text_prompt
stringlengths 100
17.7k
⌀ | code_prompt
stringlengths 7
9.86k
⌀ |
---|---|
<SYSTEM_TASK:>
Get the location of the first missing value.
<END_TASK>
<USER_TASK:>
Description:
def _first_fill_value_loc(self):
"""
Get the location of the first missing value.
Returns
-------
int
""" |
if len(self) == 0 or self.sp_index.npoints == len(self):
return -1
indices = self.sp_index.to_int_index().indices
if not len(indices) or indices[0] > 0:
return 0
diff = indices[1:] - indices[:-1]
return np.searchsorted(diff, 2) + 1 |
<SYSTEM_TASK:>
Returns a Series containing counts of unique values.
<END_TASK>
<USER_TASK:>
Description:
def value_counts(self, dropna=True):
"""
Returns a Series containing counts of unique values.
Parameters
----------
dropna : boolean, default True
Don't include counts of NaN, even if NaN is in sp_values.
Returns
-------
counts : Series
""" |
from pandas import Index, Series
keys, counts = algos._value_counts_arraylike(self.sp_values,
dropna=dropna)
fcounts = self.sp_index.ngaps
if fcounts > 0:
if self._null_fill_value and dropna:
pass
else:
if self._null_fill_value:
mask = isna(keys)
else:
mask = keys == self.fill_value
if mask.any():
counts[mask] += fcounts
else:
keys = np.insert(keys, 0, self.fill_value)
counts = np.insert(counts, 0, fcounts)
if not isinstance(keys, ABCIndexClass):
keys = Index(keys)
result = Series(counts, index=keys)
return result |
<SYSTEM_TASK:>
Change the dtype of a SparseArray.
<END_TASK>
<USER_TASK:>
Description:
def astype(self, dtype=None, copy=True):
"""
Change the dtype of a SparseArray.
The output will always be a SparseArray. To convert to a dense
ndarray with a certain dtype, use :meth:`numpy.asarray`.
Parameters
----------
dtype : np.dtype or ExtensionDtype
For SparseDtype, this changes the dtype of
``self.sp_values`` and the ``self.fill_value``.
For other dtypes, this only changes the dtype of
``self.sp_values``.
copy : bool, default True
Whether to ensure a copy is made, even if not necessary.
Returns
-------
SparseArray
Examples
--------
>>> arr = SparseArray([0, 0, 1, 2])
>>> arr
[0, 0, 1, 2]
Fill: 0
IntIndex
Indices: array([2, 3], dtype=int32)
>>> arr.astype(np.dtype('int32'))
[0, 0, 1, 2]
Fill: 0
IntIndex
Indices: array([2, 3], dtype=int32)
Using a NumPy dtype with a different kind (e.g. float) will coerce
just ``self.sp_values``.
>>> arr.astype(np.dtype('float64'))
... # doctest: +NORMALIZE_WHITESPACE
[0, 0, 1.0, 2.0]
Fill: 0
IntIndex
Indices: array([2, 3], dtype=int32)
Use a SparseDtype if you wish to be change the fill value as well.
>>> arr.astype(SparseDtype("float64", fill_value=np.nan))
... # doctest: +NORMALIZE_WHITESPACE
[nan, nan, 1.0, 2.0]
Fill: nan
IntIndex
Indices: array([2, 3], dtype=int32)
""" |
dtype = self.dtype.update_dtype(dtype)
subtype = dtype._subtype_with_str
sp_values = astype_nansafe(self.sp_values,
subtype,
copy=copy)
if sp_values is self.sp_values and copy:
sp_values = sp_values.copy()
return self._simple_new(sp_values,
self.sp_index,
dtype) |
<SYSTEM_TASK:>
Tests whether all elements evaluate True
<END_TASK>
<USER_TASK:>
Description:
def all(self, axis=None, *args, **kwargs):
"""
Tests whether all elements evaluate True
Returns
-------
all : bool
See Also
--------
numpy.all
""" |
nv.validate_all(args, kwargs)
values = self.sp_values
if len(values) != len(self) and not np.all(self.fill_value):
return False
return values.all() |
<SYSTEM_TASK:>
Tests whether at least one of elements evaluate True
<END_TASK>
<USER_TASK:>
Description:
def any(self, axis=0, *args, **kwargs):
"""
Tests whether at least one of elements evaluate True
Returns
-------
any : bool
See Also
--------
numpy.any
""" |
nv.validate_any(args, kwargs)
values = self.sp_values
if len(values) != len(self) and np.any(self.fill_value):
return True
return values.any().item() |
<SYSTEM_TASK:>
Replace ``&`` with ``and`` and ``|`` with ``or`` so that bitwise
<END_TASK>
<USER_TASK:>
Description:
def _replace_booleans(tok):
"""Replace ``&`` with ``and`` and ``|`` with ``or`` so that bitwise
precedence is changed to boolean precedence.
Parameters
----------
tok : tuple of int, str
ints correspond to the all caps constants in the tokenize module
Returns
-------
t : tuple of int, str
Either the input or token or the replacement values
""" |
toknum, tokval = tok
if toknum == tokenize.OP:
if tokval == '&':
return tokenize.NAME, 'and'
elif tokval == '|':
return tokenize.NAME, 'or'
return toknum, tokval
return toknum, tokval |
<SYSTEM_TASK:>
Replace local variables with a syntactically valid name.
<END_TASK>
<USER_TASK:>
Description:
def _replace_locals(tok):
"""Replace local variables with a syntactically valid name.
Parameters
----------
tok : tuple of int, str
ints correspond to the all caps constants in the tokenize module
Returns
-------
t : tuple of int, str
Either the input or token or the replacement values
Notes
-----
This is somewhat of a hack in that we rewrite a string such as ``'@a'`` as
``'__pd_eval_local_a'`` by telling the tokenizer that ``__pd_eval_local_``
is a ``tokenize.OP`` and to replace the ``'@'`` symbol with it.
""" |
toknum, tokval = tok
if toknum == tokenize.OP and tokval == '@':
return tokenize.OP, _LOCAL_TAG
return toknum, tokval |
<SYSTEM_TASK:>
Clean up a column name if surrounded by backticks.
<END_TASK>
<USER_TASK:>
Description:
def _clean_spaces_backtick_quoted_names(tok):
"""Clean up a column name if surrounded by backticks.
Backtick quoted string are indicated by a certain tokval value. If a string
is a backtick quoted token it will processed by
:func:`_remove_spaces_column_name` so that the parser can find this
string when the query is executed.
See also :meth:`NDFrame._get_space_character_free_column_resolver`.
Parameters
----------
tok : tuple of int, str
ints correspond to the all caps constants in the tokenize module
Returns
-------
t : tuple of int, str
Either the input or token or the replacement values
""" |
toknum, tokval = tok
if toknum == _BACKTICK_QUOTED_STRING:
return tokenize.NAME, _remove_spaces_column_name(tokval)
return toknum, tokval |
<SYSTEM_TASK:>
Compose a collection of tokenization functions
<END_TASK>
<USER_TASK:>
Description:
def _preparse(source, f=_compose(_replace_locals, _replace_booleans,
_rewrite_assign,
_clean_spaces_backtick_quoted_names)):
"""Compose a collection of tokenization functions
Parameters
----------
source : str
A Python source code string
f : callable
This takes a tuple of (toknum, tokval) as its argument and returns a
tuple with the same structure but possibly different elements. Defaults
to the composition of ``_rewrite_assign``, ``_replace_booleans``, and
``_replace_locals``.
Returns
-------
s : str
Valid Python source code
Notes
-----
The `f` parameter can be any callable that takes *and* returns input of the
form ``(toknum, tokval)``, where ``toknum`` is one of the constants from
the ``tokenize`` module and ``tokval`` is a string.
""" |
assert callable(f), 'f must be callable'
return tokenize.untokenize(lmap(f, tokenize_string(source))) |
<SYSTEM_TASK:>
Filter out AST nodes that are subclasses of ``superclass``.
<END_TASK>
<USER_TASK:>
Description:
def _filter_nodes(superclass, all_nodes=_all_nodes):
"""Filter out AST nodes that are subclasses of ``superclass``.""" |
node_names = (node.__name__ for node in all_nodes
if issubclass(node, superclass))
return frozenset(node_names) |
<SYSTEM_TASK:>
Return a function that raises a NotImplementedError with a passed node
<END_TASK>
<USER_TASK:>
Description:
def _node_not_implemented(node_name, cls):
"""Return a function that raises a NotImplementedError with a passed node
name.
""" |
def f(self, *args, **kwargs):
raise NotImplementedError("{name!r} nodes are not "
"implemented".format(name=node_name))
return f |
<SYSTEM_TASK:>
Decorator to disallow certain nodes from parsing. Raises a
<END_TASK>
<USER_TASK:>
Description:
def disallow(nodes):
"""Decorator to disallow certain nodes from parsing. Raises a
NotImplementedError instead.
Returns
-------
disallowed : callable
""" |
def disallowed(cls):
cls.unsupported_nodes = ()
for node in nodes:
new_method = _node_not_implemented(node, cls)
name = 'visit_{node}'.format(node=node)
cls.unsupported_nodes += (name,)
setattr(cls, name, new_method)
return cls
return disallowed |
<SYSTEM_TASK:>
Return a function to create an op class with its symbol already passed.
<END_TASK>
<USER_TASK:>
Description:
def _op_maker(op_class, op_symbol):
"""Return a function to create an op class with its symbol already passed.
Returns
-------
f : callable
""" |
def f(self, node, *args, **kwargs):
"""Return a partial function with an Op subclass with an operator
already passed.
Returns
-------
f : callable
"""
return partial(op_class, op_symbol, *args, **kwargs)
return f |
<SYSTEM_TASK:>
Decorator to add default implementation of ops.
<END_TASK>
<USER_TASK:>
Description:
def add_ops(op_classes):
"""Decorator to add default implementation of ops.""" |
def f(cls):
for op_attr_name, op_class in op_classes.items():
ops = getattr(cls, '{name}_ops'.format(name=op_attr_name))
ops_map = getattr(cls, '{name}_op_nodes_map'.format(
name=op_attr_name))
for op in ops:
op_node = ops_map[op]
if op_node is not None:
made_op = _op_maker(op_class, op)
setattr(cls, 'visit_{node}'.format(node=op_node), made_op)
return cls
return f |
<SYSTEM_TASK:>
Get the names in an expression
<END_TASK>
<USER_TASK:>
Description:
def names(self):
"""Get the names in an expression""" |
if is_term(self.terms):
return frozenset([self.terms.name])
return frozenset(term.name for term in com.flatten(self.terms)) |
<SYSTEM_TASK:>
return a boolean whether I can attempt conversion to a TimedeltaIndex
<END_TASK>
<USER_TASK:>
Description:
def _is_convertible_to_index(other):
"""
return a boolean whether I can attempt conversion to a TimedeltaIndex
""" |
if isinstance(other, TimedeltaIndex):
return True
elif (len(other) > 0 and
other.inferred_type not in ('floating', 'mixed-integer', 'integer',
'mixed-integer-float', 'mixed')):
return True
return False |
<SYSTEM_TASK:>
Return a fixed frequency TimedeltaIndex, with day as the default
<END_TASK>
<USER_TASK:>
Description:
def timedelta_range(start=None, end=None, periods=None, freq=None,
name=None, closed=None):
"""
Return a fixed frequency TimedeltaIndex, with day as the default
frequency
Parameters
----------
start : string or timedelta-like, default None
Left bound for generating timedeltas
end : string or timedelta-like, default None
Right bound for generating timedeltas
periods : integer, default None
Number of periods to generate
freq : string or DateOffset, default 'D'
Frequency strings can have multiples, e.g. '5H'
name : string, default None
Name of the resulting TimedeltaIndex
closed : string, default None
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None)
Returns
-------
rng : TimedeltaIndex
Notes
-----
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
exactly three must be specified. If ``freq`` is omitted, the resulting
``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
``start`` and ``end`` (closed on both sides).
To learn more about the frequency strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.
Examples
--------
>>> pd.timedelta_range(start='1 day', periods=4)
TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``closed`` parameter specifies which endpoint is included. The default
behavior is to include both endpoints.
>>> pd.timedelta_range(start='1 day', periods=4, closed='right')
TimedeltaIndex(['2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
Only fixed frequencies can be passed, non-fixed frequencies such as
'M' (month end) will raise.
>>> pd.timedelta_range(start='1 day', end='2 days', freq='6H')
TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
'1 days 18:00:00', '2 days 00:00:00'],
dtype='timedelta64[ns]', freq='6H')
Specify ``start``, ``end``, and ``periods``; the frequency is generated
automatically (linearly spaced).
>>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
'5 days 00:00:00'],
dtype='timedelta64[ns]', freq=None)
""" |
if freq is None and com._any_none(periods, start, end):
freq = 'D'
freq, freq_infer = dtl.maybe_infer_freq(freq)
tdarr = TimedeltaArray._generate_range(start, end, periods, freq,
closed=closed)
return TimedeltaIndex._simple_new(tdarr._data, freq=tdarr.freq, name=name) |
<SYSTEM_TASK:>
Returns a FrozenList with other concatenated to the end of self.
<END_TASK>
<USER_TASK:>
Description:
def union(self, other):
"""
Returns a FrozenList with other concatenated to the end of self.
Parameters
----------
other : array-like
The array-like whose elements we are concatenating.
Returns
-------
diff : FrozenList
The collection difference between self and other.
""" |
if isinstance(other, tuple):
other = list(other)
return type(self)(super().__add__(other)) |
<SYSTEM_TASK:>
Returns a FrozenList with elements from other removed from self.
<END_TASK>
<USER_TASK:>
Description:
def difference(self, other):
"""
Returns a FrozenList with elements from other removed from self.
Parameters
----------
other : array-like
The array-like whose elements we are removing self.
Returns
-------
diff : FrozenList
The collection difference between self and other.
""" |
other = set(other)
temp = [x for x in self if x not in other]
return type(self)(temp) |
<SYSTEM_TASK:>
Find indices to insert `value` so as to maintain order.
<END_TASK>
<USER_TASK:>
Description:
def searchsorted(self, value, side="left", sorter=None):
"""
Find indices to insert `value` so as to maintain order.
For full documentation, see `numpy.searchsorted`
See Also
--------
numpy.searchsorted : Equivalent function.
""" |
# We are much more performant if the searched
# indexer is the same type as the array.
#
# This doesn't matter for int64, but DOES
# matter for smaller int dtypes.
#
# xref: https://github.com/numpy/numpy/issues/5370
try:
value = self.dtype.type(value)
except ValueError:
pass
return super().searchsorted(value, side=side, sorter=sorter) |
<SYSTEM_TASK:>
Segregate Series based on type and coerce into matrices.
<END_TASK>
<USER_TASK:>
Description:
def arrays_to_mgr(arrays, arr_names, index, columns, dtype=None):
"""
Segregate Series based on type and coerce into matrices.
Needs to handle a lot of exceptional cases.
""" |
# figure out the index, if necessary
if index is None:
index = extract_index(arrays)
else:
index = ensure_index(index)
# don't force copy because getting jammed in an ndarray anyway
arrays = _homogenize(arrays, index, dtype)
# from BlockManager perspective
axes = [ensure_index(columns), index]
return create_block_manager_from_arrays(arrays, arr_names, axes) |
<SYSTEM_TASK:>
Extract from a masked rec array and create the manager.
<END_TASK>
<USER_TASK:>
Description:
def masked_rec_array_to_mgr(data, index, columns, dtype, copy):
"""
Extract from a masked rec array and create the manager.
""" |
# essentially process a record array then fill it
fill_value = data.fill_value
fdata = ma.getdata(data)
if index is None:
index = get_names_from_index(fdata)
if index is None:
index = ibase.default_index(len(data))
index = ensure_index(index)
if columns is not None:
columns = ensure_index(columns)
arrays, arr_columns = to_arrays(fdata, columns)
# fill if needed
new_arrays = []
for fv, arr, col in zip(fill_value, arrays, arr_columns):
mask = ma.getmaskarray(data[col])
if mask.any():
arr, fv = maybe_upcast(arr, fill_value=fv, copy=True)
arr[mask] = fv
new_arrays.append(arr)
# create the manager
arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns)
if columns is None:
columns = arr_columns
mgr = arrays_to_mgr(arrays, arr_columns, index, columns, dtype)
if copy:
mgr = mgr.copy()
return mgr |
<SYSTEM_TASK:>
Segregate Series based on type and coerce into matrices.
<END_TASK>
<USER_TASK:>
Description:
def init_dict(data, index, columns, dtype=None):
"""
Segregate Series based on type and coerce into matrices.
Needs to handle a lot of exceptional cases.
""" |
if columns is not None:
from pandas.core.series import Series
arrays = Series(data, index=columns, dtype=object)
data_names = arrays.index
missing = arrays.isnull()
if index is None:
# GH10856
# raise ValueError if only scalars in dict
index = extract_index(arrays[~missing])
else:
index = ensure_index(index)
# no obvious "empty" int column
if missing.any() and not is_integer_dtype(dtype):
if dtype is None or np.issubdtype(dtype, np.flexible):
# GH#1783
nan_dtype = object
else:
nan_dtype = dtype
val = construct_1d_arraylike_from_scalar(np.nan, len(index),
nan_dtype)
arrays.loc[missing] = [val] * missing.sum()
else:
keys = com.dict_keys_to_ordered_list(data)
columns = data_names = Index(keys)
# GH#24096 need copy to be deep for datetime64tz case
# TODO: See if we can avoid these copies
arrays = [data[k] if not is_datetime64tz_dtype(data[k]) else
data[k].copy(deep=True) for k in keys]
return arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype) |
<SYSTEM_TASK:>
Return list of arrays, columns.
<END_TASK>
<USER_TASK:>
Description:
def to_arrays(data, columns, coerce_float=False, dtype=None):
"""
Return list of arrays, columns.
""" |
if isinstance(data, ABCDataFrame):
if columns is not None:
arrays = [data._ixs(i, axis=1).values
for i, col in enumerate(data.columns) if col in columns]
else:
columns = data.columns
arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]
return arrays, columns
if not len(data):
if isinstance(data, np.ndarray):
columns = data.dtype.names
if columns is not None:
return [[]] * len(columns), columns
return [], [] # columns if columns is not None else []
if isinstance(data[0], (list, tuple)):
return _list_to_arrays(data, columns, coerce_float=coerce_float,
dtype=dtype)
elif isinstance(data[0], abc.Mapping):
return _list_of_dict_to_arrays(data, columns,
coerce_float=coerce_float, dtype=dtype)
elif isinstance(data[0], ABCSeries):
return _list_of_series_to_arrays(data, columns,
coerce_float=coerce_float,
dtype=dtype)
elif isinstance(data[0], Categorical):
if columns is None:
columns = ibase.default_index(len(data))
return data, columns
elif (isinstance(data, (np.ndarray, ABCSeries, Index)) and
data.dtype.names is not None):
columns = list(data.dtype.names)
arrays = [data[k] for k in columns]
return arrays, columns
else:
# last ditch effort
data = lmap(tuple, data)
return _list_to_arrays(data, columns, coerce_float=coerce_float,
dtype=dtype) |
<SYSTEM_TASK:>
Sanitize an index type to return an ndarray of the underlying, pass
<END_TASK>
<USER_TASK:>
Description:
def sanitize_index(data, index, copy=False):
"""
Sanitize an index type to return an ndarray of the underlying, pass
through a non-Index.
""" |
if index is None:
return data
if len(data) != len(index):
raise ValueError('Length of values does not match length of index')
if isinstance(data, ABCIndexClass) and not copy:
pass
elif isinstance(data, (ABCPeriodIndex, ABCDatetimeIndex)):
data = data._values
if copy:
data = data.copy()
elif isinstance(data, np.ndarray):
# coerce datetimelike types
if data.dtype.kind in ['M', 'm']:
data = sanitize_array(data, index, copy=copy)
return data |
<SYSTEM_TASK:>
Make sure a valid engine is passed.
<END_TASK>
<USER_TASK:>
Description:
def _check_engine(engine):
"""Make sure a valid engine is passed.
Parameters
----------
engine : str
Raises
------
KeyError
* If an invalid engine is passed
ImportError
* If numexpr was requested but doesn't exist
Returns
-------
string engine
""" |
from pandas.core.computation.check import _NUMEXPR_INSTALLED
if engine is None:
if _NUMEXPR_INSTALLED:
engine = 'numexpr'
else:
engine = 'python'
if engine not in _engines:
valid = list(_engines.keys())
raise KeyError('Invalid engine {engine!r} passed, valid engines are'
' {valid}'.format(engine=engine, valid=valid))
# TODO: validate this in a more general way (thinking of future engines
# that won't necessarily be import-able)
# Could potentially be done on engine instantiation
if engine == 'numexpr':
if not _NUMEXPR_INSTALLED:
raise ImportError("'numexpr' is not installed or an "
"unsupported version. Cannot use "
"engine='numexpr' for query/eval "
"if 'numexpr' is not installed")
return engine |
<SYSTEM_TASK:>
Make sure a valid parser is passed.
<END_TASK>
<USER_TASK:>
Description:
def _check_parser(parser):
"""Make sure a valid parser is passed.
Parameters
----------
parser : str
Raises
------
KeyError
* If an invalid parser is passed
""" |
from pandas.core.computation.expr import _parsers
if parser not in _parsers:
raise KeyError('Invalid parser {parser!r} passed, valid parsers are'
' {valid}'.format(parser=parser, valid=_parsers.keys())) |
<SYSTEM_TASK:>
Evaluate a Python expression as a string using various backends.
<END_TASK>
<USER_TASK:>
Description:
def eval(expr, parser='pandas', engine=None, truediv=True,
local_dict=None, global_dict=None, resolvers=(), level=0,
target=None, inplace=False):
"""Evaluate a Python expression as a string using various backends.
The following arithmetic operations are supported: ``+``, ``-``, ``*``,
``/``, ``**``, ``%``, ``//`` (python engine only) along with the following
boolean operations: ``|`` (or), ``&`` (and), and ``~`` (not).
Additionally, the ``'pandas'`` parser allows the use of :keyword:`and`,
:keyword:`or`, and :keyword:`not` with the same semantics as the
corresponding bitwise operators. :class:`~pandas.Series` and
:class:`~pandas.DataFrame` objects are supported and behave as they would
with plain ol' Python evaluation.
Parameters
----------
expr : str or unicode
The expression to evaluate. This string cannot contain any Python
`statements
<https://docs.python.org/3/reference/simple_stmts.html#simple-statements>`__,
only Python `expressions
<https://docs.python.org/3/reference/simple_stmts.html#expression-statements>`__.
parser : string, default 'pandas', {'pandas', 'python'}
The parser to use to construct the syntax tree from the expression. The
default of ``'pandas'`` parses code slightly different than standard
Python. Alternatively, you can parse an expression using the
``'python'`` parser to retain strict Python semantics. See the
:ref:`enhancing performance <enhancingperf.eval>` documentation for
more details.
engine : string or None, default 'numexpr', {'python', 'numexpr'}
The engine used to evaluate the expression. Supported engines are
- None : tries to use ``numexpr``, falls back to ``python``
- ``'numexpr'``: This default engine evaluates pandas objects using
numexpr for large speed ups in complex expressions
with large frames.
- ``'python'``: Performs operations as if you had ``eval``'d in top
level python. This engine is generally not that useful.
More backends may be available in the future.
truediv : bool, optional
Whether to use true division, like in Python >= 3
local_dict : dict or None, optional
A dictionary of local variables, taken from locals() by default.
global_dict : dict or None, optional
A dictionary of global variables, taken from globals() by default.
resolvers : list of dict-like or None, optional
A list of objects implementing the ``__getitem__`` special method that
you can use to inject an additional collection of namespaces to use for
variable lookup. For example, this is used in the
:meth:`~DataFrame.query` method to inject the
``DataFrame.index`` and ``DataFrame.columns``
variables that refer to their respective :class:`~pandas.DataFrame`
instance attributes.
level : int, optional
The number of prior stack frames to traverse and add to the current
scope. Most users will **not** need to change this parameter.
target : object, optional, default None
This is the target object for assignment. It is used when there is
variable assignment in the expression. If so, then `target` must
support item assignment with string keys, and if a copy is being
returned, it must also support `.copy()`.
inplace : bool, default False
If `target` is provided, and the expression mutates `target`, whether
to modify `target` inplace. Otherwise, return a copy of `target` with
the mutation.
Returns
-------
ndarray, numeric scalar, DataFrame, Series
Raises
------
ValueError
There are many instances where such an error can be raised:
- `target=None`, but the expression is multiline.
- The expression is multiline, but not all them have item assignment.
An example of such an arrangement is this:
a = b + 1
a + 2
Here, there are expressions on different lines, making it multiline,
but the last line has no variable assigned to the output of `a + 2`.
- `inplace=True`, but the expression is missing item assignment.
- Item assignment is provided, but the `target` does not support
string item assignment.
- Item assignment is provided and `inplace=False`, but the `target`
does not support the `.copy()` method
See Also
--------
DataFrame.query
DataFrame.eval
Notes
-----
The ``dtype`` of any objects involved in an arithmetic ``%`` operation are
recursively cast to ``float64``.
See the :ref:`enhancing performance <enhancingperf.eval>` documentation for
more details.
""" |
from pandas.core.computation.expr import Expr
inplace = validate_bool_kwarg(inplace, "inplace")
if isinstance(expr, str):
_check_expression(expr)
exprs = [e.strip() for e in expr.splitlines() if e.strip() != '']
else:
exprs = [expr]
multi_line = len(exprs) > 1
if multi_line and target is None:
raise ValueError("multi-line expressions are only valid in the "
"context of data, use DataFrame.eval")
ret = None
first_expr = True
target_modified = False
for expr in exprs:
expr = _convert_expression(expr)
engine = _check_engine(engine)
_check_parser(parser)
_check_resolvers(resolvers)
_check_for_locals(expr, level, parser)
# get our (possibly passed-in) scope
env = _ensure_scope(level + 1, global_dict=global_dict,
local_dict=local_dict, resolvers=resolvers,
target=target)
parsed_expr = Expr(expr, engine=engine, parser=parser, env=env,
truediv=truediv)
# construct the engine and evaluate the parsed expression
eng = _engines[engine]
eng_inst = eng(parsed_expr)
ret = eng_inst.evaluate()
if parsed_expr.assigner is None:
if multi_line:
raise ValueError("Multi-line expressions are only valid"
" if all expressions contain an assignment")
elif inplace:
raise ValueError("Cannot operate inplace "
"if there is no assignment")
# assign if needed
assigner = parsed_expr.assigner
if env.target is not None and assigner is not None:
target_modified = True
# if returning a copy, copy only on the first assignment
if not inplace and first_expr:
try:
target = env.target.copy()
except AttributeError:
raise ValueError("Cannot return a copy of the target")
else:
target = env.target
# TypeError is most commonly raised (e.g. int, list), but you
# get IndexError if you try to do this assignment on np.ndarray.
# we will ignore numpy warnings here; e.g. if trying
# to use a non-numeric indexer
try:
with warnings.catch_warnings(record=True):
# TODO: Filter the warnings we actually care about here.
target[assigner] = ret
except (TypeError, IndexError):
raise ValueError("Cannot assign expression output to target")
if not resolvers:
resolvers = ({assigner: ret},)
else:
# existing resolver needs updated to handle
# case of mutating existing column in copy
for resolver in resolvers:
if assigner in resolver:
resolver[assigner] = ret
break
else:
resolvers += ({assigner: ret},)
ret = None
first_expr = False
# We want to exclude `inplace=None` as being False.
if inplace is False:
return target if target_modified else ret |
<SYSTEM_TASK:>
Convert arrays to MultiIndex.
<END_TASK>
<USER_TASK:>
Description:
def from_arrays(cls, arrays, sortorder=None, names=None):
"""
Convert arrays to MultiIndex.
Parameters
----------
arrays : list / sequence of array-likes
Each array-like gives one level's value for each data point.
len(arrays) is the number of levels.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex(levels=[[1, 2], ['blue', 'red']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['number', 'color'])
""" |
error_msg = "Input must be a list / sequence of array-likes."
if not is_list_like(arrays):
raise TypeError(error_msg)
elif is_iterator(arrays):
arrays = list(arrays)
# Check if elements of array are list-like
for array in arrays:
if not is_list_like(array):
raise TypeError(error_msg)
# Check if lengths of all arrays are equal or not,
# raise ValueError, if not
for i in range(1, len(arrays)):
if len(arrays[i]) != len(arrays[i - 1]):
raise ValueError('all arrays must be same length')
from pandas.core.arrays.categorical import _factorize_from_iterables
codes, levels = _factorize_from_iterables(arrays)
if names is None:
names = [getattr(arr, "name", None) for arr in arrays]
return MultiIndex(levels=levels, codes=codes, sortorder=sortorder,
names=names, verify_integrity=False) |
<SYSTEM_TASK:>
Convert list of tuples to MultiIndex.
<END_TASK>
<USER_TASK:>
Description:
def from_tuples(cls, tuples, sortorder=None, names=None):
"""
Convert list of tuples to MultiIndex.
Parameters
----------
tuples : list / sequence of tuple-likes
Each tuple is the index of one row/column.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> tuples = [(1, 'red'), (1, 'blue'),
... (2, 'red'), (2, 'blue')]
>>> pd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
MultiIndex(levels=[[1, 2], ['blue', 'red']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['number', 'color'])
""" |
if not is_list_like(tuples):
raise TypeError('Input must be a list / sequence of tuple-likes.')
elif is_iterator(tuples):
tuples = list(tuples)
if len(tuples) == 0:
if names is None:
msg = 'Cannot infer number of levels from empty list'
raise TypeError(msg)
arrays = [[]] * len(names)
elif isinstance(tuples, (np.ndarray, Index)):
if isinstance(tuples, Index):
tuples = tuples._values
arrays = list(lib.tuples_to_object_array(tuples).T)
elif isinstance(tuples, list):
arrays = list(lib.to_object_array_tuples(tuples).T)
else:
arrays = lzip(*tuples)
return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names) |
<SYSTEM_TASK:>
Make a MultiIndex from the cartesian product of multiple iterables.
<END_TASK>
<USER_TASK:>
Description:
def from_product(cls, iterables, sortorder=None, names=None):
"""
Make a MultiIndex from the cartesian product of multiple iterables.
Parameters
----------
iterables : list / sequence of iterables
Each iterable has unique labels for each level of the index.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> numbers = [0, 1, 2]
>>> colors = ['green', 'purple']
>>> pd.MultiIndex.from_product([numbers, colors],
... names=['number', 'color'])
MultiIndex(levels=[[0, 1, 2], ['green', 'purple']],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=['number', 'color'])
""" |
from pandas.core.arrays.categorical import _factorize_from_iterables
from pandas.core.reshape.util import cartesian_product
if not is_list_like(iterables):
raise TypeError("Input must be a list / sequence of iterables.")
elif is_iterator(iterables):
iterables = list(iterables)
codes, levels = _factorize_from_iterables(iterables)
codes = cartesian_product(codes)
return MultiIndex(levels, codes, sortorder=sortorder, names=names) |
<SYSTEM_TASK:>
Make a MultiIndex from a DataFrame.
<END_TASK>
<USER_TASK:>
Description:
def from_frame(cls, df, sortorder=None, names=None):
"""
Make a MultiIndex from a DataFrame.
.. versionadded:: 0.24.0
Parameters
----------
df : DataFrame
DataFrame to be converted to MultiIndex.
sortorder : int, optional
Level of sortedness (must be lexicographically sorted by that
level).
names : list-like, optional
If no names are provided, use the column names, or tuple of column
names if the columns is a MultiIndex. If a sequence, overwrite
names with the given sequence.
Returns
-------
MultiIndex
The MultiIndex representation of the given DataFrame.
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
Examples
--------
>>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
... ['NJ', 'Temp'], ['NJ', 'Precip']],
... columns=['a', 'b'])
>>> df
a b
0 HI Temp
1 HI Precip
2 NJ Temp
3 NJ Precip
>>> pd.MultiIndex.from_frame(df)
MultiIndex(levels=[['HI', 'NJ'], ['Precip', 'Temp']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['a', 'b'])
Using explicit names, instead of the column names
>>> pd.MultiIndex.from_frame(df, names=['state', 'observation'])
MultiIndex(levels=[['HI', 'NJ'], ['Precip', 'Temp']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['state', 'observation'])
""" |
if not isinstance(df, ABCDataFrame):
raise TypeError("Input must be a DataFrame")
column_names, columns = lzip(*df.iteritems())
names = column_names if names is None else names
return cls.from_arrays(columns, sortorder=sortorder, names=names) |
<SYSTEM_TASK:>
Set new levels on MultiIndex. Defaults to returning
<END_TASK>
<USER_TASK:>
Description:
def set_levels(self, levels, level=None, inplace=False,
verify_integrity=True):
"""
Set new levels on MultiIndex. Defaults to returning
new index.
Parameters
----------
levels : sequence or list of sequence
new level(s) to apply
level : int, level name, or sequence of int/level names (default None)
level(s) to set (None for all levels)
inplace : bool
if True, mutates in place
verify_integrity : bool (default True)
if True, checks that levels and codes are compatible
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
(2, 'one'), (2, 'two')],
names=['foo', 'bar'])
>>> idx.set_levels([['a','b'], [1,2]])
MultiIndex(levels=[['a', 'b'], [1, 2]],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_levels(['a','b'], level=0)
MultiIndex(levels=[['a', 'b'], ['one', 'two']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_levels(['a','b'], level='bar')
MultiIndex(levels=[[1, 2], ['a', 'b']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_levels([['a','b'], [1,2]], level=[0,1])
MultiIndex(levels=[['a', 'b'], [1, 2]],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
""" |
if is_list_like(levels) and not isinstance(levels, Index):
levels = list(levels)
if level is not None and not is_list_like(level):
if not is_list_like(levels):
raise TypeError("Levels must be list-like")
if is_list_like(levels[0]):
raise TypeError("Levels must be list-like")
level = [level]
levels = [levels]
elif level is None or is_list_like(level):
if not is_list_like(levels) or not is_list_like(levels[0]):
raise TypeError("Levels must be list of lists-like")
if inplace:
idx = self
else:
idx = self._shallow_copy()
idx._reset_identity()
idx._set_levels(levels, level=level, validate=True,
verify_integrity=verify_integrity)
if not inplace:
return idx |
<SYSTEM_TASK:>
Set new codes on MultiIndex. Defaults to returning
<END_TASK>
<USER_TASK:>
Description:
def set_codes(self, codes, level=None, inplace=False,
verify_integrity=True):
"""
Set new codes on MultiIndex. Defaults to returning
new index.
.. versionadded:: 0.24.0
New name for deprecated method `set_labels`.
Parameters
----------
codes : sequence or list of sequence
new codes to apply
level : int, level name, or sequence of int/level names (default None)
level(s) to set (None for all levels)
inplace : bool
if True, mutates in place
verify_integrity : bool (default True)
if True, checks that levels and codes are compatible
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
(2, 'one'), (2, 'two')],
names=['foo', 'bar'])
>>> idx.set_codes([[1,0,1,0], [0,0,1,1]])
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=['foo', 'bar'])
>>> idx.set_codes([1,0,1,0], level=0)
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[1, 0, 1, 0], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_codes([0,0,1,1], level='bar')
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[0, 0, 1, 1], [0, 0, 1, 1]],
names=['foo', 'bar'])
>>> idx.set_codes([[1,0,1,0], [0,0,1,1]], level=[0,1])
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=['foo', 'bar'])
""" |
if level is not None and not is_list_like(level):
if not is_list_like(codes):
raise TypeError("Codes must be list-like")
if is_list_like(codes[0]):
raise TypeError("Codes must be list-like")
level = [level]
codes = [codes]
elif level is None or is_list_like(level):
if not is_list_like(codes) or not is_list_like(codes[0]):
raise TypeError("Codes must be list of lists-like")
if inplace:
idx = self
else:
idx = self._shallow_copy()
idx._reset_identity()
idx._set_codes(codes, level=level, verify_integrity=verify_integrity)
if not inplace:
return idx |
<SYSTEM_TASK:>
Make a copy of this object. Names, dtype, levels and codes can be
<END_TASK>
<USER_TASK:>
Description:
def copy(self, names=None, dtype=None, levels=None, codes=None,
deep=False, _set_identity=False, **kwargs):
"""
Make a copy of this object. Names, dtype, levels and codes can be
passed and will be set on new copy.
Parameters
----------
names : sequence, optional
dtype : numpy dtype or pandas type, optional
levels : sequence, optional
codes : sequence, optional
Returns
-------
copy : MultiIndex
Notes
-----
In most cases, there should be no functional difference from using
``deep``, but if ``deep`` is passed it will attempt to deepcopy.
This could be potentially expensive on large MultiIndex objects.
""" |
name = kwargs.get('name')
names = self._validate_names(name=name, names=names, deep=deep)
if deep:
from copy import deepcopy
if levels is None:
levels = deepcopy(self.levels)
if codes is None:
codes = deepcopy(self.codes)
else:
if levels is None:
levels = self.levels
if codes is None:
codes = self.codes
return MultiIndex(levels=levels, codes=codes, names=names,
sortorder=self.sortorder, verify_integrity=False,
_set_identity=_set_identity) |
<SYSTEM_TASK:>
this is defined as a copy with the same identity
<END_TASK>
<USER_TASK:>
Description:
def view(self, cls=None):
""" this is defined as a copy with the same identity """ |
result = self.copy()
result._id = self._id
return result |
<SYSTEM_TASK:>
return a boolean if we need a qualified .info display
<END_TASK>
<USER_TASK:>
Description:
def _is_memory_usage_qualified(self):
""" return a boolean if we need a qualified .info display """ |
def f(l):
return 'mixed' in l or 'string' in l or 'unicode' in l
return any(f(l) for l in self._inferred_type_levels) |
<SYSTEM_TASK:>
return the number of bytes in the underlying data
<END_TASK>
<USER_TASK:>
Description:
def _nbytes(self, deep=False):
"""
return the number of bytes in the underlying data
deeply introspect the level data if deep=True
include the engine hashtable
*this is in internal routine*
""" |
# for implementations with no useful getsizeof (PyPy)
objsize = 24
level_nbytes = sum(i.memory_usage(deep=deep) for i in self.levels)
label_nbytes = sum(i.nbytes for i in self.codes)
names_nbytes = sum(getsizeof(i, objsize) for i in self.names)
result = level_nbytes + label_nbytes + names_nbytes
# include our engine hashtable
result += self._engine.sizeof(deep=deep)
return result |
<SYSTEM_TASK:>
validate and return the hash for the provided key
<END_TASK>
<USER_TASK:>
Description:
def _hashed_indexing_key(self, key):
"""
validate and return the hash for the provided key
*this is internal for use for the cython routines*
Parameters
----------
key : string or tuple
Returns
-------
np.uint64
Notes
-----
we need to stringify if we have mixed levels
""" |
from pandas.core.util.hashing import hash_tuples, hash_tuple
if not isinstance(key, tuple):
return hash_tuples(key)
if not len(key) == self.nlevels:
raise KeyError
def f(k, stringify):
if stringify and not isinstance(k, str):
k = str(k)
return k
key = tuple(f(k, stringify)
for k, stringify in zip(key, self._have_mixed_levels))
return hash_tuple(key) |
<SYSTEM_TASK:>
Return vector of label values for requested level,
<END_TASK>
<USER_TASK:>
Description:
def _get_level_values(self, level, unique=False):
"""
Return vector of label values for requested level,
equal to the length of the index
**this is an internal method**
Parameters
----------
level : int level
unique : bool, default False
if True, drop duplicated values
Returns
-------
values : ndarray
""" |
values = self.levels[level]
level_codes = self.codes[level]
if unique:
level_codes = algos.unique(level_codes)
filled = algos.take_1d(values._values, level_codes,
fill_value=values._na_value)
values = values._shallow_copy(filled)
return values |
<SYSTEM_TASK:>
Return vector of label values for requested level,
<END_TASK>
<USER_TASK:>
Description:
def get_level_values(self, level):
"""
Return vector of label values for requested level,
equal to the length of the index.
Parameters
----------
level : int or str
``level`` is either the integer position of the level in the
MultiIndex, or the name of the level.
Returns
-------
values : Index
Values is a level of this MultiIndex converted to
a single :class:`Index` (or subclass thereof).
Examples
---------
Create a MultiIndex:
>>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def')))
>>> mi.names = ['level_1', 'level_2']
Get level values by supplying level as either integer or name:
>>> mi.get_level_values(0)
Index(['a', 'b', 'c'], dtype='object', name='level_1')
>>> mi.get_level_values('level_2')
Index(['d', 'e', 'f'], dtype='object', name='level_2')
""" |
level = self._get_level_number(level)
values = self._get_level_values(level)
return values |
<SYSTEM_TASK:>
Create a DataFrame with the levels of the MultiIndex as columns.
<END_TASK>
<USER_TASK:>
Description:
def to_frame(self, index=True, name=None):
"""
Create a DataFrame with the levels of the MultiIndex as columns.
Column ordering is determined by the DataFrame constructor with data as
a dict.
.. versionadded:: 0.24.0
Parameters
----------
index : boolean, default True
Set the index of the returned DataFrame as the original MultiIndex.
name : list / sequence of strings, optional
The passed names should substitute index level names.
Returns
-------
DataFrame : a DataFrame containing the original MultiIndex data.
See Also
--------
DataFrame
""" |
from pandas import DataFrame
if name is not None:
if not is_list_like(name):
raise TypeError("'name' must be a list / sequence "
"of column names.")
if len(name) != len(self.levels):
raise ValueError("'name' should have same length as "
"number of levels on index.")
idx_names = name
else:
idx_names = self.names
# Guarantee resulting column order
result = DataFrame(
OrderedDict([
((level if lvlname is None else lvlname),
self._get_level_values(level))
for lvlname, level in zip(idx_names, range(len(self.levels)))
]),
copy=False
)
if index:
result.index = self
return result |
<SYSTEM_TASK:>
Return a MultiIndex reshaped to conform to the
<END_TASK>
<USER_TASK:>
Description:
def to_hierarchical(self, n_repeat, n_shuffle=1):
"""
Return a MultiIndex reshaped to conform to the
shapes given by n_repeat and n_shuffle.
.. deprecated:: 0.24.0
Useful to replicate and rearrange a MultiIndex for combination
with another Index with n_repeat items.
Parameters
----------
n_repeat : int
Number of times to repeat the labels on self
n_shuffle : int
Controls the reordering of the labels. If the result is going
to be an inner level in a MultiIndex, n_shuffle will need to be
greater than one. The size of each label must divisible by
n_shuffle.
Returns
-------
MultiIndex
Examples
--------
>>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
(2, 'one'), (2, 'two')])
>>> idx.to_hierarchical(3)
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]])
""" |
levels = self.levels
codes = [np.repeat(level_codes, n_repeat) for
level_codes in self.codes]
# Assumes that each level_codes is divisible by n_shuffle
codes = [x.reshape(n_shuffle, -1).ravel(order='F') for x in codes]
names = self.names
warnings.warn("Method .to_hierarchical is deprecated and will "
"be removed in a future version",
FutureWarning, stacklevel=2)
return MultiIndex(levels=levels, codes=codes, names=names) |
<SYSTEM_TASK:>
Create a new MultiIndex from the current that removes
<END_TASK>
<USER_TASK:>
Description:
def remove_unused_levels(self):
"""
Create a new MultiIndex from the current that removes
unused levels, meaning that they are not expressed in the labels.
The resulting MultiIndex will have the same outward
appearance, meaning the same .values and ordering. It will also
be .equals() to the original.
.. versionadded:: 0.20.0
Returns
-------
MultiIndex
Examples
--------
>>> i = pd.MultiIndex.from_product([range(2), list('ab')])
MultiIndex(levels=[[0, 1], ['a', 'b']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> i[2:]
MultiIndex(levels=[[0, 1], ['a', 'b']],
codes=[[1, 1], [0, 1]])
The 0 from the first level is not represented
and can be removed
>>> i[2:].remove_unused_levels()
MultiIndex(levels=[[1], ['a', 'b']],
codes=[[0, 0], [0, 1]])
""" |
new_levels = []
new_codes = []
changed = False
for lev, level_codes in zip(self.levels, self.codes):
# Since few levels are typically unused, bincount() is more
# efficient than unique() - however it only accepts positive values
# (and drops order):
uniques = np.where(np.bincount(level_codes + 1) > 0)[0] - 1
has_na = int(len(uniques) and (uniques[0] == -1))
if len(uniques) != len(lev) + has_na:
# We have unused levels
changed = True
# Recalculate uniques, now preserving order.
# Can easily be cythonized by exploiting the already existing
# "uniques" and stop parsing "level_codes" when all items
# are found:
uniques = algos.unique(level_codes)
if has_na:
na_idx = np.where(uniques == -1)[0]
# Just ensure that -1 is in first position:
uniques[[0, na_idx[0]]] = uniques[[na_idx[0], 0]]
# codes get mapped from uniques to 0:len(uniques)
# -1 (if present) is mapped to last position
code_mapping = np.zeros(len(lev) + has_na)
# ... and reassigned value -1:
code_mapping[uniques] = np.arange(len(uniques)) - has_na
level_codes = code_mapping[level_codes]
# new levels are simple
lev = lev.take(uniques[has_na:])
new_levels.append(lev)
new_codes.append(level_codes)
result = self._shallow_copy()
if changed:
result._reset_identity()
result._set_levels(new_levels, validate=False)
result._set_codes(new_codes, validate=False)
return result |
<SYSTEM_TASK:>
Internal method to handle NA filling of take
<END_TASK>
<USER_TASK:>
Description:
def _assert_take_fillable(self, values, indices, allow_fill=True,
fill_value=None, na_value=None):
""" Internal method to handle NA filling of take """ |
# only fill if we are passing a non-None fill_value
if allow_fill and fill_value is not None:
if (indices < -1).any():
msg = ('When allow_fill=True and fill_value is not None, '
'all indices must be >= -1')
raise ValueError(msg)
taken = [lab.take(indices) for lab in self.codes]
mask = indices == -1
if mask.any():
masked = []
for new_label in taken:
label_values = new_label.values()
label_values[mask] = na_value
masked.append(np.asarray(label_values))
taken = masked
else:
taken = [lab.take(indices) for lab in self.codes]
return taken |
<SYSTEM_TASK:>
Append a collection of Index options together
<END_TASK>
<USER_TASK:>
Description:
def append(self, other):
"""
Append a collection of Index options together
Parameters
----------
other : Index or list/tuple of indices
Returns
-------
appended : Index
""" |
if not isinstance(other, (list, tuple)):
other = [other]
if all((isinstance(o, MultiIndex) and o.nlevels >= self.nlevels)
for o in other):
arrays = []
for i in range(self.nlevels):
label = self._get_level_values(i)
appended = [o._get_level_values(i) for o in other]
arrays.append(label.append(appended))
return MultiIndex.from_arrays(arrays, names=self.names)
to_concat = (self.values, ) + tuple(k._values for k in other)
new_tuples = np.concatenate(to_concat)
# if all(isinstance(x, MultiIndex) for x in other):
try:
return MultiIndex.from_tuples(new_tuples, names=self.names)
except (TypeError, IndexError):
return Index(new_tuples) |
<SYSTEM_TASK:>
Make new MultiIndex with passed list of codes deleted
<END_TASK>
<USER_TASK:>
Description:
def drop(self, codes, level=None, errors='raise'):
"""
Make new MultiIndex with passed list of codes deleted
Parameters
----------
codes : array-like
Must be a list of tuples
level : int or level name, default None
Returns
-------
dropped : MultiIndex
""" |
if level is not None:
return self._drop_from_level(codes, level)
try:
if not isinstance(codes, (np.ndarray, Index)):
codes = com.index_labels_to_array(codes)
indexer = self.get_indexer(codes)
mask = indexer == -1
if mask.any():
if errors != 'ignore':
raise ValueError('codes %s not contained in axis' %
codes[mask])
except Exception:
pass
inds = []
for level_codes in codes:
try:
loc = self.get_loc(level_codes)
# get_loc returns either an integer, a slice, or a boolean
# mask
if isinstance(loc, int):
inds.append(loc)
elif isinstance(loc, slice):
inds.extend(lrange(loc.start, loc.stop))
elif com.is_bool_indexer(loc):
if self.lexsort_depth == 0:
warnings.warn('dropping on a non-lexsorted multi-index'
' without a level parameter may impact '
'performance.',
PerformanceWarning,
stacklevel=3)
loc = loc.nonzero()[0]
inds.extend(loc)
else:
msg = 'unsupported indexer of type {}'.format(type(loc))
raise AssertionError(msg)
except KeyError:
if errors != 'ignore':
raise
return self.delete(inds) |
<SYSTEM_TASK:>
Swap level i with level j.
<END_TASK>
<USER_TASK:>
Description:
def swaplevel(self, i=-2, j=-1):
"""
Swap level i with level j.
Calling this method does not change the ordering of the values.
Parameters
----------
i : int, str, default -2
First level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
j : int, str, default -1
Second level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
Returns
-------
MultiIndex
A new MultiIndex.
.. versionchanged:: 0.18.1
The indexes ``i`` and ``j`` are now optional, and default to
the two innermost levels of the index.
See Also
--------
Series.swaplevel : Swap levels i and j in a MultiIndex.
Dataframe.swaplevel : Swap levels i and j in a MultiIndex on a
particular axis.
Examples
--------
>>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
... codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi
MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi.swaplevel(0, 1)
MultiIndex(levels=[['bb', 'aa'], ['a', 'b']],
codes=[[0, 1, 0, 1], [0, 0, 1, 1]])
""" |
new_levels = list(self.levels)
new_codes = list(self.codes)
new_names = list(self.names)
i = self._get_level_number(i)
j = self._get_level_number(j)
new_levels[i], new_levels[j] = new_levels[j], new_levels[i]
new_codes[i], new_codes[j] = new_codes[j], new_codes[i]
new_names[i], new_names[j] = new_names[j], new_names[i]
return MultiIndex(levels=new_levels, codes=new_codes,
names=new_names, verify_integrity=False) |
<SYSTEM_TASK:>
Rearrange levels using input order. May not drop or duplicate levels
<END_TASK>
<USER_TASK:>
Description:
def reorder_levels(self, order):
"""
Rearrange levels using input order. May not drop or duplicate levels
Parameters
----------
""" |
order = [self._get_level_number(i) for i in order]
if len(order) != self.nlevels:
raise AssertionError('Length of order must be same as '
'number of levels (%d), got %d' %
(self.nlevels, len(order)))
new_levels = [self.levels[i] for i in order]
new_codes = [self.codes[i] for i in order]
new_names = [self.names[i] for i in order]
return MultiIndex(levels=new_levels, codes=new_codes,
names=new_names, verify_integrity=False) |
<SYSTEM_TASK:>
Sort MultiIndex at the requested level. The result will respect the
<END_TASK>
<USER_TASK:>
Description:
def sortlevel(self, level=0, ascending=True, sort_remaining=True):
"""
Sort MultiIndex at the requested level. The result will respect the
original ordering of the associated factor at that level.
Parameters
----------
level : list-like, int or str, default 0
If a string is given, must be a name of the level
If list-like must be names or ints of levels.
ascending : boolean, default True
False to sort in descending order
Can also be a list to specify a directed ordering
sort_remaining : sort by the remaining levels after level
Returns
-------
sorted_index : pd.MultiIndex
Resulting index.
indexer : np.ndarray
Indices of output values in original index.
""" |
from pandas.core.sorting import indexer_from_factorized
if isinstance(level, (str, int)):
level = [level]
level = [self._get_level_number(lev) for lev in level]
sortorder = None
# we have a directed ordering via ascending
if isinstance(ascending, list):
if not len(level) == len(ascending):
raise ValueError("level must have same length as ascending")
from pandas.core.sorting import lexsort_indexer
indexer = lexsort_indexer([self.codes[lev] for lev in level],
orders=ascending)
# level ordering
else:
codes = list(self.codes)
shape = list(self.levshape)
# partition codes and shape
primary = tuple(codes[lev] for lev in level)
primshp = tuple(shape[lev] for lev in level)
# Reverse sorted to retain the order of
# smaller indices that needs to be removed
for lev in sorted(level, reverse=True):
codes.pop(lev)
shape.pop(lev)
if sort_remaining:
primary += primary + tuple(codes)
primshp += primshp + tuple(shape)
else:
sortorder = level[0]
indexer = indexer_from_factorized(primary, primshp,
compress=False)
if not ascending:
indexer = indexer[::-1]
indexer = ensure_platform_int(indexer)
new_codes = [level_codes.take(indexer) for level_codes in self.codes]
new_index = MultiIndex(codes=new_codes, levels=self.levels,
names=self.names, sortorder=sortorder,
verify_integrity=False)
return new_index, indexer |
<SYSTEM_TASK:>
For an ordered MultiIndex, compute the slice locations for input
<END_TASK>
<USER_TASK:>
Description:
def slice_locs(self, start=None, end=None, step=None, kind=None):
"""
For an ordered MultiIndex, compute the slice locations for input
labels.
The input labels can be tuples representing partial levels, e.g. for a
MultiIndex with 3 levels, you can pass a single value (corresponding to
the first level), or a 1-, 2-, or 3-tuple.
Parameters
----------
start : label or tuple, default None
If None, defaults to the beginning
end : label or tuple
If None, defaults to the end
step : int or None
Slice step
kind : string, optional, defaults None
Returns
-------
(start, end) : (int, int)
Notes
-----
This method only works if the MultiIndex is properly lexsorted. So,
if only the first 2 levels of a 3-level MultiIndex are lexsorted,
you can only pass two levels to ``.slice_locs``.
Examples
--------
>>> mi = pd.MultiIndex.from_arrays([list('abbd'), list('deff')],
... names=['A', 'B'])
Get the slice locations from the beginning of 'b' in the first level
until the end of the multiindex:
>>> mi.slice_locs(start='b')
(1, 4)
Like above, but stop at the end of 'b' in the first level and 'f' in
the second level:
>>> mi.slice_locs(start='b', end=('b', 'f'))
(1, 3)
See Also
--------
MultiIndex.get_loc : Get location for a label or a tuple of labels.
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
sequence of such.
""" |
# This function adds nothing to its parent implementation (the magic
# happens in get_slice_bound method), but it adds meaningful doc.
return super().slice_locs(start, end, step, kind=kind) |
<SYSTEM_TASK:>
Get location for a label or a tuple of labels as an integer, slice or
<END_TASK>
<USER_TASK:>
Description:
def get_loc(self, key, method=None):
"""
Get location for a label or a tuple of labels as an integer, slice or
boolean mask.
Parameters
----------
key : label or tuple of labels (one for each level)
method : None
Returns
-------
loc : int, slice object or boolean mask
If the key is past the lexsort depth, the return may be a
boolean mask array, otherwise it is always a slice or int.
Examples
---------
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')])
>>> mi.get_loc('b')
slice(1, 3, None)
>>> mi.get_loc(('b', 'e'))
1
Notes
------
The key cannot be a slice, list of same-level labels, a boolean mask,
or a sequence of such. If you want to use those, use
:meth:`MultiIndex.get_locs` instead.
See Also
--------
Index.get_loc : The get_loc method for (single-level) index.
MultiIndex.slice_locs : Get slice location given start label(s) and
end label(s).
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
sequence of such.
""" |
if method is not None:
raise NotImplementedError('only the default get_loc method is '
'currently supported for MultiIndex')
def _maybe_to_slice(loc):
"""convert integer indexer to boolean mask or slice if possible"""
if not isinstance(loc, np.ndarray) or loc.dtype != 'int64':
return loc
loc = lib.maybe_indices_to_slice(loc, len(self))
if isinstance(loc, slice):
return loc
mask = np.empty(len(self), dtype='bool')
mask.fill(False)
mask[loc] = True
return mask
if not isinstance(key, tuple):
loc = self._get_level_indexer(key, level=0)
return _maybe_to_slice(loc)
keylen = len(key)
if self.nlevels < keylen:
raise KeyError('Key length ({0}) exceeds index depth ({1})'
''.format(keylen, self.nlevels))
if keylen == self.nlevels and self.is_unique:
return self._engine.get_loc(key)
# -- partial selection or non-unique index
# break the key into 2 parts based on the lexsort_depth of the index;
# the first part returns a continuous slice of the index; the 2nd part
# needs linear search within the slice
i = self.lexsort_depth
lead_key, follow_key = key[:i], key[i:]
start, stop = (self.slice_locs(lead_key, lead_key)
if lead_key else (0, len(self)))
if start == stop:
raise KeyError(key)
if not follow_key:
return slice(start, stop)
warnings.warn('indexing past lexsort depth may impact performance.',
PerformanceWarning, stacklevel=10)
loc = np.arange(start, stop, dtype='int64')
for i, k in enumerate(follow_key, len(lead_key)):
mask = self.codes[i][loc] == self.levels[i].get_loc(k)
if not mask.all():
loc = loc[mask]
if not len(loc):
raise KeyError(key)
return (_maybe_to_slice(loc) if len(loc) != stop - start else
slice(start, stop)) |
<SYSTEM_TASK:>
Return True if the levels of both MultiIndex objects are the same
<END_TASK>
<USER_TASK:>
Description:
def equal_levels(self, other):
"""
Return True if the levels of both MultiIndex objects are the same
""" |
if self.nlevels != other.nlevels:
return False
for i in range(self.nlevels):
if not self.levels[i].equals(other.levels[i]):
return False
return True |
<SYSTEM_TASK:>
Form the union of two MultiIndex objects
<END_TASK>
<USER_TASK:>
Description:
def union(self, other, sort=None):
"""
Form the union of two MultiIndex objects
Parameters
----------
other : MultiIndex or array / Index of tuples
sort : False or None, default None
Whether to sort the resulting Index.
* None : Sort the result, except when
1. `self` and `other` are equal.
2. `self` has length 0.
3. Some values in `self` or `other` cannot be compared.
A RuntimeWarning is issued in this case.
* False : do not sort the result.
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default value from ``True`` to ``None``
(without change in behaviour).
Returns
-------
Index
>>> index.union(index2)
""" |
self._validate_sort_keyword(sort)
self._assert_can_do_setop(other)
other, result_names = self._convert_can_do_setop(other)
if len(other) == 0 or self.equals(other):
return self
# TODO: Index.union returns other when `len(self)` is 0.
uniq_tuples = lib.fast_unique_multiple([self._ndarray_values,
other._ndarray_values],
sort=sort)
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names) |
<SYSTEM_TASK:>
Form the intersection of two MultiIndex objects.
<END_TASK>
<USER_TASK:>
Description:
def intersection(self, other, sort=False):
"""
Form the intersection of two MultiIndex objects.
Parameters
----------
other : MultiIndex or array / Index of tuples
sort : False or None, default False
Sort the resulting MultiIndex if possible
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default from ``True`` to ``False``, to match
behaviour from before 0.24.0
Returns
-------
Index
""" |
self._validate_sort_keyword(sort)
self._assert_can_do_setop(other)
other, result_names = self._convert_can_do_setop(other)
if self.equals(other):
return self
self_tuples = self._ndarray_values
other_tuples = other._ndarray_values
uniq_tuples = set(self_tuples) & set(other_tuples)
if sort is None:
uniq_tuples = sorted(uniq_tuples)
if len(uniq_tuples) == 0:
return MultiIndex(levels=self.levels,
codes=[[]] * self.nlevels,
names=result_names, verify_integrity=False)
else:
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names) |
<SYSTEM_TASK:>
Compute set difference of two MultiIndex objects
<END_TASK>
<USER_TASK:>
Description:
def difference(self, other, sort=None):
"""
Compute set difference of two MultiIndex objects
Parameters
----------
other : MultiIndex
sort : False or None, default None
Sort the resulting MultiIndex if possible
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default value from ``True`` to ``None``
(without change in behaviour).
Returns
-------
diff : MultiIndex
""" |
self._validate_sort_keyword(sort)
self._assert_can_do_setop(other)
other, result_names = self._convert_can_do_setop(other)
if len(other) == 0:
return self
if self.equals(other):
return MultiIndex(levels=self.levels,
codes=[[]] * self.nlevels,
names=result_names, verify_integrity=False)
this = self._get_unique_index()
indexer = this.get_indexer(other)
indexer = indexer.take((indexer != -1).nonzero()[0])
label_diff = np.setdiff1d(np.arange(this.size), indexer,
assume_unique=True)
difference = this.values.take(label_diff)
if sort is None:
difference = sorted(difference)
if len(difference) == 0:
return MultiIndex(levels=[[]] * self.nlevels,
codes=[[]] * self.nlevels,
names=result_names, verify_integrity=False)
else:
return MultiIndex.from_tuples(difference, sortorder=0,
names=result_names) |
<SYSTEM_TASK:>
Make new index with passed location deleted
<END_TASK>
<USER_TASK:>
Description:
def delete(self, loc):
"""
Make new index with passed location deleted
Returns
-------
new_index : MultiIndex
""" |
new_codes = [np.delete(level_codes, loc) for level_codes in self.codes]
return MultiIndex(levels=self.levels, codes=new_codes,
names=self.names, verify_integrity=False) |
<SYSTEM_TASK:>
routine to ensure that our data is of the correct
<END_TASK>
<USER_TASK:>
Description:
def _ensure_data(values, dtype=None):
"""
routine to ensure that our data is of the correct
input dtype for lower-level routines
This will coerce:
- ints -> int64
- uint -> uint64
- bool -> uint64 (TODO this should be uint8)
- datetimelike -> i8
- datetime64tz -> i8 (in local tz)
- categorical -> codes
Parameters
----------
values : array-like
dtype : pandas_dtype, optional
coerce to this dtype
Returns
-------
(ndarray, pandas_dtype, algo dtype as a string)
""" |
# we check some simple dtypes first
try:
if is_object_dtype(dtype):
return ensure_object(np.asarray(values)), 'object', 'object'
if is_bool_dtype(values) or is_bool_dtype(dtype):
# we are actually coercing to uint64
# until our algos support uint8 directly (see TODO)
return np.asarray(values).astype('uint64'), 'bool', 'uint64'
elif is_signed_integer_dtype(values) or is_signed_integer_dtype(dtype):
return ensure_int64(values), 'int64', 'int64'
elif (is_unsigned_integer_dtype(values) or
is_unsigned_integer_dtype(dtype)):
return ensure_uint64(values), 'uint64', 'uint64'
elif is_float_dtype(values) or is_float_dtype(dtype):
return ensure_float64(values), 'float64', 'float64'
elif is_object_dtype(values) and dtype is None:
return ensure_object(np.asarray(values)), 'object', 'object'
elif is_complex_dtype(values) or is_complex_dtype(dtype):
# ignore the fact that we are casting to float
# which discards complex parts
with catch_warnings():
simplefilter("ignore", np.ComplexWarning)
values = ensure_float64(values)
return values, 'float64', 'float64'
except (TypeError, ValueError, OverflowError):
# if we are trying to coerce to a dtype
# and it is incompat this will fall thru to here
return ensure_object(values), 'object', 'object'
# datetimelike
if (needs_i8_conversion(values) or
is_period_dtype(dtype) or
is_datetime64_any_dtype(dtype) or
is_timedelta64_dtype(dtype)):
if is_period_dtype(values) or is_period_dtype(dtype):
from pandas import PeriodIndex
values = PeriodIndex(values)
dtype = values.dtype
elif is_timedelta64_dtype(values) or is_timedelta64_dtype(dtype):
from pandas import TimedeltaIndex
values = TimedeltaIndex(values)
dtype = values.dtype
else:
# Datetime
from pandas import DatetimeIndex
values = DatetimeIndex(values)
dtype = values.dtype
return values.asi8, dtype, 'int64'
elif (is_categorical_dtype(values) and
(is_categorical_dtype(dtype) or dtype is None)):
values = getattr(values, 'values', values)
values = values.codes
dtype = 'category'
# we are actually coercing to int64
# until our algos support int* directly (not all do)
values = ensure_int64(values)
return values, dtype, 'int64'
# we have failed, return object
values = np.asarray(values, dtype=np.object)
return ensure_object(values), 'object', 'object' |
<SYSTEM_TASK:>
reverse of _ensure_data
<END_TASK>
<USER_TASK:>
Description:
def _reconstruct_data(values, dtype, original):
"""
reverse of _ensure_data
Parameters
----------
values : ndarray
dtype : pandas_dtype
original : ndarray-like
Returns
-------
Index for extension types, otherwise ndarray casted to dtype
""" |
from pandas import Index
if is_extension_array_dtype(dtype):
values = dtype.construct_array_type()._from_sequence(values)
elif is_datetime64tz_dtype(dtype) or is_period_dtype(dtype):
values = Index(original)._shallow_copy(values, name=None)
elif is_bool_dtype(dtype):
values = values.astype(dtype)
# we only support object dtypes bool Index
if isinstance(original, Index):
values = values.astype(object)
elif dtype is not None:
values = values.astype(dtype)
return values |
<SYSTEM_TASK:>
ensure that we are arraylike if not already
<END_TASK>
<USER_TASK:>
Description:
def _ensure_arraylike(values):
"""
ensure that we are arraylike if not already
""" |
if not is_array_like(values):
inferred = lib.infer_dtype(values, skipna=False)
if inferred in ['mixed', 'string', 'unicode']:
if isinstance(values, tuple):
values = list(values)
values = construct_1d_object_array_from_listlike(values)
else:
values = np.asarray(values)
return values |
<SYSTEM_TASK:>
Compute locations of to_match into values
<END_TASK>
<USER_TASK:>
Description:
def match(to_match, values, na_sentinel=-1):
"""
Compute locations of to_match into values
Parameters
----------
to_match : array-like
values to find positions of
values : array-like
Unique set of values
na_sentinel : int, default -1
Value to mark "not found"
Examples
--------
Returns
-------
match : ndarray of integers
""" |
values = com.asarray_tuplesafe(values)
htable, _, values, dtype, ndtype = _get_hashtable_algo(values)
to_match, _, _ = _ensure_data(to_match, dtype)
table = htable(min(len(to_match), 1000000))
table.map_locations(values)
result = table.lookup(to_match)
if na_sentinel != -1:
# replace but return a numpy array
# use a Series because it handles dtype conversions properly
from pandas import Series
result = Series(result.ravel()).replace(-1, na_sentinel)
result = result.values.reshape(result.shape)
return result |
<SYSTEM_TASK:>
Hash table-based unique. Uniques are returned in order
<END_TASK>
<USER_TASK:>
Description:
def unique(values):
"""
Hash table-based unique. Uniques are returned in order
of appearance. This does NOT sort.
Significantly faster than numpy.unique. Includes NA values.
Parameters
----------
values : 1d array-like
Returns
-------
numpy.ndarray or ExtensionArray
The return can be:
* Index : when the input is an Index
* Categorical : when the input is a Categorical dtype
* ndarray : when the input is a Series/ndarray
Return numpy.ndarray or ExtensionArray.
See Also
--------
Index.unique
Series.unique
Examples
--------
>>> pd.unique(pd.Series([2, 1, 3, 3]))
array([2, 1, 3])
>>> pd.unique(pd.Series([2] + [1] * 5))
array([2, 1])
>>> pd.unique(pd.Series([pd.Timestamp('20160101'),
... pd.Timestamp('20160101')]))
array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
>>> pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
... pd.Timestamp('20160101', tz='US/Eastern')]))
array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
dtype=object)
>>> pd.unique(pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
... pd.Timestamp('20160101', tz='US/Eastern')]))
DatetimeIndex(['2016-01-01 00:00:00-05:00'],
... dtype='datetime64[ns, US/Eastern]', freq=None)
>>> pd.unique(list('baabc'))
array(['b', 'a', 'c'], dtype=object)
An unordered Categorical will return categories in the
order of appearance.
>>> pd.unique(pd.Series(pd.Categorical(list('baabc'))))
[b, a, c]
Categories (3, object): [b, a, c]
>>> pd.unique(pd.Series(pd.Categorical(list('baabc'),
... categories=list('abc'))))
[b, a, c]
Categories (3, object): [b, a, c]
An ordered Categorical preserves the category ordering.
>>> pd.unique(pd.Series(pd.Categorical(list('baabc'),
... categories=list('abc'),
... ordered=True)))
[b, a, c]
Categories (3, object): [a < b < c]
An array of tuples
>>> pd.unique([('a', 'b'), ('b', 'a'), ('a', 'c'), ('b', 'a')])
array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)
""" |
values = _ensure_arraylike(values)
if is_extension_array_dtype(values):
# Dispatch to extension dtype's unique.
return values.unique()
original = values
htable, _, values, dtype, ndtype = _get_hashtable_algo(values)
table = htable(len(values))
uniques = table.unique(values)
uniques = _reconstruct_data(uniques, dtype, original)
return uniques |
<SYSTEM_TASK:>
Compute the isin boolean array
<END_TASK>
<USER_TASK:>
Description:
def isin(comps, values):
"""
Compute the isin boolean array
Parameters
----------
comps : array-like
values : array-like
Returns
-------
boolean array same length as comps
""" |
if not is_list_like(comps):
raise TypeError("only list-like objects are allowed to be passed"
" to isin(), you passed a [{comps_type}]"
.format(comps_type=type(comps).__name__))
if not is_list_like(values):
raise TypeError("only list-like objects are allowed to be passed"
" to isin(), you passed a [{values_type}]"
.format(values_type=type(values).__name__))
if not isinstance(values, (ABCIndex, ABCSeries, np.ndarray)):
values = construct_1d_object_array_from_listlike(list(values))
if is_categorical_dtype(comps):
# TODO(extension)
# handle categoricals
return comps._values.isin(values)
comps = com.values_from_object(comps)
comps, dtype, _ = _ensure_data(comps)
values, _, _ = _ensure_data(values, dtype=dtype)
# faster for larger cases to use np.in1d
f = lambda x, y: htable.ismember_object(x, values)
# GH16012
# Ensure np.in1d doesn't get object types or it *may* throw an exception
if len(comps) > 1000000 and not is_object_dtype(comps):
f = lambda x, y: np.in1d(x, y)
elif is_integer_dtype(comps):
try:
values = values.astype('int64', copy=False)
comps = comps.astype('int64', copy=False)
f = lambda x, y: htable.ismember_int64(x, y)
except (TypeError, ValueError, OverflowError):
values = values.astype(object)
comps = comps.astype(object)
elif is_float_dtype(comps):
try:
values = values.astype('float64', copy=False)
comps = comps.astype('float64', copy=False)
f = lambda x, y: htable.ismember_float64(x, y)
except (TypeError, ValueError):
values = values.astype(object)
comps = comps.astype(object)
return f(comps, values) |
<SYSTEM_TASK:>
Factorize an array-like to labels and uniques.
<END_TASK>
<USER_TASK:>
Description:
def _factorize_array(values, na_sentinel=-1, size_hint=None,
na_value=None):
"""Factorize an array-like to labels and uniques.
This doesn't do any coercion of types or unboxing before factorization.
Parameters
----------
values : ndarray
na_sentinel : int, default -1
size_hint : int, optional
Passsed through to the hashtable's 'get_labels' method
na_value : object, optional
A value in `values` to consider missing. Note: only use this
parameter when you know that you don't have any values pandas would
consider missing in the array (NaN for float data, iNaT for
datetimes, etc.).
Returns
-------
labels, uniques : ndarray
""" |
(hash_klass, _), values = _get_data_algo(values, _hashtables)
table = hash_klass(size_hint or len(values))
uniques, labels = table.factorize(values, na_sentinel=na_sentinel,
na_value=na_value)
labels = ensure_platform_int(labels)
return labels, uniques |
<SYSTEM_TASK:>
Compute a histogram of the counts of non-null values.
<END_TASK>
<USER_TASK:>
Description:
def value_counts(values, sort=True, ascending=False, normalize=False,
bins=None, dropna=True):
"""
Compute a histogram of the counts of non-null values.
Parameters
----------
values : ndarray (1-d)
sort : boolean, default True
Sort by values
ascending : boolean, default False
Sort in ascending order
normalize: boolean, default False
If True then compute a relative histogram
bins : integer, optional
Rather than count values, group them into half-open bins,
convenience for pd.cut, only works with numeric data
dropna : boolean, default True
Don't include counts of NaN
Returns
-------
value_counts : Series
""" |
from pandas.core.series import Series, Index
name = getattr(values, 'name', None)
if bins is not None:
try:
from pandas.core.reshape.tile import cut
values = Series(values)
ii = cut(values, bins, include_lowest=True)
except TypeError:
raise TypeError("bins argument only works with numeric data.")
# count, remove nulls (from the index), and but the bins
result = ii.value_counts(dropna=dropna)
result = result[result.index.notna()]
result.index = result.index.astype('interval')
result = result.sort_index()
# if we are dropna and we have NO values
if dropna and (result.values == 0).all():
result = result.iloc[0:0]
# normalizing is by len of all (regardless of dropna)
counts = np.array([len(ii)])
else:
if is_extension_array_dtype(values) or is_sparse(values):
# handle Categorical and sparse,
result = Series(values)._values.value_counts(dropna=dropna)
result.name = name
counts = result.values
else:
keys, counts = _value_counts_arraylike(values, dropna)
if not isinstance(keys, Index):
keys = Index(keys)
result = Series(counts, index=keys, name=name)
if sort:
result = result.sort_values(ascending=ascending)
if normalize:
result = result / float(counts.sum())
return result |
<SYSTEM_TASK:>
Return boolean ndarray denoting duplicate values.
<END_TASK>
<USER_TASK:>
Description:
def duplicated(values, keep='first'):
"""
Return boolean ndarray denoting duplicate values.
.. versionadded:: 0.19.0
Parameters
----------
values : ndarray-like
Array over which to check for duplicate values.
keep : {'first', 'last', False}, default 'first'
- ``first`` : Mark duplicates as ``True`` except for the first
occurrence.
- ``last`` : Mark duplicates as ``True`` except for the last
occurrence.
- False : Mark all duplicates as ``True``.
Returns
-------
duplicated : ndarray
""" |
values, dtype, ndtype = _ensure_data(values)
f = getattr(htable, "duplicated_{dtype}".format(dtype=ndtype))
return f(values, keep=keep) |
<SYSTEM_TASK:>
Rank the values along a given axis.
<END_TASK>
<USER_TASK:>
Description:
def rank(values, axis=0, method='average', na_option='keep',
ascending=True, pct=False):
"""
Rank the values along a given axis.
Parameters
----------
values : array-like
Array whose values will be ranked. The number of dimensions in this
array must not exceed 2.
axis : int, default 0
Axis over which to perform rankings.
method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
The method by which tiebreaks are broken during the ranking.
na_option : {'keep', 'top'}, default 'keep'
The method by which NaNs are placed in the ranking.
- ``keep``: rank each NaN value with a NaN ranking
- ``top``: replace each NaN with either +/- inf so that they
there are ranked at the top
ascending : boolean, default True
Whether or not the elements should be ranked in ascending order.
pct : boolean, default False
Whether or not to the display the returned rankings in integer form
(e.g. 1, 2, 3) or in percentile form (e.g. 0.333..., 0.666..., 1).
""" |
if values.ndim == 1:
f, values = _get_data_algo(values, _rank1d_functions)
ranks = f(values, ties_method=method, ascending=ascending,
na_option=na_option, pct=pct)
elif values.ndim == 2:
f, values = _get_data_algo(values, _rank2d_functions)
ranks = f(values, axis=axis, ties_method=method,
ascending=ascending, na_option=na_option, pct=pct)
else:
raise TypeError("Array with ndim > 2 are not supported.")
return ranks |
<SYSTEM_TASK:>
Perform array addition that checks for underflow and overflow.
<END_TASK>
<USER_TASK:>
Description:
def checked_add_with_arr(arr, b, arr_mask=None, b_mask=None):
"""
Perform array addition that checks for underflow and overflow.
Performs the addition of an int64 array and an int64 integer (or array)
but checks that they do not result in overflow first. For elements that
are indicated to be NaN, whether or not there is overflow for that element
is automatically ignored.
Parameters
----------
arr : array addend.
b : array or scalar addend.
arr_mask : boolean array or None
array indicating which elements to exclude from checking
b_mask : boolean array or boolean or None
array or scalar indicating which element(s) to exclude from checking
Returns
-------
sum : An array for elements x + b for each element x in arr if b is
a scalar or an array for elements x + y for each element pair
(x, y) in (arr, b).
Raises
------
OverflowError if any x + y exceeds the maximum or minimum int64 value.
""" |
# For performance reasons, we broadcast 'b' to the new array 'b2'
# so that it has the same size as 'arr'.
b2 = np.broadcast_to(b, arr.shape)
if b_mask is not None:
# We do the same broadcasting for b_mask as well.
b2_mask = np.broadcast_to(b_mask, arr.shape)
else:
b2_mask = None
# For elements that are NaN, regardless of their value, we should
# ignore whether they overflow or not when doing the checked add.
if arr_mask is not None and b2_mask is not None:
not_nan = np.logical_not(arr_mask | b2_mask)
elif arr_mask is not None:
not_nan = np.logical_not(arr_mask)
elif b_mask is not None:
not_nan = np.logical_not(b2_mask)
else:
not_nan = np.empty(arr.shape, dtype=bool)
not_nan.fill(True)
# gh-14324: For each element in 'arr' and its corresponding element
# in 'b2', we check the sign of the element in 'b2'. If it is positive,
# we then check whether its sum with the element in 'arr' exceeds
# np.iinfo(np.int64).max. If so, we have an overflow error. If it
# it is negative, we then check whether its sum with the element in
# 'arr' exceeds np.iinfo(np.int64).min. If so, we have an overflow
# error as well.
mask1 = b2 > 0
mask2 = b2 < 0
if not mask1.any():
to_raise = ((np.iinfo(np.int64).min - b2 > arr) & not_nan).any()
elif not mask2.any():
to_raise = ((np.iinfo(np.int64).max - b2 < arr) & not_nan).any()
else:
to_raise = (((np.iinfo(np.int64).max -
b2[mask1] < arr[mask1]) & not_nan[mask1]).any() or
((np.iinfo(np.int64).min -
b2[mask2] > arr[mask2]) & not_nan[mask2]).any())
if to_raise:
raise OverflowError("Overflow in int64 addition")
return arr + b |
<SYSTEM_TASK:>
Compute sample quantile or quantiles of the input array. For example, q=0.5
<END_TASK>
<USER_TASK:>
Description:
def quantile(x, q, interpolation_method='fraction'):
"""
Compute sample quantile or quantiles of the input array. For example, q=0.5
computes the median.
The `interpolation_method` parameter supports three values, namely
`fraction` (default), `lower` and `higher`. Interpolation is done only,
if the desired quantile lies between two data points `i` and `j`. For
`fraction`, the result is an interpolated value between `i` and `j`;
for `lower`, the result is `i`, for `higher` the result is `j`.
Parameters
----------
x : ndarray
Values from which to extract score.
q : scalar or array
Percentile at which to extract score.
interpolation_method : {'fraction', 'lower', 'higher'}, optional
This optional parameter specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`:
- fraction: `i + (j - i)*fraction`, where `fraction` is the
fractional part of the index surrounded by `i` and `j`.
-lower: `i`.
- higher: `j`.
Returns
-------
score : float
Score at percentile.
Examples
--------
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
""" |
x = np.asarray(x)
mask = isna(x)
x = x[~mask]
values = np.sort(x)
def _interpolate(a, b, fraction):
"""Returns the point at the given fraction between a and b, where
'fraction' must be between 0 and 1.
"""
return a + (b - a) * fraction
def _get_score(at):
if len(values) == 0:
return np.nan
idx = at * (len(values) - 1)
if idx % 1 == 0:
score = values[int(idx)]
else:
if interpolation_method == 'fraction':
score = _interpolate(values[int(idx)], values[int(idx) + 1],
idx % 1)
elif interpolation_method == 'lower':
score = values[np.floor(idx)]
elif interpolation_method == 'higher':
score = values[np.ceil(idx)]
else:
raise ValueError("interpolation_method can only be 'fraction' "
", 'lower' or 'higher'")
return score
if is_scalar(q):
return _get_score(q)
else:
q = np.asarray(q, np.float64)
return algos.arrmap_float64(q, _get_score) |
<SYSTEM_TASK:>
Convert a SparseSeries to a scipy.sparse.coo_matrix using index
<END_TASK>
<USER_TASK:>
Description:
def _sparse_series_to_coo(ss, row_levels=(0, ), column_levels=(1, ),
sort_labels=False):
"""
Convert a SparseSeries to a scipy.sparse.coo_matrix using index
levels row_levels, column_levels as the row and column
labels respectively. Returns the sparse_matrix, row and column labels.
""" |
import scipy.sparse
if ss.index.nlevels < 2:
raise ValueError('to_coo requires MultiIndex with nlevels > 2')
if not ss.index.is_unique:
raise ValueError('Duplicate index entries are not allowed in to_coo '
'transformation.')
# to keep things simple, only rely on integer indexing (not labels)
row_levels = [ss.index._get_level_number(x) for x in row_levels]
column_levels = [ss.index._get_level_number(x) for x in column_levels]
v, i, j, rows, columns = _to_ijv(ss, row_levels=row_levels,
column_levels=column_levels,
sort_labels=sort_labels)
sparse_matrix = scipy.sparse.coo_matrix(
(v, (i, j)), shape=(len(rows), len(columns)))
return sparse_matrix, rows, columns |
<SYSTEM_TASK:>
Convert a scipy.sparse.coo_matrix to a SparseSeries.
<END_TASK>
<USER_TASK:>
Description:
def _coo_to_sparse_series(A, dense_index=False):
"""
Convert a scipy.sparse.coo_matrix to a SparseSeries.
Use the defaults given in the SparseSeries constructor.
""" |
s = Series(A.data, MultiIndex.from_arrays((A.row, A.col)))
s = s.sort_index()
s = s.to_sparse() # TODO: specify kind?
if dense_index:
# is there a better constructor method to use here?
i = range(A.shape[0])
j = range(A.shape[1])
ind = MultiIndex.from_product([i, j])
s = s.reindex(ind)
return s |
<SYSTEM_TASK:>
Wrap comparison operations to convert datetime-like to datetime64
<END_TASK>
<USER_TASK:>
Description:
def _dt_array_cmp(cls, op):
"""
Wrap comparison operations to convert datetime-like to datetime64
""" |
opname = '__{name}__'.format(name=op.__name__)
nat_result = opname == '__ne__'
def wrapper(self, other):
if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)):
return NotImplemented
other = lib.item_from_zerodim(other)
if isinstance(other, (datetime, np.datetime64, str)):
if isinstance(other, (datetime, np.datetime64)):
# GH#18435 strings get a pass from tzawareness compat
self._assert_tzawareness_compat(other)
try:
other = _to_M8(other, tz=self.tz)
except ValueError:
# string that cannot be parsed to Timestamp
return ops.invalid_comparison(self, other, op)
result = op(self.asi8, other.view('i8'))
if isna(other):
result.fill(nat_result)
elif lib.is_scalar(other) or np.ndim(other) == 0:
return ops.invalid_comparison(self, other, op)
elif len(other) != len(self):
raise ValueError("Lengths must match")
else:
if isinstance(other, list):
try:
other = type(self)._from_sequence(other)
except ValueError:
other = np.array(other, dtype=np.object_)
elif not isinstance(other, (np.ndarray, ABCIndexClass, ABCSeries,
DatetimeArray)):
# Following Timestamp convention, __eq__ is all-False
# and __ne__ is all True, others raise TypeError.
return ops.invalid_comparison(self, other, op)
if is_object_dtype(other):
# We have to use _comp_method_OBJECT_ARRAY instead of numpy
# comparison otherwise it would fail to raise when
# comparing tz-aware and tz-naive
with np.errstate(all='ignore'):
result = ops._comp_method_OBJECT_ARRAY(op,
self.astype(object),
other)
o_mask = isna(other)
elif not (is_datetime64_dtype(other) or
is_datetime64tz_dtype(other)):
# e.g. is_timedelta64_dtype(other)
return ops.invalid_comparison(self, other, op)
else:
self._assert_tzawareness_compat(other)
if isinstance(other, (ABCIndexClass, ABCSeries)):
other = other.array
if (is_datetime64_dtype(other) and
not is_datetime64_ns_dtype(other) or
not hasattr(other, 'asi8')):
# e.g. other.dtype == 'datetime64[s]'
# or an object-dtype ndarray
other = type(self)._from_sequence(other)
result = op(self.view('i8'), other.view('i8'))
o_mask = other._isnan
result = com.values_from_object(result)
if o_mask.any():
result[o_mask] = nat_result
if self._hasnans:
result[self._isnan] = nat_result
return result
return compat.set_function_name(wrapper, opname, cls) |
<SYSTEM_TASK:>
Convert data to array of timestamps.
<END_TASK>
<USER_TASK:>
Description:
def objects_to_datetime64ns(data, dayfirst, yearfirst,
utc=False, errors="raise",
require_iso8601=False, allow_object=False):
"""
Convert data to array of timestamps.
Parameters
----------
data : np.ndarray[object]
dayfirst : bool
yearfirst : bool
utc : bool, default False
Whether to convert timezone-aware timestamps to UTC
errors : {'raise', 'ignore', 'coerce'}
allow_object : bool
Whether to return an object-dtype ndarray instead of raising if the
data contains more than one timezone.
Returns
-------
result : ndarray
np.int64 dtype if returned values represent UTC timestamps
np.datetime64[ns] if returned values represent wall times
object if mixed timezones
inferred_tz : tzinfo or None
Raises
------
ValueError : if data cannot be converted to datetimes
""" |
assert errors in ["raise", "ignore", "coerce"]
# if str-dtype, convert
data = np.array(data, copy=False, dtype=np.object_)
try:
result, tz_parsed = tslib.array_to_datetime(
data,
errors=errors,
utc=utc,
dayfirst=dayfirst,
yearfirst=yearfirst,
require_iso8601=require_iso8601
)
except ValueError as e:
try:
values, tz_parsed = conversion.datetime_to_datetime64(data)
# If tzaware, these values represent unix timestamps, so we
# return them as i8 to distinguish from wall times
return values.view('i8'), tz_parsed
except (ValueError, TypeError):
raise e
if tz_parsed is not None:
# We can take a shortcut since the datetime64 numpy array
# is in UTC
# Return i8 values to denote unix timestamps
return result.view('i8'), tz_parsed
elif is_datetime64_dtype(result):
# returning M8[ns] denotes wall-times; since tz is None
# the distinction is a thin one
return result, tz_parsed
elif is_object_dtype(result):
# GH#23675 when called via `pd.to_datetime`, returning an object-dtype
# array is allowed. When called via `pd.DatetimeIndex`, we can
# only accept datetime64 dtype, so raise TypeError if object-dtype
# is returned, as that indicates the values can be recognized as
# datetimes but they have conflicting timezones/awareness
if allow_object:
return result, tz_parsed
raise TypeError(result)
else: # pragma: no cover
# GH#23675 this TypeError should never be hit, whereas the TypeError
# in the object-dtype branch above is reachable.
raise TypeError(result) |
<SYSTEM_TASK:>
Convert data based on dtype conventions, issuing deprecation warnings
<END_TASK>
<USER_TASK:>
Description:
def maybe_convert_dtype(data, copy):
"""
Convert data based on dtype conventions, issuing deprecation warnings
or errors where appropriate.
Parameters
----------
data : np.ndarray or pd.Index
copy : bool
Returns
-------
data : np.ndarray or pd.Index
copy : bool
Raises
------
TypeError : PeriodDType data is passed
""" |
if is_float_dtype(data):
# Note: we must cast to datetime64[ns] here in order to treat these
# as wall-times instead of UTC timestamps.
data = data.astype(_NS_DTYPE)
copy = False
# TODO: deprecate this behavior to instead treat symmetrically
# with integer dtypes. See discussion in GH#23675
elif is_timedelta64_dtype(data):
warnings.warn("Passing timedelta64-dtype data is deprecated, will "
"raise a TypeError in a future version",
FutureWarning, stacklevel=5)
data = data.view(_NS_DTYPE)
elif is_period_dtype(data):
# Note: without explicitly raising here, PeriodIndex
# test_setops.test_join_does_not_recur fails
raise TypeError("Passing PeriodDtype data is invalid. "
"Use `data.to_timestamp()` instead")
elif is_categorical_dtype(data):
# GH#18664 preserve tz in going DTI->Categorical->DTI
# TODO: cases where we need to do another pass through this func,
# e.g. the categories are timedelta64s
data = data.categories.take(data.codes, fill_value=NaT)._values
copy = False
elif is_extension_type(data) and not is_datetime64tz_dtype(data):
# Includes categorical
# TODO: We have no tests for these
data = np.array(data, dtype=np.object_)
copy = False
return data, copy |
<SYSTEM_TASK:>
If a timezone is inferred from data, check that it is compatible with
<END_TASK>
<USER_TASK:>
Description:
def maybe_infer_tz(tz, inferred_tz):
"""
If a timezone is inferred from data, check that it is compatible with
the user-provided timezone, if any.
Parameters
----------
tz : tzinfo or None
inferred_tz : tzinfo or None
Returns
-------
tz : tzinfo or None
Raises
------
TypeError : if both timezones are present but do not match
""" |
if tz is None:
tz = inferred_tz
elif inferred_tz is None:
pass
elif not timezones.tz_compare(tz, inferred_tz):
raise TypeError('data is already tz-aware {inferred_tz}, unable to '
'set specified tz: {tz}'
.format(inferred_tz=inferred_tz, tz=tz))
return tz |
<SYSTEM_TASK:>
If the given dtype is a DatetimeTZDtype, extract the implied
<END_TASK>
<USER_TASK:>
Description:
def validate_tz_from_dtype(dtype, tz):
"""
If the given dtype is a DatetimeTZDtype, extract the implied
tzinfo object from it and check that it does not conflict with the given
tz.
Parameters
----------
dtype : dtype, str
tz : None, tzinfo
Returns
-------
tz : consensus tzinfo
Raises
------
ValueError : on tzinfo mismatch
""" |
if dtype is not None:
if isinstance(dtype, str):
try:
dtype = DatetimeTZDtype.construct_from_string(dtype)
except TypeError:
# Things like `datetime64[ns]`, which is OK for the
# constructors, but also nonsense, which should be validated
# but not by us. We *do* allow non-existent tz errors to
# go through
pass
dtz = getattr(dtype, 'tz', None)
if dtz is not None:
if tz is not None and not timezones.tz_compare(tz, dtz):
raise ValueError("cannot supply both a tz and a dtype"
" with a tz")
tz = dtz
if tz is not None and is_datetime64_dtype(dtype):
# We also need to check for the case where the user passed a
# tz-naive dtype (i.e. datetime64[ns])
if tz is not None and not timezones.tz_compare(tz, dtz):
raise ValueError("cannot supply both a tz and a "
"timezone-naive dtype (i.e. datetime64[ns])")
return tz |
<SYSTEM_TASK:>
If a timezone is not explicitly given via `tz`, see if one can
<END_TASK>
<USER_TASK:>
Description:
def _infer_tz_from_endpoints(start, end, tz):
"""
If a timezone is not explicitly given via `tz`, see if one can
be inferred from the `start` and `end` endpoints. If more than one
of these inputs provides a timezone, require that they all agree.
Parameters
----------
start : Timestamp
end : Timestamp
tz : tzinfo or None
Returns
-------
tz : tzinfo or None
Raises
------
TypeError : if start and end timezones do not agree
""" |
try:
inferred_tz = timezones.infer_tzinfo(start, end)
except Exception:
raise TypeError('Start and end cannot both be tz-aware with '
'different timezones')
inferred_tz = timezones.maybe_get_tz(inferred_tz)
tz = timezones.maybe_get_tz(tz)
if tz is not None and inferred_tz is not None:
if not timezones.tz_compare(inferred_tz, tz):
raise AssertionError("Inferred time zone not equal to passed "
"time zone")
elif inferred_tz is not None:
tz = inferred_tz
return tz |
<SYSTEM_TASK:>
Localize a start or end Timestamp to the timezone of the corresponding
<END_TASK>
<USER_TASK:>
Description:
def _maybe_localize_point(ts, is_none, is_not_none, freq, tz):
"""
Localize a start or end Timestamp to the timezone of the corresponding
start or end Timestamp
Parameters
----------
ts : start or end Timestamp to potentially localize
is_none : argument that should be None
is_not_none : argument that should not be None
freq : Tick, DateOffset, or None
tz : str, timezone object or None
Returns
-------
ts : Timestamp
""" |
# Make sure start and end are timezone localized if:
# 1) freq = a Timedelta-like frequency (Tick)
# 2) freq = None i.e. generating a linspaced range
if isinstance(freq, Tick) or freq is None:
localize_args = {'tz': tz, 'ambiguous': False}
else:
localize_args = {'tz': None}
if is_none is None and is_not_none is not None:
ts = ts.tz_localize(**localize_args)
return ts |
<SYSTEM_TASK:>
Add a timedelta-like, Tick, or TimedeltaIndex-like object
<END_TASK>
<USER_TASK:>
Description:
def _add_delta(self, delta):
"""
Add a timedelta-like, Tick, or TimedeltaIndex-like object
to self, yielding a new DatetimeArray
Parameters
----------
other : {timedelta, np.timedelta64, Tick,
TimedeltaIndex, ndarray[timedelta64]}
Returns
-------
result : DatetimeArray
""" |
new_values = super()._add_delta(delta)
return type(self)._from_sequence(new_values, tz=self.tz, freq='infer') |
<SYSTEM_TASK:>
Convert times to midnight.
<END_TASK>
<USER_TASK:>
Description:
def normalize(self):
"""
Convert times to midnight.
The time component of the date-time is converted to midnight i.e.
00:00:00. This is useful in cases, when the time does not matter.
Length is unaltered. The timezones are unaffected.
This method is available on Series with datetime values under
the ``.dt`` accessor, and directly on Datetime Array/Index.
Returns
-------
DatetimeArray, DatetimeIndex or Series
The same type as the original data. Series will have the same
name and index. DatetimeIndex will have the same name.
See Also
--------
floor : Floor the datetimes to the specified freq.
ceil : Ceil the datetimes to the specified freq.
round : Round the datetimes to the specified freq.
Examples
--------
>>> idx = pd.date_range(start='2014-08-01 10:00', freq='H',
... periods=3, tz='Asia/Calcutta')
>>> idx
DatetimeIndex(['2014-08-01 10:00:00+05:30',
'2014-08-01 11:00:00+05:30',
'2014-08-01 12:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq='H')
>>> idx.normalize()
DatetimeIndex(['2014-08-01 00:00:00+05:30',
'2014-08-01 00:00:00+05:30',
'2014-08-01 00:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq=None)
""" |
if self.tz is None or timezones.is_utc(self.tz):
not_null = ~self.isna()
DAY_NS = ccalendar.DAY_SECONDS * 1000000000
new_values = self.asi8.copy()
adjustment = (new_values[not_null] % DAY_NS)
new_values[not_null] = new_values[not_null] - adjustment
else:
new_values = conversion.normalize_i8_timestamps(self.asi8, self.tz)
return type(self)._from_sequence(new_values,
freq='infer').tz_localize(self.tz) |
<SYSTEM_TASK:>
Calculate TimedeltaArray of difference between index
<END_TASK>
<USER_TASK:>
Description:
def to_perioddelta(self, freq):
"""
Calculate TimedeltaArray of difference between index
values and index converted to PeriodArray at specified
freq. Used for vectorized offsets
Parameters
----------
freq : Period frequency
Returns
-------
TimedeltaArray/Index
""" |
# TODO: consider privatizing (discussion in GH#23113)
from pandas.core.arrays.timedeltas import TimedeltaArray
i8delta = self.asi8 - self.to_period(freq).to_timestamp().asi8
m8delta = i8delta.view('m8[ns]')
return TimedeltaArray(m8delta) |
<SYSTEM_TASK:>
Return the month names of the DateTimeIndex with specified locale.
<END_TASK>
<USER_TASK:>
Description:
def month_name(self, locale=None):
"""
Return the month names of the DateTimeIndex with specified locale.
.. versionadded:: 0.23.0
Parameters
----------
locale : str, optional
Locale determining the language in which to return the month name.
Default is English locale.
Returns
-------
Index
Index of month names.
Examples
--------
>>> idx = pd.date_range(start='2018-01', freq='M', periods=3)
>>> idx
DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'],
dtype='datetime64[ns]', freq='M')
>>> idx.month_name()
Index(['January', 'February', 'March'], dtype='object')
""" |
if self.tz is not None and not timezones.is_utc(self.tz):
values = self._local_timestamps()
else:
values = self.asi8
result = fields.get_date_name_field(values, 'month_name',
locale=locale)
result = self._maybe_mask_results(result, fill_value=None)
return result |
<SYSTEM_TASK:>
Returns numpy array of datetime.time. The time part of the Timestamps.
<END_TASK>
<USER_TASK:>
Description:
def time(self):
"""
Returns numpy array of datetime.time. The time part of the Timestamps.
""" |
# If the Timestamps have a timezone that is not UTC,
# convert them into their i8 representation while
# keeping their timezone and not using UTC
if self.tz is not None and not timezones.is_utc(self.tz):
timestamps = self._local_timestamps()
else:
timestamps = self.asi8
return tslib.ints_to_pydatetime(timestamps, box="time") |
<SYSTEM_TASK:>
Yield information about all public API items.
<END_TASK>
<USER_TASK:>
Description:
def get_api_items(api_doc_fd):
"""
Yield information about all public API items.
Parse api.rst file from the documentation, and extract all the functions,
methods, classes, attributes... This should include all pandas public API.
Parameters
----------
api_doc_fd : file descriptor
A file descriptor of the API documentation page, containing the table
of contents with all the public API.
Yields
------
name : str
The name of the object (e.g. 'pandas.Series.str.upper).
func : function
The object itself. In most cases this will be a function or method,
but it can also be classes, properties, cython objects...
section : str
The name of the section in the API page where the object item is
located.
subsection : str
The name of the subsection in the API page where the object item is
located.
""" |
current_module = 'pandas'
previous_line = current_section = current_subsection = ''
position = None
for line in api_doc_fd:
line = line.strip()
if len(line) == len(previous_line):
if set(line) == set('-'):
current_section = previous_line
continue
if set(line) == set('~'):
current_subsection = previous_line
continue
if line.startswith('.. currentmodule::'):
current_module = line.replace('.. currentmodule::', '').strip()
continue
if line == '.. autosummary::':
position = 'autosummary'
continue
if position == 'autosummary':
if line == '':
position = 'items'
continue
if position == 'items':
if line == '':
position = None
continue
item = line.strip()
func = importlib.import_module(current_module)
for part in item.split('.'):
func = getattr(func, part)
yield ('.'.join([current_module, item]), func,
current_section, current_subsection)
previous_line = line |
<SYSTEM_TASK:>
Validate the docstring for the given func_name
<END_TASK>
<USER_TASK:>
Description:
def validate_one(func_name):
"""
Validate the docstring for the given func_name
Parameters
----------
func_name : function
Function whose docstring will be evaluated (e.g. pandas.read_csv).
Returns
-------
dict
A dictionary containing all the information obtained from validating
the docstring.
""" |
doc = Docstring(func_name)
errs, wrns, examples_errs = get_validation_data(doc)
return {'type': doc.type,
'docstring': doc.clean_doc,
'deprecated': doc.deprecated,
'file': doc.source_file_name,
'file_line': doc.source_file_def_line,
'github_link': doc.github_url,
'errors': errs,
'warnings': wrns,
'examples_errors': examples_errs} |
<SYSTEM_TASK:>
Execute the validation of all docstrings, and return a dict with the
<END_TASK>
<USER_TASK:>
Description:
def validate_all(prefix, ignore_deprecated=False):
"""
Execute the validation of all docstrings, and return a dict with the
results.
Parameters
----------
prefix : str or None
If provided, only the docstrings that start with this pattern will be
validated. If None, all docstrings will be validated.
ignore_deprecated: bool, default False
If True, deprecated objects are ignored when validating docstrings.
Returns
-------
dict
A dictionary with an item for every function/method... containing
all the validation information.
""" |
result = {}
seen = {}
# functions from the API docs
api_doc_fnames = os.path.join(
BASE_PATH, 'doc', 'source', 'reference', '*.rst')
api_items = []
for api_doc_fname in glob.glob(api_doc_fnames):
with open(api_doc_fname) as f:
api_items += list(get_api_items(f))
for func_name, func_obj, section, subsection in api_items:
if prefix and not func_name.startswith(prefix):
continue
doc_info = validate_one(func_name)
if ignore_deprecated and doc_info['deprecated']:
continue
result[func_name] = doc_info
shared_code_key = doc_info['file'], doc_info['file_line']
shared_code = seen.get(shared_code_key, '')
result[func_name].update({'in_api': True,
'section': section,
'subsection': subsection,
'shared_code_with': shared_code})
seen[shared_code_key] = func_name
# functions from introspecting Series, DataFrame and Panel
api_item_names = set(list(zip(*api_items))[0])
for class_ in (pandas.Series, pandas.DataFrame, pandas.Panel):
for member in inspect.getmembers(class_):
func_name = 'pandas.{}.{}'.format(class_.__name__, member[0])
if (not member[0].startswith('_')
and func_name not in api_item_names):
if prefix and not func_name.startswith(prefix):
continue
doc_info = validate_one(func_name)
if ignore_deprecated and doc_info['deprecated']:
continue
result[func_name] = doc_info
result[func_name]['in_api'] = False
return result |
<SYSTEM_TASK:>
Import Python object from its name as string.
<END_TASK>
<USER_TASK:>
Description:
def _load_obj(name):
"""
Import Python object from its name as string.
Parameters
----------
name : str
Object name to import (e.g. pandas.Series.str.upper)
Returns
-------
object
Python object that can be a class, method, function...
Examples
--------
>>> Docstring._load_obj('pandas.Series')
<class 'pandas.core.series.Series'>
""" |
for maxsplit in range(1, name.count('.') + 1):
# TODO when py3 only replace by: module, *func_parts = ...
func_name_split = name.rsplit('.', maxsplit)
module = func_name_split[0]
func_parts = func_name_split[1:]
try:
obj = importlib.import_module(module)
except ImportError:
pass
else:
continue
if 'obj' not in locals():
raise ImportError('No module can be imported '
'from "{}"'.format(name))
for part in func_parts:
obj = getattr(obj, part)
return obj |
<SYSTEM_TASK:>
Find the Python object that contains the source code of the object.
<END_TASK>
<USER_TASK:>
Description:
def _to_original_callable(obj):
"""
Find the Python object that contains the source code of the object.
This is useful to find the place in the source code (file and line
number) where a docstring is defined. It does not currently work for
all cases, but it should help find some (properties...).
""" |
while True:
if inspect.isfunction(obj) or inspect.isclass(obj):
f = inspect.getfile(obj)
if f.startswith('<') and f.endswith('>'):
return None
return obj
if inspect.ismethod(obj):
obj = obj.__func__
elif isinstance(obj, functools.partial):
obj = obj.func
elif isinstance(obj, property):
obj = obj.fget
else:
return None |
<SYSTEM_TASK:>
Convert numpy types to Python types for the Excel writers.
<END_TASK>
<USER_TASK:>
Description:
def _value_with_fmt(self, val):
"""Convert numpy types to Python types for the Excel writers.
Parameters
----------
val : object
Value to be written into cells
Returns
-------
Tuple with the first element being the converted value and the second
being an optional format
""" |
fmt = None
if is_integer(val):
val = int(val)
elif is_float(val):
val = float(val)
elif is_bool(val):
val = bool(val)
elif isinstance(val, datetime):
fmt = self.datetime_format
elif isinstance(val, date):
fmt = self.date_format
elif isinstance(val, timedelta):
val = val.total_seconds() / float(86400)
fmt = '0'
else:
val = compat.to_str(val)
return val, fmt |
<SYSTEM_TASK:>
checks that path's extension against the Writer's supported
<END_TASK>
<USER_TASK:>
Description:
def check_extension(cls, ext):
"""checks that path's extension against the Writer's supported
extensions. If it isn't supported, raises UnsupportedFiletypeError.""" |
if ext.startswith('.'):
ext = ext[1:]
if not any(ext in extension for extension in cls.supported_extensions):
msg = ("Invalid extension for engine '{engine}': '{ext}'"
.format(engine=pprint_thing(cls.engine),
ext=pprint_thing(ext)))
raise ValueError(msg)
else:
return True |
<SYSTEM_TASK:>
Validate that the where statement is of the right type.
<END_TASK>
<USER_TASK:>
Description:
def _validate_where(w):
"""
Validate that the where statement is of the right type.
The type may either be String, Expr, or list-like of Exprs.
Parameters
----------
w : String term expression, Expr, or list-like of Exprs.
Returns
-------
where : The original where clause if the check was successful.
Raises
------
TypeError : An invalid data type was passed in for w (e.g. dict).
""" |
if not (isinstance(w, (Expr, str)) or is_list_like(w)):
raise TypeError("where must be passed as a string, Expr, "
"or list-like of Exprs")
return w |
<SYSTEM_TASK:>
loose checking if s is a pytables-acceptable expression
<END_TASK>
<USER_TASK:>
Description:
def maybe_expression(s):
""" loose checking if s is a pytables-acceptable expression """ |
if not isinstance(s, str):
return False
ops = ExprVisitor.binary_ops + ExprVisitor.unary_ops + ('=',)
# make sure we have an op at least
return any(op in s for op in ops) |
<SYSTEM_TASK:>
create and return the op string for this TermValue
<END_TASK>
<USER_TASK:>
Description:
def generate(self, v):
""" create and return the op string for this TermValue """ |
val = v.tostring(self.encoding)
return "({lhs} {op} {val})".format(lhs=self.lhs, op=self.op, val=val) |
<SYSTEM_TASK:>
convert the expression that is in the term to something that is
<END_TASK>
<USER_TASK:>
Description:
def convert_value(self, v):
""" convert the expression that is in the term to something that is
accepted by pytables """ |
def stringify(value):
if self.encoding is not None:
encoder = partial(pprint_thing_encoded,
encoding=self.encoding)
else:
encoder = pprint_thing
return encoder(value)
kind = _ensure_decoded(self.kind)
meta = _ensure_decoded(self.meta)
if kind == 'datetime64' or kind == 'datetime':
if isinstance(v, (int, float)):
v = stringify(v)
v = _ensure_decoded(v)
v = Timestamp(v)
if v.tz is not None:
v = v.tz_convert('UTC')
return TermValue(v, v.value, kind)
elif kind == 'timedelta64' or kind == 'timedelta':
v = Timedelta(v, unit='s').value
return TermValue(int(v), v, kind)
elif meta == 'category':
metadata = com.values_from_object(self.metadata)
result = metadata.searchsorted(v, side='left')
# result returns 0 if v is first element or if v is not in metadata
# check that metadata contains v
if not result and v not in metadata:
result = -1
return TermValue(result, result, 'integer')
elif kind == 'integer':
v = int(float(v))
return TermValue(v, v, kind)
elif kind == 'float':
v = float(v)
return TermValue(v, v, kind)
elif kind == 'bool':
if isinstance(v, str):
v = not v.strip().lower() in ['false', 'f', 'no',
'n', 'none', '0',
'[]', '{}', '']
else:
v = bool(v)
return TermValue(v, v, kind)
elif isinstance(v, str):
# string quoting
return TermValue(v, stringify(v), 'string')
else:
raise TypeError("Cannot compare {v} of type {typ} to {kind} column"
.format(v=v, typ=type(v), kind=kind)) |
<SYSTEM_TASK:>
create and return the numexpr condition and filter
<END_TASK>
<USER_TASK:>
Description:
def evaluate(self):
""" create and return the numexpr condition and filter """ |
try:
self.condition = self.terms.prune(ConditionBinOp)
except AttributeError:
raise ValueError("cannot process expression [{expr}], [{slf}] "
"is not a valid condition".format(expr=self.expr,
slf=self))
try:
self.filter = self.terms.prune(FilterBinOp)
except AttributeError:
raise ValueError("cannot process expression [{expr}], [{slf}] "
"is not a valid filter".format(expr=self.expr,
slf=self))
return self.condition, self.filter |
<SYSTEM_TASK:>
quote the string if not encoded
<END_TASK>
<USER_TASK:>
Description:
def tostring(self, encoding):
""" quote the string if not encoded
else encode and return """ |
if self.kind == 'string':
if encoding is not None:
return self.converted
return '"{converted}"'.format(converted=self.converted)
elif self.kind == 'float':
# python 2 str(float) is not always
# round-trippable so use repr()
return repr(self.converted)
return self.converted |
<SYSTEM_TASK:>
If 'Series.argmin' is called via the 'numpy' library,
<END_TASK>
<USER_TASK:>
Description:
def validate_argmin_with_skipna(skipna, args, kwargs):
"""
If 'Series.argmin' is called via the 'numpy' library,
the third parameter in its signature is 'out', which
takes either an ndarray or 'None', so check if the
'skipna' parameter is either an instance of ndarray or
is None, since 'skipna' itself should be a boolean
""" |
skipna, args = process_skipna(skipna, args)
validate_argmin(args, kwargs)
return skipna |
<SYSTEM_TASK:>
If 'Series.argmax' is called via the 'numpy' library,
<END_TASK>
<USER_TASK:>
Description:
def validate_argmax_with_skipna(skipna, args, kwargs):
"""
If 'Series.argmax' is called via the 'numpy' library,
the third parameter in its signature is 'out', which
takes either an ndarray or 'None', so check if the
'skipna' parameter is either an instance of ndarray or
is None, since 'skipna' itself should be a boolean
""" |
skipna, args = process_skipna(skipna, args)
validate_argmax(args, kwargs)
return skipna |
<SYSTEM_TASK:>
If 'Categorical.argsort' is called via the 'numpy' library, the
<END_TASK>
<USER_TASK:>
Description:
def validate_argsort_with_ascending(ascending, args, kwargs):
"""
If 'Categorical.argsort' is called via the 'numpy' library, the
first parameter in its signature is 'axis', which takes either
an integer or 'None', so check if the 'ascending' parameter has
either integer type or is None, since 'ascending' itself should
be a boolean
""" |
if is_integer(ascending) or ascending is None:
args = (ascending,) + args
ascending = True
validate_argsort_kind(args, kwargs, max_fname_arg_count=3)
return ascending |
<SYSTEM_TASK:>
If 'NDFrame.clip' is called via the numpy library, the third
<END_TASK>
<USER_TASK:>
Description:
def validate_clip_with_axis(axis, args, kwargs):
"""
If 'NDFrame.clip' is called via the numpy library, the third
parameter in its signature is 'out', which can takes an ndarray,
so check if the 'axis' parameter is an instance of ndarray, since
'axis' itself should either be an integer or None
""" |
if isinstance(axis, ndarray):
args = (axis,) + args
axis = None
validate_clip(args, kwargs)
return axis |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.