File size: 6,200 Bytes
7ebb554 0ceedf1 7ebb554 3dcfd2c 7ebb554 3dcfd2c 7ebb554 0ceedf1 7ebb554 0ceedf1 7ebb554 0ceedf1 3dcfd2c 7ebb554 0ceedf1 333e8f2 54e2680 7ebb554 ca504e4 7ebb554 67303e7 7ebb554 3dcfd2c 7ebb554 3dcfd2c 7ebb554 3dcfd2c 7ebb554 3dcfd2c 7ebb554 3dcfd2c 7ebb554 3dcfd2c 7ebb554 3dcfd2c 7ebb554 3dcfd2c 7ebb554 0ceedf1 a5642ac 0ceedf1 7ebb554 8a04a9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# Dataset Card for allenai/wmt22_african
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://www.statmt.org/wmt22/large-scale-multilingual-translation-task.html
- **Repository:** [Needs More Information]
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
This dataset was created based on [metadata](https://github.com/facebookresearch/LASER/tree/main/data/wmt22_african) for mined bitext released by Meta AI. It contains bitext for 248 pairs for the African languages that are part of the [2022 WMT Shared Task on Large Scale Machine Translation Evaluation for African Languages](https://www.statmt.org/wmt22/large-scale-multilingual-translation-task.html).
#### How to use the data
There are two ways to access the data:
* Via the Hugging Face Python datasets library
```
from datasets import load_dataset
dataset = load_dataset("allenai/wmt22_african")
```
* Clone the git repo
```
git lfs install
git clone https://huggingface.co/datasets/allenai/wmt22_african
```
### Supported Tasks and Leaderboards
This dataset is one of resources allowed under the Constrained Track for the [2022 WMT Shared Task on Large Scale Machine Translation Evaluation for African Languages](https://www.statmt.org/wmt22/large-scale-multilingual-translation-task.html).
### Languages
#### Focus languages
| Language | Code |
| -------- | ---- |
| Afrikaans | afr |
| Amharic | amh |
| Chichewa | nya |
| Nigerian Fulfulde | fuv |
| Hausa | hau |
| Igbo | ibo |
| Kamba | kam |
| Kinyarwanda | kin |
| Lingala | lin |
| Luganda | lug |
| Luo | luo |
| Northern Sotho | nso |
| Oroma | orm |
| Shona | sna |
| Somali | som |
| Swahili | swh |
| Swati | ssw |
| Tswana | tsn |
| Umbundu | umb |
| Wolof | wol |
| Xhosa | xho |
| Xitsonga | tso |
| Yoruba | yor |
| Zulu | zul |
Colonial linguae francae: English - eng, French - fra
## Dataset Structure
The dataset contains gzipped tab delimited text files for each direction. Each text file contains lines with parallel sentences.
### Data Instances
The dataset contains 248 language pairs.
Sentence counts for each pair can be found [here](https://huggingface.co/datasets/allenai/wmt22_african/blob/main/sentence_counts.txt).
### Data Fields
Every instance for a language pair contains the following fields: 'translation' (containing sentence pairs), 'laser_score', 'source_sentence_lid', 'target_sentence_lid', where 'lid' is language classification probability.
Example:
```
{
'translation':
{
'afr': 'In Mei 2007, in ooreenstemming met die spesifikasies van die Java Gemeenskapproses, het Sun Java tegnologie geherlisensieer onder die GNU General Public License.',
'eng': 'As of May 2007, in compliance with the specifications of the Java Community Process, Sun relicensed most of its Java technologies under the GNU General Public License.'
},
'laser_score': 1.0717015266418457,
'source_sentence_lid': 0.9996600151062012,
'target_sentence_lid': 0.9972000122070312
}
```
### Data Splits
The data is not split into train, dev, and test.
## Dataset Creation
### Curation Rationale
Parallel sentences from monolingual data in Common Crawl and ParaCrawl were identified via [Language-Agnostic Sentence Representation (LASER)](https://github.com/facebookresearch/LASER) encoders.
### Source Data
#### Initial Data Collection and Normalization
Monolingual data was obtained from Common Crawl and ParaCrawl.
#### Who are the source language producers?
Contributors to web text in Common Crawl and ParaCrawl.
### Annotations
#### Annotation process
The data was not human annotated. The metadata used to create the dataset can be found here: https://github.com/facebookresearch/LASER/tree/main/data/wmt22_african
#### Who are the annotators?
The data was not human annotated. Parallel text from Common Crawl and Para Crawl monolingual data were identified automatically via [LASER](https://github.com/facebookresearch/LASER) encoders.
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
This dataset provides data for training machine learning systems for many languages that have low resources available for NLP.
### Discussion of Biases
Biases in the data have not been studied.
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
The dataset is released under the terms of [ODC-BY](https://opendatacommons.org/licenses/by/1-0/). By using this, you are also bound by the Internet Archive [Terms of Use](https://archive.org/about/terms.php) in respect of the content contained in the dataset.
### Citation Information
NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv, 2022.
### Contributions
We thank the AllenNLP team at AI2 for hosting and releasing this data, including [Akshita Bhagia](https://akshitab.github.io/) (for engineering efforts to create the huggingface dataset), and [Jesse Dodge](https://jessedodge.github.io/) (for organizing the connection).
|