|
|
|
""".1393 |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1-65IULC0-UxJ7kZBDYo3KQ2a6m5JzwVV |
|
""" |
|
|
|
|
|
import pandas as pd |
|
import numpy as np |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
file_path = '/content/Fake Postings (2).csv' |
|
df = pd.read_csv(file_path) |
|
|
|
df.head() |
|
|
|
df.isnull().sum() |
|
|
|
sns.countplot(x='fraudulent', data=df) |
|
plt.title('Distribution of Fraudulent Job Postings') |
|
plt.show() |
|
|
|
sns.countplot(y='employment_type', data=df, order=df['employment_type'].value_counts().index) |
|
plt.title('Employment Type Distribution') |
|
plt.show() |
|
|
|
plt.figure(figsize=(10, 8)) |
|
sns.countplot(y='industry', data=df, order=df['industry'].value_counts().index[:10]) |
|
plt.title('Top 10 Industries by Job Postings') |
|
plt.show() |
|
|
|
df.fillna('Unknown', inplace=True) |
|
df['fraudulent'] = df['fraudulent'].astype(int) |
|
|
|
df['description_length'] = df['requirements'].apply(lambda x: len(x.split(','))) |
|
|
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report |
|
|
|
|
|
features = ['description_length', 'num_requirements'] |
|
X = df[features] |
|
y = df['fraudulent'] |
|
|
|
|
|
if len(y.unique()) < 2: |
|
print("The target variable 'fraudulent' must have at least two classes. Exiting...") |
|
else: |
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = LogisticRegression() |
|
model.fit(X_train, y_train) |