xMINDsmall / README.md
aiana94's picture
Update xMIND citation
aeb7ddb verified
metadata
license: cc-by-nc-sa-4.0
task_categories:
  - translation
  - text-retrieval
language:
  - fi
  - gn
  - ht
  - id
  - ja
  - ka
  - ro
  - so
  - sw
  - ta
  - th
  - tr
  - vi
  - zh
tags:
  - news
  - multilingual
  - machine-translated
  - nllb
pretty_name: xMINDsmall
size_categories:
  - 10K<n<100K
multilinguality:
  - translation
  - multilingual
  - multi-parallel
source_datasets:
  - MIND
configs:
  - config_name: fin
    data_files:
      - split: train
        path: data/fin/train.parquet.gzip
      - split: dev
        path: data/fin/dev.parquet.gzip
  - config_name: grn
    data_files:
      - split: train
        path: data/grn/train.parquet.gzip
      - split: dev
        path: data/grn/dev.parquet.gzip
  - config_name: hat
    data_files:
      - split: train
        path: data/hat/train.parquet.gzip
      - split: dev
        path: data/hat/dev.parquet.gzip
  - config_name: ind
    data_files:
      - split: train
        path: data/ind/train.parquet.gzip
      - split: dev
        path: data/ind/dev.parquet.gzip
  - config_name: jpn
    data_files:
      - split: train
        path: data/jpn/train.parquet.gzip
      - split: dev
        path: data/jpn/dev.parquet.gzip
  - config_name: kat
    data_files:
      - split: train
        path: data/kat/train.parquet.gzip
      - split: dev
        path: data/kat/dev.parquet.gzip
  - config_name: ron
    data_files:
      - split: train
        path: data/ron/train.parquet.gzip
      - split: dev
        path: data/ron/dev.parquet.gzip
  - config_name: som
    data_files:
      - split: train
        path: data/som/train.parquet.gzip
      - split: dev
        path: data/som/dev.parquet.gzip
  - config_name: swh
    data_files:
      - split: train
        path: data/swh/train.parquet.gzip
      - split: dev
        path: data/swh/dev.parquet.gzip
  - config_name: tam
    data_files:
      - split: train
        path: data/tam/train.parquet.gzip
      - split: dev
        path: data/tam/dev.parquet.gzip
  - config_name: tha
    data_files:
      - split: train
        path: data/tha/train.parquet.gzip
      - split: dev
        path: data/tha/dev.parquet.gzip
  - config_name: tur
    data_files:
      - split: train
        path: data/tur/train.parquet.gzip
      - split: dev
        path: data/tur/dev.parquet.gzip
  - config_name: vie
    data_files:
      - split: train
        path: data/vie/train.parquet.gzip
      - split: dev
        path: data/vie/dev.parquet.gzip
  - config_name: zho
    data_files:
      - split: train
        path: data/zho/train.parquet.gzip
      - split: dev
        path: data/zho/dev.parquet.gzip

Dataset Card for xMINDsmall

Table of Contents

Dataset Description

Dataset Summary

xMINDsmall is an open, large-scale multi-parallel news dataset for multi- and cross-lingual news recommendation. It is derived from the English MINDsmall dataset using open-source neural machine translation (i.e., NLLB 3.3B).

For the large version of the dataset, see xMINDlarge.

Uses

This dataset can be used for machine translation, text retrieval, or as a benchmark dataset for news recommendation.

Languages

xMIND contains news translated into 14 linguistically and geographically diverse languages, with digital footprints of varying sizes.

Code Language Script Macro-area Family Genus
FIN Finnish Latin Eurasia Uralic Finnic
GRN Guarani Latin South-America Tupian Maweti-Guarani
HAT Haitian Creole Latin North-America Indo-European Creoles and Pidgins
IND Indonesian Latin Papunesia Austronesian Malayo-Sumbawan
JPN Japanese Japanese Eurasia Japonic Japanesic
KAT Georgian Georgian Eurasia Kartvelic Georgian-Zan
RON Romanian Latin Eurasia Indo-European Romance
SOM Somali Latin Africa Afro-Asiatic Lowland East Cushitic
SWH Swahili Latin Africa Niger-Congo Bantu
TAM Tamil Tamil Eurasia Dravidian Dravidian
THA Thai Thai Eurasia Tai-Kadai Kam-Tai
TUR Turkish Latin Eurasia Altaic Turkic
VIE Vietnamese Latin Eurasia Austro-Asiatic Vietic
ZHO Mandarin Chinese Han Eurasia Sino-Tibetan Sinitic

Dataset Structure

Data Instances

>>> from datasets import load_dataset
>>> data = load_dataset('aiana94/xMINDsmall', 'ron')

# Please, specify the language code.

# A data point example is below:

{
"nid": "N49265"
"title": "Aceste reţete cu sos de afine sunt perfecte pentru cina de Ziua Recunoştinţei.",
"abstract": "Nu vei mai vrea niciodată versiunea cumpărată din magazin."
}

Data Fields

  • nid (string): news ID (same as in the MIND dataset)
  • title (string): news title
  • abstract (string) : news abstract (optional)

Data Splits

For all languages, there are two split: train, and dev.

Dataset Creation

Source Data

The news were machine-translated from the MINDsmall dataset.

Data Collection and Processing

We translated the news articles using the open-source model NLLB 3.3B. For more details regarding the translation setup and data quality, we refer to the corresponding paper.

Personal and Sensitive Information

The data is sourced from newspaper sources and contains mentions of public figures and individuals.

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

Users should keep in mind that the dataset contains short news texts (e.g., news titles and abstracts), which might limit the applicability of the developed systems to other domains.

Additional Information

Licensing Information

The dataset is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. If you intend to use, adapt, or share xMINDsmall, particularly together with additional news and click behavior information from the original MIND dataset, please read and reference the Microsoft Research License Terms of MIND.

Citation Infomation

BibTeX:

@inproceedings{iana2024mind,
  title={Mind your language: a multilingual dataset for cross-lingual news recommendation},
  author={Iana, Andreea and Glava{\v{s}}, Goran and Paulheim, Heiko},
  booktitle={Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={553--563},
  year={2024}
}

Also consider citing the following:

@inproceedings{wu2020mind,
  title={Mind: A large-scale dataset for news recommendation},
  author={Wu, Fangzhao and Qiao, Ying and Chen, Jiun-Hung and Wu, Chuhan and Qi, Tao and Lian, Jianxun and Liu, Danyang and Xie, Xing and Gao, Jianfeng and Wu, Winnie and others},
  booktitle={Proceedings of the 58th annual meeting of the association for computational linguistics},
  pages={3597--3606},
  year={2020}
}