|
|
|
""".1294 |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/18GMbHEjdUUsZiko73-qVxV-WVgsf5hgs |
|
""" |
|
|
|
|
|
|
|
import numpy as np |
|
import pandas as pd |
|
import plotly.express as px |
|
import plotly.graph_objects as go |
|
from sklearn.cluster import KMeans |
|
from sklearn.preprocessing import StandardScaler |
|
import statsmodels.api as sm |
|
import warnings |
|
|
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
df = pd.read_csv("/content/shopping_trends (2).csv") |
|
|
|
df.head() |
|
|
|
df.sample(10) |
|
|
|
df.info() |
|
|
|
fig_age = px.histogram( |
|
df, |
|
x='Age', |
|
nbins= 50, |
|
title='Age Distribution of Customers', |
|
color_discrete_sequence=['cyan'] |
|
) |
|
|
|
fig_age.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white') |
|
) |
|
fig_age.show() |
|
|
|
gender_counts = df['Gender'].value_counts().reset_index() |
|
gender_counts.columns = ['Gender', 'Count'] |
|
|
|
fig_gender = px.pie( |
|
gender_counts, |
|
names='Gender', |
|
values='Count', |
|
title='Gender Proportions of Customers', |
|
color_discrete_sequence=px.colors.sequential.RdBu |
|
) |
|
fig_gender.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white') |
|
) |
|
fig_gender.show() |
|
|
|
location_counts = df['Location'].value_counts().reset_index() |
|
location_counts.columns = ['Location', 'Count'] |
|
|
|
fig_location = px.bar( |
|
location_counts, |
|
x='Location', |
|
y='Count', |
|
text='Count', |
|
title='Customer Count by Location', |
|
color_discrete_sequence=['lime'] |
|
) |
|
location_counts = df['Location'].value_counts().reset_index() |
|
location_counts.columns = ['Location', 'Count'] |
|
|
|
fig_location = px.bar( |
|
location_counts, |
|
x='Location', |
|
y='Count', |
|
text='Count', |
|
title='Customer Count by Location', |
|
color_discrete_sequence=['lime'] |
|
) |
|
fig_location.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title="Location", |
|
yaxis_title="Number of Customers" |
|
) |
|
fig_location.show() |
|
fig_location = px.bar( |
|
location_counts, |
|
x='Location', |
|
y='Count', |
|
text='Count', |
|
title='Customer Count by Location', |
|
color_discrete_sequence=['lime'] |
|
) |
|
fig_location.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title="Location", |
|
yaxis_title="Number of Customers" |
|
) |
|
fig_location.show() |
|
|
|
item_counts = df['Item Purchased'].value_counts().reset_index() |
|
item_counts.columns = ['Item Purchased', 'Count'] |
|
|
|
fig_items = px.bar( |
|
item_counts, |
|
x='Item Purchased', |
|
y='Count', |
|
text='Count', |
|
title='Most Purchased Items', |
|
color_discrete_sequence=['orange'] |
|
) |
|
fig_items.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Items', |
|
yaxis_title='Count of Purchases' |
|
) |
|
fig_items.show() |
|
|
|
fig_amount = px.box( |
|
df, |
|
y='Purchase Amount (USD)', |
|
title='Purchase Amount Distribution', |
|
color_discrete_sequence=['magenta'] |
|
) |
|
|
|
fig_amount.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
yaxis_title='Purchase Amount (USD)' |
|
) |
|
fig_amount.show() |
|
|
|
|
|
size_counts = df['Size'].value_counts().reset_index() |
|
size_counts.columns = ['Size', 'Count'] |
|
|
|
fig_sizes = px.bar( |
|
size_counts, |
|
x='Size', |
|
y='Count', |
|
text='Count', |
|
title='Preferred Sizes', |
|
color_discrete_sequence=['green'] |
|
) |
|
fig_sizes.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Size', |
|
yaxis_title='Count of Purchases' |
|
) |
|
fig_sizes.show() |
|
|
|
|
|
color_counts = df['Color'].value_counts().reset_index() |
|
color_counts.columns = ['Color', 'Count'] |
|
|
|
fig_colors = px.bar( |
|
color_counts, |
|
x='Color', |
|
y='Count', |
|
text='Count', |
|
title='Preferred Colors', |
|
color_discrete_sequence=['teal'] |
|
) |
|
fig_colors.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Color', |
|
yaxis_title='Count of Purchases' |
|
) |
|
fig_colors.show() |
|
|
|
|
|
season_counts = df['Season'].value_counts().reset_index() |
|
season_counts.columns = ['Season', 'Count'] |
|
|
|
fig_season = px.bar( |
|
season_counts, |
|
x='Season', |
|
y='Count', |
|
text='Count', |
|
title='Seasonal Trends in Purchases', |
|
color_discrete_sequence=['blue'] |
|
) |
|
fig_season.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Season', |
|
yaxis_title='Count of Purchases' |
|
) |
|
fig_season.show() |
|
|
|
|
|
frequency_counts = df['Frequency of Purchases'].value_counts().reset_index() |
|
frequency_counts.columns = ['Frequency', 'Count'] |
|
|
|
fig_frequency = px.bar( |
|
frequency_counts, |
|
x='Frequency', |
|
y='Count', |
|
text='Count', |
|
title='Frequency of Purchases', |
|
color_discrete_sequence=['red'] |
|
) |
|
fig_frequency.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Frequency', |
|
yaxis_title='Count of Purchases' |
|
) |
|
fig_frequency.show() |
|
|
|
payment_counts = df['Payment Method'].value_counts().reset_index() |
|
payment_counts.columns = ['Payment Method', 'Count'] |
|
|
|
fig_payment = px.pie( |
|
payment_counts, |
|
names='Payment Method', |
|
values='Count', |
|
title='Popular Payment Methods', |
|
color_discrete_sequence=px.colors.sequential.Plasma |
|
) |
|
fig_payment.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white') |
|
) |
|
fig_payment.show() |
|
|
|
subscription_data = df.groupby('Subscription Status')['Purchase Amount (USD)'].sum().reset_index() |
|
|
|
fig_subscription = px.bar( |
|
subscription_data, |
|
x='Subscription Status', |
|
y='Purchase Amount (USD)', |
|
text='Purchase Amount (USD)', |
|
title='Impact of Subscription on Purchases', |
|
color='Subscription Status', |
|
color_discrete_sequence=px.colors.sequential.Viridis |
|
) |
|
fig_subscription.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Subscription Status', |
|
yaxis_title='Total Purchase Amount (USD)' |
|
) |
|
fig_subscription.show() |
|
|
|
discount_data = df['Discount Applied'].value_counts().reset_index() |
|
discount_data.columns = ['Discount Applied', 'Count'] |
|
|
|
fig_discount = px.bar( |
|
discount_data, |
|
x='Discount Applied', |
|
y='Count', |
|
text='Count', |
|
title='Discount Usage Analysis', |
|
color='Discount Applied', |
|
color_discrete_sequence=px.colors.sequential.Cividis |
|
) |
|
fig_discount.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Discount Applied', |
|
yaxis_title='Number of Purchases' |
|
) |
|
fig_discount.show() |
|
|
|
category_revenue = df.groupby('Category')['Purchase Amount (USD)'].sum().reset_index() |
|
|
|
fig_category_revenue = px.treemap( |
|
category_revenue, |
|
path=['Category'], |
|
values='Purchase Amount (USD)', |
|
title='Category-Wise Revenue', |
|
color='Purchase Amount (USD)', |
|
color_continuous_scale=px.colors.sequential.Sunset |
|
) |
|
fig_category_revenue.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white') |
|
) |
|
fig_category_revenue.show() |
|
|
|
fig_ratings = px.histogram( |
|
df, |
|
x='Review Rating', |
|
nbins=10, |
|
title='Distribution of Review Ratings', |
|
color_discrete_sequence=['#FFA07A'] |
|
) |
|
fig_ratings.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Review Rating', |
|
yaxis_title='Count' |
|
) |
|
fig_ratings.show() |
|
|
|
shipping_data = df.groupby('Shipping Type')['Purchase Amount (USD)'].sum().reset_index() |
|
|
|
fig_shipping = px.bar( |
|
shipping_data, |
|
x='Shipping Type', |
|
y='Purchase Amount (USD)', |
|
text='Purchase Amount (USD)', |
|
title='Shipping Types and Revenue Impact', |
|
color='Shipping Type', |
|
color_discrete_sequence=px.colors.sequential.Teal |
|
) |
|
fig_shipping.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Shipping Type', |
|
yaxis_title='Total Revenue (USD)' |
|
) |
|
fig_shipping.show() |
|
|
|
customer_revenue = df.groupby('Customer ID')['Purchase Amount (USD)'].sum().reset_index() |
|
customer_revenue = customer_revenue.sort_values(by='Purchase Amount (USD)', ascending=False) |
|
customer_revenue['Cumulative Percentage'] = customer_revenue['Purchase Amount (USD)'].cumsum() / customer_revenue['Purchase Amount (USD)'].sum() * 100 |
|
|
|
fig_pareto = px.bar( |
|
customer_revenue, |
|
x='Customer ID', |
|
y='Purchase Amount (USD)', |
|
text='Purchase Amount (USD)', |
|
title='High-Spending Customers - Pareto Chart', |
|
color_discrete_sequence=['#FF7F50'] |
|
) |
|
fig_pareto.add_scatter( |
|
x=customer_revenue['Customer ID'], |
|
y=customer_revenue['Cumulative Percentage'], |
|
mode='lines+markers', |
|
name='Cumulative Percentage', |
|
line=dict(color='cyan') |
|
) |
|
fig_pareto.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Customer ID', |
|
yaxis_title='Purchase Amount (USD)', |
|
yaxis2=dict(title='Cumulative Percentage', overlaying='y', side='right') |
|
) |
|
fig_pareto.show() |
|
|
|
clustering_data = df.groupby('Customer ID').agg({ |
|
'Purchase Amount (USD)': 'sum', |
|
'Frequency of Purchases': 'count', |
|
'Category': 'nunique' |
|
}).reset_index() |
|
clustering_data.columns = ['Customer ID', 'Total Purchase Amount', 'Purchase Frequency', 'Unique Categories'] |
|
|
|
|
|
scaler = StandardScaler() |
|
clustering_data_scaled = scaler.fit_transform(clustering_data[['Total Purchase Amount', 'Purchase Frequency', 'Unique Categories']]) |
|
|
|
|
|
kmeans = KMeans(n_clusters=3, random_state=42) |
|
clustering_data['Cluster'] = kmeans.fit_predict(clustering_data_scaled) |
|
|
|
|
|
fig_clusters = px.scatter_3d( |
|
clustering_data, |
|
x='Total Purchase Amount', |
|
y='Purchase Frequency', |
|
z='Unique Categories', |
|
color='Cluster', |
|
title='Behavioral Clusters of Customers', |
|
symbol='Cluster', |
|
color_continuous_scale=px.colors.sequential.Viridis |
|
) |
|
fig_clusters.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
scene=dict( |
|
xaxis_title='Total Purchase Amount', |
|
yaxis_title='Purchase Frequency', |
|
zaxis_title='Unique Categories' |
|
) |
|
) |
|
fig_clusters.show() |
|
|
|
fig_purchase_vs_rating = px.scatter( |
|
df, |
|
x='Purchase Amount (USD)', |
|
y='Review Rating', |
|
title='Purchase Amount vs. Review Rating', |
|
color='Review Rating', |
|
color_continuous_scale='Viridis' |
|
) |
|
|
|
|
|
X = sm.add_constant(df['Purchase Amount (USD)']) |
|
y = df['Review Rating'] |
|
model = sm.OLS(y, X).fit() |
|
df['Regression Line'] = model.predict(X) |
|
|
|
fig_purchase_vs_rating.add_scatter( |
|
x=df['Purchase Amount (USD)'], |
|
y=df['Regression Line'], |
|
mode='lines', |
|
name='Regression Line', |
|
line=dict(color='cyan') |
|
) |
|
|
|
fig_purchase_vs_rating.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Purchase Amount (USD)', |
|
yaxis_title='Review Rating' |
|
) |
|
|
|
fig_purchase_vs_rating.show() |
|
|
|
fig_age_vs_spending = px.scatter( |
|
df, |
|
x='Age', |
|
y='Purchase Amount (USD)', |
|
title='Age vs. Spending Habits', |
|
color='Age', |
|
color_continuous_scale='Viridis' |
|
) |
|
|
|
fig_age_vs_spending.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Age', |
|
yaxis_title='Purchase Amount (USD)' |
|
) |
|
|
|
fig_age_vs_spending.show() |
|
|
|
fig_category_vs_gender.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Product Category', |
|
yaxis_title='Count' |
|
) |
|
fig_category_vs_gender.show() |
|
|
|
fig_discounts_vs_spending = px.box( |
|
df, |
|
x='Discount Applied', |
|
y='Purchase Amount (USD)', |
|
title='Effect of Discounts on Spending', |
|
color='Discount Applied', |
|
color_discrete_sequence=['#FF6347', '#20B2AA'] |
|
) |
|
|
|
fig_discounts_vs_spending.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white'), |
|
xaxis_title='Discount Applied', |
|
yaxis_title='Purchase Amount (USD)' |
|
) |
|
|
|
fig_discounts_vs_spending.show() |
|
|
|
fig_profitability_analysis = px.treemap( |
|
df, |
|
path=['Category', 'Size', 'Color'], |
|
values='Purchase Amount (USD)', |
|
title='Profitability Analysis by Category, Size, and Color', |
|
color='Purchase Amount (USD)', |
|
color_continuous_scale='Viridis' |
|
) |
|
|
|
fig_profitability_analysis.update_layout( |
|
template='plotly_dark', |
|
plot_bgcolor='black', |
|
paper_bgcolor='black', |
|
font=dict(color='white') |
|
) |
|
|
|
fig_profitability_analysis.show() |
|
|
|
|