xx / eval_peacock.py
ahmedheakl's picture
Create eval_peacock.py
cb2eba1 verified
import math
import torch
from typing import Callable, List
import pandas as pd
import json
import os
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel
from utils import *
from PIL import Image
import shutil
from glob import glob
import numpy as np
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration, AddedToken
from datasets import load_dataset
model = InstructBlipForConditionalGeneration.from_pretrained("UBC-NLP/Peacock")
processor = InstructBlipProcessor.from_pretrained("UBC-NLP/Peacock")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def handle_images1(row: pd.Series) -> List[str]:
return [row["image"].convert("RGB")]
def handle_images2(row: pd.Series) -> List[str]:
return [
row.get(f"image_{i}", None).convert("RGB")
for i in range(9)
if row.get(f"image_{i}", None) is not None
]
def save_images(images: List[str], with_resize: bool = True):
for i, image in enumerate(images):
if image is None:
continue
if with_resize:
img = image
width, height = img.size
req_dim = 420
new_width = req_dim if width > height else int((req_dim / height) * width)
new_height = int((req_dim / width) * height) if width > height else req_dim
img = img.resize((420, 420))
img = img.convert("RGB")
img.save(f"temp/image{i}.png")
def generate_qwen(prompt: str, images: List[str]) -> str:
images = images[:1]
save_images(images)
inputs = processor(images=Image.open("temp/image0.png").convert("RGB"), text=prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
do_sample=False,
num_beams=1,
max_length=256,
min_length=2,
top_p=0.9,
temperature=1,
length_penalty=1.0,
repetition_penalty=1.5,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
return generated_text
answer_field = "answer"
def process_row(row: pd.Series, fn: Callable, fn_images: Callable) -> dict:
i, row = row
d = {}
try:
d["index"] = i
images = fn_images(row)
d["pred_answer"] = generate_qwen(fn(row), images)
d["answer"] = str(row[answer_field])
d["question"] = fn(row)
print(f"Question: {fn(row)}\nPredicted: {d['pred_answer']}")
return d
except Exception as e:
print(f"Error processing row: {e}")
return None
name_to_processor = {
"mmmu": mmmu_doc_to_text,
"mme": mme_doc_to_text,
"gqa": gqa_doc_to_text,
"realworldqa": realworldqa_doc_to_text,
"vqav2": vqav2_doc_to_text,
"vizwiz": vizwiz_doc_to_text,
"pope": pope_doc_to_text,
"countbench": countbench_doc_to_text,
"medicalMMMU": medicalMMMU_doc_to_text,
"medicalMMMUPro": medicalMMMUPro_doc_to_text,
"diagramsMMMU": diagramsMMMU_doc_to_text,
"mmbench": mmbench_doc_to_text,
"seed": seed_doc_to_text,
"medicalmmt": medicalmmt_doc_to_text,
"hallucinationmmt": hallucinationmmt_doc_to_text,
"vqammt": vqammt_doc_to_text,
"mutliimagemmt": mutliimagemmt_doc_to_text,
"isidocvqa": isidocvqa_doc_to_text,
"patddocvqa": patddocvqa_doc_to_text,
"celebvqa": celebvqa_doc_to_text,
"countriesvqa": countriesvqa_doc_to_text,
"foodvqa": foodvqa_doc_to_text,
"objectcoco": objectcoco_doc_to_text,
"blink": blink_doc_to_text,
"examsv": examsv_doc_to_text,
"chartqa": chartqa_doc_to_text,
"mtvqa": mtvqa_doc_to_text,
"mathvista": mathvista_doc_to_text,
"infographicsvqa": infographicsvqa_doc_to_text,
"agrovqa": agrovqa_doc_to_text,
"diagramsvqa": diagramsvqa_doc_to_text,
"tablesvqa": tablesvqa_doc_to_text,
"iconqa": iconqa_doc_to_text,
"scienceqa": scienceqa_doc_to_text,
"ocrisi": ocrisi_doc_to_text,
"evarest": evarest_doc_to_text,
"historicalbooks": historicalbooks_doc_to_text,
"khatt": khatt_doc_to_text,
"patsocr": patsocr_doc_to_text,
"arabicocr": arabicocr_doc_to_text,
"culturevideovqa": culturevideovqa_doc_to_text,
"videomme": videomme_doc_to_text,
"geochat": geochat_doc_to_text,
"muribench": muribench_doc_to_text,
}
name_to_handle_type = {
# "mmmu": handle_images2,
# "mme": handle_images1,
# "gqa": handle_images1,
# "realworldqa": handle_images1,
# "vqav2": handle_images1,
# "vizwiz": handle_images1,
# "pope": handle_images1,
# "countbench": handle_images1,
# "medicalMMMU": handle_images2,
# "medicalMMMUPro": handle_images2,
# "diagramsMMMU": handle_images2,
# "mmbench": handle_images1,
# "seed": handle_images2,
"vqammt": handle_images1,
"isidocvqa": handle_images1,
"patddocvqa": handle_images1,
"celebvqa": handle_images1,
"countriesvqa": handle_images1,
"foodvqa": handle_images1,
"objectcoco": handle_images1,
"blink": handle_images2,
"examsv": handle_images1,
"chartqa": handle_images1,
"mtvqa": handle_images1,
"mathvista": handle_images1,
"infographicsvqa": handle_images1,
"agrovqa": handle_images1,
"diagramsvqa": handle_images1,
"tablesvqa": handle_images1,
"scienceqa": handle_images1,
"geochat": handle_images1,
"ocrisi": handle_images1,
"evarest": handle_images1,
"historicalbooks": handle_images1,
"khatt": handle_images1,
"patsocr": handle_images1,
"hallucinationmmt": handle_images1,
"medicalmmt": handle_images1,
"arabicocr": handle_images1,
# "iconqa": handle_images2,
# "culturevideovqa": handle_images2,
# "muribench": handle_images2,
# "videomme": handle_images2,
# "mutliimagemmt": handle_images2,
}
names = list(name_to_handle_type.keys())
os.makedirs("results", exist_ok=True)
os.makedirs("temp", exist_ok=True)
for name in tqdm(names):
try:
ds = load_dataset(f"ahmedheakl/arabicp_{name}", split="train", num_proc=4)
except:
continue
# if os.path.exists(f"results/peacock_{name}.json"):
# with open(f"results/peacock_{name}.json", "r", encoding="utf-8") as f:
# dd = json.load(f)
# if len(dd) >= (len(ds) // 2): continue
df = pd.DataFrame(ds)
print(f"Evaluating {name} dataset")
fn = name_to_processor[name]
fn_images = name_to_handle_type[name]
results = []
for i in tqdm(range(len(df))):
results.append(process_row((i, df.iloc[i]), fn, fn_images))
report = [r for r in results if r is not None]
with open(f"results/peacock_{name}.json", "w", encoding="utf-8") as f:
json.dump(report, f, ensure_ascii=False, indent=2)
shutil.rmtree("temp")