text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Attempt to infer better dtype for object columns <END_TASK> <USER_TASK:> Description: def _convert(self, datetime=False, numeric=False, timedelta=False, coerce=False, copy=True): """ Attempt to infer better dtype for object columns Parameters ---------- datetime : boolean, default False If True, convert to date where possible. numeric : boolean, default False If True, attempt to convert to numbers (including strings), with unconvertible values becoming NaN. timedelta : boolean, default False If True, convert to timedelta where possible. coerce : boolean, default False If True, force conversion with unconvertible values converted to nulls (NaN or NaT) copy : boolean, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns ------- converted : same as input object """
return self._constructor( self._data.convert(datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy)).__finalize__(self)
<SYSTEM_TASK:> Attempt to infer better dtype for object columns. <END_TASK> <USER_TASK:> Description: def convert_objects(self, convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True): """ Attempt to infer better dtype for object columns. .. deprecated:: 0.21.0 Parameters ---------- convert_dates : boolean, default True If True, convert to date where possible. If 'coerce', force conversion, with unconvertible values becoming NaT. convert_numeric : boolean, default False If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN. convert_timedeltas : boolean, default True If True, convert to timedelta where possible. If 'coerce', force conversion, with unconvertible values becoming NaT. copy : boolean, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns ------- converted : same as input object See Also -------- to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to numeric type. """
msg = ("convert_objects is deprecated. To re-infer data dtypes for " "object columns, use {klass}.infer_objects()\nFor all " "other conversions use the data-type specific converters " "pd.to_datetime, pd.to_timedelta and pd.to_numeric." ).format(klass=self.__class__.__name__) warnings.warn(msg, FutureWarning, stacklevel=2) return self._constructor( self._data.convert(convert_dates=convert_dates, convert_numeric=convert_numeric, convert_timedeltas=convert_timedeltas, copy=copy)).__finalize__(self)
<SYSTEM_TASK:> Attempt to infer better dtypes for object columns. <END_TASK> <USER_TASK:> Description: def infer_objects(self): """ Attempt to infer better dtypes for object columns. Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns unchanged. The inference rules are the same as during normal Series/DataFrame construction. .. versionadded:: 0.21.0 Returns ------- converted : same type as input object See Also -------- to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to numeric type. Examples -------- >>> df = pd.DataFrame({"A": ["a", 1, 2, 3]}) >>> df = df.iloc[1:] >>> df A 1 1 2 2 3 3 >>> df.dtypes A object dtype: object >>> df.infer_objects().dtypes A int64 dtype: object """
# numeric=False necessary to only soft convert; # python objects will still be converted to # native numpy numeric types return self._constructor( self._data.convert(datetime=True, numeric=False, timedelta=True, coerce=False, copy=True)).__finalize__(self)
<SYSTEM_TASK:> Trim values above a given threshold. <END_TASK> <USER_TASK:> Description: def clip_upper(self, threshold, axis=None, inplace=False): """ Trim values above a given threshold. .. deprecated:: 0.24.0 Use clip(upper=threshold) instead. Elements above the `threshold` will be changed to match the `threshold` value(s). Threshold can be a single value or an array, in the latter case it performs the truncation element-wise. Parameters ---------- threshold : numeric or array-like Maximum value allowed. All values above threshold will be set to this value. * float : every value is compared to `threshold`. * array-like : The shape of `threshold` should match the object it's compared to. When `self` is a Series, `threshold` should be the length. When `self` is a DataFrame, `threshold` should 2-D and the same shape as `self` for ``axis=None``, or 1-D and the same length as the axis being compared. axis : {0 or 'index', 1 or 'columns'}, default 0 Align object with `threshold` along the given axis. inplace : bool, default False Whether to perform the operation in place on the data. .. versionadded:: 0.21.0 Returns ------- Series or DataFrame Original data with values trimmed. See Also -------- Series.clip : General purpose method to trim Series values to given threshold(s). DataFrame.clip : General purpose method to trim DataFrame values to given threshold(s). Examples -------- >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64 >>> s.clip(upper=3) 0 1 1 2 2 3 3 3 4 3 dtype: int64 >>> elemwise_thresholds = [5, 4, 3, 2, 1] >>> elemwise_thresholds [5, 4, 3, 2, 1] >>> s.clip(upper=elemwise_thresholds) 0 1 1 2 2 3 3 2 4 1 dtype: int64 """
warnings.warn('clip_upper(threshold) is deprecated, ' 'use clip(upper=threshold) instead', FutureWarning, stacklevel=2) return self._clip_with_one_bound(threshold, method=self.le, axis=axis, inplace=inplace)
<SYSTEM_TASK:> Trim values below a given threshold. <END_TASK> <USER_TASK:> Description: def clip_lower(self, threshold, axis=None, inplace=False): """ Trim values below a given threshold. .. deprecated:: 0.24.0 Use clip(lower=threshold) instead. Elements below the `threshold` will be changed to match the `threshold` value(s). Threshold can be a single value or an array, in the latter case it performs the truncation element-wise. Parameters ---------- threshold : numeric or array-like Minimum value allowed. All values below threshold will be set to this value. * float : every value is compared to `threshold`. * array-like : The shape of `threshold` should match the object it's compared to. When `self` is a Series, `threshold` should be the length. When `self` is a DataFrame, `threshold` should 2-D and the same shape as `self` for ``axis=None``, or 1-D and the same length as the axis being compared. axis : {0 or 'index', 1 or 'columns'}, default 0 Align `self` with `threshold` along the given axis. inplace : bool, default False Whether to perform the operation in place on the data. .. versionadded:: 0.21.0 Returns ------- Series or DataFrame Original data with values trimmed. See Also -------- Series.clip : General purpose method to trim Series values to given threshold(s). DataFrame.clip : General purpose method to trim DataFrame values to given threshold(s). Examples -------- Series single threshold clipping: >>> s = pd.Series([5, 6, 7, 8, 9]) >>> s.clip(lower=8) 0 8 1 8 2 8 3 8 4 9 dtype: int64 Series clipping element-wise using an array of thresholds. `threshold` should be the same length as the Series. >>> elemwise_thresholds = [4, 8, 7, 2, 5] >>> s.clip(lower=elemwise_thresholds) 0 5 1 8 2 7 3 8 4 9 dtype: int64 DataFrames can be compared to a scalar. >>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]}) >>> df A B 0 1 2 1 3 4 2 5 6 >>> df.clip(lower=3) A B 0 3 3 1 3 4 2 5 6 Or to an array of values. By default, `threshold` should be the same shape as the DataFrame. >>> df.clip(lower=np.array([[3, 4], [2, 2], [6, 2]])) A B 0 3 4 1 3 4 2 6 6 Control how `threshold` is broadcast with `axis`. In this case `threshold` should be the same length as the axis specified by `axis`. >>> df.clip(lower=[3, 3, 5], axis='index') A B 0 3 3 1 3 4 2 5 6 >>> df.clip(lower=[4, 5], axis='columns') A B 0 4 5 1 4 5 2 5 6 """
warnings.warn('clip_lower(threshold) is deprecated, ' 'use clip(lower=threshold) instead', FutureWarning, stacklevel=2) return self._clip_with_one_bound(threshold, method=self.ge, axis=axis, inplace=inplace)
<SYSTEM_TASK:> Group DataFrame or Series using a mapper or by a Series of columns. <END_TASK> <USER_TASK:> Description: def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, **kwargs): """ Group DataFrame or Series using a mapper or by a Series of columns. A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups. Parameters ---------- by : mapping, function, label, or list of labels Used to determine the groups for the groupby. If ``by`` is a function, it's called on each value of the object's index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series' values are first aligned; see ``.align()`` method). If an ndarray is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns in ``self``. Notice that a tuple is interpreted a (single) key. axis : {0 or 'index', 1 or 'columns'}, default 0 Split along rows (0) or columns (1). level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels. as_index : bool, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output. sort : bool, default True Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group. group_keys : bool, default True When calling apply, add group keys to index to identify pieces. squeeze : bool, default False Reduce the dimensionality of the return type if possible, otherwise return a consistent type. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionadded:: 0.23.0 **kwargs Optional, only accepts keyword argument 'mutated' and is passed to groupby. Returns ------- DataFrameGroupBy or SeriesGroupBy Depends on the calling object and returns groupby object that contains information about the groups. See Also -------- resample : Convenience method for frequency conversion and resampling of time series. Notes ----- See the `user guide <http://pandas.pydata.org/pandas-docs/stable/groupby.html>`_ for more. Examples -------- >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0 **Hierarchical Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level=1).mean() Max Speed Type Captive 210.0 Wild 185.0 """
from pandas.core.groupby.groupby import groupby if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return groupby(self, by=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, **kwargs)
<SYSTEM_TASK:> Convert TimeSeries to specified frequency. <END_TASK> <USER_TASK:> Description: def asfreq(self, freq, method=None, how=None, normalize=False, fill_value=None): """ Convert TimeSeries to specified frequency. Optionally provide filling method to pad/backfill missing values. Returns the original data conformed to a new index with the specified frequency. ``resample`` is more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency. Parameters ---------- freq : DateOffset object, or string method : {'backfill'/'bfill', 'pad'/'ffill'}, default None Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present): * 'pad' / 'ffill': propagate last valid observation forward to next valid * 'backfill' / 'bfill': use NEXT valid observation to fill how : {'start', 'end'}, default end For PeriodIndex only, see PeriodIndex.asfreq normalize : bool, default False Whether to reset output index to midnight fill_value : scalar, optional Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present). .. versionadded:: 0.20.0 Returns ------- converted : same type as caller See Also -------- reindex Notes ----- To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Examples -------- Start by creating a series with 4 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=4, freq='T') >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index) >>> df = pd.DataFrame({'s':series}) >>> df s 2000-01-01 00:00:00 0.0 2000-01-01 00:01:00 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:03:00 3.0 Upsample the series into 30 second bins. >>> df.asfreq(freq='30S') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 NaN 2000-01-01 00:03:00 3.0 Upsample again, providing a ``fill value``. >>> df.asfreq(freq='30S', fill_value=9.0) s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 9.0 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 9.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 9.0 2000-01-01 00:03:00 3.0 Upsample again, providing a ``method``. >>> df.asfreq(freq='30S', method='bfill') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 2.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 3.0 2000-01-01 00:03:00 3.0 """
from pandas.core.resample import asfreq return asfreq(self, freq, method=method, how=how, normalize=normalize, fill_value=fill_value)
<SYSTEM_TASK:> Resample time-series data. <END_TASK> <USER_TASK:> Description: def resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None): """ Resample time-series data. Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (`DatetimeIndex`, `PeriodIndex`, or `TimedeltaIndex`), or pass datetime-like values to the `on` or `level` keyword. Parameters ---------- rule : str The offset string or object representing target conversion. how : str Method for down/re-sampling, default to 'mean' for downsampling. .. deprecated:: 0.18.0 The new syntax is ``.resample(...).mean()``, or ``.resample(...).apply(<func>)`` axis : {0 or 'index', 1 or 'columns'}, default 0 Which axis to use for up- or down-sampling. For `Series` this will default to 0, i.e. along the rows. Must be `DatetimeIndex`, `TimedeltaIndex` or `PeriodIndex`. fill_method : str, default None Filling method for upsampling. .. deprecated:: 0.18.0 The new syntax is ``.resample(...).<func>()``, e.g. ``.resample(...).pad()`` closed : {'right', 'left'}, default None Which side of bin interval is closed. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. label : {'right', 'left'}, default None Which bin edge label to label bucket with. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. convention : {'start', 'end', 's', 'e'}, default 'start' For `PeriodIndex` only, controls whether to use the start or end of `rule`. kind : {'timestamp', 'period'}, optional, default None Pass 'timestamp' to convert the resulting index to a `DateTimeIndex` or 'period' to convert it to a `PeriodIndex`. By default the input representation is retained. loffset : timedelta, default None Adjust the resampled time labels. limit : int, default None Maximum size gap when reindexing with `fill_method`. .. deprecated:: 0.18.0 base : int, default 0 For frequencies that evenly subdivide 1 day, the "origin" of the aggregated intervals. For example, for '5min' frequency, base could range from 0 through 4. Defaults to 0. on : str, optional For a DataFrame, column to use instead of index for resampling. Column must be datetime-like. .. versionadded:: 0.19.0 level : str or int, optional For a MultiIndex, level (name or number) to use for resampling. `level` must be datetime-like. .. versionadded:: 0.19.0 Returns ------- Resampler object See Also -------- groupby : Group by mapping, function, label, or list of labels. Series.resample : Resample a Series. DataFrame.resample: Resample a DataFrame. Notes ----- See the `user guide <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling>`_ for more. To learn more about the offset strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Examples -------- Start by creating a series with 9 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=9, freq='T') >>> series = pd.Series(range(9), index=index) >>> series 2000-01-01 00:00:00 0 2000-01-01 00:01:00 1 2000-01-01 00:02:00 2 2000-01-01 00:03:00 3 2000-01-01 00:04:00 4 2000-01-01 00:05:00 5 2000-01-01 00:06:00 6 2000-01-01 00:07:00 7 2000-01-01 00:08:00 8 Freq: T, dtype: int64 Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin. >>> series.resample('3T').sum() 2000-01-01 00:00:00 3 2000-01-01 00:03:00 12 2000-01-01 00:06:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed value in the resampled bucket with the label ``2000-01-01 00:03:00`` does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one. >>> series.resample('3T', label='right').sum() 2000-01-01 00:03:00 3 2000-01-01 00:06:00 12 2000-01-01 00:09:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but close the right side of the bin interval. >>> series.resample('3T', label='right', closed='right').sum() 2000-01-01 00:00:00 0 2000-01-01 00:03:00 6 2000-01-01 00:06:00 15 2000-01-01 00:09:00 15 Freq: 3T, dtype: int64 Upsample the series into 30 second bins. >>> series.resample('30S').asfreq()[0:5] # Select first 5 rows 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 1.0 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 Freq: 30S, dtype: float64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``pad`` method. >>> series.resample('30S').pad()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 0 2000-01-01 00:01:00 1 2000-01-01 00:01:30 1 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``bfill`` method. >>> series.resample('30S').bfill()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 1 2000-01-01 00:01:00 1 2000-01-01 00:01:30 2 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Pass a custom function via ``apply`` >>> def custom_resampler(array_like): ... return np.sum(array_like) + 5 ... >>> series.resample('3T').apply(custom_resampler) 2000-01-01 00:00:00 8 2000-01-01 00:03:00 17 2000-01-01 00:06:00 26 Freq: 3T, dtype: int64 For a Series with a PeriodIndex, the keyword `convention` can be used to control whether to use the start or end of `rule`. Resample a year by quarter using 'start' `convention`. Values are assigned to the first quarter of the period. >>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01', ... freq='A', ... periods=2)) >>> s 2012 1 2013 2 Freq: A-DEC, dtype: int64 >>> s.resample('Q', convention='start').asfreq() 2012Q1 1.0 2012Q2 NaN 2012Q3 NaN 2012Q4 NaN 2013Q1 2.0 2013Q2 NaN 2013Q3 NaN 2013Q4 NaN Freq: Q-DEC, dtype: float64 Resample quarters by month using 'end' `convention`. Values are assigned to the last month of the period. >>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01', ... freq='Q', ... periods=4)) >>> q 2018Q1 1 2018Q2 2 2018Q3 3 2018Q4 4 Freq: Q-DEC, dtype: int64 >>> q.resample('M', convention='end').asfreq() 2018-03 1.0 2018-04 NaN 2018-05 NaN 2018-06 2.0 2018-07 NaN 2018-08 NaN 2018-09 3.0 2018-10 NaN 2018-11 NaN 2018-12 4.0 Freq: M, dtype: float64 For DataFrame objects, the keyword `on` can be used to specify the column instead of the index for resampling. >>> d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df = pd.DataFrame(d) >>> df['week_starting'] = pd.date_range('01/01/2018', ... periods=8, ... freq='W') >>> df price volume week_starting 0 10 50 2018-01-07 1 11 60 2018-01-14 2 9 40 2018-01-21 3 13 100 2018-01-28 4 14 50 2018-02-04 5 18 100 2018-02-11 6 17 40 2018-02-18 7 19 50 2018-02-25 >>> df.resample('M', on='week_starting').mean() price volume week_starting 2018-01-31 10.75 62.5 2018-02-28 17.00 60.0 For a DataFrame with MultiIndex, the keyword `level` can be used to specify on which level the resampling needs to take place. >>> days = pd.date_range('1/1/2000', periods=4, freq='D') >>> d2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df2 = pd.DataFrame(d2, ... index=pd.MultiIndex.from_product([days, ... ['morning', ... 'afternoon']] ... )) >>> df2 price volume 2000-01-01 morning 10 50 afternoon 11 60 2000-01-02 morning 9 40 afternoon 13 100 2000-01-03 morning 14 50 afternoon 18 100 2000-01-04 morning 17 40 afternoon 19 50 >>> df2.resample('D', level=0).sum() price volume 2000-01-01 21 110 2000-01-02 22 140 2000-01-03 32 150 2000-01-04 36 90 """
from pandas.core.resample import (resample, _maybe_process_deprecations) axis = self._get_axis_number(axis) r = resample(self, freq=rule, label=label, closed=closed, axis=axis, kind=kind, loffset=loffset, convention=convention, base=base, key=on, level=level) return _maybe_process_deprecations(r, how=how, fill_method=fill_method, limit=limit)
<SYSTEM_TASK:> Convenience method for subsetting initial periods of time series data <END_TASK> <USER_TASK:> Description: def first(self, offset): """ Convenience method for subsetting initial periods of time series data based on a date offset. Parameters ---------- offset : string, DateOffset, dateutil.relativedelta Returns ------- subset : same type as caller Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- last : Select final periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 Get the rows for the first 3 days: >>> ts.first('3D') A 2018-04-09 1 2018-04-11 2 Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and therefore data for 2018-04-13 was not returned. """
if not isinstance(self.index, DatetimeIndex): raise TypeError("'first' only supports a DatetimeIndex index") if len(self.index) == 0: return self offset = to_offset(offset) end_date = end = self.index[0] + offset # Tick-like, e.g. 3 weeks if not offset.isAnchored() and hasattr(offset, '_inc'): if end_date in self.index: end = self.index.searchsorted(end_date, side='left') return self.iloc[:end] return self.loc[:end]
<SYSTEM_TASK:> Convenience method for subsetting final periods of time series data <END_TASK> <USER_TASK:> Description: def last(self, offset): """ Convenience method for subsetting final periods of time series data based on a date offset. Parameters ---------- offset : string, DateOffset, dateutil.relativedelta Returns ------- subset : same type as caller Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- first : Select initial periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 Get the rows for the last 3 days: >>> ts.last('3D') A 2018-04-13 3 2018-04-15 4 Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and therefore data for 2018-04-11 was not returned. """
if not isinstance(self.index, DatetimeIndex): raise TypeError("'last' only supports a DatetimeIndex index") if len(self.index) == 0: return self offset = to_offset(offset) start_date = self.index[-1] - offset start = self.index.searchsorted(start_date, side='right') return self.iloc[start:]
<SYSTEM_TASK:> Equivalent to `shift` without copying data. The shifted data will <END_TASK> <USER_TASK:> Description: def slice_shift(self, periods=1, axis=0): """ Equivalent to `shift` without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters ---------- periods : int Number of periods to move, can be positive or negative Returns ------- shifted : same type as caller Notes ----- While the `slice_shift` is faster than `shift`, you may pay for it later during alignment. """
if periods == 0: return self if periods > 0: vslicer = slice(None, -periods) islicer = slice(periods, None) else: vslicer = slice(-periods, None) islicer = slice(None, periods) new_obj = self._slice(vslicer, axis=axis) shifted_axis = self._get_axis(axis)[islicer] new_obj.set_axis(shifted_axis, axis=axis, inplace=True) return new_obj.__finalize__(self)
<SYSTEM_TASK:> Shift the time index, using the index's frequency if available. <END_TASK> <USER_TASK:> Description: def tshift(self, periods=1, freq=None, axis=0): """ Shift the time index, using the index's frequency if available. Parameters ---------- periods : int Number of periods to move, can be positive or negative freq : DateOffset, timedelta, or time rule string, default None Increment to use from the tseries module or time rule (e.g. 'EOM') axis : int or basestring Corresponds to the axis that contains the Index Returns ------- shifted : NDFrame Notes ----- If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown """
index = self._get_axis(axis) if freq is None: freq = getattr(index, 'freq', None) if freq is None: freq = getattr(index, 'inferred_freq', None) if freq is None: msg = 'Freq was not given and was not set in the index' raise ValueError(msg) if periods == 0: return self if isinstance(freq, str): freq = to_offset(freq) block_axis = self._get_block_manager_axis(axis) if isinstance(index, PeriodIndex): orig_freq = to_offset(index.freq) if freq == orig_freq: new_data = self._data.copy() new_data.axes[block_axis] = index.shift(periods) else: msg = ('Given freq %s does not match PeriodIndex freq %s' % (freq.rule_code, orig_freq.rule_code)) raise ValueError(msg) else: new_data = self._data.copy() new_data.axes[block_axis] = index.shift(periods, freq) return self._constructor(new_data).__finalize__(self)
<SYSTEM_TASK:> Truncate a Series or DataFrame before and after some index value. <END_TASK> <USER_TASK:> Description: def truncate(self, before=None, after=None, axis=None, copy=True): """ Truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds. Parameters ---------- before : date, string, int Truncate all rows before this index value. after : date, string, int Truncate all rows after this index value. axis : {0 or 'index', 1 or 'columns'}, optional Axis to truncate. Truncates the index (rows) by default. copy : boolean, default is True, Return a copy of the truncated section. Returns ------- type of caller The truncated Series or DataFrame. See Also -------- DataFrame.loc : Select a subset of a DataFrame by label. DataFrame.iloc : Select a subset of a DataFrame by position. Notes ----- If the index being truncated contains only datetime values, `before` and `after` may be specified as strings instead of Timestamps. Examples -------- >>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o >>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n The columns of a DataFrame can be truncated. >>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j For Series, only rows can be truncated. >>> df['A'].truncate(before=2, after=4) 2 b 3 c 4 d Name: A, dtype: object The index values in ``truncate`` can be datetimes or string dates. >>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s') >>> df = pd.DataFrame(index=dates, data={'A': 1}) >>> df.tail() A 2016-01-31 23:59:56 1 2016-01-31 23:59:57 1 2016-01-31 23:59:58 1 2016-01-31 23:59:59 1 2016-02-01 00:00:00 1 >>> df.truncate(before=pd.Timestamp('2016-01-05'), ... after=pd.Timestamp('2016-01-10')).tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Because the index is a DatetimeIndex containing only dates, we can specify `before` and `after` as strings. They will be coerced to Timestamps before truncation. >>> df.truncate('2016-01-05', '2016-01-10').tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Note that ``truncate`` assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates. >>> df.loc['2016-01-05':'2016-01-10', :].tail() A 2016-01-10 23:59:55 1 2016-01-10 23:59:56 1 2016-01-10 23:59:57 1 2016-01-10 23:59:58 1 2016-01-10 23:59:59 1 """
if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) ax = self._get_axis(axis) # GH 17935 # Check that index is sorted if not ax.is_monotonic_increasing and not ax.is_monotonic_decreasing: raise ValueError("truncate requires a sorted index") # if we have a date index, convert to dates, otherwise # treat like a slice if ax.is_all_dates: from pandas.core.tools.datetimes import to_datetime before = to_datetime(before) after = to_datetime(after) if before is not None and after is not None: if before > after: raise ValueError('Truncate: %s must be after %s' % (after, before)) slicer = [slice(None, None)] * self._AXIS_LEN slicer[axis] = slice(before, after) result = self.loc[tuple(slicer)] if isinstance(ax, MultiIndex): setattr(result, self._get_axis_name(axis), ax.truncate(before, after)) if copy: result = result.copy() return result
<SYSTEM_TASK:> Convert tz-aware axis to target time zone. <END_TASK> <USER_TASK:> Description: def tz_convert(self, tz, axis=0, level=None, copy=True): """ Convert tz-aware axis to target time zone. Parameters ---------- tz : string or pytz.timezone object axis : the axis to convert level : int, str, default None If axis ia a MultiIndex, convert a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data Returns ------- Raises ------ TypeError If the axis is tz-naive. """
axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_convert(ax, tz): if not hasattr(ax, 'tz_convert'): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError('%s is not a valid DatetimeIndex or ' 'PeriodIndex' % ax_name) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_convert(tz) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_convert(ax.levels[level], tz) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError("The level {0} is not valid".format(level)) ax = _tz_convert(ax, tz) result = self._constructor(self._data, copy=copy) result = result.set_axis(ax, axis=axis, inplace=False) return result.__finalize__(self)
<SYSTEM_TASK:> Localize tz-naive index of a Series or DataFrame to target time zone. <END_TASK> <USER_TASK:> Description: def tz_localize(self, tz, axis=0, level=None, copy=True, ambiguous='raise', nonexistent='raise'): """ Localize tz-naive index of a Series or DataFrame to target time zone. This operation localizes the Index. To localize the values in a timezone-naive Series, use :meth:`Series.dt.tz_localize`. Parameters ---------- tz : string or pytz.timezone object axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None copy : boolean, default True Also make a copy of the underlying data ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter dictates how ambiguous times should be handled. - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times nonexistent : str, default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. Valid values are: - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Same type as the input. Raises ------ TypeError If the TimeSeries is tz-aware and tz is not None. Examples -------- Localize local times: >>> s = pd.Series([1], ... index=pd.DatetimeIndex(['2018-09-15 01:30:00'])) >>> s.tz_localize('CET') 2018-09-15 01:30:00+02:00 1 dtype: int64 Be careful with DST changes. When there is sequential data, pandas can infer the DST time: >>> s = pd.Series(range(7), index=pd.DatetimeIndex([ ... '2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.tz_localize('CET', ambiguous='infer') 2018-10-28 01:30:00+02:00 0 2018-10-28 02:00:00+02:00 1 2018-10-28 02:30:00+02:00 2 2018-10-28 02:00:00+01:00 3 2018-10-28 02:30:00+01:00 4 2018-10-28 03:00:00+01:00 5 2018-10-28 03:30:00+01:00 6 dtype: int64 In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly >>> s = pd.Series(range(3), index=pd.DatetimeIndex([ ... '2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.tz_localize('CET', ambiguous=np.array([True, True, False])) 2018-10-28 01:20:00+02:00 0 2018-10-28 02:36:00+02:00 1 2018-10-28 03:46:00+01:00 2 dtype: int64 If the DST transition causes nonexistent times, you can shift these dates forward or backwards with a timedelta object or `'shift_forward'` or `'shift_backwards'`. >>> s = pd.Series(range(2), index=pd.DatetimeIndex([ ... '2015-03-29 02:30:00', ... '2015-03-29 03:30:00'])) >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_forward') 2015-03-29 03:00:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_backward') 2015-03-29 01:59:59.999999999+01:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H')) 2015-03-29 03:30:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 """
nonexistent_options = ('raise', 'NaT', 'shift_forward', 'shift_backward') if nonexistent not in nonexistent_options and not isinstance( nonexistent, timedelta): raise ValueError("The nonexistent argument must be one of 'raise'," " 'NaT', 'shift_forward', 'shift_backward' or" " a timedelta object") axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_localize(ax, tz, ambiguous, nonexistent): if not hasattr(ax, 'tz_localize'): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError('%s is not a valid DatetimeIndex or ' 'PeriodIndex' % ax_name) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_localize( tz, ambiguous=ambiguous, nonexistent=nonexistent ) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_localize( ax.levels[level], tz, ambiguous, nonexistent ) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError("The level {0} is not valid".format(level)) ax = _tz_localize(ax, tz, ambiguous, nonexistent) result = self._constructor(self._data, copy=copy) result = result.set_axis(ax, axis=axis, inplace=False) return result.__finalize__(self)
<SYSTEM_TASK:> Add the series or dataframe only operations to the cls; evaluate <END_TASK> <USER_TASK:> Description: def _add_series_or_dataframe_operations(cls): """ Add the series or dataframe only operations to the cls; evaluate the doc strings again. """
from pandas.core import window as rwindow @Appender(rwindow.rolling.__doc__) def rolling(self, window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None): axis = self._get_axis_number(axis) return rwindow.rolling(self, window=window, min_periods=min_periods, center=center, win_type=win_type, on=on, axis=axis, closed=closed) cls.rolling = rolling @Appender(rwindow.expanding.__doc__) def expanding(self, min_periods=1, center=False, axis=0): axis = self._get_axis_number(axis) return rwindow.expanding(self, min_periods=min_periods, center=center, axis=axis) cls.expanding = expanding @Appender(rwindow.ewm.__doc__) def ewm(self, com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0): axis = self._get_axis_number(axis) return rwindow.ewm(self, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na, axis=axis) cls.ewm = ewm
<SYSTEM_TASK:> Retrieves the index of the first valid value. <END_TASK> <USER_TASK:> Description: def _find_valid_index(self, how): """ Retrieves the index of the first valid value. Parameters ---------- how : {'first', 'last'} Use this parameter to change between the first or last valid index. Returns ------- idx_first_valid : type of index """
assert how in ['first', 'last'] if len(self) == 0: # early stop return None is_valid = ~self.isna() if self.ndim == 2: is_valid = is_valid.any(1) # reduce axis 1 if how == 'first': idxpos = is_valid.values[::].argmax() if how == 'last': idxpos = len(self) - 1 - is_valid.values[::-1].argmax() chk_notna = is_valid.iat[idxpos] idx = self.index[idxpos] if not chk_notna: return None return idx
<SYSTEM_TASK:> Reset cached properties. If ``key`` is passed, only clears that key. <END_TASK> <USER_TASK:> Description: def _reset_cache(self, key=None): """ Reset cached properties. If ``key`` is passed, only clears that key. """
if getattr(self, '_cache', None) is None: return if key is None: self._cache.clear() else: self._cache.pop(key, None)
<SYSTEM_TASK:> return a new object with the replacement attributes <END_TASK> <USER_TASK:> Description: def _shallow_copy(self, obj=None, obj_type=None, **kwargs): """ return a new object with the replacement attributes """
if obj is None: obj = self._selected_obj.copy() if obj_type is None: obj_type = self._constructor if isinstance(obj, obj_type): obj = obj.obj for attr in self._attributes: if attr not in kwargs: kwargs[attr] = getattr(self, attr) return obj_type(obj, **kwargs)
<SYSTEM_TASK:> Return the size of the dtype of the item of the underlying data. <END_TASK> <USER_TASK:> Description: def itemsize(self): """ Return the size of the dtype of the item of the underlying data. .. deprecated:: 0.23.0 """
warnings.warn("{obj}.itemsize is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self._ndarray_values.itemsize
<SYSTEM_TASK:> Return the base object if the memory of the underlying data is shared. <END_TASK> <USER_TASK:> Description: def base(self): """ Return the base object if the memory of the underlying data is shared. .. deprecated:: 0.23.0 """
warnings.warn("{obj}.base is deprecated and will be removed " "in a future version".format(obj=type(self).__name__), FutureWarning, stacklevel=2) return self.values.base
<SYSTEM_TASK:> The ExtensionArray of the data backing this Series or Index. <END_TASK> <USER_TASK:> Description: def array(self) -> ExtensionArray: """ The ExtensionArray of the data backing this Series or Index. .. versionadded:: 0.24.0 Returns ------- ExtensionArray An ExtensionArray of the values stored within. For extension types, this is the actual array. For NumPy native types, this is a thin (no copy) wrapper around :class:`numpy.ndarray`. ``.array`` differs ``.values`` which may require converting the data to a different form. See Also -------- Index.to_numpy : Similar method that always returns a NumPy array. Series.to_numpy : Similar method that always returns a NumPy array. Notes ----- This table lays out the different array types for each extension dtype within pandas. ================== ============================= dtype array type ================== ============================= category Categorical period PeriodArray interval IntervalArray IntegerNA IntegerArray datetime64[ns, tz] DatetimeArray ================== ============================= For any 3rd-party extension types, the array type will be an ExtensionArray. For all remaining dtypes ``.array`` will be a :class:`arrays.NumpyExtensionArray` wrapping the actual ndarray stored within. If you absolutely need a NumPy array (possibly with copying / coercing data), then use :meth:`Series.to_numpy` instead. Examples -------- For regular NumPy types like int, and float, a PandasArray is returned. >>> pd.Series([1, 2, 3]).array <PandasArray> [1, 2, 3] Length: 3, dtype: int64 For extension types, like Categorical, the actual ExtensionArray is returned >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.array [a, b, a] Categories (2, object): [a, b] """
result = self._values if is_datetime64_ns_dtype(result.dtype): from pandas.arrays import DatetimeArray result = DatetimeArray(result) elif is_timedelta64_ns_dtype(result.dtype): from pandas.arrays import TimedeltaArray result = TimedeltaArray(result) elif not is_extension_array_dtype(result.dtype): from pandas.core.arrays.numpy_ import PandasArray result = PandasArray(result) return result
<SYSTEM_TASK:> A NumPy ndarray representing the values in this Series or Index. <END_TASK> <USER_TASK:> Description: def to_numpy(self, dtype=None, copy=False): """ A NumPy ndarray representing the values in this Series or Index. .. versionadded:: 0.24.0 Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray` copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Series.array : Get the actual data stored within. Index.array : Get the actual data stored within. DataFrame.to_numpy : Similar method for DataFrame. Notes ----- The returned array will be the same up to equality (values equal in `self` will be equal in the returned array; likewise for values that are not equal). When `self` contains an ExtensionArray, the dtype may be different. For example, for a category-dtype Series, ``to_numpy()`` will return a NumPy array and the categorical dtype will be lost. For NumPy dtypes, this will be a reference to the actual data stored in this Series or Index (assuming ``copy=False``). Modifying the result in place will modify the data stored in the Series or Index (not that we recommend doing that). For extension types, ``to_numpy()`` *may* require copying data and coercing the result to a NumPy type (possibly object), which may be expensive. When you need a no-copy reference to the underlying data, :attr:`Series.array` should be used instead. This table lays out the different dtypes and default return types of ``to_numpy()`` for various dtypes within pandas. ================== ================================ dtype array type ================== ================================ category[T] ndarray[T] (same dtype as input) period ndarray[object] (Periods) interval ndarray[object] (Intervals) IntegerNA ndarray[object] datetime64[ns] datetime64[ns] datetime64[ns, tz] ndarray[object] (Timestamps) ================== ================================ Examples -------- >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) Specify the `dtype` to control how datetime-aware data is represented. Use ``dtype=object`` to return an ndarray of pandas :class:`Timestamp` objects, each with the correct ``tz``. >>> ser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> ser.to_numpy(dtype=object) array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or ``dtype='datetime64[ns]'`` to return an ndarray of native datetime64 values. The values are converted to UTC and the timezone info is dropped. >>> ser.to_numpy(dtype="datetime64[ns]") ... # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'], dtype='datetime64[ns]') """
if is_datetime64tz_dtype(self.dtype) and dtype is None: # note: this is going to change very soon. # I have a WIP PR making this unnecessary, but it's # a bit out of scope for the DatetimeArray PR. dtype = "object" result = np.asarray(self._values, dtype=dtype) # TODO(GH-24345): Avoid potential double copy if copy: result = result.copy() return result
<SYSTEM_TASK:> The data as an ndarray, possibly losing information. <END_TASK> <USER_TASK:> Description: def _ndarray_values(self) -> np.ndarray: """ The data as an ndarray, possibly losing information. The expectation is that this is cheap to compute, and is primarily used for interacting with our indexers. - categorical -> codes """
if is_extension_array_dtype(self): return self.array._ndarray_values return self.values
<SYSTEM_TASK:> Return the maximum value of the Index. <END_TASK> <USER_TASK:> Description: def max(self, axis=None, skipna=True): """ Return the maximum value of the Index. Parameters ---------- axis : int, optional For compatibility with NumPy. Only 0 or None are allowed. skipna : bool, default True Returns ------- scalar Maximum value. See Also -------- Index.min : Return the minimum value in an Index. Series.max : Return the maximum value in a Series. DataFrame.max : Return the maximum values in a DataFrame. Examples -------- >>> idx = pd.Index([3, 2, 1]) >>> idx.max() 3 >>> idx = pd.Index(['c', 'b', 'a']) >>> idx.max() 'c' For a MultiIndex, the maximum is determined lexicographically. >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.max() ('b', 2) """
nv.validate_minmax_axis(axis) return nanops.nanmax(self._values, skipna=skipna)
<SYSTEM_TASK:> Return an ndarray of the maximum argument indexer. <END_TASK> <USER_TASK:> Description: def argmax(self, axis=None, skipna=True): """ Return an ndarray of the maximum argument indexer. Parameters ---------- axis : {None} Dummy argument for consistency with Series skipna : bool, default True See Also -------- numpy.ndarray.argmax """
nv.validate_minmax_axis(axis) return nanops.nanargmax(self._values, skipna=skipna)
<SYSTEM_TASK:> Return the minimum value of the Index. <END_TASK> <USER_TASK:> Description: def min(self, axis=None, skipna=True): """ Return the minimum value of the Index. Parameters ---------- axis : {None} Dummy argument for consistency with Series skipna : bool, default True Returns ------- scalar Minimum value. See Also -------- Index.max : Return the maximum value of the object. Series.min : Return the minimum value in a Series. DataFrame.min : Return the minimum values in a DataFrame. Examples -------- >>> idx = pd.Index([3, 2, 1]) >>> idx.min() 1 >>> idx = pd.Index(['c', 'b', 'a']) >>> idx.min() 'a' For a MultiIndex, the minimum is determined lexicographically. >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.min() ('a', 1) """
nv.validate_minmax_axis(axis) return nanops.nanmin(self._values, skipna=skipna)
<SYSTEM_TASK:> Return a ndarray of the minimum argument indexer. <END_TASK> <USER_TASK:> Description: def argmin(self, axis=None, skipna=True): """ Return a ndarray of the minimum argument indexer. Parameters ---------- axis : {None} Dummy argument for consistency with Series skipna : bool, default True Returns ------- numpy.ndarray See Also -------- numpy.ndarray.argmin """
nv.validate_minmax_axis(axis) return nanops.nanargmin(self._values, skipna=skipna)
<SYSTEM_TASK:> Return a list of the values. <END_TASK> <USER_TASK:> Description: def tolist(self): """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns ------- list See Also -------- numpy.ndarray.tolist """
if is_datetimelike(self._values): return [com.maybe_box_datetimelike(x) for x in self._values] elif is_extension_array_dtype(self._values): return list(self._values) else: return self._values.tolist()
<SYSTEM_TASK:> perform the reduction type operation if we can <END_TASK> <USER_TASK:> Description: def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ perform the reduction type operation if we can """
func = getattr(self, name, None) if func is None: raise TypeError("{klass} cannot perform the operation {op}".format( klass=self.__class__.__name__, op=name)) return func(skipna=skipna, **kwds)
<SYSTEM_TASK:> Return number of unique elements in the object. <END_TASK> <USER_TASK:> Description: def nunique(self, dropna=True): """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- dropna : bool, default True Don't include NaN in the count. Returns ------- int See Also -------- DataFrame.nunique: Method nunique for DataFrame. Series.count: Count non-NA/null observations in the Series. Examples -------- >>> s = pd.Series([1, 3, 5, 7, 7]) >>> s 0 1 1 3 2 5 3 7 4 7 dtype: int64 >>> s.nunique() 4 """
uniqs = self.unique() n = len(uniqs) if dropna and isna(uniqs).any(): n -= 1 return n
<SYSTEM_TASK:> Memory usage of the values <END_TASK> <USER_TASK:> Description: def memory_usage(self, deep=False): """ Memory usage of the values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used See Also -------- numpy.ndarray.nbytes Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False or if used on PyPy """
if hasattr(self.array, 'memory_usage'): return self.array.memory_usage(deep=deep) v = self.array.nbytes if deep and is_object_dtype(self) and not PYPY: v += lib.memory_usage_of_objects(self.array) return v
<SYSTEM_TASK:> Attempt to convert a path-like object to a string. <END_TASK> <USER_TASK:> Description: def _stringify_path(filepath_or_buffer): """Attempt to convert a path-like object to a string. Parameters ---------- filepath_or_buffer : object to be converted Returns ------- str_filepath_or_buffer : maybe a string version of the object Notes ----- Objects supporting the fspath protocol (python 3.6+) are coerced according to its __fspath__ method. For backwards compatibility with older pythons, pathlib.Path and py.path objects are specially coerced. Any other object is passed through unchanged, which includes bytes, strings, buffers, or anything else that's not even path-like. """
try: import pathlib _PATHLIB_INSTALLED = True except ImportError: _PATHLIB_INSTALLED = False try: from py.path import local as LocalPath _PY_PATH_INSTALLED = True except ImportError: _PY_PATH_INSTALLED = False if hasattr(filepath_or_buffer, '__fspath__'): return filepath_or_buffer.__fspath__() if _PATHLIB_INSTALLED and isinstance(filepath_or_buffer, pathlib.Path): return str(filepath_or_buffer) if _PY_PATH_INSTALLED and isinstance(filepath_or_buffer, LocalPath): return filepath_or_buffer.strpath return _expand_user(filepath_or_buffer)
<SYSTEM_TASK:> If the filepath_or_buffer is a url, translate and return the buffer. <END_TASK> <USER_TASK:> Description: def get_filepath_or_buffer(filepath_or_buffer, encoding=None, compression=None, mode=None): """ If the filepath_or_buffer is a url, translate and return the buffer. Otherwise passthrough. Parameters ---------- filepath_or_buffer : a url, filepath (str, py.path.local or pathlib.Path), or buffer compression : {{'gzip', 'bz2', 'zip', 'xz', None}}, optional encoding : the encoding to use to decode bytes, default is 'utf-8' mode : str, optional Returns ------- tuple of ({a filepath_ or buffer or S3File instance}, encoding, str, compression, str, should_close, bool) """
filepath_or_buffer = _stringify_path(filepath_or_buffer) if _is_url(filepath_or_buffer): req = urlopen(filepath_or_buffer) content_encoding = req.headers.get('Content-Encoding', None) if content_encoding == 'gzip': # Override compression based on Content-Encoding header compression = 'gzip' reader = BytesIO(req.read()) req.close() return reader, encoding, compression, True if is_s3_url(filepath_or_buffer): from pandas.io import s3 return s3.get_filepath_or_buffer(filepath_or_buffer, encoding=encoding, compression=compression, mode=mode) if is_gcs_url(filepath_or_buffer): from pandas.io import gcs return gcs.get_filepath_or_buffer(filepath_or_buffer, encoding=encoding, compression=compression, mode=mode) if isinstance(filepath_or_buffer, (str, bytes, mmap.mmap)): return _expand_user(filepath_or_buffer), None, compression, False if not is_file_like(filepath_or_buffer): msg = "Invalid file path or buffer object type: {_type}" raise ValueError(msg.format(_type=type(filepath_or_buffer))) return filepath_or_buffer, None, compression, False
<SYSTEM_TASK:> Get the compression method for filepath_or_buffer. If compression='infer', <END_TASK> <USER_TASK:> Description: def _infer_compression(filepath_or_buffer, compression): """ Get the compression method for filepath_or_buffer. If compression='infer', the inferred compression method is returned. Otherwise, the input compression method is returned unchanged, unless it's invalid, in which case an error is raised. Parameters ---------- filepath_or_buffer : a path (str) or buffer compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). Returns ------- string or None : compression method Raises ------ ValueError on invalid compression specified """
# No compression has been explicitly specified if compression is None: return None # Infer compression if compression == 'infer': # Convert all path types (e.g. pathlib.Path) to strings filepath_or_buffer = _stringify_path(filepath_or_buffer) if not isinstance(filepath_or_buffer, str): # Cannot infer compression of a buffer, assume no compression return None # Infer compression from the filename/URL extension for compression, extension in _compression_to_extension.items(): if filepath_or_buffer.endswith(extension): return compression return None # Compression has been specified. Check that it's valid if compression in _compression_to_extension: return compression msg = 'Unrecognized compression type: {}'.format(compression) valid = ['infer', None] + sorted(_compression_to_extension) msg += '\nValid compression types are {}'.format(valid) raise ValueError(msg)
<SYSTEM_TASK:> Wrap comparison operations to convert timedelta-like to timedelta64 <END_TASK> <USER_TASK:> Description: def _td_array_cmp(cls, op): """ Wrap comparison operations to convert timedelta-like to timedelta64 """
opname = '__{name}__'.format(name=op.__name__) nat_result = opname == '__ne__' def wrapper(self, other): if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)): return NotImplemented if _is_convertible_to_td(other) or other is NaT: try: other = Timedelta(other) except ValueError: # failed to parse as timedelta return ops.invalid_comparison(self, other, op) result = op(self.view('i8'), other.value) if isna(other): result.fill(nat_result) elif not is_list_like(other): return ops.invalid_comparison(self, other, op) elif len(other) != len(self): raise ValueError("Lengths must match") else: try: other = type(self)._from_sequence(other)._data except (ValueError, TypeError): return ops.invalid_comparison(self, other, op) result = op(self.view('i8'), other.view('i8')) result = com.values_from_object(result) o_mask = np.array(isna(other)) if o_mask.any(): result[o_mask] = nat_result if self._hasnans: result[self._isnan] = nat_result return result return compat.set_function_name(wrapper, opname, cls)
<SYSTEM_TASK:> Add engine to the excel writer registry.io.excel. <END_TASK> <USER_TASK:> Description: def register_writer(klass): """ Add engine to the excel writer registry.io.excel. You must use this method to integrate with ``to_excel``. Parameters ---------- klass : ExcelWriter """
if not callable(klass): raise ValueError("Can only register callables as engines") engine_name = klass.engine _writers[engine_name] = klass
<SYSTEM_TASK:> Convert Excel column name like 'AB' to 0-based column index. <END_TASK> <USER_TASK:> Description: def _excel2num(x): """ Convert Excel column name like 'AB' to 0-based column index. Parameters ---------- x : str The Excel column name to convert to a 0-based column index. Returns ------- num : int The column index corresponding to the name. Raises ------ ValueError Part of the Excel column name was invalid. """
index = 0 for c in x.upper().strip(): cp = ord(c) if cp < ord("A") or cp > ord("Z"): raise ValueError("Invalid column name: {x}".format(x=x)) index = index * 26 + cp - ord("A") + 1 return index - 1
<SYSTEM_TASK:> Convert comma separated list of column names and ranges to indices. <END_TASK> <USER_TASK:> Description: def _range2cols(areas): """ Convert comma separated list of column names and ranges to indices. Parameters ---------- areas : str A string containing a sequence of column ranges (or areas). Returns ------- cols : list A list of 0-based column indices. Examples -------- >>> _range2cols('A:E') [0, 1, 2, 3, 4] >>> _range2cols('A,C,Z:AB') [0, 2, 25, 26, 27] """
cols = [] for rng in areas.split(","): if ":" in rng: rng = rng.split(":") cols.extend(lrange(_excel2num(rng[0]), _excel2num(rng[1]) + 1)) else: cols.append(_excel2num(rng)) return cols
<SYSTEM_TASK:> Convert `usecols` into a compatible format for parsing in `parsers.py`. <END_TASK> <USER_TASK:> Description: def _maybe_convert_usecols(usecols): """ Convert `usecols` into a compatible format for parsing in `parsers.py`. Parameters ---------- usecols : object The use-columns object to potentially convert. Returns ------- converted : object The compatible format of `usecols`. """
if usecols is None: return usecols if is_integer(usecols): warnings.warn(("Passing in an integer for `usecols` has been " "deprecated. Please pass in a list of int from " "0 to `usecols` inclusive instead."), FutureWarning, stacklevel=2) return lrange(usecols + 1) if isinstance(usecols, str): return _range2cols(usecols) return usecols
<SYSTEM_TASK:> Forward fill blank entries in row but only inside the same parent index. <END_TASK> <USER_TASK:> Description: def _fill_mi_header(row, control_row): """Forward fill blank entries in row but only inside the same parent index. Used for creating headers in Multiindex. Parameters ---------- row : list List of items in a single row. control_row : list of bool Helps to determine if particular column is in same parent index as the previous value. Used to stop propagation of empty cells between different indexes. Returns ---------- Returns changed row and control_row """
last = row[0] for i in range(1, len(row)): if not control_row[i]: last = row[i] if row[i] == '' or row[i] is None: row[i] = last else: control_row[i] = False last = row[i] return row, control_row
<SYSTEM_TASK:> Pop the header name for MultiIndex parsing. <END_TASK> <USER_TASK:> Description: def _pop_header_name(row, index_col): """ Pop the header name for MultiIndex parsing. Parameters ---------- row : list The data row to parse for the header name. index_col : int, list The index columns for our data. Assumed to be non-null. Returns ------- header_name : str The extracted header name. trimmed_row : list The original data row with the header name removed. """
# Pop out header name and fill w/blank. i = index_col if not is_list_like(index_col) else max(index_col) header_name = row[i] header_name = None if header_name == "" else header_name return header_name, row[:i] + [''] + row[i + 1:]
<SYSTEM_TASK:> Ensure that we are grabbing the correct scope. <END_TASK> <USER_TASK:> Description: def _ensure_scope(level, global_dict=None, local_dict=None, resolvers=(), target=None, **kwargs): """Ensure that we are grabbing the correct scope."""
return Scope(level + 1, global_dict=global_dict, local_dict=local_dict, resolvers=resolvers, target=target)
<SYSTEM_TASK:> Replace a number with its hexadecimal representation. Used to tag <END_TASK> <USER_TASK:> Description: def _replacer(x): """Replace a number with its hexadecimal representation. Used to tag temporary variables with their calling scope's id. """
# get the hex repr of the binary char and remove 0x and pad by pad_size # zeros try: hexin = ord(x) except TypeError: # bytes literals masquerade as ints when iterating in py3 hexin = x return hex(hexin)
<SYSTEM_TASK:> Resolve a variable name in a possibly local context <END_TASK> <USER_TASK:> Description: def resolve(self, key, is_local): """Resolve a variable name in a possibly local context Parameters ---------- key : str A variable name is_local : bool Flag indicating whether the variable is local or not (prefixed with the '@' symbol) Returns ------- value : object The value of a particular variable """
try: # only look for locals in outer scope if is_local: return self.scope[key] # not a local variable so check in resolvers if we have them if self.has_resolvers: return self.resolvers[key] # if we're here that means that we have no locals and we also have # no resolvers assert not is_local and not self.has_resolvers return self.scope[key] except KeyError: try: # last ditch effort we look in temporaries # these are created when parsing indexing expressions # e.g., df[df > 0] return self.temps[key] except KeyError: raise compu.ops.UndefinedVariableError(key, is_local)
<SYSTEM_TASK:> Replace a variable name, with a potentially new value. <END_TASK> <USER_TASK:> Description: def swapkey(self, old_key, new_key, new_value=None): """Replace a variable name, with a potentially new value. Parameters ---------- old_key : str Current variable name to replace new_key : str New variable name to replace `old_key` with new_value : object Value to be replaced along with the possible renaming """
if self.has_resolvers: maps = self.resolvers.maps + self.scope.maps else: maps = self.scope.maps maps.append(self.temps) for mapping in maps: if old_key in mapping: mapping[new_key] = new_value return
<SYSTEM_TASK:> Get specifically scoped variables from a list of stack frames. <END_TASK> <USER_TASK:> Description: def _get_vars(self, stack, scopes): """Get specifically scoped variables from a list of stack frames. Parameters ---------- stack : list A list of stack frames as returned by ``inspect.stack()`` scopes : sequence of strings A sequence containing valid stack frame attribute names that evaluate to a dictionary. For example, ('locals', 'globals') """
variables = itertools.product(scopes, stack) for scope, (frame, _, _, _, _, _) in variables: try: d = getattr(frame, 'f_' + scope) self.scope = self.scope.new_child(d) finally: # won't remove it, but DECREF it # in Py3 this probably isn't necessary since frame won't be # scope after the loop del frame
<SYSTEM_TASK:> Update the current scope by going back `level` levels. <END_TASK> <USER_TASK:> Description: def update(self, level): """Update the current scope by going back `level` levels. Parameters ---------- level : int or None, optional, default None """
sl = level + 1 # add sl frames to the scope starting with the # most distant and overwriting with more current # makes sure that we can capture variable scope stack = inspect.stack() try: self._get_vars(stack[:sl], scopes=['locals']) finally: del stack[:], stack
<SYSTEM_TASK:> Add a temporary variable to the scope. <END_TASK> <USER_TASK:> Description: def add_tmp(self, value): """Add a temporary variable to the scope. Parameters ---------- value : object An arbitrary object to be assigned to a temporary variable. Returns ------- name : basestring The name of the temporary variable created. """
name = '{name}_{num}_{hex_id}'.format(name=type(value).__name__, num=self.ntemps, hex_id=_raw_hex_id(self)) # add to inner most scope assert name not in self.temps self.temps[name] = value assert name in self.temps # only increment if the variable gets put in the scope return name
<SYSTEM_TASK:> Return the full scope for use with passing to engines transparently <END_TASK> <USER_TASK:> Description: def full_scope(self): """Return the full scope for use with passing to engines transparently as a mapping. Returns ------- vars : DeepChainMap All variables in this scope. """
maps = [self.temps] + self.resolvers.maps + self.scope.maps return DeepChainMap(*maps)
<SYSTEM_TASK:> Read SAS files stored as either XPORT or SAS7BDAT format files. <END_TASK> <USER_TASK:> Description: def read_sas(filepath_or_buffer, format=None, index=None, encoding=None, chunksize=None, iterator=False): """ Read SAS files stored as either XPORT or SAS7BDAT format files. Parameters ---------- filepath_or_buffer : string or file-like object Path to the SAS file. format : string {'xport', 'sas7bdat'} or None If None, file format is inferred from file extension. If 'xport' or 'sas7bdat', uses the corresponding format. index : identifier of index column, defaults to None Identifier of column that should be used as index of the DataFrame. encoding : string, default is None Encoding for text data. If None, text data are stored as raw bytes. chunksize : int Read file `chunksize` lines at a time, returns iterator. iterator : bool, defaults to False If True, returns an iterator for reading the file incrementally. Returns ------- DataFrame if iterator=False and chunksize=None, else SAS7BDATReader or XportReader """
if format is None: buffer_error_msg = ("If this is a buffer object rather " "than a string name, you must specify " "a format string") filepath_or_buffer = _stringify_path(filepath_or_buffer) if not isinstance(filepath_or_buffer, str): raise ValueError(buffer_error_msg) fname = filepath_or_buffer.lower() if fname.endswith(".xpt"): format = "xport" elif fname.endswith(".sas7bdat"): format = "sas7bdat" else: raise ValueError("unable to infer format of SAS file") if format.lower() == 'xport': from pandas.io.sas.sas_xport import XportReader reader = XportReader(filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize) elif format.lower() == 'sas7bdat': from pandas.io.sas.sas7bdat import SAS7BDATReader reader = SAS7BDATReader(filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize) else: raise ValueError('unknown SAS format') if iterator or chunksize: return reader data = reader.read() reader.close() return data
<SYSTEM_TASK:> Derive the "_data" and "index" attributes of a new Series from a <END_TASK> <USER_TASK:> Description: def _init_dict(self, data, index=None, dtype=None): """ Derive the "_data" and "index" attributes of a new Series from a dictionary input. Parameters ---------- data : dict or dict-like Data used to populate the new Series index : Index or index-like, default None index for the new Series: if None, use dict keys dtype : dtype, default None dtype for the new Series: if None, infer from data Returns ------- _data : BlockManager for the new Series index : index for the new Series """
# Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')] # raises KeyError), so we iterate the entire dict, and align if data: keys, values = zip(*data.items()) values = list(values) elif index is not None: # fastpath for Series(data=None). Just use broadcasting a scalar # instead of reindexing. values = na_value_for_dtype(dtype) keys = index else: keys, values = [], [] # Input is now list-like, so rely on "standard" construction: s = Series(values, index=keys, dtype=dtype) # Now we just make sure the order is respected, if any if data and index is not None: s = s.reindex(index, copy=False) elif not PY36 and not isinstance(data, OrderedDict) and data: # Need the `and data` to avoid sorting Series(None, index=[...]) # since that isn't really dict-like try: s = s.sort_index() except TypeError: pass return s._data, s.index
<SYSTEM_TASK:> Construct Series from array. <END_TASK> <USER_TASK:> Description: def from_array(cls, arr, index=None, name=None, dtype=None, copy=False, fastpath=False): """ Construct Series from array. .. deprecated :: 0.23.0 Use pd.Series(..) constructor instead. """
warnings.warn("'from_array' is deprecated and will be removed in a " "future version. Please use the pd.Series(..) " "constructor instead.", FutureWarning, stacklevel=2) if isinstance(arr, ABCSparseArray): from pandas.core.sparse.series import SparseSeries cls = SparseSeries return cls(arr, index=index, name=name, dtype=dtype, copy=copy, fastpath=fastpath)
<SYSTEM_TASK:> Override generic, we want to set the _typ here. <END_TASK> <USER_TASK:> Description: def _set_axis(self, axis, labels, fastpath=False): """ Override generic, we want to set the _typ here. """
if not fastpath: labels = ensure_index(labels) is_all_dates = labels.is_all_dates if is_all_dates: if not isinstance(labels, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): try: labels = DatetimeIndex(labels) # need to set here because we changed the index if fastpath: self._data.set_axis(axis, labels) except (tslibs.OutOfBoundsDatetime, ValueError): # labels may exceeds datetime bounds, # or not be a DatetimeIndex pass self._set_subtyp(is_all_dates) object.__setattr__(self, '_index', labels) if not fastpath: self._data.set_axis(axis, labels)
<SYSTEM_TASK:> Return object Series which contains boxed values. <END_TASK> <USER_TASK:> Description: def asobject(self): """ Return object Series which contains boxed values. .. deprecated :: 0.23.0 Use ``astype(object)`` instead. *this is an internal non-public method* """
warnings.warn("'asobject' is deprecated. Use 'astype(object)'" " instead", FutureWarning, stacklevel=2) return self.astype(object).values
<SYSTEM_TASK:> Return selected slices of an array along given axis as a Series. <END_TASK> <USER_TASK:> Description: def compress(self, condition, *args, **kwargs): """ Return selected slices of an array along given axis as a Series. .. deprecated:: 0.24.0 See Also -------- numpy.ndarray.compress """
msg = ("Series.compress(condition) is deprecated. " "Use 'Series[condition]' or " "'np.asarray(series).compress(condition)' instead.") warnings.warn(msg, FutureWarning, stacklevel=2) nv.validate_compress(args, kwargs) return self[condition]
<SYSTEM_TASK:> Create a new view of the Series. <END_TASK> <USER_TASK:> Description: def view(self, dtype=None): """ Create a new view of the Series. This function will return a new Series with a view of the same underlying values in memory, optionally reinterpreted with a new data type. The new data type must preserve the same size in bytes as to not cause index misalignment. Parameters ---------- dtype : data type Data type object or one of their string representations. Returns ------- Series A new Series object as a view of the same data in memory. See Also -------- numpy.ndarray.view : Equivalent numpy function to create a new view of the same data in memory. Notes ----- Series are instantiated with ``dtype=float64`` by default. While ``numpy.ndarray.view()`` will return a view with the same data type as the original array, ``Series.view()`` (without specified dtype) will try using ``float64`` and may fail if the original data type size in bytes is not the same. Examples -------- >>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8') >>> s 0 -2 1 -1 2 0 3 1 4 2 dtype: int8 The 8 bit signed integer representation of `-1` is `0b11111111`, but the same bytes represent 255 if read as an 8 bit unsigned integer: >>> us = s.view('uint8') >>> us 0 254 1 255 2 0 3 1 4 2 dtype: uint8 The views share the same underlying values: >>> us[0] = 128 >>> s 0 -128 1 -1 2 0 3 1 4 2 dtype: int8 """
return self._constructor(self._values.view(dtype), index=self.index).__finalize__(self)
<SYSTEM_TASK:> Return the i-th value or values in the Series by location. <END_TASK> <USER_TASK:> Description: def _ixs(self, i, axis=0): """ Return the i-th value or values in the Series by location. Parameters ---------- i : int, slice, or sequence of integers Returns ------- scalar (int) or Series (slice, sequence) """
try: # dispatch to the values if we need values = self._values if isinstance(values, np.ndarray): return libindex.get_value_at(values, i) else: return values[i] except IndexError: raise except Exception: if isinstance(i, slice): indexer = self.index._convert_slice_indexer(i, kind='iloc') return self._get_values(indexer) else: label = self.index[i] if isinstance(label, Index): return self.take(i, axis=axis, convert=True) else: return libindex.get_value_at(self, i)
<SYSTEM_TASK:> Repeat elements of a Series. <END_TASK> <USER_TASK:> Description: def repeat(self, repeats, axis=None): """ Repeat elements of a Series. Returns a new Series where each element of the current Series is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty Series. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- Series Newly created Series with repeated elements. See Also -------- Index.repeat : Equivalent function for Index. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object >>> s.repeat(2) 0 a 0 a 1 b 1 b 2 c 2 c dtype: object >>> s.repeat([1, 2, 3]) 0 a 1 b 1 b 2 c 2 c 2 c dtype: object """
nv.validate_repeat(tuple(), dict(axis=axis)) new_index = self.index.repeat(repeats) new_values = self._values.repeat(repeats) return self._constructor(new_values, index=new_index).__finalize__(self)
<SYSTEM_TASK:> Generate a new DataFrame or Series with the index reset. <END_TASK> <USER_TASK:> Description: def reset_index(self, level=None, drop=False, name=None, inplace=False): """ Generate a new DataFrame or Series with the index reset. This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation. Parameters ---------- level : int, str, tuple, or list, default optional For a Series with a MultiIndex, only remove the specified levels from the index. Removes all levels by default. drop : bool, default False Just reset the index, without inserting it as a column in the new DataFrame. name : object, optional The name to use for the column containing the original Series values. Uses ``self.name`` by default. This argument is ignored when `drop` is True. inplace : bool, default False Modify the Series in place (do not create a new object). Returns ------- Series or DataFrame When `drop` is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When `drop` is True, a `Series` is returned. In either case, if ``inplace=True``, no value is returned. See Also -------- DataFrame.reset_index: Analogous function for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4], name='foo', ... index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) Generate a DataFrame with default index. >>> s.reset_index() idx foo 0 a 1 1 b 2 2 c 3 3 d 4 To specify the name of the new column use `name`. >>> s.reset_index(name='values') idx values 0 a 1 1 b 2 2 c 3 3 d 4 To generate a new Series with the default set `drop` to True. >>> s.reset_index(drop=True) 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 To update the Series in place, without generating a new one set `inplace` to True. Note that it also requires ``drop=True``. >>> s.reset_index(inplace=True, drop=True) >>> s 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 The `level` parameter is interesting for Series with a multi-level index. >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']), ... np.array(['one', 'two', 'one', 'two'])] >>> s2 = pd.Series( ... range(4), name='foo', ... index=pd.MultiIndex.from_arrays(arrays, ... names=['a', 'b'])) To remove a specific level from the Index, use `level`. >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3 If `level` is not set, all levels are removed from the Index. >>> s2.reset_index() a b foo 0 bar one 0 1 bar two 1 2 baz one 2 3 baz two 3 """
inplace = validate_bool_kwarg(inplace, 'inplace') if drop: new_index = ibase.default_index(len(self)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if inplace: self.index = new_index # set name if it was passed, otherwise, keep the previous name self.name = name or self.name else: return self._constructor(self._values.copy(), index=new_index).__finalize__(self) elif inplace: raise TypeError('Cannot reset_index inplace on a Series ' 'to create a DataFrame') else: df = self.to_frame(name) return df.reset_index(level=level, drop=drop)
<SYSTEM_TASK:> Render a string representation of the Series. <END_TASK> <USER_TASK:> Description: def to_string(self, buf=None, na_rep='NaN', float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None): """ Render a string representation of the Series. Parameters ---------- buf : StringIO-like, optional Buffer to write to. na_rep : str, optional String representation of NaN to use, default 'NaN'. float_format : one-parameter function, optional Formatter function to apply to columns' elements if they are floats, default None. header : bool, default True Add the Series header (index name). index : bool, optional Add index (row) labels, default True. length : bool, default False Add the Series length. dtype : bool, default False Add the Series dtype. name : bool, default False Add the Series name if not None. max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. Returns ------- str or None String representation of Series if ``buf=None``, otherwise None. """
formatter = fmt.SeriesFormatter(self, name=name, length=length, header=header, index=index, dtype=dtype, na_rep=na_rep, float_format=float_format, max_rows=max_rows) result = formatter.to_string() # catch contract violations if not isinstance(result, str): raise AssertionError("result must be of type unicode, type" " of result is {0!r}" "".format(result.__class__.__name__)) if buf is None: return result else: try: buf.write(result) except AttributeError: with open(buf, 'w') as f: f.write(result)
<SYSTEM_TASK:> Convert Series to DataFrame. <END_TASK> <USER_TASK:> Description: def to_frame(self, name=None): """ Convert Series to DataFrame. Parameters ---------- name : object, default None The passed name should substitute for the series name (if it has one). Returns ------- DataFrame DataFrame representation of Series. Examples -------- >>> s = pd.Series(["a", "b", "c"], ... name="vals") >>> s.to_frame() vals 0 a 1 b 2 c """
if name is None: df = self._constructor_expanddim(self) else: df = self._constructor_expanddim({name: self}) return df
<SYSTEM_TASK:> Convert Series to SparseSeries. <END_TASK> <USER_TASK:> Description: def to_sparse(self, kind='block', fill_value=None): """ Convert Series to SparseSeries. Parameters ---------- kind : {'block', 'integer'}, default 'block' fill_value : float, defaults to NaN (missing) Value to use for filling NaN values. Returns ------- SparseSeries Sparse representation of the Series. """
# TODO: deprecate from pandas.core.sparse.series import SparseSeries values = SparseArray(self, kind=kind, fill_value=fill_value) return SparseSeries( values, index=self.index, name=self.name ).__finalize__(self)
<SYSTEM_TASK:> Set the Series name. <END_TASK> <USER_TASK:> Description: def _set_name(self, name, inplace=False): """ Set the Series name. Parameters ---------- name : str inplace : bool whether to modify `self` directly or return a copy """
inplace = validate_bool_kwarg(inplace, 'inplace') ser = self if inplace else self.copy() ser.name = name return ser
<SYSTEM_TASK:> Return Series with duplicate values removed. <END_TASK> <USER_TASK:> Description: def drop_duplicates(self, keep='first', inplace=False): """ Return Series with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : bool, default ``False`` If ``True``, performs operation inplace and returns None. Returns ------- Series Series with duplicates dropped. See Also -------- Index.drop_duplicates : Equivalent method on Index. DataFrame.drop_duplicates : Equivalent method on DataFrame. Series.duplicated : Related method on Series, indicating duplicate Series values. Examples -------- Generate an Series with duplicated entries. >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the 'keep' parameter, the selection behaviour of duplicated values can be changed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value 'last' for parameter 'keep' keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value ``False`` for parameter 'keep' discards all sets of duplicated entries. Setting the value of 'inplace' to ``True`` performs the operation inplace and returns ``None``. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object """
return super().drop_duplicates(keep=keep, inplace=inplace)
<SYSTEM_TASK:> Return the row label of the minimum value. <END_TASK> <USER_TASK:> Description: def idxmin(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the minimum value. If multiple values equal the minimum, the first row label with that value is returned. Parameters ---------- skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. axis : int, default 0 For compatibility with DataFrame.idxmin. Redundant for application on Series. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the minimum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmin : Return indices of the minimum values along the given axis. DataFrame.idxmin : Return index of first occurrence of minimum over requested axis. Series.idxmax : Return index *label* of the first occurrence of maximum of values. Notes ----- This method is the Series version of ``ndarray.argmin``. This method returns the label of the minimum, while ``ndarray.argmin`` returns the position. To get the position, use ``series.values.argmin()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 1], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 1.0 dtype: float64 >>> s.idxmin() 'A' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmin(skipna=False) nan """
skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs) i = nanops.nanargmin(com.values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i]
<SYSTEM_TASK:> Return the row label of the maximum value. <END_TASK> <USER_TASK:> Description: def idxmax(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the maximum value. If multiple values equal the maximum, the first row label with that value is returned. Parameters ---------- skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. axis : int, default 0 For compatibility with DataFrame.idxmax. Redundant for application on Series. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the maximum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmax : Return indices of the maximum values along the given axis. DataFrame.idxmax : Return index of first occurrence of maximum over requested axis. Series.idxmin : Return index *label* of the first occurrence of minimum of values. Notes ----- This method is the Series version of ``ndarray.argmax``. This method returns the label of the maximum, while ``ndarray.argmax`` returns the position. To get the position, use ``series.values.argmax()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64 >>> s.idxmax() 'C' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmax(skipna=False) nan """
skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs) i = nanops.nanargmax(com.values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i]
<SYSTEM_TASK:> Round each value in a Series to the given number of decimals. <END_TASK> <USER_TASK:> Description: def round(self, decimals=0, *args, **kwargs): """ Round each value in a Series to the given number of decimals. Parameters ---------- decimals : int Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. Returns ------- Series Rounded values of the Series. See Also -------- numpy.around : Round values of an np.array. DataFrame.round : Round values of a DataFrame. Examples -------- >>> s = pd.Series([0.1, 1.3, 2.7]) >>> s.round() 0 0.0 1 1.0 2 3.0 dtype: float64 """
nv.validate_round(args, kwargs) result = com.values_from_object(self).round(decimals) result = self._constructor(result, index=self.index).__finalize__(self) return result
<SYSTEM_TASK:> Return value at the given quantile. <END_TASK> <USER_TASK:> Description: def quantile(self, q=0.5, interpolation='linear'): """ Return value at the given quantile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.18.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- float or Series If ``q`` is an array, a Series will be returned where the index is ``q`` and the values are the quantiles, otherwise a float will be returned. See Also -------- core.window.Rolling.quantile numpy.percentile Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 """
self._check_percentile(q) # We dispatch to DataFrame so that core.internals only has to worry # about 2D cases. df = self.to_frame() result = df.quantile(q=q, interpolation=interpolation, numeric_only=False) if result.ndim == 2: result = result.iloc[:, 0] if is_list_like(q): result.name = self.name return self._constructor(result, index=Float64Index(q), name=self.name) else: # scalar return result.iloc[0]
<SYSTEM_TASK:> Compute correlation with `other` Series, excluding missing values. <END_TASK> <USER_TASK:> Description: def corr(self, other, method='pearson', min_periods=None): """ Compute correlation with `other` Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the correlation. method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Correlation with other. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> s1 = pd.Series([.2, .0, .6, .2]) >>> s2 = pd.Series([.3, .6, .0, .1]) >>> s1.corr(s2, method=histogram_intersection) 0.3 """
this, other = self.align(other, join='inner', copy=False) if len(this) == 0: return np.nan if method in ['pearson', 'spearman', 'kendall'] or callable(method): return nanops.nancorr(this.values, other.values, method=method, min_periods=min_periods) raise ValueError("method must be either 'pearson', " "'spearman', 'kendall', or a callable, " "'{method}' was supplied".format(method=method))
<SYSTEM_TASK:> Compute covariance with Series, excluding missing values. <END_TASK> <USER_TASK:> Description: def cov(self, other, min_periods=None): """ Compute covariance with Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the covariance. min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Covariance between Series and other normalized by N-1 (unbiased estimator). Examples -------- >>> s1 = pd.Series([0.90010907, 0.13484424, 0.62036035]) >>> s2 = pd.Series([0.12528585, 0.26962463, 0.51111198]) >>> s1.cov(s2) -0.01685762652715874 """
this, other = self.align(other, join='inner', copy=False) if len(this) == 0: return np.nan return nanops.nancov(this.values, other.values, min_periods=min_periods)
<SYSTEM_TASK:> Compute the dot product between the Series and the columns of other. <END_TASK> <USER_TASK:> Description: def dot(self, other): """ Compute the dot product between the Series and the columns of other. This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array. It can also be called using `self @ other` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the dot product with its columns. Returns ------- scalar, Series or numpy.ndarray Return the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array. See Also -------- DataFrame.dot: Compute the matrix product with the DataFrame. Series.mul: Multiplication of series and other, element-wise. Notes ----- The Series and other has to share the same index if other is a Series or a DataFrame. Examples -------- >>> s = pd.Series([0, 1, 2, 3]) >>> other = pd.Series([-1, 2, -3, 4]) >>> s.dot(other) 8 >>> s @ other 8 >>> df = pd.DataFrame([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(df) 0 24 1 14 dtype: int64 >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(arr) array([24, 14]) """
from pandas.core.frame import DataFrame if isinstance(other, (Series, DataFrame)): common = self.index.union(other.index) if (len(common) > len(self.index) or len(common) > len(other.index)): raise ValueError('matrices are not aligned') left = self.reindex(index=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: lvals = self.values rvals = np.asarray(other) if lvals.shape[0] != rvals.shape[0]: raise Exception('Dot product shape mismatch, %s vs %s' % (lvals.shape, rvals.shape)) if isinstance(other, DataFrame): return self._constructor(np.dot(lvals, rvals), index=other.columns).__finalize__(self) elif isinstance(other, Series): return np.dot(lvals, rvals) elif isinstance(rvals, np.ndarray): return np.dot(lvals, rvals) else: # pragma: no cover raise TypeError('unsupported type: %s' % type(other))
<SYSTEM_TASK:> Concatenate two or more Series. <END_TASK> <USER_TASK:> Description: def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, do not use the index labels. .. versionadded:: 0.19.0 verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame, Series or Panel objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """
from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] + to_append else: to_concat = [self, to_append] return concat(to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity)
<SYSTEM_TASK:> Perform generic binary operation with optional fill value. <END_TASK> <USER_TASK:> Description: def _binop(self, other, func, level=None, fill_value=None): """ Perform generic binary operation with optional fill value. Parameters ---------- other : Series func : binary operator fill_value : float or object Value to substitute for NA/null values. If both Series are NA in a location, the result will be NA regardless of the passed fill value level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level Returns ------- Series """
if not isinstance(other, Series): raise AssertionError('Other operand must be Series') new_index = self.index this = self if not self.index.equals(other.index): this, other = self.align(other, level=level, join='outer', copy=False) new_index = this.index this_vals, other_vals = ops.fill_binop(this.values, other.values, fill_value) with np.errstate(all='ignore'): result = func(this_vals, other_vals) name = ops.get_op_result_name(self, other) if func.__name__ in ['divmod', 'rdivmod']: ret = ops._construct_divmod_result(self, result, new_index, name) else: ret = ops._construct_result(self, result, new_index, name) return ret
<SYSTEM_TASK:> Combine the Series with a Series or scalar according to `func`. <END_TASK> <USER_TASK:> Description: def combine(self, other, func, fill_value=None): """ Combine the Series with a Series or scalar according to `func`. Combine the Series and `other` using `func` to perform elementwise selection for combined Series. `fill_value` is assumed when value is missing at some index from one of the two objects being combined. Parameters ---------- other : Series or scalar The value(s) to be combined with the `Series`. func : function Function that takes two scalars as inputs and returns an element. fill_value : scalar, optional The value to assume when an index is missing from one Series or the other. The default specifies to use the appropriate NaN value for the underlying dtype of the Series. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine_first : Combine Series values, choosing the calling Series' values first. Examples -------- Consider 2 Datasets ``s1`` and ``s2`` containing highest clocked speeds of different birds. >>> s1 = pd.Series({'falcon': 330.0, 'eagle': 160.0}) >>> s1 falcon 330.0 eagle 160.0 dtype: float64 >>> s2 = pd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0}) >>> s2 falcon 345.0 eagle 200.0 duck 30.0 dtype: float64 Now, to combine the two datasets and view the highest speeds of the birds across the two datasets >>> s1.combine(s2, max) duck NaN eagle 200.0 falcon 345.0 dtype: float64 In the previous example, the resulting value for duck is missing, because the maximum of a NaN and a float is a NaN. So, in the example, we set ``fill_value=0``, so the maximum value returned will be the value from some dataset. >>> s1.combine(s2, max, fill_value=0) duck 30.0 eagle 200.0 falcon 345.0 dtype: float64 """
if fill_value is None: fill_value = na_value_for_dtype(self.dtype, compat=False) if isinstance(other, Series): # If other is a Series, result is based on union of Series, # so do this element by element new_index = self.index.union(other.index) new_name = ops.get_op_result_name(self, other) new_values = [] for idx in new_index: lv = self.get(idx, fill_value) rv = other.get(idx, fill_value) with np.errstate(all='ignore'): new_values.append(func(lv, rv)) else: # Assume that other is a scalar, so apply the function for # each element in the Series new_index = self.index with np.errstate(all='ignore'): new_values = [func(lv, other) for lv in self._values] new_name = self.name if is_categorical_dtype(self.values): pass elif is_extension_array_dtype(self.values): # The function can return something of any type, so check # if the type is compatible with the calling EA. try: new_values = self._values._from_sequence(new_values) except Exception: # https://github.com/pandas-dev/pandas/issues/22850 # pandas has no control over what 3rd-party ExtensionArrays # do in _values_from_sequence. We still want ops to work # though, so we catch any regular Exception. pass return self._constructor(new_values, index=new_index, name=new_name)
<SYSTEM_TASK:> Combine Series values, choosing the calling Series's values first. <END_TASK> <USER_TASK:> Description: def combine_first(self, other): """ Combine Series values, choosing the calling Series's values first. Parameters ---------- other : Series The value(s) to be combined with the `Series`. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine : Perform elementwise operation on two Series using a given function. Notes ----- Result index will be the union of the two indexes. Examples -------- >>> s1 = pd.Series([1, np.nan]) >>> s2 = pd.Series([3, 4]) >>> s1.combine_first(s2) 0 1.0 1 4.0 dtype: float64 """
new_index = self.index.union(other.index) this = self.reindex(new_index, copy=False) other = other.reindex(new_index, copy=False) if is_datetimelike(this) and not is_datetimelike(other): other = to_datetime(other) return this.where(notna(this), other)
<SYSTEM_TASK:> Sort by the values. <END_TASK> <USER_TASK:> Description: def sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last'): """ Sort by the values. Sort a Series in ascending or descending order by some criterion. Parameters ---------- axis : {0 or 'index'}, default 0 Axis to direct sorting. The value 'index' is accepted for compatibility with DataFrame.sort_values. ascending : bool, default True If True, sort values in ascending order, otherwise descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. na_position : {'first' or 'last'}, default 'last' Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Returns ------- Series Series ordered by values. See Also -------- Series.sort_index : Sort by the Series indices. DataFrame.sort_values : Sort DataFrame by the values along either axis. DataFrame.sort_index : Sort DataFrame by indices. Examples -------- >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 Sort values ascending order (default behaviour) >>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64 Sort values descending order >>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values inplace >>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values putting NAs first >>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64 Sort a series of strings >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object >>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object """
inplace = validate_bool_kwarg(inplace, 'inplace') # Validate the axis parameter self._get_axis_number(axis) # GH 5856/5853 if inplace and self._is_cached: raise ValueError("This Series is a view of some other array, to " "sort in-place you must create a copy") def _try_kind_sort(arr): # easier to ask forgiveness than permission try: # if kind==mergesort, it can fail for object dtype return arr.argsort(kind=kind) except TypeError: # stable sort not available for object dtype # uses the argsort default quicksort return arr.argsort(kind='quicksort') arr = self._values sortedIdx = np.empty(len(self), dtype=np.int32) bad = isna(arr) good = ~bad idx = ibase.default_index(len(self)) argsorted = _try_kind_sort(arr[good]) if is_list_like(ascending): if len(ascending) != 1: raise ValueError('Length of ascending (%d) must be 1 ' 'for Series' % (len(ascending))) ascending = ascending[0] if not is_bool(ascending): raise ValueError('ascending must be boolean') if not ascending: argsorted = argsorted[::-1] if na_position == 'last': n = good.sum() sortedIdx[:n] = idx[good][argsorted] sortedIdx[n:] = idx[bad] elif na_position == 'first': n = bad.sum() sortedIdx[n:] = idx[good][argsorted] sortedIdx[:n] = idx[bad] else: raise ValueError('invalid na_position: {!r}'.format(na_position)) result = self._constructor(arr[sortedIdx], index=self.index[sortedIdx]) if inplace: self._update_inplace(result) else: return result.__finalize__(self)
<SYSTEM_TASK:> Sort Series by index labels. <END_TASK> <USER_TASK:> Description: def sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True): """ Sort Series by index labels. Returns a new Series sorted by label if `inplace` argument is ``False``, otherwise updates the original series and returns None. Parameters ---------- axis : int, default 0 Axis to direct sorting. This can only be 0 for Series. level : int, optional If not None, sort on values in specified index level(s). ascending : bool, default true Sort ascending vs. descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. Returns ------- Series The original Series sorted by the labels. See Also -------- DataFrame.sort_index: Sort DataFrame by the index. DataFrame.sort_values: Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4]) >>> s.sort_index() 1 c 2 b 3 a 4 d dtype: object Sort Descending >>> s.sort_index(ascending=False) 4 d 3 a 2 b 1 c dtype: object Sort Inplace >>> s.sort_index(inplace=True) >>> s 1 c 2 b 3 a 4 d dtype: object By default NaNs are put at the end, but use `na_position` to place them at the beginning >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan]) >>> s.sort_index(na_position='first') NaN d 1.0 c 2.0 b 3.0 a dtype: object Specify index level to sort >>> arrays = [np.array(['qux', 'qux', 'foo', 'foo', ... 'baz', 'baz', 'bar', 'bar']), ... np.array(['two', 'one', 'two', 'one', ... 'two', 'one', 'two', 'one'])] >>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays) >>> s.sort_index(level=1) bar one 8 baz one 6 foo one 4 qux one 2 bar two 7 baz two 5 foo two 3 qux two 1 dtype: int64 Does not sort by remaining levels when sorting by levels >>> s.sort_index(level=1, sort_remaining=False) qux one 2 foo one 4 baz one 6 bar one 8 qux two 1 foo two 3 baz two 5 bar two 7 dtype: int64 """
# TODO: this can be combined with DataFrame.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, 'inplace') # Validate the axis parameter self._get_axis_number(axis) index = self.index if level is not None: new_index, indexer = index.sortlevel(level, ascending=ascending, sort_remaining=sort_remaining) elif isinstance(index, MultiIndex): from pandas.core.sorting import lexsort_indexer labels = index._sort_levels_monotonic() indexer = lexsort_indexer(labels._get_codes_for_sorting(), orders=ascending, na_position=na_position) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if ((ascending and index.is_monotonic_increasing) or (not ascending and index.is_monotonic_decreasing)): if inplace: return else: return self.copy() indexer = nargsort(index, kind=kind, ascending=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) new_index = index.take(indexer) new_index = new_index._sort_levels_monotonic() new_values = self._values.take(indexer) result = self._constructor(new_values, index=new_index) if inplace: self._update_inplace(result) else: return result.__finalize__(self)
<SYSTEM_TASK:> Return the largest `n` elements. <END_TASK> <USER_TASK:> Description: def nlargest(self, n=5, keep='first'): """ Return the largest `n` elements. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. See Also -------- Series.nsmallest: Get the `n` smallest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 """
return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest()
<SYSTEM_TASK:> Return the smallest `n` elements. <END_TASK> <USER_TASK:> Description: def nsmallest(self, n=5, keep='first'): """ Return the smallest `n` elements. Parameters ---------- n : int, default 5 Return this many ascending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` smallest values in the Series, sorted in increasing order. See Also -------- Series.nlargest: Get the `n` largest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Brunei": 434000, "Malta": 434000, ... "Maldives": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Brunei 434000 Malta 434000 Maldives 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` smallest elements where ``n=5`` by default. >>> s.nsmallest() Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 Iceland 337000 dtype: int64 The `n` smallest elements where ``n=3``. Default `keep` value is 'first' so Nauru and Tuvalu will be kept. >>> s.nsmallest(3) Monserat 5200 Nauru 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` and keeping the last duplicates. Anguilla and Tuvalu will be kept since they are the last with value 11300 based on the index order. >>> s.nsmallest(3, keep='last') Monserat 5200 Anguilla 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` with all duplicates kept. Note that the returned Series has four elements due to the three duplicates. >>> s.nsmallest(3, keep='all') Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 dtype: int64 """
return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest()
<SYSTEM_TASK:> Swap levels i and j in a MultiIndex. <END_TASK> <USER_TASK:> Description: def swaplevel(self, i=-2, j=-1, copy=True): """ Swap levels i and j in a MultiIndex. Parameters ---------- i, j : int, str (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- Series Series with levels swapped in MultiIndex. .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index. """
new_index = self.index.swaplevel(i, j) return self._constructor(self._values, index=new_index, copy=copy).__finalize__(self)
<SYSTEM_TASK:> Map values of Series according to input correspondence. <END_TASK> <USER_TASK:> Description: def map(self, arg, na_action=None): """ Map values of Series according to input correspondence. Used for substituting each value in a Series with another value, that may be derived from a function, a ``dict`` or a :class:`Series`. Parameters ---------- arg : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to the mapping correspondence. Returns ------- Series Same index as caller. See Also -------- Series.apply : For applying more complex functions on a Series. DataFrame.apply : Apply a function row-/column-wise. DataFrame.applymap : Apply a function elementwise on a whole DataFrame. Notes ----- When ``arg`` is a dictionary, values in Series that are not in the dictionary (as keys) are converted to ``NaN``. However, if the dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e. provides a method for default values), then this default is used rather than ``NaN``. Examples -------- >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object ``map`` accepts a ``dict`` or a ``Series``. Values that are not found in the ``dict`` are converted to ``NaN``, unless the dict has a default value (e.g. ``defaultdict``): >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object It also accepts a function: >>> s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object To avoid applying the function to missing values (and keep them as ``NaN``) ``na_action='ignore'`` can be used: >>> s.map('I am a {}'.format, na_action='ignore') 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object """
new_values = super()._map_values( arg, na_action=na_action) return self._constructor(new_values, index=self.index).__finalize__(self)
<SYSTEM_TASK:> Invoke function on values of Series. <END_TASK> <USER_TASK:> Description: def apply(self, func, convert_dtype=True, args=(), **kwds): """ Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values. Parameters ---------- func : function Python function or NumPy ufunc to apply. convert_dtype : bool, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. args : tuple Positional arguments passed to func after the series value. **kwds Additional keyword arguments passed to func. Returns ------- Series or DataFrame If func returns a Series object the result will be a DataFrame. See Also -------- Series.map: For element-wise operations. Series.agg: Only perform aggregating type operations. Series.transform: Only perform transforming type operations. Examples -------- Create a series with typical summer temperatures for each city. >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply()``. >>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply()``. >>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64 """
if len(self) == 0: return self._constructor(dtype=self.dtype, index=self.index).__finalize__(self) # dispatch to agg if isinstance(func, (list, dict)): return self.aggregate(func, *args, **kwds) # if we are a string, try to dispatch if isinstance(func, str): return self._try_aggregate_string_function(func, *args, **kwds) # handle ufuncs and lambdas if kwds or args and not isinstance(func, np.ufunc): def f(x): return func(x, *args, **kwds) else: f = func with np.errstate(all='ignore'): if isinstance(f, np.ufunc): return f(self) # row-wise access if is_extension_type(self.dtype): mapped = self._values.map(f) else: values = self.astype(object).values mapped = lib.map_infer(values, f, convert=convert_dtype) if len(mapped) and isinstance(mapped[0], Series): from pandas.core.frame import DataFrame return DataFrame(mapped.tolist(), index=self.index) else: return self._constructor(mapped, index=self.index).__finalize__(self)
<SYSTEM_TASK:> Perform a reduction operation. <END_TASK> <USER_TASK:> Description: def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ Perform a reduction operation. If we have an ndarray as a value, then simply perform the operation, otherwise delegate to the object. """
delegate = self._values if axis is not None: self._get_axis_number(axis) if isinstance(delegate, Categorical): # TODO deprecate numeric_only argument for Categorical and use # skipna as well, see GH25303 return delegate._reduce(name, numeric_only=numeric_only, **kwds) elif isinstance(delegate, ExtensionArray): # dispatch to ExtensionArray interface return delegate._reduce(name, skipna=skipna, **kwds) elif is_datetime64_dtype(delegate): # use DatetimeIndex implementation to handle skipna correctly delegate = DatetimeIndex(delegate) # dispatch to numpy arrays elif isinstance(delegate, np.ndarray): if numeric_only: raise NotImplementedError('Series.{0} does not implement ' 'numeric_only.'.format(name)) with np.errstate(all='ignore'): return op(delegate, skipna=skipna, **kwds) # TODO(EA) dispatch to Index # remove once all internals extension types are # moved to ExtensionArrays return delegate._reduce(op=op, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only, filter_type=filter_type, **kwds)
<SYSTEM_TASK:> Alter Series index labels or name. <END_TASK> <USER_TASK:> Description: def rename(self, index=None, **kwargs): """ Alter Series index labels or name. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- index : scalar, hashable sequence, dict-like or function, optional dict-like or functions are transformations to apply to the index. Scalar or hashable sequence-like will alter the ``Series.name`` attribute. copy : bool, default True Whether to copy underlying data. inplace : bool, default False Whether to return a new Series. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. Returns ------- Series Series with index labels or name altered. See Also -------- Series.rename_axis : Set the name of the axis. Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 """
kwargs['inplace'] = validate_bool_kwarg(kwargs.get('inplace', False), 'inplace') non_mapping = is_scalar(index) or (is_list_like(index) and not is_dict_like(index)) if non_mapping: return self._set_name(index, inplace=kwargs.get('inplace')) return super().rename(index=index, **kwargs)
<SYSTEM_TASK:> Conform Series to new index with optional filling logic. <END_TASK> <USER_TASK:> Description: def reindex_axis(self, labels, axis=0, **kwargs): """ Conform Series to new index with optional filling logic. .. deprecated:: 0.21.0 Use ``Series.reindex`` instead. """
# for compatibility with higher dims if axis != 0: raise ValueError("cannot reindex series on non-zero axis!") msg = ("'.reindex_axis' is deprecated and will be removed in a future " "version. Use '.reindex' instead.") warnings.warn(msg, FutureWarning, stacklevel=2) return self.reindex(index=labels, **kwargs)
<SYSTEM_TASK:> Return the memory usage of the Series. <END_TASK> <USER_TASK:> Description: def memory_usage(self, index=True, deep=False): """ Return the memory usage of the Series. The memory usage can optionally include the contribution of the index and of elements of `object` dtype. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the Series index. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned value. Returns ------- int Bytes of memory consumed. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. DataFrame.memory_usage : Bytes consumed by a DataFrame. Examples -------- >>> s = pd.Series(range(3)) >>> s.memory_usage() 104 Not including the index gives the size of the rest of the data, which is necessarily smaller: >>> s.memory_usage(index=False) 24 The memory footprint of `object` values is ignored by default: >>> s = pd.Series(["a", "b"]) >>> s.values array(['a', 'b'], dtype=object) >>> s.memory_usage() 96 >>> s.memory_usage(deep=True) 212 """
v = super().memory_usage(deep=deep) if index: v += self.index.memory_usage(deep=deep) return v
<SYSTEM_TASK:> Check whether `values` are contained in Series. <END_TASK> <USER_TASK:> Description: def isin(self, values): """ Check whether `values` are contained in Series. Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. .. versionadded:: 0.18.1 Support for values as a set. Returns ------- Series Series of booleans indicating if each element is in values. Raises ------ TypeError * If `values` is a string See Also -------- DataFrame.isin : Equivalent method on DataFrame. Examples -------- >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool """
result = algorithms.isin(self, values) return self._constructor(result, index=self.index).__finalize__(self)
<SYSTEM_TASK:> Return boolean Series equivalent to left <= series <= right. <END_TASK> <USER_TASK:> Description: def between(self, left, right, inclusive=True): """ Return boolean Series equivalent to left <= series <= right. This function returns a boolean vector containing `True` wherever the corresponding Series element is between the boundary values `left` and `right`. NA values are treated as `False`. Parameters ---------- left : scalar Left boundary. right : scalar Right boundary. inclusive : bool, default True Include boundaries. Returns ------- Series Series representing whether each element is between left and right (inclusive). See Also -------- Series.gt : Greater than of series and other. Series.lt : Less than of series and other. Notes ----- This function is equivalent to ``(left <= ser) & (ser <= right)`` Examples -------- >>> s = pd.Series([2, 0, 4, 8, np.nan]) Boundary values are included by default: >>> s.between(1, 4) 0 True 1 False 2 True 3 False 4 False dtype: bool With `inclusive` set to ``False`` boundary values are excluded: >>> s.between(1, 4, inclusive=False) 0 True 1 False 2 False 3 False 4 False dtype: bool `left` and `right` can be any scalar value: >>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve']) >>> s.between('Anna', 'Daniel') 0 False 1 True 2 True 3 False dtype: bool """
if inclusive: lmask = self >= left rmask = self <= right else: lmask = self > left rmask = self < right return lmask & rmask
<SYSTEM_TASK:> Return a new Series with missing values removed. <END_TASK> <USER_TASK:> Description: def dropna(self, axis=0, inplace=False, **kwargs): """ Return a new Series with missing values removed. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index'}, default 0 There is only one axis to drop values from. inplace : bool, default False If True, do operation inplace and return None. **kwargs Not in use. Returns ------- Series Series with NA entries dropped from it. See Also -------- Series.isna: Indicate missing values. Series.notna : Indicate existing (non-missing) values. Series.fillna : Replace missing values. DataFrame.dropna : Drop rows or columns which contain NA values. Index.dropna : Drop missing indices. Examples -------- >>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 Drop NA values from a Series. >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 Keep the Series with valid entries in the same variable. >>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64 Empty strings are not considered NA values. ``None`` is considered an NA value. >>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object """
inplace = validate_bool_kwarg(inplace, 'inplace') kwargs.pop('how', None) if kwargs: raise TypeError('dropna() got an unexpected keyword ' 'argument "{0}"'.format(list(kwargs.keys())[0])) # Validate the axis parameter self._get_axis_number(axis or 0) if self._can_hold_na: result = remove_na_arraylike(self) if inplace: self._update_inplace(result) else: return result else: if inplace: # do nothing pass else: return self.copy()
<SYSTEM_TASK:> Return Series without null values. <END_TASK> <USER_TASK:> Description: def valid(self, inplace=False, **kwargs): """ Return Series without null values. .. deprecated:: 0.23.0 Use :meth:`Series.dropna` instead. """
warnings.warn("Method .valid will be removed in a future version. " "Use .dropna instead.", FutureWarning, stacklevel=2) return self.dropna(inplace=inplace, **kwargs)
<SYSTEM_TASK:> Convert argument to a numeric type. <END_TASK> <USER_TASK:> Description: def to_numeric(arg, errors='raise', downcast=None): """ Convert argument to a numeric type. The default return dtype is `float64` or `int64` depending on the data supplied. Use the `downcast` parameter to obtain other dtypes. Please note that precision loss may occur if really large numbers are passed in. Due to the internal limitations of `ndarray`, if numbers smaller than `-9223372036854775808` (np.iinfo(np.int64).min) or larger than `18446744073709551615` (np.iinfo(np.uint64).max) are passed in, it is very likely they will be converted to float so that they can stored in an `ndarray`. These warnings apply similarly to `Series` since it internally leverages `ndarray`. Parameters ---------- arg : scalar, list, tuple, 1-d array, or Series errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception - If 'coerce', then invalid parsing will be set as NaN - If 'ignore', then invalid parsing will return the input downcast : {'integer', 'signed', 'unsigned', 'float'} , default None If not None, and if the data has been successfully cast to a numerical dtype (or if the data was numeric to begin with), downcast that resulting data to the smallest numerical dtype possible according to the following rules: - 'integer' or 'signed': smallest signed int dtype (min.: np.int8) - 'unsigned': smallest unsigned int dtype (min.: np.uint8) - 'float': smallest float dtype (min.: np.float32) As this behaviour is separate from the core conversion to numeric values, any errors raised during the downcasting will be surfaced regardless of the value of the 'errors' input. In addition, downcasting will only occur if the size of the resulting data's dtype is strictly larger than the dtype it is to be cast to, so if none of the dtypes checked satisfy that specification, no downcasting will be performed on the data. .. versionadded:: 0.19.0 Returns ------- ret : numeric if parsing succeeded. Return type depends on input. Series if Series, otherwise ndarray. See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. numpy.ndarray.astype : Cast a numpy array to a specified type. Examples -------- Take separate series and convert to numeric, coercing when told to >>> s = pd.Series(['1.0', '2', -3]) >>> pd.to_numeric(s) 0 1.0 1 2.0 2 -3.0 dtype: float64 >>> pd.to_numeric(s, downcast='float') 0 1.0 1 2.0 2 -3.0 dtype: float32 >>> pd.to_numeric(s, downcast='signed') 0 1 1 2 2 -3 dtype: int8 >>> s = pd.Series(['apple', '1.0', '2', -3]) >>> pd.to_numeric(s, errors='ignore') 0 apple 1 1.0 2 2 3 -3 dtype: object >>> pd.to_numeric(s, errors='coerce') 0 NaN 1 1.0 2 2.0 3 -3.0 dtype: float64 """
if downcast not in (None, 'integer', 'signed', 'unsigned', 'float'): raise ValueError('invalid downcasting method provided') is_series = False is_index = False is_scalars = False if isinstance(arg, ABCSeries): is_series = True values = arg.values elif isinstance(arg, ABCIndexClass): is_index = True values = arg.asi8 if values is None: values = arg.values elif isinstance(arg, (list, tuple)): values = np.array(arg, dtype='O') elif is_scalar(arg): if is_decimal(arg): return float(arg) if is_number(arg): return arg is_scalars = True values = np.array([arg], dtype='O') elif getattr(arg, 'ndim', 1) > 1: raise TypeError('arg must be a list, tuple, 1-d array, or Series') else: values = arg try: if is_numeric_dtype(values): pass elif is_datetime_or_timedelta_dtype(values): values = values.astype(np.int64) else: values = ensure_object(values) coerce_numeric = errors not in ('ignore', 'raise') values = lib.maybe_convert_numeric(values, set(), coerce_numeric=coerce_numeric) except Exception: if errors == 'raise': raise # attempt downcast only if the data has been successfully converted # to a numerical dtype and if a downcast method has been specified if downcast is not None and is_numeric_dtype(values): typecodes = None if downcast in ('integer', 'signed'): typecodes = np.typecodes['Integer'] elif downcast == 'unsigned' and np.min(values) >= 0: typecodes = np.typecodes['UnsignedInteger'] elif downcast == 'float': typecodes = np.typecodes['Float'] # pandas support goes only to np.float32, # as float dtypes smaller than that are # extremely rare and not well supported float_32_char = np.dtype(np.float32).char float_32_ind = typecodes.index(float_32_char) typecodes = typecodes[float_32_ind:] if typecodes is not None: # from smallest to largest for dtype in typecodes: if np.dtype(dtype).itemsize <= values.dtype.itemsize: values = maybe_downcast_to_dtype(values, dtype) # successful conversion if values.dtype == dtype: break if is_series: return pd.Series(values, index=arg.index, name=arg.name) elif is_index: # because we want to coerce to numeric if possible, # do not use _shallow_copy_with_infer return pd.Index(values, name=arg.name) elif is_scalars: return values[0] else: return values
<SYSTEM_TASK:> Create a 0-dim ndarray containing the fill value <END_TASK> <USER_TASK:> Description: def _get_fill(arr: ABCSparseArray) -> np.ndarray: """ Create a 0-dim ndarray containing the fill value Parameters ---------- arr : SparseArray Returns ------- fill_value : ndarray 0-dim ndarray with just the fill value. Notes ----- coerce fill_value to arr dtype if possible int64 SparseArray can have NaN as fill_value if there is no missing """
try: return np.asarray(arr.fill_value, dtype=arr.dtype.subtype) except ValueError: return np.asarray(arr.fill_value)
<SYSTEM_TASK:> Perform a binary operation between two arrays. <END_TASK> <USER_TASK:> Description: def _sparse_array_op( left: ABCSparseArray, right: ABCSparseArray, op: Callable, name: str ) -> Any: """ Perform a binary operation between two arrays. Parameters ---------- left : Union[SparseArray, ndarray] right : Union[SparseArray, ndarray] op : Callable The binary operation to perform name str Name of the callable. Returns ------- SparseArray """
if name.startswith('__'): # For lookups in _libs.sparse we need non-dunder op name name = name[2:-2] # dtype used to find corresponding sparse method ltype = left.dtype.subtype rtype = right.dtype.subtype if not is_dtype_equal(ltype, rtype): subtype = find_common_type([ltype, rtype]) ltype = SparseDtype(subtype, left.fill_value) rtype = SparseDtype(subtype, right.fill_value) # TODO(GH-23092): pass copy=False. Need to fix astype_nansafe left = left.astype(ltype) right = right.astype(rtype) dtype = ltype.subtype else: dtype = ltype # dtype the result must have result_dtype = None if left.sp_index.ngaps == 0 or right.sp_index.ngaps == 0: with np.errstate(all='ignore'): result = op(left.get_values(), right.get_values()) fill = op(_get_fill(left), _get_fill(right)) if left.sp_index.ngaps == 0: index = left.sp_index else: index = right.sp_index elif left.sp_index.equals(right.sp_index): with np.errstate(all='ignore'): result = op(left.sp_values, right.sp_values) fill = op(_get_fill(left), _get_fill(right)) index = left.sp_index else: if name[0] == 'r': left, right = right, left name = name[1:] if name in ('and', 'or') and dtype == 'bool': opname = 'sparse_{name}_uint8'.format(name=name) # to make template simple, cast here left_sp_values = left.sp_values.view(np.uint8) right_sp_values = right.sp_values.view(np.uint8) result_dtype = np.bool else: opname = 'sparse_{name}_{dtype}'.format(name=name, dtype=dtype) left_sp_values = left.sp_values right_sp_values = right.sp_values sparse_op = getattr(splib, opname) with np.errstate(all='ignore'): result, index, fill = sparse_op( left_sp_values, left.sp_index, left.fill_value, right_sp_values, right.sp_index, right.fill_value) if result_dtype is None: result_dtype = result.dtype return _wrap_result(name, result, index, fill, dtype=result_dtype)
<SYSTEM_TASK:> wrap op result to have correct dtype <END_TASK> <USER_TASK:> Description: def _wrap_result(name, data, sparse_index, fill_value, dtype=None): """ wrap op result to have correct dtype """
if name.startswith('__'): # e.g. __eq__ --> eq name = name[2:-2] if name in ('eq', 'ne', 'lt', 'gt', 'le', 'ge'): dtype = np.bool fill_value = lib.item_from_zerodim(fill_value) if is_bool_dtype(dtype): # fill_value may be np.bool_ fill_value = bool(fill_value) return SparseArray(data, sparse_index=sparse_index, fill_value=fill_value, dtype=dtype)
<SYSTEM_TASK:> array must be SparseSeries or SparseArray <END_TASK> <USER_TASK:> Description: def _maybe_to_sparse(array): """ array must be SparseSeries or SparseArray """
if isinstance(array, ABCSparseSeries): array = array.values.copy() return array
<SYSTEM_TASK:> return an ndarray for our input, <END_TASK> <USER_TASK:> Description: def _sanitize_values(arr): """ return an ndarray for our input, in a platform independent manner """
if hasattr(arr, 'values'): arr = arr.values else: # scalar if is_scalar(arr): arr = [arr] # ndarray if isinstance(arr, np.ndarray): pass elif is_list_like(arr) and len(arr) > 0: arr = maybe_convert_platform(arr) else: arr = np.asarray(arr) return arr
<SYSTEM_TASK:> Convert ndarray to sparse format <END_TASK> <USER_TASK:> Description: def make_sparse(arr, kind='block', fill_value=None, dtype=None, copy=False): """ Convert ndarray to sparse format Parameters ---------- arr : ndarray kind : {'block', 'integer'} fill_value : NaN or another value dtype : np.dtype, optional copy : bool, default False Returns ------- (sparse_values, index, fill_value) : (ndarray, SparseIndex, Scalar) """
arr = _sanitize_values(arr) if arr.ndim > 1: raise TypeError("expected dimension <= 1 data") if fill_value is None: fill_value = na_value_for_dtype(arr.dtype) if isna(fill_value): mask = notna(arr) else: # cast to object comparison to be safe if is_string_dtype(arr): arr = arr.astype(object) if is_object_dtype(arr.dtype): # element-wise equality check method in numpy doesn't treat # each element type, eg. 0, 0.0, and False are treated as # same. So we have to check the both of its type and value. mask = splib.make_mask_object_ndarray(arr, fill_value) else: mask = arr != fill_value length = len(arr) if length != len(mask): # the arr is a SparseArray indices = mask.sp_index.indices else: indices = mask.nonzero()[0].astype(np.int32) index = _make_index(length, indices, kind) sparsified_values = arr[mask] if dtype is not None: sparsified_values = astype_nansafe(sparsified_values, dtype=dtype) # TODO: copy return sparsified_values, index, fill_value
<SYSTEM_TASK:> The percent of non- ``fill_value`` points, as decimal. <END_TASK> <USER_TASK:> Description: def density(self): """ The percent of non- ``fill_value`` points, as decimal. Examples -------- >>> s = SparseArray([0, 0, 1, 1, 1], fill_value=0) >>> s.density 0.6 """
r = float(self.sp_index.npoints) / float(self.sp_index.length) return r
<SYSTEM_TASK:> Fill missing values with `value`. <END_TASK> <USER_TASK:> Description: def fillna(self, value=None, method=None, limit=None): """ Fill missing values with `value`. Parameters ---------- value : scalar, optional method : str, optional .. warning:: Using 'method' will result in high memory use, as all `fill_value` methods will be converted to an in-memory ndarray limit : int, optional Returns ------- SparseArray Notes ----- When `value` is specified, the result's ``fill_value`` depends on ``self.fill_value``. The goal is to maintain low-memory use. If ``self.fill_value`` is NA, the result dtype will be ``SparseDtype(self.dtype, fill_value=value)``. This will preserve amount of memory used before and after filling. When ``self.fill_value`` is not NA, the result dtype will be ``self.dtype``. Again, this preserves the amount of memory used. """
if ((method is None and value is None) or (method is not None and value is not None)): raise ValueError("Must specify one of 'method' or 'value'.") elif method is not None: msg = "fillna with 'method' requires high memory usage." warnings.warn(msg, PerformanceWarning) filled = interpolate_2d(np.asarray(self), method=method, limit=limit) return type(self)(filled, fill_value=self.fill_value) else: new_values = np.where(isna(self.sp_values), value, self.sp_values) if self._null_fill_value: # This is essentially just updating the dtype. new_dtype = SparseDtype(self.dtype.subtype, fill_value=value) else: new_dtype = self.dtype return self._simple_new(new_values, self._sparse_index, new_dtype)