text_prompt
stringlengths 100
17.7k
⌀ | code_prompt
stringlengths 7
9.86k
⌀ |
---|---|
<SYSTEM_TASK:>
Find all duplicates in a directory. Will return a list, in that list
<END_TASK>
<USER_TASK:>
Description:
def directory_duplicates(directory, hash_type='md5', **kwargs):
"""
Find all duplicates in a directory. Will return a list, in that list
are lists of duplicate files.
.. code: python
dups = reusables.directory_duplicates('C:\\Users\\Me\\Pictures')
print(len(dups))
# 56
print(dups)
# [['C:\\Users\\Me\\Pictures\\IMG_20161127.jpg',
# 'C:\\Users\\Me\\Pictures\\Phone\\IMG_20161127.jpg'], ...
:param directory: Directory to search
:param hash_type: Type of hash to perform
:param kwargs: Arguments to pass to find_files to narrow file types
:return: list of lists of dups""" |
size_map, hash_map = defaultdict(list), defaultdict(list)
for item in find_files(directory, **kwargs):
file_size = os.path.getsize(item)
size_map[file_size].append(item)
for possible_dups in (v for v in size_map.values() if len(v) > 1):
for each_item in possible_dups:
item_hash = file_hash(each_item, hash_type=hash_type)
hash_map[item_hash].append(each_item)
return [v for v in hash_map.values() if len(v) > 1] |
<SYSTEM_TASK:>
Join multiple paths together and return the absolute path of them. If 'safe'
<END_TASK>
<USER_TASK:>
Description:
def join_paths(*paths, **kwargs):
"""
Join multiple paths together and return the absolute path of them. If 'safe'
is specified, this function will 'clean' the path with the 'safe_path'
function. This will clean root decelerations from the path
after the first item.
Would like to do 'safe=False' instead of '**kwargs' but stupider versions
of python *cough 2.6* don't like that after '*paths'.
.. code: python
reusables.join_paths("var", "\\log", "/test")
'C:\\Users\\Me\\var\\log\\test'
os.path.join("var", "\\log", "/test")
'/test'
:param paths: paths to join together
:param kwargs: 'safe', make them into a safe path it True
:return: abspath as string
""" |
path = os.path.abspath(paths[0])
for next_path in paths[1:]:
path = os.path.join(path, next_path.lstrip("\\").lstrip("/").strip())
path.rstrip(os.sep)
return path if not kwargs.get('safe') else safe_path(path) |
<SYSTEM_TASK:>
Join any path or paths as a sub directory of the current file's directory.
<END_TASK>
<USER_TASK:>
Description:
def join_here(*paths, **kwargs):
"""
Join any path or paths as a sub directory of the current file's directory.
.. code:: python
reusables.join_here("Makefile")
# 'C:\\Reusables\\Makefile'
:param paths: paths to join together
:param kwargs: 'strict', do not strip os.sep
:param kwargs: 'safe', make them into a safe path it True
:return: abspath as string
""" |
path = os.path.abspath(".")
for next_path in paths:
next_path = next_path.lstrip("\\").lstrip("/").strip() if not \
kwargs.get('strict') else next_path
path = os.path.abspath(os.path.join(path, next_path))
return path if not kwargs.get('safe') else safe_path(path) |
<SYSTEM_TASK:>
Replace unsafe path characters with underscores. Do NOT use this
<END_TASK>
<USER_TASK:>
Description:
def safe_path(path, replacement="_"):
"""
Replace unsafe path characters with underscores. Do NOT use this
with existing paths that cannot be modified, this to to help generate
new, clean paths.
Supports windows and *nix systems.
:param path: path as a string
:param replacement: character to use in place of bad characters
:return: a safer path
""" |
if not isinstance(path, str):
raise TypeError("path must be a string")
if os.sep not in path:
return safe_filename(path, replacement=replacement)
filename = safe_filename(os.path.basename(path))
dirname = os.path.dirname(path)
safe_dirname = ""
regexp = regex.path.windows.safe if win_based else regex.path.linux.safe
if win_based and dirname.find(":\\") == 1 and dirname[0].isalpha():
safe_dirname = dirname[0:3]
dirname = dirname[3:]
if regexp.search(dirname) and check_filename(filename):
return path
else:
for char in dirname:
safe_dirname += char if regexp.search(char) else replacement
sanitized_path = os.path.normpath("{path}{sep}{filename}".format(
path=safe_dirname,
sep=os.sep if not safe_dirname.endswith(os.sep) else "",
filename=filename))
if (not filename and
path.endswith(os.sep) and
not sanitized_path.endswith(os.sep)):
sanitized_path += os.sep
return sanitized_path |
<SYSTEM_TASK:>
Blocking request to change number of running tasks
<END_TASK>
<USER_TASK:>
Description:
def change_task_size(self, size):
"""Blocking request to change number of running tasks""" |
self._pause.value = True
self.log.debug("About to change task size to {0}".format(size))
try:
size = int(size)
except ValueError:
self.log.error("Cannot change task size, non integer size provided")
return False
if size < 0:
self.log.error("Cannot change task size, less than 0 size provided")
return False
self.max_tasks = size
if size < self.max_tasks:
diff = self.max_tasks - size
self.log.debug("Reducing size offset by {0}".format(diff))
while True:
self._update_tasks()
if len(self.free_tasks) >= diff:
for i in range(diff):
task_id = self.free_tasks.pop(0)
del self.current_tasks[task_id]
break
time.sleep(0.5)
if not size:
self._reset_and_pause()
return True
elif size > self.max_tasks:
diff = size - self.max_tasks
for i in range(diff):
task_id = str(uuid.uuid4())
self.current_tasks[task_id] = {}
self.free_tasks.append(task_id)
self._pause.value = False
self.log.debug("Task size changed to {0}".format(size))
return True |
<SYSTEM_TASK:>
Hard stop the server and sub process
<END_TASK>
<USER_TASK:>
Description:
def stop(self):
"""Hard stop the server and sub process""" |
self._end.value = True
if self.background_process:
try:
self.background_process.terminate()
except Exception:
pass
for task_id, values in self.current_tasks.items():
try:
values['proc'].terminate()
except Exception:
pass |
<SYSTEM_TASK:>
Get general information about the state of the class
<END_TASK>
<USER_TASK:>
Description:
def get_state(self):
"""Get general information about the state of the class""" |
return {"started": (True if self.background_process and
self.background_process.is_alive() else False),
"paused": self._pause.value,
"stopped": self._end.value,
"tasks": len(self.current_tasks),
"busy_tasks": len(self.busy_tasks),
"free_tasks": len(self.free_tasks)} |
<SYSTEM_TASK:>
Blocking function that can be run directly, if so would probably
<END_TASK>
<USER_TASK:>
Description:
def main_loop(self, stop_at_empty=False):
"""Blocking function that can be run directly, if so would probably
want to specify 'stop_at_empty' to true, or have a separate process
adding items to the queue. """ |
try:
while True:
self.hook_pre_command()
self._check_command_queue()
if self.run_until and self.run_until < datetime.datetime.now():
self.log.info("Time limit reached")
break
if self._end.value:
break
if self._pause.value:
time.sleep(.5)
continue
self.hook_post_command()
self._update_tasks()
task_id = self._free_task()
if task_id:
try:
task = self.task_queue.get(timeout=.1)
except queue.Empty:
if stop_at_empty:
break
self._return_task(task_id)
else:
self.hook_pre_task()
self.log.debug("Starting task on {0}".format(task_id))
try:
self._start_task(task_id, task)
except Exception as err:
self.log.exception("Could not start task {0} -"
" {1}".format(task_id, err))
else:
self.hook_post_task()
finally:
self.log.info("Ending main loop") |
<SYSTEM_TASK:>
Run a shell command and have it automatically decoded and printed
<END_TASK>
<USER_TASK:>
Description:
def cmd(command, ignore_stderr=False, raise_on_return=False, timeout=None,
encoding="utf-8"):
""" Run a shell command and have it automatically decoded and printed
:param command: Command to run as str
:param ignore_stderr: To not print stderr
:param raise_on_return: Run CompletedProcess.check_returncode()
:param timeout: timeout to pass to communicate if python 3
:param encoding: How the output should be decoded
""" |
result = run(command, timeout=timeout, shell=True)
if raise_on_return:
result.check_returncode()
print(result.stdout.decode(encoding))
if not ignore_stderr and result.stderr:
print(result.stderr.decode(encoding)) |
<SYSTEM_TASK:>
Change working directories in style and stay organized!
<END_TASK>
<USER_TASK:>
Description:
def pushd(directory):
"""Change working directories in style and stay organized!
:param directory: Where do you want to go and remember?
:return: saved directory stack
""" |
directory = os.path.expanduser(directory)
_saved_paths.insert(0, os.path.abspath(os.getcwd()))
os.chdir(directory)
return [directory] + _saved_paths |
<SYSTEM_TASK:>
Go back to where you once were.
<END_TASK>
<USER_TASK:>
Description:
def popd():
"""Go back to where you once were.
:return: saved directory stack
""" |
try:
directory = _saved_paths.pop(0)
except IndexError:
return [os.getcwd()]
os.chdir(directory)
return [directory] + _saved_paths |
<SYSTEM_TASK:>
Designed for the interactive interpreter by making default order
<END_TASK>
<USER_TASK:>
Description:
def find(name=None, ext=None, directory=".", match_case=False,
disable_glob=False, depth=None):
""" Designed for the interactive interpreter by making default order
of find_files faster.
:param name: Part of the file name
:param ext: Extensions of the file you are looking for
:param directory: Top location to recursively search for matching files
:param match_case: If name has to be a direct match or not
:param disable_glob: Do not look for globable names or use glob magic check
:param depth: How many directories down to search
:return: list of all files in the specified directory
""" |
return find_files_list(directory=directory, ext=ext, name=name,
match_case=match_case, disable_glob=disable_glob,
depth=depth) |
<SYSTEM_TASK:>
Read the first N lines of a file, defaults to 10
<END_TASK>
<USER_TASK:>
Description:
def head(file_path, lines=10, encoding="utf-8", printed=True,
errors='strict'):
"""
Read the first N lines of a file, defaults to 10
:param file_path: Path to file to read
:param lines: Number of lines to read in
:param encoding: defaults to utf-8 to decode as, will fail on binary
:param printed: Automatically print the lines instead of returning it
:param errors: Decoding errors: 'strict', 'ignore' or 'replace'
:return: if printed is false, the lines are returned as a list
""" |
data = []
with open(file_path, "rb") as f:
for _ in range(lines):
try:
if python_version >= (2, 7):
data.append(next(f).decode(encoding, errors=errors))
else:
data.append(next(f).decode(encoding))
except StopIteration:
break
if printed:
print("".join(data))
else:
return data |
<SYSTEM_TASK:>
A really silly way to get the last N lines, defaults to 10.
<END_TASK>
<USER_TASK:>
Description:
def tail(file_path, lines=10, encoding="utf-8",
printed=True, errors='strict'):
"""
A really silly way to get the last N lines, defaults to 10.
:param file_path: Path to file to read
:param lines: Number of lines to read in
:param encoding: defaults to utf-8 to decode as, will fail on binary
:param printed: Automatically print the lines instead of returning it
:param errors: Decoding errors: 'strict', 'ignore' or 'replace'
:return: if printed is false, the lines are returned as a list
""" |
data = deque()
with open(file_path, "rb") as f:
for line in f:
if python_version >= (2, 7):
data.append(line.decode(encoding, errors=errors))
else:
data.append(line.decode(encoding))
if len(data) > lines:
data.popleft()
if printed:
print("".join(data))
else:
return data |
<SYSTEM_TASK:>
Copy files to a new location.
<END_TASK>
<USER_TASK:>
Description:
def cp(src, dst, overwrite=False):
"""
Copy files to a new location.
:param src: list (or string) of paths of files to copy
:param dst: file or folder to copy item(s) to
:param overwrite: IF the file already exists, should I overwrite it?
""" |
if not isinstance(src, list):
src = [src]
dst = os.path.expanduser(dst)
dst_folder = os.path.isdir(dst)
if len(src) > 1 and not dst_folder:
raise OSError("Cannot copy multiple item to same file")
for item in src:
source = os.path.expanduser(item)
destination = (dst if not dst_folder else
os.path.join(dst, os.path.basename(source)))
if not overwrite and os.path.exists(destination):
_logger.warning("Not replacing {0} with {1}, overwrite not enabled"
"".format(destination, source))
continue
shutil.copy(source, destination) |
<SYSTEM_TASK:>
Split a string into a list of N characters each.
<END_TASK>
<USER_TASK:>
Description:
def cut(string, characters=2, trailing="normal"):
"""
Split a string into a list of N characters each.
.. code:: python
reusables.cut("abcdefghi")
# ['ab', 'cd', 'ef', 'gh', 'i']
trailing gives you the following options:
* normal: leaves remaining characters in their own last position
* remove: return the list without the remainder characters
* combine: add the remainder characters to the previous set
* error: raise an IndexError if there are remaining characters
.. code:: python
reusables.cut("abcdefghi", 2, "error")
# Traceback (most recent call last):
# ...
# IndexError: String of length 9 not divisible by 2 to splice
reusables.cut("abcdefghi", 2, "remove")
# ['ab', 'cd', 'ef', 'gh']
reusables.cut("abcdefghi", 2, "combine")
# ['ab', 'cd', 'ef', 'ghi']
:param string: string to modify
:param characters: how many characters to split it into
:param trailing: "normal", "remove", "combine", or "error"
:return: list of the cut string
""" |
split_str = [string[i:i + characters] for
i in range(0, len(string), characters)]
if trailing != "normal" and len(split_str[-1]) != characters:
if trailing.lower() == "remove":
return split_str[:-1]
if trailing.lower() == "combine" and len(split_str) >= 2:
return split_str[:-2] + [split_str[-2] + split_str[-1]]
if trailing.lower() == "error":
raise IndexError("String of length {0} not divisible by {1} to"
" cut".format(len(string), characters))
return split_str |
<SYSTEM_TASK:>
Convert an integer into a string of roman numbers.
<END_TASK>
<USER_TASK:>
Description:
def int_to_roman(integer):
"""
Convert an integer into a string of roman numbers.
.. code: python
reusables.int_to_roman(445)
# 'CDXLV'
:param integer:
:return: roman string
""" |
if not isinstance(integer, int):
raise ValueError("Input integer must be of type int")
output = []
while integer > 0:
for r, i in sorted(_roman_dict.items(),
key=lambda x: x[1], reverse=True):
while integer >= i:
output.append(r)
integer -= i
return "".join(output) |
<SYSTEM_TASK:>
Converts a string of roman numbers into an integer.
<END_TASK>
<USER_TASK:>
Description:
def roman_to_int(roman_string):
"""
Converts a string of roman numbers into an integer.
.. code: python
reusables.roman_to_int("XXXVI")
# 36
:param roman_string: XVI or similar
:return: parsed integer
""" |
roman_string = roman_string.upper().strip()
if "IIII" in roman_string:
raise ValueError("Malformed roman string")
value = 0
skip_one = False
last_number = None
for i, letter in enumerate(roman_string):
if letter not in _roman_dict:
raise ValueError("Malformed roman string")
if skip_one:
skip_one = False
continue
if i < (len(roman_string) - 1):
double_check = letter + roman_string[i + 1]
if double_check in _roman_dict:
if last_number and _roman_dict[double_check] > last_number:
raise ValueError("Malformed roman string")
last_number = _roman_dict[double_check]
value += _roman_dict[double_check]
skip_one = True
continue
if last_number and _roman_dict[letter] > last_number:
raise ValueError("Malformed roman string")
last_number = _roman_dict[letter]
value += _roman_dict[letter]
return value |
<SYSTEM_TASK:>
Scans the modules set in RQ_JOBS_MODULES for RQ jobs decorated with @task
<END_TASK>
<USER_TASK:>
Description:
def task_list():
"""
Scans the modules set in RQ_JOBS_MODULES for RQ jobs decorated with @task
Compiles a readable list for Job model task choices
""" |
try:
jobs_module = settings.RQ_JOBS_MODULE
except AttributeError:
raise ImproperlyConfigured(_("You have to define RQ_JOBS_MODULE in settings.py"))
if isinstance(jobs_module, string_types):
jobs_modules = (jobs_module,)
elif isinstance(jobs_module, (tuple, list)):
jobs_modules = jobs_module
else:
raise ImproperlyConfigured(_("RQ_JOBS_MODULE must be a string or a tuple"))
choices = []
for module in jobs_modules:
try:
tasks = importlib.import_module(module)
except ImportError:
raise ImproperlyConfigured(_("Can not find module {}").format(module))
module_choices = [('%s.%s' % (module, x), underscore_to_camelcase(x)) for x, y in list(tasks.__dict__.items())
if type(y) == FunctionType and hasattr(y, 'delay')]
choices.extend(module_choices)
choices.sort(key=lambda tup: tup[1])
return choices |
<SYSTEM_TASK:>
Fix for tasks without a module. Provides backwards compatibility with < 0.1.5
<END_TASK>
<USER_TASK:>
Description:
def fix_module(job):
"""
Fix for tasks without a module. Provides backwards compatibility with < 0.1.5
""" |
modules = settings.RQ_JOBS_MODULE
if not type(modules) == tuple:
modules = [modules]
for module in modules:
try:
module_match = importlib.import_module(module)
if hasattr(module_match, job.task):
job.task = '{}.{}'.format(module, job.task)
break
except ImportError:
continue
return job |
<SYSTEM_TASK:>
Return a list of functions to use when testing values.
<END_TASK>
<USER_TASK:>
Description:
def get_checks(self):
"""Return a list of functions to use when testing values.""" |
return [
self.is_date,
self.is_datetime,
self.is_integer,
self.is_float,
self.default] |
<SYSTEM_TASK:>
Constructs the path to categories, images and features.
<END_TASK>
<USER_TASK:>
Description:
def path(self, category = None, image = None, feature = None):
"""
Constructs the path to categories, images and features.
This path function assumes that the following storage scheme is used on
the hard disk to access categories, images and features:
- categories: /impath/category
- images: /impath/category/category_image.png
- features: /ftrpath/category/feature/category_image.mat
The path function is called to query the location of categories, images
and features before they are loaded. Thus, if your features are organized
in a different way, you can simply replace this method such that it returns
appropriate paths' and the LoadFromDisk loader will use your naming
scheme.
""" |
filename = None
if not category is None:
filename = join(self.impath, str(category))
if not image is None:
assert not category is None, "The category has to be given if the image is given"
filename = join(filename,
'%s_%s.png' % (str(category), str(image)))
if not feature is None:
assert category != None and image != None, "If a feature name is given the category and image also have to be given."
filename = join(self.ftrpath, str(category), feature,
'%s_%s.mat' % (str(category), str(image)))
return filename |
<SYSTEM_TASK:>
Loads an image from disk.
<END_TASK>
<USER_TASK:>
Description:
def get_image(self, cat, img):
""" Loads an image from disk. """ |
filename = self.path(cat, img)
data = []
if filename.endswith('mat'):
data = loadmat(filename)['output']
else:
data = imread(filename)
if self.size is not None:
return imresize(data, self.size)
else:
return data |
<SYSTEM_TASK:>
Load a feature from disk.
<END_TASK>
<USER_TASK:>
Description:
def get_feature(self, cat, img, feature):
"""
Load a feature from disk.
""" |
filename = self.path(cat, img, feature)
data = loadmat(filename)
name = [k for k in list(data.keys()) if not k.startswith('__')]
if self.size is not None:
return imresize(data[name.pop()], self.size)
return data[name.pop()] |
<SYSTEM_TASK:>
Draws nr_samples random samples from vec.
<END_TASK>
<USER_TASK:>
Description:
def randsample(vec, nr_samples, with_replacement = False):
"""
Draws nr_samples random samples from vec.
""" |
if not with_replacement:
return np.random.permutation(vec)[0:nr_samples]
else:
return np.asarray(vec)[np.random.randint(0, len(vec), nr_samples)] |
<SYSTEM_TASK:>
Apply a function to all values in a dictionary, return a dictionary with
<END_TASK>
<USER_TASK:>
Description:
def dict_fun(data, function):
"""
Apply a function to all values in a dictionary, return a dictionary with
results.
Parameters
----------
data : dict
a dictionary whose values are adequate input to the second argument
of this function.
function : function
a function that takes one argument
Returns
-------
a dictionary with the same keys as data, such that
result[key] = function(data[key])
""" |
return dict((k, function(v)) for k, v in list(data.items())) |
<SYSTEM_TASK:>
Load datamat at path.
<END_TASK>
<USER_TASK:>
Description:
def load(path, variable='Datamat'):
"""
Load datamat at path.
Parameters:
path : string
Absolute path of the file to load from.
""" |
f = h5py.File(path,'r')
try:
dm = fromhdf5(f[variable])
finally:
f.close()
return dm |
<SYSTEM_TASK:>
Filters a datamat by different aspects.
<END_TASK>
<USER_TASK:>
Description:
def filter(self, index): #@ReservedAssignment
"""
Filters a datamat by different aspects.
This function is a device to filter the datamat by certain logical
conditions. It takes as input a logical array (contains only True
or False for every datapoint) and kicks out all datapoints for which
the array says False. The logical array can conveniently be created
with numpy::
>>> print np.unique(fm.category)
np.array([2,9])
>>> fm_filtered = fm[ fm.category == 9 ]
>>> print np.unique(fm_filtered)
np.array([9])
Parameters:
index : array
Array-like that contains True for every element that
passes the filter; else contains False
Returns:
datamat : Datamat Instance
""" |
return Datamat(categories=self._categories, datamat=self, index=index) |
<SYSTEM_TASK:>
Set the value of a parameter.
<END_TASK>
<USER_TASK:>
Description:
def set_param(self, key, value):
"""
Set the value of a parameter.
""" |
self.__dict__[key] = value
self._parameters[key] = value |
<SYSTEM_TASK:>
Returns an iterator that iterates over unique values of field
<END_TASK>
<USER_TASK:>
Description:
def by_field(self, field):
"""
Returns an iterator that iterates over unique values of field
Parameters:
field : string
Filters the datamat for every unique value in field and yields
the filtered datamat.
Returns:
datamat : Datamat that is filtered according to one of the unique
values in 'field'.
""" |
for value in np.unique(self.__dict__[field]):
yield self.filter(self.__dict__[field] == value) |
<SYSTEM_TASK:>
Add a new field to the datamat.
<END_TASK>
<USER_TASK:>
Description:
def add_field(self, name, data):
"""
Add a new field to the datamat.
Parameters:
name : string
Name of the new field
data : list
Data for the new field, must be same length as all other fields.
""" |
if name in self._fields:
raise ValueError
if not len(data) == self._num_fix:
raise ValueError
self._fields.append(name)
self.__dict__[name] = data |
<SYSTEM_TASK:>
Add a new field to the Datamat with the dtype of the
<END_TASK>
<USER_TASK:>
Description:
def add_field_like(self, name, like_array):
"""
Add a new field to the Datamat with the dtype of the
like_array and the shape of the like_array except for the first
dimension which will be instead the field-length of this Datamat.
""" |
new_shape = list(like_array.shape)
new_shape[0] = len(self)
new_data = ma.empty(new_shape, like_array.dtype)
new_data.mask = True
self.add_field(name, new_data) |
<SYSTEM_TASK:>
Remove a field from the datamat.
<END_TASK>
<USER_TASK:>
Description:
def rm_field(self, name):
"""
Remove a field from the datamat.
Parameters:
name : string
Name of the field to be removed
""" |
if not name in self._fields:
raise ValueError
self._fields.remove(name)
del self.__dict__[name] |
<SYSTEM_TASK:>
Adds a parameter to the existing Datamat.
<END_TASK>
<USER_TASK:>
Description:
def add_parameter(self, name, value):
"""
Adds a parameter to the existing Datamat.
Fails if parameter with same name already exists or if name is otherwise
in this objects ___dict__ dictionary.
""" |
if name in self._parameters:
raise ValueError("'%s' is already a parameter" % (name))
elif name in self.__dict__:
raise ValueError("'%s' conflicts with the Datamat name-space" % (name))
self.__dict__[name] = value
self._parameters[name] = self.__dict__[name] |
<SYSTEM_TASK:>
Removes a parameter to the existing Datamat.
<END_TASK>
<USER_TASK:>
Description:
def rm_parameter(self, name):
"""
Removes a parameter to the existing Datamat.
Fails if parameter doesn't exist.
""" |
if name not in self._parameters:
raise ValueError("no '%s' parameter found" % (name))
del self._parameters[name]
del self.__dict__[name] |
<SYSTEM_TASK:>
Promotes a parameter to a field by creating a new array of same
<END_TASK>
<USER_TASK:>
Description:
def parameter_to_field(self, name):
"""
Promotes a parameter to a field by creating a new array of same
size as the other existing fields, filling it with the current
value of the parameter, and then removing that parameter.
""" |
if name not in self._parameters:
raise ValueError("no '%s' parameter found" % (name))
if self._fields.count(name) > 0:
raise ValueError("field with name '%s' already exists" % (name))
data = np.array([self._parameters[name]]*self._num_fix)
self.rm_parameter(name)
self.add_field(name, data) |
<SYSTEM_TASK:>
Adds content of a new Datamat to this Datamat.
<END_TASK>
<USER_TASK:>
Description:
def join(self, fm_new, minimal_subset=True):
"""
Adds content of a new Datamat to this Datamat.
If a parameter of the Datamats is not equal or does not exist
in one, it is promoted to a field.
If the two Datamats have different fields then the elements for the
Datamats that did not have the field will be NaN, unless
'minimal_subset' is true, in which case the mismatching fields will
simply be deleted.
Parameters
fm_new : instance of Datamat
This Datamat is added to the current one.
minimal_subset : if true, remove fields which don't exist in both,
instead of using NaNs for missing elements (defaults to False)
Capacity to use superset of fields added by rmuil 2012/01/30
""" |
# Check if parameters are equal. If not, promote them to fields.
'''
for (nm, val) in fm_new._parameters.items():
if self._parameters.has_key(nm):
if (val != self._parameters[nm]):
self.parameter_to_field(nm)
fm_new.parameter_to_field(nm)
else:
fm_new.parameter_to_field(nm)
'''
# Deal with mismatch in the fields
# First those in self that do not exist in new...
orig_fields = self._fields[:]
for field in orig_fields:
if not field in fm_new._fields:
if minimal_subset:
self.rm_field(field)
else:
warnings.warn("This option is deprecated. Clean and Filter your data before it is joined.", DeprecationWarning)
fm_new.add_field_like(field, self.field(field))
# ... then those in the new that do not exist in self.
orig_fields = fm_new._fields[:]
for field in orig_fields:
if not field in self._fields:
if minimal_subset:
fm_new.rm_field(field)
else:
warnings.warn("This option is deprecated. Clean and Filter your data before it is joined.", DeprecationWarning)
self.add_field_like(field, fm_new.field(field))
if 'SUBJECTINDEX' in self._fields[:]:
if fm_new.SUBJECTINDEX[0] in self.SUBJECTINDEX:
fm_new.SUBJECTINDEX[:] = self.SUBJECTINDEX.max()+1
# Concatenate fields
for field in self._fields:
self.__dict__[field] = ma.hstack((self.__dict__[field],
fm_new.__dict__[field]))
# Update _num_fix
self._num_fix += fm_new._num_fix |
<SYSTEM_TASK:>
Draws a new length- and angle-difference pair and calculates
<END_TASK>
<USER_TASK:>
Description:
def _draw(self, prev_angle = None, prev_length = None):
"""
Draws a new length- and angle-difference pair and calculates
length and angle absolutes matching the last saccade drawn.
Parameters:
prev_angle : float, optional
The last angle that was drawn in the current trajectory
prev_length : float, optional
The last length that was drawn in the current trajectory
Note: Either both prev_angle and prev_length have to be given
or none; if only one parameter is given, it will be neglected.
""" |
if (prev_angle is None) or (prev_length is None):
(length, angle)= np.unravel_index(self.drawFrom('self.firstLenAng_cumsum', self.getrand('self.firstLenAng_cumsum')),
self.firstLenAng_shape)
angle = angle-((self.firstLenAng_shape[1]-1)/2)
angle += 0.5
length += 0.5
length *= self.fm.pixels_per_degree
else:
ind = int(floor(prev_length/self.fm.pixels_per_degree))
while ind >= len(self.probability_cumsum):
ind -= 1
while not(self.probability_cumsum[ind]).any():
ind -= 1
J, I = np.unravel_index(self.drawFrom('self.probability_cumsum '+repr(ind),self.getrand('self.probability_cumsum '+repr(ind))),
self.full_H1[ind].shape)
angle = reshift((I-self.full_H1[ind].shape[1]/2) + prev_angle)
angle += 0.5
length = J+0.5
length *= self.fm.pixels_per_degree
return angle, length |
<SYSTEM_TASK:>
Draws a trajectory length, first coordinates, lengths, angles and
<END_TASK>
<USER_TASK:>
Description:
def sample(self):
"""
Draws a trajectory length, first coordinates, lengths, angles and
length-angle-difference pairs according to the empirical distribution.
Each call creates one complete trajectory.
""" |
lenghts = []
angles = []
coordinates = []
fix = []
sample_size = int(round(self.trajLen_borders[self.drawFrom('self.trajLen_cumsum', self.getrand('self.trajLen_cumsum'))]))
coordinates.append([0, 0])
fix.append(1)
while len(coordinates) < sample_size:
if len(lenghts) == 0 and len(angles) == 0:
angle, length = self._draw(self)
else:
angle, length = self._draw(prev_angle = angles[-1],
prev_length = lenghts[-1])
x, y = self._calc_xy(coordinates[-1], angle, length)
coordinates.append([x, y])
lenghts.append(length)
angles.append(angle)
fix.append(fix[-1]+1)
return coordinates |
<SYSTEM_TASK:>
Computes the relative bias, i.e. the distribution of saccade angles
<END_TASK>
<USER_TASK:>
Description:
def relative_bias(fm, scale_factor = 1, estimator = None):
"""
Computes the relative bias, i.e. the distribution of saccade angles
and amplitudes.
Parameters:
fm : DataMat
The fixation data to use
scale_factor : double
Returns:
2D probability distribution of saccade angles and amplitudes.
""" |
assert 'fix' in fm.fieldnames(), "Can not work without fixation numbers"
excl = fm.fix - np.roll(fm.fix, 1) != 1
# Now calculate the direction where the NEXT fixation goes to
diff_x = (np.roll(fm.x, 1) - fm.x)[~excl]
diff_y = (np.roll(fm.y, 1) - fm.y)[~excl]
# Make a histogram of diff values
# this specifies left edges of the histogram bins, i.e. fixations between
# ]0 binedge[0]] are included. --> fixations are ceiled
ylim = np.round(scale_factor * fm.image_size[0])
xlim = np.round(scale_factor * fm.image_size[1])
x_steps = np.ceil(2*xlim) +1
if x_steps % 2 != 0: x_steps+=1
y_steps = np.ceil(2*ylim)+1
if y_steps % 2 != 0: y_steps+=1
e_x = np.linspace(-xlim,xlim,x_steps)
e_y = np.linspace(-ylim,ylim,y_steps)
#e_y = np.arange(-ylim, ylim+1)
#e_x = np.arange(-xlim, xlim+1)
samples = np.array(list(zip((scale_factor * diff_y),
(scale_factor* diff_x))))
if estimator == None:
(hist, _) = np.histogramdd(samples, (e_y, e_x))
else:
hist = estimator(samples, e_y, e_x)
return hist |
<SYSTEM_TASK:>
Parse a subscription list and return a dict containing the results.
<END_TASK>
<USER_TASK:>
Description:
def parse(parse_obj, agent=None, etag=None, modified=None, inject=False):
"""Parse a subscription list and return a dict containing the results.
:param parse_obj: A file-like object or a string containing a URL, an
absolute or relative filename, or an XML document.
:type parse_obj: str or file
:param agent: User-Agent header to be sent when requesting a URL
:type agent: str
:param etag: The ETag header to be sent when requesting a URL.
:type etag: str
:param modified: The Last-Modified header to be sent when requesting a URL.
:type modified: str or datetime.datetime
:returns: All of the parsed information, webserver HTTP response
headers, and any exception encountered.
:rtype: dict
:py:func:`~listparser.parse` is the only public function exposed by
listparser.
If *parse_obj* is a URL, the *agent* will identify the software
making the request, *etag* will identify the last HTTP ETag
header returned by the webserver, and *modified* will
identify the last HTTP Last-Modified header returned by the
webserver. *agent* and *etag* must be strings,
while *modified* can be either a string or a Python
*datetime.datetime* object.
If *agent* is not provided, the :py:data:`~listparser.USER_AGENT` global
variable will be used by default.
""" |
guarantees = common.SuperDict({
'bozo': 0,
'feeds': [],
'lists': [],
'opportunities': [],
'meta': common.SuperDict(),
'version': '',
})
fileobj, info = _mkfile(parse_obj, (agent or USER_AGENT), etag, modified)
guarantees.update(info)
if not fileobj:
return guarantees
handler = Handler()
handler.harvest.update(guarantees)
parser = xml.sax.make_parser()
parser.setFeature(xml.sax.handler.feature_namespaces, True)
parser.setContentHandler(handler)
parser.setErrorHandler(handler)
if inject:
fileobj = Injector(fileobj)
try:
parser.parse(fileobj)
except (SAXParseException, MalformedByteSequenceException): # noqa: E501 # pragma: no cover
# Jython propagates exceptions past the ErrorHandler.
err = sys.exc_info()[1]
handler.harvest.bozo = 1
handler.harvest.bozo_exception = err
finally:
fileobj.close()
# Test if a DOCTYPE injection is needed
if hasattr(handler.harvest, 'bozo_exception'):
if 'entity' in handler.harvest.bozo_exception.__str__():
if not inject:
return parse(parse_obj, agent, etag, modified, True)
# Make it clear that the XML file is broken
# (if no other exception has been assigned)
if inject and not handler.harvest.bozo:
handler.harvest.bozo = 1
handler.harvest.bozo_exception = ListError('undefined entity found')
return handler.harvest |
<SYSTEM_TASK:>
Returns all fixations that are on this image.
<END_TASK>
<USER_TASK:>
Description:
def fixations(self):
"""
Returns all fixations that are on this image.
A precondition for this to work is that a fixmat
is associated with this Image object.
""" |
if not self._fixations:
raise RuntimeError('This Images object does not have'
+' an associated fixmat')
return self._fixations[(self._fixations.category == self.category) &
(self._fixations.filenumber == self.image)] |
<SYSTEM_TASK:>
Generator for creating the cross-validation slices.
<END_TASK>
<USER_TASK:>
Description:
def generate(self):
"""
Generator for creating the cross-validation slices.
Returns
A tuple of that contains two fixmats (training and test)
and two Category objects (test and train).
""" |
for _ in range(0, self.num_slices):
#1. separate fixmat into test and training fixmat
subjects = np.unique(self.fm.SUBJECTINDEX)
test_subs = randsample(subjects,
self.subject_hold_out*len(subjects))
train_subs = [x for x in subjects if x not in test_subs]
test_fm = self.fm[ismember(self.fm.SUBJECTINDEX, test_subs)]
train_fm = self.fm[ismember(self.fm.SUBJECTINDEX, train_subs)]
#2. distribute images
test_imgs = {}
train_imgs = {}
id_test = (test_fm.x <1) & False
id_train = (train_fm.x <1) & False
for cat in self.categories:
imgs = cat.images()
test_imgs.update({cat.category:randsample(imgs,
self.image_hold_out*len(imgs)).tolist()})
train_imgs.update({cat.category:[x for x in imgs
if not ismember(x, test_imgs[cat.category])]})
id_test = id_test | ((ismember(test_fm.filenumber,
test_imgs[cat.category])) &
(test_fm.category == cat.category))
id_train = id_train | ((ismember(train_fm.filenumber,
train_imgs[cat.category])) &
(train_fm.category == cat.category))
#3. Create categories objects and yield result
test_stimuli = Categories(self.categories.loader, test_imgs,
features=self.categories._features,
fixations=test_fm)
train_stimuli = Categories(self.categories.loader, train_imgs,
features=self.categories._features,
fixations=train_fm)
yield (train_fm[id_train],
train_stimuli,
test_fm[id_test],
test_stimuli) |
<SYSTEM_TASK:>
Computes the mean fixation duration at forward angles.
<END_TASK>
<USER_TASK:>
Description:
def saccadic_momentum_effect(durations, forward_angle,
summary_stat=nanmean):
"""
Computes the mean fixation duration at forward angles.
""" |
durations_per_da = np.nan * np.ones((len(e_angle) - 1,))
for i, (bo, b1) in enumerate(zip(e_angle[:-1], e_angle[1:])):
idx = (
bo <= forward_angle) & (
forward_angle < b1) & (
~np.isnan(durations))
durations_per_da[i] = summary_stat(durations[idx])
return durations_per_da |
<SYSTEM_TASK:>
Computes a measure of fixation durations at delta angle and delta
<END_TASK>
<USER_TASK:>
Description:
def ior_effect(durations, angle_diffs, length_diffs,
summary_stat=np.mean, parallel=True, min_samples=20):
"""
Computes a measure of fixation durations at delta angle and delta
length combinations.
""" |
raster = np.empty((len(e_dist) - 1, len(e_angle) - 1), dtype=object)
for a, (a_low, a_upp) in enumerate(zip(e_angle[:-1], e_angle[1:])):
for d, (d_low, d_upp) in enumerate(zip(e_dist[:-1], e_dist[1:])):
idx = ((d_low <= length_diffs) & (length_diffs < d_upp) &
(a_low <= angle_diffs) & (angle_diffs < a_upp))
if sum(idx) < min_samples:
raster[d, a] = np.array([np.nan])
else:
raster[d, a] = durations[idx]
if parallel:
p = pool.Pool(3)
result = p.map(summary_stat, list(raster.flatten()))
p.terminate()
else:
result = list(map(summary_stat, list(raster.flatten())))
for idx, value in enumerate(result):
i, j = np.unravel_index(idx, raster.shape)
raster[i, j] = value
return raster |
<SYSTEM_TASK:>
Fits a non-linear piecewise regression to fixtaion durations for a fixmat.
<END_TASK>
<USER_TASK:>
Description:
def predict_fixation_duration(
durations, angles, length_diffs, dataset=None, params=None):
"""
Fits a non-linear piecewise regression to fixtaion durations for a fixmat.
Returns corrected fixation durations.
""" |
if dataset is None:
dataset = np.ones(durations.shape)
corrected_durations = np.nan * np.ones(durations.shape)
for i, ds in enumerate(np.unique(dataset)):
e = lambda v, x, y, z: (leastsq_dual_model(x, z, *v) - y)
v0 = [120, 220.0, -.1, 0.5, .1, .1]
id_ds = dataset == ds
idnan = (
~np.isnan(angles)) & (
~np.isnan(durations)) & (
~np.isnan(length_diffs))
v, s = leastsq(
e, v0, args=(
angles[
idnan & id_ds], durations[
idnan & id_ds], length_diffs[
idnan & id_ds]), maxfev=10000)
corrected_durations[id_ds] = (durations[id_ds] -
(leastsq_dual_model(angles[id_ds], length_diffs[id_ds], *v)))
if params is not None:
params['v' + str(i)] = v
params['s' + str(i)] = s
return corrected_durations |
<SYSTEM_TASK:>
Calculates how well the fixations from a set of subjects on a set of
<END_TASK>
<USER_TASK:>
Description:
def intersubject_scores(fm, category, predicting_filenumbers,
predicting_subjects, predicted_filenumbers,
predicted_subjects, controls = True, scale_factor = 1):
"""
Calculates how well the fixations from a set of subjects on a set of
images can be predicted with the fixations from another set of subjects
on another set of images.
The prediction is carried out by computing a fixation density map from
fixations of predicting_subjects subjects on predicting_images images.
Prediction accuracy is assessed by measures.prediction_scores.
Parameters
fm : fixmat instance
category : int
Category from which the fixations are taken.
predicting_filenumbers : list
List of filenumbers used for prediction, i.e. images where fixations
for the prediction are taken from.
predicting_subjects : list
List of subjects whose fixations on images in predicting_filenumbers
are used for the prediction.
predicted_filenumnbers : list
List of images from which the to be predicted fixations are taken.
predicted_subjects : list
List of subjects used for evaluation, i.e subjects whose fixations
on images in predicted_filenumbers are taken for evaluation.
controls : bool, optional
If True (default), n_predict subjects are chosen from the fixmat.
If False, 1000 fixations are randomly generated and used for
testing.
scale_factor : int, optional
specifies the scaling of the fdm. Default is 1.
Returns
auc : area under the roc curve for sets of actuals and controls
true_pos_rate : ndarray
Rate of true positives for every given threshold value.
All values appearing in actuals are taken as thresholds. Uses lower
sum interpolation.
false_pos_rate : ndarray
See true_pos_rate but for false positives.
""" |
predicting_fm = fm[
(ismember(fm.SUBJECTINDEX, predicting_subjects)) &
(ismember(fm.filenumber, predicting_filenumbers)) &
(fm.category == category)]
predicted_fm = fm[
(ismember(fm.SUBJECTINDEX,predicted_subjects)) &
(ismember(fm.filenumber,predicted_filenumbers))&
(fm.category == category)]
try:
predicting_fdm = compute_fdm(predicting_fm, scale_factor = scale_factor)
except RuntimeError:
predicting_fdm = None
if controls == True:
fm_controls = fm[
(ismember(fm.SUBJECTINDEX, predicted_subjects)) &
((ismember(fm.filenumber, predicted_filenumbers)) != True) &
(fm.category == category)]
return measures.prediction_scores(predicting_fdm, predicted_fm,
controls = (fm_controls.y, fm_controls.x))
return measures.prediction_scores(predicting_fdm, predicted_fm, controls = None) |
<SYSTEM_TASK:>
Calculates how well the fixations of n random subjects on one image can
<END_TASK>
<USER_TASK:>
Description:
def intersubject_scores_random_subjects(fm, category, filenumber, n_train,
n_predict, controls=True,
scale_factor = 1):
"""
Calculates how well the fixations of n random subjects on one image can
be predicted with the fixations of m other random subjects.
Notes
Function that uses intersubject_auc for computing auc.
Parameters
fm : fixmat instance
category : int
Category from which the fixations are taken.
filnumber : int
Image from which fixations are taken.
n_train : int
The number of subjects which are used for prediction.
n_predict : int
The number of subjects to predict
controls : bool, optional
If True (default), n_predict subjects are chosen from the fixmat.
If False, 1000 fixations are randomly generated and used for
testing.
scale_factor : int, optional
specifies the scaling of the fdm. Default is 1.
Returns
tuple : prediction scores
""" |
subjects = np.unique(fm.SUBJECTINDEX)
if len(subjects) < n_train + n_predict:
raise ValueError("""Not enough subjects in fixmat""")
# draw a random sample of subjects for testing and evaluation, according
# to the specified set sizes (n_train, n_predict)
np.random.shuffle(subjects)
predicted_subjects = subjects[0 : n_predict]
predicting_subjects = subjects[n_predict : n_predict + n_train]
assert len(predicting_subjects) == n_train
assert len(predicted_subjects) == n_predict
assert [x not in predicting_subjects for x in predicted_subjects]
return intersubject_scores(fm, category, [filenumber], predicting_subjects,
[filenumber], predicted_subjects,
controls, scale_factor) |
<SYSTEM_TASK:>
compute the inter-subject consistency upper bound for a fixmat.
<END_TASK>
<USER_TASK:>
Description:
def upper_bound(fm, nr_subs = None, scale_factor = 1):
"""
compute the inter-subject consistency upper bound for a fixmat.
Input:
fm : a fixmat instance
nr_subs : the number of subjects used for the prediction. Defaults
to the total number of subjects in the fixmat minus 1
scale_factor : the scale factor of the FDMs. Default is 1.
Returns:
A list of scores; the list contains one dictionary for each measure.
Each dictionary contains one key for each category and corresponding
values is an array with scores for each subject.
""" |
nr_subs_total = len(np.unique(fm.SUBJECTINDEX))
if not nr_subs:
nr_subs = nr_subs_total - 1
assert (nr_subs < nr_subs_total)
# initialize output structure; every measure gets one dict with
# category numbers as keys and numpy-arrays as values
intersub_scores = []
for measure in range(len(measures.scores)):
res_dict = {}
result_vectors = [np.empty(nr_subs_total) + np.nan
for _ in np.unique(fm.category)]
res_dict.update(list(zip(np.unique(fm.category), result_vectors)))
intersub_scores.append(res_dict)
#compute inter-subject scores for every stimulus, with leave-one-out
#over subjects
for fm_cat in fm.by_field('category'):
cat = fm_cat.category[0]
for (sub_counter, sub) in enumerate(np.unique(fm_cat.SUBJECTINDEX)):
image_scores = []
for fm_single in fm_cat.by_field('filenumber'):
predicting_subs = (np.setdiff1d(np.unique(
fm_single.SUBJECTINDEX),[sub]))
np.random.shuffle(predicting_subs)
predicting_subs = predicting_subs[0:nr_subs]
predicting_fm = fm_single[
(ismember(fm_single.SUBJECTINDEX, predicting_subs))]
predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub]
try:
predicting_fdm = compute_fdm(predicting_fm,
scale_factor = scale_factor)
except RuntimeError:
predicting_fdm = None
image_scores.append(measures.prediction_scores(
predicting_fdm, predicted_fm))
for (measure, score) in enumerate(nanmean(image_scores, 0)):
intersub_scores[measure][cat][sub_counter] = score
return intersub_scores |
<SYSTEM_TASK:>
Compute the spatial bias lower bound for a fixmat.
<END_TASK>
<USER_TASK:>
Description:
def lower_bound(fm, nr_subs = None, nr_imgs = None, scale_factor = 1):
"""
Compute the spatial bias lower bound for a fixmat.
Input:
fm : a fixmat instance
nr_subs : the number of subjects used for the prediction. Defaults
to the total number of subjects in the fixmat minus 1
nr_imgs : the number of images used for prediction. If given, the
same number will be used for every category. If not given,
leave-one-out will be used in all categories.
scale_factor : the scale factor of the FDMs. Default is 1.
Returns:
A list of spatial bias scores; the list contains one dictionary for each
measure. Each dictionary contains one key for each category and
corresponding values is an array with scores for each subject.
""" |
nr_subs_total = len(np.unique(fm.SUBJECTINDEX))
if nr_subs is None:
nr_subs = nr_subs_total - 1
assert (nr_subs < nr_subs_total)
# initialize output structure; every measure gets one dict with
# category numbers as keys and numpy-arrays as values
sb_scores = []
for measure in range(len(measures.scores)):
res_dict = {}
result_vectors = [np.empty(nr_subs_total) + np.nan
for _ in np.unique(fm.category)]
res_dict.update(list(zip(np.unique(fm.category),result_vectors)))
sb_scores.append(res_dict)
# compute mean spatial bias predictive power for all subjects in all
# categories
for fm_cat in fm.by_field('category'):
cat = fm_cat.category[0]
nr_imgs_cat = len(np.unique(fm_cat.filenumber))
if not nr_imgs:
nr_imgs_current = nr_imgs_cat - 1
else:
nr_imgs_current = nr_imgs
assert(nr_imgs_current < nr_imgs_cat)
for (sub_counter, sub) in enumerate(np.unique(fm.SUBJECTINDEX)):
image_scores = []
for fm_single in fm_cat.by_field('filenumber'):
# Iterating by field filenumber makes filenumbers
# in fm_single unique: Just take the first one to get the
# filenumber for this fixmat
fn = fm_single.filenumber[0]
predicting_subs = (np.setdiff1d(np.unique(
fm_cat.SUBJECTINDEX), [sub]))
np.random.shuffle(predicting_subs)
predicting_subs = predicting_subs[0:nr_subs]
predicting_fns = (np.setdiff1d(np.unique(
fm_cat.filenumber), [fn]))
np.random.shuffle(predicting_fns)
predicting_fns = predicting_fns[0:nr_imgs_current]
predicting_fm = fm_cat[
(ismember(fm_cat.SUBJECTINDEX, predicting_subs)) &
(ismember(fm_cat.filenumber, predicting_fns))]
predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub]
try:
predicting_fdm = compute_fdm(predicting_fm,
scale_factor = scale_factor)
except RuntimeError:
predicting_fdm = None
image_scores.append(measures.prediction_scores(predicting_fdm,
predicted_fm))
for (measure, score) in enumerate(nanmean(image_scores, 0)):
sb_scores[measure][cat][sub_counter] = score
return sb_scores |
<SYSTEM_TASK:>
Calculates subscripts for indices into regularly spaced matrixes.
<END_TASK>
<USER_TASK:>
Description:
def ind2sub(ind, dimensions):
"""
Calculates subscripts for indices into regularly spaced matrixes.
""" |
# check that the index is within range
if ind >= np.prod(dimensions):
raise RuntimeError("ind2sub: index exceeds array size")
cum_dims = list(dimensions)
cum_dims.reverse()
m = 1
mult = []
for d in cum_dims:
m = m*d
mult.append(m)
mult.pop()
mult.reverse()
mult.append(1)
indices = []
for d in mult:
indices.append((ind/d)+1)
ind = ind - (ind/d)*d
return indices |
<SYSTEM_TASK:>
An exemplary sub2ind implementation to create randomization
<END_TASK>
<USER_TASK:>
Description:
def sub2ind(indices, dimensions):
"""
An exemplary sub2ind implementation to create randomization
scripts.
This function calculates indices from subscripts into regularly spaced
matrixes.
""" |
# check that none of the indices exceeds the size of the array
if any([i > j for i, j in zip(indices, dimensions)]):
raise RuntimeError("sub2ind:an index exceeds its dimension's size")
dims = list(dimensions)
dims.append(1)
dims.remove(dims[0])
dims.reverse()
ind = list(indices)
ind.reverse()
idx = 0
mult = 1
for (cnt, dim) in zip(ind, dims):
mult = dim*mult
idx = idx + (cnt-1)*mult
return idx |
<SYSTEM_TASK:>
Restores a task store from file.
<END_TASK>
<USER_TASK:>
Description:
def RestoreTaskStoreFactory(store_class, chunk_size, restore_file, save_file):
"""
Restores a task store from file.
""" |
intm_results = np.load(restore_file)
intm = intm_results[intm_results.files[0]]
idx = np.isnan(intm).flatten().nonzero()[0]
partitions = math.ceil(len(idx) / float(chunk_size))
task_store = store_class(partitions, idx.tolist(), save_file)
task_store.num_tasks = len(idx)
# Also set up matrices for saving results
for f in intm_results.files:
task_store.__dict__[f] = intm_results[f]
return task_store |
<SYSTEM_TASK:>
Reschedule all running tasks.
<END_TASK>
<USER_TASK:>
Description:
def xmlrpc_reschedule(self):
"""
Reschedule all running tasks.
""" |
if not len(self.scheduled_tasks) == 0:
self.reschedule = list(self.scheduled_tasks.items())
self.scheduled_tasks = {}
return True |
<SYSTEM_TASK:>
Take the results of a computation and put it into the results list.
<END_TASK>
<USER_TASK:>
Description:
def xmlrpc_task_done(self, result):
"""
Take the results of a computation and put it into the results list.
""" |
(task_id, task_results) = result
del self.scheduled_tasks[task_id]
self.task_store.update_results(task_id, task_results)
self.results += 1
return True |
<SYSTEM_TASK:>
Save results and own state into file.
<END_TASK>
<USER_TASK:>
Description:
def xmlrpc_save2file(self, filename):
"""
Save results and own state into file.
""" |
savefile = open(filename,'wb')
try:
pickle.dump({'scheduled':self.scheduled_tasks,
'reschedule':self.reschedule},savefile)
except pickle.PicklingError:
return -1
savefile.close()
return 1 |
<SYSTEM_TASK:>
This function needs to be called to start the computation.
<END_TASK>
<USER_TASK:>
Description:
def run(self):
"""This function needs to be called to start the computation.""" |
(task_id, tasks) = self.server.get_task()
self.task_store.from_dict(tasks)
for (index, task) in self.task_store:
result = self.compute(index, task)
self.results.append(result)
self.server.task_done((task_id, self.results)) |
<SYSTEM_TASK:>
Configures the task store to be the task_store described
<END_TASK>
<USER_TASK:>
Description:
def from_dict(self, description):
"""Configures the task store to be the task_store described
in description""" |
assert(self.ident == description['ident'])
self.partitions = description['partitions']
self.indices = description['indices'] |
<SYSTEM_TASK:>
Partitions all tasks into groups of tasks. A group is
<END_TASK>
<USER_TASK:>
Description:
def partition(self):
"""Partitions all tasks into groups of tasks. A group is
represented by a task_store object that indexes a sub-
set of tasks.""" |
step = int(math.ceil(self.num_tasks / float(self.partitions)))
if self.indices == None:
slice_ind = list(range(0, self.num_tasks, step))
for start in slice_ind:
yield self.__class__(self.partitions,
list(range(start, start + step)))
else:
slice_ind = list(range(0, len(self.indices), step))
for start in slice_ind:
if start + step <= len(self.indices):
yield self.__class__(self.partitions,
self.indices[start: start + step])
else:
yield self.__class__(self.partitions, self.indices[start:]) |
<SYSTEM_TASK:>
Fits a 3D distribution with splines.
<END_TASK>
<USER_TASK:>
Description:
def fit3d(samples, e_x, e_y, e_z, remove_zeros = False, **kw):
"""Fits a 3D distribution with splines.
Input:
samples: Array
Array of samples from a probability distribution
e_x: Array
Edges that define the events in the probability
distribution along the x direction. For example,
e_x[0] < samples[0] <= e_x[1] picks out all
samples that are associated with the first event.
e_y: Array
See e_x, but for the y direction.
remove_zeros: Bool
If True, events that are not observed will not
be part of the fitting process. If False, those
events will be modelled as finfo('float').eps
**kw: Arguments that are passed on to spline_bse1d.
Returns:
distribution: Array
An array that gives an estimate of probability for
events defined by e.
knots: Tuple of arrays
Sequence of knots that were used for the spline basis (x,y)
""" |
height, width, depth = len(e_y)-1, len(e_x)-1, len(e_z)-1
(p_est, _) = np.histogramdd(samples, (e_x, e_y, e_z))
p_est = p_est/sum(p_est.flat)
p_est = p_est.flatten()
if remove_zeros:
non_zero = ~(p_est == 0)
else:
non_zero = (p_est >= 0)
basis = spline_base3d(width,height, depth, **kw)
model = linear_model.BayesianRidge()
model.fit(basis[:, non_zero].T, p_est[:,np.newaxis][non_zero,:])
return (model.predict(basis.T).reshape((width, height, depth)),
p_est.reshape((width, height, depth))) |
<SYSTEM_TASK:>
Fits a 2D distribution with splines.
<END_TASK>
<USER_TASK:>
Description:
def fit2d(samples,e_x, e_y, remove_zeros = False, p_est = None, **kw):
"""Fits a 2D distribution with splines.
Input:
samples: Matrix or list of arrays
If matrix, it must be of size Nx2, where N is the number of
observations. If list, it must contain two arrays of length
N.
e_x: Array
Edges that define the events in the probability
distribution along the x direction. For example,
e_x[0] < samples[0] <= e_x[1] picks out all
samples that are associated with the first event.
e_y: Array
See e_x, but for the y direction.
remove_zeros: Bool
If True, events that are not observed will not
be part of the fitting process. If False, those
events will be modelled as finfo('float').eps
**kw: Arguments that are passed on to spline_bse1d.
Returns:
distribution: Array
An array that gives an estimate of probability for
events defined by e.
knots: Tuple of arrays
Sequence of knots that were used for the spline basis (x,y)
""" |
if p_est is None:
height = len(e_y)-1
width = len(e_x)-1
(p_est, _) = np.histogramdd(samples, (e_x, e_y))
else:
p_est = p_est.T
width, height = p_est.shape
# p_est contains x in dim 1 and y in dim 0
shape = p_est.shape
p_est = (p_est/sum(p_est.flat)).reshape(shape)
mx = p_est.sum(1)
my = p_est.sum(0)
# Transpose hist to have x in dim 0
p_est = p_est.T.flatten()
basis, knots = spline_base2d(width, height, marginal_x = mx, marginal_y = my, **kw)
model = linear_model.BayesianRidge()
if remove_zeros:
non_zero = ~(p_est == 0)
model.fit(basis[:, non_zero].T, p_est[non_zero])
else:
non_zero = (p_est >= 0)
p_est[~non_zero,:] = np.finfo(float).eps
model.fit(basis.T, p_est)
return (model.predict(basis.T).reshape((height, width)),
p_est.reshape((height, width)), knots) |
<SYSTEM_TASK:>
Fits a 1D distribution with splines.
<END_TASK>
<USER_TASK:>
Description:
def fit1d(samples, e, remove_zeros = False, **kw):
"""Fits a 1D distribution with splines.
Input:
samples: Array
Array of samples from a probability distribution
e: Array
Edges that define the events in the probability
distribution. For example, e[0] < x <= e[1] is
the range of values that are associated with the
first event.
**kw: Arguments that are passed on to spline_bse1d.
Returns:
distribution: Array
An array that gives an estimate of probability for
events defined by e.
knots: Array
Sequence of knots that were used for the spline basis
""" |
samples = samples[~np.isnan(samples)]
length = len(e)-1
hist,_ = np.histogramdd(samples, (e,))
hist = hist/sum(hist)
basis, knots = spline_base1d(length, marginal = hist, **kw)
non_zero = hist>0
model = linear_model.BayesianRidge()
if remove_zeros:
model.fit(basis[non_zero, :], hist[:,np.newaxis][non_zero,:])
else:
hist[~non_zero] = np.finfo(float).eps
model.fit(basis, hist[:,np.newaxis])
return model.predict(basis), hist, knots |
<SYSTEM_TASK:>
Determines knot placement based on a marginal distribution.
<END_TASK>
<USER_TASK:>
Description:
def knots_from_marginal(marginal, nr_knots, spline_order):
"""
Determines knot placement based on a marginal distribution.
It places knots such that each knot covers the same amount
of probability mass. Two of the knots are reserved for the
borders which are treated seperatly. For example, a uniform
distribution with 5 knots will cause the knots to be equally
spaced with 25% of the probability mass between each two
knots.
Input:
marginal: Array
Estimate of the marginal distribution used to estimate
knot placement.
nr_knots: int
Number of knots to be placed.
spline_order: int
Order of the splines
Returns:
knots: Array
Sequence of knot positions
""" |
cumsum = np.cumsum(marginal)
cumsum = cumsum/cumsum.max()
borders = np.linspace(0,1,nr_knots)
knot_placement = [0] + np.unique([np.where(cumsum>=b)[0][0] for b in borders[1:-1]]).tolist() +[len(marginal)-1]
knots = augknt(knot_placement, spline_order)
return knots |
<SYSTEM_TASK:>
Computes a set of 3D spline basis functions.
<END_TASK>
<USER_TASK:>
Description:
def spline_base3d( width, height, depth, nr_knots_x = 10.0, nr_knots_y = 10.0,
nr_knots_z=10, spline_order = 3, marginal_x = None, marginal_y = None,
marginal_z = None):
"""Computes a set of 3D spline basis functions.
For a description of the parameters see spline_base2d.
""" |
if not nr_knots_z < depth:
raise RuntimeError("Too many knots for size of the base")
basis2d, (knots_x, knots_y) = spline_base2d(height, width, nr_knots_x,
nr_knots_y, spline_order, marginal_x, marginal_y)
if marginal_z is not None:
knots_z = knots_from_marginal(marginal_z, nr_knots_z, spline_order)
else:
knots_z = augknt(np.linspace(0,depth+1, nr_knots_z), spline_order)
z_eval = np.arange(1,depth+1).astype(float)
spline_setz = spcol(z_eval, knots_z, spline_order)
bspline = np.zeros((basis2d.shape[0]*len(z_eval), height*width*depth))
basis_nr = 0
for spline_a in spline_setz.T:
for spline_b in basis2d:
spline_b = spline_b.reshape((height, width))
bspline[basis_nr, :] = (spline_b[:,:,np.newaxis] * spline_a[:]).flat
basis_nr +=1
return bspline, (knots_x, knots_y, knots_z) |
<SYSTEM_TASK:>
Evaluates the ith spline basis given by knots on points in x
<END_TASK>
<USER_TASK:>
Description:
def spline(x,knots,p,i=0.0):
"""Evaluates the ith spline basis given by knots on points in x""" |
assert(p+1<len(knots))
return np.array([N(float(u),float(i),float(p),knots) for u in x]) |
<SYSTEM_TASK:>
Augment knot sequence such that some boundary conditions
<END_TASK>
<USER_TASK:>
Description:
def augknt(knots,order):
"""Augment knot sequence such that some boundary conditions
are met.""" |
a = []
[a.append(knots[0]) for t in range(0,order)]
[a.append(k) for k in knots]
[a.append(knots[-1]) for t in range(0,order)]
return np.array(a) |
<SYSTEM_TASK:>
Compute Spline Basis
<END_TASK>
<USER_TASK:>
Description:
def N(u,i,p,knots):
"""Compute Spline Basis
Evaluates the spline basis of order p defined by knots
at knot i and point u.
""" |
if p == 0:
if knots[i] < u and u <=knots[i+1]:
return 1.0
else:
return 0.0
else:
try:
k = (( float((u-knots[i]))/float((knots[i+p] - knots[i]) ))
* N(u,i,p-1,knots))
except ZeroDivisionError:
k = 0.0
try:
q = (( float((knots[i+p+1] - u))/float((knots[i+p+1] - knots[i+1])))
* N(u,i+1,p-1,knots))
except ZeroDivisionError:
q = 0.0
return float(k + q) |
<SYSTEM_TASK:>
Evaluates a prediction against fixations in a fixmat with different measures.
<END_TASK>
<USER_TASK:>
Description:
def prediction_scores(prediction, fm, **kw):
"""
Evaluates a prediction against fixations in a fixmat with different measures.
The default measures which are used are AUC, NSS and KL-divergence. This
can be changed by setting the list of measures with set_scores.
As different measures need potentially different parameters, the kw
dictionary can be used to pass arguments to measures. Every named
argument (except fm and prediction) of a measure that is included in
kw.keys() will be filled with the value stored in kw.
Example:
>>> prediction_scores(P, FM, ctr_loc = (y,x))
In this case the AUC will be computed with control points (y,x), because
the measure 'roc_model' has 'ctr_loc' as named argument.
Input:
prediction : 2D numpy array
The prediction that should be evaluated
fm : Fixmat
The eyetracking data to evaluate against
Output:
Tuple of prediction scores. The order of the scores is determined
by order of measures.scores.
""" |
if prediction == None:
return [np.NaN for measure in scores]
results = []
for measure in scores:
(args, _, _, _) = inspect.getargspec(measure)
if len(args)>2:
# Filter dictionary, such that only the keys that are
# expected by the measure are in it
mdict = {}
[mdict.update({key:value}) for (key, value) in list(kw.items())
if key in args]
score = measure(prediction, fm, **mdict)
else:
score = measure(prediction, fm)
results.append(score)
return results |
<SYSTEM_TASK:>
wraps kldiv functionality for model evaluation
<END_TASK>
<USER_TASK:>
Description:
def kldiv_model(prediction, fm):
"""
wraps kldiv functionality for model evaluation
input:
prediction: 2D matrix
the model salience map
fm : fixmat
Should be filtered for the image corresponding to the prediction
""" |
(_, r_x) = calc_resize_factor(prediction, fm.image_size)
q = np.array(prediction, copy=True)
q -= np.min(q.flatten())
q /= np.sum(q.flatten())
return kldiv(None, q, distp = fm, scale_factor = r_x) |
<SYSTEM_TASK:>
Computes the Kullback-Leibler divergence between two distributions.
<END_TASK>
<USER_TASK:>
Description:
def kldiv(p, q, distp = None, distq = None, scale_factor = 1):
"""
Computes the Kullback-Leibler divergence between two distributions.
Parameters
p : Matrix
The first probability distribution
q : Matrix
The second probability distribution
distp : fixmat
If p is None, distp is used to compute a FDM which
is then taken as 1st probability distribution.
distq : fixmat
If q is None, distq is used to compute a FDM which is
then taken as 2dn probability distribution.
scale_factor : double
Determines the size of FDM computed from distq or distp.
""" |
assert q != None or distq != None, "Either q or distq have to be given"
assert p != None or distp != None, "Either p or distp have to be given"
try:
if p == None:
p = compute_fdm(distp, scale_factor = scale_factor)
if q == None:
q = compute_fdm(distq, scale_factor = scale_factor)
except RuntimeError:
return np.NaN
q += np.finfo(q.dtype).eps
p += np.finfo(p.dtype).eps
kl = np.sum( p * (np.log2(p / q)))
return kl |
<SYSTEM_TASK:>
Computes Chao-Shen corrected KL-divergence between prediction
<END_TASK>
<USER_TASK:>
Description:
def kldiv_cs_model(prediction, fm):
"""
Computes Chao-Shen corrected KL-divergence between prediction
and fdm made from fixations in fm.
Parameters :
prediction : np.ndarray
a fixation density map
fm : FixMat object
""" |
# compute histogram of fixations needed for ChaoShen corrected kl-div
# image category must exist (>-1) and image_size must be non-empty
assert(len(fm.image_size) == 2 and (fm.image_size[0] > 0) and
(fm.image_size[1] > 0))
assert(-1 not in fm.category)
# check whether fixmat contains fixations
if len(fm.x) == 0:
return np.NaN
(scale_factor, _) = calc_resize_factor(prediction, fm.image_size)
# this specifies left edges of the histogram bins, i.e. fixations between
# ]0 binedge[0]] are included. --> fixations are ceiled
e_y = np.arange(0, np.round(scale_factor*fm.image_size[0]+1))
e_x = np.arange(0, np.round(scale_factor*fm.image_size[1]+1))
samples = np.array(list(zip((scale_factor*fm.y), (scale_factor*fm.x))))
(fdm, _) = np.histogramdd(samples, (e_y, e_x))
# compute ChaoShen corrected kl-div
q = np.array(prediction, copy = True)
q[q == 0] = np.finfo(q.dtype).eps
q /= np.sum(q)
(H, pa, la) = chao_shen(fdm)
q = q[fdm > 0]
cross_entropy = -np.sum((pa * np.log2(q)) / la)
return (cross_entropy - H) |
<SYSTEM_TASK:>
Computes some terms needed for the Chao-Shen KL correction.
<END_TASK>
<USER_TASK:>
Description:
def chao_shen(q):
"""
Computes some terms needed for the Chao-Shen KL correction.
""" |
yx = q[q > 0] # remove bins with zero counts
n = np.sum(yx)
p = yx.astype(float)/n
f1 = np.sum(yx == 1) # number of singletons in the sample
if f1 == n: # avoid C == 0
f1 -= 1
C = 1 - (f1/n) # estimated coverage of the sample
pa = C * p # coverage adjusted empirical frequencies
la = (1 - (1 - pa) ** n) # probability to see a bin (species) in the sample
H = -np.sum((pa * np.log2(pa)) / la)
return (H, pa, la) |
<SYSTEM_TASK:>
wraps numpy.corrcoef functionality for model evaluation
<END_TASK>
<USER_TASK:>
Description:
def correlation_model(prediction, fm):
"""
wraps numpy.corrcoef functionality for model evaluation
input:
prediction: 2D Matrix
the model salience map
fm: fixmat
Used to compute a FDM to which the prediction is compared.
""" |
(_, r_x) = calc_resize_factor(prediction, fm.image_size)
fdm = compute_fdm(fm, scale_factor = r_x)
return np.corrcoef(fdm.flatten(), prediction.flatten())[0,1] |
<SYSTEM_TASK:>
wraps nss functionality for model evaluation
<END_TASK>
<USER_TASK:>
Description:
def nss_model(prediction, fm):
"""
wraps nss functionality for model evaluation
input:
prediction: 2D matrix
the model salience map
fm : fixmat
Fixations that define the actuals
""" |
(r_y, r_x) = calc_resize_factor(prediction, fm.image_size)
fix = ((np.array(fm.y-1)*r_y).astype(int),
(np.array(fm.x-1)*r_x).astype(int))
return nss(prediction, fix) |
<SYSTEM_TASK:>
Compute the normalized scanpath salience
<END_TASK>
<USER_TASK:>
Description:
def nss(prediction, fix):
"""
Compute the normalized scanpath salience
input:
fix : list, l[0] contains y, l[1] contains x
""" |
prediction = prediction - np.mean(prediction)
prediction = prediction / np.std(prediction)
return np.mean(prediction[fix[0], fix[1]]) |
<SYSTEM_TASK:>
wraps roc functionality for model evaluation
<END_TASK>
<USER_TASK:>
Description:
def roc_model(prediction, fm, ctr_loc = None, ctr_size = None):
"""
wraps roc functionality for model evaluation
Parameters:
prediction: 2D array
the model salience map
fm : fixmat
Fixations that define locations of the actuals
ctr_loc : tuple of (y.x) coordinates, optional
Allows to specify control points for spatial
bias correction
ctr_size : two element tuple, optional
Specifies the assumed image size of the control locations,
defaults to fm.image_size
""" |
# check if prediction is a valid numpy array
assert type(prediction) == np.ndarray
# check whether scaling preserved aspect ratio
(r_y, r_x) = calc_resize_factor(prediction, fm.image_size)
# read out values in the fdm at actual fixation locations
# .astype(int) floors numbers in np.array
y_index = (r_y * np.array(fm.y-1)).astype(int)
x_index = (r_x * np.array(fm.x-1)).astype(int)
actuals = prediction[y_index, x_index]
if not ctr_loc:
xc = np.random.randint(0, prediction.shape[1], 1000)
yc = np.random.randint(0, prediction.shape[0], 1000)
ctr_loc = (yc.astype(int), xc.astype(int))
else:
if not ctr_size:
ctr_size = fm.image_size
else:
(r_y, r_x) = calc_resize_factor(prediction, ctr_size)
ctr_loc = ((r_y * np.array(ctr_loc[0])).astype(int),
(r_x * np.array(ctr_loc[1])).astype(int))
controls = prediction[ctr_loc[0], ctr_loc[1]]
return fast_roc(actuals, controls)[0] |
<SYSTEM_TASK:>
approximates the area under the roc curve for sets of actuals and controls.
<END_TASK>
<USER_TASK:>
Description:
def fast_roc(actuals, controls):
"""
approximates the area under the roc curve for sets of actuals and controls.
Uses all values appearing in actuals as thresholds and lower sum
interpolation. Also returns arrays of the true positive rate and the false
positive rate that can be used for plotting the roc curve.
Parameters:
actuals : list
A list of numeric values for positive observations.
controls : list
A list of numeric values for negative observations.
""" |
assert(type(actuals) is np.ndarray)
assert(type(controls) is np.ndarray)
actuals = np.ravel(actuals)
controls = np.ravel(controls)
if np.isnan(actuals).any():
raise RuntimeError('NaN found in actuals')
if np.isnan(controls).any():
raise RuntimeError('NaN found in controls')
thresholds = np.hstack([-np.inf, np.unique(actuals), np.inf])[::-1]
true_pos_rate = np.empty(thresholds.size)
false_pos_rate = np.empty(thresholds.size)
num_act = float(len(actuals))
num_ctr = float(len(controls))
for i, value in enumerate(thresholds):
true_pos_rate[i] = (actuals >= value).sum() / num_act
false_pos_rate[i] = (controls >= value).sum() / num_ctr
auc = np.dot(np.diff(false_pos_rate), true_pos_rate[0:-1])
# treat cases where TPR of one is not reached before FPR of one
# by using trapezoidal integration for the last segment
# (add the missing triangle)
if false_pos_rate[-2] == 1:
auc += ((1-true_pos_rate[-3])*.5*(1-false_pos_rate[-3]))
return (auc, true_pos_rate, false_pos_rate) |
<SYSTEM_TASK:>
wraps emd functionality for model evaluation
<END_TASK>
<USER_TASK:>
Description:
def emd_model(prediction, fm):
"""
wraps emd functionality for model evaluation
requires:
OpenCV python bindings
input:
prediction: the model salience map
fm : fixmat filtered for the image corresponding to the prediction
""" |
(_, r_x) = calc_resize_factor(prediction, fm.image_size)
gt = fixmat.compute_fdm(fm, scale_factor = r_x)
return emd(prediction, gt) |
<SYSTEM_TASK:>
Compute the Eart Movers Distance between prediction and model.
<END_TASK>
<USER_TASK:>
Description:
def emd(prediction, ground_truth):
"""
Compute the Eart Movers Distance between prediction and model.
This implementation uses opencv for doing the actual work.
Unfortunately, at the time of implementation only the SWIG
bindings werer available and the numpy arrays have to
converted by hand. This changes with opencv 2.1. """ |
import opencv
if not (prediction.shape == ground_truth.shape):
raise RuntimeError('Shapes of prediction and ground truth have' +
' to be equal. They are: %s, %s'
%(str(prediction.shape), str(ground_truth.shape)))
(x, y) = np.meshgrid(list(range(0, prediction.shape[1])),
list(range(0, prediction.shape[0])))
s1 = np.array([x.flatten(), y.flatten(), prediction.flatten()]).T
s2 = np.array([x.flatten(), y.flatten(), ground_truth.flatten()]).T
s1m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1)
s2m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1)
for r in range(0, s1.shape[0]):
for c in range(0, s1.shape[1]):
s1m[r, c] = float(s1[r, c])
s2m[r, c] = float(s2[r, c])
d = opencv.cvCalcEMD2(s1m, s2m, opencv.CV_DIST_L2)
return d |
<SYSTEM_TASK:>
Gets the parser for the command f, if it not exists it creates a new one
<END_TASK>
<USER_TASK:>
Description:
def _get_parser(f):
"""
Gets the parser for the command f, if it not exists it creates a new one
""" |
_COMMAND_GROUPS[f.__module__].load()
if f.__name__ not in _COMMAND_GROUPS[f.__module__].parsers:
parser = _COMMAND_GROUPS[f.__module__].parser_generator.add_parser(f.__name__, help=f.__doc__,
description=f.__doc__)
parser.set_defaults(func=f)
_COMMAND_GROUPS[f.__module__].parsers[f.__name__] = parser
return _COMMAND_GROUPS[f.__module__].parsers[f.__name__] |
<SYSTEM_TASK:>
Discover any WebMention endpoint for a given URL.
<END_TASK>
<USER_TASK:>
Description:
def discoverEndpoint(url, test_urls=True, headers={}, timeout=None, request=None, debug=False):
"""Discover any WebMention endpoint for a given URL.
:param link: URL to discover WebMention endpoint
:param test_urls: optional flag to test URLs for validation
:param headers: optional headers to send with any web requests
:type headers dict
:param timeout: optional timeout for web requests
:type timeout float
:param request: optional Requests request object to avoid another GET
:rtype: tuple (status_code, URL, [debug])
""" |
if test_urls:
URLValidator(message='invalid URL')(url)
# status, webmention
endpointURL = None
debugOutput = []
try:
if request is not None:
targetRequest = request
else:
targetRequest = requests.get(url, verify=False, headers=headers, timeout=timeout)
returnCode = targetRequest.status_code
debugOutput.append('%s %s' % (returnCode, url))
if returnCode == requests.codes.ok:
try:
linkHeader = parse_link_header(targetRequest.headers['link'])
endpointURL = linkHeader.get('webmention', '') or \
linkHeader.get('http://webmention.org', '') or \
linkHeader.get('http://webmention.org/', '') or \
linkHeader.get('https://webmention.org', '') or \
linkHeader.get('https://webmention.org/', '')
# force searching in the HTML if not found
if not endpointURL:
raise AttributeError
debugOutput.append('found in link headers')
except (KeyError, AttributeError):
endpointURL = findEndpoint(targetRequest.text)
debugOutput.append('found in body')
if endpointURL is not None:
endpointURL = urljoin(url, endpointURL)
except (requests.exceptions.RequestException, requests.exceptions.ConnectionError,
requests.exceptions.HTTPError, requests.exceptions.URLRequired,
requests.exceptions.TooManyRedirects, requests.exceptions.Timeout):
debugOutput.append('exception during GET request')
returnCode = 500
debugOutput.append('endpointURL: %s %s' % (returnCode, endpointURL))
if debug:
return (returnCode, endpointURL, debugOutput)
else:
return (returnCode, endpointURL) |
<SYSTEM_TASK:>
Indent every line of text in a newline-delimited string
<END_TASK>
<USER_TASK:>
Description:
def indent_text(string, indent_level=2):
"""Indent every line of text in a newline-delimited string""" |
indented_lines = []
indent_spaces = ' ' * indent_level
for line in string.split('\n'):
indented_lines.append(indent_spaces + line)
return '\n'.join(indented_lines) |
<SYSTEM_TASK:>
Download a file using requests.
<END_TASK>
<USER_TASK:>
Description:
def download(url, target, headers=None, trackers=()):
"""Download a file using requests.
This is like urllib.request.urlretrieve, but:
- requests validates SSL certificates by default
- you can pass tracker objects to e.g. display a progress bar or calculate
a file hash.
""" |
if headers is None:
headers = {}
headers.setdefault('user-agent', 'requests_download/'+__version__)
r = requests.get(url, headers=headers, stream=True)
r.raise_for_status()
for t in trackers:
t.on_start(r)
with open(target, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
for t in trackers:
t.on_chunk(chunk)
for t in trackers:
t.on_finish() |
<SYSTEM_TASK:>
Writes an object created by `parse` to either a file or a bytearray.
<END_TASK>
<USER_TASK:>
Description:
def write(parsed_obj, spec=None, filename=None):
"""Writes an object created by `parse` to either a file or a bytearray.
If the object doesn't end on a byte boundary, zeroes are appended to it
until it does.
""" |
if not isinstance(parsed_obj, BreadStruct):
raise ValueError(
'Object to write must be a structure created '
'by bread.parse')
if filename is not None:
with open(filename, 'wb') as fp:
parsed_obj._data_bits[:parsed_obj._length].tofile(fp)
else:
return bytearray(parsed_obj._data_bits[:parsed_obj._length].tobytes()) |
<SYSTEM_TASK:>
Uploads a file to an S3 bucket, as a public file.
<END_TASK>
<USER_TASK:>
Description:
def deploy_file(file_path, bucket):
""" Uploads a file to an S3 bucket, as a public file. """ |
# Paths look like:
# index.html
# css/bootstrap.min.css
logger.info("Deploying {0}".format(file_path))
# Upload the actual file to file_path
k = Key(bucket)
k.key = file_path
try:
k.set_contents_from_filename(file_path)
k.set_acl('public-read')
except socket.error:
logger.warning("Caught socket.error while trying to upload {0}".format(
file_path))
msg = "Please file an issue with alotofeffort if you see this,"
logger.warning(msg)
logger.warning("providing as much info as you can.") |
<SYSTEM_TASK:>
Deploy to the configured S3 bucket.
<END_TASK>
<USER_TASK:>
Description:
def deploy(www_dir, bucket_name):
""" Deploy to the configured S3 bucket. """ |
# Set up the connection to an S3 bucket.
conn = boto.connect_s3()
bucket = conn.get_bucket(bucket_name)
# Deploy each changed file in www_dir
os.chdir(www_dir)
for root, dirs, files in os.walk('.'):
for f in files:
# Use full relative path. Normalize to remove dot.
file_path = os.path.normpath(os.path.join(root, f))
if has_changed_since_last_deploy(file_path, bucket):
deploy_file(file_path, bucket)
else:
logger.info("Skipping {0}".format(file_path))
# Make the whole bucket public
bucket.set_acl('public-read')
# Configure it to be a website
bucket.configure_website('index.html', 'error.html')
# Print the endpoint, so you know the URL
msg = "Your website is now live at {0}".format(
bucket.get_website_endpoint())
logger.info(msg)
logger.info("If you haven't done so yet, point your domain name there!") |
<SYSTEM_TASK:>
Checks if a file has changed since the last time it was deployed.
<END_TASK>
<USER_TASK:>
Description:
def has_changed_since_last_deploy(file_path, bucket):
"""
Checks if a file has changed since the last time it was deployed.
:param file_path: Path to file which should be checked. Should be relative
from root of bucket.
:param bucket_name: Name of S3 bucket to check against.
:returns: True if the file has changed, else False.
""" |
msg = "Checking if {0} has changed since last deploy.".format(file_path)
logger.debug(msg)
with open(file_path) as f:
data = f.read()
file_md5 = hashlib.md5(data.encode('utf-8')).hexdigest()
logger.debug("file_md5 is {0}".format(file_md5))
key = bucket.get_key(file_path)
# HACK: Boto's md5 property does not work when the file hasn't been
# downloaded. The etag works but will break for multi-part uploaded files.
# http://stackoverflow.com/questions/16872679/how-to-programmatically-
# get-the-md5-checksum-of-amazon-s3-file-using-boto/17607096#17607096
# Also the double quotes around it must be stripped. Sketchy...boto's fault
if key:
key_md5 = key.etag.replace('"', '').strip()
logger.debug("key_md5 is {0}".format(key_md5))
else:
logger.debug("File does not exist in bucket")
return True
if file_md5 == key_md5:
logger.debug("File has not changed.")
return False
logger.debug("File has changed.")
return True |
<SYSTEM_TASK:>
Entry point for the package, as defined in setup.py.
<END_TASK>
<USER_TASK:>
Description:
def main():
""" Entry point for the package, as defined in setup.py. """ |
# Log info and above to console
logging.basicConfig(
format='%(levelname)s: %(message)s', level=logging.INFO)
# Get command line input/output arguments
msg = 'Instantly deploy static HTML sites to S3 at the command line.'
parser = argparse.ArgumentParser(description=msg)
parser.add_argument(
'www_dir',
help='Directory containing the HTML files for your website.'
)
parser.add_argument(
'bucket_name',
help='Name of S3 bucket to deploy to, e.g. mybucket.'
)
args = parser.parse_args()
# Deploy the site to S3!
deploy(args.www_dir, args.bucket_name) |
<SYSTEM_TASK:>
This keyword is used to start sikuli java process.
<END_TASK>
<USER_TASK:>
Description:
def start_sikuli_process(self, port=None):
"""
This keyword is used to start sikuli java process.
If library is inited with mode "OLD", sikuli java process is started automatically.
If library is inited with mode "NEW", this keyword should be used.
:param port: port of sikuli java process, if value is None or 0, a random free port will be used
:return: None
""" |
if port is None or int(port) == 0:
port = self._get_free_tcp_port()
self.port = port
start_retries = 0
started = False
while start_retries < 5:
try:
self._start_sikuli_java_process()
except RuntimeError as err:
print('error........%s' % err)
if self.process:
self.process.terminate_process()
self.port = self._get_free_tcp_port()
start_retries += 1
continue
started = True
break
if not started:
raise RuntimeError('Start sikuli java process failed!')
self.remote = self._connect_remote_library() |
<SYSTEM_TASK:>
Store the actual process in _process. If it doesn't exist yet, create
<END_TASK>
<USER_TASK:>
Description:
def process(self):
"""
Store the actual process in _process. If it doesn't exist yet, create
it.
""" |
if hasattr(self, '_process'):
return self._process
else:
self._process = self._get_process()
return self._process |
<SYSTEM_TASK:>
Create the process by running the specified command.
<END_TASK>
<USER_TASK:>
Description:
def _get_process(self):
"""
Create the process by running the specified command.
""" |
command = self._get_command()
return subprocess.Popen(command, bufsize=-1, close_fds=True,
stdout=subprocess.PIPE,
stdin=subprocess.PIPE) |
<SYSTEM_TASK:>
Split a text into separate words.
<END_TASK>
<USER_TASK:>
Description:
def tokenize_list(self, text):
"""
Split a text into separate words.
""" |
return [self.get_record_token(record) for record in self.analyze(text)] |
<SYSTEM_TASK:>
Determine whether a single word is a stopword, or whether a short
<END_TASK>
<USER_TASK:>
Description:
def is_stopword(self, text):
"""
Determine whether a single word is a stopword, or whether a short
phrase is made entirely of stopwords, disregarding context.
Use of this function should be avoided; it's better to give the text
in context and let the process determine which words are the stopwords.
""" |
found_content_word = False
for record in self.analyze(text):
if not self.is_stopword_record(record):
found_content_word = True
break
return not found_content_word |
<SYSTEM_TASK:>
Get a canonical list representation of text, with words
<END_TASK>
<USER_TASK:>
Description:
def normalize_list(self, text, cache=None):
"""
Get a canonical list representation of text, with words
separated and reduced to their base forms.
TODO: use the cache.
""" |
words = []
analysis = self.analyze(text)
for record in analysis:
if not self.is_stopword_record(record):
words.append(self.get_record_root(record))
if not words:
# Don't discard stopwords if that's all you've got
words = [self.get_record_token(record) for record in analysis]
return words |
<SYSTEM_TASK:>
Given some text, extract phrases of up to 2 content words,
<END_TASK>
<USER_TASK:>
Description:
def extract_phrases(self, text):
"""
Given some text, extract phrases of up to 2 content words,
and map their normalized form to the complete phrase.
""" |
analysis = self.analyze(text)
for pos1 in range(len(analysis)):
rec1 = analysis[pos1]
if not self.is_stopword_record(rec1):
yield self.get_record_root(rec1), rec1[0]
for pos2 in range(pos1 + 1, len(analysis)):
rec2 = analysis[pos2]
if not self.is_stopword_record(rec2):
roots = [self.get_record_root(rec1),
self.get_record_root(rec2)]
pieces = [analysis[i][0] for i in range(pos1, pos2+1)]
term = ' '.join(roots)
phrase = ''.join(pieces)
yield term, phrase
break |
<SYSTEM_TASK:>
Use MeCab to turn any text into its phonetic spelling, as katakana
<END_TASK>
<USER_TASK:>
Description:
def to_kana(text):
"""
Use MeCab to turn any text into its phonetic spelling, as katakana
separated by spaces.
""" |
records = MECAB.analyze(text)
kana = []
for record in records:
if record.pronunciation:
kana.append(record.pronunciation)
elif record.reading:
kana.append(record.reading)
else:
kana.append(record.surface)
return ' '.join(k for k in kana if k) |
<SYSTEM_TASK:>
Given a record, get the word's part of speech.
<END_TASK>
<USER_TASK:>
Description:
def get_record_pos(self, record):
"""
Given a record, get the word's part of speech.
Here we're going to return MeCab's part of speech (written in
Japanese), though if it's a stopword we prefix the part of speech
with '~'.
""" |
if self.is_stopword_record(record):
return '~' + record.pos
else:
return record.pos |
<SYSTEM_TASK:>
Untokenizing a text undoes the tokenizing operation, restoring
<END_TASK>
<USER_TASK:>
Description:
def untokenize(words):
"""
Untokenizing a text undoes the tokenizing operation, restoring
punctuation and spaces to the places that people expect them to be.
Ideally, `untokenize(tokenize(text))` should be identical to `text`,
except for line breaks.
""" |
text = ' '.join(words)
step1 = text.replace("`` ", '"').replace(" ''", '"').replace('. . .', '...')
step2 = step1.replace(" ( ", " (").replace(" ) ", ") ")
step3 = re.sub(r' ([.,:;?!%]+)([ \'"`])', r"\1\2", step2)
step4 = re.sub(r' ([.,:;?!%]+)$', r"\1", step3)
step5 = step4.replace(" '", "'").replace(" n't", "n't").replace(
"can not", "cannot")
step6 = step5.replace(" ` ", " '")
return step6.strip() |
<SYSTEM_TASK:>
r"""
<END_TASK>
<USER_TASK:>
Description:
def un_camel_case(text):
r"""
Splits apart words that are written in CamelCase.
Bugs:
- Non-ASCII characters are treated as lowercase letters, even if they are
actually capital letters.
Examples:
>>> un_camel_case('1984ZXSpectrumGames')
'1984 ZX Spectrum Games'
>>> un_camel_case('aaAa aaAaA 0aA AAAa!AAA')
'aa Aa aa Aa A 0a A AA Aa! AAA'
>>> un_camel_case('MotörHead')
'Mot\xf6r Head'
>>> un_camel_case('MSWindows3.11ForWorkgroups')
'MS Windows 3.11 For Workgroups'
This should not significantly affect text that is not camel-cased:
>>> un_camel_case('ACM_Computing_Classification_System')
'ACM Computing Classification System'
>>> un_camel_case('Anne_Blunt,_15th_Baroness_Wentworth')
'Anne Blunt, 15th Baroness Wentworth'
>>> un_camel_case('Hindi-Urdu')
'Hindi-Urdu'
""" |
revtext = text[::-1]
pieces = []
while revtext:
match = CAMEL_RE.match(revtext)
if match:
pieces.append(match.group(1))
revtext = revtext[match.end():]
else:
pieces.append(revtext)
revtext = ''
revstr = ' '.join(piece.strip(' _') for piece in pieces
if piece.strip(' _'))
return revstr[::-1].replace('- ', '-') |
<SYSTEM_TASK:>
Assign a heuristic to possible outputs from Morphy. Minimizing this
<END_TASK>
<USER_TASK:>
Description:
def _word_badness(word):
"""
Assign a heuristic to possible outputs from Morphy. Minimizing this
heuristic avoids incorrect stems.
""" |
if word.endswith('e'):
return len(word) - 2
elif word.endswith('ess'):
return len(word) - 10
elif word.endswith('ss'):
return len(word) - 4
else:
return len(word) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.