pretty_name: SEA Sentiment Analysis
license:
- cc-by-sa-4.0
- cc-by-4.0
- cc0-1.0
task_categories:
- text-generation
- text-classification
language:
- id
- jv
- su
- ta
- th
- vi
dataset_info:
features:
- name: id
dtype: string
- name: label
dtype: string
- name: prompts
list:
- name: text
dtype: string
- name: prompt_templates
sequence: string
- name: metadata
struct:
- name: language
dtype: string
splits:
- name: id
num_bytes: 188736
num_examples: 400
- name: id_fewshot
num_bytes: 702
num_examples: 5
- name: jv
num_bytes: 168113
num_examples: 394
- name: jv_fewshot
num_bytes: 913
num_examples: 5
- name: su
num_bytes: 178579
num_examples: 394
- name: su_fewshot
num_bytes: 911
num_examples: 5
- name: ta
num_bytes: 1225066
num_examples: 1000
- name: ta_fewshot
num_bytes: 1859
num_examples: 5
- name: th
num_bytes: 898057
num_examples: 1000
- name: th_fewshot
num_bytes: 523
num_examples: 5
- name: vi
num_bytes: 434373
num_examples: 1000
- name: vi_fewshot
num_bytes: 655
num_examples: 5
download_size: 506409
dataset_size: 3098487
configs:
- config_name: default
data_files:
- split: id
path: data/id-*
- split: id_fewshot
path: data/id_fewshot-*
- split: jv
path: data/jv-*
- split: jv_fewshot
path: data/jv_fewshot-*
- split: su
path: data/su-*
- split: su_fewshot
path: data/su_fewshot-*
- split: ta
path: data/ta-*
- split: ta_fewshot
path: data/ta_fewshot-*
- split: th
path: data/th-*
- split: th_fewshot
path: data/th_fewshot-*
- split: vi
path: data/vi-*
- split: vi_fewshot
path: data/vi_fewshot-*
size_categories:
- 1K<n<10K
SEA Sentiment Analysis
SEA Sentiment Analysis evaluates a model's ability to identify the sentiment polarity of a text. It is sampled from NusaX for Indonesian, Javanese, and Sundanese, IndicSentiment for Tamil, Wisesight Sentiment for Thai, and UIT-VSFC for Vietnamese.
Supported Tasks and Leaderboards
SEA Sentiment Analysis is designed for evaluating chat or instruction-tuned large language models (LLMs). It is part of the SEA-HELM leaderboard from AI Singapore.
Languages
- Indonesian (id)
- Javanese (jv)
- Sundanese (su)
- Tamil (ta)
- Thai (th)
- Vietnamese (vi)
Dataset Details
SEA Sentiment Analysis is split by language, with additional splits containing fewshot examples. Below are the statistics for this dataset. The number of tokens only refer to the strings of text found within the prompts
column.
Split | # of examples | # of GPT-4o tokens | # of Gemma 2 tokens | # of Llama 3 tokens |
---|---|---|---|---|
id | 400 | 15131 | 13918 | 19274 |
jv | 394 | 16731 | 17453 | 20638 |
su | 394 | 17123 | 18632 | 22056 |
ta | 1000 | 54038 | 71449 | 211075 |
th | 1000 | 38252 | 38111 | 4444 |
vi | 1000 | 16732 | 16307 | 16755 |
id_fewshot | 5 | 145 | 137 | 175 |
jv_fewshot | 5 | 201 | 219 | 255 |
su_fewshot | 5 | 201 | 217 | 253 |
ta_fewshot | 5 | 192 | 264 | 792 |
th_fewshot | 5 | 50 | 54 | 63 |
vi_fewshot | 5 | 87 | 87 | 90 |
total | 4218 | 158883 | 176848 | 335873 |
Data Sources
Data Source | License | Language/s | Split/s |
---|---|---|---|
NusaX-Senti | CC BY-SA 4.0 | Indonesian, Javanese, Sundanese | id, id_fewshot, jv, jv_fewshot, su, su_fewshot |
IndicSentiment | CC BY 4.0 | Tamil | ta, ta_fewshot |
Wisesight Sentiment | CC0 1.0 | Thai | th, th_fewshot |
UIT-VSFC | - | Vietnamese | vi, vi_fewshot |
License
For the license/s of the dataset/s, please refer to the data sources table above.
We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data.
References
@inproceedings{winata-etal-2023-nusax,
title = "{N}usa{X}: Multilingual Parallel Sentiment Dataset for 10 {I}ndonesian Local Languages",
author = "Winata, Genta Indra and
Aji, Alham Fikri and
Cahyawijaya, Samuel and
Mahendra, Rahmad and
Koto, Fajri and
Romadhony, Ade and
Kurniawan, Kemal and
Moeljadi, David and
Prasojo, Radityo Eko and
Fung, Pascale and
Baldwin, Timothy and
Lau, Jey Han and
Sennrich, Rico and
Ruder, Sebastian",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-main.57",
doi = "10.18653/v1/2023.eacl-main.57",
pages = "815--834",
}
@inproceedings{doddapaneni-etal-2023-towards,
title = "Towards Leaving No {I}ndic Language Behind: Building Monolingual Corpora, Benchmark and Models for {I}ndic Languages",
author = "Doddapaneni, Sumanth and
Aralikatte, Rahul and
Ramesh, Gowtham and
Goyal, Shreya and
Khapra, Mitesh M. and
Kunchukuttan, Anoop and
Kumar, Pratyush",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.693",
doi = "10.18653/v1/2023.acl-long.693",
pages = "12402--12426",
}
@misc{Suriyawongkul_PyThaiNLP_Wisesight_Sentiment_Corpus_2020,
author = {Suriyawongkul, Arthit and
Chuangsuwanich, Ekapol and
Chormai, Pattarawat and
Chantarapratin, Nitchakarn and
Prasertsom, Ponrawee and
Sawatphol, Jitkapat and
Yamada, Nozomi and
Rutherford, Attapol and
Polpanumas, Charin and
Udomcharoenchaikit, Can},
doi = {10.5281/zenodo.3457446},
license = {CC0-1.0},
month = nov,
publisher = {Zenodo},
title = {{PyThaiNLP/Wisesight Sentiment Corpus with Word Tokenization Label}},
url = {https://doi.org/10.5281/zenodo.3457446},
version = {v1.1},
year = 2024
}
@InProceedings{8573337,
author={Nguyen, Kiet Van and Nguyen, Vu Duc and Nguyen, Phu X. V. and Truong, Tham T. H. and Nguyen, Ngan Luu-Thuy},
booktitle={2018 10th International Conference on Knowledge and Systems Engineering (KSE)},
title={UIT-VSFC: Vietnamese Students’ Feedback Corpus for Sentiment Analysis},
year={2018},
volume={},
number={},
pages={19-24},
doi={10.1109/KSE.2018.8573337}
}
@misc{leong2023bhasaholisticsoutheastasian,
title={BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models},
author={Wei Qi Leong and Jian Gang Ngui and Yosephine Susanto and Hamsawardhini Rengarajan and Kengatharaiyer Sarveswaran and William Chandra Tjhi},
year={2023},
eprint={2309.06085},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2309.06085},
}