stringleveldigits.252 / stringleveldigits_159.py
antitheft159's picture
Upload stringleveldigits_159.py
2e0a0de verified
# -*- coding: utf-8 -*-
"""stringleveldigits.159
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1PYxiyOc2syUh3LwBeNHT7Ks2uQcfVk_n
"""
import numpy as np
import pandas as pd
import os
for dirnam, _, filenames in os.walk('financial_risk_assessment.csv'):
for filename in filenames:
print(os.path.join(dirname, filename))
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
sns.set(style="whitegrid")
df = pd.read_csv('financial_risk_assessment.csv')
df.head()
df.info()
df.describe(include=[np.number])
df.describe(include=[object])
df.isnull().sum()
plt.figure(figsize=(8,6))
sns.countplot(x='Risk Rating', data=df)
plt.title('Distribution of Risk Ratings')
plt.show()
num_features = ['Age', 'Income', 'Credit Score', 'Loan Amount', 'Years at Current Job',
'Debt-to-Income Ratio', 'Assets Value', 'Number of Dependents', 'Previous Defaults']
df[num_features].hist(figsize=(15,12), bins=30, edgecolor='black')
plt.suptitle('Histograms of Numerical Features')
plt.show()
plt.figure(figsize=(15,10))
for i, feature in enumerate(num_features):
plt.subplot(3, 3, i+1)
sns.boxplot(x='Risk Rating', y=feature, data=df)
plt.title(f'Boxplot of {feature}')
plt.tight_layout()
plt.show()
plt.figure(figsize=(12,10))
correlation_matrix = df[num_features].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', vmin=-1, vmax=1)
plt.title('Correlation Heatmap')
plt.show()
for column in['Gender', 'Education Level', 'Marital Status', 'Loan Purpose', 'Employment Status', 'Payment History', 'City', 'State', 'Country']:
print('f{column} unique values:')
print(df[column].value_counts())
print()
X = df.drop('Risk Rating', axis=1)
y = df['Risk Rating']
numeric_features = ['Age', 'Income', 'Credit Score', 'Loan Amount', 'Years at Current Job', 'Debt-to-Income Ratio', 'Assets Value', 'Number of Dependents', 'Previous Defaults', 'Marital Status Change']
categorical_features = ['Gender', 'Education Level', 'Marital Status', 'Loan Purpose', 'Employment Status', 'Payment History', 'City', 'State', 'Country']
numeric_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())])
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(transformers=[('num', numeric_transformer, numeric_features),('cat', categorical_transformer, categorical_features)])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', RandomForestClassifier(n_estimators=100, random_state=42))])
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Classification Report:")
print(classification_report(y_test, y_pred))
conf_matrix = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(10,7))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Low', 'Medium', 'High'], yticklabels=['Low','Medium', 'High'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()