.parameters) print(self.parameters_errors) else: print(f'{col.FAIL}No method =\"{method}\" found{col.END}') raise InputError("Wrong fitting method inputted. Chose between: fit, MCMC") print(f"{col.HEADER2}**************************************************{col.END}")
[ "numpy.all", "matplotlib.pyplot.grid", "matplotlib.pyplot.savefig", "numpy.log10", "matplotlib.pyplot.ylabel", "numpy.arange", "pathlib.Path", "numpy.size", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.any", "numpy.zeros", "matplotlib.pyplot.errorbar", "matplotlib.pyplot.xlim", "matplotlib.pyplot.legend" ]
[((1140, 1174), 'numpy.any', 'np.any', (['(self.Omega_M_array == None)'], {}), '(self.Omega_M_array == None)\n', (1146, 1174), True, 'import numpy as np\n'), ((1303, 1330), 'numpy.any', 'np.any', (['(self.ranges == None)'], {}), '(self.ranges == None)\n', (1309, 1330), True, 'import numpy as np\n'), ((1521, 1546), 'numpy.any', 'np.any', (['(self.bins == None)'], {}), '(self.bins == None)\n', (1527, 1546), True, 'import numpy as np\n'), ((2251, 2278), 'numpy.size', 'np.size', (['self.Omega_M_array'], {}), '(self.Omega_M_array)\n', (2258, 2278), True, 'import numpy as np\n'), ((2293, 2318), 'numpy.size', 'np.size', (['self.ranges[:-1]'], {}), '(self.ranges[:-1])\n', (2300, 2318), True, 'import numpy as np\n'), ((2333, 2351), 'numpy.size', 'np.size', (['self.bins'], {}), '(self.bins)\n', (2340, 2351), True, 'import numpy as np\n'), ((2415, 2446), 'numpy.zeros', 'np.zeros', (['(n_Om * n_r, n_b - 1)'], {}), '((n_Om * n_r, n_b - 1))\n', (2423, 2446), True, 'import numpy as np\n'), ((2477, 2508), 'numpy.zeros', 'np.zeros', (['(n_Om * n_r, n_b - 1)'], {}), '((n_Om * n_r, n_b - 1))\n', (2485, 2508), True, 'import numpy as np\n'), ((2537, 2564), 'numpy.zeros', 'np.zeros', (['(n_Om * n_r, n_b)'], {}), '((n_Om * n_r, n_b))\n', (2545, 2564), True, 'import numpy as np\n'), ((5982, 6007), 'numpy.size', 'np.size', (['self.ranges[:-1]'], {}), '(self.ranges[:-1])\n', (5989, 6007), True, 'import numpy as np\n'), ((6023, 6050), 'numpy.size', 'np.size', (['self.Omega_M_array'], {}), '(self.Omega_M_array)\n', (6030, 6050), True, 'import numpy as np\n'), ((7335, 7345), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (7343, 7345), True, 'import matplotlib.pyplot as plt\n'), ((7354, 7426), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'bbox_to_anchor': '(1.05, 1)', 'loc': '"""upper left"""', 'prop': "{'size': 8}"}), "(bbox_to_anchor=(1.05, 1), loc='upper left', prop={'size': 8})\n", (7364, 7426), True, 'import matplotlib.pyplot as plt\n'), ((7433, 7454), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$R/R_v$"""'], {}), "('$R/R_v$')\n", (7443, 7454), True, 'import matplotlib.pyplot as plt\n'), ((7464, 7495), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$d(x)/d_{mean}-1$"""'], {}), "('$d(x)/d_{mean}-1$')\n", (7474, 7495), True, 'import matplotlib.pyplot as plt\n'), ((7510, 7529), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0.0)', 'xmax'], {}), '(0.0, xmax)\n', (7518, 7529), True, 'import matplotlib.pyplot as plt\n'), ((7632, 7701), 'matplotlib.pyplot.savefig', 'plt.savefig', (['nameFile_ProfilesPlot'], {'format': '"""pdf"""', 'bbox_inches': '"""tight"""'}), "(nameFile_ProfilesPlot, format='pdf', bbox_inches='tight')\n", (7643, 7701), True, 'import matplotlib.pyplot as plt\n'), ((1358, 1380), 'numpy.arange', 'np.arange', (['(40)', '(161)', '(20)'], {}), '(40, 161, 20)\n', (1367, 1380), True, 'import numpy as np\n'), ((5039, 5075), 'numpy.arange', 'np.arange', (['(i * n_r)', '(i * n_r + n_r)', '(1)'], {}), '(i * n_r, i * n_r + n_r, 1)\n', (5048, 5075), True, 'import numpy as np\n'), ((6254, 6268), 'numpy.arange', 'np.arange', (['n_r'], {}), '(n_r)\n', (6263, 6268), True, 'import numpy as np\n'), ((3575, 3620), 'numpy.all', 'np.all', (["(data['profiles']['bins'] == self.bins)"], {}), "(data['profiles']['bins'] == self.bins)\n", (3581, 3620), True, 'import numpy as np\n'), ((7075, 7143), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'profile'], {'linewidth': '(0.2)', 'linestyle': 'lin_style', 'color': 'colo'}), '(x, profile, linewidth=0.2, linestyle=lin_style, color=colo)\n', (7083, 7143), True, 'import matplotlib.pyplot as plt\n'), ((7160, 7288), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['x', 'profile'], {'yerr': 'profile_errors', 'fmt': 'style', 'markersize': '(2)', 'color': 'colo', 'ecolor': 'colo', 'elinewidth': '(0.2)', 'label': 'label'}), '(x, profile, yerr=profile_errors, fmt=style, markersize=2,\n color=colo, ecolor=colo, elinewidth=0.2, label=label)\n', (7172, 7288), True, 'import matplotlib.pyplot as plt\n'), ((3467, 3490), 'pathlib.Path', 'Path', (['nameFile_Profiles'], {}), '(nameFile_Profiles)\n', (3471, 3490), False, 'from pathlib import Path\n'), ((1624, 1635), 'numpy.log10', 'np.log10', (['(4)'], {}), '(4)\n', (1632, 1635), True, 'import numpy as np\n')]
#!/usr/bin/env python """ EOSS State Tracker =================== Maintains the current state of the TUI including in terms of EOSS configuration """ from datui.tui_state_tracker import TuiStateTracker from dabot.srv import TuiState, TuiStateResponse from dautils import get_ros_param import rospy from std_msgs.msg import String class EossStateTracker(TuiStateTracker): """ """ NUM_ORBITS = 5 orbits = [] def __init__(self): self.set_workspace_bounds() # initialize the parent TuiStateTracker.__init__(self, node_name="tui_state") self.get_config_server = rospy.Service("get_config_state", TuiState, self.get_config_state) self.config_publisher = rospy.Publisher("/tui_state_configs", String, queue_size=1) self.block_update_subscriber = rospy.Subscriber("/blocks", String, self.publish_config) self.param_update_subscriber = rospy.Subscriber("/param_update", String, self.handle_param_update) def set_workspace_bounds(self, bounds=None): if bounds is not None: self.orbits_min = bounds["ORBITS_MIN"] self.orbits_max = bounds["ORBITS_MAX"] self.orbits_left = bounds["ORBITS_LEFT"] self.orbits_right = bounds["ORBITS_RIGHT"] else: self.orbits_min = get_ros_param("ORBITS_MIN", "Orbit boundaries must be configured.") self.orbits_max = get_ros_param("ORBITS_MAX", "Orbit boundaries must be configured.") self.orbits_left = get_ros_param("ORBITS_LEFT", "Orbit boundaries must be configured.") self.orbits_right = get_ros_param("ORBITS_RIGHT", "Orbit boundaries must be configured.") self.orbit_height = (self.orbits_max-self.orbits_min)/self.NUM_ORBITS self.orbits = [] for i in range(self.NUM_ORBITS): #lower_bound = self.orbits_max-(i+1)*self.orbit_height lower_bound = self.orbits_min+i*self.orbit_height #upper_bound = self.orbits_max-i*self.orbit_height upper_bound = self.orbits_min+(i+1)*self.orbit_height self.orbits.append([lower_bound, upper_bound]) def handle_param_update(self, message): self.set_workspace_bounds() def get_config_state(self, request): if request.frame_of_reference == "eoss_config": return TuiStateResponse(self.blocks2bitstring(self.block_state)) # note that orbits are currently specified in tuio space. needs to be in arm space. def get_orbit(self, y): for i, orbit in enumerate(self.orbits): if y > orbit[0] and y < orbit[1]: return i return None def blocks2bitstring(self, block_arr): raw_btstr = '0'*60 for block in block_arr: if block["x"] > self.orbits_left or block["x"] < self.orbits_right: continue if block["y"] < self.orbits_min or block["y"] > self.orbits_max: continue id = block["id"] orbit = self.get_orbit(block["y"]) if(orbit is not None): index = 12*orbit + id raw_btstr = raw_btstr[:index] + '1' + raw_btstr[index+1:] # b/c can't modify string return raw_btstr def publish_config(self, message): # the point of this is to allow us to compare with /configs (which may have local search points as well) rospy.sleep(0.005) self.config_publisher.publish(String(self.blocks2bitstring(self.block_state))) def shutdown_tracker(self): self.get_config_server.shutdown() TuiStateTracker.shutdown_tracker(self) if __name__ == '__main__': e = EossStateTracker() rospy.spin()
[ "datui.tui_state_tracker.TuiStateTracker.__init__", "datui.tui_state_tracker.TuiStateTracker.shutdown_tracker", "rospy.Subscriber", "rospy.Service", "dautils.get_ros_param", "rospy.spin", "rospy.sleep", "rospy.Publisher" ]
[((3692, 3704), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (3702, 3704), False, 'import rospy\n'), ((524, 577), 'datui.tui_state_tracker.TuiStateTracker.__init__', 'TuiStateTracker.__init__', (['self'], {'node_name': '"""tui_state"""'}), "(self, node_name='tui_state')\n", (548, 577), False, 'from datui.tui_state_tracker import TuiStateTracker\n'), ((611, 677), 'rospy.Service', 'rospy.Service', (['"""get_config_state"""', 'TuiState', 'self.get_config_state'], {}), "('get_config_state', TuiState, self.get_config_state)\n", (624, 677), False, 'import rospy\n'), ((710, 769), 'rospy.Publisher', 'rospy.Publisher', (['"""/tui_state_configs"""', 'String'], {'queue_size': '(1)'}), "('/tui_state_configs', String, queue_size=1)\n", (725, 769), False, 'import rospy\n'), ((809, 865), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/blocks"""', 'String', 'self.publish_config'], {}), "('/blocks', String, self.publish_config)\n", (825, 865), False, 'import rospy\n'), ((905, 972), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/param_update"""', 'String', 'self.handle_param_update'], {}), "('/param_update', String, self.handle_param_update)\n", (921, 972), False, 'import rospy\n'), ((3404, 3422), 'rospy.sleep', 'rospy.sleep', (['(0.005)'], {}), '(0.005)\n', (3415, 3422), False, 'import rospy\n'), ((3593, 3631), 'datui.tui_state_tracker.TuiStateTracker.shutdown_tracker', 'TuiStateTracker.shutdown_tracker', (['self'], {}), '(self)\n', (3625, 3631), False, 'from datui.tui_state_tracker import TuiStateTracker\n'), ((1308, 1375), 'dautils.get_ros_param', 'get_ros_param', (['"""ORBITS_MIN"""', '"""Orbit boundaries must be configured."""'], {}), "('ORBITS_MIN', 'Orbit boundaries must be configured.')\n", (1321, 1375), False, 'from dautils import get_ros_param\n'), ((1406, 1473), 'dautils.get_ros_param', 'get_ros_param', (['"""ORBITS_MAX"""', '"""Orbit boundaries must be configured."""'], {}), "('ORBITS_MAX', 'Orbit boundaries must be configured.')\n", (1419, 1473), False, 'from dautils import get_ros_param\n'), ((1505, 1573), 'dautils.get_ros_param', 'get_ros_param', (['"""ORBITS_LEFT"""', '"""Orbit boundaries must be configured."""'], {}), "('ORBITS_LEFT', 'Orbit boundaries must be configured.')\n", (1518, 1573), False, 'from dautils import get_ros_param\n'), ((1606, 1675), 'dautils.get_ros_param', 'get_ros_param', (['"""ORBITS_RIGHT"""', '"""Orbit boundaries must be configured."""'], {}), "('ORBITS_RIGHT', 'Orbit boundaries must be configured.')\n", (1619, 1675), False, 'from dautils import get_ros_param\n')]
# This file is part of the P3IV Simulator (https://github.com/fzi-forschungszentrum-informatik/P3IV), # copyright by FZI Forschungszentrum Informatik, licensed under the BSD-3 license (see LICENSE file in main directory) import numpy as np from p3iv_modules.interfaces.planning import PlannerInterface from p3iv_types.motion import MotionPlan, MotionPlans from p3iv_utils.coordinate_transformation import CoordinateTransform from p3iv_utils.vehicle_models import get_control_inputs class Planner(PlannerInterface): def __init__(self, ego_id, ego_width, ego_length, configurations, *args, **kwargs): super(Planner, self).__init__(ego_id, ego_width, ego_length, configurations, *args, **kwargs) self._id = ego_id self._width = ego_width self._length = ego_length self.dt = configurations["temporal"]["dt"] / 1000.0 self.n = configurations["temporal"]["N"] self.timestamp = 0 # store intermediate stuff for convenience self._coordinate_transform = None self._state = None self._progress = None def __call__(self, timestamp, state, scene_model, situation_model, decision_base, *args, **kwargs): PlannerInterface.type_check(timestamp, state, scene_model, situation_model, decision_base, *args, **kwargs) self.setCurrentTimestamp(timestamp) self.setDrivingCorridor(decision_base.corridor) foo = 0.0 self.setMotionState(state, foo) mp = self.solve() mps = MotionPlans() mps.append(mp) return mps def setCurrentTimestamp(self, timestamp): assert isinstance(timestamp, int) self.timestamp = timestamp def setDrivingCorridor(self, corridor): self._corridor_centerline = corridor.center self._coordinate_transform = CoordinateTransform(self._corridor_centerline) def setMotionState(self, state, progress): self._state = state self._progress = progress def solve(self, *args, **kwargs): current_pos = self._progress profile = np.array([]) for i in range(self.n): new_pos = current_pos + self._state.speed * self.dt profile = np.append(profile, new_pos) current_pos = new_pos frenet_l = np.append(self._progress, profile) xy = self._coordinate_transform.expand(self._state.position.mean, frenet_l, ignore_lateral_offset=True) mp = MotionPlan() mp.states(xy, dt=self.dt) mp.controls.acceleration = np.zeros(self.n + 1) wheelbase = 0.7 * self._length mp.controls.steering = get_control_inputs(mp.states.yaw.mean, mp.states.speed, wheelbase, self.dt)[:, 0] PlannerInterface.overwrite_with_current_state(mp, self._state) assert len(mp.states) == self.n + 1 # 1-> current state return mp
[ "p3iv_modules.interfaces.planning.PlannerInterface.type_check", "numpy.append", "numpy.array", "numpy.zeros", "p3iv_types.motion.MotionPlans", "p3iv_types.motion.MotionPlan", "p3iv_utils.vehicle_models.get_control_inputs", "p3iv_modules.interfaces.planning.PlannerInterface.overwrite_with_current_state", "p3iv_utils.coordinate_transformation.CoordinateTransform" ]
[((1200, 1311), 'p3iv_modules.interfaces.planning.PlannerInterface.type_check', 'PlannerInterface.type_check', (['timestamp', 'state', 'scene_model', 'situation_model', 'decision_base', '*args'], {}), '(timestamp, state, scene_model, situation_model,\n decision_base, *args, **kwargs)\n', (1227, 1311), False, 'from p3iv_modules.interfaces.planning import PlannerInterface\n'), ((1508, 1521), 'p3iv_types.motion.MotionPlans', 'MotionPlans', ([], {}), '()\n', (1519, 1521), False, 'from p3iv_types.motion import MotionPlan, MotionPlans\n'), ((1822, 1868), 'p3iv_utils.coordinate_transformation.CoordinateTransform', 'CoordinateTransform', (['self._corridor_centerline'], {}), '(self._corridor_centerline)\n', (1841, 1868), False, 'from p3iv_utils.coordinate_transformation import CoordinateTransform\n'), ((2073, 2085), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2081, 2085), True, 'import numpy as np\n'), ((2285, 2319), 'numpy.append', 'np.append', (['self._progress', 'profile'], {}), '(self._progress, profile)\n', (2294, 2319), True, 'import numpy as np\n'), ((2446, 2458), 'p3iv_types.motion.MotionPlan', 'MotionPlan', ([], {}), '()\n', (2456, 2458), False, 'from p3iv_types.motion import MotionPlan, MotionPlans\n'), ((2529, 2549), 'numpy.zeros', 'np.zeros', (['(self.n + 1)'], {}), '(self.n + 1)\n', (2537, 2549), True, 'import numpy as np\n'), ((2711, 2773), 'p3iv_modules.interfaces.planning.PlannerInterface.overwrite_with_current_state', 'PlannerInterface.overwrite_with_current_state', (['mp', 'self._state'], {}), '(mp, self._state)\n', (2756, 2773), False, 'from p3iv_modules.interfaces.planning import PlannerInterface\n'), ((2204, 2231), 'numpy.append', 'np.append', (['profile', 'new_pos'], {}), '(profile, new_pos)\n', (2213, 2231), True, 'import numpy as np\n'), ((2620, 2695), 'p3iv_utils.vehicle_models.get_control_inputs', 'get_control_inputs', (['mp.states.yaw.mean', 'mp.states.speed', 'wheelbase', 'self.dt'], {}), '(mp.states.yaw.mean, mp.states.speed, wheelbase, self.dt)\n', (2638, 2695), False, 'from p3iv_utils.vehicle_models import get_control_inputs\n')]
"""Metadata utilities.""" from attr import attr, NOTHING TYPE_METADATA_KEY = "cattr_type_metadata" def typed(type, default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata={}): """Just like `attr.ib`, but with type metadata.""" if not metadata: metadata = {TYPE_METADATA_KEY: type} else: metadata[TYPE_METADATA_KEY] = type return attr(default, validator, repr, cmp, hash, init, convert, metadata)
[ "attr.attr" ]
[((428, 494), 'attr.attr', 'attr', (['default', 'validator', 'repr', 'cmp', 'hash', 'init', 'convert', 'metadata'], {}), '(default, validator, repr, cmp, hash, init, convert, metadata)\n', (432, 494), False, 'from attr import attr, NOTHING\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # @author jsbxyyx # @since 1.0 import datetime import time from seata.rm.datasource.sql.struct.KeyType import KeyType from seata.rm.datasource.Types import Types class Field(object): def __init__(self): self.name = None self.key_type = KeyType.NULL self.type = 0 # any self.value = None def set_value(self, value): result = None if self.type == Types.BIT or \ self.type == Types.BLOB: result = str(self.value) elif self.type == Types.TINYINT or \ self.type == Types.SMALLINT or \ self.type == Types.INTEGER or \ self.type == Types.INT or \ self.type == Types.BIGINT or \ self.type == Types.FLOAT or \ self.type == Types.REAL or \ self.type == Types.DOUBLE or \ self.type == Types.NUMERIC or \ self.type == Types.DECIMAL or \ self.type == Types.CHAR or \ self.type == Types.VARCHAR or \ self.type == Types.LONGVARCHAR or \ self.type == Types.TINYTEXT or \ self.type == Types.TEXT or \ self.type == Types.MEDIUMTEXT or \ self.type == Types.LONGTEXT or \ self.type == Types.JSON: result = str(value) elif self.type == Types.DATE: if isinstance(value, str): result = value else: # datetime.date result = value.strftime('%Y-%m-%d') elif self.type == Types.TIME: if isinstance(value, str): result = value else: # time.timedelta result = value.strftime('%H:%M:%S.%f') elif self.type == Types.DATETIME: if isinstance(value, str): result = value else: # datetime.datetime result = value.strftime('%Y-%m-%d %H:%M:%S.%f') else: result = str(self.value) self.value = result def get_value(self): val_str = self.value if self.type == Types.TINYINT or \ self.type == Types.SMALLINT or \ self.type == Types.INTEGER or \ self.type == Types.INT or \ self.type == Types.BIGINT or \ self.type == Types.NUMERIC: return int(val_str) elif self.type == Types.FLOAT or \ self.type == Types.REAL or \ self.type == Types.DOUBLE or \ self.type == Types.DECIMAL: return float(val_str) elif self.type == Types.CHAR or \ self.type == Types.VARCHAR or \ self.type == Types.LONGVARCHAR or \ self.type == Types.TINYTEXT or \ self.type == Types.TEXT or \ self.type == Types.MEDIUMTEXT or \ self.type == Types.LONGTEXT or \ self.type == Types.JSON: return val_str elif self.type == Types.DATE: string = val_str return datetime.datetime.strptime(string, "%Y-%m-%d").date() elif self.type == Types.TIME: string = val_str return datetime.datetime.strptime(string, "%H:%M:%S.%f").time() elif self.type == Types.DATETIME: string = val_str return datetime.datetime.strptime(string, "%Y-%m-%d %H:%M:%S.%f") elif self.type == Types.BIT or \ self.type == Types.BLOB: return val_str.decode('utf-8') else: return val_str def __eq__(self, other): return self.__dict__ == other.__dict__
[ "datetime.datetime.strptime" ]
[((3230, 3276), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['string', '"""%Y-%m-%d"""'], {}), "(string, '%Y-%m-%d')\n", (3256, 3276), False, 'import datetime\n'), ((3517, 3575), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['string', '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(string, '%Y-%m-%d %H:%M:%S.%f')\n", (3543, 3575), False, 'import datetime\n'), ((3370, 3419), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['string', '"""%H:%M:%S.%f"""'], {}), "(string, '%H:%M:%S.%f')\n", (3396, 3419), False, 'import datetime\n')]
#ml2015 from floodsystem.stationdata import build_station_list from floodsystem.geo import stations_within_radius def run(): stations = build_station_list() cam_station_list = stations_within_radius(stations, (52.2053, 0.1218), 10) cam_name_list=[] for station in cam_station_list: cam_name_list.append(station.name) sorted_list=sorted(cam_name_list) print(sorted_list) if __name__ == "__main__": run()
[ "floodsystem.stationdata.build_station_list", "floodsystem.geo.stations_within_radius" ]
[((144, 164), 'floodsystem.stationdata.build_station_list', 'build_station_list', ([], {}), '()\n', (162, 164), False, 'from floodsystem.stationdata import build_station_list\n'), ((189, 244), 'floodsystem.geo.stations_within_radius', 'stations_within_radius', (['stations', '(52.2053, 0.1218)', '(10)'], {}), '(stations, (52.2053, 0.1218), 10)\n', (211, 244), False, 'from floodsystem.geo import stations_within_radius\n')]
# -*- coding: utf-8 -*- import os micro_controler = (os.uname().machine == 'ESP module with ESP8266') if micro_controler: from machine import Pin, I2C import ssd1306 class Dispplay_conf: size_x = 128 size_y = 64 class Display_stub: def __init__(self, size_x, size_y): self.size_x = size_x self.size_y = size_y def text(self, str, x, y, c = 1): print(str) def pixel(self, x, y, c): pass def show(self): pass def invert(self, state): pass def bar_chart_function(data, x, y, width, height): elements = len(data) bar_width = int(x / elements) y_scale = height / max(data) for i in range(0, elements - 1): x_start = i * bar_width if micro_controler: display.fill_rect(x_start, y, bar_width, int(y_scale * data[i]),1) else: print(x, Dispplay_conf.size_y - 1, x + bar_width, int(y_scale * data[i])) #ssd1306_gfx.SSD1306_I2C_SETUP.bar_chart = bar_chart_function # Press the green button in the gutter to run the script. if __name__ == '__main__': if micro_controler: # Set LED on led = Pin(2, Pin.OUT) led.value(0) # Setup ssd1306 OLED display display = ssd1306.SSD1306_I2C(Dispplay_conf.size_x, Dispplay_conf.size_y, I2C(sda=Pin(4), scl=Pin(5))) #display = ssd1306_gfx.SSD1306_I2C_SETUP(Pin(4), Pin(5), Dispplay_conf.size_x, Dispplay_conf.size_y) else: display = Display_stub(Dispplay_conf.size_y, Dispplay_conf.size_x) display.bar_chart = bar_chart_function #display.fill(1) display.invert(True) print(os.uname().machine) #display.text(os.uname().machine, 0, 0, 1) display.text('Nu pris: 5,45 Kr.', 0, 0, 1) display.text('3t slot: kl 14', 0, 10, 1) display.text('6t slot: kl 12', 0, 20, 1) display.pixel(63, 47, 1) display.show() print("Done") if micro_controler: led.value(1) display.invert(False) spot_price = [1.23,2.3,3.8,5.9,6.2,3.7,2.1,0.3,0.3,0.3,0.3,0.3,0.3,0.3,1.23,2.3,3.8,5.9] display.bar_chart(spot_price, 0, Dispplay_conf.size_y-1, Dispplay_conf.size_x, Dispplay_conf.size_y-24) display.show()
[ "machine.Pin", "os.uname" ]
[((54, 64), 'os.uname', 'os.uname', ([], {}), '()\n', (62, 64), False, 'import os\n'), ((1155, 1170), 'machine.Pin', 'Pin', (['(2)', 'Pin.OUT'], {}), '(2, Pin.OUT)\n', (1158, 1170), False, 'from machine import Pin, I2C\n'), ((1648, 1658), 'os.uname', 'os.uname', ([], {}), '()\n', (1656, 1658), False, 'import os\n'), ((1320, 1326), 'machine.Pin', 'Pin', (['(4)'], {}), '(4)\n', (1323, 1326), False, 'from machine import Pin, I2C\n'), ((1332, 1338), 'machine.Pin', 'Pin', (['(5)'], {}), '(5)\n', (1335, 1338), False, 'from machine import Pin, I2C\n')]
from __future__ import print_function, absolute_import, division import logging import time import boto3 logger = logging.getLogger(__name__) _DEBUG_TOTAL_WRITTEN_BYTES = 0 def describe_logfiles_of_instance(name): # pragma: no cover (covered by it) client = boto3.client('rds') response = client.describe_db_log_files( DBInstanceIdentifier=name) if 'DescribeDBLogFiles' in response: return response['DescribeDBLogFiles'] return [] def metric(name, value=1): # DogStatsD format (https://www.datadoghq.com/blog/statsd/) # MONITORING|unix_epoch_timestamp|metric_value|metric_type|my.metric.name|#tag1:value,tag2 print('MONITORING|{ts}|{value}|{type}|rds_log_dog.{name}|'.format( ts=int(time.time()), type='count', name=name, value=value)) def download(instance_name, logfile_name, filename): # pragma: no cover (covered by it) client = boto3.client('rds') next_position_marker = '0' data = '' retries = 0 max_retries = 3 size = 0 fetch_this_number_of_lines = 0 with open(filename, 'w') as datafile: while True: if retries > max_retries: metric('retries_exceeded') logger.error( 'Retry count (%d) exceeding max retries (%d). Gave up.', retries, max_retries) break response = client.download_db_log_file_portion( DBInstanceIdentifier=instance_name, LogFileName=logfile_name, Marker=next_position_marker, NumberOfLines=fetch_this_number_of_lines) if 'LogFileData' not in response: logger.warn('no LogFileData in response. Retrying.') retries += 1 continue # means retry data = response['LogFileData'] if data[-35:].strip().endswith('[Your log message was truncated]'): metric('truncated') fetch_this_number_of_lines = data.count('\n')-2 retries += 1 continue # means retry logger.debug('going to write %d bytes to disc.\ Already written: %d bytes', len(data), size) datafile.write(data) size += len(data) global _DEBUG_TOTAL_WRITTEN_BYTES _DEBUG_TOTAL_WRITTEN_BYTES += len(data) if not response['AdditionalDataPending']: break next_position_marker = response['Marker'] fetch_this_number_of_lines = 0 retries = 0 metric('rds_log_size', size) def get_size(instance_name, logfile_name): for logfile in describe_logfiles_of_instance(instance_name): if logfile['LogFileName'] == logfile_name: return logfile['Size']
[ "logging.getLogger", "boto3.client", "time.time" ]
[((116, 143), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (133, 143), False, 'import logging\n'), ((269, 288), 'boto3.client', 'boto3.client', (['"""rds"""'], {}), "('rds')\n", (281, 288), False, 'import boto3\n'), ((901, 920), 'boto3.client', 'boto3.client', (['"""rds"""'], {}), "('rds')\n", (913, 920), False, 'import boto3\n'), ((744, 755), 'time.time', 'time.time', ([], {}), '()\n', (753, 755), False, 'import time\n')]
"""Tools for interacting with ConceptNet in English and interpreting the results. Translate between plain words and the ConceptNet format""" import random import requests import pattern.en as en def query(concept, rel, reverse=False, all_edges=False): """Return the node(s) that are related to concept by rel""" direction = ('start', 'end') if not reverse else ('end', 'start') edges = requests.get("http://api.conceptnet.io/query?{}={}&rel=/r/{}" \ "&limit=1000".format(direction[0], concept, rel)).json()['edges'] if not len(edges): return [] if not all_edges: return random.choice(edges)[direction[1]] return [x[direction[1]] for x in edges] def isRich(concept, threshold=20): obj = requests.get('http://api.conceptnet.io{}'.format(concept)).json() return concept != "/c/en/" and len(obj.get('edges', [])) >= threshold def attemptSingularization(term): """Return the singular form of this term, unless the plural form has more edges connecting it to other nodes.""" term_node = requests.get('http://api.conceptnet.io{}'.format(term)).json() richness = len(term_node.get('edges', [])) singular = readableToTerm(en.singularize(termToReadable(term))) return singular if isRich(singular, threshold=richness) else term def richness(concept): #print("Determining richness of: {}".format(concept)) if concept == "/c/en/": return 0 obj = requests.get('http://api.conceptnet.io{}'.format(concept)).json() return len(obj.get('edges', [])) def termToReadable(t): return t[6:].replace('_', ' ') def readableToTerm(s): return "/c/en/" + s.replace(' ', '_') def conjugateVerbs(sentence, tense): """Use parse trees to identify the verbs in a phrase. Assume the first word in the phrase is guaranteed to be a verb. Return the phrase with each verb converted to the desired tense.""" if not sentence: return None """pattern-en's conjugation() often does not work, but lexeme() generates conjugations in a predictable order""" lexeme_indicies = {"infinitive" : 0, "continuous" : 2} t = lexeme_indicies[tense.lower()] words = en.parsetree(sentence)[0] words[0].string = en.lexeme(words[0].string)[t] for word in words: if word.type[0] == "V": word.string = en.lexeme(word.string)[t] return words.string def findDirectObject(sentence): """Return the direct object of the input verb phrase.""" try: remainder = sentence[sentence.index(' ')+1:] except: return None """Doesn't work for certain verbs, typically those that have another, non-verb sense (e.g. 'ready' the weapon, 'storm' the hill). So we simply replace this difficult verb with a more easily understood one: 'see' """ tree = en.parsetree('You see {}'.format(remainder), tags=True, chunks=True, relations=True) rel = tree.sentences[0].relations obj_dict = rel["OBJ"] if len(obj_dict): obj = next(iter(obj_dict.values())).head.string return readableToTerm(obj) for word in tree.sentences[0].words: if word.type[0] == 'N': return readableToTerm(word.string) return None def correctSpelling(s): words = [en.suggest(w) for w in s.split()] return ' '.join(words)
[ "pattern.en.lexeme", "pattern.en.parsetree", "pattern.en.suggest", "random.choice" ]
[((2055, 2077), 'pattern.en.parsetree', 'en.parsetree', (['sentence'], {}), '(sentence)\n', (2067, 2077), True, 'import pattern.en as en\n'), ((2100, 2126), 'pattern.en.lexeme', 'en.lexeme', (['words[0].string'], {}), '(words[0].string)\n', (2109, 2126), True, 'import pattern.en as en\n'), ((3032, 3045), 'pattern.en.suggest', 'en.suggest', (['w'], {}), '(w)\n', (3042, 3045), True, 'import pattern.en as en\n'), ((581, 601), 'random.choice', 'random.choice', (['edges'], {}), '(edges)\n', (594, 601), False, 'import random\n'), ((2195, 2217), 'pattern.en.lexeme', 'en.lexeme', (['word.string'], {}), '(word.string)\n', (2204, 2217), True, 'import pattern.en as en\n')]
# coding: utf-8 import gevent.monkey gevent.monkey.patch_all() import multiprocessing bind = 'unix:/var/run/june.sock' max_requests = 10000 keepalive = 5 workers = multiprocessing.cpu_count() * 2 + 1 worker_class = 'gunicorn.workers.ggevent.GeventWorker' loglevel = 'info' errorlog = '-' x_forwarded_for_header = 'X-FORWARDED-FOR' secure_scheme_headers = { 'X-SCHEME': 'https', }
[ "multiprocessing.cpu_count" ]
[((167, 194), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (192, 194), False, 'import multiprocessing\n')]
import numpy as np import batch_norm as bn import relu as relu import loss_functions.functions as fn import sigmoid as sigmoid import categorical_converter2 as cc import mnist def convert_y(s): if s==b'Iris-setosa': return int(1) elif s==b'Iris-versicolor': return int(2) else: return int(3) def y_to_classification_form(y,n_classes): """ THIS WILL WORK, but the best solurtion is is implemented y_count=len(y) return_y=np.zeros(y_count*n_classes).reshape(y_count,n_classes) for ix,item in enumerate(y): return_y[ix,int(item)-1]=1. return return_y """ return np.eye(n_classes)[y] def fit(x_train,x_test,y_train,y_test): """temp for testing, load data from locafolder """ #data=np.loadtxt("/home/manjunath/iris/iris.csv", comments=None, delimiter=',', usecols=(0,1,2,3,4), converters={4: convert_y }) h=(10,10,10) step_size=0.001 tolerence=0.001 iteration_max=1000 iteration=0 #Regularisation param, added to gradients reg=0.01 K=np.unique(y_train).shape[0] #x=np.loadtxt("/home/manjunath/iris/iris.csv", comments=None, delimiter=',', converters=None, usecols=(0,1,2,3)) """ train_mean=np.mean(x_train,axis=0) x_train=x_train-train_mean #std_x = np.sqrt(np.sum(np.square(x_train - train_mean),axis=0)/x_train.shape[1]) std_x=np.std(x_train,axis=0) x_train=x_train/std_x x_test=x_test - train_mean x_test=x_test/std_x """ y_train=y_to_classification_form(y_train,K) y_test=y_to_classification_form(y_test,K) n_samples,n_features=x_train.shape gamma2=np.random.randn(h[0]).reshape(1,h[0]) beta2=np.random.randn(h[0]).reshape(1,h[0]) gamma3=np.random.randn(h[1]).reshape(1,h[1]) beta3=np.random.randn(h[1]).reshape(1,h[1]) eps=0.001 w1=(np.random.randn(n_features*h[0]).reshape(n_features,h[0]))/np.sqrt(2/(n_features+h[0])) w2=(np.random.randn(h[0]*h[1]).reshape(h[0],h[1]))/np.sqrt(2/(h[0]+h[1])) w3=(np.random.randn(h[1]*h[2]).reshape(h[1],h[2]))/np.sqrt(2/(h[1]+h[2])) dw1_priv=np.zeros(w1.shape) dw2_priv=np.zeros(w2.shape) dw3_priv=np.zeros(w3.shape) #w3=(np.random.randn(h[1]*K).reshape(h[1],K)*0.5)/np.sqrt(2/h[1]+K) #Basically no significance, added bias for completion b1 = np.zeros((1,h[0])) b2 = np.zeros((1,h[1])) b3 = np.zeros((1,K)) while iteration<iteration_max : #Calculate scores scores_layer1=np.dot(x_train,w1)+b1 # 125x4,4x10 = 125x10 #print("iteration",iteration, "first layer",np.any(np.isnan(scores_layer1))) #Do not use sigmoid, you will be stuck in long mess of nans and inf and overflows and div by zeros #x2=1/1+np.exp(-scores_layer1) # 150 x 4 #Use reLU #x2=np.maximum(0,scores_layer1) bn_x2,bn_cache2=bn.batch_norm_forword(scores_layer1,gamma2,beta2) #125x10 #print("iteration",iteration, "first layer BN",np.any(np.isnan(bn_x2))) #x2=relu.relu_forword(bn_x2.T) x2=relu.relu_forword(bn_x2) #125x10 #print("iteration",iteration, "first layer relu",np.any(np.isnan(x2))) score_layer2=np.dot(x2,w2)+b2 #125x10,10x10=125x10 #print("iteration",iteration, "second layer",np.any(np.isnan(score_layer2))) bn_x3,bn_cache3=bn.batch_norm_forword(score_layer2,gamma3,beta3) #125x10 x3=relu.relu_forword(bn_x3) #125x10 final_scores=np.dot(x3,w3)+b3 # 125x10,10x3=125x3 #Again, use softmax or sigmoid loss for classification, MSE or distance is for regression only probs=fn.softmax(final_scores) #125x3 dscores=fn.cross_enropy_grad_singleclass(probs,y_train) # 125x3 #There is possibility of only 1 class for data, so use below, else the implementation will be bit complex #print(x3.shape) dw3=np.dot(x3.T,dscores) # 10x125,125x3=10x3 dx3=np.dot(w3,dscores.T) # 10x3,3x125=10x125 #dhid2=dx3.T #dhid2[x3<=0]=0 dhid2=relu.relu_backword(dx3.T,x3) #125x10 #print("dhid2",dhid2.shape) bn_dhid2,dgamma3,dbeta3=bn.batch_norm_backword(dhid2,bn_cache3) #125x10 #dprod = (x2 * (1- x2)) * dx2.T # this is wrong, find out why, we mostly need to multiply with upstream gradient dw2=np.dot(x2.T,bn_dhid2) # 10x125,125x10=10x10 dx2=np.dot(w2,dhid2.T) #10x10,10x125=10x125 #dhid1=dx2.T #dhid1[x2<=0]=0 dhid1=relu.relu_backword(dx2.T,x2) #125x10 bn_dx2,dgamma2,dbeta2=bn.batch_norm_backword(dhid1,bn_cache2) #125x10 #print(dprod.shape) dw1 = np.dot( x_train.T,bn_dx2) # 125x4,12510=4x10 db1=np.sum(b1,axis=0,keepdims=True) db2=np.sum(b2,axis=0,keepdims=True) db3=np.sum(b3,axis=0,keepdims=True) #Regularisation of gradients #Optimisation #dw1 = (dw1+dw1_priv)/2 #dw2 = (dw2+dw2_priv)/2 #dw3 = (dw3+dw3_priv)/2 dw3 += reg*w3 dw2 += reg*w2 dw1 += reg*w1 w1 = w1 - (step_size * dw1) w2 = w2 - (step_size * dw2) w3 = w3 - (step_size * dw3) #print(dw1) #print(dw2) #print(dw3) #dw1_priv=dw1 #dw2_priv=dw2 #dw3_priv=dw3 """ redundant parameters after batch normalization """ b1 = b1 - (step_size * db1) b2 = b2 - (step_size * db2) b3 = b3 - (step_size * db3) gamma2= gamma2 - (step_size * dgamma2) beta2 = beta2 - (step_size * dbeta2) gamma3= gamma3 - (step_size * dgamma3) beta3 = beta3 - (step_size * dbeta3) if iteration%10 == 0 : #print("****iteration:",iteration) #x_test /= 10 s1=np.dot(x_test,w1) #px2=1/1+np.exp(-s1) bn_x2t,bn_cache2t=bn.batch_norm_forword(s1,gamma2,beta2) px2=relu.relu_forword(bn_x2t) s2=np.dot(px2,w2) bn_x3t,bn_cache3t=bn.batch_norm_forword(s2,gamma3,beta3) px3=relu.relu_forword(bn_x3t) out=np.dot(px3,w3) counter=0 for y_p,y_a in zip(np.argmax(out,axis=1),y_test): if np.argmax(y_a)==y_p: counter +=1 print("accuracy: ", (counter/10000) *100,"%") loss=fn.cross_entropy_loss_singleclass(probs,y_train) # scalar print('Loss',loss/n_samples) dw1_p=np.zeros_like(dw1) dw2_p=np.zeros_like(dw2) dw3_p=np.zeros_like(dw3) print("dw1",dw1==dw1_p) print("dw1",dw2==dw2_p) print("dw1",dw3==dw3_p) dw1_p=dw1 dw2_p=dw2 dw3_p=dw3 #print("gamma2",gamma2) #print("beta2",beta2) iteration=iteration+1 #print('FInal weights are: ', w1,w2) if __name__ == '__main__': """ data=np.genfromtxt("/home/manjunath/Downloads/abalone.data",dtype="str",delimiter=",") data=cc.convert(data,(0,)) data=np.array(data,dtype=np.float16) np.random.seed(14) np.random.shuffle(data) x_train=data[0:3500,0:-1] x_test=data[3500:-1,0:-1] y_train=data[0:3500,-1] y_test=data[3500:-1,-1] del data """ """ data=np.loadtxt("C:\\MLDatabases\\iris\\iris.csv", comments=None, delimiter=',', usecols=(0,1,2,3,4), converters={4: convert_y }) np.random.seed(14) np.random.shuffle(data) x_train=data[0:125,0:-1] x_test=data[125:-1,0:-1] y_train=data[0:125,-1] y_test=data[125:-1,-1] del data """ """ data=np.genfromtxt("C:\\MLDatabases\\iris\\bank-full.csv",dtype="str",delimiter=";") data=np.delete(data,0,0) data=cc.convert(data,(1,2,3,4,6,7,8,10,15,16)) data=np.array(data,dtype=np.float16) data=data[~np.isnan(data).any(axis=1)] data=data[~np.isinf(data).any(axis=1)] print(data.shape) if np.sum(np.isinf(data))>0 or np.sum(np.isnan(data))>0 : print("has invalid values") np.random.seed(14) np.random.shuffle(data) x_train=data[0:40000,0:-1] x_test=data[40000:-1,0:-1] y_train=data[0:40000,-1] y_test=data[40000:-1,-1] del data """ train_images = mnist.train_images() train_labels = mnist.train_labels() test_images = mnist.test_images() test_labels = mnist.test_labels() print("train_images",train_images.shape) print("test_images",test_images.shape) print("test_labels",test_labels.shape) print("train_labels",test_labels.shape) #fit(x_train,x_test,y_train,y_test) fit(train_images.reshape(60000,28*28),test_images.reshape(10000,28*28),train_labels,test_labels)
[ "numpy.sqrt", "relu.relu_backword", "mnist.train_images", "batch_norm.batch_norm_forword", "loss_functions.functions.cross_entropy_loss_singleclass", "loss_functions.functions.cross_enropy_grad_singleclass", "mnist.test_images", "numpy.dot", "numpy.eye", "mnist.test_labels", "numpy.argmax", "numpy.random.randn", "relu.relu_forword", "numpy.unique", "batch_norm.batch_norm_backword", "numpy.sum", "numpy.zeros", "loss_functions.functions.softmax", "mnist.train_labels", "numpy.zeros_like" ]
[((2213, 2231), 'numpy.zeros', 'np.zeros', (['w1.shape'], {}), '(w1.shape)\n', (2221, 2231), True, 'import numpy as np\n'), ((2245, 2263), 'numpy.zeros', 'np.zeros', (['w2.shape'], {}), '(w2.shape)\n', (2253, 2263), True, 'import numpy as np\n'), ((2277, 2295), 'numpy.zeros', 'np.zeros', (['w3.shape'], {}), '(w3.shape)\n', (2285, 2295), True, 'import numpy as np\n'), ((2440, 2459), 'numpy.zeros', 'np.zeros', (['(1, h[0])'], {}), '((1, h[0]))\n', (2448, 2459), True, 'import numpy as np\n'), ((2468, 2487), 'numpy.zeros', 'np.zeros', (['(1, h[1])'], {}), '((1, h[1]))\n', (2476, 2487), True, 'import numpy as np\n'), ((2496, 2512), 'numpy.zeros', 'np.zeros', (['(1, K)'], {}), '((1, K))\n', (2504, 2512), True, 'import numpy as np\n'), ((8838, 8858), 'mnist.train_images', 'mnist.train_images', ([], {}), '()\n', (8856, 8858), False, 'import mnist\n'), ((8878, 8898), 'mnist.train_labels', 'mnist.train_labels', ([], {}), '()\n', (8896, 8898), False, 'import mnist\n'), ((8918, 8937), 'mnist.test_images', 'mnist.test_images', ([], {}), '()\n', (8935, 8937), False, 'import mnist\n'), ((8956, 8975), 'mnist.test_labels', 'mnist.test_labels', ([], {}), '()\n', (8973, 8975), False, 'import mnist\n'), ((696, 713), 'numpy.eye', 'np.eye', (['n_classes'], {}), '(n_classes)\n', (702, 713), True, 'import numpy as np\n'), ((2010, 2042), 'numpy.sqrt', 'np.sqrt', (['(2 / (n_features + h[0]))'], {}), '(2 / (n_features + h[0]))\n', (2017, 2042), True, 'import numpy as np\n'), ((2094, 2120), 'numpy.sqrt', 'np.sqrt', (['(2 / (h[0] + h[1]))'], {}), '(2 / (h[0] + h[1]))\n', (2101, 2120), True, 'import numpy as np\n'), ((2172, 2198), 'numpy.sqrt', 'np.sqrt', (['(2 / (h[1] + h[2]))'], {}), '(2 / (h[1] + h[2]))\n', (2179, 2198), True, 'import numpy as np\n'), ((3008, 3059), 'batch_norm.batch_norm_forword', 'bn.batch_norm_forword', (['scores_layer1', 'gamma2', 'beta2'], {}), '(scores_layer1, gamma2, beta2)\n', (3029, 3059), True, 'import batch_norm as bn\n'), ((3196, 3220), 'relu.relu_forword', 'relu.relu_forword', (['bn_x2'], {}), '(bn_x2)\n', (3213, 3220), True, 'import relu as relu\n'), ((3486, 3536), 'batch_norm.batch_norm_forword', 'bn.batch_norm_forword', (['score_layer2', 'gamma3', 'beta3'], {}), '(score_layer2, gamma3, beta3)\n', (3507, 3536), True, 'import batch_norm as bn\n'), ((3554, 3578), 'relu.relu_forword', 'relu.relu_forword', (['bn_x3'], {}), '(bn_x3)\n', (3571, 3578), True, 'import relu as relu\n'), ((3799, 3823), 'loss_functions.functions.softmax', 'fn.softmax', (['final_scores'], {}), '(final_scores)\n', (3809, 3823), True, 'import loss_functions.functions as fn\n'), ((3875, 3923), 'loss_functions.functions.cross_enropy_grad_singleclass', 'fn.cross_enropy_grad_singleclass', (['probs', 'y_train'], {}), '(probs, y_train)\n', (3907, 3923), True, 'import loss_functions.functions as fn\n'), ((4091, 4112), 'numpy.dot', 'np.dot', (['x3.T', 'dscores'], {}), '(x3.T, dscores)\n', (4097, 4112), True, 'import numpy as np\n'), ((4145, 4166), 'numpy.dot', 'np.dot', (['w3', 'dscores.T'], {}), '(w3, dscores.T)\n', (4151, 4166), True, 'import numpy as np\n'), ((4264, 4293), 'relu.relu_backword', 'relu.relu_backword', (['dx3.T', 'x3'], {}), '(dx3.T, x3)\n', (4282, 4293), True, 'import relu as relu\n'), ((4369, 4409), 'batch_norm.batch_norm_backword', 'bn.batch_norm_backword', (['dhid2', 'bn_cache3'], {}), '(dhid2, bn_cache3)\n', (4391, 4409), True, 'import batch_norm as bn\n'), ((4566, 4588), 'numpy.dot', 'np.dot', (['x2.T', 'bn_dhid2'], {}), '(x2.T, bn_dhid2)\n', (4572, 4588), True, 'import numpy as np\n'), ((4623, 4642), 'numpy.dot', 'np.dot', (['w2', 'dhid2.T'], {}), '(w2, dhid2.T)\n', (4629, 4642), True, 'import numpy as np\n'), ((4741, 4770), 'relu.relu_backword', 'relu.relu_backword', (['dx2.T', 'x2'], {}), '(dx2.T, x2)\n', (4759, 4770), True, 'import relu as relu\n'), ((4817, 4857), 'batch_norm.batch_norm_backword', 'bn.batch_norm_backword', (['dhid1', 'bn_cache2'], {}), '(dhid1, bn_cache2)\n', (4839, 4857), True, 'import batch_norm as bn\n'), ((4917, 4942), 'numpy.dot', 'np.dot', (['x_train.T', 'bn_dx2'], {}), '(x_train.T, bn_dx2)\n', (4923, 4942), True, 'import numpy as np\n'), ((4976, 5009), 'numpy.sum', 'np.sum', (['b1'], {'axis': '(0)', 'keepdims': '(True)'}), '(b1, axis=0, keepdims=True)\n', (4982, 5009), True, 'import numpy as np\n'), ((5028, 5061), 'numpy.sum', 'np.sum', (['b2'], {'axis': '(0)', 'keepdims': '(True)'}), '(b2, axis=0, keepdims=True)\n', (5034, 5061), True, 'import numpy as np\n'), ((5080, 5113), 'numpy.sum', 'np.sum', (['b3'], {'axis': '(0)', 'keepdims': '(True)'}), '(b3, axis=0, keepdims=True)\n', (5086, 5113), True, 'import numpy as np\n'), ((1137, 1155), 'numpy.unique', 'np.unique', (['y_train'], {}), '(y_train)\n', (1146, 1155), True, 'import numpy as np\n'), ((1741, 1762), 'numpy.random.randn', 'np.random.randn', (['h[0]'], {}), '(h[0])\n', (1756, 1762), True, 'import numpy as np\n'), ((1789, 1810), 'numpy.random.randn', 'np.random.randn', (['h[0]'], {}), '(h[0])\n', (1804, 1810), True, 'import numpy as np\n'), ((1838, 1859), 'numpy.random.randn', 'np.random.randn', (['h[1]'], {}), '(h[1])\n', (1853, 1859), True, 'import numpy as np\n'), ((1886, 1907), 'numpy.random.randn', 'np.random.randn', (['h[1]'], {}), '(h[1])\n', (1901, 1907), True, 'import numpy as np\n'), ((2622, 2641), 'numpy.dot', 'np.dot', (['x_train', 'w1'], {}), '(x_train, w1)\n', (2628, 2641), True, 'import numpy as np\n'), ((3338, 3352), 'numpy.dot', 'np.dot', (['x2', 'w2'], {}), '(x2, w2)\n', (3344, 3352), True, 'import numpy as np\n'), ((3618, 3632), 'numpy.dot', 'np.dot', (['x3', 'w3'], {}), '(x3, w3)\n', (3624, 3632), True, 'import numpy as np\n'), ((6206, 6224), 'numpy.dot', 'np.dot', (['x_test', 'w1'], {}), '(x_test, w1)\n', (6212, 6224), True, 'import numpy as np\n'), ((6287, 6327), 'batch_norm.batch_norm_forword', 'bn.batch_norm_forword', (['s1', 'gamma2', 'beta2'], {}), '(s1, gamma2, beta2)\n', (6308, 6327), True, 'import batch_norm as bn\n'), ((6342, 6367), 'relu.relu_forword', 'relu.relu_forword', (['bn_x2t'], {}), '(bn_x2t)\n', (6359, 6367), True, 'import relu as relu\n'), ((6400, 6415), 'numpy.dot', 'np.dot', (['px2', 'w2'], {}), '(px2, w2)\n', (6406, 6415), True, 'import numpy as np\n'), ((6449, 6489), 'batch_norm.batch_norm_forword', 'bn.batch_norm_forword', (['s2', 'gamma3', 'beta3'], {}), '(s2, gamma3, beta3)\n', (6470, 6489), True, 'import batch_norm as bn\n'), ((6504, 6529), 'relu.relu_forword', 'relu.relu_forword', (['bn_x3t'], {}), '(bn_x3t)\n', (6521, 6529), True, 'import relu as relu\n'), ((6559, 6574), 'numpy.dot', 'np.dot', (['px3', 'w3'], {}), '(px3, w3)\n', (6565, 6574), True, 'import numpy as np\n'), ((6818, 6867), 'loss_functions.functions.cross_entropy_loss_singleclass', 'fn.cross_entropy_loss_singleclass', (['probs', 'y_train'], {}), '(probs, y_train)\n', (6851, 6867), True, 'import loss_functions.functions as fn\n'), ((6948, 6966), 'numpy.zeros_like', 'np.zeros_like', (['dw1'], {}), '(dw1)\n', (6961, 6966), True, 'import numpy as np\n'), ((6985, 7003), 'numpy.zeros_like', 'np.zeros_like', (['dw2'], {}), '(dw2)\n', (6998, 7003), True, 'import numpy as np\n'), ((7022, 7040), 'numpy.zeros_like', 'np.zeros_like', (['dw3'], {}), '(dw3)\n', (7035, 7040), True, 'import numpy as np\n'), ((1951, 1985), 'numpy.random.randn', 'np.random.randn', (['(n_features * h[0])'], {}), '(n_features * h[0])\n', (1966, 1985), True, 'import numpy as np\n'), ((2047, 2075), 'numpy.random.randn', 'np.random.randn', (['(h[0] * h[1])'], {}), '(h[0] * h[1])\n', (2062, 2075), True, 'import numpy as np\n'), ((2125, 2153), 'numpy.random.randn', 'np.random.randn', (['(h[1] * h[2])'], {}), '(h[1] * h[2])\n', (2140, 2153), True, 'import numpy as np\n'), ((6640, 6662), 'numpy.argmax', 'np.argmax', (['out'], {'axis': '(1)'}), '(out, axis=1)\n', (6649, 6662), True, 'import numpy as np\n'), ((6690, 6704), 'numpy.argmax', 'np.argmax', (['y_a'], {}), '(y_a)\n', (6699, 6704), True, 'import numpy as np\n')]
""" SharedOne --------- SharedTwo --------- """ from multiprocessing.shared_memory import ShareableList from multiprocessing.managers import SharedMemoryManager from multiprocessing.connection import Client from abc import ABC, abstractmethod import logging from pickletools import optimize import pickle import time import os import psutil from pandas.core.frame import DataFrame from shareable.managers_decorators import Resources logging.basicConfig(format='%(message)s', level=logging.INFO) class AbstractShared(ABC): """Abstraction of shared objects.""" @classmethod def __init_subclass__(cls): required_class_attrs = [ "shm", "shared_obj", "pid", "sent_queue", "rec_queue", "ADDR", "SECRET", ] for attr in required_class_attrs: if not hasattr(cls, attr): raise NotImplementedError(f"{cls} missing required {attr} attr") @abstractmethod def start(self): """ Starts a shared memory instance :return: None """ raise NotImplementedError @abstractmethod def listen(self): """ Starts a listener for a second shared memory instance :return: None """ raise NotImplementedError @abstractmethod def send(self, value): """ Sends a message holding the shared memory process name :param value: shared_memory name :return: None """ raise NotImplementedError @abstractmethod def clean_up(self): """ Cleans up threads and shared memory process on exit :return: None """ raise NotImplementedError class Shared(AbstractShared): """parent shared object""" ADDR = ("localhost", 6000) SECRET = bytes("secret".encode("utf-8")) shm = None shared_obj = None sent_queue = [] rec_queue = [] pid = os.getpid() def start(self): pass def listen(self): """ Starts a listener for a second shared memory instance :return: self """ socket = self.ADDR[1] while True: try: with Resources(self.ADDR, authkey=self.SECRET) as message: counter = 0 while counter == 0: self.rec_queue.append(message) counter = 1 break except OSError: socket += 1 logging.info(f"Socket {(socket - 1)} is in use, trying {socket}") def send(self, value): """ Sends a message holding the shared memory process name. :param value: shared_memory name :return: self """ with Client(self.ADDR, authkey=self.SECRET) as conn: conn.send(value) self.sent_queue.append(value) def clean_up(self): """ Cleans up threads and shared memory process on exit. :return: None """ self.shm.shutdown() logging.info("Destroyed shared resources") process = psutil.Process(self.pid) for i in process.children(recursive=True): p_temp = psutil.Process(i.pid) p_temp.kill() logging.info("Killed all child processes") class SharedOne(Shared): """ Shared object child, starts shared mem process. """ def __init__(self, obj): self.obj = obj self.shareable = self.pickled() self.pid = os.getpid() self.shm = SharedMemoryManager() self.shm.start() self.shared_obj = self.shm.ShareableList([self.pickled()]) def start(self): """ Starts a shared memory instance. :return: None """ if not isinstance(self.obj, DataFrame): self.pop("temp_space") iteration = 0 while iteration == 0: try: self.send(self.shared_obj.shm.name) iteration = 1 except ConnectionRefusedError: time.sleep(5) def pop(self, key): """ Custom pop method to set shared memory obj attrs. :param key: ... :return: None """ temp = pickle.loads(self.shared_obj[-1]) temp.__delattr__(key) self.shared_obj[-1] = optimize(pickle.dumps(temp)) def pickled(self): """ Manually allocate memory, I haven't looked into whether there is support for 'size=num' for shared_memory. :return: object """ temp_space = os.urandom(1000) self.obj.temp_space = temp_space # if not isinstance(dict, self.obj): # self.obj.temp_space = temp_space # else: # self.obj['temp_space'] = temp_space return optimize(pickle.dumps(self.obj)) class SharedTwo(Shared): """ shared object child, listens for shared mem process """ def __init__(self): self.shared_obj = None self.shm = SharedMemoryManager() def start(self): """ Starts a shared memory instance. :return: None """ self.shm.start() self.listen() name = self.rec_queue[0] self.shared_obj = ShareableList(name=name)
[ "logging.basicConfig", "shareable.managers_decorators.Resources", "pickle.dumps", "os.urandom", "psutil.Process", "time.sleep", "multiprocessing.connection.Client", "multiprocessing.managers.SharedMemoryManager", "multiprocessing.shared_memory.ShareableList", "os.getpid", "pickle.loads", "logging.info" ]
[((435, 496), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(message)s"""', 'level': 'logging.INFO'}), "(format='%(message)s', level=logging.INFO)\n", (454, 496), False, 'import logging\n'), ((2029, 2040), 'os.getpid', 'os.getpid', ([], {}), '()\n', (2038, 2040), False, 'import os\n'), ((3201, 3243), 'logging.info', 'logging.info', (['"""Destroyed shared resources"""'], {}), "('Destroyed shared resources')\n", (3213, 3243), False, 'import logging\n'), ((3262, 3286), 'psutil.Process', 'psutil.Process', (['self.pid'], {}), '(self.pid)\n', (3276, 3286), False, 'import psutil\n'), ((3415, 3457), 'logging.info', 'logging.info', (['"""Killed all child processes"""'], {}), "('Killed all child processes')\n", (3427, 3457), False, 'import logging\n'), ((3665, 3676), 'os.getpid', 'os.getpid', ([], {}), '()\n', (3674, 3676), False, 'import os\n'), ((3696, 3717), 'multiprocessing.managers.SharedMemoryManager', 'SharedMemoryManager', ([], {}), '()\n', (3715, 3717), False, 'from multiprocessing.managers import SharedMemoryManager\n'), ((4432, 4465), 'pickle.loads', 'pickle.loads', (['self.shared_obj[-1]'], {}), '(self.shared_obj[-1])\n', (4444, 4465), False, 'import pickle\n'), ((4784, 4800), 'os.urandom', 'os.urandom', (['(1000)'], {}), '(1000)\n', (4794, 4800), False, 'import os\n'), ((5222, 5243), 'multiprocessing.managers.SharedMemoryManager', 'SharedMemoryManager', ([], {}), '()\n', (5241, 5243), False, 'from multiprocessing.managers import SharedMemoryManager\n'), ((5472, 5496), 'multiprocessing.shared_memory.ShareableList', 'ShareableList', ([], {'name': 'name'}), '(name=name)\n', (5485, 5496), False, 'from multiprocessing.shared_memory import ShareableList\n'), ((2905, 2943), 'multiprocessing.connection.Client', 'Client', (['self.ADDR'], {'authkey': 'self.SECRET'}), '(self.ADDR, authkey=self.SECRET)\n', (2911, 2943), False, 'from multiprocessing.connection import Client\n'), ((3359, 3380), 'psutil.Process', 'psutil.Process', (['i.pid'], {}), '(i.pid)\n', (3373, 3380), False, 'import psutil\n'), ((4535, 4553), 'pickle.dumps', 'pickle.dumps', (['temp'], {}), '(temp)\n', (4547, 4553), False, 'import pickle\n'), ((5024, 5046), 'pickle.dumps', 'pickle.dumps', (['self.obj'], {}), '(self.obj)\n', (5036, 5046), False, 'import pickle\n'), ((2307, 2348), 'shareable.managers_decorators.Resources', 'Resources', (['self.ADDR'], {'authkey': 'self.SECRET'}), '(self.ADDR, authkey=self.SECRET)\n', (2316, 2348), False, 'from shareable.managers_decorators import Resources\n'), ((2622, 2685), 'logging.info', 'logging.info', (['f"""Socket {socket - 1} is in use, trying {socket}"""'], {}), "(f'Socket {socket - 1} is in use, trying {socket}')\n", (2634, 2685), False, 'import logging\n'), ((4225, 4238), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (4235, 4238), False, 'import time\n')]
''' Author: Leon-Francis Date: 2021-07-08 21:35:35 Contact: <EMAIL> LastEditTime: 2021-07-09 00:39:40 LastEditors: Leon-Francis Description: encrypt and decrypt FilePath: /Network_Security_Experiment/crypto.py (C)Copyright 2020-2021, Leon-Francis ''' import random from Crypto.Cipher import AES, PKCS1_OAEP from Crypto.PublicKey import RSA from Crypto.Random import get_random_bytes from Crypto.Util.Padding import pad from Crypto.Hash import SHA256 from Crypto.Signature import PKCS1_v1_5 import sys MSG_HEADER_LEN = 10 def get_RSA_keys(): key = RSA.generate(1024) return key.export_key(), key.publickey().export_key() def get_msg_len(msg): msg_len = str(len(msg)) return msg_len.zfill(MSG_HEADER_LEN) def crypto_encode(msg, my_private_key, other_pub_key): with open('AES_key', 'rb') as f: AES_key = f.read() cipher = AES.new(AES_key, AES.MODE_EAX) msg = msg.encode('utf-8') digest = SHA256.new() digest.update(msg) privateKey = RSA.import_key(my_private_key) signer = PKCS1_v1_5.new(privateKey) signature = signer.sign(digest) encrypt_msg = cipher.encrypt(msg + signature) return encrypt_msg, cipher.nonce def crypto_decode(encrypt_msg, private_key, other_pub_key, nonce): with open('AES_key', 'rb') as f: AES_key = f.read() cipher = AES.new(AES_key, AES.MODE_EAX, nonce=nonce) msg_sign = cipher.decrypt(encrypt_msg) msg = msg_sign[:-128] signature = msg_sign[-128:] digest = SHA256.new() digest.update(msg) verifyKey = RSA.import_key(other_pub_key) verifier = PKCS1_v1_5.new(verifyKey) if not verifier.verify(digest, signature): print('message has been modified!') sys.exit() return msg.decode('utf-8') def send_nonce(conn, private_key, client_pub_key, nonce): clientPublicKey = RSA.import_key(client_pub_key) cipher = PKCS1_OAEP.new(clientPublicKey) privateKey = RSA.import_key(private_key) signer = PKCS1_v1_5.new(privateKey) encrypted_key = cipher.encrypt(nonce) conn.send(encrypted_key) digest = SHA256.new() digest.update(nonce) signature = signer.sign(digest) conn.send(signature) def receive_nonce(s, private_key, server_pub_key): AES_crypto_nonce = s.recv(128) privateKey = RSA.import_key(private_key) cipher = PKCS1_OAEP.new(privateKey) AES_crypto_nonce = cipher.decrypt(AES_crypto_nonce) digest = SHA256.new() digest.update(AES_crypto_nonce) signature = s.recv(128) publicKey = RSA.import_key(server_pub_key) signer = PKCS1_v1_5.new(publicKey) if not signer.verify(digest, signature): print('server public key has been modified!') sys.exit() return AES_crypto_nonce
[ "Crypto.Cipher.PKCS1_OAEP.new", "Crypto.PublicKey.RSA.generate", "Crypto.Signature.PKCS1_v1_5.new", "Crypto.Cipher.AES.new", "sys.exit", "Crypto.Hash.SHA256.new", "Crypto.PublicKey.RSA.import_key" ]
[((554, 572), 'Crypto.PublicKey.RSA.generate', 'RSA.generate', (['(1024)'], {}), '(1024)\n', (566, 572), False, 'from Crypto.PublicKey import RSA\n'), ((858, 888), 'Crypto.Cipher.AES.new', 'AES.new', (['AES_key', 'AES.MODE_EAX'], {}), '(AES_key, AES.MODE_EAX)\n', (865, 888), False, 'from Crypto.Cipher import AES, PKCS1_OAEP\n'), ((932, 944), 'Crypto.Hash.SHA256.new', 'SHA256.new', ([], {}), '()\n', (942, 944), False, 'from Crypto.Hash import SHA256\n'), ((985, 1015), 'Crypto.PublicKey.RSA.import_key', 'RSA.import_key', (['my_private_key'], {}), '(my_private_key)\n', (999, 1015), False, 'from Crypto.PublicKey import RSA\n'), ((1029, 1055), 'Crypto.Signature.PKCS1_v1_5.new', 'PKCS1_v1_5.new', (['privateKey'], {}), '(privateKey)\n', (1043, 1055), False, 'from Crypto.Signature import PKCS1_v1_5\n'), ((1325, 1368), 'Crypto.Cipher.AES.new', 'AES.new', (['AES_key', 'AES.MODE_EAX'], {'nonce': 'nonce'}), '(AES_key, AES.MODE_EAX, nonce=nonce)\n', (1332, 1368), False, 'from Crypto.Cipher import AES, PKCS1_OAEP\n'), ((1483, 1495), 'Crypto.Hash.SHA256.new', 'SHA256.new', ([], {}), '()\n', (1493, 1495), False, 'from Crypto.Hash import SHA256\n'), ((1535, 1564), 'Crypto.PublicKey.RSA.import_key', 'RSA.import_key', (['other_pub_key'], {}), '(other_pub_key)\n', (1549, 1564), False, 'from Crypto.PublicKey import RSA\n'), ((1580, 1605), 'Crypto.Signature.PKCS1_v1_5.new', 'PKCS1_v1_5.new', (['verifyKey'], {}), '(verifyKey)\n', (1594, 1605), False, 'from Crypto.Signature import PKCS1_v1_5\n'), ((1830, 1860), 'Crypto.PublicKey.RSA.import_key', 'RSA.import_key', (['client_pub_key'], {}), '(client_pub_key)\n', (1844, 1860), False, 'from Crypto.PublicKey import RSA\n'), ((1874, 1905), 'Crypto.Cipher.PKCS1_OAEP.new', 'PKCS1_OAEP.new', (['clientPublicKey'], {}), '(clientPublicKey)\n', (1888, 1905), False, 'from Crypto.Cipher import AES, PKCS1_OAEP\n'), ((1924, 1951), 'Crypto.PublicKey.RSA.import_key', 'RSA.import_key', (['private_key'], {}), '(private_key)\n', (1938, 1951), False, 'from Crypto.PublicKey import RSA\n'), ((1965, 1991), 'Crypto.Signature.PKCS1_v1_5.new', 'PKCS1_v1_5.new', (['privateKey'], {}), '(privateKey)\n', (1979, 1991), False, 'from Crypto.Signature import PKCS1_v1_5\n'), ((2078, 2090), 'Crypto.Hash.SHA256.new', 'SHA256.new', ([], {}), '()\n', (2088, 2090), False, 'from Crypto.Hash import SHA256\n'), ((2283, 2310), 'Crypto.PublicKey.RSA.import_key', 'RSA.import_key', (['private_key'], {}), '(private_key)\n', (2297, 2310), False, 'from Crypto.PublicKey import RSA\n'), ((2324, 2350), 'Crypto.Cipher.PKCS1_OAEP.new', 'PKCS1_OAEP.new', (['privateKey'], {}), '(privateKey)\n', (2338, 2350), False, 'from Crypto.Cipher import AES, PKCS1_OAEP\n'), ((2421, 2433), 'Crypto.Hash.SHA256.new', 'SHA256.new', ([], {}), '()\n', (2431, 2433), False, 'from Crypto.Hash import SHA256\n'), ((2516, 2546), 'Crypto.PublicKey.RSA.import_key', 'RSA.import_key', (['server_pub_key'], {}), '(server_pub_key)\n', (2530, 2546), False, 'from Crypto.PublicKey import RSA\n'), ((2560, 2585), 'Crypto.Signature.PKCS1_v1_5.new', 'PKCS1_v1_5.new', (['publicKey'], {}), '(publicKey)\n', (2574, 2585), False, 'from Crypto.Signature import PKCS1_v1_5\n'), ((1705, 1715), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1713, 1715), False, 'import sys\n'), ((2693, 2703), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2701, 2703), False, 'import sys\n')]
import io import requests import os import zipfile import json from application import app, db from application.users.model import User from application.datastore.model import Datastore import click from flask_migrate import MigrateCommand from flask.cli import AppGroup extensions = AppGroup('app') @extensions.command() def init_db(): db.drop_all() db.create_all() click.echo('Database has been rebuilt.') def export_storage(): datastore = Datastore.query.all() archive = io.BytesIO() with zipfile.ZipFile(archive, mode='w') as zf: for data in datastore: user = User.query.filter(data.user.id == User.id).first() entry = { 'id': data.key, 'creator': { 'local_id': user.id, 'remote_id': user.remote_id, 'domain': user.domain }, 'revision': data.revision, 'transcription': json.loads(data.get_data()) } zf.writestr('%s.json' % data.key, json.dumps(entry, indent=4)) archive.seek(0) return archive @extensions.command() @click.argument('path') def dump_storage(path): archive = export_storage() with open(path, 'wb') as f_out: f_out.write(archive.getvalue()) @extensions.command() @click.argument('url') def push_storage(url): archive = export_storage() headers = os.environ.get("ATS_PUSH_HEADERS", None) if headers is not None: headers = json.loads(headers) request = requests.post(url, files={'file': archive}, headers=headers) print(request) app.cli.add_command(extensions)
[ "click.argument", "requests.post", "json.loads", "application.app.cli.add_command", "zipfile.ZipFile", "flask.cli.AppGroup", "application.datastore.model.Datastore.query.all", "json.dumps", "io.BytesIO", "os.environ.get", "click.echo", "application.db.drop_all", "application.db.create_all", "application.users.model.User.query.filter" ]
[((288, 303), 'flask.cli.AppGroup', 'AppGroup', (['"""app"""'], {}), "('app')\n", (296, 303), False, 'from flask.cli import AppGroup\n'), ((1213, 1235), 'click.argument', 'click.argument', (['"""path"""'], {}), "('path')\n", (1227, 1235), False, 'import click\n'), ((1392, 1413), 'click.argument', 'click.argument', (['"""url"""'], {}), "('url')\n", (1406, 1413), False, 'import click\n'), ((1687, 1718), 'application.app.cli.add_command', 'app.cli.add_command', (['extensions'], {}), '(extensions)\n', (1706, 1718), False, 'from application import app, db\n'), ((346, 359), 'application.db.drop_all', 'db.drop_all', ([], {}), '()\n', (357, 359), False, 'from application import app, db\n'), ((364, 379), 'application.db.create_all', 'db.create_all', ([], {}), '()\n', (377, 379), False, 'from application import app, db\n'), ((384, 424), 'click.echo', 'click.echo', (['"""Database has been rebuilt."""'], {}), "('Database has been rebuilt.')\n", (394, 424), False, 'import click\n'), ((464, 485), 'application.datastore.model.Datastore.query.all', 'Datastore.query.all', ([], {}), '()\n', (483, 485), False, 'from application.datastore.model import Datastore\n'), ((500, 512), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (510, 512), False, 'import io\n'), ((1482, 1522), 'os.environ.get', 'os.environ.get', (['"""ATS_PUSH_HEADERS"""', 'None'], {}), "('ATS_PUSH_HEADERS', None)\n", (1496, 1522), False, 'import os\n'), ((1604, 1664), 'requests.post', 'requests.post', (['url'], {'files': "{'file': archive}", 'headers': 'headers'}), "(url, files={'file': archive}, headers=headers)\n", (1617, 1664), False, 'import requests\n'), ((523, 557), 'zipfile.ZipFile', 'zipfile.ZipFile', (['archive'], {'mode': '"""w"""'}), "(archive, mode='w')\n", (538, 557), False, 'import zipfile\n'), ((1569, 1588), 'json.loads', 'json.loads', (['headers'], {}), '(headers)\n', (1579, 1588), False, 'import json\n'), ((1120, 1147), 'json.dumps', 'json.dumps', (['entry'], {'indent': '(4)'}), '(entry, indent=4)\n', (1130, 1147), False, 'import json\n'), ((615, 657), 'application.users.model.User.query.filter', 'User.query.filter', (['(data.user.id == User.id)'], {}), '(data.user.id == User.id)\n', (632, 657), False, 'from application.users.model import User\n')]
import urllib2, bs4 import unicodecsv as csv url = 'https://www.nytimes.com/' page = urllib2.urlopen(url) soup = bs4.BeautifulSoup(page, features="html.parser") out = open('nytimes.csv', 'wb') writer = csv.writer(out) h2s = soup.find_all('h2') for h2 in h2s: title = h2.text links = h2.find_parents('a') if len(links) == 0: continue href = "https://www.nytimes.com%s" % links[0]['href'] print(title) print(href) writer.writerow([href, title]) out.close()
[ "bs4.BeautifulSoup", "urllib2.urlopen", "unicodecsv.writer" ]
[((86, 106), 'urllib2.urlopen', 'urllib2.urlopen', (['url'], {}), '(url)\n', (101, 106), False, 'import urllib2, bs4\n'), ((114, 161), 'bs4.BeautifulSoup', 'bs4.BeautifulSoup', (['page'], {'features': '"""html.parser"""'}), "(page, features='html.parser')\n", (131, 161), False, 'import urllib2, bs4\n'), ((204, 219), 'unicodecsv.writer', 'csv.writer', (['out'], {}), '(out)\n', (214, 219), True, 'import unicodecsv as csv\n')]
from torch import nn import torch from torch.optim.adam import Adam from torch.distributions.categorical import Categorical import numpy as np from .rl_algo import Rl_algo __all__ = ['SimplestPolicyGradient'] class SimplestPolicyGradient(Rl_algo): def __init__(self, env, hidden_layers, discret_actions=True, discret_spaces=True, activation=nn.Tanh, out_activation=nn.Identity, lr = 0.01, dis = 0.98, batchsize = 5000): super(SimplestPolicyGradient, self).__init__(env, discret_actions, discret_spaces, dis, lr) self.hidden_layers = hidden_layers self.model = self._mlp(self.obs_dim, self.hidden_layers, self.act_dim, activation, out_activation) self.optimizer = Adam(self.model.parameters(), lr=lr) self.batchsize = batchsize def _mlp(self, inputs, hidden_layers, outputs, activation=nn.Tanh, out_activation=nn.Identity): sizes = [inputs]+hidden_layers+[outputs] layers = [] for j in range(len(sizes)-1): layers += [nn.Linear(sizes[j], sizes[j+1]), activation() if j < len(sizes)-2 else out_activation()] return nn.Sequential(*layers) def _policy(self, obs): output = self.model(obs) return Categorical(logits=output) def action(self, obs): return self._policy(obs).sample().item() def loss(self, obs, act, weights): logp = self._policy(obs).log_prob(act) return (-(logp * weights)).mean() def render(self, aff=False): if aff: self.env.render() def train_one_epoch(self): obs = self.env.reset() batch_obs = [] batch_act = [] batch_weights = [] ep_rewards = [] batch_returns = [] batch_lengths = [] # Forward while True: # Rendu self.render() # Choisir l'action action = self.action(torch.as_tensor(obs, dtype=torch.float32)) # Recevoir la nouvelle observation et le résultat new_obs, reward, done, _ = self.env.step(action) # Remplir les batch batch_obs.append(obs.copy()) batch_act.append(action) ep_rewards.append(reward) obs = new_obs # end episode if done: ret = sum(ep_rewards) length = len(ep_rewards) batch_returns.append(ret) batch_lengths.append(length) batch_weights += [ret] * length # reset obs = self.env.reset() done = False ep_rewards = [] if len(batch_obs) > self.batchsize: break # Backward self.optimizer.zero_grad() loss = self.loss( torch.as_tensor(batch_obs, dtype=torch.float32), torch.as_tensor(batch_act, dtype=torch.float32), torch.as_tensor(batch_weights, dtype=torch.float32)) loss.backward() self.optimizer.step() return loss, batch_returns, batch_lengths def _train(self, n_epochs): ok = 0 for i in range(n_epochs): loss, ret, lens = self.train_one_epoch() print(f"{i}/{n_epochs} | Loss:{loss}, returns:{np.mean(ret)}, lengths:{np.mean(lens)}") if np.mean(ret) == 500.0: ok += 1 else: ok = 0 if ok == 5: break def test_one(self): done = False obs = self.env.reset() while not done: self.env.render() action = self.action(torch.as_tensor(obs, dtype=torch.float32)) # Recevoir la nouvelle observation et le résultat obs, reward, done, _ = self.env.step(action) def load_model(self, file_path): self.model.load_state_dict(torch.load(file_path)) def save_model(self, file_path): torch.save(self.model.state_dict(), file_path) print("Modele sauvegardé :", file_path)
[ "numpy.mean", "torch.as_tensor", "torch.nn.Sequential", "torch.load", "torch.nn.Linear", "torch.distributions.categorical.Categorical" ]
[((1215, 1237), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (1228, 1237), False, 'from torch import nn\n'), ((1319, 1345), 'torch.distributions.categorical.Categorical', 'Categorical', ([], {'logits': 'output'}), '(logits=output)\n', (1330, 1345), False, 'from torch.distributions.categorical import Categorical\n'), ((3041, 3088), 'torch.as_tensor', 'torch.as_tensor', (['batch_obs'], {'dtype': 'torch.float32'}), '(batch_obs, dtype=torch.float32)\n', (3056, 3088), False, 'import torch\n'), ((3118, 3165), 'torch.as_tensor', 'torch.as_tensor', (['batch_act'], {'dtype': 'torch.float32'}), '(batch_act, dtype=torch.float32)\n', (3133, 3165), False, 'import torch\n'), ((3195, 3246), 'torch.as_tensor', 'torch.as_tensor', (['batch_weights'], {'dtype': 'torch.float32'}), '(batch_weights, dtype=torch.float32)\n', (3210, 3246), False, 'import torch\n'), ((4172, 4193), 'torch.load', 'torch.load', (['file_path'], {}), '(file_path)\n', (4182, 4193), False, 'import torch\n'), ((1111, 1144), 'torch.nn.Linear', 'nn.Linear', (['sizes[j]', 'sizes[j + 1]'], {}), '(sizes[j], sizes[j + 1])\n', (1120, 1144), False, 'from torch import nn\n'), ((2055, 2096), 'torch.as_tensor', 'torch.as_tensor', (['obs'], {'dtype': 'torch.float32'}), '(obs, dtype=torch.float32)\n', (2070, 2096), False, 'import torch\n'), ((3615, 3627), 'numpy.mean', 'np.mean', (['ret'], {}), '(ret)\n', (3622, 3627), True, 'import numpy as np\n'), ((3925, 3966), 'torch.as_tensor', 'torch.as_tensor', (['obs'], {'dtype': 'torch.float32'}), '(obs, dtype=torch.float32)\n', (3940, 3966), False, 'import torch\n'), ((3559, 3571), 'numpy.mean', 'np.mean', (['ret'], {}), '(ret)\n', (3566, 3571), True, 'import numpy as np\n'), ((3583, 3596), 'numpy.mean', 'np.mean', (['lens'], {}), '(lens)\n', (3590, 3596), True, 'import numpy as np\n')]
import pytest pytestmark = [ pytest.mark.django_db, pytest.mark.usefixtures('purchase'), ] @pytest.fixture def another_answer(another_answer, answer, even_another_user): another_answer.parent = answer another_answer.author = even_another_user another_answer.save() return another_answer @pytest.fixture def child_of_another_answer(mixer, question, another_answer, another_user, api): return mixer.blend( 'homework.Answer', question=question, author=another_user, parent=another_answer, ) @pytest.fixture def even_another_user(mixer): return mixer.blend('users.User') def test_no_descendants_by_default(api, answer): got = api.get(f'/api/v2/homework/answers/{answer.slug}/') assert got['descendants'] == [] def test_child_answers(api, answer, another_answer): got = api.get(f'/api/v2/homework/answers/{answer.slug}/') assert got['descendants'][0]['slug'] == str(another_answer.slug) assert got['descendants'][0]['author']['first_name'] == another_answer.author.first_name assert got['descendants'][0]['author']['last_name'] == another_answer.author.last_name def test_multilevel_child_answers(api, answer, another_answer, child_of_another_answer): child_of_another_answer.author = api.user # make child_of_another_answer accessible child_of_another_answer.save() got = api.get(f'/api/v2/homework/answers/{answer.slug}/') assert got['descendants'][0]['slug'] == str(another_answer.slug) assert got['descendants'][0]['descendants'][0]['slug'] == str(child_of_another_answer.slug) assert got['descendants'][0]['descendants'][0]['descendants'] == [] @pytest.mark.usefixtures('child_of_another_answer') def test_only_immediate_siblings_are_included(api, answer): got = api.get(f'/api/v2/homework/answers/{answer.slug}/') assert len(got['descendants']) == 1
[ "pytest.mark.usefixtures" ]
[((1683, 1733), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""child_of_another_answer"""'], {}), "('child_of_another_answer')\n", (1706, 1733), False, 'import pytest\n'), ((61, 96), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""purchase"""'], {}), "('purchase')\n", (84, 96), False, 'import pytest\n')]
# _*_ coding:UTF-8 _*_ ''' 使用requests得到POST后的使用BeautifulSoup 来解析并得到解密后的信息 最好加上请求头 Cookie(?) ''' import re import requests # 注意 requests中post的数据必须是原本的数据 #不能被urlencode过 (来自被坑了的作者的忠告) from bs4 import BeautifulSoup class md5_online_crack(object): def __init__(self,md5): self.md5 = md5 def dmd5_online(self): data = {'_VIEWRESOURSE':'c4c92e61011684fc23405bfd5ebc2b31','result':'c1fa08ee052e00e5b8e7527f9211d9c0453bc6f335a6181f2f58c7816f79278e75b69a1b7b15134cf0c8e85babf20959a886cf755794b796d9313ae57cbe48d6ac8eb7d2b168fff553584bff499fd06bd9dd0dbef033481c9a0609c9208ac7fe5449d50bd300580c2f85ed40a13f7b7cb52544a8a54f53c0cd6d65abf92be35e087578f55212be438fd6c238acaafbce81ef24d38e688395'} data['md5'] = self.md5 r = requests.post('http://www.dmd5.com/md5-decrypter.jsp', data=data) bsOBJ = BeautifulSoup(r.text,'html.parser') nameList = bsOBJ.findAll('p') for i in nameList: m = re.search('解密结果:[0-9]*',str(i)) if m: print(m.group(0)) def pmd5_online(self): # 除了key以外要post的数据 data = {'__VIEWSTATE':'/wEPDwUKMTM4NTE3OTkzOWRkP4hmXYtPPhcBjbupZdLOLfmeTK4=','__VIEWSTATEGENERATOR':'CA0B0334','__EVENTVALIDATION':'/wEWAwK75ZuyDwLigPTXCQKU9f3vAheUenitfEuJ6eGUVe2GyFzb7HKC','jiemi':'MD5解密'} data['key'] = self.md5 r = requests.post('http://pmd5.com/#',data=data) bsOBJ = BeautifulSoup(r.text,'html.parser') nameList = bsOBJ.findAll('em') i = str(nameList[1]) print(i[4:-5]) def test(): a = md5_online_crack('887BF855FE35AFA4598232AC82880463') a.dmd5_online() a.pmd5_online() if __name__ == '__main__': test()
[ "bs4.BeautifulSoup", "requests.post" ]
[((757, 822), 'requests.post', 'requests.post', (['"""http://www.dmd5.com/md5-decrypter.jsp"""'], {'data': 'data'}), "('http://www.dmd5.com/md5-decrypter.jsp', data=data)\n", (770, 822), False, 'import requests\n'), ((839, 875), 'bs4.BeautifulSoup', 'BeautifulSoup', (['r.text', '"""html.parser"""'], {}), "(r.text, 'html.parser')\n", (852, 875), False, 'from bs4 import BeautifulSoup\n'), ((1352, 1397), 'requests.post', 'requests.post', (['"""http://pmd5.com/#"""'], {'data': 'data'}), "('http://pmd5.com/#', data=data)\n", (1365, 1397), False, 'import requests\n'), ((1413, 1449), 'bs4.BeautifulSoup', 'BeautifulSoup', (['r.text', '"""html.parser"""'], {}), "(r.text, 'html.parser')\n", (1426, 1449), False, 'from bs4 import BeautifulSoup\n')]
# -*- coding: utf-8 -*- # Import all lib from numpy import* # Imports just a specific part of the lib and names it from numpy import random as rr # Imports the lib only in function import numpy as np np.random.rand(1)
[ "numpy.random.rand" ]
[((207, 224), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (221, 224), True, 'import numpy as np\n')]
import uuid from pyvultr.base_api import SupportHttpMethod from pyvultr.v2 import UserInfo from tests.v2 import BaseTestV2 class TestUser(BaseTestV2): def test_list(self): """Test list users.""" with self._get("response/users") as mock: _excepted_result = mock.python_body["users"][0] excepted_result = UserInfo.from_dict(_excepted_result) _real_result = self.api_v2.user.list(capacity=1) real_result: UserInfo = _real_result.first() self.assertEqual(mock.url, "https://api.vultr.com/v2/users") self.assertEqual(mock.method, SupportHttpMethod.GET.value) self.assertEqual(real_result, excepted_result) def test_create(self): """Test create user.""" with self._post("response/user", expected_returned=UserInfo, status_code=201) as mock: excepted_result = mock.python_body name = "test_name" email = "<EMAIL>" password = "<PASSWORD>" # nosec: <PASSWORD>(hardcoded_password_string) by bandit real_result: UserInfo = self.api_v2.user.create(name=name, email=email, password=password) self.assertEqual(mock.url, "https://api.vultr.com/v2/users") self.assertEqual(mock.method, SupportHttpMethod.POST.value) self.assertEqual(mock.req_json["name"], name) self.assertEqual(mock.req_json["email"], email) self.assertEqual(mock.req_json["password"], password) self.assertEqual(mock.status_code, 201) self.assertEqual(real_result, excepted_result) def test_get(self): """Test get user.""" with self._get("response/user", expected_returned=UserInfo) as mock: excepted_result = mock.python_body user_id = str(uuid.uuid4()) real_result: UserInfo = self.api_v2.user.get(user_id=user_id) self.assertEqual(mock.url, f"https://api.vultr.com/v2/users/{user_id}") self.assertEqual(mock.method, SupportHttpMethod.GET.value) self.assertEqual(real_result, excepted_result) def test_update(self): """Test update user.""" with self._patch(status_code=204) as mock: user_id = str(uuid.uuid4()) password = "<PASSWORD>" # nosec: false B105(hardcoded_password_string) by bandit real_result: UserInfo = self.api_v2.user.update(user_id, password=password) self.assertEqual(mock.url, f"https://api.vultr.com/v2/users/{user_id}") self.assertEqual(mock.method, SupportHttpMethod.PATCH.value) self.assertEqual(mock.req_json["password"], password) self.assertEqual(mock.status_code, 204) self.assertIsNone(real_result) def test_delete(self): """Test delete user.""" with self._delete(status_code=204) as mock: user_id = str(uuid.uuid4()) self.api_v2.user.delete(user_id=user_id) self.assertEqual(mock.url, f"https://api.vultr.com/v2/users/{user_id}") self.assertEqual(mock.method, SupportHttpMethod.DELETE.value) self.assertEqual(mock.status_code, 204)
[ "pyvultr.v2.UserInfo.from_dict", "uuid.uuid4" ]
[((350, 386), 'pyvultr.v2.UserInfo.from_dict', 'UserInfo.from_dict', (['_excepted_result'], {}), '(_excepted_result)\n', (368, 386), False, 'from pyvultr.v2 import UserInfo\n'), ((1817, 1829), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1827, 1829), False, 'import uuid\n'), ((2257, 2269), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (2267, 2269), False, 'import uuid\n'), ((2910, 2922), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (2920, 2922), False, 'import uuid\n')]
import pyautogui import time import os import sys from Content.Back_End.Objects.WorkerSignals import WorkerSignals from PyQt5.QtCore import QThread,QEventLoop,QTimer class JobProcessor(QThread): def __init__(self, joblist,language, parent=None): super(JobProcessor, self).__init__() self.joblist = joblist self.parent = parent self.language = language print("Parent !", self.parent.parent()) self.signals = WorkerSignals() self.searchBar = None def resource_path(self,relative_path): """ Get the absolute path to the resource, works for dev and for PyInstaller """ try: # PyInstaller creates a temp folder and stores path in _MEIPASS base_path = sys._MEIPASS except Exception: base_path = os.path.abspath(".\\Visual_Ressources\\"+self.language+"\\") # "." # 'Content\\Back_End\\' return os.path.join(base_path, relative_path) def pyqtsleep(self,time): loop = QEventLoop() QTimer.singleShot(time*1000, loop.exit) loop.exec_() def slowClick(self, lapse): pyautogui.mouseDown() self.pyqtsleep(lapse) pyautogui.mouseUp() def doubleClick(self): pyautogui.mouseDown() pyautogui.mouseUp() pyautogui.mouseDown() pyautogui.mouseUp() def changeCurrentJobSpecs(self, job): self.currentOufit = job.outfit self.currentItem = job.item self.currentQuantity = int(job.quantity) self.currentMacro = job.macro self.currentTimeStop = int(job.timeStop) def testVisualCues(self): self.fabricationButton = pyautogui.locateOnScreen(self.resource_path( 'fabricate.PNG'), confidence=0.9) self.outfitButton = pyautogui.locateOnScreen(self.resource_path( 'outfit.PNG'), confidence=0.9) self.searchBar = pyautogui.locateOnScreen(self.resource_path( 'search.PNG'), confidence=0.9) print(self.fabricationButton) print(self.outfitButton) print(self.searchBar) def notifityCraft(self,i): self.signals.changeText.emit(str(self.currentItem) + " Crafted :" +str(i)+"/"+str(self.currentQuantity)) def AddLabel(self): self.signals.addLabel.emit("New job") def equipOutfit(self): pyautogui.press("p") self.pyqtsleep(1) self.outfitButton = pyautogui.locateOnScreen(self.resource_path( 'outfit.PNG'), confidence=0.9) pyautogui.click(pyautogui.center(self.outfitButton)) self.slowClick(0.4) self.pyqtsleep(1) self.currentOutfitPlace = pyautogui.locateOnScreen(self.resource_path( 'outfit_' + str(self.currentOufit) + '.PNG'), confidence=0.8) pyautogui.click(self.currentOutfitPlace) self.doubleClick() self.pyqtsleep(1) pyautogui.press("p") def repairOutfit(self): pyautogui.press("p") self.pyqtsleep(1) self.outfitButton = pyautogui.locateOnScreen(self.resource_path( 'outfit.PNG'), confidence=0.9) self.pyqtsleep(0.5) pyautogui.rightClick(x=self.outfitButton[0]-10,y=self.outfitButton[1]+50) self.pyqtsleep(1) self.repairButton = pyautogui.locateOnScreen(self.resource_path( 'repair.PNG'), confidence=0.9) pyautogui.moveTo(pyautogui.center(self.repairButton)) self.slowClick(0.4) self.pyqtsleep(1) pyautogui.press("p") self.pyqtsleep(1) self.repairAllButton = pyautogui.locateOnScreen(self.resource_path( 'repair_all.PNG'), confidence=0.8) pyautogui.moveTo(pyautogui.center(self.repairAllButton)) self.slowClick(0.4) self.pyqtsleep(1) def cleanSearchbar(self): pyautogui.press("n") pyautogui.click(10, 10) def searchItem(self): pyautogui.press("n") self.pyqtsleep(1) if self.searchBar == None: self.searchBar = pyautogui.center( pyautogui.locateOnScreen(self.resource_path('search.PNG'), confidence=0.9)) pyautogui.click(self.searchBar) pyautogui.write(self.currentItem) pyautogui.press("enter") self.pyqtsleep(2) pyautogui.click(pyautogui.center( pyautogui.locateOnScreen(self.resource_path('item_found_color.PNG'), confidence=0.9))) def adjustMaterialsQuality(self, job): self.pyqtsleep(0.5) highQualityLabelPlace = pyautogui.locateOnScreen(self.resource_path( 'HQ.PNG'), confidence=0.9) self.pyqtsleep(0.5) highQualityItemButtonsList = list(pyautogui.locateAllOnScreen(self.resource_path( 'quality_button.PNG'), confidence=0.9, region=(highQualityLabelPlace[0], highQualityLabelPlace[1], 30, 2000))) for key, value in job.highQuality.items(): for i in range(0, value): pyautogui.moveTo(pyautogui.center( highQualityItemButtonsList[key])) self.slowClick(0.2) def fabricate(self): self.fabricationButton = pyautogui.center( pyautogui.locateOnScreen(self.resource_path('fabricate.PNG'), confidence=0.9)) pyautogui.click(self.fabricationButton) pyautogui.click(self.fabricationButton) self.pyqtsleep(3) pyautogui.keyDown(self.currentMacro[0]) self.pyqtsleep(0.1) pyautogui.keyDown(self.currentMacro[1]) self.pyqtsleep(0.1) pyautogui.keyUp(self.currentMacro[0]) pyautogui.keyUp(self.currentMacro[1]) self.pyqtsleep(self.currentTimeStop) def testActivityFeed(self): self.AddLabel() self.currentItem = "madrier" self.currentQuantity = 10 for i in range(0,11): self.notifityCraft(i) self.pyqtsleep(0.2) self.AddLabel() self.currentItem = "lingot" self.currentQuantity = 20 for i in range(0,21): self.notifityCraft(i) self.pyqtsleep(0.2) def doJobs(self): for job in self.joblist: if job.item == "repair": print("repair") self.repairOutfit() else: self.AddLabel() self.changeCurrentJobSpecs(job) self.equipOutfit() self.searchItem() self.adjustMaterialsQuality(job) for i in range(0, self.currentQuantity): self.fabricate() self.notifityCraft(i) self.cleanSearchbar() print("All jobs done !!!") def run(self): print("FFXIV Craft Manager : Online") self.signals.addLabel.emit("---- Craft Begin ----") self.pyqtsleep(5) self.doJobs() self.signals.addLabel.emit("---- Craft Ended ----")
[ "pyautogui.write", "pyautogui.press", "pyautogui.rightClick", "PyQt5.QtCore.QTimer.singleShot", "Content.Back_End.Objects.WorkerSignals.WorkerSignals", "pyautogui.mouseUp", "os.path.join", "pyautogui.keyDown", "pyautogui.mouseDown", "pyautogui.click", "pyautogui.center", "pyautogui.keyUp", "os.path.abspath", "PyQt5.QtCore.QEventLoop" ]
[((461, 476), 'Content.Back_End.Objects.WorkerSignals.WorkerSignals', 'WorkerSignals', ([], {}), '()\n', (474, 476), False, 'from Content.Back_End.Objects.WorkerSignals import WorkerSignals\n'), ((947, 985), 'os.path.join', 'os.path.join', (['base_path', 'relative_path'], {}), '(base_path, relative_path)\n', (959, 985), False, 'import os\n'), ((1032, 1044), 'PyQt5.QtCore.QEventLoop', 'QEventLoop', ([], {}), '()\n', (1042, 1044), False, 'from PyQt5.QtCore import QThread, QEventLoop, QTimer\n'), ((1053, 1094), 'PyQt5.QtCore.QTimer.singleShot', 'QTimer.singleShot', (['(time * 1000)', 'loop.exit'], {}), '(time * 1000, loop.exit)\n', (1070, 1094), False, 'from PyQt5.QtCore import QThread, QEventLoop, QTimer\n'), ((1159, 1180), 'pyautogui.mouseDown', 'pyautogui.mouseDown', ([], {}), '()\n', (1178, 1180), False, 'import pyautogui\n'), ((1219, 1238), 'pyautogui.mouseUp', 'pyautogui.mouseUp', ([], {}), '()\n', (1236, 1238), False, 'import pyautogui\n'), ((1275, 1296), 'pyautogui.mouseDown', 'pyautogui.mouseDown', ([], {}), '()\n', (1294, 1296), False, 'import pyautogui\n'), ((1305, 1324), 'pyautogui.mouseUp', 'pyautogui.mouseUp', ([], {}), '()\n', (1322, 1324), False, 'import pyautogui\n'), ((1333, 1354), 'pyautogui.mouseDown', 'pyautogui.mouseDown', ([], {}), '()\n', (1352, 1354), False, 'import pyautogui\n'), ((1363, 1382), 'pyautogui.mouseUp', 'pyautogui.mouseUp', ([], {}), '()\n', (1380, 1382), False, 'import pyautogui\n'), ((2381, 2401), 'pyautogui.press', 'pyautogui.press', (['"""p"""'], {}), "('p')\n", (2396, 2401), False, 'import pyautogui\n'), ((2820, 2860), 'pyautogui.click', 'pyautogui.click', (['self.currentOutfitPlace'], {}), '(self.currentOutfitPlace)\n', (2835, 2860), False, 'import pyautogui\n'), ((2922, 2942), 'pyautogui.press', 'pyautogui.press', (['"""p"""'], {}), "('p')\n", (2937, 2942), False, 'import pyautogui\n'), ((2980, 3000), 'pyautogui.press', 'pyautogui.press', (['"""p"""'], {}), "('p')\n", (2995, 3000), False, 'import pyautogui\n'), ((3188, 3266), 'pyautogui.rightClick', 'pyautogui.rightClick', ([], {'x': '(self.outfitButton[0] - 10)', 'y': '(self.outfitButton[1] + 50)'}), '(x=self.outfitButton[0] - 10, y=self.outfitButton[1] + 50)\n', (3208, 3266), False, 'import pyautogui\n'), ((3528, 3548), 'pyautogui.press', 'pyautogui.press', (['"""p"""'], {}), "('p')\n", (3543, 3548), False, 'import pyautogui\n'), ((3856, 3876), 'pyautogui.press', 'pyautogui.press', (['"""n"""'], {}), "('n')\n", (3871, 3876), False, 'import pyautogui\n'), ((3886, 3909), 'pyautogui.click', 'pyautogui.click', (['(10)', '(10)'], {}), '(10, 10)\n', (3901, 3909), False, 'import pyautogui\n'), ((3945, 3965), 'pyautogui.press', 'pyautogui.press', (['"""n"""'], {}), "('n')\n", (3960, 3965), False, 'import pyautogui\n'), ((4174, 4205), 'pyautogui.click', 'pyautogui.click', (['self.searchBar'], {}), '(self.searchBar)\n', (4189, 4205), False, 'import pyautogui\n'), ((4214, 4247), 'pyautogui.write', 'pyautogui.write', (['self.currentItem'], {}), '(self.currentItem)\n', (4229, 4247), False, 'import pyautogui\n'), ((4256, 4280), 'pyautogui.press', 'pyautogui.press', (['"""enter"""'], {}), "('enter')\n", (4271, 4280), False, 'import pyautogui\n'), ((5284, 5323), 'pyautogui.click', 'pyautogui.click', (['self.fabricationButton'], {}), '(self.fabricationButton)\n', (5299, 5323), False, 'import pyautogui\n'), ((5332, 5371), 'pyautogui.click', 'pyautogui.click', (['self.fabricationButton'], {}), '(self.fabricationButton)\n', (5347, 5371), False, 'import pyautogui\n'), ((5406, 5445), 'pyautogui.keyDown', 'pyautogui.keyDown', (['self.currentMacro[0]'], {}), '(self.currentMacro[0])\n', (5423, 5445), False, 'import pyautogui\n'), ((5482, 5521), 'pyautogui.keyDown', 'pyautogui.keyDown', (['self.currentMacro[1]'], {}), '(self.currentMacro[1])\n', (5499, 5521), False, 'import pyautogui\n'), ((5558, 5595), 'pyautogui.keyUp', 'pyautogui.keyUp', (['self.currentMacro[0]'], {}), '(self.currentMacro[0])\n', (5573, 5595), False, 'import pyautogui\n'), ((5604, 5641), 'pyautogui.keyUp', 'pyautogui.keyUp', (['self.currentMacro[1]'], {}), '(self.currentMacro[1])\n', (5619, 5641), False, 'import pyautogui\n'), ((2568, 2603), 'pyautogui.center', 'pyautogui.center', (['self.outfitButton'], {}), '(self.outfitButton)\n', (2584, 2603), False, 'import pyautogui\n'), ((3429, 3464), 'pyautogui.center', 'pyautogui.center', (['self.repairButton'], {}), '(self.repairButton)\n', (3445, 3464), False, 'import pyautogui\n'), ((3723, 3761), 'pyautogui.center', 'pyautogui.center', (['self.repairAllButton'], {}), '(self.repairAllButton)\n', (3739, 3761), False, 'import pyautogui\n'), ((816, 880), 'os.path.abspath', 'os.path.abspath', (["('.\\\\Visual_Ressources\\\\' + self.language + '\\\\')"], {}), "('.\\\\Visual_Ressources\\\\' + self.language + '\\\\')\n", (831, 880), False, 'import os\n'), ((5000, 5049), 'pyautogui.center', 'pyautogui.center', (['highQualityItemButtonsList[key]'], {}), '(highQualityItemButtonsList[key])\n', (5016, 5049), False, 'import pyautogui\n')]
# On this example we are going to increment a counter on each # page load. On normal conditions the session wouldn't expire # until the user closed the browser, so the counter will never # get reset to 0, but we are going to set a timeout for the # session, so after that time passes, the counter will be 0 import os # We'll use timedelta for the time related operations from datetime import timedelta # We need the session object to be able to store session variables # and we'll render an html template, so we also need render_template from flask import Flask, session, render_template app = Flask(__name__) # Generate a secret random key for the session app.secret_key = os.urandom(24) # Set the timeout for our session to 10 seconds # The session will be lost after 10 seconds with no interaction # form the user. # +INFO: http://flask.pocoo.org/docs/api/#flask.Flask.permanent_session_lifetime app.permanent_session_lifetime = timedelta(seconds=10) # Define a route for the webserver @app.route('/') def index(): # For the timeout/session lifetime config to work we need # to make the sessions permanent. It's false by default # +INFO: http://flask.pocoo.org/docs/api/#flask.session.permanent session.permanent = True # On each page load we are going to increment a counter # stored on the session data. try: session['counter'] += 1 except KeyError: session['counter'] = 1 return "Number of reloads on the current session: %d" % session['counter'] if __name__ == '__main__': app.run( host="0.0.0.0", port=int("80") )
[ "os.urandom", "datetime.timedelta", "flask.Flask" ]
[((595, 610), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (600, 610), False, 'from flask import Flask, session, render_template\n'), ((676, 690), 'os.urandom', 'os.urandom', (['(24)'], {}), '(24)\n', (686, 690), False, 'import os\n'), ((934, 955), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(10)'}), '(seconds=10)\n', (943, 955), False, 'from datetime import timedelta\n')]
from setuptools import setup setup( name='cdios', version='1.0.0', description='A minimal C frontend to Diospyros', author='<NAME>', author_email='<EMAIL>', url='https://github.com/cucapra/diospyros', license='MIT', platforms='ALL', install_requires=['click'], py_modules=['cdios'], entry_points={ 'console_scripts': [ 'cdios = cdios:cdios', ], }, classifiers=[ 'Environment :: Console', 'Programming Language :: Python :: 3', ], )
[ "setuptools.setup" ]
[((30, 443), 'setuptools.setup', 'setup', ([], {'name': '"""cdios"""', 'version': '"""1.0.0"""', 'description': '"""A minimal C frontend to Diospyros"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'url': '"""https://github.com/cucapra/diospyros"""', 'license': '"""MIT"""', 'platforms': '"""ALL"""', 'install_requires': "['click']", 'py_modules': "['cdios']", 'entry_points': "{'console_scripts': ['cdios = cdios:cdios']}", 'classifiers': "['Environment :: Console', 'Programming Language :: Python :: 3']"}), "(name='cdios', version='1.0.0', description=\n 'A minimal C frontend to Diospyros', author='<NAME>', author_email=\n '<EMAIL>', url='https://github.com/cucapra/diospyros', license='MIT',\n platforms='ALL', install_requires=['click'], py_modules=['cdios'],\n entry_points={'console_scripts': ['cdios = cdios:cdios']}, classifiers=\n ['Environment :: Console', 'Programming Language :: Python :: 3'])\n", (35, 443), False, 'from setuptools import setup\n')]
import hashlib import html import json from bson.objectid import ObjectId from flask import ( render_template, redirect, url_for, jsonify, request, Response ) from ..utils.helpers import now_time, paranoid_clean from flask import current_app as app from flask_login import login_required, current_user from google_alerts import GoogleAlerts from . import core from .. import mongo, celery, logger from .forms import MonitorForm @core.route('/monitors/add-monitor', methods=['POST']) @login_required def add_monitor(): """Render the index page.""" form = MonitorForm(request.form) if not form.validate(): errors = ','.join([value[0] for value in form.errors.values()]) return jsonify({'errors': errors}) g = mongo.db[app.config['GLOBAL_COLLECTION']] gdata = g.find_one(dict(), {'_id': 0}) ga = GoogleAlerts(gdata['email'], gdata['password']) ga.authenticate() options = {'delivery': 'RSS', 'exact': form.type.data == 'Exact'} response = ga.create(form.term.data, options) if len(response) > 0: response = response[0] monitors = mongo.db[app.config['MONITORS_COLLECTION']] to_hash = form.type.data.encode('utf-8') + form.term.data.encode('utf-8') item = {'term': form.term.data, 'exact': form.type.data == 'Exact', 'tags': form.tags.data.split(','), 'category': form.category.data.lower(), 'username': current_user.get_id(), 'created': now_time(), 'active': True, 'metadata': response, 'hits': 0, 'hashed': hashlib.sha256(to_hash).hexdigest(), 'checked': now_time()} _id = monitors.insert(item) return redirect(url_for('core.root')) @core.route('/monitors', methods=['GET']) @login_required def get_monitor_details(): """Render the index page.""" monitor_id = paranoid_clean(request.args.get('id')) monitors = mongo.db[app.config['MONITORS_COLLECTION']] monitor = monitors.find_one({'hashed': monitor_id}, {'_id': 0}) if not monitor: return jsonify({'success': False, 'error': 'Monitor was not found.'}) articles = mongo.db[app.config['ARTICLES_COLLECTION']] link = monitor['metadata']['rss_link'] articles = list(articles.find({'feed_source': link}, {'_id': 0})) for idx, item in enumerate(articles): articles[idx]['title'] = html.unescape(item['title']) articles[idx]['date'] = item['collected'][:10] articles.sort(key=lambda x: x['collected'], reverse=True) return jsonify({'success': True, 'monitor': monitor, 'articles': articles}) @core.route('/monitors/list', methods=['GET']) @login_required def get_monitors(): """Render the index page.""" monitors = mongo.db[app.config['MONITORS_COLLECTION']] results = monitors.find({'active': True}, {'_id': 0}) results = [x for x in results] results.sort(key=lambda x: x['hits'], reverse=True) return render_template('monitors.html', monitors=results) @core.route('/export/<term_id>', methods=['GET']) @login_required def export_monitor(term_id): """Export monitor article matches.""" term_id = paranoid_clean(term_id) monitors = mongo.db[app.config['MONITORS_COLLECTION']] result = monitors.find_one({'hashed': term_id}, {'_id': 0}) articles = mongo.db[app.config['ARTICLES_COLLECTION']] results = articles.find({'feed_source': result['metadata']['rss_link']}, {'_id': 0}) to_write = list() for item in results: del item['tokens'] to_write.append(item) content = json.dumps(to_write, indent=4, sort_keys=True) file_name = "chirp_%s_%s.json" % (result['term'], result['checked'][:10]) headers = {'Content-Disposition': 'attachment;filename=%s' % file_name} return Response(content, mimetype='application/json', headers=headers) @core.route('/monitor/<term_id>/', methods=['GET']) @login_required def adjust_monitor(term_id): """Render the index page.""" term_id = paranoid_clean(term_id) monitors = mongo.db[app.config['MONITORS_COLLECTION']] articles = mongo.db[app.config['ARTICLES_COLLECTION']] result = monitors.find_one({'hashed': term_id}, {'_id': 0}) action = request.args.get('action') if action == 'archive': monitors.update({'hashed': term_id}, {'$set': {'active': False}}) response = {'success': True} mid = result['metadata']['monitor_id'] celery.send_task('remove_monitor', kwargs={'monitor_id': mid}) elif action == 'delete': monitors.remove({'hashed': term_id}) articles.remove({'feed_source': result['metadata']['rss_link']}) mid = result['metadata']['monitor_id'] celery.send_task('remove_monitor', kwargs={'monitor_id': mid}) response = {'success': True} else: response = {'success': False, 'error': 'Action was invalid'} return jsonify(response) @core.route('/async-rss') @login_required def trigger_rss(): """Run an async job in the background.""" logger.debug("Executing the heartbeat task and returning") celery.send_task('process_all_rss', kwargs={'reprocess': False}) return render_template('index.html', name="HEARTBEAT") @core.route('/async-reprocess') @login_required def reprocess_all_feeds(): """Run an async job in the background.""" logger.debug("Executing the heartbeat task and returning") celery.send_task('process_all_rss', kwargs={'reprocess': True}) return render_template('index.html', name="HEARTBEAT")
[ "flask.render_template", "flask.request.args.get", "hashlib.sha256", "flask_login.current_user.get_id", "json.dumps", "html.unescape", "flask.url_for", "google_alerts.GoogleAlerts", "flask.Response", "flask.jsonify" ]
[((840, 887), 'google_alerts.GoogleAlerts', 'GoogleAlerts', (["gdata['email']", "gdata['password']"], {}), "(gdata['email'], gdata['password'])\n", (852, 887), False, 'from google_alerts import GoogleAlerts\n'), ((2547, 2615), 'flask.jsonify', 'jsonify', (["{'success': True, 'monitor': monitor, 'articles': articles}"], {}), "({'success': True, 'monitor': monitor, 'articles': articles})\n", (2554, 2615), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((2953, 3003), 'flask.render_template', 'render_template', (['"""monitors.html"""'], {'monitors': 'results'}), "('monitors.html', monitors=results)\n", (2968, 3003), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((3572, 3618), 'json.dumps', 'json.dumps', (['to_write'], {'indent': '(4)', 'sort_keys': '(True)'}), '(to_write, indent=4, sort_keys=True)\n', (3582, 3618), False, 'import json\n'), ((3784, 3847), 'flask.Response', 'Response', (['content'], {'mimetype': '"""application/json"""', 'headers': 'headers'}), "(content, mimetype='application/json', headers=headers)\n", (3792, 3847), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((4214, 4240), 'flask.request.args.get', 'request.args.get', (['"""action"""'], {}), "('action')\n", (4230, 4240), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((4892, 4909), 'flask.jsonify', 'jsonify', (['response'], {}), '(response)\n', (4899, 4909), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((5162, 5209), 'flask.render_template', 'render_template', (['"""index.html"""'], {'name': '"""HEARTBEAT"""'}), "('index.html', name='HEARTBEAT')\n", (5177, 5209), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((5475, 5522), 'flask.render_template', 'render_template', (['"""index.html"""'], {'name': '"""HEARTBEAT"""'}), "('index.html', name='HEARTBEAT')\n", (5490, 5522), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((709, 736), 'flask.jsonify', 'jsonify', (["{'errors': errors}"], {}), "({'errors': errors})\n", (716, 736), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((1431, 1452), 'flask_login.current_user.get_id', 'current_user.get_id', ([], {}), '()\n', (1450, 1452), False, 'from flask_login import login_required, current_user\n'), ((1720, 1740), 'flask.url_for', 'url_for', (['"""core.root"""'], {}), "('core.root')\n", (1727, 1740), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((1894, 1916), 'flask.request.args.get', 'request.args.get', (['"""id"""'], {}), "('id')\n", (1910, 1916), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((2080, 2142), 'flask.jsonify', 'jsonify', (["{'success': False, 'error': 'Monitor was not found.'}"], {}), "({'success': False, 'error': 'Monitor was not found.'})\n", (2087, 2142), False, 'from flask import render_template, redirect, url_for, jsonify, request, Response\n'), ((2390, 2418), 'html.unescape', 'html.unescape', (["item['title']"], {}), "(item['title'])\n", (2403, 2418), False, 'import html\n'), ((1596, 1619), 'hashlib.sha256', 'hashlib.sha256', (['to_hash'], {}), '(to_hash)\n', (1610, 1619), False, 'import hashlib\n')]
from random import sample from enum import IntEnum class Item(IntEnum): BLANK = -1 BOMB = 0 RUPOOR = -20 GREEN = 1 BLUE = 5 RED = 20 SILVER = 100 GOLDEN = 300 item_danger = [ Item.GREEN, Item.BLUE, Item.BLUE, Item.RED, Item.RED, Item.SILVER, Item.SILVER, Item.GOLDEN, Item.GOLDEN ] item_code = { Item.BLANK : " ", Item.GREEN : "G", Item.BLUE : "B", Item.RED : "R", Item.SILVER : "S", Item.GOLDEN : "*", Item.BOMB : "X", Item.RUPOOR : "-" } class CellState(IntEnum): COVERED = 0 UNCOVERED = 1 class Board(): __board = [] __playboard = [] __width = 0 __height = 0 __bombs = 0 __rupoors = 0 def __init__(self, width, height, bombs, rupoors): self.__width = width self.__height = height self.__bombs = bombs self.__rupoors = rupoors board_coordinates = [(x, y) for x in range(0,self.__height) for y in range(0, self.__width)] bombs_coordinates = sample(board_coordinates, self.__bombs) remaining_coordinates = [a for a in board_coordinates if a not in bombs_coordinates] rupoors_coordinates = sample(remaining_coordinates, self.__rupoors) self.__playboard = [[CellState.COVERED for i in range(0,self.__width)] for j in range(0,self.__height)] self.__board = [[Item.BLANK for i in range(0,self.__width)] for j in range(0,self.__height)] for bomb in bombs_coordinates: x,y = bomb self.__board[x][y] = Item.BOMB for rupoor in rupoors_coordinates: x,y = rupoor self.__board[x][y] = Item.RUPOOR for x,row in enumerate(self.__board): for y,cell in enumerate(row): neighbors = [(x-1,y),(x-1,y+1),(x,y-1),(x+1,y-1),(x+1,y),(x+1,y+1),(x,y+1),(x-1,y-1)] hazard = 0 for n in neighbors: nx, ny = n if 0 <= nx <= self.__height-1 and 0 <= ny <= self.__width-1: item = self.__board[nx][ny] if item == Item.BOMB or item == Item.RUPOOR: hazard +=1 if cell != Item.BOMB and cell != Item.RUPOOR: self.__board[x][y] = item_danger[hazard] def dig(self,x,y): if x >= self.__height or y >= self.__width or x < 0 or y < 0: raise IndexError("Cell is out of bounds. Can't dig there") item = self.__board[x][y] self.__playboard[x][y] = CellState.UNCOVERED return item def cell_state(self,x,y): return self.__playboard[x][y] def get_board(self): board = [[(CellState.COVERED, Item.BLANK) for i in range(0,self.__width)] for j in range(0,self.__height)] for x,row in enumerate(self.__playboard): for y,cell in enumerate(row): if cell == CellState.UNCOVERED: board[x][y] = (CellState.UNCOVERED, self.__board[x][y]) return board def get_shape(self): return (self.__width, self.__height) def get_hazards(self): return (self.__bombs, self.__rupoors) def __str__(self): ret = "" board = self.get_board() for x,row in enumerate(board): for y,cell in enumerate(row): state, item = cell if state == CellState.UNCOVERED: ret += f"[{item_code[item]}]" else: ret += "[ ]" ret += "\n" return ret
[ "random.sample" ]
[((1014, 1053), 'random.sample', 'sample', (['board_coordinates', 'self.__bombs'], {}), '(board_coordinates, self.__bombs)\n', (1020, 1053), False, 'from random import sample\n'), ((1177, 1222), 'random.sample', 'sample', (['remaining_coordinates', 'self.__rupoors'], {}), '(remaining_coordinates, self.__rupoors)\n', (1183, 1222), False, 'from random import sample\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # 10.Python 标准库概览(http://www.pythondoc.com/pythontutorial3/stdlib.html) # 操作系统接口模块:os # 文件目录管理模块:shutil # 文件工具:glob # 字符串处理:re # 数学操作:math # 随机数:random # 网络请求模块:request # 日期和时间:datetime # 数据压缩:zlib,gzip,bz2,lzma,zipfile,tarfile # 性能度量:timeit # 时间度量工具:profile 和 pstats # 质量控制:doctest(扫描模块并根据程序中内嵌的文档字符串执行测试) # 远程调用:xmlrpc.client 和 cmlrpc.server # 管理邮件信息库:email # 信息交换格式:xml.dom 和 xml.sax # 通过数据库格式:cvs # 国际化:gettext、locale 和 codecs import os import shutil import glob import re import math import random import datetime import zlib import doctest import unittest from urllib.request import urlopen from datetime import date from timeit import Timer class TestStatisticalFunctions(unittest.TestCase): def test_average(self): self.assertEqual(average([20, 30, 70]), 40.0) # self.assertEqual(round(average([1, 5, 7])), 4.3) with self.assertRaises(ZeroDivisionError): average([]) with self.assertRaises(TypeError): average(20, 30, 70) def average(values): """Computes the arithmetic mean of a list of numbers. >>> print(average([20, 30, 70])) 40.0 """ return sum(values) / len(values) if __name__ == '__main__': print(os.getcwd()) # Return the current working directory os.chdir('/Users/Pan/Language/Python') # re 模块 print(re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')) print('tea for too'.replace('too', 'two')) # math 模块 print(math.cos(math.pi / 4.0)) print(math.log(1024, 2)) # random 模块 print(random.choice(['apple', 'pear', 'banana'])) print(random.sample(range(100), 10)) # sampling without replacement print(random.random()) # random float print(random.randrange(6)) # random integer chosen from range(6) # request 模块 # for line in urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl'): # line = line.decode('utf-8') # Decoding the binary data to text # if 'EST' in line or 'EDT' in line: # look for Eastern Time # print(line) # datetime 日期和时间 # dates are easily constructed and formatted now = date.today() print(now) print(datetime.date(2013, 12, 3)) print(now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")) # dates support calendar arithmetic birthday = date(1964, 7, 31) age = now - birthday print(age.days) # 数据压缩:zlib,gzip,bz2,lzma,zipfile,tarfile s = b'witch which has which witches wrist watch' print(len(s)) t = zlib.compress(s) print(len(t)) print(zlib.decompress(t)) print(zlib.crc32(s)) # 性能度量:timeit print(Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()) print(Timer('a,b = b,a', 'a=1; b=2').timeit()) # 质量控制:doctest doctest.testmod() # automatically validate the embedded tests unittest.main() # os.system('mkdir test') # dir(os) # help(os) # dir(glob) # help(glob) # print(glob.glob('/Users/Pan/Language/Python/Demo/*.py', recursive=True))
[ "random.choice", "timeit.Timer", "random.randrange", "zlib.crc32", "zlib.compress", "os.chdir", "os.getcwd", "re.findall", "math.cos", "doctest.testmod", "datetime.date", "math.log", "random.random", "unittest.main", "datetime.date.today", "zlib.decompress" ]
[((1317, 1355), 'os.chdir', 'os.chdir', (['"""/Users/Pan/Language/Python"""'], {}), "('/Users/Pan/Language/Python')\n", (1325, 1355), False, 'import os\n'), ((2175, 2187), 'datetime.date.today', 'date.today', ([], {}), '()\n', (2185, 2187), False, 'from datetime import date\n'), ((2371, 2388), 'datetime.date', 'date', (['(1964)', '(7)', '(31)'], {}), '(1964, 7, 31)\n', (2375, 2388), False, 'from datetime import date\n'), ((2560, 2576), 'zlib.compress', 'zlib.compress', (['s'], {}), '(s)\n', (2573, 2576), False, 'import zlib\n'), ((2799, 2816), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (2814, 2816), False, 'import doctest\n'), ((2868, 2883), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2881, 2883), False, 'import unittest\n'), ((1258, 1269), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1267, 1269), False, 'import os\n'), ((1378, 1437), 're.findall', 're.findall', (['"""\\\\bf[a-z]*"""', '"""which foot or hand fell fastest"""'], {}), "('\\\\bf[a-z]*', 'which foot or hand fell fastest')\n", (1388, 1437), False, 'import re\n'), ((1511, 1534), 'math.cos', 'math.cos', (['(math.pi / 4.0)'], {}), '(math.pi / 4.0)\n', (1519, 1534), False, 'import math\n'), ((1546, 1563), 'math.log', 'math.log', (['(1024)', '(2)'], {}), '(1024, 2)\n', (1554, 1563), False, 'import math\n'), ((1592, 1634), 'random.choice', 'random.choice', (["['apple', 'pear', 'banana']"], {}), "(['apple', 'pear', 'banana'])\n", (1605, 1634), False, 'import random\n'), ((1721, 1736), 'random.random', 'random.random', ([], {}), '()\n', (1734, 1736), False, 'import random\n'), ((1766, 1785), 'random.randrange', 'random.randrange', (['(6)'], {}), '(6)\n', (1782, 1785), False, 'import random\n'), ((2213, 2239), 'datetime.date', 'datetime.date', (['(2013)', '(12)', '(3)'], {}), '(2013, 12, 3)\n', (2226, 2239), False, 'import datetime\n'), ((2605, 2623), 'zlib.decompress', 'zlib.decompress', (['t'], {}), '(t)\n', (2620, 2623), False, 'import zlib\n'), ((2635, 2648), 'zlib.crc32', 'zlib.crc32', (['s'], {}), '(s)\n', (2645, 2648), False, 'import zlib\n'), ((2679, 2713), 'timeit.Timer', 'Timer', (['"""t=a; a=b; b=t"""', '"""a=1; b=2"""'], {}), "('t=a; a=b; b=t', 'a=1; b=2')\n", (2684, 2713), False, 'from timeit import Timer\n'), ((2734, 2764), 'timeit.Timer', 'Timer', (['"""a,b = b,a"""', '"""a=1; b=2"""'], {}), "('a,b = b,a', 'a=1; b=2')\n", (2739, 2764), False, 'from timeit import Timer\n')]
from containers.BinaryTree import BinaryTree, Node from containers.BST import BST def test__BST_super(): x = BST() assert isinstance(x,BinaryTree) # the very first thing to do whenever creating a data structure # is to write a function to check if the invariant holds # (in this case the BST property) # and create test cases for whether that function works def test__BST_is_bst_satisified0(): bst = BST() bst.root = Node(0) bst.root.left = Node(1) assert not bst.is_bst_satisfied() def test__BST_is_bst_satisified1(): bst = BST() bst.root = Node(0) bst.root.left = Node(-2) bst.root.left.left = Node(-3) bst.root.left.right = Node(-1) bst.root.right = Node(2) bst.root.right.left = Node(1) bst.root.right.right = Node(-3) assert not bst.is_bst_satisfied() def test__BST_is_bst_satisfied2(): bst = BST() bst.root = Node(-2) bst.root.left = Node(-3) bst.root.right = Node(-4) assert not bst.is_bst_satisfied() def test__BST_is_bst_satisified3(): bst = BST() assert bst.is_bst_satisfied() def test__BST_is_bst_satisified4(): bst = BST() bst.root = Node(0) bst.root.left = Node(-1) assert bst.is_bst_satisfied() def test__BST_is_bst_satisified5(): bst = BST() bst.root = Node(0) bst.root.left = Node(-2) bst.root.left.left = Node(-3) bst.root.left.right = Node(-1) bst.root.right = Node(2) bst.root.right.left = Node(1) bst.root.right.right = Node(3) assert bst.is_bst_satisfied() def test__BST_is_bst_satisified6(): bst = BST() bst.root = Node(0) bst.root.left = Node(-2) bst.root.left.left = Node(-3) bst.root.left.right = Node(-1) bst.root.right = Node(2) bst.root.right.left = Node(-1) bst.root.right.right = Node(3) assert not bst.is_bst_satisfied() def test__BST_is_bst_satisified7(): bst = BST() bst.root = Node(0) bst.root.left = Node(-2) bst.root.left.left = Node(-3) bst.root.left.right = Node(1) bst.root.right = Node(2) bst.root.right.left = Node(1) bst.root.right.right = Node(3) assert not bst.is_bst_satisfied() ################################################################################ import random import copy from hypothesis import given import hypothesis.strategies as st ints = st.lists(st.integers()) @given(xs=ints) def test__BST_insert(xs): xs = list(set(xs)) bst = BST() for x in xs: bst.insert(x) assert x in bst.to_list('inorder') assert bst.is_bst_satisfied() @given(xs=ints) def test__BST_insert_list(xs): xs = list(set(xs)) bst = BST() bst.insert_list(xs) assert bst.is_bst_satisfied() @given(xs=ints) def test__BST___init__(xs): xs = list(set(xs)) bst = BST(xs) assert bst.is_bst_satisfied() @given(xs=ints) def test__BST___contains__1(xs): ''' Checks that if a value is in the bst then __contains__ returns True ''' xs = list(set(xs)) if len(xs)>0: x = random.choice(xs) bst = BST(xs) assert x in bst @given(xs=ints) def test__BST___contains__2(xs): ''' Checks that if a value is NOT in the bst then __contains__ returns False ''' xs = list(set(xs)) if len(xs)>0: while True: x = random.uniform(min(xs)-1,max(xs)+1) if x not in xs: break else: x = 10 bst = BST(xs) assert x not in bst @given(xs=ints) def test__BST_find_smallest(xs): xs = list(set(xs)) if len(xs)>0: x = min(xs) bst = BST(xs) assert x == bst.find_smallest() @given(xs=ints) def test__BST_find_largest(xs): xs = list(set(xs)) if len(xs)>0: x = max(xs) bst = BST(xs) assert x == bst.find_largest() @given(xs=ints) def test__BST_remove1(xs): ''' This tests the remove function. In order to test the remove function, we must be able to generate valid BSTs. Therefore, you must have all the insert functionality completed before this test can pass. ''' xs = list(set(xs)) bst = BST(xs) while len(xs)>0: x = random.choice(xs) xs.remove(x) assert x in bst bst.remove(x) assert x not in bst assert bst.to_list('inorder')==sorted(xs) assert bst.is_bst_satisfied() @given(xs=ints) def test__BST_remove2(xs): ''' If we remove something from the BST that is not in the BST, then the BST should remain unchanged. ''' xs = list(set(xs)) bst = BST(xs) y = 0 while y in xs: y += 1 bst.remove(y) assert bst.to_list('inorder')==sorted(xs) @given(xs=ints, ys=ints) def test__BST_remove_list1(xs,ys): xs = list(set(xs)) bst = BST(xs) bst.remove_list(ys) for y in ys: assert y not in bst @given(xs=ints, ys=ints) def test__BST_remove_list2(xs,ys): xs = list(set(xs)) bst = BST(xs) bst.remove_list(ys) for y in ys: if y in xs: xs.remove(y) assert bst.to_list('inorder') == sorted(xs) @given(xs=ints,ys=ints) def test__BST_remove_and_insert1(xs,ys): ''' This test performs a mixture of both insertions and removals. This ensures that there are no weird interactions between inserting and removing. ''' xs = list(set(xs)) bst = BST(xs) for y in ys: bst.insert(y) x = random.choice(bst.to_list('inorder')) bst.remove(x) assert bst.is_bst_satisfied() @given(xs=ints,ys=ints) def test__BST_remove_and_insert2(xs,ys): ''' This test performs a mixture of both insertions and removals. This ensures that there are no weird interactions between inserting and removing. ''' xs = list(set(xs)) bst = BST(xs) for y in ys: bst.insert(y) x = bst.find_largest() bst.remove(x) assert bst.is_bst_satisfied() @given(xs=ints,ys=ints) def test__BST_remove_and_insert3(xs,ys): ''' This test performs a mixture of both insertions and removals. This ensures that there are no weird interactions between inserting and removing. ''' xs = list(set(xs)) bst = BST(xs) for y in ys: bst.insert(y) x = bst.find_smallest() bst.remove(x) assert bst.is_bst_satisfied() @given(xs=ints) def test__BST_inorder_property(xs): ''' The order we insert objects into a BST can affect the structure of the tree, but it should NOT affect the list we get out from an inorder traversal. (Recall that the inorder traversal of a BST should always be a sorted list.) This test randomly shuffles the input list two different ways and checks that both shufflings give the same output list. This tests both the insertion functions and the traversal functions to ensure that there are no bad interactions between theses functions. ''' xs = list(set(xs)) xs1 = copy.copy(xs) random.shuffle(xs1) bst1 = BST(xs1) xs2 = copy.copy(xs) random.shuffle(xs2) bst2 = BST(xs2) assert bst1.to_list('inorder') == bst2.to_list('inorder') @given(xs=ints) def test__BST_eq(xs): ''' This test is essentially the same as the previous one, but tests the == operator specifically. ''' xs = list(set(xs)) xs1 = copy.copy(xs) random.shuffle(xs1) bst1 = BST(xs1) xs2 = copy.copy(xs) random.shuffle(xs2) bst2 = BST(xs2) assert bst1 == bst2
[ "random.choice", "random.shuffle", "hypothesis.strategies.integers", "containers.BinaryTree.Node", "containers.BST.BST", "hypothesis.given", "copy.copy" ]
[((2357, 2371), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (2362, 2371), False, 'from hypothesis import given\n'), ((2564, 2578), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (2569, 2578), False, 'from hypothesis import given\n'), ((2714, 2728), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (2719, 2728), False, 'from hypothesis import given\n'), ((2835, 2849), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (2840, 2849), False, 'from hypothesis import given\n'), ((3091, 3105), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (3096, 3105), False, 'from hypothesis import given\n'), ((3465, 3479), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (3470, 3479), False, 'from hypothesis import given\n'), ((3639, 3653), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (3644, 3653), False, 'from hypothesis import given\n'), ((3811, 3825), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (3816, 3825), False, 'from hypothesis import given\n'), ((4360, 4374), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (4365, 4374), False, 'from hypothesis import given\n'), ((4676, 4699), 'hypothesis.given', 'given', ([], {'xs': 'ints', 'ys': 'ints'}), '(xs=ints, ys=ints)\n', (4681, 4699), False, 'from hypothesis import given\n'), ((4848, 4871), 'hypothesis.given', 'given', ([], {'xs': 'ints', 'ys': 'ints'}), '(xs=ints, ys=ints)\n', (4853, 4871), False, 'from hypothesis import given\n'), ((5085, 5108), 'hypothesis.given', 'given', ([], {'xs': 'ints', 'ys': 'ints'}), '(xs=ints, ys=ints)\n', (5090, 5108), False, 'from hypothesis import given\n'), ((5510, 5533), 'hypothesis.given', 'given', ([], {'xs': 'ints', 'ys': 'ints'}), '(xs=ints, ys=ints)\n', (5515, 5533), False, 'from hypothesis import given\n'), ((5916, 5939), 'hypothesis.given', 'given', ([], {'xs': 'ints', 'ys': 'ints'}), '(xs=ints, ys=ints)\n', (5921, 5939), False, 'from hypothesis import given\n'), ((6323, 6337), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (6328, 6337), False, 'from hypothesis import given\n'), ((7135, 7149), 'hypothesis.given', 'given', ([], {'xs': 'ints'}), '(xs=ints)\n', (7140, 7149), False, 'from hypothesis import given\n'), ((115, 120), 'containers.BST.BST', 'BST', ([], {}), '()\n', (118, 120), False, 'from containers.BST import BST\n'), ((419, 424), 'containers.BST.BST', 'BST', ([], {}), '()\n', (422, 424), False, 'from containers.BST import BST\n'), ((440, 447), 'containers.BinaryTree.Node', 'Node', (['(0)'], {}), '(0)\n', (444, 447), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((468, 475), 'containers.BinaryTree.Node', 'Node', (['(1)'], {}), '(1)\n', (472, 475), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((561, 566), 'containers.BST.BST', 'BST', ([], {}), '()\n', (564, 566), False, 'from containers.BST import BST\n'), ((582, 589), 'containers.BinaryTree.Node', 'Node', (['(0)'], {}), '(0)\n', (586, 589), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((610, 618), 'containers.BinaryTree.Node', 'Node', (['(-2)'], {}), '(-2)\n', (614, 618), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((644, 652), 'containers.BinaryTree.Node', 'Node', (['(-3)'], {}), '(-3)\n', (648, 652), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((679, 687), 'containers.BinaryTree.Node', 'Node', (['(-1)'], {}), '(-1)\n', (683, 687), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((709, 716), 'containers.BinaryTree.Node', 'Node', (['(2)'], {}), '(2)\n', (713, 716), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((743, 750), 'containers.BinaryTree.Node', 'Node', (['(1)'], {}), '(1)\n', (747, 750), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((778, 786), 'containers.BinaryTree.Node', 'Node', (['(-3)'], {}), '(-3)\n', (782, 786), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((871, 876), 'containers.BST.BST', 'BST', ([], {}), '()\n', (874, 876), False, 'from containers.BST import BST\n'), ((892, 900), 'containers.BinaryTree.Node', 'Node', (['(-2)'], {}), '(-2)\n', (896, 900), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((921, 929), 'containers.BinaryTree.Node', 'Node', (['(-3)'], {}), '(-3)\n', (925, 929), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((951, 959), 'containers.BinaryTree.Node', 'Node', (['(-4)'], {}), '(-4)\n', (955, 959), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1045, 1050), 'containers.BST.BST', 'BST', ([], {}), '()\n', (1048, 1050), False, 'from containers.BST import BST\n'), ((1132, 1137), 'containers.BST.BST', 'BST', ([], {}), '()\n', (1135, 1137), False, 'from containers.BST import BST\n'), ((1153, 1160), 'containers.BinaryTree.Node', 'Node', (['(0)'], {}), '(0)\n', (1157, 1160), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1181, 1189), 'containers.BinaryTree.Node', 'Node', (['(-1)'], {}), '(-1)\n', (1185, 1189), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1271, 1276), 'containers.BST.BST', 'BST', ([], {}), '()\n', (1274, 1276), False, 'from containers.BST import BST\n'), ((1292, 1299), 'containers.BinaryTree.Node', 'Node', (['(0)'], {}), '(0)\n', (1296, 1299), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1320, 1328), 'containers.BinaryTree.Node', 'Node', (['(-2)'], {}), '(-2)\n', (1324, 1328), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1354, 1362), 'containers.BinaryTree.Node', 'Node', (['(-3)'], {}), '(-3)\n', (1358, 1362), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1389, 1397), 'containers.BinaryTree.Node', 'Node', (['(-1)'], {}), '(-1)\n', (1393, 1397), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1419, 1426), 'containers.BinaryTree.Node', 'Node', (['(2)'], {}), '(2)\n', (1423, 1426), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1453, 1460), 'containers.BinaryTree.Node', 'Node', (['(1)'], {}), '(1)\n', (1457, 1460), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1488, 1495), 'containers.BinaryTree.Node', 'Node', (['(3)'], {}), '(3)\n', (1492, 1495), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1577, 1582), 'containers.BST.BST', 'BST', ([], {}), '()\n', (1580, 1582), False, 'from containers.BST import BST\n'), ((1598, 1605), 'containers.BinaryTree.Node', 'Node', (['(0)'], {}), '(0)\n', (1602, 1605), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1626, 1634), 'containers.BinaryTree.Node', 'Node', (['(-2)'], {}), '(-2)\n', (1630, 1634), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1660, 1668), 'containers.BinaryTree.Node', 'Node', (['(-3)'], {}), '(-3)\n', (1664, 1668), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1695, 1703), 'containers.BinaryTree.Node', 'Node', (['(-1)'], {}), '(-1)\n', (1699, 1703), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1725, 1732), 'containers.BinaryTree.Node', 'Node', (['(2)'], {}), '(2)\n', (1729, 1732), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1759, 1767), 'containers.BinaryTree.Node', 'Node', (['(-1)'], {}), '(-1)\n', (1763, 1767), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1795, 1802), 'containers.BinaryTree.Node', 'Node', (['(3)'], {}), '(3)\n', (1799, 1802), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1888, 1893), 'containers.BST.BST', 'BST', ([], {}), '()\n', (1891, 1893), False, 'from containers.BST import BST\n'), ((1909, 1916), 'containers.BinaryTree.Node', 'Node', (['(0)'], {}), '(0)\n', (1913, 1916), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1937, 1945), 'containers.BinaryTree.Node', 'Node', (['(-2)'], {}), '(-2)\n', (1941, 1945), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((1971, 1979), 'containers.BinaryTree.Node', 'Node', (['(-3)'], {}), '(-3)\n', (1975, 1979), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((2006, 2013), 'containers.BinaryTree.Node', 'Node', (['(1)'], {}), '(1)\n', (2010, 2013), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((2035, 2042), 'containers.BinaryTree.Node', 'Node', (['(2)'], {}), '(2)\n', (2039, 2042), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((2069, 2076), 'containers.BinaryTree.Node', 'Node', (['(1)'], {}), '(1)\n', (2073, 2076), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((2104, 2111), 'containers.BinaryTree.Node', 'Node', (['(3)'], {}), '(3)\n', (2108, 2111), False, 'from containers.BinaryTree import BinaryTree, Node\n'), ((2339, 2352), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (2350, 2352), True, 'import hypothesis.strategies as st\n'), ((2431, 2436), 'containers.BST.BST', 'BST', ([], {}), '()\n', (2434, 2436), False, 'from containers.BST import BST\n'), ((2643, 2648), 'containers.BST.BST', 'BST', ([], {}), '()\n', (2646, 2648), False, 'from containers.BST import BST\n'), ((2790, 2797), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (2793, 2797), False, 'from containers.BST import BST\n'), ((3430, 3437), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (3433, 3437), False, 'from containers.BST import BST\n'), ((4115, 4122), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (4118, 4122), False, 'from containers.BST import BST\n'), ((4557, 4564), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (4560, 4564), False, 'from containers.BST import BST\n'), ((4768, 4775), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (4771, 4775), False, 'from containers.BST import BST\n'), ((4940, 4947), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (4943, 4947), False, 'from containers.BST import BST\n'), ((5350, 5357), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (5353, 5357), False, 'from containers.BST import BST\n'), ((5775, 5782), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (5778, 5782), False, 'from containers.BST import BST\n'), ((6181, 6188), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (6184, 6188), False, 'from containers.BST import BST\n'), ((6938, 6951), 'copy.copy', 'copy.copy', (['xs'], {}), '(xs)\n', (6947, 6951), False, 'import copy\n'), ((6956, 6975), 'random.shuffle', 'random.shuffle', (['xs1'], {}), '(xs1)\n', (6970, 6975), False, 'import random\n'), ((6987, 6995), 'containers.BST.BST', 'BST', (['xs1'], {}), '(xs1)\n', (6990, 6995), False, 'from containers.BST import BST\n'), ((7007, 7020), 'copy.copy', 'copy.copy', (['xs'], {}), '(xs)\n', (7016, 7020), False, 'import copy\n'), ((7025, 7044), 'random.shuffle', 'random.shuffle', (['xs2'], {}), '(xs2)\n', (7039, 7044), False, 'import random\n'), ((7056, 7064), 'containers.BST.BST', 'BST', (['xs2'], {}), '(xs2)\n', (7059, 7064), False, 'from containers.BST import BST\n'), ((7325, 7338), 'copy.copy', 'copy.copy', (['xs'], {}), '(xs)\n', (7334, 7338), False, 'import copy\n'), ((7343, 7362), 'random.shuffle', 'random.shuffle', (['xs1'], {}), '(xs1)\n', (7357, 7362), False, 'import random\n'), ((7374, 7382), 'containers.BST.BST', 'BST', (['xs1'], {}), '(xs1)\n', (7377, 7382), False, 'from containers.BST import BST\n'), ((7394, 7407), 'copy.copy', 'copy.copy', (['xs'], {}), '(xs)\n', (7403, 7407), False, 'import copy\n'), ((7412, 7431), 'random.shuffle', 'random.shuffle', (['xs2'], {}), '(xs2)\n', (7426, 7431), False, 'import random\n'), ((7443, 7451), 'containers.BST.BST', 'BST', (['xs2'], {}), '(xs2)\n', (7446, 7451), False, 'from containers.BST import BST\n'), ((3024, 3041), 'random.choice', 'random.choice', (['xs'], {}), '(xs)\n', (3037, 3041), False, 'import random\n'), ((3056, 3063), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (3059, 3063), False, 'from containers.BST import BST\n'), ((3588, 3595), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (3591, 3595), False, 'from containers.BST import BST\n'), ((3761, 3768), 'containers.BST.BST', 'BST', (['xs'], {}), '(xs)\n', (3764, 3768), False, 'from containers.BST import BST\n'), ((4156, 4173), 'random.choice', 'random.choice', (['xs'], {}), '(xs)\n', (4169, 4173), False, 'import random\n')]
""" Unit tests """ import unittest from pyspark.sql import DataFrame, SparkSession from pyspark.sql import functions as F from metaframe import MetaFrame class TestMetaFrame(unittest.TestCase): """MetaFrame unit tests""" @classmethod def setUpClass(cls): cls.spark = SparkSession.builder.master("local[4]").getOrCreate() def test_invent_dataframe(self): """ Test MetaFrame use cases """ df = self.spark.createDataFrame( [ ("p1", 6, "2019-12-31"), ("p2", 4, "2019-12-31"), ("p3", 10, "2019-12-31"), ("p4", 4, "2019-12-31"), ("p5", 3, "2019-12-31"), ("p6", 7, "2019-12-31"), ("p7", 18, "2019-12-31"), ("p8", 44, "2019-12-31"), ("p1", 6, "2020-01-01"), ("p2", 4, "2020-01-01"), ("p3", 10, "2020-01-01"), ("p4", 4, "2020-01-01"), ("p5", 3, "2020-01-01"), ("p6", 7, "2020-01-01"), ("p7", 18, "2020-01-01"), ("p8", 44, "2020-01-01"), ("p1", 16, "2020-01-02"), ("p2", 4, "2020-01-02"), ("p3", 3, "2020-01-02"), ("p4", 6, "2020-01-02"), ("p5", 7, "2020-01-02"), ("p6", 7, "2020-01-02"), ], ["product_id", "quantity", "date"], ) metadata = {"foo": "bar"} # Creation df = MetaFrame(df, metadata) self.assertIsInstance(df.df, DataFrame) self.assertDictEqual(df.metadata, metadata) # Non callables self.assertListEqual(df.columns, ["product_id", "quantity", "date"]) self.assertIsInstance(df, MetaFrame) self.assertDictEqual(df.metadata, metadata) # Get item self.assertEqual(str(df["product_id"]), str(F.col("product_id"))) self.assertIsInstance(df, MetaFrame) self.assertDictEqual(df.metadata, metadata) # Callables with no MetaFrame returns df.show() self.assertIsInstance(df, MetaFrame) self.assertDictEqual(df.metadata, metadata) # Callabes with MetaFrame returns df = df.withColumn("new_col", F.lit(0)) self.assertIsInstance(df, MetaFrame) self.assertDictEqual(df.metadata, metadata) self.assertListEqual(df.columns, ["product_id", "quantity", "date", "new_col"]) # Selecting df = df.select("product_id", "new_col") self.assertDictEqual(df.metadata, metadata) self.assertListEqual(df.columns, ["product_id", "new_col"]) # Set metadata df = df.set_metadata(foo="baz") self.assertDictEqual(df.metadata, {"foo": "baz"}) def test__set_pk_after(self): """ test _set_pk_after method of MetaFrame that automatically sets primary key information after groupBy, dropDuplicates and distinct """ df = self.spark.createDataFrame( [ ("p1", 6, "2019-12-31"), ("p2", 4, "2019-12-31"), ("p3", 10, "2019-12-31"), ("p4", 4, "2019-12-31"), ("p5", 3, "2019-12-31"), ("p6", 7, "2019-12-31"), ("p7", 18, "2019-12-31"), ("p8", 44, "2019-12-31"), ("p1", 6, "2020-01-01"), ("p2", 4, "2020-01-01"), ("p3", 10, "2020-01-01"), ("p4", 4, "2020-01-01"), ("p5", 3, "2020-01-01"), ("p6", 7, "2020-01-01"), ("p7", 18, "2020-01-01"), ("p8", 44, "2020-01-01"), ("p1", 16, "2020-01-02"), ("p2", 4, "2020-01-02"), ("p3", 3, "2020-01-02"), ("p4", 6, "2020-01-02"), ("p5", 7, "2020-01-02"), ("p6", 7, "2020-01-02"), ], ["product_id", "quantity", "date"], ) metadata = {"foo": "bar"} df = MetaFrame(df, metadata) # initially pk is empty self.assertIsNone(df.primary_key) # test groupBy & groupby df_date: MetaFrame = df.groupBy("date").agg(F.sum("quantity").alias("quantity")) self.assertEqual(df_date.primary_key, ["date"]) df_date: MetaFrame = df.groupby("date").agg(F.sum("quantity").alias("quantity")) self.assertEqual(df_date.primary_key, ["date"]) # test dropDuplicates df_products: MetaFrame = df.dropDuplicates(["product_id"]) self.assertEqual(df_products.primary_key, ["product_id"]) # test dropDuplicates with kwarg df_products: MetaFrame = df.dropDuplicates(subset=["product_id"]) self.assertEqual(df_products.primary_key, ["product_id"]) # test dropDuplicates without arg df_products: MetaFrame = df.select("product_id").dropDuplicates() self.assertEqual(df_products.primary_key, ["product_id"]) # test drop_duplicates df_products: MetaFrame = df.drop_duplicates(["product_id"]) self.assertEqual(df_products.primary_key, ["product_id"]) # test drop_duplicates with kwarg df_products: MetaFrame = df.drop_duplicates(subset=["product_id"]) self.assertEqual(df_products.primary_key, ["product_id"]) # test drop_duplicates without arg df_products: MetaFrame = df.select("product_id").drop_duplicates() self.assertEqual(df_products.primary_key, ["product_id"]) # test distinct df_products: MetaFrame = df.select("product_id").distinct() self.assertEqual(df_products.primary_key, ["product_id"])
[ "pyspark.sql.functions.lit", "pyspark.sql.SparkSession.builder.master", "pyspark.sql.functions.col", "pyspark.sql.functions.sum", "metaframe.MetaFrame" ]
[((1544, 1567), 'metaframe.MetaFrame', 'MetaFrame', (['df', 'metadata'], {}), '(df, metadata)\n', (1553, 1567), False, 'from metaframe import MetaFrame\n'), ((4090, 4113), 'metaframe.MetaFrame', 'MetaFrame', (['df', 'metadata'], {}), '(df, metadata)\n', (4099, 4113), False, 'from metaframe import MetaFrame\n'), ((2297, 2305), 'pyspark.sql.functions.lit', 'F.lit', (['(0)'], {}), '(0)\n', (2302, 2305), True, 'from pyspark.sql import functions as F\n'), ((292, 331), 'pyspark.sql.SparkSession.builder.master', 'SparkSession.builder.master', (['"""local[4]"""'], {}), "('local[4]')\n", (319, 331), False, 'from pyspark.sql import DataFrame, SparkSession\n'), ((1937, 1956), 'pyspark.sql.functions.col', 'F.col', (['"""product_id"""'], {}), "('product_id')\n", (1942, 1956), True, 'from pyspark.sql import functions as F\n'), ((4275, 4292), 'pyspark.sql.functions.sum', 'F.sum', (['"""quantity"""'], {}), "('quantity')\n", (4280, 4292), True, 'from pyspark.sql import functions as F\n'), ((4421, 4438), 'pyspark.sql.functions.sum', 'F.sum', (['"""quantity"""'], {}), "('quantity')\n", (4426, 4438), True, 'from pyspark.sql import functions as F\n')]
from model.contact import Contact import random def test_delete_some_contact(app, db, check_ui): if len(db.get_contact_list()) == 0: app.contact.add_new(Contact(firstname="ivan", lastname="taranov", nickname="tara", company="book", address="lenina 1", homephone="555555", mobilephone="666666", workphone="777777", secondaryphone="888888", email="<EMAIL>", byear="1985")) old_contacts = db.get_contact_list() contact = random.choice(old_contacts) app.contact.delete_contact_by_id(contact.id) new_contacts = db.get_contact_list() assert len(old_contacts) - 1 == len(new_contacts) old_contacts.remove(contact) assert old_contacts == new_contacts if check_ui: assert sorted(new_contacts, key=Contact.id_or_max) == sorted(app.contact.get_contact_list(), key=Contact.id_or_max)
[ "random.choice", "model.contact.Contact" ]
[((439, 466), 'random.choice', 'random.choice', (['old_contacts'], {}), '(old_contacts)\n', (452, 466), False, 'import random\n'), ((166, 391), 'model.contact.Contact', 'Contact', ([], {'firstname': '"""ivan"""', 'lastname': '"""taranov"""', 'nickname': '"""tara"""', 'company': '"""book"""', 'address': '"""lenina 1"""', 'homephone': '"""555555"""', 'mobilephone': '"""666666"""', 'workphone': '"""777777"""', 'secondaryphone': '"""888888"""', 'email': '"""<EMAIL>"""', 'byear': '"""1985"""'}), "(firstname='ivan', lastname='taranov', nickname='tara', company=\n 'book', address='lenina 1', homephone='555555', mobilephone='666666',\n workphone='777777', secondaryphone='888888', email='<EMAIL>', byear='1985')\n", (173, 391), False, 'from model.contact import Contact\n')]
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import fsolve from ODEmethods.methods import sym_methods from ODEmethods.symplectic import SymIntegrator # Henon-Heiles galactic potential: def hehe(t, y, par=None): # y is of the form [x, vx, y, vy] v = y[1::2] ax1 = - y[0] - 2.*y[0]*y[2] ay1 = - y[2] - np.power(y[0],2.) + np.power(y[2],2.) return [v[0], ax1, v[1], ay1] def ymax(y, e): return 2.*e - y**2. + (2./3.)*y**3. def poincare(si): # poincare map for x=0 si = np.array(si) y = [] for i in range(len(si)): if (si[i,0] > 0. and si[i-1,0] <= 0.): dx = si[i,0] - si[i-1,0] y_poincare = si[i-1] + ((si[i] - si[i-1])/dx)*(0.-si[i-1,0]) y.append(y_poincare) return np.array(y) n = 20000 h = 0.2 eps = 1e-3 e_ar = [1./10., 1./8., (1./6.)-eps] fig, axs = plt.subplots(1, len(e_ar)) plt.suptitle("Hénon-Heiles: Poincare section") fig.set_size_inches(16, 5) for i in range(len(e_ar)): #print(i) e = e_ar[i] y_init = np.linspace(0., fsolve(ymax, 0.5, e), 20) v_init = np.sqrt(2.*e - np.power(y_init, 2.) + (2./3.)*np.power(y_init, 3.)) for y0, v0 in zip(y_init, v_init): problem_si = SymIntegrator(sym_methods["VEFRL"], hehe, parameters=None) si = problem_si.run(x0=0, y0=[0., v0, y0, 0.], stepnum=n, stepsize=h) pmap = poincare(si[1]) # linear interpolation axs[i].scatter(pmap[:,2], pmap[:,3], marker='.') axs[i].set_title(r'$E=$'+str(e)) axs[i].set_xlabel(r'$y$') axs[i].set_ylabel(r'$dy/dt$') axs[i].set_aspect(1) plt.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.9, wspace=0.25, hspace=0.3) plt.savefig("henon_heiles.png") plt.show()
[ "scipy.optimize.fsolve", "matplotlib.pyplot.savefig", "numpy.power", "ODEmethods.symplectic.SymIntegrator", "numpy.array", "matplotlib.pyplot.suptitle", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.show" ]
[((898, 944), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['"""Hénon-Heiles: Poincare section"""'], {}), "('Hénon-Heiles: Poincare section')\n", (910, 944), True, 'import matplotlib.pyplot as plt\n'), ((1613, 1704), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.1)', 'right': '(0.95)', 'bottom': '(0.1)', 'top': '(0.9)', 'wspace': '(0.25)', 'hspace': '(0.3)'}), '(left=0.1, right=0.95, bottom=0.1, top=0.9, wspace=0.25,\n hspace=0.3)\n', (1632, 1704), True, 'import matplotlib.pyplot as plt\n'), ((1701, 1732), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""henon_heiles.png"""'], {}), "('henon_heiles.png')\n", (1712, 1732), True, 'import matplotlib.pyplot as plt\n'), ((1733, 1743), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1741, 1743), True, 'import matplotlib.pyplot as plt\n'), ((527, 539), 'numpy.array', 'np.array', (['si'], {}), '(si)\n', (535, 539), True, 'import numpy as np\n'), ((781, 792), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (789, 792), True, 'import numpy as np\n'), ((363, 382), 'numpy.power', 'np.power', (['y[2]', '(2.0)'], {}), '(y[2], 2.0)\n', (371, 382), True, 'import numpy as np\n'), ((1059, 1079), 'scipy.optimize.fsolve', 'fsolve', (['ymax', '(0.5)', 'e'], {}), '(ymax, 0.5, e)\n', (1065, 1079), False, 'from scipy.optimize import fsolve\n'), ((1226, 1284), 'ODEmethods.symplectic.SymIntegrator', 'SymIntegrator', (["sym_methods['VEFRL']", 'hehe'], {'parameters': 'None'}), "(sym_methods['VEFRL'], hehe, parameters=None)\n", (1239, 1284), False, 'from ODEmethods.symplectic import SymIntegrator\n'), ((343, 362), 'numpy.power', 'np.power', (['y[0]', '(2.0)'], {}), '(y[0], 2.0)\n', (351, 362), True, 'import numpy as np\n'), ((1113, 1134), 'numpy.power', 'np.power', (['y_init', '(2.0)'], {}), '(y_init, 2.0)\n', (1121, 1134), True, 'import numpy as np\n'), ((1144, 1165), 'numpy.power', 'np.power', (['y_init', '(3.0)'], {}), '(y_init, 3.0)\n', (1152, 1165), True, 'import numpy as np\n')]
# Copyright (C) 2014-2017 <NAME>, <NAME>, <NAME>, <NAME> (in alphabetic order) # # This file is part of OpenModal. # # OpenModal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # # OpenModal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with OpenModal. If not, see <http://www.gnu.org/licenses/>. __author__ = 'Matjaz' import sys, subprocess, os try: import DAQTask as dq import daqprocess as dp except NotImplementedError as nie: dq = None dp = None from string import Template import qtawesome as qta # import DAQTask as dq from PyQt5 import QtCore, QtGui, QtWidgets import pyqtgraph as pg import numpy as np from OpenModal.gui.templates import COLOR_PALETTE MAX_WINDOW_LENGTH = 1e9 class ExportSelector(QtWidgets.QWidget): """Measurement configuration window. """ def __init__(self, desktop_widget, status_bar, modaldata_object, *args, **kwargs): super().__init__(*args, **kwargs) self.status_bar = status_bar self.modaldata_object = modaldata_object self.desktop_widget = desktop_widget self.data_types_list = ['nodes', 'lines', 'elements', 'measurements', 'analyses'] self.data_types_names = ['Nodes', 'Lines', 'Elements', 'Measurements', 'Analysis results'] self.setWindowFlags(QtCore.Qt.FramelessWindowHint) p = self.palette() p.setColor(self.backgroundRole(), QtCore.Qt.white) self.setPalette(p) self.setAutoFillBackground(True) self.fields = dict() self.save = QtWidgets.QPushButton('Done') self.save.setObjectName('small') # self.save.setDisabled(True) self.dismiss = QtWidgets.QPushButton('Dismiss') self.dismiss.setObjectName('small') self.setGeometry(400, 50, 600, 800) self.setContentsMargins(25, 0, 25, 25) with open('gui/styles/style_template.css', 'r', encoding='utf-8') as fh: src = Template(fh.read()) src = src.substitute(COLOR_PALETTE) self.setStyleSheet(src) hbox = QtWidgets.QHBoxLayout() # hbox.addWidget(self.left_menu) title_label = QtWidgets.QLabel('EXPORT DATA') font = title_label.font() font.setPointSize(8) font.setFamily('Verdana') title_label.setFont(font) title_label.setContentsMargins(5, 0, 0, 25) title_label.setObjectName('title_label') models_group = QtWidgets.QGroupBox('Models') models_group.setStyleSheet("QGroupBox {font-weight: bold;}") models_grid = QtWidgets.QGridLayout() models_grid.setContentsMargins(80, 20, 80, 20) models_grid.setColumnStretch(1, 0) models_grid.setColumnStretch(1, 2) self.model_db = self.modaldata_object.tables['info'] models = ['{0} {1:.0f}'.format(model, model_id) for model, model_id in zip(self.model_db.model_name, self.model_db.model_id)] # models = ['Nosilec', 'Transformator', 'Jedro', 'Pralni stroj', 'Letalo'] self.model_checkbox_widgets = [QtWidgets.QCheckBox() for model in models] model_label_widgets = [QtWidgets.QLabel(model) for model in models] for i, (checkbox, label) in enumerate(zip(self.model_checkbox_widgets,model_label_widgets)): models_grid.addWidget(checkbox, i//2, 0 + (i%2)*2) models_grid.addWidget(label, i//2, 1 + (i%2)*2, alignment=QtCore.Qt.AlignLeft) checkbox.setChecked(True) models_group.setLayout(models_grid) data_type_group = QtWidgets.QGroupBox('Data') data_type_group.setStyleSheet("QGroupBox {font-weight: bold;}") data_type_grid = QtWidgets.QGridLayout() data_type_grid.setContentsMargins(80, 20, 80, 20) data_type_grid.setColumnStretch(1, 0) data_type_grid.setColumnStretch(1, 2) data_types_keys = ['geometry', 'lines', 'elements_index', 'measurement_index', 'analysis_index'] data_types_populated = [True if self.modaldata_object.tables[key].size != 0 else False for key in data_types_keys] self.data_type_checkbox_widgets = [QtWidgets.QCheckBox() for data_type in self.data_types_names] model_label_widgets = [QtWidgets.QLabel(data_type) for data_type in self.data_types_names] for i, (checkbox, label) in enumerate(zip(self.data_type_checkbox_widgets,model_label_widgets)): data_type_grid.addWidget(checkbox, i, 0) data_type_grid.addWidget(label, i, 1, alignment=QtCore.Qt.AlignLeft) if data_types_populated[i]: checkbox.setChecked(True) data_type_group.setLayout(data_type_grid) other_group = QtWidgets.QGroupBox('Separate Files for Data Types (UFF)') other_group.setStyleSheet("QGroupBox {font-weight: bold;}") one_file_radio = QtWidgets.QRadioButton() self.multiple_file_radio = QtWidgets.QRadioButton() one_file_radio_label = QtWidgets.QLabel('No') multiple_file_radio_label = QtWidgets.QLabel('Yes') one_file_radio.setChecked(True) h_files = QtWidgets.QGridLayout() h_files.setContentsMargins(80, 20, 80, 20) h_files.setColumnStretch(1, 0) h_files.setColumnStretch(1, 2) h_files.addWidget(self.multiple_file_radio, 0, 0) h_files.addWidget(multiple_file_radio_label, 0, 1) h_files.addWidget(one_file_radio, 0, 2) h_files.addWidget(one_file_radio_label, 0, 3) other_group.setLayout(h_files) button_export_xls = QtWidgets.QPushButton(qta.icon('fa.line-chart', color='white', scale_factor=1.2), ' Export CSV') button_export_xls.setObjectName('altpushbutton_') button_export_xls.clicked.connect(self.ExportCSV) button_export_xls_hbox = QtWidgets.QHBoxLayout() button_export_xls_hbox.addStretch() button_export_xls_hbox.addWidget(button_export_xls) button_export_xls_hbox.addStretch() button_export_unv = QtWidgets.QPushButton(qta.icon('fa.rocket', color='white', scale_factor=1.2), ' Export UFF') button_export_unv.setObjectName('altpushbutton_') button_export_unv.clicked.connect(self.ExportUff) button_export_unv_hbox = QtWidgets.QHBoxLayout() button_export_unv_hbox.addStretch() button_export_unv_hbox.addWidget(button_export_unv) button_export_unv_hbox.addStretch() title_layout = QtWidgets.QHBoxLayout() title_layout.addWidget(title_label) title_layout.addStretch() vbox = QtWidgets.QVBoxLayout() vbox.addLayout(title_layout) vbox.setContentsMargins(0, 1, 0, 0) vbox.addLayout(hbox) vbox.addWidget(models_group) vbox.addWidget(data_type_group) vbox.addWidget(other_group) vbox.addStretch() vbox.addLayout(button_export_xls_hbox) vbox.addLayout(button_export_unv_hbox) vbox.addStretch() # button_layout = QtGui.QHBoxLayout() # button_layout.addStretch() # button_layout.addWidget(self.save) # button_layout.addWidget(self.dismiss) # vbox.addStretch() # vbox.addLayout(button_layout) vbox.setContentsMargins(20, 20, 20, 20) vbox_outer = QtWidgets.QVBoxLayout() vbox_outer.setContentsMargins(0, 0, 0, 0) vbox_outer.addLayout(vbox) vbox_outer.addWidget(QtWidgets.QSizeGrip(self.parent()), 0, QtCore.Qt.AlignBottom |QtCore.Qt.AlignRight) self.setContentsMargins(0, 0, 0, 0) self.setLayout(vbox_outer) def paintEvent(self, event): self.painter = QtGui.QPainter() self.painter.begin(self) self.painter.setBrush(QtCore.Qt.white) self.painter.setPen(QtCore.Qt.lightGray) # .. Draw a rectangle around the main window. self.painter.drawRect(0, 0, self.width()-1, self.height()-1) self.painter.fillRect(QtCore.QRect(1, 1, self.width()-2, 40), QtGui.QColor(245, 245, 245)) pen = QtGui.QPen() pen.setWidth(2) pen.setBrush(QtCore.Qt.gray) pen.setCapStyle(QtCore.Qt.RoundCap) pen.setJoinStyle(QtCore.Qt.RoundJoin) self.painter.setPen(pen) # close cross self.painter.drawLine(self.width() - 30, 30, self.width() - 10, 10) self.painter.drawLine(self.width() - 30, 10, self.width() - 10, 30) self.painter.end() def mouseMoveEvent(self, event): if event.buttons() and QtCore.Qt.LeftButton: self.move(event.globalPos() - self.mouse_drag_position) event.accept() def mousePressEvent(self, event): add = 0 if event.button() == QtCore.Qt.LeftButton: if (event.pos().x() < (self.width() - 10 - add)) and (event.pos().x() > (self.width()-30-add))\ and (event.pos().y() < (30+add)) and (event.pos().y() > (10+add)): self.close() self.mouse_drag_position = event.globalPos() - self.frameGeometry().topLeft() def ExportUff(self): """ File dialog for exporting uff files. """ # if variant == 'PySide': # file_name, filtr = QtGui.QFileDialog.getSaveFileName(self, self.tr("Choose Folder"), "/.", # QtGui.QFileDialog.Directory) # elif variant == 'PyQt4': file_name = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select Directory') # file_name = QtGui.QFileDialog.getSaveFileName(self, self.tr("Chose Folder"), "/.", # QtGui.QFileDialog.Directory) self.exportfile = file_name model_ids = [model_id for model_id, check_box_field in zip(self.model_db.model_id, self.model_checkbox_widgets) if check_box_field.isChecked()] data_types = [data_type for data_type, check_box_field in zip(self.data_types_list, self.data_type_checkbox_widgets) if check_box_field.isChecked()] separate_files_flag = self.multiple_file_radio.isChecked() print(model_ids) self.status_bar.setBusy('root', 'exporting') class IOThread(QtCore.QThread): def __init__(self, modaldata, file_name, model_ids=[], data_types=[], separate_files_flag=False): super().__init__() self.modaldata_object = modaldata self.file_name = file_name self.model_ids = model_ids self.data_types = data_types self.separate_files_flag = separate_files_flag def run(self): self.modaldata_object.export_to_uff(self.file_name, self.model_ids, self.data_types, self.separate_files_flag) self.thread = IOThread(self.modaldata_object, file_name, model_ids, data_types, separate_files_flag) self.thread.finished.connect(lambda: self.status_bar.setNotBusy('root')) self.thread.start() self.hide() def ExportCSV(self): """ File dialog for exporting uff files. """ # if variant == 'PySide': # file_name, filtr = QtGui.QFileDialog.getSaveFileName(self, self.tr("Select Directory"), "/.", # QtGui.QFileDialog.Directory) # elif variant == 'PyQt4': file_name = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select Directory') # file_name = QtGui.QFileDialog.getSaveFileName(self, self.tr("Chose Folder"), "/.", # QtGui.QFileDialog.Directory) self.exportfile = file_name model_ids = [model_id for model_id, check_box_field in zip(self.model_db.model_id, self.model_checkbox_widgets) if check_box_field.isChecked()] data_types = [data_type for data_type, check_box_field in zip(self.data_types_list, self.data_type_checkbox_widgets) if check_box_field.isChecked()] print(model_ids) self.status_bar.setBusy('root', 'exporting') class IOThread(QtCore.QThread): def __init__(self, modaldata, file_name, model_ids=[], data_types=[]): super().__init__() self.modaldata_object = modaldata self.file_name = file_name self.model_ids = model_ids self.data_types = data_types def run(self): self.modaldata_object.export_to_csv(self.file_name, self.model_ids, self.data_types) self.thread = IOThread(self.modaldata_object, file_name, model_ids, data_types) self.thread.finished.connect(lambda: self.status_bar.setNotBusy('root')) self.thread.start() self.hide()
[ "PyQt5.QtWidgets.QFileDialog.getExistingDirectory", "qtawesome.icon", "PyQt5.QtGui.QPen", "PyQt5.QtGui.QPainter", "PyQt5.QtWidgets.QRadioButton", "PyQt5.QtGui.QColor", "PyQt5.QtWidgets.QHBoxLayout", "PyQt5.QtWidgets.QGridLayout", "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QGroupBox", "PyQt5.QtWidgets.QVBoxLayout", "PyQt5.QtWidgets.QCheckBox", "PyQt5.QtWidgets.QPushButton" ]
[((1924, 1953), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['"""Done"""'], {}), "('Done')\n", (1945, 1953), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2057, 2089), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['"""Dismiss"""'], {}), "('Dismiss')\n", (2078, 2089), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2446, 2469), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', ([], {}), '()\n', (2467, 2469), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2534, 2565), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['"""EXPORT DATA"""'], {}), "('EXPORT DATA')\n", (2550, 2565), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2822, 2851), 'PyQt5.QtWidgets.QGroupBox', 'QtWidgets.QGroupBox', (['"""Models"""'], {}), "('Models')\n", (2841, 2851), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2943, 2966), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', ([], {}), '()\n', (2964, 2966), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3932, 3959), 'PyQt5.QtWidgets.QGroupBox', 'QtWidgets.QGroupBox', (['"""Data"""'], {}), "('Data')\n", (3951, 3959), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4057, 4080), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', ([], {}), '()\n', (4078, 4080), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5093, 5151), 'PyQt5.QtWidgets.QGroupBox', 'QtWidgets.QGroupBox', (['"""Separate Files for Data Types (UFF)"""'], {}), "('Separate Files for Data Types (UFF)')\n", (5112, 5151), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5246, 5270), 'PyQt5.QtWidgets.QRadioButton', 'QtWidgets.QRadioButton', ([], {}), '()\n', (5268, 5270), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5306, 5330), 'PyQt5.QtWidgets.QRadioButton', 'QtWidgets.QRadioButton', ([], {}), '()\n', (5328, 5330), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5362, 5384), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['"""No"""'], {}), "('No')\n", (5378, 5384), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5421, 5444), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['"""Yes"""'], {}), "('Yes')\n", (5437, 5444), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5504, 5527), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', ([], {}), '()\n', (5525, 5527), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6237, 6260), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', ([], {}), '()\n', (6258, 6260), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6726, 6749), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', ([], {}), '()\n', (6747, 6749), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6922, 6945), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', ([], {}), '()\n', (6943, 6945), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7040, 7063), 'PyQt5.QtWidgets.QVBoxLayout', 'QtWidgets.QVBoxLayout', ([], {}), '()\n', (7061, 7063), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7748, 7771), 'PyQt5.QtWidgets.QVBoxLayout', 'QtWidgets.QVBoxLayout', ([], {}), '()\n', (7769, 7771), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((8109, 8125), 'PyQt5.QtGui.QPainter', 'QtGui.QPainter', ([], {}), '()\n', (8123, 8125), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((8495, 8507), 'PyQt5.QtGui.QPen', 'QtGui.QPen', ([], {}), '()\n', (8505, 8507), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((9869, 9937), 'PyQt5.QtWidgets.QFileDialog.getExistingDirectory', 'QtWidgets.QFileDialog.getExistingDirectory', (['self', '"""Select Directory"""'], {}), "(self, 'Select Directory')\n", (9911, 9937), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((11854, 11922), 'PyQt5.QtWidgets.QFileDialog.getExistingDirectory', 'QtWidgets.QFileDialog.getExistingDirectory', (['self', '"""Select Directory"""'], {}), "(self, 'Select Directory')\n", (11896, 11922), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3447, 3468), 'PyQt5.QtWidgets.QCheckBox', 'QtWidgets.QCheckBox', ([], {}), '()\n', (3466, 3468), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3521, 3544), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['model'], {}), '(model)\n', (3537, 3544), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4536, 4557), 'PyQt5.QtWidgets.QCheckBox', 'QtWidgets.QCheckBox', ([], {}), '()\n', (4555, 4557), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4629, 4656), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['data_type'], {}), '(data_type)\n', (4645, 4656), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5967, 6025), 'qtawesome.icon', 'qta.icon', (['"""fa.line-chart"""'], {'color': '"""white"""', 'scale_factor': '(1.2)'}), "('fa.line-chart', color='white', scale_factor=1.2)\n", (5975, 6025), True, 'import qtawesome as qta\n'), ((6460, 6514), 'qtawesome.icon', 'qta.icon', (['"""fa.rocket"""'], {'color': '"""white"""', 'scale_factor': '(1.2)'}), "('fa.rocket', color='white', scale_factor=1.2)\n", (6468, 6514), True, 'import qtawesome as qta\n'), ((8451, 8478), 'PyQt5.QtGui.QColor', 'QtGui.QColor', (['(245)', '(245)', '(245)'], {}), '(245, 245, 245)\n', (8463, 8478), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n')]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetSceneResult', 'AwaitableGetSceneResult', 'get_scene', 'get_scene_output', ] @pulumi.output_type class GetSceneResult: def __init__(__self__, arn=None, capabilities=None, content_location=None, creation_date_time=None, description=None, tags=None, update_date_time=None): if arn and not isinstance(arn, str): raise TypeError("Expected argument 'arn' to be a str") pulumi.set(__self__, "arn", arn) if capabilities and not isinstance(capabilities, list): raise TypeError("Expected argument 'capabilities' to be a list") pulumi.set(__self__, "capabilities", capabilities) if content_location and not isinstance(content_location, str): raise TypeError("Expected argument 'content_location' to be a str") pulumi.set(__self__, "content_location", content_location) if creation_date_time and not isinstance(creation_date_time, str): raise TypeError("Expected argument 'creation_date_time' to be a str") pulumi.set(__self__, "creation_date_time", creation_date_time) if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if update_date_time and not isinstance(update_date_time, str): raise TypeError("Expected argument 'update_date_time' to be a str") pulumi.set(__self__, "update_date_time", update_date_time) @property @pulumi.getter def arn(self) -> Optional[str]: """ The ARN of the scene. """ return pulumi.get(self, "arn") @property @pulumi.getter def capabilities(self) -> Optional[Sequence[str]]: """ A list of capabilities that the scene uses to render. """ return pulumi.get(self, "capabilities") @property @pulumi.getter(name="contentLocation") def content_location(self) -> Optional[str]: """ The relative path that specifies the location of the content definition file. """ return pulumi.get(self, "content_location") @property @pulumi.getter(name="creationDateTime") def creation_date_time(self) -> Optional[str]: """ The date and time when the scene was created. """ return pulumi.get(self, "creation_date_time") @property @pulumi.getter def description(self) -> Optional[str]: """ The description of the scene. """ return pulumi.get(self, "description") @property @pulumi.getter def tags(self) -> Optional[Any]: """ A key-value pair to associate with a resource. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="updateDateTime") def update_date_time(self) -> Optional[str]: """ The date and time of the current update. """ return pulumi.get(self, "update_date_time") class AwaitableGetSceneResult(GetSceneResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSceneResult( arn=self.arn, capabilities=self.capabilities, content_location=self.content_location, creation_date_time=self.creation_date_time, description=self.description, tags=self.tags, update_date_time=self.update_date_time) def get_scene(scene_id: Optional[str] = None, workspace_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSceneResult: """ Resource schema for AWS::IoTTwinMaker::Scene :param str scene_id: The ID of the scene. :param str workspace_id: The ID of the scene. """ __args__ = dict() __args__['sceneId'] = scene_id __args__['workspaceId'] = workspace_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:iottwinmaker:getScene', __args__, opts=opts, typ=GetSceneResult).value return AwaitableGetSceneResult( arn=__ret__.arn, capabilities=__ret__.capabilities, content_location=__ret__.content_location, creation_date_time=__ret__.creation_date_time, description=__ret__.description, tags=__ret__.tags, update_date_time=__ret__.update_date_time) @_utilities.lift_output_func(get_scene) def get_scene_output(scene_id: Optional[pulumi.Input[str]] = None, workspace_id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetSceneResult]: """ Resource schema for AWS::IoTTwinMaker::Scene :param str scene_id: The ID of the scene. :param str workspace_id: The ID of the scene. """ ...
[ "pulumi.get", "pulumi.getter", "pulumi.set", "pulumi.InvokeOptions", "pulumi.runtime.invoke" ]
[((2401, 2438), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""contentLocation"""'}), "(name='contentLocation')\n", (2414, 2438), False, 'import pulumi\n'), ((2670, 2708), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""creationDateTime"""'}), "(name='creationDateTime')\n", (2683, 2708), False, 'import pulumi\n'), ((3289, 3325), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""updateDateTime"""'}), "(name='updateDateTime')\n", (3302, 3325), False, 'import pulumi\n'), ((745, 777), 'pulumi.set', 'pulumi.set', (['__self__', '"""arn"""', 'arn'], {}), "(__self__, 'arn', arn)\n", (755, 777), False, 'import pulumi\n'), ((927, 977), 'pulumi.set', 'pulumi.set', (['__self__', '"""capabilities"""', 'capabilities'], {}), "(__self__, 'capabilities', capabilities)\n", (937, 977), False, 'import pulumi\n'), ((1137, 1195), 'pulumi.set', 'pulumi.set', (['__self__', '"""content_location"""', 'content_location'], {}), "(__self__, 'content_location', content_location)\n", (1147, 1195), False, 'import pulumi\n'), ((1361, 1423), 'pulumi.set', 'pulumi.set', (['__self__', '"""creation_date_time"""', 'creation_date_time'], {}), "(__self__, 'creation_date_time', creation_date_time)\n", (1371, 1423), False, 'import pulumi\n'), ((1568, 1616), 'pulumi.set', 'pulumi.set', (['__self__', '"""description"""', 'description'], {}), "(__self__, 'description', description)\n", (1578, 1616), False, 'import pulumi\n'), ((1742, 1776), 'pulumi.set', 'pulumi.set', (['__self__', '"""tags"""', 'tags'], {}), "(__self__, 'tags', tags)\n", (1752, 1776), False, 'import pulumi\n'), ((1936, 1994), 'pulumi.set', 'pulumi.set', (['__self__', '"""update_date_time"""', 'update_date_time'], {}), "(__self__, 'update_date_time', update_date_time)\n", (1946, 1994), False, 'import pulumi\n'), ((2134, 2157), 'pulumi.get', 'pulumi.get', (['self', '"""arn"""'], {}), "(self, 'arn')\n", (2144, 2157), False, 'import pulumi\n'), ((2348, 2380), 'pulumi.get', 'pulumi.get', (['self', '"""capabilities"""'], {}), "(self, 'capabilities')\n", (2358, 2380), False, 'import pulumi\n'), ((2613, 2649), 'pulumi.get', 'pulumi.get', (['self', '"""content_location"""'], {}), "(self, 'content_location')\n", (2623, 2649), False, 'import pulumi\n'), ((2853, 2891), 'pulumi.get', 'pulumi.get', (['self', '"""creation_date_time"""'], {}), "(self, 'creation_date_time')\n", (2863, 2891), False, 'import pulumi\n'), ((3047, 3078), 'pulumi.get', 'pulumi.get', (['self', '"""description"""'], {}), "(self, 'description')\n", (3057, 3078), False, 'import pulumi\n'), ((3244, 3268), 'pulumi.get', 'pulumi.get', (['self', '"""tags"""'], {}), "(self, 'tags')\n", (3254, 3268), False, 'import pulumi\n'), ((3463, 3499), 'pulumi.get', 'pulumi.get', (['self', '"""update_date_time"""'], {}), "(self, 'update_date_time')\n", (3473, 3499), False, 'import pulumi\n'), ((4472, 4494), 'pulumi.InvokeOptions', 'pulumi.InvokeOptions', ([], {}), '()\n', (4492, 4494), False, 'import pulumi\n'), ((4586, 4689), 'pulumi.runtime.invoke', 'pulumi.runtime.invoke', (['"""aws-native:iottwinmaker:getScene"""', '__args__'], {'opts': 'opts', 'typ': 'GetSceneResult'}), "('aws-native:iottwinmaker:getScene', __args__, opts=\n opts, typ=GetSceneResult)\n", (4607, 4689), False, 'import pulumi\n')]
#Standard python libraries import os #Dependencies import numpy as np import yaml import matplotlib.pyplot as plt from pyfftw.interfaces.numpy_fft import fft, fftshift, ifft, ifftshift, fftfreq #TransientAbsorption implemented using UF2 from ultrafastultrafast.signals import TransientAbsorption """The following definitions of I4_mat and kdelvec are based upon the formulas given in Appendix B of Molecular Quantum Electrodynamics, by <NAME> """ I4_mat = np.array([[4,-1,-1],[-1,4,-1],[-1,-1,4]])/30 def kdel(x,y): """Kronecker Delta""" if x == y: return 1 else: return 0 def kdel2(a,b,c,d): """Product of 2 Kronecker Deltas""" return kdel(a,b)*kdel(c,d) def kdelvec(i,j,k,l): """Length 3 vector of Kronecker Delta products, as defined in """ vec = [kdel2(i,j,k,l), kdel2(i,k,j,l), kdel2(i,l,j,k)] return np.array(vec) class TransientAbsorptionIsotropicAverage(object): """This class performs the isotropic average of the 4th order tensor which is the material response produced by 4-wave mixing process""" def __init__(self,parameter_file_path,efield_polarization,*, num_conv_points=138, initial_state=0,dt=0.1,total_num_time_points = 3686): # This is the object that will actually calculate all of the signals self.TA = TransientAbsorption(parameter_file_path, num_conv_points=num_conv_points, initial_state=initial_state, dt=dt, total_num_time_points=total_num_time_points) # Lab frame polarization sequence for pulses self.efield_polarization = efield_polarization # Working directory self.base_path = self.TA.base_path def set_homogeneous_linewidth(self,*args,**kwargs): self.TA.set_homogeneous_linewidth(*args,**kwargs) def set_inhomogeneous_linewidth(self,*args,**kwargs): self.TA.set_inhomogeneous_linewidth(*args,**kwargs) def recenter(self,*args,**kwargs): self.TA.recenter(*args,**kwargs) def set_pulse_shapes(self,*args,**kwargs): # Pass pulse shapes on to the self.TA object self.TA.set_pulse_shapes(*args,**kwargs) def calculate_spectra(self,delay_times): # The isotropic averaging is performed based upon the real orientation of the lab frame pulses # The calculation will differ depending on whether the pump and probe are aligned or crossed left_vec = kdelvec(*self.efield_polarization) xyz = ['x','y','z'] pol_options = [] for i in range(3): # Check to see if the dipole operator has any non-zero components along the given # molecular frame axis, if the dipole exists only in the x-y plane, for example, # then we can avoid doing quite a few unnecessary calculations! if not np.allclose(self.TA.mu_GSM_to_SEM[:,:,i],0): pol_options.append(xyz[i]) signal = np.zeros((self.TA.w.size,delay_times.size)) for i in pol_options: for j in pol_options: for k in pol_options: for l in pol_options: # generate the vector of kronecker delta products right_vec = kdelvec(i,j,k,l) if np.allclose(right_vec,0): # If the vector is 0, don't bother! pass else: # If not, set the polarization sequence, do the calculation, and # add the weight given by the isotropic weight matrix, I4_mat # Note the the polarization sequences are not the lab frame # polarization sequence of the pulses. self.TA.set_polarization_sequence([i,j,k,l]) weight = I4_mat.dot(right_vec) weight = np.dot(left_vec,weight) signal += weight * self.TA.calculate_pump_probe_spectra_vs_delay_time(delay_times) # Full isotorpically averaged signal self.signal_vs_delay_times = signal self.delay_times = delay_times self.w = self.TA.w # Center frequency of pulses in the RWA self.center = self.TA.center return signal def save(self,**kwargs): self.save_pump_probe_spectra_vs_delay_time(**kwargs) def save_pump_probe_spectra_vs_delay_time(self,*,save_file_name='default'): if save_file_name == 'default': save_name = os.path.join(self.base_path,'TA_spectra_iso_ave.npz') else: save_name = os.path.join(self.base_path,save_file_name) np.savez(save_name,signal = self.signal_vs_delay_times, delay_times = self.delay_times, frequencies = self.w, pulse_center = self.center) def load_pump_probe_spectra_vs_delay_time(self): load_name = self.base_path + 'TA_spectra_iso_ave.npz' arch = np.load(load_name) self.signal_vs_delay_times = arch['signal'] self.delay_times = arch['delay_times'] self.w = arch['frequencies'] try: self.center = arch['pulse_center'] except KeyError: warnings.warn('Pulse center was not saved in archive, setting center = 0') self.center = 0 def plot_pump_probe_spectra(self,*,frequency_range=[-1000,1000], subtract_DC = True, create_figure=True, color_range = 'auto',draw_colorbar = True,save_fig=True): """Plots the transient absorption spectra with detection frequency on the y-axis and delay time on the x-axis. Args: frequency_range (list): sets the min (list[0]) and max (list[1]) detection frequency for y-axis subtract_DC (bool): if True subtract the DC component of the TA color_range (list): sets the min (list[0]) and max (list[1]) value for the colorbar draw_colorbar (bool): if True add a colorbar to the plot save_fig (bool): if True save the figure that is produced """ # Cut out unwanted detection frequency points w_ind = np.where((self.w > frequency_range[0]) & (self.w < frequency_range[1]))[0] w = self.w[w_ind] sig = self.signal_vs_delay_times[w_ind,:] if subtract_DC: sig_fft = fft(sig,axis=1) sig_fft[:,0] = 0 sig = np.real(ifft(sig_fft)) ww, tt = np.meshgrid(self.delay_times,w) if create_figure: plt.figure() if color_range == 'auto': plt.pcolormesh(ww,tt,sig) else: plt.pcolormesh(ww,tt,sig,vmin=color_range[0],vmax=color_range[1]) if draw_colorbar: plt.colorbar() plt.xlabel('Delay time ($\omega_0^{-1}$)',fontsize=16) plt.ylabel('Detection Frequency ($\omega_0$)',fontsize=16) if save_fig: plt.savefig(self.base_path + 'TA_spectra_iso_ave') if __name__=='__main__': print(kdelvec('x','x','x','x','x','x')) print(kdelvec('x','x','x','x','y','y')) print(kdelvec('x','x','x','y','y','y')) right = kdelvec('x','x','x','x','y','y') left = kdelvec('x','x','x','x','x','x') print(left) rightprod = I6_mat.dot(right) print(rightprod) prod = np.dot(left,rightprod) print(prod)
[ "numpy.savez", "ultrafastultrafast.signals.TransientAbsorption", "matplotlib.pyplot.savefig", "numpy.allclose", "pyfftw.interfaces.numpy_fft.ifft", "matplotlib.pyplot.ylabel", "numpy.where", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.colorbar", "os.path.join", "matplotlib.pyplot.pcolormesh", "numpy.array", "numpy.dot", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.meshgrid", "numpy.load", "pyfftw.interfaces.numpy_fft.fft" ]
[((461, 510), 'numpy.array', 'np.array', (['[[4, -1, -1], [-1, 4, -1], [-1, -1, 4]]'], {}), '([[4, -1, -1], [-1, 4, -1], [-1, -1, 4]])\n', (469, 510), True, 'import numpy as np\n'), ((884, 897), 'numpy.array', 'np.array', (['vec'], {}), '(vec)\n', (892, 897), True, 'import numpy as np\n'), ((7505, 7528), 'numpy.dot', 'np.dot', (['left', 'rightprod'], {}), '(left, rightprod)\n', (7511, 7528), True, 'import numpy as np\n'), ((1351, 1514), 'ultrafastultrafast.signals.TransientAbsorption', 'TransientAbsorption', (['parameter_file_path'], {'num_conv_points': 'num_conv_points', 'initial_state': 'initial_state', 'dt': 'dt', 'total_num_time_points': 'total_num_time_points'}), '(parameter_file_path, num_conv_points=num_conv_points,\n initial_state=initial_state, dt=dt, total_num_time_points=\n total_num_time_points)\n', (1370, 1514), False, 'from ultrafastultrafast.signals import TransientAbsorption\n'), ((3046, 3090), 'numpy.zeros', 'np.zeros', (['(self.TA.w.size, delay_times.size)'], {}), '((self.TA.w.size, delay_times.size))\n', (3054, 3090), True, 'import numpy as np\n'), ((4865, 5000), 'numpy.savez', 'np.savez', (['save_name'], {'signal': 'self.signal_vs_delay_times', 'delay_times': 'self.delay_times', 'frequencies': 'self.w', 'pulse_center': 'self.center'}), '(save_name, signal=self.signal_vs_delay_times, delay_times=self.\n delay_times, frequencies=self.w, pulse_center=self.center)\n', (4873, 5000), True, 'import numpy as np\n'), ((5142, 5160), 'numpy.load', 'np.load', (['load_name'], {}), '(load_name)\n', (5149, 5160), True, 'import numpy as np\n'), ((6624, 6656), 'numpy.meshgrid', 'np.meshgrid', (['self.delay_times', 'w'], {}), '(self.delay_times, w)\n', (6635, 6656), True, 'import numpy as np\n'), ((6932, 6988), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Delay time ($\\\\omega_0^{-1}$)"""'], {'fontsize': '(16)'}), "('Delay time ($\\\\omega_0^{-1}$)', fontsize=16)\n", (6942, 6988), True, 'import matplotlib.pyplot as plt\n'), ((6995, 7055), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Detection Frequency ($\\\\omega_0$)"""'], {'fontsize': '(16)'}), "('Detection Frequency ($\\\\omega_0$)', fontsize=16)\n", (7005, 7055), True, 'import matplotlib.pyplot as plt\n'), ((4721, 4775), 'os.path.join', 'os.path.join', (['self.base_path', '"""TA_spectra_iso_ave.npz"""'], {}), "(self.base_path, 'TA_spectra_iso_ave.npz')\n", (4733, 4775), False, 'import os\n'), ((4813, 4857), 'os.path.join', 'os.path.join', (['self.base_path', 'save_file_name'], {}), '(self.base_path, save_file_name)\n', (4825, 4857), False, 'import os\n'), ((6323, 6394), 'numpy.where', 'np.where', (['((self.w > frequency_range[0]) & (self.w < frequency_range[1]))'], {}), '((self.w > frequency_range[0]) & (self.w < frequency_range[1]))\n', (6331, 6394), True, 'import numpy as np\n'), ((6521, 6537), 'pyfftw.interfaces.numpy_fft.fft', 'fft', (['sig'], {'axis': '(1)'}), '(sig, axis=1)\n', (6524, 6537), False, 'from pyfftw.interfaces.numpy_fft import fft, fftshift, ifft, ifftshift, fftfreq\n'), ((6694, 6706), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6704, 6706), True, 'import matplotlib.pyplot as plt\n'), ((6753, 6780), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['ww', 'tt', 'sig'], {}), '(ww, tt, sig)\n', (6767, 6780), True, 'import matplotlib.pyplot as plt\n'), ((6805, 6874), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['ww', 'tt', 'sig'], {'vmin': 'color_range[0]', 'vmax': 'color_range[1]'}), '(ww, tt, sig, vmin=color_range[0], vmax=color_range[1])\n', (6819, 6874), True, 'import matplotlib.pyplot as plt\n'), ((6909, 6923), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (6921, 6923), True, 'import matplotlib.pyplot as plt\n'), ((7087, 7137), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(self.base_path + 'TA_spectra_iso_ave')"], {}), "(self.base_path + 'TA_spectra_iso_ave')\n", (7098, 7137), True, 'import matplotlib.pyplot as plt\n'), ((2932, 2978), 'numpy.allclose', 'np.allclose', (['self.TA.mu_GSM_to_SEM[:, :, i]', '(0)'], {}), '(self.TA.mu_GSM_to_SEM[:, :, i], 0)\n', (2943, 2978), True, 'import numpy as np\n'), ((6592, 6605), 'pyfftw.interfaces.numpy_fft.ifft', 'ifft', (['sig_fft'], {}), '(sig_fft)\n', (6596, 6605), False, 'from pyfftw.interfaces.numpy_fft import fft, fftshift, ifft, ifftshift, fftfreq\n'), ((3389, 3414), 'numpy.allclose', 'np.allclose', (['right_vec', '(0)'], {}), '(right_vec, 0)\n', (3400, 3414), True, 'import numpy as np\n'), ((4049, 4073), 'numpy.dot', 'np.dot', (['left_vec', 'weight'], {}), '(left_vec, weight)\n', (4055, 4073), True, 'import numpy as np\n')]
#!/usr/bin/env python import pytest import matplotlib matplotlib.use('Agg') import numpy as np # noqa import pandas as pd # noqa import pandas_ml as pdml # noqa import pandas_ml.util.testing as tm # noqa import sklearn.datasets as datasets # noqa import xgboost as xgb # noqa class TestXGBoostPlotting(tm.TestCase): def test_plotting(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) df.fit(df.svm.SVC()) # raises if df.estimator is not XGBModel with pytest.raises(ValueError): df.xgb.plot_importance() with pytest.raises(ValueError): df.xgb.to_graphviz() with pytest.raises(ValueError): df.xgb.plot_tree() df.fit(df.xgb.XGBClassifier()) from matplotlib.axes import Axes from graphviz import Digraph try: ax = df.xgb.plot_importance() except ImportError: import nose # matplotlib.use doesn't work on Travis # PYTHON=3.4 PANDAS=0.17.1 SKLEARN=0.16.1 raise nose.SkipTest() self.assertIsInstance(ax, Axes) assert ax.get_title() == 'Feature importance' assert ax.get_xlabel() == 'F score' assert ax.get_ylabel() == 'Features' assert len(ax.patches) == 4 g = df.xgb.to_graphviz(num_trees=0) self.assertIsInstance(g, Digraph) ax = df.xgb.plot_tree(num_trees=0) self.assertIsInstance(ax, Axes)
[ "sklearn.datasets.load_iris", "pandas_ml.ModelFrame", "matplotlib.use", "nose.SkipTest", "pytest.raises" ]
[((55, 76), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (69, 76), False, 'import matplotlib\n'), ((486, 506), 'sklearn.datasets.load_iris', 'datasets.load_iris', ([], {}), '()\n', (504, 506), True, 'import sklearn.datasets as datasets\n'), ((520, 541), 'pandas_ml.ModelFrame', 'pdml.ModelFrame', (['iris'], {}), '(iris)\n', (535, 541), True, 'import pandas_ml as pdml\n'), ((635, 660), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (648, 660), False, 'import pytest\n'), ((713, 738), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (726, 738), False, 'import pytest\n'), ((787, 812), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (800, 812), False, 'import pytest\n'), ((1196, 1211), 'nose.SkipTest', 'nose.SkipTest', ([], {}), '()\n', (1209, 1211), False, 'import nose\n')]
from django.db import models class Blog(models.Model): name = models.CharField(max_length=256, blank=False) latest_post = models.IntegerField(default=0) def __str__(self): return self.name class Tag(models.Model): tag = models.CharField(max_length=256) def __str__(self): return self.tag class Gif(models.Model): blog = models.ForeignKey(Blog) tag = models.ManyToManyField(Tag) url = models.URLField() def __str__(self): return self.url
[ "django.db.models.ForeignKey", "django.db.models.IntegerField", "django.db.models.ManyToManyField", "django.db.models.URLField", "django.db.models.CharField" ]
[((68, 113), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(256)', 'blank': '(False)'}), '(max_length=256, blank=False)\n', (84, 113), False, 'from django.db import models\n'), ((132, 162), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (151, 162), False, 'from django.db import models\n'), ((249, 281), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(256)'}), '(max_length=256)\n', (265, 281), False, 'from django.db import models\n'), ((368, 391), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Blog'], {}), '(Blog)\n', (385, 391), False, 'from django.db import models\n'), ((402, 429), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['Tag'], {}), '(Tag)\n', (424, 429), False, 'from django.db import models\n'), ((440, 457), 'django.db.models.URLField', 'models.URLField', ([], {}), '()\n', (455, 457), False, 'from django.db import models\n')]
from infrastructure import * from indputils import * from gurobipy import * from indp import * import string import networkx as nx import matplotlib.pyplot as plt import copy import random import time import sys import scipy.io try: import matlab.engine except ModuleNotFoundError: print("Can't find module 'matlab.engine'") def apply_recovery(N,indp_results,t): for action in indp_results[t]['actions']: if "/" in action: # Edge recovery action. data=action.split("/") src=tuple([int(x) for x in data[0].split(".")]) dst=tuple([int(x) for x in data[1].split(".")]) N.G[src][dst]['data']['inf_data'].functionality=1.0 else: # Node recovery action. node=tuple([int(x) for x in action.split(".")]) #print "Applying recovery:",node N.G.nodes[node]['data']['inf_data'].repaired=1.0 N.G.nodes[node]['data']['inf_data'].functionality=1.0 def run_mh(params, layers=[1,2,3], controlled_layers=[], functionality={},T=1, validate=False, save=True,suffix="", forced_actions=False, saveModel=False, print_cmd_line=True, dynamic_params=None, co_location=True): """ Runs an INDP problem with specified parameters. Outputs to directory specified in params['OUTPUT_DIR']. :param params: Global parameters. :param layers: Layers to consider in the infrastructure network. :param T: Number of timesteps to optimize over. :param validate: Validate solution. """ # Initialize failure scenario. InterdepNet=None if "N" not in params: InterdepNet=initialize_network(BASE_DIR="../data/INDP_7-20-2015/",sim_number=params['SIM_NUMBER'],magnitude=params["MAGNITUDE"]) else: InterdepNet=params["N"] if "NUM_ITERATIONS" not in params: params["NUM_ITERATIONS"] = 1 if not controlled_layers: controlled_layers = layers v_r=params["V"] if isinstance(v_r, (int)): outDirSuffixRes = str(v_r) else: outDirSuffixRes = str(sum([val for _, val in v_r.items()]))+'_fixed_layer_Cap' indp_results=INDPResults(params["L"]) if T == 1: print("--Running iterative MH.") if print_cmd_line: print("Num iters=",params["NUM_ITERATIONS"]) # Run INDP for 1 time step (original INDP). output_dir=params["OUTPUT_DIR"]+'_L'+str(len(layers))+'_m'+str(params["MAGNITUDE"])+"_v"+outDirSuffixRes # Initial calculations. if dynamic_params: original_N = copy.deepcopy(InterdepNet) #!!! deepcopy dynamic_parameters(InterdepNet, original_N, 0, dynamic_params) results=indp(InterdepNet,0,1,layers,controlled_layers=controlled_layers, functionality=functionality, co_location=co_location) indp_results=results[1] indp_results.add_components(0,INDPComponents.calculate_components(results[0],InterdepNet,layers=controlled_layers)) for i in range(params["NUM_ITERATIONS"]): print("-Time Step (MH)",i+1,"/",params["NUM_ITERATIONS"]) if dynamic_params: dynamic_parameters(InterdepNet, original_N, i+1, dynamic_params) results=indp(InterdepNet, v_r, T, layers, controlled_layers=controlled_layers, forced_actions=forced_actions, co_location=co_location) ### Extract matrices and vectors m = results[0] var_index = {v.VarName.replace("(", "").replace(")", "").replace(",", "_").\ replace(" ", "").replace("+", "_p").replace("-", "_m"):\ i for i, v in enumerate(m.getVars())} constr_rhs= {c.ConstrName.replace("(", "").replace(")", "").replace(",", "_").\ replace(" ", "").replace(".", ""): c.RHS for i, c in enumerate(m.getConstrs())} constr_sense= {c.ConstrName.replace("(", "").replace(")", "").replace(",", "_").\ replace(" ", "").replace(".", ""): c.sense for i, c in enumerate(m.getConstrs())} obj_coeffs = m.getAttr('Obj', m.getVars()) A = m.getA() opt_sol = {} for v in m.getVars(): opt_sol[v.varName.replace("(", "").replace(")", "").replace(",", "_").\ replace(" ", "").replace("+", "_p").replace("-", "_m")]= v.x scipy.io.savemat('./Metaheuristics/arrdata.mat', mdict={'A': A}) ### Run GA in Matlab eng = matlab.engine.start_matlab("-desktop") #!!! Send as an argument for debugging in MATLAB: "-desktop" eng.cd('./Metaheuristics/') eng.eval('dbstop in main.m at 3', nargout=0) #!!! result_mh = eng.main(var_index, constr_rhs, constr_sense, obj_coeffs, opt_sol) return result_mh #!!! # if saveModel: # save_INDP_model_to_file(results[0],output_dir+"/Model",i+1) # # Modify network to account for recovery and calculate components. # apply_recovery(InterdepNet,indp_results,i+1) # # Save results of current simulation. # if save: # if not os.path.exists(output_dir): # os.makedirs(output_dir) # indp_results.to_csv(output_dir,params["SIM_NUMBER"],suffix=suffix) # if not os.path.exists(output_dir+'/agents'): # os.makedirs(output_dir+'/agents') # indp_results.to_csv_layer(output_dir+'/agents',params["SIM_NUMBER"],suffix=suffix) # return indp_results
[ "copy.deepcopy" ]
[((2562, 2588), 'copy.deepcopy', 'copy.deepcopy', (['InterdepNet'], {}), '(InterdepNet)\n', (2575, 2588), False, 'import copy\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: bengtl """ from setuptools import setup, find_packages from setuptools.extension import Extension from Cython.Build import cythonize import numpy extensions = [Extension("spikebit.encoder", ["spikebit/encoder.pyx"], include_dirs=[numpy.get_include()]), Extension("spikebit.patterncheck", ["spikebit/patterncheck.pyx"], include_dirs=[numpy.get_include()]), Extension("spikebit.simrun", ["spikebit/simrun.pyx"], include_dirs=[numpy.get_include()])] setup(name='spikebit', description='Electrophysiology data integration', version='0.24', install_requires=['mpi4py>=3.0', 'Cython>=0.27', 'numpy>=1.13', 'h5py>=2.7'], author='<NAME>', author_email='<EMAIL>', py_modules=['spikebit'], platforms='linux', packages=find_packages(exclude=['test']), license='MIT', ext_modules=cythonize(extensions), include_dirs=[numpy.get_include()], entry_points={ 'console_scripts': ['spikebit-server=spikebit.command_line:server', 'spikebit-singleserver=spikebit.serverwrapper:main', 'spikebit-client=spikebit.command_line:client'], })
[ "Cython.Build.cythonize", "setuptools.find_packages", "numpy.get_include" ]
[((990, 1021), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['test']"}), "(exclude=['test'])\n", (1003, 1021), False, 'from setuptools import setup, find_packages\n'), ((1062, 1083), 'Cython.Build.cythonize', 'cythonize', (['extensions'], {}), '(extensions)\n', (1071, 1083), False, 'from Cython.Build import cythonize\n'), ((1105, 1124), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (1122, 1124), False, 'import numpy\n'), ((315, 334), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (332, 334), False, 'import numpy\n'), ((480, 499), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (497, 499), False, 'import numpy\n'), ((633, 652), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (650, 652), False, 'import numpy\n')]
import sys sys.path.append('.') sys.path.append('D:\\Program Files\\caffe_windows_exe_cup_only_x64') import caffe import cv2 import numpy as np import os from math import * deploy = 'models/bbox_regression.prototxt' caffemodel = 'models/bbox_regression.caffemodel' net = caffe.Net(deploy, caffemodel, caffe.TEST) caffe.set_mode_cpu() #caffe.set_device(0) def view_bar(num, total): rate = float(num) / total rate_num = int(rate * 100) r = '\r[%s%s]%d%% (%d/%d)' % ("#" * rate_num, " " * (100 - rate_num), rate_num, num, total) sys.stdout.write(r) sys.stdout.flush() def preprocess(img, size, channel_mean=[104, 117, 123]): img_new = np.asarray(img, dtype=float) img_new = cv2.resize(img_new, size) for i in range(img_new.shape[-1]): img_new[:, :, i] = img_new[:, :, i] - channel_mean[i] img_new = np.transpose(img_new, (2, 0, 1)) return img_new def bboxRegression(img, bboxes): origin_h, origin_w, ch = img.shape net.blobs['data'].reshape(len(bboxes), 3, 106, 106) idx = 0 for bbox in bboxes: x1 = int(bbox[0]) y1 = int(bbox[1]) x2 = int(bbox[2]) y2 = int(bbox[3]) #x2=max(x1+1,x2) #y2=max(y1+1,y2) if (x1>origin_w or x2>origin_w or y1>origin_h or y2>origin_h or x1<0 or x2<0 or y1<0 or y2<0 or x2<=x1 or y2<=y1): continue #print("Original image size : "+str(img.shape)) #print("crop window:"+str([x1,y1,x2,y2])) crop_img = img[y1:y2,x1:x2,:] #print(str(crop_img.shape)) net.blobs['data'].data[idx] = preprocess(crop_img, (106, 106)) idx += 1 out = net.forward()['ip2'] for i in range(0, len(bboxes)): x1, y1, x2, y2 = bboxes[i] w = x2 - x1 + 1 h = y2 - y1 + 1 regressor = out[i, :] for j in range(len(regressor)): if regressor[j] > 0: regressor[j] += 1 regressor[j] = log(regressor[j]) * 0.2 else: regressor[j] = 1 - regressor[j] regressor[j] = -log(regressor[j]) * 0.2 bboxes[i, 0] = int(round(max(0, x1 + w * regressor[0]))) bboxes[i, 1] = int(round(max(0, y1 + h * regressor[1]))) bboxes[i, 2] = int(round(min(origin_w, x2 + w * regressor[2]))) bboxes[i, 3] = int(round(min(origin_h, y2 + h * regressor[3]))) #print(regressor) return bboxes def writeLabel(filePonter,imageName,Boxes): label=[] filePonter.write(imageName+" ") b=Boxes.reshape(-1).tolist() for pos in b: label.append(pos) filePonter.write(str(label).strip("[]").replace(",",' ')) filePonter.write("\n") img_root = 'E:/Data/FaceG/IR_labelled/Training/' infos = [line.strip('\n') for line in open("E:/Data/FaceG/IR_labelled/IR_Training_label.txt")] N=len(infos) view_idx=0 f=open("E:/Data/FaceG/IR_labelled/IR_Training_Regressed_label.txt",'w') for info in infos: view_idx=view_idx+1 info_strlist = info.split(',') img_name =img_root+info_strlist[0]+".jpg" #if not 'graduation_photo' in img_name: # continue print(img_name) img = cv2.imread(img_name) if img is None: print("NULL Images "+img_name) continue info_strlist=[xx for xx in info_strlist if xx != ""] bboxes = np.array(info_strlist[1:], dtype=np.float).reshape(-1, 4) bboxes_new = bboxRegression(img, np.copy(bboxes)) writeLabel(f,info_strlist[0].strip('\''),bboxes_new) view_bar(view_idx, N) draw = img.copy() for i in range(len(bboxes)): x1, y1, x2, y2 = bboxes[i, :] # w = x2 - x1 + 1 # h = y2 - y1 + 1 #cv2.putText(draw, str('%.6f' % rectangle[-1]), (int(rectangle[0]), int( # rectangle[1])), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0)) #cv2.rectangle(draw, (int(bboxes[i, 0]), int(bboxes[i, 1])), (int( # bboxes[i, 2]), int(bboxes[i, 3])), (255, 0, 0), 1) cv2.rectangle(draw, (int(bboxes[i, 0]), int(bboxes[i, 1])), (int( bboxes[i, 2]), int(bboxes[i, 3])), (0, 255, 0), 2) cv2.rectangle(draw, (int(bboxes_new[i, 0]), int(bboxes_new[i, 1])), (int( bboxes_new[i, 2]), int(bboxes_new[i, 3])), (0, 0, 255), 2) # for j in range(0, 106): # cv2.circle(draw, (int(key_pts[i, 2 * j] * w / float(106) + x1), # int(key_pts[i, 2 * j + 1] * h / float(106) + y1)), 1, (0, 255, 0), 1) #cv2.imshow("result", draw) #cv2.waitKey(0) outdir="E:/Data/FaceG/IR_labelled/RegressedImages/"+str(info_strlist[0]+".jpg").strip('\'') cv2.imwrite(outdir, draw) f.close()
[ "cv2.imwrite", "numpy.copy", "cv2.imread", "cv2.resize", "numpy.asarray", "numpy.array", "caffe.Net", "caffe.set_mode_cpu", "sys.stdout.flush", "numpy.transpose", "sys.path.append", "sys.stdout.write" ]
[((11, 31), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (26, 31), False, 'import sys\n'), ((32, 100), 'sys.path.append', 'sys.path.append', (['"""D:\\\\Program Files\\\\caffe_windows_exe_cup_only_x64"""'], {}), "('D:\\\\Program Files\\\\caffe_windows_exe_cup_only_x64')\n", (47, 100), False, 'import sys\n'), ((272, 313), 'caffe.Net', 'caffe.Net', (['deploy', 'caffemodel', 'caffe.TEST'], {}), '(deploy, caffemodel, caffe.TEST)\n', (281, 313), False, 'import caffe\n'), ((316, 336), 'caffe.set_mode_cpu', 'caffe.set_mode_cpu', ([], {}), '()\n', (334, 336), False, 'import caffe\n'), ((582, 601), 'sys.stdout.write', 'sys.stdout.write', (['r'], {}), '(r)\n', (598, 601), False, 'import sys\n'), ((606, 624), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (622, 624), False, 'import sys\n'), ((699, 727), 'numpy.asarray', 'np.asarray', (['img'], {'dtype': 'float'}), '(img, dtype=float)\n', (709, 727), True, 'import numpy as np\n'), ((742, 767), 'cv2.resize', 'cv2.resize', (['img_new', 'size'], {}), '(img_new, size)\n', (752, 767), False, 'import cv2\n'), ((883, 915), 'numpy.transpose', 'np.transpose', (['img_new', '(2, 0, 1)'], {}), '(img_new, (2, 0, 1))\n', (895, 915), True, 'import numpy as np\n'), ((3197, 3217), 'cv2.imread', 'cv2.imread', (['img_name'], {}), '(img_name)\n', (3207, 3217), False, 'import cv2\n'), ((4763, 4788), 'cv2.imwrite', 'cv2.imwrite', (['outdir', 'draw'], {}), '(outdir, draw)\n', (4774, 4788), False, 'import cv2\n'), ((3483, 3498), 'numpy.copy', 'np.copy', (['bboxes'], {}), '(bboxes)\n', (3490, 3498), True, 'import numpy as np\n'), ((3384, 3426), 'numpy.array', 'np.array', (['info_strlist[1:]'], {'dtype': 'np.float'}), '(info_strlist[1:], dtype=np.float)\n', (3392, 3426), True, 'import numpy as np\n')]
from utils import resume_training, read_vocab, Tokenizer from models import EncoderRNN, SelfMonitoring import torch import numpy as np from parser import parser from gibson2.core.simulator import Simulator from gibson2.core.physics.scene import BuildingScene, StadiumScene from gibson2.core.physics.robot_locomotors import Turtlebot from gibson2.utils.utils import parse_config from torchvision import models, transforms import torch import torch.nn.functional as F import torch.distributions as D import matplotlib.pyplot as plt import time from make_headings import heading_elevation_feat # For now: (scene_id, traj_id, instr_idx, instr, starting coords) good_path_tuples = [ ("X7HyMhZNoso", 3134, 0, "Exit the room, turn right and walk down the hallway, turn right after the banister, walk straight, turn right and walk down three steps and stop.", [1.74891996383667, -10.484199523925781, 4.725299835205078]), ("zsNo4HB9uLZ", 122, 1, "Turn around 180 degrees. Go down the hallway to the right. Walk through the kitchen, past the island and stop as soon as you reach the table.", [1.6058199405670166, 3.821429967880249, 1.5538100004196167]), ("x8F5xyUWy9e", 3359, 1, "Turn left and exit the room. Walk straight across and enter the double doors at the end of the hallway. Stop once inside the door.", [-7.6413397789001465, 0.759335994720459, 2.5069499015808105]), ("ZMojNkEp431", 2899, 1, "Walk around the right side of the table, through the pillars into the larger room. Now go around the left side of the long table and stop in the middle of the room with the ping pong table to your right. ", [6.870639801025391, 6.311359882354736, 1.488450050354004]), ("1pXnuDYAj8r", 3821, 2, "Walk out from behind the piano and towards the dining room table. Once you reach the table, turn left and enter the next room with a table. Once in that room, turn left and then stop in front of the mantle. ", [13.605999946594238, 0.5888980031013489, 1.3177499771118164]), # OOM ("B6ByNegPMKs", 6757, 1, "Walk down the hall towards the exit sign and turn right. Walk into the first door on the left and stop. ", [50.94770050048828, -21.33690071105957, 1.4572299718856812]), ("5q7pvUzZiYa", 5057, 2, "Turn around and walk into the bedroom. Walk out of the bedroom into the hallway. Stop just outside the bedroom. ", [15.51509952545166, -0.6587600111961365, 1.596619963645935]), ("mJXqzFtmKg4", 2235, 0, "Walk out of the kitchen and past the hallway door. Walk into the dining room and turn right. Stop by the piano. ", [-3.7005701065063477, 4.07436990737915, 1.523900032043457]), ("V2XKFyX4ASd", 3474, 0, "Exit the bathroom. Walk forward and go down the stairs. Stop four steps from the bottom. ", [8.059459686279297, -0.07581040263175964, 4.145989894866943]), ("XcA2TqTSSAj", 2907, 1, "Go down the hallway where the bathroom is located and into the bedroom with the dark lacquer wooden floor. ", [4.149159908294678, 2.2838799953460693, 4.6429901123046875]), ("V2XKFyX4ASd", 1726, 1, "Turn right and walk across the bed. Turn slightly left and exit the bedroom. Walk towards the sofa and wait there. ", [5.758540153503418, 6.962540149688721, 4.039840221405029]) ] gibson_path_tuples = [ ("Pablo", 0, 0, "Walk past the sofa into the hallway. Keep going until the end of the hall and stop in front of the door.", [0, 0, 1]) ] im_per_ob = 36 # Batch size of images going through imagenet model B_S = 4 assert(im_per_ob % B_S == 0) # Model stuff opts = parser.parse_args() # opts.resume = "best" # Text processing vocab = read_vocab(opts.train_vocab) base_vocab = ['<PAD>', '<START>', '<EOS>', '<UNK>'] padding_idx = base_vocab.index('<PAD>') tok = Tokenizer(opts.remove_punctuation == 1, opts.reversed == 1, vocab=vocab, encoding_length=80) batch_size = 1 trajectory_to_play = [good_path_tuples[5]] policy_model_kwargs = { 'opts':opts, 'img_fc_dim': opts.img_fc_dim, 'img_fc_use_batchnorm': opts.img_fc_use_batchnorm == 1, 'img_dropout': opts.img_dropout, 'img_feat_input_dim': opts.img_feat_input_dim, 'rnn_hidden_size': opts.rnn_hidden_size, 'rnn_dropout': opts.rnn_dropout, 'max_len': opts.max_cap_length, 'max_navigable': opts.max_navigable } encoder_kwargs = { 'opts': opts, 'vocab_size': len(vocab), 'embedding_size': opts.word_embedding_size, 'hidden_size': opts.rnn_hidden_size, 'padding_idx': padding_idx, 'dropout_ratio': opts.rnn_dropout, 'bidirectional': opts.bidirectional == 1, 'num_layers': opts.rnn_num_layers } # Model setup torch.no_grad() model = SelfMonitoring(**policy_model_kwargs).cuda() encoder = EncoderRNN(**encoder_kwargs).cuda() params = list(encoder.parameters()) + list(model.parameters()) optimizer = torch.optim.Adam(params, lr=opts.learning_rate) resume_training(opts, model, encoder, optimizer) model.eval() # model.device = torch.device("cpu") encoder.eval() # encoder.device = torch.device("cpu") resnet = models.resnet152(pretrained=True) resnet.eval() resnet.cuda() # Gibson setup config = parse_config('ped.yaml') def transform_img(im): ''' Prep gibson rgb input for pytorch model ''' # RGB pixel mean - from feature precomputing script im = im[60:540, :, :3].copy() preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(im) blob = np.zeros((1, 3, im.shape[0], im.shape[1]), dtype=np.float32) blob[0, :, :, :] = input_tensor return blob def _select_action(logit, ended, feedback='argmax', is_prob=False, fix_action_ended=True): logit_cpu = logit.clone().cpu() if is_prob: probs = logit_cpu else: probs = F.softmax(logit_cpu, 1) if feedback == 'argmax': _, action = probs.max(1) # student forcing - argmax action = action.detach() elif feedback == 'sample': # sampling an action from model m = D.Categorical(probs) action = m.sample() else: raise ValueError('Invalid feedback option: {}'.format(feedback)) # set action to 0 if already ended if fix_action_ended: for i, _ended in enumerate(ended): if _ended: action[i] = 0 return action def rollout(traj, headless=False): SCENE, traj_id, instr_id, instr, starting_coords = traj # instr = "Keep going and don't stop" # starting_coords = [0, 0, 0] seq = tok.encode_sentence(instr) tokens = tok.split_sentence(instr) seq_lengths = [np.argmax(seq == padding_idx, axis=0)] seq = torch.from_numpy(np.expand_dims(seq, 0)).cuda() # seq_lengths[seq_lengths == 0] = seq.shape[1] # Full length ctx, h_t, c_t, ctx_mask = encoder(seq, seq_lengths) question = h_t pre_feat = torch.zeros(batch_size, opts.img_feat_input_dim).cuda() pre_ctx_attend = torch.zeros(batch_size, opts.rnn_hidden_size).cuda() # Gibson stuff # 72 fov for 600, 60 for 480 # mode = gui for debug, headless for run s = Simulator(mode='gui', resolution=640, fov=75, panorama=True) scene = BuildingScene(SCENE) # scene = StadiumScene() ids = s.import_scene(scene) robot = Turtlebot(config) ped_id = s.import_robot(robot) heading_feat_tensor = torch.Tensor(heading_elevation_feat()).view([im_per_ob, 128]).cuda() s.step() robot.set_position(starting_coords) def apply_action(bot: robot, action_idx: int, depth_ok: list, headless=False) -> bool: print(action_idx) # action_idx is expected to be 0-13, TODO: make nicer... if action_idx == 0 or action_idx > 12 or not depth_ok[action_idx - 1]: print("STOP") return True action_idx -= 1 #if action_idx < 3 or (action_idx < 12 and action_idx > 9): bot.turn_right(0.5235988 * action_idx) s.step() if(not headless): time.sleep(0.2) bot.move_forward(0.5) return False # else: # if action_idx < 7: # bot.turn_left(1.57) # else: # bot.turn_right(1.57) bot_is_running = True while bot_is_running: s.step() gib_out = s.renderer.render_robot_cameras(modes=('rgb', '3d')) rgb = gib_out[::2] depth = np.array(gib_out[1::2]) processed_rgb = list(map(transform_img, rgb)) batch_obs = np.concatenate(processed_rgb) imgnet_input = torch.Tensor(batch_obs).cuda() imgnet_output = torch.zeros([im_per_ob, 2048]).cuda() # depth processing and filtering # depth: [36, ] depth *= depth depth = depth[:, :, :, :3].sum(axis=3) depth = np.sqrt(depth) # filter out 0 distances that are presumably from infinity dist depth[depth < 0.0001] = 10 # TODO: generalize to non-horizontal moves depth_ok = depth[12:24, 200:440, 160:480].min(axis=2).min(axis=1) fig=plt.figure(figsize=(8, 2)) for n, i in enumerate([0, 3, 6, 9]): fig.add_subplot(1, 4, n + 1) plt.imshow(depth[12 + i]) plt.show() # depth_ok *= depth_ok > 1 print(depth_ok) depth_ok = depth_ok > 0.8 print(depth_ok) # Each observation has 36 inputs # We pass rgb images through frozen embedder for i in range(im_per_ob // B_S): def hook_fn(m, last_input, o): imgnet_output[i*B_S:(i+1)*B_S, :] = \ o.detach().squeeze(2).squeeze(2) imgnet_input[B_S * i : B_S * (i + 1)] # imgnet_output[B_S * i : B_S * (i + 1)] = resnet(minibatch).detach() imgnet_output = torch.cat([imgnet_output, heading_feat_tensor], 1) pano_img_feat = imgnet_output.view([1, im_per_ob, 2176]) navigable_feat = torch.zeros([1, 16, 2176]).cuda() navigable_feat[0, 1:13] = imgnet_output[12:24] * torch.Tensor(depth_ok).cuda().view(12, 1) # TODO: make nicer as stated above navigable_index = [list(map(int, depth_ok))] print(navigable_index) # NB: depth_ok replaces navigable_index h_t, c_t, pre_ctx_attend, img_attn, ctx_attn, logit, value, navigable_mask = model( pano_img_feat, navigable_feat, pre_feat, question, h_t, c_t, ctx, pre_ctx_attend, navigable_index, ctx_mask) print("ATTN") print(ctx_attn[0]) print(img_attn[0]) plt.bar(range(len(tokens)), ctx_attn.detach().cpu()[0][:len(tokens)]) plt.xticks(range(len(tokens)), tokens) plt.show() plt.bar(range(16), img_attn.detach().cpu()[0]) plt.show() print("NMASK") print(navigable_mask) logit.data.masked_fill_((navigable_mask == 0).data, -float('inf')) m = torch.Tensor([[False] + list(map(lambda b: not b, navigable_index[0])) + [False, False, False]], dtype=bool).cuda() logit.data.masked_fill_(m, -float('inf')) action = _select_action(logit, [False]) ended = apply_action(robot, action[0], depth_ok) bot_is_running = not ended or not headless if not headless: time.sleep(.3) if __name__ == "__main__": for traj in trajectory_to_play: rollout(traj)
[ "numpy.sqrt", "torch.distributions.Categorical", "utils.resume_training", "time.sleep", "numpy.array", "torch.nn.functional.softmax", "matplotlib.pyplot.imshow", "gibson2.utils.utils.parse_config", "models.EncoderRNN", "numpy.concatenate", "torchvision.transforms.ToTensor", "make_headings.heading_elevation_feat", "gibson2.core.physics.robot_locomotors.Turtlebot", "models.SelfMonitoring", "gibson2.core.simulator.Simulator", "torch.Tensor", "numpy.argmax", "gibson2.core.physics.scene.BuildingScene", "torchvision.models.resnet152", "utils.Tokenizer", "torchvision.transforms.Normalize", "torch.cat", "matplotlib.pyplot.show", "torch.optim.Adam", "utils.read_vocab", "numpy.zeros", "matplotlib.pyplot.figure", "parser.parser.parse_args", "numpy.expand_dims", "torch.no_grad", "torch.zeros" ]
[((3502, 3521), 'parser.parser.parse_args', 'parser.parse_args', ([], {}), '()\n', (3519, 3521), False, 'from parser import parser\n'), ((3572, 3600), 'utils.read_vocab', 'read_vocab', (['opts.train_vocab'], {}), '(opts.train_vocab)\n', (3582, 3600), False, 'from utils import resume_training, read_vocab, Tokenizer\n'), ((3699, 3795), 'utils.Tokenizer', 'Tokenizer', (['(opts.remove_punctuation == 1)', '(opts.reversed == 1)'], {'vocab': 'vocab', 'encoding_length': '(80)'}), '(opts.remove_punctuation == 1, opts.reversed == 1, vocab=vocab,\n encoding_length=80)\n', (3708, 3795), False, 'from utils import resume_training, read_vocab, Tokenizer\n'), ((4606, 4621), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4619, 4621), False, 'import torch\n'), ((4796, 4843), 'torch.optim.Adam', 'torch.optim.Adam', (['params'], {'lr': 'opts.learning_rate'}), '(params, lr=opts.learning_rate)\n', (4812, 4843), False, 'import torch\n'), ((4844, 4892), 'utils.resume_training', 'resume_training', (['opts', 'model', 'encoder', 'optimizer'], {}), '(opts, model, encoder, optimizer)\n', (4859, 4892), False, 'from utils import resume_training, read_vocab, Tokenizer\n'), ((5006, 5039), 'torchvision.models.resnet152', 'models.resnet152', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (5022, 5039), False, 'from torchvision import models, transforms\n'), ((5093, 5117), 'gibson2.utils.utils.parse_config', 'parse_config', (['"""ped.yaml"""'], {}), "('ped.yaml')\n", (5105, 5117), False, 'from gibson2.utils.utils import parse_config\n'), ((5490, 5550), 'numpy.zeros', 'np.zeros', (['(1, 3, im.shape[0], im.shape[1])'], {'dtype': 'np.float32'}), '((1, 3, im.shape[0], im.shape[1]), dtype=np.float32)\n', (5498, 5550), True, 'import numpy as np\n'), ((7104, 7164), 'gibson2.core.simulator.Simulator', 'Simulator', ([], {'mode': '"""gui"""', 'resolution': '(640)', 'fov': '(75)', 'panorama': '(True)'}), "(mode='gui', resolution=640, fov=75, panorama=True)\n", (7113, 7164), False, 'from gibson2.core.simulator import Simulator\n'), ((7177, 7197), 'gibson2.core.physics.scene.BuildingScene', 'BuildingScene', (['SCENE'], {}), '(SCENE)\n', (7190, 7197), False, 'from gibson2.core.physics.scene import BuildingScene, StadiumScene\n'), ((7271, 7288), 'gibson2.core.physics.robot_locomotors.Turtlebot', 'Turtlebot', (['config'], {}), '(config)\n', (7280, 7288), False, 'from gibson2.core.physics.robot_locomotors import Turtlebot\n'), ((4630, 4667), 'models.SelfMonitoring', 'SelfMonitoring', ([], {}), '(**policy_model_kwargs)\n', (4644, 4667), False, 'from models import EncoderRNN, SelfMonitoring\n'), ((4685, 4713), 'models.EncoderRNN', 'EncoderRNN', ([], {}), '(**encoder_kwargs)\n', (4695, 4713), False, 'from models import EncoderRNN, SelfMonitoring\n'), ((5800, 5823), 'torch.nn.functional.softmax', 'F.softmax', (['logit_cpu', '(1)'], {}), '(logit_cpu, 1)\n', (5809, 5823), True, 'import torch.nn.functional as F\n'), ((6612, 6649), 'numpy.argmax', 'np.argmax', (['(seq == padding_idx)'], {'axis': '(0)'}), '(seq == padding_idx, axis=0)\n', (6621, 6649), True, 'import numpy as np\n'), ((8378, 8401), 'numpy.array', 'np.array', (['gib_out[1::2]'], {}), '(gib_out[1::2])\n', (8386, 8401), True, 'import numpy as np\n'), ((8477, 8506), 'numpy.concatenate', 'np.concatenate', (['processed_rgb'], {}), '(processed_rgb)\n', (8491, 8506), True, 'import numpy as np\n'), ((8775, 8789), 'numpy.sqrt', 'np.sqrt', (['depth'], {}), '(depth)\n', (8782, 8789), True, 'import numpy as np\n'), ((9035, 9061), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 2)'}), '(figsize=(8, 2))\n', (9045, 9061), True, 'import matplotlib.pyplot as plt\n'), ((9194, 9204), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9202, 9204), True, 'import matplotlib.pyplot as plt\n'), ((9766, 9816), 'torch.cat', 'torch.cat', (['[imgnet_output, heading_feat_tensor]', '(1)'], {}), '([imgnet_output, heading_feat_tensor], 1)\n', (9775, 9816), False, 'import torch\n'), ((10653, 10663), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10661, 10663), True, 'import matplotlib.pyplot as plt\n'), ((10727, 10737), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10735, 10737), True, 'import matplotlib.pyplot as plt\n'), ((5330, 5351), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (5349, 5351), False, 'from torchvision import models, transforms\n'), ((5361, 5436), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (5381, 5436), False, 'from torchvision import models, transforms\n'), ((6031, 6051), 'torch.distributions.Categorical', 'D.Categorical', (['probs'], {}), '(probs)\n', (6044, 6051), True, 'import torch.distributions as D\n'), ((6867, 6915), 'torch.zeros', 'torch.zeros', (['batch_size', 'opts.img_feat_input_dim'], {}), '(batch_size, opts.img_feat_input_dim)\n', (6878, 6915), False, 'import torch\n'), ((6944, 6989), 'torch.zeros', 'torch.zeros', (['batch_size', 'opts.rnn_hidden_size'], {}), '(batch_size, opts.rnn_hidden_size)\n', (6955, 6989), False, 'import torch\n'), ((7979, 7994), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (7989, 7994), False, 'import time\n'), ((9160, 9185), 'matplotlib.pyplot.imshow', 'plt.imshow', (['depth[12 + i]'], {}), '(depth[12 + i])\n', (9170, 9185), True, 'import matplotlib.pyplot as plt\n'), ((11239, 11254), 'time.sleep', 'time.sleep', (['(0.3)'], {}), '(0.3)\n', (11249, 11254), False, 'import time\n'), ((6678, 6700), 'numpy.expand_dims', 'np.expand_dims', (['seq', '(0)'], {}), '(seq, 0)\n', (6692, 6700), True, 'import numpy as np\n'), ((8530, 8553), 'torch.Tensor', 'torch.Tensor', (['batch_obs'], {}), '(batch_obs)\n', (8542, 8553), False, 'import torch\n'), ((8585, 8615), 'torch.zeros', 'torch.zeros', (['[im_per_ob, 2048]'], {}), '([im_per_ob, 2048])\n', (8596, 8615), False, 'import torch\n'), ((9908, 9934), 'torch.zeros', 'torch.zeros', (['[1, 16, 2176]'], {}), '([1, 16, 2176])\n', (9919, 9934), False, 'import torch\n'), ((7363, 7387), 'make_headings.heading_elevation_feat', 'heading_elevation_feat', ([], {}), '()\n', (7385, 7387), False, 'from make_headings import heading_elevation_feat\n'), ((9999, 10021), 'torch.Tensor', 'torch.Tensor', (['depth_ok'], {}), '(depth_ok)\n', (10011, 10021), False, 'import torch\n')]