|
|
|
"""enunch.159 |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1hjXMe2PUvW0yL5RwWXem47vZgBENHq-6 |
|
""" |
|
|
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LinearRegression |
|
from sklearn.metrics import mean_squared_error, r2_score |
|
|
|
file_path = '/content/House Price India.csv' |
|
df = pd.read_csv(file_path) |
|
|
|
df.head() |
|
|
|
df.isnull().sum() |
|
|
|
df['Date'] = pd.to_datetime(df['Date'], origin='1899-12-30', unit='D') |
|
|
|
df.describe() |
|
|
|
numeric_df = df.select_dtypes(include=[np.number]) |
|
plt.figure(figsize=(15, 10)) |
|
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm') |
|
plt.title('Correlation Heatmap') |
|
plt.show() |
|
|
|
X = numeric_df.drop(columns=['Price']) |
|
y = numeric_df['Price'] |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
model = LinearRegression() |
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
|
|
mse = mean_squared_error(y_test, y_pred) |
|
r2 = r2_score(y_test, y_pred) |
|
print(f'Mean Squared Error: {mse}') |
|
print(f'R-squared: {r2}') |