text_prompt
stringlengths 100
17.7k
⌀ | code_prompt
stringlengths 7
9.86k
⌀ |
---|---|
<SYSTEM_TASK:>
Add a key.
<END_TASK>
<USER_TASK:>
Description:
def add_key(self, ref, mode="shared"):
"""
Add a key.
(ref)
Return key name or None on error
""" |
if ref not in self.keys:
response = self.request("client_add_key %s -%s" % (ref, mode))
if "success" not in response:
return None
self.keys.append(ref)
return ref |
<SYSTEM_TASK:>
launch browser and virtual display, first of all to be launched
<END_TASK>
<USER_TASK:>
Description:
def launch(self):
"""launch browser and virtual display, first of all to be launched""" |
try:
# init virtual Display
self.vbro = Display()
self.vbro.start()
logger.debug("virtual display launched")
except Exception:
raise exceptions.VBroException()
try:
self.browser = Browser(self.brow_name)
logger.debug(f"browser {self.brow_name} launched")
except Exception:
raise exceptions.BrowserException(
self.brow_name, "failed to launch")
return True |
<SYSTEM_TASK:>
Create and connect to the LCDd server.
<END_TASK>
<USER_TASK:>
Description:
def _make_lcdproc(
lcd_host, lcd_port, retry_config,
charset=DEFAULT_LCDPROC_CHARSET, lcdd_debug=False):
"""Create and connect to the LCDd server.
Args:
lcd_host (str): the hostname to connect to
lcd_prot (int): the port to connect to
charset (str): the charset to use when sending messages to lcdproc
lcdd_debug (bool): whether to enable full LCDd debug
retry_attempts (int): the number of connection attempts
retry_wait (int): the time to wait between connection attempts
retry_backoff (int): the backoff for increasing inter-attempt delay
Returns:
lcdproc.server.Server
""" |
class ServerSpawner(utils.AutoRetryCandidate):
"""Spawn the server, using auto-retry."""
@utils.auto_retry
def connect(self):
return lcdrunner.LcdProcServer(
lcd_host, lcd_port, charset=charset, debug=lcdd_debug)
spawner = ServerSpawner(retry_config=retry_config, logger=logger)
try:
return spawner.connect()
except socket.error as e:
logger.error('Unable to connect to lcdproc %s:%s : %r', lcd_host, lcd_port, e)
raise SystemExit(1) |
<SYSTEM_TASK:>
Create a ScreenPatternList from a given pattern text.
<END_TASK>
<USER_TASK:>
Description:
def _make_patterns(patterns):
"""Create a ScreenPatternList from a given pattern text.
Args:
pattern_txt (str list): the patterns
Returns:
mpdlcd.display_pattern.ScreenPatternList: a list of patterns from the
given entries.
""" |
field_registry = display_fields.FieldRegistry()
pattern_list = display_pattern.ScreenPatternList(
field_registry=field_registry,
)
for pattern in patterns:
pattern_list.add(pattern.split('\n'))
return pattern_list |
<SYSTEM_TASK:>
Read configuration from the given file.
<END_TASK>
<USER_TASK:>
Description:
def _read_config(filename):
"""Read configuration from the given file.
Parsing is performed through the configparser library.
Returns:
dict: a flattened dict of (option_name, value), using defaults.
""" |
parser = configparser.RawConfigParser()
if filename and not parser.read(filename):
sys.stderr.write("Unable to open configuration file %s. Use --config='' to disable this warning.\n" % filename)
config = {}
for section, defaults in BASE_CONFIG.items():
# Patterns are handled separately
if section == 'patterns':
continue
for name, descr in defaults.items():
kind, default = descr
if section in parser.sections() and name in parser.options(section):
if kind == 'int':
value = parser.getint(section, name)
elif kind == 'float':
value = parser.getfloat(section, name)
elif kind == 'bool':
value = parser.getboolean(section, name)
else:
value = parser.get(section, name)
else:
value = default
config[name] = value
if 'patterns' in parser.sections():
patterns = [parser.get('patterns', opt) for opt in parser.options('patterns')]
else:
patterns = DEFAULT_PATTERNS
config['patterns'] = patterns
return config |
<SYSTEM_TASK:>
Extract options values from a configparser, optparse pair.
<END_TASK>
<USER_TASK:>
Description:
def _extract_options(config, options, *args):
"""Extract options values from a configparser, optparse pair.
Options given on command line take precedence over options read in the
configuration file.
Args:
config (dict): option values read from a config file through
configparser
options (optparse.Options): optparse 'options' object containing options
values from the command line
*args (str tuple): name of the options to extract
""" |
extract = {}
for key in args:
if key not in args:
continue
extract[key] = config[key]
option = getattr(options, key, None)
if option is not None:
extract[key] = option
return extract |
<SYSTEM_TASK:>
Set the render-buffer size and format
<END_TASK>
<USER_TASK:>
Description:
def resize(self, shape, format=None):
""" Set the render-buffer size and format
Parameters
----------
shape : tuple of integers
New shape in yx order. A render buffer is always 2D. For
symmetry with the texture class, a 3-element tuple can also
be given, in which case the last dimension is ignored.
format : {None, 'color', 'depth', 'stencil'}
The buffer format. If None, the current format is maintained.
If that is also None, the format will be set upon attaching
it to a framebuffer. One can also specify the explicit enum:
GL_RGB565, GL_RGBA4, GL_RGB5_A1, GL_DEPTH_COMPONENT16, or
GL_STENCIL_INDEX8
""" |
if not self._resizeable:
raise RuntimeError("RenderBuffer is not resizeable")
# Check shape
if not (isinstance(shape, tuple) and len(shape) in (2, 3)):
raise ValueError('RenderBuffer shape must be a 2/3 element tuple')
# Check format
if format is None:
format = self._format # Use current format (may be None)
elif isinstance(format, int):
pass # Do not check, maybe user needs desktop GL formats
elif isinstance(format, string_types):
if format not in ('color', 'depth', 'stencil'):
raise ValueError('RenderBuffer format must be "color", "depth"'
' or "stencil", not %r' % format)
else:
raise ValueError('Invalid RenderBuffer format: %r' % format)
# Store and send GLIR command
self._shape = tuple(shape[:2])
self._format = format
if self._format is not None:
self._glir.command('SIZE', self._id, self._shape, self._format) |
<SYSTEM_TASK:>
Resize all attached buffers with the given shape
<END_TASK>
<USER_TASK:>
Description:
def resize(self, shape):
""" Resize all attached buffers with the given shape
Parameters
----------
shape : tuple of two integers
New buffer shape (h, w), to be applied to all currently
attached buffers. For buffers that are a texture, the number
of color channels is preserved.
""" |
# Check
if not (isinstance(shape, tuple) and len(shape) == 2):
raise ValueError('RenderBuffer shape must be a 2-element tuple')
# Resize our buffers
for buf in (self.color_buffer, self.depth_buffer, self.stencil_buffer):
if buf is None:
continue
shape_ = shape
if isinstance(buf, Texture2D):
shape_ = shape + (self.color_buffer.shape[-1], )
buf.resize(shape_, buf.format) |
<SYSTEM_TASK:>
Set the data used to draw this visual.
<END_TASK>
<USER_TASK:>
Description:
def set_data(self, pos=None, color=None, width=None, connect=None):
""" Set the data used to draw this visual.
Parameters
----------
pos : array
Array of shape (..., 2) or (..., 3) specifying vertex coordinates.
color : Color, tuple, or array
The color to use when drawing the line. If an array is given, it
must be of shape (..., 4) and provide one rgba color per vertex.
width:
The width of the line in px. Line widths < 1 px will be rounded up
to 1 px when using the 'gl' method.
connect : str or array
Determines which vertices are connected by lines.
* "strip" causes the line to be drawn with each vertex
connected to the next.
* "segments" causes each pair of vertices to draw an
independent line segment
* int numpy arrays specify the exact set of segment pairs to
connect.
* bool numpy arrays specify which _adjacent_ pairs to connect.
""" |
if pos is not None:
self._bounds = None
self._pos = pos
self._changed['pos'] = True
if color is not None:
self._color = color
self._changed['color'] = True
if width is not None:
self._width = width
self._changed['width'] = True
if connect is not None:
self._connect = connect
self._changed['connect'] = True
self.update() |
<SYSTEM_TASK:>
Get the bounds
<END_TASK>
<USER_TASK:>
Description:
def _compute_bounds(self, axis, view):
"""Get the bounds
Parameters
----------
mode : str
Describes the type of boundary requested. Can be "visual", "data",
or "mouse".
axis : 0, 1, 2
The axis along which to measure the bounding values, in
x-y-z order.
""" |
# Can and should we calculate bounds?
if (self._bounds is None) and self._pos is not None:
pos = self._pos
self._bounds = [(pos[:, d].min(), pos[:, d].max())
for d in range(pos.shape[1])]
# Return what we can
if self._bounds is None:
return
else:
if axis < len(self._bounds):
return self._bounds[axis]
else:
return (0, 0) |
<SYSTEM_TASK:>
This actually calculates the kerning + advance
<END_TASK>
<USER_TASK:>
Description:
def _get_k_p_a(font, left, right):
"""This actually calculates the kerning + advance""" |
# http://lists.apple.com/archives/coretext-dev/2010/Dec/msg00020.html
# 1) set up a CTTypesetter
chars = left + right
args = [None, 1, cf.kCFTypeDictionaryKeyCallBacks,
cf.kCFTypeDictionaryValueCallBacks]
attributes = cf.CFDictionaryCreateMutable(*args)
cf.CFDictionaryAddValue(attributes, kCTFontAttributeName, font)
string = cf.CFAttributedStringCreate(None, CFSTR(chars), attributes)
typesetter = ct.CTTypesetterCreateWithAttributedString(string)
cf.CFRelease(string)
cf.CFRelease(attributes)
# 2) extract a CTLine from it
range = CFRange(0, 1)
line = ct.CTTypesetterCreateLine(typesetter, range)
# 3) use CTLineGetOffsetForStringIndex to get the character positions
offset = ct.CTLineGetOffsetForStringIndex(line, 1, None)
cf.CFRelease(line)
cf.CFRelease(typesetter)
return offset |
<SYSTEM_TASK:>
Convert numpy array to PNG byte array.
<END_TASK>
<USER_TASK:>
Description:
def _make_png(data, level=6):
"""Convert numpy array to PNG byte array.
Parameters
----------
data : numpy.ndarray
Data must be (H, W, 3 | 4) with dtype = np.ubyte (np.uint8)
level : int
https://docs.python.org/2/library/zlib.html#zlib.compress
An integer from 0 to 9 controlling the level of compression:
* 1 is fastest and produces the least compression,
* 9 is slowest and produces the most.
* 0 is no compression.
The default value is 6.
Returns
-------
png : array
PNG formatted array
""" |
# Eventually we might want to use ext/png.py for this, but this
# routine *should* be faster b/c it's speacialized for our use case
def mkchunk(data, name):
if isinstance(data, np.ndarray):
size = data.nbytes
else:
size = len(data)
chunk = np.empty(size + 12, dtype=np.ubyte)
chunk.data[0:4] = np.array(size, '>u4').tostring()
chunk.data[4:8] = name.encode('ASCII')
chunk.data[8:8 + size] = data
# and-ing may not be necessary, but is done for safety:
# https://docs.python.org/3/library/zlib.html#zlib.crc32
chunk.data[-4:] = np.array(zlib.crc32(chunk[4:-4]) & 0xffffffff,
'>u4').tostring()
return chunk
if data.dtype != np.ubyte:
raise TypeError('data.dtype must be np.ubyte (np.uint8)')
dim = data.shape[2] # Dimension
if dim not in (3, 4):
raise TypeError('data.shape[2] must be in (3, 4)')
# www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html#C.IHDR
if dim == 4:
ctyp = 0b0110 # RGBA
else:
ctyp = 0b0010 # RGB
# www.libpng.org/pub/png/spec/1.2/PNG-Structure.html
header = b'\x89PNG\x0d\x0a\x1a\x0a' # header
h, w = data.shape[:2]
depth = data.itemsize * 8
ihdr = struct.pack('!IIBBBBB', w, h, depth, ctyp, 0, 0, 0)
c1 = mkchunk(ihdr, 'IHDR')
# www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html#C.IDAT
# insert filter byte at each scanline
idat = np.empty((h, w * dim + 1), dtype=np.ubyte)
idat[:, 1:] = data.reshape(h, w * dim)
idat[:, 0] = 0
comp_data = zlib.compress(idat, level)
c2 = mkchunk(comp_data, 'IDAT')
c3 = mkchunk(np.empty((0,), dtype=np.ubyte), 'IEND')
# concatenate
lh = len(header)
png = np.empty(lh + c1.nbytes + c2.nbytes + c3.nbytes, dtype=np.ubyte)
png.data[:lh] = header
p = lh
for chunk in (c1, c2, c3):
png[p:p + len(chunk)] = chunk
p += chunk.nbytes
return png |
<SYSTEM_TASK:>
Read a PNG file to RGB8 or RGBA8
<END_TASK>
<USER_TASK:>
Description:
def read_png(filename):
"""Read a PNG file to RGB8 or RGBA8
Unlike imread, this requires no external dependencies.
Parameters
----------
filename : str
File to read.
Returns
-------
data : array
Image data.
See also
--------
write_png, imread, imsave
""" |
x = Reader(filename)
try:
alpha = x.asDirect()[3]['alpha']
if alpha:
y = x.asRGBA8()[2]
n = 4
else:
y = x.asRGB8()[2]
n = 3
y = np.array([yy for yy in y], np.uint8)
finally:
x.file.close()
y.shape = (y.shape[0], y.shape[1] // n, n)
return y |
<SYSTEM_TASK:>
Write a PNG file
<END_TASK>
<USER_TASK:>
Description:
def write_png(filename, data):
"""Write a PNG file
Unlike imsave, this requires no external dependencies.
Parameters
----------
filename : str
File to save to.
data : array
Image data.
See also
--------
read_png, imread, imsave
""" |
data = np.asarray(data)
if not data.ndim == 3 and data.shape[-1] in (3, 4):
raise ValueError('data must be a 3D array with last dimension 3 or 4')
with open(filename, 'wb') as f:
f.write(_make_png(data)) |
<SYSTEM_TASK:>
Read image data from disk
<END_TASK>
<USER_TASK:>
Description:
def imread(filename, format=None):
"""Read image data from disk
Requires imageio or PIL.
Parameters
----------
filename : str
Filename to read.
format : str | None
Format of the file. If None, it will be inferred from the filename.
Returns
-------
data : array
Image data.
See also
--------
imsave, read_png, write_png
""" |
imageio, PIL = _check_img_lib()
if imageio is not None:
return imageio.imread(filename, format)
elif PIL is not None:
im = PIL.Image.open(filename)
if im.mode == 'P':
im = im.convert()
# Make numpy array
a = np.asarray(im)
if len(a.shape) == 0:
raise MemoryError("Too little memory to convert PIL image to "
"array")
return a
else:
raise RuntimeError("imread requires the imageio or PIL package.") |
<SYSTEM_TASK:>
Save image data to disk
<END_TASK>
<USER_TASK:>
Description:
def imsave(filename, im, format=None):
"""Save image data to disk
Requires imageio or PIL.
Parameters
----------
filename : str
Filename to write.
im : array
Image data.
format : str | None
Format of the file. If None, it will be inferred from the filename.
See also
--------
imread, read_png, write_png
""" |
# Import imageio or PIL
imageio, PIL = _check_img_lib()
if imageio is not None:
return imageio.imsave(filename, im, format)
elif PIL is not None:
pim = PIL.Image.fromarray(im)
pim.save(filename, format)
else:
raise RuntimeError("imsave requires the imageio or PIL package.") |
<SYSTEM_TASK:>
Utility to search for imageio or PIL
<END_TASK>
<USER_TASK:>
Description:
def _check_img_lib():
"""Utility to search for imageio or PIL""" |
# Import imageio or PIL
imageio = PIL = None
try:
import imageio
except ImportError:
try:
import PIL.Image
except ImportError:
pass
return imageio, PIL |
<SYSTEM_TASK:>
Function decorator displaying the function execution time
<END_TASK>
<USER_TASK:>
Description:
def timer(logger=None, level=logging.INFO,
fmt="function %(function_name)s execution time: %(execution_time).3f",
*func_or_func_args, **timer_kwargs):
""" Function decorator displaying the function execution time
All kwargs are the arguments taken by the Timer class constructor.
""" |
# store Timer kwargs in local variable so the namespace isn't polluted
# by different level args and kwargs
def wrapped_f(f):
@functools.wraps(f)
def wrapped(*args, **kwargs):
with Timer(**timer_kwargs) as t:
out = f(*args, **kwargs)
context = {
'function_name': f.__name__,
'execution_time': t.elapsed,
}
if logger:
logger.log(
level,
fmt % context,
extra=context)
else:
print(fmt % context)
return out
return wrapped
if (len(func_or_func_args) == 1
and isinstance(func_or_func_args[0], collections.Callable)):
return wrapped_f(func_or_func_args[0])
else:
return wrapped_f |
<SYSTEM_TASK:>
Convert a given matplotlib figure to vispy
<END_TASK>
<USER_TASK:>
Description:
def _mpl_to_vispy(fig):
"""Convert a given matplotlib figure to vispy
This function is experimental and subject to change!
Requires matplotlib and mplexporter.
Parameters
----------
fig : instance of matplotlib Figure
The populated figure to display.
Returns
-------
canvas : instance of Canvas
The resulting vispy Canvas.
""" |
renderer = VispyRenderer()
exporter = Exporter(renderer)
with warnings.catch_warnings(record=True): # py3k mpl warning
exporter.run(fig)
renderer._vispy_done()
return renderer.canvas |
<SYSTEM_TASK:>
Show current figures using vispy
<END_TASK>
<USER_TASK:>
Description:
def show(block=False):
"""Show current figures using vispy
Parameters
----------
block : bool
If True, blocking mode will be used. If False, then non-blocking
/ interactive mode will be used.
Returns
-------
canvases : list
List of the vispy canvases that were created.
""" |
if not has_matplotlib():
raise ImportError('Requires matplotlib version >= 1.2')
cs = [_mpl_to_vispy(plt.figure(ii)) for ii in plt.get_fignums()]
if block and len(cs) > 0:
cs[0].app.run()
return cs |
<SYSTEM_TASK:>
Helper to get the parent axes of a given mplobj
<END_TASK>
<USER_TASK:>
Description:
def _mpl_ax_to(self, mplobj, output='vb'):
"""Helper to get the parent axes of a given mplobj""" |
for ax in self._axs.values():
if ax['ax'] is mplobj.axes:
return ax[output]
raise RuntimeError('Parent axes could not be found!') |
<SYSTEM_TASK:>
Place the graph nodes at random places.
<END_TASK>
<USER_TASK:>
Description:
def random(adjacency_mat, directed=False, random_state=None):
"""
Place the graph nodes at random places.
Parameters
----------
adjacency_mat : matrix or sparse
The graph adjacency matrix
directed : bool
Whether the graph is directed. If this is True, is will also
generate the vertices for arrows, which can be passed to an
ArrowVisual.
random_state : instance of RandomState | int | None
Random state to use. Can be None to use ``np.random``.
Yields
------
(node_vertices, line_vertices, arrow_vertices) : tuple
Yields the node and line vertices in a tuple. This layout only yields a
single time, and has no builtin animation
""" |
if random_state is None:
random_state = np.random
elif not isinstance(random_state, np.random.RandomState):
random_state = np.random.RandomState(random_state)
if issparse(adjacency_mat):
adjacency_mat = adjacency_mat.tocoo()
# Randomly place nodes, visual coordinate system is between 0 and 1
num_nodes = adjacency_mat.shape[0]
node_coords = random_state.rand(num_nodes, 2)
line_vertices, arrows = _straight_line_vertices(adjacency_mat,
node_coords, directed)
yield node_coords, line_vertices, arrows |
<SYSTEM_TASK:>
The position of this event in the local coordinate system of the
<END_TASK>
<USER_TASK:>
Description:
def pos(self):
""" The position of this event in the local coordinate system of the
visual.
""" |
if self._pos is None:
tr = self.visual.get_transform('canvas', 'visual')
self._pos = tr.map(self.mouse_event.pos)
return self._pos |
<SYSTEM_TASK:>
The mouse event immediately prior to this one. This
<END_TASK>
<USER_TASK:>
Description:
def last_event(self):
""" The mouse event immediately prior to this one. This
property is None when no mouse buttons are pressed.
""" |
if self.mouse_event.last_event is None:
return None
ev = self.copy()
ev.mouse_event = self.mouse_event.last_event
return ev |
<SYSTEM_TASK:>
The mouse press event that initiated a mouse drag, if any.
<END_TASK>
<USER_TASK:>
Description:
def press_event(self):
""" The mouse press event that initiated a mouse drag, if any.
""" |
if self.mouse_event.press_event is None:
return None
ev = self.copy()
ev.mouse_event = self.mouse_event.press_event
return ev |
<SYSTEM_TASK:>
Get lowercase string representation of enum.
<END_TASK>
<USER_TASK:>
Description:
def check_enum(enum, name=None, valid=None):
""" Get lowercase string representation of enum.
""" |
name = name or 'enum'
# Try to convert
res = None
if isinstance(enum, int):
if hasattr(enum, 'name') and enum.name.startswith('GL_'):
res = enum.name[3:].lower()
elif isinstance(enum, string_types):
res = enum.lower()
# Check
if res is None:
raise ValueError('Could not determine string represenatation for'
'enum %r' % enum)
elif valid and res not in valid:
raise ValueError('Value of %s must be one of %r, not %r' %
(name, valid, enum))
return res |
<SYSTEM_TASK:>
Draw a 2D texture to the current viewport
<END_TASK>
<USER_TASK:>
Description:
def draw_texture(tex):
"""Draw a 2D texture to the current viewport
Parameters
----------
tex : instance of Texture2D
The texture to draw.
""" |
from .program import Program
program = Program(vert_draw, frag_draw)
program['u_texture'] = tex
program['a_position'] = [[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]]
program['a_texcoord'] = [[0., 1.], [0., 0.], [1., 1.], [1., 0.]]
program.draw('triangle_strip') |
<SYSTEM_TASK:>
Match pattern against the output of func, passing the results as
<END_TASK>
<USER_TASK:>
Description:
def _get_dpi_from(cmd, pattern, func):
"""Match pattern against the output of func, passing the results as
floats to func. If anything fails, return None.
""" |
try:
out, _ = run_subprocess([cmd])
except (OSError, CalledProcessError):
pass
else:
match = re.search(pattern, out)
if match:
return func(*map(float, match.groups())) |
<SYSTEM_TASK:>
Calculate a size
<END_TASK>
<USER_TASK:>
Description:
def calc_size(rect, orientation):
"""Calculate a size
Parameters
----------
rect : rectangle
The rectangle.
orientation : str
Either "bottom" or "top".
""" |
(total_halfx, total_halfy) = rect.center
if orientation in ["bottom", "top"]:
(total_major_axis, total_minor_axis) = (total_halfx, total_halfy)
else:
(total_major_axis, total_minor_axis) = (total_halfy, total_halfx)
major_axis = total_major_axis * (1.0 -
ColorBarWidget.major_axis_padding)
minor_axis = major_axis * ColorBarWidget.minor_axis_ratio
# if the minor axis is "leaking" from the padding, then clamp
minor_axis = np.minimum(minor_axis,
total_minor_axis *
(1.0 - ColorBarWidget.minor_axis_padding))
return (major_axis, minor_axis) |
<SYSTEM_TASK:>
Try to reduce dtype up to a given level when it is possible
<END_TASK>
<USER_TASK:>
Description:
def dtype_reduce(dtype, level=0, depth=0):
"""
Try to reduce dtype up to a given level when it is possible
dtype = [ ('vertex', [('x', 'f4'), ('y', 'f4'), ('z', 'f4')]),
('normal', [('x', 'f4'), ('y', 'f4'), ('z', 'f4')]),
('color', [('r', 'f4'), ('g', 'f4'), ('b', 'f4'),
('a', 'f4')])]
level 0: ['color,vertex,normal,', 10, 'float32']
level 1: [['color', 4, 'float32']
['normal', 3, 'float32']
['vertex', 3, 'float32']]
""" |
dtype = np.dtype(dtype)
fields = dtype.fields
# No fields
if fields is None:
if len(dtype.shape):
count = reduce(mul, dtype.shape)
else:
count = 1
# size = dtype.itemsize / count
if dtype.subdtype:
name = str(dtype.subdtype[0])
else:
name = str(dtype)
return ['', count, name]
else:
items = []
name = ''
# Get reduced fields
for key, value in fields.items():
l = dtype_reduce(value[0], level, depth + 1)
if type(l[0]) is str:
items.append([key, l[1], l[2]])
else:
items.append(l)
name += key + ','
# Check if we can reduce item list
ctype = None
count = 0
for i, item in enumerate(items):
# One item is a list, we cannot reduce
if type(item[0]) is not str:
return items
else:
if i == 0:
ctype = item[2]
count += item[1]
else:
if item[2] != ctype:
return items
count += item[1]
if depth >= level:
return [name, count, ctype]
else:
return items |
<SYSTEM_TASK:>
Create a sphere
<END_TASK>
<USER_TASK:>
Description:
def create_sphere(rows=10, cols=10, depth=10, radius=1.0, offset=True,
subdivisions=3, method='latitude'):
"""Create a sphere
Parameters
----------
rows : int
Number of rows (for method='latitude' and 'cube').
cols : int
Number of columns (for method='latitude' and 'cube').
depth : int
Number of depth segments (for method='cube').
radius : float
Sphere radius.
offset : bool
Rotate each row by half a column (for method='latitude').
subdivisions : int
Number of subdivisions to perform (for method='ico')
method : str
Method for generating sphere. Accepts 'latitude' for latitude-
longitude, 'ico' for icosahedron, and 'cube' for cube based
tessellation.
Returns
-------
sphere : MeshData
Vertices and faces computed for a spherical surface.
""" |
if method == 'latitude':
return _latitude(rows, cols, radius, offset)
elif method == 'ico':
return _ico(radius, subdivisions)
elif method == 'cube':
return _cube(rows, cols, depth, radius)
else:
raise Exception("Invalid method. Accepts: 'latitude', 'ico', 'cube'") |
<SYSTEM_TASK:>
Create a cylinder
<END_TASK>
<USER_TASK:>
Description:
def create_cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False):
"""Create a cylinder
Parameters
----------
rows : int
Number of rows.
cols : int
Number of columns.
radius : tuple of float
Cylinder radii.
length : float
Length of the cylinder.
offset : bool
Rotate each row by half a column.
Returns
-------
cylinder : MeshData
Vertices and faces computed for a cylindrical surface.
""" |
verts = np.empty((rows+1, cols, 3), dtype=np.float32)
if isinstance(radius, int):
radius = [radius, radius] # convert to list
# compute vertices
th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols)
# radius as a function of z
r = np.linspace(radius[0], radius[1], num=rows+1,
endpoint=True).reshape(rows+1, 1)
verts[..., 2] = np.linspace(0, length, num=rows+1,
endpoint=True).reshape(rows+1, 1) # z
if offset:
# rotate each row by 1/2 column
th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1, 1))
verts[..., 0] = r * np.cos(th) # x = r cos(th)
verts[..., 1] = r * np.sin(th) # y = r sin(th)
# just reshape: no redundant vertices...
verts = verts.reshape((rows+1)*cols, 3)
# compute faces
faces = np.empty((rows*cols*2, 3), dtype=np.uint32)
rowtemplate1 = (((np.arange(cols).reshape(cols, 1) +
np.array([[0, 1, 0]])) % cols) +
np.array([[0, 0, cols]]))
rowtemplate2 = (((np.arange(cols).reshape(cols, 1) +
np.array([[0, 1, 1]])) % cols) +
np.array([[cols, 0, cols]]))
for row in range(rows):
start = row * cols * 2
faces[start:start+cols] = rowtemplate1 + row * cols
faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
return MeshData(vertices=verts, faces=faces) |
<SYSTEM_TASK:>
Create a 3D arrow using a cylinder plus cone
<END_TASK>
<USER_TASK:>
Description:
def create_arrow(rows, cols, radius=0.1, length=1.0,
cone_radius=None, cone_length=None):
"""Create a 3D arrow using a cylinder plus cone
Parameters
----------
rows : int
Number of rows.
cols : int
Number of columns.
radius : float
Base cylinder radius.
length : float
Length of the arrow.
cone_radius : float
Radius of the cone base.
If None, then this defaults to 2x the cylinder radius.
cone_length : float
Length of the cone.
If None, then this defaults to 1/3 of the arrow length.
Returns
-------
arrow : MeshData
Vertices and faces computed for a cone surface.
""" |
# create the cylinder
md_cyl = None
if cone_radius is None:
cone_radius = radius*2.0
if cone_length is None:
con_L = length/3.0
cyl_L = length*2.0/3.0
else:
cyl_L = max(0, length - cone_length)
con_L = min(cone_length, length)
if cyl_L != 0:
md_cyl = create_cylinder(rows, cols, radius=[radius, radius],
length=cyl_L)
# create the cone
md_con = create_cone(cols, radius=cone_radius, length=con_L)
verts = md_con.get_vertices()
nbr_verts_con = verts.size//3
faces = md_con.get_faces()
if md_cyl is not None:
trans = np.array([[0.0, 0.0, cyl_L]])
verts = np.vstack((verts+trans, md_cyl.get_vertices()))
faces = np.vstack((faces, md_cyl.get_faces()+nbr_verts_con))
return MeshData(vertices=verts, faces=faces) |
<SYSTEM_TASK:>
Generate the vertices for straight lines between nodes.
<END_TASK>
<USER_TASK:>
Description:
def _straight_line_vertices(adjacency_mat, node_coords, directed=False):
"""
Generate the vertices for straight lines between nodes.
If it is a directed graph, it also generates the vertices which can be
passed to an :class:`ArrowVisual`.
Parameters
----------
adjacency_mat : array
The adjacency matrix of the graph
node_coords : array
The current coordinates of all nodes in the graph
directed : bool
Wether the graph is directed. If this is true it will also generate
the vertices for arrows which can be passed to :class:`ArrowVisual`.
Returns
-------
vertices : tuple
Returns a tuple containing containing (`line_vertices`,
`arrow_vertices`)
""" |
if not issparse(adjacency_mat):
adjacency_mat = np.asarray(adjacency_mat, float)
if (adjacency_mat.ndim != 2 or adjacency_mat.shape[0] !=
adjacency_mat.shape[1]):
raise ValueError("Adjacency matrix should be square.")
arrow_vertices = np.array([])
edges = _get_edges(adjacency_mat)
line_vertices = node_coords[edges.ravel()]
if directed:
arrows = np.array(list(_get_directed_edges(adjacency_mat)))
arrow_vertices = node_coords[arrows.ravel()]
arrow_vertices = arrow_vertices.reshape((len(arrow_vertices)/2, 4))
return line_vertices, arrow_vertices |
<SYSTEM_TASK:>
Factory function for creating new cameras using a string name.
<END_TASK>
<USER_TASK:>
Description:
def make_camera(cam_type, *args, **kwargs):
""" Factory function for creating new cameras using a string name.
Parameters
----------
cam_type : str
May be one of:
* 'panzoom' : Creates :class:`PanZoomCamera`
* 'turntable' : Creates :class:`TurntableCamera`
* None : Creates :class:`Camera`
Notes
-----
All extra arguments are passed to the __init__ method of the selected
Camera class.
""" |
cam_types = {None: BaseCamera}
for camType in (BaseCamera, PanZoomCamera, PerspectiveCamera,
TurntableCamera, FlyCamera, ArcballCamera):
cam_types[camType.__name__[:-6].lower()] = camType
try:
return cam_types[cam_type](*args, **kwargs)
except KeyError:
raise KeyError('Unknown camera type "%s". Options are: %s' %
(cam_type, cam_types.keys())) |
<SYSTEM_TASK:>
Set the position of the datapoints
<END_TASK>
<USER_TASK:>
Description:
def set_data_values(self, label, x, y, z):
"""
Set the position of the datapoints
""" |
# TODO: avoid re-allocating an array every time
self.layers[label]['data'] = np.array([x, y, z]).transpose()
self._update() |
<SYSTEM_TASK:>
Computes the parameterization of a parametric surface
<END_TASK>
<USER_TASK:>
Description:
def surface(func, umin=0, umax=2 * np.pi, ucount=64, urepeat=1.0,
vmin=0, vmax=2 * np.pi, vcount=64, vrepeat=1.0):
"""
Computes the parameterization of a parametric surface
func: function(u,v)
Parametric function used to build the surface
""" |
vtype = [('position', np.float32, 3),
('texcoord', np.float32, 2),
('normal', np.float32, 3)]
itype = np.uint32
# umin, umax, ucount = 0, 2*np.pi, 64
# vmin, vmax, vcount = 0, 2*np.pi, 64
vcount += 1
ucount += 1
n = vcount * ucount
Un = np.repeat(np.linspace(0, 1, ucount, endpoint=True), vcount)
Vn = np.tile(np.linspace(0, 1, vcount, endpoint=True), ucount)
U = umin + Un * (umax - umin)
V = vmin + Vn * (vmax - vmin)
vertices = np.zeros(n, dtype=vtype)
for i, (u, v) in enumerate(zip(U, V)):
vertices["position"][i] = func(u, v)
vertices["texcoord"][:, 0] = Un * urepeat
vertices["texcoord"][:, 1] = Vn * vrepeat
indices = []
for i in range(ucount - 1):
for j in range(vcount - 1):
indices.append(i * (vcount) + j)
indices.append(i * (vcount) + j + 1)
indices.append(i * (vcount) + j + vcount + 1)
indices.append(i * (vcount) + j + vcount)
indices.append(i * (vcount) + j + vcount + 1)
indices.append(i * (vcount) + j)
indices = np.array(indices, dtype=itype)
vertices["normal"] = normals(vertices["position"],
indices.reshape(len(indices) / 3, 3))
return vertices, indices |
<SYSTEM_TASK:>
New program was added to the multiprogram; update items in the
<END_TASK>
<USER_TASK:>
Description:
def _new_program(self, p):
"""New program was added to the multiprogram; update items in the
shader.
""" |
for k, v in self._set_items.items():
getattr(p, self._shader)[k] = v |
<SYSTEM_TASK:>
Attach this tranform to a canvas
<END_TASK>
<USER_TASK:>
Description:
def attach(self, canvas):
"""Attach this tranform to a canvas
Parameters
----------
canvas : instance of Canvas
The canvas.
""" |
self._canvas = canvas
canvas.events.resize.connect(self.on_resize)
canvas.events.mouse_wheel.connect(self.on_mouse_wheel)
canvas.events.mouse_move.connect(self.on_mouse_move) |
<SYSTEM_TASK:>
Depth of the smallest HEALPix cells found in the MOC instance.
<END_TASK>
<USER_TASK:>
Description:
def max_order(self):
"""
Depth of the smallest HEALPix cells found in the MOC instance.
""" |
# TODO: cache value
combo = int(0)
for iv in self._interval_set._intervals:
combo |= iv[0] | iv[1]
ret = AbstractMOC.HPY_MAX_NORDER - (utils.number_trailing_zeros(combo) // 2)
if ret < 0:
ret = 0
return ret |
<SYSTEM_TASK:>
Intersection between the MOC instance and other MOCs.
<END_TASK>
<USER_TASK:>
Description:
def intersection(self, another_moc, *args):
"""
Intersection between the MOC instance and other MOCs.
Parameters
----------
another_moc : `~mocpy.moc.MOC`
The MOC used for performing the intersection with self.
args : `~mocpy.moc.MOC`
Other additional MOCs to perform the intersection with.
Returns
-------
result : `~mocpy.moc.MOC`/`~mocpy.tmoc.TimeMOC`
The resulting MOC.
""" |
interval_set = self._interval_set.intersection(another_moc._interval_set)
for moc in args:
interval_set = interval_set.intersection(moc._interval_set)
return self.__class__(interval_set) |
<SYSTEM_TASK:>
Union between the MOC instance and other MOCs.
<END_TASK>
<USER_TASK:>
Description:
def union(self, another_moc, *args):
"""
Union between the MOC instance and other MOCs.
Parameters
----------
another_moc : `~mocpy.moc.MOC`
The MOC used for performing the union with self.
args : `~mocpy.moc.MOC`
Other additional MOCs to perform the union with.
Returns
-------
result : `~mocpy.moc.MOC`/`~mocpy.tmoc.TimeMOC`
The resulting MOC.
""" |
interval_set = self._interval_set.union(another_moc._interval_set)
for moc in args:
interval_set = interval_set.union(moc._interval_set)
return self.__class__(interval_set) |
<SYSTEM_TASK:>
Difference between the MOC instance and other MOCs.
<END_TASK>
<USER_TASK:>
Description:
def difference(self, another_moc, *args):
"""
Difference between the MOC instance and other MOCs.
Parameters
----------
another_moc : `~mocpy.moc.MOC`
The MOC used that will be substracted to self.
args : `~mocpy.moc.MOC`
Other additional MOCs to perform the difference with.
Returns
-------
result : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC`
The resulting MOC.
""" |
interval_set = self._interval_set.difference(another_moc._interval_set)
for moc in args:
interval_set = interval_set.difference(moc._interval_set)
return self.__class__(interval_set) |
<SYSTEM_TASK:>
Returns all the pixels neighbours of ``ipix``
<END_TASK>
<USER_TASK:>
Description:
def _neighbour_pixels(hp, ipix):
"""
Returns all the pixels neighbours of ``ipix``
""" |
neigh_ipix = np.unique(hp.neighbours(ipix).ravel())
# Remove negative pixel values returned by `~astropy_healpix.HEALPix.neighbours`
return neigh_ipix[np.where(neigh_ipix >= 0)] |
<SYSTEM_TASK:>
Creates a MOC from a numpy array representing the HEALPix cells.
<END_TASK>
<USER_TASK:>
Description:
def from_cells(cls, cells):
"""
Creates a MOC from a numpy array representing the HEALPix cells.
Parameters
----------
cells : `numpy.ndarray`
Must be a numpy structured array (See https://docs.scipy.org/doc/numpy-1.15.0/user/basics.rec.html).
The structure of a cell contains 3 attributes:
- A `ipix` value being a np.uint64
- A `depth` value being a np.uint32
- A `fully_covered` flag bit stored in a np.uint8
Returns
-------
moc : `~mocpy.moc.MOC`
The MOC.
""" |
shift = (AbstractMOC.HPY_MAX_NORDER - cells["depth"]) << 1
p1 = cells["ipix"]
p2 = cells["ipix"] + 1
intervals = np.vstack((p1 << shift, p2 << shift)).T
return cls(IntervalSet(intervals)) |
<SYSTEM_TASK:>
Creates a MOC from a dictionary of HEALPix cell arrays indexed by their depth.
<END_TASK>
<USER_TASK:>
Description:
def from_json(cls, json_moc):
"""
Creates a MOC from a dictionary of HEALPix cell arrays indexed by their depth.
Parameters
----------
json_moc : dict(str : [int]
A dictionary of HEALPix cell arrays indexed by their depth.
Returns
-------
moc : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC`
the MOC.
""" |
intervals = np.array([])
for order, pix_l in json_moc.items():
if len(pix_l) == 0:
continue
pix = np.array(pix_l)
p1 = pix
p2 = pix + 1
shift = 2 * (AbstractMOC.HPY_MAX_NORDER - int(order))
itv = np.vstack((p1 << shift, p2 << shift)).T
if intervals.size == 0:
intervals = itv
else:
intervals = np.vstack((intervals, itv))
return cls(IntervalSet(intervals)) |
<SYSTEM_TASK:>
Loads a MOC from a FITS file.
<END_TASK>
<USER_TASK:>
Description:
def from_fits(cls, filename):
"""
Loads a MOC from a FITS file.
The specified FITS file must store the MOC (i.e. the list of HEALPix cells it contains) in a binary HDU table.
Parameters
----------
filename : str
The path to the FITS file.
Returns
-------
result : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC`
The resulting MOC.
""" |
table = Table.read(filename)
intervals = np.vstack((table['UNIQ'], table['UNIQ']+1)).T
nuniq_interval_set = IntervalSet(intervals)
interval_set = IntervalSet.from_nuniq_interval_set(nuniq_interval_set)
return cls(interval_set) |
<SYSTEM_TASK:>
Serializes a MOC to the JSON format.
<END_TASK>
<USER_TASK:>
Description:
def _to_json(uniq):
"""
Serializes a MOC to the JSON format.
Parameters
----------
uniq : `~numpy.ndarray`
The array of HEALPix cells representing the MOC to serialize.
Returns
-------
result_json : {str : [int]}
A dictionary of HEALPix cell lists indexed by their depth.
""" |
result_json = {}
depth, ipix = utils.uniq2orderipix(uniq)
min_depth = np.min(depth[0])
max_depth = np.max(depth[-1])
for d in range(min_depth, max_depth+1):
pix_index = np.where(depth == d)[0]
if pix_index.size:
# there are pixels belonging to the current order
ipix_depth = ipix[pix_index]
result_json[str(d)] = ipix_depth.tolist()
return result_json |
<SYSTEM_TASK:>
Serializes a MOC to the STRING format.
<END_TASK>
<USER_TASK:>
Description:
def _to_str(uniq):
"""
Serializes a MOC to the STRING format.
HEALPix cells are separated by a comma. The HEALPix cell at order 0 and number 10 is encoded
by the string: "0/10", the first digit representing the depth and the second the HEALPix cell number
for this depth. HEALPix cells next to each other within a specific depth can be expressed as a range and
therefore written like that: "12/10-150". This encodes the list of HEALPix cells from 10 to 150 at the
depth 12.
Parameters
----------
uniq : `~numpy.ndarray`
The array of HEALPix cells representing the MOC to serialize.
Returns
-------
result : str
The serialized MOC.
""" |
def write_cells(serial, a, b, sep=''):
if a == b:
serial += '{0}{1}'.format(a, sep)
else:
serial += '{0}-{1}{2}'.format(a, b, sep)
return serial
res = ''
if uniq.size == 0:
return res
depth, ipixels = utils.uniq2orderipix(uniq)
min_depth = np.min(depth[0])
max_depth = np.max(depth[-1])
for d in range(min_depth, max_depth+1):
pix_index = np.where(depth == d)[0]
if pix_index.size > 0:
# Serialize the depth followed by a slash
res += '{0}/'.format(d)
# Retrieve the pixel(s) for this depth
ipix_depth = ipixels[pix_index]
if ipix_depth.size == 1:
# If there is only one pixel we serialize it and
# go to the next depth
res = write_cells(res, ipix_depth[0], ipix_depth[0])
else:
# Sort them in case there are several
ipix_depth = np.sort(ipix_depth)
beg_range = ipix_depth[0]
last_range = beg_range
# Loop over the sorted pixels by tracking the lower bound of
# the current range and the last pixel.
for ipix in ipix_depth[1:]:
# If the current pixel does not follow the previous one
# then we can end a range and serializes it
if ipix > last_range + 1:
res = write_cells(res, beg_range, last_range, sep=',')
# The current pixel is the beginning of a new range
beg_range = ipix
last_range = ipix
# Write the last range
res = write_cells(res, beg_range, last_range)
# Add a ' ' separator before writing serializing the pixels of the next depth
res += ' '
# Remove the last ' ' character
res = res[:-1]
return res |
<SYSTEM_TASK:>
Serializes a MOC to the FITS format.
<END_TASK>
<USER_TASK:>
Description:
def _to_fits(self, uniq, optional_kw_dict=None):
"""
Serializes a MOC to the FITS format.
Parameters
----------
uniq : `numpy.ndarray`
The array of HEALPix cells representing the MOC to serialize.
optional_kw_dict : dict
Optional keywords arguments added to the FITS header.
Returns
-------
thdulist : `astropy.io.fits.HDUList`
The list of HDU tables.
""" |
depth = self.max_order
if depth <= 13:
fits_format = '1J'
else:
fits_format = '1K'
tbhdu = fits.BinTableHDU.from_columns(
fits.ColDefs([
fits.Column(name='UNIQ', format=fits_format, array=uniq)
]))
tbhdu.header['PIXTYPE'] = 'HEALPIX'
tbhdu.header['ORDERING'] = 'NUNIQ'
tbhdu.header.update(self._fits_header_keywords)
tbhdu.header['MOCORDER'] = depth
tbhdu.header['MOCTOOL'] = 'MOCPy'
if optional_kw_dict:
for key in optional_kw_dict:
tbhdu.header[key] = optional_kw_dict[key]
thdulist = fits.HDUList([fits.PrimaryHDU(), tbhdu])
return thdulist |
<SYSTEM_TASK:>
Serializes the MOC into a specific format.
<END_TASK>
<USER_TASK:>
Description:
def serialize(self, format='fits', optional_kw_dict=None):
"""
Serializes the MOC into a specific format.
Possible formats are FITS, JSON and STRING
Parameters
----------
format : str
'fits' by default. The other possible choice is 'json' or 'str'.
optional_kw_dict : dict
Optional keywords arguments added to the FITS header. Only used if ``format`` equals to 'fits'.
Returns
-------
result : `astropy.io.fits.HDUList` or JSON dictionary
The result of the serialization.
""" |
formats = ('fits', 'json', 'str')
if format not in formats:
raise ValueError('format should be one of %s' % (str(formats)))
uniq_l = []
for uniq in self._uniq_pixels_iterator():
uniq_l.append(uniq)
uniq = np.array(uniq_l)
if format == 'fits':
result = self._to_fits(uniq=uniq,
optional_kw_dict=optional_kw_dict)
elif format == 'str':
result = self.__class__._to_str(uniq=uniq)
else:
# json format serialization
result = self.__class__._to_json(uniq=uniq)
return result |
<SYSTEM_TASK:>
Writes the MOC to a file.
<END_TASK>
<USER_TASK:>
Description:
def write(self, path, format='fits', overwrite=False, optional_kw_dict=None):
"""
Writes the MOC to a file.
Format can be 'fits' or 'json', though only the fits format is officially supported by the IVOA.
Parameters
----------
path : str, optional
The path to the file to save the MOC in.
format : str, optional
The format in which the MOC will be serialized before being saved. Possible formats are "fits" or "json".
By default, ``format`` is set to "fits".
overwrite : bool, optional
If the file already exists and you want to overwrite it, then set the ``overwrite`` keyword. Default to False.
optional_kw_dict : optional
Optional keywords arguments added to the FITS header. Only used if ``format`` equals to 'fits'.
""" |
serialization = self.serialize(format=format, optional_kw_dict=optional_kw_dict)
if format == 'fits':
serialization.writeto(path, overwrite=overwrite)
else:
import json
with open(path, 'w') as h:
h.write(json.dumps(serialization, sort_keys=True, indent=2)) |
<SYSTEM_TASK:>
Degrades the MOC instance to a new, less precise, MOC.
<END_TASK>
<USER_TASK:>
Description:
def degrade_to_order(self, new_order):
"""
Degrades the MOC instance to a new, less precise, MOC.
The maximum depth (i.e. the depth of the smallest HEALPix cells that can be found in the MOC) of the
degraded MOC is set to ``new_order``.
Parameters
----------
new_order : int
Maximum depth of the output degraded MOC.
Returns
-------
moc : `~mocpy.moc.MOC` or `~mocpy.tmoc.TimeMOC`
The degraded MOC.
""" |
shift = 2 * (AbstractMOC.HPY_MAX_NORDER - new_order)
ofs = (int(1) << shift) - 1
mask = ~ofs
adda = int(0)
addb = ofs
iv_set = []
for iv in self._interval_set._intervals:
a = (iv[0] + adda) & mask
b = (iv[1] + addb) & mask
if b > a:
iv_set.append((a, b))
return self.__class__(IntervalSet(np.asarray(iv_set))) |
<SYSTEM_TASK:>
Set Screen Height
<END_TASK>
<USER_TASK:>
Description:
def set_height(self, height):
""" Set Screen Height """ |
if height > 0 and height <= self.server.server_info.get("screen_height"):
self.height = height
self.server.request("screen_set %s hgt %i" % (self.ref, self.height)) |
<SYSTEM_TASK:>
Add Title Widget
<END_TASK>
<USER_TASK:>
Description:
def add_title_widget(self, ref, text="Title"):
""" Add Title Widget """ |
if ref not in self.widgets:
widget = widgets.TitleWidget(screen=self, ref=ref, text=text)
self.widgets[ref] = widget
return self.widgets[ref] |
<SYSTEM_TASK:>
Add Frame Widget
<END_TASK>
<USER_TASK:>
Description:
def add_frame_widget(self, ref, left=1, top=1, right=20, bottom=1, width=20, height=4, direction="h", speed=1):
""" Add Frame Widget """ |
if ref not in self.widgets:
widget = widgets.FrameWidget(
screen=self, ref=ref, left=left, top=top, right=right, bottom=bottom, width=width, height=height,
direction=direction, speed=speed,
)
self.widgets[ref] = widget
return self.widgets[ref] |
<SYSTEM_TASK:>
Orbits the camera around the center position.
<END_TASK>
<USER_TASK:>
Description:
def orbit(self, azim, elev):
""" Orbits the camera around the center position.
Parameters
----------
azim : float
Angle in degrees to rotate horizontally around the center point.
elev : float
Angle in degrees to rotate vertically around the center point.
""" |
self.azimuth += azim
self.elevation = np.clip(self.elevation + elev, -90, 90)
self.view_changed() |
<SYSTEM_TASK:>
Copy functions from OpenGL.GL into _pyopengl namespace.
<END_TASK>
<USER_TASK:>
Description:
def _inject():
""" Copy functions from OpenGL.GL into _pyopengl namespace.
""" |
NS = _pyopengl2.__dict__
for glname, ourname in _pyopengl2._functions_to_import:
func = _get_function_from_pyopengl(glname)
NS[ourname] = func |
<SYSTEM_TASK:>
Convert Nx3 or Nx4 lab to rgb
<END_TASK>
<USER_TASK:>
Description:
def _lab_to_rgb(labs):
"""Convert Nx3 or Nx4 lab to rgb""" |
# adapted from BSD-licensed work in MATLAB by Mark Ruzon
# Based on ITU-R Recommendation BT.709 using the D65
labs, n_dim = _check_color_dim(labs)
# Convert Lab->XYZ (silly indexing used to preserve dimensionality)
y = (labs[:, 0] + 16.) / 116.
x = (labs[:, 1] / 500.) + y
z = y - (labs[:, 2] / 200.)
xyz = np.concatenate(([x], [y], [z])) # 3xN
over = xyz > 0.2068966
xyz[over] = xyz[over] ** 3.
xyz[~over] = (xyz[~over] - 0.13793103448275862) / 7.787
# Convert XYZ->LAB
rgbs = np.dot(_xyz2rgb_norm, xyz).T
over = rgbs > 0.0031308
rgbs[over] = 1.055 * (rgbs[over] ** (1. / 2.4)) - 0.055
rgbs[~over] *= 12.92
if n_dim == 4:
rgbs = np.concatenate((rgbs, labs[:, 3]), axis=1)
rgbs = np.clip(rgbs, 0., 1.)
return rgbs |
<SYSTEM_TASK:>
Find an adequate value for this field from a dict of tags.
<END_TASK>
<USER_TASK:>
Description:
def get(self, tags):
"""Find an adequate value for this field from a dict of tags.""" |
# Try to find our name
value = tags.get(self.name, '')
for name in self.alternate_tags:
# Iterate of alternates until a non-empty value is found
value = value or tags.get(name, '')
# If we still have nothing, return our default
value = value or self.default
return value |
<SYSTEM_TASK:>
message - text message to be spoken out by the Echo
<END_TASK>
<USER_TASK:>
Description:
def create_response(self, message=None, end_session=False, card_obj=None,
reprompt_message=None, is_ssml=None):
"""
message - text message to be spoken out by the Echo
end_session - flag to determine whether this interaction should end the session
card_obj = JSON card object to substitute the 'card' field in the raw_response
""" |
response = dict(self.base_response)
if message:
response['response'] = self.create_speech(message, is_ssml)
response['response']['shouldEndSession'] = end_session
if card_obj:
response['response']['card'] = card_obj
if reprompt_message:
response['response']['reprompt'] = self.create_speech(reprompt_message, is_ssml)
return Response(response) |
<SYSTEM_TASK:>
Friend method of viewbox to register itself.
<END_TASK>
<USER_TASK:>
Description:
def _viewbox_set(self, viewbox):
""" Friend method of viewbox to register itself.
""" |
self._viewbox = viewbox
# Connect
viewbox.events.mouse_press.connect(self.viewbox_mouse_event)
viewbox.events.mouse_release.connect(self.viewbox_mouse_event)
viewbox.events.mouse_move.connect(self.viewbox_mouse_event)
viewbox.events.mouse_wheel.connect(self.viewbox_mouse_event)
viewbox.events.resize.connect(self.viewbox_resize_event) |
<SYSTEM_TASK:>
Friend method of viewbox to unregister itself.
<END_TASK>
<USER_TASK:>
Description:
def _viewbox_unset(self, viewbox):
""" Friend method of viewbox to unregister itself.
""" |
self._viewbox = None
# Disconnect
viewbox.events.mouse_press.disconnect(self.viewbox_mouse_event)
viewbox.events.mouse_release.disconnect(self.viewbox_mouse_event)
viewbox.events.mouse_move.disconnect(self.viewbox_mouse_event)
viewbox.events.mouse_wheel.disconnect(self.viewbox_mouse_event)
viewbox.events.resize.disconnect(self.viewbox_resize_event) |
<SYSTEM_TASK:>
Set the range of the view region for the camera
<END_TASK>
<USER_TASK:>
Description:
def set_range(self, x=None, y=None, z=None, margin=0.05):
""" Set the range of the view region for the camera
Parameters
----------
x : tuple | None
X range.
y : tuple | None
Y range.
z : tuple | None
Z range.
margin : float
Margin to use.
Notes
-----
The view is set to the given range or to the scene boundaries
if ranges are not specified. The ranges should be 2-element
tuples specifying the min and max for each dimension.
For the PanZoomCamera the view is fully defined by the range.
For e.g. the TurntableCamera the elevation and azimuth are not
set. One should use reset() for that.
""" |
# Flag to indicate that this is an initializing (not user-invoked)
init = self._xlim is None
# Collect given bounds
bounds = [None, None, None]
if x is not None:
bounds[0] = float(x[0]), float(x[1])
if y is not None:
bounds[1] = float(y[0]), float(y[1])
if z is not None:
bounds[2] = float(z[0]), float(z[1])
# If there is no viewbox, store given bounds in lim variables, and stop
if self._viewbox is None:
self._set_range_args = bounds[0], bounds[1], bounds[2], margin
return
# There is a viewbox, we're going to set the range for real
self._resetting = True
# Get bounds from viewbox if not given
if all([(b is None) for b in bounds]):
bounds = self._viewbox.get_scene_bounds()
else:
for i in range(3):
if bounds[i] is None:
bounds[i] = self._viewbox.get_scene_bounds(i)
# Calculate ranges and margins
ranges = [b[1] - b[0] for b in bounds]
margins = [(r*margin or 0.1) for r in ranges]
# Assign limits for this camera
bounds_margins = [(b[0]-m, b[1]+m) for b, m in zip(bounds, margins)]
self._xlim, self._ylim, self._zlim = bounds_margins
# Store center location
if (not init) or (self._center is None):
self._center = [(b[0] + r / 2) for b, r in zip(bounds, ranges)]
# Let specific camera handle it
self._set_range(init)
# Finish
self._resetting = False
self.view_changed() |
<SYSTEM_TASK:>
Get the current view state of the camera
<END_TASK>
<USER_TASK:>
Description:
def get_state(self):
""" Get the current view state of the camera
Returns a dict of key-value pairs. The exact keys depend on the
camera. Can be passed to set_state() (of this or another camera
of the same type) to reproduce the state.
""" |
D = {}
for key in self._state_props:
D[key] = getattr(self, key)
return D |
<SYSTEM_TASK:>
Set the view state of the camera
<END_TASK>
<USER_TASK:>
Description:
def set_state(self, state=None, **kwargs):
""" Set the view state of the camera
Should be a dict (or kwargs) as returned by get_state. It can
be an incomlete dict, in which case only the specified
properties are set.
Parameters
----------
state : dict
The camera state.
**kwargs : dict
Unused keyword arguments.
""" |
D = state or {}
D.update(kwargs)
for key, val in D.items():
if key not in self._state_props:
raise KeyError('Not a valid camera state property %r' % key)
setattr(self, key, val) |
<SYSTEM_TASK:>
Link this camera with another camera of the same type
<END_TASK>
<USER_TASK:>
Description:
def link(self, camera):
""" Link this camera with another camera of the same type
Linked camera's keep each-others' state in sync.
Parameters
----------
camera : instance of Camera
The other camera to link.
""" |
cam1, cam2 = self, camera
# Remove if already linked
while cam1 in cam2._linked_cameras:
cam2._linked_cameras.remove(cam1)
while cam2 in cam1._linked_cameras:
cam1._linked_cameras.remove(cam2)
# Link both ways
cam1._linked_cameras.append(cam2)
cam2._linked_cameras.append(cam1) |
<SYSTEM_TASK:>
Called when this camera is changes its view. Also called
<END_TASK>
<USER_TASK:>
Description:
def view_changed(self):
""" Called when this camera is changes its view. Also called
when its associated with a viewbox.
""" |
if self._resetting:
return # don't update anything while resetting (are in set_range)
if self._viewbox:
# Set range if necessary
if self._xlim is None:
args = self._set_range_args or ()
self.set_range(*args)
# Store default state if we have not set it yet
if self._default_state is None:
self.set_default_state()
# Do the actual update
self._update_transform() |
<SYSTEM_TASK:>
Canvas change event handler
<END_TASK>
<USER_TASK:>
Description:
def on_canvas_change(self, event):
"""Canvas change event handler
Parameters
----------
event : instance of Event
The event.
""" |
# Connect key events from canvas to camera.
# TODO: canvas should keep track of a single node with keyboard focus.
if event.old is not None:
event.old.events.key_press.disconnect(self.viewbox_key_event)
event.old.events.key_release.disconnect(self.viewbox_key_event)
if event.new is not None:
event.new.events.key_press.connect(self.viewbox_key_event)
event.new.events.key_release.connect(self.viewbox_key_event) |
<SYSTEM_TASK:>
Called by subclasses to configure the viewbox scene transform.
<END_TASK>
<USER_TASK:>
Description:
def _set_scene_transform(self, tr):
""" Called by subclasses to configure the viewbox scene transform.
""" |
# todo: check whether transform has changed, connect to
# transform.changed event
pre_tr = self.pre_transform
if pre_tr is None:
self._scene_transform = tr
else:
self._transform_cache.roll()
self._scene_transform = self._transform_cache.get([pre_tr, tr])
# Mark the transform dynamic so that it will not be collapsed with
# others
self._scene_transform.dynamic = True
# Update scene
self._viewbox.scene.transform = self._scene_transform
self._viewbox.update()
# Apply same state to linked cameras, but prevent that camera
# to return the favor
for cam in self._linked_cameras:
if cam is self._linked_cameras_no_update:
continue
try:
cam._linked_cameras_no_update = self
cam.set_state(self.get_state())
finally:
cam._linked_cameras_no_update = None |
<SYSTEM_TASK:>
Get the window id of a PySide Widget. Might also work for PyQt4.
<END_TASK>
<USER_TASK:>
Description:
def get_window_id(self):
""" Get the window id of a PySide Widget. Might also work for PyQt4.
""" |
# Get Qt win id
winid = self.winId()
# On Linux this is it
if IS_RPI:
nw = (ctypes.c_int * 3)(winid, self.width(), self.height())
return ctypes.pointer(nw)
elif IS_LINUX:
return int(winid) # Is int on PySide, but sip.voidptr on PyQt
# Get window id from stupid capsule thingy
# http://translate.google.com/translate?hl=en&sl=zh-CN&u=http://www.cnb
#logs.com/Shiren-Y/archive/2011/04/06/2007288.html&prev=/search%3Fq%3Dp
# yside%2Bdirectx%26client%3Dfirefox-a%26hs%3DIsJ%26rls%3Dorg.mozilla:n
#l:official%26channel%3Dfflb%26biw%3D1366%26bih%3D614
# Prepare
ctypes.pythonapi.PyCapsule_GetName.restype = ctypes.c_char_p
ctypes.pythonapi.PyCapsule_GetName.argtypes = [ctypes.py_object]
ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p
ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ctypes.py_object,
ctypes.c_char_p]
# Extract handle from capsule thingy
name = ctypes.pythonapi.PyCapsule_GetName(winid)
handle = ctypes.pythonapi.PyCapsule_GetPointer(winid, name)
return handle |
<SYSTEM_TASK:>
Change the translation of this transform by the amount given.
<END_TASK>
<USER_TASK:>
Description:
def move(self, move):
"""Change the translation of this transform by the amount given.
Parameters
----------
move : array-like
The values to be added to the current translation of the transform.
""" |
move = as_vec4(move, default=(0, 0, 0, 0))
self.translate = self.translate + move |
<SYSTEM_TASK:>
Update the transform such that its scale factor is changed, but
<END_TASK>
<USER_TASK:>
Description:
def zoom(self, zoom, center=(0, 0, 0), mapped=True):
"""Update the transform such that its scale factor is changed, but
the specified center point is left unchanged.
Parameters
----------
zoom : array-like
Values to multiply the transform's current scale
factors.
center : array-like
The center point around which the scaling will take place.
mapped : bool
Whether *center* is expressed in mapped coordinates (True) or
unmapped coordinates (False).
""" |
zoom = as_vec4(zoom, default=(1, 1, 1, 1))
center = as_vec4(center, default=(0, 0, 0, 0))
scale = self.scale * zoom
if mapped:
trans = center - (center - self.translate) * zoom
else:
trans = self.scale * (1 - zoom) * center + self.translate
self._set_st(scale=scale, translate=trans) |
<SYSTEM_TASK:>
Create an STTransform from the given mapping
<END_TASK>
<USER_TASK:>
Description:
def from_mapping(cls, x0, x1):
""" Create an STTransform from the given mapping
See `set_mapping` for details.
Parameters
----------
x0 : array-like
Start.
x1 : array-like
End.
Returns
-------
t : instance of STTransform
The transform.
""" |
t = cls()
t.set_mapping(x0, x1)
return t |
<SYSTEM_TASK:>
Configure this transform such that it maps points x0 => x1
<END_TASK>
<USER_TASK:>
Description:
def set_mapping(self, x0, x1, update=True):
"""Configure this transform such that it maps points x0 => x1
Parameters
----------
x0 : array-like, shape (2, 2) or (2, 3)
Start location.
x1 : array-like, shape (2, 2) or (2, 3)
End location.
update : bool
If False, then the update event is not emitted.
Examples
--------
For example, if we wish to map the corners of a rectangle::
>>> p1 = [[0, 0], [200, 300]]
onto a unit cube::
>>> p2 = [[-1, -1], [1, 1]]
then we can generate the transform as follows::
>>> tr = STTransform()
>>> tr.set_mapping(p1, p2)
>>> assert tr.map(p1)[:,:2] == p2 # test
""" |
# if args are Rect, convert to array first
if isinstance(x0, Rect):
x0 = x0._transform_in()[:3]
if isinstance(x1, Rect):
x1 = x1._transform_in()[:3]
x0 = np.asarray(x0)
x1 = np.asarray(x1)
if (x0.ndim != 2 or x0.shape[0] != 2 or x1.ndim != 2 or
x1.shape[0] != 2):
raise TypeError("set_mapping requires array inputs of shape "
"(2, N).")
denom = x0[1] - x0[0]
mask = denom == 0
denom[mask] = 1.0
s = (x1[1] - x1[0]) / denom
s[mask] = 1.0
s[x0[1] == x0[0]] = 1.0
t = x1[0] - s * x0[0]
s = as_vec4(s, default=(1, 1, 1, 1))
t = as_vec4(t, default=(0, 0, 0, 0))
self._set_st(scale=s, translate=t, update=update) |
<SYSTEM_TASK:>
Translate the matrix
<END_TASK>
<USER_TASK:>
Description:
def translate(self, pos):
"""
Translate the matrix
The translation is applied *after* the transformations already present
in the matrix.
Parameters
----------
pos : arrayndarray
Position to translate by.
""" |
self.matrix = np.dot(self.matrix, transforms.translate(pos[0, :3])) |
<SYSTEM_TASK:>
Scale the matrix about a given origin.
<END_TASK>
<USER_TASK:>
Description:
def scale(self, scale, center=None):
"""
Scale the matrix about a given origin.
The scaling is applied *after* the transformations already present
in the matrix.
Parameters
----------
scale : array-like
Scale factors along x, y and z axes.
center : array-like or None
The x, y and z coordinates to scale around. If None,
(0, 0, 0) will be used.
""" |
scale = transforms.scale(as_vec4(scale, default=(1, 1, 1, 1))[0, :3])
if center is not None:
center = as_vec4(center)[0, :3]
scale = np.dot(np.dot(transforms.translate(-center), scale),
transforms.translate(center))
self.matrix = np.dot(self.matrix, scale) |
<SYSTEM_TASK:>
Rotate the matrix by some angle about a given axis.
<END_TASK>
<USER_TASK:>
Description:
def rotate(self, angle, axis):
"""
Rotate the matrix by some angle about a given axis.
The rotation is applied *after* the transformations already present
in the matrix.
Parameters
----------
angle : float
The angle of rotation, in degrees.
axis : array-like
The x, y and z coordinates of the axis vector to rotate around.
""" |
self.matrix = np.dot(self.matrix, transforms.rotate(angle, axis)) |
<SYSTEM_TASK:>
Set to a 3D transformation matrix that maps points1 onto points2.
<END_TASK>
<USER_TASK:>
Description:
def set_mapping(self, points1, points2):
""" Set to a 3D transformation matrix that maps points1 onto points2.
Parameters
----------
points1 : array-like, shape (4, 3)
Four starting 3D coordinates.
points2 : array-like, shape (4, 3)
Four ending 3D coordinates.
""" |
# note: need to transpose because util.functions uses opposite
# of standard linear algebra order.
self.matrix = transforms.affine_map(points1, points2).T |
<SYSTEM_TASK:>
Set ortho transform
<END_TASK>
<USER_TASK:>
Description:
def set_ortho(self, l, r, b, t, n, f):
"""Set ortho transform
Parameters
----------
l : float
Left.
r : float
Right.
b : float
Bottom.
t : float
Top.
n : float
Near.
f : float
Far.
""" |
self.matrix = transforms.ortho(l, r, b, t, n, f) |
<SYSTEM_TASK:>
Set the perspective
<END_TASK>
<USER_TASK:>
Description:
def set_perspective(self, fov, aspect, near, far):
"""Set the perspective
Parameters
----------
fov : float
Field of view.
aspect : float
Aspect ratio.
near : float
Near location.
far : float
Far location.
""" |
self.matrix = transforms.perspective(fov, aspect, near, far) |
<SYSTEM_TASK:>
Set the frustum
<END_TASK>
<USER_TASK:>
Description:
def set_frustum(self, l, r, b, t, n, f):
"""Set the frustum
Parameters
----------
l : float
Left.
r : float
Right.
b : float
Bottom.
t : float
Top.
n : float
Near.
f : float
Far.
""" |
self.matrix = transforms.frustum(l, r, b, t, n, f) |
<SYSTEM_TASK:>
Set the line data
<END_TASK>
<USER_TASK:>
Description:
def set_data(self, data=None, **kwargs):
"""Set the line data
Parameters
----------
data : array-like
The data.
**kwargs : dict
Keywoard arguments to pass to MarkerVisual and LineVisal.
""" |
if data is None:
pos = None
else:
if isinstance(data, tuple):
pos = np.array(data).T.astype(np.float32)
else:
pos = np.atleast_1d(data).astype(np.float32)
if pos.ndim == 1:
pos = pos[:, np.newaxis]
elif pos.ndim > 2:
raise ValueError('data must have at most two dimensions')
if pos.size == 0:
pos = self._line.pos
# if both args and keywords are zero, then there is no
# point in calling this function.
if len(kwargs) == 0:
raise TypeError("neither line points nor line properties"
"are provided")
elif pos.shape[1] == 1:
x = np.arange(pos.shape[0], dtype=np.float32)[:, np.newaxis]
pos = np.concatenate((x, pos), axis=1)
# if args are empty, don't modify position
elif pos.shape[1] > 3:
raise TypeError("Too many coordinates given (%s; max is 3)."
% pos.shape[1])
# todo: have both sub-visuals share the same buffers.
line_kwargs = {}
for k in self._line_kwargs:
if k in kwargs:
k_ = self._kw_trans[k] if k in self._kw_trans else k
line_kwargs[k] = kwargs.pop(k_)
if pos is not None or len(line_kwargs) > 0:
self._line.set_data(pos=pos, **line_kwargs)
marker_kwargs = {}
for k in self._marker_kwargs:
if k in kwargs:
k_ = self._kw_trans[k] if k in self._kw_trans else k
marker_kwargs[k_] = kwargs.pop(k)
if pos is not None or len(marker_kwargs) > 0:
self._markers.set_data(pos=pos, **marker_kwargs)
if len(kwargs) > 0:
raise TypeError("Invalid keyword arguments: %s" % kwargs.keys()) |
<SYSTEM_TASK:>
Generate the vertices for a quadratic Bezier curve.
<END_TASK>
<USER_TASK:>
Description:
def curve3_bezier(p1, p2, p3):
"""
Generate the vertices for a quadratic Bezier curve.
The vertices returned by this function can be passed to a LineVisual or
ArrowVisual.
Parameters
----------
p1 : array
2D coordinates of the start point
p2 : array
2D coordinates of the first curve point
p3 : array
2D coordinates of the end point
Returns
-------
coords : list
Vertices for the Bezier curve.
See Also
--------
curve4_bezier
Notes
-----
For more information about Bezier curves please refer to the `Wikipedia`_
page.
.. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
""" |
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
points = []
_curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3)
dx, dy = points[0][0] - x1, points[0][1] - y1
if (dx * dx + dy * dy) > 1e-10:
points.insert(0, (x1, y1))
dx, dy = points[-1][0] - x3, points[-1][1] - y3
if (dx * dx + dy * dy) > 1e-10:
points.append((x3, y3))
return np.array(points).reshape(len(points), 2) |
<SYSTEM_TASK:>
Generate the vertices for a third order Bezier curve.
<END_TASK>
<USER_TASK:>
Description:
def curve4_bezier(p1, p2, p3, p4):
"""
Generate the vertices for a third order Bezier curve.
The vertices returned by this function can be passed to a LineVisual or
ArrowVisual.
Parameters
----------
p1 : array
2D coordinates of the start point
p2 : array
2D coordinates of the first curve point
p3 : array
2D coordinates of the second curve point
p4 : array
2D coordinates of the end point
Returns
-------
coords : list
Vertices for the Bezier curve.
See Also
--------
curve3_bezier
Notes
-----
For more information about Bezier curves please refer to the `Wikipedia`_
page.
.. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
""" |
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
points = []
_curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4)
dx, dy = points[0][0] - x1, points[0][1] - y1
if (dx * dx + dy * dy) > 1e-10:
points.insert(0, (x1, y1))
dx, dy = points[-1][0] - x4, points[-1][1] - y4
if (dx * dx + dy * dy) > 1e-10:
points.append((x4, y4))
return np.array(points).reshape(len(points), 2) |
<SYSTEM_TASK:>
Render a SDF to a texture at a given offset and size
<END_TASK>
<USER_TASK:>
Description:
def render_to_texture(self, data, texture, offset, size):
"""Render a SDF to a texture at a given offset and size
Parameters
----------
data : array
Must be 2D with type np.ubyte.
texture : instance of Texture2D
The texture to render to.
offset : tuple of int
Offset (x, y) to render to inside the texture.
size : tuple of int
Size (w, h) to render inside the texture.
""" |
assert isinstance(texture, Texture2D)
set_state(blend=False, depth_test=False)
# calculate the negative half (within object)
orig_tex = Texture2D(255 - data, format='luminance',
wrapping='clamp_to_edge', interpolation='nearest')
edf_neg_tex = self._render_edf(orig_tex)
# calculate positive half (outside object)
orig_tex[:, :, 0] = data
edf_pos_tex = self._render_edf(orig_tex)
# render final product to output texture
self.program_insert['u_texture'] = orig_tex
self.program_insert['u_pos_texture'] = edf_pos_tex
self.program_insert['u_neg_texture'] = edf_neg_tex
self.fbo_to[-1].color_buffer = texture
with self.fbo_to[-1]:
set_viewport(tuple(offset) + tuple(size))
self.program_insert.draw('triangle_strip') |
<SYSTEM_TASK:>
Annotate functions with @VoiceHandler so that they can be automatically mapped
<END_TASK>
<USER_TASK:>
Description:
def launch_request_handler(request):
""" Annotate functions with @VoiceHandler so that they can be automatically mapped
to request types. Use the 'request_type' field to map them to non-intent requests """ |
user_id = request.access_token()
if user_id in twitter_cache.users():
user_cache = twitter_cache.get_user_state(user_id)
user_cache["amzn_id"]= request.user_id()
base_message = "Welcome to Twitter, {} . How may I help you today ?".format(user_cache["screen_name"])
print (user_cache)
if 'pending_action' in user_cache:
base_message += " You have one pending action . "
print ("Found pending action")
if 'description' in user_cache['pending_action']:
print ("Found description")
base_message += user_cache['pending_action']['description']
return r.create_response(base_message)
card = r.create_card(title="Please log into twitter", card_type="LinkAccount")
return r.create_response(message="Welcome to twitter, looks like you haven't logged in!"
" Log in via the alexa app.", card_obj=card,
end_session=True) |
<SYSTEM_TASK:>
Use the 'intent' field in the VoiceHandler to map to the respective intent.
<END_TASK>
<USER_TASK:>
Description:
def post_tweet_intent_handler(request):
"""
Use the 'intent' field in the VoiceHandler to map to the respective intent.
""" |
tweet = request.get_slot_value("Tweet")
tweet = tweet if tweet else ""
if tweet:
user_state = twitter_cache.get_user_state(request.access_token())
def action():
return post_tweet(request.access_token(), tweet)
message = "I am ready to post the tweet, {} ,\n Please say yes to confirm or stop to cancel .".format(tweet)
user_state['pending_action'] = {"action" : action,
"description" : message}
return r.create_response(message=message, end_session=False)
else:
# No tweet could be disambiguated
message = " ".join(
[
"I'm sorry, I couldn't understand what you wanted to tweet .",
"Please prepend the message with either post or tweet ."
]
)
return alexa.create_response(message=message, end_session=False) |
<SYSTEM_TASK:>
This is a generic function to handle any intent that reads out a list of tweets
<END_TASK>
<USER_TASK:>
Description:
def tweet_list_handler(request, tweet_list_builder, msg_prefix=""):
""" This is a generic function to handle any intent that reads out a list of tweets""" |
# tweet_list_builder is a function that takes a unique identifier and returns a list of things to say
tweets = tweet_list_builder(request.access_token())
print (len(tweets), 'tweets found')
if tweets:
twitter_cache.initialize_user_queue(user_id=request.access_token(),
queue=tweets)
text_to_read_out = twitter_cache.user_queue(request.access_token()).read_out_next(MAX_RESPONSE_TWEETS)
message = msg_prefix + text_to_read_out + ", say 'next' to hear more, or reply to a tweet by number."
return alexa.create_response(message=message,
end_session=False)
else:
return alexa.create_response(message="Sorry, no tweets found, please try something else",
end_session=False) |
<SYSTEM_TASK:>
Return index if focused on tweet False if couldn't
<END_TASK>
<USER_TASK:>
Description:
def focused_on_tweet(request):
"""
Return index if focused on tweet False if couldn't
""" |
slots = request.get_slot_map()
if "Index" in slots and slots["Index"]:
index = int(slots['Index'])
elif "Ordinal" in slots and slots["Index"]:
parse_ordinal = lambda inp : int("".join([l for l in inp if l in string.digits]))
index = parse_ordinal(slots['Ordinal'])
else:
return False
index = index - 1 # Going from regular notation to CS notation
user_state = twitter_cache.get_user_state(request.access_token())
queue = user_state['user_queue'].queue()
if index < len(queue):
# Analyze tweet in queue
tweet_to_analyze = queue[index]
user_state['focus_tweet'] = tweet_to_analyze
return index + 1 # Returning to regular notation
twitter_cache.serialize()
return False |
<SYSTEM_TASK:>
Takes care of things whenver the user says 'next'
<END_TASK>
<USER_TASK:>
Description:
def next_intent_handler(request):
"""
Takes care of things whenver the user says 'next'
""" |
message = "Sorry, couldn't find anything in your next queue"
end_session = True
if True:
user_queue = twitter_cache.user_queue(request.access_token())
if not user_queue.is_finished():
message = user_queue.read_out_next(MAX_RESPONSE_TWEETS)
if not user_queue.is_finished():
end_session = False
message = message + ". Please, say 'next' if you want me to read out more. "
return alexa.create_response(message=message,
end_session=end_session) |
<SYSTEM_TASK:>
Set the mesh data
<END_TASK>
<USER_TASK:>
Description:
def set_data(self, vertices=None, faces=None, vertex_colors=None,
face_colors=None, color=None, meshdata=None):
"""Set the mesh data
Parameters
----------
vertices : array-like | None
The vertices.
faces : array-like | None
The faces.
vertex_colors : array-like | None
Colors to use for each vertex.
face_colors : array-like | None
Colors to use for each face.
color : instance of Color
The color to use.
meshdata : instance of MeshData | None
The meshdata.
""" |
if meshdata is not None:
self._meshdata = meshdata
else:
self._meshdata = MeshData(vertices=vertices, faces=faces,
vertex_colors=vertex_colors,
face_colors=face_colors)
self._bounds = self._meshdata.get_bounds()
if color is not None:
self._color = Color(color)
self.mesh_data_changed() |
<SYSTEM_TASK:>
Get the bounds of the Visual
<END_TASK>
<USER_TASK:>
Description:
def bounds(self, axis, view=None):
"""Get the bounds of the Visual
Parameters
----------
axis : int
The axis.
view : instance of VisualView
The view to use.
""" |
if view is None:
view = self
if axis not in self._vshare.bounds:
self._vshare.bounds[axis] = self._compute_bounds(axis, view)
return self._vshare.bounds[axis] |
<SYSTEM_TASK:>
Return a FunctionChain that Filters may use to modify the program.
<END_TASK>
<USER_TASK:>
Description:
def _get_hook(self, shader, name):
"""Return a FunctionChain that Filters may use to modify the program.
*shader* should be "frag" or "vert"
*name* should be "pre" or "post"
""" |
assert name in ('pre', 'post')
key = (shader, name)
if key in self._hooks:
return self._hooks[key]
hook = StatementList()
if shader == 'vert':
self.view_program.vert[name] = hook
elif shader == 'frag':
self.view_program.frag[name] = hook
self._hooks[key] = hook
return hook |
<SYSTEM_TASK:>
Add a subvisual
<END_TASK>
<USER_TASK:>
Description:
def add_subvisual(self, visual):
"""Add a subvisual
Parameters
----------
visual : instance of Visual
The visual to add.
""" |
visual.transforms = self.transforms
visual._prepare_transforms(visual)
self._subvisuals.append(visual)
visual.events.update.connect(self._subv_update)
self.update() |
<SYSTEM_TASK:>
Remove a subvisual
<END_TASK>
<USER_TASK:>
Description:
def remove_subvisual(self, visual):
"""Remove a subvisual
Parameters
----------
visual : instance of Visual
The visual to remove.
""" |
visual.events.update.disconnect(self._subv_update)
self._subvisuals.remove(visual)
self.update() |
<SYSTEM_TASK:>
Draw the visual
<END_TASK>
<USER_TASK:>
Description:
def draw(self):
"""Draw the visual
""" |
if not self.visible:
return
if self._prepare_draw(view=self) is False:
return
for v in self._subvisuals:
if v.visible:
v.draw() |
<SYSTEM_TASK:>
clear the left panel and preferences
<END_TASK>
<USER_TASK:>
Description:
def clearPrefs(self):
"""clear the left panel and preferences""" |
self.preferences.clear()
tradebox_num = len(self.css('div.tradebox'))
for i in range(tradebox_num):
self.xpath(path['trade-box'])[0].right_click()
self.css1('div.item-trade-contextmenu-list-remove').click()
logger.info("cleared preferences") |
<SYSTEM_TASK:>
add preference in self.preferences
<END_TASK>
<USER_TASK:>
Description:
def addPrefs(self, prefs=[]):
"""add preference in self.preferences""" |
if len(prefs) == len(self.preferences) == 0:
logger.debug("no preferences")
return None
self.preferences.extend(prefs)
self.css1(path['search-btn']).click()
count = 0
for pref in self.preferences:
self.css1(path['search-pref']).fill(pref)
self.css1(path['pref-icon']).click()
btn = self.css1('div.add-to-watchlist-popup-item .icon-wrapper')
if not self.css1('svg', btn)['class'] is None:
btn.click()
count += 1
# remove window
self.css1(path['pref-icon']).click()
# close finally
self.css1(path['back-btn']).click()
self.css1(path['back-btn']).click()
logger.debug("updated %d preferences" % count)
return self.preferences |
<SYSTEM_TASK:>
Load glyph from font into dict
<END_TASK>
<USER_TASK:>
Description:
def _load_glyph(f, char, glyphs_dict):
"""Load glyph from font into dict""" |
from ...ext.freetype import (FT_LOAD_RENDER, FT_LOAD_NO_HINTING,
FT_LOAD_NO_AUTOHINT)
flags = FT_LOAD_RENDER | FT_LOAD_NO_HINTING | FT_LOAD_NO_AUTOHINT
face = _load_font(f['face'], f['bold'], f['italic'])
face.set_char_size(f['size'] * 64)
# get the character of interest
face.load_char(char, flags)
bitmap = face.glyph.bitmap
width = face.glyph.bitmap.width
height = face.glyph.bitmap.rows
bitmap = np.array(bitmap.buffer)
w0 = bitmap.size // height if bitmap.size > 0 else 0
bitmap.shape = (height, w0)
bitmap = bitmap[:, :width].astype(np.ubyte)
left = face.glyph.bitmap_left
top = face.glyph.bitmap_top
advance = face.glyph.advance.x / 64.
glyph = dict(char=char, offset=(left, top), bitmap=bitmap,
advance=advance, kerning={})
glyphs_dict[char] = glyph
# Generate kerning
for other_char, other_glyph in glyphs_dict.items():
kerning = face.get_kerning(other_char, char)
glyph['kerning'][other_char] = kerning.x / 64.
kerning = face.get_kerning(char, other_char)
other_glyph['kerning'][char] = kerning.x / 64. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.