text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> Use this decorator on Step.action implementation. <END_TASK> <USER_TASK:> Description: def update_variables(func): """ Use this decorator on Step.action implementation. Your action method should always return variables, or both variables and output. This decorator will update variables with output. """
@wraps(func) def wrapper(self, *args, **kwargs): result = func(self, *args, **kwargs) if isinstance(result, tuple): return self.process_register(result[0], result[1]) else: return self.process_register(result) return wrapper
<SYSTEM_TASK:> set the properties of the app model by the given data dict <END_TASK> <USER_TASK:> Description: def _set_properties(self, data): """ set the properties of the app model by the given data dict """
for property in data.keys(): if property in vars(self): setattr(self, property, data[property])
<SYSTEM_TASK:> This action handler responds to the "roll call" emitted by the api <END_TASK> <USER_TASK:> Description: async def roll_call_handler(service, action_type, payload, props, **kwds): """ This action handler responds to the "roll call" emitted by the api gateway when it is brought up with the normal summary produced by the service. """
# if the action type corresponds to a roll call if action_type == roll_call_type(): # then announce the service await service.announce()
<SYSTEM_TASK:> This query handler builds the dynamic picture of availible services. <END_TASK> <USER_TASK:> Description: async def flexible_api_handler(service, action_type, payload, props, **kwds): """ This query handler builds the dynamic picture of availible services. """
# if the action represents a new service if action_type == intialize_service_action(): # the treat the payload like json if its a string model = json.loads(payload) if isinstance(payload, str) else payload # the list of known models models = service._external_service_data['models'] # the list of known connections connections = service._external_service_data['connections'] # the list of known mutations mutations = service._external_service_data['mutations'] # if the model is a connection if 'connection' in model: # if we haven't seen the connection before if not [conn for conn in connections if conn['name'] == model['name']]: # add it to the list connections.append(model) # or if there are registered fields elif 'fields' in model and not [mod for mod in models if mod['name'] == model['name']]: # add it to the model list models.append(model) # the service could provide mutations as well as affect the topology if 'mutations' in model: # go over each mutation announce for mutation in model['mutations']: # if there isn't a mutation by the same name in the local cache if not [mut for mut in mutations if mut['name'] == mutation['name']]: # add it to the local cache mutations.append(mutation) # if there are models if models: # create a new schema corresponding to the models and connections service.schema = generate_api_schema( models=models, connections=connections, mutations=mutations, )
<SYSTEM_TASK:> This function figures out the list of orderings for the given model and <END_TASK> <USER_TASK:> Description: def _parse_order_by(model, order_by): """ This function figures out the list of orderings for the given model and argument. Args: model (nautilus.BaseModel): The model to compute ordering against order_by (list of str): the list of fields to order_by. If the field starts with a `+` then the order is acending, if `-` descending, if no character proceeds the field, the ordering is assumed to be ascending. Returns: (list of filters): the model filters to apply to the query """
# the list of filters for the models out = [] # for each attribute we have to order by for key in order_by: # remove any whitespace key = key.strip() # if the key starts with a plus if key.startswith("+"): # add the ascending filter to the list out.append(getattr(model, key[1:])) # otherwise if the key starts with a minus elif key.startswith("-"): # add the descending filter to the list out.append(getattr(model, key[1:]).desc()) # otherwise the key needs the default filter else: # add the default filter to the list out.append(getattr(model, key)) # returnt the list of filters return out
<SYSTEM_TASK:> Creates the example directory structure necessary for a model service. <END_TASK> <USER_TASK:> Description: def model(model_names): """ Creates the example directory structure necessary for a model service. """
# for each model name we need to create for model_name in model_names: # the template context context = { 'name': model_name, } # render the model template render_template(template='common', context=context) render_template(template='model', context=context)
<SYSTEM_TASK:> Creates the example directory structure necessary for a connection <END_TASK> <USER_TASK:> Description: def connection(model_connections): """ Creates the example directory structure necessary for a connection service. """
# for each connection group for connection_str in model_connections: # the services to connect services = connection_str.split(':') services.sort() service_name = ''.join([service.title() for service in services]) # the template context context = { # make sure the first letter is lowercase 'name': service_name[0].lower() + service_name[1:], 'services': services, } render_template(template='common', context=context) render_template(template='connection', context=context)
<SYSTEM_TASK:> This function returns the conventional action designator for a given model. <END_TASK> <USER_TASK:> Description: def get_model_string(model): """ This function returns the conventional action designator for a given model. """
name = model if isinstance(model, str) else model.__name__ return normalize_string(name)
<SYSTEM_TASK:> This function takes a list of type summaries and builds a dictionary <END_TASK> <USER_TASK:> Description: def build_native_type_dictionary(fields, respect_required=False, wrap_field=True, name=''): """ This function takes a list of type summaries and builds a dictionary with native representations of each entry. Useful for dynamically building native class records from summaries. """
# a place to start when building the input field attributes input_fields = {} # go over every input in the summary for field in fields: field_name = name + field['name'] field_type = field['type'] # if the type field is a string if isinstance(field_type, str): # compute the native api type for the field field_type = convert_typestring_to_api_native(field_type)( # required=respect_required and field['required'] ) # add an entry in the attributes input_fields[field['name']] = field_type # we could also be looking at a dictionary elif isinstance(field_type, dict): object_fields = field_type['fields'] # add the dictionary to the parent as a graphql object type input_fields[field['name']] = graphql_type_from_summary( summary={ 'name': field_name+"ArgType", 'fields': object_fields } ) # if we are supposed to wrap the object in a field if wrap_field: # then wrap the value we just added input_fields[field['name']] = graphene.Field(input_fields[field['name']]) # we're done return input_fields
<SYSTEM_TASK:> This function provides the standard form for crud mutations. <END_TASK> <USER_TASK:> Description: def summarize_crud_mutation(method, model, isAsync=False): """ This function provides the standard form for crud mutations. """
# create the approrpriate action type action_type = get_crud_action(method=method, model=model) # the name of the mutation name = crud_mutation_name(model=model, action=method) # a mapping of methods to input factories input_map = { 'create': create_mutation_inputs, 'update': update_mutation_inputs, 'delete': delete_mutation_inputs, } # a mappting of methods to output factories output_map = { 'create': create_mutation_outputs, 'update': update_mutation_outputs, 'delete': delete_mutation_outputs, } # the inputs for the mutation inputs = input_map[method](model) # the mutation outputs outputs = output_map[method](model) # return the appropriate summary return summarize_mutation( mutation_name=name, event=action_type, isAsync=isAsync, inputs=inputs, outputs=outputs )
<SYSTEM_TASK:> This function starts the brokers interaction with the kafka stream <END_TASK> <USER_TASK:> Description: def start(self): """ This function starts the brokers interaction with the kafka stream """
self.loop.run_until_complete(self._consumer.start()) self.loop.run_until_complete(self._producer.start()) self._consumer_task = self.loop.create_task(self._consume_event_callback())
<SYSTEM_TASK:> This method stops the brokers interaction with the kafka stream <END_TASK> <USER_TASK:> Description: def stop(self): """ This method stops the brokers interaction with the kafka stream """
self.loop.run_until_complete(self._consumer.stop()) self.loop.run_until_complete(self._producer.stop()) # attempt try: # to cancel the service self._consumer_task.cancel() # if there was no service except AttributeError: # keep going pass
<SYSTEM_TASK:> This method sends a message over the kafka stream. <END_TASK> <USER_TASK:> Description: async def send(self, payload='', action_type='', channel=None, **kwds): """ This method sends a message over the kafka stream. """
# use a custom channel if one was provided channel = channel or self.producer_channel # serialize the action type for the message = serialize_action(action_type=action_type, payload=payload, **kwds) # send the message return await self._producer.send(channel, message.encode())
<SYSTEM_TASK:> This function returns the conventional form of the actions. <END_TASK> <USER_TASK:> Description: def serialize_action(action_type, payload, **extra_fields): """ This function returns the conventional form of the actions. """
action_dict = dict( action_type=action_type, payload=payload, **extra_fields ) # return a serializable version return json.dumps(action_dict)
<SYSTEM_TASK:> This function returns the fields for a schema that matches the provided <END_TASK> <USER_TASK:> Description: def fields_for_model(model): """ This function returns the fields for a schema that matches the provided nautilus model. Args: model (nautilus.model.BaseModel): The model to base the field list on Returns: (dict<field_name: str, graphqlType>): A mapping of field names to graphql types """
# the attribute arguments (no filters) args = {field.name.lower() : convert_peewee_field(field) \ for field in model.fields()} # use the field arguments, without the segments return args
<SYSTEM_TASK:> Create an SQL Alchemy table that connects the provides services <END_TASK> <USER_TASK:> Description: def create_connection_model(service): """ Create an SQL Alchemy table that connects the provides services """
# the services connected services = service._services # the mixins / base for the model bases = (BaseModel,) # the fields of the derived attributes = {model_service_name(service): fields.CharField() for service in services} # create an instance of base model with the right attributes return type(BaseModel)(connection_service_name(service), bases, attributes)
<SYSTEM_TASK:> This factory returns an action handler that creates a new instance of <END_TASK> <USER_TASK:> Description: def create_handler(Model, name=None, **kwds): """ This factory returns an action handler that creates a new instance of the specified model when a create action is recieved, assuming the action follows nautilus convetions. Args: Model (nautilus.BaseModel): The model to create when the action received. Returns: function(action_type, payload): The action handler for this model """
async def action_handler(service, action_type, payload, props, notify=True, **kwds): # if the payload represents a new instance of `Model` if action_type == get_crud_action('create', name or Model): # print('handling create for ' + name or Model) try: # the props of the message message_props = {} # if there was a correlation id in the request if 'correlation_id' in props: # make sure it ends up in the reply message_props['correlation_id'] = props['correlation_id'] # for each required field for requirement in Model.required_fields(): # save the name of the field field_name = requirement.name # ensure the value is in the payload # TODO: check all required fields rather than failing on the first if not field_name in payload and field_name != 'id': # yell loudly raise ValueError( "Required field not found in payload: %s" %field_name ) # create a new model new_model = Model(**payload) # save the new model instance new_model.save() # if we need to tell someone about what happened if notify: # publish the scucess event await service.event_broker.send( payload=ModelSerializer().serialize(new_model), action_type=change_action_status(action_type, success_status()), **message_props ) # if something goes wrong except Exception as err: # if we need to tell someone about what happened if notify: # publish the error as an event await service.event_broker.send( payload=str(err), action_type=change_action_status(action_type, error_status()), **message_props ) # otherwise we aren't supposed to notify else: # raise the exception normally raise err # return the handler return action_handler
<SYSTEM_TASK:> Equality checks are overwitten to perform the actual check in a <END_TASK> <USER_TASK:> Description: async def _has_id(self, *args, **kwds): """ Equality checks are overwitten to perform the actual check in a semantic way. """
# if there is only one positional argument if len(args) == 1: # parse the appropriate query result = await parse_string( self._query, self.service.object_resolver, self.service.connection_resolver, self.service.mutation_resolver, obey_auth=False ) # go to the bottom of the result for the list of matching ids return self._find_id(result['data'], args[0]) # otherwise else: # treat the attribute like a normal filter return self._has_id(**kwds)
<SYSTEM_TASK:> This method performs a depth-first search for the given uid in the dictionary of results. <END_TASK> <USER_TASK:> Description: def _find_id(self, result, uid): """ This method performs a depth-first search for the given uid in the dictionary of results. """
# if the result is a list if isinstance(result, list): # if the list has a valid entry if any([self._find_id(value, uid) for value in result]): # then we're done return True # otherwise results could be dictionaries if isinstance(result, dict): # the children of the result that are lists list_children = [value for value in result.values() if isinstance(value, list)] # go to every value that is a list for value in list_children: # if the value is a match if self._find_id(value, uid): # we're done return True # the children of the result that are dicts dict_children = [value for value in result.values() if isinstance(value, dict)] # perform the check on every child that is a dict for value in dict_children: # if the child is a match if self._find_id(value, uid): # we're done return True # if there are no values that are lists and there is an id key if not list_children and not dict_children and 'id' in result: # the value of the remote id field result_id = result['id'] # we've found a match if the id field matches (cast to match type) return result_id == type(result_id)(uid) # we didn't find the result return False
<SYSTEM_TASK:> Returns a builder inserting a new block before the current block <END_TASK> <USER_TASK:> Description: def add_before(self): """Returns a builder inserting a new block before the current block"""
idx = self._container.structure.index(self) return BlockBuilder(self._container, idx)
<SYSTEM_TASK:> Returns a builder inserting a new block after the current block <END_TASK> <USER_TASK:> Description: def add_after(self): """Returns a builder inserting a new block after the current block"""
idx = self._container.structure.index(self) return BlockBuilder(self._container, idx+1)
<SYSTEM_TASK:> Creates a comment block <END_TASK> <USER_TASK:> Description: def comment(self, text, comment_prefix='#'): """Creates a comment block Args: text (str): content of comment without # comment_prefix (str): character indicating start of comment Returns: self for chaining """
comment = Comment(self._container) if not text.startswith(comment_prefix): text = "{} {}".format(comment_prefix, text) if not text.endswith('\n'): text = "{}{}".format(text, '\n') comment.add_line(text) self._container.structure.insert(self._idx, comment) self._idx += 1 return self
<SYSTEM_TASK:> Creates a section block <END_TASK> <USER_TASK:> Description: def section(self, section): """Creates a section block Args: section (str or :class:`Section`): name of section or object Returns: self for chaining """
if not isinstance(self._container, ConfigUpdater): raise ValueError("Sections can only be added at section level!") if isinstance(section, str): # create a new section section = Section(section, container=self._container) elif not isinstance(section, Section): raise ValueError("Parameter must be a string or Section type!") if section.name in [block.name for block in self._container if isinstance(block, Section)]: raise DuplicateSectionError(section.name) self._container.structure.insert(self._idx, section) self._idx += 1 return self
<SYSTEM_TASK:> Creates a vertical space of newlines <END_TASK> <USER_TASK:> Description: def space(self, newlines=1): """Creates a vertical space of newlines Args: newlines (int): number of empty lines Returns: self for chaining """
space = Space() for line in range(newlines): space.add_line('\n') self._container.structure.insert(self._idx, space) self._idx += 1 return self
<SYSTEM_TASK:> Creates a new option inside a section <END_TASK> <USER_TASK:> Description: def option(self, key, value=None, **kwargs): """Creates a new option inside a section Args: key (str): key of the option value (str or None): value of the option **kwargs: are passed to the constructor of :class:`Option` Returns: self for chaining """
if not isinstance(self._container, Section): raise ValueError("Options can only be added inside a section!") option = Option(key, value, container=self._container, **kwargs) option.value = value self._container.structure.insert(self._idx, option) self._idx += 1 return self
<SYSTEM_TASK:> Add a Comment object to the section <END_TASK> <USER_TASK:> Description: def add_comment(self, line): """Add a Comment object to the section Used during initial parsing mainly Args: line (str): one line in the comment """
if not isinstance(self.last_item, Comment): comment = Comment(self._structure) self._structure.append(comment) self.last_item.add_line(line) return self
<SYSTEM_TASK:> Add a Space object to the section <END_TASK> <USER_TASK:> Description: def add_space(self, line): """Add a Space object to the section Used during initial parsing mainly Args: line (str): one line that defines the space, maybe whitespaces """
if not isinstance(self.last_item, Space): space = Space(self._structure) self._structure.append(space) self.last_item.add_line(line) return self
<SYSTEM_TASK:> Set an option for chaining. <END_TASK> <USER_TASK:> Description: def set(self, option, value=None): """Set an option for chaining. Args: option (str): option name value (str): value, default None """
option = self._container.optionxform(option) if option in self.options(): self.__getitem__(option).value = value else: self.__setitem__(option, value) return self
<SYSTEM_TASK:> Read and parse a filename. <END_TASK> <USER_TASK:> Description: def read(self, filename, encoding=None): """Read and parse a filename. Args: filename (str): path to file encoding (str): encoding of file, default None """
with open(filename, encoding=encoding) as fp: self._read(fp, filename) self._filename = os.path.abspath(filename)
<SYSTEM_TASK:> Returns list of configuration options for the named section. <END_TASK> <USER_TASK:> Description: def options(self, section): """Returns list of configuration options for the named section. Args: section (str): name of section Returns: list: list of option names """
if not self.has_section(section): raise NoSectionError(section) from None return self.__getitem__(section).options()
<SYSTEM_TASK:> Gets an option value for a given section. <END_TASK> <USER_TASK:> Description: def get(self, section, option): """Gets an option value for a given section. Args: section (str): section name option (str): option name Returns: :class:`Option`: Option object holding key/value pair """
if not self.has_section(section): raise NoSectionError(section) from None section = self.__getitem__(section) option = self.optionxform(option) try: value = section[option] except KeyError: raise NoOptionError(option, section) return value
<SYSTEM_TASK:> Checks for the existence of a given option in a given section. <END_TASK> <USER_TASK:> Description: def has_option(self, section, option): """Checks for the existence of a given option in a given section. Args: section (str): name of section option (str): name of option Returns: bool: whether the option exists in the given section """
if section not in self.sections(): return False else: option = self.optionxform(option) return option in self[section]
<SYSTEM_TASK:> This factory returns an action handler that deletes a new instance of <END_TASK> <USER_TASK:> Description: def delete_handler(Model, name=None, **kwds): """ This factory returns an action handler that deletes a new instance of the specified model when a delete action is recieved, assuming the action follows nautilus convetions. Args: Model (nautilus.BaseModel): The model to delete when the action received. Returns: function(type, payload): The action handler for this model """
# necessary imports from nautilus.database import db async def action_handler(service, action_type, payload, props, notify=True, **kwds): # if the payload represents a new instance of `model` if action_type == get_crud_action('delete', name or Model): try: # the props of the message message_props = {} # if there was a correlation id in the request if 'correlation_id' in props: # make sure it ends up in the reply message_props['correlation_id'] = props['correlation_id'] # the id in the payload representing the record to delete record_id = payload['id'] if 'id' in payload else payload['pk'] # get the model matching the payload try: model_query = Model.select().where(Model.primary_key() == record_id) except KeyError: raise RuntimeError("Could not find appropriate id to remove service record.") # remove the model instance model_query.get().delete_instance() # if we need to tell someone about what happened if notify: # publish the success event await service.event_broker.send( payload='{"status":"ok"}', action_type=change_action_status(action_type, success_status()), **message_props ) # if something goes wrong except Exception as err: # if we need to tell someone about what happened if notify: # publish the error as an event await service.event_broker.send( payload=str(err), action_type=change_action_status(action_type, error_status()), **message_props ) # otherwise we aren't supposed to notify else: # raise the exception normally raise err # return the handler return action_handler
<SYSTEM_TASK:> This factory returns an action handler that responds to read requests <END_TASK> <USER_TASK:> Description: def read_handler(Model, name=None, **kwds): """ This factory returns an action handler that responds to read requests by resolving the payload as a graphql query against the internal schema. Args: Model (nautilus.BaseModel): The model to delete when the action received. Returns: function(type, payload): The action handler for this model """
async def action_handler(service, action_type, payload, props, **kwds): # if the payload represents a new instance of `model` if action_type == get_crud_action('read', name or Model): # the props of the message message_props = {} # if there was a correlation id in the request if 'correlation_id' in props: # make sure it ends up in the reply message_props['correlation_id'] = props['correlation_id'] try: # resolve the query using the service schema resolved = service.schema.execute(payload) # create the string response response = json.dumps({ 'data': {key:value for key,value in resolved.data.items()}, 'errors': resolved.errors }) # publish the success event await service.event_broker.send( payload=response, action_type=change_action_status(action_type, success_status()), **message_props ) # if something goes wrong except Exception as err: # publish the error as an event await service.event_broker.send( payload=str(err), action_type=change_action_status(action_type, error_status()), **message_props ) # return the handler return action_handler
<SYSTEM_TASK:> This method converts a type into a dict. <END_TASK> <USER_TASK:> Description: def _from_type(self, config): """ This method converts a type into a dict. """
def is_user_attribute(attr): return ( not attr.startswith('__') and not isinstance(getattr(config, attr), collections.abc.Callable) ) return {attr: getattr(config, attr) for attr in dir(config) \ if is_user_attribute(attr)}
<SYSTEM_TASK:> This function traverses a query and collects the corresponding <END_TASK> <USER_TASK:> Description: async def walk_query(obj, object_resolver, connection_resolver, errors, current_user=None, __naut_name=None, obey_auth=True, **filters): """ This function traverses a query and collects the corresponding information in a dictionary. """
# if the object has no selection set if not hasattr(obj, 'selection_set'): # yell loudly raise ValueError("Can only resolve objects, not primitive types") # the name of the node node_name = __naut_name or obj.name.value if obj.name else obj.operation # the selected fields selection_set = obj.selection_set.selections def _build_arg_tree(arg): """ This function recursively builds the arguments for lists and single values """ # TODO: what about object arguments?? # if there is a single value if hasattr(arg, 'value'): # assign the value to the filter return arg.value # otherwise if there are multiple values for the argument elif hasattr(arg, 'values'): return [_build_arg_tree(node) for node in arg.values] # for each argument on this node for arg in obj.arguments: # add it to the query filters filters[arg.name.value] = _build_arg_tree(arg.value) # the fields we have to ask for fields = [field for field in selection_set if not field.selection_set] # the links between objects connections = [field for field in selection_set if field.selection_set] try: # resolve the model with the given fields models = await object_resolver(node_name, [field.name.value for field in fields], current_user=current_user, obey_auth=obey_auth, **filters) # if something went wrong resolving the object except Exception as e: # add the error as a string errors.append(e.__str__()) # stop here return None # add connections to each matching model for model in models: # if is an id for the model if 'pk' in model: # for each connection for connection in connections: # the name of the connection connection_name = connection.name.value # the target of the connection node = { 'name': node_name, 'pk': model['pk'] } try: # go through the connection connected_ids, next_target = await connection_resolver( connection_name, node, ) # if there are connections if connected_ids: # add the id filter to the list filters['pk_in'] = connected_ids # add the connection field value = await walk_query( connection, object_resolver, connection_resolver, errors, current_user=current_user, obey_auth=obey_auth, __naut_name=next_target, **filters ) # there were no connections else: value = [] # if something went wrong except Exception as e: # add the error as a string errors.append(e.__str__()) # stop here value = None # set the connection to the appropriate value model[connection_name] = value # return the list of matching models return models
<SYSTEM_TASK:> This action handler interprets the payload as a query to be executed <END_TASK> <USER_TASK:> Description: async def query_handler(service, action_type, payload, props, **kwds): """ This action handler interprets the payload as a query to be executed by the api gateway service. """
# check that the action type indicates a query if action_type == query_action_type(): print('encountered query event {!r} '.format(payload)) # perform the query result = await parse_string(payload, service.object_resolver, service.connection_resolver, service.mutation_resolver, obey_auth=False ) # the props for the reply message reply_props = {'correlation_id': props['correlation_id']} if 'correlation_id' in props else {} # publish the success event await service.event_broker.send( payload=result, action_type=change_action_status(action_type, success_status()), **reply_props )
<SYSTEM_TASK:> This function returns the standard summary for mutations inputs <END_TASK> <USER_TASK:> Description: def summarize_mutation_io(name, type, required=False): """ This function returns the standard summary for mutations inputs and outputs """
return dict( name=name, type=type, required=required )
<SYSTEM_TASK:> This function returns the name of a mutation that performs the specified <END_TASK> <USER_TASK:> Description: def crud_mutation_name(action, model): """ This function returns the name of a mutation that performs the specified crud action on the given model service """
model_string = get_model_string(model) # make sure the mutation name is correctly camelcases model_string = model_string[0].upper() + model_string[1:] # return the mutation name return "{}{}".format(action, model_string)
<SYSTEM_TASK:> This function create the actual mutation io summary corresponding to the model <END_TASK> <USER_TASK:> Description: def _summarize_o_mutation_type(model): """ This function create the actual mutation io summary corresponding to the model """
from nautilus.api.util import summarize_mutation_io # compute the appropriate name for the object object_type_name = get_model_string(model) # return a mutation io object return summarize_mutation_io( name=object_type_name, type=_summarize_object_type(model), required=False )
<SYSTEM_TASK:> This function returns the summary for a given model <END_TASK> <USER_TASK:> Description: def _summarize_object_type(model): """ This function returns the summary for a given model """
# the fields for the service's model model_fields = {field.name: field for field in list(model.fields())} # summarize the model return { 'fields': [{ 'name': key, 'type': type(convert_peewee_field(value)).__name__ } for key, value in model_fields.items() ] }
<SYSTEM_TASK:> This function combines the given action handlers into a single function <END_TASK> <USER_TASK:> Description: def combine_action_handlers(*handlers): """ This function combines the given action handlers into a single function which will call all of them. """
# make sure each of the given handlers is callable for handler in handlers: # if the handler is not a function if not (iscoroutinefunction(handler) or iscoroutine(handler)): # yell loudly raise ValueError("Provided handler is not a coroutine: %s" % handler) # the combined action handler async def combined_handler(*args, **kwds): # goes over every given handler for handler in handlers: # call the handler await handler(*args, **kwds) # return the combined action handler return combined_handler
<SYSTEM_TASK:> This factory returns an action handler that updates a new instance of <END_TASK> <USER_TASK:> Description: def update_handler(Model, name=None, **kwds): """ This factory returns an action handler that updates a new instance of the specified model when a update action is recieved, assuming the action follows nautilus convetions. Args: Model (nautilus.BaseModel): The model to update when the action received. Returns: function(type, payload): The action handler for this model """
async def action_handler(service, action_type, payload, props, notify=True, **kwds): # if the payload represents a new instance of `Model` if action_type == get_crud_action('update', name or Model): try: # the props of the message message_props = {} # if there was a correlation id in the request if 'correlation_id' in props: # make sure it ends up in the reply message_props['correlation_id'] = props['correlation_id'] # grab the nam eof the primary key for the model pk_field = Model.primary_key() # make sure there is a primary key to id the model if not pk_field.name in payload: # yell loudly raise ValueError("Must specify the pk of the model when updating") # grab the matching model model = Model.select().where(pk_field == payload[pk_field.name]).get() # remove the key from the payload payload.pop(pk_field.name, None) # for every key,value pair for key, value in payload.items(): # TODO: add protection for certain fields from being # changed by the api setattr(model, key, value) # save the updates model.save() # if we need to tell someone about what happened if notify: # publish the scucess event await service.event_broker.send( payload=ModelSerializer().serialize(model), action_type=change_action_status(action_type, success_status()), **message_props ) # if something goes wrong except Exception as err: # if we need to tell someone about what happened if notify: # publish the error as an event await service.event_broker.send( payload=str(err), action_type=change_action_status(action_type, error_status()), **message_props ) # otherwise we aren't supposed to notify else: # raise the exception normally raise err # return the handler return action_handler
<SYSTEM_TASK:> This function returns a graphql mutation corresponding to the provided <END_TASK> <USER_TASK:> Description: def graphql_mutation_from_summary(summary): """ This function returns a graphql mutation corresponding to the provided summary. """
# get the name of the mutation from the summary mutation_name = summary['name'] # print(summary) # the treat the "type" string as a gra input_name = mutation_name + "Input" input_fields = build_native_type_dictionary(summary['inputs'], name=input_name, respect_required=True) # the inputs for the mutation are defined by a class record inputs = type('Input', (object,), input_fields) # the outputs for the mutation are attributes to the class record output_name = mutation_name + "Output" outputs = build_native_type_dictionary(summary['outputs'], name=output_name) # a no-op in order to satisfy the introspection query mutate = classmethod(lambda *_, **__ : 'hello') # create the appropriate mutation class record mutation = type(mutation_name, (graphene.Mutation,), { 'Input': inputs, 'mutate': mutate, **outputs }) # return the newly created mutation record return mutation
<SYSTEM_TASK:> This function takes a series of ditionaries and creates an argument <END_TASK> <USER_TASK:> Description: def arg_string_from_dict(arg_dict, **kwds): """ This function takes a series of ditionaries and creates an argument string for a graphql query """
# the filters dictionary filters = { **arg_dict, **kwds, } # return the correctly formed string return ", ".join("{}: {}".format(key, json.dumps(value)) for key,value in filters.items())
<SYSTEM_TASK:> This function creates a graphql schema that provides a single model <END_TASK> <USER_TASK:> Description: def create_model_schema(target_model): """ This function creates a graphql schema that provides a single model """
from nautilus.database import db # create the schema instance schema = graphene.Schema(auto_camelcase=False) # grab the primary key from the model primary_key = target_model.primary_key() primary_key_type = convert_peewee_field(primary_key) # create a graphene object class ModelObjectType(PeeweeObjectType): class Meta: model = target_model pk = Field(primary_key_type, description="The primary key for this object.") @graphene.resolve_only_args def resolve_pk(self): return getattr(self, self.primary_key().name) class Query(graphene.ObjectType): """ the root level query """ all_models = List(ModelObjectType, args=args_for_model(target_model)) @graphene.resolve_only_args def resolve_all_models(self, **args): # filter the model query according to the arguments # print(filter_model(target_model, args)[0].__dict__) return filter_model(target_model, args) # add the query to the schema schema.query = Query return schema
<SYSTEM_TASK:> This function verifies the token using the secret key and returns its <END_TASK> <USER_TASK:> Description: def read_session_token(secret_key, token): """ This function verifies the token using the secret key and returns its contents. """
return jwt.decode(token.encode('utf-8'), secret_key, algorithms=[token_encryption_algorithm()] )
<SYSTEM_TASK:> The default action Handler has no action. <END_TASK> <USER_TASK:> Description: async def handle_action(self, action_type, payload, **kwds): """ The default action Handler has no action. """
# if there is a service attached to the action handler if hasattr(self, 'service'): # handle roll calls await roll_call_handler(self.service, action_type, payload, **kwds)
<SYSTEM_TASK:> This method is used to announce the existence of the service <END_TASK> <USER_TASK:> Description: async def announce(self): """ This method is used to announce the existence of the service """
# send a serialized event await self.event_broker.send( action_type=intialize_service_action(), payload=json.dumps(self.summarize()) )
<SYSTEM_TASK:> This function starts the service's network intefaces. <END_TASK> <USER_TASK:> Description: def run(self, host="localhost", port=8000, shutdown_timeout=60.0, **kwargs): """ This function starts the service's network intefaces. Args: port (int): The port for the http server. """
print("Running service on http://localhost:%i. " % port + \ "Press Ctrl+C to terminate.") # apply the configuration to the service config self.config.port = port self.config.host = host # start the loop try: # if an event broker has been created for this service if self.event_broker: # start the broker self.event_broker.start() # announce the service self.loop.run_until_complete(self.announce()) # the handler for the http server http_handler = self.app.make_handler() # create an asyncio server self._http_server = self.loop.create_server(http_handler, host, port) # grab the handler for the server callback self._server_handler = self.loop.run_until_complete(self._http_server) # start the event loop self.loop.run_forever() # if the user interrupted the server except KeyboardInterrupt: # keep going pass # when we're done finally: try: # clean up the service self.cleanup() # if we end up closing before any variables get assigned except UnboundLocalError: # just ignore it (there was nothing to close) pass # close the event loop self.loop.close()
<SYSTEM_TASK:> This function is called when the service has finished running <END_TASK> <USER_TASK:> Description: def cleanup(self): """ This function is called when the service has finished running regardless of intentionally or not. """
# if an event broker has been created for this service if self.event_broker: # stop the event broker self.event_broker.stop() # attempt try: # close the http server self._server_handler.close() self.loop.run_until_complete(self._server_handler.wait_closed()) self.loop.run_until_complete(self._http_handler.finish_connections(shutdown_timeout)) # if there was no handler except AttributeError: # keep going pass # more cleanup self.loop.run_until_complete(self.app.shutdown()) self.loop.run_until_complete(self.app.cleanup())
<SYSTEM_TASK:> This method provides a programatic way of added invidual routes <END_TASK> <USER_TASK:> Description: def add_http_endpoint(self, url, request_handler): """ This method provides a programatic way of added invidual routes to the http server. Args: url (str): the url to be handled by the request_handler request_handler (nautilus.network.RequestHandler): The request handler """
self.app.router.add_route('*', url, request_handler)
<SYSTEM_TASK:> This method provides a decorator for adding endpoints to the <END_TASK> <USER_TASK:> Description: def route(cls, route, config=None): """ This method provides a decorator for adding endpoints to the http server. Args: route (str): The url to be handled by the RequestHandled config (dict): Configuration for the request handler Example: .. code-block:: python import nautilus from nauilus.network.http import RequestHandler class MyService(nautilus.Service): # ... @MyService.route('/') class HelloWorld(RequestHandler): def get(self): return self.finish('hello world') """
def decorator(wrapped_class, **kwds): # add the endpoint at the given route cls._routes.append( dict(url=route, request_handler=wrapped_class) ) # return the class undecorated return wrapped_class # return the decorator return decorator
<SYSTEM_TASK:> This function generates a session token signed by the secret key which <END_TASK> <USER_TASK:> Description: def generate_session_token(secret_key, **payload): """ This function generates a session token signed by the secret key which can be used to extract the user credentials in a verifiable way. """
return jwt.encode(payload, secret_key, algorithm=token_encryption_algorithm()).decode('utf-8')
<SYSTEM_TASK:> This function provides a standard representation of mutations to be <END_TASK> <USER_TASK:> Description: def summarize_mutation(mutation_name, event, inputs, outputs, isAsync=False): """ This function provides a standard representation of mutations to be used when services announce themselves """
return dict( name=mutation_name, event=event, isAsync=isAsync, inputs=inputs, outputs=outputs, )
<SYSTEM_TASK:> Ensure that loaded values are PasswordHashes. <END_TASK> <USER_TASK:> Description: def coerce(cls, key, value): """Ensure that loaded values are PasswordHashes."""
if isinstance(value, PasswordHash): return value return super(PasswordHash, cls).coerce(key, value)
<SYSTEM_TASK:> Recreates the internal hash. <END_TASK> <USER_TASK:> Description: def rehash(self, password): """Recreates the internal hash."""
self.hash = self._new(password, self.desired_rounds) self.rounds = self.desired_rounds
<SYSTEM_TASK:> This function configures the database used for models to make <END_TASK> <USER_TASK:> Description: def init_db(self): """ This function configures the database used for models to make the configuration parameters. """
# get the database url from the configuration db_url = self.config.get('database_url', 'sqlite:///nautilus.db') # configure the nautilus database to the url nautilus.database.init_db(db_url)
<SYSTEM_TASK:> This attribute provides the mapping of services to their auth requirement <END_TASK> <USER_TASK:> Description: def auth_criteria(self): """ This attribute provides the mapping of services to their auth requirement Returns: (dict) : the mapping from services to their auth requirements. """
# the dictionary we will return auth = {} # go over each attribute of the service for attr in dir(self): # make sure we could hit an infinite loop if attr != 'auth_criteria': # get the actual attribute attribute = getattr(self, attr) # if the service represents an auth criteria if isinstance(attribute, Callable) and hasattr(attribute, '_service_auth'): # add the criteria to the final results auth[getattr(self, attr)._service_auth] = attribute # return the auth mapping return auth
<SYSTEM_TASK:> This function handles the registration of the given user credentials in the database <END_TASK> <USER_TASK:> Description: async def login_user(self, password, **kwds): """ This function handles the registration of the given user credentials in the database """
# find the matching user with the given email user_data = (await self._get_matching_user(fields=list(kwds.keys()), **kwds))['data'] try: # look for a matching entry in the local database passwordEntry = self.model.select().where( self.model.user == user_data[root_query()][0]['pk'] )[0] # if we couldn't acess the id of the result except (KeyError, IndexError) as e: # yell loudly raise RuntimeError('Could not find matching registered user') # if the given password matches the stored hash if passwordEntry and passwordEntry.password == password: # the remote entry for the user user = user_data[root_query()][0] # then return a dictionary with the user and sessionToken return { 'user': user, 'sessionToken': self._user_session_token(user) } # otherwise the passwords don't match raise RuntimeError("Incorrect credentials")
<SYSTEM_TASK:> This function is used to provide a sessionToken for later requests. <END_TASK> <USER_TASK:> Description: async def register_user(self, password, **kwds): """ This function is used to provide a sessionToken for later requests. Args: uid (str): The """
# so make one user = await self._create_remote_user(password=password, **kwds) # if there is no pk field if not 'pk' in user: # make sure the user has a pk field user['pk'] = user['id'] # the query to find a matching query match_query = self.model.user == user['id'] # if the user has already been registered if self.model.select().where(match_query).count() > 0: # yell loudly raise RuntimeError('The user is already registered.') # create an entry in the user password table password = self.model(user=user['id'], password=password) # save it to the database password.save() # return a dictionary with the user we created and a session token for later use return { 'user': user, 'sessionToken': self._user_session_token(user) }
<SYSTEM_TASK:> This function resolves a given object in the remote backend services <END_TASK> <USER_TASK:> Description: async def object_resolver(self, object_name, fields, obey_auth=False, current_user=None, **filters): """ This function resolves a given object in the remote backend services """
try: # check if an object with that name has been registered registered = [model for model in self._external_service_data['models'] \ if model['name']==object_name][0] # if there is no connection data yet except AttributeError: raise ValueError("No objects are registered with this schema yet.") # if we dont recognize the model that was requested except IndexError: raise ValueError("Cannot query for object {} on this service.".format(object_name)) # the valid fields for this object valid_fields = [field['name'] for field in registered['fields']] # figure out if any invalid fields were requested invalid_fields = [field for field in fields if field not in valid_fields] try: # make sure we never treat pk as invalid invalid_fields.remove('pk') # if they weren't asking for pk as a field except ValueError: pass # if there were if invalid_fields: # yell loudly raise ValueError("Cannot query for fields {!r} on {}".format( invalid_fields, registered['name'] )) # make sure we include the id in the request fields.append('pk') # the query for model records query = query_for_model(fields, **filters) # the action type for the question action_type = get_crud_action('read', object_name) # query the appropriate stream for the information response = await self.event_broker.ask( action_type=action_type, payload=query ) # treat the reply like a json object response_data = json.loads(response) # if something went wrong if 'errors' in response_data and response_data['errors']: # return an empty response raise ValueError(','.join(response_data['errors'])) # grab the valid list of matches result = response_data['data'][root_query()] # grab the auth handler for the object auth_criteria = self.auth_criteria.get(object_name) # if we care about auth requirements and there is one for this object if obey_auth and auth_criteria: # build a second list of authorized entries authorized_results = [] # for each query result for query_result in result: # create a graph entity for the model graph_entity = GraphEntity(self, model_type=object_name, id=query_result['pk']) # if the auth handler passes if await auth_criteria(model=graph_entity, user_id=current_user): # add the result to the final list authorized_results.append(query_result) # overwrite the query result result = authorized_results # apply the auth handler to the result return result
<SYSTEM_TASK:> the default behavior for mutations is to look up the event, <END_TASK> <USER_TASK:> Description: async def mutation_resolver(self, mutation_name, args, fields): """ the default behavior for mutations is to look up the event, publish the correct event type with the args as the body, and return the fields contained in the result """
try: # make sure we can identify the mutation mutation_summary = [mutation for mutation in \ self._external_service_data['mutations'] \ if mutation['name'] == mutation_name][0] # if we couldn't get the first entry in the list except KeyError as e: # make sure the error is reported raise ValueError("Could not execute mutation named: " + mutation_name) # the function to use for running the mutation depends on its schronicity # event_function = self.event_broker.ask \ # if mutation_summary['isAsync'] else self.event_broker.send event_function = self.event_broker.ask # send the event and wait for a response value = await event_function( action_type=mutation_summary['event'], payload=args ) try: # return a dictionary with the values we asked for return json.loads(value) # if the result was not valid json except json.decoder.JSONDecodeError: # just throw the value raise RuntimeError(value)
<SYSTEM_TASK:> Get or create publish <END_TASK> <USER_TASK:> Description: def publish(self, distribution, storage=""): """ Get or create publish """
try: return self._publishes[distribution] except KeyError: self._publishes[distribution] = Publish(self.client, distribution, timestamp=self.timestamp, storage=(storage or self.storage)) return self._publishes[distribution]
<SYSTEM_TASK:> Add mirror or repo to publish <END_TASK> <USER_TASK:> Description: def add(self, snapshot, distributions, component='main', storage=""): """ Add mirror or repo to publish """
for dist in distributions: self.publish(dist, storage=storage).add(snapshot, component)
<SYSTEM_TASK:> Check if publish name matches list of names or regex patterns <END_TASK> <USER_TASK:> Description: def _publish_match(self, publish, names=False, name_only=False): """ Check if publish name matches list of names or regex patterns """
if names: for name in names: if not name_only and isinstance(name, re._pattern_type): if re.match(name, publish.name): return True else: operand = name if name_only else [name, './%s' % name] if publish in operand: return True return False else: return True
<SYSTEM_TASK:> Compare two publishes <END_TASK> <USER_TASK:> Description: def compare(self, other, components=[]): """ Compare two publishes It expects that other publish is same or older than this one Return tuple (diff, equal) of dict {'component': ['snapshot']} """
lg.debug("Comparing publish %s (%s) and %s (%s)" % (self.name, self.storage or "local", other.name, other.storage or "local")) diff, equal = ({}, {}) for component, snapshots in self.components.items(): if component not in list(other.components.keys()): # Component is missing in other diff[component] = snapshots continue equal_snapshots = list(set(snapshots).intersection(other.components[component])) if equal_snapshots: lg.debug("Equal snapshots for %s: %s" % (component, equal_snapshots)) equal[component] = equal_snapshots diff_snapshots = list(set(snapshots).difference(other.components[component])) if diff_snapshots: lg.debug("Different snapshots for %s: %s" % (component, diff_snapshots)) diff[component] = diff_snapshots return (diff, equal)
<SYSTEM_TASK:> Find this publish on remote <END_TASK> <USER_TASK:> Description: def _get_publish(self): """ Find this publish on remote """
publishes = self._get_publishes(self.client) for publish in publishes: if publish['Distribution'] == self.distribution and \ publish['Prefix'].replace("/", "_") == (self.prefix or '.') and \ publish['Storage'] == self.storage: return publish raise NoSuchPublish("Publish %s (%s) does not exist" % (self.name, self.storage or "local"))
<SYSTEM_TASK:> Serialize publish in YAML <END_TASK> <USER_TASK:> Description: def save_publish(self, save_path): """ Serialize publish in YAML """
timestamp = time.strftime("%Y%m%d%H%M%S") yaml_dict = {} yaml_dict["publish"] = self.name yaml_dict["name"] = timestamp yaml_dict["components"] = [] yaml_dict["storage"] = self.storage for component, snapshots in self.components.items(): packages = self.get_packages(component) package_dict = [] for package in packages: (arch, name, version, ref) = self.parse_package_ref(package) package_dict.append({'package': name, 'version': version, 'arch': arch, 'ref': ref}) snapshot = self._find_snapshot(snapshots[0]) yaml_dict["components"].append({'component': component, 'snapshot': snapshot['Name'], 'description': snapshot['Description'], 'packages': package_dict}) name = self.name.replace('/', '-') lg.info("Saving publish %s in %s" % (name, save_path)) with open(save_path, 'w') as save_file: yaml.dump(yaml_dict, save_file, default_flow_style=False)
<SYSTEM_TASK:> Restore publish from config file <END_TASK> <USER_TASK:> Description: def restore_publish(self, config, components, recreate=False): """ Restore publish from config file """
if "all" in components: components = [] try: self.load() publish = True except NoSuchPublish: publish = False new_publish_snapshots = [] to_publish = [] created_snapshots = [] for saved_component in config.get('components', []): component_name = saved_component.get('component') if not component_name: raise Exception("Corrupted file") if components and component_name not in components: continue saved_packages = [] if not saved_component.get('packages'): raise Exception("Component %s is empty" % component_name) for package in saved_component.get('packages'): package_ref = '{} {} {} {}'.format(package.get('arch'), package.get('package'), package.get('version'), package.get('ref')) saved_packages.append(package_ref) to_publish.append(component_name) timestamp = time.strftime("%Y%m%d%H%M%S") snapshot_name = '{}-{}-{}'.format("restored", timestamp, saved_component.get('snapshot')) lg.debug("Creating snapshot %s for component %s of packages: %s" % (snapshot_name, component_name, saved_packages)) try: self.client.do_post( '/snapshots', data={ 'Name': snapshot_name, 'SourceSnapshots': [], 'Description': saved_component.get('description'), 'PackageRefs': saved_packages, } ) created_snapshots.append(snapshot_name) except AptlyException as e: if e.res.status_code == 404: # delete all the previously created # snapshots because the file is corrupted self._remove_snapshots(created_snapshots) raise Exception("Source snapshot or packages don't exist") else: raise new_publish_snapshots.append({ 'Component': component_name, 'Name': snapshot_name }) if components: self.publish_snapshots = [x for x in self.publish_snapshots if x['Component'] not in components and x['Component'] not in to_publish] check_components = [x for x in new_publish_snapshots if x['Component'] in components] if len(check_components) != len(components): self._remove_snapshots(created_snapshots) raise Exception("Not possible to find all the components required in the backup file") self.publish_snapshots += new_publish_snapshots self.do_publish(recreate=recreate, merge_snapshots=False)
<SYSTEM_TASK:> Load publish info from remote <END_TASK> <USER_TASK:> Description: def load(self): """ Load publish info from remote """
publish = self._get_publish() self.architectures = publish['Architectures'] for source in publish['Sources']: component = source['Component'] snapshot = source['Name'] self.publish_snapshots.append({ 'Component': component, 'Name': snapshot }) snapshot_remote = self._find_snapshot(snapshot) for source in self._get_source_snapshots(snapshot_remote, fallback_self=True): self.add(source, component)
<SYSTEM_TASK:> Return package refs for given components <END_TASK> <USER_TASK:> Description: def get_packages(self, component=None, components=[], packages=None): """ Return package refs for given components """
if component: components = [component] package_refs = [] for snapshot in self.publish_snapshots: if component and snapshot['Component'] not in components: # We don't want packages for this component continue component_refs = self._get_packages(self.client, "snapshots", snapshot['Name']) if packages: # Filter package names for ref in component_refs: if self.parse_package_ref(ref)[1] in packages: package_refs.append(ref) else: package_refs.extend(component_refs) return package_refs
<SYSTEM_TASK:> Return tuple of architecture, package_name, version, id <END_TASK> <USER_TASK:> Description: def parse_package_ref(self, ref): """ Return tuple of architecture, package_name, version, id """
if not ref: return None parsed = re.match('(.*)\ (.*)\ (.*)\ (.*)', ref) return parsed.groups()
<SYSTEM_TASK:> Add snapshot of component to publish <END_TASK> <USER_TASK:> Description: def add(self, snapshot, component='main'): """ Add snapshot of component to publish """
try: self.components[component].append(snapshot) except KeyError: self.components[component] = [snapshot]
<SYSTEM_TASK:> Find snapshot on remote by name or regular expression <END_TASK> <USER_TASK:> Description: def _find_snapshot(self, name): """ Find snapshot on remote by name or regular expression """
remote_snapshots = self._get_snapshots(self.client) for remote in reversed(remote_snapshots): if remote["Name"] == name or \ re.match(name, remote["Name"]): return remote return None
<SYSTEM_TASK:> Get list of source snapshot names of given snapshot <END_TASK> <USER_TASK:> Description: def _get_source_snapshots(self, snapshot, fallback_self=False): """ Get list of source snapshot names of given snapshot TODO: we have to decide by description at the moment """
if not snapshot: return [] source_snapshots = re.findall(r"'([\w\d\.-]+)'", snapshot['Description']) if not source_snapshots and fallback_self: source_snapshots = [snapshot['Name']] source_snapshots.sort() return source_snapshots
<SYSTEM_TASK:> Create component snapshots by merging other snapshots of same component <END_TASK> <USER_TASK:> Description: def merge_snapshots(self): """ Create component snapshots by merging other snapshots of same component """
self.publish_snapshots = [] for component, snapshots in self.components.items(): if len(snapshots) <= 1: # Only one snapshot, no need to merge lg.debug("Component %s has only one snapshot %s, not creating merge snapshot" % (component, snapshots)) self.publish_snapshots.append({ 'Component': component, 'Name': snapshots[0] }) continue # Look if merged snapshot doesn't already exist remote_snapshot = self._find_snapshot(r'^%s%s-%s-\d+' % (self.merge_prefix, self.name.replace('./', '').replace('/', '-'), component)) if remote_snapshot: source_snapshots = self._get_source_snapshots(remote_snapshot) # Check if latest merged snapshot has same source snapshots like us snapshots_want = list(snapshots) snapshots_want.sort() lg.debug("Comparing snapshots: snapshot_name=%s, snapshot_sources=%s, wanted_sources=%s" % (remote_snapshot['Name'], source_snapshots, snapshots_want)) if snapshots_want == source_snapshots: lg.info("Remote merge snapshot already exists: %s (%s)" % (remote_snapshot['Name'], source_snapshots)) self.publish_snapshots.append({ 'Component': component, 'Name': remote_snapshot['Name'] }) continue snapshot_name = '%s%s-%s-%s' % (self.merge_prefix, self.name.replace('./', '').replace('/', '-'), component, self.timestamp) lg.info("Creating merge snapshot %s for component %s of snapshots %s" % (snapshot_name, component, snapshots)) package_refs = [] for snapshot in snapshots: # Get package refs from each snapshot packages = self._get_packages(self.client, "snapshots", snapshot) package_refs.extend(packages) try: self.client.do_post( '/snapshots', data={ 'Name': snapshot_name, 'SourceSnapshots': snapshots, 'Description': "Merged from sources: %s" % ', '.join("'%s'" % snap for snap in snapshots), 'PackageRefs': package_refs, } ) except AptlyException as e: if e.res.status_code == 400: lg.warning("Error creating snapshot %s, assuming it already exists" % snapshot_name) else: raise self.publish_snapshots.append({ 'Component': component, 'Name': snapshot_name })
<SYSTEM_TASK:> Prints the time func takes to execute. <END_TASK> <USER_TASK:> Description: def timing_decorator(func): """Prints the time func takes to execute."""
@functools.wraps(func) def wrapper(*args, **kwargs): """ Wrapper for printing execution time. Parameters ---------- print_time: bool, optional whether or not to print time function takes. """ print_time = kwargs.pop('print_time', False) if not print_time: return func(*args, **kwargs) else: start_time = time.time() result = func(*args, **kwargs) end_time = time.time() print(func.__name__ + ' took %.3f seconds' % (end_time - start_time)) return result return wrapper
<SYSTEM_TASK:> Saves object with pickle. <END_TASK> <USER_TASK:> Description: def pickle_save(data, name, **kwargs): """Saves object with pickle. Parameters ---------- data: anything picklable Object to save. name: str Path to save to (includes dir, excludes extension). extension: str, optional File extension. overwrite existing: bool, optional When the save path already contains file: if True, file will be overwritten, if False the data will be saved with the system time appended to the file name. """
extension = kwargs.pop('extension', '.pkl') overwrite_existing = kwargs.pop('overwrite_existing', True) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) filename = name + extension # Check if the target directory exists and if not make it dirname = os.path.dirname(filename) if not os.path.exists(dirname) and dirname != '': os.makedirs(dirname) if os.path.isfile(filename) and not overwrite_existing: print(filename + ' already exists! Saving with time appended') filename = name + '_' + time.asctime().replace(' ', '_') filename += extension # check if permission error is defined (was not before python 3.3) # and otherwise use IOError try: PermissionError except NameError: PermissionError = IOError try: outfile = open(filename, 'wb') pickle.dump(data, outfile) outfile.close() except (MemoryError, PermissionError) as err: warnings.warn((type(err).__name__ + ' in pickle_save: continue without' ' saving.'), UserWarning)
<SYSTEM_TASK:> Load data with pickle. <END_TASK> <USER_TASK:> Description: def pickle_load(name, extension='.pkl'): """Load data with pickle. Parameters ---------- name: str Path to save to (includes dir, excludes extension). extension: str, optional File extension. Returns ------- Contents of file path. """
filename = name + extension infile = open(filename, 'rb') data = pickle.load(infile) infile.close() return data
<SYSTEM_TASK:> Helper function for parallelising thread_values_df. <END_TASK> <USER_TASK:> Description: def run_thread_values(run, estimator_list): """Helper function for parallelising thread_values_df. Parameters ---------- ns_run: dict Nested sampling run dictionary. estimator_list: list of functions Returns ------- vals_array: numpy array Array of estimator values for each thread. Has shape (len(estimator_list), len(theads)). """
threads = nestcheck.ns_run_utils.get_run_threads(run) vals_list = [nestcheck.ns_run_utils.run_estimators(th, estimator_list) for th in threads] vals_array = np.stack(vals_list, axis=1) assert vals_array.shape == (len(estimator_list), len(threads)) return vals_array
<SYSTEM_TASK:> Applies statistical_distances to each unique pair of distribution <END_TASK> <USER_TASK:> Description: def pairwise_distances(dist_list, earth_mover_dist=True, energy_dist=True): """Applies statistical_distances to each unique pair of distribution samples in dist_list. Parameters ---------- dist_list: list of 1d arrays earth_mover_dist: bool, optional Passed to statistical_distances. energy_dist: bool, optional Passed to statistical_distances. Returns ------- ser: pandas Series object Values are statistical distances. Index levels are: calculation type: name of statistical distance. run: tuple containing the index in dist_list of the pair of samples arrays from which the statistical distance was computed. """
out = [] index = [] for i, samp_i in enumerate(dist_list): for j, samp_j in enumerate(dist_list): if j < i: index.append(str((i, j))) out.append(statistical_distances( samp_i, samp_j, earth_mover_dist=earth_mover_dist, energy_dist=energy_dist)) columns = ['ks pvalue', 'ks distance'] if earth_mover_dist: columns.append('earth mover distance') if energy_dist: columns.append('energy distance') ser = pd.DataFrame(out, index=index, columns=columns).unstack() ser.index.names = ['calculation type', 'run'] return ser
<SYSTEM_TASK:> Compute measures of the statistical distance between samples. <END_TASK> <USER_TASK:> Description: def statistical_distances(samples1, samples2, earth_mover_dist=True, energy_dist=True): """Compute measures of the statistical distance between samples. Parameters ---------- samples1: 1d array samples2: 1d array earth_mover_dist: bool, optional Whether or not to compute the Earth mover's distance between the samples. energy_dist: bool, optional Whether or not to compute the energy distance between the samples. Returns ------- 1d array """
out = [] temp = scipy.stats.ks_2samp(samples1, samples2) out.append(temp.pvalue) out.append(temp.statistic) if earth_mover_dist: out.append(scipy.stats.wasserstein_distance(samples1, samples2)) if energy_dist: out.append(scipy.stats.energy_distance(samples1, samples2)) return np.asarray(out)
<SYSTEM_TASK:> Generate dummy data for a single nested sampling thread. <END_TASK> <USER_TASK:> Description: def get_dummy_thread(nsamples, **kwargs): """Generate dummy data for a single nested sampling thread. Log-likelihood values of points are generated from a uniform distribution in (0, 1), sorted, scaled by logl_range and shifted by logl_start (if it is not -np.inf). Theta values of each point are each generated from a uniform distribution in (0, 1). Parameters ---------- nsamples: int Number of samples in thread. ndim: int, optional Number of dimensions. seed: int, optional If not False, the seed is set with np.random.seed(seed). logl_start: float, optional logl at which thread starts. logl_range: float, optional Scale factor applied to logl values. """
seed = kwargs.pop('seed', False) ndim = kwargs.pop('ndim', 2) logl_start = kwargs.pop('logl_start', -np.inf) logl_range = kwargs.pop('logl_range', 1) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) if seed is not False: np.random.seed(seed) thread = {'logl': np.sort(np.random.random(nsamples)) * logl_range, 'nlive_array': np.full(nsamples, 1.), 'theta': np.random.random((nsamples, ndim)), 'thread_labels': np.zeros(nsamples).astype(int)} if logl_start != -np.inf: thread['logl'] += logl_start thread['thread_min_max'] = np.asarray([[logl_start, thread['logl'][-1]]]) return thread
<SYSTEM_TASK:> Generate dummy data for a nested sampling run. <END_TASK> <USER_TASK:> Description: def get_dummy_run(nthread, nsamples, **kwargs): """Generate dummy data for a nested sampling run. Log-likelihood values of points are generated from a uniform distribution in (0, 1), sorted, scaled by logl_range and shifted by logl_start (if it is not -np.inf). Theta values of each point are each generated from a uniform distribution in (0, 1). Parameters ---------- nthreads: int Number of threads in the run. nsamples: int Number of samples in thread. ndim: int, optional Number of dimensions. seed: int, optional If not False, the seed is set with np.random.seed(seed). logl_start: float, optional logl at which thread starts. logl_range: float, optional Scale factor applied to logl values. """
seed = kwargs.pop('seed', False) ndim = kwargs.pop('ndim', 2) logl_start = kwargs.pop('logl_start', -np.inf) logl_range = kwargs.pop('logl_range', 1) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) threads = [] # set seed before generating any threads and do not reset for each thread if seed is not False: np.random.seed(seed) threads = [] for _ in range(nthread): threads.append(get_dummy_thread( nsamples, ndim=ndim, seed=False, logl_start=logl_start, logl_range=logl_range)) # Sort threads in order of starting logl so labels match labels that would # have been given processing a dead points array. N.B. this only works when # all threads have same start_logl threads = sorted(threads, key=lambda th: th['logl'][0]) for i, _ in enumerate(threads): threads[i]['thread_labels'] = np.full(nsamples, i) # Use combine_ns_runs rather than combine threads as this relabels the # threads according to their order return nestcheck.ns_run_utils.combine_threads(threads)
<SYSTEM_TASK:> Generate dummy data for a dynamic nested sampling run. <END_TASK> <USER_TASK:> Description: def get_dummy_dynamic_run(nsamples, **kwargs): """Generate dummy data for a dynamic nested sampling run. Loglikelihood values of points are generated from a uniform distribution in (0, 1), sorted, scaled by logl_range and shifted by logl_start (if it is not -np.inf). Theta values of each point are each generated from a uniform distribution in (0, 1). Parameters ---------- nsamples: int Number of samples in thread. nthread_init: int Number of threads in the inital run (starting at logl=-np.inf). nthread_dyn: int Number of threads in the inital run (starting at randomly chosen points in the initial run). ndim: int, optional Number of dimensions. seed: int, optional If not False, the seed is set with np.random.seed(seed). logl_start: float, optional logl at which thread starts. logl_range: float, optional Scale factor applied to logl values. """
seed = kwargs.pop('seed', False) ndim = kwargs.pop('ndim', 2) nthread_init = kwargs.pop('nthread_init', 2) nthread_dyn = kwargs.pop('nthread_dyn', 3) logl_range = kwargs.pop('logl_range', 1) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) init = get_dummy_run(nthread_init, nsamples, ndim=ndim, seed=seed, logl_start=-np.inf, logl_range=logl_range) dyn_starts = list(np.random.choice( init['logl'], nthread_dyn, replace=True)) threads = nestcheck.ns_run_utils.get_run_threads(init) # Seed must be False here so it is not set again for each thread threads += [get_dummy_thread( nsamples, ndim=ndim, seed=False, logl_start=start, logl_range=logl_range) for start in dyn_starts] # make sure the threads have unique labels and combine them for i, _ in enumerate(threads): threads[i]['thread_labels'] = np.full(nsamples, i) run = nestcheck.ns_run_utils.combine_threads(threads) # To make sure the thread labelling is same way it would when # processing a dead points file, tranform into dead points samples = nestcheck.write_polychord_output.run_dead_birth_array(run) return nestcheck.data_processing.process_samples_array(samples)
<SYSTEM_TASK:> Plots kde estimates of distributions of samples in each cell of the <END_TASK> <USER_TASK:> Description: def kde_plot_df(df, xlims=None, **kwargs): """Plots kde estimates of distributions of samples in each cell of the input pandas DataFrame. There is one subplot for each dataframe column, and on each subplot there is one kde line. Parameters ---------- df: pandas data frame Each cell must contain a 1d numpy array of samples. xlims: dict, optional Dictionary of xlimits - keys are column names and values are lists of length 2. num_xticks: int, optional Number of xticks on each subplot. figsize: tuple, optional Size of figure in inches. nrows: int, optional Number of rows of subplots. ncols: int, optional Number of columns of subplots. normalize: bool, optional If true, kde plots are normalized to have the same area under their curves. If False, their max value is set to 1. legend: bool, optional Should a legend be added? legend_kwargs: dict, optional Additional kwargs for legend. Returns ------- fig: matplotlib figure """
assert xlims is None or isinstance(xlims, dict) figsize = kwargs.pop('figsize', (6.4, 1.5)) num_xticks = kwargs.pop('num_xticks', None) nrows = kwargs.pop('nrows', 1) ncols = kwargs.pop('ncols', int(np.ceil(len(df.columns) / nrows))) normalize = kwargs.pop('normalize', True) legend = kwargs.pop('legend', False) legend_kwargs = kwargs.pop('legend_kwargs', {}) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize) for nax, col in enumerate(df): if nrows == 1: ax = axes[nax] else: ax = axes[nax // ncols, nax % ncols] supmin = df[col].apply(np.min).min() supmax = df[col].apply(np.max).max() support = np.linspace(supmin - 0.1 * (supmax - supmin), supmax + 0.1 * (supmax - supmin), 200) handles = [] labels = [] for name, samps in df[col].iteritems(): pdf = scipy.stats.gaussian_kde(samps)(support) if not normalize: pdf /= pdf.max() handles.append(ax.plot(support, pdf, label=name)[0]) labels.append(name) ax.set_ylim(bottom=0) ax.set_yticks([]) if xlims is not None: try: ax.set_xlim(xlims[col]) except KeyError: pass ax.set_xlabel(col) if num_xticks is not None: ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator( nbins=num_xticks)) if legend: fig.legend(handles, labels, **legend_kwargs) return fig
<SYSTEM_TASK:> Helper function for making fgivenx plots of functions with 2 array <END_TASK> <USER_TASK:> Description: def alternate_helper(x, alt_samps, func=None): """Helper function for making fgivenx plots of functions with 2 array arguments of variable lengths."""
alt_samps = alt_samps[~np.isnan(alt_samps)] arg1 = alt_samps[::2] arg2 = alt_samps[1::2] return func(x, arg1, arg2)
<SYSTEM_TASK:> Helper function for plot_run_nlive. <END_TASK> <USER_TASK:> Description: def average_by_key(dict_in, key): """Helper function for plot_run_nlive. Try returning the average of dict_in[key] and, if this does not work or if key is None, return average of whole dict. Parameters ---------- dict_in: dict Values should be arrays. key: str Returns ------- average: float """
if key is None: return np.mean(np.concatenate(list(dict_in.values()))) else: try: return np.mean(dict_in[key]) except KeyError: print('method name "' + key + '" not found, so ' + 'normalise area under the analytic relative posterior ' + 'mass curve using the mean of all methods.') return np.mean(np.concatenate(list(dict_in.values())))
<SYSTEM_TASK:> Process output from many nested sampling runs in parallel with optional <END_TASK> <USER_TASK:> Description: def batch_process_data(file_roots, **kwargs): """Process output from many nested sampling runs in parallel with optional error handling and caching. The result can be cached using the 'save_name', 'save' and 'load' kwargs (by default this is not done). See save_load_result docstring for more details. Remaining kwargs passed to parallel_utils.parallel_apply (see its docstring for more details). Parameters ---------- file_roots: list of strs file_roots for the runs to load. base_dir: str, optional path to directory containing files. process_func: function, optional function to use to process the data. func_kwargs: dict, optional additional keyword arguments for process_func. errors_to_handle: error or tuple of errors, optional which errors to catch when they occur in processing rather than raising. save_name: str or None, optional See nestcheck.io_utils.save_load_result. save: bool, optional See nestcheck.io_utils.save_load_result. load: bool, optional See nestcheck.io_utils.save_load_result. overwrite_existing: bool, optional See nestcheck.io_utils.save_load_result. Returns ------- list of ns_run dicts List of nested sampling runs in dict format (see the module docstring for more details). """
base_dir = kwargs.pop('base_dir', 'chains') process_func = kwargs.pop('process_func', process_polychord_run) func_kwargs = kwargs.pop('func_kwargs', {}) func_kwargs['errors_to_handle'] = kwargs.pop('errors_to_handle', ()) data = nestcheck.parallel_utils.parallel_apply( process_error_helper, file_roots, func_args=(base_dir, process_func), func_kwargs=func_kwargs, **kwargs) # Sort processed runs into the same order as file_roots (as parallel_apply # does not preserve order) data = sorted(data, key=lambda x: file_roots.index(x['output']['file_root'])) # Extract error information and print errors = {} for i, run in enumerate(data): if 'error' in run: try: errors[run['error']].append(i) except KeyError: errors[run['error']] = [i] for error_name, index_list in errors.items(): message = (error_name + ' processing ' + str(len(index_list)) + ' / ' + str(len(file_roots)) + ' files') if len(index_list) != len(file_roots): message += ('. Roots with errors have (zero based) indexes: ' + str(index_list)) print(message) # Return runs which did not have errors return [run for run in data if 'error' not in run]
<SYSTEM_TASK:> Wrapper which applies process_func and handles some common errors so one <END_TASK> <USER_TASK:> Description: def process_error_helper(root, base_dir, process_func, errors_to_handle=(), **func_kwargs): """Wrapper which applies process_func and handles some common errors so one bad run does not spoil the whole batch. Useful errors to handle include: OSError: if you are not sure if all the files exist AssertionError: if some of the many assertions fail for known reasons; for example is there are occasional problems decomposing runs into threads due to limited numerical precision in logls. Parameters ---------- root: str File root. base_dir: str Directory containing file. process_func: func Function for processing file. errors_to_handle: error type or tuple of error types Errors to catch without throwing an exception. func_kwargs: dict Kwargs to pass to process_func. Returns ------- run: dict Nested sampling run dict (see the module docstring for more details) or, if an error occured, a dict containing its type and the file root. """
try: return process_func(root, base_dir, **func_kwargs) except errors_to_handle as err: run = {'error': type(err).__name__, 'output': {'file_root': root}} return run
<SYSTEM_TASK:> Loads data from a PolyChord run into the nestcheck dictionary format for <END_TASK> <USER_TASK:> Description: def process_polychord_run(file_root, base_dir, process_stats_file=True, **kwargs): """Loads data from a PolyChord run into the nestcheck dictionary format for analysis. N.B. producing required output file containing information about the iso-likelihood contours within which points were sampled (where they were "born") requies PolyChord version v1.13 or later and the setting write_dead=True. Parameters ---------- file_root: str Root for run output file names (PolyChord file_root setting). base_dir: str Directory containing data (PolyChord base_dir setting). process_stats_file: bool, optional Should PolyChord's <root>.stats file be processed? Set to False if you don't have the <root>.stats file (such as if PolyChord was run with write_stats=False). kwargs: dict, optional Options passed to ns_run_utils.check_ns_run. Returns ------- ns_run: dict Nested sampling run dict (see the module docstring for more details). """
# N.B. PolyChord dead points files also contains remaining live points at # termination samples = np.loadtxt(os.path.join(base_dir, file_root) + '_dead-birth.txt') ns_run = process_samples_array(samples, **kwargs) ns_run['output'] = {'base_dir': base_dir, 'file_root': file_root} if process_stats_file: try: ns_run['output'] = process_polychord_stats(file_root, base_dir) except (OSError, IOError, ValueError) as err: warnings.warn( ('process_polychord_stats raised {} processing {}.stats file. ' ' Proceeding without stats.').format( type(err).__name__, os.path.join(base_dir, file_root)), UserWarning) return ns_run
<SYSTEM_TASK:> Loads data from a MultiNest run into the nestcheck dictionary format for <END_TASK> <USER_TASK:> Description: def process_multinest_run(file_root, base_dir, **kwargs): """Loads data from a MultiNest run into the nestcheck dictionary format for analysis. N.B. producing required output file containing information about the iso-likelihood contours within which points were sampled (where they were "born") requies MultiNest version 3.11 or later. Parameters ---------- file_root: str Root name for output files. When running MultiNest, this is determined by the nest_root parameter. base_dir: str Directory containing output files. When running MultiNest, this is determined by the nest_root parameter. kwargs: dict, optional Passed to ns_run_utils.check_ns_run (via process_samples_array) Returns ------- ns_run: dict Nested sampling run dict (see the module docstring for more details). """
# Load dead and live points dead = np.loadtxt(os.path.join(base_dir, file_root) + '-dead-birth.txt') live = np.loadtxt(os.path.join(base_dir, file_root) + '-phys_live-birth.txt') # Remove unnecessary final columns dead = dead[:, :-2] live = live[:, :-1] assert dead[:, -2].max() < live[:, -2].min(), ( 'final live points should have greater logls than any dead point!', dead, live) ns_run = process_samples_array(np.vstack((dead, live)), **kwargs) assert np.all(ns_run['thread_min_max'][:, 0] == -np.inf), ( 'As MultiNest does not currently perform dynamic nested sampling, all ' 'threads should start by sampling the whole prior.') ns_run['output'] = {} ns_run['output']['file_root'] = file_root ns_run['output']['base_dir'] = base_dir return ns_run
<SYSTEM_TASK:> Transforms results from a dynesty run into the nestcheck dictionary <END_TASK> <USER_TASK:> Description: def process_dynesty_run(results): """Transforms results from a dynesty run into the nestcheck dictionary format for analysis. This function has been tested with dynesty v9.2.0. Note that the nestcheck point weights and evidence will not be exactly the same as the dynesty ones as nestcheck calculates logX volumes more precisely (using the trapezium rule). This function does not require the birth_inds_given_contours and threads_given_birth_inds functions as dynesty results objects already include thread labels via their samples_id property. If the dynesty run is dynamic, the batch_bounds property is need to determine the threads' starting birth contours. Parameters ---------- results: dynesty results object N.B. the remaining live points at termination must be included in the results (dynesty samplers' run_nested method does this if add_live_points=True - its default value). Returns ------- ns_run: dict Nested sampling run dict (see the module docstring for more details). """
samples = np.zeros((results.samples.shape[0], results.samples.shape[1] + 3)) samples[:, 0] = results.logl samples[:, 1] = results.samples_id samples[:, 3:] = results.samples unique_th, first_inds = np.unique(results.samples_id, return_index=True) assert np.array_equal(unique_th, np.asarray(range(unique_th.shape[0]))) thread_min_max = np.full((unique_th.shape[0], 2), np.nan) try: # Try processing standard nested sampling results assert unique_th.shape[0] == results.nlive assert np.array_equal( np.unique(results.samples_id[-results.nlive:]), np.asarray(range(results.nlive))), ( 'perhaps the final live points are not included?') thread_min_max[:, 0] = -np.inf except AttributeError: # If results has no nlive attribute, it must be dynamic nested sampling assert unique_th.shape[0] == sum(results.batch_nlive) for th_lab, ind in zip(unique_th, first_inds): thread_min_max[th_lab, 0] = ( results.batch_bounds[results.samples_batch[ind], 0]) for th_lab in unique_th: final_ind = np.where(results.samples_id == th_lab)[0][-1] thread_min_max[th_lab, 1] = results.logl[final_ind] samples[final_ind, 2] = -1 assert np.all(~np.isnan(thread_min_max)) run = nestcheck.ns_run_utils.dict_given_run_array(samples, thread_min_max) nestcheck.ns_run_utils.check_ns_run(run) return run
<SYSTEM_TASK:> Convert an array of nested sampling dead and live points of the type <END_TASK> <USER_TASK:> Description: def process_samples_array(samples, **kwargs): """Convert an array of nested sampling dead and live points of the type produced by PolyChord and MultiNest into a nestcheck nested sampling run dictionary. Parameters ---------- samples: 2d numpy array Array of dead points and any remaining live points at termination. Has #parameters + 2 columns: param_1, param_2, ... , logl, birth_logl kwargs: dict, optional Options passed to birth_inds_given_contours Returns ------- ns_run: dict Nested sampling run dict (see the module docstring for more details). Only contains information in samples (not additional optional output key). """
samples = samples[np.argsort(samples[:, -2])] ns_run = {} ns_run['logl'] = samples[:, -2] ns_run['theta'] = samples[:, :-2] birth_contours = samples[:, -1] # birth_contours, ns_run['theta'] = check_logls_unique( # samples[:, -2], samples[:, -1], samples[:, :-2]) birth_inds = birth_inds_given_contours( birth_contours, ns_run['logl'], **kwargs) ns_run['thread_labels'] = threads_given_birth_inds(birth_inds) unique_threads = np.unique(ns_run['thread_labels']) assert np.array_equal(unique_threads, np.asarray(range(unique_threads.shape[0]))) # Work out nlive_array and thread_min_max logls from thread labels and # birth contours thread_min_max = np.zeros((unique_threads.shape[0], 2)) # NB delta_nlive indexes are offset from points' indexes by 1 as we need an # element to represent the initial sampling of live points before any dead # points are created. # I.E. birth on step 1 corresponds to replacing dead point zero delta_nlive = np.zeros(samples.shape[0] + 1) for label in unique_threads: thread_inds = np.where(ns_run['thread_labels'] == label)[0] # Max is final logl in thread thread_min_max[label, 1] = ns_run['logl'][thread_inds[-1]] thread_start_birth_ind = birth_inds[thread_inds[0]] # delta nlive indexes are +1 from logl indexes to allow for initial # nlive (before first dead point) delta_nlive[thread_inds[-1] + 1] -= 1 if thread_start_birth_ind == birth_inds[0]: # thread minimum is -inf as it starts by sampling from whole prior thread_min_max[label, 0] = -np.inf delta_nlive[0] += 1 else: assert thread_start_birth_ind >= 0 thread_min_max[label, 0] = ns_run['logl'][thread_start_birth_ind] delta_nlive[thread_start_birth_ind + 1] += 1 ns_run['thread_min_max'] = thread_min_max ns_run['nlive_array'] = np.cumsum(delta_nlive)[:-1] return ns_run
<SYSTEM_TASK:> Maps the iso-likelihood contours on which points were born to the <END_TASK> <USER_TASK:> Description: def birth_inds_given_contours(birth_logl_arr, logl_arr, **kwargs): """Maps the iso-likelihood contours on which points were born to the index of the dead point on this contour. MultiNest and PolyChord use different values to identify the inital live points which were sampled from the whole prior (PolyChord uses -1e+30 and MultiNest -0.179769313486231571E+309). However in each case the first dead point must have been sampled from the whole prior, so for either package we can use init_birth = birth_logl_arr[0] If there are many points with the same logl_arr and dup_assert is False, these points are randomly assigned an order (to ensure results are consistent, random seeding is used). Parameters ---------- logl_arr: 1d numpy array logl values of each point. birth_logl_arr: 1d numpy array Birth contours - i.e. logl values of the iso-likelihood contour from within each point was sampled (on which it was born). dup_assert: bool, optional See ns_run_utils.check_ns_run_logls docstring. dup_warn: bool, optional See ns_run_utils.check_ns_run_logls docstring. Returns ------- birth_inds: 1d numpy array of ints Step at which each element of logl_arr was sampled. Points sampled from the whole prior are assigned value -1. """
dup_assert = kwargs.pop('dup_assert', False) dup_warn = kwargs.pop('dup_warn', False) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) assert logl_arr.ndim == 1, logl_arr.ndim assert birth_logl_arr.ndim == 1, birth_logl_arr.ndim # Check for duplicate logl values (if specified by dup_assert or dup_warn) nestcheck.ns_run_utils.check_ns_run_logls( {'logl': logl_arr}, dup_assert=dup_assert, dup_warn=dup_warn) # Random seed so results are consistent if there are duplicate logls state = np.random.get_state() # Save random state before seeding np.random.seed(0) # Calculate birth inds init_birth = birth_logl_arr[0] assert np.all(birth_logl_arr <= logl_arr), ( logl_arr[birth_logl_arr > logl_arr]) birth_inds = np.full(birth_logl_arr.shape, np.nan) birth_inds[birth_logl_arr == init_birth] = -1 for i, birth_logl in enumerate(birth_logl_arr): if not np.isnan(birth_inds[i]): # birth ind has already been assigned continue dup_deaths = np.where(logl_arr == birth_logl)[0] if dup_deaths.shape == (1,): # death index is unique birth_inds[i] = dup_deaths[0] continue # The remainder of this loop deals with the case that multiple points # have the same logl value (=birth_logl). This can occur due to limited # precision, or for likelihoods with contant regions. In this case we # randomly assign the duplicates birth steps in a manner # that provides a valid division into nested sampling runs dup_births = np.where(birth_logl_arr == birth_logl)[0] assert dup_deaths.shape[0] > 1, dup_deaths if np.all(birth_logl_arr[dup_deaths] != birth_logl): # If no points both are born and die on this contour, we can just # randomly assign an order np.random.shuffle(dup_deaths) inds_to_use = dup_deaths else: # If some points are both born and die on the contour, we need to # take care that the assigned birth inds do not result in some # points dying before they are born try: inds_to_use = sample_less_than_condition( dup_deaths, dup_births) except ValueError: raise ValueError(( 'There is no way to allocate indexes dup_deaths={} such ' 'that each is less than dup_births={}.').format( dup_deaths, dup_births)) try: # Add our selected inds_to_use values to the birth_inds array # Note that dup_deaths (and hence inds to use) may have more # members than dup_births, because one of the duplicates may be # the final point in a thread. We therefore include only the first # dup_births.shape[0] elements birth_inds[dup_births] = inds_to_use[:dup_births.shape[0]] except ValueError: warnings.warn(( 'for logl={}, the number of points born (indexes=' '{}) is bigger than the number of points dying ' '(indexes={}). This indicates a problem with your ' 'nested sampling software - it may be caused by ' 'a bug in PolyChord which was fixed in PolyChord ' 'v1.14, so try upgrading. I will try to give an ' 'approximate allocation of threads but this may ' 'fail.').format( birth_logl, dup_births, inds_to_use), UserWarning) extra_inds = np.random.choice( inds_to_use, size=dup_births.shape[0] - inds_to_use.shape[0]) inds_to_use = np.concatenate((inds_to_use, extra_inds)) np.random.shuffle(inds_to_use) birth_inds[dup_births] = inds_to_use[:dup_births.shape[0]] assert np.all(~np.isnan(birth_inds)), np.isnan(birth_inds).sum() np.random.set_state(state) # Reset random state return birth_inds.astype(int)
<SYSTEM_TASK:> Creates a random sample from choices without replacement, subject to the <END_TASK> <USER_TASK:> Description: def sample_less_than_condition(choices_in, condition): """Creates a random sample from choices without replacement, subject to the condition that each element of the output is greater than the corresponding element of the condition array. condition should be in ascending order. """
output = np.zeros(min(condition.shape[0], choices_in.shape[0])) choices = copy.deepcopy(choices_in) for i, _ in enumerate(output): # randomly select one of the choices which meets condition avail_inds = np.where(choices < condition[i])[0] selected_ind = np.random.choice(avail_inds) output[i] = choices[selected_ind] # remove the chosen value choices = np.delete(choices, selected_ind) return output
<SYSTEM_TASK:> Apply function to iterable with parallel map, and hence returns <END_TASK> <USER_TASK:> Description: def parallel_map(func, *arg_iterable, **kwargs): """Apply function to iterable with parallel map, and hence returns results in order. functools.partial is used to freeze func_pre_args and func_kwargs, meaning that the iterable argument must be the last positional argument. Roughly equivalent to >>> [func(*func_pre_args, x, **func_kwargs) for x in arg_iterable] Parameters ---------- func: function Function to apply to list of args. arg_iterable: iterable argument to iterate over. chunksize: int, optional Perform function in batches func_pre_args: tuple, optional Positional arguments to place before the iterable argument in func. func_kwargs: dict, optional Additional keyword arguments for func. parallel: bool, optional To turn off parallelisation if needed. parallel_warning: bool, optional To turn off warning for no parallelisation if needed. max_workers: int or None, optional Number of processes. If max_workers is None then concurrent.futures.ProcessPoolExecutor defaults to using the number of processors of the machine. N.B. If max_workers=None and running on supercomputer clusters with multiple nodes, this may default to the number of processors on a single node. Returns ------- results_list: list of function outputs """
chunksize = kwargs.pop('chunksize', 1) func_pre_args = kwargs.pop('func_pre_args', ()) func_kwargs = kwargs.pop('func_kwargs', {}) max_workers = kwargs.pop('max_workers', None) parallel = kwargs.pop('parallel', True) parallel_warning = kwargs.pop('parallel_warning', True) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) func_to_map = functools.partial(func, *func_pre_args, **func_kwargs) if parallel: pool = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) return list(pool.map(func_to_map, *arg_iterable, chunksize=chunksize)) else: if parallel_warning: warnings.warn(('parallel_map has parallel=False - turn on ' 'parallelisation for faster processing'), UserWarning) return list(map(func_to_map, *arg_iterable))
<SYSTEM_TASK:> Apply function to iterable with parallelisation and a tqdm progress bar. <END_TASK> <USER_TASK:> Description: def parallel_apply(func, arg_iterable, **kwargs): """Apply function to iterable with parallelisation and a tqdm progress bar. Roughly equivalent to >>> [func(*func_pre_args, x, *func_args, **func_kwargs) for x in arg_iterable] but will **not** necessarily return results in input order. Parameters ---------- func: function Function to apply to list of args. arg_iterable: iterable argument to iterate over. func_args: tuple, optional Additional positional arguments for func. func_pre_args: tuple, optional Positional arguments to place before the iterable argument in func. func_kwargs: dict, optional Additional keyword arguments for func. parallel: bool, optional To turn off parallelisation if needed. parallel_warning: bool, optional To turn off warning for no parallelisation if needed. max_workers: int or None, optional Number of processes. If max_workers is None then concurrent.futures.ProcessPoolExecutor defaults to using the number of processors of the machine. N.B. If max_workers=None and running on supercomputer clusters with multiple nodes, this may default to the number of processors on a single node. Returns ------- results_list: list of function outputs """
max_workers = kwargs.pop('max_workers', None) parallel = kwargs.pop('parallel', True) parallel_warning = kwargs.pop('parallel_warning', True) func_args = kwargs.pop('func_args', ()) func_pre_args = kwargs.pop('func_pre_args', ()) func_kwargs = kwargs.pop('func_kwargs', {}) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {}) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) if 'leave' not in tqdm_kwargs: # default to leave=False tqdm_kwargs['leave'] = False assert isinstance(func_args, tuple), ( str(func_args) + ' is type ' + str(type(func_args))) assert isinstance(func_pre_args, tuple), ( str(func_pre_args) + ' is type ' + str(type(func_pre_args))) progress = select_tqdm() if not parallel: if parallel_warning: warnings.warn(('parallel_map has parallel=False - turn on ' 'parallelisation for faster processing'), UserWarning) return [func(*(func_pre_args + (x,) + func_args), **func_kwargs) for x in progress(arg_iterable, **tqdm_kwargs)] else: pool = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) futures = [] for element in arg_iterable: futures.append(pool.submit( func, *(func_pre_args + (element,) + func_args), **func_kwargs)) results = [] for fut in progress(concurrent.futures.as_completed(futures), total=len(arg_iterable), **tqdm_kwargs): results.append(fut.result()) return results
<SYSTEM_TASK:> If running in a jupyter notebook, then returns tqdm_notebook. <END_TASK> <USER_TASK:> Description: def select_tqdm(): """If running in a jupyter notebook, then returns tqdm_notebook. Otherwise returns a regular tqdm progress bar. Returns ------- progress: function """
try: progress = tqdm.tqdm_notebook assert get_ipython().has_trait('kernel') except (NameError, AssertionError): progress = tqdm.tqdm return progress