code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
# # Backtesting Algo Strategies based on # Logistic Regression with scikit-learn # # <NAME> # ODSC London 2016 # The Python Quants GmbH # import numpy as np import pandas as pd import seaborn as sns; sns.set() from pandas_datareader import data as web from sklearn import linear_model class ScikitBacktest(object): def __init__(self, sym): self.lags = 5 self.symbol = sym self.get_data() self.lm = linear_model.LogisticRegression(C=1e3) def get_data(self): d = web.DataReader(self.symbol, data_source='yahoo')['Adj Close'] d = pd.DataFrame(d) d.columns = [self.symbol] d['returns'] = np.log(d / d.shift(1)) self.data = d def select_data(self, start, end): d = self.data[(self.data.index >= start) & (self.data.index <= end)].copy() return d def get_matrix(self, start, end): d = self.select_data(start, end) m = np.zeros((self.lags+1, len(d)-self.lags)) for i in range(self.lags+1): if i == self.lags: m[i] = d.returns.values[i:] else: m[i] = d.returns.values[i:i-self.lags] self.matrix = m def fit_model(self, start, end): self.get_matrix(start, end) self.lm.fit(self.matrix[:self.lags].T, np.sign(self.matrix[self.lags])) def predict_moves(self, start, end): self.get_matrix(start, end) pred = self.lm.predict(self.matrix[:self.lags].T) return pred def run_strategy(self, start_tr, end_tr, start_te, end_te, lags): self.lags = lags self.fit_model(start_tr, end_tr) pred = self.predict_moves(start_te, end_te) d = self.select_data(start_te, end_te) d['pred'] = 0.0 d['pred'].ix[self.lags:] = pred d['strategy'] = d.pred * d.returns title = '%s to %s for %d lags' % (start_te, end_te, self.lags) d[['returns', 'strategy']].ix[self.lags:].cumsum().apply(np.exp).plot(title=title)
[ "seaborn.set", "pandas_datareader.data.DataReader", "sklearn.linear_model.LogisticRegression", "numpy.sign", "pandas.DataFrame" ]
[((202, 211), 'seaborn.set', 'sns.set', ([], {}), '()\n', (209, 211), True, 'import seaborn as sns\n'), ((437, 478), 'sklearn.linear_model.LogisticRegression', 'linear_model.LogisticRegression', ([], {'C': '(1000.0)'}), '(C=1000.0)\n', (468, 478), False, 'from sklearn import linear_model\n'), ((586, 601), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (598, 601), True, 'import pandas as pd\n'), ((512, 560), 'pandas_datareader.data.DataReader', 'web.DataReader', (['self.symbol'], {'data_source': '"""yahoo"""'}), "(self.symbol, data_source='yahoo')\n", (526, 560), True, 'from pandas_datareader import data as web\n'), ((1306, 1337), 'numpy.sign', 'np.sign', (['self.matrix[self.lags]'], {}), '(self.matrix[self.lags])\n', (1313, 1337), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import matplotlib.pyplot as plt print(np.arange(0, (2* np.pi), ((2* np.pi)/1000), dtype= float)) x = np.arange(0,2* np.pi, .01) plt.xlim(0,2* np.pi) plt.ylim(-1, 10) y1 = 5.5* np.cos(2*x) + 5.5 y2 = 0.02 * np.exp(x) y3 = (0.25* x**2 + (.1* np.sin(10*x))) plt.plot(x,y1) plt.plot(x,y2) plt.plot(x,y3) plt.xlabel("Time in Astro119") plt.ylabel("Measure of Awesomeness") plt.show() # In[2]: import numpy as np import matplotlib.pyplot as plt print(np.arange(0, (2* np.pi), ((2* np.pi)/1000), dtype= float)) x = np.arange(0,2* np.pi, .01) plt.xlim(0,2* np.pi) plt.ylim(-1, 10) y1 = 5.5* np.cos(2*x) + 5.5 y2 = 0.02 * np.exp(x) y3 = (0.25* x**2 + (.1* np.sin(10*x))) plt.plot(x,y1) plt.plot(x,y2) plt.plot(x,y3) plt.xlabel("Time in Astro119") plt.ylabel("Measure of Awesomeness") plt.show() # In[ ]:
[ "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.exp", "numpy.cos", "numpy.sin", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xlim", "numpy.arange", "matplotlib.pyplot.show" ]
[((173, 202), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi)', '(0.01)'], {}), '(0, 2 * np.pi, 0.01)\n', (182, 202), True, 'import numpy as np\n'), ((200, 222), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(2 * np.pi)'], {}), '(0, 2 * np.pi)\n', (208, 222), True, 'import matplotlib.pyplot as plt\n'), ((221, 237), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-1)', '(10)'], {}), '(-1, 10)\n', (229, 237), True, 'import matplotlib.pyplot as plt\n'), ((327, 342), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y1'], {}), '(x, y1)\n', (335, 342), True, 'import matplotlib.pyplot as plt\n'), ((342, 357), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y2'], {}), '(x, y2)\n', (350, 357), True, 'import matplotlib.pyplot as plt\n'), ((357, 372), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y3'], {}), '(x, y3)\n', (365, 372), True, 'import matplotlib.pyplot as plt\n'), ((372, 402), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time in Astro119"""'], {}), "('Time in Astro119')\n", (382, 402), True, 'import matplotlib.pyplot as plt\n'), ((403, 439), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Measure of Awesomeness"""'], {}), "('Measure of Awesomeness')\n", (413, 439), True, 'import matplotlib.pyplot as plt\n'), ((440, 450), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (448, 450), True, 'import matplotlib.pyplot as plt\n'), ((587, 616), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi)', '(0.01)'], {}), '(0, 2 * np.pi, 0.01)\n', (596, 616), True, 'import numpy as np\n'), ((614, 636), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(2 * np.pi)'], {}), '(0, 2 * np.pi)\n', (622, 636), True, 'import matplotlib.pyplot as plt\n'), ((635, 651), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-1)', '(10)'], {}), '(-1, 10)\n', (643, 651), True, 'import matplotlib.pyplot as plt\n'), ((741, 756), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y1'], {}), '(x, y1)\n', (749, 756), True, 'import matplotlib.pyplot as plt\n'), ((756, 771), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y2'], {}), '(x, y2)\n', (764, 771), True, 'import matplotlib.pyplot as plt\n'), ((771, 786), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y3'], {}), '(x, y3)\n', (779, 786), True, 'import matplotlib.pyplot as plt\n'), ((786, 816), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time in Astro119"""'], {}), "('Time in Astro119')\n", (796, 816), True, 'import matplotlib.pyplot as plt\n'), ((817, 853), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Measure of Awesomeness"""'], {}), "('Measure of Awesomeness')\n", (827, 853), True, 'import matplotlib.pyplot as plt\n'), ((854, 864), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (862, 864), True, 'import matplotlib.pyplot as plt\n'), ((108, 162), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi)', '(2 * np.pi / 1000)'], {'dtype': 'float'}), '(0, 2 * np.pi, 2 * np.pi / 1000, dtype=float)\n', (117, 162), True, 'import numpy as np\n'), ((278, 287), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (284, 287), True, 'import numpy as np\n'), ((522, 576), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi)', '(2 * np.pi / 1000)'], {'dtype': 'float'}), '(0, 2 * np.pi, 2 * np.pi / 1000, dtype=float)\n', (531, 576), True, 'import numpy as np\n'), ((692, 701), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (698, 701), True, 'import numpy as np\n'), ((248, 261), 'numpy.cos', 'np.cos', (['(2 * x)'], {}), '(2 * x)\n', (254, 261), True, 'import numpy as np\n'), ((312, 326), 'numpy.sin', 'np.sin', (['(10 * x)'], {}), '(10 * x)\n', (318, 326), True, 'import numpy as np\n'), ((662, 675), 'numpy.cos', 'np.cos', (['(2 * x)'], {}), '(2 * x)\n', (668, 675), True, 'import numpy as np\n'), ((726, 740), 'numpy.sin', 'np.sin', (['(10 * x)'], {}), '(10 * x)\n', (732, 740), True, 'import numpy as np\n')]
# pylint: disable=missing-docstring, invalid-name, import-error import numpy as np import pandas as pd from mltils.preprocessing.encoders import InfrequentValueEncoder from mltils.utils.test_utils import _test_immutability def test_infrequent_value_encoder_1(): ive = InfrequentValueEncoder() assert ive is not None def test_infrequent_value_encoder_2(): df = pd.DataFrame({'A': ['a', 'a', 'b', 'b', 'c']}) ive = InfrequentValueEncoder(thrshld=1, str_rpl='ifq') encoded = ive.fit_transform(df) expected = pd.DataFrame({'A': ['a', 'a', 'b', 'b', 'ifq']}) assert expected.equals(encoded) def test_infrequent_value_encoder_3(): df = pd.DataFrame({'A': ['a', 'a', 'b', 'b', 'c']}) ive = InfrequentValueEncoder(thrshld=0, str_rpl='ifq') encoded = ive.fit_transform(df) expected = pd.DataFrame({'A': ['a', 'a', 'b', 'b', 'c']}) assert expected.equals(encoded) def test_infrequent_value_encoder_4(): df = pd.DataFrame({'A': ['a', 'a', 'b', 'b', 'c'], 'B': [1, 1, 1, 2, 3]}) ive = InfrequentValueEncoder(thrshld=2, str_rpl='ifq', num_rpl=-1) encoded = ive.fit_transform(df) expected = pd.DataFrame({'A': ['ifq', 'ifq', 'ifq', 'ifq', 'ifq'], 'B': [1, 1, 1, -1, -1]}) assert expected.equals(encoded) def test_infrequent_value_encoder_5(): tr_df = pd.DataFrame({'A': ['a', 'a', 'b', 'b', 'c']}) ive = InfrequentValueEncoder(thrshld=1, str_rpl='ifq') ive.fit(tr_df) te_df = pd.DataFrame({'A': ['c', 'd', 'e', 'a', 'b']}) encoded = ive.transform(te_df) expected = pd.DataFrame({'A': ['ifq', 'ifq', 'ifq', 'a', 'b']}) assert expected.equals(encoded) def test_infrequent_value_encoder_6(): tr_df = pd.DataFrame({'A': ['a', 'a', 'b', 'b', 'c', np.nan]}) ive = InfrequentValueEncoder(thrshld=1, str_rpl='ifq') ive.fit(tr_df) te_df = pd.DataFrame({'A': [np.nan, 'c', 'd', 'e', 'a', 'b']}) encoded = ive.transform(te_df) expected = pd.DataFrame({'A': [np.nan, 'ifq', 'ifq', 'ifq', 'a', 'b']}) assert expected.equals(encoded) def test_infrequent_value_encoder_7(): df = pd.DataFrame({'A': [1, 2, 3, np.nan, 4, np.nan]}) encoded = InfrequentValueEncoder(thrshld=1, num_rpl=-1).fit_transform(df) expected = pd.DataFrame({'A': [-1, -1, -1, np.nan, -1, np.nan]}) assert expected.equals(encoded) def test_infrequent_value_encoder_8(): _test_immutability(encoder=InfrequentValueEncoder())
[ "pandas.DataFrame", "mltils.preprocessing.encoders.InfrequentValueEncoder" ]
[((275, 299), 'mltils.preprocessing.encoders.InfrequentValueEncoder', 'InfrequentValueEncoder', ([], {}), '()\n', (297, 299), False, 'from mltils.preprocessing.encoders import InfrequentValueEncoder\n'), ((377, 423), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['a', 'a', 'b', 'b', 'c']}"], {}), "({'A': ['a', 'a', 'b', 'b', 'c']})\n", (389, 423), True, 'import pandas as pd\n'), ((434, 482), 'mltils.preprocessing.encoders.InfrequentValueEncoder', 'InfrequentValueEncoder', ([], {'thrshld': '(1)', 'str_rpl': '"""ifq"""'}), "(thrshld=1, str_rpl='ifq')\n", (456, 482), False, 'from mltils.preprocessing.encoders import InfrequentValueEncoder\n'), ((534, 582), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['a', 'a', 'b', 'b', 'ifq']}"], {}), "({'A': ['a', 'a', 'b', 'b', 'ifq']})\n", (546, 582), True, 'import pandas as pd\n'), ((669, 715), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['a', 'a', 'b', 'b', 'c']}"], {}), "({'A': ['a', 'a', 'b', 'b', 'c']})\n", (681, 715), True, 'import pandas as pd\n'), ((726, 774), 'mltils.preprocessing.encoders.InfrequentValueEncoder', 'InfrequentValueEncoder', ([], {'thrshld': '(0)', 'str_rpl': '"""ifq"""'}), "(thrshld=0, str_rpl='ifq')\n", (748, 774), False, 'from mltils.preprocessing.encoders import InfrequentValueEncoder\n'), ((826, 872), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['a', 'a', 'b', 'b', 'c']}"], {}), "({'A': ['a', 'a', 'b', 'b', 'c']})\n", (838, 872), True, 'import pandas as pd\n'), ((959, 1027), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['a', 'a', 'b', 'b', 'c'], 'B': [1, 1, 1, 2, 3]}"], {}), "({'A': ['a', 'a', 'b', 'b', 'c'], 'B': [1, 1, 1, 2, 3]})\n", (971, 1027), True, 'import pandas as pd\n'), ((1061, 1121), 'mltils.preprocessing.encoders.InfrequentValueEncoder', 'InfrequentValueEncoder', ([], {'thrshld': '(2)', 'str_rpl': '"""ifq"""', 'num_rpl': '(-1)'}), "(thrshld=2, str_rpl='ifq', num_rpl=-1)\n", (1083, 1121), False, 'from mltils.preprocessing.encoders import InfrequentValueEncoder\n'), ((1173, 1258), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['ifq', 'ifq', 'ifq', 'ifq', 'ifq'], 'B': [1, 1, 1, -1, -1]}"], {}), "({'A': ['ifq', 'ifq', 'ifq', 'ifq', 'ifq'], 'B': [1, 1, 1, -1, -1]}\n )\n", (1185, 1258), True, 'import pandas as pd\n'), ((1372, 1418), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['a', 'a', 'b', 'b', 'c']}"], {}), "({'A': ['a', 'a', 'b', 'b', 'c']})\n", (1384, 1418), True, 'import pandas as pd\n'), ((1429, 1477), 'mltils.preprocessing.encoders.InfrequentValueEncoder', 'InfrequentValueEncoder', ([], {'thrshld': '(1)', 'str_rpl': '"""ifq"""'}), "(thrshld=1, str_rpl='ifq')\n", (1451, 1477), False, 'from mltils.preprocessing.encoders import InfrequentValueEncoder\n'), ((1509, 1555), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['c', 'd', 'e', 'a', 'b']}"], {}), "({'A': ['c', 'd', 'e', 'a', 'b']})\n", (1521, 1555), True, 'import pandas as pd\n'), ((1606, 1658), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['ifq', 'ifq', 'ifq', 'a', 'b']}"], {}), "({'A': ['ifq', 'ifq', 'ifq', 'a', 'b']})\n", (1618, 1658), True, 'import pandas as pd\n'), ((1748, 1802), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': ['a', 'a', 'b', 'b', 'c', np.nan]}"], {}), "({'A': ['a', 'a', 'b', 'b', 'c', np.nan]})\n", (1760, 1802), True, 'import pandas as pd\n'), ((1813, 1861), 'mltils.preprocessing.encoders.InfrequentValueEncoder', 'InfrequentValueEncoder', ([], {'thrshld': '(1)', 'str_rpl': '"""ifq"""'}), "(thrshld=1, str_rpl='ifq')\n", (1835, 1861), False, 'from mltils.preprocessing.encoders import InfrequentValueEncoder\n'), ((1893, 1947), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': [np.nan, 'c', 'd', 'e', 'a', 'b']}"], {}), "({'A': [np.nan, 'c', 'd', 'e', 'a', 'b']})\n", (1905, 1947), True, 'import pandas as pd\n'), ((1998, 2058), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': [np.nan, 'ifq', 'ifq', 'ifq', 'a', 'b']}"], {}), "({'A': [np.nan, 'ifq', 'ifq', 'ifq', 'a', 'b']})\n", (2010, 2058), True, 'import pandas as pd\n'), ((2145, 2194), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': [1, 2, 3, np.nan, 4, np.nan]}"], {}), "({'A': [1, 2, 3, np.nan, 4, np.nan]})\n", (2157, 2194), True, 'import pandas as pd\n'), ((2288, 2341), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': [-1, -1, -1, np.nan, -1, np.nan]}"], {}), "({'A': [-1, -1, -1, np.nan, -1, np.nan]})\n", (2300, 2341), True, 'import pandas as pd\n'), ((2209, 2254), 'mltils.preprocessing.encoders.InfrequentValueEncoder', 'InfrequentValueEncoder', ([], {'thrshld': '(1)', 'num_rpl': '(-1)'}), '(thrshld=1, num_rpl=-1)\n', (2231, 2254), False, 'from mltils.preprocessing.encoders import InfrequentValueEncoder\n'), ((2450, 2474), 'mltils.preprocessing.encoders.InfrequentValueEncoder', 'InfrequentValueEncoder', ([], {}), '()\n', (2472, 2474), False, 'from mltils.preprocessing.encoders import InfrequentValueEncoder\n')]
import cairo import pango import pangocairo def draw_text(surface, context, text, font="sans 14", position=None, color=None, box_width=None, alignment=pango.ALIGN_CENTER, line_spacing=None, letter_spacing=None, extra_kerning=None): if color is None: color = (0.0, 0.0, 0.0) context.set_source_rgb(*color) pc = pangocairo.CairoContext(context) layout = pc.create_layout() layout.set_text(text) layout.set_font_description(pango.FontDescription(font)) if box_width: layout.set_width(box_width) layout.set_alignment(alignment) if line_spacing: layout.set_spacing(spacing) alist = pango.AttrList() if letter_spacing: alist.insert(pango.AttrLetterSpacing(letter_spacing, 0, len (text))) if extra_kerning: for pos, kern in extra_kerning.iteritems(): alist.insert(pango.AttrLetterSpacing(kern, pos, pos +1)) layout.set_attributes(alist) if position is None: width, height = surface.get_width(), surface.get_height() w, h = layout.get_pixel_size() position = (width/2.0 - w/2.0, height/2.0 - h/2.0) context.move_to(*position) pc.show_layout(layout) surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height) context = cairo.Context(surface) draw_text(surface, context, 'Hello world!', font="sans 52", color=(.25,.28,.33), letter_spacing=-6000, extra_kerning={0:-9000, 1:-1000, 6:6000, 7:-15000, 8:5000, 9:-7000}) surface.write_to_png("hello.png")
[ "cairo.ImageSurface", "cairo.Context", "pango.AttrLetterSpacing", "pango.FontDescription", "pango.AttrList", "pangocairo.CairoContext" ]
[((1353, 1407), 'cairo.ImageSurface', 'cairo.ImageSurface', (['cairo.FORMAT_ARGB32', 'width', 'height'], {}), '(cairo.FORMAT_ARGB32, width, height)\n', (1371, 1407), False, 'import cairo\n'), ((1418, 1440), 'cairo.Context', 'cairo.Context', (['surface'], {}), '(surface)\n', (1431, 1440), False, 'import cairo\n'), ((431, 463), 'pangocairo.CairoContext', 'pangocairo.CairoContext', (['context'], {}), '(context)\n', (454, 463), False, 'import pangocairo\n'), ((754, 770), 'pango.AttrList', 'pango.AttrList', ([], {}), '()\n', (768, 770), False, 'import pango\n'), ((566, 593), 'pango.FontDescription', 'pango.FontDescription', (['font'], {}), '(font)\n', (587, 593), False, 'import pango\n'), ((990, 1033), 'pango.AttrLetterSpacing', 'pango.AttrLetterSpacing', (['kern', 'pos', '(pos + 1)'], {}), '(kern, pos, pos + 1)\n', (1013, 1033), False, 'import pango\n')]
import pytest def test_main(): from flogging.flogging import setup as setup_logging setup_logging(level="info", structured=False)
[ "flogging.flogging.setup" ]
[((95, 140), 'flogging.flogging.setup', 'setup_logging', ([], {'level': '"""info"""', 'structured': '(False)'}), "(level='info', structured=False)\n", (108, 140), True, 'from flogging.flogging import setup as setup_logging\n')]
from DealUUIDGenerator import DealUUIDGenerator class TestClass(object): def test_singleExchangeConstantProfit(self): dealUUIDGenerator = DealUUIDGenerator() id1 = dealUUIDGenerator.getUUID(timestamp=1, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id2 = dealUUIDGenerator.getUUID(timestamp=2, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id3 = dealUUIDGenerator.getUUID(timestamp=7, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id4 = dealUUIDGenerator.getUUID(timestamp=12.1, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id5 = dealUUIDGenerator.getUUID(timestamp=12.2, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id6 = dealUUIDGenerator.getUUID(timestamp=12.3, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.51) assert id1 == id2 == id3 != id4 == id5 != id6 assert id5[:-2] == id6[:-2] def test_variedExchangesConstantProfit(self): dealUUIDGenerator = DealUUIDGenerator() id1 = dealUUIDGenerator.getUUID(timestamp=1, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id2 = dealUUIDGenerator.getUUID(timestamp=2, volBTC=1, nodesStr="coinbasepro-BTC,coinbasepro-EUR,kraken-EUR,kraken-BTC,coinbasepro-BTC", profitPerc=0.5) id3 = dealUUIDGenerator.getUUID(timestamp=7, volBTC=1, nodesStr="coinbasepro-BTC,coinbasepro-EUR,kraken-EUR,kraken-BTC,coinbasepro-BTC", profitPerc=0.5) id4 = dealUUIDGenerator.getUUID(timestamp=12.1, volBTC=1, nodesStr="bitstamp,coinbasepro", profitPerc=0.5) id5 = dealUUIDGenerator.getUUID(timestamp=12.2, volBTC=1, nodesStr="coinbasepro-BTC,coinbasepro-EUR,kraken-EUR,kraken-BTC,coinbasepro-BTC", profitPerc=0.51) assert id1 != id2 == id3 != id4 != id5 assert id4[:-2] != id5[:-2]
[ "DealUUIDGenerator.DealUUIDGenerator" ]
[((153, 172), 'DealUUIDGenerator.DealUUIDGenerator', 'DealUUIDGenerator', ([], {}), '()\n', (170, 172), False, 'from DealUUIDGenerator import DealUUIDGenerator\n'), ((1024, 1043), 'DealUUIDGenerator.DealUUIDGenerator', 'DealUUIDGenerator', ([], {}), '()\n', (1041, 1043), False, 'from DealUUIDGenerator import DealUUIDGenerator\n')]
from apscheduler.schedulers.background import BackgroundScheduler DEFAULT_CONFIG = { 'apscheduler.jobstores.default': { 'type': 'mongodb' }, 'apscheduler.executors.default': { 'class': 'apscheduler.executors.pool:ThreadPoolExecutor', 'max_workers': 5 }, 'apscheduler.job_defaults.coalesce': True, 'apscheduler.job_defaults.max_instances': '3', 'apscheduler.job_defaults.replace_existing': True, 'apscheduler.timezone': 'America/Santo_Domingo' } def configure_scheduler(config, adapter): scheduler_config = {} scheduler_config.update(DEFAULT_CONFIG) scheduler_config.update(config.get('scheduler', {})) adapter.scheduler = BackgroundScheduler(scheduler_config) return adapter.scheduler
[ "apscheduler.schedulers.background.BackgroundScheduler" ]
[((703, 740), 'apscheduler.schedulers.background.BackgroundScheduler', 'BackgroundScheduler', (['scheduler_config'], {}), '(scheduler_config)\n', (722, 740), False, 'from apscheduler.schedulers.background import BackgroundScheduler\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 5 13:34:37 2020 @author: tapiwamaruni """ # ARTIFICIAL NEURAL NETWORKS # Inital loads always first from __future__ import print_function import plaidml.keras plaidml.keras.install_backend() # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Import keras and other packages import tensorflow as tf import keras from keras.models import Sequential from keras.layers import Dense from sklearn.preprocessing import StandardScaler # =========== # Globals sc = StandardScaler() columns = ['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary'] dummies = ['Geography', 'Gender'] final_cols = [] # =========== def prepareDataset(dataset2): print('==================================') print('Preparing dataset...') print(f'Total Records: {len(dataset2.values)}') print(f'Info:') print(dataset2.info()) print('==================================') # Get dependent varaibles y = dataset2['Exited'].values # Get independent features # RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited dataset = dataset2[columns] # Handle categorical variables dataset = pd.get_dummies(dataset, columns=dummies, drop_first=True) # Get list of final columns final_cols = dataset.columns.values.tolist() # Get final list X = dataset.values return X, y, final_cols def getPredictionSet(data_dict): return pd.DataFrame(data_dict) def featureScale(X_train, X_test): print('Scalling fetures in the data') X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) return X_train, X_test def buildArtificialNeuralNet(): print('Building ANN structure') # Initialize the ANN classifier = Sequential() # Step 1 - Add inpit layer and firsthidden layer. [activation function - Rectifier function] ''' activation - activation function used by the layer units - (Avergae of #of inputs and # outputs so (11 + 1)/2 = 6) kernel_initializer - How teh layer is initialized input_dim - Number of inputs - Tuned to th e# of independent variables we extracted ''' classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11)) # Step 2 - Adding the second hidden layer classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu')) # Adding the output layer ''' -->> If you need more outputs -> Use Softmax -> used when you have more than 2 categories. Then the units will alos need to be increated by OneHotEncoder ''' classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid')) # Compile and ANN ''' optimizer - Stcj=hastic optimer called adam loss - Use the Logarithmic loss for classification - Binary - binary_crossentropy - None binary - categorical_crossentropy metrics - criteria you use to evaulate/improve your model ''' classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return classifier def buildConfusionMatrix(y_test, y_pred): print('Building Confusion Matrix to check accuracy of model with') # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) return cm # =========== # =========== # =========== file_name = 'Churn_Modelling.csv' # Part 1 - Data preprocessing print('..... START: Building Model for churn classification .......') print(f'Processing file: {file_name}') # Importing the dataset dataset2 = pd.read_csv(file_name) X, y, final_cols = prepareDataset(dataset2) # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) # Feature Scaling X_train, X_test = featureScale(X_train, X_test) # =========== # Part 2 - Model Fitting with and ANN classifier = buildArtificialNeuralNet() # Fitting classifier to the Training set classifier.fit(X_train, y_train, batch_size=10, epochs=30) print(f'..... Classifer Built from file: {file_name}. Starting Predictions .....') # Predicting the Test set results # Convert probabilities as true or false y_pred = classifier.predict(X_test) y_pred = (y_pred > 0.5) # Making the Confusion Matrix cm = buildConfusionMatrix(y_test, y_pred) print('..... TEST: Predicting sample .......') d1 = {'CreditScore': [600], 'Age': [40], 'Tenure': [3], 'Balance': [60000], 'NumOfProducts': [2], 'HasCrCard': [1], 'IsActiveMember': [1], 'EstimatedSalary': [50000], 'Geography_Germany': [0], 'Geography_Spain': [0], 'Gender_Male': [1] } d1x = pd.DataFrame(d1).values # print(d1x) X1 = sc.transform(d1x) # print(X1) y1 = classifier.predict(X1) y1x = (y1 > 0.5) print(f'Prediction: {"{:.3%}".format(y1[0,0])} chance to exit. Will Exit={y1x[0,0]}') print('..... END: Building Model for churn classification .......') # =========== # =========== # ===========
[ "pandas.read_csv", "sklearn.model_selection.train_test_split", "pandas.get_dummies", "sklearn.preprocessing.StandardScaler", "keras.models.Sequential", "keras.layers.Dense", "pandas.DataFrame", "sklearn.metrics.confusion_matrix" ]
[((583, 599), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (597, 599), False, 'from sklearn.preprocessing import StandardScaler\n'), ((3917, 3939), 'pandas.read_csv', 'pd.read_csv', (['file_name'], {}), '(file_name)\n', (3928, 3939), True, 'import pandas as pd\n'), ((4132, 4169), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)'}), '(X, y, test_size=0.2)\n', (4148, 4169), False, 'from sklearn.model_selection import train_test_split\n'), ((1410, 1467), 'pandas.get_dummies', 'pd.get_dummies', (['dataset'], {'columns': 'dummies', 'drop_first': '(True)'}), '(dataset, columns=dummies, drop_first=True)\n', (1424, 1467), True, 'import pandas as pd\n'), ((1682, 1705), 'pandas.DataFrame', 'pd.DataFrame', (['data_dict'], {}), '(data_dict)\n', (1694, 1705), True, 'import pandas as pd\n'), ((2031, 2043), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2041, 2043), False, 'from keras.models import Sequential\n'), ((3611, 3643), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (3627, 3643), False, 'from sklearn.metrics import confusion_matrix\n'), ((5096, 5112), 'pandas.DataFrame', 'pd.DataFrame', (['d1'], {}), '(d1)\n', (5108, 5112), True, 'import pandas as pd\n'), ((2446, 2523), 'keras.layers.Dense', 'Dense', ([], {'units': '(6)', 'kernel_initializer': '"""uniform"""', 'activation': '"""relu"""', 'input_dim': '(11)'}), "(units=6, kernel_initializer='uniform', activation='relu', input_dim=11)\n", (2451, 2523), False, 'from keras.layers import Dense\n'), ((2603, 2666), 'keras.layers.Dense', 'Dense', ([], {'units': '(6)', 'kernel_initializer': '"""uniform"""', 'activation': '"""relu"""'}), "(units=6, kernel_initializer='uniform', activation='relu')\n", (2608, 2666), False, 'from keras.layers import Dense\n'), ((2907, 2973), 'keras.layers.Dense', 'Dense', ([], {'units': '(1)', 'kernel_initializer': '"""uniform"""', 'activation': '"""sigmoid"""'}), "(units=1, kernel_initializer='uniform', activation='sigmoid')\n", (2912, 2973), False, 'from keras.layers import Dense\n')]
"""The WaveBlocks Project Use a symbolic exact formula for computing the inner product between two semi-classical wavepackets. The formula is constructed explicitly for the inhomogeneous case. @author: <NAME> @copyright: Copyright (C) 2013 <NAME> @license: Modified BSD License """ from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan from scipy import exp from scipy.misc import factorial from scipy.special import binom from WaveBlocksND.InnerProduct import InnerProductException from WaveBlocksND.Quadrature import Quadrature __all__ = ["SymbolicIntegral"] class SymbolicIntegral(Quadrature): r""" """ def __init__(self, doraise=False, *unused, **kunused): r"""Use a symbolic exact formula for computing the inner product between two semi-classical wavepackets. The formula is constructed explicitly for the inhomogeneous case. :param doraise: Raise an :py:class:`InnerProductException` exception in case the symbolic formula will fail due to an inherent mathematical singularity. Default is ``False``. """ self._doraise = doraise # Drop any other argument, we do not need a qr instance. def __str__(self): return "Inhomogeneous inner product <k|l> computed using a symbolic exact formula." def get_description(self): r"""Return a description of this integral object. A description is a ``dict`` containing all key-value pairs necessary to reconstruct the current instance. A description never contains any data. """ d = {} d["type"] = "SymbolicIntegral" return d def initialize_packet(self, pacbra, packet=None): r"""Provide the wavepacket parts of the inner product to evaluate. Since the formula is for the inhomogeneous case explicitly, different wavepackets can be used for the 'bra' as well as the 'ket' part. :param pacbra: The packet that is used for the 'bra' part. :param packet: The packet that is used for the 'ket' part. :raises: :py:class:`ValueError` if the dimension of :math:`\Psi` is not 1. """ # Allow to ommit the ket if it is the same as the bra if packet is None: packet = pacbra if not pacbra.get_dimension() == 1: raise ValueError("The 'SymbolicIntegral' applies in the 1D case only.") self._pacbra = pacbra self._packet = packet def initialize_operator(self, operator=None, matrix=False, eval_at_once=False): r"""Provide the operator part of the inner product to evaluate. This function initializes the operator used for quadratures and for building matrices. .. note:: The symbolic solution can not handle operators at all. :param operator: The operator of the inner product. If ``None`` a suitable identity is used. :param matrix: Set this to ``True`` (Default is ``False``) in case we want to compute the matrix elements. For nasty technical reasons we can not yet unify the operator call syntax. :param eval_at_once: Flag to tell whether the operator supports the ``entry=(r,c)`` call syntax. Since we do not support operators at all, it has no effect. :type eval_at_once: Boolean, default is ``False``. """ # Operator is None is interpreted as identity transformation if operator is None: self._operator = lambda nodes, dummy, entry=None: ones((1, nodes.shape[1])) if entry[0] == entry[1] else zeros((1, nodes.shape[1])) else: raise ValueError("The 'SymbolicIntegral' can not handle operators.") def prepare(self, rows, cols): r"""Precompute some values needed for evaluating the integral :math:`\langle \Phi_i | \Phi^\prime_j \rangle` or the corresponding matrix over the basis functions of :math:`\Phi_i` and :math:`\Phi^\prime_j`. Note that this function does nothing in the current implementation. :param rows: A list of all :math:`i` with :math:`0 \leq i \leq N` selecting the :math:`\Phi_i` for which we precompute values. :param cols: A list of all :math:`j` with :math:`0 \leq j \leq N` selecting the :math:`\Phi^\prime_j` for which we precompute values. """ pass def _evaluate_hermite(self, N, x): r"""Evaluate the first `N` Hermite polynomials at once by exploiting the recursion relation. :param N: The maximal order :math:`N` for which we evaluate :math:`H_N`. :param x: The argument :math:`x` of the Hermite polynomial :math:`H_n(x)`. :return: A list :math:`[H_0, H_1, \ldots, H_N]` of all Hermite polynomials up to order :math:`N` inclusive. """ H = {} H[-1] = 0.0 H[0] = 1.0 for n in range(N + 1): H[n + 1] = 2.0 * x * H[n] - 2.0 * n * H[n - 1] H.pop(-1) return H def exact_result_ground(self, Pibra, Piket, eps): r"""Compute the overlap integral :math:`\langle \phi_0 | \phi_0 \rangle` of the groundstate :math:`\phi_0` by using the symbolic formula: .. math:: \langle \phi_0 | \phi_0 \rangle = \sqrt{\frac{-2 i}{Q_2 \overline{P_1} - P_2 \overline{Q_1}}} \cdot \exp \Biggl( \frac{i}{2 \varepsilon^2} \frac{Q_2 \overline{Q_1} \left(p_2-p_1\right)^2 + P_2 \overline{P_1} \left(q_2-q_1\right)^2} {\left(Q_2 \overline{P_1} - P_2 \overline{Q_1}\right)} \\ -\frac{i}{\varepsilon^2} \frac{\left(q_2-q_1\right) \left( Q_2 \overline{P_1} p_2 - P_2 \overline{Q_1} p_1\right)} {\left(Q_2 \overline{P_1} - P_2 \overline{Q_1}\right)} \Biggr) Note that this is an internal method and usually there is no reason to call it from outside. :param Pibra: The parameter set :math:`\Pi = \{q_1,p_1,Q_1,P_1\}` of the bra :math:`\langle \phi_0 |`. :param Piket: The parameter set :math:`\Pi^\prime = \{q_2,p_2,Q_2,P_2\}` of the ket :math:`| \phi_0 \rangle`. :param eps: The semi-classical scaling parameter :math:`\varepsilon`. :return: The value of the integral :math:`\langle \phi_0 | \phi_0 \rangle`. """ q1, p1, Q1, P1 = Pibra q2, p2, Q2, P2 = Piket hbar = eps**2 X = Q2 * conjugate(P1) - P2 * conjugate(Q1) I = sqrt(-2.0j / X) * exp( 1.0j / (2*hbar) * (Q2*conjugate(Q1)*(p2 - p1)**2 + P2*conjugate(P1)*(q2 - q1)**2) / X -1.0j / hbar * ((q2 - q1)*(Q2*conjugate(P1)*p2 - P2*conjugate(Q1)*p1)) / X ) return I def exact_result_higher(self, Pibra, Piket, eps, k, l): r"""Compute the overlap integral :math:`\langle \phi_k | \phi_l \rangle` of two states :math:`\phi_k` and :math:`\phi_l` by using the symbolic formula: .. math:: \langle \phi_k | \phi_l \rangle = \frac{1}{\sqrt{k!l!}} 2^{-\frac{k+l}{2}} \langle \phi_0 | \phi_0 \rangle \cdot \left(i \overline{ P_1} Q_2 - i \overline{Q_1} P_2\right)^{-\frac{k+l}{2}} \cdot \\ \sum_{j=0}^{\min\left(k,l\right)} \Biggl( \binom{k}{j} \binom{l}{j} j! 4^j \left(i Q_2 P_1 - i Q_1 P_2\right)^{\frac{k-j}{2}} \left(i \overline{Q_2 P_1} - i\overline{Q_1 P_2}\right)^{\frac{l-j}{2}} \\ \cdot H_{k-j}\left(-\frac{1}{\varepsilon} \frac{Q_2\left(p_1-p_2\right)-P_2\left(q_1-q_2\right)} {\sqrt{Q_2 P_1 - Q_1 P_2}\sqrt{\overline{P_1}Q_2-\overline{Q_1} P_2}}\right) \\ \cdot H_{l-j}\left(\frac{1}{\varepsilon} \frac{\overline{ P_1}\left(q_1-q_2\right)-\overline{Q_1}\left(p_1-p_2\right)} {\sqrt{\overline{Q_2 P_1}-\overline{Q_1 P_2}}\sqrt{\overline{ P_1}Q_2-\overline{Q_1} P_2}}\right) \Biggr) Note that this is an internal method and usually there is no reason to call it from outside. :param Pibra: The parameter set :math:`\Pi = \{q_1,p_1,Q_1,P_1\}` of the bra :math:`\langle \phi_k |`. :param Piket: The parameter set :math:`\Pi^\prime = \{q_2,p_2,Q_2,P_2\}` of the ket :math:`| \phi_l \rangle`. :param eps: The semi-classical scaling parameter :math:`\varepsilon`. :param k: Index :math:`k` of the wavepacket basis function :math:`\phi_k`. :param l: Index :math:`l` of the wavepacket basis function :math:`\phi_l`. :return: The value of the integral :math:`\langle \phi_k | \phi_l \rangle`. """ # < phi_k[Pi1] | phi_l[Pi2] > q1, p1, Q1, P1 = Pibra q2, p2, Q2, P2 = Piket # If both parameter sets are identical, we are back in the # homogeneous case where the phi are orthonormal. # This early returns just serves to avoid introducing NaN # elements in arg1 and arg2 further below. It is allowed to # compare floats on exact equality because the inhomogeneous # formula works even if the floats differ only by tiny amounts. if q1 == q2 and p1 == p2 and Q1 == Q2 and P1 == P2: return 1.0 if k == l else 0.0 # TODO: Note that the formula can still fail if Q1 = Q2 and P1 = P2 # but q1 \neq q2 and p1 \neq p2. pf = (self._f[(k, l)] * 2**(-(k + l) / 2.0) * self._I0 * (1.0j * conjugate(P1) * Q2 - 1.0j * conjugate(Q1) * P2)**(-(k + l) / 2.0)) S = 0.0j for j in range(min(k, l) + 1): S = S + (self._bk[k, j] * self._bl[l, j] * self._jf[j] * self._pfk[k - j] * self._pfl[l - j] * self._Hk[k - j] * self._Hl[l - j]) Ikl = pf * S return squeeze(Ikl) def _cache_factors(self, Pibra, Piket, Kbra, Kket, eps): r"""Cache some summands to speed up the computation of the sum. :param Pibra: The parameter set :math:`\Pi` of the bra :math:`\langle \Phi |`. :param Piket: The parameter set :math:`\Pi^\prime` of the ket :math:`| \Phi^\prime \rangle`. :param Kbra: The basis shape :math:`\mathfrak{K}` of the bra :math:`\langle \Phi |`. :type Kbra: A :py:class:`BasisShape` instance. :param Kket: The basis shape :math:`\mathfrak{K}^\prime` of the ket :math:`| \Phi^\prime \rangle`. :type Kket: A :py:class:`BasisShape` instance. :param eps: The semi-classical scaling parameter :math:`\varepsilon`. """ q1, p1, Q1, P1 = Pibra q2, p2, Q2, P2 = Piket # If both parameter sets are identical, we are back in the homogeneous case. if q1 == q2 and p1 == p2 and Q1 == Q2 and P1 == P2: self._Hk = None self._Hl = None # We have k in [0, 1, ..., K-1] where |K| is the basis size # hence K-1 is the maximal index. K = Kbra.get_basis_size() L = Kket.get_basis_size() mikl = min(K, L) makl = max(K, L) # Factorials f = factorial(arange(makl)) self._f = 1.0 / sqrt(f[:K].reshape(-1, 1) * f[:L].reshape(1, -1)) # These prefactors depend only on j self._jf = f[:mikl] * 4**arange(mikl) # Binomials depend on k or l and j ik = arange(K).reshape(-1, 1) il = arange(L).reshape(-1, 1) ij = arange(mikl).reshape(1, -1) self._bk = binom(ik, ij) self._bl = binom(il, ij) # Note: formula currently fails for non-inhomogeneous case # because of divisions by zero in the two args below. argk = ((1.0j*Q2*(p1-p2) - 1.0j*P2*(q1-q2)) / (sqrt(1.0j*Q2*P1 - 1.0j*Q1*P2) * sqrt(1.0j*conjugate(P1)*Q2 - 1.0j*conjugate(Q1)*P2))) argl = ((1.0j*conjugate(P1)*(q1-q2) - 1.0j*conjugate(Q1)*(p1-p2)) / (sqrt(1.0j*conjugate(Q2*P1) - 1.0j*conjugate(Q1*P2)) * sqrt(1.0j*conjugate(P1)*Q2 - 1.0j*conjugate(Q1)*P2))) # TODO: Better test for failure? if self._doraise and (isnan(squeeze(argk)) or isnan(squeeze(argl))): raise InnerProductException("Symbolic formula failed due to Q_k = Q_l and P_k = P_l.") # The parameter j varies in the range [0, 1, ..., min(K-1,L-1)] # hence we have that k-j can be in [K-1, K-2, ..., K-1-min(K-1,L-1)] # and similar for l-j we have [L-1, L-2, ..., L-1-min(K-1,L-1)] # where both K-1-min(K-1,L-1) and L-1-min(K-1,L-1) are non-negative. self._Hk = self._evaluate_hermite(K - 1, -1.0 / eps * argk) self._Hl = self._evaluate_hermite(L - 1, 1.0 / eps * argl) self._pfk = ((1.0j*Q2*P1 - 1.0j*Q1*P2) ** (ik / 2.0)).reshape(K) self._pfl = ((1.0j*conjugate(Q2*P1) - 1.0j*conjugate(Q1*P2)) ** (il / 2.0)).reshape(L) # And the groundstate value self._I0 = self.exact_result_ground(Pibra, Piket, eps) def perform_quadrature(self, row, col): r"""Evaluates the integral :math:`\langle \Phi_i | \Phi^\prime_j \rangle` by an exact symbolic formula. :param row: The index :math:`i` of the component :math:`\Phi_i` of :math:`\Psi`. :param row: The index :math:`j` of the component :math:`\Phi^\prime_j` of :math:`\Psi^\prime`. :return: A single complex floating point number. """ eps = self._packet.get_eps() Pibra = self._pacbra.get_parameters(component=row) Piket = self._packet.get_parameters(component=col) cbra = self._pacbra.get_coefficient_vector(component=row) cket = self._packet.get_coefficient_vector(component=col) Kbra = self._pacbra.get_basis_shapes(component=row) Kket = self._packet.get_basis_shapes(component=col) self._cache_factors(Pibra[:4], Piket[:4], Kbra, Kket, eps) result = array([[0.0j]], dtype=complexfloating) for r in Kbra: for c in Kket: cr = cbra[Kbra[r], 0] cc = cket[Kket[c], 0] i = self.exact_result_higher(Pibra[:4], Piket[:4], eps, r[0], c[0]) result = result + conjugate(cr) * cc * i phase = exp(1.0j / eps**2 * (Piket[4] - conjugate(Pibra[4]))) return phase * result def perform_build_matrix(self, row, col): r"""Computes the matrix elements :math:`\langle\Phi_i |\Phi^\prime_j\rangle` by an exact symbolic formula. :param row: The index :math:`i` of the component :math:`\Phi_i` of :math:`\Psi`. :param row: The index :math:`j` of the component :math:`\Phi^\prime_j` of :math:`\Psi^\prime`. :return: A complex valued matrix of shape :math:`|\mathfrak{K}_i| \times |\mathfrak{K}^\prime_j|`. """ eps = self._packet.get_eps() Pibra = self._pacbra.get_parameters(component=row) Piket = self._packet.get_parameters(component=col) Kbra = self._pacbra.get_basis_shapes(component=row) Kket = self._packet.get_basis_shapes(component=col) self._cache_factors(Pibra[:4], Piket[:4], Kbra, Kket, eps) M = zeros((Kbra.get_basis_size(), Kket.get_basis_size()), dtype=complexfloating) for r in Kbra: for c in Kket: M[Kbra[r], Kket[c]] = self.exact_result_higher(Pibra[:4], Piket[:4], eps, r[0], c[0]) phase = exp(1.0j / eps**2 * (Piket[4] - conjugate(Pibra[4]))) return phase * M
[ "numpy.sqrt", "numpy.ones", "scipy.special.binom", "numpy.conjugate", "numpy.squeeze", "numpy.array", "numpy.zeros", "WaveBlocksND.InnerProduct.InnerProductException", "numpy.arange" ]
[((10174, 10186), 'numpy.squeeze', 'squeeze', (['Ikl'], {}), '(Ikl)\n', (10181, 10186), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((11808, 11821), 'scipy.special.binom', 'binom', (['ik', 'ij'], {}), '(ik, ij)\n', (11813, 11821), False, 'from scipy.special import binom\n'), ((11841, 11854), 'scipy.special.binom', 'binom', (['il', 'ij'], {}), '(il, ij)\n', (11846, 11854), False, 'from scipy.special import binom\n'), ((14228, 14266), 'numpy.array', 'array', (['[[0.0j]]'], {'dtype': 'complexfloating'}), '([[0.0j]], dtype=complexfloating)\n', (14233, 14266), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((6715, 6730), 'numpy.sqrt', 'sqrt', (['(-2.0j / X)'], {}), '(-2.0j / X)\n', (6719, 6730), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((11449, 11461), 'numpy.arange', 'arange', (['makl'], {}), '(makl)\n', (11455, 11461), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12521, 12606), 'WaveBlocksND.InnerProduct.InnerProductException', 'InnerProductException', (['"""Symbolic formula failed due to Q_k = Q_l and P_k = P_l."""'], {}), "('Symbolic formula failed due to Q_k = Q_l and P_k = P_l.'\n )\n", (12542, 12606), False, 'from WaveBlocksND.InnerProduct import InnerProductException\n'), ((6668, 6681), 'numpy.conjugate', 'conjugate', (['P1'], {}), '(P1)\n', (6677, 6681), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((6689, 6702), 'numpy.conjugate', 'conjugate', (['Q1'], {}), '(Q1)\n', (6698, 6702), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((11615, 11627), 'numpy.arange', 'arange', (['mikl'], {}), '(mikl)\n', (11621, 11627), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((11685, 11694), 'numpy.arange', 'arange', (['K'], {}), '(K)\n', (11691, 11694), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((11723, 11732), 'numpy.arange', 'arange', (['L'], {}), '(L)\n', (11729, 11732), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((11761, 11773), 'numpy.arange', 'arange', (['mikl'], {}), '(mikl)\n', (11767, 11773), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12062, 12099), 'numpy.sqrt', 'sqrt', (['(1.0j * Q2 * P1 - 1.0j * Q1 * P2)'], {}), '(1.0j * Q2 * P1 - 1.0j * Q1 * P2)\n', (12066, 12099), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((3683, 3708), 'numpy.ones', 'ones', (['(1, nodes.shape[1])'], {}), '((1, nodes.shape[1]))\n', (3687, 3708), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((3738, 3764), 'numpy.zeros', 'zeros', (['(1, nodes.shape[1])'], {}), '((1, nodes.shape[1]))\n', (3743, 3764), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12462, 12475), 'numpy.squeeze', 'squeeze', (['argk'], {}), '(argk)\n', (12469, 12475), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12486, 12499), 'numpy.squeeze', 'squeeze', (['argl'], {}), '(argl)\n', (12493, 12499), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((14584, 14603), 'numpy.conjugate', 'conjugate', (['Pibra[4]'], {}), '(Pibra[4])\n', (14593, 14603), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((15755, 15774), 'numpy.conjugate', 'conjugate', (['Pibra[4]'], {}), '(Pibra[4])\n', (15764, 15774), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12188, 12201), 'numpy.conjugate', 'conjugate', (['P1'], {}), '(P1)\n', (12197, 12201), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12217, 12230), 'numpy.conjugate', 'conjugate', (['Q1'], {}), '(Q1)\n', (12226, 12230), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((9850, 9863), 'numpy.conjugate', 'conjugate', (['P1'], {}), '(P1)\n', (9859, 9863), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((9878, 9891), 'numpy.conjugate', 'conjugate', (['Q1'], {}), '(Q1)\n', (9887, 9891), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12269, 12287), 'numpy.conjugate', 'conjugate', (['(Q2 * P1)'], {}), '(Q2 * P1)\n', (12278, 12287), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12293, 12311), 'numpy.conjugate', 'conjugate', (['(Q1 * P2)'], {}), '(Q1 * P2)\n', (12302, 12311), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((13138, 13156), 'numpy.conjugate', 'conjugate', (['(Q2 * P1)'], {}), '(Q2 * P1)\n', (13147, 13156), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((13162, 13180), 'numpy.conjugate', 'conjugate', (['(Q1 * P2)'], {}), '(Q1 * P2)\n', (13171, 13180), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((14512, 14525), 'numpy.conjugate', 'conjugate', (['cr'], {}), '(cr)\n', (14521, 14525), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12121, 12134), 'numpy.conjugate', 'conjugate', (['P1'], {}), '(P1)\n', (12130, 12134), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12145, 12158), 'numpy.conjugate', 'conjugate', (['Q1'], {}), '(Q1)\n', (12154, 12158), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12340, 12353), 'numpy.conjugate', 'conjugate', (['P1'], {}), '(P1)\n', (12349, 12353), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((12364, 12377), 'numpy.conjugate', 'conjugate', (['Q1'], {}), '(Q1)\n', (12373, 12377), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((6760, 6773), 'numpy.conjugate', 'conjugate', (['Q1'], {}), '(Q1)\n', (6769, 6773), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((6792, 6805), 'numpy.conjugate', 'conjugate', (['P1'], {}), '(P1)\n', (6801, 6805), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((6892, 6905), 'numpy.conjugate', 'conjugate', (['P1'], {}), '(P1)\n', (6901, 6905), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n'), ((6914, 6927), 'numpy.conjugate', 'conjugate', (['Q1'], {}), '(Q1)\n', (6923, 6927), False, 'from numpy import array, squeeze, conjugate, sqrt, ones, zeros, complexfloating, arange, isnan\n')]
from pyjuxa import db def test_connect(): Session = db.connect() _ = Session()
[ "pyjuxa.db.connect" ]
[((58, 70), 'pyjuxa.db.connect', 'db.connect', ([], {}), '()\n', (68, 70), False, 'from pyjuxa import db\n')]
from rps.sequence_problems.transcribing_dna_into_rna import transcribe def test_transcribe(): """ Checks if transcription properly replaces T with U """ sequence = ["GATGGAACTTGACTACGTAAATT"] expected_rna = "GAUGGAACUUGACUACGUAAAUU" transcribed = transcribe(sequence) assert transcribed == expected_rna
[ "rps.sequence_problems.transcribing_dna_into_rna.transcribe" ]
[((273, 293), 'rps.sequence_problems.transcribing_dna_into_rna.transcribe', 'transcribe', (['sequence'], {}), '(sequence)\n', (283, 293), False, 'from rps.sequence_problems.transcribing_dna_into_rna import transcribe\n')]
# Generated by Django 3.2.4 on 2021-06-13 18:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cards', '0010_auto_20210610_0154'), ] operations = [ migrations.AlterField( model_name='cardinfo', name='name', field=models.CharField(help_text="Displayed card's name.", max_length=50), ), migrations.AddConstraint( model_name='cardinfo', constraint=models.UniqueConstraint(fields=('name',), name='unique_CardInfo_name'), ), ]
[ "django.db.models.UniqueConstraint", "django.db.models.CharField" ]
[((333, 400), 'django.db.models.CharField', 'models.CharField', ([], {'help_text': '"""Displayed card\'s name."""', 'max_length': '(50)'}), '(help_text="Displayed card\'s name.", max_length=50)\n', (349, 400), False, 'from django.db import migrations, models\n'), ((505, 575), 'django.db.models.UniqueConstraint', 'models.UniqueConstraint', ([], {'fields': "('name',)", 'name': '"""unique_CardInfo_name"""'}), "(fields=('name',), name='unique_CardInfo_name')\n", (528, 575), False, 'from django.db import migrations, models\n')]
# SPDX-FileCopyrightText: 2020 2020 # # SPDX-License-Identifier: Apache-2.0 """ REST Builder. """ from __future__ import absolute_import import collections from splunktaucclib.rest_handler.schema import RestSchema from .builder import ( RestBuilder, RestBuilderError, ) __all__ = [ "RestBuilder", "RestBuilderError", "RestHandlerClass", "build", ] __version__ = "0.0.0" RestHandlerClass = collections.namedtuple("RestHandlerClass", ("module", "name"),) def build(schema, handler, output_path, j2_env, post_process=None, *args, **kwargs): """ Build REST for Add-on. :param schema: REST schema. :type schema: RestSchema :param handler: REST handler class import path: ``module.sub_module.RestHandlerClass``. The HandlerClass must be subclass of splunktaucclib.rest_handler.admin_external.AdminExternalHandler. :type handler: str :param output_path: path for output. :param post_process: :param args: args for post_process. :param kwargs: kwargs for post_process. :return: """ def _parse_handler(handler_path): parts = handler_path.split(".") if len(parts) <= 1: raise RestBuilderError( "Invalid handler specified. " 'It should be in form "module.sub_module.RestHandlerClass".' ) return RestHandlerClass(module=".".join(parts[:-1]), name=parts[-1],) builder_obj = RestBuilder(schema, _parse_handler(handler), output_path) builder_obj.build() if post_process is not None: post_process(builder_obj, schema, *args, **kwargs) return builder_obj
[ "collections.namedtuple" ]
[((421, 483), 'collections.namedtuple', 'collections.namedtuple', (['"""RestHandlerClass"""', "('module', 'name')"], {}), "('RestHandlerClass', ('module', 'name'))\n", (443, 483), False, 'import collections\n')]
from plotly.subplots import make_subplots import plotly.graph_objects as go import pandas as pd def filter_data(candles, table, symbol=None, start_date=None, end_date=None): mask = (candles['table'] == table) if symbol: mask = mask & (candles['symbol'] == symbol) if start_date and end_date: mask = mask & (candles['date'] >= start_date) & (candles['date'] < end_date) candles_to_show = candles[mask] return candles_to_show def show_candle(candles, size=(1400, 800)): layout = go.Layout( autosize=True, width=size[0], height=size[1], xaxis=go.layout.XAxis(linecolor='black', linewidth=1, mirror=True), xaxis2=go.layout.XAxis(linecolor='black', linewidth=1, mirror=True), yaxis=go.layout.YAxis(linecolor='black', linewidth=1, mirror=True, domain=[0, 0.2]), yaxis2=go.layout.YAxis(linecolor='black', linewidth=1, mirror=True, domain=[0.3, 1]), ) fig = make_subplots(rows=2, cols=1, shared_xaxes=True) fig.update_layout(layout, xaxis2_rangeslider_visible=False) fig.add_trace(go.Candlestick(x=candles['date'], open=candles['open'], high=candles['high'], low=candles['low'], close=candles['close']), row=2, col=1) fig.update_yaxes(fixedrange=False) # fig.update_xaxes(rangebreaks=[dict(values=compute_datetime_to_hide(start_date, end_date))]) return fig def add_indicator(data: pd.DataFrame, fig: go.Figure, name: str, color: str = 'rgba(46, 134, 193, 0.5)') -> go.Figure: width = 2 fig.add_trace(go.Scatter(x=data['date'], y=data[name], mode='lines', name=name, line=dict(color=color, width=width) ), row=2, col=1 ) return fig
[ "plotly.graph_objects.layout.XAxis", "plotly.graph_objects.Candlestick", "plotly.subplots.make_subplots", "plotly.graph_objects.layout.YAxis" ]
[((1265, 1313), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(2)', 'cols': '(1)', 'shared_xaxes': '(True)'}), '(rows=2, cols=1, shared_xaxes=True)\n', (1278, 1313), False, 'from plotly.subplots import make_subplots\n'), ((1396, 1522), 'plotly.graph_objects.Candlestick', 'go.Candlestick', ([], {'x': "candles['date']", 'open': "candles['open']", 'high': "candles['high']", 'low': "candles['low']", 'close': "candles['close']"}), "(x=candles['date'], open=candles['open'], high=candles['high'\n ], low=candles['low'], close=candles['close'])\n", (1410, 1522), True, 'import plotly.graph_objects as go\n'), ((616, 676), 'plotly.graph_objects.layout.XAxis', 'go.layout.XAxis', ([], {'linecolor': '"""black"""', 'linewidth': '(1)', 'mirror': '(True)'}), "(linecolor='black', linewidth=1, mirror=True)\n", (631, 676), True, 'import plotly.graph_objects as go\n'), ((753, 813), 'plotly.graph_objects.layout.XAxis', 'go.layout.XAxis', ([], {'linecolor': '"""black"""', 'linewidth': '(1)', 'mirror': '(True)'}), "(linecolor='black', linewidth=1, mirror=True)\n", (768, 813), True, 'import plotly.graph_objects as go\n'), ((891, 968), 'plotly.graph_objects.layout.YAxis', 'go.layout.YAxis', ([], {'linecolor': '"""black"""', 'linewidth': '(1)', 'mirror': '(True)', 'domain': '[0, 0.2]'}), "(linecolor='black', linewidth=1, mirror=True, domain=[0, 0.2])\n", (906, 968), True, 'import plotly.graph_objects as go\n'), ((1075, 1152), 'plotly.graph_objects.layout.YAxis', 'go.layout.YAxis', ([], {'linecolor': '"""black"""', 'linewidth': '(1)', 'mirror': '(True)', 'domain': '[0.3, 1]'}), "(linecolor='black', linewidth=1, mirror=True, domain=[0.3, 1])\n", (1090, 1152), True, 'import plotly.graph_objects as go\n')]
import django.conf import importlib from voxel_globe.vip.celery import app class IngestClass(object): def __init__(self, ingest_data, description=''): self.ingest=ingest_data self.description=description #key: [Friendly name, moduleName] #Module name should not include tasks, but it is assume that tasks.ingest_data is used #I'm sure this will be updated at a later time to have api data in the module rather than here #SENSOR_TYPES = {'arducopter':'Arducopter', # 'jpg_exif':'JPEG with EXIF tags'} #to be used in conjunction with importlib def preload_tasks(): ''' Load up app.tasks app.tasks isn't populated until all the .tasks modules are loaded. Short of finding the RIGHT way to load all the tasks specified in Django, I just load them all myself here. I APPARENTLY shouldn't be doing this... Investigate new registry method Maybe ONLY load voxel_globe.ingest.*.tasks??? I wouldn't mind that much''' for tasks in django.conf.settings.INSTALLED_APPS: try: importlib.import_module(tasks+'.tasks') except (ImportError): pass class GetTypes(object): def __init__(self, typetype): self.typetype = typetype self.types = {} def get_types(self): if not self.types: preload_tasks() for _, task in app.tasks.iteritems(): try: if getattr(task, self.typetype+'_ingest'): self.types[task.dbname] = IngestClass(task, task.description) except AttributeError: pass return self.types PayloadTypes = GetTypes('payload') MetadataTypes = GetTypes('metadata') ControlPointTypes = GetTypes('controlpoint')
[ "voxel_globe.vip.celery.app.tasks.iteritems", "importlib.import_module" ]
[((1040, 1081), 'importlib.import_module', 'importlib.import_module', (["(tasks + '.tasks')"], {}), "(tasks + '.tasks')\n", (1063, 1081), False, 'import importlib\n'), ((1313, 1334), 'voxel_globe.vip.celery.app.tasks.iteritems', 'app.tasks.iteritems', ([], {}), '()\n', (1332, 1334), False, 'from voxel_globe.vip.celery import app\n')]
from typing import Dict, List, Callable, Tuple from enum import Enum import math import random import pygame from pygame.locals import Rect from pygame.sprite import Sprite from stage import Stage from screen import Screen, BaseScreen from sprites import HoverRect, PressRect, SimpleSprite, TextSprite, make_outline_splites, load_animation_sprite from sprites import RichSprite, layout_rects from component import CounterBtn from component import make_counter_btn from component import ValuesGroup from game_config import GameConfig class StageSelectScreen2(BaseScreen): def __init__(self, game_config: GameConfig, gamesetting): super().__init__() # game_configから必要な情報を取り出す self.stages = game_config.stages self.gamesetting = gamesetting self.load_images(game_config) self.load_sounds(game_config) pygame.display.set_caption("ステージセレクト") self.hover_rects = {} self.press_rects = {} self.selected_stage = None self.stock = 3 self.font_size_stage_title = 50 self.font_stage_title = pygame.font.SysFont(None, self.font_size_stage_title) self.font_size_stock = 80 self.font_stock = pygame.font.SysFont(None, self.font_size_stock) self.font_size = 40 self.font = pygame.font.SysFont(None, self.font_size) self.stock_counter = None self.init() def _split_area(self): """ 表示領域を決定し,Rectとして保持する. """ rect = self.display.get_rect() # 領域分割 self.stage_view_rect = Rect( rect.x, rect.y, int(rect.width * 0.4), int(rect.height * 0.75) ) self.stage_select_rect = Rect( self.stage_view_rect.right, self.stage_view_rect.y, rect.width - self.stage_view_rect.width, self.stage_view_rect.height ) self.stock_rect = Rect( self.stage_view_rect.x, self.stage_view_rect.bottom, rect.width, rect.height - self.stage_view_rect.height ) self.area = [self.stage_view_rect, self.stage_select_rect, self.stock_rect] def _set_stage_thumbnail_sprites(self): """ サムネイルを正方形のタイルにしてself.stage_select_rect上に並べる """ cols = 3 rows = math.ceil(len(self.stages) / cols) padding = 10 tile_margin = 10 rect = self.stage_select_rect rect = Rect(rect.x + padding, rect.y + padding, rect.w - padding * 2, rect.h - padding * 2) tile_width = min((rect.w - (cols - 1) * tile_margin) // cols, (rect.h - (rows - 1) * tile_margin) // rows) tile_height = tile_width left = rect.x + (rect.w - (tile_width * cols + tile_margin * (cols - 1))) // 2 top = rect.y + (rect.h - (tile_height * rows + tile_margin * (rows - 1))) // 2 thumbnail_sprites = [] stages = list(self.stages.values()) for i in range(rows): for j in range(cols): tmp = i * rows + j if tmp >= len(stages): break stage = stages[tmp] x = left + j * (tile_width + tile_margin) y = top + i * (tile_height + tile_margin) thumbnail_rect = stage.thumbnail_rect(width=tile_width, height=tile_height) image = stage.image.subsurface(thumbnail_rect) sprite = SimpleSprite(Rect(x, y, tile_width, tile_height), image) self._add_hover_rect(sprite, self._visible_outlines, self._invisible_outlines) self._add_press_rect(sprite, self._select_stage, stage) thumbnail_sprites.append(sprite) self.thumbnail_sprites = thumbnail_sprites self.front_sprites.add(self.thumbnail_sprites) def _set_stock_counter(self): """ストックのカウンターを設置 """ counter_btn = CounterBtn( x=self.stock_rect.centerx, y=self.stock_rect.centery, min_=1, max_=5, font=self.font_stock, front_group=self.front_sprites, back_group=self.middle_sprites, color=(0, 0, 0), bgcolor=None, sound=self.click_sound, ) self.stock_counter = counter_btn rect = counter_btn.rect stock_label = TextSprite( x=rect.right + 5, y=rect.top, text="stock", font=self.font_stock, color=(0, 0, 0), align="left", vertical_align="top", ) self.middle_sprites.add(stock_label) def _set_back_btn(self): """戻るボタン設置 """ rect = self.display.get_rect() back_btn = TextSprite( x=rect.x + 5, y=rect.y + 5, text="<back", font=self.font, color=(0, 0, 0), align="left", vertical_align="top", ) self.front_sprites.add(back_btn) self._add_hover_rect(back_btn, self._visible_outlines, self._invisible_outlines) self._add_press_rect(back_btn, self._go_back_character_select, None) def _set_next_btn(self): """進むボタン設置 """ rect = self.display.get_rect() next_btn = TextSprite( x=rect.right - 5, y=rect.y + 5, text="next>", font=self.font, color=(0, 0, 0), align="right", vertical_align="top", ) self.front_sprites.add(next_btn) self._add_hover_rect(next_btn, self._visible_outlines, self._invisible_outlines) self._add_press_rect(next_btn, self._go_to_game, None) def _get_stage_big_thumbnails(self): """ self.stage_view_rect に合わせた表示のための画像の辞書を作成する """ padding = 10 rect = self.stage_view_rect w = rect image_rect = Rect(rect.x + padding, rect.y + padding, rect.w - padding * 2, rect.h - padding * 2) text_rect = Rect( image_rect.x, image_rect.bottom - self.font_size_stage_title - 5, image_rect.w, self.font_size_stage_title + 5, ) self.stage_view_sprites = {} self.stage_name_sprites = {} for id_, stage in self.stages.items(): thumbnail_rect = stage.thumbnail_rect(width=image_rect.w, height=image_rect.h) image = stage.image.subsurface(thumbnail_rect) stage_view_sprite = SimpleSprite(image_rect, image) stage_name_sprite = TextSprite( x=text_rect.centerx, y=text_rect.centery, text=stage.name, font=self.font_stage_title, color=(0, 0, 0), bgcolor=(255, 255, 255), align="center", vertical_align="middle" ) self.stage_view_sprites[stage] = stage_view_sprite self.stage_name_sprites[stage] = stage_name_sprite # デフォルトのステージ(先頭)を選択しておく self._update_stage(list(self.stages.values())[0]) def _load_background(self): """背景画像を読み込む (self.background_sprites に追加する) """ bg_image = self.bg_image bg_sprite = SimpleSprite(bg_image.get_rect(), bg_image) self.background_sprites.add(bg_sprite) def load_sounds(self, game_config: GameConfig): """サウンドを読み込む """ self.bgm_sound = game_config.sounds["menu"] self.click_sound = game_config.sounds["click"] self.bgm_sound.set_volume(0.3) self.stage_sounds = {} def load_images(self, game_config: GameConfig): """Surfaceを読み込む """ self.outline_image = game_config.components["outline"] self.bg_image = game_config.components["background"] def init(self): """初期化関数. 描画するスプライトグループを空にしてからいろいろ配置する """ self.empty_all_sprites() self._split_area() self._set_stage_thumbnail_sprites() self._set_stock_counter() self._set_back_btn() self._set_next_btn() self._get_stage_big_thumbnails() self._load_background() def _add_hover_rect(self, sprite: Sprite, enter_fnc: Callable, exit_fnc: Callable): rect = sprite.rect hover_rect = HoverRect(rect, enter_fnc, exit_fnc) outline_sprites = make_outline_splites(rect, self.outline_image, border_width=3) self.hover_rects[hover_rect] = outline_sprites def _visible_outlines(self, hover_rect: HoverRect): """ hover_rect に対応した OutlineSprite を見えるようにする (self.middle_spritesに追加) """ outline_sprites = self.hover_rects[hover_rect] self.middle_sprites.add(outline_sprites) def _invisible_outlines(self, hover_rect: HoverRect): """ hover_rect に対応した OutlineSprite を見えないようにする (self.middle_spritesから削除) """ outline_sprites = self.hover_rects[hover_rect] self.middle_sprites.remove(outline_sprites) def _go_to_game(self, *args): """ゲーム画面に進む """ print("go to game screen") print("stage: {}, stock: {}".format(self.selected_stage.name, self.stock)) self.next_screen = Screen.GAME self.run = False def _go_back_character_select(self, *args): """キャラクター選択画面に戻る """ print("go back to character select screen") self.next_screen = Screen.CHARACTER_SELECT self.run = False def _add_press_rect(self, sprite: Sprite, fnc: Callable, value): """ press_rect を self.press_rects に登録する """ rect = sprite.rect press_rect = PressRect(rect, fnc) self.press_rects[press_rect] = value def _update_stage(self, new_stage: Stage): """ self.selected_stage を new_stage に置き換える """ if new_stage is not self.selected_stage: if self.selected_stage is not None: # 前の選択ステージを解除 stage_name_sprite = self.stage_name_sprites[self.selected_stage] if self.front_sprites.has(stage_name_sprite): self.front_sprites.remove(stage_name_sprite) stage_view_sprite = self.stage_view_sprites[self.selected_stage] if self.middle_sprites.has(stage_view_sprite): self.middle_sprites.remove(stage_view_sprite) # 選択ステージに更新 self.selected_stage = new_stage stage_name_sprite = self.stage_name_sprites[self.selected_stage] if not self.front_sprites.has(stage_name_sprite): self.front_sprites.add(stage_name_sprite) stage_view_sprite = self.stage_view_sprites[self.selected_stage] if not self.middle_sprites.has(stage_view_sprite): self.middle_sprites.add(stage_view_sprite) def _select_stage(self, press_rect: PressRect): """ press_rect が呼び出す関数.self.selected_stage を更新する """ self.click_sound.play() stage = self.press_rects[press_rect] self._update_stage(stage) def main(self): self.bgm_sound.play(loops=-1) while self.run: for event in pygame.event.get(): if event.type == pygame.QUIT: self.next_screen = Screen.QUIT self.run = False # hover_rectの更新 for hover_rect in self.hover_rects: hover_rect.update() # press_rectの更新 for press_rect in self.press_rects: press_rect.update() # componentsの更新 self.stock_counter.update() self.stock = self.stock_counter.count self.update() self.draw() # # press_rect の領域表示 # for press_rect in self.press_rects: # pygame.draw.rect(self.display, (0, 0, 255), press_rect.rect, width=2) pygame.display.update() self.bgm_sound.stop() self.click_sound.stop() class StageSelectScreen(BaseScreen): def __init__(self, game_config: GameConfig, gamesetting): super().__init__() # game_configから必要な情報を取り出す self.stages = game_config.stages self.gamesetting = gamesetting self.load_images(game_config) self.load_sounds(game_config) pygame.display.set_caption("ステージセレクト") self.selected_stage = None self.stock = 3 self.btn_font = pygame.font.SysFont(None, 30) self.stock_font = pygame.font.SysFont(None, 60) self.init() def init(self): self._split_area() self._set_bg() self._set_next_back_btn() self._set_stages() self._set_stage_view_thumbnails() self._set_stock_btn() self._select_stage(list(self.stages.values())[0]) def load_sounds(self, game_config: GameConfig): """サウンドを読み込む """ self.bgm_sound = game_config.sounds["menu"] self.click_sound = game_config.sounds["click"] self.stage_sounds = {} def load_images(self, game_config: GameConfig): """Surfaceを読み込む """ self.outline_image = game_config.components["outline"] self.bg_image = game_config.components["background"] def _split_area(self): """ 表示領域を決定し,Rectとして保持する. """ rect = self.display.get_rect() # 領域分割 self.stage_view_rect = Rect( rect.x, rect.y, int(rect.width * 0.4), int(rect.height * 0.75) ) self.stage_select_rect = Rect( self.stage_view_rect.right, self.stage_view_rect.y, rect.width - self.stage_view_rect.width, self.stage_view_rect.height ) self.stock_rect = Rect( self.stage_view_rect.x, self.stage_view_rect.bottom, rect.width, rect.height - self.stage_view_rect.height ) self.area = [self.stage_view_rect, self.stage_select_rect, self.stock_rect] def _set_bg(self): bg_sprite = SimpleSprite(self.display.get_rect(), self.bg_image) self.background_sprites.add(bg_sprite) def _set_next_back_btn(self): """next, backボタンの設置 """ rect = self.display.get_rect() tuples = [ ("next", "right", rect.w - 5, 5, Screen.GAME), ("back", "left", 5, 5, Screen.CHARACTER_SELECT) ] for text, align, x, y, next_screen in tuples: btn_surface = self.btn_font.render(text, True, (0, 0, 0)) btn_sprite = RichSprite( x=x, y=y, align=align, vertical_align="top", image=btn_surface, press_fnc=self._go_to_screen, press_fnc_args=(next_screen,) ) self.hoverable(btn_sprite, self.outline_image, border_width=3) self.front_sprites.add(btn_sprite) def _go_to_screen(self, next_screen: Screen): """画面遷移する """ print("go to", next_screen) print("stage: {}, stock: {}".format(self.selected_stage, self.stock_btn.get_value())) # gamesettingに選択したステージ,ストック数を反映する if self.gamesetting is not None: self.gamesetting.stage = self.selected_stage self.gamesetting.stock = self.stock_btn.get_value() self.next_screen = next_screen self.run = False def _select_stage(self, stage: Stage): """ステージを選んだ際の処理 """ if self.selected_stage is not None: # 前選んでいたスプライトを所属グループから削除 pre_view_sprite = self.stage_view_sprites[self.selected_stage] pre_view_sprite.remove(pre_view_sprite.groups()) # 選択ステージを更新 self.selected_stage = stage new_view_sprite = self.stage_view_sprites[self.selected_stage] self.middle_sprites.add(new_view_sprite) def _set_stages(self): """画面右側にステージのサムネイルをタイル表示する """ base_rect = self.stage_select_rect rects = layout_rects(base_rect=base_rect, item_width=50, item_height=50, padding=30) stages = list(self.stages.values()) * 6 for rect, stage in zip(rects, stages): image = stage.thumbnail_image(*rect.size) sprite = RichSprite( x=rect.centerx, y=rect.centery, image=image, press_fnc=self._select_stage, press_fnc_args=(stage,) ) self.hoverable(sprite, self.outline_image) self.middle_sprites.add(sprite) def _set_stage_view_thumbnails(self): """画面左側に選択したステージのサムネイルを表示する """ rect = self.stage_view_rect w = h = min(int(rect.w * 0.7), int(rect.h * 0.7)) rect = layout_rects(self.stage_view_rect, cols=1, rows=1, item_width=w, item_height=h)[0] # 左側用の画像の辞書を作成 self.stage_view_sprites = { stage: RichSprite(*rect.center, image=stage.thumbnail_image(rect.w, rect.h)) for stage in self.stages.values() } def _set_stock_btn(self): rect = self.display.get_rect() x = rect.centerx y = rect.h * 2 // 3 rect = Rect(0, 0, 300, 50) rect.center = (x, y) self.stock_btn = ValuesGroup(rect, list(range(1, 6)), color=(0, 0, 0), bg_color=(255, 255, 255), defalut_i=2) self.middle_sprites.add(self.stock_btn) # counter_btn, get_count_fnc = make_counter_btn(x, y, self.stock_font, min_=1, max_=5) # self.get_count_fnc = get_count_fnc # self.front_sprites.add(counter_btn) # print("set counter") def main(self): while self.run: self.get_events() self.clock.tick(self.fps) self.update() self.draw() # print(self.front_sprites) pygame.display.update() def get_sample_stages(json_path="./jsons/stage.json"): """ json stages の サンプルを読み込む """ import glob, json stages = {} with open(json_path, "r") as f: json_data = json.load(f) stages = {key: Stage(key, dic["name"], pygame.image.load(dic["path"])) for key, dic in json_data.items()} return stages if __name__ == "__main__": pygame.init() pygame.display.set_mode((500, 500)) game_config = GameConfig("./jsons/config.json") # exit() # stages = get_sample_stages(json_path="./jsons/stages2.json") gamesetting = None stage_select_screen = StageSelectScreen(game_config, gamesetting) stage_select_screen.main()
[ "pygame.locals.Rect", "pygame.init", "sprites.make_outline_splites", "pygame.event.get", "pygame.display.set_mode", "sprites.SimpleSprite", "sprites.PressRect", "game_config.GameConfig", "component.CounterBtn", "sprites.TextSprite", "pygame.image.load", "sprites.HoverRect", "pygame.display.set_caption", "json.load", "sprites.RichSprite", "pygame.display.update", "pygame.font.SysFont", "sprites.layout_rects" ]
[((18394, 18407), 'pygame.init', 'pygame.init', ([], {}), '()\n', (18405, 18407), False, 'import pygame\n'), ((18412, 18447), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(500, 500)'], {}), '((500, 500))\n', (18435, 18447), False, 'import pygame\n'), ((18467, 18500), 'game_config.GameConfig', 'GameConfig', (['"""./jsons/config.json"""'], {}), "('./jsons/config.json')\n", (18477, 18500), False, 'from game_config import GameConfig\n'), ((863, 901), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""ステージセレクト"""'], {}), "('ステージセレクト')\n", (889, 901), False, 'import pygame\n'), ((1093, 1146), 'pygame.font.SysFont', 'pygame.font.SysFont', (['None', 'self.font_size_stage_title'], {}), '(None, self.font_size_stage_title)\n', (1112, 1146), False, 'import pygame\n'), ((1207, 1254), 'pygame.font.SysFont', 'pygame.font.SysFont', (['None', 'self.font_size_stock'], {}), '(None, self.font_size_stock)\n', (1226, 1254), False, 'import pygame\n'), ((1303, 1344), 'pygame.font.SysFont', 'pygame.font.SysFont', (['None', 'self.font_size'], {}), '(None, self.font_size)\n', (1322, 1344), False, 'import pygame\n'), ((1723, 1854), 'pygame.locals.Rect', 'Rect', (['self.stage_view_rect.right', 'self.stage_view_rect.y', '(rect.width - self.stage_view_rect.width)', 'self.stage_view_rect.height'], {}), '(self.stage_view_rect.right, self.stage_view_rect.y, rect.width - self.\n stage_view_rect.width, self.stage_view_rect.height)\n', (1727, 1854), False, 'from pygame.locals import Rect\n'), ((1934, 2051), 'pygame.locals.Rect', 'Rect', (['self.stage_view_rect.x', 'self.stage_view_rect.bottom', 'rect.width', '(rect.height - self.stage_view_rect.height)'], {}), '(self.stage_view_rect.x, self.stage_view_rect.bottom, rect.width, rect.\n height - self.stage_view_rect.height)\n', (1938, 2051), False, 'from pygame.locals import Rect\n'), ((2468, 2557), 'pygame.locals.Rect', 'Rect', (['(rect.x + padding)', '(rect.y + padding)', '(rect.w - padding * 2)', '(rect.h - padding * 2)'], {}), '(rect.x + padding, rect.y + padding, rect.w - padding * 2, rect.h - \n padding * 2)\n', (2472, 2557), False, 'from pygame.locals import Rect\n'), ((3946, 4180), 'component.CounterBtn', 'CounterBtn', ([], {'x': 'self.stock_rect.centerx', 'y': 'self.stock_rect.centery', 'min_': '(1)', 'max_': '(5)', 'font': 'self.font_stock', 'front_group': 'self.front_sprites', 'back_group': 'self.middle_sprites', 'color': '(0, 0, 0)', 'bgcolor': 'None', 'sound': 'self.click_sound'}), '(x=self.stock_rect.centerx, y=self.stock_rect.centery, min_=1,\n max_=5, font=self.font_stock, front_group=self.front_sprites,\n back_group=self.middle_sprites, color=(0, 0, 0), bgcolor=None, sound=\n self.click_sound)\n', (3956, 4180), False, 'from component import CounterBtn\n'), ((4394, 4527), 'sprites.TextSprite', 'TextSprite', ([], {'x': '(rect.right + 5)', 'y': 'rect.top', 'text': '"""stock"""', 'font': 'self.font_stock', 'color': '(0, 0, 0)', 'align': '"""left"""', 'vertical_align': '"""top"""'}), "(x=rect.right + 5, y=rect.top, text='stock', font=self.font_stock,\n color=(0, 0, 0), align='left', vertical_align='top')\n", (4404, 4527), False, 'from sprites import HoverRect, PressRect, SimpleSprite, TextSprite, make_outline_splites, load_animation_sprite\n'), ((4783, 4909), 'sprites.TextSprite', 'TextSprite', ([], {'x': '(rect.x + 5)', 'y': '(rect.y + 5)', 'text': '"""<back"""', 'font': 'self.font', 'color': '(0, 0, 0)', 'align': '"""left"""', 'vertical_align': '"""top"""'}), "(x=rect.x + 5, y=rect.y + 5, text='<back', font=self.font, color=\n (0, 0, 0), align='left', vertical_align='top')\n", (4793, 4909), False, 'from sprites import HoverRect, PressRect, SimpleSprite, TextSprite, make_outline_splites, load_animation_sprite\n'), ((5339, 5469), 'sprites.TextSprite', 'TextSprite', ([], {'x': '(rect.right - 5)', 'y': '(rect.y + 5)', 'text': '"""next>"""', 'font': 'self.font', 'color': '(0, 0, 0)', 'align': '"""right"""', 'vertical_align': '"""top"""'}), "(x=rect.right - 5, y=rect.y + 5, text='next>', font=self.font,\n color=(0, 0, 0), align='right', vertical_align='top')\n", (5349, 5469), False, 'from sprites import HoverRect, PressRect, SimpleSprite, TextSprite, make_outline_splites, load_animation_sprite\n'), ((5967, 6056), 'pygame.locals.Rect', 'Rect', (['(rect.x + padding)', '(rect.y + padding)', '(rect.w - padding * 2)', '(rect.h - padding * 2)'], {}), '(rect.x + padding, rect.y + padding, rect.w - padding * 2, rect.h - \n padding * 2)\n', (5971, 6056), False, 'from pygame.locals import Rect\n'), ((6072, 6192), 'pygame.locals.Rect', 'Rect', (['image_rect.x', '(image_rect.bottom - self.font_size_stage_title - 5)', 'image_rect.w', '(self.font_size_stage_title + 5)'], {}), '(image_rect.x, image_rect.bottom - self.font_size_stage_title - 5,\n image_rect.w, self.font_size_stage_title + 5)\n', (6076, 6192), False, 'from pygame.locals import Rect\n'), ((8363, 8399), 'sprites.HoverRect', 'HoverRect', (['rect', 'enter_fnc', 'exit_fnc'], {}), '(rect, enter_fnc, exit_fnc)\n', (8372, 8399), False, 'from sprites import HoverRect, PressRect, SimpleSprite, TextSprite, make_outline_splites, load_animation_sprite\n'), ((8426, 8488), 'sprites.make_outline_splites', 'make_outline_splites', (['rect', 'self.outline_image'], {'border_width': '(3)'}), '(rect, self.outline_image, border_width=3)\n', (8446, 8488), False, 'from sprites import HoverRect, PressRect, SimpleSprite, TextSprite, make_outline_splites, load_animation_sprite\n'), ((9707, 9727), 'sprites.PressRect', 'PressRect', (['rect', 'fnc'], {}), '(rect, fnc)\n', (9716, 9727), False, 'from sprites import HoverRect, PressRect, SimpleSprite, TextSprite, make_outline_splites, load_animation_sprite\n'), ((12414, 12452), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""ステージセレクト"""'], {}), "('ステージセレクト')\n", (12440, 12452), False, 'import pygame\n'), ((12537, 12566), 'pygame.font.SysFont', 'pygame.font.SysFont', (['None', '(30)'], {}), '(None, 30)\n', (12556, 12566), False, 'import pygame\n'), ((12593, 12622), 'pygame.font.SysFont', 'pygame.font.SysFont', (['None', '(60)'], {}), '(None, 60)\n', (12612, 12622), False, 'import pygame\n'), ((13679, 13810), 'pygame.locals.Rect', 'Rect', (['self.stage_view_rect.right', 'self.stage_view_rect.y', '(rect.width - self.stage_view_rect.width)', 'self.stage_view_rect.height'], {}), '(self.stage_view_rect.right, self.stage_view_rect.y, rect.width - self.\n stage_view_rect.width, self.stage_view_rect.height)\n', (13683, 13810), False, 'from pygame.locals import Rect\n'), ((13890, 14007), 'pygame.locals.Rect', 'Rect', (['self.stage_view_rect.x', 'self.stage_view_rect.bottom', 'rect.width', '(rect.height - self.stage_view_rect.height)'], {}), '(self.stage_view_rect.x, self.stage_view_rect.bottom, rect.width, rect.\n height - self.stage_view_rect.height)\n', (13894, 14007), False, 'from pygame.locals import Rect\n'), ((16170, 16246), 'sprites.layout_rects', 'layout_rects', ([], {'base_rect': 'base_rect', 'item_width': '(50)', 'item_height': '(50)', 'padding': '(30)'}), '(base_rect=base_rect, item_width=50, item_height=50, padding=30)\n', (16182, 16246), False, 'from sprites import RichSprite, layout_rects\n'), ((17350, 17369), 'pygame.locals.Rect', 'Rect', (['(0)', '(0)', '(300)', '(50)'], {}), '(0, 0, 300, 50)\n', (17354, 17369), False, 'from pygame.locals import Rect\n'), ((18214, 18226), 'json.load', 'json.load', (['f'], {}), '(f)\n', (18223, 18226), False, 'import glob, json\n'), ((6551, 6582), 'sprites.SimpleSprite', 'SimpleSprite', (['image_rect', 'image'], {}), '(image_rect, image)\n', (6563, 6582), False, 'from sprites import HoverRect, PressRect, SimpleSprite, TextSprite, make_outline_splites, load_animation_sprite\n'), ((6615, 6805), 'sprites.TextSprite', 'TextSprite', ([], {'x': 'text_rect.centerx', 'y': 'text_rect.centery', 'text': 'stage.name', 'font': 'self.font_stage_title', 'color': '(0, 0, 0)', 'bgcolor': '(255, 255, 255)', 'align': '"""center"""', 'vertical_align': '"""middle"""'}), "(x=text_rect.centerx, y=text_rect.centery, text=stage.name, font=\n self.font_stage_title, color=(0, 0, 0), bgcolor=(255, 255, 255), align=\n 'center', vertical_align='middle')\n", (6625, 6805), False, 'from sprites import HoverRect, PressRect, SimpleSprite, TextSprite, make_outline_splites, load_animation_sprite\n'), ((11245, 11263), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (11261, 11263), False, 'import pygame\n'), ((12001, 12024), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (12022, 12024), False, 'import pygame\n'), ((14700, 14839), 'sprites.RichSprite', 'RichSprite', ([], {'x': 'x', 'y': 'y', 'align': 'align', 'vertical_align': '"""top"""', 'image': 'btn_surface', 'press_fnc': 'self._go_to_screen', 'press_fnc_args': '(next_screen,)'}), "(x=x, y=y, align=align, vertical_align='top', image=btn_surface,\n press_fnc=self._go_to_screen, press_fnc_args=(next_screen,))\n", (14710, 14839), False, 'from sprites import RichSprite, layout_rects\n'), ((16417, 16532), 'sprites.RichSprite', 'RichSprite', ([], {'x': 'rect.centerx', 'y': 'rect.centery', 'image': 'image', 'press_fnc': 'self._select_stage', 'press_fnc_args': '(stage,)'}), '(x=rect.centerx, y=rect.centery, image=image, press_fnc=self.\n _select_stage, press_fnc_args=(stage,))\n', (16427, 16532), False, 'from sprites import RichSprite, layout_rects\n'), ((16925, 17004), 'sprites.layout_rects', 'layout_rects', (['self.stage_view_rect'], {'cols': '(1)', 'rows': '(1)', 'item_width': 'w', 'item_height': 'h'}), '(self.stage_view_rect, cols=1, rows=1, item_width=w, item_height=h)\n', (16937, 17004), False, 'from sprites import RichSprite, layout_rects\n'), ((17997, 18020), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (18018, 18020), False, 'import pygame\n'), ((18275, 18305), 'pygame.image.load', 'pygame.image.load', (["dic['path']"], {}), "(dic['path'])\n", (18292, 18305), False, 'import pygame\n'), ((3486, 3521), 'pygame.locals.Rect', 'Rect', (['x', 'y', 'tile_width', 'tile_height'], {}), '(x, y, tile_width, tile_height)\n', (3490, 3521), False, 'from pygame.locals import Rect\n')]
from django.test import RequestFactory from olympia.accounts.templatetags import jinja_helpers def test_login_link(): request = RequestFactory().get('/en-US/firefox/addons') assert jinja_helpers.login_link({'request': request}) == ( 'http://testserver/api/v5/accounts/login/start/' '?to=%2Fen-US%2Ffirefox%2Faddons' ) request = RequestFactory().get('/en-US/firefox/addons?blah=1') assert jinja_helpers.login_link({'request': request}) == ( 'http://testserver/api/v5/accounts/login/start/' '?to=%2Fen-US%2Ffirefox%2Faddons%3Fblah%3D1' ) request = RequestFactory().get('/en-US/firefox/addons?blah=1&bâr=2') assert jinja_helpers.login_link({'request': request}) == ( 'http://testserver/api/v5/accounts/login/start/' '?to=%2Fen-US%2Ffirefox%2Faddons%3Fblah%3D1%26b%25C3%25A2r%3D2' )
[ "django.test.RequestFactory", "olympia.accounts.templatetags.jinja_helpers.login_link" ]
[((192, 238), 'olympia.accounts.templatetags.jinja_helpers.login_link', 'jinja_helpers.login_link', (["{'request': request}"], {}), "({'request': request})\n", (216, 238), False, 'from olympia.accounts.templatetags import jinja_helpers\n'), ((428, 474), 'olympia.accounts.templatetags.jinja_helpers.login_link', 'jinja_helpers.login_link', (["{'request': request}"], {}), "({'request': request})\n", (452, 474), False, 'from olympia.accounts.templatetags import jinja_helpers\n'), ((681, 727), 'olympia.accounts.templatetags.jinja_helpers.login_link', 'jinja_helpers.login_link', (["{'request': request}"], {}), "({'request': request})\n", (705, 727), False, 'from olympia.accounts.templatetags import jinja_helpers\n'), ((135, 151), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (149, 151), False, 'from django.test import RequestFactory\n'), ((364, 380), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (378, 380), False, 'from django.test import RequestFactory\n'), ((611, 627), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (625, 627), False, 'from django.test import RequestFactory\n')]
from django.contrib import admin # Register your models here. from .models import Dmis_countries,Dmis_disasters, Dmis_field_report, Dmis_numericalreport, Dmis_response_tools, surge_heops_deployments admin.site.register(Dmis_countries) admin.site.register(Dmis_disasters) admin.site.register(Dmis_field_report) admin.site.register(Dmis_numericalreport) admin.site.register(Dmis_response_tools) admin.site.register(surge_heops_deployments)
[ "django.contrib.admin.site.register" ]
[((203, 238), 'django.contrib.admin.site.register', 'admin.site.register', (['Dmis_countries'], {}), '(Dmis_countries)\n', (222, 238), False, 'from django.contrib import admin\n'), ((239, 274), 'django.contrib.admin.site.register', 'admin.site.register', (['Dmis_disasters'], {}), '(Dmis_disasters)\n', (258, 274), False, 'from django.contrib import admin\n'), ((275, 313), 'django.contrib.admin.site.register', 'admin.site.register', (['Dmis_field_report'], {}), '(Dmis_field_report)\n', (294, 313), False, 'from django.contrib import admin\n'), ((314, 355), 'django.contrib.admin.site.register', 'admin.site.register', (['Dmis_numericalreport'], {}), '(Dmis_numericalreport)\n', (333, 355), False, 'from django.contrib import admin\n'), ((356, 396), 'django.contrib.admin.site.register', 'admin.site.register', (['Dmis_response_tools'], {}), '(Dmis_response_tools)\n', (375, 396), False, 'from django.contrib import admin\n'), ((397, 441), 'django.contrib.admin.site.register', 'admin.site.register', (['surge_heops_deployments'], {}), '(surge_heops_deployments)\n', (416, 441), False, 'from django.contrib import admin\n')]
"""Delete table_name unique constraint in mysql Revision ID: 18532d70ab98 Revises: 3fbbc6e8d654 Create Date: 2020-09-25 10:56:13.711182 """ # revision identifiers, used by Alembic. revision = "18532d70ab98" down_revision = "3fbbc6e8d654" from alembic import op from sqlalchemy.dialects.mysql.base import MySQLDialect from sqlalchemy.engine.reflection import Inspector from rabbitai.utils.core import generic_find_uq_constraint_name def upgrade(): bind = op.get_bind() # Uniqueness constraint if present only exists in MySQL. if isinstance(bind.dialect, MySQLDialect): constraint_name = generic_find_uq_constraint_name( "tables", {"table_name"}, Inspector.from_engine(bind) ) if constraint_name: op.drop_constraint(constraint_name, "tables", type_="unique") def downgrade(): pass
[ "alembic.op.drop_constraint", "alembic.op.get_bind", "sqlalchemy.engine.reflection.Inspector.from_engine" ]
[((465, 478), 'alembic.op.get_bind', 'op.get_bind', ([], {}), '()\n', (476, 478), False, 'from alembic import op\n'), ((685, 712), 'sqlalchemy.engine.reflection.Inspector.from_engine', 'Inspector.from_engine', (['bind'], {}), '(bind)\n', (706, 712), False, 'from sqlalchemy.engine.reflection import Inspector\n'), ((764, 825), 'alembic.op.drop_constraint', 'op.drop_constraint', (['constraint_name', '"""tables"""'], {'type_': '"""unique"""'}), "(constraint_name, 'tables', type_='unique')\n", (782, 825), False, 'from alembic import op\n')]
#!/usr/bin/env python3 # Standard libraries # Third-party libraries import matplotlib.pyplot as plt import numpy as np import rospy # Local libraries from pycopter import quadlog from pycopter import animation as ani class SimNQuads(): def __init__(self, quads, fc, time, ndrones=3, alt_d=0.2, frames=200): self.test = False self.ndrones = ndrones self.xlim = 20 self.ylim = 20 # Extract quadcopters from list self.quads = quads self.lw = 3.0 self.fc = fc # Simulation parameters self.it = 0 # Data log self.qlogs = [] for _ in range(ndrones): self.qlogs.append(quadlog.quadlog(time)) self.Ed_log = np.zeros((time.size, 4)) # Plots self.quadcolor = ["r", "g", "b", "c", "m", "y", "k", "r", "b"] plt.close("all") plt.ion() self.fig = plt.figure(0) self.axis3d = self.fig.add_subplot(111, projection='3d') self.init_area = 5 self.s = 2 self.alt_d = alt_d self.counter_reach_alt = 0 self.frames = frames def get_errors(self, errors): errors_array = np.array(errors[:-1]) errors_array = errors_array.reshape([self.ndrones, self.ndrones]) errors_list = [errors_array[0,1], errors_array[0,4], errors_array[2,3]] # Append the system error at the end of the list errors_list.append(errors[-1]) return errors_list def new_iteration(self, t, dt, U=None, errors=None): # Simulation X = np.array([]) V = np.array([]) for i in range(self.ndrones): X = np.append(X, self.quads[i].xyz[0:2]) V = np.append(V, self.quads[i].v_ned[0:2]) if t<5: U = [] for i in range(self.ndrones): U.append(0) U.append(0) print('No U Present') for i in range(self.ndrones): # print("z: ", self.quads[i].xyz[2], "des_z: ", self.alt_d) if self.quads[i].xyz[2] < -self.alt_d and self.counter_reach_alt < self.ndrones*5: # print("Reached Altitude") self.counter_reach_alt+=1 if self.test: self.quads[i].set_a_2D_alt_lya(U[2*i:2*i+2], -self.alt_d) else: self.quads[i].set_v_2D_alt_lya(U[2*i:2*i+2], -self.alt_d) self.quads[i].step(dt) # Animation if self.it%self.frames == 0: plt.figure(0) self.axis3d.cla() for i in range(self.ndrones): ani.draw3d(self.axis3d, self.quads[i].xyz, self.quads[i].Rot_bn(), self.quadcolor[i]) self.axis3d.set_xlim(-self.xlim, self.xlim) self.axis3d.set_ylim(-self.ylim, self.ylim) self.axis3d.set_zlim(0, 10) self.axis3d.set_xlabel('South [m]', fontsize = 'xx-large') self.axis3d.set_ylabel('East [m]', fontsize = 'xx-large') self.axis3d.set_zlabel('Up [m]', fontsize = 'xx-large') self.axis3d.set_title("3D Map", fontsize = 'xx-large') plt.pause(0.001) plt.draw() plt.figure(1) plt.clf() ani.draw2d(1, X, self.fc, self.quadcolor, self.ndrones) if self.ndrones == 3: ani.draw_edges(1, X, self.fc, -1) plt.xlabel('South [m]') plt.ylabel('West [m]') plt.title('2D Map') plt.xlim(-self.xlim, self.xlim) plt.ylim(-self.ylim, self.ylim) # plt.xlim(-self.s*self.init_area, self.s*self.init_area) # plt.ylim(-self.s*self.init_area, self.s*self.init_area) plt.grid() plt.pause(0.001) plt.draw() # Log for i in range(self.ndrones): self.qlogs[i].xyz_h[self.it, :] = self.quads[i].xyz self.qlogs[i].att_h[self.it, :] = self.quads[i].att self.qlogs[i].w_h[self.it, :] = self.quads[i].w self.qlogs[i].v_ned_h[self.it, :] = self.quads[i].v_ned if errors: self.Ed_log[self.it,:] = self.get_errors(errors) else: self.Ed_log[self.it, :] = [0] * 4 self.it+=1 # Stop if crash if (self.quads[0].crashed==1 or self.quads[1].crashed==1 or self.quads[2].crashed==1): return -1 return (X, V) def final_plots(self, time, it): plt.figure(1) plt.title("2D Position [m]", fontsize = 'xx-large') for i in range(self.ndrones): plt.plot(self.qlogs[i].xyz_h[:, 0], self.qlogs[i].xyz_h[:, 1], label="q{}".format(i+1), color=self.quadcolor[i], linewidth=self.lw) plt.xlabel("East", fontsize = 'xx-large') plt.ylabel("South", fontsize = 'xx-large') plt.tick_params(labelsize = 'xx-large') plt.legend( fontsize = 'xx-large') plt.figure(2) plt.title("Yaw", fontsize = 'xx-large') for i in range(self.ndrones): plt.plot(time[0:it], self.qlogs[i].att_h[:, 2][0:it], label="yaw q{}".format(i+1), linewidth=self.lw) plt.xlabel("Time [s]", fontsize = 'xx-large') plt.ylabel("Yaw [rad]", fontsize = 'xx-large' ) plt.tick_params(labelsize = 'xx-large') plt.grid() plt.legend(fontsize = 'xx-large') plt.figure(3) plt.title("Altitude", fontsize = 'xx-large') for i in range(self.ndrones): plt.plot(time[0:it], -self.qlogs[i].xyz_h[:, 2][0:it], label="$q_{}$".format(i+1), linewidth=self.lw) plt.xlabel("Time [s]", fontsize = 'xx-large') plt.ylabel("Altitude [m]", fontsize = 'xx-large') plt.tick_params(labelsize = 'xx-large') plt.grid() plt.legend(fontsize = 'xx-large') plt.figure(4) plt.title("Formation error", fontsize = 'xx-large') plt.plot(time[0:it], self.Ed_log[:, 0][0:it], label="$e_{12}$", linewidth=self.lw) plt.plot(time[0:it], self.Ed_log[:, 1][0:it], label="$e_{15}$", linewidth=self.lw) plt.plot(time[0:it], self.Ed_log[:, 2][0:it], label="$e_{34}$", linewidth=self.lw) plt.plot(time[0:it], self.Ed_log[:, 3][0:it], label="$e_{T}$", linewidth=self.lw) plt.xlabel("Time [s]", fontsize = 'xx-large') plt.ylabel("Formation distance error [m]", fontsize = 'xx-large') plt.tick_params(labelsize = 'xx-large') plt.grid() plt.legend(fontsize = 'xx-large') try: plt.pause(0) except: pass return
[ "matplotlib.pyplot.grid", "matplotlib.pyplot.ylabel", "numpy.array", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "pycopter.animation.draw_edges", "pycopter.quadlog.quadlog", "matplotlib.pyplot.ylim", "pycopter.animation.draw2d", "matplotlib.pyplot.tick_params", "matplotlib.pyplot.ion", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "matplotlib.pyplot.draw", "matplotlib.pyplot.pause", "matplotlib.pyplot.legend", "matplotlib.pyplot.clf", "numpy.append", "numpy.zeros", "matplotlib.pyplot.figure" ]
[((734, 758), 'numpy.zeros', 'np.zeros', (['(time.size, 4)'], {}), '((time.size, 4))\n', (742, 758), True, 'import numpy as np\n'), ((855, 871), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (864, 871), True, 'import matplotlib.pyplot as plt\n'), ((880, 889), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (887, 889), True, 'import matplotlib.pyplot as plt\n'), ((909, 922), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {}), '(0)\n', (919, 922), True, 'import matplotlib.pyplot as plt\n'), ((1195, 1216), 'numpy.array', 'np.array', (['errors[:-1]'], {}), '(errors[:-1])\n', (1203, 1216), True, 'import numpy as np\n'), ((1586, 1598), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1594, 1598), True, 'import numpy as np\n'), ((1611, 1623), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1619, 1623), True, 'import numpy as np\n'), ((4529, 4542), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (4539, 4542), True, 'import matplotlib.pyplot as plt\n'), ((4551, 4600), 'matplotlib.pyplot.title', 'plt.title', (['"""2D Position [m]"""'], {'fontsize': '"""xx-large"""'}), "('2D Position [m]', fontsize='xx-large')\n", (4560, 4600), True, 'import matplotlib.pyplot as plt\n'), ((4814, 4853), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""East"""'], {'fontsize': '"""xx-large"""'}), "('East', fontsize='xx-large')\n", (4824, 4853), True, 'import matplotlib.pyplot as plt\n'), ((4864, 4904), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""South"""'], {'fontsize': '"""xx-large"""'}), "('South', fontsize='xx-large')\n", (4874, 4904), True, 'import matplotlib.pyplot as plt\n'), ((4915, 4952), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'labelsize': '"""xx-large"""'}), "(labelsize='xx-large')\n", (4930, 4952), True, 'import matplotlib.pyplot as plt\n'), ((4963, 4994), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '"""xx-large"""'}), "(fontsize='xx-large')\n", (4973, 4994), True, 'import matplotlib.pyplot as plt\n'), ((5007, 5020), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (5017, 5020), True, 'import matplotlib.pyplot as plt\n'), ((5029, 5066), 'matplotlib.pyplot.title', 'plt.title', (['"""Yaw"""'], {'fontsize': '"""xx-large"""'}), "('Yaw', fontsize='xx-large')\n", (5038, 5066), True, 'import matplotlib.pyplot as plt\n'), ((5230, 5273), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [s]"""'], {'fontsize': '"""xx-large"""'}), "('Time [s]', fontsize='xx-large')\n", (5240, 5273), True, 'import matplotlib.pyplot as plt\n'), ((5284, 5328), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Yaw [rad]"""'], {'fontsize': '"""xx-large"""'}), "('Yaw [rad]', fontsize='xx-large')\n", (5294, 5328), True, 'import matplotlib.pyplot as plt\n'), ((5340, 5377), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'labelsize': '"""xx-large"""'}), "(labelsize='xx-large')\n", (5355, 5377), True, 'import matplotlib.pyplot as plt\n'), ((5389, 5399), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (5397, 5399), True, 'import matplotlib.pyplot as plt\n'), ((5408, 5439), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '"""xx-large"""'}), "(fontsize='xx-large')\n", (5418, 5439), True, 'import matplotlib.pyplot as plt\n'), ((5450, 5463), 'matplotlib.pyplot.figure', 'plt.figure', (['(3)'], {}), '(3)\n', (5460, 5463), True, 'import matplotlib.pyplot as plt\n'), ((5472, 5514), 'matplotlib.pyplot.title', 'plt.title', (['"""Altitude"""'], {'fontsize': '"""xx-large"""'}), "('Altitude', fontsize='xx-large')\n", (5481, 5514), True, 'import matplotlib.pyplot as plt\n'), ((5699, 5742), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [s]"""'], {'fontsize': '"""xx-large"""'}), "('Time [s]', fontsize='xx-large')\n", (5709, 5742), True, 'import matplotlib.pyplot as plt\n'), ((5753, 5800), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Altitude [m]"""'], {'fontsize': '"""xx-large"""'}), "('Altitude [m]', fontsize='xx-large')\n", (5763, 5800), True, 'import matplotlib.pyplot as plt\n'), ((5811, 5848), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'labelsize': '"""xx-large"""'}), "(labelsize='xx-large')\n", (5826, 5848), True, 'import matplotlib.pyplot as plt\n'), ((5860, 5870), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (5868, 5870), True, 'import matplotlib.pyplot as plt\n'), ((5879, 5910), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '"""xx-large"""'}), "(fontsize='xx-large')\n", (5889, 5910), True, 'import matplotlib.pyplot as plt\n'), ((5922, 5935), 'matplotlib.pyplot.figure', 'plt.figure', (['(4)'], {}), '(4)\n', (5932, 5935), True, 'import matplotlib.pyplot as plt\n'), ((5944, 5993), 'matplotlib.pyplot.title', 'plt.title', (['"""Formation error"""'], {'fontsize': '"""xx-large"""'}), "('Formation error', fontsize='xx-large')\n", (5953, 5993), True, 'import matplotlib.pyplot as plt\n'), ((6005, 6092), 'matplotlib.pyplot.plot', 'plt.plot', (['time[0:it]', 'self.Ed_log[:, 0][0:it]'], {'label': '"""$e_{12}$"""', 'linewidth': 'self.lw'}), "(time[0:it], self.Ed_log[:, 0][0:it], label='$e_{12}$', linewidth=\n self.lw)\n", (6013, 6092), True, 'import matplotlib.pyplot as plt\n'), ((6096, 6183), 'matplotlib.pyplot.plot', 'plt.plot', (['time[0:it]', 'self.Ed_log[:, 1][0:it]'], {'label': '"""$e_{15}$"""', 'linewidth': 'self.lw'}), "(time[0:it], self.Ed_log[:, 1][0:it], label='$e_{15}$', linewidth=\n self.lw)\n", (6104, 6183), True, 'import matplotlib.pyplot as plt\n'), ((6187, 6274), 'matplotlib.pyplot.plot', 'plt.plot', (['time[0:it]', 'self.Ed_log[:, 2][0:it]'], {'label': '"""$e_{34}$"""', 'linewidth': 'self.lw'}), "(time[0:it], self.Ed_log[:, 2][0:it], label='$e_{34}$', linewidth=\n self.lw)\n", (6195, 6274), True, 'import matplotlib.pyplot as plt\n'), ((6278, 6364), 'matplotlib.pyplot.plot', 'plt.plot', (['time[0:it]', 'self.Ed_log[:, 3][0:it]'], {'label': '"""$e_{T}$"""', 'linewidth': 'self.lw'}), "(time[0:it], self.Ed_log[:, 3][0:it], label='$e_{T}$', linewidth=\n self.lw)\n", (6286, 6364), True, 'import matplotlib.pyplot as plt\n'), ((6368, 6411), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [s]"""'], {'fontsize': '"""xx-large"""'}), "('Time [s]', fontsize='xx-large')\n", (6378, 6411), True, 'import matplotlib.pyplot as plt\n'), ((6422, 6485), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Formation distance error [m]"""'], {'fontsize': '"""xx-large"""'}), "('Formation distance error [m]', fontsize='xx-large')\n", (6432, 6485), True, 'import matplotlib.pyplot as plt\n'), ((6496, 6533), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'labelsize': '"""xx-large"""'}), "(labelsize='xx-large')\n", (6511, 6533), True, 'import matplotlib.pyplot as plt\n'), ((6545, 6555), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (6553, 6555), True, 'import matplotlib.pyplot as plt\n'), ((6564, 6595), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '"""xx-large"""'}), "(fontsize='xx-large')\n", (6574, 6595), True, 'import matplotlib.pyplot as plt\n'), ((1678, 1714), 'numpy.append', 'np.append', (['X', 'self.quads[i].xyz[0:2]'], {}), '(X, self.quads[i].xyz[0:2])\n', (1687, 1714), True, 'import numpy as np\n'), ((1731, 1769), 'numpy.append', 'np.append', (['V', 'self.quads[i].v_ned[0:2]'], {}), '(V, self.quads[i].v_ned[0:2])\n', (1740, 1769), True, 'import numpy as np\n'), ((2528, 2541), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {}), '(0)\n', (2538, 2541), True, 'import matplotlib.pyplot as plt\n'), ((3183, 3199), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.001)'], {}), '(0.001)\n', (3192, 3199), True, 'import matplotlib.pyplot as plt\n'), ((3212, 3222), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (3220, 3222), True, 'import matplotlib.pyplot as plt\n'), ((3248, 3261), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (3258, 3261), True, 'import matplotlib.pyplot as plt\n'), ((3274, 3283), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (3281, 3283), True, 'import matplotlib.pyplot as plt\n'), ((3296, 3351), 'pycopter.animation.draw2d', 'ani.draw2d', (['(1)', 'X', 'self.fc', 'self.quadcolor', 'self.ndrones'], {}), '(1, X, self.fc, self.quadcolor, self.ndrones)\n', (3306, 3351), True, 'from pycopter import animation as ani\n'), ((3448, 3471), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""South [m]"""'], {}), "('South [m]')\n", (3458, 3471), True, 'import matplotlib.pyplot as plt\n'), ((3484, 3506), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""West [m]"""'], {}), "('West [m]')\n", (3494, 3506), True, 'import matplotlib.pyplot as plt\n'), ((3519, 3538), 'matplotlib.pyplot.title', 'plt.title', (['"""2D Map"""'], {}), "('2D Map')\n", (3528, 3538), True, 'import matplotlib.pyplot as plt\n'), ((3551, 3582), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-self.xlim)', 'self.xlim'], {}), '(-self.xlim, self.xlim)\n', (3559, 3582), True, 'import matplotlib.pyplot as plt\n'), ((3595, 3626), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-self.ylim)', 'self.ylim'], {}), '(-self.ylim, self.ylim)\n', (3603, 3626), True, 'import matplotlib.pyplot as plt\n'), ((3779, 3789), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (3787, 3789), True, 'import matplotlib.pyplot as plt\n'), ((3802, 3818), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.001)'], {}), '(0.001)\n', (3811, 3818), True, 'import matplotlib.pyplot as plt\n'), ((3831, 3841), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (3839, 3841), True, 'import matplotlib.pyplot as plt\n'), ((6624, 6636), 'matplotlib.pyplot.pause', 'plt.pause', (['(0)'], {}), '(0)\n', (6633, 6636), True, 'import matplotlib.pyplot as plt\n'), ((689, 710), 'pycopter.quadlog.quadlog', 'quadlog.quadlog', (['time'], {}), '(time)\n', (704, 710), False, 'from pycopter import quadlog\n'), ((3402, 3435), 'pycopter.animation.draw_edges', 'ani.draw_edges', (['(1)', 'X', 'self.fc', '(-1)'], {}), '(1, X, self.fc, -1)\n', (3416, 3435), True, 'from pycopter import animation as ani\n')]
import os cache_dir = os.path.join(os.path.expanduser('~'), '.kdezero') from kdezero.utils.calculation_graph import get_dot_graph from kdezero.utils.calculation_graph import plot_dot_graph from kdezero.utils.download_file import show_progress from kdezero.utils.download_file import get_file from kdezero.utils.numpy_utility import sum_to from kdezero.utils.numpy_utility import reshape_sum_backward from kdezero.utils.numpy_utility import logsumexp from kdezero.utils.utils import get_deconv_outsize from kdezero.utils.utils import get_conv_outsize from kdezero.utils.utils import pair
[ "os.path.expanduser" ]
[((36, 59), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (54, 59), False, 'import os\n')]
import datetime, logging, webbrowser logger = logging.Logger('catch_all') from importer import importLines Lines = importLines("list1") saveStateFile = open('E:\Programming\eclipseWorkspace\Planner\saveState.txt', encoding="utf8") try: skipLines= int(saveStateFile.readline()) saveStateFile.close() successfulLoad = False except: print("couldn't open saveState.txt") skipLines=0 if skipLines==0: successfulLoad = True responseLines = [] print("menu, skip forward, ") currentLineNumber = 0 for line in Lines: if successfulLoad == False: skipLines-=1 currentLineNumber+=1 if skipLines <= 0: successfulLoad =True continue currentLineNumber+=1 lineInQuestion = line.strip() if lineInQuestion == "": continue if lineInQuestion != lineInQuestion.capitalize() and len(lineInQuestion)<50: lineInQuestion = lineInQuestion.capitalize() reply = input("Ln {}. {}\n".format(currentLineNumber, lineInQuestion)) if reply == "": continue reggie = [0] # RegEx Logic # if string ends with .com reggie = reply.split() if reggie[0] == "skip": # try except bracket skipLines = int(reggie[1]) successfulLoad = False continue if reply == "break": saveSaveState = open('E:\Programming\eclipseWorkspace\Planner\saveState.txt', 'w') saveSaveState.writelines(str(currentLineNumber)) saveSaveState.close() break if reply == "sort": print("to", end = "") destination = input() destination = "E:\Programming\eclipseWorkspace\Planner\list" + destination +".txt" try: with open(destination, 'a') as sortFile: sortFile.write(lineInQuestion + "\n") except Exception as e: logger.error('Entry not saved correctly: '+ str(e)) continue if reply == "end": saveSaveState = open('E:\Programming\eclipseWorkspace\Planner\saveState.txt', 'w') saveSaveState.writelines("0") saveSaveState.close() break if reply =="help": # Code goes here print("Reply to Lines") print("Enter end to reset and exit, type break to save progress") print("type nothing to skip a line, type skip 5 to skip ahead 5 lines, type skip forward to specify") continue if reply =="search": search_name = input("Enter search term : ") search_name = search_name.replace(" ", "+") complete_url = "google.com/search?q=" + search_name webbrowser.open_new_tab(complete_url) continue if reply =="delete or insert or create or update": # Code goes here continue responseLines = responseLines + [reply] replyFile = open('E:\Programming\eclipseWorkspace\Planner\list2.txt', 'a') if len(responseLines) != 0: replyFile.writelines(datetime.date.today().isoformat() + "\n") for linesHow in responseLines: replyFile.writelines(linesHow) replyFile.writelines("\n") replyFile.close()
[ "logging.Logger", "webbrowser.open_new_tab", "datetime.date.today", "importer.importLines" ]
[((48, 75), 'logging.Logger', 'logging.Logger', (['"""catch_all"""'], {}), "('catch_all')\n", (62, 75), False, 'import datetime, logging, webbrowser\n'), ((123, 143), 'importer.importLines', 'importLines', (['"""list1"""'], {}), "('list1')\n", (134, 143), False, 'from importer import importLines\n'), ((2674, 2711), 'webbrowser.open_new_tab', 'webbrowser.open_new_tab', (['complete_url'], {}), '(complete_url)\n', (2697, 2711), False, 'import datetime, logging, webbrowser\n'), ((3018, 3039), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (3037, 3039), False, 'import datetime, logging, webbrowser\n')]
# Generated by Django 4.0.3 on 2022-04-13 09:11 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('transaction', '0004_alter_expense_created_at'), ] operations = [ migrations.CreateModel( name='IncomeCategory', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256)), ('created_at', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'Income Categories', 'ordering': ('-created_at',), }, ), migrations.CreateModel( name='Income', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=1024)), ('amount', models.DecimalField(decimal_places=2, max_digits=5)), ('description', models.TextField(blank=True, null=True)), ('date', models.DateField(default=django.utils.timezone.localtime)), ('created_at', models.DateTimeField(auto_now_add=True)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='transaction.incomecategory')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('-date',), }, ), ]
[ "django.db.models.DateField", "django.db.models.TextField", "django.db.models.ForeignKey", "django.db.models.BigAutoField", "django.db.models.DateTimeField", "django.db.models.DecimalField", "django.db.migrations.swappable_dependency", "django.db.models.CharField" ]
[((256, 313), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (287, 313), False, 'from django.db import migrations, models\n'), ((510, 606), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (529, 606), False, 'from django.db import migrations, models\n'), ((630, 662), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(256)'}), '(max_length=256)\n', (646, 662), False, 'from django.db import migrations, models\n'), ((696, 735), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (716, 735), False, 'from django.db import migrations, models\n'), ((763, 859), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (780, 859), False, 'from django.db import migrations, models\n'), ((1129, 1225), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1148, 1225), False, 'from django.db import migrations, models\n'), ((1249, 1282), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1024)'}), '(max_length=1024)\n', (1265, 1282), False, 'from django.db import migrations, models\n'), ((1312, 1363), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'decimal_places': '(2)', 'max_digits': '(5)'}), '(decimal_places=2, max_digits=5)\n', (1331, 1363), False, 'from django.db import migrations, models\n'), ((1398, 1437), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (1414, 1437), False, 'from django.db import migrations, models\n'), ((1465, 1522), 'django.db.models.DateField', 'models.DateField', ([], {'default': 'django.utils.timezone.localtime'}), '(default=django.utils.timezone.localtime)\n', (1481, 1522), False, 'from django.db import migrations, models\n'), ((1556, 1595), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1576, 1595), False, 'from django.db import migrations, models\n'), ((1627, 1727), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""transaction.incomecategory"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'transaction.incomecategory')\n", (1644, 1727), False, 'from django.db import migrations, models\n'), ((1750, 1846), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (1767, 1846), False, 'from django.db import migrations, models\n')]
#!/usr/bin/env python3 import sys from pathlib import Path import unittest from collections import OrderedDict from tempfile import TemporaryDirectory from shutil import rmtree thisFile = Path(__file__).absolute() thisDir = thisFile.parent.absolute() repoMainDir = thisDir.parent.absolute() sys.path.append(str(repoMainDir)) dict = OrderedDict from prebuilder.tearers.FHSTearer import FHSTearer from prebuilder.core.Package import VersionedPackageRef from prebuilder.webServices import detectService, _detectService from prebuilder.webServices.services import * @unittest.skip class TestTearer(unittest.TestCase): def setUp(self): self.testPkgDirO = TemporaryDirectory(suffix=None, prefix=None, dir=None) self.testPkgDir = Path(self.testPkgDirO.__enter__()) def tearDown(self): self.testPkgDirO.__exit__(None, None, None) def testTearer(self): testFileVirtualPath = Path("/usr/share/locale/cmn") testFilePath = nestPath(self.testPkgDir, testFileVirtualPath) testFilePath.parent.mkdir(parents=True, exist_ok=True) testFilePath.write_text("") #print(list(self.testPkgDir.glob("**/*"))) res = FHSTearer(self.testPkgDir) self.assertEqual(res['data'], [testFileVirtualPath]) class TestWebServicesDetectors(unittest.TestCase): def testDetectors(self): table = ( ("https://github.com/rpm-software-management/rpm", (GitHubService, {"owner": "rpm-software-management", "repo": "rpm"})), ("https://gitlab.com/dslackw/colored", (GitLabService, {"serviceBase": "gitlab.com", "repoPath": "dslackw/colored"})), ("https://gitlab.gnome.org/GNOME/gimp", (GitLabService, {"serviceBase": "gitlab.gnome.org", "repoPath": "GNOME/gimp"})), ("https://gitlab.freedesktop.org/mesa/mesa", (GitLabService, {"serviceBase": "gitlab.freedesktop.org", "repoPath": "mesa/mesa"})), ("https://salsa.debian.org/pkg-rpm-team/rpm", (GitLabService, {"serviceBase": "salsa.debian.org", "repoPath": "pkg-rpm-team/rpm"})), ("https://git.launchpad.net/~pythoneers/+git/distlib", (LaunchpadService, {"owner": "pythoneers", 'project': None, "repo": "distlib", "vcs": "git"})), # todo ("https://bitbucket.org/ruamel/yaml", (BitBucketService, {"owner": "ruamel", "repo": "yaml"})), ) for (uri, (correctService, correctArgs)) in table: with self.subTest(uri=uri, correctService=correctService, correctArgs=correctArgs): detectOther = False with self.subTest(func="_detectService"): serviceClass, ctorArgs = _detectService(uri) self.assertTrue(issubclass(serviceClass, correctService)) self.assertEqual(ctorArgs, correctArgs) detectOther = True if detectOther: with self.subTest(func="detectService"): res = detectService(uri) self.assertIsInstance(res, correctService) if __name__ == '__main__': unittest.main()
[ "tempfile.TemporaryDirectory", "pathlib.Path", "prebuilder.tearers.FHSTearer.FHSTearer", "prebuilder.webServices.detectService", "prebuilder.webServices._detectService", "unittest.main" ]
[((2778, 2793), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2791, 2793), False, 'import unittest\n'), ((190, 204), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (194, 204), False, 'from pathlib import Path\n'), ((661, 715), 'tempfile.TemporaryDirectory', 'TemporaryDirectory', ([], {'suffix': 'None', 'prefix': 'None', 'dir': 'None'}), '(suffix=None, prefix=None, dir=None)\n', (679, 715), False, 'from tempfile import TemporaryDirectory\n'), ((889, 918), 'pathlib.Path', 'Path', (['"""/usr/share/locale/cmn"""'], {}), "('/usr/share/locale/cmn')\n", (893, 918), False, 'from pathlib import Path\n'), ((1126, 1152), 'prebuilder.tearers.FHSTearer.FHSTearer', 'FHSTearer', (['self.testPkgDir'], {}), '(self.testPkgDir)\n', (1135, 1152), False, 'from prebuilder.tearers.FHSTearer import FHSTearer\n'), ((2444, 2463), 'prebuilder.webServices._detectService', '_detectService', (['uri'], {}), '(uri)\n', (2458, 2463), False, 'from prebuilder.webServices import detectService, _detectService\n'), ((2679, 2697), 'prebuilder.webServices.detectService', 'detectService', (['uri'], {}), '(uri)\n', (2692, 2697), False, 'from prebuilder.webServices import detectService, _detectService\n')]
from sklearn import tree from sklearn import svm from sklearn import neighbors from sklearn import discriminant_analysis from sklearn import linear_model dt = tree.DecisionTreeClassifier() # CHALLENGE - create 3 more classifiers... # 1 lsvc = svm.LinearSVC() # 2 kn = neighbors.KNeighborsClassifier(3) # 3 svc = svm.SVC() classifiers = [ dt, lsvc, kn, svc ] # [height, weight, shoe_size] X = [[181, 80, 44], [177, 70, 43], [160, 60, 38], [154, 54, 37], [166, 65, 40], [190, 90, 47], [175, 64, 39], [177, 70, 40], [159, 55, 37], [171, 75, 42], [181, 85, 43]] male = 'male' female = 'female' Y = [male, male, female, female, male, male, female, female, female, male, male] # CHALLENGE - ...and train them on our data for clf in classifiers: clf = clf.fit(X, Y) prediction = clf.predict([[190, 70, 43]]) print("%s %s" % (clf, prediction)) # CHALLENGE compare their results and print the best one!
[ "sklearn.tree.DecisionTreeClassifier", "sklearn.neighbors.KNeighborsClassifier", "sklearn.svm.LinearSVC", "sklearn.svm.SVC" ]
[((161, 190), 'sklearn.tree.DecisionTreeClassifier', 'tree.DecisionTreeClassifier', ([], {}), '()\n', (188, 190), False, 'from sklearn import tree\n'), ((246, 261), 'sklearn.svm.LinearSVC', 'svm.LinearSVC', ([], {}), '()\n', (259, 261), False, 'from sklearn import svm\n'), ((272, 305), 'sklearn.neighbors.KNeighborsClassifier', 'neighbors.KNeighborsClassifier', (['(3)'], {}), '(3)\n', (302, 305), False, 'from sklearn import neighbors\n'), ((317, 326), 'sklearn.svm.SVC', 'svm.SVC', ([], {}), '()\n', (324, 326), False, 'from sklearn import svm\n')]
import itertools import random from functools import lru_cache import torch from torch.nn import functional as F from torchvision.models import resnet18, resnet50, resnet101, resnext50_32x4d, mobilenet_v2 from efficientnet_pytorch import EfficientNet from nn_utils.game_constants import constants from nn_utils.models import TransformerModel from torchvision.models.resnet import _resnet, BasicBlock import pytorch_lightning as pl from pytorch_lightning.metrics.functional import accuracy import numpy as np from utils import input_to_tensors, output_to_numpy scaling_constant = 50.0 def check(x): assert not torch.isnan(x).any() arch_dict = dict(resnet18=resnet18, resnet50=resnet50, resnet101=resnet101, resnext50_32x4d=resnext50_32x4d, mobilenet_v2=mobilenet_v2, TransformerModel=TransformerModel) def get_efficient_net(name, num_classes, **arch_params): return EfficientNet.from_name(name, num_classes=num_classes, **arch_params) def get_arch(name, num_classes, **arch_params): if 'efficientnet' in name.lower(): return get_efficient_net(name, num_classes=num_classes, **arch_params) elif name == 'resnet9': return _resnet('resnet', BasicBlock, pretrained=False, progress=None, num_classes=num_classes, layers=[1, 1, 1, 1]) else: return arch_dict[name](num_classes=num_classes, **arch_params) def get_optimizer(parameters, name, **optimizer_params): opt_dict = dict(Adam=torch.optim.Adam, AdamW=torch.optim.AdamW, SGD=torch.optim.SGD, RMSProp=torch.optim.RMSprop) return opt_dict[name](parameters, **optimizer_params) class CardGameModel(pl.LightningModule): def __init__(self, scheduler_params, optimizer_params, game): super().__init__() self.optimizer_params = optimizer_params self.scheduler_params = scheduler_params self.backbone = None self.value_scaling_constant = constants[game]["value_scaling_constant"] self.status_rows = constants[game]["status_rows"] @staticmethod @lru_cache(maxsize=32) def _permutation_for_i(random_integer): all_suit_permutations = list(itertools.permutations([0, 1, 2, 3])) fixed_suit_permuation = all_suit_permutations[random_integer] permutation = [] for i in range(32): if i % 8 == 4: permutation.append(i) else: suit = i // 8 new_suit = fixed_suit_permuation[suit] permutation.append(i % 8 + 8 * new_suit) idx = np.empty_like(permutation) idx[permutation] = np.arange(len(permutation)) return tuple(idx) def _get_random_permutation(self): random_integer = random.randint(0, 23) return CardGameModel._permutation_for_i(random_integer) def training_epoch_end(self, training_step_outputs): losses = [it['loss'] for it in training_step_outputs] self._metrics["train_loss"] = sum(losses) / len(losses) self.log('train_loss', self._metrics["train_loss"], prog_bar=False) def validation_epoch_end(self, validation_step_outputs): metrics_to_update = dict( zip(self.validation_metrics, zip(*validation_step_outputs))) for key, value in metrics_to_update.items(): metrics_to_update[key] = sum(value) / len(value) self.log(key, metrics_to_update[key], prog_bar=True) self._metrics.update(metrics_to_update) @property def metrics(self): return self._metrics def configure_optimizers(self): optimizer = get_optimizer(self.parameters(), **self.optimizer_params) scheduler = torch.optim.lr_scheduler.StepLR( optimizer, **self.scheduler_params) return [optimizer], [scheduler] class PolicyModel(CardGameModel): def __init__(self, *, arch_params, **kwargs): super().__init__(**kwargs) self.save_hyperparameters() self.backbone = get_arch(**arch_params, num_classes=32) self.convolutional = 'transformer' not in arch_params.name.lower() self.validation_metrics = ["val_acc", "val_kl_loss"] self.train_metrics = ["train_loss"] self._metrics = { m: 0.0 for m in self.train_metrics + self.validation_metrics} def forward(self, x): x = x - 0.025 if self.convolutional: x = x[:, None, ...].repeat([1, 3, 1, 1]) policy_logits = self.backbone(x) return policy_logits @input_to_tensors @output_to_numpy def get_policy(self, x): was_singleton = False if x.ndim == 2: was_singleton = True x = x[None, ...] if torch.cuda.is_available(): self.cuda() x = x.cuda() else: self.to('cpu') self.eval() with torch.no_grad(): policy_logits = self(x) if was_singleton: policy_logits = policy_logits[0] return policy_logits def _apply_augmentation(self, inputs, masks, probs): perm = np.array(self._get_random_permutation()) inputs[:, self.status_rows:, :] = inputs[:, self.status_rows:, perm] return inputs, masks[:, perm], probs[:, perm] def training_step(self, batch, batch_idx): # inputs, masks, true_policy_probs, true_state_values = batch inputs, masks, true_policy_probs = self._apply_augmentation(*batch) predicted_policy_logits = self(inputs) policy_loss = F.kl_div(torch.log_softmax(predicted_policy_logits, dim=1), true_policy_probs, reduction='batchmean') return policy_loss def validation_step(self, batch, batch_idx): inputs, masks, true_policy_probs = batch predicted_policy_logits = self(inputs) policy_loss = F.kl_div(torch.log_softmax(predicted_policy_logits, dim=1), true_policy_probs, reduction='batchmean') pred_ys = torch.argmax(predicted_policy_logits + 1000 * (masks - 1), dim=1) true_ys = torch.argmax(true_policy_probs + 1000 * (masks - 1), dim=1) acc = accuracy(pred_ys, true_ys) # Calling self.log will surface up scalars for you in TensorBoard return acc, policy_loss class ValueModel(CardGameModel): def __init__(self, *, arch_params, loss_function, **kwargs): super().__init__(**kwargs) self.save_hyperparameters() self.loss_function = loss_function self.backbone = get_arch(**arch_params, num_classes=3) self.convolutional = 'transformer' not in arch_params.name.lower() self.validation_metrics = ["val_loss", "val_l1_scaled"] self.train_metrics = ["train_loss"] self._metrics = { m: 0.0 for m in self.train_metrics + self.validation_metrics} def forward(self, x): x = x - 0.035 if self.convolutional: x = x[:, None, ...].repeat([1, 3, 1, 1]) values = self.backbone(x) return values @input_to_tensors @output_to_numpy def get_value(self, x): was_singleton = False if x.ndim == 2: was_singleton = True x = x[None, ...] if torch.cuda.is_available(): self.cuda() x = x.cuda() else: self.to('cpu') self.eval() with torch.no_grad(): values = self(x) * self.value_scaling_constant if was_singleton: values = values[0] return values def _apply_augmentation(self, states, values): perm = np.array(self._get_random_permutation()) states[:, self.status_rows:, :] = states[:, self.status_rows:, perm] return states, values def training_step(self, batch, batch_idx): states, values = self._apply_augmentation(*batch) predicted_values = self(states) loss = self.loss_fn(predicted_values, values) return loss def loss_fn(self, predicted_values, true_values): if self.loss_function == "L2": return ((predicted_values - true_values / self.value_scaling_constant) ** 2).mean() elif self.loss_function == 'SmoothL1': return F.smooth_l1_loss(predicted_values, true_values / self.value_scaling_constant) def validation_step(self, batch, batch_idx): states, values = batch predicted_values = self(states) loss = self.loss_fn(predicted_values, values) value_l1_loss = (self.value_scaling_constant * predicted_values - values).abs().mean() # Calling self.log will surface up scalars for you in TensorBoard return loss, value_l1_loss
[ "pytorch_lightning.metrics.functional.accuracy", "efficientnet_pytorch.EfficientNet.from_name", "torch.log_softmax", "torch.optim.lr_scheduler.StepLR", "torch.nn.functional.smooth_l1_loss", "torch.no_grad", "torchvision.models.resnet._resnet", "torch.cuda.is_available", "numpy.empty_like", "functools.lru_cache", "itertools.permutations", "torch.isnan", "random.randint", "torch.argmax" ]
[((902, 970), 'efficientnet_pytorch.EfficientNet.from_name', 'EfficientNet.from_name', (['name'], {'num_classes': 'num_classes'}), '(name, num_classes=num_classes, **arch_params)\n', (924, 970), False, 'from efficientnet_pytorch import EfficientNet\n'), ((2118, 2139), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(32)'}), '(maxsize=32)\n', (2127, 2139), False, 'from functools import lru_cache\n'), ((2622, 2648), 'numpy.empty_like', 'np.empty_like', (['permutation'], {}), '(permutation)\n', (2635, 2648), True, 'import numpy as np\n'), ((2795, 2816), 'random.randint', 'random.randint', (['(0)', '(23)'], {}), '(0, 23)\n', (2809, 2816), False, 'import random\n'), ((3739, 3806), 'torch.optim.lr_scheduler.StepLR', 'torch.optim.lr_scheduler.StepLR', (['optimizer'], {}), '(optimizer, **self.scheduler_params)\n', (3770, 3806), False, 'import torch\n'), ((4765, 4790), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4788, 4790), False, 'import torch\n'), ((6062, 6127), 'torch.argmax', 'torch.argmax', (['(predicted_policy_logits + 1000 * (masks - 1))'], {'dim': '(1)'}), '(predicted_policy_logits + 1000 * (masks - 1), dim=1)\n', (6074, 6127), False, 'import torch\n'), ((6177, 6236), 'torch.argmax', 'torch.argmax', (['(true_policy_probs + 1000 * (masks - 1))'], {'dim': '(1)'}), '(true_policy_probs + 1000 * (masks - 1), dim=1)\n', (6189, 6236), False, 'import torch\n'), ((6251, 6277), 'pytorch_lightning.metrics.functional.accuracy', 'accuracy', (['pred_ys', 'true_ys'], {}), '(pred_ys, true_ys)\n', (6259, 6277), False, 'from pytorch_lightning.metrics.functional import accuracy\n'), ((7334, 7359), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (7357, 7359), False, 'import torch\n'), ((1182, 1295), 'torchvision.models.resnet._resnet', '_resnet', (['"""resnet"""', 'BasicBlock'], {'pretrained': '(False)', 'progress': 'None', 'num_classes': 'num_classes', 'layers': '[1, 1, 1, 1]'}), "('resnet', BasicBlock, pretrained=False, progress=None, num_classes=\n num_classes, layers=[1, 1, 1, 1])\n", (1189, 1295), False, 'from torchvision.models.resnet import _resnet, BasicBlock\n'), ((2221, 2257), 'itertools.permutations', 'itertools.permutations', (['[0, 1, 2, 3]'], {}), '([0, 1, 2, 3])\n', (2243, 2257), False, 'import itertools\n'), ((4916, 4931), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4929, 4931), False, 'import torch\n'), ((5589, 5638), 'torch.log_softmax', 'torch.log_softmax', (['predicted_policy_logits'], {'dim': '(1)'}), '(predicted_policy_logits, dim=1)\n', (5606, 5638), False, 'import torch\n'), ((5919, 5968), 'torch.log_softmax', 'torch.log_softmax', (['predicted_policy_logits'], {'dim': '(1)'}), '(predicted_policy_logits, dim=1)\n', (5936, 5968), False, 'import torch\n'), ((7485, 7500), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7498, 7500), False, 'import torch\n'), ((621, 635), 'torch.isnan', 'torch.isnan', (['x'], {}), '(x)\n', (632, 635), False, 'import torch\n'), ((8334, 8411), 'torch.nn.functional.smooth_l1_loss', 'F.smooth_l1_loss', (['predicted_values', '(true_values / self.value_scaling_constant)'], {}), '(predicted_values, true_values / self.value_scaling_constant)\n', (8350, 8411), True, 'from torch.nn import functional as F\n')]
import numpy as np import scipy.linalg as la import scipy.sparse as sp import scipy.sparse.linalg as spla import matplotlib.pyplot as plt np.set_printoptions(linewidth=130) from fsmpfuncs import * from ibmfuncs import * from gridfuncs import * from case import * R1 = weight (dx, dy)[0].diagonal() Mh1 = mass_hat (dx, dy, dxp, dyp)[0].diagonal() q01 = np.loadtxt('0-ComputeBaseflow/baseflow.txt', unpack=True) qu01, qv01 = q01[:n*(m-1)].reshape((n, m-1)), q01[n*(m-1):n*(m-1)+n*m].reshape((n, m)) print(dt, 1/iRe, dxmin**2/iRe, dxmin) nP = n n = nP*3 height = (y[-1]-y[0]) y = np.concatenate([y, y[1:] + height, y[1:]+ 2*height]) dy = np.diff(y) yp = 0.5*(y[1:] + y[:-1]) dyp = np.diff(yp) yu = yp yv = y[:-1] pshape = (n, m) ushape = (n, m-1) vshape = (n, m) xi = np.concatenate([xi, xi, xi]) eta = np.concatenate([eta, eta+height, eta+2*height]) lP = l l = xi.size ds = np.concatenate([ds, ds, ds]) uB = np.zeros_like(xi) vB = np.zeros_like(xi) qu0 = np.vstack([qu01, qu01, qu01]) qv0 = np.vstack([qv01, qv01, qv01]) q0 = np.concatenate([qu0.ravel(), qv0.ravel()]) uE = np.concatenate([uE, uE, uE]) uW = np.concatenate([uW, uW, uW]) vE = np.concatenate([vE, vE, vE]) vW = np.concatenate([vW, vW, vW]) G, DuW, DuE = gradient(dxp, dyp) R, iR = weight (dx, dy) Mh, iMh = mass_hat (dx, dy, dxp, dyp) Lh, Lux0, Lux1, Lvx0, Lvx1, = laplacian_hat(dx, dy, dxp, dyp) Eh = interpolation_hat(xi, eta, ds, xu, yu, xv, yv, dx, dy, dxp, dyp) Hh = regularization_hat(xi, eta, ds, xu, yu, xv, yv, dx, dy, dxp, dyp) E = Eh.dot(iR) H = Mh.dot(Hh) L = Mh.dot(Lh.dot(iR)) M = Mh.dot(iR) iM = R.dot(iMh) EET = E.dot(E.T) EH = E.dot(H).tocsc() iEH = spla.factorized(EH) iML = iM.dot(L) Q = sp.hstack([G, E.T]) u0 = iR.dot(q0)[:n*(m-1)].reshape((n,m-1)) plt.figure(figsize=(12,6)) X, Y = np.meshgrid(x, y) plt.pcolormesh(xu, yu, u0, shading='gouraud'); plt.plot(xi[:lP], eta[:lP], 'ro-'); plt.plot(xi[lP:2*lP], eta[lP:2*lP], 'ro-'); plt.plot(xi[2*lP:3*lP], eta[2*lP:3*lP], 'ro-'); plt.plot([x[0], x[-1]], [y[0]+height, y[0]+height]) plt.axis('equal') plt.xlim(-1, 2) #plt.ylim(0.2, 0.6) plt.savefig('foo.png') # Linearization from linpfuncs import * U0 = iR.dot(q0) from linpfuncs import * Nh = linearize_advection_hat (dx, dy, dxp, dyp, U0, uW, uE, vW, vE, test=True) N = Mh.dot(Nh.dot(iR)) A = (M/dt - 0.5*iRe*L).tocsc() B = (M/dt + 0.5*iRe*L).tocsr() # B q^(n+1) = A q^n + Mh f # Mh is also useful for the inner product dempty = sp.coo_matrix((Q.shape[1], Q.shape[1])) oempty = sp.coo_matrix(Q.shape) MM = sp.bmat([[A, Q],[Q.T, dempty]]).tocsr() CC = -sp.bmat([[B-1.5*N, oempty], [oempty.T, dempty]]).tocsr() KK = -sp.bmat([[0.5*N, oempty], [oempty.T, dempty]]).tocsr() su = nP*(m-1) svp = nP*m sxe = lP idx1 = np.r_[ : su, 3*su : 3*su+svp, 3*su + 3*svp : 3*su+3*svp + svp, 3*su + 6*svp : 3*su+6*svp + sxe, 3*su + 6*svp + 3*sxe : 3*su+6*svp + 3*sxe + sxe] idx2 = np.r_[su : 2*su, 3*su + svp : 3*su+2*svp, 3*su + 3*svp + svp : 3*su+3*svp + 2*svp, 3*su + 6*svp + sxe : 3*su+6*svp + 2*sxe, 3*su + 6*svp + 3*sxe + sxe : 3*su+6*svp + 3*sxe + 2*sxe] idx3 = np.r_[2*su : 3*su, 3*su + 2*svp : 3*su+3*svp, 3*su + 3*svp + 2*svp : 3*su+3*svp + 3*svp, 3*su + 6*svp + 2*sxe : 3*su+6*svp + 3*sxe, 3*su + 6*svp + 3*sxe + 2*sxe : 3*su+6*svp + 3*sxe + 3*sxe] perm = np.r_[idx1, idx2, idx3] P = sp.eye(len(perm)).tocsr()[perm,:] #o = np.zeros_like(perm) #o [su+2*svp+2*sxe+1]=1 #print(P.T.dot(o)[su+1]) MM = P.dot(MM.dot(P.T)) CC = P.dot(CC.dot(P.T)) KK = P.dot(KK.dot(P.T)) IAn = sp.eye(su+2*svp+2*sxe) ZAn = sp.coo_matrix((su+2*svp+2*sxe,su+2*svp+2*sxe)) S1 = sp.bmat([[IAn, ZAn, ZAn]]) S2 = sp.bmat([[ZAn, IAn, ZAn]]) S3 = sp.bmat([[ZAn, ZAn, IAn]]) M11 = S1.dot(MM.dot(S1.T)) M12 = S1.dot(MM.dot(S2.T)) M13 = S1.dot(MM.dot(S3.T)) M21 = S2.dot(MM.dot(S1.T)) M22 = S2.dot(MM.dot(S2.T)) M23 = S2.dot(MM.dot(S3.T)) M31 = S3.dot(MM.dot(S1.T)) M32 = S3.dot(MM.dot(S2.T)) M33 = S3.dot(MM.dot(S3.T)) C11 = S1.dot(CC.dot(S1.T)) C12 = S1.dot(CC.dot(S2.T)) C13 = S1.dot(CC.dot(S3.T)) C21 = S2.dot(CC.dot(S1.T)) C22 = S2.dot(CC.dot(S2.T)) C23 = S2.dot(CC.dot(S3.T)) C31 = S3.dot(CC.dot(S1.T)) C32 = S3.dot(CC.dot(S2.T)) C33 = S3.dot(CC.dot(S3.T)) K11 = S1.dot(KK.dot(S1.T)) K12 = S1.dot(KK.dot(S2.T)) K13 = S1.dot(KK.dot(S3.T)) K21 = S2.dot(KK.dot(S1.T)) K22 = S2.dot(KK.dot(S2.T)) K23 = S2.dot(KK.dot(S3.T)) K31 = S3.dot(KK.dot(S1.T)) K32 = S3.dot(KK.dot(S2.T)) K33 = S3.dot(KK.dot(S3.T)) IIn = sp.bmat([[sp.eye(su+svp), sp.coo_matrix((su+svp, svp+2*sxe))]]) print(spla.norm(M11 - M22), spla.norm(M11 - M33), spla.norm(M22 - M33)) print(spla.norm(M12 - M23), spla.norm(M12 - M31), spla.norm(M12 - M31)) print(spla.norm(M13 - M21), spla.norm(M13 - M32), spla.norm(M21 - M32)) print(spla.norm(C11 - C22), spla.norm(C11 - C33), spla.norm(C22 - C33)) print(spla.norm(C12 - C23), spla.norm(C12 - C31), spla.norm(C12 - C31)) print(spla.norm(C13 - C21), spla.norm(C13 - C32), spla.norm(C21 - C32)) print(spla.norm(K11 - K22), spla.norm(K11 - K33), spla.norm(K22 - K33)) print(spla.norm(K12 - K23), spla.norm(K12 - K31), spla.norm(K12 - K31)) print(spla.norm(K13 - K21), spla.norm(K13 - K32), spla.norm(K21 - K32)) Mk = np.zeros(M11.shape[0]) Mk[nP*(m-1) + nP*m : nP*(m-1) + 2*nP*m]=1.0 tmp = (M11+M12+M13).dot(Mk) print(la.norm(tmp)) from PetscBinaryIO import PetscBinaryIO dest = '1-ExtractMatrices/' PetscBinaryIO().writeMatSciPy(open(dest+'M1.dat','w'), M11) PetscBinaryIO().writeMatSciPy(open(dest+'M2.dat','w'), M12) PetscBinaryIO().writeMatSciPy(open(dest+'M3.dat','w'), M13) PetscBinaryIO().writeMatSciPy(open(dest+'C1.dat','w'), C11) PetscBinaryIO().writeMatSciPy(open(dest+'C2.dat','w'), C12) PetscBinaryIO().writeMatSciPy(open(dest+'C3.dat','w'), C13) PetscBinaryIO().writeMatSciPy(open(dest+'K1.dat','w'), K11) PetscBinaryIO().writeMatSciPy(open(dest+'K2.dat','w'), K12) PetscBinaryIO().writeMatSciPy(open(dest+'K3.dat','w'), K13) PetscBinaryIO().writeMatSciPy(open(dest+'I.dat','w'), IIn) PetscBinaryIO().writeVec(open(dest+'Mk.dat','w'), Mk) PetscBinaryIO().writeVec(open(dest+'Rh12.dat','w'), np.sqrt(R1)) PetscBinaryIO().writeVec(open(dest+'Mh12.dat','w'), np.sqrt(Mh1))
[ "numpy.sqrt", "matplotlib.pyplot.pcolormesh", "scipy.sparse.linalg.factorized", "scipy.sparse.linalg.norm", "scipy.sparse.eye", "matplotlib.pyplot.plot", "numpy.diff", "PetscBinaryIO.PetscBinaryIO", "numpy.vstack", "numpy.concatenate", "scipy.sparse.coo_matrix", "matplotlib.pyplot.axis", "numpy.meshgrid", "scipy.sparse.bmat", "matplotlib.pyplot.savefig", "matplotlib.pyplot.xlim", "numpy.set_printoptions", "matplotlib.pyplot.figure", "numpy.zeros", "scipy.sparse.hstack", "scipy.linalg.norm", "numpy.loadtxt", "numpy.zeros_like" ]
[((139, 173), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'linewidth': '(130)'}), '(linewidth=130)\n', (158, 173), True, 'import numpy as np\n'), ((357, 414), 'numpy.loadtxt', 'np.loadtxt', (['"""0-ComputeBaseflow/baseflow.txt"""'], {'unpack': '(True)'}), "('0-ComputeBaseflow/baseflow.txt', unpack=True)\n", (367, 414), True, 'import numpy as np\n'), ((585, 640), 'numpy.concatenate', 'np.concatenate', (['[y, y[1:] + height, y[1:] + 2 * height]'], {}), '([y, y[1:] + height, y[1:] + 2 * height])\n', (599, 640), True, 'import numpy as np\n'), ((643, 653), 'numpy.diff', 'np.diff', (['y'], {}), '(y)\n', (650, 653), True, 'import numpy as np\n'), ((686, 697), 'numpy.diff', 'np.diff', (['yp'], {}), '(yp)\n', (693, 697), True, 'import numpy as np\n'), ((773, 801), 'numpy.concatenate', 'np.concatenate', (['[xi, xi, xi]'], {}), '([xi, xi, xi])\n', (787, 801), True, 'import numpy as np\n'), ((808, 861), 'numpy.concatenate', 'np.concatenate', (['[eta, eta + height, eta + 2 * height]'], {}), '([eta, eta + height, eta + 2 * height])\n', (822, 861), True, 'import numpy as np\n'), ((880, 908), 'numpy.concatenate', 'np.concatenate', (['[ds, ds, ds]'], {}), '([ds, ds, ds])\n', (894, 908), True, 'import numpy as np\n'), ((916, 933), 'numpy.zeros_like', 'np.zeros_like', (['xi'], {}), '(xi)\n', (929, 933), True, 'import numpy as np\n'), ((939, 956), 'numpy.zeros_like', 'np.zeros_like', (['xi'], {}), '(xi)\n', (952, 956), True, 'import numpy as np\n'), ((964, 993), 'numpy.vstack', 'np.vstack', (['[qu01, qu01, qu01]'], {}), '([qu01, qu01, qu01])\n', (973, 993), True, 'import numpy as np\n'), ((1000, 1029), 'numpy.vstack', 'np.vstack', (['[qv01, qv01, qv01]'], {}), '([qv01, qv01, qv01])\n', (1009, 1029), True, 'import numpy as np\n'), ((1084, 1112), 'numpy.concatenate', 'np.concatenate', (['[uE, uE, uE]'], {}), '([uE, uE, uE])\n', (1098, 1112), True, 'import numpy as np\n'), ((1118, 1146), 'numpy.concatenate', 'np.concatenate', (['[uW, uW, uW]'], {}), '([uW, uW, uW])\n', (1132, 1146), True, 'import numpy as np\n'), ((1152, 1180), 'numpy.concatenate', 'np.concatenate', (['[vE, vE, vE]'], {}), '([vE, vE, vE])\n', (1166, 1180), True, 'import numpy as np\n'), ((1186, 1214), 'numpy.concatenate', 'np.concatenate', (['[vW, vW, vW]'], {}), '([vW, vW, vW])\n', (1200, 1214), True, 'import numpy as np\n'), ((1647, 1666), 'scipy.sparse.linalg.factorized', 'spla.factorized', (['EH'], {}), '(EH)\n', (1662, 1666), True, 'import scipy.sparse.linalg as spla\n'), ((1688, 1707), 'scipy.sparse.hstack', 'sp.hstack', (['[G, E.T]'], {}), '([G, E.T])\n', (1697, 1707), True, 'import scipy.sparse as sp\n'), ((1753, 1780), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (1763, 1780), True, 'import matplotlib.pyplot as plt\n'), ((1789, 1806), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (1800, 1806), True, 'import numpy as np\n'), ((1807, 1852), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['xu', 'yu', 'u0'], {'shading': '"""gouraud"""'}), "(xu, yu, u0, shading='gouraud')\n", (1821, 1852), True, 'import matplotlib.pyplot as plt\n'), ((1854, 1888), 'matplotlib.pyplot.plot', 'plt.plot', (['xi[:lP]', 'eta[:lP]', '"""ro-"""'], {}), "(xi[:lP], eta[:lP], 'ro-')\n", (1862, 1888), True, 'import matplotlib.pyplot as plt\n'), ((1890, 1936), 'matplotlib.pyplot.plot', 'plt.plot', (['xi[lP:2 * lP]', 'eta[lP:2 * lP]', '"""ro-"""'], {}), "(xi[lP:2 * lP], eta[lP:2 * lP], 'ro-')\n", (1898, 1936), True, 'import matplotlib.pyplot as plt\n'), ((1934, 1988), 'matplotlib.pyplot.plot', 'plt.plot', (['xi[2 * lP:3 * lP]', 'eta[2 * lP:3 * lP]', '"""ro-"""'], {}), "(xi[2 * lP:3 * lP], eta[2 * lP:3 * lP], 'ro-')\n", (1942, 1988), True, 'import matplotlib.pyplot as plt\n'), ((1982, 2037), 'matplotlib.pyplot.plot', 'plt.plot', (['[x[0], x[-1]]', '[y[0] + height, y[0] + height]'], {}), '([x[0], x[-1]], [y[0] + height, y[0] + height])\n', (1990, 2037), True, 'import matplotlib.pyplot as plt\n'), ((2034, 2051), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (2042, 2051), True, 'import matplotlib.pyplot as plt\n'), ((2052, 2067), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-1)', '(2)'], {}), '(-1, 2)\n', (2060, 2067), True, 'import matplotlib.pyplot as plt\n'), ((2089, 2111), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""foo.png"""'], {}), "('foo.png')\n", (2100, 2111), True, 'import matplotlib.pyplot as plt\n'), ((2441, 2480), 'scipy.sparse.coo_matrix', 'sp.coo_matrix', (['(Q.shape[1], Q.shape[1])'], {}), '((Q.shape[1], Q.shape[1]))\n', (2454, 2480), True, 'import scipy.sparse as sp\n'), ((2491, 2513), 'scipy.sparse.coo_matrix', 'sp.coo_matrix', (['Q.shape'], {}), '(Q.shape)\n', (2504, 2513), True, 'import scipy.sparse as sp\n'), ((3852, 3882), 'scipy.sparse.eye', 'sp.eye', (['(su + 2 * svp + 2 * sxe)'], {}), '(su + 2 * svp + 2 * sxe)\n', (3858, 3882), True, 'import scipy.sparse as sp\n'), ((3881, 3944), 'scipy.sparse.coo_matrix', 'sp.coo_matrix', (['(su + 2 * svp + 2 * sxe, su + 2 * svp + 2 * sxe)'], {}), '((su + 2 * svp + 2 * sxe, su + 2 * svp + 2 * sxe))\n', (3894, 3944), True, 'import scipy.sparse as sp\n'), ((3935, 3961), 'scipy.sparse.bmat', 'sp.bmat', (['[[IAn, ZAn, ZAn]]'], {}), '([[IAn, ZAn, ZAn]])\n', (3942, 3961), True, 'import scipy.sparse as sp\n'), ((3967, 3993), 'scipy.sparse.bmat', 'sp.bmat', (['[[ZAn, IAn, ZAn]]'], {}), '([[ZAn, IAn, ZAn]])\n', (3974, 3993), True, 'import scipy.sparse as sp\n'), ((3999, 4025), 'scipy.sparse.bmat', 'sp.bmat', (['[[ZAn, ZAn, IAn]]'], {}), '([[ZAn, ZAn, IAn]])\n', (4006, 4025), True, 'import scipy.sparse as sp\n'), ((5492, 5514), 'numpy.zeros', 'np.zeros', (['M11.shape[0]'], {}), '(M11.shape[0])\n', (5500, 5514), True, 'import numpy as np\n'), ((4842, 4862), 'scipy.sparse.linalg.norm', 'spla.norm', (['(M11 - M22)'], {}), '(M11 - M22)\n', (4851, 4862), True, 'import scipy.sparse.linalg as spla\n'), ((4864, 4884), 'scipy.sparse.linalg.norm', 'spla.norm', (['(M11 - M33)'], {}), '(M11 - M33)\n', (4873, 4884), True, 'import scipy.sparse.linalg as spla\n'), ((4886, 4906), 'scipy.sparse.linalg.norm', 'spla.norm', (['(M22 - M33)'], {}), '(M22 - M33)\n', (4895, 4906), True, 'import scipy.sparse.linalg as spla\n'), ((4914, 4934), 'scipy.sparse.linalg.norm', 'spla.norm', (['(M12 - M23)'], {}), '(M12 - M23)\n', (4923, 4934), True, 'import scipy.sparse.linalg as spla\n'), ((4936, 4956), 'scipy.sparse.linalg.norm', 'spla.norm', (['(M12 - M31)'], {}), '(M12 - M31)\n', (4945, 4956), True, 'import scipy.sparse.linalg as spla\n'), ((4958, 4978), 'scipy.sparse.linalg.norm', 'spla.norm', (['(M12 - M31)'], {}), '(M12 - M31)\n', (4967, 4978), True, 'import scipy.sparse.linalg as spla\n'), ((4986, 5006), 'scipy.sparse.linalg.norm', 'spla.norm', (['(M13 - M21)'], {}), '(M13 - M21)\n', (4995, 5006), True, 'import scipy.sparse.linalg as spla\n'), ((5008, 5028), 'scipy.sparse.linalg.norm', 'spla.norm', (['(M13 - M32)'], {}), '(M13 - M32)\n', (5017, 5028), True, 'import scipy.sparse.linalg as spla\n'), ((5030, 5050), 'scipy.sparse.linalg.norm', 'spla.norm', (['(M21 - M32)'], {}), '(M21 - M32)\n', (5039, 5050), True, 'import scipy.sparse.linalg as spla\n'), ((5059, 5079), 'scipy.sparse.linalg.norm', 'spla.norm', (['(C11 - C22)'], {}), '(C11 - C22)\n', (5068, 5079), True, 'import scipy.sparse.linalg as spla\n'), ((5081, 5101), 'scipy.sparse.linalg.norm', 'spla.norm', (['(C11 - C33)'], {}), '(C11 - C33)\n', (5090, 5101), True, 'import scipy.sparse.linalg as spla\n'), ((5103, 5123), 'scipy.sparse.linalg.norm', 'spla.norm', (['(C22 - C33)'], {}), '(C22 - C33)\n', (5112, 5123), True, 'import scipy.sparse.linalg as spla\n'), ((5131, 5151), 'scipy.sparse.linalg.norm', 'spla.norm', (['(C12 - C23)'], {}), '(C12 - C23)\n', (5140, 5151), True, 'import scipy.sparse.linalg as spla\n'), ((5153, 5173), 'scipy.sparse.linalg.norm', 'spla.norm', (['(C12 - C31)'], {}), '(C12 - C31)\n', (5162, 5173), True, 'import scipy.sparse.linalg as spla\n'), ((5175, 5195), 'scipy.sparse.linalg.norm', 'spla.norm', (['(C12 - C31)'], {}), '(C12 - C31)\n', (5184, 5195), True, 'import scipy.sparse.linalg as spla\n'), ((5203, 5223), 'scipy.sparse.linalg.norm', 'spla.norm', (['(C13 - C21)'], {}), '(C13 - C21)\n', (5212, 5223), True, 'import scipy.sparse.linalg as spla\n'), ((5225, 5245), 'scipy.sparse.linalg.norm', 'spla.norm', (['(C13 - C32)'], {}), '(C13 - C32)\n', (5234, 5245), True, 'import scipy.sparse.linalg as spla\n'), ((5247, 5267), 'scipy.sparse.linalg.norm', 'spla.norm', (['(C21 - C32)'], {}), '(C21 - C32)\n', (5256, 5267), True, 'import scipy.sparse.linalg as spla\n'), ((5276, 5296), 'scipy.sparse.linalg.norm', 'spla.norm', (['(K11 - K22)'], {}), '(K11 - K22)\n', (5285, 5296), True, 'import scipy.sparse.linalg as spla\n'), ((5298, 5318), 'scipy.sparse.linalg.norm', 'spla.norm', (['(K11 - K33)'], {}), '(K11 - K33)\n', (5307, 5318), True, 'import scipy.sparse.linalg as spla\n'), ((5320, 5340), 'scipy.sparse.linalg.norm', 'spla.norm', (['(K22 - K33)'], {}), '(K22 - K33)\n', (5329, 5340), True, 'import scipy.sparse.linalg as spla\n'), ((5348, 5368), 'scipy.sparse.linalg.norm', 'spla.norm', (['(K12 - K23)'], {}), '(K12 - K23)\n', (5357, 5368), True, 'import scipy.sparse.linalg as spla\n'), ((5370, 5390), 'scipy.sparse.linalg.norm', 'spla.norm', (['(K12 - K31)'], {}), '(K12 - K31)\n', (5379, 5390), True, 'import scipy.sparse.linalg as spla\n'), ((5392, 5412), 'scipy.sparse.linalg.norm', 'spla.norm', (['(K12 - K31)'], {}), '(K12 - K31)\n', (5401, 5412), True, 'import scipy.sparse.linalg as spla\n'), ((5420, 5440), 'scipy.sparse.linalg.norm', 'spla.norm', (['(K13 - K21)'], {}), '(K13 - K21)\n', (5429, 5440), True, 'import scipy.sparse.linalg as spla\n'), ((5442, 5462), 'scipy.sparse.linalg.norm', 'spla.norm', (['(K13 - K32)'], {}), '(K13 - K32)\n', (5451, 5462), True, 'import scipy.sparse.linalg as spla\n'), ((5464, 5484), 'scipy.sparse.linalg.norm', 'spla.norm', (['(K21 - K32)'], {}), '(K21 - K32)\n', (5473, 5484), True, 'import scipy.sparse.linalg as spla\n'), ((5593, 5605), 'scipy.linalg.norm', 'la.norm', (['tmp'], {}), '(tmp)\n', (5600, 5605), True, 'import scipy.linalg as la\n'), ((6384, 6395), 'numpy.sqrt', 'np.sqrt', (['R1'], {}), '(R1)\n', (6391, 6395), True, 'import numpy as np\n'), ((6449, 6461), 'numpy.sqrt', 'np.sqrt', (['Mh1'], {}), '(Mh1)\n', (6456, 6461), True, 'import numpy as np\n'), ((2519, 2551), 'scipy.sparse.bmat', 'sp.bmat', (['[[A, Q], [Q.T, dempty]]'], {}), '([[A, Q], [Q.T, dempty]])\n', (2526, 2551), True, 'import scipy.sparse as sp\n'), ((5679, 5694), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (5692, 5694), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((5739, 5754), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (5752, 5754), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((5799, 5814), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (5812, 5814), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((5859, 5874), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (5872, 5874), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((5919, 5934), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (5932, 5934), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((5979, 5994), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (5992, 5994), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((6039, 6054), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (6052, 6054), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((6099, 6114), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (6112, 6114), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((6159, 6174), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (6172, 6174), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((6219, 6234), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (6232, 6234), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((6278, 6293), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (6291, 6293), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((6332, 6347), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (6345, 6347), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((6397, 6412), 'PetscBinaryIO.PetscBinaryIO', 'PetscBinaryIO', ([], {}), '()\n', (6410, 6412), False, 'from PetscBinaryIO import PetscBinaryIO\n'), ((2565, 2617), 'scipy.sparse.bmat', 'sp.bmat', (['[[B - 1.5 * N, oempty], [oempty.T, dempty]]'], {}), '([[B - 1.5 * N, oempty], [oempty.T, dempty]])\n', (2572, 2617), True, 'import scipy.sparse as sp\n'), ((2628, 2676), 'scipy.sparse.bmat', 'sp.bmat', (['[[0.5 * N, oempty], [oempty.T, dempty]]'], {}), '([[0.5 * N, oempty], [oempty.T, dempty]])\n', (2635, 2676), True, 'import scipy.sparse as sp\n'), ((4781, 4797), 'scipy.sparse.eye', 'sp.eye', (['(su + svp)'], {}), '(su + svp)\n', (4787, 4797), True, 'import scipy.sparse as sp\n'), ((4797, 4837), 'scipy.sparse.coo_matrix', 'sp.coo_matrix', (['(su + svp, svp + 2 * sxe)'], {}), '((su + svp, svp + 2 * sxe))\n', (4810, 4837), True, 'import scipy.sparse as sp\n')]
from ray.rllib.algorithms.algorithm import ( # noqa Algorithm, COMMON_CONFIG, with_common_config, ) from ray.rllib.utils.deprecation import deprecation_warning deprecation_warning(old="rllib.agents::Trainer", new="rllib.algorithms::Algorithm") # Alias. Trainer = Algorithm
[ "ray.rllib.utils.deprecation.deprecation_warning" ]
[((174, 262), 'ray.rllib.utils.deprecation.deprecation_warning', 'deprecation_warning', ([], {'old': '"""rllib.agents::Trainer"""', 'new': '"""rllib.algorithms::Algorithm"""'}), "(old='rllib.agents::Trainer', new=\n 'rllib.algorithms::Algorithm')\n", (193, 262), False, 'from ray.rllib.utils.deprecation import deprecation_warning\n')]
"""Test log_negativity.""" import numpy as np from toqito.state_props import log_negativity def test_log_negativity_rho(): """Test for log_negativity on rho.""" test_input_mat = np.array( [[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]] ) np.testing.assert_equal(np.isclose(log_negativity(test_input_mat), 1), True) def test_log_negativity_rho_dim_int(): """Test for log_negativity on rho.""" test_input_mat = np.array( [[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]] ) np.testing.assert_equal(np.isclose(log_negativity(test_input_mat, 2), 1), True) def test_log_negativity_invalid_rho_dim_int(): """Invalid dim parameters.""" with np.testing.assert_raises(ValueError): test_input_mat = np.array( [[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]] ) log_negativity(test_input_mat, 5) def test_log_negativity_invalid_rho_dim_vec(): """Invalid dim parameters.""" with np.testing.assert_raises(ValueError): test_input_mat = np.array( [[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]] ) log_negativity(test_input_mat, [2, 5]) if __name__ == "__main__": np.testing.run_module_suite()
[ "numpy.array", "toqito.state_props.log_negativity", "numpy.testing.assert_raises", "numpy.testing.run_module_suite" ]
[((189, 275), 'numpy.array', 'np.array', (['[[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]]'], {}), '([[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 /\n 2]])\n', (197, 275), True, 'import numpy as np\n'), ((471, 557), 'numpy.array', 'np.array', (['[[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]]'], {}), '([[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 /\n 2]])\n', (479, 557), True, 'import numpy as np\n'), ((1294, 1323), 'numpy.testing.run_module_suite', 'np.testing.run_module_suite', ([], {}), '()\n', (1321, 1323), True, 'import numpy as np\n'), ((744, 780), 'numpy.testing.assert_raises', 'np.testing.assert_raises', (['ValueError'], {}), '(ValueError)\n', (768, 780), True, 'import numpy as np\n'), ((807, 893), 'numpy.array', 'np.array', (['[[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]]'], {}), '([[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 /\n 2]])\n', (815, 893), True, 'import numpy as np\n'), ((920, 953), 'toqito.state_props.log_negativity', 'log_negativity', (['test_input_mat', '(5)'], {}), '(test_input_mat, 5)\n', (934, 953), False, 'from toqito.state_props import log_negativity\n'), ((1046, 1082), 'numpy.testing.assert_raises', 'np.testing.assert_raises', (['ValueError'], {}), '(ValueError)\n', (1070, 1082), True, 'import numpy as np\n'), ((1109, 1195), 'numpy.array', 'np.array', (['[[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]]'], {}), '([[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 /\n 2]])\n', (1117, 1195), True, 'import numpy as np\n'), ((1222, 1260), 'toqito.state_props.log_negativity', 'log_negativity', (['test_input_mat', '[2, 5]'], {}), '(test_input_mat, [2, 5])\n', (1236, 1260), False, 'from toqito.state_props import log_negativity\n'), ((325, 355), 'toqito.state_props.log_negativity', 'log_negativity', (['test_input_mat'], {}), '(test_input_mat)\n', (339, 355), False, 'from toqito.state_props import log_negativity\n'), ((607, 640), 'toqito.state_props.log_negativity', 'log_negativity', (['test_input_mat', '(2)'], {}), '(test_input_mat, 2)\n', (621, 640), False, 'from toqito.state_props import log_negativity\n')]
from setuptools import setup, find_packages SRC_DIR = 'src' def get_version(): import sys sys.path[:0] = [SRC_DIR] return __import__('dancing_bear').__version__ setup( name='dancing-bear', version=get_version(), description='Dancing Bear', author='mogproject', author_email='<EMAIL>', license='Apache 2.0 License', url='https://github.com/mogproject/dancing-bear', install_requires=[ 'six', 'python-dateutil', 'pytz', 'tzlocal', 'argparse', 'pyserial', 'mog-commons >= 0.1.3', ], tests_require=[ 'unittest2', ], package_dir={'': SRC_DIR}, packages=find_packages(SRC_DIR), include_package_data=True, test_suite='tests', entry_points=""" [console_scripts] dancing-bear = dancing_bear.dancing_bear:main """, )
[ "setuptools.find_packages" ]
[((682, 704), 'setuptools.find_packages', 'find_packages', (['SRC_DIR'], {}), '(SRC_DIR)\n', (695, 704), False, 'from setuptools import setup, find_packages\n')]
import numpy as np import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras import layers from tensorflow.keras import activations def do_pad(pad_size, input_tensor, name_prefix): if sum(pad_size) > 0: input_tensor = layers.ZeroPadding2D(padding=pad_size, name=name_prefix + '_pad')(input_tensor) return input_tensor def get_conv1d(conv_parameters, is_depthwise, use_bias, input_tensor): raise NotImplementedError('TBA') def get_conv2d(conv_parameters, is_depthwise, use_bias, input_tensor): weights = [conv_parameters['weights'][0].transpose(2, 3, 0, 1) if is_depthwise else conv_parameters['weights'][0].transpose(2, 3, 1, 0)] if use_bias: weights.append(conv_parameters['weights'][1]) if is_depthwise: input_tensor = layers.DepthwiseConv2D(kernel_size=conv_parameters['kernel_shape'], strides=conv_parameters['strides'], padding='valid', use_bias=use_bias, dilation_rate=conv_parameters['dilations'], activation=None, name=conv_parameters['name'], weights=weights)(input_tensor) else: out_channels = weights[0].shape[-1] input_tensor = layers.Conv2D(filters=out_channels, kernel_size=conv_parameters['kernel_shape'], strides=conv_parameters['strides'], padding='valid', use_bias=use_bias, dilation_rate=conv_parameters['dilations'], activation=None, name=conv_parameters['name'], weights=weights)(input_tensor) return input_tensor def get_conv3d(conv_parameters, is_depthwise, use_bias, input_tensor): raise NotImplementedError('TBA') def get_conv(op_params, op_name, input_tensor): use_bias = len(op_params['weights']) > 1 is_depthwise = op_params['group'] > 1 input_tensor = do_pad(op_params['pads'], input_tensor, op_name) # op_name = conv_parameters['op_type'].capitalize() weights_size = len(op_params['weights'][0].shape) if weights_size == 3: # op_name += '1D' input_tensor = get_conv1d(op_params, is_depthwise, use_bias, input_tensor) elif weights_size == 4: # op_name += '2D' input_tensor = get_conv2d(op_params, is_depthwise, use_bias, input_tensor) elif weights_size == 5: # op_name += '3D' input_tensor = get_conv3d(op_params, is_depthwise, use_bias, input_tensor) return input_tensor def get_dence(op_params, op_name, input_tensor): weights = [w.transpose() for w in op_params['weights']] use_bias = len(weights) > 1 out_features = weights[0].shape[1] input_tensor = layers.Dense(units=out_features, activation=None, use_bias=use_bias, name=op_name, weights=weights, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)(input_tensor) return input_tensor def get_flatten(op_params, op_name, input_tensor): if input_tensor.shape.rank > 2: input_tensor = layers.Flatten(axis=1, name=op_name)(input_tensor) return input_tensor def construct_maxpool(op_params, op_name, input_tensor): if isinstance(op_params['padding'], tuple): if sum(op_params['padding']) > 0: input_tensor = layers.ZeroPadding2D(padding=op_params['padding'], name=op_name + '_pad')(input_tensor) elif op_params['padding'] > 0: input_tensor = layers.ZeroPadding2D(padding=op_params['padding'], name=op_name + '_pad')(input_tensor) layers.MaxPool2D(pool_size=op_params.kernel_size, strides=op_params.stride, padding='valid') return input_tensor def get_global_avg_pool(op_params, op_name, input_tensor): return layers.GlobalAvgPool2D(name=op_name)(input_tensor) def get_maxpool(op_params, op_name, input_tensor): input_tensor = do_pad(op_params['pads'], input_tensor, op_name) input_tensor = layers.MaxPool2D(pool_size=op_params['kernel_shape'], padding='valid', strides=op_params['strides'])(input_tensor) return input_tensor def get_identity(torch_op, op_name, input_tensor): return tf.identity(input_tensor) def get_add(inp1, inp2): x = layers.Add()([inp1, inp2]) return x def get_concat(inp1, inp2, axis=-1): x = layers.Concatenate(axis=axis)([inp1, inp2]) return x def get_activation(inp, layer_properties): activation_name = layer_properties['op_type'] kwargs = {} values = layer_properties.get('values', None) if values is not None: kwargs = {'max_value': values[-1]} if activation_name == 'clip': activation_name = 'relu' inp = getattr(activations, activation_name)(inp, **kwargs) return inp def get_upsample(op_params, op_name, input_tensor): if np.all(op_params['scale'] >= 1): input_tensor = layers.UpSampling2D(size=op_params['scale'], name=op_name, interpolation=op_params['mode'])(input_tensor) else: size = (int(input_tensor.shape[1] * op_params['scale'][0]), int(input_tensor.shape[2] * op_params['scale'][1])) input_tensor = tf.image.resize(images=input_tensor, size=size, method=op_params['mode'], name=op_name) return input_tensor tf_layers_constructors = {'conv': get_conv, 'gemm': get_dence, 'flatten': get_flatten, 'identity': get_identity, 'globalaveragepool': get_global_avg_pool, 'maxpool': get_maxpool, 'add': get_add, 'concat': get_concat, 'upsample': get_upsample, } def construct_layers(layers_parameters, connections, inputs): return inputs def construct_tf_model(parsed_model): model_layers, model_connections = parsed_model.nodes, parsed_model.adj_list input_name, input_size = list(parsed_model.model_input.items())[0] output_names = list(parsed_model.model_output.keys()) # TODO: find out how to deal with N dimension because for keras Input it is redundant input_size = [dim for dim in input_size if dim > 1] # to HWC input_size = input_size[1:] + input_size[:1] model_inputs = layers.Input(shape=input_size, name=input_name) model_outputs = list() x = model_inputs last_node_output = model_layers[0]['output'] skip_connections = dict() for layer in model_layers: layer_name = layer['name'] layer_id = layer['node_id'] if not np.any(np.isin(last_node_output, layer['input'])): if layer_id in skip_connections.keys(): skip = x skip_connections[model_connections[layer_id - 1][0]] = skip x = skip_connections.pop(layer_id) if len(layer['input']) > 1: x = tf_layers_constructors[layer['op_type']](x, skip_connections.pop(layer_id)) else: if layer['op_type'] in tf_layers_constructors: x = tf_layers_constructors[layer['op_type']](op_params=layer, op_name=layer_name, input_tensor=x) else: x = get_activation(x, layer) if len(model_connections[layer_id]) > 1: for connect in model_connections[layer_id][1:]: skip = x skip_connections[connect] = skip if layer['output'][0] in output_names: model_outputs.append(x) x = skip_connections.get(layer_id + 1, None) last_node_output = layer['output'] model = Model(inputs=model_inputs, outputs=model_outputs) return model def to_tflite(tf_model_name, tflite_optimization=None): converter = tf.lite.TFLiteConverter.from_saved_model(tf_model_name) if tflite_optimization is not None: if 'optimizations' in tflite_optimization: converter.optimizations = tflite_optimization['optimizations'] print("TFLite optimizations: ", converter.optimizations) if 'target_spec.supported_types' in tflite_optimization: converter.target_spec.supported_types = tflite_optimization['target_spec.supported_types'] print("TFLite target_spec.supported_types: ", converter.target_spec.supported_types) if 'representative_dataset' in tflite_optimization: converter.representative_dataset = tflite_optimization['representative_dataset'] print("Assigned representative_dataset") tflite_model = converter.convert() # Save the model. tflite_model_name = tf_model_name.rpartition('.')[0] + '.tflite' with open(tflite_model_name, 'wb') as f: f.write(tflite_model)
[ "tensorflow.keras.layers.Input", "tensorflow.lite.TFLiteConverter.from_saved_model", "tensorflow.keras.layers.Concatenate", "tensorflow.keras.layers.Conv2D", "tensorflow.image.resize", "tensorflow.keras.layers.Flatten", "tensorflow.keras.layers.UpSampling2D", "tensorflow.keras.layers.GlobalAvgPool2D", "tensorflow.keras.layers.Add", "numpy.isin", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.ZeroPadding2D", "tensorflow.keras.Model", "tensorflow.identity", "numpy.all", "tensorflow.keras.layers.DepthwiseConv2D", "tensorflow.keras.layers.MaxPool2D" ]
[((4280, 4376), 'tensorflow.keras.layers.MaxPool2D', 'layers.MaxPool2D', ([], {'pool_size': 'op_params.kernel_size', 'strides': 'op_params.stride', 'padding': '"""valid"""'}), "(pool_size=op_params.kernel_size, strides=op_params.stride,\n padding='valid')\n", (4296, 4376), False, 'from tensorflow.keras import layers\n'), ((4935, 4960), 'tensorflow.identity', 'tf.identity', (['input_tensor'], {}), '(input_tensor)\n', (4946, 4960), True, 'import tensorflow as tf\n'), ((5577, 5608), 'numpy.all', 'np.all', (["(op_params['scale'] >= 1)"], {}), "(op_params['scale'] >= 1)\n", (5583, 5608), True, 'import numpy as np\n'), ((7220, 7267), 'tensorflow.keras.layers.Input', 'layers.Input', ([], {'shape': 'input_size', 'name': 'input_name'}), '(shape=input_size, name=input_name)\n', (7232, 7267), False, 'from tensorflow.keras import layers\n'), ((8523, 8572), 'tensorflow.keras.Model', 'Model', ([], {'inputs': 'model_inputs', 'outputs': 'model_outputs'}), '(inputs=model_inputs, outputs=model_outputs)\n', (8528, 8572), False, 'from tensorflow.keras import Model\n'), ((8664, 8719), 'tensorflow.lite.TFLiteConverter.from_saved_model', 'tf.lite.TFLiteConverter.from_saved_model', (['tf_model_name'], {}), '(tf_model_name)\n', (8704, 8719), True, 'import tensorflow as tf\n'), ((3132, 3366), 'tensorflow.keras.layers.Dense', 'layers.Dense', ([], {'units': 'out_features', 'activation': 'None', 'use_bias': 'use_bias', 'name': 'op_name', 'weights': 'weights', 'kernel_regularizer': 'None', 'bias_regularizer': 'None', 'activity_regularizer': 'None', 'kernel_constraint': 'None', 'bias_constraint': 'None'}), '(units=out_features, activation=None, use_bias=use_bias, name=\n op_name, weights=weights, kernel_regularizer=None, bias_regularizer=\n None, activity_regularizer=None, kernel_constraint=None,\n bias_constraint=None)\n', (3144, 3366), False, 'from tensorflow.keras import layers\n'), ((4469, 4505), 'tensorflow.keras.layers.GlobalAvgPool2D', 'layers.GlobalAvgPool2D', ([], {'name': 'op_name'}), '(name=op_name)\n', (4491, 4505), False, 'from tensorflow.keras import layers\n'), ((4660, 4764), 'tensorflow.keras.layers.MaxPool2D', 'layers.MaxPool2D', ([], {'pool_size': "op_params['kernel_shape']", 'padding': '"""valid"""', 'strides': "op_params['strides']"}), "(pool_size=op_params['kernel_shape'], padding='valid',\n strides=op_params['strides'])\n", (4676, 4764), False, 'from tensorflow.keras import layers\n'), ((4996, 5008), 'tensorflow.keras.layers.Add', 'layers.Add', ([], {}), '()\n', (5006, 5008), False, 'from tensorflow.keras import layers\n'), ((5083, 5112), 'tensorflow.keras.layers.Concatenate', 'layers.Concatenate', ([], {'axis': 'axis'}), '(axis=axis)\n', (5101, 5112), False, 'from tensorflow.keras import layers\n'), ((5951, 6042), 'tensorflow.image.resize', 'tf.image.resize', ([], {'images': 'input_tensor', 'size': 'size', 'method': "op_params['mode']", 'name': 'op_name'}), "(images=input_tensor, size=size, method=op_params['mode'],\n name=op_name)\n", (5966, 6042), True, 'import tensorflow as tf\n'), ((256, 321), 'tensorflow.keras.layers.ZeroPadding2D', 'layers.ZeroPadding2D', ([], {'padding': 'pad_size', 'name': "(name_prefix + '_pad')"}), "(padding=pad_size, name=name_prefix + '_pad')\n", (276, 321), False, 'from tensorflow.keras import layers\n'), ((815, 1076), 'tensorflow.keras.layers.DepthwiseConv2D', 'layers.DepthwiseConv2D', ([], {'kernel_size': "conv_parameters['kernel_shape']", 'strides': "conv_parameters['strides']", 'padding': '"""valid"""', 'use_bias': 'use_bias', 'dilation_rate': "conv_parameters['dilations']", 'activation': 'None', 'name': "conv_parameters['name']", 'weights': 'weights'}), "(kernel_size=conv_parameters['kernel_shape'], strides\n =conv_parameters['strides'], padding='valid', use_bias=use_bias,\n dilation_rate=conv_parameters['dilations'], activation=None, name=\n conv_parameters['name'], weights=weights)\n", (837, 1076), False, 'from tensorflow.keras import layers\n'), ((1476, 1749), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', ([], {'filters': 'out_channels', 'kernel_size': "conv_parameters['kernel_shape']", 'strides': "conv_parameters['strides']", 'padding': '"""valid"""', 'use_bias': 'use_bias', 'dilation_rate': "conv_parameters['dilations']", 'activation': 'None', 'name': "conv_parameters['name']", 'weights': 'weights'}), "(filters=out_channels, kernel_size=conv_parameters[\n 'kernel_shape'], strides=conv_parameters['strides'], padding='valid',\n use_bias=use_bias, dilation_rate=conv_parameters['dilations'],\n activation=None, name=conv_parameters['name'], weights=weights)\n", (1489, 1749), False, 'from tensorflow.keras import layers\n'), ((3791, 3827), 'tensorflow.keras.layers.Flatten', 'layers.Flatten', ([], {'axis': '(1)', 'name': 'op_name'}), '(axis=1, name=op_name)\n', (3805, 3827), False, 'from tensorflow.keras import layers\n'), ((5633, 5729), 'tensorflow.keras.layers.UpSampling2D', 'layers.UpSampling2D', ([], {'size': "op_params['scale']", 'name': 'op_name', 'interpolation': "op_params['mode']"}), "(size=op_params['scale'], name=op_name, interpolation=\n op_params['mode'])\n", (5652, 5729), False, 'from tensorflow.keras import layers\n'), ((4042, 4115), 'tensorflow.keras.layers.ZeroPadding2D', 'layers.ZeroPadding2D', ([], {'padding': "op_params['padding']", 'name': "(op_name + '_pad')"}), "(padding=op_params['padding'], name=op_name + '_pad')\n", (4062, 4115), False, 'from tensorflow.keras import layers\n'), ((4188, 4261), 'tensorflow.keras.layers.ZeroPadding2D', 'layers.ZeroPadding2D', ([], {'padding': "op_params['padding']", 'name': "(op_name + '_pad')"}), "(padding=op_params['padding'], name=op_name + '_pad')\n", (4208, 4261), False, 'from tensorflow.keras import layers\n'), ((7519, 7560), 'numpy.isin', 'np.isin', (['last_node_output', "layer['input']"], {}), "(last_node_output, layer['input'])\n", (7526, 7560), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import datetime as dt from flask.ext.login import UserMixin from octopus.extensions import bcrypt from sqlalchemy.ext.associationproxy import association_proxy from sqlalchemy.orm import backref from octopus.database import ( Column, db, Model, ReferenceCol, relationship, SurrogatePK ) # ___________ user section __________ class Role(SurrogatePK, Model): __tablename__ = 'roles' name = Column(db.String(80), unique=True, nullable=False) user_id = ReferenceCol('users', nullable=True) user = relationship('User', backref='roles') def __init__(self, name, **kwargs): db.Model.__init__(self, name=name, **kwargs) def __repr__(self): return '<Role({name})>'.format(name=self.name) class User(UserMixin, SurrogatePK, Model): __tablename__ = 'users' username = Column(db.String(80), unique=True, nullable=False, index=True) email = Column(db.String(80), unique=True, nullable=False) password = Column(db.String(128), nullable=True) created_at = Column(db.DateTime, nullable=False, default=dt.datetime.utcnow) first_name = Column(db.String(30), nullable=True) last_name = Column(db.String(30), nullable=True) active = Column(db.Boolean(), default=False) is_admin = Column(db.Boolean(), default=False) contract = Column(db.String(20), default='None', nullable=True) # ref to case staff table user_cases = db.relationship('CaseStaffMap', cascade="all, delete-orphan", backref='users') cases = association_proxy('user_cases', 'cases') # two types of task refs created_tasks = relationship('Task', backref='creator', lazy='dynamic') tasks = relationship('Task', secondary="task_user_map", backref=db.backref('users', lazy='dynamic')) # project refs projects = relationship('Project', secondary="project_user_map", backref=db.backref('users', lazy='dynamic')) def __init__(self, username, email, password=None, **kwargs): db.Model.__init__(self, username=username, email=email, **kwargs) if password: self.set_password(password) else: self.password = None def set_password(self, password): self.password = bcrypt.generate_password_hash(password) def check_password(self, value): return bcrypt.check_password_hash(self.password, value) @property def is_permanent(self): return True if self.contract == 'permanent' else False @property def is_contractor(self): return True if self.contract == 'contractor' else False @property def is_manager(self): return True if self.contract == 'manager' else False @property def full_name(self): if self.first_name and self.last_name: return "{0} {1}".format(self.first_name, self.last_name) else: return self.username def __repr__(self): return '<User({username!r})>'.format(username=self.username) # ____________case section_____________ class CaseType(SurrogatePK, Model): __tablename__ = 'case_types' code = Column(db.String(15), unique=True, nullable=False, index=True) description = Column(db.String(80), nullable=False, index=True) def __init__(self, name, **kwargs): db.Model.__init__(self, name=name, **kwargs) def __repr__(self): return '<CaseType (code={code}, description={desc})>'.format( code=self.code, desc=self.description) class CaseStatus(SurrogatePK, Model): __tablename__ = 'case_statuses' type = Column(db.String(32), unique=True, nullable=True, index=True) def __init__(self, name, **kwargs): db.Model.__init__(self, name=name, **kwargs) def __repr__(self): return '<CaseStatus (type={type}>'.format( type=self.type) class Region(SurrogatePK, Model): __tablename__ = 'regions' code = Column(db.String(4), unique=True, nullable=False) name = Column(db.String(80), unique=True, nullable=False) address = Column(db.String(120), unique=False, nullable=False) city = Column(db.String(80), unique=False, nullable=False) state = Column(db.String(2), unique=False, nullable=False) zip = Column(db.String(15), unique=True, nullable=False) phone = Column(db.String(15), unique=True, nullable=False) def __init__(self, **kwargs): db.Model.__init__(self, **kwargs) def __repr__(self): return '<Region(code={code})>'.format(code=self.code) class Tag(SurrogatePK, Model): __tablename__ = 'tags' kind = Column(db.Text(), nullable=False, index=True) tag = Column(db.Text(), nullable=False, index=True) def __init__(self, **kwargs): db.Model.__init__(self, **kwargs) def __repr__(self): return '<Tag(id={id}, kind={kind}, tag={tag})>'.format( tag=self.tag, id=self.id, kind=self.kind) case_tag_map = db.Table('case_tag_map', db.Column('tag_id', db.Integer, db.ForeignKey('tags.id'), index=True), db.Column('case_id', db.Integer, db.ForeignKey('cases.id'), index=True)) class CaseStaffMap(SurrogatePK, Model): __tablename__ = 'case_staff_map' user_id = db.Column(db.Integer, db.ForeignKey('users.id'), index=True) case_id = db.Column(db.Integer, db.ForeignKey('cases.id'), index=True) primary = db.Column(db.Boolean, default=False) secondary = db.Column(db.Boolean, default=False) case = db.relationship('Case', backref=backref("user_cases", cascade="all, delete-orphan")) user = db.relationship('User') def __init__(self, user=None, case=None, primary=False, secondary=False, **kwargs): db.Model.__init__(self, **kwargs) self.user = user self.case = case self.primary = primary self.secondary = secondary def __repr__(self): return '<CaseStaffMap(id={id}, user_id={user_id}, ' \ 'case_id={case_id}, ' \ 'primary={primary}, sec={secondary})>' \ .format(id=self.id, user_id=self.user_id, case_id=self.case_id, primary=self.primary, secondary=self.secondary) class CaseFile(SurrogatePK, Model): __tablename__ = 'case_files' kind = db.Column(db.Text(), unique=False) name = db.Column(db.Text(), unique=False) path = db.Column(db.Text(), unique=False) attributes = db.Column(db.Text(), unique=False, nullable=True) case_id = ReferenceCol('cases', nullable=False) def __init__(self, *args, **kwargs): db.Model.__init__(self, *args, **kwargs) def __repr__(self): return '<CaseFile(id={id}, kind={kind}, name={name})>'.format( id=self.id, kind=self.kind, name=self.name) class Case(SurrogatePK, Model): __tablename__ = 'cases' crd_number = Column(db.Text(), unique=False, nullable=False, index=True) case_name = Column(db.Text(), unique=False, nullable=True, index=True) case_desc = Column(db.Text(), unique=False, nullable=True) start_date = Column(db.Date(), unique=False, nullable=False, index=True) end_date = Column(db.Date(), unique=False, nullable=True, index=True) case_type_id = ReferenceCol('case_types', nullable=False) case_type = relationship('CaseType', backref='case_types') case_status_id = ReferenceCol('case_statuses', nullable=True, colname='case_status_id', parent_table='cases') case_status = relationship('CaseStatus', backref='case_statuses') region_id = ReferenceCol('regions', nullable=False) region = relationship('Region', backref='regions') users = association_proxy('user_cases', 'user') mars_risk_score = Column(db.Integer, unique=False, nullable=True) qau_risk_score = Column(db.Integer, unique=False, nullable=True) examiner_risk_score = Column(db.Integer, unique=False, nullable=True) tags = relationship('Tag', secondary=case_tag_map, backref=db.backref('cases', lazy='dynamic')) files = relationship('CaseFile', backref='case_files') tasks = relationship('Task', backref='case_tasks') def __init__(self, *args, **kwargs): db.Model.__init__(self, *args, **kwargs) def get_tags(self, kind=None): """ Get a case's tags, class must be initialized first :param kind: risk | non_qau_staff | None :return: list of unicode tags according to the specified kind """ if kind: return [i.tag for i in self.tags if i.kind == kind] else: return [i.tag for i in self.tags] def __repr__(self): return '<Case(id={id}, case_name={case_name}, )>'.format( id=self.id, case_name=self.case_name) # _________ task section ______________ task_user_map = db.Table('task_user_map', db.Column('user_id', db.Integer, db.ForeignKey('users.id'), index=True), db.Column('task_id', db.Integer, db.ForeignKey('tasks.id'), index=True)) class Task(SurrogatePK, Model): __tablename__ = 'tasks' task_name = Column(db.Text(), unique=False, nullable=True, index=True) task_desc = Column(db.Text(), unique=False, nullable=True) start_date = Column(db.Date(), unique=False, nullable=False, index=True) end_date = Column(db.Date(), unique=False, nullable=True, index=True) # one-to-many user to tasks creator_id = db.Column('creator_id', db.Integer, db.ForeignKey('users.id')) # ref to optional associated case case_id = db.Column('case_id', db.Integer, db.ForeignKey('cases.id'), nullable=True) # many-to-many users to tasks assignees = relationship('User', secondary=task_user_map, backref=db.backref('user_tasks', lazy='dynamic')) # ref to optional associated project project_id = db.Column('project_id', db.Integer, db.ForeignKey('projects.id'), nullable=True) def __init__(self, *args, **kwargs): db.Model.__init__(self, *args, **kwargs) def __repr__(self): return '<Task(id={id}, task_name={task_name}, )>'.format( id=self.id, task_name=self.task_name) # ________project section___________ project_user_map = db.Table('project_user_map', db.Column('user_id', db.Integer, db.ForeignKey('users.id'), index=True), db.Column('project_id', db.Integer, db.ForeignKey('projects.id'), index=True)) class Project(SurrogatePK, Model): __tablename__ = 'projects' project_name = Column(db.Text(), unique=False, nullable=True, index=True) project_desc = Column(db.Text(), unique=False, nullable=True) start_date = Column(db.Date(), unique=False, nullable=False, index=True) end_date = Column(db.Date(), unique=False, nullable=True, index=True) members = relationship('User', secondary=project_user_map, backref=db.backref('user_projects', lazy='dynamic')) tasks = relationship('Task', backref='project_tasks') def __init__(self, *args, **kwargs): db.Model.__init__(self, *args, **kwargs) def __repr__(self): return '<Project(id={id}, project_name={project_name}, )>'.format( id=self.id, project_name=self.project_name)
[ "sqlalchemy.ext.associationproxy.association_proxy", "octopus.database.Column", "octopus.database.relationship", "octopus.database.db.Column", "octopus.database.db.Boolean", "octopus.extensions.bcrypt.check_password_hash", "sqlalchemy.orm.backref", "octopus.database.db.relationship", "octopus.database.db.Model.__init__", "octopus.extensions.bcrypt.generate_password_hash", "octopus.database.db.ForeignKey", "octopus.database.db.Date", "octopus.database.db.Text", "octopus.database.ReferenceCol", "octopus.database.db.backref", "octopus.database.db.String" ]
[((496, 532), 'octopus.database.ReferenceCol', 'ReferenceCol', (['"""users"""'], {'nullable': '(True)'}), "('users', nullable=True)\n", (508, 532), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((542, 579), 'octopus.database.relationship', 'relationship', (['"""User"""'], {'backref': '"""roles"""'}), "('User', backref='roles')\n", (554, 579), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1016, 1079), 'octopus.database.Column', 'Column', (['db.DateTime'], {'nullable': '(False)', 'default': 'dt.datetime.utcnow'}), '(db.DateTime, nullable=False, default=dt.datetime.utcnow)\n', (1022, 1079), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1389, 1467), 'octopus.database.db.relationship', 'db.relationship', (['"""CaseStaffMap"""'], {'cascade': '"""all, delete-orphan"""', 'backref': '"""users"""'}), "('CaseStaffMap', cascade='all, delete-orphan', backref='users')\n", (1404, 1467), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1540, 1580), 'sqlalchemy.ext.associationproxy.association_proxy', 'association_proxy', (['"""user_cases"""', '"""cases"""'], {}), "('user_cases', 'cases')\n", (1557, 1580), False, 'from sqlalchemy.ext.associationproxy import association_proxy\n'), ((1627, 1682), 'octopus.database.relationship', 'relationship', (['"""Task"""'], {'backref': '"""creator"""', 'lazy': '"""dynamic"""'}), "('Task', backref='creator', lazy='dynamic')\n", (1639, 1682), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((5347, 5383), 'octopus.database.db.Column', 'db.Column', (['db.Boolean'], {'default': '(False)'}), '(db.Boolean, default=False)\n', (5356, 5383), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((5398, 5434), 'octopus.database.db.Column', 'db.Column', (['db.Boolean'], {'default': '(False)'}), '(db.Boolean, default=False)\n', (5407, 5434), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((5605, 5628), 'octopus.database.db.relationship', 'db.relationship', (['"""User"""'], {}), "('User')\n", (5620, 5628), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((6447, 6484), 'octopus.database.ReferenceCol', 'ReferenceCol', (['"""cases"""'], {'nullable': '(False)'}), "('cases', nullable=False)\n", (6459, 6484), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7144, 7186), 'octopus.database.ReferenceCol', 'ReferenceCol', (['"""case_types"""'], {'nullable': '(False)'}), "('case_types', nullable=False)\n", (7156, 7186), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7201, 7247), 'octopus.database.relationship', 'relationship', (['"""CaseType"""'], {'backref': '"""case_types"""'}), "('CaseType', backref='case_types')\n", (7213, 7247), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7268, 7364), 'octopus.database.ReferenceCol', 'ReferenceCol', (['"""case_statuses"""'], {'nullable': '(True)', 'colname': '"""case_status_id"""', 'parent_table': '"""cases"""'}), "('case_statuses', nullable=True, colname='case_status_id',\n parent_table='cases')\n", (7280, 7364), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7409, 7460), 'octopus.database.relationship', 'relationship', (['"""CaseStatus"""'], {'backref': '"""case_statuses"""'}), "('CaseStatus', backref='case_statuses')\n", (7421, 7460), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7476, 7515), 'octopus.database.ReferenceCol', 'ReferenceCol', (['"""regions"""'], {'nullable': '(False)'}), "('regions', nullable=False)\n", (7488, 7515), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7527, 7568), 'octopus.database.relationship', 'relationship', (['"""Region"""'], {'backref': '"""regions"""'}), "('Region', backref='regions')\n", (7539, 7568), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7580, 7619), 'sqlalchemy.ext.associationproxy.association_proxy', 'association_proxy', (['"""user_cases"""', '"""user"""'], {}), "('user_cases', 'user')\n", (7597, 7619), False, 'from sqlalchemy.ext.associationproxy import association_proxy\n'), ((7641, 7688), 'octopus.database.Column', 'Column', (['db.Integer'], {'unique': '(False)', 'nullable': '(True)'}), '(db.Integer, unique=False, nullable=True)\n', (7647, 7688), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7708, 7755), 'octopus.database.Column', 'Column', (['db.Integer'], {'unique': '(False)', 'nullable': '(True)'}), '(db.Integer, unique=False, nullable=True)\n', (7714, 7755), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7780, 7827), 'octopus.database.Column', 'Column', (['db.Integer'], {'unique': '(False)', 'nullable': '(True)'}), '(db.Integer, unique=False, nullable=True)\n', (7786, 7827), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7959, 8005), 'octopus.database.relationship', 'relationship', (['"""CaseFile"""'], {'backref': '"""case_files"""'}), "('CaseFile', backref='case_files')\n", (7971, 8005), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((8017, 8059), 'octopus.database.relationship', 'relationship', (['"""Task"""'], {'backref': '"""case_tasks"""'}), "('Task', backref='case_tasks')\n", (8029, 8059), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((11129, 11174), 'octopus.database.relationship', 'relationship', (['"""Task"""'], {'backref': '"""project_tasks"""'}), "('Task', backref='project_tasks')\n", (11141, 11174), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((440, 453), 'octopus.database.db.String', 'db.String', (['(80)'], {}), '(80)\n', (449, 453), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((623, 667), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self'], {'name': 'name'}), '(self, name=name, **kwargs)\n', (640, 667), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((833, 846), 'octopus.database.db.String', 'db.String', (['(80)'], {}), '(80)\n', (842, 846), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((906, 919), 'octopus.database.db.String', 'db.String', (['(80)'], {}), '(80)\n', (915, 919), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((970, 984), 'octopus.database.db.String', 'db.String', (['(128)'], {}), '(128)\n', (979, 984), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1102, 1115), 'octopus.database.db.String', 'db.String', (['(30)'], {}), '(30)\n', (1111, 1115), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1153, 1166), 'octopus.database.db.String', 'db.String', (['(30)'], {}), '(30)\n', (1162, 1166), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1201, 1213), 'octopus.database.db.Boolean', 'db.Boolean', ([], {}), '()\n', (1211, 1213), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1250, 1262), 'octopus.database.db.Boolean', 'db.Boolean', ([], {}), '()\n', (1260, 1262), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1299, 1312), 'octopus.database.db.String', 'db.String', (['(20)'], {}), '(20)\n', (1308, 1312), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((2097, 2162), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self'], {'username': 'username', 'email': 'email'}), '(self, username=username, email=email, **kwargs)\n', (2114, 2162), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((2308, 2347), 'octopus.extensions.bcrypt.generate_password_hash', 'bcrypt.generate_password_hash', (['password'], {}), '(password)\n', (2337, 2347), False, 'from octopus.extensions import bcrypt\n'), ((2395, 2443), 'octopus.extensions.bcrypt.check_password_hash', 'bcrypt.check_password_hash', (['self.password', 'value'], {}), '(self.password, value)\n', (2421, 2443), False, 'from octopus.extensions import bcrypt\n'), ((3130, 3143), 'octopus.database.db.String', 'db.String', (['(15)'], {}), '(15)\n', (3139, 3143), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((3209, 3222), 'octopus.database.db.String', 'db.String', (['(80)'], {}), '(80)\n', (3218, 3222), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((3295, 3339), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self'], {'name': 'name'}), '(self, name=name, **kwargs)\n', (3312, 3339), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((3564, 3577), 'octopus.database.db.String', 'db.String', (['(32)'], {}), '(32)\n', (3573, 3577), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((3662, 3706), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self'], {'name': 'name'}), '(self, name=name, **kwargs)\n', (3679, 3706), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((3879, 3891), 'octopus.database.db.String', 'db.String', (['(4)'], {}), '(4)\n', (3888, 3891), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((3938, 3951), 'octopus.database.db.String', 'db.String', (['(80)'], {}), '(80)\n', (3947, 3951), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4001, 4015), 'octopus.database.db.String', 'db.String', (['(120)'], {}), '(120)\n', (4010, 4015), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4063, 4076), 'octopus.database.db.String', 'db.String', (['(80)'], {}), '(80)\n', (4072, 4076), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4125, 4137), 'octopus.database.db.String', 'db.String', (['(2)'], {}), '(2)\n', (4134, 4137), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4184, 4197), 'octopus.database.db.String', 'db.String', (['(15)'], {}), '(15)\n', (4193, 4197), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4245, 4258), 'octopus.database.db.String', 'db.String', (['(15)'], {}), '(15)\n', (4254, 4258), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4326, 4359), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self'], {}), '(self, **kwargs)\n', (4343, 4359), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4515, 4524), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (4522, 4524), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4569, 4578), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (4576, 4578), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4645, 4678), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self'], {}), '(self, **kwargs)\n', (4662, 4678), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((4942, 4966), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""tags.id"""'], {}), "('tags.id')\n", (4955, 4966), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((5072, 5097), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""cases.id"""'], {}), "('cases.id')\n", (5085, 5097), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((5223, 5248), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""users.id"""'], {}), "('users.id')\n", (5236, 5248), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((5296, 5321), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""cases.id"""'], {}), "('cases.id')\n", (5309, 5321), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((5735, 5768), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self'], {}), '(self, **kwargs)\n', (5752, 5768), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((6257, 6266), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (6264, 6266), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((6301, 6310), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (6308, 6310), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((6345, 6354), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (6352, 6354), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((6395, 6404), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (6402, 6404), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((6529, 6569), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self', '*args'], {}), '(self, *args, **kwargs)\n', (6546, 6569), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((6792, 6801), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (6799, 6801), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((6866, 6875), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (6873, 6875), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((6939, 6948), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (6946, 6948), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7001, 7010), 'octopus.database.db.Date', 'db.Date', ([], {}), '()\n', (7008, 7010), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((7074, 7083), 'octopus.database.db.Date', 'db.Date', ([], {}), '()\n', (7081, 7083), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((8104, 8144), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self', '*args'], {}), '(self, *args, **kwargs)\n', (8121, 8144), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((8791, 8816), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""users.id"""'], {}), "('users.id')\n", (8804, 8816), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((8959, 8984), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""tasks.id"""'], {}), "('tasks.id')\n", (8972, 8984), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((9115, 9124), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (9122, 9124), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((9188, 9197), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (9195, 9197), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((9250, 9259), 'octopus.database.db.Date', 'db.Date', ([], {}), '()\n', (9257, 9259), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((9323, 9332), 'octopus.database.db.Date', 'db.Date', ([], {}), '()\n', (9330, 9332), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((9457, 9482), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""users.id"""'], {}), "('users.id')\n", (9470, 9482), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((9588, 9613), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""cases.id"""'], {}), "('cases.id')\n", (9601, 9613), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((9916, 9944), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""projects.id"""'], {}), "('projects.id')\n", (9929, 9944), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((10005, 10045), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self', '*args'], {}), '(self, *args, **kwargs)\n', (10022, 10045), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((10362, 10387), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""users.id"""'], {}), "('users.id')\n", (10375, 10387), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((10542, 10570), 'octopus.database.db.ForeignKey', 'db.ForeignKey', (['"""projects.id"""'], {}), "('projects.id')\n", (10555, 10570), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((10713, 10722), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (10720, 10722), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((10789, 10798), 'octopus.database.db.Text', 'db.Text', ([], {}), '()\n', (10796, 10798), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((10851, 10860), 'octopus.database.db.Date', 'db.Date', ([], {}), '()\n', (10858, 10860), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((10924, 10933), 'octopus.database.db.Date', 'db.Date', ([], {}), '()\n', (10931, 10933), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((11219, 11259), 'octopus.database.db.Model.__init__', 'db.Model.__init__', (['self', '*args'], {}), '(self, *args, **kwargs)\n', (11236, 11259), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1835, 1870), 'octopus.database.db.backref', 'db.backref', (['"""users"""'], {'lazy': '"""dynamic"""'}), "('users', lazy='dynamic')\n", (1845, 1870), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((1991, 2026), 'octopus.database.db.backref', 'db.backref', (['"""users"""'], {'lazy': '"""dynamic"""'}), "('users', lazy='dynamic')\n", (2001, 2026), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((5502, 5553), 'sqlalchemy.orm.backref', 'backref', (['"""user_cases"""'], {'cascade': '"""all, delete-orphan"""'}), "('user_cases', cascade='all, delete-orphan')\n", (5509, 5553), False, 'from sqlalchemy.orm import backref\n'), ((7911, 7946), 'octopus.database.db.backref', 'db.backref', (['"""cases"""'], {'lazy': '"""dynamic"""'}), "('cases', lazy='dynamic')\n", (7921, 7946), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((9758, 9798), 'octopus.database.db.backref', 'db.backref', (['"""user_tasks"""'], {'lazy': '"""dynamic"""'}), "('user_tasks', lazy='dynamic')\n", (9768, 9798), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n'), ((11073, 11116), 'octopus.database.db.backref', 'db.backref', (['"""user_projects"""'], {'lazy': '"""dynamic"""'}), "('user_projects', lazy='dynamic')\n", (11083, 11116), False, 'from octopus.database import Column, db, Model, ReferenceCol, relationship, SurrogatePK\n')]
#imports several modules, submodules and functions from tkinter import * from tkinter import messagebox from time import sleep from pygame import mixer from random import randint from ast import literal_eval #creates the listening test class class ListenApp(Frame): #initiates the class's initial properties def __init__(self,master): super(ListenApp,self).__init__(master) self.master.protocol("WM_DELETE_WINDOW", self.confirmclosure) self.master.iconbitmap('aclogo.ico') mixer.init() #initiates the mixer submodule from pygame self.pack() self.tries = [] self.used = [] self.resultlab = [] self.play = True self.max = 3 self.attempts = 0 self.correct = False self.right = 0 self.creation() #confirms whether the program will be closed when the top-right close button is clicked def confirmclosure(self): if messagebox.askokcancel("Quitting the program","Are you sure you want to close this test? Data entered will NEITHER be saved NOR be considered in the final assessment results!"): self.master.destroy() #creates the actual window and widgets for the listening test def creation(self): self.lab1 = Label(self, text="Play the recording, then discern the text being said.") self.lab1.pack() self.lab2 = Label(self, text="Attempt count: {0} of {1}".format(self.attempts,self.max)) self.lab2.pack() self.bot1 = Button(self, text="Play Now", command=self.playaudio) self.bot1.pack() self.widge = Entry(self, width=40) self.widge.pack() self.bot2 = Button(self, text="Enter", command=self.correction) self.bot2.pack() self.lab3 = Label(self, text="") self.lab3.pack() #chooses which audio files to be played def playaudio(self): if self.play and self.attempts < self.max: self.lab3.configure(text="") self.pick = randint(1,22) if self.pick not in self.used: self.used.append(self.pick) else: self.playaudio() self.play = False self.audio = str(self.pick)+".ogg" mixer.music.load(self.audio) mixer.music.play() #checks to see if the response is correct, and then, if all the attempts are exhausted, the end results are compiled def correction(self): if self.attempts < self.max: self.attempts += 1 self.play = True self.check = self.widge.get().lower().strip() self.dicto = dict([('audio',self.pick),('text',self.check)]) self.tries.append(self.dicto) with open("Audios.txt",mode='r') as reader: for line in reader: if str(line) == str(self.dicto)+"\n": self.correct = True self.lab2.configure(text="Attempt count: {0} of {1}".format(self.attempts,self.max)) if self.correct: self.lab3.configure(text="That is correct.") self.right += 1 else: self.lab3.configure(text="That is incorrect.") self.widge.delete(0, 'end') self.correct = False if self.attempts == self.max: self.end() #compiles the end results into a list of strings def end(self): Label(self,text="").pack() Label(self,text="Total correct attempts: {0} of {1}".format(self.right,self.attempts)).pack() Label(self,text="").pack() self.iter = 0 for info in self.tries: with open("Audios.txt",mode='r') as reader: for line in reader: store = literal_eval(line) if store["audio"] == info["audio"]: self.iter += 1 if store["text"] == info["text"]: axe = "Your response was correct" else: axe = "Your response was incorrect" self.resultlab.append("Attempt {0}\nYour Answer: {1}\nThe Correct Answer: {2}\n{3}\n".format(self.iter, info["text"], store["text"],axe)) Label(self,text=self.resultlab[self.iter-1]).pack() self.finish = Button(self,text="Quit",command=self.kill) self.finish.pack() #ends the program def kill(self): self.master.destroy() #takes the data in resultlab and formats them into one string def file(self): self.endreturn = "" for i in self.resultlab: self.endreturn += i return self.endreturn #loads the Listening test function (NO WEBCAM) def Listen(): root = Tk() root.title("Listening Test (NO WEBCAM)") root.geometry("500x500") listen = ListenApp(root) root.mainloop() box = listen.file() return box #if the file itself is run from the main console if __name__ == "__main__": Listen()
[ "pygame.mixer.init", "tkinter.messagebox.askokcancel", "ast.literal_eval", "pygame.mixer.music.load", "pygame.mixer.music.play", "random.randint" ]
[((529, 541), 'pygame.mixer.init', 'mixer.init', ([], {}), '()\n', (539, 541), False, 'from pygame import mixer\n'), ((976, 1162), 'tkinter.messagebox.askokcancel', 'messagebox.askokcancel', (['"""Quitting the program"""', '"""Are you sure you want to close this test? Data entered will NEITHER be saved NOR be considered in the final assessment results!"""'], {}), "('Quitting the program',\n 'Are you sure you want to close this test? Data entered will NEITHER be saved NOR be considered in the final assessment results!'\n )\n", (998, 1162), False, 'from tkinter import messagebox\n'), ((2310, 2338), 'pygame.mixer.music.load', 'mixer.music.load', (['self.audio'], {}), '(self.audio)\n', (2326, 2338), False, 'from pygame import mixer\n'), ((2348, 2366), 'pygame.mixer.music.play', 'mixer.music.play', ([], {}), '()\n', (2364, 2366), False, 'from pygame import mixer\n'), ((2070, 2084), 'random.randint', 'randint', (['(1)', '(22)'], {}), '(1, 22)\n', (2077, 2084), False, 'from random import randint\n'), ((3869, 3887), 'ast.literal_eval', 'literal_eval', (['line'], {}), '(line)\n', (3881, 3887), False, 'from ast import literal_eval\n')]
import os from unittest.mock import MagicMock from unittest.mock import patch from cauldron import environ from cauldron.test import support from pytest import mark CONFIG_VALUES = { 'recent_paths': [ environ.paths.resources('examples', 'hello_cauldron'), environ.paths.resources('examples', 'hello_text'), environ.paths.resources('examples', 'does_not_exist'), ], 'folder_aliases': {} } @patch('cauldron.environ.configs') def test_list_all(configs: MagicMock): """Should list all known projects.""" configs.fetch.side_effect = CONFIG_VALUES.get response = support.run_command('list all') assert response.success, 'Expect command to succeed.' assert support.has_success_code(response, 'FOUND') examples_directory = environ.paths.resources('examples') data = response.data assert {examples_directory} == set(data['spec_groups'].keys()), """ Expect only a single spec group because we've only given the discovery function a single project to work from in the examples directory. """ children = os.listdir(examples_directory) assert len(children) == len(data['spec_groups'][examples_directory]), """ Expect each folder in the examples directory to be a project that should be represented within the spec group. """ assert len(children) == len(data['specs']), """ Expect each folder in the examples directory to be a project that should be represented by a spec. """ @patch('cauldron.environ.configs') def test_list_recent(configs: MagicMock): """Should list recent existing projects.""" configs.fetch.side_effect = CONFIG_VALUES.get response = support.run_command('list recent') assert response.success, 'Expect command to succeed.' assert support.has_success_code(response, 'PROJECT_HISTORY') examples_directory = environ.paths.resources('examples') data = response.data names = {'hello_cauldron', 'hello_text'} assert names == {p['name'] for p in data['projects']}, """ Expect one entry for each of the projects listed in the configs that exist. The third non-existent project should be ignored from the returned results. """ @patch('cauldron.environ.configs') def test_list_recent_none_available(configs: MagicMock): """Should list no recent projects when none are available.""" configs.fetch.side_effect = {}.get response = support.run_command('list recent') assert response.success, 'Expect command to succeed.' assert support.has_success_code(response, 'PROJECT_HISTORY') assert response.messages[0].message == 'No recent projects found.' ERASE_SCENARIOS = [ {'args': '', 'code': 'NO_IDENTIFIER_SET', 'success': False}, {'args': 'a', 'code': 'NO_MATCH_FOUND', 'success': False}, {'args': 'hello_text', 'code': 'USER_ABORTED', 'success': True}, {'args': 'hello_text', 'code': 'REMOVED', 'success': True, 'input': 'yes'}, {'args': 'hello_text --yes', 'code': 'REMOVED', 'success': True}, ] @mark.parametrize('scenario', ERASE_SCENARIOS) @patch('cauldron.cli.commands.listing._remover.input') @patch('cauldron.environ.configs') def test_list_erase( configs: MagicMock, remover_input: MagicMock, scenario: dict ): """Should execute remove action according to specified scenario.""" configs.fetch.side_effect = CONFIG_VALUES.get remover_input.return_value = scenario.get('input', '') response = support.run_command('list erase {}'.format(scenario['args'])) if scenario['success']: assert response.success, 'Expect command to succeed.' assert support.has_success_code(response, scenario['code']) else: assert response.failed, 'Expect command to fail.' assert support.has_error_code(response, scenario['code']) assert configs.put.called == (scenario['code'] == 'REMOVED') AUTO_COMPLETE_SCENARIOS = [ {'args': '', 'expected': {'all', 'erase', 'recent'}}, {'args': 'r', 'expected': {'recent'}}, {'args': 'recent ', 'expected': set()}, ] @mark.parametrize('scenario', AUTO_COMPLETE_SCENARIOS) def test_autocomplete(scenario): """Should return expected autocompletes based on scenario.""" result = support.autocomplete('list {}'.format(scenario['args'])) assert scenario['expected'] == set(result)
[ "os.listdir", "cauldron.environ.paths.resources", "cauldron.test.support.run_command", "cauldron.test.support.has_success_code", "pytest.mark.parametrize", "cauldron.test.support.has_error_code", "unittest.mock.patch" ]
[((429, 462), 'unittest.mock.patch', 'patch', (['"""cauldron.environ.configs"""'], {}), "('cauldron.environ.configs')\n", (434, 462), False, 'from unittest.mock import patch\n'), ((1533, 1566), 'unittest.mock.patch', 'patch', (['"""cauldron.environ.configs"""'], {}), "('cauldron.environ.configs')\n", (1538, 1566), False, 'from unittest.mock import patch\n'), ((2267, 2300), 'unittest.mock.patch', 'patch', (['"""cauldron.environ.configs"""'], {}), "('cauldron.environ.configs')\n", (2272, 2300), False, 'from unittest.mock import patch\n'), ((3082, 3127), 'pytest.mark.parametrize', 'mark.parametrize', (['"""scenario"""', 'ERASE_SCENARIOS'], {}), "('scenario', ERASE_SCENARIOS)\n", (3098, 3127), False, 'from pytest import mark\n'), ((3129, 3182), 'unittest.mock.patch', 'patch', (['"""cauldron.cli.commands.listing._remover.input"""'], {}), "('cauldron.cli.commands.listing._remover.input')\n", (3134, 3182), False, 'from unittest.mock import patch\n'), ((3184, 3217), 'unittest.mock.patch', 'patch', (['"""cauldron.environ.configs"""'], {}), "('cauldron.environ.configs')\n", (3189, 3217), False, 'from unittest.mock import patch\n'), ((4125, 4178), 'pytest.mark.parametrize', 'mark.parametrize', (['"""scenario"""', 'AUTO_COMPLETE_SCENARIOS'], {}), "('scenario', AUTO_COMPLETE_SCENARIOS)\n", (4141, 4178), False, 'from pytest import mark\n'), ((609, 640), 'cauldron.test.support.run_command', 'support.run_command', (['"""list all"""'], {}), "('list all')\n", (628, 640), False, 'from cauldron.test import support\n'), ((711, 754), 'cauldron.test.support.has_success_code', 'support.has_success_code', (['response', '"""FOUND"""'], {}), "(response, 'FOUND')\n", (735, 754), False, 'from cauldron.test import support\n'), ((781, 816), 'cauldron.environ.paths.resources', 'environ.paths.resources', (['"""examples"""'], {}), "('examples')\n", (804, 816), False, 'from cauldron import environ\n'), ((1103, 1133), 'os.listdir', 'os.listdir', (['examples_directory'], {}), '(examples_directory)\n', (1113, 1133), False, 'import os\n'), ((1722, 1756), 'cauldron.test.support.run_command', 'support.run_command', (['"""list recent"""'], {}), "('list recent')\n", (1741, 1756), False, 'from cauldron.test import support\n'), ((1827, 1880), 'cauldron.test.support.has_success_code', 'support.has_success_code', (['response', '"""PROJECT_HISTORY"""'], {}), "(response, 'PROJECT_HISTORY')\n", (1851, 1880), False, 'from cauldron.test import support\n'), ((1907, 1942), 'cauldron.environ.paths.resources', 'environ.paths.resources', (['"""examples"""'], {}), "('examples')\n", (1930, 1942), False, 'from cauldron import environ\n'), ((2478, 2512), 'cauldron.test.support.run_command', 'support.run_command', (['"""list recent"""'], {}), "('list recent')\n", (2497, 2512), False, 'from cauldron.test import support\n'), ((2583, 2636), 'cauldron.test.support.has_success_code', 'support.has_success_code', (['response', '"""PROJECT_HISTORY"""'], {}), "(response, 'PROJECT_HISTORY')\n", (2607, 2636), False, 'from cauldron.test import support\n'), ((215, 268), 'cauldron.environ.paths.resources', 'environ.paths.resources', (['"""examples"""', '"""hello_cauldron"""'], {}), "('examples', 'hello_cauldron')\n", (238, 268), False, 'from cauldron import environ\n'), ((278, 327), 'cauldron.environ.paths.resources', 'environ.paths.resources', (['"""examples"""', '"""hello_text"""'], {}), "('examples', 'hello_text')\n", (301, 327), False, 'from cauldron import environ\n'), ((337, 390), 'cauldron.environ.paths.resources', 'environ.paths.resources', (['"""examples"""', '"""does_not_exist"""'], {}), "('examples', 'does_not_exist')\n", (360, 390), False, 'from cauldron import environ\n'), ((3692, 3744), 'cauldron.test.support.has_success_code', 'support.has_success_code', (['response', "scenario['code']"], {}), "(response, scenario['code'])\n", (3716, 3744), False, 'from cauldron.test import support\n'), ((3828, 3878), 'cauldron.test.support.has_error_code', 'support.has_error_code', (['response', "scenario['code']"], {}), "(response, scenario['code'])\n", (3850, 3878), False, 'from cauldron.test import support\n')]
# PyAutomate # Copyright (c) <NAME> # Licensed under CC Attribution #Import time for time.wait import time #Import sys for sys.argv import sys while True: #Figure out if any Args have been given if not len(sys.argv) >= 3: #If not, print Usage print("PyAutomate 0.1") print("Usage: python pyautomate.py [time] [false/true] [path]") print("") print("Time betwenn executions - [time] - In Seconds") print("Repeat or not? - [false/true] - HAS to be true or false") print("File to run - [path] - Full Directory") raise SystemExit #Run the parser if more than 3 are given if len(sys.argv) >= 3: #Get the Time to wait and convert to float timetowait = float(sys.argv[1]) #If repeat is false, Run after X amount of time if sys.argv[2] == "false": time.sleep(timetowait) exec(open(str(sys.argv[3])).read()) raise SystemExit #If repeat is true, Run every X amount of time if sys.argv[2] == "true": while True: time.sleep(timetowait) exec(open(str(sys.argv[3])).read())
[ "time.sleep" ]
[((879, 901), 'time.sleep', 'time.sleep', (['timetowait'], {}), '(timetowait)\n', (889, 901), False, 'import time\n'), ((1109, 1131), 'time.sleep', 'time.sleep', (['timetowait'], {}), '(timetowait)\n', (1119, 1131), False, 'import time\n')]
# Test Case service functions import pytest import datetime from core import CaseService from core.CaseService import Authorizer from data import Case from data.CaseRepository import CaseRepository @pytest.fixture(scope="class") def case_service(): case_repo = CaseRepository() autz = Authorizer() return CaseService.CaseService(case_repo, autz) class TestCaseService(object): def test_create(self, case_service: CaseService.CaseService): case = Case(1, "testCase", "testDescription") new_id = case_service.save(case) print(f"{case}") assert new_id > 0 assert new_id == case.case_id def test_edit(self, case_service: CaseService.CaseService): case = Case(1, "testCase", "testDescription") new_id = case_service.save(case) assert case.name == "testCase" case.name = "new_name" case_service.save(case) case_to_test = case_service.find_by_id(new_id) assert case_to_test == case assert case_to_test.name == "new_name" assert case_to_test.updatedOn is not None assert datetime.datetime.now() - case_to_test.updatedOn < datetime.timedelta(minutes=1) def test_delete(self, case_service: CaseService.CaseService): case = Case(1, "testCase", "testDescription") new_id = case_service.save(case) assert case.deleted is False assert case.deletedOn is None case_service.archive(case) case_to_test = case_service.find_by_id(new_id) assert case_to_test == case assert case_to_test.deleted is True assert case_to_test.deletedOn is not None assert datetime.datetime.now() - case_to_test.deletedOn < datetime.timedelta(minutes=1)
[ "data.CaseRepository.CaseRepository", "core.CaseService.Authorizer", "datetime.datetime.now", "data.Case", "pytest.fixture", "datetime.timedelta", "core.CaseService.CaseService" ]
[((202, 231), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""class"""'}), "(scope='class')\n", (216, 231), False, 'import pytest\n'), ((268, 284), 'data.CaseRepository.CaseRepository', 'CaseRepository', ([], {}), '()\n', (282, 284), False, 'from data.CaseRepository import CaseRepository\n'), ((296, 308), 'core.CaseService.Authorizer', 'Authorizer', ([], {}), '()\n', (306, 308), False, 'from core.CaseService import Authorizer\n'), ((320, 360), 'core.CaseService.CaseService', 'CaseService.CaseService', (['case_repo', 'autz'], {}), '(case_repo, autz)\n', (343, 360), False, 'from core import CaseService\n'), ((475, 513), 'data.Case', 'Case', (['(1)', '"""testCase"""', '"""testDescription"""'], {}), "(1, 'testCase', 'testDescription')\n", (479, 513), False, 'from data import Case\n'), ((724, 762), 'data.Case', 'Case', (['(1)', '"""testCase"""', '"""testDescription"""'], {}), "(1, 'testCase', 'testDescription')\n", (728, 762), False, 'from data import Case\n'), ((1274, 1312), 'data.Case', 'Case', (['(1)', '"""testCase"""', '"""testDescription"""'], {}), "(1, 'testCase', 'testDescription')\n", (1278, 1312), False, 'from data import Case\n'), ((1162, 1191), 'datetime.timedelta', 'datetime.timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (1180, 1191), False, 'import datetime\n'), ((1717, 1746), 'datetime.timedelta', 'datetime.timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (1735, 1746), False, 'import datetime\n'), ((1111, 1134), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1132, 1134), False, 'import datetime\n'), ((1666, 1689), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1687, 1689), False, 'import datetime\n')]
import numpy as np import cv2 import torch from torch.utils.data import Dataset from utils.jpeg import JPEG import random from preprocess_jpeg import load_file from utils.djmd import * class DCTDataset(Dataset): def __init__(self, filename="dataset", q=50) -> None: super().__init__() self.data = load_file("data", filename) del self.data["y"] self.q = q self.jpeg = JPEG(q, False) self.x = [] self.y = [] self.quan() def quan(self): for i in self.data['x']: self.x.append([self.jpeg.quanti(item, idx>3) for idx, item in enumerate(i)]) self.y.append(i) SHIFT_X, SCALE_X = get_shift_scale_maxmin(self.x) with open(f"./weights/normalize_q{self.q}.data", "w") as file: file.write(f"{SHIFT_X},{SCALE_X}") self.x = shift_and_normalize(np.array(self.x), SHIFT_X, SCALE_X) self.y = shift_and_normalize(np.array(self.y), SHIFT_Y, SCALE_Y) def __getitem__(self, index): # x = y = self.data["x"][index] # q_arr = [self.jpeg.quanti(item, idx>3) for idx, item in enumerate(x)] # x = np.array(q_arr) return self.x[index], self.y[index] def __len__(self): return len(self.x)
[ "numpy.array", "utils.jpeg.JPEG", "preprocess_jpeg.load_file" ]
[((318, 345), 'preprocess_jpeg.load_file', 'load_file', (['"""data"""', 'filename'], {}), "('data', filename)\n", (327, 345), False, 'from preprocess_jpeg import load_file\n'), ((412, 426), 'utils.jpeg.JPEG', 'JPEG', (['q', '(False)'], {}), '(q, False)\n', (416, 426), False, 'from utils.jpeg import JPEG\n'), ((880, 896), 'numpy.array', 'np.array', (['self.x'], {}), '(self.x)\n', (888, 896), True, 'import numpy as np\n'), ((953, 969), 'numpy.array', 'np.array', (['self.y'], {}), '(self.y)\n', (961, 969), True, 'import numpy as np\n')]
import os import sys import shutil import tempfile from launcher import schema from launcher.vendor import yaml self = sys.modules[__name__] def setup(): self.root = tempfile.mkdtemp() self.config = { "schema": "avalon-core:config-1.0", "apps": [ { "name": "maya2016" }, { "name": "python", "args": [ "-u", "-c", "print('Something nice')" ] } ], "tasks": [ { "label": "animation", "name": "animation" } ], "template": { "publish": "{projectpath}/publish", "work": "{projectpath}/work" } } self.inventory = { "schema": "avalon-core:inventory-1.0", "assets": { "Batman": None, "Tarantula": None }, "film": { "1000": { "edit_in": 1000, "edit_out": 1143 }, "1200": { "edit_in": 1000, "edit_out": 1081 }, "2000": None, "2100": None, "2400": None } } self.application = { "schema": "avalon-core:application-1.0", "label": "Autodesk Maya 2016x64", "description": "", "application_dir": "maya", "executable": "maya2016", "default_dirs": [ "scenes", "data", ], "environment": { "MAYA_DISABLE_CLIC_IPM": "Yes", "PYTHONPATH": [ "{PYBLISH_MAYA}/pyblish_maya/pythonpath", "{AVALON_CORE}/avalon/maya/pythonpath", "{PYTHONPATH}" ] }, "arguments": [ "-proj", "{AVALON_WORKDIR}" ], "copy": { "{AVALON_CORE}/res/workspace.mel": "{AVALON_WORKDIR}/workspace.mel" } } os.environ["PATH"] += os.pathsep.join([ os.environ["PATH"], self.root ]) with open(os.path.join(self.root, "python.yml"), "w") as f: yaml.dump({ "executable": "python", "application_dir": "python", "label": "Python 2.7" }, f) def teardown(): shutil.rmtree(self.root) def test_config(): schema.validate(self.config, "config") def test_inventory(): schema.validate(self.inventory, "inventory") def test_application(): schema.validate(self.application, "application")
[ "launcher.vendor.yaml.dump", "os.pathsep.join", "os.path.join", "tempfile.mkdtemp", "shutil.rmtree", "launcher.schema.validate" ]
[((174, 192), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (190, 192), False, 'import tempfile\n'), ((2094, 2142), 'os.pathsep.join', 'os.pathsep.join', (["[os.environ['PATH'], self.root]"], {}), "([os.environ['PATH'], self.root])\n", (2109, 2142), False, 'import os\n'), ((2397, 2421), 'shutil.rmtree', 'shutil.rmtree', (['self.root'], {}), '(self.root)\n', (2410, 2421), False, 'import shutil\n'), ((2447, 2485), 'launcher.schema.validate', 'schema.validate', (['self.config', '"""config"""'], {}), "(self.config, 'config')\n", (2462, 2485), False, 'from launcher import schema\n'), ((2514, 2558), 'launcher.schema.validate', 'schema.validate', (['self.inventory', '"""inventory"""'], {}), "(self.inventory, 'inventory')\n", (2529, 2558), False, 'from launcher import schema\n'), ((2589, 2637), 'launcher.schema.validate', 'schema.validate', (['self.application', '"""application"""'], {}), "(self.application, 'application')\n", (2604, 2637), False, 'from launcher import schema\n'), ((2238, 2332), 'launcher.vendor.yaml.dump', 'yaml.dump', (["{'executable': 'python', 'application_dir': 'python', 'label': 'Python 2.7'}", 'f'], {}), "({'executable': 'python', 'application_dir': 'python', 'label':\n 'Python 2.7'}, f)\n", (2247, 2332), False, 'from launcher.vendor import yaml\n'), ((2180, 2217), 'os.path.join', 'os.path.join', (['self.root', '"""python.yml"""'], {}), "(self.root, 'python.yml')\n", (2192, 2217), False, 'import os\n')]
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, core, out_nodes): super(Model, self).__init__() self.core = core self.fc1 = nn.Linear(4, 24) self.fc2 = nn.Linear(24, 24) self.fc3 = nn.Linear(24, out_nodes) def forward(self, x): x = self.core(x) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) x = F.softmax(x, dim=1) return x
[ "torch.nn.functional.softmax", "torch.nn.functional.relu", "torch.nn.Linear" ]
[((217, 233), 'torch.nn.Linear', 'nn.Linear', (['(4)', '(24)'], {}), '(4, 24)\n', (226, 233), True, 'import torch.nn as nn\n'), ((253, 270), 'torch.nn.Linear', 'nn.Linear', (['(24)', '(24)'], {}), '(24, 24)\n', (262, 270), True, 'import torch.nn as nn\n'), ((290, 314), 'torch.nn.Linear', 'nn.Linear', (['(24)', 'out_nodes'], {}), '(24, out_nodes)\n', (299, 314), True, 'import torch.nn as nn\n'), ((403, 412), 'torch.nn.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (409, 412), True, 'import torch.nn.functional as F\n'), ((449, 458), 'torch.nn.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (455, 458), True, 'import torch.nn.functional as F\n'), ((495, 514), 'torch.nn.functional.softmax', 'F.softmax', (['x'], {'dim': '(1)'}), '(x, dim=1)\n', (504, 514), True, 'import torch.nn.functional as F\n')]
import argparse import os ############################################ Arguments and declarations ############################################## parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("-i", help="input dir", type=str, default='.',metavar='current dir (.)') parser.add_argument("-f", help="input filename", type=str, default='input.faa',metavar='input.faa') ################################################## Definition ######################################################## args = parser.parse_args() ################################################### Function ####################################################### def hmmformat(hmmresult): # format hmm results f1 = open(hmmresult + '2.txt', 'a') for line in open(hmmresult, 'r'): if str(line)[0] == '#': pass else: line = str(line).replace(' # ', '#') while line != str(line).replace(' ', ' '): line = str(line).replace(' ', ' ') line = str(line).replace(' ', '\t') line = str(line).replace('#', ' # ') filedir, filename = os.path.split(hmmresult) filename = filename.split('.hmm')[0] f1.write(filename + '_' + line) f1.close() ################################################### Programme ####################################################### hmmformat(os.path.join(args.i,args.f))
[ "os.path.join", "argparse.ArgumentParser", "os.path.split" ]
[((159, 236), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'argparse.RawDescriptionHelpFormatter'}), '(formatter_class=argparse.RawDescriptionHelpFormatter)\n', (182, 236), False, 'import argparse\n'), ((1509, 1537), 'os.path.join', 'os.path.join', (['args.i', 'args.f'], {}), '(args.i, args.f)\n', (1521, 1537), False, 'import os\n'), ((1239, 1263), 'os.path.split', 'os.path.split', (['hmmresult'], {}), '(hmmresult)\n', (1252, 1263), False, 'import os\n')]
import logging import requests import atexit logger = logging.getLogger(f"scraper.{__name__}") logging.basicConfig(level=logging.INFO) logging.getLogger('suds').setLevel(logging.INFO) import config import utils from properties import properties_info, num_properties_with_data, num_properties, Property # add property id: example: https://phoenix.onmap.co.il/v1/properties/BJOWzFv5K class Scraper: onmap_endpoint = """https://phoenix.onmap.co.il/v1/properties/mixed_search""" property_info_endpoint = 'https://phoenix.onmap.co.il/v1/properties/' params = {'option': '', # 'section': 'residence', # '$sort': '-is_top_promoted -search_date', '$limit': '300', '$skip': '0'} num_properties_with_data = num_properties_with_data properties_info = properties_info session = requests.Session() @classmethod def scrape_properties_ids(cls, buy_or_rent_option: str) -> list: """ Scrapes the properties ids from the website and saves them in the properties info json :param buy_or_rent_option: can take either the value 'rent' or 'buy' or 'both' to combine both options :return: """ if buy_or_rent_option == 'both': all_properties_ids = [] for option in ['buy', 'rent']: all_properties_ids.extend(cls.scrape_properties_ids(buy_or_rent_option=option)) return all_properties_ids scraped_properties_ids_list = [] newly_scraped_properties = True cls.params['$skip'] = '0' cls.params['option'] = buy_or_rent_option with cls.session as session: while newly_scraped_properties: response = session.get(url=cls.onmap_endpoint, params=cls.params) data = response.json()['data'] newly_scraped_properties = [property.get('id') for property in data] scraped_properties_ids_list.extend(newly_scraped_properties) # To scrape the properties that follow cls.params['$skip'] = str(int(cls.params['$skip']) + 300) cls.register_properties_ids(scraped_properties_ids_list) logger.info(f'Finished scraping properties ids with option {buy_or_rent_option}') return scraped_properties_ids_list @staticmethod def get_properties_ids_without_data(properties_info: dict) -> list: """ Retrieves the properties ids without the data info already in the DB :param properties_info: :return: """ return [property for property in properties_info if not properties_info[property].get('data')] @staticmethod def get_properties_ids_with_data(properties_info: dict) -> list: """ Retrieves the properties ids without the data info already in the DB :param properties_info: :return: """ return [property for property in properties_info if properties_info[property].get('data')] @staticmethod def register_properties_ids(properties_ids_list: list) -> None: """ :param properties_ids_list: :return: """ # We would like to save the properties ids in a file for later retrieval existing_properties_ids = utils.load_properties_ids() # Only keep the ones which are not already in the json properties_ids_to_save = list(set(properties_ids_list) - set(existing_properties_ids)) for property_id in properties_ids_to_save: properties_info[property_id] = dict() @classmethod def get_list_properties_ids(cls): """ :return: """ scraped_properties_ids_list = [] existing_properties_ids = utils.load_properties_ids() if not existing_properties_ids: scraped_properties_ids_list = cls.scrape_properties_ids(buy_or_rent_option='both') all_properties_ids = set(existing_properties_ids).union(set(scraped_properties_ids_list)) return list(all_properties_ids) @classmethod def scrape_and_register_properties_info(cls, list_properties_ids: list, buy_or_rent_option: str) -> None: """ :param buy_or_rent_option: :param list_properties_ids: :return: """ with cls.session as session: for property_id in list_properties_ids: try: property_info_url = cls.property_info_endpoint + '/' + property_id response = session.get(url=property_info_url) data = response.json() if data: scraping_date = config.TODAY_DATE properties_info[property_id] = {'data': data, 'scraping_date': scraping_date,} # 'buy_or_rent_option': buy_or_rent_option} cls.num_properties_with_data += 1 except requests.exceptions.RequestException as re: logger.info(re) # Save properties info regularly if cls.num_properties_with_data % 50 == 0: logger.info(f'Saving scraped properties info...') logger.info(f"{cls.num_properties_with_data}") logger.info(f'Progress: {round(100*cls.num_properties_with_data/num_properties)}%') Property.save_properties_info(properties_info) def scrape_properties_from_onmap(buy_or_rent_option: str = 'both') -> None: """ :param: :return: """ # TODO: scrape the properties only if data older than 1 week OR force_scraping flag is True scraped_properties_ids = Scraper.scrape_properties_ids(buy_or_rent_option=buy_or_rent_option) without_data_properties_ids = Scraper.get_properties_ids_without_data(properties_info=properties_info) properties_ids_with_data = Scraper.get_properties_ids_with_data(properties_info=properties_info) properties_ids_to_scrape = list(set(scraped_properties_ids).union(set(without_data_properties_ids)) - set(properties_ids_with_data)) logger.info(f"number properties ids to scrape {len(properties_ids_to_scrape)}") Scraper.scrape_and_register_properties_info(list_properties_ids=properties_ids_to_scrape, buy_or_rent_option=buy_or_rent_option) def exit_handler(): Property().save_properties_info(properties_info=properties_info) def main(): scrape_properties_from_onmap(buy_or_rent_option='both') atexit.register(exit_handler) if __name__ == '__main__': main()
[ "logging.getLogger", "logging.basicConfig", "properties.Property.save_properties_info", "requests.Session", "properties.Property", "utils.load_properties_ids", "atexit.register" ]
[((55, 95), 'logging.getLogger', 'logging.getLogger', (['f"""scraper.{__name__}"""'], {}), "(f'scraper.{__name__}')\n", (72, 95), False, 'import logging\n'), ((96, 135), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (115, 135), False, 'import logging\n'), ((853, 871), 'requests.Session', 'requests.Session', ([], {}), '()\n', (869, 871), False, 'import requests\n'), ((6669, 6698), 'atexit.register', 'atexit.register', (['exit_handler'], {}), '(exit_handler)\n', (6684, 6698), False, 'import atexit\n'), ((136, 161), 'logging.getLogger', 'logging.getLogger', (['"""suds"""'], {}), "('suds')\n", (153, 161), False, 'import logging\n'), ((3292, 3319), 'utils.load_properties_ids', 'utils.load_properties_ids', ([], {}), '()\n', (3317, 3319), False, 'import utils\n'), ((3755, 3782), 'utils.load_properties_ids', 'utils.load_properties_ids', ([], {}), '()\n', (3780, 3782), False, 'import utils\n'), ((6526, 6536), 'properties.Property', 'Property', ([], {}), '()\n', (6534, 6536), False, 'from properties import properties_info, num_properties_with_data, num_properties, Property\n'), ((5530, 5576), 'properties.Property.save_properties_info', 'Property.save_properties_info', (['properties_info'], {}), '(properties_info)\n', (5559, 5576), False, 'from properties import properties_info, num_properties_with_data, num_properties, Property\n')]
#!/usr/bin/python # Oct 2019 JMA # splits_aggregator.py write scale events to mongoDB ''' Run a simulation of interactive incremental classification. Usage: $ ./splits_aggregator.py [-v] [-d root_dir] [-g pattern] -v verbose output (more than normal) -d root directory to read from -q quiet output (less than normal) -r rules per sample (how deep into the sample sorted words) -p Rule pairs ''' import os import copy import glob import math import pprint import subprocess import sys import re import string import time from pathlib import Path from collections import namedtuple import numpy as np import pandas as pd # import bokeh as bk from sklearn.metrics import confusion_matrix, precision_recall_fscore_support import metric_graphics as mg import pq __author__ = '<NAME> <EMAIL>' ### config constants VERBOSE = False ROOT_DIR = Path('C:/Users/joagosta/OneDrive - Microsoft/data/20news') QUIET = True RULES_PER_SAMPLE = 1 RULE_PAIRS =400 Rule = namedtuple('Rule', ['pattern', 'label', 'hits']) ss = dict(group1 = (4,3), group2=(4,4), pattern1=(5,3), pattern2=(5,4), sample1=(7,3), sample2=(7,4)) ######################################################################## class CollectSplits(object): 'Collect csv files from participants and aggregate.' def __init__(self, cvs_dir, glob_pattern = '*.csv'): self.user_rules = [] #self.as_df = None for k, data_file in enumerate(cvs_dir.glob( glob_pattern)): print(k,':', end = ' ') try: self.add_file(data_file) except Exception as err: print(f"{err}\nSkipping file: {data_file} Cannot load it.", file=sys.stderr) def add_file(self, the_fname): 'convert ss to rule' self.as_df = pd.read_csv(the_fname, header=None ) #patterns = (self.as_df.iloc[ss['pattern1']], self.as_df.iloc[ss['pattern2']]) # comp.iloc[ss["group1"]] # Create rules out of the pattens. try: rule1 = Rule(self.get_cell('pattern1'), self.get_cell('group1'), 0) self.user_rules.append(rule1) rule2 = Rule(self.get_cell('pattern2'), self.get_cell('group2'), 0) self.user_rules.append(rule2) if VERBOSE: print("Rule patterns: ", rule1, rule2) except ValueError: print(the_fname, " corrupt contents", file=sys.stderr) def get_cell(self, cell_name): cell = self.as_df.iloc[ss[cell_name]] if (type(cell) is str) and (len(cell) > 2): cell = cell.strip('"\'') return cell else: raise ValueError ######################################################################## ######################################################################## class BinaryComparisons(object): 'Randomly pair training cases to find words specific to each class.' def __init__(self, input_dir): self.patterns_dir = input_dir / 'patterns' self.rules_dir = input_dir / 'rules' # check that the shared and rules directories have been created. if not self.patterns_dir.exists(): self.patterns_dir.mkdir() if not self.rules_dir.exists(): self.rules_dir.mkdir() self.full_df = pq.reload_parquet(input_dir / 'train_clean') # 'merge all training data' self.full_df.reset_index() def random_pairs(self, no_pairs): 'Sample without replacement for pairwise item comparisons' pair_df = np.empty(shape=(0,6)) for n0 in range(no_pairs): reps =0 while reps < 100: pair = self.full_df.sample(2, replace=False) labels = pair['label'].values if labels[0] !=labels[1]: break reps +=1 row = np.hstack([pair.iloc[0,].values, pair.iloc[1,].values]) pair_df = np.vstack([pair_df, row]) pair_df = pd.DataFrame(pair_df) pair_df.columns = ['label1', 'item1', 'msg1', 'label2', 'item2', 'msg2'] return pair_df def simulate_splits(self, pair_df): 'Find pairs of words that distinguish the pair. ' selection_rules = [] for r in range(len(pair_df)): row = pair_df.iloc[r,] msg1 = row[2] lbl1 = row[0] msg2 = row[5] lbl2 = row[3] # Cheap heuristic - use the longest word as a candidate classifiers w1 = sorted(msg1.split(), key= lambda w: len(w), reverse=True) w2 = sorted(msg2.split(), key= lambda w: len(w), reverse=True) # Create rules out of the first RULES_PER_SAMPLE words for k in range(RULES_PER_SAMPLE): # Check if the word appears in the opposite sample and fail if it does. if len(w1) > 0 and not (w1[k] in msg2.split()): selection_rules.append(Rule(w1[k], lbl1, 0)) else: print('Failed selection rule ', lbl2, ':', w1[k], file=sys.stderr) if len(w2) and not (w2[k] in msg1.split()): selection_rules.append(Rule(w2[k], lbl2, 0)) else: print('Failed selection rule ', lbl1, ':', w2[k], file=sys.stderr) # if not QUIET: print(len(selection_rules), " selection rules.") return selection_rules def embed_in_excel(self, pairs, groups_template = Path('../../template/pairwise_comparisions.csv')): 'Export ss files with examples of pair-wise comparisons that users can fill in and submit. ' if groups_template.exists(): the_template= pd.read_csv(groups_template, header=None ) else: print(groups_template, " not found", file=sys.stderr) return None for k in range(len(pairs)): comp = copy.copy(the_template) a_pair = pairs.iloc[k,] comp.iloc[ss["group1"]] = a_pair['label1'] # ['label1', 'item1', 'msg1', 'label2', 'item2', 'msg2'] comp.iloc[ss["group2"]] = a_pair['label2'] comp.iloc[ss["sample1"]] = a_pair['msg1'] comp.iloc[ss["sample2"]] = a_pair['msg2'] if VERBOSE: for vals in ss.values(): print(comp.iloc[vals]) case_fn = self.patterns_dir / (str(a_pair["item1"]) + '-' + str(a_pair["item2"]) + '.csv') comp.to_csv(case_fn, header=False, index=False ) ######################################################################## class SplitClassifier (object): 'Assemble the splits are run them with highest precision lowest coverage first.' def __init__(self, rules): self.rules = rules def order_by_hits(self, full_df): 'Run each rule over all msgs, counting msgs that fire the rule.' # TODO count the number of hits over all samples for each rule. hits = [0] * len(self.rules) match = 0 miss = 0 for j, a_rule in enumerate(self.rules): for k, v in enumerate(full_df['msg']): if a_rule.pattern in v: # Add a count of how many times the rule matches hits[j] += 1 if a_rule.label == full_df['label'].iloc[k]: if VERBOSE: print(k,'-', a_rule.label, ':',a_rule.pattern) match +=1 else: #print(a_rule.label, ':',full_df['label'].iloc[k] , end = ' ') miss +=1 if not QUIET: print(f'\n{j}:{a_rule.pattern} Match {match}, miss {miss}, hits {hits[j]}.') print(f'\n============\nMatch {match}, miss {miss}, TOT {match+miss}.') # TODO Sort by most specific rules first. def compute_confusion(self, full_df): 'Return the confusion matrix and stats for this classifier.' # Run the ruleset over the sample item until a rule fires # Then record the class of the rule. predicted_labels = len(full_df)*["None"] for k, content in enumerate(full_df['msg']): for j, a_rule in enumerate(self.rules): if a_rule.pattern in content: predicted_labels[k] = a_rule.label break true_y = list(full_df["label"]) class_names = list(set(true_y)) cm = confusion_matrix(true_y, predicted_labels, class_names) # Accuracy diagonal = sum([cm[x,x] for x in range(len(class_names))]) totals = sum(sum(cm)) print("Accuracy on matches =", diagonal, ' / ', totals, ' = ', diagonal/totals) cm = pd.DataFrame(cm, index=class_names) if VERBOSE: print(cm) #cm.to_csv(Path(ROOT_DIR) / f"cm{'%.3f' % (diagonal/totals)}.csv") cm.to_csv(Path(ROOT_DIR) / f"cm.csv") prfs = precision_recall_fscore_support(true_y, predicted_labels, labels=class_names) prfs_df = pd.DataFrame.from_dict(dict(prec= prfs[0],recall=prfs[1],F=prfs[2], sup=prfs[3], nms=class_names) ) # Compute macro averages colsums = np.sum(prfs_df.values, axis=0) colavgs = list(colsums[0:4]/len(prfs_df)) colavgs.append("AVGS") prfs_df = prfs_df.append(pd.DataFrame([colavgs], columns= ['prec', 'recall', 'F', 'sup', 'nms']))# prfs_df.set_index('nms', inplace=True) if VERBOSE: print(prfs_df) # mg.matrix_heatmap(prfs_df) return [diagonal/totals, colavgs[0], colavgs[1]]# dict(accuracy=diagonal/totals, precision=colavgs[0], recall=colavgs[1]) ############################################################################### def main(input_dir): # Test split pattern extraction cs = BinaryComparisons(input_dir) pair_df = cs.random_pairs(RULE_PAIRS) the_rules = cs.simulate_splits(pair_df) # Creates simulated rules. if VERBOSE: pprint.pprint(the_rules) learner = SplitClassifier(the_rules) # learner.order_by_hits(cs.full_df) learner.compute_confusion(cs.full_df) # Do the same for the test data test_df = pq.reload_parquet(input_dir / 'test_clean') learner.compute_confusion(test_df) return 0 ######################################################################## if __name__ == '__main__': if '-v' in sys.argv: k = sys.argv.index('-v') VERBOSE = True ## Inputs if '-d' in sys.argv: d = sys.argv.index('-d') ROOT_DIR = Path(sys.argv[d+1]) # Assuming the path is relative to the user's home path # else: # ROOT_DIR = Path(DATA_DIR) if '-q' in sys.argv: q = sys.argv.index('-q') QUIET = True if '-r' in sys.argv: r = sys.argv.index('-r') RULES_PER_SAMPLE = int(sys.argv[r+1]) if '-p' in sys.argv: p = sys.argv.index('-p') RULE_PAIRS = int(sys.argv[p+1]) np.set_printoptions(linewidth=100) main(ROOT_DIR) print(sys.argv, "\nDone in ", '%5.3f' % time.process_time(), " secs! At UTC: ", time.asctime(time.gmtime()), file=sys.stderr) #EOF
[ "pq.reload_parquet", "collections.namedtuple", "sklearn.metrics.confusion_matrix", "pandas.read_csv", "pathlib.Path", "numpy.hstack", "sklearn.metrics.precision_recall_fscore_support", "time.process_time", "numpy.sum", "numpy.empty", "numpy.vstack", "pandas.DataFrame", "copy.copy", "sys.argv.index", "time.gmtime", "pprint.pprint", "numpy.set_printoptions" ]
[((862, 920), 'pathlib.Path', 'Path', (['"""C:/Users/joagosta/OneDrive - Microsoft/data/20news"""'], {}), "('C:/Users/joagosta/OneDrive - Microsoft/data/20news')\n", (866, 920), False, 'from pathlib import Path\n'), ((979, 1027), 'collections.namedtuple', 'namedtuple', (['"""Rule"""', "['pattern', 'label', 'hits']"], {}), "('Rule', ['pattern', 'label', 'hits'])\n", (989, 1027), False, 'from collections import namedtuple\n'), ((10151, 10194), 'pq.reload_parquet', 'pq.reload_parquet', (["(input_dir / 'test_clean')"], {}), "(input_dir / 'test_clean')\n", (10168, 10194), False, 'import pq\n'), ((10940, 10974), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'linewidth': '(100)'}), '(linewidth=100)\n', (10959, 10974), True, 'import numpy as np\n'), ((1789, 1824), 'pandas.read_csv', 'pd.read_csv', (['the_fname'], {'header': 'None'}), '(the_fname, header=None)\n', (1800, 1824), True, 'import pandas as pd\n'), ((3296, 3340), 'pq.reload_parquet', 'pq.reload_parquet', (["(input_dir / 'train_clean')"], {}), "(input_dir / 'train_clean')\n", (3313, 3340), False, 'import pq\n'), ((3543, 3565), 'numpy.empty', 'np.empty', ([], {'shape': '(0, 6)'}), '(shape=(0, 6))\n', (3551, 3565), True, 'import numpy as np\n'), ((3987, 4008), 'pandas.DataFrame', 'pd.DataFrame', (['pair_df'], {}), '(pair_df)\n', (3999, 4008), True, 'import pandas as pd\n'), ((5489, 5537), 'pathlib.Path', 'Path', (['"""../../template/pairwise_comparisions.csv"""'], {}), "('../../template/pairwise_comparisions.csv')\n", (5493, 5537), False, 'from pathlib import Path\n'), ((8423, 8478), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['true_y', 'predicted_labels', 'class_names'], {}), '(true_y, predicted_labels, class_names)\n', (8439, 8478), False, 'from sklearn.metrics import confusion_matrix, precision_recall_fscore_support\n'), ((8697, 8732), 'pandas.DataFrame', 'pd.DataFrame', (['cm'], {'index': 'class_names'}), '(cm, index=class_names)\n', (8709, 8732), True, 'import pandas as pd\n'), ((8914, 8991), 'sklearn.metrics.precision_recall_fscore_support', 'precision_recall_fscore_support', (['true_y', 'predicted_labels'], {'labels': 'class_names'}), '(true_y, predicted_labels, labels=class_names)\n', (8945, 8991), False, 'from sklearn.metrics import confusion_matrix, precision_recall_fscore_support\n'), ((9161, 9191), 'numpy.sum', 'np.sum', (['prfs_df.values'], {'axis': '(0)'}), '(prfs_df.values, axis=0)\n', (9167, 9191), True, 'import numpy as np\n'), ((9953, 9977), 'pprint.pprint', 'pprint.pprint', (['the_rules'], {}), '(the_rules)\n', (9966, 9977), False, 'import pprint\n'), ((10386, 10406), 'sys.argv.index', 'sys.argv.index', (['"""-v"""'], {}), "('-v')\n", (10400, 10406), False, 'import sys\n'), ((10482, 10502), 'sys.argv.index', 'sys.argv.index', (['"""-d"""'], {}), "('-d')\n", (10496, 10502), False, 'import sys\n'), ((10522, 10543), 'pathlib.Path', 'Path', (['sys.argv[d + 1]'], {}), '(sys.argv[d + 1])\n', (10526, 10543), False, 'from pathlib import Path\n'), ((10689, 10709), 'sys.argv.index', 'sys.argv.index', (['"""-q"""'], {}), "('-q')\n", (10703, 10709), False, 'import sys\n'), ((10769, 10789), 'sys.argv.index', 'sys.argv.index', (['"""-r"""'], {}), "('-r')\n", (10783, 10789), False, 'import sys\n'), ((10874, 10894), 'sys.argv.index', 'sys.argv.index', (['"""-p"""'], {}), "('-p')\n", (10888, 10894), False, 'import sys\n'), ((3864, 3919), 'numpy.hstack', 'np.hstack', (['[pair.iloc[0,].values, pair.iloc[1,].values]'], {}), '([pair.iloc[0,].values, pair.iloc[1,].values])\n', (3873, 3919), True, 'import numpy as np\n'), ((3943, 3968), 'numpy.vstack', 'np.vstack', (['[pair_df, row]'], {}), '([pair_df, row])\n', (3952, 3968), True, 'import numpy as np\n'), ((5704, 5745), 'pandas.read_csv', 'pd.read_csv', (['groups_template'], {'header': 'None'}), '(groups_template, header=None)\n', (5715, 5745), True, 'import pandas as pd\n'), ((5906, 5929), 'copy.copy', 'copy.copy', (['the_template'], {}), '(the_template)\n', (5915, 5929), False, 'import copy\n'), ((9306, 9376), 'pandas.DataFrame', 'pd.DataFrame', (['[colavgs]'], {'columns': "['prec', 'recall', 'F', 'sup', 'nms']"}), "([colavgs], columns=['prec', 'recall', 'F', 'sup', 'nms'])\n", (9318, 9376), True, 'import pandas as pd\n'), ((11038, 11057), 'time.process_time', 'time.process_time', ([], {}), '()\n', (11055, 11057), False, 'import time\n'), ((11091, 11104), 'time.gmtime', 'time.gmtime', ([], {}), '()\n', (11102, 11104), False, 'import time\n'), ((8870, 8884), 'pathlib.Path', 'Path', (['ROOT_DIR'], {}), '(ROOT_DIR)\n', (8874, 8884), False, 'from pathlib import Path\n')]
from django.contrib.auth.decorators import login_required from django.http.response import JsonResponse from spendtrackapp.forms import EntryForm from spendtrackapp.models import Entry from spendtrackapp.views.utils import * @login_required def add_handler(request): """ Handle add new entries request :return on success: an empty JSON object on failure: an JSON object whose properties' names are invalid fields and whose values are list of errors in those fields """ form = EntryForm(get_post(request)) if not form.is_valid(): return JsonResponse(form.errors, status=400) entry_id = form.save().id return JsonResponse({'id': entry_id}) @login_required def edit_handler(request): """Handle edit entry requests""" entry = get_entry(request) # return errors, if any if isinstance(entry, dict): return JsonResponse(entry, status=400) form = EntryForm(get_post(request), instance=entry) if not form.is_valid(): return JsonResponse(form.errors, status=400) form.save() return JsonResponse({}) @login_required def delete_handler(request): """Handle delete plan requests""" entry = get_entry(request) # return errors, if any if isinstance(entry, dict): return JsonResponse(entry, status=400) entry.delete() return JsonResponse({}) def get_entry(request): if 'id' not in request.POST: errors = 'Missing entry id' else: try: entry_id = int(request.POST['id']) entry = Entry.objects.get(id=entry_id) if entry.user_id != request.user.id: raise ValueError return entry except (Entry.DoesNotExist, ValueError): errors = 'Invalid entry id' return {'id': [errors]}
[ "spendtrackapp.models.Entry.objects.get", "django.http.response.JsonResponse" ]
[((688, 718), 'django.http.response.JsonResponse', 'JsonResponse', (["{'id': entry_id}"], {}), "({'id': entry_id})\n", (700, 718), False, 'from django.http.response import JsonResponse\n'), ((1107, 1123), 'django.http.response.JsonResponse', 'JsonResponse', (['{}'], {}), '({})\n', (1119, 1123), False, 'from django.http.response import JsonResponse\n'), ((1380, 1396), 'django.http.response.JsonResponse', 'JsonResponse', (['{}'], {}), '({})\n', (1392, 1396), False, 'from django.http.response import JsonResponse\n'), ((608, 645), 'django.http.response.JsonResponse', 'JsonResponse', (['form.errors'], {'status': '(400)'}), '(form.errors, status=400)\n', (620, 645), False, 'from django.http.response import JsonResponse\n'), ((909, 940), 'django.http.response.JsonResponse', 'JsonResponse', (['entry'], {'status': '(400)'}), '(entry, status=400)\n', (921, 940), False, 'from django.http.response import JsonResponse\n'), ((1041, 1078), 'django.http.response.JsonResponse', 'JsonResponse', (['form.errors'], {'status': '(400)'}), '(form.errors, status=400)\n', (1053, 1078), False, 'from django.http.response import JsonResponse\n'), ((1317, 1348), 'django.http.response.JsonResponse', 'JsonResponse', (['entry'], {'status': '(400)'}), '(entry, status=400)\n', (1329, 1348), False, 'from django.http.response import JsonResponse\n'), ((1582, 1612), 'spendtrackapp.models.Entry.objects.get', 'Entry.objects.get', ([], {'id': 'entry_id'}), '(id=entry_id)\n', (1599, 1612), False, 'from spendtrackapp.models import Entry\n')]
#!/usr/bin/env python3 # Tool that assists in upgrading the Envoy source tree to the latest API. # Internally, Envoy uses the latest vN or vNalpha for a given package. Envoy # will perform a reflection based version upgrade on any older protos that are # presented to it in configuration at ingestion time. # # Usage (from a clean tree): # # api_boost.py --generate_compilation_database \ # --build_api_booster import argparse import functools import json import os import multiprocessing as mp import pathlib import re import subprocess as sp # Temporary location of modified files. TMP_SWP_SUFFIX = '.tmp.swp' # Detect API #includes. API_INCLUDE_REGEX = re.compile('#include "(envoy/.*)/[^/]+\.pb\.(validate\.)?h"') # Update a C++ file to the latest API. def ApiBoostFile(llvm_include_path, debug_log, path): print('Processing %s' % path) # Run the booster try: result = sp.run([ './bazel-bin/external/envoy_dev/clang_tools/api_booster/api_booster', '--extra-arg-before=-xc++', '--extra-arg=-isystem%s' % llvm_include_path, '--extra-arg=-Wno-undefined-internal', path ], capture_output=True, check=True) except sp.CalledProcessError as e: print('api_booster failure for %s: %s %s' % (path, e, e.stderr.decode('utf-8'))) raise if debug_log: print(result.stderr.decode('utf-8')) # Consume stdout containing the list of inferred API headers. We don't have # rewrite capabilities yet in the API booster, so we rewrite here in Python # below. inferred_api_includes = sorted(set(result.stdout.decode('utf-8').splitlines())) # We just dump the inferred API header includes at the start of the #includes # in the file and remove all the present API header includes. This does not # match Envoy style; we rely on later invocations of fix_format.sh to take # care of this alignment. output_lines = [] include_lines = ['#include "%s"' % f for f in inferred_api_includes] input_text = pathlib.Path(path).read_text() for line in input_text.splitlines(): if include_lines and line.startswith('#include'): output_lines.extend(include_lines) include_lines = None # Exclude API includes, except for a special case related to v2alpha # ext_authz; this is needed to include the service descriptor in the build # and is a hack that will go away when we remove v2. if re.match(API_INCLUDE_REGEX, line) and 'envoy/service/auth/v2alpha' not in line: continue output_lines.append(line) # Write to temporary file. We can't overwrite in place as we're executing # concurrently with other ApiBoostFile() invocations that might need the file # we're writing to. pathlib.Path(path + TMP_SWP_SUFFIX).write_text('\n'.join(output_lines) + '\n') # Replace the original file with the temporary file created by ApiBoostFile() # for a given path. def SwapTmpFile(path): pathlib.Path(path + TMP_SWP_SUFFIX).rename(path) # Update the Envoy source tree the latest API. def ApiBoostTree(args): # Optional setup of state. We need the compilation database and api_booster # tool in place before we can start boosting. if args.generate_compilation_database: sp.run(['./tools/gen_compilation_database.py', '--run_bazel_build', '--include_headers'], check=True) if args.build_api_booster: # Similar to gen_compilation_database.py, we only need the cc_library for # setup. The long term fix for this is in # https://github.com/bazelbuild/bazel/issues/9578. dep_build_targets = [ '//source/...', '//test/...', ] # Figure out some cc_libraries that cover most of our external deps. This is # the same logic as in gen_compilation_database.py. query = 'kind(cc_library, {})'.format(' union '.join(dep_build_targets)) dep_lib_build_targets = sp.check_output(['bazel', 'query', query]).decode().splitlines() # We also need some misc. stuff such as test binaries for setup of benchmark # dep. query = 'attr("tags", "compilation_db_dep", {})'.format(' union '.join(dep_build_targets)) dep_lib_build_targets.extend(sp.check_output(['bazel', 'query', query]).decode().splitlines()) extra_api_booster_args = [] if args.debug_log: extra_api_booster_args.append('--copt=-DENABLE_DEBUG_LOG') # Slightly easier to debug when we build api_booster on its own. sp.run([ 'bazel', 'build', '--strip=always', '@envoy_dev//clang_tools/api_booster', ] + extra_api_booster_args, check=True) sp.run([ 'bazel', 'build', '--strip=always', ] + dep_lib_build_targets, check=True) # Figure out where the LLVM include path is. We need to provide this # explicitly as the api_booster is built inside the Bazel cache and doesn't # know about this path. # TODO(htuch): this is fragile and depends on Clang version, should figure out # a cleaner approach. llvm_include_path = os.path.join( sp.check_output([os.getenv('LLVM_CONFIG'), '--libdir']).decode().rstrip(), 'clang/9.0.0/include') # Determine the files in the target dirs eligible for API boosting, based on # known files in the compilation database. paths = set([]) for entry in json.loads(pathlib.Path('compile_commands.json').read_text()): file_path = entry['file'] if any(file_path.startswith(prefix) for prefix in args.paths): paths.add(file_path) # The API boosting is file local, so this is trivially parallelizable, use # multiprocessing pool with default worker pool sized to cpu_count(), since # this is CPU bound. with mp.Pool() as p: # We need two phases, to ensure that any dependency on files being modified # in one thread on consumed transitive headers on the other thread isn't an # issue. This also ensures that we complete all analysis error free before # any mutation takes place. p.map(functools.partial(ApiBoostFile, llvm_include_path, args.debug_log), paths) p.map(SwapTmpFile, paths) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Update Envoy tree to the latest API') parser.add_argument('--generate_compilation_database', action='store_true') parser.add_argument('--build_api_booster', action='store_true') parser.add_argument('--debug_log', action='store_true') parser.add_argument('paths', nargs='*', default=['source', 'test', 'include']) args = parser.parse_args() ApiBoostTree(args)
[ "subprocess.check_output", "argparse.ArgumentParser", "pathlib.Path", "re.compile", "os.getenv", "subprocess.run", "re.match", "functools.partial", "multiprocessing.Pool" ]
[((662, 726), 're.compile', 're.compile', (['"""#include "(envoy/.*)/[^/]+\\\\.pb\\\\.(validate\\\\.)?h\\""""'], {}), '(\'#include "(envoy/.*)/[^/]+\\\\.pb\\\\.(validate\\\\.)?h"\')\n', (672, 726), False, 'import re\n'), ((6086, 6160), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Update Envoy tree to the latest API"""'}), "(description='Update Envoy tree to the latest API')\n", (6109, 6160), False, 'import argparse\n'), ((891, 1138), 'subprocess.run', 'sp.run', (["['./bazel-bin/external/envoy_dev/clang_tools/api_booster/api_booster',\n '--extra-arg-before=-xc++', '--extra-arg=-isystem%s' %\n llvm_include_path, '--extra-arg=-Wno-undefined-internal', path]"], {'capture_output': '(True)', 'check': '(True)'}), "([\n './bazel-bin/external/envoy_dev/clang_tools/api_booster/api_booster',\n '--extra-arg-before=-xc++', '--extra-arg=-isystem%s' %\n llvm_include_path, '--extra-arg=-Wno-undefined-internal', path],\n capture_output=True, check=True)\n", (897, 1138), True, 'import subprocess as sp\n'), ((3212, 3317), 'subprocess.run', 'sp.run', (["['./tools/gen_compilation_database.py', '--run_bazel_build',\n '--include_headers']"], {'check': '(True)'}), "(['./tools/gen_compilation_database.py', '--run_bazel_build',\n '--include_headers'], check=True)\n", (3218, 3317), True, 'import subprocess as sp\n'), ((4399, 4528), 'subprocess.run', 'sp.run', (["(['bazel', 'build', '--strip=always', '@envoy_dev//clang_tools/api_booster'\n ] + extra_api_booster_args)"], {'check': '(True)'}), "(['bazel', 'build', '--strip=always',\n '@envoy_dev//clang_tools/api_booster'] + extra_api_booster_args, check=True\n )\n", (4405, 4528), True, 'import subprocess as sp\n'), ((4574, 4659), 'subprocess.run', 'sp.run', (["(['bazel', 'build', '--strip=always'] + dep_lib_build_targets)"], {'check': '(True)'}), "(['bazel', 'build', '--strip=always'] + dep_lib_build_targets, check=True\n )\n", (4580, 4659), True, 'import subprocess as sp\n'), ((5644, 5653), 'multiprocessing.Pool', 'mp.Pool', ([], {}), '()\n', (5651, 5653), True, 'import multiprocessing as mp\n'), ((2001, 2019), 'pathlib.Path', 'pathlib.Path', (['path'], {}), '(path)\n', (2013, 2019), False, 'import pathlib\n'), ((2409, 2442), 're.match', 're.match', (['API_INCLUDE_REGEX', 'line'], {}), '(API_INCLUDE_REGEX, line)\n', (2417, 2442), False, 'import re\n'), ((2715, 2750), 'pathlib.Path', 'pathlib.Path', (['(path + TMP_SWP_SUFFIX)'], {}), '(path + TMP_SWP_SUFFIX)\n', (2727, 2750), False, 'import pathlib\n'), ((2919, 2954), 'pathlib.Path', 'pathlib.Path', (['(path + TMP_SWP_SUFFIX)'], {}), '(path + TMP_SWP_SUFFIX)\n', (2931, 2954), False, 'import pathlib\n'), ((5941, 6007), 'functools.partial', 'functools.partial', (['ApiBoostFile', 'llvm_include_path', 'args.debug_log'], {}), '(ApiBoostFile, llvm_include_path, args.debug_log)\n', (5958, 6007), False, 'import functools\n'), ((5282, 5319), 'pathlib.Path', 'pathlib.Path', (['"""compile_commands.json"""'], {}), "('compile_commands.json')\n", (5294, 5319), False, 'import pathlib\n'), ((3854, 3896), 'subprocess.check_output', 'sp.check_output', (["['bazel', 'query', query]"], {}), "(['bazel', 'query', query])\n", (3869, 3896), True, 'import subprocess as sp\n'), ((4139, 4181), 'subprocess.check_output', 'sp.check_output', (["['bazel', 'query', query]"], {}), "(['bazel', 'query', query])\n", (4154, 4181), True, 'import subprocess as sp\n'), ((5026, 5050), 'os.getenv', 'os.getenv', (['"""LLVM_CONFIG"""'], {}), "('LLVM_CONFIG')\n", (5035, 5050), False, 'import os\n')]
#!/usr/bin/python3 # encoding: utf-8 """ @version: v1.0 @author: W_H_J @license: Apache Licence @contact: <EMAIL> @software: PyCharm @file: config.py @time: 2019/5/27 18:12 @describe: 配置数据库连接 """ import sys import os sys.path.append(os.path.abspath(os.path.dirname(__file__) + '/' + '..')) sys.path.append("..") class Config(object): # 设置密匙要没有规律,别被人轻易猜到哦 SECRET_KEY = '<KEY>' class Config(object): # ....... # 格式为mysql+pymysql://数据库用户名:密码@数据库地址:端口号/数据库的名字?数据库格式 SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://root:root@localhost:3306/bigdata?charset=utf8' # 如果你不打算使用mysql,使用这个连接sqlite也可以 # SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(BASE_DIR,'app.db') SQLALCHEMY_TRACK_MODIFICATIONS = False
[ "os.path.dirname", "sys.path.append" ]
[((304, 325), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (319, 325), False, 'import sys\n'), ((263, 288), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (278, 288), False, 'import os\n')]
import unittest from mmap import mmap, ACCESS_READ from funowl.converters.functional_converter import to_python @unittest.skipIf(True, "NOT Ready for SNOMED") class SnomedTestCase(unittest.TestCase): def test_snomed(self): doc = to_python('/Users/solbrig/data/terminology/snomedct/' 'SnomedCT_InternationalRF2_PRODUCTION_20190731T120000Z/Snapshot/Terminology/snomed.owl') self.assertTrue(False, "Implement Me") if __name__ == '__main__': unittest.main()
[ "unittest.main", "unittest.skipIf", "funowl.converters.functional_converter.to_python" ]
[((116, 161), 'unittest.skipIf', 'unittest.skipIf', (['(True)', '"""NOT Ready for SNOMED"""'], {}), "(True, 'NOT Ready for SNOMED')\n", (131, 161), False, 'import unittest\n'), ((490, 505), 'unittest.main', 'unittest.main', ([], {}), '()\n', (503, 505), False, 'import unittest\n'), ((244, 393), 'funowl.converters.functional_converter.to_python', 'to_python', (['"""/Users/solbrig/data/terminology/snomedct/SnomedCT_InternationalRF2_PRODUCTION_20190731T120000Z/Snapshot/Terminology/snomed.owl"""'], {}), "(\n '/Users/solbrig/data/terminology/snomedct/SnomedCT_InternationalRF2_PRODUCTION_20190731T120000Z/Snapshot/Terminology/snomed.owl'\n )\n", (253, 393), False, 'from funowl.converters.functional_converter import to_python\n')]
import os import we import json import pickle import argparse import numpy as np from numba import jit from tqdm import tqdm import utils utils.seed_everything() #Reproducibility def get_nbs(E, word, k=100): return np.argsort(E.vecs.dot(E.v(word)))[-k:][::-1] @jit(nopython=False) def get_pair_idb(w, v, g): w_orth = w - (np.dot(w, g)) * g v_orth = v - (np.dot(v, g)) * g dots = np.dot(w, v) orth_dots = np.dot(w_orth, v_orth) I = (dots - orth_dots / (np.linalg.norm(w_orth) * np.linalg.norm(v_orth))) / (dots) return I def get_ns_idb(E, word, g): tops = get_nbs(E, word, 200) #We only need 100 neighbours, I am storing 200 anyway. wv = E.v(word) d = dict(zip([E.words[v] for v in tops], [get_pair_idb(E.vecs[v], wv, g) for v in tops])) return d if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--f', default="../embeddings/glove", type=str) parser.add_argument('--o', default="../data/_glove_ns.pkl", type=str) parser.add_argument('--data_path', default="../data/", type=str) args = parser.parse_args() E = we.WordEmbedding(args.f) words = E.words g = utils.get_g(E) neighbour_idb_dict = dict(zip([w for w in tqdm(words)], [get_ns_idb(E, w, g) for w in tqdm(words)])) with open(args.o, 'wb') as handle: pickle.dump(neighbour_idb_dict, handle)
[ "we.WordEmbedding", "pickle.dump", "argparse.ArgumentParser", "tqdm.tqdm", "utils.seed_everything", "numpy.dot", "numba.jit", "utils.get_g", "numpy.linalg.norm" ]
[((138, 161), 'utils.seed_everything', 'utils.seed_everything', ([], {}), '()\n', (159, 161), False, 'import utils\n'), ((268, 287), 'numba.jit', 'jit', ([], {'nopython': '(False)'}), '(nopython=False)\n', (271, 287), False, 'from numba import jit\n'), ((398, 410), 'numpy.dot', 'np.dot', (['w', 'v'], {}), '(w, v)\n', (404, 410), True, 'import numpy as np\n'), ((427, 449), 'numpy.dot', 'np.dot', (['w_orth', 'v_orth'], {}), '(w_orth, v_orth)\n', (433, 449), True, 'import numpy as np\n'), ((835, 860), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (858, 860), False, 'import argparse\n'), ((1120, 1144), 'we.WordEmbedding', 'we.WordEmbedding', (['args.f'], {}), '(args.f)\n', (1136, 1144), False, 'import we\n'), ((1173, 1187), 'utils.get_g', 'utils.get_g', (['E'], {}), '(E)\n', (1184, 1187), False, 'import utils\n'), ((1375, 1414), 'pickle.dump', 'pickle.dump', (['neighbour_idb_dict', 'handle'], {}), '(neighbour_idb_dict, handle)\n', (1386, 1414), False, 'import pickle\n'), ((333, 345), 'numpy.dot', 'np.dot', (['w', 'g'], {}), '(w, g)\n', (339, 345), True, 'import numpy as np\n'), ((369, 381), 'numpy.dot', 'np.dot', (['v', 'g'], {}), '(v, g)\n', (375, 381), True, 'import numpy as np\n'), ((479, 501), 'numpy.linalg.norm', 'np.linalg.norm', (['w_orth'], {}), '(w_orth)\n', (493, 501), True, 'import numpy as np\n'), ((504, 526), 'numpy.linalg.norm', 'np.linalg.norm', (['v_orth'], {}), '(v_orth)\n', (518, 526), True, 'import numpy as np\n'), ((1239, 1250), 'tqdm.tqdm', 'tqdm', (['words'], {}), '(words)\n', (1243, 1250), False, 'from tqdm import tqdm\n'), ((1312, 1323), 'tqdm.tqdm', 'tqdm', (['words'], {}), '(words)\n', (1316, 1323), False, 'from tqdm import tqdm\n')]
# encoding: UTF-8 # # Copyright 2012-2013 <NAME> # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License version 3, as published # by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranties of # MERCHANTABILITY, SATISFACTORY QUALITY, or FITNESS FOR A PARTICULAR # PURPOSE. See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. # # For further info, check http://pygubu.web.here try: import tkinter as tk except: import Tkinter as tk from pygubu.builder.builderobject import * from pygubu.builder.tkstdwidgets import TKToplevel class ToplevelFramePreview(tk.Frame): def __init__(self, master=None, **kw): tk.Frame.__init__(self, master, **kw) self.tl_attrs = {} self._w_set = False self._h_set = False def configure(self, cnf=None, **kw): if kw: cnf = tk._cnfmerge((cnf, kw)) elif cnf: cnf = tk._cnfmerge(cnf) key = 'width' if key in cnf: value = int(cnf[key]) minsize = self.tl_attrs.get('minsize', None) maxsize = self.tl_attrs.get('maxsize', None) # print(value, minsize, maxsize) remove = False # print('tl_attrs:', self.tl_attrs) if minsize and value < minsize[0]: remove = True if maxsize and value > maxsize[0]: remove = True if self._w_set: resizable = self.tl_attrs.get('resizable', None) if resizable and not TKToplevel.RESIZABLE[resizable][0]: remove = True if remove: # print('rm', key, value) cnf.pop(key) else: self._w_set = True key = 'height' if key in cnf: value = int(cnf[key]) minsize = self.tl_attrs.get('minsize', None) maxsize = self.tl_attrs.get('maxsize', None) # print(value, minsize, maxsize) remove = False if minsize and value < minsize[1]: remove = True if maxsize and value > maxsize[1]: remove = True if self._h_set: resizable = self.tl_attrs.get('resizable', None) if resizable and not TKToplevel.RESIZABLE[resizable][1]: remove = True if remove: # print('rm', key, value) cnf.pop(key) else: self._h_set = True return tk.Frame.configure(self, cnf) class ToplevelFramePreviewBO(BuilderObject): class_ = ToplevelFramePreview container = True #Add fake 'modal' property for Dialog preview properties = TKToplevel.properties + ('modal',) def _set_property(self, target_widget, pname, value): tw = target_widget tw.tl_attrs[pname] = value method_props = ('overrideredirect', 'title') if pname in method_props: pass elif pname in ('maxsize', 'minsize'): if not value: del tw.tl_attrs[pname] elif '|' in value: w, h = value.split('|') if w and h: tw.tl_attrs[pname] = (int(w), int(h)) else: del tw.tl_attrs[pname] elif pname == 'geometry': if value: dim = value.split('+')[0] dim = dim.split('-')[0] w, h = dim.split('x') if w and h: tw.tl_attrs['minsize'] = (int(w), int(h)) tw._h_set = tw._w_set = False tw.configure(width=w, height=h) tw.grid_propagate(0) elif pname == 'resizable': if value: if value in ('both', 'horizontally'): tw.columnconfigure(0, weight=1) if value in ('both', 'vertically'): tw.rowconfigure(0, weight=1) elif pname == 'modal': # Do nothing, fake 'modal' property for dialog preview pass else: super(ToplevelFramePreviewBO, self)._set_property(tw, pname, value) register_widget('pygubudesigner.ToplevelFramePreview', ToplevelFramePreviewBO, 'ToplevelFramePreview', tuple())
[ "Tkinter.Frame.configure", "Tkinter._cnfmerge", "Tkinter.Frame.__init__" ]
[((950, 987), 'Tkinter.Frame.__init__', 'tk.Frame.__init__', (['self', 'master'], {}), '(self, master, **kw)\n', (967, 987), True, 'import Tkinter as tk\n'), ((2815, 2844), 'Tkinter.Frame.configure', 'tk.Frame.configure', (['self', 'cnf'], {}), '(self, cnf)\n', (2833, 2844), True, 'import Tkinter as tk\n'), ((1146, 1169), 'Tkinter._cnfmerge', 'tk._cnfmerge', (['(cnf, kw)'], {}), '((cnf, kw))\n', (1158, 1169), True, 'import Tkinter as tk\n'), ((1206, 1223), 'Tkinter._cnfmerge', 'tk._cnfmerge', (['cnf'], {}), '(cnf)\n', (1218, 1223), True, 'import Tkinter as tk\n')]
"""Download replays from osu! website""" import http.cookiejar import urllib.parse import urllib.request import sys import json import os import requests JAR = http.cookiejar.CookieJar() OPENER = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(JAR)) with open('config.json', 'r') as f: CONFIG = json.load(f) f.close() def get_json(url): """Gets JSON data from a given URL""" try: data = requests.get(url=url).json() return data except requests.exceptions.Timeout: data = requests.get(url=url).json() except requests.exceptions.TooManyRedirects: print("Invalid link given") except requests.exceptions.RequestException as err: print(err) def login(beatmap_md5): """Responsible for logging into the osu! website """ print("Attempting to log into the osu! website...") payload = { 'username': CONFIG['username'], 'password': CONFIG['password'], 'redirect': 'https://osu.ppy.sh/forum/ucp.php', 'sid': '', 'login': 'login' } payload = urllib.parse.urlencode(payload).encode("utf-8") response = OPENER.open("https://osu.ppy.sh/forum/ucp.php?mode=login", payload) data = bytes(str(response.read()), "utf-8").decode("unicode_escape") #check if invalid credentials were given if "incorrect password" in data: sys.exit("You have specified an invalid password. Please check config.json") print("Successfully logged into the osu! website!") return get_scores(beatmap_md5) def get_scores(beatmap_md5): """Gets all scores for a given beatmap.""" #get beatmap_id from md5 hash url = 'https://osu.ppy.sh/api/get_beatmaps?k={}&h={}&mode=0&limit=50'.format(CONFIG['osu_api_key'], beatmap_md5) beatmap_data = get_json(url) if len(beatmap_data) < 1: sys.exit("The beatmap is either invalid or not ranked on osu!") beatmap_data_string = """ ------------------------------------------------ | Comparing Replays For Map: | Artist: {} | Title: {} | Beatmap Id: {} ------------------------------------------------ """.format(beatmap_data[0]['artist'], beatmap_data[0]['title'], beatmap_data[0]['beatmap_id']) print(beatmap_data_string) #get list of score ids from beatmap score_url = 'https://osu.ppy.sh/api/get_scores?k={}&b={}&mode=0&limit=50'.format(CONFIG['osu_api_key'], beatmap_data[0]['beatmap_id']) score_data = get_json(score_url) score_ids = [] for score in score_data: score_ids.append(score['score_id']) return download_replays(score_ids) def download_replays(score_ids): """Takes a list of scoreIds and downloads the replay to a new directory.""" #create a new path for the replays to be housed. new_path = os.getcwd() + "/" + "replays" if not os.path.exists(new_path): os.makedirs(new_path) for score_id in score_ids: try: directory = os.path.join(new_path) full_path = directory + "/" + str(score_id) + ".osr" print("\rDownloading replay: {}..." .format(score_id), end="") url = 'https://osu.ppy.sh/web/osu-getreplay.php?c={}&m=0'.format(score_id) f_2 = OPENER.open(url, {}) data = f_2.read() with open(full_path, 'wb') as code: code.write(data) code.close() except IOError as err: print(err) sys.exit()
[ "os.path.exists", "os.makedirs", "os.path.join", "requests.get", "os.getcwd", "sys.exit", "json.load" ]
[((316, 328), 'json.load', 'json.load', (['f'], {}), '(f)\n', (325, 328), False, 'import json\n'), ((1372, 1448), 'sys.exit', 'sys.exit', (['"""You have specified an invalid password. Please check config.json"""'], {}), "('You have specified an invalid password. Please check config.json')\n", (1380, 1448), False, 'import sys\n'), ((1842, 1905), 'sys.exit', 'sys.exit', (['"""The beatmap is either invalid or not ranked on osu!"""'], {}), "('The beatmap is either invalid or not ranked on osu!')\n", (1850, 1905), False, 'import sys\n'), ((2834, 2858), 'os.path.exists', 'os.path.exists', (['new_path'], {}), '(new_path)\n', (2848, 2858), False, 'import os\n'), ((2868, 2889), 'os.makedirs', 'os.makedirs', (['new_path'], {}), '(new_path)\n', (2879, 2889), False, 'import os\n'), ((2793, 2804), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2802, 2804), False, 'import os\n'), ((2959, 2981), 'os.path.join', 'os.path.join', (['new_path'], {}), '(new_path)\n', (2971, 2981), False, 'import os\n'), ((429, 450), 'requests.get', 'requests.get', ([], {'url': 'url'}), '(url=url)\n', (441, 450), False, 'import requests\n'), ((3455, 3465), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3463, 3465), False, 'import sys\n'), ((533, 554), 'requests.get', 'requests.get', ([], {'url': 'url'}), '(url=url)\n', (545, 554), False, 'import requests\n')]
import pandas as pd import numpy as np import os from glob import glob import csv import multiprocessing as mp import numpy as np column_names = ['frame_no', 'ts', 'ts_delta', 'protocols', 'frame_len', 'eth_src', 'eth_dst', 'ip_src', 'ip_dst', 'tcp_srcport', 'tcp_dstport', 'http_host', 'sni', 'udp_srcport', 'udp_dstport'] root = '/Volumes/Abhijit-Seagate/Data_iot/Intermediate/idle-intermediate/echo' idle_time_dict = {} idle_time_dict['idle'] = [] for files in os.listdir(root): tmp = pd.read_csv(f'{root}/{files}',sep='\t',names=column_names) idle_time_dict['idle'].extend(tmp['ts']) root = '/Volumes/Abhijit-Seagate/Data_iot/Intermediate/tagged_intermediate/google-home-mini' time_dict = {} for file in os.listdir(root): if '.DS' not in file: print(f"Generating Dictionary for --> {file}") time_dict[file] = [] for files in os.listdir(f'{root}/{file}'): tmp = pd.read_csv(f'{root}/{file}/{files}',sep='\t',names=column_names) time_dict[file].extend(tmp['ts']) results = pd.read_csv('/Volumes/Abhijit-Seagate/Data_iot/results/results_google_mini_req/results/model_results.csv') results.head() results['labelled_data'] = 'unknown' max_arr = [] min_arr = [] for keys,values in time_dict.items(): max_arr.append(max(values)) min_arr.append(min(values)) max_arr = max(max_arr) min_arr = min(min_arr) test_label = results[(results['start_time']>=min_arr) & (results['end_time'] <= max_arr)] def label_tagged(split_df): num_rows = 0 for index, row in split_df.iterrows(): num_rows+=1 print(f"Completed labelling of {num_rows}/{split_df.shape[0]} rows \n") for label, time_stamps in time_dict.items(): for time_step in time_stamps: if (time_step<= row['end_time']) and (time_step>= row['start_time']): if row['labelled_data']=='unknown': row['labelled_data']=f"{label}" split_df.at[index,'labelled_data']= f"{label}" print(f'Row {index} has been labelled as a {label}') break else: row['labelled_data']=f"{row['labelled_data']}|{label}" split_df.at[index,'labelled_data']= f"{row['labelled_data']}|{label}" print(f'Row {index} has been labelled as a {label}') break print(f'Row {index} has been labelled as a {label}') return(split_df) def idle_tagged(split_df): num_rows = 0 for index, row in split_df.iterrows(): num_rows+=1 print(f"Completed labelling of {num_rows}/{split_df.shape[0]} rows \n") for label, time_stamps in idle_time_dict.items(): for time_step in time_stamps: if (time_step<= row['end_time']) and (time_step>= row['start_time']): if row['labelled_data']=='unknown': row['labelled_data']=f"{label}" split_df.at[index,'labelled_data']= f"{label}" print(f'Row {index} has been labelled as a {label}') break else: row['labelled_data']=f"{row['labelled_data']}|{label}" split_df.at[index,'labelled_data']= f"{row['labelled_data']}|{label}" print(f'Row {index} has been labelled as a {label}') break print(f'Row {index} has been labelled as a {label}') return(split_df) def parallelize_dataframe(df, func): num_cores = mp.cpu_count()-4 num_partitions = num_cores #number of partitions to split dataframe df_split = np.array_split(df, num_partitions) pool = mp.Pool(num_cores) df = pd.concat(pool.map(func, df_split)) pool.close() pool.join() return df print("Labelling Tagged Data") test_label = parallelize_dataframe(test_label,label_tagged) test_label.head(50) test_label.to_csv('/Volumes/Abhijit-Seagate/Data_iot/results/results_winkhub2/results/parallel_labelled_results.csv',index=False) results_table = test_label results_table['Accurate-label'] = 0 results_table['Accurate-anomaly'] = 1 for index,rows in results_table.iterrows(): if rows['prediction'] in rows['labelled_data']: results_table.at[index,'Accurate-label'] = 1 else: pass for index,rows in results_table.iterrows(): if rows['labelled_data'] =='unknown': results_table.at[index,'Accurate-anomaly'] = 0 else: pass results_table = results_table[results_table['labelled_data']!='unknown'] filtered_table = results_table Accuracy_labelling = sum(filtered_table['Accurate-label'])/filtered_table.shape[0] Accuracy_anomaly = sum(filtered_table['Accurate-anomaly'])/filtered_table.shape[0] print(f'Labelling -> {Accuracy_labelling}', f'Anomaly -->{Accuracy_anomaly}') max_arr = [] min_arr = [] for keys,values in idle_time_dict.items(): max_arr.append(max(values)) min_arr.append(min(values)) max_arr = max(max_arr) min_arr = min(min_arr) filtered_table = results[(results['start_time']>=min_arr) & (results['end_time'] <= max_arr)] filtered_table.shape filtered_table = parallelize_dataframe(filtered_table,idle_tagged) filtered_table.to_csv('/Volumes/Abhijit-Seagate/Data_iot/results/results_google_mini_req/results/parallel_idle_labelled_results.csv',index=False) idle_filtered = filtered_table[filtered_table['labelled_data']=='idle'] idle_filtered['prediction'] = idle_filtered['prediction'].map(lambda x: 'idle' if x=='anomaly' else x) Accuracy_labelling = sum(results_table['Accurate-anomaly'])/results_table.shape[0] print(f'Accuracy --> {Accuracy_labelling}')
[ "os.listdir", "pandas.read_csv", "multiprocessing.cpu_count", "numpy.array_split", "multiprocessing.Pool" ]
[((498, 514), 'os.listdir', 'os.listdir', (['root'], {}), '(root)\n', (508, 514), False, 'import os\n'), ((751, 767), 'os.listdir', 'os.listdir', (['root'], {}), '(root)\n', (761, 767), False, 'import os\n'), ((1070, 1186), 'pandas.read_csv', 'pd.read_csv', (['"""/Volumes/Abhijit-Seagate/Data_iot/results/results_google_mini_req/results/model_results.csv"""'], {}), "(\n '/Volumes/Abhijit-Seagate/Data_iot/results/results_google_mini_req/results/model_results.csv'\n )\n", (1081, 1186), True, 'import pandas as pd\n'), ((526, 586), 'pandas.read_csv', 'pd.read_csv', (['f"""{root}/{files}"""'], {'sep': '"""\t"""', 'names': 'column_names'}), "(f'{root}/{files}', sep='\\t', names=column_names)\n", (537, 586), True, 'import pandas as pd\n'), ((3779, 3813), 'numpy.array_split', 'np.array_split', (['df', 'num_partitions'], {}), '(df, num_partitions)\n', (3793, 3813), True, 'import numpy as np\n'), ((3825, 3843), 'multiprocessing.Pool', 'mp.Pool', (['num_cores'], {}), '(num_cores)\n', (3832, 3843), True, 'import multiprocessing as mp\n'), ((900, 928), 'os.listdir', 'os.listdir', (['f"""{root}/{file}"""'], {}), "(f'{root}/{file}')\n", (910, 928), False, 'import os\n'), ((3675, 3689), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (3687, 3689), True, 'import multiprocessing as mp\n'), ((948, 1015), 'pandas.read_csv', 'pd.read_csv', (['f"""{root}/{file}/{files}"""'], {'sep': '"""\t"""', 'names': 'column_names'}), "(f'{root}/{file}/{files}', sep='\\t', names=column_names)\n", (959, 1015), True, 'import pandas as pd\n')]
from tqdm import tqdm import os, sys import numpy as np import argparse, time, pickle import torch import torch.nn as nn import torch.optim as optim from utils import pretrained_matrix from dataloader import DialogLoader from model import End2EndModel, MaskedNLLLoss from torchnlp.encoders.text import SpacyEncoder from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report def configure_dataloaders(dataset, classify, batch_size): "Prepare dataloaders" if dataset == 'persuasion': utt_file1 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_train_' + classify + '_utterances.tsv' utt_file2 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_valid_' + classify + '_utterances.tsv' utt_file3 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_test_' + classify + '_utterances.tsv' mask_file1 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_train_' + classify + '_loss_mask.tsv' mask_file2 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_valid_' + classify + '_loss_mask.tsv' mask_file3 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_test_' + classify + '_loss_mask.tsv' else: utt_file1 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_train_utterances.tsv' utt_file2 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_valid_utterances.tsv' utt_file3 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_test_utterances.tsv' mask_file1 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_train_loss_mask.tsv' mask_file2 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_valid_loss_mask.tsv' mask_file3 = 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_test_loss_mask.tsv' train_loader = DialogLoader( utt_file1, 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_train_' + classify + '.tsv', mask_file1, mask_file1, # dummy speaker mask batch_size, shuffle=True ) valid_loader = DialogLoader( utt_file2, 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_valid_' + classify + '.tsv', mask_file2, mask_file2, # dummy speaker mask batch_size, shuffle=False ) test_loader = DialogLoader( utt_file3, 'datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_test_' + classify + '.tsv', mask_file3, mask_file3, # dummy speaker mask batch_size, shuffle=False ) return train_loader, valid_loader, test_loader def update_context(conversations, target_idx, cc): return [ (conv[: max(0, idx.item() - cc['past_context'])] if cc['past_del'] else conv[max(0, idx.item() - cc['past_context']) : idx.item()]) + [conv[idx.item()]] + (conv[idx.item() + 1 + cc['future_context'] :] if cc['future_del'] else conv[idx.item() + 1 : idx.item() + 1 + cc['future_context']]) for conv, idx in zip(conversations, target_idx) ] def train_or_eval_model(model, loss_function, dataloader, epoch, cc=None, optimizer=None, train=False, one_element=False): losses, preds, labels, masks = [], [], [], [] assert not train or optimizer!=None if train: model.train() else: model.eval() for conversations, label, loss_mask, dummy_speaker_mask, dummy_indices in tqdm(dataloader, leave=False): if train: optimizer.zero_grad() # create labels and mask if cc: loss_mask_ = torch.nn.utils.rnn.pad_sequence([torch.tensor(item) for item in loss_mask], batch_first=True).cuda() target_idx = loss_mask_.argmax(dim=1) conversations = update_context(conversations, target_idx, cc) label = update_context(label, target_idx, cc) loss_mask = update_context(loss_mask, target_idx, cc) label = torch.nn.utils.rnn.pad_sequence([torch.tensor(item) for item in label], batch_first=True).cuda() loss_mask = torch.nn.utils.rnn.pad_sequence([torch.tensor(item) for item in loss_mask], batch_first=True).cuda() # create umask and qmask lengths = [len(item) for item in conversations] umask = torch.zeros(len(lengths), max(lengths)).long().cuda() for j in range(len(lengths)): umask[j][:lengths[j]] = 1 # obtain log probabilities log_prob = model(conversations, lengths, umask) if dataset == 'persuasion' and classify == 'er': log_prob = log_prob[0] if dataset == 'persuasion' and classify == 'ee': log_prob = log_prob[1] # compute loss and metrics lp_ = log_prob.transpose(0, 1).contiguous().view(-1, log_prob.size()[2]) labels_ = label.view(-1) loss = loss_function(lp_, labels_, loss_mask) pred_ = torch.argmax(lp_, 1) preds.append(pred_.data.cpu().numpy()) labels.append(labels_.data.cpu().numpy()) masks.append(loss_mask.view(-1).cpu().numpy()) # save_grad = True losses.append(loss.item()*masks[-1].sum()) if train: loss.backward() optimizer.step() if preds!=[]: preds = np.concatenate(preds) labels = np.concatenate(labels) masks = np.concatenate(masks) else: return float('nan'), float('nan'), float('nan'), [], [], [] avg_loss = round(np.sum(losses)/np.sum(masks), 4) avg_accuracy = round(accuracy_score(labels, preds, sample_weight=masks)*100, 2) if dataset in ['iemocap', 'multiwoz']: avg_fscore = round(f1_score(labels, preds, sample_weight=masks, average='weighted')*100, 2) fscores = [avg_fscore] if one_element: fscores = fscores[0] elif dataset in ['persuasion']: avg_fscore1 = round(f1_score(labels, preds, sample_weight=masks, average='weighted')*100, 2) avg_fscore2 = round(f1_score(labels, preds, sample_weight=masks, average='micro')*100, 2) avg_fscore3 = round(f1_score(labels, preds, sample_weight=masks, average='macro')*100, 2) fscores = [avg_fscore1, avg_fscore2, avg_fscore3] if one_element: fscores = fscores[2] elif dataset == 'dailydialog': if classify == 'emotion': avg_fscore1 = round(f1_score(labels, preds, sample_weight=masks, average='weighted')*100, 2) avg_fscore2 = round(f1_score(labels, preds, sample_weight=masks, average='weighted', labels=[0,2,3,4,5,6])*100, 2) avg_fscore3 = round(f1_score(labels, preds, sample_weight=masks, average='micro')*100, 2) avg_fscore4 = round(f1_score(labels, preds, sample_weight=masks, average='micro', labels=[0,2,3,4,5,6])*100, 2) avg_fscore5 = round(f1_score(labels, preds, sample_weight=masks, average='macro')*100, 2) avg_fscore6 = round(f1_score(labels, preds, sample_weight=masks, average='macro', labels=[0,2,3,4,5,6])*100, 2) fscores = [avg_fscore1, avg_fscore2, avg_fscore3, avg_fscore4, avg_fscore5, avg_fscore6] if one_element: fscores = fscores[5] elif classify == 'act': avg_fscore1 = round(f1_score(labels, preds, sample_weight=masks, average='weighted')*100, 2) avg_fscore2 = round(f1_score(labels, preds, sample_weight=masks, average='micro')*100, 2) avg_fscore3 = round(f1_score(labels, preds, sample_weight=masks, average='macro')*100, 2) fscores = [avg_fscore1, avg_fscore2, avg_fscore3] if one_element: fscores = fscores[2] return avg_loss, avg_accuracy, fscores, labels, preds, masks if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--lr', type=float, default=1e-4, metavar='LR', help='learning rate') parser.add_argument('--weight_decay', default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument('--adam_epsilon', default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument('--dropout', default=0.1, type=float, help="Dropout probability.") parser.add_argument('--rec-dropout', default=0.1, type=float, help="DialogRNN Dropout probability.") parser.add_argument('--batch-size', type=int, default=32, metavar='BS', help='batch size') parser.add_argument('--epochs', type=int, default=10, metavar='E', help='number of epochs') parser.add_argument('--class-weight', action='store_true', default=False, help='use class weight') parser.add_argument('--attention', action='store_true', default=False, help='use attention on top of lstm model') parser.add_argument('--cls-model', default='lstm', help='lstm or logreg') parser.add_argument('--mode', default='840B', help='which glove model') parser.add_argument('--dataset', default='iemocap', help='which dataset') parser.add_argument('--classify', help='what to classify') parser.add_argument('--cattn', default='general', help='context attention for dialogrnn simple|general|general2') parser.add_argument('--residual', action='store_true', default=False, help='use residual connection') parser.add_argument('--run' , help='which run') parser.add_argument('--cc-active', action='store_true', default=False, help='cc active') parser.add_argument('--cc-past-context', type=int, default=-1, help='# past utterances') parser.add_argument('--cc-future-context', type=int, default=-1, help='# future utterances') parser.add_argument('--cc-past-del', action='store_true', default=False, help='remove context') parser.add_argument('--cc-future-del', action='store_true', default=False, help='remove context') parser.add_argument('--cc-train', action='store_true', default=False, help='cc on training set') parser.add_argument('--cc-dev', action='store_true', default=False, help='cc on dev set') parser.add_argument('--cc-test', action='store_true', default=False, help='cc on test set') parser.add_argument('--inference', default=None, help='model ID') args = parser.parse_args() print(args) if not args.inference: run_ID = int(time.time()) print(f'model_ID: {run_ID}') global dataset global classify dataset = args.dataset cc = { 'active': args.cc_active, 'past_context': 0 if args.cc_past_context<0 else args.cc_past_context, 'future_context': 0 if args.cc_future_context<0 else args.cc_future_context, 'past_del': True if args.cc_past_context<0 else args.cc_past_del, 'future_del': True if args.cc_future_context<0 else args.cc_future_del, 'train': args.cc_train, 'dev': args.cc_dev, 'test': args.cc_test, } D_h = 100 D_e = 100 if dataset in ['multiwoz']: D_e = 200 cnn_output_size = 100 cnn_filters = 100 cnn_kernel_sizes = (1,2,3) if dataset in ['multiwoz']: cnn_kernel_sizes = (2,3,4) mode = args.mode cnn_dropout = args.dropout dropout = args.dropout rec_dropout = args.rec_dropout attention = args.attention batch_size = args.batch_size n_epochs = args.epochs classification_model = args.cls_model context_attention = args.cattn residual = args.residual if dataset == 'iemocap': print ('Classifying emotion in iemocap.') classify = 'emotion' n_classes = 6 loss_weights = torch.FloatTensor([1.0, 0.60072, 0.38066, 0.54019, 0.67924, 0.34332]) elif dataset == 'multiwoz': print ('Classifying intent in multiwoz.') classify = 'intent' n_classes = 11 elif dataset == 'persuasion': classify = args.classify if classify == 'er': print ('Classifying persuador in Persuasion for good.') n_classes = 11 elif classify == 'ee': print ('Classifying persuadee in Persuasion for good.') n_classes = 13 else: raise ValueError('--classify must be er or ee for persuasion') elif dataset == 'dailydialog': classify = args.classify if classify == 'emotion': print ('Classifying emotion in dailydialog.') n_classes = 7 elif classify == 'act': print ('Classifying act in dailydialog.') n_classes = 4 else: raise ValueError('--classify must be emotion or act for dailydialog') train_loader, valid_loader, test_loader = configure_dataloaders(dataset, classify, batch_size) ## Tokenizer and Embedding Matrix if os.path.isfile('datasets/dialogue_level_minibatch/' + dataset + '/' + dataset + mode + '_embedding.matrix'): tokenizer = pickle.load(open('datasets/dialogue_level_minibatch/' + dataset + '/' + dataset + mode + '.tokenizer', 'rb')) embedding_matrix = pickle.load(open('datasets/dialogue_level_minibatch/' + dataset + '/' + dataset + mode + '_embedding.matrix', 'rb')) print ('Tokenizer and embedding matrix exists. Loaded from pickle files.') else: print ('Creating tokenizer and embedding matrix.') all_utterances = [] for loader in [train_loader, valid_loader, test_loader]: for conversations, label, loss_mask, speakers, indices in loader: all_utterances += [sent.lower() for conv in conversations for sent in conv] tokenizer = SpacyEncoder(all_utterances) id_to_token = {i: item for i, item in enumerate(tokenizer.vocab)} if mode == '6B': embedding_matrix = pretrained_matrix('glove/glove.6B.300d.txt', id_to_token) elif mode == '840B': embedding_matrix = pretrained_matrix('glove/glove.840B.300d.txt', id_to_token) pickle.dump(tokenizer, open('datasets/dialogue_level_minibatch/' + dataset + '/' + dataset + mode + '.tokenizer', 'wb')) pickle.dump(embedding_matrix, open('datasets/dialogue_level_minibatch/' + dataset + '/' + dataset + mode + '_embedding.matrix', 'wb')) print ('Done.') vocab_size, embedding_dim = embedding_matrix.shape model = End2EndModel(dataset, vocab_size, embedding_dim, tokenizer, classification_model, cnn_output_size, cnn_filters, cnn_kernel_sizes, cnn_dropout, D_e, D_h, n_classes, dropout, attention, context_attention, rec_dropout, residual) if args.inference: if dataset == 'iemocap': model.load_state_dict(torch.load(f'saved/iemocap/lstm_emotion_{args.inference}.pt')) elif dataset == 'multiwoz': model.load_state_dict(torch.load(f'saved/multiwoz/lstm_intent_{args.inference}.pt')) elif dataset == 'persuasion' and classify == 'er': model.load_state_dict(torch.load(f'saved/persuasion/lstm_er_{args.inference}.pt')) elif dataset == 'persuasion' and classify == 'ee': model.load_state_dict(torch.load(f'saved/persuasion/lstm_ee_{args.inference}.pt')) elif dataset == 'dailydialog' and classify == 'emotion': model.load_state_dict(torch.load(f'saved/dailydialog/lstm_emotion_{args.inference}.pt')) elif dataset == 'dailydialog' and classify == 'act': model.load_state_dict(torch.load(f'saved/dailydialog/lstm_act_{args.inference}.pt')) n_epochs = 1 model.init_pretrained_embeddings(embedding_matrix) model.cuda() if args.class_weight: loss_function = MaskedNLLLoss(loss_weights.cuda()) else: loss_function = MaskedNLLLoss() if not args.inference: optimizer = optim.Adam(model.parameters(), lr=args.lr) valid_losses, valid_fscores = [], [] test_fscores = [] best_loss, best_label, best_pred, best_mask, best_fscore = None, None, None, None, None for e in range(n_epochs): start_time = time.time() if not args.inference: train_loss, train_acc, train_fscore, _, _, _ = train_or_eval_model(model, loss_function, train_loader, e, cc if cc['train'] and cc['active'] else None, optimizer=optimizer if not args.inference else None, train=True if not args.inference else False, one_element=True) valid_loss, valid_acc, valid_fscore, _, _, _ = train_or_eval_model(model, loss_function, valid_loader, e, cc if cc['dev'] and cc['active'] else None, one_element=True ) valid_losses.append(valid_loss) valid_fscores.append(valid_fscore) test_loss, test_acc, test_fscore, test_label, test_pred, test_mask = train_or_eval_model(model, loss_function, test_loader, e, cc if cc['test'] and cc['active'] else None, one_element=True) test_fscores.append(test_fscore) # WARNING: model hyper-parameters are not stored if not args.inference: if best_fscore == None or valid_fscore > best_fscore: best_fscore = valid_fscore if not os.path.exists('mapping/'): os.makedirs('mapping/') with open(f'mapping/{dataset}_classify_{classify}_run{args.run}_{run_ID}.tsv', 'w') as f: f.write(f'{args}\t{run_ID}\t{best_fscore}') if dataset == 'iemocap': dirName = 'saved/iemocap/' if not os.path.exists(dirName): os.makedirs(dirName) torch.save(model.state_dict(), f'saved/iemocap/lstm_emotion_run{args.run}_{run_ID}.pt') elif dataset == 'multiwoz': dirName = 'saved/multiwoz/' if not os.path.exists(dirName): os.makedirs(dirName) torch.save(model.state_dict(), f'saved/multiwoz/lstm_intent_run{args.run}_{run_ID}.pt') elif dataset == 'persuasion' and classify == 'er': dirName = 'saved/persuasion/' if not os.path.exists(dirName): os.makedirs(dirName) torch.save(model.state_dict(), f'saved/persuasion/lstm_er_run{args.run}_{run_ID}.pt') elif dataset == 'persuasion' and classify == 'ee': dirName = 'saved/persuasion/' if not os.path.exists(dirName): os.makedirs(dirName) torch.save(model.state_dict(), f'saved/persuasion/lstm_ee_run{args.run}_{run_ID}.pt') elif dataset == 'dailydialog' and classify == 'emotion': dirName = 'saved/dailydialog/' if not os.path.exists(dirName): os.makedirs(dirName) torch.save(model.state_dict(), f'saved/dailydialog/lstm_emotion_run{args.run}_{run_ID}.pt') elif dataset == 'dailydialog' and classify == 'act': dirName = 'saved/dailydialog/' if not os.path.exists(dirName): os.makedirs(dirName) torch.save(model.state_dict(), f'saved/dailydialog/lstm_act_run{args.run}_{run_ID}.pt') if not args.inference: if best_loss == None or best_loss > valid_loss: best_loss, best_label, best_pred, best_mask =\ valid_loss, test_label, test_pred, test_mask x = 'Epoch {} train_loss {} train_acc {} train_fscore {} valid_loss {} valid_acc {} valid_fscore {} test_loss {} test_acc {} test_fscore {} time {}'.\ format(e+1, train_loss, train_acc, train_fscore, valid_loss, valid_acc, valid_fscore,\ test_loss, test_acc, test_fscore, round(time.time()-start_time, 2)) print (x) # valid_fscores = np.array(valid_fscores).transpose() test_fscores = np.array(test_fscores).transpose() if not args.inference: sys.exit(0) else: print (test_fscores) ccf = open('results/context_control/' + dataset + '_glove_utt_level_context_control_' + classification_model + '_' + classify + '.txt', 'a') ccf.write(str(test_fscores[0]) + '\t' + str(args.inference) + '\t' + str(args) + '\n')
[ "utils.pretrained_matrix", "numpy.array", "sys.exit", "os.path.exists", "argparse.ArgumentParser", "dataloader.DialogLoader", "model.End2EndModel", "numpy.concatenate", "torch.argmax", "os.path.isfile", "torchnlp.encoders.text.SpacyEncoder", "time.time", "sklearn.metrics.accuracy_score", "sklearn.metrics.f1_score", "os.makedirs", "model.MaskedNLLLoss", "torch.load", "tqdm.tqdm", "numpy.sum", "torch.tensor", "torch.FloatTensor" ]
[((1992, 2170), 'dataloader.DialogLoader', 'DialogLoader', (['utt_file1', "('datasets/utterance_level_minibatch/' + dataset + '/' + dataset +\n '_train_' + classify + '.tsv')", 'mask_file1', 'mask_file1', 'batch_size'], {'shuffle': '(True)'}), "(utt_file1, 'datasets/utterance_level_minibatch/' + dataset +\n '/' + dataset + '_train_' + classify + '.tsv', mask_file1, mask_file1,\n batch_size, shuffle=True)\n", (2004, 2170), False, 'from dataloader import DialogLoader\n'), ((2264, 2443), 'dataloader.DialogLoader', 'DialogLoader', (['utt_file2', "('datasets/utterance_level_minibatch/' + dataset + '/' + dataset +\n '_valid_' + classify + '.tsv')", 'mask_file2', 'mask_file2', 'batch_size'], {'shuffle': '(False)'}), "(utt_file2, 'datasets/utterance_level_minibatch/' + dataset +\n '/' + dataset + '_valid_' + classify + '.tsv', mask_file2, mask_file2,\n batch_size, shuffle=False)\n", (2276, 2443), False, 'from dataloader import DialogLoader\n'), ((2537, 2715), 'dataloader.DialogLoader', 'DialogLoader', (['utt_file3', "('datasets/utterance_level_minibatch/' + dataset + '/' + dataset + '_test_' +\n classify + '.tsv')", 'mask_file3', 'mask_file3', 'batch_size'], {'shuffle': '(False)'}), "(utt_file3, 'datasets/utterance_level_minibatch/' + dataset +\n '/' + dataset + '_test_' + classify + '.tsv', mask_file3, mask_file3,\n batch_size, shuffle=False)\n", (2549, 2715), False, 'from dataloader import DialogLoader\n'), ((3667, 3696), 'tqdm.tqdm', 'tqdm', (['dataloader'], {'leave': '(False)'}), '(dataloader, leave=False)\n', (3671, 3696), False, 'from tqdm import tqdm\n'), ((8170, 8195), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (8193, 8195), False, 'import argparse, time, pickle\n'), ((13088, 13199), 'os.path.isfile', 'os.path.isfile', (["('datasets/dialogue_level_minibatch/' + dataset + '/' + dataset + mode +\n '_embedding.matrix')"], {}), "('datasets/dialogue_level_minibatch/' + dataset + '/' +\n dataset + mode + '_embedding.matrix')\n", (13102, 13199), False, 'import os, sys\n'), ((14612, 14849), 'model.End2EndModel', 'End2EndModel', (['dataset', 'vocab_size', 'embedding_dim', 'tokenizer', 'classification_model', 'cnn_output_size', 'cnn_filters', 'cnn_kernel_sizes', 'cnn_dropout', 'D_e', 'D_h', 'n_classes', 'dropout', 'attention', 'context_attention', 'rec_dropout', 'residual'], {}), '(dataset, vocab_size, embedding_dim, tokenizer,\n classification_model, cnn_output_size, cnn_filters, cnn_kernel_sizes,\n cnn_dropout, D_e, D_h, n_classes, dropout, attention, context_attention,\n rec_dropout, residual)\n', (14624, 14849), False, 'from model import End2EndModel, MaskedNLLLoss\n'), ((5310, 5330), 'torch.argmax', 'torch.argmax', (['lp_', '(1)'], {}), '(lp_, 1)\n', (5322, 5330), False, 'import torch\n'), ((5674, 5695), 'numpy.concatenate', 'np.concatenate', (['preds'], {}), '(preds)\n', (5688, 5695), True, 'import numpy as np\n'), ((5713, 5735), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (5727, 5735), True, 'import numpy as np\n'), ((5753, 5774), 'numpy.concatenate', 'np.concatenate', (['masks'], {}), '(masks)\n', (5767, 5774), True, 'import numpy as np\n'), ((11931, 12000), 'torch.FloatTensor', 'torch.FloatTensor', (['[1.0, 0.60072, 0.38066, 0.54019, 0.67924, 0.34332]'], {}), '([1.0, 0.60072, 0.38066, 0.54019, 0.67924, 0.34332])\n', (11948, 12000), False, 'import torch\n'), ((13908, 13936), 'torchnlp.encoders.text.SpacyEncoder', 'SpacyEncoder', (['all_utterances'], {}), '(all_utterances)\n', (13920, 13936), False, 'from torchnlp.encoders.text import SpacyEncoder\n'), ((16028, 16043), 'model.MaskedNLLLoss', 'MaskedNLLLoss', ([], {}), '()\n', (16041, 16043), False, 'from model import End2EndModel, MaskedNLLLoss\n'), ((16343, 16354), 'time.time', 'time.time', ([], {}), '()\n', (16352, 16354), False, 'import argparse, time, pickle\n'), ((21176, 21187), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (21184, 21187), False, 'import os, sys\n'), ((5875, 5889), 'numpy.sum', 'np.sum', (['losses'], {}), '(losses)\n', (5881, 5889), True, 'import numpy as np\n'), ((5890, 5903), 'numpy.sum', 'np.sum', (['masks'], {}), '(masks)\n', (5896, 5903), True, 'import numpy as np\n'), ((5933, 5983), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['labels', 'preds'], {'sample_weight': 'masks'}), '(labels, preds, sample_weight=masks)\n', (5947, 5983), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((10625, 10636), 'time.time', 'time.time', ([], {}), '()\n', (10634, 10636), False, 'import argparse, time, pickle\n'), ((14068, 14125), 'utils.pretrained_matrix', 'pretrained_matrix', (['"""glove/glove.6B.300d.txt"""', 'id_to_token'], {}), "('glove/glove.6B.300d.txt', id_to_token)\n", (14085, 14125), False, 'from utils import pretrained_matrix\n'), ((21105, 21127), 'numpy.array', 'np.array', (['test_fscores'], {}), '(test_fscores)\n', (21113, 21127), True, 'import numpy as np\n'), ((6063, 6127), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""weighted"""'}), "(labels, preds, sample_weight=masks, average='weighted')\n", (6071, 6127), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((14186, 14245), 'utils.pretrained_matrix', 'pretrained_matrix', (['"""glove/glove.840B.300d.txt"""', 'id_to_token'], {}), "('glove/glove.840B.300d.txt', id_to_token)\n", (14203, 14245), False, 'from utils import pretrained_matrix\n'), ((14979, 15040), 'torch.load', 'torch.load', (['f"""saved/iemocap/lstm_emotion_{args.inference}.pt"""'], {}), "(f'saved/iemocap/lstm_emotion_{args.inference}.pt')\n", (14989, 15040), False, 'import torch\n'), ((6289, 6353), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""weighted"""'}), "(labels, preds, sample_weight=masks, average='weighted')\n", (6297, 6353), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((6390, 6451), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""micro"""'}), "(labels, preds, sample_weight=masks, average='micro')\n", (6398, 6451), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((6488, 6549), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""macro"""'}), "(labels, preds, sample_weight=masks, average='macro')\n", (6496, 6549), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((15113, 15174), 'torch.load', 'torch.load', (['f"""saved/multiwoz/lstm_intent_{args.inference}.pt"""'], {}), "(f'saved/multiwoz/lstm_intent_{args.inference}.pt')\n", (15123, 15174), False, 'import torch\n'), ((18291, 18317), 'os.path.exists', 'os.path.exists', (['"""mapping/"""'], {}), "('mapping/')\n", (18305, 18317), False, 'import os, sys\n'), ((18339, 18362), 'os.makedirs', 'os.makedirs', (['"""mapping/"""'], {}), "('mapping/')\n", (18350, 18362), False, 'import os, sys\n'), ((4291, 4309), 'torch.tensor', 'torch.tensor', (['item'], {}), '(item)\n', (4303, 4309), False, 'import torch\n'), ((4456, 4474), 'torch.tensor', 'torch.tensor', (['item'], {}), '(item)\n', (4468, 4474), False, 'import torch\n'), ((15270, 15329), 'torch.load', 'torch.load', (['f"""saved/persuasion/lstm_er_{args.inference}.pt"""'], {}), "(f'saved/persuasion/lstm_er_{args.inference}.pt')\n", (15280, 15329), False, 'import torch\n'), ((18649, 18672), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (18663, 18672), False, 'import os, sys\n'), ((18698, 18718), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (18709, 18718), False, 'import os, sys\n'), ((20977, 20988), 'time.time', 'time.time', ([], {}), '()\n', (20986, 20988), False, 'import argparse, time, pickle\n'), ((3857, 3875), 'torch.tensor', 'torch.tensor', (['item'], {}), '(item)\n', (3869, 3875), False, 'import torch\n'), ((6775, 6839), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""weighted"""'}), "(labels, preds, sample_weight=masks, average='weighted')\n", (6783, 6839), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((6880, 6975), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""weighted"""', 'labels': '[0, 2, 3, 4, 5, 6]'}), "(labels, preds, sample_weight=masks, average='weighted', labels=[0,\n 2, 3, 4, 5, 6])\n", (6888, 6975), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((7007, 7068), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""micro"""'}), "(labels, preds, sample_weight=masks, average='micro')\n", (7015, 7068), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((7109, 7201), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""micro"""', 'labels': '[0, 2, 3, 4, 5, 6]'}), "(labels, preds, sample_weight=masks, average='micro', labels=[0, 2,\n 3, 4, 5, 6])\n", (7117, 7201), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((7233, 7294), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""macro"""'}), "(labels, preds, sample_weight=masks, average='macro')\n", (7241, 7294), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((7335, 7427), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""macro"""', 'labels': '[0, 2, 3, 4, 5, 6]'}), "(labels, preds, sample_weight=masks, average='macro', labels=[0, 2,\n 3, 4, 5, 6])\n", (7343, 7427), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((15425, 15484), 'torch.load', 'torch.load', (['f"""saved/persuasion/lstm_ee_{args.inference}.pt"""'], {}), "(f'saved/persuasion/lstm_ee_{args.inference}.pt')\n", (15435, 15484), False, 'import torch\n'), ((18947, 18970), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (18961, 18970), False, 'import os, sys\n'), ((18996, 19016), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (19007, 19016), False, 'import os, sys\n'), ((7658, 7722), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""weighted"""'}), "(labels, preds, sample_weight=masks, average='weighted')\n", (7666, 7722), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((7763, 7824), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""micro"""'}), "(labels, preds, sample_weight=masks, average='micro')\n", (7771, 7824), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((7865, 7926), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""macro"""'}), "(labels, preds, sample_weight=masks, average='macro')\n", (7873, 7926), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((15586, 15651), 'torch.load', 'torch.load', (['f"""saved/dailydialog/lstm_emotion_{args.inference}.pt"""'], {}), "(f'saved/dailydialog/lstm_emotion_{args.inference}.pt')\n", (15596, 15651), False, 'import torch\n'), ((19270, 19293), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (19284, 19293), False, 'import os, sys\n'), ((19319, 19339), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (19330, 19339), False, 'import os, sys\n'), ((15749, 15810), 'torch.load', 'torch.load', (['f"""saved/dailydialog/lstm_act_{args.inference}.pt"""'], {}), "(f'saved/dailydialog/lstm_act_{args.inference}.pt')\n", (15759, 15810), False, 'import torch\n'), ((19591, 19614), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (19605, 19614), False, 'import os, sys\n'), ((19640, 19660), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (19651, 19660), False, 'import os, sys\n'), ((19919, 19942), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (19933, 19942), False, 'import os, sys\n'), ((19968, 19988), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (19979, 19988), False, 'import os, sys\n'), ((20249, 20272), 'os.path.exists', 'os.path.exists', (['dirName'], {}), '(dirName)\n', (20263, 20272), False, 'import os, sys\n'), ((20298, 20318), 'os.makedirs', 'os.makedirs', (['dirName'], {}), '(dirName)\n', (20309, 20318), False, 'import os, sys\n')]
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration test library A for Subpar.""" import pkgutil def lib(): print('In a_lib.py lib()') # Test resource extraction a_lib_dat = pkgutil.get_data('subpar.tests.package_a', 'a_lib_dat.txt') assert (a_lib_dat == b'Dummy data file for a_lib.py\n'), a_lib_dat
[ "pkgutil.get_data" ]
[((749, 808), 'pkgutil.get_data', 'pkgutil.get_data', (['"""subpar.tests.package_a"""', '"""a_lib_dat.txt"""'], {}), "('subpar.tests.package_a', 'a_lib_dat.txt')\n", (765, 808), False, 'import pkgutil\n')]
"""实现去重容器""" class BasicFilterContainer(object): def add_fp(self, fp): """把指纹数据添加到容器中""" pass def exists(self, fp): """用于判断该指纹是否存在""" pass class NormalFilterContainer(BasicFilterContainer): def __init__(self): """内存版去重容器, 使用set集合存储指纹数据""" # filter_container:公共的 # _filter_container 受保护的 不能通过 from xxx import * 进行导入 # __filter_container: 私有, 只能在本类中使用, 外边都不能用 # __filter_container__: 内置魔法方法, 只能在本类中使用, 外边都不能用 self._filter_container = set() def add_fp(self, fp): # 添加指纹到set集合中 self._filter_container.add(fp) def exists(self, fp): """判断指纹是否存在""" if fp in self._filter_container: return True else: return False from ..conf.settings import REDIS_SET_NAME, REDIS_HOST, REDIS_PORT, REDIS_DB import redis class RedisFilterContainer(BasicFilterContainer): def __init__(self, name=REDIS_SET_NAME, host=REDIS_HOST, port=REDIS_PORT, db=REDIS_DB): # 建立Redis数据库连接 self.__server = redis.StrictRedis(host=host, port=port, db=db) # set集合在redis中的key self.name = name def add_fp(self, fp): """把指纹添加到Redis的set集合中""" self.__server.sadd(self.name, fp) def exists(self, fp): """判断是否存储""" return self.__server.sismember(self.name, fp) def clear(self): """清空指纹数据""" self.__server.delete(self.name)
[ "redis.StrictRedis" ]
[((1062, 1108), 'redis.StrictRedis', 'redis.StrictRedis', ([], {'host': 'host', 'port': 'port', 'db': 'db'}), '(host=host, port=port, db=db)\n', (1079, 1108), False, 'import redis\n')]
from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_3 from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.topology import event, switches from ryu.topology.api import get_switch, get_link import networkx as nx class ShortestForwarding(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def __init__(self, *args, **kwargs): super(ShortestForwarding, self).__init__(*args, **kwargs) self.network = nx.DiGraph() self.topology_api_app = self self.paths = {} @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): datapath = ev.msg.datapath ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser match = ofp_parser.OFPMatch() actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 0, match, actions) def add_flow(self, datapath, priority, match, actions): ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,actions)] mod = ofp_parser.OFPFlowMod(datapath=datapath, priority=priority,match=match, instructions=inst) datapath.send_msg(mod) events = [event.EventSwitchEnter, event.EventSwitchLeave, event.EventPortAdd, event.EventPortDelete, event.EventPortModify, event.EventLinkAdd, event.EventLinkDelete] @set_ev_cls(events) def get_topology(self, ev): switch_list = get_switch(self.topology_api_app, None) switches = [switch.dp.id for switch in switch_list] self.network.add_nodes_from(switches) links_list = get_link(self.topology_api_app, None) links = [(link.src.dpid, link.dst.dpid, {'port': link.src.port_no}) for link in links_list] self.network.add_edges_from(links) links = [(link.dst.dpid, link.src.dpid, {'port': link.dst.port_no}) for link in links_list] self.network.add_edges_from(links) def get_out_port(self, src, dst, datapath, in_port): dpid = datapath.id if src not in self.network: self.network.add_node(src) self.network.add_edge(dpid, src, {'port': in_port}) self.network.add_edge(src, dpid) self.paths.setdefault(src, {}) if dst in self.network: if dst not in self.paths[src]: path = nx.shortest_path(self.network, src, dst) self.paths[src][dst] = path path = self.paths[src][dst] next_hop = path[path.index(dpid) + 1] out_port = self.network[dpid][next_hop]['port'] else: out_port = datapath.ofproto.OFPP_FLOOD return out_port @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto ofp_parser = datapath.ofproto_parser pkt = packet.Packet(msg.data) eth = pkt.get_protocol(ethernet.ethernet) in_port = msg.match['in_port'] out_port = self.get_out_port(eth.src, eth.dst, datapath, in_port) actions = [ofp_parser.OFPActionOutput(out_port)] if out_port != ofproto.OFPP_FLOOD: match = ofp_parser.OFPMatch(in_port=in_port, eth_dst=eth.dst) self.add_flow(datapath, 1, match, actions) # send packet_out msg to flood packet. out = ofp_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port,actions=actions) datapath.send_msg(out) ''' 发包程序 from scapy.all import sendp from scapy.all import Packet from scapy.all import Ether, IP, UDP, TCP pkt = Ether(src=src, dst=dst) pkt = pkt /IP(dst=addr) / TCP(dport=1234, sport=random.randint(49152,65535)) / 'hello world' sendp(pkt, iface=iface, verbose=False) '''
[ "ryu.lib.packet.packet.Packet", "ryu.topology.api.get_switch", "networkx.DiGraph", "networkx.shortest_path", "ryu.controller.handler.set_ev_cls", "ryu.topology.api.get_link" ]
[((712, 775), 'ryu.controller.handler.set_ev_cls', 'set_ev_cls', (['ofp_event.EventOFPSwitchFeatures', 'CONFIG_DISPATCHER'], {}), '(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)\n', (722, 775), False, 'from ryu.controller.handler import set_ev_cls\n'), ((1705, 1723), 'ryu.controller.handler.set_ev_cls', 'set_ev_cls', (['events'], {}), '(events)\n', (1715, 1723), False, 'from ryu.controller.handler import set_ev_cls\n'), ((3011, 3066), 'ryu.controller.handler.set_ev_cls', 'set_ev_cls', (['ofp_event.EventOFPPacketIn', 'MAIN_DISPATCHER'], {}), '(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)\n', (3021, 3066), False, 'from ryu.controller.handler import set_ev_cls\n'), ((632, 644), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (642, 644), True, 'import networkx as nx\n'), ((1778, 1817), 'ryu.topology.api.get_switch', 'get_switch', (['self.topology_api_app', 'None'], {}), '(self.topology_api_app, None)\n', (1788, 1817), False, 'from ryu.topology.api import get_switch, get_link\n'), ((1945, 1982), 'ryu.topology.api.get_link', 'get_link', (['self.topology_api_app', 'None'], {}), '(self.topology_api_app, None)\n', (1953, 1982), False, 'from ryu.topology.api import get_switch, get_link\n'), ((3252, 3275), 'ryu.lib.packet.packet.Packet', 'packet.Packet', (['msg.data'], {}), '(msg.data)\n', (3265, 3275), False, 'from ryu.lib.packet import packet\n'), ((2680, 2720), 'networkx.shortest_path', 'nx.shortest_path', (['self.network', 'src', 'dst'], {}), '(self.network, src, dst)\n', (2696, 2720), True, 'import networkx as nx\n')]
# # Copyright (C) 2021 Stephane "Twidi" Angel <<EMAIL>> # # This file is part of StreamDeckFS # (see https://github.com/twidi/streamdeckfs). # # License: MIT, see https://opensource.org/licenses/MIT # import re from dataclasses import dataclass from ..common import file_flags, logger from .base import ( RE_PARTS, VAR_PREFIX, VAR_RE_NAME_PART, EntityFile, InvalidArg, UnavailableVar, ) from .deck import DeckContent from .key import KeyContent from .page import PageContent ELIF_THEN_RE = re.compile(r"^(?:elif|then)(?:\.\d+)?$") @dataclass(eq=False) class BaseVar(EntityFile): path_glob = "VAR_*" main_part_re = re.compile(r"^(?P<kind>VAR)_" + VAR_RE_NAME_PART + "$") main_part_compose = lambda args: f'VAR_{args["name"]}' get_main_args = lambda self: {"name": self.name} allowed_args = EntityFile.allowed_args | { "value": re.compile(r"^(?P<arg>value)=(?P<value>.+)$"), "if": re.compile(r"^(?P<arg>if)=(?P<value>" + RE_PARTS["bool"] + ")$"), "elif": re.compile(r"^(?P<arg>elif)=(?P<value>" + RE_PARTS["bool"] + ")$"), "elif.": re.compile(r"^(?P<arg>elif\.\d+)=(?P<value>" + RE_PARTS["bool"] + ")$"), "then": re.compile(r"^(?P<arg>then)=(?P<value>.+)$"), "then.": re.compile(r"^(?P<arg>then\.\d+)=(?P<value>.+)$"), "else": re.compile(r"^(?P<arg>else)=(?P<value>.+)$"), } # no `name` arg, we already have it in main allowed_args.pop("name") allowed_partial_args = EntityFile.allowed_partial_args | { "then": re.compile(r"^then\.\d+$"), "elif": re.compile(r"^elif\.\d+$"), } unique_args_combinations = [ ("value", "file"), ("value", "if"), ("value", "elif"), ("value", "then"), ("value", "else"), ("file", "if"), ("file", "elif"), ("file", "then"), ("file", "else"), ] identifier_attr = "name" parent_container_attr = "vars" def __post_init__(self): super().__post_init__() self.value = None self.cached_value = None self.used_by = set() @property def str(self): return f'VAR {self.name}{", disabled" if self.disabled else ""})' def __str__(self): return f"{self.parent}, {self.str}" @classmethod def save_raw_arg(cls, name, value, args): if name == "elif": if "elif" not in args: args["elif"] = [] args["elif"].append(value) elif name == "then": if "then" not in args: args["then"] = [] args["then"].append(value) else: super().save_raw_arg(name, value, args) @classmethod def convert_args(cls, main, args): final_args = super().convert_args(main, args) for unique_args in cls.unique_args_combinations: if len([1 for key in unique_args if args.get(key)]) > 1: raise InvalidArg( "Only one of these arguments must be used: " + (", ".join(f'"{arg}"' for arg in unique_args)) ) if "if" in args or "else" in args or "then" in args: if "if" not in args or "else" not in args or "then" not in args: raise InvalidArg('"if", "then" and "else" arguments must all be present') all_ifs = [args["if"]] + args.get("elif", []) if len(args["then"]) != len(all_ifs) or None in args["then"] or None in all_ifs: raise InvalidArg('Invalide number of "elif" or "then"') del final_args["name"] for arg in ("value", "if", "else"): if arg in args: final_args[arg] = cls.replace_special_chars(args[arg], args) for arg in ("elif", "then"): if arg in args: final_args[arg] = [cls.replace_special_chars(subarg, args) for subarg in args[arg]] return final_args @classmethod def create_from_args(cls, path, parent, identifier, args, path_modified_at): var = super().create_from_args(path, parent, identifier, args, path_modified_at) if "if" in args: elif_ = [args["if"]] + args.get("elif", []) for if_, then_ in zip(elif_, args["then"]): if if_.lower() == "true": var.value = then_ break else: var.value = args["else"] else: var.value = args.get("value") return var @classmethod def merge_partial_arg(cls, main_key, values, args): if main_key in ("elif", "then"): if main_key not in args: args[main_key] = [] arg = args[main_key] for key, value in values.items(): try: index = int(key.split(".")[-1]) if index >= len(arg): # complete list with `None` values arg.extend([None] * (index - len(arg) + 1)) arg[index] = value except Exception: pass else: super().merge_partial_arg(main_key, values, args) @staticmethod def args_matching_filter(main, args, filter): if filter is None: return True return main.get("name") == filter @property def resolved_value(self): if self.cached_value is not None: return self.cached_value if self.value is not None: self.cached_value = self.value else: try: path = None if self.mode == "content": path = self.resolved_path elif self.mode in ("file", "inside"): path = self.get_file_path() assert path except Exception: logger.error(f"[{self}] File to read cannot be found{'' if path is None else ' (path: %s)' % path}") raise UnavailableVar try: self.cached_value = path.read_text().strip() except Exception: logger.error(f"[{self}] File could not be read: {path}") raise UnavailableVar if VAR_PREFIX in self.cached_value: self.cached_value = self.replace_vars_in_content(self.cached_value) if "{" in self.cached_value and "}" in self.cached_value: self.cached_value = self.replace_exprs(self.cached_value, self.path.name) return self.cached_value def iterate_children_dirs(self): return [] def activate(self, root=None): if root is None: root = self.parent for vars_holder in root.iterate_vars_holders(): for entity_class, name, is_virtual, var_names in vars_holder.get_waiting_for_vars(self.name): path = vars_holder.path / name if not (is_virtual or path.exists()) or vars_holder.on_file_change( vars_holder.path, name, file_flags.CREATE | (file_flags.ISDIR if (entity_class.is_dir if is_virtual else path.is_dir()) else 0), modified_at=vars_holder.path_modified_at, entity_class=entity_class, is_virtual=is_virtual, ): vars_holder.remove_waiting_for_vars(name) def deactivate(self, root=None): for entity in list(self.used_by): if root is not None and not entity.path.is_relative_to(root.path): continue entity.on_var_deleted() def version_activated(self): super().version_activated() # if we have a variable at a upper level with the same name, # (our parent is the one holding us, so we want our grand-parent) if grand_parent := self.parent.parent: try: grand_parent_var = grand_parent.get_var(self.name) except UnavailableVar: pass else: # then we deactivate it, but only for our current var holder (our parent) grand_parent_var.deactivate(self.parent) return # same if our parent is a reference, we don't want to use the one for the reference anymore reference = self.parent.reference while reference: try: referenced_var = reference.get_var(self.name) except UnavailableVar: reference = reference.reference else: referenced_var.deactivate(self.parent) break def on_create(self): super().on_create() self.activate() def on_delete(self): super().on_delete() self.deactivate() def version_deactivated(self): super().version_deactivated() # if we have one at a upper level with the same name, # (our parent is the one holding us, so we want our grand-parent) if grand_parent := self.parent.parent: try: grand_parent_var = grand_parent.get_var(self.name) except UnavailableVar: pass else: # then we use it to re-render the var just unrendered grand_parent_var.activate(self.parent) return # else if our parent is a reference that have this variable, we want to use it reference = self.parent.reference while reference: try: referenced_var = reference.get_var(self.name) except UnavailableVar: reference = reference.reference else: referenced_var.activate(self.parent) break def on_file_content_changed(self): super().on_file_content_changed() current_value = self.cached_value self.cached_value = None try: new_value = self.resolved_value except UnavailableVar: pass else: if new_value != current_value: for entity in list(self.used_by): entity.on_var_deleted() self.activate() @dataclass(eq=False) class DeckVar(BaseVar, DeckContent): pass @dataclass(eq=False) class PageVar(BaseVar, PageContent): pass @dataclass(eq=False) class KeyVar(BaseVar, KeyContent): allowed_args = BaseVar.allowed_args | { "ref": re.compile( r"^(?P<arg>ref)=(?P<page>.+):(?P<key>.+):(?P<var>.+)$" # for internal use only, so we can enforce all parts ), } @classmethod def find_reference(cls, parent, ref_conf, main, args): final_ref_conf, key = cls.find_reference_key(parent, ref_conf) final_ref_conf["var"] = main["name"] if not key: return final_ref_conf, None return final_ref_conf, key.find_var(final_ref_conf["var"]) def get_waiting_references(self): return [ (path, parent, ref_conf) for key, path, parent, ref_conf in self.iter_waiting_references_for_key(self.key) if (var := key.find_var(ref_conf["var"])) and var.name == self.name ] def on_file_content_changed(self): super().on_file_content_changed() for reference in self.referenced_by: reference.on_file_content_changed()
[ "dataclasses.dataclass", "re.compile" ]
[((517, 558), 're.compile', 're.compile', (['"""^(?:elif|then)(?:\\\\.\\\\d+)?$"""'], {}), "('^(?:elif|then)(?:\\\\.\\\\d+)?$')\n", (527, 558), False, 'import re\n'), ((561, 580), 'dataclasses.dataclass', 'dataclass', ([], {'eq': '(False)'}), '(eq=False)\n', (570, 580), False, 'from dataclasses import dataclass\n'), ((10213, 10232), 'dataclasses.dataclass', 'dataclass', ([], {'eq': '(False)'}), '(eq=False)\n', (10222, 10232), False, 'from dataclasses import dataclass\n'), ((10282, 10301), 'dataclasses.dataclass', 'dataclass', ([], {'eq': '(False)'}), '(eq=False)\n', (10291, 10301), False, 'from dataclasses import dataclass\n'), ((10351, 10370), 'dataclasses.dataclass', 'dataclass', ([], {'eq': '(False)'}), '(eq=False)\n', (10360, 10370), False, 'from dataclasses import dataclass\n'), ((651, 705), 're.compile', 're.compile', (["('^(?P<kind>VAR)_' + VAR_RE_NAME_PART + '$')"], {}), "('^(?P<kind>VAR)_' + VAR_RE_NAME_PART + '$')\n", (661, 705), False, 'import re\n'), ((884, 928), 're.compile', 're.compile', (['"""^(?P<arg>value)=(?P<value>.+)$"""'], {}), "('^(?P<arg>value)=(?P<value>.+)$')\n", (894, 928), False, 'import re\n'), ((945, 1008), 're.compile', 're.compile', (["('^(?P<arg>if)=(?P<value>' + RE_PARTS['bool'] + ')$')"], {}), "('^(?P<arg>if)=(?P<value>' + RE_PARTS['bool'] + ')$')\n", (955, 1008), False, 'import re\n'), ((1027, 1092), 're.compile', 're.compile', (["('^(?P<arg>elif)=(?P<value>' + RE_PARTS['bool'] + ')$')"], {}), "('^(?P<arg>elif)=(?P<value>' + RE_PARTS['bool'] + ')$')\n", (1037, 1092), False, 'import re\n'), ((1112, 1184), 're.compile', 're.compile', (["('^(?P<arg>elif\\\\.\\\\d+)=(?P<value>' + RE_PARTS['bool'] + ')$')"], {}), "('^(?P<arg>elif\\\\.\\\\d+)=(?P<value>' + RE_PARTS['bool'] + ')$')\n", (1122, 1184), False, 'import re\n'), ((1201, 1244), 're.compile', 're.compile', (['"""^(?P<arg>then)=(?P<value>.+)$"""'], {}), "('^(?P<arg>then)=(?P<value>.+)$')\n", (1211, 1244), False, 'import re\n'), ((1264, 1314), 're.compile', 're.compile', (['"""^(?P<arg>then\\\\.\\\\d+)=(?P<value>.+)$"""'], {}), "('^(?P<arg>then\\\\.\\\\d+)=(?P<value>.+)$')\n", (1274, 1314), False, 'import re\n'), ((1331, 1374), 're.compile', 're.compile', (['"""^(?P<arg>else)=(?P<value>.+)$"""'], {}), "('^(?P<arg>else)=(?P<value>.+)$')\n", (1341, 1374), False, 'import re\n'), ((1540, 1567), 're.compile', 're.compile', (['"""^then\\\\.\\\\d+$"""'], {}), "('^then\\\\.\\\\d+$')\n", (1550, 1567), False, 'import re\n'), ((1584, 1611), 're.compile', 're.compile', (['"""^elif\\\\.\\\\d+$"""'], {}), "('^elif\\\\.\\\\d+$')\n", (1594, 1611), False, 'import re\n'), ((10465, 10530), 're.compile', 're.compile', (['"""^(?P<arg>ref)=(?P<page>.+):(?P<key>.+):(?P<var>.+)$"""'], {}), "('^(?P<arg>ref)=(?P<page>.+):(?P<key>.+):(?P<var>.+)$')\n", (10475, 10530), False, 'import re\n')]
from django.urls import path, include from rest_framework import routers from .views import ArticleViewSet, SiteBoardViewSet, CategoryViewSet router = routers.DefaultRouter() router.register('articles', ArticleViewSet) router.register('boards', SiteBoardViewSet) router.register('categories', CategoryViewSet) urlpatterns = [ path('', include(router.urls)), ] # urlpatterns = [ # path('articles/', ArticleViewSet.as_view({'get': 'list'})), # path('articles/<int:pk>/', ArticleViewSet.as_view({'get': 'retrieve'})), # path('boards/', SiteBoardViewSet.as_view({'get': 'list'})), # path('boards/<int:pk>/', SiteBoardViewSet.as_view({'get': 'retrieve'})), # path('categories/', CategoryViewSet.as_view({'get': 'list'})), # path('categories/<int:pk>/', CategoryViewSet.as_view({'get': 'retrieve'})), # ]
[ "rest_framework.routers.DefaultRouter", "django.urls.include" ]
[((154, 177), 'rest_framework.routers.DefaultRouter', 'routers.DefaultRouter', ([], {}), '()\n', (175, 177), False, 'from rest_framework import routers\n'), ((343, 363), 'django.urls.include', 'include', (['router.urls'], {}), '(router.urls)\n', (350, 363), False, 'from django.urls import path, include\n')]
import numpy as np import tensorflow as tf from tensorflow.contrib.opt import NadamOptimizer from tensorflow.python.training.adam import AdamOptimizer from tensorflow.python.training.momentum import MomentumOptimizer from tensorflow.python.training.rmsprop import RMSPropOptimizer from core.HM2 import PHASE_WAKE, PHASE_SLEEP from core.argo.core.optimizers.NesterovConst import NesterovConst class WakeSleepOptimizer2(tf.compat.v1.train.GradientDescentOptimizer): def __init__(self, **optimizer_kwargs): self._model = optimizer_kwargs["model"] self._individual_learning_rate = optimizer_kwargs["individual_learning_rate"] self._learning_rate = optimizer_kwargs["learning_rate"] self._rescale_learning_rate = optimizer_kwargs["rescale_learning_rate"] self._d_p = None self._n_reg = None post_optimizer = optimizer_kwargs["post_optimizer"] if "post_optimizer" in optimizer_kwargs else None if post_optimizer is None or post_optimizer == "GD": self._post_optimizer = super() elif post_optimizer == "Momentum": self._post_optimizer = MomentumOptimizer(learning_rate=optimizer_kwargs["learning_rate"], momentum=0.95, use_locking=False, name="MomentumOptimizer") elif post_optimizer == "RMSProp": self._post_optimizer = RMSPropOptimizer(learning_rate=optimizer_kwargs["learning_rate"], decay=0.9, epsilon=1e-5, use_locking=False, name="RMSPropOptimizer") elif post_optimizer == "Adam": self._post_optimizer = AdamOptimizer(learning_rate=optimizer_kwargs["learning_rate"], beta1=0.9, beta2=0.999, epsilon=1e-8, use_locking=False, name="AdamOptimizer") elif post_optimizer == "Nadam": self._post_optimizer = NadamOptimizer(learning_rate=optimizer_kwargs["learning_rate"], beta1=0.9, beta2=0.999, epsilon=1e-8, use_locking=False, name="NadamOptimizer") elif post_optimizer == "Nesterov": self._post_optimizer = MomentumOptimizer(learning_rate=optimizer_kwargs["learning_rate"], momentum=0.95, use_locking=False, use_nesterov=True, name="NesterovMomentumOptimizer") elif post_optimizer == "NesterovConst": self._post_optimizer = NesterovConst(model=self._model, learning_rate=optimizer_kwargs["learning_rate"], use_locking=False, name="NesterovConstOptimizer") else: raise Exception("There is no such post optimizer defined. Must be: None, Adam, Momentum, RMSProp ...") super().__init__(self._learning_rate) self._network = self._model._network self._ilr = self.check_ilr(self._individual_learning_rate) def check_ilr(self, individual_learning_rate): length_of_network = len(self._network._layers_spec) + 1 if isinstance(individual_learning_rate, list): assert len(individual_learning_rate) == length_of_network, \ "Individual learning rates have to equal in length the number of layers, {} and {}".format( individual_learning_rate, length_of_network) return list(map(float, individual_learning_rate)) elif isinstance(individual_learning_rate, dict): ilr = [float(individual_learning_rate[i]) if i in individual_learning_rate else 1.0 for i in range(length_of_network)] return ilr elif isinstance(individual_learning_rate, (int, float)): return [float(individual_learning_rate)] * length_of_network else: raise Exception("You gave an unexpected data type as Individual learning rates") def apply_gradients(self, grads_and_vars, global_step=None, name="WSOM"): return self._post_optimizer.apply_gradients(grads_and_vars=grads_and_vars, global_step=global_step, name=name) def compute_gradients(self, phase, *args, **kw): grads = [] vars = [] layers = self._network._layers if phase == PHASE_WAKE: for i, layer in enumerate(layers): grad, var = layer.wake() vars += list(var) if len(grad) > 0: grads += [g * self._ilr[i] for g in grad] elif phase == PHASE_SLEEP: # CLASSIC SLEEP for i, layer in enumerate(layers[:-1]): grad, var = layer.sleep() vars += list(var) if len(grad) > 0: grads += [g * self._ilr[i] for g in grad] else: raise ValueError("invalid value for phase '{}'".format(phase)) lr = 1. if phase == PHASE_SLEEP: lr *= self._rescale_learning_rate regs = self._get_regularizers(vars) grads_and_vars_not_none = [(tf.multiply(-lr, g, name="g_" + g.name.split(":")[0]) + r, v) for (g, r, v) in zip(grads, regs, vars) if g is not None] assert np.all([g.shape == v.shape for (g, v) in grads_and_vars_not_none]), "The shapes of weights and gradients are not the same" return grads_and_vars_not_none def _get_regularizers(self, weights): regs = [0.0] * len(weights) if self._model.regularizers: loss = 0.0 + tf.add_n(self._model.regularizers, name="regularization") regs = tf.gradients(loss, weights) return regs
[ "tensorflow.contrib.opt.NadamOptimizer", "tensorflow.python.training.momentum.MomentumOptimizer", "tensorflow.gradients", "tensorflow.add_n", "core.argo.core.optimizers.NesterovConst.NesterovConst", "numpy.all", "tensorflow.python.training.rmsprop.RMSPropOptimizer", "tensorflow.python.training.adam.AdamOptimizer" ]
[((6133, 6199), 'numpy.all', 'np.all', (['[(g.shape == v.shape) for g, v in grads_and_vars_not_none]'], {}), '([(g.shape == v.shape) for g, v in grads_and_vars_not_none])\n', (6139, 6199), True, 'import numpy as np\n'), ((6537, 6564), 'tensorflow.gradients', 'tf.gradients', (['loss', 'weights'], {}), '(loss, weights)\n', (6549, 6564), True, 'import tensorflow as tf\n'), ((1138, 1269), 'tensorflow.python.training.momentum.MomentumOptimizer', 'MomentumOptimizer', ([], {'learning_rate': "optimizer_kwargs['learning_rate']", 'momentum': '(0.95)', 'use_locking': '(False)', 'name': '"""MomentumOptimizer"""'}), "(learning_rate=optimizer_kwargs['learning_rate'], momentum\n =0.95, use_locking=False, name='MomentumOptimizer')\n", (1155, 1269), False, 'from tensorflow.python.training.momentum import MomentumOptimizer\n'), ((6460, 6517), 'tensorflow.add_n', 'tf.add_n', (['self._model.regularizers'], {'name': '"""regularization"""'}), "(self._model.regularizers, name='regularization')\n", (6468, 6517), True, 'import tensorflow as tf\n'), ((1502, 1641), 'tensorflow.python.training.rmsprop.RMSPropOptimizer', 'RMSPropOptimizer', ([], {'learning_rate': "optimizer_kwargs['learning_rate']", 'decay': '(0.9)', 'epsilon': '(1e-05)', 'use_locking': '(False)', 'name': '"""RMSPropOptimizer"""'}), "(learning_rate=optimizer_kwargs['learning_rate'], decay=0.9,\n epsilon=1e-05, use_locking=False, name='RMSPropOptimizer')\n", (1518, 1641), False, 'from tensorflow.python.training.rmsprop import RMSPropOptimizer\n'), ((1920, 2066), 'tensorflow.python.training.adam.AdamOptimizer', 'AdamOptimizer', ([], {'learning_rate': "optimizer_kwargs['learning_rate']", 'beta1': '(0.9)', 'beta2': '(0.999)', 'epsilon': '(1e-08)', 'use_locking': '(False)', 'name': '"""AdamOptimizer"""'}), "(learning_rate=optimizer_kwargs['learning_rate'], beta1=0.9,\n beta2=0.999, epsilon=1e-08, use_locking=False, name='AdamOptimizer')\n", (1933, 2066), False, 'from tensorflow.python.training.adam import AdamOptimizer\n'), ((2382, 2530), 'tensorflow.contrib.opt.NadamOptimizer', 'NadamOptimizer', ([], {'learning_rate': "optimizer_kwargs['learning_rate']", 'beta1': '(0.9)', 'beta2': '(0.999)', 'epsilon': '(1e-08)', 'use_locking': '(False)', 'name': '"""NadamOptimizer"""'}), "(learning_rate=optimizer_kwargs['learning_rate'], beta1=0.9,\n beta2=0.999, epsilon=1e-08, use_locking=False, name='NadamOptimizer')\n", (2396, 2530), False, 'from tensorflow.contrib.opt import NadamOptimizer\n'), ((2855, 3018), 'tensorflow.python.training.momentum.MomentumOptimizer', 'MomentumOptimizer', ([], {'learning_rate': "optimizer_kwargs['learning_rate']", 'momentum': '(0.95)', 'use_locking': '(False)', 'use_nesterov': '(True)', 'name': '"""NesterovMomentumOptimizer"""'}), "(learning_rate=optimizer_kwargs['learning_rate'], momentum\n =0.95, use_locking=False, use_nesterov=True, name=\n 'NesterovMomentumOptimizer')\n", (2872, 3018), False, 'from tensorflow.python.training.momentum import MomentumOptimizer\n'), ((3304, 3440), 'core.argo.core.optimizers.NesterovConst.NesterovConst', 'NesterovConst', ([], {'model': 'self._model', 'learning_rate': "optimizer_kwargs['learning_rate']", 'use_locking': '(False)', 'name': '"""NesterovConstOptimizer"""'}), "(model=self._model, learning_rate=optimizer_kwargs[\n 'learning_rate'], use_locking=False, name='NesterovConstOptimizer')\n", (3317, 3440), False, 'from core.argo.core.optimizers.NesterovConst import NesterovConst\n')]
import torch import torch.nn.functional as F from torch import nn import cv2 class SemanticFPN(nn.Module): """ FCN semantic predictor based on 'panoptic FPN' paper. """ def __init__(self, cfg, in_channels): super(SemanticFPN, self).__init__() self.cfg = cfg.clone() self.class_num = cfg.MODEL.SEMANTIC.NUM_CLASSES + 1 group_num = 32 self.semantic_seq0 = nn.Sequential( nn.Conv2d(in_channels, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(128, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(128, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(128, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) ) self.semantic_seq1 = nn.Sequential( nn.Conv2d(in_channels, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(128, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(128, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) ) self.semantic_seq2 = nn.Sequential( nn.Conv2d(in_channels, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(128, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) ) self.semantic_seq3 = nn.Sequential( nn.Conv2d(in_channels, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU(), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) ) self.semantic_seq4 = nn.Sequential( nn.Conv2d(in_channels, 128, 3, padding=1), nn.GroupNorm(group_num, 128), nn.ReLU() ) self.semantic_final = nn.Sequential( nn.Conv2d(128, self.class_num, 1), nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True) ) def forward(self, x, targets): sem_losses = {} x0 = self.semantic_seq0(x[4]) x1 = self.semantic_seq1(x[3]) x2 = self.semantic_seq2(x[2]) x3 = self.semantic_seq3(x[1]) x4 = self.semantic_seq4(x[0]) x0 = F.interpolate(x0, size=x4.size()[-2:], mode="bilinear", align_corners=True) x1 = F.interpolate(x1, size=x4.size()[-2:], mode="bilinear", align_corners=True) x2 = F.interpolate(x2, size=x4.size()[-2:], mode="bilinear", align_corners=True) x3 = F.interpolate(x3, size=x4.size()[-2:], mode="bilinear", align_corners=True) x = x0 + x1 + x2 + x3 + x4 x = self.semantic_final(x) if self.training: # calculate loss loss_semantic = 0.0 batch_count = 0 for i in range(len(targets)): label = targets[i].get_field("semantic_label").copy() x_i = F.interpolate(x[i:i+1], size=label.shape, mode='bilinear', align_corners=True) label = torch.LongTensor(label).unsqueeze(0) label = label.to(device=self.cfg.MODEL.DEVICE) count = torch.sum(label > 0) loss_semantic += F.cross_entropy(x_i, label, ignore_index=0, reduction="sum") batch_count += count if batch_count > 0: loss_semantic /= batch_count loss_semantic *= self.cfg.MODEL.SEMANTIC.LOSS_WEIGHT sem_losses.update(dict(loss_semantic=loss_semantic)) return None, sem_losses else: return x, {} def build_semantic_head(cfg, in_channels): semantic_head = SemanticFPN(cfg, in_channels) return semantic_head
[ "torch.nn.GroupNorm", "torch.nn.ReLU", "torch.LongTensor", "torch.nn.Conv2d", "torch.sum", "torch.nn.Upsample", "torch.nn.functional.interpolate", "torch.nn.functional.cross_entropy" ]
[((449, 490), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', '(128)', '(3)'], {'padding': '(1)'}), '(in_channels, 128, 3, padding=1)\n', (458, 490), False, 'from torch import nn\n'), ((504, 532), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (516, 532), False, 'from torch import nn\n'), ((546, 555), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (553, 555), False, 'from torch import nn\n'), ((569, 633), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (580, 633), False, 'from torch import nn\n'), ((647, 680), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)', '(3)'], {'padding': '(1)'}), '(128, 128, 3, padding=1)\n', (656, 680), False, 'from torch import nn\n'), ((694, 722), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (706, 722), False, 'from torch import nn\n'), ((736, 745), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (743, 745), False, 'from torch import nn\n'), ((759, 823), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (770, 823), False, 'from torch import nn\n'), ((837, 870), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)', '(3)'], {'padding': '(1)'}), '(128, 128, 3, padding=1)\n', (846, 870), False, 'from torch import nn\n'), ((884, 912), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (896, 912), False, 'from torch import nn\n'), ((926, 935), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (933, 935), False, 'from torch import nn\n'), ((949, 1013), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (960, 1013), False, 'from torch import nn\n'), ((1027, 1060), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)', '(3)'], {'padding': '(1)'}), '(128, 128, 3, padding=1)\n', (1036, 1060), False, 'from torch import nn\n'), ((1074, 1102), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (1086, 1102), False, 'from torch import nn\n'), ((1116, 1125), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1123, 1125), False, 'from torch import nn\n'), ((1139, 1203), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (1150, 1203), False, 'from torch import nn\n'), ((1279, 1320), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', '(128)', '(3)'], {'padding': '(1)'}), '(in_channels, 128, 3, padding=1)\n', (1288, 1320), False, 'from torch import nn\n'), ((1334, 1362), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (1346, 1362), False, 'from torch import nn\n'), ((1376, 1385), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1383, 1385), False, 'from torch import nn\n'), ((1399, 1463), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (1410, 1463), False, 'from torch import nn\n'), ((1477, 1510), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)', '(3)'], {'padding': '(1)'}), '(128, 128, 3, padding=1)\n', (1486, 1510), False, 'from torch import nn\n'), ((1524, 1552), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (1536, 1552), False, 'from torch import nn\n'), ((1566, 1575), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1573, 1575), False, 'from torch import nn\n'), ((1589, 1653), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (1600, 1653), False, 'from torch import nn\n'), ((1667, 1700), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)', '(3)'], {'padding': '(1)'}), '(128, 128, 3, padding=1)\n', (1676, 1700), False, 'from torch import nn\n'), ((1714, 1742), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (1726, 1742), False, 'from torch import nn\n'), ((1756, 1765), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1763, 1765), False, 'from torch import nn\n'), ((1779, 1843), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (1790, 1843), False, 'from torch import nn\n'), ((1911, 1952), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', '(128)', '(3)'], {'padding': '(1)'}), '(in_channels, 128, 3, padding=1)\n', (1920, 1952), False, 'from torch import nn\n'), ((1966, 1994), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (1978, 1994), False, 'from torch import nn\n'), ((2008, 2017), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2015, 2017), False, 'from torch import nn\n'), ((2031, 2095), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (2042, 2095), False, 'from torch import nn\n'), ((2109, 2142), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)', '(3)'], {'padding': '(1)'}), '(128, 128, 3, padding=1)\n', (2118, 2142), False, 'from torch import nn\n'), ((2156, 2184), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (2168, 2184), False, 'from torch import nn\n'), ((2198, 2207), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2205, 2207), False, 'from torch import nn\n'), ((2221, 2285), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (2232, 2285), False, 'from torch import nn\n'), ((2353, 2394), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', '(128)', '(3)'], {'padding': '(1)'}), '(in_channels, 128, 3, padding=1)\n', (2362, 2394), False, 'from torch import nn\n'), ((2408, 2436), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (2420, 2436), False, 'from torch import nn\n'), ((2450, 2459), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2457, 2459), False, 'from torch import nn\n'), ((2473, 2537), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=2, mode='bilinear', align_corners=True)\n", (2484, 2537), False, 'from torch import nn\n'), ((2605, 2646), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', '(128)', '(3)'], {'padding': '(1)'}), '(in_channels, 128, 3, padding=1)\n', (2614, 2646), False, 'from torch import nn\n'), ((2660, 2688), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['group_num', '(128)'], {}), '(group_num, 128)\n', (2672, 2688), False, 'from torch import nn\n'), ((2702, 2711), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2709, 2711), False, 'from torch import nn\n'), ((2780, 2813), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', 'self.class_num', '(1)'], {}), '(128, self.class_num, 1)\n', (2789, 2813), False, 'from torch import nn\n'), ((2827, 2891), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(4)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(scale_factor=4, mode='bilinear', align_corners=True)\n", (2838, 2891), False, 'from torch import nn\n'), ((3838, 3923), 'torch.nn.functional.interpolate', 'F.interpolate', (['x[i:i + 1]'], {'size': 'label.shape', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(x[i:i + 1], size=label.shape, mode='bilinear', align_corners=True\n )\n", (3851, 3923), True, 'import torch.nn.functional as F\n'), ((4065, 4085), 'torch.sum', 'torch.sum', (['(label > 0)'], {}), '(label > 0)\n', (4074, 4085), False, 'import torch\n'), ((4119, 4179), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['x_i', 'label'], {'ignore_index': '(0)', 'reduction': '"""sum"""'}), "(x_i, label, ignore_index=0, reduction='sum')\n", (4134, 4179), True, 'import torch.nn.functional as F\n'), ((3941, 3964), 'torch.LongTensor', 'torch.LongTensor', (['label'], {}), '(label)\n', (3957, 3964), False, 'import torch\n')]
import sys import os import glob import re import numpy as np import tensorflow as tf # Keras from keras.applications.imagenet_utils import preprocess_input, decode_predictions from keras.models import load_model from keras.preprocessing import image # Flask utils from flask import Flask, redirect, url_for, request, render_template from werkzeug.utils import secure_filename from gevent.pywsgi import WSGIServer # Define a flask app app = Flask(__name__) # Model saved with Keras model.save() MODEL_PATH = 'models/your_model.h5' # Load your trained model # model = load_model(MODEL_PATH) # model._make_predict_function() # Necessary print('Model loading...') # You can also use pretrained model from Keras # Check https://keras.io/applications/ from keras.applications.resnet50 import ResNet50 model = ResNet50(weights='imagenet') #graph = tf.get_default_graph() print('Model loaded. Started serving...') print('Model loaded. Check http://127.0.0.1:5000/') def model_predict(img_path, model): original = image.load_img(img_path, target_size=(224, 224)) # Preprocessing the image # Convert the PIL image to a numpy array # IN PIL - image is in (width, height, channel) # In Numpy - image is in (height, width, channel) numpy_image = image.img_to_array(original) # Convert the image / images into batch format # expand_dims will add an extra dimension to the data at a particular axis # We want the input matrix to the network to be of the form (batchsize, height, width, channels) # Thus we add the extra dimension to the axis 0. image_batch = np.expand_dims(numpy_image, axis=0) print('PIL image size = ', original.size) print('NumPy image size = ', numpy_image.shape) print('Batch image size = ', image_batch.shape) # Be careful how your trained model deals with the input # otherwise, it won't make correct prediction! processed_image = preprocess_input(image_batch, mode='caffe') #with graph.as_default(): preds = model.predict(processed_image) print('Deleting File at Path: ' + img_path) os.remove(img_path) print('Deleting File at Path - Success - ') return preds @app.route('/', methods=['GET']) def index(): # Main page return render_template('index.html') @app.route('/predict', methods=['GET', 'POST']) def upload(): if request.method == 'POST': # Get the file from post request f = request.files['image'] # Save the file to ./uploads basepath = os.path.dirname(__file__) file_path = os.path.join( basepath, 'uploads', secure_filename(f.filename)) f.save(file_path) print('Begin Model Prediction...') # Make prediction preds = model_predict(file_path, model) print('End Model Prediction...') # Process your result for human # pred_class = preds.argmax(axis=-1) # Simple argmax pred_class = decode_predictions(preds, top=1) # ImageNet Decode result = str(pred_class[0][0][1]) # Convert to string return result return None if __name__ == '__main__': app.run(debug=True, threaded=True,port=8000)
[ "flask.render_template", "keras.preprocessing.image.img_to_array", "flask.Flask", "os.remove", "os.path.dirname", "werkzeug.utils.secure_filename", "numpy.expand_dims", "keras.applications.resnet50.ResNet50", "keras.applications.imagenet_utils.preprocess_input", "keras.applications.imagenet_utils.decode_predictions", "keras.preprocessing.image.load_img" ]
[((444, 459), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (449, 459), False, 'from flask import Flask, redirect, url_for, request, render_template\n'), ((820, 848), 'keras.applications.resnet50.ResNet50', 'ResNet50', ([], {'weights': '"""imagenet"""'}), "(weights='imagenet')\n", (828, 848), False, 'from keras.applications.resnet50 import ResNet50\n'), ((1029, 1077), 'keras.preprocessing.image.load_img', 'image.load_img', (['img_path'], {'target_size': '(224, 224)'}), '(img_path, target_size=(224, 224))\n', (1043, 1077), False, 'from keras.preprocessing import image\n'), ((1283, 1311), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['original'], {}), '(original)\n', (1301, 1311), False, 'from keras.preprocessing import image\n'), ((1615, 1650), 'numpy.expand_dims', 'np.expand_dims', (['numpy_image'], {'axis': '(0)'}), '(numpy_image, axis=0)\n', (1629, 1650), True, 'import numpy as np\n'), ((1938, 1981), 'keras.applications.imagenet_utils.preprocess_input', 'preprocess_input', (['image_batch'], {'mode': '"""caffe"""'}), "(image_batch, mode='caffe')\n", (1954, 1981), False, 'from keras.applications.imagenet_utils import preprocess_input, decode_predictions\n'), ((2131, 2150), 'os.remove', 'os.remove', (['img_path'], {}), '(img_path)\n', (2140, 2150), False, 'import os\n'), ((2293, 2322), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (2308, 2322), False, 'from flask import Flask, redirect, url_for, request, render_template\n'), ((2552, 2577), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2567, 2577), False, 'import os\n'), ((2995, 3027), 'keras.applications.imagenet_utils.decode_predictions', 'decode_predictions', (['preds'], {'top': '(1)'}), '(preds, top=1)\n', (3013, 3027), False, 'from keras.applications.imagenet_utils import preprocess_input, decode_predictions\n'), ((2645, 2672), 'werkzeug.utils.secure_filename', 'secure_filename', (['f.filename'], {}), '(f.filename)\n', (2660, 2672), False, 'from werkzeug.utils import secure_filename\n')]
############################################################################## # # Copyright (c) 2017 Shoobx, Inc. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Style Related Element Processing """ import copy import odf import zope.interface from odf.namespaces import STYLENS from z3c.rml import attr, directive from z3c.rml import template as rml_template from shoobx.rml2odt import flowable from shoobx.rml2odt.interfaces import IContentContainer @zope.interface.implementer(IContentContainer) class Story(flowable.Flow): signature = rml_template.IStory @property def contents(self): return self.parent.document.text @zope.interface.implementer(IContentContainer) class Header(flowable.Flow): signature = rml_template.IPageGraphics klass = staticmethod(odf.style.Header) def process(self): self.contents = self.klass() self.parent.content.addElement(self.contents) self.processSubDirectives() class Footer(Header): klass = staticmethod(odf.style.Footer) class PageTemplate(directive.RMLDirective): signature = rml_template.IPageTemplate factories = { 'header': Header, 'footer': Footer, } def process(self): manager = attr.getManager(self) styleName = manager.getNextStyleName('Mpm') pageLayoutProps = odf.style.PageLayoutProperties( **self.parent.styleArgs) pageLayout = odf.style.PageLayout(name=styleName) pageLayout.addElement(pageLayoutProps) manager.document.automaticstyles.addElement(pageLayout) args = dict(self.getAttributeValues()) self.content = odf.style.MasterPage( name=args['id'], pagelayoutname=styleName) self.parent.pageTemplateNames.append(args['id']) self.parent.parent.document.masterstyles.addElement(self.content) self.processSubDirectives() class Template(directive.RMLDirective): signature = rml_template.ITemplate attrMapping = {'bottomMargin': 'marginbottom', 'topMargin': 'margintop', 'leftMargin': 'marginleft', 'rightMargin': 'marginright', 'pagesize': 'pagesize', 'showBoundary': 'border', } factories = { 'pageTemplate': PageTemplate, } def _getNodeName(self, node): for att, value in node.attributes.items(): if att[1] == 'name': return value return None def process(self): # determine style attributes to be used in PageTemplate args = dict(self.getAttributeValues(attrMapping=self.attrMapping)) allowed = self.attrMapping.values() styleArgs = {} for argName, argValue in args.items(): if argName not in allowed: continue if argName == 'pagesize': styleArgs['pagewidth'] = '%spt' % argValue[0] styleArgs['pageheight'] = '%spt' % argValue[1] elif argName == 'border': if argValue: styleArgs[argName] = "3pt" else: styleArgs[argName] = "0pt" else: styleArgs[argName] = '%spt' % argValue self.styleArgs = styleArgs self.pageTemplateNames = [] self.processSubDirectives() haveMain = ( 'main' in self.pageTemplateNames or 'Main' in self.pageTemplateNames) if haveMain and 'Standard' not in self.pageTemplateNames: # LibreOffice is picky and expects a 'Standard' pageTemplate # as default if nothing specified in the story tag # OTOH reportlab standard is 'main' # let's make a copy of 'main' as 'Standard' mainPT = None for pt in self.parent.document.masterstyles.childNodes: if pt.tagName == 'style:master-page': if self._getNodeName(pt).lower() == 'main': mainPT = pt if mainPT is not None: newPT = copy.deepcopy(mainPT) newPT.setAttrNS(STYLENS, 'name', 'Standard') newPT.setAttrNS(STYLENS, 'display-name', 'Standard') self.parent.document.masterstyles.addElement(newPT) # but all that is just a workaround for now # how ODT handles page styles/pageTemplate: # the style of the para on the previous page should have # fo:break-after="page" # to make the page break # the style of the first para on the page gets # style:master-page-name="First_20_Page" # which then refers to the style:page-layout
[ "z3c.rml.attr.getManager", "odf.style.MasterPage", "odf.style.PageLayout", "odf.style.PageLayoutProperties", "copy.deepcopy" ]
[((1692, 1713), 'z3c.rml.attr.getManager', 'attr.getManager', (['self'], {}), '(self)\n', (1707, 1713), False, 'from z3c.rml import attr, directive\n'), ((1793, 1848), 'odf.style.PageLayoutProperties', 'odf.style.PageLayoutProperties', ([], {}), '(**self.parent.styleArgs)\n', (1823, 1848), False, 'import odf\n'), ((1883, 1919), 'odf.style.PageLayout', 'odf.style.PageLayout', ([], {'name': 'styleName'}), '(name=styleName)\n', (1903, 1919), False, 'import odf\n'), ((2102, 2165), 'odf.style.MasterPage', 'odf.style.MasterPage', ([], {'name': "args['id']", 'pagelayoutname': 'styleName'}), "(name=args['id'], pagelayoutname=styleName)\n", (2122, 2165), False, 'import odf\n'), ((4556, 4577), 'copy.deepcopy', 'copy.deepcopy', (['mainPT'], {}), '(mainPT)\n', (4569, 4577), False, 'import copy\n')]
# http://inamidst.com/saxo/ # Created by <NAME> import os.path import saxo import unicodedata surrogates = {"D800", "DB7F", "DB80", "DBFF", "DC00", "DFFF"} def create_table(db): db["saxo_unicode"].create( ("hexcode", str), ("codepoint", int), ("name", str), ("current", str), ("ancient", str), ("category", str), ("character", str), ("display", str)) def populate_table_python(db): for codepoint in range(1, 0x10000): hexcode = "%04X" % codepoint # Skip surrogates if hexcode in surrogates: character = "" else: character = chr(codepoint) try: category = unicodedata.category(character) except TypeError: continue try: character.encode("utf-8") except UnicodeEncodeError: continue if category.startswith("M"): # TODO: Just Mn? display = "\u25CC" + character elif category.startswith("C") and not category.endswith("o"): # Co is Private_Use, allow those if 0 <= codepoint <= 0x1F: display = chr(codepoint + 0x2400) else: display = "<%s>" % category else: display = character try: name = unicodedata.name(character) except ValueError: name = "<control>" current = name[:] ancient = "" db["saxo_unicode"].insert((hexcode, codepoint, name, current, ancient, category, character, display), commit=False) db.commit() @saxo.setup def setup(irc): path = os.path.join(irc.base, "database.sqlite3") with saxo.database(path) as db: if "saxo_unicode" not in db: create_table(db) populate_table_python(db)
[ "unicodedata.name", "saxo.database", "unicodedata.category" ]
[((1695, 1714), 'saxo.database', 'saxo.database', (['path'], {}), '(path)\n', (1708, 1714), False, 'import saxo\n'), ((697, 728), 'unicodedata.category', 'unicodedata.category', (['character'], {}), '(character)\n', (717, 728), False, 'import unicodedata\n'), ((1315, 1342), 'unicodedata.name', 'unicodedata.name', (['character'], {}), '(character)\n', (1331, 1342), False, 'import unicodedata\n')]
#TODO import unittest import scrape class TestSandersonScraper(unittest.TestCase): def test_send_texts(self): self.assertEqual('foo'.upper(), 'FOO') def test_get_values(self): self.assertEqual('foo'.upper(), 'FOO') def test_is_update(self): self.assertEqual('foo'.upper(), 'FOO') def test_create_update_message(self): self.assertEqual('foo'.upper(), 'FOO') def test_save_update(self): self.assertEqual('foo'.upper(), 'FOO') def test_scrape(self): self.assertEqual('foo'.upper(), 'FOO') if __name__ == '__main__': unittest.main() #TODO
[ "unittest.main" ]
[((598, 613), 'unittest.main', 'unittest.main', ([], {}), '()\n', (611, 613), False, 'import unittest\n')]
# Generated by Django 3.2 on 2021-04-29 20:17 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [] operations = [ migrations.CreateModel( name="Subscriber", fields=[ ( "id", models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("email", models.EmailField(max_length=254)), ("email_hash", models.CharField(max_length=100)), ], ), migrations.CreateModel( name="Subscription", fields=[ ( "id", models.BigAutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("station_name", models.CharField(max_length=100)), ("status", models.CharField(max_length=1)), ("last_email_date", models.DateTimeField()), ("email_preferred_time", models.CharField(max_length=1)), ("timezone", models.CharField(max_length=10)), ("created_date", models.DateTimeField()), ("update_date", models.DateTimeField()), ( "subscriber", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="subscribe.subscriber", ), ), ], ), ]
[ "django.db.models.EmailField", "django.db.models.ForeignKey", "django.db.models.BigAutoField", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((373, 469), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (392, 469), False, 'from django.db import migrations, models\n'), ((631, 664), 'django.db.models.EmailField', 'models.EmailField', ([], {'max_length': '(254)'}), '(max_length=254)\n', (648, 664), False, 'from django.db import migrations, models\n'), ((698, 730), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (714, 730), False, 'from django.db import migrations, models\n'), ((909, 1005), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (928, 1005), False, 'from django.db import migrations, models\n'), ((1174, 1206), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1190, 1206), False, 'from django.db import migrations, models\n'), ((1236, 1266), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1)'}), '(max_length=1)\n', (1252, 1266), False, 'from django.db import migrations, models\n'), ((1305, 1327), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (1325, 1327), False, 'from django.db import migrations, models\n'), ((1371, 1401), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1)'}), '(max_length=1)\n', (1387, 1401), False, 'from django.db import migrations, models\n'), ((1433, 1464), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)'}), '(max_length=10)\n', (1449, 1464), False, 'from django.db import migrations, models\n'), ((1500, 1522), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (1520, 1522), False, 'from django.db import migrations, models\n'), ((1557, 1579), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (1577, 1579), False, 'from django.db import migrations, models\n'), ((1654, 1748), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""subscribe.subscriber"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'subscribe.subscriber')\n", (1671, 1748), False, 'from django.db import migrations, models\n')]
import torch import torch.nn as nn import torch.nn.functional as F class QNetwork(nn.Module): """Implements a simple fully-connected 3 layers neural network.""" def __init__(self, state_size: int, action_size: int, seed: int): super(QNetwork, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, 32) self.fc2 = nn.Linear(32, 32) self.fc3 = nn.Linear(32, action_size) def forward(self, state): x = torch.tanh(self.fc1(state)) x = torch.tanh(self.fc2(x)) return self.fc3(x) class DuelingQNetwork(nn.Module): """Implements a Dueling architecture.""" def __init__(self, state_size: int, action_size: int, seed: int): super(DuelingQNetwork, self).__init__() self.seed = torch.manual_seed(seed) # Dueling DQN has first common layers, then splits into two parts, # one for the state value and another for the action advantage. self.fc1 = nn.Linear(state_size, 32) self.state_value_fc1 = nn.Linear(32, 16) self.state_value_fc2 = nn.Linear(16, 1) self.advantage_values_fc1 = nn.Linear(32, 16) self.advantage_values_fc2 = nn.Linear(16, action_size) def forward(self, state): """Build a network that maps state -> action values.""" dense_state = torch.tanh(self.fc1(state)) state_value = torch.tanh(self.state_value_fc1(dense_state)) state_value = self.state_value_fc2(state_value) advantage_values = torch.tanh(self.advantage_values_fc1(dense_state)) advantage_values = self.advantage_values_fc2(advantage_values) advantage_mean = torch.mean(advantage_values, dim=1, keepdim=True) action_values = state_value + advantage_values - advantage_mean return action_values
[ "torch.mean", "torch.manual_seed", "torch.nn.Linear" ]
[((312, 335), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (329, 335), False, 'import torch\n'), ((364, 389), 'torch.nn.Linear', 'nn.Linear', (['state_size', '(32)'], {}), '(state_size, 32)\n', (373, 389), True, 'import torch.nn as nn\n'), ((409, 426), 'torch.nn.Linear', 'nn.Linear', (['(32)', '(32)'], {}), '(32, 32)\n', (418, 426), True, 'import torch.nn as nn\n'), ((446, 472), 'torch.nn.Linear', 'nn.Linear', (['(32)', 'action_size'], {}), '(32, action_size)\n', (455, 472), True, 'import torch.nn as nn\n'), ((844, 867), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (861, 867), False, 'import torch\n'), ((1043, 1068), 'torch.nn.Linear', 'nn.Linear', (['state_size', '(32)'], {}), '(state_size, 32)\n', (1052, 1068), True, 'import torch.nn as nn\n'), ((1109, 1126), 'torch.nn.Linear', 'nn.Linear', (['(32)', '(16)'], {}), '(32, 16)\n', (1118, 1126), True, 'import torch.nn as nn\n'), ((1158, 1174), 'torch.nn.Linear', 'nn.Linear', (['(16)', '(1)'], {}), '(16, 1)\n', (1167, 1174), True, 'import torch.nn as nn\n'), ((1220, 1237), 'torch.nn.Linear', 'nn.Linear', (['(32)', '(16)'], {}), '(32, 16)\n', (1229, 1237), True, 'import torch.nn as nn\n'), ((1274, 1300), 'torch.nn.Linear', 'nn.Linear', (['(16)', 'action_size'], {}), '(16, action_size)\n', (1283, 1300), True, 'import torch.nn as nn\n'), ((1747, 1796), 'torch.mean', 'torch.mean', (['advantage_values'], {'dim': '(1)', 'keepdim': '(True)'}), '(advantage_values, dim=1, keepdim=True)\n', (1757, 1796), False, 'import torch\n')]
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django.contrib.sitemaps import Sitemap from thecut.pages.models import Page class PageSitemap(Sitemap): """Sitemaps.org XML sitemap.""" def items(self): return Page.objects.current_site().indexable() def lastmod(self, obj): return obj.updated_at sitemaps = {'pages_page': PageSitemap}
[ "thecut.pages.models.Page.objects.current_site" ]
[((265, 292), 'thecut.pages.models.Page.objects.current_site', 'Page.objects.current_site', ([], {}), '()\n', (290, 292), False, 'from thecut.pages.models import Page\n')]
"""A parser for reading protocol file in Bernese PRC format Example: -------- from midgard import parsers p = parsers.parse_file(parser_name='bernese_prc', file_path='RES211670.PRC') data = p.as_dict() Description: ------------ Reads data from files in PRC format """ # Standard library imports from datetime import datetime import itertools from typing import Any, Dict, Iterable, List, Tuple # Midgard imports from midgard.data import dataset from midgard.dev import log from midgard.dev import plugins from midgard.math.unit import Unit from midgard.parsers import ChainParser, ParserDef @plugins.register class BernesePrcParser(ChainParser): """A parser for reading protocol file in Bernese PRC format The parsed data are saved in variable **data** as a dictionay with 4-digit station name as key. The station related data are saved in a dictionary with following keys: | Key | Type |Description | |-----------------------|-------------|----------------------------------------------------------------------| | coord_comp_east | List[float] | List with daily station coordinate comparison results for East | | | | component in [m] | | coord_comp_north | List[float] | List with daily station coordinate comparison results for North | | | | component in [m] | | coord_comp_up | List[float] | List with daily station coordinate comparison results for Up | | | | component in [m] | | coord_comp_rms_east | float | List with daily station coordinate comparison results for East | | | | component in [m] | | coord_comp_rms_north | float | List with daily station coordinate comparison results for North | | | | component in [m] | | coord_comp_rms_up | float | List with daily station coordinate comparison results for Up | | | | component in [m] | | num_of_days | float | Number of days used for analysis | | pos_mean_x | float | X-coordinate of mean station coordinate position in [m] | | pos_mean_x_rms1 | float | RMS1 of X-coordinate of mean station coordinate position in [m] | | pos_mean_x_rms2 | float | RMS2 of X-coordinate of mean station coordinate position in [m] | | pos_mean_y | float | Y-coordinate of mean station coordinate position in [m] | | pos_mean_y_rms1 | float | RMS1 of Y-coordinate of mean station coordinate position in [m] | | pos_mean_y_rms2 | float | RMS2 of Y-coordinate of mean station coordinate position in [m] | | pos_mean_z | float | Z-coordinate of mean station coordinate position in [m] | | pos_mean_z_rms1 | float | RMS1 of Z-coordinate of mean station coordinate position in [m] | | pos_mean_z_rms2 | float | RMS2 of Z-coordinate of mean station coordinate position in [m] | | repeatability_east | float | Station coordinate repeatability for East component in [m] | | repeatability_north | float | Station coordinate repeatability for North component in [m] | | repeatability_up | float | Station coordinate repeatability for Up component in [m] | | residual_east | float | Station residuals for East component in [m] | | residual_north | float | Station residuals for North component in [m] | | residual_up | float | Station residuals for Up component in [m] | and **meta**-data: | Key | Description | |----------------------|--------------------------------------------------------------------------------------| | num_coord_files | Number of coordinate files used for analysis | | time | Date of analysis session | | \__data_path__ | File path | | \__parser_name__ | Parser name | """ def __init__(self, *args: Tuple[Any], **kwargs: Dict[Any, Any]): """ Args: args: Parameters without keyword. kargs: Keyword arguments. """ super().__init__(*args, **kwargs) self.fields = list() # Save field names, which are read. Needed by generating of dataset. def setup_parser(self) -> Iterable[ParserDef]: """Set up information needed for the parser This should return a dictionary with all parameters needed by np.genfromtxt to do the actual parsing. Returns: Dict: Parameters needed by np.genfromtxt to parse the input file. """ # Skip lines until 'Verification of fiducial stations' section skip_lines_parser = ParserDef( end_marker=lambda line, _ln, _n: ( "Verification of fiducial stations" in line # Start of residuals_parser or "PART 9: SLIDING 7-SESSION COMPARISON OF STATION COORDINATES" in line # Start of repeatability_parser or "LIST OF COORDINATE FILES" in line # Start of num_files_parser or "COMPARISON OF COORDINATES" in line # Start of coord_comp_parser ), label= lambda line, _ln: line, parser_def = {}, ) #----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8- # #================================================================================ #RNX2SNX BPE PROCESSING SUMMARY FOR YEAR-SESSION 21-1660 #================================================================================ # # # Summary file generated at 16-Jun-2021 13:12:50 by R2S_SUM time_parser = ParserDef( end_marker=lambda line, _ln, _n: line.startswith("Summary file generated"), label=lambda line, _ln: "SUMMARY FOR YEAR-SESSION" in line, parser_def={ True: { "parser": self._parse_time, "fields": { "time": (0, None), }, }, }, ) #----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8- # # RNX2SNX_211660: Verification of fiducial stations # ------------------------------------------------------------------------------- # # # FILE 1: APR211660.CRD: EXTRAPOLATE # FILE 2: F1_211660.CRD: RNX2SNX_211660: Final coordinate/troposphere results # # LOCAL GEODETIC DATUM: IGb14 # RESIDUALS IN LOCAL SYSTEM (NORTH, EAST, UP) # # # # --------------------------------------------------------------------- # | NUM | NAME | FLG | RESIDUALS IN MILLIMETERS | | # --------------------------------------------------------------------- # | | | | | | # | 1 | 0ABI | P A | -1.03 3.41 14.57 | M | # | 2 | AASC | P A | 0.01 1.26 4.53 | M | # | | | | | | # --------------------------------------------------------------------- # | | RMS / COMPONENT | | 2.76 2.65 6.33 | | # | | MEAN | | -0.00 -0.00 -0.00 | | # | | MIN | | -5.85 -8.09 -11.93 | | # | | MAX | | 5.35 3.83 10.56 | | # --------------------------------------------------------------------- residuals_parser = ParserDef( end_marker=lambda line, _ln, _n: line.strip().startswith("========="), label=lambda line, _ln: ( line.strip().startswith("|") # Line starts with sign "|" and line[2:6].strip().isnumeric() # 1st column is a number ), parser_def={ True: { "parser": self._parse_line, "fields": { "station": (9, 26), "flag": (28, 32), "residual_north": (34, 44), "residual_east": (45, 54), "residual_up": (55, 64), }, }, }, ) #----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8- # # RNX2SNX_211660: Coordinate repeatability for verificati # ------------------------------------------------------------------------------- # Total number of stations: 316 # ------------------------------------------------------------------------------- # Weekday Repeatability (mm) # Station #Days 0123456 N E U # ------------------------------------------------------------------------------- # 0ABI 1 A 0.00 0.00 0.00 # AASC 7 AAAAAAA 1.21 0.98 3.09 # ------------------------------------------------------------------------------- # # Coordinate estimates: 2176 1.38 1.47 5.75 repeatability_parser = ParserDef( end_marker=lambda line, _ln, _n: line.strip().startswith("# Coordinate estimates"), label=lambda line, _ln: ( len(line) > 49 # Length of line has to be larger than 49 characters and line[1:4].isalnum() # Station name and line[20].isnumeric() # Number of days ), parser_def={ True: { "parser": self._parse_line, "fields": { "station": (1, 5), "num_of_days": (15, 21), "weekday": (22, 30), "repeatability_north": (31, 38), "repeatability_east": (39, 44), "repeatability_up": (45, 50), }, }, }, ) #----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8- # # ------------------------------------------------------------------------------------------- # File Coordinate files # ------------------------------------------------------------------------------------------- # 1 ${P}/PGS/STA/F1_211600.CRD # 2 ${P}/PGS/STA/F1_211610.CRD # 3 ${P}/PGS/STA/F1_211620.CRD # 4 ${P}/PGS/STA/F1_211630.CRD # 5 ${P}/PGS/STA/F1_211640.CRD # 6 ${P}/PGS/STA/F1_211650.CRD # 7 ${P}/PGS/STA/F1_211660.CRD # ------------------------------------------------------------------------------------------- # # # ------------------------------------------------------------------------------------------- # LIST OF COORDINATE FILES # ------------------------------------------------------------------------------------------- # # NUMBER OF COORDINATE FILES: 7 num_coord_files_parser = ParserDef( end_marker=lambda line, _ln, _n: line.startswith("1"), label=lambda line, _ln: line.strip().startswith("NUMBER OF COORDINATE FILES"), parser_def={ True: { "parser": self._parse_num_coord_files, "strip": "", "fields": { "num_coord_files": (0, None), }, }, }, ) #----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8- # # COMPARISON OF COORDINATES (IN NORTH, EAST, AND HEIGHT COMPONENT) # EPOCH FOR COMPARISON: AS IN COORDINATE FI # RMS: UNWEIGHTED RMS OF THE ESTIMATION OF ONE COORDINATE COMPONENT IN MM # --------------------------------------------------------------------------------- # # NUM STATION #FIL C RMS 1 2 3 4 5 6 7 # --------------------------------------------------------------------------------- # 2 AASC 7 N 1.21 -1.85 -0.41 0.90 -1.27 0.67 1.39 0.56 # E 0.98 1.50 -1.02 0.47 0.51 -0.78 -1.11 0.42 # U 3.09 0.54 5.33 -0.23 -3.92 0.64 -3.41 1.04 # # 3 ADAC 7 N 1.76 -1.80 -1.47 0.88 3.25 0.60 -1.24 -0.23 # E 0.82 0.02 -0.20 0.65 -0.84 1.47 -0.37 -0.74 # U 9.21 -1.14 5.65 17.49 -0.76 -9.54 -3.61 -8.09 # # 72 ENON 5 N 5.03 -7.11 -1.71 -0.84 5.30 4.37 # E 1.85 0.78 0.75 2.13 -2.61 -1.06 # U 6.34 8.82 2.17 1.37 -6.60 -5.76 # # 33 BIRK 1 N 0.00 0.00 # E 0.00 0.00 # U 0.00 0.00 coord_comparison_parser = ParserDef( end_marker=lambda line, _ln, _n: line.startswith("1"), label=lambda line, _ln: ( len(line) > 27 # Length of line has to be larger than 27 characters and line[27] in ["N", "E", "U"] # Coordinate flag ('N', 'E' or 'U') and line[31].isnumeric() # RMS ), parser_def={ True: { "parser": self._parse_coord_comparison, "strip": "", "fields": { "station": (6, 10), "num_files": (11, 25), "flag_coord": (26, 28), "rms": (29, 35), "values": (36, None), }, }, }, ) #----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2---- # # MEAN VALUES OF GEOCENTRIC X,Y,Z - COORDINATES # RMS1: RMS OF UNWEIGHTED AVERAGE OF EACH COORDINATE COMPONENT # RMS2: FORMAL ACCURACY OF EACH COORDINATE COMPONENT FROM COMBINED SOLUTION USING EQUAL WEIGHTS # ---------------------------------------------------------------------------------------------------------------------------- # # NUM STATION #FIL FLG X (M) RMS1 RMS2 Y (M) RMS1 RMS2 Z (M) RMS1 RMS2 # ---------------------------------------------------------------------------------------------------------------------------- # # 2 AASC 7 M 3172870.21703 0.00072 0.00144 604208.68041 0.00041 0.00144 5481574.63290 0.00101 0.00144 # 3 ADAC 7 M 1916240.20525 0.00114 0.00144 963577.13113 0.00066 0.00144 5986596.69558 0.00330 0.00144 coord_mean_parser = ParserDef( end_marker=lambda line, _ln, _n: line.startswith(">>> CPU"), label=lambda line, _ln: ( len(line) > 100 # Length of line has to be larger than 100 characters and line[0:4].strip().isnumeric() # 1st column is a number and line[6:10].isalnum() # Station name ), parser_def={ True: { "parser": self._parse_line, "fields": { "station": (6, 10), "num_files": (12, 26), "flag": (27, 29), "pos_mean_x": (30, 46), "pos_mean_x_rms1": (47, 54), "pos_mean_x_rms2": (55, 62), "pos_mean_y": (62, 77), "pos_mean_y_rms1": (78, 85), "pos_mean_y_rms2": (86, 93), "pos_mean_z": (94, 108), "pos_mean_z_rms1": (109, 116), "pos_mean_z_rms2": (117, 124), }, }, }, ) return itertools.chain([ time_parser, skip_lines_parser, residuals_parser, skip_lines_parser, repeatability_parser, skip_lines_parser, num_coord_files_parser, skip_lines_parser, coord_comparison_parser, coord_mean_parser, ]) # # PARSERS # def _parse_coord_comparison(self, line: Dict[str, str], cache: Dict[str, Any]) -> None: """Parse station coordinate comparison table """ if line["station"].strip().lower(): cache["station"] = line["station"].strip().lower() station = cache["station"] self.data.setdefault(station, dict()) coord_def = { "N": "north", "E": "east", "U": "up", } coord_key = coord_def[line['flag_coord'].strip()] self.data[station][f"coord_comp_rms_{coord_key}"] = float(line["rms"]) * Unit.millimeter2meter if not f"coord_comp_rms_{coord_key}" in self.fields: self.fields.append(f"coord_comp_rms_{coord_key}") # Parse values line #----+----1----+----2----+----3----+----4----+----- # 1.21 -1.85 -0.41 0.90 -1.27 0.67 1.39 0.56 # 5.03 -7.11 -1.71 -0.84 5.30 4.37 # 0.00 0.00 if not "num_coord_files" in self.meta: log.warn("Number of coordinate files are unknown. Daily comparison values can not be read.") return len_values = self.meta["num_coord_files"] * 6 # length of line depends on number of files line_values = line["values"].ljust(len_values) values = [line_values[i:i+6] for i in range(0, len_values, 6)] for idx, value in enumerate(values): if value.strip(): values[idx] = float(value) * Unit.millimeter2meter else: values[idx] = float('nan') self.data[station][f"coord_comp_{coord_key}"] = values if not f"coord_comp_{coord_key}" in self.fields: self.fields.append(f"coord_comp_{coord_key}") def _parse_time(self, line: Dict[str, str], _: Dict[str, Any]) -> None: """Parse date of analysis session """ # Example to parse for getting date: # # RNX2SNX BPE PROCESSING SUMMARY FOR YEAR-SESSION 21-1660 # time = line["time"].split("YEAR-SESSION")[1].strip() self.meta["time"] = datetime.strptime(time[:-1], "%y-%j") def _parse_line(self, line: Dict[str, str], _: Dict[str, Any]) -> None: """Parse line """ station = line["station"].lower() self.data.setdefault(station, dict()) skip_fields = ["flag", "num_files", "station", "weekday"] unit_millimeter = [ "repeatability_east", "repeatability_north", "repeatability_up" "residual_east", "residual_north", "residual_up", ] for key, value in line.items(): if key in skip_fields: continue if not key in self.fields: self.fields.append(key) if key in unit_millimeter: self.data[station][key] = float(value) * Unit.millimeter2meter else: self.data[station][key] = float(value) def _parse_num_coord_files(self, line: Dict[str, str], _: Dict[str, Any]) -> None: """Parse number of coordinate files """ # Example to parse for getting number of coordinate files: # # NUMBER OF COORDINATE FILES: 7 # self.meta["num_coord_files"] = int(line["num_coord_files"].split(":")[1]) # # GET DATASET # def as_dataset(self) -> "Dataset": """Return the parsed data as a Dataset Returns: Midgard Dataset where station coordinates and belonging information are stored with following fields: | Field | Type | Description | |-------------------------|---------------|-------------------------------------------------------------------| | coord_comp_east_day<x> | numpy.ndarray | Station coordinate comparison results for East component in [m] | | | | for day X (X=[1|2|...|7]) | | coord_comp_north_day<x> | numpy.ndarray | Station coordinate comparison results for North component in [m] | | | | for day X (X=[1|2|...|7]) | | coord_comp_up_day<x> | numpy.ndarray | Station coordinate comparison results for Up component in [m] | | | | for day X (X=[1|2|...|7]) | | coord_comp_rms_east | numpy.ndarray | List with daily station coordinate comparison results for East | | | | component in [m] | | coord_comp_rms_north | numpy.ndarray | List with daily station coordinate comparison results for North | | | | component in [m] | | coord_comp_rms_up | numpy.ndarray | List with daily station coordinate comparison results for Up | | | | component in [m] | | num_of_days | numpy.ndarray | Number of days used for analysis | | pos_mean_x | numpy.ndarray | X-coordinate of mean station coordinate position in [m] | | pos_mean_x_rms1 | numpy.ndarray | RMS1 of X-coordinate of mean station coordinate position in [m] | | pos_mean_x_rms2 | numpy.ndarray | RMS2 of X-coordinate of mean station coordinate position in [m] | | pos_mean_y | numpy.ndarray | Y-coordinate of mean station coordinate position in [m] | | pos_mean_y_rms1 | numpy.ndarray | RMS1 of Y-coordinate of mean station coordinate position in [m] | | pos_mean_y_rms2 | numpy.ndarray | RMS2 of Y-coordinate of mean station coordinate position in [m] | | pos_mean_z | numpy.ndarray | Z-coordinate of mean station coordinate position in [m] | | pos_mean_z_rms1 | numpy.ndarray | RMS1 of Z-coordinate of mean station coordinate position in [m] | | pos_mean_z_rms2 | numpy.ndarray | RMS2 of Z-coordinate of mean station coordinate position in [m] | | repeatability_east | numpy.ndarray | Station coordinate repeatability for East component in [m] | | repeatability_north | numpy.ndarray | Station coordinate repeatability for North component in [m] | | repeatability_up | numpy.ndarray | Station coordinate repeatability for Up component in [m] | | residual_east | numpy.ndarray | Station residuals for East component in [m] | | residual_north | numpy.ndarray | Station residuals for North component in [m] | | residual_up | numpy.ndarray | Station residuals for Up component in [m] | | station | numpy.ndarray | Station names | | time | TimeTable | Date of analysis session | and following Dataset `meta` data: | Entry | Type | Description | |---------------------|-------|--------------------------------------------------------------------------------| | num_coord_files | int | Number of coordinate files used for analysis | | \__data_path__ | str | File path | """ data = dict() # Generate dataset dset = dataset.Dataset(num_obs=len(self.data.keys())) dset.meta = self.meta.copy() # Remove unnecessary fields in meta for key in ["__parser_name__"]: del dset.meta[key] # Prepare data for adding to dataset for sta in sorted(self.data.keys()): for field in self.fields: if field in ["coord_comp_east", "coord_comp_north", "coord_comp_up"]: for idx in range(0, self.meta["num_coord_files"]): if field in self.data[sta]: data.setdefault(f"{field}_day{idx+1}", list()).append(self.data[sta][field][idx]) else: data.setdefault(f"{field}_day{idx+1}", list()).append(float('nan')) continue if field in self.data[sta]: data.setdefault(field, list()).append(self.data[sta][field]) else: # Field does not exist for station 'sta', therefore it is initialized with NaN. data.setdefault(field, list()).append(float('nan')) # Add fields to dataset dset.add_text("station", val=sorted(self.data.keys())) for field in data: unit = "" if field == "num_of_days" else "meter" dset.add_float(field, val=data[field], unit=unit) dset.add_time( "time", val=[dset.meta["time"] for ii in range(0, dset.num_obs)], scale="utc", fmt="datetime", ) return dset
[ "itertools.chain", "midgard.parsers.ParserDef", "datetime.datetime.strptime", "midgard.dev.log.warn" ]
[((5864, 6164), 'midgard.parsers.ParserDef', 'ParserDef', ([], {'end_marker': "(lambda line, _ln, _n: 'Verification of fiducial stations' in line or \n 'PART 9: SLIDING 7-SESSION COMPARISON OF STATION COORDINATES' in line or\n 'LIST OF COORDINATE FILES' in line or 'COMPARISON OF COORDINATES' in line)", 'label': '(lambda line, _ln: line)', 'parser_def': '{}'}), "(end_marker=lambda line, _ln, _n: \n 'Verification of fiducial stations' in line or \n 'PART 9: SLIDING 7-SESSION COMPARISON OF STATION COORDINATES' in line or\n 'LIST OF COORDINATE FILES' in line or 'COMPARISON OF COORDINATES' in\n line, label=lambda line, _ln: line, parser_def={})\n", (5873, 6164), False, 'from midgard.parsers import ChainParser, ParserDef\n'), ((18195, 18421), 'itertools.chain', 'itertools.chain', (['[time_parser, skip_lines_parser, residuals_parser, skip_lines_parser,\n repeatability_parser, skip_lines_parser, num_coord_files_parser,\n skip_lines_parser, coord_comparison_parser, coord_mean_parser]'], {}), '([time_parser, skip_lines_parser, residuals_parser,\n skip_lines_parser, repeatability_parser, skip_lines_parser,\n num_coord_files_parser, skip_lines_parser, coord_comparison_parser,\n coord_mean_parser])\n', (18210, 18421), False, 'import itertools\n'), ((20708, 20745), 'datetime.datetime.strptime', 'datetime.strptime', (['time[:-1]', '"""%y-%j"""'], {}), "(time[:-1], '%y-%j')\n", (20725, 20745), False, 'from datetime import datetime\n'), ((19634, 19736), 'midgard.dev.log.warn', 'log.warn', (['"""Number of coordinate files are unknown. Daily comparison values can not be read."""'], {}), "(\n 'Number of coordinate files are unknown. Daily comparison values can not be read.'\n )\n", (19642, 19736), False, 'from midgard.dev import log\n')]
""" helping functions for downloading german weather service data """ from pathlib import Path, PurePosixPath from typing import Union from python_dwd.constants.access_credentials import DWD_FOLDER_STATIONDATA, DWD_SERVER, DWD_PATH, FTP_EXPRESSION def create_local_file_name(remote_file_path: Union[Path, str], local_folder: Union[Path, str]) -> Path: """ The local filename consists of the set of parameters (easier to analyse when looking at the filename) and the original filename """ return Path(local_folder, DWD_FOLDER_STATIONDATA, str(remote_file_path).split('/')[-1]) def create_remote_file_name(file: str) -> str: """ The filepath to the server is created with the filename, the parameters and the path Args: file: data file name on server Returns: complete Path to the required data """ file_server = PurePosixPath(DWD_SERVER, DWD_PATH, file) return f"{FTP_EXPRESSION}{file_server}"
[ "pathlib.PurePosixPath" ]
[((943, 984), 'pathlib.PurePosixPath', 'PurePosixPath', (['DWD_SERVER', 'DWD_PATH', 'file'], {}), '(DWD_SERVER, DWD_PATH, file)\n', (956, 984), False, 'from pathlib import Path, PurePosixPath\n')]
import inspect from copy import deepcopy SELF = "'self'" UNSAFE_INLINE = "'unsafe-inline'" UNSAFE_EVAL = "'unsafe-eval'" NONE = "'none'" STRICT_DYNAMIC = "'strict-dynamic'" class Directive: """Descriptor for the management and rendering of CSP directives. Uses types to do some basic sanity checking. This does not ensure that the resulting directive is necessarily valid though. For example, typos are not caught, nor are non-sensical values. Validation is currently out of scope for this project. """ def __init__(self, name, type, default, render): self.name = name self.type = type self.default = default self.renderer = render def render(self, instance): if self.name not in instance.__dict__: return None if not instance.__dict__[self.name]: return None return self.renderer(instance.__dict__[self.name]) def __get__(self, instance, cls): if instance is None: return self if self.name not in instance.__dict__: instance.__dict__[self.name] = self.default() return instance.__dict__[self.name] def __set__(self, instance, value): if not isinstance(value, self.type): raise TypeError(f"Expected type {self.type}") instance.__dict__[self.name] = value class SetDirective(Directive): def __init__(self, name): parent = super() parent.__init__(name, type=set, default=set, render=render_set) class SingleValueDirective(Directive): def __init__(self, name): parent = super() parent.__init__(name, type=str, default=str, render=str) class BooleanDirective(Directive): def __init__(self, name): parent = super() parent.__init__(name, type=bool, default=bool, render=render_bool) def is_directive(obj): return isinstance(obj, Directive) def render_set(value): return " ".join(sorted(value)) def render_bool(value): return "" if value else None class ContentSecurityPolicy: """Defines the complete set of policies available in CSP 1 and 2. * Directives which allow for multiple values are defined as sets. * Directives which allow for a single value may be set by string. * Directives which are boolean in nature are set via True/False. The directives are set through properties, with the dashes replaced by underscores. For example, 'default-src' becomes 'default_src'. Everywhere else (i.e. values) the dashes should be left as they are. Example:: policy = ContentSecurityPolicy() policy.default_src.add('http://*.example.com') policy.sandbox = "allow-scripts" policy.block_all_mixed_content = True """ # Fetch directives child_src = SetDirective("child-src") connect_src = SetDirective("connect-src") default_src = SetDirective("default-src") font_src = SetDirective("font-src") frame_src = SetDirective("frame-src") img_src = SetDirective("img-src") manifest_src = SetDirective("manifest-src") media_src = SetDirective("media-src") object_src = SetDirective("object-src") script_src = SetDirective("script-src") style_src = SetDirective("style-src") worker_src = SetDirective("worker-src") # Document directives base_uri = SetDirective("base-uri") plugin_types = SetDirective("plugin-types") sandbox = SingleValueDirective("sandbox") disown_opener = BooleanDirective("disown-opener") # Navigation directives form_action = SetDirective("form-action") frame_ancestors = SetDirective("frame-ancestors") # Reporting directives report_uri = SingleValueDirective("report-uri") report_to = SingleValueDirective("report-to") # Other directives block_all_mixed_content = BooleanDirective("block-all-mixed-content") require_sri_for = SingleValueDirective("require-sri-for") upgrade_insecure_requeists = BooleanDirective("upgrade-insecure-requests") def __init__(self, report_only=False, **directives): self.report_only = report_only for directive in directives: name = directive.replace("-", "_") assert hasattr(self, name) setattr(self, name, directives[directive]) def copy(self): policy = self.__class__() policy.__dict__ = deepcopy(self.__dict__) return policy @property def directives(self): for name, value in inspect.getmembers(self.__class__, is_directive): yield value @property def text(self): values = ((d.name, d.render(self)) for d in self.directives) values = ((name, text) for name, text in values if text is not None) return ";".join(" ".join(v).strip() for v in values) @property def header_name(self): if self.report_only: return "Content-Security-Policy-Report-Only" else: return "Content-Security-Policy" def apply(self, response): text = self.text if text: response.headers[self.header_name] = text
[ "inspect.getmembers", "copy.deepcopy" ]
[((4386, 4409), 'copy.deepcopy', 'deepcopy', (['self.__dict__'], {}), '(self.__dict__)\n', (4394, 4409), False, 'from copy import deepcopy\n'), ((4501, 4549), 'inspect.getmembers', 'inspect.getmembers', (['self.__class__', 'is_directive'], {}), '(self.__class__, is_directive)\n', (4519, 4549), False, 'import inspect\n')]
import configparser import pytest from mock import MagicMock from seedsigner.controller import Controller from seedsigner.models.settings import Settings def test_singleton_init_fails(): """ The Controller should not allow any code to instantiate it via Controller() """ with pytest.raises(Exception): c = Controller() def test_singleton_get_instance_without_configure_fails(): """ Calling get_instance() without first calling configure_instance() should fail """ with pytest.raises(Exception): c = Controller.get_instance() def test_singleton_get_instance_preserves_state(): """ Changes to the Controller singleton should be preserved across calls to get_instance() """ # Must reset Singleton instances; pytest cannot properly isolate Singletons for us # automatically. # TODO: Cleaner solution here would be nice. Settings._instance = None Controller._instance = None settings = """ [system] debug = False default_language = en persistent_settings = False [display] text_color = ORANGE qr_background_color = FFFFFF camera_rotation = 0 [wallet] network = main software = Prompt qr_density = 2 custom_derivation = m/0/0 compact_seedqr_enabled = False """ config = configparser.ConfigParser() config.read_string(settings) # Initialize the instance and verify that it read the config settings Controller.configure_instance(config, disable_hardware=True) controller = Controller.get_instance() assert controller.color == "ORANGE" # Change a value in the instance... controller.color = "purple" # ...get a new copy of the instance and confirm change controller = Controller.get_instance() assert controller.color == "purple" def test_missing_settings_get_defaults(): """ Should gracefully handle any missing fields from `settings.ini` """ # TODO: This is not complete; currently only handles missing compact_seedqr_enabled. # Must reset Singleton instances; pytest cannot properly isolate Singletons for us # automatically. # TODO: Cleaner solution here would be nice. Settings._instance = None Controller._instance = None # Intentionally omit `compact_seedqr_enabled` from settings: settings = """ [system] debug = False default_language = en persistent_settings = False [display] text_color = ORANGE qr_background_color = FFFFFF camera_rotation = 0 [wallet] network = main software = Prompt qr_density = 2 custom_derivation = m/0/0 """ config = configparser.ConfigParser() config.read_string(settings) # Controller should parse the settings fine, even though a field is missing Controller.configure_instance(config, disable_hardware=True) # Controller should still have a default value controller = Controller.get_instance() assert controller.settings.compact_seedqr_enabled is False
[ "configparser.ConfigParser", "pytest.raises", "seedsigner.controller.Controller.configure_instance", "seedsigner.controller.Controller", "seedsigner.controller.Controller.get_instance" ]
[((1353, 1380), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (1378, 1380), False, 'import configparser\n'), ((1493, 1553), 'seedsigner.controller.Controller.configure_instance', 'Controller.configure_instance', (['config'], {'disable_hardware': '(True)'}), '(config, disable_hardware=True)\n', (1522, 1553), False, 'from seedsigner.controller import Controller\n'), ((1571, 1596), 'seedsigner.controller.Controller.get_instance', 'Controller.get_instance', ([], {}), '()\n', (1594, 1596), False, 'from seedsigner.controller import Controller\n'), ((1787, 1812), 'seedsigner.controller.Controller.get_instance', 'Controller.get_instance', ([], {}), '()\n', (1810, 1812), False, 'from seedsigner.controller import Controller\n'), ((2729, 2756), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (2754, 2756), False, 'import configparser\n'), ((2875, 2935), 'seedsigner.controller.Controller.configure_instance', 'Controller.configure_instance', (['config'], {'disable_hardware': '(True)'}), '(config, disable_hardware=True)\n', (2904, 2935), False, 'from seedsigner.controller import Controller\n'), ((3005, 3030), 'seedsigner.controller.Controller.get_instance', 'Controller.get_instance', ([], {}), '()\n', (3028, 3030), False, 'from seedsigner.controller import Controller\n'), ((287, 311), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (300, 311), False, 'import pytest\n'), ((325, 337), 'seedsigner.controller.Controller', 'Controller', ([], {}), '()\n', (335, 337), False, 'from seedsigner.controller import Controller\n'), ((497, 521), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (510, 521), False, 'import pytest\n'), ((535, 560), 'seedsigner.controller.Controller.get_instance', 'Controller.get_instance', ([], {}), '()\n', (558, 560), False, 'from seedsigner.controller import Controller\n')]
import asyncio from datetime import datetime from nindo import NindoClient async def test(): client = NindoClient() print("\n--- Viral ---") async for viral in client.viral(): print(viral.type, viral.post.title) print("\n--- Milestones ---") async for milestone in client.milestones(): print(milestone.expected_time, milestone.followers) print("\n--- Coupons ---") async for coupon in client.coupons(): print(coupon.discount, coupon.code) print("\n--- Search ---") async for artist in client.search("unge"): print(artist.name) print("\n--- Youtube ---") async for artist in client.youtube_charts(): print("\n", artist.rank, artist.name) details = await artist.get_details() print("Channels:", len(details.youtube_channels)) print("\n--- Instagram ---") async for artist in client.instagram_charts(): print("\n", artist.rank, artist.name) details = await artist.get_details() print("Channels:", len(details.instagram_channels)) channel = details.instagram_channels[0] channel_details = await channel.get_details() print("Average Comments:", channel_details.average_comments) channel_history = await channel.get_history() print("History Change:", channel_history.before(datetime.utcnow()).total_change) post_count = await channel.posts().flatten() print("Post Count:", len(post_count)) print("\n--- TikTok ---") async for artist in client.tiktok_charts(): print("\n", artist.rank, artist.name) details = await artist.get_details() print("Channels:", len(details.tiktok_channels)) print("\n--- Twitter ---") async for artist in client.twitter_charts(): print("\n", artist.rank, artist.name) details = await artist.get_details() print("Channels:", len(details.twitter_channels)) print("\n--- Twitch ---") async for artist in client.twitch_charts(): print("\n", artist.rank, artist.name) details = await artist.get_details() print("Channels:", len(details.twitch_channels)) print("\n--- Live ---") artist = await client.get_artist("fe23cce0bcdb3d89cbfd500d91487202") channel = artist.instagram_channels[0] async for followers in channel.live(): print(followers) loop = asyncio.get_event_loop() loop.run_until_complete(test())
[ "nindo.NindoClient", "asyncio.get_event_loop", "datetime.datetime.utcnow" ]
[((2389, 2413), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (2411, 2413), False, 'import asyncio\n'), ((109, 122), 'nindo.NindoClient', 'NindoClient', ([], {}), '()\n', (120, 122), False, 'from nindo import NindoClient\n'), ((1351, 1368), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (1366, 1368), False, 'from datetime import datetime\n')]
from pathlib import Path import boto3 import src.superannotate as sa from tests.integration.base import BaseTestCase class TestDirectS3Upload(BaseTestCase): PROJECT_NAME = "test_direct_s3_upload" TEST_FOLDER_NAME = "test_folder" PROJECT_DESCRIPTION = "desc" PROJECT_TYPE = "Vector" S3_BUCKET = "superannotate-python-sdk-test" S3_FOLDER = "sample_project_vector" def test_direct_s3_upload(self): csv = (Path.home() / ".aws" / "credentials").read_text().splitlines() access_key_id = csv[1].split("=")[1].strip() access_secret = csv[2].split("=")[1].strip() sa.upload_images_from_s3_bucket_to_project( self.PROJECT_NAME, access_key_id, access_secret, self.S3_BUCKET, self.S3_FOLDER, ) s3_client = boto3.client("s3") paginator = s3_client.get_paginator("list_objects_v2") response_iterator = paginator.paginate( Bucket=self.S3_BUCKET, Prefix=self.S3_FOLDER ) on_s3 = [] for response in response_iterator: if "Contents" in response: for object_data in response["Contents"]: key = object_data["Key"] if key[-4:] in [".jpg", ".png"]: on_s3.append(key) self.assertEqual(len(on_s3), sa.get_project_image_count(self.PROJECT_NAME)) def test_direct_s3_upload_folder(self): csv = (Path.home() / ".aws" / "credentials").read_text().splitlines() access_key_id = csv[1].split("=")[1].strip() access_secret = csv[2].split("=")[1].strip() sa.create_folder(self.PROJECT_NAME, self.TEST_FOLDER_NAME) project_folder = f"{self.PROJECT_NAME}/{self.TEST_FOLDER_NAME}" sa.upload_images_from_s3_bucket_to_project( project_folder, access_key_id, access_secret, self.S3_BUCKET, self.S3_FOLDER ) s3_client = boto3.client("s3") paginator = s3_client.get_paginator("list_objects_v2") response_iterator = paginator.paginate( Bucket=self.S3_BUCKET, Prefix=self.S3_FOLDER ) on_s3 = [] for response in response_iterator: if "Contents" in response: for object_data in response["Contents"]: key = object_data["Key"] if key[-4:] in [".jpg", ".png"]: on_s3.append(key) self.assertEqual(len(on_s3), len(sa.search_images(project_folder)))
[ "boto3.client", "src.superannotate.upload_images_from_s3_bucket_to_project", "src.superannotate.create_folder", "src.superannotate.search_images", "src.superannotate.get_project_image_count", "pathlib.Path.home" ]
[((620, 747), 'src.superannotate.upload_images_from_s3_bucket_to_project', 'sa.upload_images_from_s3_bucket_to_project', (['self.PROJECT_NAME', 'access_key_id', 'access_secret', 'self.S3_BUCKET', 'self.S3_FOLDER'], {}), '(self.PROJECT_NAME, access_key_id,\n access_secret, self.S3_BUCKET, self.S3_FOLDER)\n', (662, 747), True, 'import src.superannotate as sa\n'), ((835, 853), 'boto3.client', 'boto3.client', (['"""s3"""'], {}), "('s3')\n", (847, 853), False, 'import boto3\n'), ((1653, 1711), 'src.superannotate.create_folder', 'sa.create_folder', (['self.PROJECT_NAME', 'self.TEST_FOLDER_NAME'], {}), '(self.PROJECT_NAME, self.TEST_FOLDER_NAME)\n', (1669, 1711), True, 'import src.superannotate as sa\n'), ((1793, 1917), 'src.superannotate.upload_images_from_s3_bucket_to_project', 'sa.upload_images_from_s3_bucket_to_project', (['project_folder', 'access_key_id', 'access_secret', 'self.S3_BUCKET', 'self.S3_FOLDER'], {}), '(project_folder, access_key_id,\n access_secret, self.S3_BUCKET, self.S3_FOLDER)\n', (1835, 1917), True, 'import src.superannotate as sa\n'), ((1956, 1974), 'boto3.client', 'boto3.client', (['"""s3"""'], {}), "('s3')\n", (1968, 1974), False, 'import boto3\n'), ((1368, 1413), 'src.superannotate.get_project_image_count', 'sa.get_project_image_count', (['self.PROJECT_NAME'], {}), '(self.PROJECT_NAME)\n', (1394, 1413), True, 'import src.superannotate as sa\n'), ((2493, 2525), 'src.superannotate.search_images', 'sa.search_images', (['project_folder'], {}), '(project_folder)\n', (2509, 2525), True, 'import src.superannotate as sa\n'), ((442, 453), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (451, 453), False, 'from pathlib import Path\n'), ((1475, 1486), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (1484, 1486), False, 'from pathlib import Path\n')]
import copy import logging class InvalidProviderConfig(ValueError): pass class attr(object): def __init__(self, name, alias=None, aliases=None): self.name = name self.aliases = [] if alias: self.aliases.append(alias) if aliases: self.aliases.extend(aliases) @property def names(self): return [self.name] + self.aliases def from_config(self, config, remove=False): """ Return the value of this attr instance within the given dictionary. Parameters ---------- config : dict The config from which to take this attribute remove : bool Whether to remove the attribute from the given config, or whether to keep it. (default: False) Examples -------- >>> f = attr('foo', alias='f') >>> f.from_config({'a': 1, 'f': 2}) 2 >>> f.from_config({'a': 1, 'foo': 2}) 2 >>> f.from_config({'a': 1, 'foo': 2, 'f': 3}) Traceback (most recent call last): ... pyggybank.core.InvalidProviderConfig: Duplicate config item for "foo"... >>> f.from_config({'a': 1, 'foo': 2, 'f': 2}) 2 >>> f.from_config({'a': 1}) Traceback (most recent call last): ... pyggybank.core.InvalidProviderConfig: No config item for "foo" """ matching = [name for name in self.names if name in config] if remove: getter = config.pop else: getter = config.get values = [getter(key) for key in matching] # If duplicate information provided, but it is identical, let the # config through. if len(matching) > 1 and not all(values[0] == value for value in values[1:]): raise InvalidProviderConfig( 'Duplicate config item for "{}". Got "{}"' ''.format(self.name, ', '.join(matching))) elif not matching: raise InvalidProviderConfig( 'No config item for "{}"'.format(self.name)) return values[0] class Schema: def __init__(self, provider_names, provider_attrs): self.provider_names = provider_names self.provider_attrs = provider_attrs # TODO: Validate the schema (in case the provider is weirdly configured # or the attributes have name collisions). # Including: test attr.name and aliases don't collide with one another. def sanitise(self, config): if not hasattr(config, 'keys'): raise InvalidProviderConfig("Config isn't dict-like.") keys = set(config.keys()) if 'provider' not in config: raise InvalidProviderConfig('"provider" is missing from the config') if config['provider'] not in self.provider_names: raise InvalidProviderConfig('"{}" is an invalid provider name' ''.format(config.get('provider'))) sanitised = {'provider': config['provider']} config = copy.deepcopy(config) for provider_attr in self.provider_attrs: if not isinstance(provider_attr, attr): provider_attr = attr(provider_attr) config_attr = provider_attr.from_config(config, remove=True) sanitised[provider_attr.name] = config_attr remaining = sorted(set(config.keys()) - {'provider'}) if remaining: raise InvalidProviderConfig( 'The following config items are not allowed: {}' ''.format(', '.join(remaining)) ) return sanitised def extract_credentials(self, config): """ Take the credentials out of the given sanitised config. """ new_config = {} credentials = {} for provider_attr in self.provider_attrs: if not isinstance(provider_attr, attr): provider_attr = attr(provider_attr) if not getattr(provider_attr, 'are_credentials', True): continue item = config.get(provider_attr.name, None) if item is not None: credentials[provider_attr.name] = item for name in provider_attr.aliases: credentials[name] = item credentials = Credentials(credentials) return new_config, credentials class Credentials(dict): def __getattr__(self, item): if item in self: return self[item] else: raise AttributeError('{} has not attribute {}' ''.format(self.__class__.__name__, item)) class ClassPropertyDescriptor: def __init__(self, fget, fset=None): self.fget = fget self.fset = fset def __get__(self, obj, klass=None): if klass is None: klass = type(obj) return self.fget.__get__(obj, klass)() def __set__(self, obj, value): if not self.fset: raise AttributeError("can't set attribute") type_ = type(obj) return self.fset.__get__(obj, type_)(value) def setter(self, func): if not isinstance(func, (classmethod, staticmethod)): func = classmethod(func) self.fset = func return self def classproperty(func): if not isinstance(func, (classmethod, staticmethod)): func = classmethod(func) return ClassPropertyDescriptor(func) class Provider: _attributes = [] names = [] domain = '' @classproperty def attributes(cls): attrs = [] for attribute in cls._attributes: if not isinstance(attribute, attr): attribute = attr(attribute) attrs.append(attribute) return attrs # @classmethod # def validate_config(cls, config): # if not hasattr(config, 'keys'): # raise InvalidProviderConfig("Config isn't dict-like.") # # keys = set(config.keys()) # cls_attrs = set(cls.attributes) | set(['provider']) # if config.get('provider') not in cls.names: # raise InvalidProviderConfig( # 'The "{}" class does not provide "{}"' # ''.format(cls.__name__, config.get('provider'))) # # missing = ', '.join(cls_attrs - keys) # if missing: # raise InvalidProviderConfig('Config items missing: {}'.format(missing)) # not_allowed = ', '.join(keys - cls_attrs) # if not_allowed: # raise InvalidProviderConfig('The following config items ' # 'are not allowed: {}'.format(not_allowed)) # return True @classmethod def schema(cls): """Return the schema for this provider.""" # Allow a provider the possibility of overriding the # Schema (type and/or instance). if isinstance(cls.attributes, Schema): schema = cls.attributes else: schema = Schema(cls.names, cls.attributes) return schema @classmethod def providers(cls): """Return a dictionary mapping provider name to class.""" providers = {} for klass in cls.__subclasses__(): for name in klass.names: if name in providers: raise ValueError('Provider name collision for "{}" found ' 'between {} and {}.' ''.format(name, klass, providers[name])) providers[name] = klass return providers @classmethod def pick_provider(cls, config): providers = cls.providers() provider_name = config.get('provider', None) if provider_name is None: raise ValueError('The provider was not defined in the account ' 'config') provider = providers.get(provider_name, None) if provider is None: raise ValueError( 'No provider found for "{}"'.format(provider_name)) return provider @classmethod def from_config(cls, config): """ Given an account config, return a provider instance and the Credentials. """ provider = cls.pick_provider(config) schema = provider.schema() config = schema.sanitise(config) config, credentials = schema.extract_credentials(config) return provider.init_from_config(config), credentials @classmethod def init_from_config(cls, config): """Instantiate the provider with the given config.""" # TODO: Supply the config minus the credentials (e.g. nice-name). return cls() @classmethod def config_schema(cls): """Manufacture the config schema for this provider.""" schema = Schema(cls.attributes) return schema def prepare_credentials(self, config): """Turn the given config into authentication credentials.""" return Credentials(config) def authenticate(self, browser, credentials): """Login to the internet banking session.""" pass def logout(self, browser): """Logout of the internet banking session.""" pass def balances(self, browser): """Return a summary of all accounts.""" # NOTE: Must ensure to go to the right page as the first action of # this method. def transactions(self, browser): """Return transactions for all accounts.""" @property def log(self): """A pre-configured logger that can be used to log progress/debug.""" if not hasattr(self, '_log'): log = logging.getLogger(self.__class__.__name__) logging.basicConfig() # TODO: Make configurable. log.setLevel(logging.INFO) self._log = log return self._log from . import providers
[ "logging.getLogger", "logging.basicConfig", "copy.deepcopy" ]
[((3128, 3149), 'copy.deepcopy', 'copy.deepcopy', (['config'], {}), '(config)\n', (3141, 3149), False, 'import copy\n'), ((9763, 9805), 'logging.getLogger', 'logging.getLogger', (['self.__class__.__name__'], {}), '(self.__class__.__name__)\n', (9780, 9805), False, 'import logging\n'), ((9818, 9839), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (9837, 9839), False, 'import logging\n')]
import numpy as np from ..block import ColumnOrientedBlock class NumpyColumnOrientedBlock(ColumnOrientedBlock): def transposed(self): return np.transpose(self.data)
[ "numpy.transpose" ]
[((156, 179), 'numpy.transpose', 'np.transpose', (['self.data'], {}), '(self.data)\n', (168, 179), True, 'import numpy as np\n')]
from __future__ import print_function import ast from IPython.core.magic import Magics, magics_class, cell_magic from IPython.core import magic_arguments import re @magics_class class FunctionizerMagics(Magics): def check_variable_exists(self, name, exception=False): existing = name in self.shell.user_global_ns if not existing and exception: raise RuntimeError(f"{name} does not exist in the namespace") return existing def process_argument_list(self, arg_list): kwargs = [] pargs = [] for arg in arg_list: arg: str if arg.endswith("!"): # expand as keyword argument arg = arg[:-1] # remove the trailing exclamation kwargs.append(f"{arg}={arg}") self.check_variable_exists(arg, True) elif "=" in arg: kwargs.append(arg) elif arg.isidentifier(): pargs.append(arg) else: raise ValueError(f"'{arg}' is not a valid argument name.") return pargs, kwargs @magic_arguments.magic_arguments() @magic_arguments.argument("--as_dict", action="store_true", default=False, help="return as a dictionary") @magic_arguments.argument("-a", "--args", type=str, nargs="+", help="arguments") @magic_arguments.argument("-r", "--ret", type=str, nargs="+", help="return values") @magic_arguments.argument("-d", "--disable", action="store_true", default=False, help="disable") @magic_arguments.argument("--skip", action="store_true", default=False, help="only define function, skip execution") @magic_arguments.argument("--skip_last", action="store_true", default=False, help="drop last line") @magic_arguments.argument("--return_last", action="store_true", default=False, help="return last line. will override -r") @magic_arguments.argument("fn", type=str, help="function name") @cell_magic def functionize(self, line, cell): args = magic_arguments.parse_argstring(self.functionize, line) fn = args.fn func_args = args.args or [] ret = args.ret or [] skip = args.skip skip_last = args.skip_last return_last = args.return_last as_dict = args.as_dict shell = self.shell if skip_last and return_last: raise UserWarning("Using skip_last and return_last together is not recommended.") pargs, kwargs = self.process_argument_list(func_args) # Apply the assignment of the kwargs for before executing the cell assignment_code = "\n".join(kwargs) + "\n" if args.disable: shell.run_cell(assignment_code) shell.run_cell(cell) all_args = pargs + kwargs arg_sig = ",".join(all_args) lines = cell.splitlines() # purge empty lines while True: last_line = lines[-1] if re.search(r"\S+", last_line) or not lines: # is not empty break lines.pop(-1) if skip_last: lines.pop(-1) if not lines: lines.append("pass") else: if return_last: last_expr = lines.pop(-1) ret_expr = f"return {last_expr}" else: if as_dict: ret_expr = f'return dict({",".join([f"{r}={r}" for r in ret])})' else: ret_expr = f'return {",".join(ret)}' lines.append(ret_expr) indent_cell = "\n".join([" " + l for l in lines]) function_def = ( f'def {fn}({arg_sig}):\n' f'{indent_cell}\n' ) combined = function_def if skip else assignment_code + function_def + cell shell.run_cell(combined) def load_ipython_extension(ipython): ipython.register_magics(FunctionizerMagics)
[ "IPython.core.magic_arguments.argument", "IPython.core.magic_arguments.magic_arguments", "IPython.core.magic_arguments.parse_argstring", "re.search" ]
[((1114, 1147), 'IPython.core.magic_arguments.magic_arguments', 'magic_arguments.magic_arguments', ([], {}), '()\n', (1145, 1147), False, 'from IPython.core import magic_arguments\n'), ((1153, 1261), 'IPython.core.magic_arguments.argument', 'magic_arguments.argument', (['"""--as_dict"""'], {'action': '"""store_true"""', 'default': '(False)', 'help': '"""return as a dictionary"""'}), "('--as_dict', action='store_true', default=False,\n help='return as a dictionary')\n", (1177, 1261), False, 'from IPython.core import magic_arguments\n'), ((1263, 1342), 'IPython.core.magic_arguments.argument', 'magic_arguments.argument', (['"""-a"""', '"""--args"""'], {'type': 'str', 'nargs': '"""+"""', 'help': '"""arguments"""'}), "('-a', '--args', type=str, nargs='+', help='arguments')\n", (1287, 1342), False, 'from IPython.core import magic_arguments\n'), ((1348, 1435), 'IPython.core.magic_arguments.argument', 'magic_arguments.argument', (['"""-r"""', '"""--ret"""'], {'type': 'str', 'nargs': '"""+"""', 'help': '"""return values"""'}), "('-r', '--ret', type=str, nargs='+', help=\n 'return values')\n", (1372, 1435), False, 'from IPython.core import magic_arguments\n'), ((1436, 1536), 'IPython.core.magic_arguments.argument', 'magic_arguments.argument', (['"""-d"""', '"""--disable"""'], {'action': '"""store_true"""', 'default': '(False)', 'help': '"""disable"""'}), "('-d', '--disable', action='store_true', default=\n False, help='disable')\n", (1460, 1536), False, 'from IPython.core import magic_arguments\n'), ((1537, 1657), 'IPython.core.magic_arguments.argument', 'magic_arguments.argument', (['"""--skip"""'], {'action': '"""store_true"""', 'default': '(False)', 'help': '"""only define function, skip execution"""'}), "('--skip', action='store_true', default=False, help\n ='only define function, skip execution')\n", (1561, 1657), False, 'from IPython.core import magic_arguments\n'), ((1658, 1760), 'IPython.core.magic_arguments.argument', 'magic_arguments.argument', (['"""--skip_last"""'], {'action': '"""store_true"""', 'default': '(False)', 'help': '"""drop last line"""'}), "('--skip_last', action='store_true', default=False,\n help='drop last line')\n", (1682, 1760), False, 'from IPython.core import magic_arguments\n'), ((1762, 1887), 'IPython.core.magic_arguments.argument', 'magic_arguments.argument', (['"""--return_last"""'], {'action': '"""store_true"""', 'default': '(False)', 'help': '"""return last line. will override -r"""'}), "('--return_last', action='store_true', default=\n False, help='return last line. will override -r')\n", (1786, 1887), False, 'from IPython.core import magic_arguments\n'), ((1888, 1950), 'IPython.core.magic_arguments.argument', 'magic_arguments.argument', (['"""fn"""'], {'type': 'str', 'help': '"""function name"""'}), "('fn', type=str, help='function name')\n", (1912, 1950), False, 'from IPython.core import magic_arguments\n'), ((2021, 2076), 'IPython.core.magic_arguments.parse_argstring', 'magic_arguments.parse_argstring', (['self.functionize', 'line'], {}), '(self.functionize, line)\n', (2052, 2076), False, 'from IPython.core import magic_arguments\n'), ((2951, 2979), 're.search', 're.search', (['"""\\\\S+"""', 'last_line'], {}), "('\\\\S+', last_line)\n", (2960, 2979), False, 'import re\n')]
""" When I was mixing icons and magic symbols for training data, I noticed the GAN struggling. It appeared as it was trying to decide if the image should be mostly black or mostly white. This seemed to always lead to a mode collapse and devolution into noise. To combat this, I sorted the icon images into those which are lighter than the mean of the magic symbols subtracting a threshold. It would be better to look at distributions and standard deviations from the magic symbol means, but this was fast and seemed to do the trick. """ import os import sys import glob import numpy as np import cairosvg from PIL import Image from random import randint import cv2 from libs.img_mods import add_noise, invert_mostly_black_images from libs.img_utils import ImageUtils import matplotlib.pyplot as plt img_utils = ImageUtils() ############# # Setup ############# root_path = os.environ["HOME"] project_path = f"{root_path}/deep_upscale/" ################# # Parameters ################# input_path = f"{root_path}/deep_upscale/images/raw/" output_path = f"{root_path}/deep_upscale/images/" poor_images_path = f"{output_path}poor/" rich_images_path = f"{output_path}rich/" magic_image_path = "/home/ladvien/Documents/magic_symbols/" print(rich_images_path) ########################## # Sort Images on Darkness ########################## png_file_paths = glob.glob(f"{rich_images_path}/*.png") magic_file_paths = glob.glob(f"{magic_image_path}/*.png") magic_means = [ np.array(Image.open(img_path)).mean() for img_path in magic_file_paths ] magic_img_mean = np.array(magic_means).mean() print(f"Mean of magic symbol images: {magic_img_mean}") other_means = [ np.array(Image.open(img_path)).mean() for img_path in png_file_paths ] print(f"Mean of icons: {np.array(other_means).mean()}") sorted_dir = f"{output_path}sorted_by_dark/" img_utils.make_dir(sorted_dir) for img_path in png_file_paths: file_name = img_path.split("/")[-1] if np.array(Image.open(img_path)).mean() > magic_img_mean - 10: os.system(f"cp {img_path} {sorted_dir}{file_name}")
[ "PIL.Image.open", "numpy.array", "os.system", "libs.img_utils.ImageUtils", "glob.glob" ]
[((820, 832), 'libs.img_utils.ImageUtils', 'ImageUtils', ([], {}), '()\n', (830, 832), False, 'from libs.img_utils import ImageUtils\n'), ((1366, 1404), 'glob.glob', 'glob.glob', (['f"""{rich_images_path}/*.png"""'], {}), "(f'{rich_images_path}/*.png')\n", (1375, 1404), False, 'import glob\n'), ((1424, 1462), 'glob.glob', 'glob.glob', (['f"""{magic_image_path}/*.png"""'], {}), "(f'{magic_image_path}/*.png')\n", (1433, 1462), False, 'import glob\n'), ((1576, 1597), 'numpy.array', 'np.array', (['magic_means'], {}), '(magic_means)\n', (1584, 1597), True, 'import numpy as np\n'), ((2042, 2093), 'os.system', 'os.system', (['f"""cp {img_path} {sorted_dir}{file_name}"""'], {}), "(f'cp {img_path} {sorted_dir}{file_name}')\n", (2051, 2093), False, 'import os\n'), ((1494, 1514), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (1504, 1514), False, 'from PIL import Image\n'), ((1691, 1711), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (1701, 1711), False, 'from PIL import Image\n'), ((1778, 1799), 'numpy.array', 'np.array', (['other_means'], {}), '(other_means)\n', (1786, 1799), True, 'import numpy as np\n'), ((1982, 2002), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (1992, 2002), False, 'from PIL import Image\n')]
import os import yaml from enum import Enum from typing import List import pathlib class Scale(Enum): LINEAR = 0, LOG = 1 def construct(scale_str: str): if scale_str == "log": return Scale.LOG elif scale_str == "linear": return Scale.LINEAR else: raise ValueError("inappropreate scale parameter") class Type(Enum): FLOAT = 0, INT = 1, STRING = 2, DATASET = 3, def construct(type_str: str): if type_str == "float": return Type.FLOAT elif type_str == "int": return Type.INT elif type_str == "string": return Type.STRING elif type_str == "dataset": return Type.DATASET else: raise ValueError("inappropreate type parameter") class Param: def __init__(self): self.name: str = "" self.type: Type = Type.FLOAT self.range_from: float = 0.0 self.range_to: float = 1.0 self.scale: Scale = Scale.LINEAR self.value: str = "" self.is_redirect: bool = True self.data_dir: pathlib.Path = pathlib.Path() self.filename: str = "" self.size: int = 0 class Config: def _validate(self): for param in self.param_list: assert(param.range_from < param.range_to) if param.scale == Scale.LOG: assert(0 < param.range_from) assert(0 < param.range_to) elif param.type == 'dataset': assert(os.path.exists(param.template.format(0))) assert(os.path.exists( param.template.format(param.dataset_size - 1))) def __init__(self, yaml_filepath: str): with open(yaml_filepath) as fin: obj = yaml.safe_load(fin) self.param_list: List[Param] = [] for param_yml in obj["param_list"]: param = Param() param.name = param_yml["name"] param.type = Type.construct(param_yml["type"]) if param.type == Type.FLOAT: param.range_from = float(param_yml["range_from"]) param.range_to = float(param_yml["range_to"]) param.scale = Scale.construct(param_yml["scale"]) elif param.type == Type.STRING: param.value = param_yml["value"] elif param.type == Type.DATASET: param.is_redirect = param_yml["is_redirect"] param.data_dir = pathlib.Path(param_yml["data_dir"]) param.filename = param_yml["filename"] else: param.range_from = int(param_yml["range_from"]) param.range_to = int(param_yml["range_to"]) param.scale = Scale.construct(param_yml["scale"]) self.param_list.append(param) self.dataset_size = obj["dataset_size"] self.number_of_iteration = int(obj["number_of_iteration"]) self.exec_path = obj["exec_path"] self.parallel_job_size = obj["parallel_job_size"] self.direction = "minimize" if obj["minimize"] else "maximize" self._validate()
[ "yaml.safe_load", "pathlib.Path" ]
[((1141, 1155), 'pathlib.Path', 'pathlib.Path', ([], {}), '()\n', (1153, 1155), False, 'import pathlib\n'), ((1798, 1817), 'yaml.safe_load', 'yaml.safe_load', (['fin'], {}), '(fin)\n', (1812, 1817), False, 'import yaml\n'), ((2559, 2594), 'pathlib.Path', 'pathlib.Path', (["param_yml['data_dir']"], {}), "(param_yml['data_dir'])\n", (2571, 2594), False, 'import pathlib\n')]
import pathlib from setuptools import setup from setuptools import find_packages, setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "wrappers/README.rst").read_text() # This call to setup() does all the work setup( name="python-mano-wrappers", version="1.1.1", description="REST API Wrappers for various MANOs in compliance with ETSI SOL0005", long_description=README, long_description_content_type="text/x-rst", url="https://github.com/CN-UPB/python-mano-wrappers", author="PG-SCrAMbLE Team WP3", author_email="<EMAIL>", classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], packages=find_packages(exclude=["tests"]), install_requires=["requests"], )
[ "setuptools.find_packages", "pathlib.Path" ]
[((133, 155), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (145, 155), False, 'import pathlib\n'), ((768, 800), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['tests']"}), "(exclude=['tests'])\n", (781, 800), False, 'from setuptools import find_packages, setup\n')]
"""This module contains the group of functions which carry out the pocess of separate a sequence of spikes in bursts. They share as input the sequence of spikes detected by some algorithm of spike detection and returns a list of arrays which contains the times in which spikes exists. """ import numpy as np import math def general_burst_detection(spks, method='', kwargs={}): """Burst detection is the problem of group the spikes into bursts considering temporal information and temporal density. Usually is done with spikes produced for the same element, but in this package we consider the general situation of many elements. Parameters ---------- spks: pandas.DataFrame spikes format with columns: 'times', 'neuron', 'regime', 'descriptor' method: str, optional which method use. Depending of the selected method we have to input the required variables. kwargs: dict parameters needed for the called functions selected by the method parameter. Returns ------- bursts: list of lists active times grouped by bursts. """ possible_methods = ['dummy'] method = method if method in possible_methods else '' if method == 'dummy': bursts = dummy_burst_detection(spks, **kwargs) return bursts def dummy_burst_detection(spks, t_max): """This algorithm works under the supposition that all the bursts are separated at least by a gap with lenght which is a upper bound of the bursts length. Parameters ---------- spks: array-like, shape (Ns, variables) the spikes descriptions. t_max: int lower-bound of gaps beween bursts or upper bound of bursts length. It is expressed in index units. Returns ------- bursts: list of arrays the active times in each burst. """ utimes = np.unique(spks[:, 0]) gaps = np.diff(utimes) edges = np.where(gaps >= t_max)[0] + 1 edges = np.hstack([[0], edges, [utimes.shape[0]]]) bursts = [] for i in range(edges.shape[0]-1): bursts.append(utimes[edges[i]:edges[i+1]]) return bursts ############################## Under supervision ############################## ############################################################################### def kleinberg_burst_detection(spks, s=2, gamma=1): import pybursts utimes = list(spks[:, 0]) bursts = pybursts.kleinberg(utimes, s, gamma) return bursts ############################ Under implementation ############################# ############################################################################### def kleinberg(spks, s=2, gamma=1): # Control of inputs if s <= 1: raise ValueError("s must be greater than 1!") if gamma <= 0: raise ValueError("gamma must be positive!") utimes = np.unique(spks[:, 0]) utimes = np.sort(utimes) # Return bursts for only 1 time if utimes.size == 1: bursts = [utimes[0]] return bursts # Computation of gaps gaps = np.diff(utimes) # Computation of needed magnitudes T = np.sum(gaps) n = np.size(gaps) g_hat = T / n k = int(math.ceil(float(1+math.log(T, s) + math.log(1/np.amin(gaps), s)))) gamma_log_n = gamma * math.log(n) alpha_function = np.vectorize(lambda x: s ** x / g_hat) alpha = alpha_function(np.arange(k)) # Definition complementary functions def tau(i, j): if i >= j: return 0 else: return (j - i) * gamma_log_n def f(j, x): return alpha[j] * math.exp(-alpha[j] * x) # Intialization of C (?) C = np.repeat(float("inf"), k) C[0] = 0 q = np.empty((k, 0)) for t in range(n): C_prime = np.repeat(float("inf"), k) q_prime = np.empty((k, t+1)) q_prime.fill(np.nan) for j in range(k): cost_function = np.vectorize(lambda x: C[x] + tau(x, j)) cost = cost_function(np.arange(0, k)) el = np.argmin(cost) if f(j, gaps[t]) > 0: C_prime[j] = cost[el] - math.log(f(j, gaps[t])) if t > 0: q_prime[j, :t] = q[el, :] q_prime[j, t] = j + 1 C = C_prime q = q_prime j = np.argmin(C) q = q[j, :] prev_q = 0 N = 0 for t in range(n): if q[t] > prev_q: N = N + q[t] - prev_q prev_q = q[t] bursts = np.array([np.repeat(np.nan, N), np.repeat(utimes[0], N), np.repeat(utimes[0], N)], ndmin=2, dtype=object).transpose() burst_counter = -1 prev_q = 0 stack = np.repeat(np.nan, N) stack_counter = -1 for t in range(n): if q[t] > prev_q: num_levels_opened = q[t] - prev_q for i in range(int(num_levels_opened)): burst_counter += 1 bursts[burst_counter, 0] = prev_q + i bursts[burst_counter, 1] = utimes[t] stack_counter += 1 stack[stack_counter] = burst_counter elif q[t] < prev_q: num_levels_closed = prev_q - q[t] for i in range(int(num_levels_closed)): bursts[stack[stack_counter], 2] = utimes[t] stack_counter -= 1 prev_q = q[t] while stack_counter >= 0: bursts[stack[stack_counter], 2] = utimes[n] stack_counter -= 1 return bursts
[ "numpy.repeat", "numpy.unique", "numpy.amin", "numpy.hstack", "numpy.where", "numpy.sort", "numpy.size", "numpy.diff", "pybursts.kleinberg", "math.log", "numpy.sum", "numpy.empty", "numpy.argmin", "math.exp", "numpy.vectorize", "numpy.arange" ]
[((1882, 1903), 'numpy.unique', 'np.unique', (['spks[:, 0]'], {}), '(spks[:, 0])\n', (1891, 1903), True, 'import numpy as np\n'), ((1915, 1930), 'numpy.diff', 'np.diff', (['utimes'], {}), '(utimes)\n', (1922, 1930), True, 'import numpy as np\n'), ((1987, 2029), 'numpy.hstack', 'np.hstack', (['[[0], edges, [utimes.shape[0]]]'], {}), '([[0], edges, [utimes.shape[0]]])\n', (1996, 2029), True, 'import numpy as np\n'), ((2431, 2467), 'pybursts.kleinberg', 'pybursts.kleinberg', (['utimes', 's', 'gamma'], {}), '(utimes, s, gamma)\n', (2449, 2467), False, 'import pybursts\n'), ((2861, 2882), 'numpy.unique', 'np.unique', (['spks[:, 0]'], {}), '(spks[:, 0])\n', (2870, 2882), True, 'import numpy as np\n'), ((2896, 2911), 'numpy.sort', 'np.sort', (['utimes'], {}), '(utimes)\n', (2903, 2911), True, 'import numpy as np\n'), ((3063, 3078), 'numpy.diff', 'np.diff', (['utimes'], {}), '(utimes)\n', (3070, 3078), True, 'import numpy as np\n'), ((3127, 3139), 'numpy.sum', 'np.sum', (['gaps'], {}), '(gaps)\n', (3133, 3139), True, 'import numpy as np\n'), ((3148, 3161), 'numpy.size', 'np.size', (['gaps'], {}), '(gaps)\n', (3155, 3161), True, 'import numpy as np\n'), ((3320, 3358), 'numpy.vectorize', 'np.vectorize', (['(lambda x: s ** x / g_hat)'], {}), '(lambda x: s ** x / g_hat)\n', (3332, 3358), True, 'import numpy as np\n'), ((3711, 3727), 'numpy.empty', 'np.empty', (['(k, 0)'], {}), '((k, 0))\n', (3719, 3727), True, 'import numpy as np\n'), ((4286, 4298), 'numpy.argmin', 'np.argmin', (['C'], {}), '(C)\n', (4295, 4298), True, 'import numpy as np\n'), ((4673, 4693), 'numpy.repeat', 'np.repeat', (['np.nan', 'N'], {}), '(np.nan, N)\n', (4682, 4693), True, 'import numpy as np\n'), ((3286, 3297), 'math.log', 'math.log', (['n'], {}), '(n)\n', (3294, 3297), False, 'import math\n'), ((3386, 3398), 'numpy.arange', 'np.arange', (['k'], {}), '(k)\n', (3395, 3398), True, 'import numpy as np\n'), ((3814, 3834), 'numpy.empty', 'np.empty', (['(k, t + 1)'], {}), '((k, t + 1))\n', (3822, 3834), True, 'import numpy as np\n'), ((1944, 1967), 'numpy.where', 'np.where', (['(gaps >= t_max)'], {}), '(gaps >= t_max)\n', (1952, 1967), True, 'import numpy as np\n'), ((3600, 3623), 'math.exp', 'math.exp', (['(-alpha[j] * x)'], {}), '(-alpha[j] * x)\n', (3608, 3623), False, 'import math\n'), ((4026, 4041), 'numpy.argmin', 'np.argmin', (['cost'], {}), '(cost)\n', (4035, 4041), True, 'import numpy as np\n'), ((3992, 4007), 'numpy.arange', 'np.arange', (['(0)', 'k'], {}), '(0, k)\n', (4001, 4007), True, 'import numpy as np\n'), ((4470, 4490), 'numpy.repeat', 'np.repeat', (['np.nan', 'N'], {}), '(np.nan, N)\n', (4479, 4490), True, 'import numpy as np\n'), ((4492, 4515), 'numpy.repeat', 'np.repeat', (['utimes[0]', 'N'], {}), '(utimes[0], N)\n', (4501, 4515), True, 'import numpy as np\n'), ((4539, 4562), 'numpy.repeat', 'np.repeat', (['utimes[0]', 'N'], {}), '(utimes[0], N)\n', (4548, 4562), True, 'import numpy as np\n'), ((3211, 3225), 'math.log', 'math.log', (['T', 's'], {}), '(T, s)\n', (3219, 3225), False, 'import math\n'), ((3239, 3252), 'numpy.amin', 'np.amin', (['gaps'], {}), '(gaps)\n', (3246, 3252), True, 'import numpy as np\n')]
import numpy as np from sklearn.metrics import classification_report from preprocessing import Preprocessor import time class NaiveBayes: def __init__(self): self.labels = set() self.word_counts = {} self.priors = {} self.likelihoods = {} def train(self, train_x, train_y): self.labels = set(train_y) self.word_counts = {label:{} for label in self.labels} self.priors = {label:0 for label in self.labels} self.likelihoods = {label:{} for label in self.labels} self.total_words = 0 for tweet,label in zip(train_x,train_y): self.priors[label] += 1 for word in tweet.split(): self.total_words += 1 if word in self.word_counts[label]: self.word_counts[label][word] += 1 else: self.word_counts[label][word] = 1 self.priors = {l:self.priors[l]/len(train_y) for l in self.labels} self.likelihoods = { l : { w : (self.word_counts[l][w]+1)/(self.total_words+sum(self.word_counts[l].values())) \ for w in self.word_counts[l] } for l in self.labels } def predict(self, tweet): best = {'label':None, 'score':np.inf} for l in self.labels: score = -np.log(self.priors[l]) for w in tweet.split(): if w in self.likelihoods[l]: score += -np.log(self.likelihoods[l][w]) else: score += -np.log(1.0/(self.total_words+sum(self.word_counts[l].values()))) if score < best['score']: best['score'],best['label'] = score,l return best['label'] def test(self, test_x): return [self.predict(tweet) for tweet in test_x] def acc(self, y_preds, y_true): return sum([yp==yt for yp,yt in zip(y_preds,y_true)])/len(y_preds) if __name__ == "__main__": train_options = { "train_data_path": "data/OLIDv1.0/olid-training-v1.0_clean.tsv", "test_tweet_path": "data/OLIDv1.0/testset-levela_clean.tsv", "test_label_path": "data/OLIDv1.0/labels-levela.csv", "sample_size":1, "seed":1 } print('='*40) print('task B') print('loading data...') pp = Preprocessor() train_x, train_y = pp.get_train_data(train_options["train_data_path"], sample=train_options['sample_size'], seed=train_options['seed'], task='subtask_a') test_x, test_y = pp.get_test_data(train_options['test_tweet_path'], train_options['test_label_path']) print('='*40) print() print('='*40) print('training model...') start = time.time() model = NaiveBayes() model.train(train_x=train_x, train_y=train_y) end = time.time() print(f'took {round(end-start,2)}s') print('predicting...') start = time.time() preds = model.test(test_x=test_x) end = time.time() print(f'took {round(end-start,2)}s') print('='*40) print() results = classification_report(y_true=test_y, y_pred=preds, output_dict=True, digits=4) print('='*40) print('testing') print(f'accuracy: \t{model.acc(preds,test_y)}') print(f'precision: \t{results["macro avg"]["precision"]}') print(f'recall: \t{results["macro avg"]["recall"]}') print(f'F1-score: \t{results["macro avg"]["f1-score"]}') print('='*40) print() # ======================================== # task A # loading data... # cleaning data... # took 0.26s # ======================================== # ======================================== # training model... # took 2.8s # predicting... # took 0.36s # ======================================== # ======================================== # testing # accuracy: 0.7395348837209302 # precision: 0.7725511898173769 # recall: 0.5397177419354838 # F1-score: 0.5019184825888655 # ========================================
[ "sklearn.metrics.classification_report", "preprocessing.Preprocessor", "numpy.log", "time.time" ]
[((2379, 2393), 'preprocessing.Preprocessor', 'Preprocessor', ([], {}), '()\n', (2391, 2393), False, 'from preprocessing import Preprocessor\n'), ((2919, 2930), 'time.time', 'time.time', ([], {}), '()\n', (2928, 2930), False, 'import time\n'), ((3016, 3027), 'time.time', 'time.time', ([], {}), '()\n', (3025, 3027), False, 'import time\n'), ((3108, 3119), 'time.time', 'time.time', ([], {}), '()\n', (3117, 3119), False, 'import time\n'), ((3168, 3179), 'time.time', 'time.time', ([], {}), '()\n', (3177, 3179), False, 'import time\n'), ((3270, 3348), 'sklearn.metrics.classification_report', 'classification_report', ([], {'y_true': 'test_y', 'y_pred': 'preds', 'output_dict': '(True)', 'digits': '(4)'}), '(y_true=test_y, y_pred=preds, output_dict=True, digits=4)\n', (3291, 3348), False, 'from sklearn.metrics import classification_report\n'), ((1370, 1392), 'numpy.log', 'np.log', (['self.priors[l]'], {}), '(self.priors[l])\n', (1376, 1392), True, 'import numpy as np\n'), ((1504, 1534), 'numpy.log', 'np.log', (['self.likelihoods[l][w]'], {}), '(self.likelihoods[l][w])\n', (1510, 1534), True, 'import numpy as np\n')]
from collections import Counter import spacy nlp = spacy.load("en_core_web_md") corpus = open("data/atis_utterances.txt", "r").read().split("\n") all_ent_labels = [] for sentence in corpus: doc = nlp(sentence.strip()) ents = doc.ents all_ent_labels += [ent.label_ for ent in ents] c = Counter(all_ent_labels) print(c)
[ "spacy.load", "collections.Counter" ]
[((54, 82), 'spacy.load', 'spacy.load', (['"""en_core_web_md"""'], {}), "('en_core_web_md')\n", (64, 82), False, 'import spacy\n'), ((311, 334), 'collections.Counter', 'Counter', (['all_ent_labels'], {}), '(all_ent_labels)\n', (318, 334), False, 'from collections import Counter\n')]
import honeycomb_io.core import minimal_honeycomb import pandas as pd import numpy as np import logging logger = logging.getLogger(__name__) def fetch_persons( person_ids=None, person_types=None, names=None, first_names=None, last_names=None, nicknames=None, short_names=None, anonymized_names=None, anonymized_first_names=None, anonymized_last_names=None, anonymized_nicknames=None, anonymized_short_names=None, environment_id=None, environment_name=None, start=None, end=None, output_format='list', chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None ): if ( person_ids is not None or person_types is not None or names is not None or first_names is not None or last_names is not None or nicknames is not None or short_names is not None or anonymized_names is not None or anonymized_first_names is not None or anonymized_last_names is not None or anonymized_nicknames is not None or anonymized_short_names is not None ): query_list = list() if person_ids is not None: query_list.append( {'field': 'person_id', 'operator': 'CONTAINED_BY', 'values': person_ids} ) if person_types is not None: query_list.append( {'field': 'person_type', 'operator': 'CONTAINED_BY', 'values': person_types} ) if names is not None: query_list.append( {'field': 'name', 'operator': 'CONTAINED_BY', 'values': names} ) if first_names is not None: query_list.append( {'field': 'first_name', 'operator': 'CONTAINED_BY', 'values': first_names} ) if last_names is not None: query_list.append( {'field': 'last_name', 'operator': 'CONTAINED_BY', 'values': last_names} ) if nicknames is not None: query_list.append( {'field': 'nickname', 'operator': 'CONTAINED_BY', 'values': nicknames} ) if short_names is not None: query_list.append( {'field': 'short_name', 'operator': 'CONTAINED_BY', 'values': short_names} ) if anonymized_names is not None: query_list.append( {'field': 'anonymized_name', 'operator': 'CONTAINED_BY', 'values': nanonymized_ames} ) if anonymized_first_names is not None: query_list.append( {'field': 'anonymized_first_name', 'operator': 'CONTAINED_BY', 'values': anonymized_first_names} ) if anonymized_last_names is not None: query_list.append( {'field': 'anonymized_last_name', 'operator': 'CONTAINED_BY', 'values': anonymized_last_names} ) if nicknames is not None: query_list.append( {'field': 'anonymized_nickname', 'operator': 'CONTAINED_BY', 'values': anonymized_nicknames} ) if anonymized_short_names is not None: query_list.append( {'field': 'anonymized_short_name', 'operator': 'CONTAINED_BY', 'values': anonymized_short_names} ) return_data = [ 'person_id', 'person_type', 'name', 'first_name', 'last_name', 'nickname', 'short_name', 'anonymized_name', 'anonymized_first_name', 'anonymized_last_name', 'anonymized_nickname', 'anonymized_short_name', 'transparent_classroom_id', {'assignments': [ 'assignment_id', 'start', 'end', {'environment': [ 'environment_id', 'name' ]} ]} ] logger.info('Fetching persons with specified person characteristics') persons=honeycomb_io.core.search_objects( object_name='Person', query_list=query_list, return_data=return_data, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret ) logger.info('Fetched {} persons with specified person characteristics'.format( len(persons) )) logger.info('Filtering based on specified assignment characteristics') filtered_persons = list(filter( lambda person: len(honeycomb_io.environments.filter_assignments( assignments=person.get('assignments', []), environment_id=environment_id, environment_name=environment_name, start=start, end=end )) > 0, persons )) logger.info('Found {} persons with specified assignment characteristics'.format( len(filtered_persons) )) return_list = filtered_persons else: # No person characteristics were specified, so we search assignments instead if environment_id is None: if environment_name is not None: logger.info('Fetching environment ID for environment name \'{}\''.format( environment_name )) environment_id = honeycomb_io.fetch_environment_id( environment_name=environment_name, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret ) query_list = list() if environment_id is not None: query_list.append( {'field': 'environment', 'operator': 'EQ', 'value': environment_id} ) if start is not None: query_list.append( {'operator': 'OR', 'children': [ {'field': 'end', 'operator': 'ISNULL'}, {'field': 'end', 'operator': 'GTE', 'value': honeycomb_io.utils.to_honeycomb_datetime(start)} ]} ) if end is not None: query_list.append( {'field': 'start', 'operator': 'LTE', 'value': honeycomb_io.utils.to_honeycomb_datetime(end)} ) if query_list is None: logger.warn('No criteria specified for person search. Returning no persons') return list() query_list.append( {'field': 'assigned_type', 'operator': 'EQ', 'value': 'PERSON'} ) return_data=[ 'assignment_id', 'start', 'end', {'environment': [ 'environment_id', 'name' ]}, {'assigned': [ {'... on Person': [ 'person_id', 'person_type', 'name', 'first_name', 'last_name', 'nickname', 'short_name', 'anonymized_name', 'anonymized_first_name', 'anonymized_last_name', 'anonymized_nickname', 'anonymized_short_name', 'transparent_classroom_id' ]} ]} ] assignments = honeycomb_io.core.search_objects( object_name='Assignment', query_list=query_list, return_data=return_data, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret ) person_dict = dict() for assignment in assignments: person_id = assignment.get('assigned').get('person_id') if person_id not in person_dict.keys(): person = assignment.get('assigned') assignment = { 'assignment_id': assignment.get('assignment_id'), 'start': assignment.get('start'), 'end': assignment.get('end'), 'environment': assignment.get('environment') } person['assignments'] = [assignment] person_dict[person_id] = person else: assignment = { 'assignment_id': assignment.get('assignment_id'), 'start': assignment.get('start'), 'end': assignment.get('end'), 'environment': assignment.get('environment') } person_dict[person_id]['assignments'].append(assignment) persons = list(person_dict.values()) return_list = persons if output_format =='list': return return_list elif output_format == 'dataframe': return generate_person_dataframe(return_list) else: raise ValueError('Output format {} not recognized'.format(output_format)) def generate_person_dataframe( persons ): if len(persons) == 0: persons = [dict()] flat_list = list() for person in persons: flat_list.append({ 'person_id': person.get('person_id'), 'person_type': person.get('person_type'), 'name': person.get('name'), 'first_name': person.get('first_name'), 'last_name': person.get('last_name'), 'nickname': person.get('nickname'), 'short_name': person.get('short_name'), 'anonymized_name': person.get('anonymized_name'), 'anonymized_first_name': person.get('anonymized_first_name'), 'anonymized_last_name': person.get('anonymized_last_name'), 'anonymized_nickname': person.get('anonymized_nickname'), 'anonymized_short_name': person.get('anonymized_short_name'), 'transparent_classroom_id': person.get('transparent_classroom_id') }) df = pd.DataFrame(flat_list, dtype='string') df.set_index('person_id', inplace=True) return df # Used by: # process_pose_data.local_io (wf-process-pose-data) def fetch_person_info( environment_id, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None ): client = honeycomb_io.core.generate_client( client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret ) result = client.bulk_query( request_name='findAssignments', arguments={ 'environment': { 'type': 'ID', 'value': environment_id }, 'assigned_type': { 'type': 'AssignableTypeEnum', 'value': 'PERSON' }, }, return_data=[ 'assignment_id', {'assigned': [ {'... on Person': [ 'person_id', 'name', 'short_name', 'anonymized_name', 'anonymized_short_name' ]} ]} ], id_field_name='assignment_id' ) data_list = list() for assignment in result: data_list.append({ 'person_id': assignment.get('assigned', {}).get('person_id'), 'name': assignment.get('assigned', {}).get('name'), 'short_name': assignment.get('assigned', {}).get('short_name'), 'anonymized_name': assignment.get('assigned', {}).get('anonymized_name'), 'anonymized_short_name': assignment.get('assigned', {}).get('anonymized_short_name') }) person_info_df = pd.DataFrame(data_list) person_info_df.set_index('person_id', inplace=True) return person_info_df
[ "logging.getLogger", "pandas.DataFrame" ]
[((114, 141), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (131, 141), False, 'import logging\n'), ((10392, 10431), 'pandas.DataFrame', 'pd.DataFrame', (['flat_list'], {'dtype': '"""string"""'}), "(flat_list, dtype='string')\n", (10404, 10431), True, 'import pandas as pd\n'), ((12162, 12185), 'pandas.DataFrame', 'pd.DataFrame', (['data_list'], {}), '(data_list)\n', (12174, 12185), True, 'import pandas as pd\n')]
# -*- coding: utf-8 -*- """ Created on Sun Mar 31 21:53:09 2019 @author: Louis """ import numpy as np class mass2mol: """ A Python implementation of the algorithm developed by <NAME> and <NAME> (A Fast and Simple Algorithm for the Money Changing Problem, Algorithmica, 2007, 48, 413–432) The mass2mol object generated the extended residue table for CHNOPS with a blowup factor of 10^5 upon initialisation. The combinations of CHNOPS atoms which have the same monoisotopic masses as a given mass can then be calculated using the find_formula method. """ def __gcd(self, a, b): """Calculate the Greatest Common Divisor of a and b. Unless b==0, the result will have the same sign as b (so that when b is divided by it, the result comes out positive). """ while b: a, b = b, a%b return a def __lcm(self, a, b): """ Calculate the least common multiple of a and b. """ return abs(a * b)//self.__gcd(a, b) def __find_all(self, M, i, c, output, ppm): """ Find all decompositions using the extended residue table """ if i == 0: c[0] = M//self.a[0] output.append((c[:], ppm)) return LCM = self.__lcm(self.a[0], self.a[i]) l = LCM//self.a[i] for j in range(l): c[i] = j m = M - j * self.a[i] r = m % self.a[0] lbound = self.ERT[r, i-1] while (m >= lbound) and (lbound != -1) : self.__find_all(m, i-1, c, output, ppm) m = m - LCM c[i] = c[i] + l return def __gen_ERT(self): """ Generate extended residue table """ k = len(self.a) self.ERT = -np.ones((self.a[0], k), dtype='int64') # Used -1 in place of infinities: requires more computational steps to check this. Better to use unsigned int - 1? self.ERT[0, ] = 0 for i in range(1, k): self.ERT[:,i] = self.ERT[:, i-1] d = self.__gcd(self.a[0], self.a[i]) for p in range(d): n = [self.ERT[q, i-1] for q in range(self.a[0]) if (q % d == p and self.ERT[q, i-1] != -1)] if n == []: n = -1 else: n = min(n) for x in range(1, self.a[0]//d): n = n + self.a[i] r = n % self.a[0] if self.ERT[r, i-1] != -1: if n < self.ERT[r, i-1]: self.ERT[r, i] = n else: n = self.ERT[r, i-1] else: self.ERT[r, i] = n def __init__(self, ppm=5): """ Initialise mass2mol object with masses of CHNOPS and blowup factor. Generate extended residue table for these masses. """ self.a = [100783, 1200000, 1400307, 1599492, 3097376, 3197207] self.blowup = 100000 self.alphabet = 'HCNOPS' self.storage = [] self.ppm = ppm self.__gen_ERT() def __formula(self, x): """ Function to generate chemical formula string from list of numbers of atoms. """ output = '' if x[1] != 0: output = output + 'C' + str(x[1]) if x[0]!= 0: output = output + 'H' + str(x[0]) for i in range(2,len(x)): if x[i] != 0: output = output + self.alphabet[i] + str(x[i]) return output def find_formula(self, mass): """ Function to calculate all possible combinations of atoms which have a combined mass equal to the given mass, within a certain error range. Returns a list of tuples consisting of the chemical formula followed by the difference from the given mass in parts per million. """ mass = int(mass * self.blowup) error = int(mass/1000000 * self.ppm) output = [] for m in range(mass-error, mass + error +1): ppm = (m - mass)/mass * 1000000 self.__find_all(m, len(self.a)-1, [0]*len(self.a), output, ppm) formula_list = [] for x in output: formula_list.append((self.__formula(x[0]), x[1])) return formula_list
[ "numpy.ones" ]
[((1904, 1942), 'numpy.ones', 'np.ones', (['(self.a[0], k)'], {'dtype': '"""int64"""'}), "((self.a[0], k), dtype='int64')\n", (1911, 1942), True, 'import numpy as np\n')]
""" author: <EMAIL> last edit: Oct 21, 2010 Python directory changer. This script displays a directory tree. By single clicking on a '+' or '-' sign one can expand/collapse an item. Double clicking on an item itself, if that item is a directory, results in the script printing its location to standard output, and then exiting. The idea is to create a script to start a graphical directory browser from a terminal window and switch the terminal it is started from to the new directory. Since a script cannot change the environment of its parent we need a little trick to make this work. Create an alias (for example in .bashrc or in .bash_aliases) like this: alias pycd='python ~/pycd.py > ~/pycd.out && . ~/pycd.out' (This alias expects pycd.py to be in the user's home directory, so put it there or adapt the alias) Now typing 'pycd' in a terminal (without the quotes) opens the browser and redirects the script's output to the file 'pycd.out', and then (after the script has exited) executes the cd command in that file, in the shell. The result is, we end up in the desired directory. The script needs the TreeWidget from idle, so one should install idle: sudo aptitude install idle (or equivalent) If necessary, adjust the sys.path.append line, to make it point to your idlelib location. """ import sys import os from string import replace from Tkinter import * sys.path.append(r'/usr/lib/python2.6/idlelib') from TreeWidget import FileTreeItem, TreeNode, ScrolledCanvas class MyFileTreeItem(FileTreeItem): def GetSubList(self): try: names = os.listdir(self.path) except os.error: return [] names.sort(lambda a, b: cmp(os.path.normcase(a).lower(), os.path.normcase(b).lower())) sublist = [] for name in names: item = MyFileTreeItem(os.path.join(self.path, name)) sublist.append(item) return sublist def OnDoubleClick(self): if self.IsExpandable(): sys.stdout.write('cd %s' %(replace(self.path,' ','\ '))) sys.exit() def test(): root = Tk() sys.exitfunc = root.quit root.configure(bd=0, bg="yellow") root.title("terminal directory changer") root.focus_set() sc = ScrolledCanvas(root, bg="white", highlightthickness=0, takefocus=1) sc.frame.pack(expand=1, fill="both") item = MyFileTreeItem('/') node = TreeNode(sc.canvas, None, item) node.expand() root.mainloop() if __name__=='__main__': test()
[ "os.listdir", "TreeWidget.TreeNode", "string.replace", "TreeWidget.ScrolledCanvas", "os.path.join", "sys.exit", "os.path.normcase", "sys.path.append" ]
[((1391, 1436), 'sys.path.append', 'sys.path.append', (['"""/usr/lib/python2.6/idlelib"""'], {}), "('/usr/lib/python2.6/idlelib')\n", (1406, 1436), False, 'import sys\n'), ((2260, 2327), 'TreeWidget.ScrolledCanvas', 'ScrolledCanvas', (['root'], {'bg': '"""white"""', 'highlightthickness': '(0)', 'takefocus': '(1)'}), "(root, bg='white', highlightthickness=0, takefocus=1)\n", (2274, 2327), False, 'from TreeWidget import FileTreeItem, TreeNode, ScrolledCanvas\n'), ((2411, 2442), 'TreeWidget.TreeNode', 'TreeNode', (['sc.canvas', 'None', 'item'], {}), '(sc.canvas, None, item)\n', (2419, 2442), False, 'from TreeWidget import FileTreeItem, TreeNode, ScrolledCanvas\n'), ((1602, 1623), 'os.listdir', 'os.listdir', (['self.path'], {}), '(self.path)\n', (1612, 1623), False, 'import os\n'), ((2078, 2088), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2086, 2088), False, 'import sys\n'), ((1848, 1877), 'os.path.join', 'os.path.join', (['self.path', 'name'], {}), '(self.path, name)\n', (1860, 1877), False, 'import os\n'), ((2036, 2066), 'string.replace', 'replace', (['self.path', '""" """', '"""\\\\ """'], {}), "(self.path, ' ', '\\\\ ')\n", (2043, 2066), False, 'from string import replace\n'), ((1707, 1726), 'os.path.normcase', 'os.path.normcase', (['a'], {}), '(a)\n', (1723, 1726), False, 'import os\n'), ((1736, 1755), 'os.path.normcase', 'os.path.normcase', (['b'], {}), '(b)\n', (1752, 1755), False, 'import os\n')]
# função que faz todas as etapas # de construção da rede # e entrega os objetos certinho import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil from nltk.corpus import wordnet as wn import builtins as B TT=time.time() def check(amsg="string message"): global TT print(amsg, time.time()-TT); TT=time.time() B.me=[] B.tt_=[] B.tt=[] B.degen=[] B.nonenglish=[] puncts=set(string.punctuation) #w=open("./wordsEn.txt","r") #w=w.read() #WL=w.split() WL2=k.corpus.words.words() #w=open("./wordlist.txt","r") this_dir, this_filename = os.path.split(__file__) #DATA_PATH = os.path.join(this_dir, "data", "data.txt") w=open(os.path.join(this_dir,"words.txt"),"r") # https://raw.githubusercontent.com/dwyl/english-words/master/words.txt w=w.read() WL=w.split() labelsh=("","g.","p.","i.","h.") #WL.append("email") #WL.append("e-mail") #WL.append("having") WL_=set(WL) WLP=k.corpus.floresta.words() WLP_=set(WLP) stopwords=set(k.corpus.stopwords.words("english")) stopwordsP=set(k.corpus.stopwords.words("portuguese")) f=open(os.path.join(this_dir,"pickledir/brill_taggerT2M1"),"rb") brill_tagger=pickle.load(f) f.close() DL=g.tableHelpers.dl ME=g.tableHelpers.me replacement_patterns = [ (r'won\'t', 'will not'), (r'can\'t', 'can not'), (r'i\'m', 'i am'), (r'ain\'t', 'is not'), (r'(\w+)\'ll', '\g<1> will'), (r'(\w+)n\'t', '\g<1> not'), (r'(\w+)\'ve', '\g<1> have'), (r'(\w+)\'s', '\g<1> is'), (r'(\w+)\'re', '\g<1> are'), (r'(\w+)\'d', '\g<1> would') ] class RegexpReplacer(object): def __init__(self, patterns=replacement_patterns): self.patterns = [(re.compile(regex), repl) for (regex, repl) in patterns] def replace(self, text): s = text count_=0 for (pattern, repl) in self.patterns: (s, count) = re.subn(pattern, repl, s) count_+=count return s, count_ REPLACER=RegexpReplacer() R=REPLACER.replace def pDump(tobject,tfilename): with open(tfilename,"wb") as f: pickle.dump(tobject,f,-1) class EmptyClass: pass class EmailStructures: """Class that makes all basic structures for a given email list""" def __init__(self,list_id,n_messages,text="yes",offset=0,basedir="~/.gmane3/"): TT=time.time() lid=list_id; TOTAL_M=n_messages lm=g.LoadMessages(lid,TOTAL_M,offset=offset, basedir=basedir) ds=g.ListDataStructures(lm,text="yes") print(lid+"{0:.2f} for loading messages and making datastructures".format(time.time()-TT)); TT=time.time() print(lid+"{0:.2f} for data structures".format(time.time()-TT)); TT=time.time() ts=g.TimeStatistics(ds) print("{0:.2f} for statistics along time".format(time.time()-TT)); TT=time.time() iN=g.InteractionNetwork(ds) nm=g.NetworkMeasures(iN,exclude=["rich_club"]) print("{0:.2f} for network measures".format(time.time()-TT)); TT=time.time() if nm.N < 5: # network is too small # so make it disposable by makeTables_ np2_ = EmptyClass() np2_.sectorialized_agents__ = [[], [], []] else: np2_=g.NetworkPartitioning(nm,2,"g") del np2_.binomial print("{0:.2f} for network partition".format(time.time()-TT)); TT=time.time() self.structs=lm, ds, ts, iN, nm, np2_ def perc_(alist): if type(alist) in (type([1,2]), type((2,4))): return [100*i/sum(alist[1:]) for i in alist] else: return 100*alist/alist[1:].sum() def perc(alist): if type(alist) in (type([1,2]), type((2,4))): return [100*i/sum(alist) for i in alist] else: return 100*alist/alist.sum() def digRoot(msgid,ds): layers=[[msgid]] while len(layers[-1]): layer=layers[-1] layers+=[[]] for mid in layer: if mid in ds.responses.keys(): layers[-1]+=[i[0] for i in ds.responses[mid]] return layers,len(layers) def generalMeasures(ds,np,ts): """Return overall measures from list datastructures and network partitioning""" #date1=ds.messages[ds.message_ids[0]][2].isoformat().split("T")[0] #date2=ds.messages[ds.message_ids[-1]][2].isoformat().split("T")[0] dt=ts.datetimes primeira,ultima=dt[0],dt[-1] date1=primeira.isoformat()[:-6] date2=ultima.isoformat( )[:-6] deltaAnos=(ultima-primeira) deltaAnos_=deltaAnos.days/365.2425 N=ds.n_authors Ns=[len(i) for i in np.sectorialized_agents__] Ns_=perc(Ns) M_=ds.n_messages-ds.n_empty M=ds.n_messages #Mh=sum([len(ds.author_messages[author]) for author in np.sectorialized_agents__[2]]) #Mi=sum([len(ds.author_messages[author]) for author in np.sectorialized_agents__[1]]) #Mp=sum([len(ds.author_messages[author]) for author in np.sectorialized_agents__[0]]) #Ms=[Mh,Mi,Mp][::-1] Ms=[sum([len(ds.author_messages[i]) for i in j]) for j in np.sectorialized_agents__] #M2=[100*i/ds.n_messages for i in Ms] Ms_=perc(Ms) NM=N/M NM_=100*NM NM_missing=M_/N NM_missing_=100*NM_missing NMs=[i/j if j!=0 else n.inf for i,j in zip(Ns,Ms)] NMs_=perc(NMs) #idsh=[i[0] for j in np.sectorialized_agents__[2] for i in ds.author_messages[j] if ds.messages[i[0]][1]==None] #idsi=[i[0] for j in np.sectorialized_agents__[1] for i in ds.author_messages[j] if ds.messages[i[0]][1]==None] #idsp=[i[0] for j in np.sectorialized_agents__[0] for i in ds.author_messages[j] if ds.messages[i[0]][1]==None] #idsh_=len(idsh) #idsi_=len(idsi) #idsp_=len(idsp) #ids=[idsh_,idsi_,idsp_][::-1] #ids_=[100*ii/Gamma for ii in ids] #Gamma=len([i for i in ds.message_ids if ds.messages[i][1]==None]) Gammas=[sum([len([i for i in ds.author_messages[aid] if i[1]==None]) for aid in sa]) for sa in np.sectorialized_agents__] Gammas_=perc(Gammas) G_=[100*i/j for i,j in zip(Gammas,Ms)] # Gammas_==ids_ #roots=[[[i for i in ds.author_messages[aid] if i[1]==None] # for aid in sa] for sa in pr.sectorialized_agents__] #roots_=[i for j in roots for i in j] ## *) a partir de cada uma delas, procura outras que tenham ## ela como resposta e assim por diante, ## até não achar mais resposta, guarda o número de mensagens ## encontradas #roots__=[[[i[j][0] for j in range(len(i))] for i in rr if i] for rr in roots] #rr=[] roots_sectors=[] tlength_sectors=[] threads_sectors=[] for setor in np.sectorialized_agents__: roots_sector=[] tlength_sector=[] threads_sector=[] for agentid in setor: messages=ds.author_messages[agentid] for message in messages: if message[1]==None: # nova thread, guarda ID roots_sector.append(message[0]) t_sector,lsector=digRoot(message[0],ds) tlength_sector.append(lsector) threads_sector.append(t_sector) roots_sectors.append(roots_sector) tlength_sectors.append(tlength_sector) threads_sectors.append(threads_sector) mt=[n.mean(i) for i in tlength_sectors] st=[n.std(i) for i in tlength_sectors] tls=[i for j in tlength_sectors for i in j] mt_ =n.mean(tls) st_ =n.std(tls) mvars=("date1","date2","deltaAnos_", "N","Ns","Ns_","M","M_","Ms","Ms_", "NM","NM_","NMs","NMs_","NM_missing","NM_missing_", "Gammas","Gammas_","G_", "roots_sectors","tlength_sectors","threads_sectors", "mt","st","tls","mt_","st_") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict #return date1,date2,N,Ns,Ns_,Ms,M2,Gamma,ids,ids_,M_,MN,MN_ def makeGeneralTable(generalMeasures_instance, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="geralInline.tex",tag=None): gms=generalMeasures_instance labelsh=("","g.","p.","i.","h.") labels=(r"$N$",r"$N_{\%}$",r"$M$",r"$M_{\%}$", r"$\Gamma$",r"$\Gamma_{\%}$",r"$\frac{\Gamma}{M}\%$", r"$\mu(\gamma)$",r"$\sigma(\gamma)$") N,Ns,Ns_,M,Ms,Ms_,Gammas,Gammas_,G_,mt_,mt,st_,st,deltaAnos_,date1,date2=[gms[i] for i in ("N","Ns","Ns_","M","Ms","Ms_","Gammas","Gammas_","G_","mt_","mt","st_","st","deltaAnos_","date1","date2")] Gamma=sum(Gammas) data=[[N]+Ns,[100]+Ns_,[M]+Ms,[100]+Ms_,[Gamma]+Gammas,[100]+Gammas_,[100*Gamma/M]+G_,[mt_]+mt,[st_]+st] caption=r"""Distribution of participants, messages and threads among each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs) in a total timespan of {:.2f} years (from {} to {}). $N$ is the number of participants, $M$ is the number of messages, $\Gamma$ is the number of threads, and $\gamma$ is the number of messages in a thread. The \% denotes the usual `per cent' with respecto to the total quantity ($100\%$ for {{\bf g.}}) while $\mu$ and $\sigma$ denote mean and standard deviation.""".format(deltaAnos_,date1,date2) fname_=mkName(table_dir,fname,tag) g.tableHelpers.lTable(labels,labelsh,data,caption,fname_,"textGeral") dl=g.tableHelpers.dl me=g.tableHelpers.me me(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]) dl(fname_[:-4]+"_",[1],[1],list(range(2,8,2))+[8,9]) def mkName(tdir,fname,tag): return tdir+fname.replace(".tex","{}.tex".format(tag)) def makeText_(ds,pr): texts=[] msg_ids=[] textG="" for sector in pr.sectorialized_agents__: texts+=[""] msg_ids.append([]) for author in sector: for message in ds.author_messages[author]: mid=message[0] text=ds.messages[mid][3] texts[-1]+=text textG+=text msg_ids[-1].append(mid) texts=[textG]+texts foo=[REPLACER.replace(i) for i in texts] texts_=[i[0] for i in foo] ncontractions=[i[1] for i in foo] return texts_,ncontractions, msg_ids def makeText(ds,mid=None): if not mid: t=[ds.messages[i][3] for i in ds.message_ids] else: t=[ds.messages[i][3] for i in mid] T_="\n".join(t) # todo o texto, com contracoes T,ncontractions=REPLACER.replace(T_) # todo o texto, sem contracoes return T, ncontractions def medidasTokensQ_(T,lang="en"): atime=time.time() wtok=k.tokenize.wordpunct_tokenize(T) wtok_=[t.lower() for t in wtok] if lang=="en": kw=[len(i) for i in wtok_ if i in WL_] sw=[len(i) for i in wtok_ if i in stopwords] else: kw=[len(i) for i in wtok_ if i in WLP_] sw=[len(i) for i in wtok_ if i in stopwordsP] mvars=("kw","sw") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def medidasTokensQ(T,lang="en"): atime=time.time() wtok=k.tokenize.wordpunct_tokenize(T) wtok_=[t.lower() for t in wtok] if lang=="en": kw=[len(i) for i in wtok_ if i in WL_] sw=[len(i) for i in wtok_ if i in stopwords] else: kw=[len(i) for i in wtok_ if i in WLP_] sw=[len(i) for i in wtok_ if i in stopwordsP] mkw=n.mean(kw) dkw=n.std(kw) msw=n.mean(sw) dsw=n.std(sw) mvars=("mkw","dkw","msw","dsw") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def makeSentencesTable(medidasSentencas_dict, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="sentencesInline.tex",tag=None): sms=medidasSentencas_dict mvars=("nsents", "Mchars_sents","Schars_sents", "Mtoks_sents","Stoks_sents", "Mknownw_sents","Sknownw_sents", "Mstopw_sents","Sstopw_sents", "Mpuncts_sents","Spuncts_sents",) sms_=[[sms[j][i] for j in range(4)] for i in mvars] labelsh=("","g.","p.","i.","h.") labels=(r"$sents$",r"$sents_{\%}$", r"$\mu_S(chars)$", r"$\sigma_S(chars)$", r"$\mu_S(tokens)$",r"$\sigma_S(tokens)$", r"$\mu_S(knownw)$",r"$\sigma_S(knownw)$", r"$\mu_S(stopw)$", r"$\sigma_S(stopw)$", r"$\mu_S(puncts)$",r"$\sigma_S(puncts)$", ) caption=r"""Sentences sizes in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs).""" #data=list(map(list, zip(*tms_))) data=sms_ nsents=data[0] nsents_=perc_(nsents) data=n.array(data[1:]) data=n.vstack((nsents,nsents_,data)) fname_=mkName(table_dir,fname,tag) g.lTable(labels,labelsh,data,caption,fname_,"textGeral") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(fname_[:-4]+"_",[1],[1],[2,4,6,8,10,12]) def makeTokenSizesTable(medidasTokens__instance, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="tokenSizesInline.tex",tag=None): tms=medidasTokens__instance mvars=("Mtoken","Stoken","Mknownw","Sknownw", "Mknownw_diff","Sknownw_diff", "Mstopw","Sstopw") tms_=[[tms[j][i] for j in range(4)] for i in mvars] labelsh=("","g.","p.","i.","h.") labels=( r"$\mu(\overline{tokens})$",r"$\sigma(\overline{tokens})$", r"$\mu(\overline{knownw})$",r"$\sigma(\overline{knownw})$", r"$\mu(\overline{knownw \neq})$",r"$\sigma(\overline{knownw \neq})$", r"$\mu(\overline{stopw})$",r"$\sigma(\overline{stopw})$") caption=r"""Token sizes in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs).""" #data=list(map(list, zip(*tms_))) data=tms_ #ntoks=data[0] #ntoks_=perc_(ntoks) #data=n.array(data[1:]) #data=n.vstack((ntoks,ntoks_,data*100)) fname_=mkName(table_dir,fname,tag) g.lTable(labels,labelsh,data,caption,fname_,"textGeral_") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(fname_[:-4]+"_",[1],[1],[2,4,6,8]) def makeTokensTable(medidasTokens__instance, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="tokensInline.tex",tag=None): tms=medidasTokens__instance mvars=("tokens", "tokens_diff", "knownw", "knownw_diff", "stopw", "punct", "contract") tms_=[[tms[j][i] for j in range(4)] for i in mvars] labelsh=("","g.","p.","i.","h.") labels=(r"$tokens$", r"$tokens_{\%}$", r"$tokens \neq$", r"$\frac{knownw}{tokens}$", r"$\frac{knownw \neq}{knownw}$", r"$\frac{stopw}{knownw}$", r"$\frac{punct}{tokens}$", r"$\frac{contrac}{tokens}$", ) caption=r"""tokens in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs).""" #data=list(map(list, zip(*tms_))) data=tms_ ntoks=data[0] ntoks_=perc_(ntoks) data=n.array(data[1:]) data=n.vstack((ntoks,ntoks_,data*100)) fname_=mkName(table_dir,fname,tag) g.lTable(labels,labelsh,data,caption,fname_,"textGeral") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(fname_[:-4]+"_",[1],[1],[2,3,5,7,8]) def chunks(l, n): """Yield successive n-sized chunks from l.""" ll=[] for i in range(0, len(l), n): ll.append(l[i:i+n]) return ll def medidasSinais2_(medidas_pos_list,medidas_mensagens): return [medidasSinais2(post,mmU) for post,mmU in zip(medidas_pos_list,medidas_mensagens)] def medidasSinais2(post,medidas_mensagensU): sinal=[[i[1] for i in j] for j in post["tags"]] sinal_=chunks([i[1] for j in post["tags"] for i in j],100) sinais={} sinais["adj"]=[j.count("ADJ") for j in sinal] sinais["sub"]=[j.count("NOUN") for j in sinal] sinais["pun"]=[j.count(".") for j in sinal] sinais["verb"]=[j.count("VERB") for j in sinal_] sinais["chars"]=medidas_mensagensU["toks_msgs"] return sinais def medidasSinais_(TS): return [medidasSinais(T) for T in TS] def medidasSinais(T): wtok=k.tokenize.wordpunct_tokenize(T) lens_tok=[len(i) for i in wtok] lens_word=[len(i) for i in wtok if (i not in stopwords) and (i in WL_)] lens_sent=[len(i) for i in k.sent_tokenize(T)] mvars=("lens_tok","lens_word","lens_sent") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def ksAll(sigDict,mkeys): l=[] for key in mkeys: l.append([]) for i in range(4): l[-1].append([]) for j in range(4): vals=g.ksStatistics.kolmogorovSmirnovDistance__(sigDict[i][key],sigDict[j][key]) l[-1][-1].append(vals) return l def makeKSTables(dists,table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fnames=None,tags=None,tag=None): ldists=[] for dists_meas in dists: l=[] for sect1_meas in dists_meas: calphas=[] dnns=[] for sect2_val in sect1_meas: calpha,dnn=sect2_val calphas+=[calpha] dnns+=[dnn] l+=[calphas,dnns] ldists.append(l) # new table dists=ldists labels=labelsh[1:] labels_=[(l,"") for l in labels] labels__=[i for j in labels_ for i in j] caption="KS distances on {}." count=0 if not fnames: fnames=[str(i) for i in range(len(dists))] if not tags: tags=[str(i) for i in range(len(dists))] for meas,fname,tag_ in zip(dists,fnames,tags): fname_=mkName(table_dir,fname+".tex",tag) g.lTable(labels__,labelsh,meas,caption.format(tag_), fname_,"ksDistances") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]+[(i,0) for i in range(1,9)]) DL(fname_[:-4]+"_",[1],[1],[2,4,6,8]) # ME(fname_+"_","\\bf",,1) def medidasTokens__(lt=("texts",),ct=("ncontractions",)): return [medidasTokens_(i,j) for i,j in zip(lt,ct)] def medidasTokens_(T,ncontract=None): wtok=k.tokenize.wordpunct_tokenize(T) wtok_=[t.lower() for t in wtok] tokens=len(wtok) # tokens_=set(wtok) tokens_diff=len(tokens_)/tokens # punct=sum([sum([tt in puncts for tt in t])==len(t) for t in wtok_]) punct/=tokens known=[i for i in wtok_ if (i not in stopwords) and (i in WL_)] knownw=len(known) known_=set(known) knownw_diff=len(known_)/knownw stop=[i for i in wtok_ if i in stopwords] stopw=len(stop)/knownw knownw/=tokens contract=ncontract/tokens # media e desvio de tamanhos: # tokens, Mtoken,Stoken=mediaDesvio_(wtok_) # known words sem stop, Mknownw,Sknownw=mediaDesvio_(known) # known words sem stop e sem repetição Mknownw_diff,Sknownw_diff=mediaDesvio_(known_) # stop words Mstopw,Sstopw=mediaDesvio_(stop) #stokwn=[len(i) for i in known] #skownw=[len(i) for i in known] mvars=("tokens","tokens_diff","punct", "knownw","knownw_diff","stopw","contract", "Mtoken","Stoken","Mknownw","Sknownw", "Mknownw_diff","Sknownw_diff", "Mstopw","Sstopw") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def medidasTokens(T): atime=time.time() wtok=k.tokenize.wordpunct_tokenize(T) wtok_=[t.lower() for t in wtok] nt=len(wtok) # ntd=len(set(wtok)) # # tokens que sao pontuacoes ntp=sum([sum([tt in puncts for tt in t])==len(t) for t in wtok]) # # known and unkown words kw=[] # ukw=[] # tp=[] sw=[] for t in wtok_: if t in WL_: kw.append(t) elif sum([tt in puncts for tt in t])==len(t): tp.append(t) else: ukw.append(t) if t in stopwords: sw.append(t) sw_=set(sw) kw_=set(kw) ukw_=set(ukw) kwss=[i for i in kw if wn.synsets(i)] # kwss_=set(kwss) # # known words that does not have synsets kwnss=[i for i in kw if i not in kwss_] # print("MT2:", atime-time.time()); atime=time.time() kwnss_=set(kwnss) # # words that are stopwords kwsw=[i for i in kw if i in stopwords] # kwsw_=set(kwsw) print("MT3:", atime-time.time()); atime=time.time() # known words that are not stopwords kwnsw=[i for i in kw if i not in stopwords] # kwnsw_=set(kwnsw) # # unknown words that are stopwords ukwsw=[i for i in ukw if i in stopwords] # print( "MT4:", atime-time.time()); atime=time.time() # known words that return synsets and are stopwords kwsssw=[i for i in kwss if i in stopwords] # print("MT5:", atime-time.time()); atime=time.time() # known words that dont return synsets and are stopwords kwnsssw=[i for i in kwnss if i in stopwords] # print("MT6:", atime-time.time()); atime=time.time() # words that are known, are not stopwords and do not return synset foo_=kwnss_.difference(stopwords) kwnssnsw=[i for i in kw if i in foo_] # print("MT7:", atime-time.time()); atime=time.time() foo_=kwss_.difference(stopwords) kwssnsw=[i for i in kw if i in foo_] # kwssnsw_=set(kwssnsw) print("MT8:", atime-time.time()); atime=time.time() mvars=("nt", "ntd", "ntp","sw","sw_","kw", "kw_", "tp", "ukw", "ukw_", "kwss", "kwss_", "kwnss", "kwnss_","kwsw", "kwsw_", "kwnsw", "kwnsw_", "ukwsw", "kwsssw", "kwnsssw", "kwnssnsw", "kwssnsw","kwssnsw_") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def makeCharTable(charsMeasures_instance, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="charsInline.tex",tag=None): cms=charsMeasures_instance labelsh=("","g.","p.","i.","h.") labels=(r"$chars$", r"$chars_{\%}$", r"$\frac{spaces}{chars}$", r"$\frac{punct}{chars-spaces}$", r"$\frac{digits}{chars-spaces}$", r"$\frac{letters}{chars-spaces}$", r"$\frac{vogals}{letters}$", r"$\frac{uppercase}{letters}$", ) caption=r"""Characters in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs).""" data=list(map(list, zip(*cms))) nchars=data[0] nchars_=perc_(nchars) data=n.array(data[1:]) data=n.vstack((nchars,nchars_,data*100)) fname_=mkName(table_dir,fname,tag) g.lTable(labels,labelsh,data,caption,fname_,"textGeral") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(fname_[:-4]+"_",[1],[1],[2,4,5,7,8]) def medidasLetras_(LT=["list","of","strings"]): return [medidasLetras(i) for i in LT] def medidasLetras(T): # quantos caracteres nc=len(T) # espacos ne=T.count(" ") # letras (e maiusculas) nl=sum([t.isalpha() for t in T]) nm=sum([t.isupper() for t in T]) # vogais nv=sum([t in ("a","e","i","o","u") for t in T]) # pontuacao np=sum([t in puncts for t in T]) # numerais nd=sum([t.isdigit() for t in T]) return nc,ne/nc,np/(nc-ne),nd/(nc-ne),nl/(nc-ne),nv/nl,nm/nl def mediaDesvio_(medidas): medidas_=[len(i) for i in medidas] return n.mean(medidas_),n.std(medidas_) def mediaDesvio(tid="astring",adict={"stringkey":"tokens"}): tid_=tid+"_" toks=[len(i) for i in adict[tid]] toks_=[len(i) for i in adict[tid_]] mtid=n.mean(toks) dtid=n.std(toks) mtid_=n.mean(toks_) dtid_= n.std(toks_) fdict={} fdict["m"+tid]=mtid fdict["d"+tid]=dtid fdict["m"+tid_]=mtid_ fdict["d"+tid_]=dtid_ return fdict def medidasTamanhosTokens(medidas_tokens): mdict={} MT=medidas_tokens mdict.update(mediaDesvio("kw",MT)) mdict.update(mediaDesvio("kwnsw",MT)) mdict.update(mediaDesvio("kwssnsw",MT)) mdict.update(mediaDesvio("kwssnsw",MT)) mdict.update(mediaDesvio("kwsw",MT)) mdict.update(mediaDesvio("sw",MT)) return mdict def makeCorrelationTable_(measures_pca, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="correlationInline.tex",tag=None): mp=measures_pca cors=[i["pca"].C for i in mp] cors_=[] for secn in range(len(cors[0])): for cor in cors: # cor correlation measure cors_.append(cor[secn]) data=cors_ labels=mp[0]["vlabels"] labelsh=[""]+labels labels_=[(i,"","","") for i in labels] labels__=[i for j in labels_ for i in j] labels__[1:4]=["(p.)","(i.)","(h.)"] caption="Pierson correlation coefficient for the topological and textual measures." fname_=mkName(table_dir,fname,tag) g.lTable(labels__,labelsh,data,caption,fname_,"textCorr") # renderiza matriz como tabela #ME(table_dir+fname[:-4],"\\bf",[(0,i) for i in range(1,5)]) nz=(n.abs(n.array(data))>.6).nonzero() ii=nz[0] jj=nz[1] #pts=[(i,j) for i,j in zip(ii,jj)] pts=[(i+1,j+1) for i,j in zip(ii,jj)] B.thing=nz,data,pts ME(fname_[:-4],"\\bf",pts) DL(fname_[:-4]+"_",[1],[1],[2,3,4, 6,7,8, 10,11,12, 14,15,16, 18,19,20, 22,23,24, 26,27,28, 30,31,32, 34,35,36]) def makeCorrelationTable(correlationMatrix, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="correlationInline.tex",mvars=[]): #mvars=[i.replace("_","") for i in mvars] labelsh=[""]+mvars labels=mvars caption=r"""Correlation of textual and topological metrics.""" data=correlationMatrix*100 g.lTable(labels,labelsh,data,caption,table_dir+fname,"textCorr") # ME(table_dir+fname[:-4],"\\bf",[(0,i) for i in range(1,5)]) # DL(table_dir+fname[:-4]+"_",[1],[1],[]) #DL(table_dir+fname[:-4],[1],[1],[],0) def makeMessagesTable(medidasMensagens_dict, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="messagesInline.tex",tag=None): mms=medidasMensagens_dict mvars=("nmsgs", "Msents_msgs","Ssents_msgs", "Mtokens_msgs","Stokens_msgs", "Mknownw_msgs","Sknownw_msgs", "Mstopw_msgs","Sstopw_msgs", "Mpuncts_msgs","Spuncts_msgs", "Mchars_msgs","Schars_msgs", ) mms_=[[mms[j][i] for j in range(4)] for i in mvars] labelsh=("","g.","p.","i.","h.") labels=(r"$msgs$",r"$msgs_{\%}$", r"$\mu_M(sents)$", r"$\sigma_M(sents)$", r"$\mu_M(tokens)$",r"$\sigma_M(tokens)$", r"$\mu_M(knownw)$",r"$\sigma_M(knownw)$", r"$\mu_M(stopw)$", r"$\sigma_M(stopw)$", r"$\mu_M(puncts)$",r"$\sigma_M(puncts)$", r"$\mu_M(chars)$", r"$\sigma_M(chars)$", ) caption=r"""Messages sizes in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs).""" #data=list(map(list, zip(*tms_))) data=mms_ nmsgs=data[0] nmsgs_=perc_(nmsgs) data=n.array(data[1:]) data=n.vstack((nmsgs,nmsgs_,data)) fname_=mkName(table_dir,fname,tag) g.lTable(labels,labelsh,data,caption,fname_,"textGeral") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(fname_[:-4]+"_",[1],[1],[2,4,6,8,10,12,14,16]) def medidasMensagens_(ds,msg_ids): return [medidasMensagens(ds,mids) for mids in [None]+list(msg_ids)] def medidasMensagens(ds,tids=None): # TTM if not tids: mT=[ds.messages[i][3] for i in ds.message_ids] else: mT=[ds.messages[i][3] for i in tids] tokens_msgs=[k.tokenize.wordpunct_tokenize(t) for t in mT] # tokens knownw_msgs=[[i for i in toks if (i not in stopwords) and (i in WL_)] for toks in tokens_msgs] stopw_msgs=[[i for i in toks if i in stopwords] for toks in tokens_msgs] puncts_msgs=[[i for i in toks if (len(i)==sum([(ii in puncts) for ii in i]))] for toks in tokens_msgs] # sents_msgs=[k.sent_tokenize(t) for t in mT] # tokens nmsgs=len(mT) toks_msgs=[len(i) for i in mT] Mchars_msgs, Schars_msgs = mediaDesvio_(mT) Mtokens_msgs, Stokens_msgs = mediaDesvio_(tokens_msgs) Mknownw_msgs, Sknownw_msgs = mediaDesvio_(knownw_msgs) Mstopw_msgs, Sstopw_msgs = mediaDesvio_(stopw_msgs) Mpuncts_msgs, Spuncts_msgs = mediaDesvio_(puncts_msgs) Msents_msgs,Ssents_msgs = mediaDesvio_(sents_msgs) mvars=("nmsgs","toks_msgs", "Msents_msgs","Ssents_msgs", "Mtokens_msgs","Stokens_msgs", "Mknownw_msgs","Sknownw_msgs", "Mstopw_msgs","Sstopw_msgs", "Mpuncts_msgs","Spuncts_msgs", "Mchars_msgs","Schars_msgs", ) vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def medidasSentencas_(Ts=['list',"of","strings"]): return [medidasSentencas(i) for i in Ts] def medidasSentencas(T): TS=k.sent_tokenize(T) tokens_sentences=[k.tokenize.wordpunct_tokenize(i) for i in TS] ### Para os POS tags knownw_sentences=[[i for i in ts if (i not in stopwords) and (i in WL_)] for ts in tokens_sentences] stopw_sentences =[[i for i in ts if i in stopwords] for ts in tokens_sentences] puncts_sentences=[[i for i in ts if (len(i)==sum([(ii in puncts) for ii in i]))] for ts in tokens_sentences] # Mchars_sents, Schars_sents = mediaDesvio_(TS) Mtoks_sents, Stoks_sents = mediaDesvio_(tokens_sentences) Mknownw_sents, Sknownw_sents = mediaDesvio_(knownw_sentences) Mstopw_sents, Sstopw_sents = mediaDesvio_(stopw_sentences) Mpuncts_sents, Spuncts_sents = mediaDesvio_(puncts_sentences) nsents=len(TS) mvars=("Mchars_sents","Schars_sents", "Mtoks_sents","Stoks_sents", "Mknownw_sents","Sknownw_sents", "Mstopw_sents","Sstopw_sents", "Mpuncts_sents","Spuncts_sents","nsents", "tokens_sentences") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def medidasTamanhosSentencas(T,medidas_tokens): MT=medidas_tokens ############ # medidas de sentencas TS=k.sent_tokenize(T) # media e desvio de numero de caracteres por sentenca tTS=[len(i) for i in TS] mtTS=n.mean(tTS) # dtTS=n.std(tTS) # # media e desvio do tamanho das sentencas em tokens sTS=[k.tokenize.wordpunct_tokenize(i) for i in TS] ### Para os POS tags tsTS=[len(i) for i in sTS] mtsTS=n.mean(tsTS) # dtsTS=n.std(tsTS) # # media e desvio do tamanho das sentencas em palavras conhecidas kw_=MT["kw_"] tsTSkw=[len([ii for ii in i if ii in kw_]) for i in sTS] mtsTSkw=n.mean(tsTSkw) # dtsTSkw=n.std(tsTSkw) # # media e desvio do tamanho das sentencas em palavras que retornam synsets e nao sao stopwords pv_=MT["kwssnsw_"] tsTSpv=[len([ii for ii in i if ii in pv_]) for i in sTS] mtsTSpv=n.mean(tsTSpv) # dtsTSpv=n.std(tsTSpv) # mvars=("mtTS","dtTS","mtsTS","dtsTS","mtsTSkw","dtsTSkw", "mtsTSpv","dtsTSpv","sTS") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def medidasTamanhosMensagens(ds, tids=None): if not tids: mT=[ds.messages[i][3] for i in ds.message_ids] else: mT=[ds.messages[i][3] for i in tids] tmT=[len(t) for t in mT] # chars ttmT=[len(k.tokenize.wordpunct_tokenize(t)) for t in mT] # tokens tsmT=[len(k.sent_tokenize(t)) for t in mT] # sentences mtmT=n.mean(tmT) dtmT=n.std(tmT) mttmT=n.mean(ttmT) dttmT=n.std(ttmT) mtsmT=n.mean(tsmT) dtsmT=n.std(tsmT) mvars=("mtmT","dtmT","mttmT","dttmT","mtsmT","dtsmT") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def medidasPOS_(list_of_list_of_sentences_tokenized): # [i["tokens_sentences"] for i in sent_measures] return [medidasPOS(i) for i in list_of_list_of_sentences_tokenized] def medidasPOS(sentences_tokenized): """Measures of POS tags Receives a sequence of sentences, each as a sequence of tokens. Returns a set measures of POS tags, and the tagged sentences. Convention: VERB - verbs (all tenses and modes) NOUN - nouns (common and proper) PRON - pronouns ADJ - adjectives ADV - adverbs ADP - adpositions (prepositions and postpositions) CONJ - conjunctions DET - determiners NUM - cardinal numbers PRT - particles or other function words X - other: foreign words, typos, abbreviations . - punctuation See "A Universal Part-of-Speech Tagset" by <NAME>, <NAME> and <NAME> for more details: http://arxiv.org/abs/1104.2086""" tags=brill_tagger.tag_sents(sentences_tokenized) tags_=[item for sublist in tags for item in sublist] tags__=[i[1] for i in tags_ if i[0].lower() in WL_] htags=c.Counter(tags__) htags__=c.OrderedDict() if htags: factor=100.0/sum(htags.values()) htags_={} for i in htags.keys(): htags_[i]=htags[i]*factor htags__=c.OrderedDict(sorted(htags_.items(), key=lambda x: -x[1])) mvars=("htags__","tags") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def S(acounter): return sorted(acounter.items(),key=lambda x: -x[1]) def auxWnTb(tt,level,tabfname,wn_dict_list): tt_=[S(i) for i in tt] labels=[i[0] for i in tt_[0][:12]] if labels: wms_=[[tt[i][j] for i in range(4)] for j in labels] labels=[i.replace("_","\_") for i in labels] if level=="root": caption=r"""Counts for the most incident synsets at the semantic roots in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs). Yes.""".format(level) else: caption=r"""Counts for the most incident synsets {} step from the semantic roots in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs).""".format(level) # normalizar este data com relação às colunas B.me.append(wms_) B.tt_.append(tt_) B.tt.append(tt) data=n.array(wms_) data=100*data/data.sum(axis=0) data=data[:12] data=n.vstack((data,data.sum(axis=0))) labels+=[r"{{\bf total}}"] g.lTable(labels,labelsh,data,caption,tabfname,"textGeral_") ME(tabfname[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(tabfname[:-4]+"_",[1,-3],[1]) else: print(tabfname.split("/")[-1], "No labels:",labels, "\nProbably no hypernyms:", len(wn_dict_list[0]["top_hypernyms"])) def makeWordnetTable2a(wn_dict_list, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="wnInline2a.tex"): """Table about the most incident roots""" t0=[c.Counter([i[0].name() for i in j["top_hypernyms"]]) for j in wn_dict_list] auxWnTb(t0,"root",table_dir+fname,wn_dict_list) def makeWordnetTable2b(wn_dict_list, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="wnInline2b.tex"): """Table about the most incident roots""" t1=[c.Counter([i[1].name() for i in j["top_hypernyms"] if len(i)>1]) for j in wn_dict_list] #auxWnTb(labels,labelsh,data,level,tabfname) auxWnTb(t1,"one",table_dir+fname,wn_dict_list) def makeWordnetTable2c(wn_dict_list, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="wnInline2c.tex"): """Table about the most incident roots""" t2=[c.Counter([i[2].name() for i in j["top_hypernyms"] if len(i)>2]) for j in wn_dict_list] auxWnTb(t2,"two",table_dir+fname,wn_dict_list) def makeWordnetTable2d(wn_dict_list, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="wnInline2d.tex"): """Table about the most incident roots""" t3=[c.Counter([i[3].name() for i in j["top_hypernyms"] if len(i)>3]) for j in wn_dict_list] auxWnTb(t3,"three",table_dir+fname,wn_dict_list) def makeWordnetPOSTable(wn_dict_list, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="wnPOSInline.tex",tag=None): wms=wn_dict_list labels=["N","ADJ","VERB","ADV","POS","POS!"] data=[[wms[i]["ftags"][j] for i in range(4)] for j in range(4)] # incluir % com relação aas palavras totais etiquetadas # variaveis [posok WL_ e posnok data+=[[100*len(wms[i]["posok"])/len(wms[i]["WT_"]) for i in range(4)]] data+=[[100*(len(wms[i]["posok"])/(len(wms[i]["posok"])+len(wms[i]["posnok"]))) for i in range(4)]] caption=r"""Percentage of synsets with each of the POS tags used by Wordnet. The last lines give the percentage of words considered from all of the tokens (POS) and from the words with synset (POS!). The tokens not considered are punctuations, unrecognized words, words without synsets, stopwords and words for which Wordnet has no synset tagged with POS tags . Values for each Erd\"os sectors are in the columns {{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs.""" labelsh=("","g.","p.","i.","h.") fname_=mkName(table_dir,fname,tag) g.lTable(labels,labelsh,data,caption,fname_,"textGeral_") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(fname_[:-4]+"_",[1,-4],[1]) def medidasWordnet2_POS(wn_measures,poss=("n","as","v","r")): wn_measures2={} for pos in poss: wn_measures2[pos]=g.textUtils.medidasWordnet2_(wn_measures,pos) return wn_measures2 def makeWordnetTables2_POS(wn_dict_pos, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="wnPOSInline2",poss=("n","as","v","r"),tag=None): TDIR=table_dir for pos in poss: wn_measures2=wn_dict_pos[pos] g.textUtils.makeWordnetTable( wn_measures2,TDIR ,fname="{}-{}-{}tag.tex". format(fname,pos,tag)) # medias e desvios das incidencias dos atributos g.textUtils.makeWordnetTable2a(wn_measures2,TDIR, fname="{}a-{}-{}tag.tex".format(fname,pos,tag)) # contagem dos synsets raiz g.textUtils.makeWordnetTable2b(wn_measures2,TDIR, fname="{}b-{}-{}tag.tex".format(fname,pos,tag)) # contagem dos synsets raiz g.textUtils.makeWordnetTable2c(wn_measures2,TDIR, fname="{}c-{}-{}tag.tex".format(fname,pos,tag)) # contagem dos synsets raiz g.textUtils.makeWordnetTable2d(wn_measures2,TDIR, fname="{}d-{}-{}tag.tex".format(fname,pos,tag)) # contagem dos synsets raiz # make one file from all 20 (max) tables names="{}-{}_.tex","{}a-{}_.tex","{}b-{}_.tex","{}c-{}_.tex","{}d-{}_.tex" tx="" for pos in poss: tx+="\n\n% POS -> "+pos for name in names: name_=TDIR+name.format(fname,pos,tag) if os.path.isfile(name_): tx+="\n% fname -> "+name_+"\n" tx+=open(name_).read() g.writeTex(tx,TDIR+fname+".tex") def makeWordnetTable(wn_dict_list, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="wnInline.tex"): wms=wn_dict_list mvars=("mmind","dmind", "mmaxd","dmaxd", "mnhol_","dnhol_", "mnmer_","dnmer_", "mndomains","dndomains", "mnsimilar","dnsimilar", "mnverb_groups","dnverb_groups", "mnlemmas","dnlemmas", "mnentailments","dnentailments", "mnhypo_","dnhypo_", "mnhyper_","dnhyper_", ) wms_=[[wms[j][i] for j in range(4)] for i in mvars] labelsh=("","g.","p.","i.","h.") labels=("$\mu(min\,depth)$","$\sigma(min\,depth)$", "$\mu(max\,depth)$",r"$\sigma(max\,depth)$", "$\mu(holonyms)$", "$\sigma(holonyms)$", "$\mu(meronyms)$", "$\sigma(meronyms)$", "$\mu(domains)$", "$\sigma(domains)$", "$\mu(similar)$", "$\sigma(similar)$", "$\mu(verb\,groups)$","$\sigma(verb\,groups)$", "$\mu(lemmas)$", "$\sigma(lemmas)$", "$\mu(entailments)$", "$\sigma(entailments)$", "$\mu(hyponyms)$", "$\sigma(hyponyms)$", "$\mu(hypernyms)$", "$\sigma(hypernyms)$", ) caption=r"""Measures of wordnet features in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs).""" data=wms_ g.lTable(labels,labelsh,data,caption,table_dir+fname,"textGeral_") ME(table_dir+fname[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(table_dir+fname[:-4]+"_",[1],[1],[2,4,6,8,10,12,14,16,18,20,22]) def makePOSTable(posMensagens_dict, table_dir="/home/r/repos/artigoTextoNasRedes/tables/",fname="posInline.tex",tag=None): pms=posMensagens_dict # pms_=[list(i["htags__"].items()) for i in pms] #mvars=[list(i["htags__"].keys()) for i in pms] #mvars=list(pms[0]["htags__"].keys()) mvars=['NOUN', 'X', 'ADP', 'DET', 'VERB', 'ADJ', 'ADV', 'PRT', 'PRON', 'NUM', 'CONJ',"."] pms__=[[pms[j]["htags__"][i] if (i in pms[j]["htags__"].keys()) else 0 for j in range(4)] for i in mvars] labelsh=("","g.","p.","i.","h.") labels=mvars[:-1]+["PUNC"] caption=r"""POS tags in each Erd\"os sector ({{\bf p.}} for periphery, {{\bf i.}} for intermediary, {{\bf h.}} for hubs). Universal POS tags~\cite{{petrov}}: VERB - verbs (all tenses and modes); NOUN - nouns (common and proper); PRON - pronouns; ADJ - adjectives; ADV - adverbs; ADP - adpositions (prepositions and postpositions); CONJ - conjunctions; DET - determiners; NUM - cardinal numbers; PRT - particles or other function words; X - other: foreign words, typos, abbreviations; PUNCT - punctuation. """ #data=list(map(list, zip(*tms_))) data=pms__ #nmsgs=data[0] #nmsgs_=perc_(nmsgs) #data=n.array(data[1:]) #data=n.vstack((nmsgs,nmsgs_,data)) fname_=mkName(table_dir,fname,tag) g.lTable(labels,labelsh,data,caption,fname_,"textGeral_") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,5)]) DL(fname_[:-4]+"_",[1],[1],[2,4,7,9,10,11,12]) def filtro(wt_): # faz separação dos tokens para analise com wordnet sword_sem_synset=[] sword_com_synset=[] word_com_synset=[] word_sem_synset=[] pontuacao=[] token_exotico=[] for wt in wt_: ss=wn.synsets(wt[0]) if ss: if wt[0] in stopwords: sword_com_synset.append(wt) else: word_com_synset.append((wt[0],wt[1],ss)) #elif wt[0] in puncts: elif sum([tt in puncts for tt in wt[0]])==len(wt[0]): pontuacao.append(wt) elif wt[0] in stopwords: sword_sem_synset.append(wt) elif wt[0] in WL_: word_sem_synset.append(wt) else: token_exotico.append(wt) mvars=("sword_sem_synset","sword_com_synset","word_com_synset","word_sem_synset","pontuacao","token_exotico") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def traduzPOS(astring): if astring in ("NOUN","NNS","NN","NUM"): return wn.NOUN elif astring in ("VERB","VBG"): return wn.VERB elif astring in ("ADJ","JJ","ADP"): return wn.ADJ+wn.ADJ_SAT elif astring in ("ADV","RB","PRT"): return wn.ADV else: return "NOPOS" def medidasWordnet_(list_words_with_pos_tags): return [medidasWordnet(i) for i in list_words_with_pos_tags] def medidasWordnet2_(list_wn_stuff,pos): return [medidasWordnet2(i,pos) for i in list_wn_stuff] def medidasWordnet(words_with_pos_tags): WT=words_with_pos_tags WT_=[(i[0].lower(),i[1]) for j in WT for i in j] wlists=filtro(WT_) wl=wlists["word_com_synset"] posok=[] posnok=[] for ww in wl: pos = traduzPOS(ww[1]) ss=ww[2] # procura nos nomes dos synsets o pos e numeracao mais baixa poss=[i.pos() for i in ss] fposs=[pp in pos for pp in poss] if sum(fposs): tindex=fposs.index(True) posok.append((ww[0],ss[tindex])) else: posnok.append(ww) # estatísticas sobre posok # quais as tags? posok_=[i[1].pos() for i in posok] ftags_=[100*posok_.count(i)/len(posok_) for i in ('n', 's','a', 'r', 'v')] ftags=ftags_[0:2]+ftags_[3:] ftags[1]+=ftags_[2] mvars=("WT_","wlists","posok","posnok","ftags") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def medidasWordnet2(wndict,pos=None): """pos={'r', 'as', 'n', 'v'}""" sss=wndict["posok"] if pos: sss_=[i[1] for i in sss if i[1].pos() in pos] else: sss_=[i[1] for i in sss] hyperpaths=[i.hypernym_paths() for i in sss_] top_hypernyms=[i[0][:4] for i in hyperpaths] # fazer histograma por camada lexnames=[i.lexname().split(".")[-1] for i in sss_] # rever mhol=[len(i.member_holonyms()) for i in sss_] phol=[len(i.part_holonyms()) for i in sss_] shol=[len(i.substance_holonyms()) for i in sss_] nhol_=[mhol[i]+phol[i]+shol[i] for i in range(len(sss_))] ### mmer=[len(i.member_meronyms()) for i in sss_] # pmer=[len(i.part_meronyms()) for i in sss_] smer=[len(i.substance_meronyms()) for i in sss_] nmer_=[mmer[i]+pmer[i]+smer[i] for i in range(len(sss_))] ### nlemmas=[len(i.lemmas()) for i in sss_] ### nhyperpaths=[len(i) for i in hyperpaths] shyperpaths=[len(i) for j in hyperpaths for i in j] nentailments=[len(i.entailments()) for i in sss_] nhypernyms=[len(i.hypernyms()) for i in sss_] nihypernyms=[len(i.instance_hypernyms()) for i in sss_] nhyper_=[nhypernyms[i]+nihypernyms[i] for i in range(len(sss_))] nhypo=[len(i.hyponyms()) for i in sss_] ### nihypo=[len(i.instance_hyponyms()) for i in sss_] nhypo_=[nhypo[i]+nihypo[i] for i in range(len(sss_))] maxd=[i.max_depth() for i in sss_] ### mind=[i.min_depth() for i in sss_] ### nregion_domains=[len(i.region_domains()) for i in sss_] # ntopic_domains= [len(i.topic_domains()) for i in sss_] nusage_domains= [len(i.usage_domains()) for i in sss_] ndomains=[nregion_domains[i]+ntopic_domains[i]+nusage_domains[i] for i in range(len(sss_))] ### nsimilar=[ len(i.similar_tos()) for i in sss_] nverb_groups=[len(i.verb_groups()) for i in sss_] mvars=list(locals().keys()); mvars.remove("wndict") mvars_=mvars[:] mvars_.remove("sss_"); mvars_.remove("sss"); mvars_.remove("top_hypernyms") mvars_.remove("pos") mvars_.remove("hyperpaths"); mvars_.remove("lexnames") vdict={} #mvars=("nmero_part",) locals_=locals() for mvar in mvars: if mvar not in mvars_: vdict[mvar] = locals_[mvar] else: vdict["m"+mvar]=n.mean(locals_[mvar]) vdict["d"+mvar]=n.std(locals_[mvar]) return vdict def medidasParticipante(dict_auth_text): medidas_autor={} for author in dict_auth_text: text=dict_auth_text[author] if text: text_,ncontract=R(text) medidas=medidasSentencas(text_) medidas2=medidasPOS(medidas["tokens_sentences"]) medidas.update(medidas2) medidas_autor[author]=medidas return medidas_autor def medidasPCA2_(ds,nm,authors_lists=None): mall=medidasPCA2(ds,nm) return [mall]+[medidasPCA2(ds,nm,authors) for authors in authors_lists] def medidasPCA2(ds,nm,authors=None): textosP= textosParticipante(ds,authors) medidasP=medidasParticipante(textosP) medidas_autor=g.textUtils.medidasPCA(medidasP,nm) vkeys=["clustering","degree","strength","Mpuncts_sents","Spuncts_sents","Mknownw_sents","Sknownw_sents","Mstopw_sents","Sstopw_sents"] pca=g.textUtils.tPCA(medidas_autor,vkeys) vlabels=[r"$cc$",r"$d$",r"$s$",r"$\mu_S(p)$",r"$\sigma_S(p)$",r"$\mu_S(kw)$",r"$\sigma_S(kw)$",r"$\mu_S(sw)$",r"$\sigma_S(sw)$"] mvars=("vlabels","pca","vkeys","medidas_autor","medidasP","textosP") vdict={} for mvar in mvars: vdict[mvar] = locals()[mvar] return vdict def medidasPCA(medidas_participante_dict,network_measures): nm,mp=network_measures,medidas_participante_dict for author in mp: mp[author]["degree"]=nm.degrees[author] mp[author]["strength"]=nm.strengths[author] mp[author]["clustering"]=nm.clusterings[author] return mp def textosParticipante(ds,authors=None): texts={} if not authors: authors=ds.author_messages for author in authors: texts[author]="" for msg in ds.author_messages[author]: msgid=msg[0] text=ds.messages[msgid][-1] texts[author]+=text B.LANG+=[langid.classify(text)] return texts def makePCATable_(medidas_pca,table_dir,fname="pcaInline.tex",tag=None): vecs=[i["pca"].feature_vec_.real for i in medidas_pca] vals=[i["pca"].eig_values_.real for i in medidas_pca] labelsh=[""]+["PC{}".format(i+1) for i in range(vecs[0].shape[1])] labels=medidas_pca[0]["vlabels"] labels=labels+[r"$\lambda$"] data=[] for secn in range(len(vecs[0])): for vec in vecs: data.append(vec[secn]) caption="PCA formation" data=n.vstack(data+[val[:vecs[0].shape[1]] for val in vals]) labels_=[(i,"","","") for i in labels] labels__=[i for j in labels_ for i in j] labels__[1:4]=["(p.)","(i.)","(h.)"] fname_=mkName(table_dir,fname,tag) g.lTable(labels__,labelsh,data,caption,fname_,"textPCA") ME(fname_[:-4],"\\bf",[(0,i) for i in range(1,6)]+[(i,0) for i in range(1,11)]) DL(fname_[:-4]+"_",[1,-6],[1],[2,3,4, 6,7,8, 10,11,12, 14,15,16, 18,19,20, 22,23,24, 26,27,28, 30,31,32, 34,35,36, 38,39,40]) def makePCATable(vecs,vals,labs,table_dir,fname="pcaInline.tex"): labelsh=[""]+["PC{}".format(i+1) for i in range(vecs.shape[1])] labels=labs+[r"$\lambda$"] data=n.vstack((vecs,vals[:vecs.shape[1]])) caption="PCA formation" g.lTable(labels,labelsh,data,caption,table_dir+fname,"textGeral_") ME(table_dir+fname[:-4],"\\bf",[(0,i) for i in range(1,6)]+[(i,0) for i in range(1,11)]) DL(table_dir+fname[:-4]+"_",[1,-3],[1],[2,3,5,7,8]) def tPCA(medidas,keys): data=[] for author in medidas: data+=[[]] for key in keys: data[-1]+=[medidas[author][key]] data_=n.array(data) data__=data_.T return g.pca.PCA(data__,final_dimensions=5) from sklearn.feature_extraction.text import TfidfVectorizer def tfIdf(texts): """Returns distance matrix for the texts""" vect = TfidfVectorizer(min_df=1) tfidf = vect.fit_transform([tt.lower() for tt in texts]) aa=(tfidf * tfidf.T).A return aa def kolmogorovSmirnovDistance(seq1,seq2,bins=300): """Calculate distance between histograms Adapted from the Kolmogorov-Smirnov test""" amin=min(min(seq1),min(seq2)) amax=max(max(seq1),max(seq2)) bins=n.linspace(amin,amax,bins+1,endpoint=True) h1=n.histogram(seq1,bins,density=True)[0] h2=n.histogram(seq2,bins,density=True)[0] space=bins[1]-bins[0] cs1=n.cumsum(h1*space) cs2=n.cumsum(h2*space) dc=n.abs(cs1-cs2) Dnn=max(dc) n1=len(seq1) n2=len(seq2) fact=((n1+n2)/(n1*n2))**0.5 calpha=Dnn/fact return calpha def uniteTables3(TDIR,tag): """junta cada POS tag da wn em uma tabelona""" tt="wnPOSInline2a","wnPOSInline2b","wnPOSInline2c","wnPOSInline2d", fnames=[] for pos in ("n","as","v","r"): #for pos in ("n",): fname=TDIR+"wnPOSInline2-{}-{}".format(pos,tag) fnames=[] for ttt in tt: fnames+=[TDIR+ttt+"-{}-{}tag_".format(pos,tag)] if os.path.isfile(fnames[1]+".tex"): g.tableHelpers.vstackTables_(fnames[0],fnames[1],fname) else: shutil.copyfile(fnames[0]+".tex",fname+".tex") if os.path.isfile(fnames[2]+".tex"): g.tableHelpers.vstackTables_(fname,fnames[2],fname) if os.path.isfile(fnames[3]+".tex"): g.tableHelpers.vstackTables_(fname,fnames[3],fname) def uniteTables2(TDIR,tag): foo=TDIR+"posMerged{}".format(tag) g.tableHelpers.vstackTables_(TDIR+"posInline{}_".format(tag), TDIR+"wnPOSInline{}_".format(tag),foo) def uniteTables(TDIR,tag): t1="geral"#"geralInline0_" t2="chars" t3="tokensMerged" t4="sentences" t5="messages" def makeN(ss): if ss==t3: return ss+"Inline{}".format(tag) return ss+"Inline{}_".format(tag) tt=[TDIR+makeN(i) for i in (t1,t2,t3,t4,t5)] foo=TDIR+"mergedA{}".format(tag) g.tableHelpers.vstackTables(tt[0],tt[1],foo) g.tableHelpers.vstackTables(foo,tt[2],foo) g.tableHelpers.vstackTables(foo,tt[3],foo) g.tableHelpers.vstackTables(foo,tt[4],foo) def makeTables_(lids,TOTAL,TDIR,FDIR,tags=None,offset=0,start_from=0,basedir="~/.gmane3/"): # if not tags: # tags=[str(i) for i in range(len(lids))] # for lid,tag in zip(lids,tags): # es=g.EmailStructures(lid,TOTAL,offset=offset,basedir=basedir) # if sum([len(i)>4 for i in es.structs[-1].sectorialized_agents__])<3: # B.degen.append(lid) # continue # isenglish = makeTable(lid,es,TOTAL,TDIR,FDIR,tag) # if isenglish == 'nonenglish': # B.nonenglish.append(lid) B.degen=[] B.nonenglish=[] tag = 0 for lid in lids: es=g.EmailStructures(lid,TOTAL,offset=offset,basedir=basedir) if sum([len(i)>4 for i in es.structs[-1].sectorialized_agents__])<3: B.degen.append(lid) print("------- > > Degenerated structure <") else: isenglish = makeTable(lid,es,TOTAL,TDIR,FDIR,tag) if isenglish == 'nonenglish': B.nonenglish.append(lid) else: tag += 1 tags = list(range(tag)) lids_ = [i for i in lids if i not in B.degen and i not in B.nonenglish] labelsh = ('tag', 'gmane id') labels = [str(i) for i in tags] data = [[i] for i in lids_] caption = 'Numerical tags with respective list ids used throughout tables in this supporting information document.' fname_ = TDIR+'labelsIDs.tex' g.tableHelpers.lTable(labels,labelsh,data,caption,fname_,"strings") def makeTable(lid,es,TOTAL,TDIR,FDIR,tag,offset=0): #TDIR="/home/r/repos/artigoTextoNasRedes/tables/" #TDIRf="/home/r/repos/artigoTextoNasRedes/figs/" ds=es.structs[1] timest=es.structs[2] pr=es.structs[-1] nm=es.structs[4] B.LANG=[] B.tag=tag ts,ncontractions,msg_ids=g.textUtils.makeText_(ds,pr); check("make text") B.LANG+=[langid.classify(" ".join(ts))] if B.LANG[-1][0] != 'en': print("NON ENGLISH LIST", B.LANG[-1]) return 'nonenglish' else: print("IS ENGLISH!!!! <<<<<<<<<=================>>>>>>>>>>> !!!!!!!") gmeasures=g.generalMeasures(ds,pr,timest) g.makeGeneralTable(gmeasures,TDIR,tag=tag) char_measures=g.textUtils.medidasLetras_(ts); check("medidas letras") g.textUtils.makeCharTable(char_measures,TDIR,tag=tag) tok_measures=g.textUtils.medidasTokens__(ts,ncontractions); check("medidas tokens") g.textUtils.makeTokensTable(tok_measures,TDIR,tag=tag) g.textUtils.makeTokenSizesTable(tok_measures,TDIR,tag=tag) g.tableHelpers.vstackTables(TDIR+"tokensInline{}_".format(tag),TDIR+"tokenSizesInline{}_".format(tag),TDIR+"tokensMergedInline{}".format(tag)) sent_measures=g.textUtils.medidasSentencas_(ts); check("medidas sentenças") g.textUtils.makeSentencesTable(sent_measures,TDIR,tag=tag) msg_measures=g.textUtils.medidasMensagens_(ds,msg_ids); check("medidas mensagens") g.textUtils.makeMessagesTable(msg_measures,TDIR,tag=tag) g.textUtils.uniteTables(TDIR,tag) pos_measures=g.textUtils.medidasPOS_([i["tokens_sentences"] for i in sent_measures]); check("medidas POS") g.textUtils.makePOSTable(pos_measures,TDIR,tag=tag) wn_measures=g.textUtils.medidasWordnet_([i["tags"] for i in pos_measures]); check("medidas wordnet") g.textUtils.makeWordnetPOSTable(wn_measures,TDIR ,tag=tag) # medias e desvios das incidencias dos atributos g.textUtils.uniteTables2(TDIR,tag) wn_measures2_pos=g.textUtils.medidasWordnet2_POS(wn_measures); check("medidas wordnet 2") g.textUtils.makeWordnetTables2_POS(wn_measures2_pos,TDIR,tag=tag) # escreve arquivo com todas as 5 tabelas para cada pos g.textUtils.uniteTables3(TDIR,tag) sinais=g.textUtils.medidasSinais_(ts); check("medidas sinais") dists=g.textUtils.ksAll(sinais,mkeys=["lens_tok","lens_word","lens_sent"]); check("ks sinais") g.textUtils.makeKSTables(dists,TDIR, fnames=("ksTokens","ksWords","ksSents"), tags=("size of tokens","size of known words","size of sentences"),tag=tag) sinais2=g.textUtils.medidasSinais2_(pos_measures,msg_measures); check("medidas sinais 2") dists2=g.textUtils.ksAll(sinais2,mkeys=["adj","sub","pun","verb","chars"]); check("ks sinais 2") g.textUtils.makeKSTables(dists2,TDIR, fnames=("ksAdjs","ksSubs","ksPuns","ksVerbs","ksChars"), tags=("use of adjectives on sentences","use of substantives on sentences","use of punctuations on sentences","use of verbs in each 100 tokens","use of number of characters in messages"),tag=tag) # correlação pierson e spearman (tem necessidade das duas?) medidas_pca=g.textUtils.medidasPCA2_(ds,nm,pr.sectorialized_agents__); check("medidas pca") # retorna medidas para plotar e tabelas g.textUtils.makeCorrelationTable_(medidas_pca,TDIR,"correlationInline.tex",tag=tag) g.textUtils.makePCATable_(medidas_pca,TDIR,tag=tag) # medidas_pca[0]["pca"].plot("plot_pca-{}.png".format(tag),pr,labels="sym",tdir=FDIR) es.structs=es.structs[1:] ftags=[i["ftags"] for i in wn_measures] LANG=B.LANG mvars=("es","gmeasures","ts","ncontractions","msg_ids", "char_measures","tok_measures","sent_measures", "msg_measures","pos_measures","ftags", "sinais","sinais2","dists2","medidas_pca","LANG","tag") vdict={}; check("antes da escrita do pickle") for mvar in mvars: vdict[mvar] = locals()[mvar] pDump(vdict,TDIR+"vdict-{}.pickle".format(tag)) check("escrito pickle, {}, {}".format(lid, TDIR)) del B.tag return 0
[ "gmaneLegacy.textUtils.uniteTables3", "gmaneLegacy.textUtils.medidasSinais2_", "gmaneLegacy.textUtils.medidasTokens__", "gmaneLegacy.textUtils.makeMessagesTable", "gmaneLegacy.textUtils.medidasWordnet2_POS", "gmaneLegacy.textUtils.makeSentencesTable", "gmaneLegacy.lTable", "gmaneLegacy.textUtils.medidasLetras_", "pickle.dump", "gmaneLegacy.textUtils.medidasPCA2_", "gmaneLegacy.textUtils.makeKSTables", "gmaneLegacy.ksStatistics.kolmogorovSmirnovDistance__", "sklearn.feature_extraction.text.TfidfVectorizer", "nltk.corpus.words.words", "builtins.me.append", "gmaneLegacy.textUtils.medidasSentencas_", "gmaneLegacy.makeGeneralTable", "gmaneLegacy.textUtils.medidasWordnet2_", "gmaneLegacy.tableHelpers.lTable", "gmaneLegacy.textUtils.ksAll", "gmaneLegacy.tableHelpers.vstackTables_", "numpy.mean", "builtins.tt.append", "builtins.tt_.append", "gmaneLegacy.textUtils.makeWordnetPOSTable", "os.path.split", "gmaneLegacy.tableHelpers.vstackTables", "re.subn", "gmaneLegacy.generalMeasures", "gmaneLegacy.textUtils.medidasPCA", "os.path.isfile", "shutil.copyfile", "gmaneLegacy.textUtils.uniteTables", "numpy.std", "builtins.nonenglish.append", "gmaneLegacy.NetworkPartitioning", "gmaneLegacy.textUtils.medidasWordnet_", "gmaneLegacy.InteractionNetwork", "numpy.cumsum", "gmaneLegacy.textUtils.makeText_", "re.compile", "gmaneLegacy.EmailStructures", "nltk.corpus.stopwords.words", "numpy.linspace", "gmaneLegacy.textUtils.makeCharTable", "gmaneLegacy.textUtils.medidasSinais_", "numpy.vstack", "gmaneLegacy.textUtils.uniteTables2", "collections.OrderedDict", "gmaneLegacy.textUtils.medidasMensagens_", "gmaneLegacy.pca.PCA", "gmaneLegacy.textUtils.medidasPOS_", "gmaneLegacy.LoadMessages", "nltk.corpus.floresta.words", "time.time", "gmaneLegacy.textUtils.makePCATable_", "gmaneLegacy.TimeStatistics", "gmaneLegacy.textUtils.makeWordnetTables2_POS", "gmaneLegacy.textUtils.makeCorrelationTable_", "gmaneLegacy.writeTex", "gmaneLegacy.textUtils.makeTokenSizesTable", "numpy.array", "gmaneLegacy.textUtils.tPCA", "gmaneLegacy.ListDataStructures", "numpy.histogram", "nltk.sent_tokenize", "gmaneLegacy.textUtils.makePOSTable", "nltk.corpus.wordnet.synsets", "numpy.abs", "pickle.load", "nltk.tokenize.wordpunct_tokenize", "builtins.degen.append", "gmaneLegacy.textUtils.makeTokensTable", "os.path.join", "collections.Counter", "langid.classify", "gmaneLegacy.NetworkMeasures" ]
[((262, 273), 'time.time', 'time.time', ([], {}), '()\n', (271, 273), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((512, 534), 'nltk.corpus.words.words', 'k.corpus.words.words', ([], {}), '()\n', (532, 534), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((591, 614), 'os.path.split', 'os.path.split', (['__file__'], {}), '(__file__)\n', (604, 614), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((926, 951), 'nltk.corpus.floresta.words', 'k.corpus.floresta.words', ([], {}), '()\n', (949, 951), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((1150, 1164), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1161, 1164), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((358, 369), 'time.time', 'time.time', ([], {}), '()\n', (367, 369), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((678, 713), 'os.path.join', 'os.path.join', (['this_dir', '"""words.txt"""'], {}), "(this_dir, 'words.txt')\n", (690, 713), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((980, 1015), 'nltk.corpus.stopwords.words', 'k.corpus.stopwords.words', (['"""english"""'], {}), "('english')\n", (1004, 1015), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((1032, 1070), 'nltk.corpus.stopwords.words', 'k.corpus.stopwords.words', (['"""portuguese"""'], {}), "('portuguese')\n", (1056, 1070), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((1079, 1131), 'os.path.join', 'os.path.join', (['this_dir', '"""pickledir/brill_taggerT2M1"""'], {}), "(this_dir, 'pickledir/brill_taggerT2M1')\n", (1091, 1131), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((7257, 7268), 'numpy.mean', 'n.mean', (['tls'], {}), '(tls)\n', (7263, 7268), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((7278, 7288), 'numpy.std', 'n.std', (['tls'], {}), '(tls)\n', (7283, 7288), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((9081, 9155), 'gmaneLegacy.tableHelpers.lTable', 'g.tableHelpers.lTable', (['labels', 'labelsh', 'data', 'caption', 'fname_', '"""textGeral"""'], {}), "(labels, labelsh, data, caption, fname_, 'textGeral')\n", (9102, 9155), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((10340, 10351), 'time.time', 'time.time', ([], {}), '()\n', (10349, 10351), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((10361, 10393), 'nltk.tokenize.wordpunct_tokenize', 'k.tokenize.wordpunct_tokenize', (['T'], {}), '(T)\n', (10390, 10393), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((10816, 10827), 'time.time', 'time.time', ([], {}), '()\n', (10825, 10827), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((10837, 10869), 'nltk.tokenize.wordpunct_tokenize', 'k.tokenize.wordpunct_tokenize', (['T'], {}), '(T)\n', (10866, 10869), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((11145, 11155), 'numpy.mean', 'n.mean', (['kw'], {}), '(kw)\n', (11151, 11155), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((11164, 11173), 'numpy.std', 'n.std', (['kw'], {}), '(kw)\n', (11169, 11173), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((11182, 11192), 'numpy.mean', 'n.mean', (['sw'], {}), '(sw)\n', (11188, 11192), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((11201, 11210), 'numpy.std', 'n.std', (['sw'], {}), '(sw)\n', (11206, 11210), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((12402, 12419), 'numpy.array', 'n.array', (['data[1:]'], {}), '(data[1:])\n', (12409, 12419), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((12429, 12462), 'numpy.vstack', 'n.vstack', (['(nsents, nsents_, data)'], {}), '((nsents, nsents_, data))\n', (12437, 12462), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((12504, 12565), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', 'fname_', '"""textGeral"""'], {}), "(labels, labelsh, data, caption, fname_, 'textGeral')\n", (12512, 12565), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((13697, 13759), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', 'fname_', '"""textGeral_"""'], {}), "(labels, labelsh, data, caption, fname_, 'textGeral_')\n", (13705, 13759), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((14815, 14832), 'numpy.array', 'n.array', (['data[1:]'], {}), '(data[1:])\n', (14822, 14832), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((14842, 14879), 'numpy.vstack', 'n.vstack', (['(ntoks, ntoks_, data * 100)'], {}), '((ntoks, ntoks_, data * 100))\n', (14850, 14879), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((14919, 14980), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', 'fname_', '"""textGeral"""'], {}), "(labels, labelsh, data, caption, fname_, 'textGeral')\n", (14927, 14980), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((15936, 15968), 'nltk.tokenize.wordpunct_tokenize', 'k.tokenize.wordpunct_tokenize', (['T'], {}), '(T)\n', (15965, 15968), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((17869, 17901), 'nltk.tokenize.wordpunct_tokenize', 'k.tokenize.wordpunct_tokenize', (['T'], {}), '(T)\n', (17898, 17901), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((19103, 19114), 'time.time', 'time.time', ([], {}), '()\n', (19112, 19114), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((19124, 19156), 'nltk.tokenize.wordpunct_tokenize', 'k.tokenize.wordpunct_tokenize', (['T'], {}), '(T)\n', (19153, 19156), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((19903, 19914), 'time.time', 'time.time', ([], {}), '()\n', (19912, 19914), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20079, 20090), 'time.time', 'time.time', ([], {}), '()\n', (20088, 20090), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20337, 20348), 'time.time', 'time.time', ([], {}), '()\n', (20346, 20348), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20498, 20509), 'time.time', 'time.time', ([], {}), '()\n', (20507, 20509), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20666, 20677), 'time.time', 'time.time', ([], {}), '()\n', (20675, 20677), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20875, 20886), 'time.time', 'time.time', ([], {}), '()\n', (20884, 20886), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((21038, 21049), 'time.time', 'time.time', ([], {}), '()\n', (21047, 21049), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((22106, 22123), 'numpy.array', 'n.array', (['data[1:]'], {}), '(data[1:])\n', (22113, 22123), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((22133, 22172), 'numpy.vstack', 'n.vstack', (['(nchars, nchars_, data * 100)'], {}), '((nchars, nchars_, data * 100))\n', (22141, 22172), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((22212, 22273), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', 'fname_', '"""textGeral"""'], {}), "(labels, labelsh, data, caption, fname_, 'textGeral')\n", (22220, 22273), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((23171, 23183), 'numpy.mean', 'n.mean', (['toks'], {}), '(toks)\n', (23177, 23183), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((23193, 23204), 'numpy.std', 'n.std', (['toks'], {}), '(toks)\n', (23198, 23204), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((23215, 23228), 'numpy.mean', 'n.mean', (['toks_'], {}), '(toks_)\n', (23221, 23228), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((23240, 23252), 'numpy.std', 'n.std', (['toks_'], {}), '(toks_)\n', (23245, 23252), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((24382, 24444), 'gmaneLegacy.lTable', 'g.lTable', (['labels__', 'labelsh', 'data', 'caption', 'fname_', '"""textCorr"""'], {}), "(labels__, labelsh, data, caption, fname_, 'textCorr')\n", (24390, 24444), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((25519, 25590), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', '(table_dir + fname)', '"""textCorr"""'], {}), "(labels, labelsh, data, caption, table_dir + fname, 'textCorr')\n", (25527, 25590), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((26898, 26915), 'numpy.array', 'n.array', (['data[1:]'], {}), '(data[1:])\n', (26905, 26915), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((26925, 26956), 'numpy.vstack', 'n.vstack', (['(nmsgs, nmsgs_, data)'], {}), '((nmsgs, nmsgs_, data))\n', (26933, 26956), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((26998, 27059), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', 'fname_', '"""textGeral"""'], {}), "(labels, labelsh, data, caption, fname_, 'textGeral')\n", (27006, 27059), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((28796, 28814), 'nltk.sent_tokenize', 'k.sent_tokenize', (['T'], {}), '(T)\n', (28811, 28814), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30031, 30049), 'nltk.sent_tokenize', 'k.sent_tokenize', (['T'], {}), '(T)\n', (30046, 30049), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30146, 30157), 'numpy.mean', 'n.mean', (['tTS'], {}), '(tTS)\n', (30152, 30157), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30169, 30179), 'numpy.std', 'n.std', (['tTS'], {}), '(tTS)\n', (30174, 30179), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30360, 30372), 'numpy.mean', 'n.mean', (['tsTS'], {}), '(tsTS)\n', (30366, 30372), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30385, 30396), 'numpy.std', 'n.std', (['tsTS'], {}), '(tsTS)\n', (30390, 30396), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30560, 30574), 'numpy.mean', 'n.mean', (['tsTSkw'], {}), '(tsTSkw)\n', (30566, 30574), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30589, 30602), 'numpy.std', 'n.std', (['tsTSkw'], {}), '(tsTSkw)\n', (30594, 30602), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30801, 30815), 'numpy.mean', 'n.mean', (['tsTSpv'], {}), '(tsTSpv)\n', (30807, 30815), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30830, 30843), 'numpy.std', 'n.std', (['tsTSpv'], {}), '(tsTSpv)\n', (30835, 30843), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((31386, 31397), 'numpy.mean', 'n.mean', (['tmT'], {}), '(tmT)\n', (31392, 31397), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((31407, 31417), 'numpy.std', 'n.std', (['tmT'], {}), '(tmT)\n', (31412, 31417), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((31428, 31440), 'numpy.mean', 'n.mean', (['ttmT'], {}), '(ttmT)\n', (31434, 31440), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((31451, 31462), 'numpy.std', 'n.std', (['ttmT'], {}), '(ttmT)\n', (31456, 31462), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((31473, 31485), 'numpy.mean', 'n.mean', (['tsmT'], {}), '(tsmT)\n', (31479, 31485), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((31496, 31507), 'numpy.std', 'n.std', (['tsmT'], {}), '(tsmT)\n', (31501, 31507), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((32763, 32780), 'collections.Counter', 'c.Counter', (['tags__'], {}), '(tags__)\n', (32772, 32780), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((32793, 32808), 'collections.OrderedDict', 'c.OrderedDict', ([], {}), '()\n', (32806, 32808), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((36941, 37003), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', 'fname_', '"""textGeral_"""'], {}), "(labels, labelsh, data, caption, fname_, 'textGeral_')\n", (36949, 37003), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((38604, 38641), 'gmaneLegacy.writeTex', 'g.writeTex', (['tx', "(TDIR + fname + '.tex')"], {}), "(tx, TDIR + fname + '.tex')\n", (38614, 38641), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((40051, 40124), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', '(table_dir + fname)', '"""textGeral_"""'], {}), "(labels, labelsh, data, caption, table_dir + fname, 'textGeral_')\n", (40059, 40124), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((41597, 41659), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', 'fname_', '"""textGeral_"""'], {}), "(labels, labelsh, data, caption, fname_, 'textGeral_')\n", (41605, 41659), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((47274, 47310), 'gmaneLegacy.textUtils.medidasPCA', 'g.textUtils.medidasPCA', (['medidasP', 'nm'], {}), '(medidasP, nm)\n', (47296, 47310), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((47458, 47496), 'gmaneLegacy.textUtils.tPCA', 'g.textUtils.tPCA', (['medidas_autor', 'vkeys'], {}), '(medidas_autor, vkeys)\n', (47474, 47496), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((48940, 48997), 'numpy.vstack', 'n.vstack', (['(data + [val[:vecs[0].shape[1]] for val in vals])'], {}), '(data + [val[:vecs[0].shape[1]] for val in vals])\n', (48948, 48997), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((49168, 49229), 'gmaneLegacy.lTable', 'g.lTable', (['labels__', 'labelsh', 'data', 'caption', 'fname_', '"""textPCA"""'], {}), "(labels__, labelsh, data, caption, fname_, 'textPCA')\n", (49176, 49229), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((49983, 50021), 'numpy.vstack', 'n.vstack', (['(vecs, vals[:vecs.shape[1]])'], {}), '((vecs, vals[:vecs.shape[1]]))\n', (49991, 50021), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((50053, 50126), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', '(table_dir + fname)', '"""textGeral_"""'], {}), "(labels, labelsh, data, caption, table_dir + fname, 'textGeral_')\n", (50061, 50126), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((50431, 50444), 'numpy.array', 'n.array', (['data'], {}), '(data)\n', (50438, 50444), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((50475, 50512), 'gmaneLegacy.pca.PCA', 'g.pca.PCA', (['data__'], {'final_dimensions': '(5)'}), '(data__, final_dimensions=5)\n', (50484, 50512), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((50651, 50676), 'sklearn.feature_extraction.text.TfidfVectorizer', 'TfidfVectorizer', ([], {'min_df': '(1)'}), '(min_df=1)\n', (50666, 50676), False, 'from sklearn.feature_extraction.text import TfidfVectorizer\n'), ((51005, 51052), 'numpy.linspace', 'n.linspace', (['amin', 'amax', '(bins + 1)'], {'endpoint': '(True)'}), '(amin, amax, bins + 1, endpoint=True)\n', (51015, 51052), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((51174, 51194), 'numpy.cumsum', 'n.cumsum', (['(h1 * space)'], {}), '(h1 * space)\n', (51182, 51194), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((51201, 51221), 'numpy.cumsum', 'n.cumsum', (['(h2 * space)'], {}), '(h2 * space)\n', (51209, 51221), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((51228, 51244), 'numpy.abs', 'n.abs', (['(cs1 - cs2)'], {}), '(cs1 - cs2)\n', (51233, 51244), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((52679, 52725), 'gmaneLegacy.tableHelpers.vstackTables', 'g.tableHelpers.vstackTables', (['tt[0]', 'tt[1]', 'foo'], {}), '(tt[0], tt[1], foo)\n', (52706, 52725), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((52728, 52772), 'gmaneLegacy.tableHelpers.vstackTables', 'g.tableHelpers.vstackTables', (['foo', 'tt[2]', 'foo'], {}), '(foo, tt[2], foo)\n', (52755, 52772), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((52775, 52819), 'gmaneLegacy.tableHelpers.vstackTables', 'g.tableHelpers.vstackTables', (['foo', 'tt[3]', 'foo'], {}), '(foo, tt[3], foo)\n', (52802, 52819), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((52822, 52866), 'gmaneLegacy.tableHelpers.vstackTables', 'g.tableHelpers.vstackTables', (['foo', 'tt[4]', 'foo'], {}), '(foo, tt[4], foo)\n', (52849, 52866), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((54300, 54372), 'gmaneLegacy.tableHelpers.lTable', 'g.tableHelpers.lTable', (['labels', 'labelsh', 'data', 'caption', 'fname_', '"""strings"""'], {}), "(labels, labelsh, data, caption, fname_, 'strings')\n", (54321, 54372), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((54675, 54704), 'gmaneLegacy.textUtils.makeText_', 'g.textUtils.makeText_', (['ds', 'pr'], {}), '(ds, pr)\n', (54696, 54704), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((54975, 55008), 'gmaneLegacy.generalMeasures', 'g.generalMeasures', (['ds', 'pr', 'timest'], {}), '(ds, pr, timest)\n', (54992, 55008), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55011, 55055), 'gmaneLegacy.makeGeneralTable', 'g.makeGeneralTable', (['gmeasures', 'TDIR'], {'tag': 'tag'}), '(gmeasures, TDIR, tag=tag)\n', (55029, 55055), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55073, 55103), 'gmaneLegacy.textUtils.medidasLetras_', 'g.textUtils.medidasLetras_', (['ts'], {}), '(ts)\n', (55099, 55103), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55133, 55188), 'gmaneLegacy.textUtils.makeCharTable', 'g.textUtils.makeCharTable', (['char_measures', 'TDIR'], {'tag': 'tag'}), '(char_measures, TDIR, tag=tag)\n', (55158, 55188), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55209, 55255), 'gmaneLegacy.textUtils.medidasTokens__', 'g.textUtils.medidasTokens__', (['ts', 'ncontractions'], {}), '(ts, ncontractions)\n', (55236, 55255), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55284, 55340), 'gmaneLegacy.textUtils.makeTokensTable', 'g.textUtils.makeTokensTable', (['tok_measures', 'TDIR'], {'tag': 'tag'}), '(tok_measures, TDIR, tag=tag)\n', (55311, 55340), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55343, 55403), 'gmaneLegacy.textUtils.makeTokenSizesTable', 'g.textUtils.makeTokenSizesTable', (['tok_measures', 'TDIR'], {'tag': 'tag'}), '(tok_measures, TDIR, tag=tag)\n', (55374, 55403), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55572, 55605), 'gmaneLegacy.textUtils.medidasSentencas_', 'g.textUtils.medidasSentencas_', (['ts'], {}), '(ts)\n', (55601, 55605), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55638, 55698), 'gmaneLegacy.textUtils.makeSentencesTable', 'g.textUtils.makeSentencesTable', (['sent_measures', 'TDIR'], {'tag': 'tag'}), '(sent_measures, TDIR, tag=tag)\n', (55668, 55698), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55719, 55761), 'gmaneLegacy.textUtils.medidasMensagens_', 'g.textUtils.medidasMensagens_', (['ds', 'msg_ids'], {}), '(ds, msg_ids)\n', (55748, 55761), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55793, 55851), 'gmaneLegacy.textUtils.makeMessagesTable', 'g.textUtils.makeMessagesTable', (['msg_measures', 'TDIR'], {'tag': 'tag'}), '(msg_measures, TDIR, tag=tag)\n', (55822, 55851), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55855, 55889), 'gmaneLegacy.textUtils.uniteTables', 'g.textUtils.uniteTables', (['TDIR', 'tag'], {}), '(TDIR, tag)\n', (55878, 55889), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((55911, 55982), 'gmaneLegacy.textUtils.medidasPOS_', 'g.textUtils.medidasPOS_', (["[i['tokens_sentences'] for i in sent_measures]"], {}), "([i['tokens_sentences'] for i in sent_measures])\n", (55934, 55982), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56009, 56062), 'gmaneLegacy.textUtils.makePOSTable', 'g.textUtils.makePOSTable', (['pos_measures', 'TDIR'], {'tag': 'tag'}), '(pos_measures, TDIR, tag=tag)\n', (56033, 56062), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56082, 56144), 'gmaneLegacy.textUtils.medidasWordnet_', 'g.textUtils.medidasWordnet_', (["[i['tags'] for i in pos_measures]"], {}), "([i['tags'] for i in pos_measures])\n", (56109, 56144), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56175, 56234), 'gmaneLegacy.textUtils.makeWordnetPOSTable', 'g.textUtils.makeWordnetPOSTable', (['wn_measures', 'TDIR'], {'tag': 'tag'}), '(wn_measures, TDIR, tag=tag)\n', (56206, 56234), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56288, 56323), 'gmaneLegacy.textUtils.uniteTables2', 'g.textUtils.uniteTables2', (['TDIR', 'tag'], {}), '(TDIR, tag)\n', (56312, 56323), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56349, 56393), 'gmaneLegacy.textUtils.medidasWordnet2_POS', 'g.textUtils.medidasWordnet2_POS', (['wn_measures'], {}), '(wn_measures)\n', (56380, 56393), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56426, 56493), 'gmaneLegacy.textUtils.makeWordnetTables2_POS', 'g.textUtils.makeWordnetTables2_POS', (['wn_measures2_pos', 'TDIR'], {'tag': 'tag'}), '(wn_measures2_pos, TDIR, tag=tag)\n', (56460, 56493), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56552, 56587), 'gmaneLegacy.textUtils.uniteTables3', 'g.textUtils.uniteTables3', (['TDIR', 'tag'], {}), '(TDIR, tag)\n', (56576, 56587), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56599, 56629), 'gmaneLegacy.textUtils.medidasSinais_', 'g.textUtils.medidasSinais_', (['ts'], {}), '(ts)\n', (56625, 56629), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56665, 56736), 'gmaneLegacy.textUtils.ksAll', 'g.textUtils.ksAll', (['sinais'], {'mkeys': "['lens_tok', 'lens_word', 'lens_sent']"}), "(sinais, mkeys=['lens_tok', 'lens_word', 'lens_sent'])\n", (56682, 56736), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56758, 56924), 'gmaneLegacy.textUtils.makeKSTables', 'g.textUtils.makeKSTables', (['dists', 'TDIR'], {'fnames': "('ksTokens', 'ksWords', 'ksSents')", 'tags': "('size of tokens', 'size of known words', 'size of sentences')", 'tag': 'tag'}), "(dists, TDIR, fnames=('ksTokens', 'ksWords',\n 'ksSents'), tags=('size of tokens', 'size of known words',\n 'size of sentences'), tag=tag)\n", (56782, 56924), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((56948, 57003), 'gmaneLegacy.textUtils.medidasSinais2_', 'g.textUtils.medidasSinais2_', (['pos_measures', 'msg_measures'], {}), '(pos_measures, msg_measures)\n', (56975, 57003), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((57041, 57113), 'gmaneLegacy.textUtils.ksAll', 'g.textUtils.ksAll', (['sinais2'], {'mkeys': "['adj', 'sub', 'pun', 'verb', 'chars']"}), "(sinais2, mkeys=['adj', 'sub', 'pun', 'verb', 'chars'])\n", (57058, 57113), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((57135, 57450), 'gmaneLegacy.textUtils.makeKSTables', 'g.textUtils.makeKSTables', (['dists2', 'TDIR'], {'fnames': "('ksAdjs', 'ksSubs', 'ksPuns', 'ksVerbs', 'ksChars')", 'tags': "('use of adjectives on sentences', 'use of substantives on sentences',\n 'use of punctuations on sentences', 'use of verbs in each 100 tokens',\n 'use of number of characters in messages')", 'tag': 'tag'}), "(dists2, TDIR, fnames=('ksAdjs', 'ksSubs', 'ksPuns',\n 'ksVerbs', 'ksChars'), tags=('use of adjectives on sentences',\n 'use of substantives on sentences', 'use of punctuations on sentences',\n 'use of verbs in each 100 tokens',\n 'use of number of characters in messages'), tag=tag)\n", (57159, 57450), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((57530, 57589), 'gmaneLegacy.textUtils.medidasPCA2_', 'g.textUtils.medidasPCA2_', (['ds', 'nm', 'pr.sectorialized_agents__'], {}), '(ds, nm, pr.sectorialized_agents__)\n', (57554, 57589), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((57654, 57744), 'gmaneLegacy.textUtils.makeCorrelationTable_', 'g.textUtils.makeCorrelationTable_', (['medidas_pca', 'TDIR', '"""correlationInline.tex"""'], {'tag': 'tag'}), "(medidas_pca, TDIR,\n 'correlationInline.tex', tag=tag)\n", (57687, 57744), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((57742, 57795), 'gmaneLegacy.textUtils.makePCATable_', 'g.textUtils.makePCATable_', (['medidas_pca', 'TDIR'], {'tag': 'tag'}), '(medidas_pca, TDIR, tag=tag)\n', (57767, 57795), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2006, 2033), 'pickle.dump', 'pickle.dump', (['tobject', 'f', '(-1)'], {}), '(tobject, f, -1)\n', (2017, 2033), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2254, 2265), 'time.time', 'time.time', ([], {}), '()\n', (2263, 2265), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2317, 2377), 'gmaneLegacy.LoadMessages', 'g.LoadMessages', (['lid', 'TOTAL_M'], {'offset': 'offset', 'basedir': 'basedir'}), '(lid, TOTAL_M, offset=offset, basedir=basedir)\n', (2331, 2377), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2387, 2423), 'gmaneLegacy.ListDataStructures', 'g.ListDataStructures', (['lm'], {'text': '"""yes"""'}), "(lm, text='yes')\n", (2407, 2423), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2526, 2537), 'time.time', 'time.time', ([], {}), '()\n', (2535, 2537), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2615, 2626), 'time.time', 'time.time', ([], {}), '()\n', (2624, 2626), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2638, 2658), 'gmaneLegacy.TimeStatistics', 'g.TimeStatistics', (['ds'], {}), '(ds)\n', (2654, 2658), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2737, 2748), 'time.time', 'time.time', ([], {}), '()\n', (2746, 2748), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2760, 2784), 'gmaneLegacy.InteractionNetwork', 'g.InteractionNetwork', (['ds'], {}), '(ds)\n', (2780, 2784), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2796, 2840), 'gmaneLegacy.NetworkMeasures', 'g.NetworkMeasures', (['iN'], {'exclude': "['rich_club']"}), "(iN, exclude=['rich_club'])\n", (2813, 2840), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2913, 2924), 'time.time', 'time.time', ([], {}), '()\n', (2922, 2924), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((3286, 3297), 'time.time', 'time.time', ([], {}), '()\n', (3295, 3297), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((7121, 7130), 'numpy.mean', 'n.mean', (['i'], {}), '(i)\n', (7127, 7130), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((7165, 7173), 'numpy.std', 'n.std', (['i'], {}), '(i)\n', (7170, 7173), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((22972, 22988), 'numpy.mean', 'n.mean', (['medidas_'], {}), '(medidas_)\n', (22978, 22988), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((22989, 23004), 'numpy.std', 'n.std', (['medidas_'], {}), '(medidas_)\n', (22994, 23004), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((27463, 27495), 'nltk.tokenize.wordpunct_tokenize', 'k.tokenize.wordpunct_tokenize', (['t'], {}), '(t)\n', (27492, 27495), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((27837, 27855), 'nltk.sent_tokenize', 'k.sent_tokenize', (['t'], {}), '(t)\n', (27852, 27855), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((28837, 28869), 'nltk.tokenize.wordpunct_tokenize', 'k.tokenize.wordpunct_tokenize', (['i'], {}), '(i)\n', (28866, 28869), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((30252, 30284), 'nltk.tokenize.wordpunct_tokenize', 'k.tokenize.wordpunct_tokenize', (['i'], {}), '(i)\n', (30281, 30284), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((33969, 33986), 'builtins.me.append', 'B.me.append', (['wms_'], {}), '(wms_)\n', (33980, 33986), True, 'import builtins as B\n'), ((33995, 34012), 'builtins.tt_.append', 'B.tt_.append', (['tt_'], {}), '(tt_)\n', (34007, 34012), True, 'import builtins as B\n'), ((34021, 34036), 'builtins.tt.append', 'B.tt.append', (['tt'], {}), '(tt)\n', (34032, 34036), True, 'import builtins as B\n'), ((34050, 34063), 'numpy.array', 'n.array', (['wms_'], {}), '(wms_)\n', (34057, 34063), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((34216, 34280), 'gmaneLegacy.lTable', 'g.lTable', (['labels', 'labelsh', 'data', 'caption', 'tabfname', '"""textGeral_"""'], {}), "(labels, labelsh, data, caption, tabfname, 'textGeral_')\n", (34224, 34280), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((37218, 37264), 'gmaneLegacy.textUtils.medidasWordnet2_', 'g.textUtils.medidasWordnet2_', (['wn_measures', 'pos'], {}), '(wn_measures, pos)\n', (37246, 37264), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((41998, 42015), 'nltk.corpus.wordnet.synsets', 'wn.synsets', (['wt[0]'], {}), '(wt[0])\n', (42008, 42015), True, 'from nltk.corpus import wordnet as wn\n'), ((51055, 51092), 'numpy.histogram', 'n.histogram', (['seq1', 'bins'], {'density': '(True)'}), '(seq1, bins, density=True)\n', (51066, 51092), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((51101, 51138), 'numpy.histogram', 'n.histogram', (['seq2', 'bins'], {'density': '(True)'}), '(seq2, bins, density=True)\n', (51112, 51138), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((51755, 51789), 'os.path.isfile', 'os.path.isfile', (["(fnames[1] + '.tex')"], {}), "(fnames[1] + '.tex')\n", (51769, 51789), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((51941, 51975), 'os.path.isfile', 'os.path.isfile', (["(fnames[2] + '.tex')"], {}), "(fnames[2] + '.tex')\n", (51955, 51975), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((52050, 52084), 'os.path.isfile', 'os.path.isfile', (["(fnames[3] + '.tex')"], {}), "(fnames[3] + '.tex')\n", (52064, 52084), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((53491, 53552), 'gmaneLegacy.EmailStructures', 'g.EmailStructures', (['lid', 'TOTAL'], {'offset': 'offset', 'basedir': 'basedir'}), '(lid, TOTAL, offset=offset, basedir=basedir)\n', (53508, 53552), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((338, 349), 'time.time', 'time.time', ([], {}), '()\n', (347, 349), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((1810, 1835), 're.subn', 're.subn', (['pattern', 'repl', 's'], {}), '(pattern, repl, s)\n', (1817, 1835), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((3150, 3183), 'gmaneLegacy.NetworkPartitioning', 'g.NetworkPartitioning', (['nm', '(2)', '"""g"""'], {}), "(nm, 2, 'g')\n", (3171, 3183), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((16112, 16130), 'nltk.sent_tokenize', 'k.sent_tokenize', (['T'], {}), '(T)\n', (16127, 16130), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((19729, 19742), 'nltk.corpus.wordnet.synsets', 'wn.synsets', (['i'], {}), '(i)\n', (19739, 19742), True, 'from nltk.corpus import wordnet as wn\n'), ((19883, 19894), 'time.time', 'time.time', ([], {}), '()\n', (19892, 19894), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20059, 20070), 'time.time', 'time.time', ([], {}), '()\n', (20068, 20070), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20317, 20328), 'time.time', 'time.time', ([], {}), '()\n', (20326, 20328), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20478, 20489), 'time.time', 'time.time', ([], {}), '()\n', (20487, 20489), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20646, 20657), 'time.time', 'time.time', ([], {}), '()\n', (20655, 20657), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((20855, 20866), 'time.time', 'time.time', ([], {}), '()\n', (20864, 20866), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((21018, 21029), 'time.time', 'time.time', ([], {}), '()\n', (21027, 21029), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((31261, 31293), 'nltk.tokenize.wordpunct_tokenize', 'k.tokenize.wordpunct_tokenize', (['t'], {}), '(t)\n', (31290, 31293), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((31331, 31349), 'nltk.sent_tokenize', 'k.sent_tokenize', (['t'], {}), '(t)\n', (31346, 31349), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((38491, 38512), 'os.path.isfile', 'os.path.isfile', (['name_'], {}), '(name_)\n', (38505, 38512), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((46501, 46522), 'numpy.mean', 'n.mean', (['locals_[mvar]'], {}), '(locals_[mvar])\n', (46507, 46522), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((46551, 46571), 'numpy.std', 'n.std', (['locals_[mvar]'], {}), '(locals_[mvar])\n', (46556, 46571), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((51801, 51858), 'gmaneLegacy.tableHelpers.vstackTables_', 'g.tableHelpers.vstackTables_', (['fnames[0]', 'fnames[1]', 'fname'], {}), '(fnames[0], fnames[1], fname)\n', (51829, 51858), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((51883, 51934), 'shutil.copyfile', 'shutil.copyfile', (["(fnames[0] + '.tex')", "(fname + '.tex')"], {}), "(fnames[0] + '.tex', fname + '.tex')\n", (51898, 51934), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((51987, 52040), 'gmaneLegacy.tableHelpers.vstackTables_', 'g.tableHelpers.vstackTables_', (['fname', 'fnames[2]', 'fname'], {}), '(fname, fnames[2], fname)\n', (52015, 52040), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((52096, 52149), 'gmaneLegacy.tableHelpers.vstackTables_', 'g.tableHelpers.vstackTables_', (['fname', 'fnames[3]', 'fname'], {}), '(fname, fnames[3], fname)\n', (52124, 52149), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((53639, 53658), 'builtins.degen.append', 'B.degen.append', (['lid'], {}), '(lid)\n', (53653, 53658), True, 'import builtins as B\n'), ((1620, 1637), 're.compile', 're.compile', (['regex'], {}), '(regex)\n', (1630, 1637), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((16455, 16531), 'gmaneLegacy.ksStatistics.kolmogorovSmirnovDistance__', 'g.ksStatistics.kolmogorovSmirnovDistance__', (['sigDict[i][key]', 'sigDict[j][key]'], {}), '(sigDict[i][key], sigDict[j][key])\n', (16497, 16531), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((48423, 48444), 'langid.classify', 'langid.classify', (['text'], {}), '(text)\n', (48438, 48444), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((53856, 53880), 'builtins.nonenglish.append', 'B.nonenglish.append', (['lid'], {}), '(lid)\n', (53875, 53880), True, 'import builtins as B\n'), ((2716, 2727), 'time.time', 'time.time', ([], {}), '()\n', (2725, 2727), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2892, 2903), 'time.time', 'time.time', ([], {}), '()\n', (2901, 2903), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((3265, 3276), 'time.time', 'time.time', ([], {}), '()\n', (3274, 3276), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((24554, 24567), 'numpy.array', 'n.array', (['data'], {}), '(data)\n', (24561, 24567), True, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2505, 2516), 'time.time', 'time.time', ([], {}), '()\n', (2514, 2516), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n'), ((2594, 2605), 'time.time', 'time.time', ([], {}), '()\n', (2603, 2605), False, 'import gmaneLegacy as g, time, numpy as n, re, nltk as k, collections as c, string, pickle, os, langid, shutil\n')]
# coding=utf-8 """ """ import os import unittest import shutil from md_utils.rename_files import main from md_utils.md_common import (capture_stdout, capture_stderr, silent_remove) import logging # logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) DISABLE_REMOVE = logger.isEnabledFor(logging.DEBUG) __author__ = 'hmayes' # Directories # DATA_DIR = os.path.join(os.path.dirname(__file__), 'test_data') SUB_DATA_DIR = os.path.join(DATA_DIR, 'rename_files') # Files # SMALL_FILE = os.path.join(SUB_DATA_DIR, 'small_file.txt') # test data # TEST_FILE_NAMES = ['has space.txt', 'has two spaces.txt', 'now!exclaim.txt'] REPLACED_FILE_NAMES1 = ['hasspace.txt', 'hastwospaces.txt', 'now!exclaim.txt'] REPLACED_FILE_NAMES2 = ['has space.txt', 'has two spaces.txt', 'now_exclaim.txt'] # REPLACED_FILE_NAMES3 = ['has_space.txt', 'has_two_spaces.txt', 'now!exclaim.txt'] def make_files(fname_list): """ Create files fresh, because will be moved when program runs @param fname_list: list of file names without directory name """ for fname in fname_list: new_file = os.path.join(SUB_DATA_DIR, fname) shutil.copyfile(SMALL_FILE, new_file) def add_sub_dir(fname_list, abs_dir): """ Create files fresh, because will be moved when program runs @param fname_list: list of file names without directory name @param abs_dir: absolute directory name @return full_name_list: a list of file names with the specified absolute directory """ full_name_list = [] for fname in fname_list: full_name_list.append(os.path.join(abs_dir, fname)) return full_name_list def count_files(fname_list): """ Counts how many files in list exist @param fname_list: list of file names @return num_existing_files: a list of file names with the specified absolute directory """ num_existing_files = 0 for fname in fname_list: if os.path.isfile(fname): num_existing_files += 1 return num_existing_files class TestRenameNoOutput(unittest.TestCase): def testHelp(self): test_input = ['-h'] if logger.isEnabledFor(logging.DEBUG): main(test_input) with capture_stderr(main, test_input) as output: self.assertFalse(output) with capture_stdout(main, test_input) as output: self.assertTrue("optional arguments" in output) def testInvalidArg(self): test_input = ['-@'] if logger.isEnabledFor(logging.DEBUG): main(test_input) with capture_stderr(main, test_input) as output: self.assertTrue("unrecognized arguments" in output) class TestRename(unittest.TestCase): def testNoFilesRenamed(self): test_input = [] if logger.isEnabledFor(logging.DEBUG): main(test_input) with capture_stdout(main, test_input) as output: self.assertTrue("Found and renamed 0 files" in output) def testDefaultPatterns(self): make_files(TEST_FILE_NAMES) test_input = ["-d", SUB_DATA_DIR] initial_fnames = add_sub_dir(TEST_FILE_NAMES, SUB_DATA_DIR) expected_fnames = add_sub_dir(REPLACED_FILE_NAMES1, SUB_DATA_DIR) try: if logger.isEnabledFor(logging.DEBUG): main(test_input) # need to make again for capturing std out make_files(TEST_FILE_NAMES) with capture_stdout(main, test_input) as output: self.assertTrue("Found and renamed 2 files" in output) self.assertTrue(count_files(initial_fnames), 2) self.assertTrue(count_files(expected_fnames), 3) finally: for fname in expected_fnames: silent_remove(fname, disable=DISABLE_REMOVE) def testAltPattern(self): make_files(TEST_FILE_NAMES) test_input = ["-d", SUB_DATA_DIR, "-p", "!", "-n", "_"] initial_fnames = add_sub_dir(TEST_FILE_NAMES, SUB_DATA_DIR) expected_fnames = add_sub_dir(REPLACED_FILE_NAMES2, SUB_DATA_DIR) try: if logger.isEnabledFor(logging.DEBUG): main(test_input) # need to make again for capturing std out make_files(TEST_FILE_NAMES) with capture_stdout(main, test_input) as output: self.assertTrue("Found and renamed 1 files" in output) self.assertTrue(count_files(initial_fnames), 1) self.assertTrue(count_files(expected_fnames), 3) finally: for fname in expected_fnames: silent_remove(fname, disable=DISABLE_REMOVE)
[ "logging.getLogger", "md_utils.md_common.silent_remove", "md_utils.md_common.capture_stderr", "os.path.join", "os.path.isfile", "os.path.dirname", "shutil.copyfile", "md_utils.rename_files.main", "md_utils.md_common.capture_stdout" ]
[((252, 279), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (269, 279), False, 'import logging\n'), ((453, 491), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""rename_files"""'], {}), "(DATA_DIR, 'rename_files')\n", (465, 491), False, 'import os\n'), ((517, 561), 'os.path.join', 'os.path.join', (['SUB_DATA_DIR', '"""small_file.txt"""'], {}), "(SUB_DATA_DIR, 'small_file.txt')\n", (529, 561), False, 'import os\n'), ((398, 423), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (413, 423), False, 'import os\n'), ((1124, 1157), 'os.path.join', 'os.path.join', (['SUB_DATA_DIR', 'fname'], {}), '(SUB_DATA_DIR, fname)\n', (1136, 1157), False, 'import os\n'), ((1166, 1203), 'shutil.copyfile', 'shutil.copyfile', (['SMALL_FILE', 'new_file'], {}), '(SMALL_FILE, new_file)\n', (1181, 1203), False, 'import shutil\n'), ((1946, 1967), 'os.path.isfile', 'os.path.isfile', (['fname'], {}), '(fname)\n', (1960, 1967), False, 'import os\n'), ((1603, 1631), 'os.path.join', 'os.path.join', (['abs_dir', 'fname'], {}), '(abs_dir, fname)\n', (1615, 1631), False, 'import os\n'), ((2193, 2209), 'md_utils.rename_files.main', 'main', (['test_input'], {}), '(test_input)\n', (2197, 2209), False, 'from md_utils.rename_files import main\n'), ((2223, 2255), 'md_utils.md_common.capture_stderr', 'capture_stderr', (['main', 'test_input'], {}), '(main, test_input)\n', (2237, 2255), False, 'from md_utils.md_common import capture_stdout, capture_stderr, silent_remove\n'), ((2317, 2349), 'md_utils.md_common.capture_stdout', 'capture_stdout', (['main', 'test_input'], {}), '(main, test_input)\n', (2331, 2349), False, 'from md_utils.md_common import capture_stdout, capture_stderr, silent_remove\n'), ((2539, 2555), 'md_utils.rename_files.main', 'main', (['test_input'], {}), '(test_input)\n', (2543, 2555), False, 'from md_utils.rename_files import main\n'), ((2569, 2601), 'md_utils.md_common.capture_stderr', 'capture_stderr', (['main', 'test_input'], {}), '(main, test_input)\n', (2583, 2601), False, 'from md_utils.md_common import capture_stdout, capture_stderr, silent_remove\n'), ((2833, 2849), 'md_utils.rename_files.main', 'main', (['test_input'], {}), '(test_input)\n', (2837, 2849), False, 'from md_utils.rename_files import main\n'), ((2863, 2895), 'md_utils.md_common.capture_stdout', 'capture_stdout', (['main', 'test_input'], {}), '(main, test_input)\n', (2877, 2895), False, 'from md_utils.md_common import capture_stdout, capture_stderr, silent_remove\n'), ((3310, 3326), 'md_utils.rename_files.main', 'main', (['test_input'], {}), '(test_input)\n', (3314, 3326), False, 'from md_utils.rename_files import main\n'), ((3447, 3479), 'md_utils.md_common.capture_stdout', 'capture_stdout', (['main', 'test_input'], {}), '(main, test_input)\n', (3461, 3479), False, 'from md_utils.md_common import capture_stdout, capture_stderr, silent_remove\n'), ((3758, 3802), 'md_utils.md_common.silent_remove', 'silent_remove', (['fname'], {'disable': 'DISABLE_REMOVE'}), '(fname, disable=DISABLE_REMOVE)\n', (3771, 3802), False, 'from md_utils.md_common import capture_stdout, capture_stderr, silent_remove\n'), ((4156, 4172), 'md_utils.rename_files.main', 'main', (['test_input'], {}), '(test_input)\n', (4160, 4172), False, 'from md_utils.rename_files import main\n'), ((4293, 4325), 'md_utils.md_common.capture_stdout', 'capture_stdout', (['main', 'test_input'], {}), '(main, test_input)\n', (4307, 4325), False, 'from md_utils.md_common import capture_stdout, capture_stderr, silent_remove\n'), ((4604, 4648), 'md_utils.md_common.silent_remove', 'silent_remove', (['fname'], {'disable': 'DISABLE_REMOVE'}), '(fname, disable=DISABLE_REMOVE)\n', (4617, 4648), False, 'from md_utils.md_common import capture_stdout, capture_stderr, silent_remove\n')]
"""Perform rationalization for IWSLT experiments. Use this script to perform rationalization for either the distractor experiment or for the alignment experiment. """ import argparse import json import os import time import torch import numpy as np from fairseq import utils from fairseq.models.transformer import TransformerModel from rationalization import baseline_rationalize_conditional_model, rationalize_conditional_model parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_dir", type=str, help="Directory where trained checkpoint is stored") parser.add_argument("--task", type=str, help="Experiment to rationalize ('alignments' or " "'distractors')") parser.add_argument("--method", type=str, default="greedy", help="Rationalization method. Must be one of: 'greedy', " "'gradient_norm', 'signed_gradient', " "'integrated_gradient', 'last_attention', or " "'all_attention'.") parser.add_argument("--verbose", action='store_true', help="Whether to print rationalization results.") parser.add_argument("--top_1", action='store_true', help="Whether to only rationalize a single source word " "(only used if --task is set to 'alignments'.") parser.add_argument("--max_steps", type=int, default=1024, help="Maximum number of steps to perform rationalization.") args = parser.parse_args() def convert(o): """Helper function to convert dict with NumPy entries to JSON file.""" if isinstance(o, np.int64): return int(o) raise TypeError fairseq_dir = os.path.dirname(__file__) if args.task == 'distractors': if args.top_1: raise ValueError("It doesn't make sense to perform top-1 rationalization " "for the distractors experiment.") data_path = os.path.join(fairseq_dir, 'data-bin/iwslt14_distractors.tokenized.de-en') elif args.task == 'alignments': data_path = os.path.join(fairseq_dir, 'data-bin/iwslt14_alignments.tokenized.de-en') else: raise ValueError("--task must be either 'distractors' or 'alignments'.") model = TransformerModel.from_pretrained( os.path.join(args.checkpoint_dir, 'compatible_iwslt'), checkpoint_file='checkpoint_best.pt', data_name_or_path=data_path) model.half() model.cuda() model.eval() # Make iterator for the data. model.task.load_dataset('test') itr = model.task.get_batch_iterator( dataset=model.task.dataset('test'), max_tokens=1200, max_sentences=1,).next_epoch_itr(shuffle=False) # Shortcut for model indexing. model.model = model.models[0] rs = np.random.RandomState(0) indices_to_evaluate = np.sort(rs.choice(itr.total, 60, replace=False)) first_time = time.time() for eval_index, sample in enumerate(itr): print("Working on {}/{}...".format(eval_index, itr.total)) start_time = time.time() sample = utils.move_to_cuda(sample) if sample['target'][0, 0].item() != model.task.source_dictionary.eos_index: # Add <eos> token to beginning of target tokens. sample['target'] = torch.cat([ torch.tensor([[model.task.target_dictionary.eos_index]]).to( sample['target']), sample['target']], -1) if args.method == 'greedy': (source_rationales, target_rationales, rationalization_log) = rationalize_conditional_model( model, sample['net_input']['src_tokens'][0], sample['target'][0], verbose=args.verbose, max_steps=args.max_steps, top_1=args.top_1) else: (source_rationales, target_rationales, rationalization_log) = baseline_rationalize_conditional_model( model, sample['net_input']['src_tokens'][0], sample['target'][0], args.method, verbose=args.verbose, max_steps=args.max_steps, top_1=args.top_1) # Save rationalization results task_name = ("alignments_top_1" if (args.top_1 and args.task == 'alignments') else args.task) results_dir = os.path.join( fairseq_dir, "rationalization_results/{}/{}".format(task_name, args.method)) if not os.path.exists(results_dir): os.makedirs(results_dir) file_name = os.path.join(results_dir, "{}.json".format( str(sample['id'].item()))) print("...writing to {}".format(file_name)) with open(file_name, 'w') as outfile: json.dump(rationalization_log, outfile, default=convert) print("...finished in {:.2f} (average: {:.2f})".format( time.time() - start_time, (time.time() - first_time) / (eval_index + 1)))
[ "os.path.exists", "argparse.ArgumentParser", "os.makedirs", "json.dump", "os.path.join", "os.path.dirname", "torch.tensor", "fairseq.utils.move_to_cuda", "rationalization.rationalize_conditional_model", "rationalization.baseline_rationalize_conditional_model", "time.time", "numpy.random.RandomState" ]
[((443, 468), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (466, 468), False, 'import argparse\n'), ((1899, 1924), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1914, 1924), False, 'import os\n'), ((2936, 2960), 'numpy.random.RandomState', 'np.random.RandomState', (['(0)'], {}), '(0)\n', (2957, 2960), True, 'import numpy as np\n'), ((3046, 3057), 'time.time', 'time.time', ([], {}), '()\n', (3055, 3057), False, 'import time\n'), ((2123, 2196), 'os.path.join', 'os.path.join', (['fairseq_dir', '"""data-bin/iwslt14_distractors.tokenized.de-en"""'], {}), "(fairseq_dir, 'data-bin/iwslt14_distractors.tokenized.de-en')\n", (2135, 2196), False, 'import os\n'), ((2496, 2549), 'os.path.join', 'os.path.join', (['args.checkpoint_dir', '"""compatible_iwslt"""'], {}), "(args.checkpoint_dir, 'compatible_iwslt')\n", (2508, 2549), False, 'import os\n'), ((3176, 3187), 'time.time', 'time.time', ([], {}), '()\n', (3185, 3187), False, 'import time\n'), ((3199, 3225), 'fairseq.utils.move_to_cuda', 'utils.move_to_cuda', (['sample'], {}), '(sample)\n', (3217, 3225), False, 'from fairseq import utils\n'), ((2270, 2342), 'os.path.join', 'os.path.join', (['fairseq_dir', '"""data-bin/iwslt14_alignments.tokenized.de-en"""'], {}), "(fairseq_dir, 'data-bin/iwslt14_alignments.tokenized.de-en')\n", (2282, 2342), False, 'import os\n'), ((3611, 3780), 'rationalization.rationalize_conditional_model', 'rationalize_conditional_model', (['model', "sample['net_input']['src_tokens'][0]", "sample['target'][0]"], {'verbose': 'args.verbose', 'max_steps': 'args.max_steps', 'top_1': 'args.top_1'}), "(model, sample['net_input']['src_tokens'][0],\n sample['target'][0], verbose=args.verbose, max_steps=args.max_steps,\n top_1=args.top_1)\n", (3640, 3780), False, 'from rationalization import baseline_rationalize_conditional_model, rationalize_conditional_model\n'), ((3898, 4091), 'rationalization.baseline_rationalize_conditional_model', 'baseline_rationalize_conditional_model', (['model', "sample['net_input']['src_tokens'][0]", "sample['target'][0]", 'args.method'], {'verbose': 'args.verbose', 'max_steps': 'args.max_steps', 'top_1': 'args.top_1'}), "(model, sample['net_input'][\n 'src_tokens'][0], sample['target'][0], args.method, verbose=args.\n verbose, max_steps=args.max_steps, top_1=args.top_1)\n", (3936, 4091), False, 'from rationalization import baseline_rationalize_conditional_model, rationalize_conditional_model\n'), ((4420, 4447), 'os.path.exists', 'os.path.exists', (['results_dir'], {}), '(results_dir)\n', (4434, 4447), False, 'import os\n'), ((4453, 4477), 'os.makedirs', 'os.makedirs', (['results_dir'], {}), '(results_dir)\n', (4464, 4477), False, 'import os\n'), ((4657, 4713), 'json.dump', 'json.dump', (['rationalization_log', 'outfile'], {'default': 'convert'}), '(rationalization_log, outfile, default=convert)\n', (4666, 4713), False, 'import json\n'), ((4780, 4791), 'time.time', 'time.time', ([], {}), '()\n', (4789, 4791), False, 'import time\n'), ((3398, 3454), 'torch.tensor', 'torch.tensor', (['[[model.task.target_dictionary.eos_index]]'], {}), '([[model.task.target_dictionary.eos_index]])\n', (3410, 3454), False, 'import torch\n'), ((4807, 4818), 'time.time', 'time.time', ([], {}), '()\n', (4816, 4818), False, 'import time\n')]
#!/usr/bin/env python # -*- coding: UTF-8 -*- # from __future__ import absolute_import, unicode_literals, division from flask_wtf import FlaskForm from wtforms import TextField, PasswordField, SubmitField, HiddenField from wtforms.fields.html5 import EmailField from oclubs.objs import User class LoginForm(FlaskForm): username = TextField( 'Username', ) password = PasswordField( 'Password', ) password_2 = PasswordField( 'Password', ) email = EmailField( 'Email' ) submit = SubmitField( 'Login', ) is_initalized = HiddenField( default='false' ) is_firstPass = HiddenField( default='true' ) nexturl = HiddenField() forgotpassword = SubmitField( 'Forgot password' ) def check(self): # username is always checked for validity if self.username.data is None or self.username.data == '': self.errors[self.username] = 'Please enter a username.' return False if User.get_userobj_from_loginname(self.username.data) is None: self.errors[self.username] = 'Username doesn\'t exist.' return False # first pass if self.is_firstPass.data == 'true': pass # second pass else: if (not self.forgotpassword.data and (self.password.data is None or self.password.data == '')): self.errors[self.password] = 'Please enter a password lol.' return False # initalization checking if self.is_initalized.data == 'false': if self.password.data != self.password_2.data: self.errors[self.password_2] = 'Passwords do not match.' return False if len(self.password.data) < 6: self.errors[self.password] = 'Password is too short.' return False if self.email.data is None or self.email.data == '': self.errors[self.email] = 'Please enter an email.' return False else: pass return True
[ "wtforms.PasswordField", "wtforms.SubmitField", "wtforms.fields.html5.EmailField", "wtforms.HiddenField", "oclubs.objs.User.get_userobj_from_loginname", "wtforms.TextField" ]
[((339, 360), 'wtforms.TextField', 'TextField', (['"""Username"""'], {}), "('Username')\n", (348, 360), False, 'from wtforms import TextField, PasswordField, SubmitField, HiddenField\n'), ((392, 417), 'wtforms.PasswordField', 'PasswordField', (['"""Password"""'], {}), "('Password')\n", (405, 417), False, 'from wtforms import TextField, PasswordField, SubmitField, HiddenField\n'), ((451, 476), 'wtforms.PasswordField', 'PasswordField', (['"""Password"""'], {}), "('Password')\n", (464, 476), False, 'from wtforms import TextField, PasswordField, SubmitField, HiddenField\n'), ((505, 524), 'wtforms.fields.html5.EmailField', 'EmailField', (['"""Email"""'], {}), "('Email')\n", (515, 524), False, 'from wtforms.fields.html5 import EmailField\n'), ((553, 573), 'wtforms.SubmitField', 'SubmitField', (['"""Login"""'], {}), "('Login')\n", (564, 573), False, 'from wtforms import TextField, PasswordField, SubmitField, HiddenField\n'), ((610, 638), 'wtforms.HiddenField', 'HiddenField', ([], {'default': '"""false"""'}), "(default='false')\n", (621, 638), False, 'from wtforms import TextField, PasswordField, SubmitField, HiddenField\n'), ((672, 699), 'wtforms.HiddenField', 'HiddenField', ([], {'default': '"""true"""'}), "(default='true')\n", (683, 699), False, 'from wtforms import TextField, PasswordField, SubmitField, HiddenField\n'), ((729, 742), 'wtforms.HiddenField', 'HiddenField', ([], {}), '()\n', (740, 742), False, 'from wtforms import TextField, PasswordField, SubmitField, HiddenField\n'), ((765, 795), 'wtforms.SubmitField', 'SubmitField', (['"""Forgot password"""'], {}), "('Forgot password')\n", (776, 795), False, 'from wtforms import TextField, PasswordField, SubmitField, HiddenField\n'), ((1054, 1105), 'oclubs.objs.User.get_userobj_from_loginname', 'User.get_userobj_from_loginname', (['self.username.data'], {}), '(self.username.data)\n', (1085, 1105), False, 'from oclubs.objs import User\n')]
import numpy as np import pandas as pd def pretty_print(name, to_print): print(f'{name}:') print(f'{to_print}\n') #create data series using pandas orders = pd.Series(data=[300.50, 60, 123.40, 60, np.nan], index=['Customer 1', 'Customer 2', 'Customer 3', 'Customer 4', 'Customer 5']) pretty_print("initial dataset",orders) #convert to string pretty_print('to_string', orders.to_string()) #get first 2 rows pretty_print('first_two_rows',orders.head(2)) #describe index pretty_print('order_index',orders.index) #describe data type pretty_print('order_datatype',orders.dtype) #describe shape pretty_print('order_shape',orders.shape) #summarize series pretty_print('orders_with_desc',orders.describe()) #sort values pretty_print('orders_sorted',orders.sort_values()) #count data categories pretty_print('orders_count', orders.value_counts()) #check for null value pretty_print('orders_null_data',orders.isnull())
[ "pandas.Series" ]
[((166, 294), 'pandas.Series', 'pd.Series', ([], {'data': '[300.5, 60, 123.4, 60, np.nan]', 'index': "['Customer 1', 'Customer 2', 'Customer 3', 'Customer 4', 'Customer 5']"}), "(data=[300.5, 60, 123.4, 60, np.nan], index=['Customer 1',\n 'Customer 2', 'Customer 3', 'Customer 4', 'Customer 5'])\n", (175, 294), True, 'import pandas as pd\n')]
# Generated by Django 2.2.4 on 2019-08-15 07:45 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('article', '0009_group'), ] operations = [ migrations.CreateModel( name='GroupMembers', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='article.Group', verbose_name='my group')), ('members', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='member')), ], ), ]
[ "django.db.migrations.swappable_dependency", "django.db.models.AutoField", "django.db.models.ForeignKey" ]
[((227, 284), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (258, 284), False, 'from django.db import migrations, models\n'), ((456, 549), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (472, 549), False, 'from django.db import migrations, models\n'), ((574, 686), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""article.Group"""', 'verbose_name': '"""my group"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'article.Group', verbose_name='my group')\n", (591, 686), False, 'from django.db import migrations, models\n'), ((712, 831), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""member"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL, verbose_name='member')\n", (729, 831), False, 'from django.db import migrations, models\n')]
"""Телеграм бот.""" import aiogram from aiogram.utils.exceptions import BotBlocked import afisha import bot import currencies import horoscope import news import recipes import reminder import stuff import weather import shopping_lists import locale import os import gettext gettext.install("telbot", os.path.dirname(__file__)) async def get_help(message: aiogram.types.Message): """ Показать помощь. :param message: сообщение """ keyboard = aiogram.types.InlineKeyboardMarkup() keyboard.add(aiogram.types.InlineKeyboardButton( text=_("Проект"), url="https://github.com/Disfavour/python-project")) await message.reply( _("Привет! Я бот-помощник, совмещаю в себе много полезных функций. ") + _("Чтобы начать, введите /start. ") + _("Документацию можно найти здесь:"), reply_markup=keyboard) async def cmd_start(message: aiogram.types.Message): """ Предоставить выбор функции. :param message: сообщение """ keyboard = aiogram.types.ReplyKeyboardMarkup(resize_keyboard=True, one_time_keyboard=True) buttons = stuff.base_options keyboard.add(*buttons) await message.reply(_("Выберите функцию"), reply_markup=keyboard) async def cmd_dice(message: aiogram.types.Message): """ Показать бросание кубика. :param message: сообщение """ await message.reply_dice(emoji="🎲") async def echo(message: aiogram.types.Message): """ Показать, что команда не распознана. :param message: сообщение """ await message.reply(_("Не распознано '") + message.text + "'") async def error_bot_blocked(update: aiogram.types.Update, exception: BotBlocked): """ Обработать блокирование бота. :param update: входящее обновление :param exception: исключение """ # Здесь можно как-то обработать блокировку, например, удалить пользователя из БД print(f"Меня заблокировал пользователь!\nСообщение: {update}\nОшибка: {exception}") return True class REGISTRATION: """ Класс регистрации и начала работы. :param dp: диспетчер """ def __init__(self, dp): """Инициализировать диспетчер.""" self.dp = dp def start(self) -> None: """Зарегестрировать обработчики и начать работу.""" self.register_handlers() aiogram.executor.start_polling(self.dp, skip_updates=True) def register_handlers(self) -> None: """Зарегестрировать обработчики.""" horoscope.register_handlers(self.dp) news.register_handlers(self.dp) weather.register_handlers(self.dp) afisha.register_handlers(self.dp) recipes.register_handlers(self.dp) reminder.register_handlers(self.dp) currencies.register_handlers(self.dp) shopping_lists.register_handlers(self.dp) # Это последнее, иначе эхо-обработчик перебьёт другие. self.register_base_handlers() def register_base_handlers(self) -> None: """Зарегестрировать базовые обработчики.""" self.dp.register_message_handler(get_help, commands="help") self.dp.register_message_handler(cmd_start, commands="start") self.dp.register_message_handler(cmd_dice, commands="dice") self.dp.register_message_handler(echo) self.dp.register_errors_handler(error_bot_blocked, exception=BotBlocked) if __name__ == "__main__": obj = REGISTRATION(bot.dp) obj.start()
[ "reminder.register_handlers", "recipes.register_handlers", "aiogram.executor.start_polling", "aiogram.types.ReplyKeyboardMarkup", "os.path.dirname", "shopping_lists.register_handlers", "currencies.register_handlers", "news.register_handlers", "horoscope.register_handlers", "aiogram.types.InlineKeyboardMarkup", "afisha.register_handlers", "weather.register_handlers" ]
[((304, 329), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (319, 329), False, 'import os\n'), ((468, 504), 'aiogram.types.InlineKeyboardMarkup', 'aiogram.types.InlineKeyboardMarkup', ([], {}), '()\n', (502, 504), False, 'import aiogram\n'), ((1005, 1084), 'aiogram.types.ReplyKeyboardMarkup', 'aiogram.types.ReplyKeyboardMarkup', ([], {'resize_keyboard': '(True)', 'one_time_keyboard': '(True)'}), '(resize_keyboard=True, one_time_keyboard=True)\n', (1038, 1084), False, 'import aiogram\n'), ((2313, 2371), 'aiogram.executor.start_polling', 'aiogram.executor.start_polling', (['self.dp'], {'skip_updates': '(True)'}), '(self.dp, skip_updates=True)\n', (2343, 2371), False, 'import aiogram\n'), ((2466, 2502), 'horoscope.register_handlers', 'horoscope.register_handlers', (['self.dp'], {}), '(self.dp)\n', (2493, 2502), False, 'import horoscope\n'), ((2511, 2542), 'news.register_handlers', 'news.register_handlers', (['self.dp'], {}), '(self.dp)\n', (2533, 2542), False, 'import news\n'), ((2551, 2585), 'weather.register_handlers', 'weather.register_handlers', (['self.dp'], {}), '(self.dp)\n', (2576, 2585), False, 'import weather\n'), ((2594, 2627), 'afisha.register_handlers', 'afisha.register_handlers', (['self.dp'], {}), '(self.dp)\n', (2618, 2627), False, 'import afisha\n'), ((2636, 2670), 'recipes.register_handlers', 'recipes.register_handlers', (['self.dp'], {}), '(self.dp)\n', (2661, 2670), False, 'import recipes\n'), ((2679, 2714), 'reminder.register_handlers', 'reminder.register_handlers', (['self.dp'], {}), '(self.dp)\n', (2705, 2714), False, 'import reminder\n'), ((2723, 2760), 'currencies.register_handlers', 'currencies.register_handlers', (['self.dp'], {}), '(self.dp)\n', (2751, 2760), False, 'import currencies\n'), ((2769, 2810), 'shopping_lists.register_handlers', 'shopping_lists.register_handlers', (['self.dp'], {}), '(self.dp)\n', (2801, 2810), False, 'import shopping_lists\n')]
# -*- coding: utf8 -*- """ This is part of shot detector. Produced by w495 at 2017.05.04 04:18:27 """ import math from builtins import zip import six try: from scipy.stats.norm import logsf except ImportError: def norm_cdf(z): """ Cumulative distribution for N(0, 1) :param z: """ t = 1 / (1 + 0.2316419 * z) # noinspection PyPep8 return (1 - 0.3989423 * math.exp(-z * z / 2) * (((( 1.330274429 * t - 1.821255978) * t + 1.781477937) * t - 0.356563782) * t + 0.319381530) * t) def logsf(z): """ Logarithm of the survival function for N(0, 1) :param z: :param z: """ try: return math.log(1 - norm_cdf(z)) except ValueError: return float('-inf') norm_logsf = logsf # Alignment costs: -100*log(p(x:y)/p(1:1)) bead_costs = { (1, 1): 0, (2, 1): 230, (1, 2): 230, (0, 1): 450, (1, 0): 450, (2, 2): 440 } # Length cost parameters mean_xy = 1 variance_xy = 6.8 LOG2 = math.log(2) def length_cost(sx, sy): """ -100*log[p(|N(0, 1)|>delta)] :param sx: :param sy: :param sx: :param sy: """ lx, ly = sum(sx), sum(sy) m = (lx + ly * mean_xy) / 2 try: delta = (lx - ly * mean_xy) / math.sqrt(m * variance_xy) except ZeroDivisionError: return float('-inf') return -100 * (LOG2 + norm_logsf(abs(delta))) def _align(x, y): m = {} for i in range(len(x) + 1): for j in range(len(y) + 1): if i == j == 0: m[0, 0] = (0, 0, 0) else: m[i, j] = min((m[i - di, j - dj][0] + length_cost(x[i - di:i], y[j - dj:j]) + bead_cost, di, dj) for (di, dj), bead_cost in six.iteritems(bead_costs) if i - di >= 0 and j - dj >= 0) i, j = len(x), len(y) while True: (c, di, dj) = m[i, j] if di == dj == 0: break yield (i - di, i), (j - dj, j) i -= di j -= dj def char_length(sentence): """ Length of a sentence in characters :param sentence: :param sentence: """ return sum(1 for c in sentence if c != ' ') def align(sx, sy): """ Align two groups of sentences :param sx: :param sy: :param sx: :param sy: """ cx = map(char_length, sx) cy = map(char_length, sy) # noinspection PyTypeChecker for (i1, i2), (j1, j2) in reversed(list(_align(cx, cy))): yield ' '.join(sx[i1:i2]), ' '.join(sy[j1:j2]) def read_blocks(f): """ :param f: :return: """ block = [] for l in f: if not l.strip(): yield block block = [] else: block.append(l.strip()) if block: yield block def main(corpus_x, corpus_y): """ :param corpus_x: :param corpus_y: :return: """ with open(corpus_x) as fx, open(corpus_y) as fy: for block_x, block_y in zip(read_blocks(fx), read_blocks(fy)): for (sentence_x, sentence_y) in align(block_x, block_y): print('%s ||| %s' % (sentence_x, sentence_y)) if __name__ == '__main__': import sys if len(sys.argv) != 3: sys.stderr.write('Usage: %s corpus.x corpus.y\n' % sys.argv[0]) sys.exit(1) main(*sys.argv[1:])
[ "math.sqrt", "math.log", "sys.stderr.write", "sys.exit", "math.exp", "six.iteritems" ]
[((1071, 1082), 'math.log', 'math.log', (['(2)'], {}), '(2)\n', (1079, 1082), False, 'import math\n'), ((3423, 3486), 'sys.stderr.write', 'sys.stderr.write', (["('Usage: %s corpus.x corpus.y\\n' % sys.argv[0])"], {}), "('Usage: %s corpus.x corpus.y\\n' % sys.argv[0])\n", (3439, 3486), False, 'import sys\n'), ((3495, 3506), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3503, 3506), False, 'import sys\n'), ((1324, 1350), 'math.sqrt', 'math.sqrt', (['(m * variance_xy)'], {}), '(m * variance_xy)\n', (1333, 1350), False, 'import math\n'), ((423, 443), 'math.exp', 'math.exp', (['(-z * z / 2)'], {}), '(-z * z / 2)\n', (431, 443), False, 'import math\n'), ((1934, 1959), 'six.iteritems', 'six.iteritems', (['bead_costs'], {}), '(bead_costs)\n', (1947, 1959), False, 'import six\n')]
"""Plot to test HTML tooltip plugin As a data explorer, I want to add rich information to each point in a scatter plot, as details-on-demand""" import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np, pandas as pd from mpld3 import plugins css = """ table { border-collapse: collapse; } th { color: #ffffff; background-color: #000000; } td { background-color: #cccccc; } table, th, td { font-family:Arial, Helvetica, sans-serif; border: 1px solid black; text-align: right; } """ def main(): fig, ax = plt.subplots() N = 50 df = pd.DataFrame(index=range(N)) df['x'] = np.random.randn(N) df['y'] = np.random.randn(N) df['z'] = np.random.randn(N) labels = [] for i in range(N): label = df.ix[[i], :].T label.columns = ['Row {0}'.format(i)] labels.append(str(label.to_html())) # .to_html() is unicode, so make leading 'u' go away with str() points = ax.plot(df.x, df.y, 'o', color='k', mec='w', ms=15, mew=1, alpha=.9) ax.set_xlabel('x') ax.set_ylabel('y') tooltip = plugins.PointHTMLTooltip( points[0], labels, voffset=10, hoffset=10, css=css) plugins.connect(fig, tooltip) return fig if __name__ == '__main__': fig = main() plt.show()
[ "matplotlib.use", "mpld3.plugins.connect", "mpld3.plugins.PointHTMLTooltip", "numpy.random.randn", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((164, 185), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (178, 185), False, 'import matplotlib\n'), ((545, 559), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (557, 559), True, 'import matplotlib.pyplot as plt\n'), ((624, 642), 'numpy.random.randn', 'np.random.randn', (['N'], {}), '(N)\n', (639, 642), True, 'import numpy as np, pandas as pd\n'), ((657, 675), 'numpy.random.randn', 'np.random.randn', (['N'], {}), '(N)\n', (672, 675), True, 'import numpy as np, pandas as pd\n'), ((690, 708), 'numpy.random.randn', 'np.random.randn', (['N'], {}), '(N)\n', (705, 708), True, 'import numpy as np, pandas as pd\n'), ((1081, 1157), 'mpld3.plugins.PointHTMLTooltip', 'plugins.PointHTMLTooltip', (['points[0]', 'labels'], {'voffset': '(10)', 'hoffset': '(10)', 'css': 'css'}), '(points[0], labels, voffset=10, hoffset=10, css=css)\n', (1105, 1157), False, 'from mpld3 import plugins\n'), ((1171, 1200), 'mpld3.plugins.connect', 'plugins.connect', (['fig', 'tooltip'], {}), '(fig, tooltip)\n', (1186, 1200), False, 'from mpld3 import plugins\n'), ((1266, 1276), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1274, 1276), True, 'import matplotlib.pyplot as plt\n')]
import unittest import cassandranames from dnstypeconstants import * # Running this *will destroy* data in Cassandra. class TestCassandraNames(unittest.TestCase): def setUp(self): cassandranames.install_schema(drop_first=True, rf=1) self.names = cassandranames.CassandraNames() def test_names(self): # Verify behavior on an initial, empty set. data = self.names.lookup("pantheon.example.com") self.assertEqual(data, {}) data = self.names.lookup("pantheon.example.com", A) self.assertEqual(data, {}) # Add an "A" record. self.names.insert("pantheon.example.com", A, "192.168.0.1") # Verify that the "A" records appears in lookups. data = self.names.lookup("pantheon.example.com") self.assertEqual(data, {A: {"192.168.0.1": {"ttl": 900}}}) data = self.names.lookup("pantheon.example.com", A) self.assertEqual(data, {A: {"192.168.0.1": {"ttl": 900}}}) data = self.names.lookup("pantheon.example.com", MX) self.assertEqual(data, {}) # Add another "A" record, this time with an explicit TTL. self.names.insert("pantheon.example.com", A, "192.168.0.2", 60) # Verify that both "A" records appear in results. data = self.names.lookup("pantheon.example.com") a_records = {"192.168.0.1": {"ttl": 900}, "192.168.0.2": {"ttl": 60}} self.assertEqual(data, {A: a_records}) data = self.names.lookup("pantheon.example.com", A) self.assertEqual(data, {A: a_records}) data = self.names.lookup("pantheon.example.com", MX) self.assertEqual(data, {}) # Add an MX record. self.names.insert("pantheon.example.com", MX, "192.168.0.3", preference=10) # Verify the MX record. data = self.names.lookup("pantheon.example.com") self.assertEqual(data, {A: a_records, MX: {"192.168.0.3": {"preference": 10, "ttl": 900}}}) data = self.names.lookup("pantheon.example.com", MX) self.assertEqual(data, {MX: {"192.168.0.3": {"preference": 10, "ttl": 900}}}) # Delete the A record for 192.168.0.1. self.names.remove("pantheon.example.com", A, "192.168.0.1") # Verify the other "A" record and the "MX" record still exists. data = self.names.lookup("pantheon.example.com", A) self.assertEqual(data, {A: {"192.168.0.2": {"ttl": 60}}}) data = self.names.lookup("pantheon.example.com", MX) self.assertEqual(data, {MX: {"192.168.0.3": {"preference": 10, "ttl": 900}}}) # Delete all "MX" records and verify the deletion. self.names.remove("pantheon.example.com", MX) data = self.names.lookup("pantheon.example.com", MX) self.assertEqual(data, {}) data = self.names.lookup("pantheon.example.com", A) self.assertEqual(data, {A: {"192.168.0.2": {"ttl": 60}}}) # Delete all records for the domain and verify deletion. self.names.remove("pantheon.example.com") data = self.names.lookup("pantheon.example.com") self.assertEqual(data, {}) # Insert some other records, just for fun. self.names.insert("pantheon.example.com", A, "10.0.0.1", 60) self.names.insert("pantheon.example.com", A, "10.0.0.2", 60) self.names.insert("pantheon.example.com", MX, "10.0.0.3", 60, 10) self.names.insert("pantheon.example.com", MX, "10.0.0.4", 60, 20) if __name__ == '__main__': unittest.main()
[ "unittest.main", "cassandranames.CassandraNames", "cassandranames.install_schema" ]
[((3480, 3495), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3493, 3495), False, 'import unittest\n'), ((195, 247), 'cassandranames.install_schema', 'cassandranames.install_schema', ([], {'drop_first': '(True)', 'rf': '(1)'}), '(drop_first=True, rf=1)\n', (224, 247), False, 'import cassandranames\n'), ((269, 300), 'cassandranames.CassandraNames', 'cassandranames.CassandraNames', ([], {}), '()\n', (298, 300), False, 'import cassandranames\n')]
from inspect import isfunction from django.db.models.base import ModelBase from importlib import import_module from django.utils.module_loading import module_has_submodule from flash.base import ModelCacheManagerMeta from flash import settings as flash_settings import flash.signal_receivers # Import things here to export from flash.base import ( ModelCacheManager, InstanceCache, RelatedInstanceCache, QuerysetCache, QuerysetExistsCache, RelatedQuerysetCache, DontCache, BatchCacheQuery, InvalidationType) def load_caches(): import_module('.caches', 'flash') FLASH_APPS = flash_settings.FLASH_APPS if isfunction(FLASH_APPS): FLASH_APPS = FLASH_APPS() for app_name in FLASH_APPS: app_module = import_module(app_name) try: module = import_module('.caches', app_name) except ImportError: if module_has_submodule(app_module, 'caches'): print ('Import error in %s/caches.py:' % app_name) raise import flash.contenttypes_caches #load_caches() def get_cache_manager(self): return ModelCacheManagerMeta.get_model_cache_manager(self) ModelBase.cache = property(get_cache_manager) # Register signals for fields_diff import flash.fields_diff default_app_config = 'flash.apps.FlashConfig'
[ "flash.base.ModelCacheManagerMeta.get_model_cache_manager", "inspect.isfunction", "django.utils.module_loading.module_has_submodule", "importlib.import_module" ]
[((560, 593), 'importlib.import_module', 'import_module', (['""".caches"""', '"""flash"""'], {}), "('.caches', 'flash')\n", (573, 593), False, 'from importlib import import_module\n'), ((645, 667), 'inspect.isfunction', 'isfunction', (['FLASH_APPS'], {}), '(FLASH_APPS)\n', (655, 667), False, 'from inspect import isfunction\n'), ((1120, 1171), 'flash.base.ModelCacheManagerMeta.get_model_cache_manager', 'ModelCacheManagerMeta.get_model_cache_manager', (['self'], {}), '(self)\n', (1165, 1171), False, 'from flash.base import ModelCacheManagerMeta\n'), ((757, 780), 'importlib.import_module', 'import_module', (['app_name'], {}), '(app_name)\n', (770, 780), False, 'from importlib import import_module\n'), ((815, 849), 'importlib.import_module', 'import_module', (['""".caches"""', 'app_name'], {}), "('.caches', app_name)\n", (828, 849), False, 'from importlib import import_module\n'), ((893, 935), 'django.utils.module_loading.module_has_submodule', 'module_has_submodule', (['app_module', '"""caches"""'], {}), "(app_module, 'caches')\n", (913, 935), False, 'from django.utils.module_loading import module_has_submodule\n')]
from app.device.imu import IMU from app.device.altimeter import Altimeter from app.device.brakes import Brakes from app.device.gps import GPS from app.device.parachute import Parachute from app.device.radio import Radio class DeviceFactory(object): def __init__(self): self.imu = IMU() self.altimeter = Altimeter() self.brakes = Brakes() self.gps = GPS() self.radio = Radio() def sleep_all(self): self.imu.sleep() self.radio.sleep() def wake_all(self): self.imu.wake() self.radio.wake()
[ "app.device.radio.Radio", "app.device.brakes.Brakes", "app.device.imu.IMU", "app.device.gps.GPS", "app.device.altimeter.Altimeter" ]
[((295, 300), 'app.device.imu.IMU', 'IMU', ([], {}), '()\n', (298, 300), False, 'from app.device.imu import IMU\n'), ((326, 337), 'app.device.altimeter.Altimeter', 'Altimeter', ([], {}), '()\n', (335, 337), False, 'from app.device.altimeter import Altimeter\n'), ((360, 368), 'app.device.brakes.Brakes', 'Brakes', ([], {}), '()\n', (366, 368), False, 'from app.device.brakes import Brakes\n'), ((389, 394), 'app.device.gps.GPS', 'GPS', ([], {}), '()\n', (392, 394), False, 'from app.device.gps import GPS\n'), ((416, 423), 'app.device.radio.Radio', 'Radio', ([], {}), '()\n', (421, 423), False, 'from app.device.radio import Radio\n')]
import os import threading from random import randint from time import sleep from django.core.management import call_command from django_grpc_testtools.executor import TestGRPCServer from tests.helpers import call_hello_method def start_server(**params): """ Starts gRPC server in a separate thread using "grpcserver" management command with given parameters :return: connection string """ def _grpc_server_async(options): call_command("grpcserver", **options) port = 50000 + randint(0, 10000) params["port"] = port # Start grpc server srv = threading.Thread( target=_grpc_server_async, args=[params] ) srv.start() sleep(5) return "localhost:%s" % port def test_management_command(grpc_server): """ Start gRPC server using management command and make sure it works """ assert call_hello_method(grpc_server, 'Django GRPC') == 'Hello, Django GRPC!' def test_management_command_with_autoreload(): manage_py = os.path.join(os.path.dirname(os.path.abspath(__file__)), "manage.py") server = TestGRPCServer(manage_py, {'--autoreload': ''}) server.start() assert call_hello_method(server.addr(), 'Autoreload') == 'Hello, Autoreload!' server.stop()
[ "tests.helpers.call_hello_method", "django.core.management.call_command", "time.sleep", "os.path.abspath", "threading.Thread", "random.randint", "django_grpc_testtools.executor.TestGRPCServer" ]
[((592, 650), 'threading.Thread', 'threading.Thread', ([], {'target': '_grpc_server_async', 'args': '[params]'}), '(target=_grpc_server_async, args=[params])\n', (608, 650), False, 'import threading\n'), ((685, 693), 'time.sleep', 'sleep', (['(5)'], {}), '(5)\n', (690, 693), False, 'from time import sleep\n'), ((1089, 1136), 'django_grpc_testtools.executor.TestGRPCServer', 'TestGRPCServer', (['manage_py', "{'--autoreload': ''}"], {}), "(manage_py, {'--autoreload': ''})\n", (1103, 1136), False, 'from django_grpc_testtools.executor import TestGRPCServer\n'), ((456, 493), 'django.core.management.call_command', 'call_command', (['"""grpcserver"""'], {}), "('grpcserver', **options)\n", (468, 493), False, 'from django.core.management import call_command\n'), ((514, 531), 'random.randint', 'randint', (['(0)', '(10000)'], {}), '(0, 10000)\n', (521, 531), False, 'from random import randint\n'), ((870, 915), 'tests.helpers.call_hello_method', 'call_hello_method', (['grpc_server', '"""Django GRPC"""'], {}), "(grpc_server, 'Django GRPC')\n", (887, 915), False, 'from tests.helpers import call_hello_method\n'), ((1035, 1060), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1050, 1060), False, 'import os\n')]
from collections import defaultdict import numpy as np import boto3 import os import os.path from datetime import datetime import locale import argparse import json import torch import torchvision.utils from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from coinrun import CoinrunDataset from models import vae_models # hyperparameters parser = argparse.ArgumentParser(description='Coinrun VAE training.') parser.add_argument('--local', action='store_true', default=False, help='') parser.add_argument('--seed', type=int, default=1234, help='') parser.add_argument('--expname', type=str, default=None, help='', required=True) parser.add_argument('--description', type=str, default="", help='') parser.add_argument('--lr', type=float, default=3e-4, help='') parser.add_argument('--batch_size', type=int, default=64, help='') parser.add_argument('--latent_dim', type=int, default=32, help='') parser.add_argument('--epochs', type=int, default=5, help='') parser.add_argument('--validate_every', type=int, default=2, help='') parser.add_argument('--checkpoint_every', type=int, default=2, help='') parser.add_argument('--save_folder', type=str, default='vae_results', help='') parser.add_argument('--s3', action='store_true', default=False, help='') parser.add_argument('--s3_bucket', type=str, default='nathan.experiments', help='') parser.add_argument('--s3_path', type=str, default='adversarial/coinrun_vae', help='') args = parser.parse_args() # create save folder locale.setlocale(locale.LC_ALL, 'fr_FR.utf8') today = datetime.now().strftime("%d-%m-%Y") expname = args.expname.replace(' ', '_') + datetime.now().strftime("_%Hh%M") save_folder = os.path.join(args.save_folder, today, expname) if not os.path.exists(save_folder): os.makedirs(save_folder) print(f'Saving at {save_folder}') # os.makedirs(os.path.join(save_folder, 'reconstructions')) # os.makedirs(os.path.join(save_folder, 'samples')) os.makedirs(os.path.join(save_folder, 'checkpoints')) else: print(f'Save folder {save_folder} already exists. Aborting') exit(0) # s3 if args.s3: s3 = boto3.resource('s3') bucket = s3.Bucket(args.s3_bucket) # save args to file with open(os.path.join(save_folder, 'params.json'), 'w') as f: json.dump(args.__dict__, f, indent=4) # set device device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") print(f'Using device {device}') # set seed for reproducibility (https://pytorch.org/docs/stable/notes/randomness.html) if args.seed: torch.manual_seed(args.seed) np.random.seed(args.seed) torch.set_deterministic(True) torch.backends.cudnn.benchmark = False # can reduce performance # dataset train_dataset = CoinrunDataset('dataset/data.npz', split='train') val_dataset = CoinrunDataset('dataset/data.npz', split='test') num_workers = 0 if args.local else 4 train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=num_workers, pin_memory=True) val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, drop_last=True, num_workers=num_workers, pin_memory=True) n_train, n_train_batches = len(train_dataset), len(train_dataloader) n_val, n_val_batches = len(val_dataset), len(val_dataloader) assert(n_train_batches == n_train // args.batch_size) assert(n_val_batches == n_val // args.batch_size) print(f'Initialized training dataset with {n_train} samples, {n_train_batches} batches') print(f'Initialized validation dataset with {n_val} samples, {n_val_batches} batches') # model model = vae_models['VanillaVAE'](in_channels=3, latent_dim=args.latent_dim).to(device) # optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) # tensorboard logging writer = SummaryWriter(log_dir=save_folder) # training loop print(f'** Starting experiment {args.expname} **') for epoch in range(args.epochs): print(f'----- Epoch {epoch+1}/{args.epochs} -----') print(f'> training over {n_train_batches} batches') model.train() train_losses = defaultdict(list) for batch_idx, batch in enumerate(train_dataloader): print('.', end='', flush=True) data = batch.to(device) optimizer.zero_grad() results = model(data) train_loss = model.loss_function(*results, M_N = args.batch_size / n_train) for k, v in train_loss.items(): train_losses[k].append(v.item()) train_loss['loss'].backward() optimizer.step() print() train_loss_data = [] for k, v in train_losses.items(): train_loss_data.append(f'{k}: {round(np.mean(v), 3)} (+- {round(np.std(v), 3)})') writer.add_scalar(f'Train/{k}', np.mean(v), epoch) print(', '.join(train_loss_data)) if epoch % args.validate_every == 0 or epoch == args.epochs - 1: print(f'> validating over {n_val_batches} batches') with torch.no_grad(): model.eval() val_losses = defaultdict(list) for batch_idx, batch in enumerate(val_dataloader): print('.', end='', flush=True) data = batch.to(device) results = model(data) val_loss = model.loss_function(*results, M_N = args.batch_size / n_val) for k, v in val_loss.items(): val_losses[k].append(v.item()) print() val_loss_data = [] for k, v in val_losses.items(): val_loss_data.append(f'{k}: {round(np.mean(v), 3)} (+- {round(np.std(v), 3)})') writer.add_scalar(f'Val/{k}', np.mean(v), epoch) print(', '.join(val_loss_data)) # sample images print('> sampling images') test_input = next(iter(val_dataloader)).to(device) recons = model.generate(test_input) grid1 = torchvision.utils.make_grid(recons.data, normalize=True, nrow=8) # grid1 = torchvision.utils.make_grid(recons.data, os.path.join(save_folder, f"reconstructions/epoch_{epoch+1}.png"), normalize=True, nrow=8) samples = model.sample(args.batch_size, device) grid2 = torchvision.utils.make_grid(samples.cpu().data, normalize=True, nrow=8) # grid2 = torchvision.utils.make_grid(samples.cpu().data, os.path.join(save_folder, f"samples/epoch_{epoch+1}.png"), normalize=True, nrow=8) writer.add_image('reconstructions', grid1, epoch) writer.add_image('samples', grid2, epoch) # writer.add_graph(model, test_input.data) del test_input, recons, samples if epoch % args.checkpoint_every == 0 or epoch == args.epochs - 1: print('> saving checkpoint') torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict() }, os.path.join(save_folder, f"checkpoints/epoch_{epoch}.checkpoint")) if args.s3: for path, subdirs, files in os.walk(save_folder): directory_name = path.replace(args.save_folder + '/', '') for file in files: bucket.upload_file(os.path.join(path, file), os.path.join(args.s3_path, directory_name, file)) writer.close() print(f'Saved at {save_folder}') if args.s3: print(f'and at s3://{args.s3_bucket}/{args.s3_path}/{today}/{expname}')
[ "torch.cuda.is_available", "os.walk", "torch.utils.tensorboard.SummaryWriter", "os.path.exists", "numpy.mean", "argparse.ArgumentParser", "boto3.resource", "numpy.random.seed", "coinrun.CoinrunDataset", "locale.setlocale", "numpy.std", "torch.device", "torch.manual_seed", "os.makedirs", "os.path.join", "torch.set_deterministic", "datetime.datetime.now", "collections.defaultdict", "torch.utils.data.DataLoader", "torch.no_grad", "json.dump" ]
[((388, 448), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Coinrun VAE training."""'}), "(description='Coinrun VAE training.')\n", (411, 448), False, 'import argparse\n'), ((1515, 1560), 'locale.setlocale', 'locale.setlocale', (['locale.LC_ALL', '"""fr_FR.utf8"""'], {}), "(locale.LC_ALL, 'fr_FR.utf8')\n", (1531, 1560), False, 'import locale\n'), ((1696, 1742), 'os.path.join', 'os.path.join', (['args.save_folder', 'today', 'expname'], {}), '(args.save_folder, today, expname)\n', (1708, 1742), False, 'import os\n'), ((2747, 2796), 'coinrun.CoinrunDataset', 'CoinrunDataset', (['"""dataset/data.npz"""'], {'split': '"""train"""'}), "('dataset/data.npz', split='train')\n", (2761, 2796), False, 'from coinrun import CoinrunDataset\n'), ((2811, 2859), 'coinrun.CoinrunDataset', 'CoinrunDataset', (['"""dataset/data.npz"""'], {'split': '"""test"""'}), "('dataset/data.npz', split='test')\n", (2825, 2859), False, 'from coinrun import CoinrunDataset\n'), ((2917, 3046), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(True)', 'drop_last': '(True)', 'num_workers': 'num_workers', 'pin_memory': '(True)'}), '(train_dataset, batch_size=args.batch_size, shuffle=True,\n drop_last=True, num_workers=num_workers, pin_memory=True)\n', (2927, 3046), False, 'from torch.utils.data import DataLoader\n'), ((3064, 3192), 'torch.utils.data.DataLoader', 'DataLoader', (['val_dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'drop_last': '(True)', 'num_workers': 'num_workers', 'pin_memory': '(True)'}), '(val_dataset, batch_size=args.batch_size, shuffle=False,\n drop_last=True, num_workers=num_workers, pin_memory=True)\n', (3074, 3192), False, 'from torch.utils.data import DataLoader\n'), ((3808, 3842), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'save_folder'}), '(log_dir=save_folder)\n', (3821, 3842), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((1750, 1777), 'os.path.exists', 'os.path.exists', (['save_folder'], {}), '(save_folder)\n', (1764, 1777), False, 'import os\n'), ((1783, 1807), 'os.makedirs', 'os.makedirs', (['save_folder'], {}), '(save_folder)\n', (1794, 1807), False, 'import os\n'), ((2134, 2154), 'boto3.resource', 'boto3.resource', (['"""s3"""'], {}), "('s3')\n", (2148, 2154), False, 'import boto3\n'), ((2282, 2319), 'json.dump', 'json.dump', (['args.__dict__', 'f'], {'indent': '(4)'}), '(args.__dict__, f, indent=4)\n', (2291, 2319), False, 'import json\n'), ((2369, 2394), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2392, 2394), False, 'import torch\n'), ((2343, 2365), 'torch.device', 'torch.device', (['"""cuda:0"""'], {}), "('cuda:0')\n", (2355, 2365), False, 'import torch\n'), ((2400, 2419), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2412, 2419), False, 'import torch\n'), ((2558, 2586), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (2575, 2586), False, 'import torch\n'), ((2591, 2616), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (2605, 2616), True, 'import numpy as np\n'), ((2621, 2650), 'torch.set_deterministic', 'torch.set_deterministic', (['(True)'], {}), '(True)\n', (2644, 2650), False, 'import torch\n'), ((4095, 4112), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (4106, 4112), False, 'from collections import defaultdict\n'), ((1569, 1583), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1581, 1583), False, 'from datetime import datetime\n'), ((1982, 2022), 'os.path.join', 'os.path.join', (['save_folder', '"""checkpoints"""'], {}), "(save_folder, 'checkpoints')\n", (1994, 2022), False, 'import os\n'), ((2225, 2265), 'os.path.join', 'os.path.join', (['save_folder', '"""params.json"""'], {}), "(save_folder, 'params.json')\n", (2237, 2265), False, 'import os\n'), ((1648, 1662), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1660, 1662), False, 'from datetime import datetime\n'), ((4742, 4752), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (4749, 4752), True, 'import numpy as np\n'), ((4942, 4957), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4955, 4957), False, 'import torch\n'), ((5009, 5026), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (5020, 5026), False, 'from collections import defaultdict\n'), ((6932, 6998), 'os.path.join', 'os.path.join', (['save_folder', 'f"""checkpoints/epoch_{epoch}.checkpoint"""'], {}), "(save_folder, f'checkpoints/epoch_{epoch}.checkpoint')\n", (6944, 6998), False, 'import os\n'), ((7061, 7081), 'os.walk', 'os.walk', (['save_folder'], {}), '(save_folder)\n', (7068, 7081), False, 'import os\n'), ((5639, 5649), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (5646, 5649), True, 'import numpy as np\n'), ((4657, 4667), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (4664, 4667), True, 'import numpy as np\n'), ((4684, 4693), 'numpy.std', 'np.std', (['v'], {}), '(v)\n', (4690, 4693), True, 'import numpy as np\n'), ((7231, 7255), 'os.path.join', 'os.path.join', (['path', 'file'], {}), '(path, file)\n', (7243, 7255), False, 'import os\n'), ((7257, 7305), 'os.path.join', 'os.path.join', (['args.s3_path', 'directory_name', 'file'], {}), '(args.s3_path, directory_name, file)\n', (7269, 7305), False, 'import os\n'), ((5548, 5558), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (5555, 5558), True, 'import numpy as np\n'), ((5575, 5584), 'numpy.std', 'np.std', (['v'], {}), '(v)\n', (5581, 5584), True, 'import numpy as np\n')]
import torch import torchaudio class ToMono(torch.nn.Module): def forward(self, waveform: torch.Tensor) -> torch.Tensor: return torch.mean(waveform, dim=0, keepdim=True) class Normalize(torch.nn.Module): def forward(self, waveform: torch.Tensor) -> torch.Tensor: return (waveform-waveform.mean()) / waveform.std() class Pad(torch.nn.Module): def __init__(self, value: float, size: int): super(Pad, self).__init__() self.value = value self.size = size def forward(self, waveform: torch.Tensor) -> torch.Tensor: return torch.nn.functional.pad(waveform, (0, self.size-max(waveform.shape)), "constant", self.value) audio_transform = torch.nn.Sequential(*[ ToMono(), #converts audio channels to mono torchaudio.transforms.Resample(orig_freq=441000, new_freq=8000), # downsamples audio signal to 8000 HZ Normalize(), # normalize audio signal to have mean=0 & std=1 Pad(value=0, size=32000), ])
[ "torch.mean", "torchaudio.transforms.Resample" ]
[((142, 183), 'torch.mean', 'torch.mean', (['waveform'], {'dim': '(0)', 'keepdim': '(True)'}), '(waveform, dim=0, keepdim=True)\n', (152, 183), False, 'import torch\n'), ((781, 844), 'torchaudio.transforms.Resample', 'torchaudio.transforms.Resample', ([], {'orig_freq': '(441000)', 'new_freq': '(8000)'}), '(orig_freq=441000, new_freq=8000)\n', (811, 844), False, 'import torchaudio\n')]
import os import pytest from ..utils import generic_chempiler_test HERE = os.path.abspath(os.path.dirname(__file__)) FOLDER = os.path.join(HERE, 'files') @pytest.mark.integration def test_lidocaine(): generic_chempiler_test( os.path.join(FOLDER, 'lidocaine.xdl'), os.path.join(FOLDER, 'lidocaine_graph.json') ) @pytest.mark.integration def test_dmp(): generic_chempiler_test( os.path.join(FOLDER, 'DMP.xdl'), os.path.join(FOLDER, 'DMP_graph.json') ) # Removed as not easy to convert a graphml graph to SL2 # @pytest.mark.integration # def test_alkyl_fluor(): # generic_chempiler_test( # os.path.join(FOLDER, 'AlkylFluor.xdl'), # os.path.join(FOLDER, 'AlkylFluor_graph.graphml') # ) @pytest.mark.integration def test_orgsyn_v83p0184a(): generic_chempiler_test( os.path.join(FOLDER, 'orgsyn_v83p0184a.xdl'), os.path.join(FOLDER, 'orgsyn_v83p0184a_graph.json') ) @pytest.mark.integration def test_orgsyn_v83p0193(): generic_chempiler_test( os.path.join(FOLDER, 'orgsyn_v83p0193.xdl'), os.path.join(FOLDER, 'orgsyn_v83p0193_graph.json') ) @pytest.mark.integration def test_orgsyn_v80p0129(): generic_chempiler_test( os.path.join(FOLDER, 'orgsyn_v80p0129.xdl'), os.path.join(FOLDER, 'orgsyn_v80p0129_graph.json') ) @pytest.mark.integration def test_orgsyn_v88p0152_a(): generic_chempiler_test( os.path.join(FOLDER, 'orgsyn_v88p0152_a.xdl'), os.path.join(FOLDER, 'orgsyn_v88p0152_a_graph.json') ) @pytest.mark.integration def test_orgsyn_v81p0262(): generic_chempiler_test( os.path.join(FOLDER, 'orgsyn_v81p0262.xdl'), os.path.join(FOLDER, 'orgsyn_v81p0262_graph.json') ) @pytest.mark.integration def test_orgsyn_v87p0016(): generic_chempiler_test( os.path.join(FOLDER, 'orgsyn_v87p0016.xdl'), os.path.join(FOLDER, 'orgsyn_v87p0016_graph.json') ) @pytest.mark.integration def test_orgsyn_v90p0251(): generic_chempiler_test( os.path.join(FOLDER, 'orgsyn_v90p0251.xdl'), os.path.join(FOLDER, 'orgsyn_v90p0251_graph.json') )
[ "os.path.dirname", "os.path.join" ]
[((128, 155), 'os.path.join', 'os.path.join', (['HERE', '"""files"""'], {}), "(HERE, 'files')\n", (140, 155), False, 'import os\n'), ((92, 117), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (107, 117), False, 'import os\n'), ((240, 277), 'os.path.join', 'os.path.join', (['FOLDER', '"""lidocaine.xdl"""'], {}), "(FOLDER, 'lidocaine.xdl')\n", (252, 277), False, 'import os\n'), ((287, 331), 'os.path.join', 'os.path.join', (['FOLDER', '"""lidocaine_graph.json"""'], {}), "(FOLDER, 'lidocaine_graph.json')\n", (299, 331), False, 'import os\n'), ((416, 447), 'os.path.join', 'os.path.join', (['FOLDER', '"""DMP.xdl"""'], {}), "(FOLDER, 'DMP.xdl')\n", (428, 447), False, 'import os\n'), ((457, 495), 'os.path.join', 'os.path.join', (['FOLDER', '"""DMP_graph.json"""'], {}), "(FOLDER, 'DMP_graph.json')\n", (469, 495), False, 'import os\n'), ((850, 894), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v83p0184a.xdl"""'], {}), "(FOLDER, 'orgsyn_v83p0184a.xdl')\n", (862, 894), False, 'import os\n'), ((904, 955), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v83p0184a_graph.json"""'], {}), "(FOLDER, 'orgsyn_v83p0184a_graph.json')\n", (916, 955), False, 'import os\n'), ((1052, 1095), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v83p0193.xdl"""'], {}), "(FOLDER, 'orgsyn_v83p0193.xdl')\n", (1064, 1095), False, 'import os\n'), ((1105, 1155), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v83p0193_graph.json"""'], {}), "(FOLDER, 'orgsyn_v83p0193_graph.json')\n", (1117, 1155), False, 'import os\n'), ((1252, 1295), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v80p0129.xdl"""'], {}), "(FOLDER, 'orgsyn_v80p0129.xdl')\n", (1264, 1295), False, 'import os\n'), ((1305, 1355), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v80p0129_graph.json"""'], {}), "(FOLDER, 'orgsyn_v80p0129_graph.json')\n", (1317, 1355), False, 'import os\n'), ((1454, 1499), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v88p0152_a.xdl"""'], {}), "(FOLDER, 'orgsyn_v88p0152_a.xdl')\n", (1466, 1499), False, 'import os\n'), ((1509, 1561), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v88p0152_a_graph.json"""'], {}), "(FOLDER, 'orgsyn_v88p0152_a_graph.json')\n", (1521, 1561), False, 'import os\n'), ((1658, 1701), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v81p0262.xdl"""'], {}), "(FOLDER, 'orgsyn_v81p0262.xdl')\n", (1670, 1701), False, 'import os\n'), ((1711, 1761), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v81p0262_graph.json"""'], {}), "(FOLDER, 'orgsyn_v81p0262_graph.json')\n", (1723, 1761), False, 'import os\n'), ((1858, 1901), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v87p0016.xdl"""'], {}), "(FOLDER, 'orgsyn_v87p0016.xdl')\n", (1870, 1901), False, 'import os\n'), ((1911, 1961), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v87p0016_graph.json"""'], {}), "(FOLDER, 'orgsyn_v87p0016_graph.json')\n", (1923, 1961), False, 'import os\n'), ((2058, 2101), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v90p0251.xdl"""'], {}), "(FOLDER, 'orgsyn_v90p0251.xdl')\n", (2070, 2101), False, 'import os\n'), ((2111, 2161), 'os.path.join', 'os.path.join', (['FOLDER', '"""orgsyn_v90p0251_graph.json"""'], {}), "(FOLDER, 'orgsyn_v90p0251_graph.json')\n", (2123, 2161), False, 'import os\n')]
# -*- coding: utf-8 -*- # Author: jS1ngle # License: MIT License (http://opensource.org/licenses/MIT) from SimulationHelperFunctions import * import numpy as np # -----Functions--------------------------------------------------------- def evaluate_portfolios(coin_data_struct, number_portfolio, portfolio_samples, logReturns, cov, timeFrame): # Initialize results matrix results = np.zeros((3 + len(coin_data_struct), number_portfolio)) for i in range(number_portfolio): weights = portfolio_samples[i] # portfolio return results[0, i] = np.sum(np.array(logReturns.mean().tolist()) * weights) * timeFrame # portfolio volatility results[1, i] = np.sqrt(np.dot(weights.T, np.dot(cov, weights))) * np.sqrt(timeFrame) # Calc Sortino ratio and add weights tmp = [] for col in range(len(weights)): tmp.append(calc_sortino(logReturns[coins[col]].tolist()[1:] * timeFrame, 0.0)) results[col + 3, i] = weights[col] # Total Sortino ratio results[2, i] = np.sum(np.multiply(tmp, weights)) * np.sqrt(timeFrame) return results # -----Input------------------------------------------------------------- # In time periods (usually days) timeFrame = 30 numberPortfolio = 20000 coinDataStruct = [['BNB', 'Binance', 'BTC'], ['ADA', 'Binance', 'BTC'], ['ETH', 'Binance', 'BTC'], ['SOL', 'Binance', 'BTC'], ['DOGE', 'Binance', 'BTC'], ['DOT', 'Binance', 'BTC']] df2 = pd.DataFrame({}) for i in range(len(coinDataStruct)): coin = coinDataStruct[i][0] exchange = coinDataStruct[i][1] tradeCurrency = coinDataStruct[i][2] # Pass closing price to new dataframe df2[coin] = get_hist_price_data(coin, tradeCurrency, timeFrame, exchange)['close'] coins = [] for i in range(len(coinDataStruct)): coins.append(coinDataStruct[i][0]) logReturns = np.log(df2 / df2.shift(1)) cov = logReturns.cov().as_matrix() # Create portfolios with different coin allocations portfolioSamples = np.random.dirichlet(np.ones(len(coinDataStruct)), numberPortfolio) results = evaluate_portfolios(coinDataStruct, numberPortfolio, portfolioSamples, logReturns, cov, timeFrame) # Convert results array to Pandas DataFrame results_frame = pd.DataFrame(results.T) resColumn = ['ret', 'stdev', 'Sortino'] + coins results_frame.columns = results_frame.columns[:0].tolist() + resColumn # print results_frame results_frame.to_csv('portfolioOptimization.csv') # Process efficient frontier data pf = get_pareto_frontier(results_frame.stdev, results_frame.ret) x = [x[0] for x in pf] y = [y[1] for y in pf] pfFrame = results_frame[(results_frame.stdev.isin(x)) & (results_frame.ret.isin(y))] pfFrame.set_index('Sortino', inplace=True) pfFrame.to_csv('paretoFrontier.csv')
[ "numpy.dot", "numpy.multiply", "numpy.sqrt" ]
[((751, 769), 'numpy.sqrt', 'np.sqrt', (['timeFrame'], {}), '(timeFrame)\n', (758, 769), True, 'import numpy as np\n'), ((1102, 1120), 'numpy.sqrt', 'np.sqrt', (['timeFrame'], {}), '(timeFrame)\n', (1109, 1120), True, 'import numpy as np\n'), ((1073, 1098), 'numpy.multiply', 'np.multiply', (['tmp', 'weights'], {}), '(tmp, weights)\n', (1084, 1098), True, 'import numpy as np\n'), ((726, 746), 'numpy.dot', 'np.dot', (['cov', 'weights'], {}), '(cov, weights)\n', (732, 746), True, 'import numpy as np\n')]