text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Creates a MOC from a polygon <END_TASK> <USER_TASK:> Description: def from_polygon(cls, lon, lat, inside=None, max_depth=10): """ Creates a MOC from a polygon The polygon is given as lon and lat `astropy.units.Quantity` that define the vertices of the polygon. Concave and convex polygons are accepted but self-intersecting ones are currently not properly handled. Parameters ---------- lon : `astropy.units.Quantity` The longitudes defining the polygon. Can describe convex and concave polygons but not self-intersecting ones. lat : `astropy.units.Quantity` The latitudes defining the polygon. Can describe convex and concave polygons but not self-intersecting ones. inside : `astropy.coordinates.SkyCoord`, optional A point that will be inside the MOC is needed as it is not possible to determine the inside area of a polygon on the unit sphere (there is no infinite area that can be considered as the outside because on the sphere, a closed polygon delimits two finite areas). Possible improvement: take the inside area as the one covering the smallest region on the sphere. If inside=None (default behavior), the mean of all the vertices is taken as lying inside the polygon. That approach may not work for concave polygons. max_depth : int, optional The resolution of the MOC. Set to 10 by default. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """
from .polygon import PolygonComputer polygon_computer = PolygonComputer(lon, lat, inside, max_depth) # Create the moc from the python dictionary moc = MOC.from_json(polygon_computer.ipix) # We degrade it to the user-requested order if polygon_computer.degrade_to_max_depth: moc = moc.degrade_to_order(max_depth) return moc
<SYSTEM_TASK:> Internal method to query Simbad or a VizieR table <END_TASK> <USER_TASK:> Description: def _query(self, resource_id, max_rows): """ Internal method to query Simbad or a VizieR table for sources in the coverage of the MOC instance """
from astropy.io.votable import parse_single_table if max_rows is not None and max_rows >= 0: max_rows_str = str(max_rows) else: max_rows_str = str(9999999999) tmp_moc = tempfile.NamedTemporaryFile(delete=False) self.write(tmp_moc.name) r = requests.post('http://cdsxmatch.u-strasbg.fr/QueryCat/QueryCat', data={'mode': 'mocfile', 'catName': resource_id, 'format': 'votable', 'limit': max_rows_str}, files={'moc': open(tmp_moc.name, 'rb')}, headers={'User-Agent': 'MOCPy'}, stream=True) tmp_vot = BytesIO() tmp_vot.write(r.content) table = parse_single_table(tmp_vot).to_table() # finally delete temp files os.unlink(tmp_moc.name) return table
<SYSTEM_TASK:> The inverse of this transform. <END_TASK> <USER_TASK:> Description: def inverse(self): """ The inverse of this transform. """
if self._inverse is None: self._inverse = InverseTransform(self) return self._inverse
<SYSTEM_TASK:> Tiles tick marks along the axis. <END_TASK> <USER_TASK:> Description: def _tile_ticks(self, frac, tickvec): """Tiles tick marks along the axis."""
origins = np.tile(self.axis._vec, (len(frac), 1)) origins = self.axis.pos[0].T + (origins.T*frac).T endpoints = tickvec + origins return origins, endpoints
<SYSTEM_TASK:> Get the major ticks, minor ticks, and major labels <END_TASK> <USER_TASK:> Description: def _get_tick_frac_labels(self): """Get the major ticks, minor ticks, and major labels"""
minor_num = 4 # number of minor ticks per major division if (self.axis.scale_type == 'linear'): domain = self.axis.domain if domain[1] < domain[0]: flip = True domain = domain[::-1] else: flip = False offset = domain[0] scale = domain[1] - domain[0] transforms = self.axis.transforms length = self.axis.pos[1] - self.axis.pos[0] # in logical coords n_inches = np.sqrt(np.sum(length ** 2)) / transforms.dpi # major = np.linspace(domain[0], domain[1], num=11) # major = MaxNLocator(10).tick_values(*domain) major = _get_ticks_talbot(domain[0], domain[1], n_inches, 2) labels = ['%g' % x for x in major] majstep = major[1] - major[0] minor = [] minstep = majstep / (minor_num + 1) minstart = 0 if self.axis._stop_at_major[0] else -1 minstop = -1 if self.axis._stop_at_major[1] else 0 for i in range(minstart, len(major) + minstop): maj = major[0] + i * majstep minor.extend(np.linspace(maj + minstep, maj + majstep - minstep, minor_num)) major_frac = (major - offset) / scale minor_frac = (np.array(minor) - offset) / scale major_frac = major_frac[::-1] if flip else major_frac use_mask = (major_frac > -0.0001) & (major_frac < 1.0001) major_frac = major_frac[use_mask] labels = [l for li, l in enumerate(labels) if use_mask[li]] minor_frac = minor_frac[(minor_frac > -0.0001) & (minor_frac < 1.0001)] elif self.axis.scale_type == 'logarithmic': return NotImplementedError elif self.axis.scale_type == 'power': return NotImplementedError return major_frac, minor_frac, labels
<SYSTEM_TASK:> Write PNG file to `outfile`. The pixel data comes from `rows` <END_TASK> <USER_TASK:> Description: def write_packed(self, outfile, rows): """ Write PNG file to `outfile`. The pixel data comes from `rows` which should be in boxed row packed format. Each row should be a sequence of packed bytes. Technically, this method does work for interlaced images but it is best avoided. For interlaced images, the rows should be presented in the order that they appear in the file. This method should not be used when the source image bit depth is not one naturally supported by PNG; the bit depth should be 1, 2, 4, 8, or 16. """
if self.rescale: raise Error("write_packed method not suitable for bit depth %d" % self.rescale[0]) return self.write_passes(outfile, rows, packed=True)
<SYSTEM_TASK:> Convert a PPM and PGM file containing raw pixel data into a <END_TASK> <USER_TASK:> Description: def convert_ppm_and_pgm(self, ppmfile, pgmfile, outfile): """ Convert a PPM and PGM file containing raw pixel data into a PNG outfile with the parameters set in the writer object. """
pixels = array('B') pixels.fromfile(ppmfile, (self.bitdepth/8) * self.color_planes * self.width * self.height) apixels = array('B') apixels.fromfile(pgmfile, (self.bitdepth/8) * self.width * self.height) pixels = interleave_planes(pixels, apixels, (self.bitdepth/8) * self.color_planes, (self.bitdepth/8)) if self.interlace: self.write_passes(outfile, self.array_scanlines_interlace(pixels)) else: self.write_passes(outfile, self.array_scanlines(pixels))
<SYSTEM_TASK:> Generator for interlaced scanlines from an array. `pixels` is <END_TASK> <USER_TASK:> Description: def array_scanlines_interlace(self, pixels): """ Generator for interlaced scanlines from an array. `pixels` is the full source image in flat row flat pixel format. The generator yields each scanline of the reduced passes in turn, in boxed row flat pixel format. """
# http://www.w3.org/TR/PNG/#8InterlaceMethods # Array type. fmt = 'BH'[self.bitdepth > 8] # Value per row vpr = self.width * self.planes for xstart, ystart, xstep, ystep in _adam7: if xstart >= self.width: continue # Pixels per row (of reduced image) ppr = int(math.ceil((self.width-xstart)/float(xstep))) # number of values in reduced image row. row_len = ppr*self.planes for y in range(ystart, self.height, ystep): if xstep == 1: offset = y * vpr yield pixels[offset:offset+vpr] else: row = array(fmt) # There's no easier way to set the length of an array row.extend(pixels[0:row_len]) offset = y * vpr + xstart * self.planes end_offset = (y+1) * vpr skip = self.planes * xstep for i in range(self.planes): row[i::self.planes] = \ pixels[offset+i:end_offset:skip] yield row
<SYSTEM_TASK:> Read raw pixel data, undo filters, deinterlace, and flatten. <END_TASK> <USER_TASK:> Description: def deinterlace(self, raw): """ Read raw pixel data, undo filters, deinterlace, and flatten. Return in flat row flat pixel format. """
# Values per row (of the target image) vpr = self.width * self.planes # Make a result array, and make it big enough. Interleaving # writes to the output array randomly (well, not quite), so the # entire output array must be in memory. fmt = 'BH'[self.bitdepth > 8] a = array(fmt, [0]*vpr*self.height) source_offset = 0 for xstart, ystart, xstep, ystep in _adam7: if xstart >= self.width: continue # The previous (reconstructed) scanline. None at the # beginning of a pass to indicate that there is no previous # line. recon = None # Pixels per row (reduced pass image) ppr = int(math.ceil((self.width-xstart)/float(xstep))) # Row size in bytes for this pass. row_size = int(math.ceil(self.psize * ppr)) for y in range(ystart, self.height, ystep): filter_type = raw[source_offset] source_offset += 1 scanline = raw[source_offset:source_offset+row_size] source_offset += row_size recon = self.undo_filter(filter_type, scanline, recon) # Convert so that there is one element per pixel value flat = self.serialtoflat(recon, ppr) if xstep == 1: assert xstart == 0 offset = y * vpr a[offset:offset+vpr] = flat else: offset = y * vpr + xstart * self.planes end_offset = (y+1) * vpr skip = self.planes * xstep for i in range(self.planes): a[offset+i:end_offset:skip] = \ flat[i::self.planes] return a
<SYSTEM_TASK:> Iterator that yields each scanline in boxed row flat pixel <END_TASK> <USER_TASK:> Description: def iterboxed(self, rows): """Iterator that yields each scanline in boxed row flat pixel format. `rows` should be an iterator that yields the bytes of each row in turn. """
def asvalues(raw): """Convert a row of raw bytes into a flat row. Result will be a freshly allocated object, not shared with argument. """ if self.bitdepth == 8: return array('B', raw) if self.bitdepth == 16: raw = tostring(raw) return array('H', struct.unpack('!%dH' % (len(raw)//2), raw)) assert self.bitdepth < 8 width = self.width # Samples per byte spb = 8//self.bitdepth out = array('B') mask = 2**self.bitdepth - 1 shifts = map(self.bitdepth.__mul__, reversed(range(spb))) for o in raw: out.extend(map(lambda i: mask&(o>>i), shifts)) return out[:width] return imap(asvalues, rows)
<SYSTEM_TASK:> Get a standard vispy demo data file <END_TASK> <USER_TASK:> Description: def load_data_file(fname, directory=None, force_download=False): """Get a standard vispy demo data file Parameters ---------- fname : str The filename on the remote ``demo-data`` repository to download, e.g. ``'molecular_viewer/micelle.npy'``. These correspond to paths on ``https://github.com/vispy/demo-data/``. directory : str | None Directory to use to save the file. By default, the vispy configuration directory is used. force_download : bool | str If True, the file will be downloaded even if a local copy exists (and this copy will be overwritten). Can also be a YYYY-MM-DD date to ensure a file is up-to-date (modified date of a file on disk, if present, is checked). Returns ------- fname : str The path to the file on the local system. """
_url_root = 'http://github.com/vispy/demo-data/raw/master/' url = _url_root + fname if directory is None: directory = config['data_path'] if directory is None: raise ValueError('config["data_path"] is not defined, ' 'so directory must be supplied') fname = op.join(directory, op.normcase(fname)) # convert to native if op.isfile(fname): if not force_download: # we're done return fname if isinstance(force_download, string_types): ntime = time.strptime(force_download, '%Y-%m-%d') ftime = time.gmtime(op.getctime(fname)) if ftime >= ntime: return fname else: print('File older than %s, updating...' % force_download) if not op.isdir(op.dirname(fname)): os.makedirs(op.abspath(op.dirname(fname))) # let's go get the file _fetch_file(url, fname) return fname
<SYSTEM_TASK:> Write a chunk to file and update the progress bar <END_TASK> <USER_TASK:> Description: def _chunk_write(chunk, local_file, progress): """Write a chunk to file and update the progress bar"""
local_file.write(chunk) progress.update_with_increment_value(len(chunk))
<SYSTEM_TASK:> Load requested file, downloading it if needed or requested <END_TASK> <USER_TASK:> Description: def _fetch_file(url, file_name, print_destination=True): """Load requested file, downloading it if needed or requested Parameters ---------- url: string The url of file to be downloaded. file_name: string Name, along with the path, of where downloaded file will be saved. print_destination: bool, optional If true, destination of where file was saved will be printed after download finishes. """
# Adapted from NISL: # https://github.com/nisl/tutorial/blob/master/nisl/datasets.py temp_file_name = file_name + ".part" local_file = None initial_size = 0 # Checking file size and displaying it alongside the download url n_try = 3 for ii in range(n_try): try: data = urllib.request.urlopen(url, timeout=15.) except Exception as e: if ii == n_try - 1: raise RuntimeError('Error while fetching file %s.\n' 'Dataset fetching aborted (%s)' % (url, e)) try: file_size = int(data.headers['Content-Length'].strip()) print('Downloading data from %s (%s)' % (url, sizeof_fmt(file_size))) local_file = open(temp_file_name, "wb") _chunk_read(data, local_file, initial_size=initial_size) # temp file must be closed prior to the move if not local_file.closed: local_file.close() shutil.move(temp_file_name, file_name) if print_destination is True: sys.stdout.write('File saved as %s.\n' % file_name) except Exception as e: raise RuntimeError('Error while fetching file %s.\n' 'Dataset fetching aborted (%s)' % (url, e)) finally: if local_file is not None: if not local_file.closed: local_file.close()
<SYSTEM_TASK:> Update progressbar with current value of process <END_TASK> <USER_TASK:> Description: def update(self, cur_value, mesg=None): """Update progressbar with current value of process Parameters ---------- cur_value : number Current value of process. Should be <= max_value (but this is not enforced). The percent of the progressbar will be computed as (cur_value / max_value) * 100 mesg : str Message to display to the right of the progressbar. If None, the last message provided will be used. To clear the current message, pass a null string, ''. """
# Ensure floating-point division so we can get fractions of a percent # for the progressbar. self.cur_value = cur_value progress = float(self.cur_value) / self.max_value num_chars = int(progress * self.max_chars) num_left = self.max_chars - num_chars # Update the message if mesg is not None: self.mesg = mesg # The \r tells the cursor to return to the beginning of the line rather # than starting a new line. This allows us to have a progressbar-style # display in the console window. bar = self.template.format(self.progress_character * num_chars, ' ' * num_left, progress * 100, self.spinner_symbols[self.spinner_index], self.mesg) sys.stdout.write(bar) # Increament the spinner if self.spinner: self.spinner_index = (self.spinner_index + 1) % self.n_spinner # Force a flush because sometimes when using bash scripts and pipes, # the output is not printed until after the program exits. sys.stdout.flush()
<SYSTEM_TASK:> Returns the default widget that occupies the entire area of the <END_TASK> <USER_TASK:> Description: def central_widget(self): """ Returns the default widget that occupies the entire area of the canvas. """
if self._central_widget is None: self._central_widget = Widget(size=self.size, parent=self.scene) return self._central_widget
<SYSTEM_TASK:> Return the visual at a given position <END_TASK> <USER_TASK:> Description: def visual_at(self, pos): """Return the visual at a given position Parameters ---------- pos : tuple The position in logical coordinates to query. Returns ------- visual : instance of Visual | None The visual at the position, if it exists. """
tr = self.transforms.get_transform('canvas', 'framebuffer') fbpos = tr.map(pos)[:2] try: id_ = self._render_picking(region=(fbpos[0], fbpos[1], 1, 1)) vis = VisualNode._visual_ids.get(id_[0, 0], None) except RuntimeError: # Don't have read_pixels() support for IPython. Fall back to # bounds checking. return self._visual_bounds_at(pos) return vis
<SYSTEM_TASK:> Render the scene in picking mode, returning a 2D array of visual <END_TASK> <USER_TASK:> Description: def _render_picking(self, **kwargs): """Render the scene in picking mode, returning a 2D array of visual IDs. """
try: self._scene.picking = True img = self.render(bgcolor=(0, 0, 0, 0), **kwargs) finally: self._scene.picking = False img = img.astype('int32') * [2**0, 2**8, 2**16, 2**24] id_ = img.sum(axis=2).astype('int32') return id_
<SYSTEM_TASK:> Close event handler <END_TASK> <USER_TASK:> Description: def on_close(self, event): """Close event handler Parameters ---------- event : instance of Event The event. """
self.events.mouse_press.disconnect(self._process_mouse_event) self.events.mouse_move.disconnect(self._process_mouse_event) self.events.mouse_release.disconnect(self._process_mouse_event) self.events.mouse_wheel.disconnect(self._process_mouse_event)
<SYSTEM_TASK:> Pop a viewport from the stack. <END_TASK> <USER_TASK:> Description: def pop_viewport(self): """ Pop a viewport from the stack. """
vp = self._vp_stack.pop() # Activate latest if len(self._vp_stack) > 0: self.context.set_viewport(*self._vp_stack[-1]) else: self.context.set_viewport(0, 0, *self.physical_size) self._update_transforms() return vp
<SYSTEM_TASK:> Push an FBO on the stack. <END_TASK> <USER_TASK:> Description: def push_fbo(self, fbo, offset, csize): """ Push an FBO on the stack. This activates the framebuffer and causes subsequent rendering to be written to the framebuffer rather than the canvas's back buffer. This will also set the canvas viewport to cover the boundaries of the framebuffer. Parameters ---------- fbo : instance of FrameBuffer The framebuffer object . offset : tuple The location of the fbo origin relative to the canvas's framebuffer origin. csize : tuple The size of the region in the canvas's framebuffer that should be covered by this framebuffer object. """
self._fb_stack.append((fbo, offset, csize)) try: fbo.activate() h, w = fbo.color_buffer.shape[:2] self.push_viewport((0, 0, w, h)) except Exception: self._fb_stack.pop() raise self._update_transforms()
<SYSTEM_TASK:> Pop an FBO from the stack. <END_TASK> <USER_TASK:> Description: def pop_fbo(self): """ Pop an FBO from the stack. """
fbo = self._fb_stack.pop() fbo[0].deactivate() self.pop_viewport() if len(self._fb_stack) > 0: old_fbo = self._fb_stack[-1] old_fbo[0].activate() self._update_transforms() return fbo
<SYSTEM_TASK:> Update the canvas's TransformSystem to correct for the current <END_TASK> <USER_TASK:> Description: def _update_transforms(self): """Update the canvas's TransformSystem to correct for the current canvas size, framebuffer, and viewport. """
if len(self._fb_stack) == 0: fb_size = fb_rect = None else: fb, origin, fb_size = self._fb_stack[-1] fb_rect = origin + fb_size if len(self._vp_stack) == 0: viewport = None else: viewport = self._vp_stack[-1] self.transforms.configure(viewport=viewport, fbo_size=fb_size, fbo_rect=fb_rect)
<SYSTEM_TASK:> Texture wrapping mode <END_TASK> <USER_TASK:> Description: def wrapping(self): """ Texture wrapping mode """
value = self._wrapping return value[0] if all([v == value[0] for v in value]) else value
<SYSTEM_TASK:> Internal method for resize. <END_TASK> <USER_TASK:> Description: def _resize(self, shape, format=None, internalformat=None): """Internal method for resize. """
shape = self._normalize_shape(shape) # Check if not self._resizable: raise RuntimeError("Texture is not resizable") # Determine format if format is None: format = self._formats[shape[-1]] # Keep current format if channels match if self._format and \ self._inv_formats[self._format] == self._inv_formats[format]: format = self._format else: format = check_enum(format) if internalformat is None: # Keep current internalformat if channels match if self._internalformat and \ self._inv_internalformats[self._internalformat] == shape[-1]: internalformat = self._internalformat else: internalformat = check_enum(internalformat) # Check if format not in self._inv_formats: raise ValueError('Invalid texture format: %r.' % format) elif shape[-1] != self._inv_formats[format]: raise ValueError('Format does not match with given shape. ' '(format expects %d elements, data has %d)' % (self._inv_formats[format], shape[-1])) if internalformat is None: pass elif internalformat not in self._inv_internalformats: raise ValueError( 'Invalid texture internalformat: %r. Allowed formats: %r' % (internalformat, self._inv_internalformats) ) elif shape[-1] != self._inv_internalformats[internalformat]: raise ValueError('Internalformat does not match with given shape.') # Store and send GLIR command self._shape = shape self._format = format self._internalformat = internalformat self._glir.command('SIZE', self._id, self._shape, self._format, self._internalformat)
<SYSTEM_TASK:> Get a free region of given size and allocate it <END_TASK> <USER_TASK:> Description: def get_free_region(self, width, height): """Get a free region of given size and allocate it Parameters ---------- width : int Width of region to allocate height : int Height of region to allocate Returns ------- bounds : tuple | None A newly allocated region as (x, y, w, h) or None (if failed). """
best_height = best_width = np.inf best_index = -1 for i in range(len(self._atlas_nodes)): y = self._fit(i, width, height) if y >= 0: node = self._atlas_nodes[i] if (y+height < best_height or (y+height == best_height and node[2] < best_width)): best_height = y+height best_index = i best_width = node[2] region = node[0], y, width, height if best_index == -1: return None node = region[0], region[1] + height, width self._atlas_nodes.insert(best_index, node) i = best_index+1 while i < len(self._atlas_nodes): node = self._atlas_nodes[i] prev_node = self._atlas_nodes[i-1] if node[0] < prev_node[0]+prev_node[2]: shrink = prev_node[0]+prev_node[2] - node[0] x, y, w = self._atlas_nodes[i] self._atlas_nodes[i] = x+shrink, y, w-shrink if self._atlas_nodes[i][2] <= 0: del self._atlas_nodes[i] i -= 1 else: break else: break i += 1 # Merge nodes i = 0 while i < len(self._atlas_nodes)-1: node = self._atlas_nodes[i] next_node = self._atlas_nodes[i+1] if node[1] == next_node[1]: self._atlas_nodes[i] = node[0], node[1], node[2]+next_node[2] del self._atlas_nodes[i+1] else: i += 1 return region
<SYSTEM_TASK:> Convert an object to either a scalar or a row or column vector. <END_TASK> <USER_TASK:> Description: def _vector_or_scalar(x, type='row'): """Convert an object to either a scalar or a row or column vector."""
if isinstance(x, (list, tuple)): x = np.array(x) if isinstance(x, np.ndarray): assert x.ndim == 1 if type == 'column': x = x[:, None] return x
<SYSTEM_TASK:> Convert an object to a row or column vector. <END_TASK> <USER_TASK:> Description: def _vector(x, type='row'): """Convert an object to a row or column vector."""
if isinstance(x, (list, tuple)): x = np.array(x, dtype=np.float32) elif not isinstance(x, np.ndarray): x = np.array([x], dtype=np.float32) assert x.ndim == 1 if type == 'column': x = x[:, None] return x
<SYSTEM_TASK:> performs smooth Hermite interpolation <END_TASK> <USER_TASK:> Description: def smoothstep(edge0, edge1, x): """ performs smooth Hermite interpolation between 0 and 1 when edge0 < x < edge1. """
# Scale, bias and saturate x to 0..1 range x = np.clip((x - edge0)/(edge1 - edge0), 0.0, 1.0) # Evaluate polynomial return x*x*(3 - 2*x)
<SYSTEM_TASK:> Generate a GLSL template function from a given interpolation patterns <END_TASK> <USER_TASK:> Description: def _glsl_mix(controls=None): """Generate a GLSL template function from a given interpolation patterns and control points."""
assert (controls[0], controls[-1]) == (0., 1.) ncolors = len(controls) assert ncolors >= 2 if ncolors == 2: s = " return mix($color_0, $color_1, t);\n" else: s = "" for i in range(ncolors-1): if i == 0: ifs = 'if (t < %.6f)' % (controls[i+1]) elif i == (ncolors-2): ifs = 'else' else: ifs = 'else if (t < %.6f)' % (controls[i+1]) adj_t = '(t - %s) / %s' % (controls[i], controls[i+1] - controls[i]) s += ("%s {\n return mix($color_%d, $color_%d, %s);\n} " % (ifs, i, i+1, adj_t)) return "vec4 colormap(float t) {\n%s\n}" % s
<SYSTEM_TASK:> Obtain a colormap <END_TASK> <USER_TASK:> Description: def get_colormap(name, *args, **kwargs): """Obtain a colormap Some colormaps can have additional configuration parameters. Refer to their corresponding documentation for more information. Parameters ---------- name : str | Colormap Colormap name. Can also be a Colormap for pass-through. Examples -------- >>> get_colormap('autumn') >>> get_colormap('single_hue', hue=10) """
if isinstance(name, BaseColormap): cmap = name else: if not isinstance(name, string_types): raise TypeError('colormap must be a Colormap or string name') if name not in _colormaps: raise KeyError('colormap name %s not found' % name) cmap = _colormaps[name] if inspect.isclass(cmap): cmap = cmap(*args, **kwargs) return cmap
<SYSTEM_TASK:> The border width in visual coordinates <END_TASK> <USER_TASK:> Description: def visual_border_width(self): """ The border width in visual coordinates """
render_to_doc = \ self.transforms.get_transform('document', 'visual') vec = render_to_doc.map([self.border_width, self.border_width, 0]) origin = render_to_doc.map([0, 0, 0]) visual_border_width = [vec[0] - origin[0], vec[1] - origin[1]] # we need to flip the y axis because coordinate systems are inverted visual_border_width[1] *= -1 return visual_border_width
<SYSTEM_TASK:> Run the exporter on the given figure <END_TASK> <USER_TASK:> Description: def run(self, fig): """ Run the exporter on the given figure Parmeters --------- fig : matplotlib.Figure instance The figure to export """
# Calling savefig executes the draw() command, putting elements # in the correct place. fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi) if self.close_mpl: import matplotlib.pyplot as plt plt.close(fig) self.crawl_fig(fig)
<SYSTEM_TASK:> Process the transform and convert data to figure or data coordinates <END_TASK> <USER_TASK:> Description: def process_transform(transform, ax=None, data=None, return_trans=False, force_trans=None): """Process the transform and convert data to figure or data coordinates Parameters ---------- transform : matplotlib Transform object The transform applied to the data ax : matplotlib Axes object (optional) The axes the data is associated with data : ndarray (optional) The array of data to be transformed. return_trans : bool (optional) If true, return the final transform of the data force_trans : matplotlib.transform instance (optional) If supplied, first force the data to this transform Returns ------- code : string Code is either "data", "axes", "figure", or "display", indicating the type of coordinates output. transform : matplotlib transform the transform used to map input data to output data. Returned only if return_trans is True new_data : ndarray Data transformed to match the given coordinate code. Returned only if data is specified """
if isinstance(transform, transforms.BlendedGenericTransform): warnings.warn("Blended transforms not yet supported. " "Zoom behavior may not work as expected.") if force_trans is not None: if data is not None: data = (transform - force_trans).transform(data) transform = force_trans code = "display" if ax is not None: for (c, trans) in [("data", ax.transData), ("axes", ax.transAxes), ("figure", ax.figure.transFigure), ("display", transforms.IdentityTransform())]: if transform.contains_branch(trans): code, transform = (c, transform - trans) break if data is not None: if return_trans: return code, transform.transform(data), transform else: return code, transform.transform(data) else: if return_trans: return code, transform else: return code
<SYSTEM_TASK:> Crawl the figure and process all axes <END_TASK> <USER_TASK:> Description: def crawl_fig(self, fig): """Crawl the figure and process all axes"""
with self.renderer.draw_figure(fig=fig, props=utils.get_figure_properties(fig)): for ax in fig.axes: self.crawl_ax(ax)
<SYSTEM_TASK:> Crawl the axes and process all elements within <END_TASK> <USER_TASK:> Description: def crawl_ax(self, ax): """Crawl the axes and process all elements within"""
with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)): for line in ax.lines: self.draw_line(ax, line) for text in ax.texts: self.draw_text(ax, text) for (text, ttp) in zip([ax.xaxis.label, ax.yaxis.label, ax.title], ["xlabel", "ylabel", "title"]): if(hasattr(text, 'get_text') and text.get_text()): self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp) for artist in ax.artists: # TODO: process other artists if isinstance(artist, matplotlib.text.Text): self.draw_text(ax, artist) for patch in ax.patches: self.draw_patch(ax, patch) for collection in ax.collections: self.draw_collection(ax, collection) for image in ax.images: self.draw_image(ax, image) legend = ax.get_legend() if legend is not None: props = utils.get_legend_properties(ax, legend) with self.renderer.draw_legend(legend=legend, props=props): if props['visible']: self.crawl_legend(ax, legend)
<SYSTEM_TASK:> Recursively look through objects in legend children <END_TASK> <USER_TASK:> Description: def crawl_legend(self, ax, legend): """ Recursively look through objects in legend children """
legendElements = list(utils.iter_all_children(legend._legend_box, skipContainers=True)) legendElements.append(legend.legendPatch) for child in legendElements: # force a large zorder so it appears on top child.set_zorder(1E6 + child.get_zorder()) try: # What kind of object... if isinstance(child, matplotlib.patches.Patch): self.draw_patch(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.text.Text): if not (child is legend.get_children()[-1] and child.get_text() == 'None'): self.draw_text(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.lines.Line2D): self.draw_line(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.collections.Collection): self.draw_collection(ax, child, force_pathtrans=ax.transAxes) else: warnings.warn("Legend element %s not impemented" % child) except NotImplementedError: warnings.warn("Legend element %s not impemented" % child)
<SYSTEM_TASK:> Process a matplotlib line and call renderer.draw_line <END_TASK> <USER_TASK:> Description: def draw_line(self, ax, line, force_trans=None): """Process a matplotlib line and call renderer.draw_line"""
coordinates, data = self.process_transform(line.get_transform(), ax, line.get_xydata(), force_trans=force_trans) linestyle = utils.get_line_style(line) if linestyle['dasharray'] is None: linestyle = None markerstyle = utils.get_marker_style(line) if (markerstyle['marker'] in ['None', 'none', None] or markerstyle['markerpath'][0].size == 0): markerstyle = None label = line.get_label() if markerstyle or linestyle: self.renderer.draw_marked_line(data=data, coordinates=coordinates, linestyle=linestyle, markerstyle=markerstyle, label=label, mplobj=line)
<SYSTEM_TASK:> Process a matplotlib patch object and call renderer.draw_path <END_TASK> <USER_TASK:> Description: def draw_patch(self, ax, patch, force_trans=None): """Process a matplotlib patch object and call renderer.draw_path"""
vertices, pathcodes = utils.SVG_path(patch.get_path()) transform = patch.get_transform() coordinates, vertices = self.process_transform(transform, ax, vertices, force_trans=force_trans) linestyle = utils.get_path_style(patch, fill=patch.get_fill()) self.renderer.draw_path(data=vertices, coordinates=coordinates, pathcodes=pathcodes, style=linestyle, mplobj=patch)
<SYSTEM_TASK:> Process a matplotlib image object and call renderer.draw_image <END_TASK> <USER_TASK:> Description: def draw_image(self, ax, image): """Process a matplotlib image object and call renderer.draw_image"""
self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=image.get_extent(), coordinates="data", style={"alpha": image.get_alpha(), "zorder": image.get_zorder()}, mplobj=image)
<SYSTEM_TASK:> Draw a line that also has markers. <END_TASK> <USER_TASK:> Description: def draw_marked_line(self, data, coordinates, linestyle, markerstyle, label, mplobj=None): """Draw a line that also has markers. If this isn't reimplemented by a renderer object, by default, it will make a call to BOTH draw_line and draw_markers when both markerstyle and linestyle are not None in the same Line2D object. """
if linestyle is not None: self.draw_line(data, coordinates, linestyle, label, mplobj) if markerstyle is not None: self.draw_markers(data, coordinates, markerstyle, label, mplobj)
<SYSTEM_TASK:> Build an iterator over the elements of the path collection <END_TASK> <USER_TASK:> Description: def _iter_path_collection(paths, path_transforms, offsets, styles): """Build an iterator over the elements of the path collection"""
N = max(len(paths), len(offsets)) if not path_transforms: path_transforms = [np.eye(3)] edgecolor = styles['edgecolor'] if np.size(edgecolor) == 0: edgecolor = ['none'] facecolor = styles['facecolor'] if np.size(facecolor) == 0: facecolor = ['none'] elements = [paths, path_transforms, offsets, edgecolor, styles['linewidth'], facecolor] it = itertools return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N)
<SYSTEM_TASK:> Draw a path. <END_TASK> <USER_TASK:> Description: def draw_path(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None): """ Draw a path. In matplotlib, paths are created by filled regions, histograms, contour plots, patches, etc. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, 'figure' for figure (pixel) coordinates, or "points" for raw point coordinates (useful in conjunction with offsets, below). pathcodes : list A list of single-character SVG pathcodes associated with the data. Path codes are one of ['M', 'm', 'L', 'l', 'Q', 'q', 'T', 't', 'S', 's', 'C', 'c', 'Z', 'z'] See the SVG specification for details. Note that some path codes consume more than one datapoint (while 'Z' consumes none), so in general, the length of the pathcodes list will not be the same as that of the data array. style : dictionary a dictionary specifying the appearance of the line. offset : list (optional) the (x, y) offset of the path. If not given, no offset will be used. offset_coordinates : string (optional) A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. mplobj : matplotlib object the matplotlib plot element which generated this path """
raise NotImplementedError()
<SYSTEM_TASK:> Create a TimeMOC from a `astropy.time.Time` <END_TASK> <USER_TASK:> Description: def from_times(cls, times, delta_t=DEFAULT_OBSERVATION_TIME): """ Create a TimeMOC from a `astropy.time.Time` Parameters ---------- times : `astropy.time.Time` astropy observation times delta_t : `astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMOC order to represent the observations (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``). Returns ------- time_moc : `~mocpy.tmoc.TimeMOC` """
times_arr = np.asarray(times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int) intervals_arr = np.vstack((times_arr, times_arr + 1)).T # degrade the TimeMoc to the order computer from ``delta_t`` order = TimeMOC.time_resolution_to_order(delta_t) return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)
<SYSTEM_TASK:> Create a TimeMOC from a range defined by two `astropy.time.Time` <END_TASK> <USER_TASK:> Description: def from_time_ranges(cls, min_times, max_times, delta_t=DEFAULT_OBSERVATION_TIME): """ Create a TimeMOC from a range defined by two `astropy.time.Time` Parameters ---------- min_times : `astropy.time.Time` astropy times defining the left part of the intervals max_times : `astropy.time.Time` astropy times defining the right part of the intervals delta_t : `astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMOC order to represent the observations (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``). Returns ------- time_moc : `~mocpy.tmoc.TimeMOC` """
min_times_arr = np.asarray(min_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int) max_times_arr = np.asarray(max_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int) intervals_arr = np.vstack((min_times_arr, max_times_arr + 1)).T # degrade the TimeMoc to the order computer from ``delta_t`` order = TimeMOC.time_resolution_to_order(delta_t) return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)
<SYSTEM_TASK:> Add all the pixels at max order in the neighbourhood of the moc <END_TASK> <USER_TASK:> Description: def add_neighbours(self): """ Add all the pixels at max order in the neighbourhood of the moc """
time_delta = 1 << (2*(IntervalSet.HPY_MAX_ORDER - self.max_order)) intervals_arr = self._interval_set._intervals intervals_arr[:, 0] = np.maximum(intervals_arr[:, 0] - time_delta, 0) intervals_arr[:, 1] = np.minimum(intervals_arr[:, 1] + time_delta, (1 << 58) - 1) self._interval_set = IntervalSet(intervals_arr)
<SYSTEM_TASK:> Remove all the pixels at max order located at the bound of the moc <END_TASK> <USER_TASK:> Description: def remove_neighbours(self): """ Remove all the pixels at max order located at the bound of the moc """
time_delta = 1 << (2*(IntervalSet.HPY_MAX_ORDER - self.max_order)) intervals_arr = self._interval_set._intervals intervals_arr[:, 0] = np.minimum(intervals_arr[:, 0] + time_delta, (1 << 58) - 1) intervals_arr[:, 1] = np.maximum(intervals_arr[:, 1] - time_delta, 0) good_intervals = intervals_arr[:, 1] > intervals_arr[:, 0] self._interval_set = IntervalSet(intervals_arr[good_intervals])
<SYSTEM_TASK:> Intersection between self and moc. ``delta_t`` gives the possibility to the user <END_TASK> <USER_TASK:> Description: def intersection(self, another_moc, delta_t=DEFAULT_OBSERVATION_TIME): """ Intersection between self and moc. ``delta_t`` gives the possibility to the user to set a time resolution for performing the tmoc intersection Parameters ---------- another_moc : `~mocpy.abstract_moc.AbstractMOC` the MOC/TimeMOC used for performing the intersection with self delta_t : `~astropy.time.TimeDelta`, optional the duration of one observation. It is set to 30 min by default. This data is used to compute the more efficient TimeMoc order to represent the observations. (Best order = the less precise order which is able to discriminate two observations separated by ``delta_t``) Returns ------- result : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC` MOC object whose interval set corresponds to : self & ``moc`` """
order_op = TimeMOC.time_resolution_to_order(delta_t) self_degraded, moc_degraded = self._process_degradation(another_moc, order_op) return super(TimeMOC, self_degraded).intersection(moc_degraded)
<SYSTEM_TASK:> Get the total duration covered by the temporal moc <END_TASK> <USER_TASK:> Description: def total_duration(self): """ Get the total duration covered by the temporal moc Returns ------- duration : `~astropy.time.TimeDelta` total duration of all the observation times of the tmoc total duration of all the observation times of the tmoc """
if self._interval_set.empty(): return 0 total_time_us = 0 # The interval set is checked for consistency before looping over all the intervals for (start_time, stop_time) in self._interval_set._intervals: total_time_us = total_time_us + (stop_time - start_time) duration = TimeDelta(total_time_us / 1e6, format='sec', scale='tdb') return duration
<SYSTEM_TASK:> Get a percentage of fill between the min and max time the moc is defined. <END_TASK> <USER_TASK:> Description: def consistency(self): """ Get a percentage of fill between the min and max time the moc is defined. A value near 0 shows a sparse temporal moc (i.e. the moc does not cover a lot of time and covers very distant times. A value near 1 means that the moc covers a lot of time without big pauses. Returns ------- result : float fill percentage (between 0 and 1.) """
result = self.total_duration.jd / (self.max_time - self.min_time).jd return result
<SYSTEM_TASK:> Plot the TimeMoc in a time window. <END_TASK> <USER_TASK:> Description: def plot(self, title='TimeMoc', view=(None, None)): """ Plot the TimeMoc in a time window. This method uses interactive matplotlib. The user can move its mouse through the plot to see the time (at the mouse position). Parameters ---------- title : str, optional The title of the plot. Set to 'TimeMoc' by default. view : (`~astropy.time.Time`, `~astropy.time.Time`), optional Define the view window in which the observations are plotted. Set to (None, None) by default (i.e. all the observation time window is rendered). """
from matplotlib.colors import LinearSegmentedColormap import matplotlib.pyplot as plt if self._interval_set.empty(): print('Nothing to print. This TimeMoc object is empty.') return plot_order = 15 if self.max_order > plot_order: plotted_moc = self.degrade_to_order(plot_order) else: plotted_moc = self min_jd = plotted_moc.min_time.jd if not view[0] else view[0].jd max_jd = plotted_moc.max_time.jd if not view[1] else view[1].jd if max_jd < min_jd: raise ValueError("Invalid selection: max_jd = {0} must be > to min_jd = {1}".format(max_jd, min_jd)) fig1 = plt.figure(figsize=(9.5, 5)) ax = fig1.add_subplot(111) ax.set_xlabel('iso') ax.get_yaxis().set_visible(False) size = 2000 delta = (max_jd - min_jd) / size min_jd_time = min_jd ax.set_xticks([0, size]) ax.set_xticklabels(Time([min_jd_time, max_jd], format='jd', scale='tdb').iso, rotation=70) y = np.zeros(size) for (s_time_us, e_time_us) in plotted_moc._interval_set._intervals: s_index = int((s_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta) e_index = int((e_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta) y[s_index:(e_index+1)] = 1.0 # hack in case of full time mocs. if np.all(y): y[0] = 0 z = np.tile(y, (int(size//10), 1)) plt.title(title) color_map = LinearSegmentedColormap.from_list('w2r', ['#fffff0', '#aa0000']) color_map.set_under('w') color_map.set_bad('gray') plt.imshow(z, interpolation='bilinear', cmap=color_map) def on_mouse_motion(event): for txt in ax.texts: txt.set_visible(False) text = ax.text(0, 0, "", va="bottom", ha="left") time = Time(event.xdata * delta + min_jd_time, format='jd', scale='tdb') tx = '{0}'.format(time.iso) text.set_position((event.xdata - 50, 700)) text.set_rotation(70) text.set_text(tx) cid = fig1.canvas.mpl_connect('motion_notify_event', on_mouse_motion) plt.show()
<SYSTEM_TASK:> Handle a new update. <END_TASK> <USER_TASK:> Description: def handle(self, client, subhooks=()): """Handle a new update. Fetches new data from the client, then compares it to the previous lookup. Returns: (bool, new_data): whether changes occurred, and the new value. """
new_data = self.fetch(client) # Holds the list of updated fields. updated = {} if not subhooks: # We always want to compare to previous values. subhooks = [self.name] for subhook in subhooks: new_key = self.extract_key(new_data, subhook) if new_key != self.previous_keys.get(subhook): updated[subhook] = new_key if updated: logger.debug("Hook %s: data changed from %r to %r", self.name, self.previous_keys, updated) self.previous_keys.update(updated) return (True, new_data) return (False, None)
<SYSTEM_TASK:> Build and store a glyph corresponding to an individual character <END_TASK> <USER_TASK:> Description: def _load_char(self, char): """Build and store a glyph corresponding to an individual character Parameters ---------- char : str A single character to be represented. """
assert isinstance(char, string_types) and len(char) == 1 assert char not in self._glyphs # load new glyph data from font _load_glyph(self._font, char, self._glyphs) # put new glyph into the texture glyph = self._glyphs[char] bitmap = glyph['bitmap'] # convert to padded array data = np.zeros((bitmap.shape[0] + 2*self._spread, bitmap.shape[1] + 2*self._spread), np.uint8) data[self._spread:-self._spread, self._spread:-self._spread] = bitmap # Store, while scaling down to proper size height = data.shape[0] // self.ratio width = data.shape[1] // self.ratio region = self._atlas.get_free_region(width + 2, height + 2) if region is None: raise RuntimeError('Cannot store glyph') x, y, w, h = region x, y, w, h = x + 1, y + 1, w - 2, h - 2 self._renderer.render_to_texture(data, self._atlas, (x, y), (w, h)) u0 = x / float(self._atlas.shape[1]) v0 = y / float(self._atlas.shape[0]) u1 = (x+w) / float(self._atlas.shape[1]) v1 = (y+h) / float(self._atlas.shape[0]) texcoords = (u0, v0, u1, v1) glyph.update(dict(size=(w, h), texcoords=texcoords))
<SYSTEM_TASK:> Get a font described by face and size <END_TASK> <USER_TASK:> Description: def get_font(self, face, bold=False, italic=False): """Get a font described by face and size"""
key = '%s-%s-%s' % (face, bold, italic) if key not in self._fonts: font = dict(face=face, bold=bold, italic=italic) self._fonts[key] = TextureFont(font, self._renderer) return self._fonts[key]
<SYSTEM_TASK:> Return frequencies for DFT <END_TASK> <USER_TASK:> Description: def fft_freqs(n_fft, fs): """Return frequencies for DFT Parameters ---------- n_fft : int Number of points in the FFT. fs : float The sampling rate. """
return np.arange(0, (n_fft // 2 + 1)) / float(n_fft) * float(fs)
<SYSTEM_TASK:> Set the data used for this visual <END_TASK> <USER_TASK:> Description: def set_data(self, pos=None, color=None, width=None, connect=None, arrows=None): """Set the data used for this visual Parameters ---------- pos : array Array of shape (..., 2) or (..., 3) specifying vertex coordinates. color : Color, tuple, or array The color to use when drawing the line. If an array is given, it must be of shape (..., 4) and provide one rgba color per vertex. Can also be a colormap name, or appropriate `Function`. width: The width of the line in px. Line widths > 1px are only guaranteed to work when using 'agg' method. connect : str or array Determines which vertices are connected by lines. * "strip" causes the line to be drawn with each vertex connected to the next. * "segments" causes each pair of vertices to draw an independent line segment * numpy arrays specify the exact set of segment pairs to connect. arrows : array A Nx4 matrix where each row contains the x and y coordinate of the first and second vertex of the arrow body. Remember that the second vertex is used as center point for the arrow head, and the first vertex is only used for determining the arrow head orientation. """
if arrows is not None: self._arrows = arrows self._arrows_changed = True LineVisual.set_data(self, pos, color, width, connect)
<SYSTEM_TASK:> Helper function to post a tweet <END_TASK> <USER_TASK:> Description: def post_tweet(user_id, message, additional_params={}): """ Helper function to post a tweet """
url = "https://api.twitter.com/1.1/statuses/update.json" params = { "status" : message } params.update(additional_params) r = make_twitter_request(url, user_id, params, request_type='POST') print (r.text) return "Successfully posted a tweet {}".format(message)
<SYSTEM_TASK:> Generically make a request to twitter API using a particular user's authorization <END_TASK> <USER_TASK:> Description: def make_twitter_request(url, user_id, params={}, request_type='GET'): """ Generically make a request to twitter API using a particular user's authorization """
if request_type == "GET": return requests.get(url, auth=get_twitter_auth(user_id), params=params) elif request_type == "POST": return requests.post(url, auth=get_twitter_auth(user_id), params=params)
<SYSTEM_TASK:> Search for a location - free form <END_TASK> <USER_TASK:> Description: def geo_search(user_id, search_location): """ Search for a location - free form """
url = "https://api.twitter.com/1.1/geo/search.json" params = {"query" : search_location } response = make_twitter_request(url, user_id, params).json() return response
<SYSTEM_TASK:> add value in form of dict <END_TASK> <USER_TASK:> Description: def add_val(self, val): """add value in form of dict"""
if not isinstance(val, type({})): raise ValueError(type({})) self.read() self.config.update(val) self.save()
<SYSTEM_TASK:> Read mesh data from file. <END_TASK> <USER_TASK:> Description: def read_mesh(fname): """Read mesh data from file. Parameters ---------- fname : str File name to read. Format will be inferred from the filename. Currently only '.obj' and '.obj.gz' are supported. Returns ------- vertices : array Vertices. faces : array | None Triangle face definitions. normals : array Normals for the mesh. texcoords : array | None Texture coordinates. """
# Check format fmt = op.splitext(fname)[1].lower() if fmt == '.gz': fmt = op.splitext(op.splitext(fname)[0])[1].lower() if fmt in ('.obj'): return WavefrontReader.read(fname) elif not format: raise ValueError('read_mesh needs could not determine format.') else: raise ValueError('read_mesh does not understand format %s.' % fmt)
<SYSTEM_TASK:> Write mesh data to file. <END_TASK> <USER_TASK:> Description: def write_mesh(fname, vertices, faces, normals, texcoords, name='', format='obj', overwrite=False, reshape_faces=True): """ Write mesh data to file. Parameters ---------- fname : str Filename to write. Must end with ".obj" or ".gz". vertices : array Vertices. faces : array | None Triangle face definitions. normals : array Normals for the mesh. texcoords : array | None Texture coordinates. name : str Name of the object. format : str Currently only "obj" is supported. overwrite : bool If the file exists, overwrite it. reshape_faces : bool Reshape the `faces` array to (Nf, 3). Set to `False` if you need to write a mesh with non triangular faces. """
# Check file if op.isfile(fname) and not overwrite: raise IOError('file "%s" exists, use overwrite=True' % fname) # Check format if format not in ('obj'): raise ValueError('Only "obj" format writing currently supported') WavefrontWriter.write(fname, vertices, faces, normals, texcoords, name, reshape_faces)
<SYSTEM_TASK:> Parse uniforms, attributes and varyings from the source code. <END_TASK> <USER_TASK:> Description: def _parse_variables_from_code(self): """ Parse uniforms, attributes and varyings from the source code. """
# Get one string of code with comments removed code = '\n\n'.join(self._shaders) code = re.sub(r'(.*)(//.*)', r'\1', code, re.M) # Regexp to look for variable names var_regexp = ("\s*VARIABLE\s+" # kind of variable "((highp|mediump|lowp)\s+)?" # Precision (optional) "(?P<type>\w+)\s+" # type "(?P<name>\w+)\s*" # name "(\[(?P<size>\d+)\])?" # size (optional) "(\s*\=\s*[0-9.]+)?" # default value (optional) "\s*;" # end ) # Parse uniforms, attributes and varyings self._code_variables = {} for kind in ('uniform', 'attribute', 'varying', 'const'): regex = re.compile(var_regexp.replace('VARIABLE', kind), flags=re.MULTILINE) for m in re.finditer(regex, code): gtype = m.group('type') size = int(m.group('size')) if m.group('size') else -1 this_kind = kind if size >= 1: # uniform arrays get added both as individuals and full for i in range(size): name = '%s[%d]' % (m.group('name'), i) self._code_variables[name] = kind, gtype, name, -1 this_kind = 'uniform_array' name = m.group('name') self._code_variables[name] = this_kind, gtype, name, size # Now that our code variables are up-to date, we can process # the variables that were set but yet unknown. self._process_pending_variables()
<SYSTEM_TASK:> Try to apply the variables that were set but not known yet. <END_TASK> <USER_TASK:> Description: def _process_pending_variables(self): """ Try to apply the variables that were set but not known yet. """
# Clear our list of pending variables self._pending_variables, pending = {}, self._pending_variables # Try to apply it. On failure, it will be added again for name, data in pending.items(): self[name] = data
<SYSTEM_TASK:> Draw the attribute arrays in the specified mode. <END_TASK> <USER_TASK:> Description: def draw(self, mode='triangles', indices=None, check_error=True): """ Draw the attribute arrays in the specified mode. Parameters ---------- mode : str | GL_ENUM 'points', 'lines', 'line_strip', 'line_loop', 'triangles', 'triangle_strip', or 'triangle_fan'. indices : array Array of indices to draw. check_error: Check error after draw. """
# Invalidate buffer (data has already been sent) self._buffer = None # Check if mode is valid mode = check_enum(mode) if mode not in ['points', 'lines', 'line_strip', 'line_loop', 'triangles', 'triangle_strip', 'triangle_fan']: raise ValueError('Invalid draw mode: %r' % mode) # Check leftover variables, warn, discard them # In GLIR we check whether all attributes are indeed set for name in self._pending_variables: logger.warn('Variable %r is given but not known.' % name) self._pending_variables = {} # Check attribute sizes attributes = [vbo for vbo in self._user_variables.values() if isinstance(vbo, DataBuffer)] sizes = [a.size for a in attributes] if len(attributes) < 1: raise RuntimeError('Must have at least one attribute') if not all(s == sizes[0] for s in sizes[1:]): msg = '\n'.join(['%s: %s' % (str(a), a.size) for a in attributes]) raise RuntimeError('All attributes must have the same size, got:\n' '%s' % msg) # Get the glir queue that we need now canvas = get_current_canvas() assert canvas is not None # Associate canvas canvas.context.glir.associate(self.glir) # Indexbuffer if isinstance(indices, IndexBuffer): canvas.context.glir.associate(indices.glir) logger.debug("Program drawing %r with index buffer" % mode) gltypes = {np.dtype(np.uint8): 'UNSIGNED_BYTE', np.dtype(np.uint16): 'UNSIGNED_SHORT', np.dtype(np.uint32): 'UNSIGNED_INT'} selection = indices.id, gltypes[indices.dtype], indices.size canvas.context.glir.command('DRAW', self._id, mode, selection) elif indices is None: selection = 0, attributes[0].size logger.debug("Program drawing %r with %r" % (mode, selection)) canvas.context.glir.command('DRAW', self._id, mode, selection) else: raise TypeError("Invalid index: %r (must be IndexBuffer)" % indices) # Process GLIR commands canvas.context.flush_commands()
<SYSTEM_TASK:> Update the data in this surface plot. <END_TASK> <USER_TASK:> Description: def set_data(self, x=None, y=None, z=None, colors=None): """Update the data in this surface plot. Parameters ---------- x : ndarray | None 1D array of values specifying the x positions of vertices in the grid. If None, values will be assumed to be integers. y : ndarray | None 1D array of values specifying the x positions of vertices in the grid. If None, values will be assumed to be integers. z : ndarray 2D array of height values for each grid vertex. colors : ndarray (width, height, 4) array of vertex colors. """
if x is not None: if self._x is None or len(x) != len(self._x): self.__vertices = None self._x = x if y is not None: if self._y is None or len(y) != len(self._y): self.__vertices = None self._y = y if z is not None: if self._x is not None and z.shape[0] != len(self._x): raise TypeError('Z values must have shape (len(x), len(y))') if self._y is not None and z.shape[1] != len(self._y): raise TypeError('Z values must have shape (len(x), len(y))') self._z = z if (self.__vertices is not None and self._z.shape != self.__vertices.shape[:2]): self.__vertices = None if self._z is None: return update_mesh = False new_vertices = False # Generate vertex and face array if self.__vertices is None: new_vertices = True self.__vertices = np.empty((self._z.shape[0], self._z.shape[1], 3), dtype=np.float32) self.generate_faces() self.__meshdata.set_faces(self.__faces) update_mesh = True # Copy x, y, z data into vertex array if new_vertices or x is not None: if x is None: if self._x is None: x = np.arange(self._z.shape[0]) else: x = self._x self.__vertices[:, :, 0] = x.reshape(len(x), 1) update_mesh = True if new_vertices or y is not None: if y is None: if self._y is None: y = np.arange(self._z.shape[1]) else: y = self._y self.__vertices[:, :, 1] = y.reshape(1, len(y)) update_mesh = True if new_vertices or z is not None: self.__vertices[..., 2] = self._z update_mesh = True if colors is not None: self.__meshdata.set_vertex_colors(colors) update_mesh = True # Update MeshData if update_mesh: self.__meshdata.set_vertices( self.__vertices.reshape(self.__vertices.shape[0] * self.__vertices.shape[1], 3)) MeshVisual.set_data(self, meshdata=self.__meshdata)
<SYSTEM_TASK:> A simplified representation of the same transformation. <END_TASK> <USER_TASK:> Description: def simplified(self): """A simplified representation of the same transformation. """
if self._simplified is None: self._simplified = SimplifiedChainTransform(self) return self._simplified
<SYSTEM_TASK:> Add a new transform to the end of this chain. <END_TASK> <USER_TASK:> Description: def append(self, tr): """ Add a new transform to the end of this chain. Parameters ---------- tr : instance of Transform The transform to use. """
self.transforms.append(tr) tr.changed.connect(self._subtr_changed) self._rebuild_shaders() self.update()
<SYSTEM_TASK:> Add a new transform to the beginning of this chain. <END_TASK> <USER_TASK:> Description: def prepend(self, tr): """ Add a new transform to the beginning of this chain. Parameters ---------- tr : instance of Transform The transform to use. """
self.transforms.insert(0, tr) tr.changed.connect(self._subtr_changed) self._rebuild_shaders() self.update()
<SYSTEM_TASK:> Generate a simplified chain by joining adjacent transforms. <END_TASK> <USER_TASK:> Description: def source_changed(self, event): """Generate a simplified chain by joining adjacent transforms. """
# bail out early if the chain is empty transforms = self._chain.transforms[:] if len(transforms) == 0: self.transforms = [] return # If the change signal comes from a transform that already appears in # our simplified transform list, then there is no need to re-simplify. if event is not None: for source in event.sources[::-1]: if source in self.transforms: self.update(event) return # First flatten the chain by expanding all nested chains new_chain = [] while len(transforms) > 0: tr = transforms.pop(0) if isinstance(tr, ChainTransform) and not tr.dynamic: transforms = tr.transforms[:] + transforms else: new_chain.append(tr) # Now combine together all compatible adjacent transforms cont = True tr = new_chain while cont: new_tr = [tr[0]] cont = False for t2 in tr[1:]: t1 = new_tr[-1] pr = t1 * t2 if (not t1.dynamic and not t2.dynamic and not isinstance(pr, ChainTransform)): cont = True new_tr.pop() new_tr.append(pr) else: new_tr.append(t2) tr = new_tr self.transforms = tr
<SYSTEM_TASK:> Clean queue items from a previous session. <END_TASK> <USER_TASK:> Description: def clean(self): """Clean queue items from a previous session. In case a previous session crashed and there are still some running entries in the queue ('running', 'stopping', 'killing'), we clean those and enqueue them again. """
for _, item in self.queue.items(): if item['status'] in ['paused', 'running', 'stopping', 'killing']: item['status'] = 'queued' item['start'] = '' item['end'] = ''
<SYSTEM_TASK:> Remove all completed tasks from the queue. <END_TASK> <USER_TASK:> Description: def clear(self): """Remove all completed tasks from the queue."""
for key in list(self.queue.keys()): if self.queue[key]['status'] in ['done', 'failed']: del self.queue[key] self.write()
<SYSTEM_TASK:> Get the next processable item of the queue. <END_TASK> <USER_TASK:> Description: def next(self): """Get the next processable item of the queue. A processable item is supposed to have the status `queued`. Returns: None : If no key is found. Int: If a valid entry is found. """
smallest = None for key in self.queue.keys(): if self.queue[key]['status'] == 'queued': if smallest is None or key < smallest: smallest = key return smallest
<SYSTEM_TASK:> Write the current queue to a file. We need this to continue an earlier session. <END_TASK> <USER_TASK:> Description: def write(self): """Write the current queue to a file. We need this to continue an earlier session."""
queue_path = os.path.join(self.config_dir, 'queue') queue_file = open(queue_path, 'wb+') try: pickle.dump(self.queue, queue_file, -1) except Exception: print('Error while writing to queue file. Wrong file permissions?') queue_file.close()
<SYSTEM_TASK:> Add a new entry to the queue. <END_TASK> <USER_TASK:> Description: def add_new(self, command): """Add a new entry to the queue."""
self.queue[self.next_key] = command self.queue[self.next_key]['status'] = 'queued' self.queue[self.next_key]['returncode'] = '' self.queue[self.next_key]['stdout'] = '' self.queue[self.next_key]['stderr'] = '' self.queue[self.next_key]['start'] = '' self.queue[self.next_key]['end'] = '' self.next_key += 1 self.write()
<SYSTEM_TASK:> Remove a key from the queue, return `False` if no such key exists. <END_TASK> <USER_TASK:> Description: def remove(self, key): """Remove a key from the queue, return `False` if no such key exists."""
if key in self.queue: del self.queue[key] self.write() return True return False
<SYSTEM_TASK:> Restart a previously finished entry. <END_TASK> <USER_TASK:> Description: def restart(self, key): """Restart a previously finished entry."""
if key in self.queue: if self.queue[key]['status'] in ['failed', 'done']: new_entry = {'command': self.queue[key]['command'], 'path': self.queue[key]['path']} self.add_new(new_entry) self.write() return True return False
<SYSTEM_TASK:> Switch two entries in the queue. Return False if an entry doesn't exist. <END_TASK> <USER_TASK:> Description: def switch(self, first, second): """Switch two entries in the queue. Return False if an entry doesn't exist."""
allowed_states = ['queued', 'stashed'] if first in self.queue and second in self.queue \ and self.queue[first]['status'] in allowed_states\ and self.queue[second]['status'] in allowed_states: tmp = self.queue[second].copy() self.queue[second] = self.queue[first].copy() self.queue[first] = tmp self.write() return True return False
<SYSTEM_TASK:> Receive an answer from the daemon and return the response. <END_TASK> <USER_TASK:> Description: def receive_data(socket): """Receive an answer from the daemon and return the response. Args: socket (socket.socket): A socket that is connected to the daemon. Returns: dir or string: The unpickled answer. """
answer = b"" while True: packet = socket.recv(4096) if not packet: break answer += packet response = pickle.loads(answer) socket.close() return response
<SYSTEM_TASK:> Connect to a daemon's socket. <END_TASK> <USER_TASK:> Description: def connect_socket(root_dir): """Connect to a daemon's socket. Args: root_dir (str): The directory that used as root by the daemon. Returns: socket.socket: A socket that is connected to the daemon. """
# Get config directory where the daemon socket is located config_dir = os.path.join(root_dir, '.config/pueue') # Create Socket and exit with 1, if socket can't be created try: client = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) socket_path = os.path.join(config_dir, 'pueue.sock') if os.path.exists(socket_path): client.connect(socket_path) else: print("Socket doesn't exist") raise Exception except: print("Error connecting to socket. Make sure the daemon is running") sys.exit(1) return client
<SYSTEM_TASK:> Spawn the process, then repeatedly attach to the process. <END_TASK> <USER_TASK:> Description: def attach_loop(argv): """Spawn the process, then repeatedly attach to the process."""
# Check if the pdbhandler module is built into python. p = Popen((sys.executable, '-X', 'pdbhandler', '-c', 'import pdbhandler; pdbhandler.get_handler().host'), stdout=PIPE, stderr=STDOUT) p.wait() use_xoption = True if p.returncode == 0 else False # Spawn the process. args = [sys.executable] if use_xoption: # Use SIGUSR2 as faulthandler is set on python test suite with # SIGUSR1. args.extend(['-X', 'pdbhandler=localhost 7935 %d' % signal.SIGUSR2]) args.extend(argv) proc = Popen(args) else: args.extend(argv) proc = Popen(args) # Repeatedly attach to the process using the '-X' python option or gdb. ctx = Context() error = None time.sleep(.5 + random.random()) while not error and proc.poll() is None: if use_xoption: os.kill(proc.pid, signal.SIGUSR2) connections = {} dev_null = io.StringIO() if PY3 else StringIO.StringIO() asock = AttachSocketWithDetach(connections, stdout=dev_null) asock.create_socket(socket.AF_INET, socket.SOCK_STREAM) connect_process(asock, ctx, proc) asyncore.loop(map=connections) else: error = spawn_gdb(proc.pid, ctx=ctx, proc_iut=proc) time.sleep(random.random()) if error and gdb_terminated(error): error = None if proc.poll() is None: proc.terminate() else: print('pdb-attach: program under test return code:', proc.wait()) result = str(ctx.result) if result: print(result) return error
<SYSTEM_TASK:> Skip this py-pdb command to avoid attaching within the same loop. <END_TASK> <USER_TASK:> Description: def skip(self): """Skip this py-pdb command to avoid attaching within the same loop."""
line = self.line self.line = '' # 'line' is the statement line of the previous py-pdb command. if line in self.lines: if not self.skipping: self.skipping = True printflush('Skipping lines', end='') printflush('.', end='') return True elif line: self.lines.append(line) if len(self.lines) > 30: self.lines.popleft() return False
<SYSTEM_TASK:> Move the current log to a new file with timestamp and create a new empty log file. <END_TASK> <USER_TASK:> Description: def rotate(self, log): """Move the current log to a new file with timestamp and create a new empty log file."""
self.write(log, rotate=True) self.write({})
<SYSTEM_TASK:> Write the output of all finished processes to a compiled log file. <END_TASK> <USER_TASK:> Description: def write(self, log, rotate=False): """Write the output of all finished processes to a compiled log file."""
# Get path for logfile if rotate: timestamp = time.strftime('-%Y%m%d-%H%M') logPath = os.path.join(self.log_dir, 'queue{}.log'.format(timestamp)) else: logPath = os.path.join(self.log_dir, 'queue.log') # Remove existing Log if os.path.exists(logPath): os.remove(logPath) log_file = open(logPath, 'w') log_file.write('Pueue log for executed Commands: \n \n') # Format, color and write log for key, logentry in log.items(): if logentry.get('returncode') is not None: try: # Get returncode color: returncode = logentry['returncode'] if returncode == 0: returncode = Color('{autogreen}' + '{}'.format(returncode) + '{/autogreen}') else: returncode = Color('{autored}' + '{}'.format(returncode) + '{/autored}') # Write command id with returncode and actual command log_file.write( Color('{autoyellow}' + 'Command #{} '.format(key) + '{/autoyellow}') + 'exited with returncode {}: \n'.format(returncode) + '"{}" \n'.format(logentry['command']) ) # Write path log_file.write('Path: {} \n'.format(logentry['path'])) # Write times log_file.write('Start: {}, End: {} \n' .format(logentry['start'], logentry['end'])) # Write STDERR if logentry['stderr']: log_file.write(Color('{autored}Stderr output: {/autored}\n ') + logentry['stderr']) # Write STDOUT if len(logentry['stdout']) > 0: log_file.write(Color('{autogreen}Stdout output: {/autogreen}\n ') + logentry['stdout']) log_file.write('\n') except Exception as a: print('Failed while writing to log file. Wrong file permissions?') print('Exception: {}'.format(str(a))) log_file.close()
<SYSTEM_TASK:> Remove all logs which are older than the specified time. <END_TASK> <USER_TASK:> Description: def remove_old(self, max_log_time): """Remove all logs which are older than the specified time."""
files = glob.glob('{}/queue-*'.format(self.log_dir)) files = list(map(lambda x: os.path.basename(x), files)) for log_file in files: # Get time stamp from filename name = os.path.splitext(log_file)[0] timestamp = name.split('-', maxsplit=1)[1] # Get datetime from time stamp time = datetime.strptime(timestamp, '%Y%m%d-%H%M') now = datetime.now() # Get total delta in seconds delta = now - time seconds = delta.total_seconds() # Delete log file, if the delta is bigger than the specified log time if seconds > int(max_log_time): log_filePath = os.path.join(self.log_dir, log_file) os.remove(log_filePath)
<SYSTEM_TASK:> Get MediaFireHashInfo structure from the fd, unit_size <END_TASK> <USER_TASK:> Description: def compute_hash_info(fd, unit_size=None): """Get MediaFireHashInfo structure from the fd, unit_size fd -- file descriptor - expects exclusive access because of seeking unit_size -- size of a single unit Returns MediaFireHashInfo: hi.file -- sha256 of the whole file hi.units -- list of sha256 hashes for each unit """
logger.debug("compute_hash_info(%s, unit_size=%s)", fd, unit_size) fd.seek(0, os.SEEK_END) file_size = fd.tell() fd.seek(0, os.SEEK_SET) units = [] unit_counter = 0 file_hash = hashlib.sha256() unit_hash = hashlib.sha256() for chunk in iter(lambda: fd.read(HASH_CHUNK_SIZE_BYTES), b''): file_hash.update(chunk) unit_hash.update(chunk) unit_counter += len(chunk) if unit_size is not None and unit_counter == unit_size: # flush the current unit hash units.append(unit_hash.hexdigest().lower()) unit_counter = 0 unit_hash = hashlib.sha256() if unit_size is not None and unit_counter > 0: # leftover block units.append(unit_hash.hexdigest().lower()) fd.seek(0, os.SEEK_SET) return MediaFireHashInfo( file=file_hash.hexdigest().lower(), units=units, size=file_size )
<SYSTEM_TASK:> Upload file, returns UploadResult object <END_TASK> <USER_TASK:> Description: def upload(self, fd, name=None, folder_key=None, filedrop_key=None, path=None, action_on_duplicate=None): """Upload file, returns UploadResult object fd -- file-like object to upload from, expects exclusive access name -- file name folder_key -- folderkey of the target folder path -- path to file relative to folder_key filedrop_key -- filedrop to use instead of folder_key action_on_duplicate -- skip, keep, replace """
# Get file handle content length in the most reliable way fd.seek(0, os.SEEK_END) size = fd.tell() fd.seek(0, os.SEEK_SET) if size > UPLOAD_SIMPLE_LIMIT_BYTES: resumable = True else: resumable = False logger.debug("Calculating checksum") hash_info = compute_hash_info(fd) if hash_info.size != size: # Has the file changed beween computing the hash # and calling upload()? raise ValueError("hash_info.size mismatch") upload_info = _UploadInfo(fd=fd, name=name, folder_key=folder_key, hash_info=hash_info, size=size, path=path, filedrop_key=filedrop_key, action_on_duplicate=action_on_duplicate) # Check whether file is present check_result = self._upload_check(upload_info, resumable) upload_result = None upload_func = None folder_key = check_result.get('folder_key', None) if folder_key is not None: # We know precisely what folder_key to use, drop path upload_info.folder_key = folder_key upload_info.path = None if check_result['hash_exists'] == 'yes': # file exists somewhere in MediaFire if check_result['in_folder'] == 'yes' and \ check_result['file_exists'] == 'yes': # file exists in this directory different_hash = check_result.get('different_hash', 'no') if different_hash == 'no': # file is already there upload_func = self._upload_none if not upload_func: # different hash or in other folder upload_func = self._upload_instant if not upload_func: if resumable: resumable_upload_info = check_result['resumable_upload'] upload_info.hash_info = compute_hash_info( fd, int(resumable_upload_info['unit_size'])) upload_func = self._upload_resumable else: upload_func = self._upload_simple # Retry retriable exceptions retries = UPLOAD_RETRY_COUNT while retries > 0: try: # Provide check_result to avoid calling API twice upload_result = upload_func(upload_info, check_result) except (RetriableUploadError, MediaFireConnectionError): retries -= 1 logger.exception("%s failed (%d retries left)", upload_func.__name__, retries) # Refresh check_result for next iteration check_result = self._upload_check(upload_info, resumable) except Exception: logger.exception("%s failed", upload_func) break else: break if upload_result is None: raise UploadError("Upload failed") return upload_result
<SYSTEM_TASK:> Poll upload until quickkey is found <END_TASK> <USER_TASK:> Description: def _poll_upload(self, upload_key, action): """Poll upload until quickkey is found upload_key -- upload_key returned by upload/* functions """
if len(upload_key) != UPLOAD_KEY_LENGTH: # not a regular 11-char-long upload key # There is no API to poll filedrop uploads return UploadResult( action=action, quickkey=None, hash_=None, filename=None, size=None, created=None, revision=None ) quick_key = None while quick_key is None: poll_result = self._api.upload_poll(upload_key) doupload = poll_result['doupload'] logger.debug("poll(%s): status=%d, description=%s, filename=%s," " result=%d", upload_key, int(doupload['status']), doupload['description'], doupload['filename'], int(doupload['result'])) if int(doupload['result']) != 0: break if doupload['fileerror'] != '': # TODO: we may have to handle this a bit more dramatically logger.warning("poll(%s): fileerror=%d", upload_key, int(doupload['fileerror'])) break if int(doupload['status']) == STATUS_NO_MORE_REQUESTS: quick_key = doupload['quickkey'] elif int(doupload['status']) == STATUS_UPLOAD_IN_PROGRESS: # BUG: http://forum.mediafiredev.com/showthread.php?588 raise RetriableUploadError( "Invalid state transition ({})".format( doupload['description'] ) ) else: time.sleep(UPLOAD_POLL_INTERVAL) return UploadResult( action=action, quickkey=doupload['quickkey'], hash_=doupload['hash'], filename=doupload['filename'], size=doupload['size'], created=doupload['created'], revision=doupload['revision'] )
<SYSTEM_TASK:> Dummy upload function for when we don't actually upload <END_TASK> <USER_TASK:> Description: def _upload_none(self, upload_info, check_result): """Dummy upload function for when we don't actually upload"""
return UploadResult( action=None, quickkey=check_result['duplicate_quickkey'], hash_=upload_info.hash_info.file, filename=upload_info.name, size=upload_info.size, created=None, revision=None )
<SYSTEM_TASK:> Instant upload and return quickkey <END_TASK> <USER_TASK:> Description: def _upload_instant(self, upload_info, _=None): """Instant upload and return quickkey Can be used when the file is already stored somewhere in MediaFire upload_info -- UploadInfo object check_result -- ignored """
result = self._api.upload_instant( upload_info.name, upload_info.size, upload_info.hash_info.file, path=upload_info.path, folder_key=upload_info.folder_key, filedrop_key=upload_info.filedrop_key, action_on_duplicate=upload_info.action_on_duplicate ) return UploadResult( action='upload/instant', quickkey=result['quickkey'], filename=result['filename'], revision=result['new_device_revision'], hash_=upload_info.hash_info.file, size=upload_info.size, created=None )
<SYSTEM_TASK:> Simple upload and return quickkey <END_TASK> <USER_TASK:> Description: def _upload_simple(self, upload_info, _=None): """Simple upload and return quickkey Can be used for small files smaller than UPLOAD_SIMPLE_LIMIT_BYTES upload_info -- UploadInfo object check_result -- ignored """
upload_result = self._api.upload_simple( upload_info.fd, upload_info.name, folder_key=upload_info.folder_key, filedrop_key=upload_info.filedrop_key, path=upload_info.path, file_size=upload_info.size, file_hash=upload_info.hash_info.file, action_on_duplicate=upload_info.action_on_duplicate) logger.debug("upload_result: %s", upload_result) upload_key = upload_result['doupload']['key'] return self._poll_upload(upload_key, 'upload/simple')
<SYSTEM_TASK:> Prepare and upload all resumable units and return upload_key <END_TASK> <USER_TASK:> Description: def _upload_resumable_all(self, upload_info, bitmap, number_of_units, unit_size): """Prepare and upload all resumable units and return upload_key upload_info -- UploadInfo object bitmap -- bitmap node of upload/check number_of_units -- number of units requested unit_size -- size of a single upload unit in bytes """
fd = upload_info.fd upload_key = None for unit_id in range(number_of_units): upload_status = decode_resumable_upload_bitmap( bitmap, number_of_units) if upload_status[unit_id]: logger.debug("Skipping unit %d/%d - already uploaded", unit_id + 1, number_of_units) continue logger.debug("Uploading unit %d/%d", unit_id + 1, number_of_units) offset = unit_id * unit_size with SubsetIO(fd, offset, unit_size) as unit_fd: unit_info = _UploadUnitInfo( upload_info=upload_info, hash_=upload_info.hash_info.units[unit_id], fd=unit_fd, uid=unit_id) upload_result = self._upload_resumable_unit(unit_info) # upload_key is needed for polling if upload_key is None: upload_key = upload_result['doupload']['key'] return upload_key
<SYSTEM_TASK:> Remove from sys.modules the modules imported by the debuggee. <END_TASK> <USER_TASK:> Description: def reset(self): """Remove from sys.modules the modules imported by the debuggee."""
if not self.hooked: self.hooked = True sys.path_hooks.append(self) sys.path.insert(0, self.PATH_ENTRY) return for modname in self: if modname in sys.modules: del sys.modules[modname] submods = [] for subm in sys.modules: if subm.startswith(modname + '.'): submods.append(subm) # All submodules of modname may not have been imported by the # debuggee, but they are still removed from sys.modules as # there is no way to distinguish them. for subm in submods: del sys.modules[subm] self[:] = []
<SYSTEM_TASK:> Get the actual breakpoint line number. <END_TASK> <USER_TASK:> Description: def get_actual_bp(self, lineno): """Get the actual breakpoint line number. When an exact match cannot be found in the lnotab expansion of the module code object or one of its subcodes, pick up the next valid statement line number. Return the statement line defined by the tuple (code firstlineno, statement line number) which is at the shortest distance to line 'lineno' and greater or equal to 'lineno'. When 'lineno' is the first line number of a subcode, use its first statement line instead. """
def _distance(code, module_level=False): """The shortest distance to the next valid statement.""" subcodes = dict((c.co_firstlineno, c) for c in code.co_consts if isinstance(c, types.CodeType) and not c.co_name.startswith('<')) # Get the shortest distance to the subcode whose first line number # is the last to be less or equal to lineno. That is, find the # index of the first subcode whose first_lno is the first to be # strictly greater than lineno. subcode_dist = None subcodes_flnos = sorted(subcodes) idx = bisect(subcodes_flnos, lineno) if idx != 0: flno = subcodes_flnos[idx-1] subcode_dist = _distance(subcodes[flno]) # Check if lineno is a valid statement line number in the current # code, excluding function or method definition lines. code_lnos = sorted(code_line_numbers(code)) # Do not stop at execution of function definitions. if not module_level and len(code_lnos) > 1: code_lnos = code_lnos[1:] if lineno in code_lnos and lineno not in subcodes_flnos: return 0, (code.co_firstlineno, lineno) # Compute the distance to the next valid statement in this code. idx = bisect(code_lnos, lineno) if idx == len(code_lnos): # lineno is greater that all 'code' line numbers. return subcode_dist actual_lno = code_lnos[idx] dist = actual_lno - lineno if subcode_dist and subcode_dist[0] < dist: return subcode_dist if actual_lno not in subcodes_flnos: return dist, (code.co_firstlineno, actual_lno) else: # The actual line number is the line number of the first # statement of the subcode following lineno (recursively). return _distance(subcodes[actual_lno]) if self.code: code_dist = _distance(self.code, module_level=True) if not self.code or not code_dist: raise BdbSourceError('{}: line {} is after the last ' 'valid statement.'.format(self.filename, lineno)) return code_dist[1]
<SYSTEM_TASK:> Return the list of breakpoints set at lineno. <END_TASK> <USER_TASK:> Description: def get_breakpoints(self, lineno): """Return the list of breakpoints set at lineno."""
try: firstlineno, actual_lno = self.bdb_module.get_actual_bp(lineno) except BdbSourceError: return [] if firstlineno not in self: return [] code_bps = self[firstlineno] if actual_lno not in code_bps: return [] return [bp for bp in sorted(code_bps[actual_lno], key=attrgetter('number')) if bp.line == lineno]
<SYSTEM_TASK:> Set or remove the trace function. <END_TASK> <USER_TASK:> Description: def settrace(self, do_set): """Set or remove the trace function."""
if do_set: sys.settrace(self.trace_dispatch) else: sys.settrace(None)
<SYSTEM_TASK:> Restart the debugger after source code changes. <END_TASK> <USER_TASK:> Description: def restart(self): """Restart the debugger after source code changes."""
_module_finder.reset() linecache.checkcache() for module_bpts in self.breakpoints.values(): module_bpts.reset()
<SYSTEM_TASK:> Stop when the current line number in frame is greater than lineno or <END_TASK> <USER_TASK:> Description: def set_until(self, frame, lineno=None): """Stop when the current line number in frame is greater than lineno or when returning from frame."""
if lineno is None: lineno = frame.f_lineno + 1 self._set_stopinfo(frame, lineno)
<SYSTEM_TASK:> Start debugging from `frame`. <END_TASK> <USER_TASK:> Description: def set_trace(self, frame=None): """Start debugging from `frame`. If frame is not specified, debugging starts from caller's frame. """
# First disable tracing temporarily as set_trace() may be called while # tracing is in use. For example when called from a signal handler and # within a debugging session started with runcall(). self.settrace(False) if not frame: frame = sys._getframe().f_back frame.f_trace = self.trace_dispatch # Do not change botframe when the debuggee has been started from an # instance of Pdb with one of the family of run methods. self.reset(ignore_first_call_event=False, botframe=self.botframe) self.topframe = frame while frame: if frame is self.botframe: break botframe = frame frame = frame.f_back else: self.botframe = botframe # Must trace the bottom frame to disable tracing on termination, # see issue 13044. if not self.botframe.f_trace: self.botframe.f_trace = self.trace_dispatch self.settrace(True)
<SYSTEM_TASK:> Returns list of nested files and directories for local directory by path <END_TASK> <USER_TASK:> Description: def listdir(directory): """Returns list of nested files and directories for local directory by path :param directory: absolute or relative path to local directory :return: list nested of file or directory names """
file_names = list() for filename in os.listdir(directory): file_path = os.path.join(directory, filename) if os.path.isdir(file_path): filename = f'{filename}{os.path.sep}' file_names.append(filename) return file_names
<SYSTEM_TASK:> Extract options for specified option type from all options <END_TASK> <USER_TASK:> Description: def get_options(option_type, from_options): """Extract options for specified option type from all options :param option_type: the object of specified type of options :param from_options: all options dictionary :return: the dictionary of options for specified type, each option can be filled by value from all options dictionary or blank in case the option for specified type is not exist in all options dictionary """
_options = dict() for key in option_type.keys: key_with_prefix = f'{option_type.prefix}{key}' if key not in from_options and key_with_prefix not in from_options: _options[key] = '' elif key in from_options: _options[key] = from_options.get(key) else: _options[key] = from_options.get(key_with_prefix) return _options