text_prompt
stringlengths
100
17.7k
code_prompt
stringlengths
7
9.86k
<SYSTEM_TASK:> return a list of group names <END_TASK> <USER_TASK:> Description: def iddtxt2grouplist(txt): """return a list of group names the list in the same order as the idf objects in idd file """
def makenone(astr): if astr == 'None': return None else: return astr txt = nocomment(txt, '!') txt = txt.replace("\\group", "!-group") # retains group in next line txt = nocomment(txt, '\\') # remove all other idd info lines = txt.splitlines() lines = [line.strip() for line in lines] # cleanup lines = [line for line in lines if line != ''] # cleanup txt = '\n'.join(lines) gsplits = txt.split('!') # split into groups, since we have !-group gsplits = [gsplit.splitlines() for gsplit in gsplits] # split group gsplits[0].insert(0, u'-group None') # Put None for the first group that does nothave a group name glist = [] for gsplit in gsplits: glist.append((gsplit[0], gsplit[1:])) # makes dict {groupname:[k1, k2], groupname2:[k3, k4]} glist = [(k, '\n'.join(v)) for k, v in glist]# joins lines back glist = [(k, v.split(';')) for k, v in glist] # splits into idfobjects glist = [(k, [i.strip() for i in v]) for k, v in glist] # cleanup glist = [(k, [i.splitlines() for i in v]) for k, v in glist] # splits idfobjects into lines glist = [(k, [i for i in v if len(i) > 0]) for k, v in glist] # cleanup - removes blank lines glist = [(k, [i[0] for i in v]) for k, v in glist] # use first line fglist = [] for gnamelist in glist: gname = gnamelist[0] thelist = gnamelist[-1] for item in thelist: fglist.append((gname, item)) glist = [(gname[len("-group "):], obj) for gname, obj in fglist] # remove "-group " glist = [(makenone(gname), obj) for gname, obj in glist] # make str None into None glist = [(gname, obj.split(',')[0]) for gname, obj in glist] # remove comma return glist
<SYSTEM_TASK:> add group info to commlst <END_TASK> <USER_TASK:> Description: def group2commlst(commlst, glist): """add group info to commlst"""
for (gname, objname), commitem in zip(glist, commlst): newitem1 = "group %s" % (gname, ) newitem2 = "idfobj %s" % (objname, ) commitem[0].insert(0, newitem1) commitem[0].insert(1, newitem2) return commlst
<SYSTEM_TASK:> flatten and return a copy of the list <END_TASK> <USER_TASK:> Description: def flattencopy(lst): """flatten and return a copy of the list indefficient on large lists"""
# modified from # http://stackoverflow.com/questions/2158395/flatten-an-irregular-list-of-lists-in-python thelist = copy.deepcopy(lst) list_is_nested = True while list_is_nested: # outer loop keepchecking = False atemp = [] for element in thelist: # inner loop if isinstance(element, list): atemp.extend(element) keepchecking = True else: atemp.append(element) list_is_nested = keepchecking # determine if outer loop exits thelist = atemp[:] return thelist
<SYSTEM_TASK:> make a pipe component <END_TASK> <USER_TASK:> Description: def makepipecomponent(idf, pname): """make a pipe component generate inlet outlet names"""
apipe = idf.newidfobject("Pipe:Adiabatic".upper(), Name=pname) apipe.Inlet_Node_Name = "%s_inlet" % (pname,) apipe.Outlet_Node_Name = "%s_outlet" % (pname,) return apipe
<SYSTEM_TASK:> make a duct component <END_TASK> <USER_TASK:> Description: def makeductcomponent(idf, dname): """make a duct component generate inlet outlet names"""
aduct = idf.newidfobject("duct".upper(), Name=dname) aduct.Inlet_Node_Name = "%s_inlet" % (dname,) aduct.Outlet_Node_Name = "%s_outlet" % (dname,) return aduct
<SYSTEM_TASK:> make a branch with a pipe <END_TASK> <USER_TASK:> Description: def makepipebranch(idf, bname): """make a branch with a pipe use standard inlet outlet names"""
# make the pipe component first pname = "%s_pipe" % (bname,) apipe = makepipecomponent(idf, pname) # now make the branch with the pipe in it abranch = idf.newidfobject("BRANCH", Name=bname) abranch.Component_1_Object_Type = 'Pipe:Adiabatic' abranch.Component_1_Name = pname abranch.Component_1_Inlet_Node_Name = apipe.Inlet_Node_Name abranch.Component_1_Outlet_Node_Name = apipe.Outlet_Node_Name abranch.Component_1_Branch_Control_Type = "Bypass" return abranch
<SYSTEM_TASK:> make a branch with a duct <END_TASK> <USER_TASK:> Description: def makeductbranch(idf, bname): """make a branch with a duct use standard inlet outlet names"""
# make the duct component first pname = "%s_duct" % (bname,) aduct = makeductcomponent(idf, pname) # now make the branch with the duct in it abranch = idf.newidfobject("BRANCH", Name=bname) abranch.Component_1_Object_Type = 'duct' abranch.Component_1_Name = pname abranch.Component_1_Inlet_Node_Name = aduct.Inlet_Node_Name abranch.Component_1_Outlet_Node_Name = aduct.Outlet_Node_Name abranch.Component_1_Branch_Control_Type = "Bypass" return abranch
<SYSTEM_TASK:> get the components of the branch <END_TASK> <USER_TASK:> Description: def getbranchcomponents(idf, branch, utest=False): """get the components of the branch"""
fobjtype = 'Component_%s_Object_Type' fobjname = 'Component_%s_Name' complist = [] for i in range(1, 100000): try: objtype = branch[fobjtype % (i,)] if objtype.strip() == '': break objname = branch[fobjname % (i,)] complist.append((objtype, objname)) except bunch_subclass.BadEPFieldError: break if utest: return complist else: return [idf.getobject(ot, on) for ot, on in complist]
<SYSTEM_TASK:> rename all the changed nodes <END_TASK> <USER_TASK:> Description: def renamenodes(idf, fieldtype): """rename all the changed nodes"""
renameds = [] for key in idf.model.dtls: for idfobject in idf.idfobjects[key]: for fieldvalue in idfobject.obj: if type(fieldvalue) is list: if fieldvalue not in renameds: cpvalue = copy.copy(fieldvalue) renameds.append(cpvalue) # do the renaming for key in idf.model.dtls: for idfobject in idf.idfobjects[key]: for i, fieldvalue in enumerate(idfobject.obj): itsidd = idfobject.objidd[i] if 'type' in itsidd: if itsidd['type'][0] == fieldtype: tempdct = dict(renameds) if type(fieldvalue) is list: fieldvalue = fieldvalue[-1] idfobject.obj[i] = fieldvalue else: if fieldvalue in tempdct: fieldvalue = tempdct[fieldvalue] idfobject.obj[i] = fieldvalue
<SYSTEM_TASK:> get the filednames for the idfobject based on endswith <END_TASK> <USER_TASK:> Description: def getfieldnamesendswith(idfobject, endswith): """get the filednames for the idfobject based on endswith"""
objls = idfobject.objls tmp = [name for name in objls if name.endswith(endswith)] if tmp == []: pass return [name for name in objls if name.endswith(endswith)]
<SYSTEM_TASK:> return the field name of the node <END_TASK> <USER_TASK:> Description: def getnodefieldname(idfobject, endswith, fluid=None, startswith=None): """return the field name of the node fluid is only needed if there are air and water nodes fluid is Air or Water or ''. if the fluid is Steam, use Water"""
if startswith is None: startswith = '' if fluid is None: fluid = '' nodenames = getfieldnamesendswith(idfobject, endswith) nodenames = [name for name in nodenames if name.startswith(startswith)] fnodenames = [nd for nd in nodenames if nd.find(fluid) != -1] fnodenames = [name for name in fnodenames if name.startswith(startswith)] if len(fnodenames) == 0: nodename = nodenames[0] else: nodename = fnodenames[0] return nodename
<SYSTEM_TASK:> rename nodes so that the components get connected <END_TASK> <USER_TASK:> Description: def connectcomponents(idf, components, fluid=None): """rename nodes so that the components get connected fluid is only needed if there are air and water nodes fluid is Air or Water or ''. if the fluid is Steam, use Water"""
if fluid is None: fluid = '' if len(components) == 1: thiscomp, thiscompnode = components[0] initinletoutlet(idf, thiscomp, thiscompnode, force=False) outletnodename = getnodefieldname(thiscomp, "Outlet_Node_Name", fluid=fluid, startswith=thiscompnode) thiscomp[outletnodename] = [thiscomp[outletnodename], thiscomp[outletnodename]] # inletnodename = getnodefieldname(nextcomp, "Inlet_Node_Name", fluid) # nextcomp[inletnodename] = [nextcomp[inletnodename], betweennodename] return components for i in range(len(components) - 1): thiscomp, thiscompnode = components[i] nextcomp, nextcompnode = components[i + 1] initinletoutlet(idf, thiscomp, thiscompnode, force=False) initinletoutlet(idf, nextcomp, nextcompnode, force=False) betweennodename = "%s_%s_node" % (thiscomp.Name, nextcomp.Name) outletnodename = getnodefieldname(thiscomp, "Outlet_Node_Name", fluid=fluid, startswith=thiscompnode) thiscomp[outletnodename] = [thiscomp[outletnodename], betweennodename] inletnodename = getnodefieldname(nextcomp, "Inlet_Node_Name", fluid) nextcomp[inletnodename] = [nextcomp[inletnodename], betweennodename] return components
<SYSTEM_TASK:> initialze values for all the inlet outlet nodes for the object. <END_TASK> <USER_TASK:> Description: def initinletoutlet(idf, idfobject, thisnode, force=False): """initialze values for all the inlet outlet nodes for the object. if force == False, it willl init only if field = '' """
def blankfield(fieldvalue): """test for blank field""" try: if fieldvalue.strip() == '': return True else: return False except AttributeError: # field may be a list return False def trimfields(fields, thisnode): if len(fields) > 1: if thisnode is not None: fields = [field for field in fields if field.startswith(thisnode)] return fields else: print("Where should this loop connect ?") print("%s - %s" % (idfobject.key, idfobject.Name)) print([field.split("Inlet_Node_Name")[0] for field in inletfields]) raise WhichLoopError else: return fields inletfields = getfieldnamesendswith(idfobject, "Inlet_Node_Name") inletfields = trimfields(inletfields, thisnode) # or warn with exception for inletfield in inletfields: if blankfield(idfobject[inletfield]) == True or force == True: idfobject[inletfield] = "%s_%s" % (idfobject.Name, inletfield) outletfields = getfieldnamesendswith(idfobject, "Outlet_Node_Name") outletfields = trimfields(outletfields, thisnode) # or warn with exception for outletfield in outletfields: if blankfield(idfobject[outletfield]) == True or force == True: idfobject[outletfield] = "%s_%s" % (idfobject.Name, outletfield) return idfobject
<SYSTEM_TASK:> insert a list of components into a branch <END_TASK> <USER_TASK:> Description: def componentsintobranch(idf, branch, listofcomponents, fluid=None): """insert a list of components into a branch fluid is only needed if there are air and water nodes in same object fluid is Air or Water or ''. if the fluid is Steam, use Water"""
if fluid is None: fluid = '' componentlist = [item[0] for item in listofcomponents] # assumes that the nodes of the component connect to each other # empty branch if it has existing components thebranchname = branch.Name thebranch = idf.removeextensibles('BRANCH', thebranchname) # empty the branch # fill in the new components with the node names into this branch # find the first extensible field and fill in the data in obj. e_index = idf.getextensibleindex('BRANCH', thebranchname) theobj = thebranch.obj modeleditor.extendlist(theobj, e_index) # just being careful here for comp, compnode in listofcomponents: theobj.append(comp.key) theobj.append(comp.Name) inletnodename = getnodefieldname(comp, "Inlet_Node_Name", fluid=fluid, startswith=compnode) theobj.append(comp[inletnodename]) outletnodename = getnodefieldname(comp, "Outlet_Node_Name", fluid=fluid, startswith=compnode) theobj.append(comp[outletnodename]) theobj.append('') return thebranch
<SYSTEM_TASK:> force it to be a list of tuples <END_TASK> <USER_TASK:> Description: def _clean_listofcomponents(listofcomponents): """force it to be a list of tuples"""
def totuple(item): """return a tuple""" if isinstance(item, (tuple, list)): return item else: return (item, None) return [totuple(item) for item in listofcomponents]
<SYSTEM_TASK:> force 3 items in the tuple <END_TASK> <USER_TASK:> Description: def _clean_listofcomponents_tuples(listofcomponents_tuples): """force 3 items in the tuple"""
def to3tuple(item): """return a 3 item tuple""" if len(item) == 3: return item else: return (item[0], item[1], None) return [to3tuple(item) for item in listofcomponents_tuples]
<SYSTEM_TASK:> get idfobject or make it if it does not exist <END_TASK> <USER_TASK:> Description: def getmakeidfobject(idf, key, name): """get idfobject or make it if it does not exist"""
idfobject = idf.getobject(key, name) if not idfobject: return idf.newidfobject(key, Name=name) else: return idfobject
<SYSTEM_TASK:> Area of a polygon poly <END_TASK> <USER_TASK:> Description: def area(poly): """Area of a polygon poly"""
if len(poly) < 3: # not a plane - no area return 0 total = [0, 0, 0] num = len(poly) for i in range(num): vi1 = poly[i] vi2 = poly[(i+1) % num] prod = np.cross(vi1, vi2) total[0] += prod[0] total[1] += prod[1] total[2] += prod[2] if total == [0, 0, 0]: # points are in a straight line - no area return 0 result = np.dot(total, unit_normal(poly[0], poly[1], poly[2])) return abs(result/2)
<SYSTEM_TASK:> unit normal vector of plane defined by points pt_a, pt_b, and pt_c <END_TASK> <USER_TASK:> Description: def unit_normal(pt_a, pt_b, pt_c): """unit normal vector of plane defined by points pt_a, pt_b, and pt_c"""
x_val = np.linalg.det([[1, pt_a[1], pt_a[2]], [1, pt_b[1], pt_b[2]], [1, pt_c[1], pt_c[2]]]) y_val = np.linalg.det([[pt_a[0], 1, pt_a[2]], [pt_b[0], 1, pt_b[2]], [pt_c[0], 1, pt_c[2]]]) z_val = np.linalg.det([[pt_a[0], pt_a[1], 1], [pt_b[0], pt_b[1], 1], [pt_c[0], pt_c[1], 1]]) magnitude = (x_val**2 + y_val**2 + z_val**2)**.5 mag = (x_val/magnitude, y_val/magnitude, z_val/magnitude) if magnitude < 0.00000001: mag = (0, 0, 0) return mag
<SYSTEM_TASK:> Width of a polygon poly <END_TASK> <USER_TASK:> Description: def width(poly): """Width of a polygon poly"""
num = len(poly) - 1 if abs(poly[num][2] - poly[0][2]) < abs(poly[1][2] - poly[0][2]): return dist(poly[num], poly[0]) elif abs(poly[num][2] - poly[0][2]) > abs(poly[1][2] - poly[0][2]): return dist(poly[1], poly[0]) else: return max(dist(poly[num], poly[0]), dist(poly[1], poly[0]))
<SYSTEM_TASK:> Height of a polygon poly <END_TASK> <USER_TASK:> Description: def height(poly): """Height of a polygon poly"""
num = len(poly) - 1 if abs(poly[num][2] - poly[0][2]) > abs(poly[1][2] - poly[0][2]): return dist(poly[num], poly[0]) elif abs(poly[num][2] - poly[0][2]) < abs(poly[1][2] - poly[0][2]): return dist(poly[1], poly[0]) else: return min(dist(poly[num], poly[0]), dist(poly[1], poly[0]))
<SYSTEM_TASK:> angle between two vectors <END_TASK> <USER_TASK:> Description: def angle2vecs(vec1, vec2): """angle between two vectors"""
# vector a * vector b = |a|*|b|* cos(angle between vector a and vector b) dot = np.dot(vec1, vec2) vec1_modulus = np.sqrt(np.multiply(vec1, vec1).sum()) vec2_modulus = np.sqrt(np.multiply(vec2, vec2).sum()) if (vec1_modulus * vec2_modulus) == 0: cos_angle = 1 else: cos_angle = dot / (vec1_modulus * vec2_modulus) return math.degrees(acos(cos_angle))
<SYSTEM_TASK:> Tilt of a polygon poly <END_TASK> <USER_TASK:> Description: def tilt(poly): """Tilt of a polygon poly"""
num = len(poly) - 1 vec = unit_normal(poly[0], poly[1], poly[num]) vec_alt = np.array([vec[0], vec[1], vec[2]]) vec_z = np.array([0, 0, 1]) # return (90 - angle2vecs(vec_alt, vec_z)) # update by Santosh return angle2vecs(vec_alt, vec_z)
<SYSTEM_TASK:> get all the fields that have the key 'field' <END_TASK> <USER_TASK:> Description: def getfields(comm): """get all the fields that have the key 'field' """
fields = [] for field in comm: if 'field' in field: fields.append(field) return fields
<SYSTEM_TASK:> get the names of the repeating fields <END_TASK> <USER_TASK:> Description: def repeatingfieldsnames(fields): """get the names of the repeating fields"""
fnames = [field['field'][0] for field in fields] fnames = [bunchhelpers.onlylegalchar(fname) for fname in fnames] fnames = [fname for fname in fnames if bunchhelpers.intinlist(fname.split())] fnames = [(bunchhelpers.replaceint(fname), None) for fname in fnames] dct = dict(fnames) repnames = fnames[:len(list(dct.keys()))] return repnames
<SYSTEM_TASK:> put missing keys in commdct for standard objects <END_TASK> <USER_TASK:> Description: def missingkeys_standard(commdct, dtls, skiplist=None): """put missing keys in commdct for standard objects return a list of keys where it is unable to do so commdct is not returned, but is updated"""
if skiplist == None: skiplist = [] # find objects where all the fields are not named gkeys = [dtls[i] for i in range(len(dtls)) if commdct[i].count({}) > 2] nofirstfields = [] # operatie on those fields for key_txt in gkeys: if key_txt in skiplist: continue # print key_txt # for a function, pass comm as a variable key_i = dtls.index(key_txt.upper()) comm = commdct[key_i] # get all fields fields = getfields(comm) # get repeating field names repnames = repeatingfieldsnames(fields) try: first = repnames[0][0] % (1, ) except IndexError: nofirstfields.append(key_txt) continue # print first # get all comments of the first repeating field names firstnames = [repname[0] % (1, ) for repname in repnames] fcomments = [field for field in fields if bunchhelpers.onlylegalchar(field['field'][0]) in firstnames] fcomments = [dict(fcomment) for fcomment in fcomments] for cmt in fcomments: fld = cmt['field'][0] fld = bunchhelpers.onlylegalchar(fld) fld = bunchhelpers.replaceint(fld) cmt['field'] = [fld] for i, cmt in enumerate(comm[1:]): thefield = cmt['field'][0] thefield = bunchhelpers.onlylegalchar(thefield) if thefield == first: break first_i = i + 1 newfields = [] for i in range(1, len(comm[first_i:]) // len(repnames) + 1): for fcomment in fcomments: nfcomment = dict(fcomment) fld = nfcomment['field'][0] fld = fld % (i, ) nfcomment['field'] = [fld] newfields.append(nfcomment) for i, cmt in enumerate(comm): if i < first_i: continue else: afield = newfields.pop(0) comm[i] = afield commdct[key_i] = comm return nofirstfields
<SYSTEM_TASK:> This is an object list where thre is no first field name <END_TASK> <USER_TASK:> Description: def missingkeys_nonstandard(block, commdct, dtls, objectlist, afield='afiled %s'): """This is an object list where thre is no first field name to give a hint of what the first field name should be"""
afield = 'afield %s' for key_txt in objectlist: key_i = dtls.index(key_txt.upper()) comm = commdct[key_i] if block: blk = block[key_i] for i, cmt in enumerate(comm): if cmt == {}: first_i = i break for i, cmt in enumerate(comm): if i >= first_i: if block: comm[i]['field'] = ['%s' % (blk[i])] else: comm[i]['field'] = [afield % (i - first_i + 1,),]
<SYSTEM_TASK:> Return a EventLoop instance. <END_TASK> <USER_TASK:> Description: def get_event_loop(): """Return a EventLoop instance. A new instance is created for each new HTTP request. We determine that we're in a new request by inspecting os.environ, which is reset at the start of each request. Also, each thread gets its own loop. """
ev = _state.event_loop if not os.getenv(_EVENT_LOOP_KEY) and ev is not None: ev.clear() _state.event_loop = None ev = None if ev is None: ev = EventLoop() _state.event_loop = ev os.environ[_EVENT_LOOP_KEY] = '1' return ev
<SYSTEM_TASK:> Remove all pending events without running any. <END_TASK> <USER_TASK:> Description: def clear(self): """Remove all pending events without running any."""
while self.current or self.idlers or self.queue or self.rpcs: current = self.current idlers = self.idlers queue = self.queue rpcs = self.rpcs _logging_debug('Clearing stale EventLoop instance...') if current: _logging_debug(' current = %s', current) if idlers: _logging_debug(' idlers = %s', idlers) if queue: _logging_debug(' queue = %s', queue) if rpcs: _logging_debug(' rpcs = %s', rpcs) self.__init__() current.clear() idlers.clear() queue[:] = [] rpcs.clear() _logging_debug('Cleared')
<SYSTEM_TASK:> Insert event in queue, and keep it sorted assuming queue is sorted. <END_TASK> <USER_TASK:> Description: def insort_event_right(self, event, lo=0, hi=None): """Insert event in queue, and keep it sorted assuming queue is sorted. If event is already in queue, insert it to the right of the rightmost event (to keep FIFO order). Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. Args: event: a (time in sec since unix epoch, callback, args, kwds) tuple. """
if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(self.queue) while lo < hi: mid = (lo + hi) // 2 if event[0] < self.queue[mid][0]: hi = mid else: lo = mid + 1 self.queue.insert(lo, event)
<SYSTEM_TASK:> Schedule a function call at a specific time in the future. <END_TASK> <USER_TASK:> Description: def queue_call(self, delay, callback, *args, **kwds): """Schedule a function call at a specific time in the future."""
if delay is None: self.current.append((callback, args, kwds)) return if delay < 1e9: when = delay + self.clock.now() else: # Times over a billion seconds are assumed to be absolute. when = delay self.insort_event_right((when, callback, args, kwds))
<SYSTEM_TASK:> Schedule an RPC with an optional callback. <END_TASK> <USER_TASK:> Description: def queue_rpc(self, rpc, callback=None, *args, **kwds): """Schedule an RPC with an optional callback. The caller must have previously sent the call to the service. The optional callback is called with the remaining arguments. NOTE: If the rpc is a MultiRpc, the callback will be called once for each sub-RPC. TODO: Is this a good idea? """
if rpc is None: return if rpc.state not in (_RUNNING, _FINISHING): raise RuntimeError('rpc must be sent to service before queueing') if isinstance(rpc, datastore_rpc.MultiRpc): rpcs = rpc.rpcs if len(rpcs) > 1: # Don't call the callback until all sub-rpcs have completed. rpc.__done = False def help_multi_rpc_along(r=rpc, c=callback, a=args, k=kwds): if r.state == _FINISHING and not r.__done: r.__done = True c(*a, **k) # TODO: And again, what about exceptions? callback = help_multi_rpc_along args = () kwds = {} else: rpcs = [rpc] for rpc in rpcs: self.rpcs[rpc] = (callback, args, kwds)
<SYSTEM_TASK:> Add an idle callback. <END_TASK> <USER_TASK:> Description: def add_idle(self, callback, *args, **kwds): """Add an idle callback. An idle callback can return True, False or None. These mean: - None: remove the callback (don't reschedule) - False: the callback did no work; reschedule later - True: the callback did some work; reschedule soon If the callback raises an exception, the traceback is logged and the callback is removed. """
self.idlers.append((callback, args, kwds))
<SYSTEM_TASK:> Run one of the idle callbacks. <END_TASK> <USER_TASK:> Description: def run_idle(self): """Run one of the idle callbacks. Returns: True if one was called, False if no idle callback was called. """
if not self.idlers or self.inactive >= len(self.idlers): return False idler = self.idlers.popleft() callback, args, kwds = idler _logging_debug('idler: %s', callback.__name__) res = callback(*args, **kwds) # See add_idle() for the meaning of the callback return value. if res is not None: if res: self.inactive = 0 else: self.inactive += 1 self.idlers.append(idler) else: _logging_debug('idler %s removed', callback.__name__) return True
<SYSTEM_TASK:> Helper for GQL parsing to extract values from GQL expressions. <END_TASK> <USER_TASK:> Description: def _args_to_val(func, args): """Helper for GQL parsing to extract values from GQL expressions. This can extract the value from a GQL literal, return a Parameter for a GQL bound parameter (:1 or :foo), and interprets casts like KEY(...) and plain lists of values like (1, 2, 3). Args: func: A string indicating what kind of thing this is. args: One or more GQL values, each integer, string, or GQL literal. """
from .google_imports import gql # Late import, to avoid name conflict. vals = [] for arg in args: if isinstance(arg, (int, long, basestring)): val = Parameter(arg) elif isinstance(arg, gql.Literal): val = arg.Get() else: raise TypeError('Unexpected arg (%r)' % arg) vals.append(val) if func == 'nop': if len(vals) != 1: raise TypeError('"nop" requires exactly one value') return vals[0] # May be a Parameter pfunc = ParameterizedFunction(func, vals) if pfunc.is_parameterized(): return pfunc else: return pfunc.resolve({}, {})
<SYSTEM_TASK:> Helper for FQL parsing to turn a property name into a property object. <END_TASK> <USER_TASK:> Description: def _get_prop_from_modelclass(modelclass, name): """Helper for FQL parsing to turn a property name into a property object. Args: modelclass: The model class specified in the query. name: The property name. This may contain dots which indicate sub-properties of structured properties. Returns: A Property object. Raises: KeyError if the property doesn't exist and the model clas doesn't derive from Expando. """
if name == '__key__': return modelclass._key parts = name.split('.') part, more = parts[0], parts[1:] prop = modelclass._properties.get(part) if prop is None: if issubclass(modelclass, model.Expando): prop = model.GenericProperty(part) else: raise TypeError('Model %s has no property named %r' % (modelclass._get_kind(), part)) while more: part = more.pop(0) if not isinstance(prop, model.StructuredProperty): raise TypeError('Model %s has no property named %r' % (modelclass._get_kind(), part)) maybe = getattr(prop, part, None) if isinstance(maybe, model.Property) and maybe._name == part: prop = maybe else: maybe = prop._modelclass._properties.get(part) if maybe is not None: # Must get it this way to get the copy with the long name. # (See StructuredProperty.__getattr__() for details.) prop = getattr(prop, maybe._code_name) else: if issubclass(prop._modelclass, model.Expando) and not more: prop = model.GenericProperty() prop._name = name # Bypass the restriction on dots. else: raise KeyError('Model %s has no property named %r' % (prop._modelclass._get_kind(), part)) return prop
<SYSTEM_TASK:> Apply the filter to values extracted from an entity. <END_TASK> <USER_TASK:> Description: def _apply(self, key_value_map): """Apply the filter to values extracted from an entity. Think of self.match_keys and self.match_values as representing a table with one row. For example: match_keys = ('name', 'age', 'rank') match_values = ('Joe', 24, 5) (Except that in reality, the values are represented by tuples produced by datastore_types.PropertyValueToKeyValue().) represents this table: | name | age | rank | +---------+-------+--------+ | 'Joe' | 24 | 5 | Think of key_value_map as a table with the same structure but (potentially) many rows. This represents a repeated structured property of a single entity. For example: {'name': ['Joe', 'Jane', 'Dick'], 'age': [24, 21, 23], 'rank': [5, 1, 2]} represents this table: | name | age | rank | +---------+-------+--------+ | 'Joe' | 24 | 5 | | 'Jane' | 21 | 1 | | 'Dick' | 23 | 2 | We must determine wheter at least one row of the second table exactly matches the first table. We need this class because the datastore, when asked to find an entity with name 'Joe', age 24 and rank 5, will include entities that have 'Joe' somewhere in the name column, 24 somewhere in the age column, and 5 somewhere in the rank column, but not all aligned on a single row. Such an entity should not be considered a match. """
columns = [] for key in self.match_keys: column = key_value_map.get(key) if not column: # None, or an empty list. return False # If any column is empty there can be no match. columns.append(column) # Use izip to transpose the columns into rows. return self.match_values in itertools.izip(*columns)
<SYSTEM_TASK:> Internal helper to fix the namespace. <END_TASK> <USER_TASK:> Description: def _fix_namespace(self): """Internal helper to fix the namespace. This is called to ensure that for queries without an explicit namespace, the namespace used by async calls is the one in effect at the time the async call is made, not the one in effect when the the request is actually generated. """
if self.namespace is not None: return self namespace = namespace_manager.get_namespace() return self.__class__(kind=self.kind, ancestor=self.ancestor, filters=self.filters, orders=self.orders, app=self.app, namespace=namespace, default_options=self.default_options, projection=self.projection, group_by=self.group_by)
<SYSTEM_TASK:> True if results are guaranteed to contain a unique set of property <END_TASK> <USER_TASK:> Description: def is_distinct(self): """True if results are guaranteed to contain a unique set of property values. This happens when every property in the group_by is also in the projection. """
return bool(self.__group_by and set(self._to_property_names(self.__group_by)) <= set(self._to_property_names(self.__projection)))
<SYSTEM_TASK:> Fetch a list of query results, up to a limit. <END_TASK> <USER_TASK:> Description: def fetch_async(self, limit=None, **q_options): """Fetch a list of query results, up to a limit. This is the asynchronous version of Query.fetch(). """
if limit is None: default_options = self._make_options(q_options) if default_options is not None and default_options.limit is not None: limit = default_options.limit else: limit = _MAX_LIMIT q_options['limit'] = limit q_options.setdefault('batch_size', limit) if self._needs_multi_query(): return self.map_async(None, **q_options) # Optimization using direct batches. options = self._make_options(q_options) qry = self._fix_namespace() return qry._run_to_list([], options=options)
<SYSTEM_TASK:> Count the number of query results, up to a limit. <END_TASK> <USER_TASK:> Description: def count_async(self, limit=None, **q_options): """Count the number of query results, up to a limit. This is the asynchronous version of Query.count(). """
qry = self._fix_namespace() return qry._count_async(limit=limit, **q_options)
<SYSTEM_TASK:> Fetch a page of results. <END_TASK> <USER_TASK:> Description: def fetch_page_async(self, page_size, **q_options): """Fetch a page of results. This is the asynchronous version of Query.fetch_page(). """
qry = self._fix_namespace() return qry._fetch_page_async(page_size, **q_options)
<SYSTEM_TASK:> Helper to construct a QueryOptions object from keyword arguments. <END_TASK> <USER_TASK:> Description: def _make_options(self, q_options): """Helper to construct a QueryOptions object from keyword arguments. Args: q_options: a dict of keyword arguments. Note that either 'options' or 'config' can be used to pass another QueryOptions object, but not both. If another QueryOptions object is given it provides default values. If self.default_options is set, it is used to provide defaults, which have a lower precedence than options set in q_options. Returns: A QueryOptions object, or None if q_options is empty. """
if not (q_options or self.__projection): return self.default_options if 'options' in q_options: # Move 'options' to 'config' since that is what QueryOptions() uses. if 'config' in q_options: raise TypeError('You cannot use config= and options= at the same time') q_options['config'] = q_options.pop('options') if q_options.get('projection'): try: q_options['projection'] = self._to_property_names( q_options['projection']) except TypeError, e: raise datastore_errors.BadArgumentError(e) self._check_properties(q_options['projection']) options = QueryOptions(**q_options) # Populate projection if it hasn't been overridden. if (options.keys_only is None and options.projection is None and self.__projection): options = QueryOptions( projection=self._to_property_names(self.__projection), config=options) # Populate default options if self.default_options is not None: options = self.default_options.merge(options) return options
<SYSTEM_TASK:> Return a list giving the parameters required by a query. <END_TASK> <USER_TASK:> Description: def analyze(self): """Return a list giving the parameters required by a query."""
class MockBindings(dict): def __contains__(self, key): self[key] = None return True bindings = MockBindings() used = {} ancestor = self.ancestor if isinstance(ancestor, ParameterizedThing): ancestor = ancestor.resolve(bindings, used) filters = self.filters if filters is not None: filters = filters.resolve(bindings, used) return sorted(used)
<SYSTEM_TASK:> Return the cursor before the current item. <END_TASK> <USER_TASK:> Description: def cursor_before(self): """Return the cursor before the current item. You must pass a QueryOptions object with produce_cursors=True for this to work. If there is no cursor or no current item, raise BadArgumentError. Before next() has returned there is no cursor. Once the loop is exhausted, this returns the cursor after the last item. """
if self._exhausted: return self.cursor_after() if isinstance(self._cursor_before, BaseException): raise self._cursor_before return self._cursor_before
<SYSTEM_TASK:> Return the cursor after the current item. <END_TASK> <USER_TASK:> Description: def cursor_after(self): """Return the cursor after the current item. You must pass a QueryOptions object with produce_cursors=True for this to work. If there is no cursor or no current item, raise BadArgumentError. Before next() has returned there is no cursor. Once the loop is exhausted, this returns the cursor after the last item. """
if isinstance(self._cursor_after, BaseException): raise self._cursor_after return self._cursor_after
<SYSTEM_TASK:> Return a Future whose result will say whether a next item is available. <END_TASK> <USER_TASK:> Description: def has_next_async(self): """Return a Future whose result will say whether a next item is available. See the module docstring for the usage pattern. """
if self._fut is None: self._fut = self._iter.getq() flag = True try: yield self._fut except EOFError: flag = False raise tasklets.Return(flag)
<SYSTEM_TASK:> A decorator to declare that only the first N arguments may be positional. <END_TASK> <USER_TASK:> Description: def positional(max_pos_args): """A decorator to declare that only the first N arguments may be positional. Note that for methods, n includes 'self'. """
__ndb_debug__ = 'SKIP' def positional_decorator(wrapped): if not DEBUG: return wrapped __ndb_debug__ = 'SKIP' @wrapping(wrapped) def positional_wrapper(*args, **kwds): __ndb_debug__ = 'SKIP' if len(args) > max_pos_args: plural_s = '' if max_pos_args != 1: plural_s = 's' raise TypeError( '%s() takes at most %d positional argument%s (%d given)' % (wrapped.__name__, max_pos_args, plural_s, len(args))) return wrapped(*args, **kwds) return positional_wrapper return positional_decorator
<SYSTEM_TASK:> Converts a function into a decorator that optionally accepts keyword <END_TASK> <USER_TASK:> Description: def decorator(wrapped_decorator): """Converts a function into a decorator that optionally accepts keyword arguments in its declaration. Example usage: @utils.decorator def decorator(func, args, kwds, op1=None): ... apply op1 ... return func(*args, **kwds) # Form (1), vanilla @decorator foo(...) ... # Form (2), with options @decorator(op1=5) foo(...) ... Args: wrapped_decorator: A function that accepts positional args (func, args, kwds) and any additional supported keyword arguments. Returns: A decorator with an additional 'wrapped_decorator' property that is set to the original function. """
def helper(_func=None, **options): def outer_wrapper(func): @wrapping(func) def inner_wrapper(*args, **kwds): return wrapped_decorator(func, args, kwds, **options) return inner_wrapper if _func is None: # Form (2), with options. return outer_wrapper # Form (1), vanilla. if options: # Don't allow @decorator(foo, op1=5). raise TypeError('positional arguments not supported') return outer_wrapper(_func) helper.wrapped_decorator = wrapped_decorator return helper
<SYSTEM_TASK:> A recursive Fibonacci to exercise task switching. <END_TASK> <USER_TASK:> Description: def fibonacci(n): """A recursive Fibonacci to exercise task switching."""
if n <= 1: raise ndb.Return(n) a, b = yield fibonacci(n - 1), fibonacci(n - 2) raise ndb.Return(a + b)
<SYSTEM_TASK:> Actually run the _todo_tasklet. <END_TASK> <USER_TASK:> Description: def run_queue(self, options, todo): """Actually run the _todo_tasklet."""
utils.logging_debug('AutoBatcher(%s): %d items', self._todo_tasklet.__name__, len(todo)) batch_fut = self._todo_tasklet(todo, options) self._running.append(batch_fut) # Add a callback when we're done. batch_fut.add_callback(self._finished_callback, batch_fut, todo)
<SYSTEM_TASK:> Adds an arg and gets back a future. <END_TASK> <USER_TASK:> Description: def add(self, arg, options=None): """Adds an arg and gets back a future. Args: arg: one argument for _todo_tasklet. options: rpc options. Return: An instance of future, representing the result of running _todo_tasklet without batching. """
fut = tasklets.Future('%s.add(%s, %s)' % (self, arg, options)) todo = self._queues.get(options) if todo is None: utils.logging_debug('AutoBatcher(%s): creating new queue for %r', self._todo_tasklet.__name__, options) if not self._queues: eventloop.add_idle(self._on_idle) todo = self._queues[options] = [] todo.append((fut, arg)) if len(todo) >= self._limit: del self._queues[options] self.run_queue(options, todo) return fut
<SYSTEM_TASK:> Passes exception along. <END_TASK> <USER_TASK:> Description: def _finished_callback(self, batch_fut, todo): """Passes exception along. Args: batch_fut: the batch future returned by running todo_tasklet. todo: (fut, option) pair. fut is the future return by each add() call. If the batch fut was successful, it has already called fut.set_result() on other individual futs. This method only handles when the batch fut encountered an exception. """
self._running.remove(batch_fut) err = batch_fut.get_exception() if err is not None: tb = batch_fut.get_traceback() for (fut, _) in todo: if not fut.done(): fut.set_exception(err, tb)
<SYSTEM_TASK:> Return all namespaces in the specified range. <END_TASK> <USER_TASK:> Description: def get_namespaces(start=None, end=None): """Return all namespaces in the specified range. Args: start: only return namespaces >= start if start is not None. end: only return namespaces < end if end is not None. Returns: A list of namespace names between the (optional) start and end values. """
q = Namespace.query() if start is not None: q = q.filter(Namespace.key >= Namespace.key_for_namespace(start)) if end is not None: q = q.filter(Namespace.key < Namespace.key_for_namespace(end)) return [x.namespace_name for x in q]
<SYSTEM_TASK:> Return all kinds in the specified range, for the current namespace. <END_TASK> <USER_TASK:> Description: def get_kinds(start=None, end=None): """Return all kinds in the specified range, for the current namespace. Args: start: only return kinds >= start if start is not None. end: only return kinds < end if end is not None. Returns: A list of kind names between the (optional) start and end values. """
q = Kind.query() if start is not None and start != '': q = q.filter(Kind.key >= Kind.key_for_kind(start)) if end is not None: if end == '': return [] q = q.filter(Kind.key < Kind.key_for_kind(end)) return [x.kind_name for x in q]
<SYSTEM_TASK:> Return all properties of kind in the specified range. <END_TASK> <USER_TASK:> Description: def get_properties_of_kind(kind, start=None, end=None): """Return all properties of kind in the specified range. NOTE: This function does not return unindexed properties. Args: kind: name of kind whose properties you want. start: only return properties >= start if start is not None. end: only return properties < end if end is not None. Returns: A list of property names of kind between the (optional) start and end values. """
q = Property.query(ancestor=Property.key_for_kind(kind)) if start is not None and start != '': q = q.filter(Property.key >= Property.key_for_property(kind, start)) if end is not None: if end == '': return [] q = q.filter(Property.key < Property.key_for_property(kind, end)) return [Property.key_to_property(k) for k in q.iter(keys_only=True)]
<SYSTEM_TASK:> Return all representations of properties of kind in the specified range. <END_TASK> <USER_TASK:> Description: def get_representations_of_kind(kind, start=None, end=None): """Return all representations of properties of kind in the specified range. NOTE: This function does not return unindexed properties. Args: kind: name of kind whose properties you want. start: only return properties >= start if start is not None. end: only return properties < end if end is not None. Returns: A dictionary mapping property names to its list of representations. """
q = Property.query(ancestor=Property.key_for_kind(kind)) if start is not None and start != '': q = q.filter(Property.key >= Property.key_for_property(kind, start)) if end is not None: if end == '': return {} q = q.filter(Property.key < Property.key_for_property(kind, end)) result = {} for property in q: result[property.property_name] = property.property_representation return result
<SYSTEM_TASK:> Return the version of the entity group containing key. <END_TASK> <USER_TASK:> Description: def get_entity_group_version(key): """Return the version of the entity group containing key. Args: key: a key for an entity group whose __entity_group__ key you want. Returns: The version of the entity group containing key. This version is guaranteed to increase on every change to the entity group. The version may increase even in the absence of user-visible changes to the entity group. May return None if the entity group was never written to. On non-HR datatores, this function returns None. """
eg = EntityGroup.key_for_entity_group(key).get() if eg: return eg.version else: return None
<SYSTEM_TASK:> Return the Key for a namespace. <END_TASK> <USER_TASK:> Description: def key_for_namespace(cls, namespace): """Return the Key for a namespace. Args: namespace: A string giving the namespace whose key is requested. Returns: The Key for the namespace. """
if namespace: return model.Key(cls.KIND_NAME, namespace) else: return model.Key(cls.KIND_NAME, cls.EMPTY_NAMESPACE_ID)
<SYSTEM_TASK:> Return the key for the entity group containing key. <END_TASK> <USER_TASK:> Description: def key_for_entity_group(cls, key): """Return the key for the entity group containing key. Args: key: a key for an entity group whose __entity_group__ key you want. Returns: The __entity_group__ key for the entity group containing key. """
return model.Key(cls.KIND_NAME, cls.ID, parent=key.root())
<SYSTEM_TASK:> Called by Django before deciding which view to execute. <END_TASK> <USER_TASK:> Description: def process_request(self, unused_request): """Called by Django before deciding which view to execute."""
# Compare to the first half of toplevel() in context.py. tasklets._state.clear_all_pending() # Create and install a new context. ctx = tasklets.make_default_context() tasklets.set_context(ctx)
<SYSTEM_TASK:> Helper to construct a ContextOptions object from keyword arguments. <END_TASK> <USER_TASK:> Description: def _make_ctx_options(ctx_options, config_cls=ContextOptions): """Helper to construct a ContextOptions object from keyword arguments. Args: ctx_options: A dict of keyword arguments. config_cls: Optional Configuration class to use, default ContextOptions. Note that either 'options' or 'config' can be used to pass another Configuration object, but not both. If another Configuration object is given it provides default values. Returns: A Configuration object, or None if ctx_options is empty. """
if not ctx_options: return None for key in list(ctx_options): translation = _OPTION_TRANSLATIONS.get(key) if translation: if translation in ctx_options: raise ValueError('Cannot specify %s and %s at the same time' % (key, translation)) ctx_options[translation] = ctx_options.pop(key) return config_cls(**ctx_options)
<SYSTEM_TASK:> Set the context cache policy function. <END_TASK> <USER_TASK:> Description: def set_cache_policy(self, func): """Set the context cache policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should be cached. May be None. """
if func is None: func = self.default_cache_policy elif isinstance(func, bool): func = lambda unused_key, flag=func: flag self._cache_policy = func
<SYSTEM_TASK:> Return whether to use the context cache for this key. <END_TASK> <USER_TASK:> Description: def _use_cache(self, key, options=None): """Return whether to use the context cache for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the key should be cached, False otherwise. """
flag = ContextOptions.use_cache(options) if flag is None: flag = self._cache_policy(key) if flag is None: flag = ContextOptions.use_cache(self._conn.config) if flag is None: flag = True return flag
<SYSTEM_TASK:> Set the memcache policy function. <END_TASK> <USER_TASK:> Description: def set_memcache_policy(self, func): """Set the memcache policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should be cached. May be None. """
if func is None: func = self.default_memcache_policy elif isinstance(func, bool): func = lambda unused_key, flag=func: flag self._memcache_policy = func
<SYSTEM_TASK:> Return whether to use memcache for this key. <END_TASK> <USER_TASK:> Description: def _use_memcache(self, key, options=None): """Return whether to use memcache for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the key should be cached in memcache, False otherwise. """
flag = ContextOptions.use_memcache(options) if flag is None: flag = self._memcache_policy(key) if flag is None: flag = ContextOptions.use_memcache(self._conn.config) if flag is None: flag = True return flag
<SYSTEM_TASK:> Default datastore policy. <END_TASK> <USER_TASK:> Description: def default_datastore_policy(key): """Default datastore policy. This defers to _use_datastore on the Model class. Args: key: Key instance. Returns: A bool or None. """
flag = None if key is not None: modelclass = model.Model._kind_map.get(key.kind()) if modelclass is not None: policy = getattr(modelclass, '_use_datastore', None) if policy is not None: if isinstance(policy, bool): flag = policy else: flag = policy(key) return flag
<SYSTEM_TASK:> Set the context datastore policy function. <END_TASK> <USER_TASK:> Description: def set_datastore_policy(self, func): """Set the context datastore policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should use the datastore. May be None. """
if func is None: func = self.default_datastore_policy elif isinstance(func, bool): func = lambda unused_key, flag=func: flag self._datastore_policy = func
<SYSTEM_TASK:> Return whether to use the datastore for this key. <END_TASK> <USER_TASK:> Description: def _use_datastore(self, key, options=None): """Return whether to use the datastore for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the datastore should be used, False otherwise. """
flag = ContextOptions.use_datastore(options) if flag is None: flag = self._datastore_policy(key) if flag is None: flag = ContextOptions.use_datastore(self._conn.config) if flag is None: flag = True return flag
<SYSTEM_TASK:> Default memcache timeout policy. <END_TASK> <USER_TASK:> Description: def default_memcache_timeout_policy(key): """Default memcache timeout policy. This defers to _memcache_timeout on the Model class. Args: key: Key instance. Returns: Memcache timeout to use (integer), or None. """
timeout = None if key is not None and isinstance(key, model.Key): modelclass = model.Model._kind_map.get(key.kind()) if modelclass is not None: policy = getattr(modelclass, '_memcache_timeout', None) if policy is not None: if isinstance(policy, (int, long)): timeout = policy else: timeout = policy(key) return timeout
<SYSTEM_TASK:> Returns a cached Model instance given the entity key if available. <END_TASK> <USER_TASK:> Description: def _load_from_cache_if_available(self, key): """Returns a cached Model instance given the entity key if available. Args: key: Key instance. Returns: A Model instance if the key exists in the cache. """
if key in self._cache: entity = self._cache[key] # May be None, meaning "doesn't exist". if entity is None or entity._key == key: # If entity's key didn't change later, it is ok. # See issue 13. http://goo.gl/jxjOP raise tasklets.Return(entity)
<SYSTEM_TASK:> Return a Model instance given the entity key. <END_TASK> <USER_TASK:> Description: def get(self, key, **ctx_options): """Return a Model instance given the entity key. It will use the context cache if the cache policy for the given key is enabled. Args: key: Key instance. **ctx_options: Context options. Returns: A Model instance if the key exists in the datastore; None otherwise. """
options = _make_ctx_options(ctx_options) use_cache = self._use_cache(key, options) if use_cache: self._load_from_cache_if_available(key) use_datastore = self._use_datastore(key, options) if (use_datastore and isinstance(self._conn, datastore_rpc.TransactionalConnection)): use_memcache = False else: use_memcache = self._use_memcache(key, options) ns = key.namespace() memcache_deadline = None # Avoid worries about uninitialized variable. if use_memcache: mkey = self._memcache_prefix + key.urlsafe() memcache_deadline = self._get_memcache_deadline(options) mvalue = yield self.memcache_get(mkey, for_cas=use_datastore, namespace=ns, use_cache=True, deadline=memcache_deadline) # A value may have appeared while yielding. if use_cache: self._load_from_cache_if_available(key) if mvalue not in (_LOCKED, None): cls = model.Model._lookup_model(key.kind(), self._conn.adapter.default_model) pb = entity_pb.EntityProto() try: pb.MergePartialFromString(mvalue) except ProtocolBuffer.ProtocolBufferDecodeError: logging.warning('Corrupt memcache entry found ' 'with key %s and namespace %s' % (mkey, ns)) mvalue = None else: entity = cls._from_pb(pb) # Store the key on the entity since it wasn't written to memcache. entity._key = key if use_cache: # Update in-memory cache. self._cache[key] = entity raise tasklets.Return(entity) if mvalue is None and use_datastore: yield self.memcache_set(mkey, _LOCKED, time=_LOCK_TIME, namespace=ns, use_cache=True, deadline=memcache_deadline) yield self.memcache_gets(mkey, namespace=ns, use_cache=True, deadline=memcache_deadline) if not use_datastore: # NOTE: Do not cache this miss. In some scenarios this would # prevent an app from working properly. raise tasklets.Return(None) if use_cache: entity = yield self._get_batcher.add_once(key, options) else: entity = yield self._get_batcher.add(key, options) if entity is not None: if use_memcache and mvalue != _LOCKED: # Don't serialize the key since it's already the memcache key. pbs = entity._to_pb(set_key=False).SerializePartialToString() # Don't attempt to write to memcache if too big. Note that we # use LBYL ("look before you leap") because a multi-value # memcache operation would fail for all entities rather than # for just the one that's too big. (Also, the AutoBatcher # class doesn't pass back exceptions very well.) if len(pbs) <= memcache.MAX_VALUE_SIZE: timeout = self._get_memcache_timeout(key, options) # Don't use fire-and-forget -- for users who forget # @ndb.toplevel, it's too painful to diagnose why their simple # code using a single synchronous call doesn't seem to use # memcache. See issue 105. http://goo.gl/JQZxp yield self.memcache_cas(mkey, pbs, time=timeout, namespace=ns, deadline=memcache_deadline) if use_cache: # Cache hit or miss. NOTE: In this case it is okay to cache a # miss; the datastore is the ultimate authority. self._cache[key] = entity raise tasklets.Return(entity)
<SYSTEM_TASK:> Call a callback upon successful commit of a transaction. <END_TASK> <USER_TASK:> Description: def call_on_commit(self, callback): """Call a callback upon successful commit of a transaction. If not in a transaction, the callback is called immediately. In a transaction, multiple callbacks may be registered and will be called once the transaction commits, in the order in which they were registered. If the transaction fails, the callbacks will not be called. If the callback raises an exception, it bubbles up normally. This means: If the callback is called immediately, any exception it raises will bubble up immediately. If the call is postponed until commit, remaining callbacks will be skipped and the exception will bubble up through the transaction() call. (However, the transaction is already committed at that point.) """
if not self.in_transaction(): callback() else: self._on_commit_queue.append(callback)
<SYSTEM_TASK:> Return a Future for a nickname from an account. <END_TASK> <USER_TASK:> Description: def get_nickname(userid): """Return a Future for a nickname from an account."""
account = yield get_account(userid) if not account: nickname = 'Unregistered' else: nickname = account.nickname or account.email raise ndb.Return(nickname)
<SYSTEM_TASK:> Marks a task as done. <END_TASK> <USER_TASK:> Description: def mark_done(task_id): """Marks a task as done. Args: task_id: The integer id of the task to update. Raises: ValueError: if the requested task doesn't exist. """
task = Task.get_by_id(task_id) if task is None: raise ValueError('Task with id %d does not exist' % task_id) task.done = True task.put()
<SYSTEM_TASK:> Converts a list of tasks to a list of string representations. <END_TASK> <USER_TASK:> Description: def format_tasks(tasks): """Converts a list of tasks to a list of string representations. Args: tasks: A list of the tasks to convert. Returns: A list of string formatted tasks. """
return ['%d : %s (%s)' % (task.key.id(), task.description, ('done' if task.done else 'created %s' % task.created)) for task in tasks]
<SYSTEM_TASK:> Accepts a string command and performs an action. <END_TASK> <USER_TASK:> Description: def handle_command(command): """Accepts a string command and performs an action. Args: command: the command to run as a string. """
try: cmds = command.split(None, 1) cmd = cmds[0] if cmd == 'new': add_task(get_arg(cmds)) elif cmd == 'done': mark_done(int(get_arg(cmds))) elif cmd == 'list': for task in format_tasks(list_tasks()): print task elif cmd == 'delete': delete_task(int(get_arg(cmds))) else: print_usage() except Exception, e: # pylint: disable=broad-except print e print_usage()
<SYSTEM_TASK:> Create upload URL for POST form. <END_TASK> <USER_TASK:> Description: def create_upload_url(success_path, max_bytes_per_blob=None, max_bytes_total=None, **options): """Create upload URL for POST form. Args: success_path: Path within application to call when POST is successful and upload is complete. max_bytes_per_blob: The maximum size in bytes that any one blob in the upload can be or None for no maximum size. max_bytes_total: The maximum size in bytes that the aggregate sizes of all of the blobs in the upload can be or None for no maximum size. **options: Options for create_rpc(). Returns: The upload URL. Raises: TypeError: If max_bytes_per_blob or max_bytes_total are not integral types. ValueError: If max_bytes_per_blob or max_bytes_total are not positive values. """
fut = create_upload_url_async(success_path, max_bytes_per_blob=max_bytes_per_blob, max_bytes_total=max_bytes_total, **options) return fut.get_result()
<SYSTEM_TASK:> Parse a BlobInfo record from file upload field_storage. <END_TASK> <USER_TASK:> Description: def parse_blob_info(field_storage): """Parse a BlobInfo record from file upload field_storage. Args: field_storage: cgi.FieldStorage that represents uploaded blob. Returns: BlobInfo record as parsed from the field-storage instance. None if there was no field_storage. Raises: BlobInfoParseError when provided field_storage does not contain enough information to construct a BlobInfo object. """
if field_storage is None: return None field_name = field_storage.name def get_value(dct, name): value = dct.get(name, None) if value is None: raise BlobInfoParseError( 'Field %s has no %s.' % (field_name, name)) return value filename = get_value(field_storage.disposition_options, 'filename') blob_key_str = get_value(field_storage.type_options, 'blob-key') blob_key = BlobKey(blob_key_str) upload_content = email.message_from_file(field_storage.file) content_type = get_value(upload_content, 'content-type') size = get_value(upload_content, 'content-length') creation_string = get_value(upload_content, UPLOAD_INFO_CREATION_HEADER) md5_hash_encoded = get_value(upload_content, 'content-md5') md5_hash = base64.urlsafe_b64decode(md5_hash_encoded) try: size = int(size) except (TypeError, ValueError): raise BlobInfoParseError( '%s is not a valid value for %s size.' % (size, field_name)) try: creation = blobstore._parse_creation(creation_string, field_name) except blobstore._CreationFormatError, err: raise BlobInfoParseError(str(err)) return BlobInfo(id=blob_key_str, content_type=content_type, creation=creation, filename=filename, size=size, md5_hash=md5_hash, )
<SYSTEM_TASK:> Fetch data for blob. <END_TASK> <USER_TASK:> Description: def fetch_data(blob, start_index, end_index, **options): """Fetch data for blob. Fetches a fragment of a blob up to MAX_BLOB_FETCH_SIZE in length. Attempting to fetch a fragment that extends beyond the boundaries of the blob will return the amount of data from start_index until the end of the blob, which will be a smaller size than requested. Requesting a fragment which is entirely outside the boundaries of the blob will return empty string. Attempting to fetch a negative index will raise an exception. Args: blob: BlobInfo, BlobKey, str or unicode representation of BlobKey of blob to fetch data from. start_index: Start index of blob data to fetch. May not be negative. end_index: End index (inclusive) of blob data to fetch. Must be >= start_index. **options: Options for create_rpc(). Returns: str containing partial data of blob. If the indexes are legal but outside the boundaries of the blob, will return empty string. Raises: TypeError if start_index or end_index are not indexes. Also when blob is not a string, BlobKey or BlobInfo. DataIndexOutOfRangeError when start_index < 0 or end_index < start_index. BlobFetchSizeTooLargeError when request blob fragment is larger than MAX_BLOB_FETCH_SIZE. BlobNotFoundError when blob does not exist. """
fut = fetch_data_async(blob, start_index, end_index, **options) return fut.get_result()
<SYSTEM_TASK:> Retrieve a BlobInfo by key. <END_TASK> <USER_TASK:> Description: def get(cls, blob_key, **ctx_options): """Retrieve a BlobInfo by key. Args: blob_key: A blob key. This may be a str, unicode or BlobKey instance. **ctx_options: Context options for Model().get_by_id(). Returns: A BlobInfo entity associated with the provided key, If there was no such entity, returns None. """
fut = cls.get_async(blob_key, **ctx_options) return fut.get_result()
<SYSTEM_TASK:> Permanently delete this blob from Blobstore. <END_TASK> <USER_TASK:> Description: def delete(self, **options): """Permanently delete this blob from Blobstore. Args: **options: Options for create_rpc(). """
fut = delete_async(self.key(), **options) fut.get_result()
<SYSTEM_TASK:> Fills the internal buffer. <END_TASK> <USER_TASK:> Description: def __fill_buffer(self, size=0): """Fills the internal buffer. Args: size: Number of bytes to read. Will be clamped to [self.__buffer_size, MAX_BLOB_FETCH_SIZE]. """
read_size = min(max(size, self.__buffer_size), MAX_BLOB_FETCH_SIZE) self.__buffer = fetch_data(self.__blob_key, self.__position, self.__position + read_size - 1) self.__buffer_position = 0 self.__eof = len(self.__buffer) < read_size
<SYSTEM_TASK:> Create a new Connection object with the right adapter. <END_TASK> <USER_TASK:> Description: def make_connection(config=None, default_model=None, _api_version=datastore_rpc._DATASTORE_V3, _id_resolver=None): """Create a new Connection object with the right adapter. Optionally you can pass in a datastore_rpc.Configuration object. """
return datastore_rpc.Connection( adapter=ModelAdapter(default_model, id_resolver=_id_resolver), config=config, _api_version=_api_version)
<SYSTEM_TASK:> Internal helper to unpack a User value from a protocol buffer. <END_TASK> <USER_TASK:> Description: def _unpack_user(v): """Internal helper to unpack a User value from a protocol buffer."""
uv = v.uservalue() email = unicode(uv.email().decode('utf-8')) auth_domain = unicode(uv.auth_domain().decode('utf-8')) obfuscated_gaiaid = uv.obfuscated_gaiaid().decode('utf-8') obfuscated_gaiaid = unicode(obfuscated_gaiaid) federated_identity = None if uv.has_federated_identity(): federated_identity = unicode( uv.federated_identity().decode('utf-8')) value = users.User(email=email, _auth_domain=auth_domain, _user_id=obfuscated_gaiaid, federated_identity=federated_identity) return value
<SYSTEM_TASK:> Decorator to make a function automatically run in a transaction. <END_TASK> <USER_TASK:> Description: def transactional(func, args, kwds, **options): """Decorator to make a function automatically run in a transaction. Args: **ctx_options: Transaction options (see transaction(), but propagation default to TransactionOptions.ALLOWED). This supports two forms: (1) Vanilla: @transactional def callback(arg): ... (2) With options: @transactional(retries=1) def callback(arg): ... """
return transactional_async.wrapped_decorator( func, args, kwds, **options).get_result()
<SYSTEM_TASK:> A decorator that ensures a function is run outside a transaction. <END_TASK> <USER_TASK:> Description: def non_transactional(func, args, kwds, allow_existing=True): """A decorator that ensures a function is run outside a transaction. If there is an existing transaction (and allow_existing=True), the existing transaction is paused while the function is executed. Args: allow_existing: If false, throw an exception if called from within a transaction. If true, temporarily re-establish the previous non-transactional context. Defaults to True. This supports two forms, similar to transactional(). Returns: A wrapper for the decorated function that ensures it runs outside a transaction. """
from . import tasklets ctx = tasklets.get_context() if not ctx.in_transaction(): return func(*args, **kwds) if not allow_existing: raise datastore_errors.BadRequestError( '%s cannot be called within a transaction.' % func.__name__) save_ctx = ctx while ctx.in_transaction(): ctx = ctx._parent_context if ctx is None: raise datastore_errors.BadRequestError( 'Context without non-transactional ancestor') save_ds_conn = datastore._GetConnection() try: if hasattr(save_ctx, '_old_ds_conn'): datastore._SetConnection(save_ctx._old_ds_conn) tasklets.set_context(ctx) return func(*args, **kwds) finally: tasklets.set_context(save_ctx) datastore._SetConnection(save_ds_conn)
<SYSTEM_TASK:> Updates all descendants to a specified value. <END_TASK> <USER_TASK:> Description: def _set(self, value): """Updates all descendants to a specified value."""
if self.__is_parent_node(): for child in self.__sub_counters.itervalues(): child._set(value) else: self.__counter = value
<SYSTEM_TASK:> Internal helper for comparison operators. <END_TASK> <USER_TASK:> Description: def _comparison(self, op, value): """Internal helper for comparison operators. Args: op: The operator ('=', '<' etc.). Returns: A FilterNode instance representing the requested comparison. """
# NOTE: This is also used by query.gql(). if not self._indexed: raise datastore_errors.BadFilterError( 'Cannot query for unindexed property %s' % self._name) from .query import FilterNode # Import late to avoid circular imports. if value is not None: value = self._do_validate(value) value = self._call_to_base_type(value) value = self._datastore_type(value) return FilterNode(self._name, op, value)
<SYSTEM_TASK:> Comparison operator for the 'in' comparison operator. <END_TASK> <USER_TASK:> Description: def _IN(self, value): """Comparison operator for the 'in' comparison operator. The Python 'in' operator cannot be overloaded in the way we want to, so we define a method. For example:: Employee.query(Employee.rank.IN([4, 5, 6])) Note that the method is called ._IN() but may normally be invoked as .IN(); ._IN() is provided for the case you have a StructuredProperty with a model that has a Property named IN. """
if not self._indexed: raise datastore_errors.BadFilterError( 'Cannot query for unindexed property %s' % self._name) from .query import FilterNode # Import late to avoid circular imports. if not isinstance(value, (list, tuple, set, frozenset)): raise datastore_errors.BadArgumentError( 'Expected list, tuple or set, got %r' % (value,)) values = [] for val in value: if val is not None: val = self._do_validate(val) val = self._call_to_base_type(val) val = self._datastore_type(val) values.append(val) return FilterNode(self._name, 'in', values)
<SYSTEM_TASK:> Call all validations on the value. <END_TASK> <USER_TASK:> Description: def _do_validate(self, value): """Call all validations on the value. This calls the most derived _validate() method(s), then the custom validator function, and then checks the choices. It returns the value, possibly modified in an idempotent way, or raises an exception. Note that this does not call all composable _validate() methods. It only calls _validate() methods up to but not including the first _to_base_type() method, when the MRO is traversed looking for _validate() and _to_base_type() methods. (IOW if a class defines both _validate() and _to_base_type(), its _validate() is called and then the search is aborted.) Note that for a repeated Property this function should be called for each item in the list, not for the list as a whole. """
if isinstance(value, _BaseValue): return value value = self._call_shallow_validation(value) if self._validator is not None: newvalue = self._validator(self, value) if newvalue is not None: value = newvalue if self._choices is not None: if value not in self._choices: raise datastore_errors.BadValueError( 'Value %r for property %s is not an allowed choice' % (value, self._name)) return value
<SYSTEM_TASK:> Internal helper called to tell the property its name. <END_TASK> <USER_TASK:> Description: def _fix_up(self, cls, code_name): """Internal helper called to tell the property its name. This is called by _fix_up_properties() which is called by MetaModel when finishing the construction of a Model subclass. The name passed in is the name of the class attribute to which the Property is assigned (a.k.a. the code name). Note that this means that each Property instance must be assigned to (at most) one class attribute. E.g. to declare three strings, you must call StringProperty() three times, you cannot write foo = bar = baz = StringProperty() """
self._code_name = code_name if self._name is None: self._name = code_name
<SYSTEM_TASK:> Internal helper to set a value in an entity for a Property. <END_TASK> <USER_TASK:> Description: def _set_value(self, entity, value): """Internal helper to set a value in an entity for a Property. This performs validation first. For a repeated Property the value should be a list. """
if entity._projection: raise ReadonlyPropertyError( 'You cannot set property values of a projection entity') if self._repeated: if not isinstance(value, (list, tuple, set, frozenset)): raise datastore_errors.BadValueError('Expected list or tuple, got %r' % (value,)) value = [self._do_validate(v) for v in value] else: if value is not None: value = self._do_validate(value) self._store_value(entity, value)
<SYSTEM_TASK:> Internal helper to retrieve the value for this Property from an entity. <END_TASK> <USER_TASK:> Description: def _retrieve_value(self, entity, default=None): """Internal helper to retrieve the value for this Property from an entity. This returns None if no value is set, or the default argument if given. For a repeated Property this returns a list if a value is set, otherwise None. No additional transformations are applied. """
return entity._values.get(self._name, default)
<SYSTEM_TASK:> Compute a list of composable methods. <END_TASK> <USER_TASK:> Description: def _find_methods(cls, *names, **kwds): """Compute a list of composable methods. Because this is a common operation and the class hierarchy is static, the outcome is cached (assuming that for a particular list of names the reversed flag is either always on, or always off). Args: *names: One or more method names. reverse: Optional flag, default False; if True, the list is reversed. Returns: A list of callable class method objects. """
reverse = kwds.pop('reverse', False) assert not kwds, repr(kwds) cache = cls.__dict__.get('_find_methods_cache') if cache: hit = cache.get(names) if hit is not None: return hit else: cls._find_methods_cache = cache = {} methods = [] for c in cls.__mro__: for name in names: method = c.__dict__.get(name) if method is not None: methods.append(method) if reverse: methods.reverse() cache[names] = methods return methods
<SYSTEM_TASK:> Return a single callable that applies a list of methods to a value. <END_TASK> <USER_TASK:> Description: def _apply_list(self, methods): """Return a single callable that applies a list of methods to a value. If a method returns None, the last value is kept; if it returns some other value, that replaces the last value. Exceptions are not caught. """
def call(value): for method in methods: newvalue = method(self, value) if newvalue is not None: value = newvalue return value return call
<SYSTEM_TASK:> Internal helper to get the value for this Property from an entity. <END_TASK> <USER_TASK:> Description: def _get_value(self, entity): """Internal helper to get the value for this Property from an entity. For a repeated Property this initializes the value to an empty list if it is not set. """
if entity._projection: if self._name not in entity._projection: raise UnprojectedPropertyError( 'Property %s is not in the projection' % (self._name,)) return self._get_user_value(entity)
<SYSTEM_TASK:> Internal helper to delete the value for this Property from an entity. <END_TASK> <USER_TASK:> Description: def _delete_value(self, entity): """Internal helper to delete the value for this Property from an entity. Note that if no value exists this is a no-op; deleted values will not be serialized but requesting their value will return None (or an empty list in the case of a repeated Property). """
if self._name in entity._values: del entity._values[self._name]
<SYSTEM_TASK:> Internal helper to ask if the entity has a value for this Property. <END_TASK> <USER_TASK:> Description: def _is_initialized(self, entity): """Internal helper to ask if the entity has a value for this Property. This returns False if a value is stored but it is None. """
return (not self._required or ((self._has_value(entity) or self._default is not None) and self._get_value(entity) is not None))
<SYSTEM_TASK:> Internal helper to serialize this property to a protocol buffer. <END_TASK> <USER_TASK:> Description: def _serialize(self, entity, pb, prefix='', parent_repeated=False, projection=None): """Internal helper to serialize this property to a protocol buffer. Subclasses may override this method. Args: entity: The entity, a Model (subclass) instance. pb: The protocol buffer, an EntityProto instance. prefix: Optional name prefix used for StructuredProperty (if present, must end in '.'). parent_repeated: True if the parent (or an earlier ancestor) is a repeated Property. projection: A list or tuple of strings representing the projection for the model instance, or None if the instance is not a projection. """
values = self._get_base_value_unwrapped_as_list(entity) name = prefix + self._name if projection and name not in projection: return if self._indexed: create_prop = lambda: pb.add_property() else: create_prop = lambda: pb.add_raw_property() if self._repeated and not values and self._write_empty_list: # We want to write the empty list p = create_prop() p.set_name(name) p.set_multiple(False) p.set_meaning(entity_pb.Property.EMPTY_LIST) p.mutable_value() else: # We write a list, or a single property for val in values: p = create_prop() p.set_name(name) p.set_multiple(self._repeated or parent_repeated) v = p.mutable_value() if val is not None: self._db_set_value(v, p, val) if projection: # Projected properties have the INDEX_VALUE meaning and only contain # the original property's name and value. new_p = entity_pb.Property() new_p.set_name(p.name()) new_p.set_meaning(entity_pb.Property.INDEX_VALUE) new_p.set_multiple(False) new_p.mutable_value().CopyFrom(v) p.CopyFrom(new_p)