id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
5,751
def poisson_means_test(k1, n1, k2, n2, diff=0, alternative='two-sided'): r""" Calculates the poisson mean test, the "E-test", for the mean difference of two samples that follow a Poisson distribution from descriptive statistics. This is a two-sided test. The null hypothesis is that two independent samples have identical average (expected) values. Let :math:`X_{11},...,X_{1n_1}` and :math:`X_{21},...,X_{2n_2}` be independent samples from distributions :math:`Poisson(\lambda_1)` and :math:`Poisson(\lambda_2)`. It is well known that :math:`X_1` and :math:`X_2` are independent: .. math:: X_1 = \sum_{i=1}^{n_1} X_{1i} \sim Poisson(n_1\lambda_1) .. math:: X_2 = \sum_{i=1}^{n_2} X_{2i} \sim Poisson(n_2\lambda_2) Let `count1` and `count2` be the observed values of :math:`X_1` and :math:`X_2`, respectively. The null hypothesis and alternative hypothesis under comparison are .. math:: H_0: \lambda_1 = \lambda_2 + \mathtt{diff} \quad vs. \quad H_a: \lambda_1 \ne \lambda_2 + \mathtt{diff} for ``alternative=two-sided``, where :math:`\mathtt{diff} \ge 0`. Parameters ---------- k1 : int Sample values of interest from sample 1. n1: int Sample size from sample 1. k2 : int Sample values of interest from sample 2. n2: int Sample size from sample 2. diff : int or float, optional The difference of mean between two samples under the null hypothesis alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided': :math:`\lambda_1 \ne \lambda_2 + \mathtt{diff}` * 'less': :math:`\lambda_1 \le \lambda_2 + \mathtt{diff}` * 'greater': :math:`\lambda_1 \ge \lambda_2 + \mathtt{diff}` Returns ------- statistic : float The test statistic calculated from observed samples pvalue : float The associated p-value based on the estimated p-value of the standardized difference. Notes ----- A benefit of the E-test is that it maintains its power even with smaller sample sizes which can reduce sampling costs [1]_. It has been evaluated and determined to be more powerful than the comparable C-test, sometimes referred to as the poisson exact test. References ---------- .. [1] Krishnamoorthy, K., & Thomson, J. (2004). A more powerful test for comparing two Poisson means. Journal of Statistical Planning and Inference, 119(1), 23-35. .. [2] Przyborowski, J., & Wilenski, H. (1940). Homogeneity of results in testing samples from Poisson series: With an application to testing clover seed for dodder. Biometrika, 31(3/4), 313-323. Examples -------- Suppose that a gardener wishes to test the number of dodder seeds, a weed, in a sack of clover seeds that they buy from a seed company. A 100 gram sample is drawn from the sack before being shipped to the gardener. The sample is analyzed, and it is found to contain no dodder seeds; that is, `k1` is 0. However, upon arrival, the gardener draws another 100 gram sample from the sack. This time, three dodder seeds are found in the sample; that is, `k2` is 3. The gardener would like to know if the difference between is significant and not due to chance. The null hypothesis is that the difference between the two samples is merely due to chance, or that :math:`\lambda_1 = \lambda_2 + \mathtt{diff}` where :math:`\mathtt{diff} = 0`. The alternative hypothesis is that the difference is not due to chance, or :math:`\lambda_1 \ne \lambda_2 + 0`. The gardener selects a significance level of 5% to reject the null hypothesis in favor of the alternative [2]_. >>> res = stats.poisson_means_test(0, 100, 3, 100) >>> res.statistic, res.pvalue (-1.7320508075688772, 0.08837900929018157) The p-value is .088, indicating a near 9% chance of observing a value of the test statistic under the null hypothesis. This exceeds 5%, so the gardener does not reject the null hypothesis as the difference cannot be regarded as significant at this level. """ _chck_args_poisson_mean_test(k1, n1, k2, n2, diff, alternative) # "for a given k_1 and k_2, an estimate of \lambda_2 is given by" [1] (3.4) lmbd_hat2 = ((k1 + k2) / (n1 + n2) - diff * n1 / (n1 + n2)) # "\hat{\lambda_{2k}} may be less than or equal to zero ... and in this # case the null hypothesis cannot be rejected ... [and] it is not necessary # to compute the p-value". [1] page 26 below eq. (3.6). if lmbd_hat2 <= 0: return PoissonMeansTestResult(0, 1) # the unbiased variance estimate [1] (3.2) var = k1 / (n1 ** 2) + k2 / (n2 ** 2) # the _observed_ pivot statistic from the input. It follows the # unnumbered equation following equation (3.3) This is used later in # comparison with the computed pivot statistics in an indicator function. t_k1k2 = (k1 / n1 - k2 / n2 - diff) / np.sqrt(var) # equation (3.5) of [1] is lengthy, so it is broken into several parts, # beginning here. Note that the probability mass function of poisson is # exp^(-\mu)*\mu^k/k!, so and this is called with shape \mu, here noted # here as nlmbd_hat*. The strategy for evaluating the double summation in # (3.5) is to create two arrays of the values of the two products inside # the summation and then broadcast them together into a matrix, and then # sum across the entire matrix. # compute constants (as seen in the first and second separated products in # (3.5).). (This is the shape (\mu) parameter of the poisson distribution.) nlmbd_hat1 = n1 * (lmbd_hat2 + diff) nlmbd_hat2 = n2 * lmbd_hat2 # determine summation bounds for tail ends of distribution rather than # summing to infinity. `x1*` is for the outer sum and `x2*` is the inner # sum x1_lb, x1_ub = distributions.poisson.ppf([1e-10, 1 - 1e-16], nlmbd_hat1) x2_lb, x2_ub = distributions.poisson.ppf([1e-10, 1 - 1e-16], nlmbd_hat2) # construct arrays to function as the x_1 and x_2 counters on the summation # in (3.5). `x1` is in columns and `x2` is in rows to allow for # broadcasting. x1 = np.arange(x1_lb, x1_ub + 1) x2 = np.arange(x2_lb, x2_ub + 1)[:, None] # these are the two products in equation (3.5) with `prob_x1` being the # first (left side) and `prob_x2` being the second (right side). (To # make as clear as possible: the 1st contains a "+ d" term, the 2nd does # not.) prob_x1 = distributions.poisson.pmf(x1, nlmbd_hat1) prob_x2 = distributions.poisson.pmf(x2, nlmbd_hat2) # compute constants for use in the the "pivot statistic" per the # unnumbered equation following (3.3). lmbd_x1 = x1 / n1 lmbd_x2 = x2 / n2 lmbds_diff = lmbd_x1 - lmbd_x2 - diff var_x1x2 = lmbd_x1 / n1 + lmbd_x2 / n2 # this is the 'pivot statistic' for use in the indicator of the summation # (left side of "I[.]"). Before dividing, mask zero-elements in the # denominator with infinity so that they are `false` in the indicator. mask_out_invalid = (np.abs(lmbd_x1 - lmbd_x2) > diff if alternative == 'two-sided' else lmbds_diff > 0) var_x1x2[~mask_out_invalid] = np.inf t_x1x2 = lmbds_diff / np.sqrt(var_x1x2) if alternative == 'two-sided': alternative_comparison = lambda x, y: np.abs(x) >= np.abs(y) elif alternative == 'less': alternative_comparison = lambda x, y: np.less_equal(x, y) else: alternative_comparison = lambda x, y: np.less_equal(x, y) # `[indicator]` implements the "I[.] ... the indicator function" per # the paragraph following equation (3.5). indicator = alternative_comparison(t_x1x2, t_k1k2) # multiply all combinations of the products together, exclude terms # based on the `indicator` and then sum. (3.5) pvalue = np.sum((prob_x1 * prob_x2)[indicator]) return PoissonMeansTestResult(t_k1k2, pvalue)
def poisson_means_test(k1, n1, k2, n2, diff=0, alternative='two-sided'): r""" Calculates the poisson mean test, the "E-test", for the mean difference of two samples that follow a Poisson distribution from descriptive statistics. This is a two-sided test. The null hypothesis is that two independent samples have identical average (expected) values. Let :math:`X_{11},...,X_{1n_1}` and :math:`X_{21},...,X_{2n_2}` be independent samples from distributions :math:`Poisson(\lambda_1)` and :math:`Poisson(\lambda_2)`. It is well known that :math:`X_1` and :math:`X_2` are independent: .. math:: X_1 = \sum_{i=1}^{n_1} X_{1i} \sim Poisson(n_1\lambda_1) .. math:: X_2 = \sum_{i=1}^{n_2} X_{2i} \sim Poisson(n_2\lambda_2) Let `count1` and `count2` be the observed values of :math:`X_1` and :math:`X_2`, respectively. The null hypothesis and alternative hypothesis under comparison are .. math:: H_0: \lambda_1 = \lambda_2 + \mathtt{diff} \quad vs. \quad H_a: \lambda_1 \ne \lambda_2 + \mathtt{diff} for ``alternative=two-sided``, where :math:`\mathtt{diff} \ge 0`. Parameters ---------- k1 : int Sample values of interest from sample 1. n1: int Sample size from sample 1. k2 : int Sample values of interest from sample 2. n2: int Sample size from sample 2. diff : int or float, optional The difference of mean between two samples under the null hypothesis alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided': :math:`\lambda_1 \ne \lambda_2 + \mathtt{diff}` * 'less': :math:`\lambda_1 \le \lambda_2 + \mathtt{diff}` * 'greater': :math:`\lambda_1 \ge \lambda_2 + \mathtt{diff}` Returns ------- statistic : float The test statistic calculated from observed samples. pvalue : float The associated p-value based on the estimated p-value of the standardized difference. Notes ----- A benefit of the E-test is that it maintains its power even with smaller sample sizes which can reduce sampling costs [1]_. It has been evaluated and determined to be more powerful than the comparable C-test, sometimes referred to as the poisson exact test. References ---------- .. [1] Krishnamoorthy, K., & Thomson, J. (2004). A more powerful test for comparing two Poisson means. Journal of Statistical Planning and Inference, 119(1), 23-35. .. [2] Przyborowski, J., & Wilenski, H. (1940). Homogeneity of results in testing samples from Poisson series: With an application to testing clover seed for dodder. Biometrika, 31(3/4), 313-323. Examples -------- Suppose that a gardener wishes to test the number of dodder seeds, a weed, in a sack of clover seeds that they buy from a seed company. A 100 gram sample is drawn from the sack before being shipped to the gardener. The sample is analyzed, and it is found to contain no dodder seeds; that is, `k1` is 0. However, upon arrival, the gardener draws another 100 gram sample from the sack. This time, three dodder seeds are found in the sample; that is, `k2` is 3. The gardener would like to know if the difference between is significant and not due to chance. The null hypothesis is that the difference between the two samples is merely due to chance, or that :math:`\lambda_1 = \lambda_2 + \mathtt{diff}` where :math:`\mathtt{diff} = 0`. The alternative hypothesis is that the difference is not due to chance, or :math:`\lambda_1 \ne \lambda_2 + 0`. The gardener selects a significance level of 5% to reject the null hypothesis in favor of the alternative [2]_. >>> res = stats.poisson_means_test(0, 100, 3, 100) >>> res.statistic, res.pvalue (-1.7320508075688772, 0.08837900929018157) The p-value is .088, indicating a near 9% chance of observing a value of the test statistic under the null hypothesis. This exceeds 5%, so the gardener does not reject the null hypothesis as the difference cannot be regarded as significant at this level. """ _chck_args_poisson_mean_test(k1, n1, k2, n2, diff, alternative) # "for a given k_1 and k_2, an estimate of \lambda_2 is given by" [1] (3.4) lmbd_hat2 = ((k1 + k2) / (n1 + n2) - diff * n1 / (n1 + n2)) # "\hat{\lambda_{2k}} may be less than or equal to zero ... and in this # case the null hypothesis cannot be rejected ... [and] it is not necessary # to compute the p-value". [1] page 26 below eq. (3.6). if lmbd_hat2 <= 0: return PoissonMeansTestResult(0, 1) # the unbiased variance estimate [1] (3.2) var = k1 / (n1 ** 2) + k2 / (n2 ** 2) # the _observed_ pivot statistic from the input. It follows the # unnumbered equation following equation (3.3) This is used later in # comparison with the computed pivot statistics in an indicator function. t_k1k2 = (k1 / n1 - k2 / n2 - diff) / np.sqrt(var) # equation (3.5) of [1] is lengthy, so it is broken into several parts, # beginning here. Note that the probability mass function of poisson is # exp^(-\mu)*\mu^k/k!, so and this is called with shape \mu, here noted # here as nlmbd_hat*. The strategy for evaluating the double summation in # (3.5) is to create two arrays of the values of the two products inside # the summation and then broadcast them together into a matrix, and then # sum across the entire matrix. # compute constants (as seen in the first and second separated products in # (3.5).). (This is the shape (\mu) parameter of the poisson distribution.) nlmbd_hat1 = n1 * (lmbd_hat2 + diff) nlmbd_hat2 = n2 * lmbd_hat2 # determine summation bounds for tail ends of distribution rather than # summing to infinity. `x1*` is for the outer sum and `x2*` is the inner # sum x1_lb, x1_ub = distributions.poisson.ppf([1e-10, 1 - 1e-16], nlmbd_hat1) x2_lb, x2_ub = distributions.poisson.ppf([1e-10, 1 - 1e-16], nlmbd_hat2) # construct arrays to function as the x_1 and x_2 counters on the summation # in (3.5). `x1` is in columns and `x2` is in rows to allow for # broadcasting. x1 = np.arange(x1_lb, x1_ub + 1) x2 = np.arange(x2_lb, x2_ub + 1)[:, None] # these are the two products in equation (3.5) with `prob_x1` being the # first (left side) and `prob_x2` being the second (right side). (To # make as clear as possible: the 1st contains a "+ d" term, the 2nd does # not.) prob_x1 = distributions.poisson.pmf(x1, nlmbd_hat1) prob_x2 = distributions.poisson.pmf(x2, nlmbd_hat2) # compute constants for use in the the "pivot statistic" per the # unnumbered equation following (3.3). lmbd_x1 = x1 / n1 lmbd_x2 = x2 / n2 lmbds_diff = lmbd_x1 - lmbd_x2 - diff var_x1x2 = lmbd_x1 / n1 + lmbd_x2 / n2 # this is the 'pivot statistic' for use in the indicator of the summation # (left side of "I[.]"). Before dividing, mask zero-elements in the # denominator with infinity so that they are `false` in the indicator. mask_out_invalid = (np.abs(lmbd_x1 - lmbd_x2) > diff if alternative == 'two-sided' else lmbds_diff > 0) var_x1x2[~mask_out_invalid] = np.inf t_x1x2 = lmbds_diff / np.sqrt(var_x1x2) if alternative == 'two-sided': alternative_comparison = lambda x, y: np.abs(x) >= np.abs(y) elif alternative == 'less': alternative_comparison = lambda x, y: np.less_equal(x, y) else: alternative_comparison = lambda x, y: np.less_equal(x, y) # `[indicator]` implements the "I[.] ... the indicator function" per # the paragraph following equation (3.5). indicator = alternative_comparison(t_x1x2, t_k1k2) # multiply all combinations of the products together, exclude terms # based on the `indicator` and then sum. (3.5) pvalue = np.sum((prob_x1 * prob_x2)[indicator]) return PoissonMeansTestResult(t_k1k2, pvalue)
56,516
def _expand_data_to_arrays( data: list[tuple[Any, ...]], paramspecs: Sequence[ParamSpecBase] ) -> None: types = [param.type for param in paramspecs] # if we have array type parameters expand all other parameters # to arrays if 'array' in types: if ('numeric' in types or 'text' in types or 'complex' in types): first_array_element = types.index('array') types_mapping: dict[int, Callable[[str], np.dtype[Any]]] = {} for i, x in enumerate(types): if x == "numeric": types_mapping[i] = lambda _: np.dtype(np.float64) elif x == "complex": types_mapping[i] = lambda _: np.dtype(np.complex128) elif x == "text": types_mapping[i] = lambda array: np.dtype(f"U{len(array)}") for i_row, row in enumerate(data): # todo should we handle int/float types here # we would in practice have to perform another # loop to check that all elements of a given can be cast to # int without loosing precision before choosing an integer # representation of the array data[i_row] = tuple( np.full_like( row[first_array_element], array, dtype=types_mapping[i](array) ) if i in types_mapping else array for i, array in enumerate(row) ) for i_row, row in enumerate(data): # now expand all one element arrays to match the expected size # one element arrays are introduced if scalar values are stored # with an explicit array storage type max_size = 0 for i, array in enumerate(row): if array.size > max_size: if max_size > 1: log.warning( f"Cannot expand array of size {max_size} " f"to size {array.size}" ) max_size, max_index = array.size, i data[i_row] = tuple( np.full_like(row[max_index], array, dtype=array.dtype) if array.size != max_size else array for array in row )
def _expand_data_to_arrays( data: list[tuple[Any, ...]], paramspecs: Sequence[ParamSpecBase] ) -> None: types = [param.type for param in paramspecs] # if we have array type parameters expand all other parameters # to arrays if 'array' in types: if ('numeric' in types or 'text' in types or 'complex' in types): first_array_element = types.index('array') types_mapping: dict[int, Callable[[str], np.dtype[Any]]] = {} for i, x in enumerate(types): if x == "numeric": types_mapping[i] = lambda _: np.dtype(np.float64) elif x == "complex": types_mapping[i] = lambda _: np.dtype(np.complex128) elif x == "text": types_mapping[i] = lambda array: np.dtype(f"U{len(array)}") for i_row, row in enumerate(data): # todo should we handle int/float types here # we would in practice have to perform another # loop to check that all elements of a given can be cast to # int without loosing precision before choosing an integer # representation of the array data[i_row] = tuple( np.full_like( row[first_array_element], array, dtype=types_mapping[i](array) ) if i in types_mapping else array for i, array in enumerate(row) ) for i_row, row in enumerate(data): # now expand all one element arrays to match the expected size # one element arrays are introduced if scalar values are stored # with an explicit array storage type max_size = 0 for i, array in enumerate(row): if array.size > max_size: if max_size > 1: log.warning( f"Cannot expand array of size {array.size} " f"to size {max_size}" ) max_size, max_index = array.size, i data[i_row] = tuple( np.full_like(row[max_index], array, dtype=array.dtype) if array.size != max_size else array for array in row )
12,352
def sim(g, nu_ext_over_nu_thr, sim_time, ax_spikes, ax_rates, rate_tick_step): """ g -- relative inhibitory to excitatory synaptic strength nu_ext_over_nu_thr -- ratio of external stimulus rate to threshold rate sim_time -- simulation time ax_spikes -- matplotlib axes to plot spikes on ax_rates -- matplotlib axes to plot rates on rate_tick_step -- step size for rate axis ticks """ # network parameters N_E = 10000 gamma = 0.25 N_I = round(gamma * N_E) N = N_E + N_I epsilon = 0.1 C_E = epsilon * N_E C_ext = C_E # neuron parameters tau = 20 * ms theta = 20 * mV V_r = 10 * mV tau_rp = 2 * ms # synapse parameters J = 0.1 * mV D = 1.5 * ms # external stimulus nu_thr = theta / (J * C_E * tau) defaultclock.dt = 0.1 * ms neurons = NeuronGroup(N, """ dv/dt = -v/tau : volt (unless refractory) index : integer (constant) """, threshold="v > theta", reset="v = V_r", refractory=tau_rp, method="exact", ) excitatory_neurons = neurons[:N_E] inhibitory_neurons = neurons[N_E:] exc_synapses = Synapses(excitatory_neurons, target=neurons, on_pre="v += J", delay=D) exc_synapses.connect(p=epsilon) inhib_synapses = Synapses(inhibitory_neurons, target=neurons, on_pre="v += -g*J", delay=D) inhib_synapses.connect(p=epsilon) nu_ext = nu_ext_over_nu_thr * nu_thr external_poisson_input = PoissonInput( target=neurons, target_var="v", N=C_ext, rate=nu_ext, weight=J ) rate_monitor = PopulationRateMonitor(neurons) # shuffle indices to randomly select neurons indices = neurons.i[:] np.random.shuffle(indices) neurons.index = indices spike_monitor = SpikeMonitor(neurons[:50]) run(sim_time) ax_spikes.plot(spike_monitor.t / ms, spike_monitor.i, "|") ax_rates.plot(rate_monitor.t / ms, rate_monitor.rate / Hz) ax_spikes.set_yticks([], []) ax_spikes.set_xlim(*params["t_range"]) ax_rates.set_xlim(*params["t_range"]) ax_rates.set_ylim(*params["rate_range"]) ax_rates.set_xlabel("t [ms]") ax_rates.set_yticks( np.arange( params["rate_range"][0], params["rate_range"][1] + rate_tick_step, rate_tick_step ) ) plt.subplots_adjust(hspace=0)
def sim(g, nu_ext_over_nu_thr, sim_time, ax_spikes, ax_rates, rate_tick_step): """ g -- relative inhibitory to excitatory synaptic strength nu_ext_over_nu_thr -- ratio of external stimulus rate to threshold rate sim_time -- simulation time ax_spikes -- matplotlib axes to plot spikes on ax_rates -- matplotlib axes to plot rates on rate_tick_step -- step size for rate axis ticks """ # network parameters N_E = 10000 gamma = 0.25 N_I = round(gamma * N_E) N = N_E + N_I epsilon = 0.1 C_E = epsilon * N_E C_ext = C_E # neuron parameters tau = 20 * ms theta = 20 * mV V_r = 10 * mV tau_rp = 2 * ms # synapse parameters J = 0.1 * mV D = 1.5 * ms # external stimulus nu_thr = theta / (J * C_E * tau) defaultclock.dt = 0.1 * ms neurons = NeuronGroup(N, """ dv/dt = -v/tau : volt (unless refractory) index : integer (constant) """, threshold="v > theta", reset="v = V_r", refractory=tau_rp, method="exact", ) excitatory_neurons = neurons[:N_E] inhibitory_neurons = neurons[N_E:] exc_synapses = Synapses(excitatory_neurons, target=neurons, on_pre="v += J", delay=D) exc_synapses.connect(p=epsilon) inhib_synapses = Synapses(inhibitory_neurons, target=neurons, on_pre="v += -g*J", delay=D) inhib_synapses.connect(p=epsilon) nu_ext = nu_ext_over_nu_thr * nu_thr external_poisson_input = PoissonInput( target=neurons, target_var="v", N=C_ext, rate=nu_ext, weight=J ) rate_monitor = PopulationRateMonitor(neurons) # shuffle indices to randomly select neurons indices = neurons.i[:] np.random.shuffle(indices) neurons.index = indices spike_monitor = SpikeMonitor(neurons[:50]) run(sim_time) ax_spikes.plot(spike_monitor.t / ms, spike_monitor.i, "|") ax_rates.plot(rate_monitor.t / ms, rate_monitor.rate / Hz) ax_spikes.set_yticks([]) ax_spikes.set_xlim(*params["t_range"]) ax_rates.set_xlim(*params["t_range"]) ax_rates.set_ylim(*params["rate_range"]) ax_rates.set_xlabel("t [ms]") ax_rates.set_yticks( np.arange( params["rate_range"][0], params["rate_range"][1] + rate_tick_step, rate_tick_step ) ) plt.subplots_adjust(hspace=0)
41,461
def read_pathos_lightcurve(filename, flux_column="PSF_FLUX_COR", quality_bitmask="default"): """Returns a `TessLightCurve`. Parameters ---------- filename : str Local path or remote url of PATHOS light curve FITS file. flux_column : 'psf_flux_cor' or 'ap#_flux_cor' (# = 1, 2, 3, or 4) or 'psf_flux_raw' or 'ap#_flux_raw' (# = 1, 2, 3, or 4) Which column in the FITS file contains the preferred flux data? quality_bitmask : str or int Bitmask (integer) which identifies the quality flag bitmask that should be used to mask out bad cadences. If a string is passed, it has the following meaning: * "none": no cadences will be ignored (`quality_bitmask=0`). * "default": cadences with severe quality issues will be ignored (`quality_bitmask=1130799`). * "hard": more conservative choice of flags to ignore (`quality_bitmask=1664431`). This is known to remove good data. * "hardest": removes all data that has been flagged (`quality_bitmask=2096639`). This mask is not recommended. See the :class:`TessQualityFlags` class for details on the bitmasks. """ lc = read_generic_lightcurve(filename, flux_column=flux_column.lower(), time_format='btjd', quality_column="DQUALITY") # Filter out poor-quality data # NOTE: Unfortunately Astropy Table masking does not yet work for columns # that are Quantity objects, so for now we remove poor-quality data instead # of masking. Details: https://github.com/astropy/astropy/issues/10119 quality_mask = TessQualityFlags.create_quality_mask( quality_array=lc['quality'], bitmask=quality_bitmask) lc = lc[quality_mask] lc.meta['TARGETID'] = lc.meta.get('TICID') lc.meta['QUALITY_BITMASK'] = quality_bitmask lc.meta['QUALITY_MASK'] = quality_mask # QLP light curves are normalized by default lc.meta['NORMALIZED'] = True return TessLightCurve(data=lc)
def read_pathos_lightcurve(filename, flux_column="PSF_FLUX_COR", quality_bitmask="default"): """Returns a `TessLightCurve`. Parameters ---------- filename : str Local path or remote url of PATHOS light curve FITS file. flux_column : 'psf_flux_cor' or 'ap#_flux_cor' (# = 1, 2, 3, or 4) or 'psf_flux_raw' or 'ap#_flux_raw' (# = 1, 2, 3, or 4) Which column in the FITS file contains the preferred flux data? quality_bitmask : str or int Bitmask (integer) which identifies the quality flag bitmask that should be used to mask out bad cadences. If a string is passed, it has the following meaning: * "none": no cadences will be ignored (`quality_bitmask=0`). * "default": cadences with severe quality issues will be ignored (`quality_bitmask=1130799`). * "hard": more conservative choice of flags to ignore (`quality_bitmask=1664431`). This is known to remove good data. * "hardest": removes all data that has been flagged (`quality_bitmask=2096639`). This mask is not recommended. See the :class:`TessQualityFlags` class for details on the bitmasks. """ lc = read_generic_lightcurve(filename, flux_column=flux_column.lower(), time_format='btjd', quality_column="DQUALITY") # Filter out poor-quality data # NOTE: Unfortunately Astropy Table masking does not yet work for columns # that are Quantity objects, so for now we remove poor-quality data instead # of masking. Details: https://github.com/astropy/astropy/issues/10119 quality_mask = TessQualityFlags.create_quality_mask( quality_array=lc['dquality'], bitmask=quality_bitmask) lc = lc[quality_mask] lc.meta['TARGETID'] = lc.meta.get('TICID') lc.meta['QUALITY_BITMASK'] = quality_bitmask lc.meta['QUALITY_MASK'] = quality_mask # QLP light curves are normalized by default lc.meta['NORMALIZED'] = True return TessLightCurve(data=lc)
17,367
def _build_discrete_cmap(cmap, levels, extend, filled): """ Build a discrete colormap and normalization of the data. """ import matplotlib as mpl if not filled: # non-filled contour plots extend = "max" if extend == "both": ext_n = 2 elif extend in ["min", "max"]: ext_n = 1 else: ext_n = 0 n_colors = len(levels) + ext_n - 1 pal = _color_palette(cmap, n_colors) new_cmap, cnorm = mpl.colors.from_levels_and_colors(levels, pal, extend=extend) # copy the old cmap name, for easier testing new_cmap.name = getattr(cmap, "name", cmap) # copy colors to use for bad, under, and over values in case they have been set to # non-default values new_cmap._rgba_bad = getattr(cmap, "_rgba_bad") new_cmap._rgba_under = getattr(cmap, "_rgba_under") new_cmap._rgba_over = getattr(cmap, "_rgba_over") return new_cmap, cnorm
def _build_discrete_cmap(cmap, levels, extend, filled): """ Build a discrete colormap and normalization of the data. """ import matplotlib as mpl if not filled: # non-filled contour plots extend = "max" if extend == "both": ext_n = 2 elif extend in ["min", "max"]: ext_n = 1 else: ext_n = 0 n_colors = len(levels) + ext_n - 1 pal = _color_palette(cmap, n_colors) new_cmap, cnorm = mpl.colors.from_levels_and_colors(levels, pal, extend=extend) # copy the old cmap name, for easier testing new_cmap.name = getattr(cmap, "name", cmap) # copy colors to use for bad, under, and over values in case they have been set to # non-default values new_cmap._rgba_bad = getattr(cmap, "_rgba_bad", None) new_cmap._rgba_under = getattr(cmap, "_rgba_under") new_cmap._rgba_over = getattr(cmap, "_rgba_over") return new_cmap, cnorm
21,966
def authIfV2(sydent, request, requireTermsAgreed=True): if request.path.startswith('/_matrix/identity/v2'): token = tokenFromRequest(request) if token is None: raise MatrixRestError(403, "M_UNAUTHORIZED", "Unauthorized") accountStore = AccountStore(sydent) account = accountStore.getAccountByToken(token) if account is None: raise MatrixRestError(403, "M_UNAUTHORIZED", "Unauthorized") if requireTermsAgreed: terms = get_terms(sydent) if ( terms.getMasterVersion() is not None and account.consentVersion != terms.getMasterVersion() ): raise MatrixRestError(403, "M_TERMS_NOT_SIGNED", "Terms not signed") return account return None
def authIfV2(sydent, request, requireTermsAgreed=True): if request.path.startswith('/_matrix/identity/v2'): token = tokenFromRequest(request) if token is None: raise MatrixRestError(401, "M_UNAUTHORIZED", "Unauthorized") accountStore = AccountStore(sydent) account = accountStore.getAccountByToken(token) if account is None: raise MatrixRestError(403, "M_UNAUTHORIZED", "Unauthorized") if requireTermsAgreed: terms = get_terms(sydent) if ( terms.getMasterVersion() is not None and account.consentVersion != terms.getMasterVersion() ): raise MatrixRestError(403, "M_TERMS_NOT_SIGNED", "Terms not signed") return account return None
8,359
def _isophote_list_to_table(isophote_list, key_properties=['main']): """ Convert an `~photutils.isophote.IsophoteList` instance to a `~astropy.table.QTable`. Parameters ---------- isophote_list : list of `~photutils.isophote.Isophote` or \ `~photutils.isophote.IsophoteList` instance A list of isophotes. key_properties : A list of properties to export from the isophote_list If key_properties = ['all'] or ['main'], it will pick all or few of the main properties. Returns ------- result : `~astropy.table.QTable` An astropy QTable with the selected or all isophote parameters. """ properties = OrderedDict() isotable = QTable() # main_properties: `List` # A list of main parameters matching the original names of # the isophote_list parameters def __rename_properties(properties, orig_names = ['int_err', 'eps', 'ellip_err', 'grad_r_error', 'nflag'], new_names = ['intens_err', 'ellipticity', 'ellipticity_err', 'grad_rerror', 'nflag'] ): ''' Simple renaming for some of the isophote_list parameters. Parameters ---------- properties: `OrderedDict` An OrderedDict with the list of the isophote_list parameters orig_names: `List` A list of original names in the isophote_list parameters to be renamed new_names: `List` A list of new names matching in length of the orig_names Returns ------- properties: `OrderedDict` An OrderedDict with the list of the renamed isophote_list parameters ''' main_properties = ['sma', 'intens', 'int_err', 'eps', 'ellip_err', 'pa', 'pa_err', 'grad', 'grad_error', 'grad_r_error', 'x0', 'x0_err', 'y0', 'y0_err', 'ndata', 'nflag', 'niter', 'stop_code'] for an_item in main_properties: if an_item in orig_names: properties[an_item] = new_names[orig_names.index(an_item)] else: properties[an_item] = an_item return properties if 'all' in key_properties: properties = _get_properties(isophote_list) properties = __rename_properties(properties) elif 'main' in key_properties: properties = __rename_properties(properties) else: for an_item in key_properties: properties[an_item] = an_item for k, v in properties.items(): isotable[v] = np.array([getattr(iso, k) for iso in isophote_list]) if k in ('pa', 'pa_err'): isotable[v] = isotable[v] * 180. / np.pi * u.deg return isotable
def _isophote_list_to_table(isophote_list, key_properties=['main']): """ Convert an `~photutils.isophote.IsophoteList` instance to a `~astropy.table.QTable`. Parameters ---------- isophote_list : list of `~photutils.isophote.Isophote` or \ `~photutils.isophote.IsophoteList` instance A list of isophotes. key_properties : A list of properties to export from the isophote_list If ``columns`` is 'all' or 'main', it will pick all or few of the main properties. Returns ------- result : `~astropy.table.QTable` An astropy QTable with the selected or all isophote parameters. """ properties = OrderedDict() isotable = QTable() # main_properties: `List` # A list of main parameters matching the original names of # the isophote_list parameters def __rename_properties(properties, orig_names = ['int_err', 'eps', 'ellip_err', 'grad_r_error', 'nflag'], new_names = ['intens_err', 'ellipticity', 'ellipticity_err', 'grad_rerror', 'nflag'] ): ''' Simple renaming for some of the isophote_list parameters. Parameters ---------- properties: `OrderedDict` An OrderedDict with the list of the isophote_list parameters orig_names: `List` A list of original names in the isophote_list parameters to be renamed new_names: `List` A list of new names matching in length of the orig_names Returns ------- properties: `OrderedDict` An OrderedDict with the list of the renamed isophote_list parameters ''' main_properties = ['sma', 'intens', 'int_err', 'eps', 'ellip_err', 'pa', 'pa_err', 'grad', 'grad_error', 'grad_r_error', 'x0', 'x0_err', 'y0', 'y0_err', 'ndata', 'nflag', 'niter', 'stop_code'] for an_item in main_properties: if an_item in orig_names: properties[an_item] = new_names[orig_names.index(an_item)] else: properties[an_item] = an_item return properties if 'all' in key_properties: properties = _get_properties(isophote_list) properties = __rename_properties(properties) elif 'main' in key_properties: properties = __rename_properties(properties) else: for an_item in key_properties: properties[an_item] = an_item for k, v in properties.items(): isotable[v] = np.array([getattr(iso, k) for iso in isophote_list]) if k in ('pa', 'pa_err'): isotable[v] = isotable[v] * 180. / np.pi * u.deg return isotable
31,543
def main(): try: incidents = get_campaign_incidents_from_context() if incidents: update_incident_with_required_keys(incidents, KEYS_FETCHED_BY_QUERY) update_empty_fields() readable_output = get_incidents_info_md(incidents) else: readable_output = NO_CAMPAIGN_INCIDENTS_MSG result = CommandResults( readable_output=readable_output, outputs_prefix='', outputs_key_field='' ) return_results(result) except Exception as err: return_error(str(err))
def main(): try: incidents = get_campaign_incidents_from_context() if incidents: update_incident_with_required_keys(incidents, KEYS_FETCHED_BY_QUERY) update_empty_fields() readable_output = get_incidents_info_md(incidents) else: readable_output = NO_CAMPAIGN_INCIDENTS_MSG return_results(readable_output) except Exception as err: return_error(str(err))
845
def test_do_poly_distance(): # Non-intersecting polygons square1 = Polygon (Point(0,0), Point(0,1), Point(1,1), Point(1,0)) triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) assert square1._do_poly_distance(triangle1) == sqrt(2)/2 # Polygons which sides intersect square2 = Polygon(Point(1,0), Point(2,0), Point(2,1), Point(1,1)) with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert square1._do_poly_distance(square2) == 0 # Polygons which bodies intersect triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half)) with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert triangle2._do_poly_distance(square1) == 0
def test_do_poly_distance(): # Non-intersecting polygons square1 = Polygon (Point(0,0), Point(0,1), Point(1,1), Point(1,0)) triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) assert square1._do_poly_distance(triangle1) == sqrt(2)/2 # Polygons which sides intersect square2 = Polygon(Point(1,0), Point(2,0), Point(2,1), Point(1,1)) with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert square1._do_poly_distance(square2) == 0 # Polygons which bodies intersect triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half)) with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert triangle2._do_poly_distance(square1) == 0
8,336
def main(): """Parse arguments and launch process.""" parser = argparse.ArgumentParser(description="Prometheus exporter.") parser.add_argument( "--host", help="IP address to bind", default="0.0.0.0", ) parser.add_argument( "--port", help="Port to use", default=8811, type=int, ) parser.add_argument( "--contest-id", "-c", help="Obtain metrics for the specified contest only", type=int, ) parser.add_argument( "--no-submissions", help="Do not export submissions metrics", action="store_true", ) parser.add_argument( "--no-workers", help="Do not export workers metrics", action="store_true", ) parser.add_argument( "--no-queue", help="Do not export queue metrics", action="store_true", ) parser.add_argument( "--no-communications", help="Do not export communications metrics", action="store_true", ) parser.add_argument( "--no-users", help="Do not export users metrics", action="store_true", ) args = parser.parse_args() service = PrometheusExporter(args) REGISTRY.register(service) start_http_server(args.port, addr=args.host) print("Started at http://%s:%s/metric" % (args.host, args.port)) Service.run(service)
def main(): """Parse arguments and launch process.""" parser = argparse.ArgumentParser(description="Prometheus exporter.") parser.add_argument( "--host", help="IP address to bind to", default="0.0.0.0", ) parser.add_argument( "--port", help="Port to use", default=8811, type=int, ) parser.add_argument( "--contest-id", "-c", help="Obtain metrics for the specified contest only", type=int, ) parser.add_argument( "--no-submissions", help="Do not export submissions metrics", action="store_true", ) parser.add_argument( "--no-workers", help="Do not export workers metrics", action="store_true", ) parser.add_argument( "--no-queue", help="Do not export queue metrics", action="store_true", ) parser.add_argument( "--no-communications", help="Do not export communications metrics", action="store_true", ) parser.add_argument( "--no-users", help="Do not export users metrics", action="store_true", ) args = parser.parse_args() service = PrometheusExporter(args) REGISTRY.register(service) start_http_server(args.port, addr=args.host) print("Started at http://%s:%s/metric" % (args.host, args.port)) Service.run(service)
29,624
def test_client_repr(c): x = c.submit(inc, 1) who_has = c.who_has() has_what = c.has_what() assert type(who_has) is WhoHas assert type(has_what) is HasWhat
def test_client_repr_html(c): x = c.submit(inc, 1) who_has = c.who_has() has_what = c.has_what() assert type(who_has) is WhoHas assert type(has_what) is HasWhat
32,822
def get_error_codes(): error_codes = [] try: error_str = config.http_server.error_statuses except AttributeError: error_str = None if error_str is None: return [[500, 599]] error_ranges = error_str.split(",") for error_range in error_ranges: values = error_range.split("-") min_code = int(values[0]) if len(values) == 2: max_code = int(values[1]) else: max_code = min_code if min_code > max_code: tmp = min_code min_code = max_code max_code = tmp error_codes.append([min_code, max_code]) return error_codes
def get_error_codes(): error_codes = [] try: error_str = config.http_server.error_statuses except AttributeError: return [[500, 599]] if error_str is None: return [[500, 599]] error_ranges = error_str.split(",") for error_range in error_ranges: values = error_range.split("-") min_code = int(values[0]) if len(values) == 2: max_code = int(values[1]) else: max_code = min_code if min_code > max_code: tmp = min_code min_code = max_code max_code = tmp error_codes.append([min_code, max_code]) return error_codes
23,178
def apply_gufunc( func, signature, *args, axes=None, axis=None, keepdims=False, output_dtypes=None, output_sizes=None, vectorize=None, allow_rechunk=False, meta=None, **kwargs, ): """ Apply a generalized ufunc or similar python function to arrays. ``signature`` determines if the function consumes or produces core dimensions. The remaining dimensions in given input arrays (``*args``) are considered loop dimensions and are required to broadcast naturally against each other. In other terms, this function is like ``np.vectorize``, but for the blocks of dask arrays. If the function itself shall also be vectorized use ``vectorize=True`` for convenience. Parameters ---------- func : callable Function to call like ``func(*args, **kwargs)`` on input arrays (``*args``) that returns an array or tuple of arrays. If multiple arguments with non-matching dimensions are supplied, this function is expected to vectorize (broadcast) over axes of positional arguments in the style of NumPy universal functions [1]_ (if this is not the case, set ``vectorize=True``). If this function returns multiple outputs, ``output_core_dims`` has to be set as well. signature: string Specifies what core dimensions are consumed and produced by ``func``. According to the specification of numpy.gufunc signature [2]_ *args : numeric Input arrays or scalars to the callable function. axes: List of tuples, optional, keyword only A list of tuples with indices of axes a generalized ufunc should operate on. For instance, for a signature of ``"(i,j),(j,k)->(i,k)"`` appropriate for matrix multiplication, the base elements are two-dimensional matrices and these are taken to be stored in the two last axes of each argument. The corresponding axes keyword would be ``[(-2, -1), (-2, -1), (-2, -1)]``. For simplicity, for generalized ufuncs that operate on 1-dimensional arrays (vectors), a single integer is accepted instead of a single-element tuple, and for generalized ufuncs for which all outputs are scalars, the output tuples can be omitted. axis: int, optional, keyword only A single axis over which a generalized ufunc should operate. This is a short-cut for ufuncs that operate over a single, shared core dimension, equivalent to passing in axes with entries of (axis,) for each single-core-dimension argument and ``()`` for all others. For instance, for a signature ``"(i),(i)->()"``, it is equivalent to passing in ``axes=[(axis,), (axis,), ()]``. keepdims: bool, optional, keyword only If this is set to True, axes which are reduced over will be left in the result as a dimension with size one, so that the result will broadcast correctly against the inputs. This option can only be used for generalized ufuncs that operate on inputs that all have the same number of core dimensions and with outputs that have no core dimensions , i.e., with signatures like ``"(i),(i)->()"`` or ``"(m,m)->()"``. If used, the location of the dimensions in the output can be controlled with axes and axis. output_dtypes : Optional, dtype or list of dtypes, keyword only Valid numpy dtype specification or list thereof. If not given, a call of ``func`` with a small set of data is performed in order to try to automatically determine the output dtypes. output_sizes : dict, optional, keyword only Optional mapping from dimension names to sizes for outputs. Only used if new core dimensions (not found on inputs) appear on outputs. vectorize: bool, keyword only If set to ``True``, ``np.vectorize`` is applied to ``func`` for convenience. Defaults to ``False``. allow_rechunk: Optional, bool, keyword only Allows rechunking, otherwise chunk sizes need to match and core dimensions are to consist only of one chunk. Warning: enabling this can increase memory usage significantly. Defaults to ``False``. meta: Optional, tuple, keyword only tuple of empty ndarrays describing the shape and dtype of the output of the gufunc. Defaults to ``None``. **kwargs : dict Extra keyword arguments to pass to `func` Returns ------- Single dask.array.Array or tuple of dask.array.Array Examples -------- >>> import dask.array as da >>> import numpy as np >>> def stats(x): ... return np.mean(x, axis=-1), np.std(x, axis=-1) >>> a = da.random.normal(size=(10,20,30), chunks=(5, 10, 30)) >>> mean, std = da.apply_gufunc(stats, "(i)->(),()", a) >>> mean.compute().shape (10, 20) >>> def outer_product(x, y): ... return np.einsum("i,j->ij", x, y) >>> a = da.random.normal(size=( 20,30), chunks=(10, 30)) >>> b = da.random.normal(size=(10, 1,40), chunks=(5, 1, 40)) >>> c = da.apply_gufunc(outer_product, "(i),(j)->(i,j)", a, b, vectorize=True) >>> c.compute().shape (10, 20, 30, 40) References ---------- .. [1] https://docs.scipy.org/doc/numpy/reference/ufuncs.html .. [2] https://docs.scipy.org/doc/numpy/reference/c-api/generalized-ufuncs.html """ # Input processing: ## Signature if not isinstance(signature, str): raise TypeError("`signature` has to be of type string") # NumPy versions before https://github.com/numpy/numpy/pull/19627 # would not ignore whitespace characters in `signature` like they # are supposed to. We remove the whitespace here as a workaround. signature = re.sub(r"\s+", "", signature) input_coredimss, output_coredimss = _parse_gufunc_signature(signature) ## Determine nout: nout = None for functions of one direct return; nout = int for return tuples nout = None if not isinstance(output_coredimss, list) else len(output_coredimss) ## Consolidate onto `meta` if meta is not None and output_dtypes is not None: raise ValueError( "Only one of `meta` and `output_dtypes` should be given (`meta` is preferred)." ) if meta is None: if output_dtypes is None: ## Infer `output_dtypes` if vectorize: tempfunc = np.vectorize(func, signature=signature) else: tempfunc = func output_dtypes = apply_infer_dtype( tempfunc, args, kwargs, "apply_gufunc", "output_dtypes", nout ) ## Turn `output_dtypes` into `meta` if ( nout is None and isinstance(output_dtypes, (tuple, list)) and len(output_dtypes) == 1 ): output_dtypes = output_dtypes[0] sample = args[0] if args else None if nout is None: meta = meta_from_array(sample, dtype=output_dtypes) else: meta = tuple(meta_from_array(sample, dtype=odt) for odt in output_dtypes) ## Normalize `meta` format meta = meta_from_array(meta) if isinstance(meta, list): meta = tuple(meta) ## Validate `meta` if nout is None: if isinstance(meta, tuple): if len(meta) == 1: meta = meta[0] else: raise ValueError( "For a function with one output, must give a single item for `output_dtypes`/`meta`, " "not a tuple or list." ) else: if not isinstance(meta, tuple): raise ValueError( f"For a function with {nout} outputs, must give a tuple or list for `output_dtypes`/`meta`, " "not a single item." ) if len(meta) != nout: raise ValueError( f"For a function with {nout} outputs, must give a tuple or list of {nout} items for " f"`output_dtypes`/`meta`, not {len(meta)}." ) ## Vectorize function, if required if vectorize: otypes = [x.dtype for x in meta] if isinstance(meta, tuple) else [meta.dtype] func = np.vectorize(func, signature=signature, otypes=otypes) ## Miscellaneous if output_sizes is None: output_sizes = {} ## Axes input_axes, output_axes = _validate_normalize_axes( axes, axis, keepdims, input_coredimss, output_coredimss ) # Main code: ## Cast all input arrays to dask args = [asarray(a) for a in args] if len(input_coredimss) != len(args): raise ValueError( "According to `signature`, `func` requires %d arguments, but %s given" % (len(input_coredimss), len(args)) ) ## Axes: transpose input arguments transposed_args = [] for arg, iax, _ in zip(args, input_axes, input_coredimss): shape = arg.shape iax = tuple(a if a < 0 else a - len(shape) for a in iax) tidc = tuple(i for i in range(-len(shape) + 0, 0) if i not in iax) + iax transposed_arg = arg.transpose(tidc) transposed_args.append(transposed_arg) args = transposed_args ## Assess input args for loop dims input_shapes = [a.shape for a in args] input_chunkss = [a.chunks for a in args] num_loopdims = [len(s) - len(cd) for s, cd in zip(input_shapes, input_coredimss)] max_loopdims = max(num_loopdims) if num_loopdims else None core_input_shapes = [ dict(zip(icd, s[n:])) for s, n, icd in zip(input_shapes, num_loopdims, input_coredimss) ] core_shapes = merge(*core_input_shapes) core_shapes.update(output_sizes) loop_input_dimss = [ tuple("__loopdim%d__" % d for d in range(max_loopdims - n, max_loopdims)) for n in num_loopdims ] input_dimss = [l + c for l, c in zip(loop_input_dimss, input_coredimss)] loop_output_dims = max(loop_input_dimss, key=len) if loop_input_dimss else tuple() ## Assess input args for same size and chunk sizes ### Collect sizes and chunksizes of all dims in all arrays dimsizess = {} chunksizess = {} for dims, shape, chunksizes in zip(input_dimss, input_shapes, input_chunkss): for dim, size, chunksize in zip(dims, shape, chunksizes): dimsizes = dimsizess.get(dim, []) dimsizes.append(size) dimsizess[dim] = dimsizes chunksizes_ = chunksizess.get(dim, []) chunksizes_.append(chunksize) chunksizess[dim] = chunksizes_ ### Assert correct partitioning, for case: for dim, sizes in dimsizess.items(): #### Check that the arrays have same length for same dimensions or dimension `1` if set(sizes) | {1} != {1, max(sizes)}: raise ValueError(f"Dimension `'{dim}'` with different lengths in arrays") if not allow_rechunk: chunksizes = chunksizess[dim] #### Check if core dimensions consist of only one chunk if (dim in core_shapes) and (chunksizes[0][0] < core_shapes[dim]): raise ValueError( "Core dimension `'{}'` consists of multiple chunks. To fix, rechunk into a single \ chunk along this dimension or set `allow_rechunk=True`, but beware that this may increase memory usage \ significantly.".format( dim ) ) #### Check if loop dimensions consist of same chunksizes, when they have sizes > 1 relevant_chunksizes = list( unique(c for s, c in zip(sizes, chunksizes) if s > 1) ) if len(relevant_chunksizes) > 1: raise ValueError( f"Dimension `'{dim}'` with different chunksize present" ) ## Apply function - use blockwise here arginds = list(concat(zip(args, input_dimss))) ### Use existing `blockwise` but only with loopdims to enforce ### concatenation for coredims that appear also at the output ### Modifying `blockwise` could improve things here. tmp = blockwise( func, loop_output_dims, *arginds, concatenate=True, meta=meta, **kwargs ) # NOTE: we likely could just use `meta` instead of `tmp._meta`, # but we use it and validate it anyway just to be sure nothing odd has happened. metas = tmp._meta if nout is None: assert not isinstance( metas, (list, tuple) ), f"meta changed from single output to multiple output during blockwise: {meta} -> {metas}" metas = (metas,) else: assert isinstance( metas, (list, tuple) ), f"meta changed from multiple output to single output during blockwise: {meta} -> {metas}" assert ( len(metas) == nout ), f"Number of outputs changed from {nout} to {len(metas)} during blockwise" ## Prepare output shapes loop_output_shape = tmp.shape loop_output_chunks = tmp.chunks keys = list(flatten(tmp.__dask_keys__())) name, token = keys[0][0].split("-") ### *) Treat direct output if nout is None: output_coredimss = [output_coredimss] ## Split output leaf_arrs = [] for i, (ocd, oax, meta) in enumerate(zip(output_coredimss, output_axes, metas)): core_output_shape = tuple(core_shapes[d] for d in ocd) core_chunkinds = len(ocd) * (0,) output_shape = loop_output_shape + core_output_shape output_chunks = loop_output_chunks + core_output_shape leaf_name = "%s_%d-%s" % (name, i, token) leaf_dsk = { (leaf_name,) + key[1:] + core_chunkinds: ((getitem, key, i) if nout else key) for key in keys } graph = HighLevelGraph.from_collections(leaf_name, leaf_dsk, dependencies=[tmp]) meta = meta_from_array(meta, len(output_shape)) leaf_arr = Array( graph, leaf_name, chunks=output_chunks, shape=output_shape, meta=meta ) ### Axes: if keepdims: slices = len(leaf_arr.shape) * (slice(None),) + len(oax) * (np.newaxis,) leaf_arr = leaf_arr[slices] tidcs = [None] * len(leaf_arr.shape) for ii, oa in zip(range(-len(oax), 0), oax): tidcs[oa] = ii j = 0 for ii in range(len(tidcs)): if tidcs[ii] is None: tidcs[ii] = j j += 1 leaf_arr = leaf_arr.transpose(tidcs) leaf_arrs.append(leaf_arr) return (*leaf_arrs,) if nout else leaf_arrs[0] # Undo *) from above
def apply_gufunc( func, signature, *args, axes=None, axis=None, keepdims=False, output_dtypes=None, output_sizes=None, vectorize=None, allow_rechunk=False, meta=None, **kwargs, ): """ Apply a generalized ufunc or similar python function to arrays. ``signature`` determines if the function consumes or produces core dimensions. The remaining dimensions in given input arrays (``*args``) are considered loop dimensions and are required to broadcast naturally against each other. In other terms, this function is like ``np.vectorize``, but for the blocks of dask arrays. If the function itself shall also be vectorized use ``vectorize=True`` for convenience. Parameters ---------- func : callable Function to call like ``func(*args, **kwargs)`` on input arrays (``*args``) that returns an array or tuple of arrays. If multiple arguments with non-matching dimensions are supplied, this function is expected to vectorize (broadcast) over axes of positional arguments in the style of NumPy universal functions [1]_ (if this is not the case, set ``vectorize=True``). If this function returns multiple outputs, ``output_core_dims`` has to be set as well. signature: string Specifies what core dimensions are consumed and produced by ``func``. According to the specification of numpy.gufunc signature [2]_ *args : numeric Input arrays or scalars to the callable function. axes: List of tuples, optional, keyword only A list of tuples with indices of axes a generalized ufunc should operate on. For instance, for a signature of ``"(i,j),(j,k)->(i,k)"`` appropriate for matrix multiplication, the base elements are two-dimensional matrices and these are taken to be stored in the two last axes of each argument. The corresponding axes keyword would be ``[(-2, -1), (-2, -1), (-2, -1)]``. For simplicity, for generalized ufuncs that operate on 1-dimensional arrays (vectors), a single integer is accepted instead of a single-element tuple, and for generalized ufuncs for which all outputs are scalars, the output tuples can be omitted. axis: int, optional, keyword only A single axis over which a generalized ufunc should operate. This is a short-cut for ufuncs that operate over a single, shared core dimension, equivalent to passing in axes with entries of (axis,) for each single-core-dimension argument and ``()`` for all others. For instance, for a signature ``"(i),(i)->()"``, it is equivalent to passing in ``axes=[(axis,), (axis,), ()]``. keepdims: bool, optional, keyword only If this is set to True, axes which are reduced over will be left in the result as a dimension with size one, so that the result will broadcast correctly against the inputs. This option can only be used for generalized ufuncs that operate on inputs that all have the same number of core dimensions and with outputs that have no core dimensions , i.e., with signatures like ``"(i),(i)->()"`` or ``"(m,m)->()"``. If used, the location of the dimensions in the output can be controlled with axes and axis. output_dtypes : Optional, dtype or list of dtypes, keyword only Valid numpy dtype specification or list thereof. If not given, a call of ``func`` with a small set of data is performed in order to try to automatically determine the output dtypes. output_sizes : dict, optional, keyword only Optional mapping from dimension names to sizes for outputs. Only used if new core dimensions (not found on inputs) appear on outputs. vectorize: bool, keyword only If set to ``True``, ``np.vectorize`` is applied to ``func`` for convenience. Defaults to ``False``. allow_rechunk: Optional, bool, keyword only Allows rechunking, otherwise chunk sizes need to match and core dimensions are to consist only of one chunk. Warning: enabling this can increase memory usage significantly. Defaults to ``False``. meta: Optional, tuple, keyword only tuple of empty ndarrays describing the shape and dtype of the output of the gufunc. Defaults to ``None``. **kwargs : dict Extra keyword arguments to pass to `func` Returns ------- Single dask.array.Array or tuple of dask.array.Array Examples -------- >>> import dask.array as da >>> import numpy as np >>> def stats(x): ... return np.mean(x, axis=-1), np.std(x, axis=-1) >>> a = da.random.normal(size=(10,20,30), chunks=(5, 10, 30)) >>> mean, std = da.apply_gufunc(stats, "(i)->(),()", a) >>> mean.compute().shape (10, 20) >>> def outer_product(x, y): ... return np.einsum("i,j->ij", x, y) >>> a = da.random.normal(size=( 20,30), chunks=(10, 30)) >>> b = da.random.normal(size=(10, 1,40), chunks=(5, 1, 40)) >>> c = da.apply_gufunc(outer_product, "(i),(j)->(i,j)", a, b, vectorize=True) >>> c.compute().shape (10, 20, 30, 40) References ---------- .. [1] https://docs.scipy.org/doc/numpy/reference/ufuncs.html .. [2] https://docs.scipy.org/doc/numpy/reference/c-api/generalized-ufuncs.html """ # Input processing: ## Signature if not isinstance(signature, str): raise TypeError("`signature` has to be of type string") # NumPy versions before https://github.com/numpy/numpy/pull/19627 # would not ignore whitespace characters in `signature` like they # are supposed to. We remove the whitespace here as a workaround. signature = re.sub(r"\s+", "", signature) input_coredimss, output_coredimss = _parse_gufunc_signature(signature) ## Determine nout: nout = None for functions of one direct return; nout = int for return tuples nout = None if not isinstance(output_coredimss, list) else len(output_coredimss) ## Consolidate onto `meta` if meta is not None and output_dtypes is not None: raise ValueError( "Only one of `meta` and `output_dtypes` should be given (`meta` is preferred)." ) if meta is None: if output_dtypes is None: ## Infer `output_dtypes` if vectorize: tempfunc = np.vectorize(func, signature=signature) else: tempfunc = func output_dtypes = apply_infer_dtype( tempfunc, args, kwargs, "apply_gufunc", "output_dtypes", nout ) ## Turn `output_dtypes` into `meta` if ( nout is None and isinstance(output_dtypes, (tuple, list)) and len(output_dtypes) == 1 ): output_dtypes = output_dtypes[0] sample = args[0] if args else None if nout is None: meta = meta_from_array(sample, dtype=output_dtypes) else: meta = tuple(meta_from_array(sample, dtype=odt) for odt in output_dtypes) ## Normalize `meta` format meta = meta_from_array(meta) if isinstance(meta, list): meta = tuple(meta) ## Validate `meta` if nout is None: if isinstance(meta, tuple): if len(meta) == 1: meta = meta[0] else: raise ValueError( "For a function with one output, must give a single item for `output_dtypes`/`meta`, " "not a tuple or list." ) else: if not isinstance(meta, tuple): raise ValueError( f"For a function with {nout} outputs, must give a tuple or list for `output_dtypes`/`meta`, " "not a single item." ) if len(meta) != nout: raise ValueError( f"For a function with {nout} outputs, must give a tuple or list of {nout} items for " f"`output_dtypes`/`meta`, not {len(meta)}." ) ## Vectorize function, if required if vectorize: otypes = [x.dtype for x in meta] if isinstance(meta, tuple) else [meta.dtype] func = np.vectorize(func, signature=signature, otypes=otypes) ## Miscellaneous if output_sizes is None: output_sizes = {} ## Axes input_axes, output_axes = _validate_normalize_axes( axes, axis, keepdims, input_coredimss, output_coredimss ) # Main code: ## Cast all input arrays to dask args = [asarray(a) for a in args] if len(input_coredimss) != len(args): raise ValueError( "According to `signature`, `func` requires %d arguments, but %s given" % (len(input_coredimss), len(args)) ) ## Axes: transpose input arguments transposed_args = [] for arg, iax in zip(args, input_axes): shape = arg.shape iax = tuple(a if a < 0 else a - len(shape) for a in iax) tidc = tuple(i for i in range(-len(shape) + 0, 0) if i not in iax) + iax transposed_arg = arg.transpose(tidc) transposed_args.append(transposed_arg) args = transposed_args ## Assess input args for loop dims input_shapes = [a.shape for a in args] input_chunkss = [a.chunks for a in args] num_loopdims = [len(s) - len(cd) for s, cd in zip(input_shapes, input_coredimss)] max_loopdims = max(num_loopdims) if num_loopdims else None core_input_shapes = [ dict(zip(icd, s[n:])) for s, n, icd in zip(input_shapes, num_loopdims, input_coredimss) ] core_shapes = merge(*core_input_shapes) core_shapes.update(output_sizes) loop_input_dimss = [ tuple("__loopdim%d__" % d for d in range(max_loopdims - n, max_loopdims)) for n in num_loopdims ] input_dimss = [l + c for l, c in zip(loop_input_dimss, input_coredimss)] loop_output_dims = max(loop_input_dimss, key=len) if loop_input_dimss else tuple() ## Assess input args for same size and chunk sizes ### Collect sizes and chunksizes of all dims in all arrays dimsizess = {} chunksizess = {} for dims, shape, chunksizes in zip(input_dimss, input_shapes, input_chunkss): for dim, size, chunksize in zip(dims, shape, chunksizes): dimsizes = dimsizess.get(dim, []) dimsizes.append(size) dimsizess[dim] = dimsizes chunksizes_ = chunksizess.get(dim, []) chunksizes_.append(chunksize) chunksizess[dim] = chunksizes_ ### Assert correct partitioning, for case: for dim, sizes in dimsizess.items(): #### Check that the arrays have same length for same dimensions or dimension `1` if set(sizes) | {1} != {1, max(sizes)}: raise ValueError(f"Dimension `'{dim}'` with different lengths in arrays") if not allow_rechunk: chunksizes = chunksizess[dim] #### Check if core dimensions consist of only one chunk if (dim in core_shapes) and (chunksizes[0][0] < core_shapes[dim]): raise ValueError( "Core dimension `'{}'` consists of multiple chunks. To fix, rechunk into a single \ chunk along this dimension or set `allow_rechunk=True`, but beware that this may increase memory usage \ significantly.".format( dim ) ) #### Check if loop dimensions consist of same chunksizes, when they have sizes > 1 relevant_chunksizes = list( unique(c for s, c in zip(sizes, chunksizes) if s > 1) ) if len(relevant_chunksizes) > 1: raise ValueError( f"Dimension `'{dim}'` with different chunksize present" ) ## Apply function - use blockwise here arginds = list(concat(zip(args, input_dimss))) ### Use existing `blockwise` but only with loopdims to enforce ### concatenation for coredims that appear also at the output ### Modifying `blockwise` could improve things here. tmp = blockwise( func, loop_output_dims, *arginds, concatenate=True, meta=meta, **kwargs ) # NOTE: we likely could just use `meta` instead of `tmp._meta`, # but we use it and validate it anyway just to be sure nothing odd has happened. metas = tmp._meta if nout is None: assert not isinstance( metas, (list, tuple) ), f"meta changed from single output to multiple output during blockwise: {meta} -> {metas}" metas = (metas,) else: assert isinstance( metas, (list, tuple) ), f"meta changed from multiple output to single output during blockwise: {meta} -> {metas}" assert ( len(metas) == nout ), f"Number of outputs changed from {nout} to {len(metas)} during blockwise" ## Prepare output shapes loop_output_shape = tmp.shape loop_output_chunks = tmp.chunks keys = list(flatten(tmp.__dask_keys__())) name, token = keys[0][0].split("-") ### *) Treat direct output if nout is None: output_coredimss = [output_coredimss] ## Split output leaf_arrs = [] for i, (ocd, oax, meta) in enumerate(zip(output_coredimss, output_axes, metas)): core_output_shape = tuple(core_shapes[d] for d in ocd) core_chunkinds = len(ocd) * (0,) output_shape = loop_output_shape + core_output_shape output_chunks = loop_output_chunks + core_output_shape leaf_name = "%s_%d-%s" % (name, i, token) leaf_dsk = { (leaf_name,) + key[1:] + core_chunkinds: ((getitem, key, i) if nout else key) for key in keys } graph = HighLevelGraph.from_collections(leaf_name, leaf_dsk, dependencies=[tmp]) meta = meta_from_array(meta, len(output_shape)) leaf_arr = Array( graph, leaf_name, chunks=output_chunks, shape=output_shape, meta=meta ) ### Axes: if keepdims: slices = len(leaf_arr.shape) * (slice(None),) + len(oax) * (np.newaxis,) leaf_arr = leaf_arr[slices] tidcs = [None] * len(leaf_arr.shape) for ii, oa in zip(range(-len(oax), 0), oax): tidcs[oa] = ii j = 0 for ii in range(len(tidcs)): if tidcs[ii] is None: tidcs[ii] = j j += 1 leaf_arr = leaf_arr.transpose(tidcs) leaf_arrs.append(leaf_arr) return (*leaf_arrs,) if nout else leaf_arrs[0] # Undo *) from above
3,332
def query_tag_data( params: Mapping[str, str], filter_query: Optional[str] = None, aggregate_column: Optional[str] = None, orderby: Optional[str] = None, referrer: Optional[str] = None, ): with sentry_sdk.start_span( op="discover.discover", description="facets.filter_transform" ) as span: span.set_data("query", filter_query) snuba_filter = discover.get_filter(filter_query, params) # Resolve the public aliases into the discover dataset names. snuba_filter, translated_columns = discover.resolve_discover_aliases(snuba_filter) # TODO(k-fish): Remove this and pass aliases instead, we can convert them back for raw_query column_map = { "duration": "transaction.duration", "measurements[lcp]": "measurements.lcp", "span_op_breakdowns[ops.browser]": "spans.browser", "span_op_breakdowns[ops.http]": "spans.http", "span_op_breakdowns[ops.db]": "spans.db", "span_op_breakdowns[ops.resource]": "spans.resource", } mapped_aggregate_column = column_map.get(aggregate_column) # Only operate on allowed columns if not mapped_aggregate_column: return None initial_selected_columns = ["count()", f"avg({mapped_aggregate_column}) as aggregate"] with sentry_sdk.start_span(op="discover.discover", description="facets.frequent_tags"): # Get the most relevant tag keys tag_data = discover.query( selected_columns=initial_selected_columns, query=filter_query, params=params, orderby=["-count"], referrer="{}.{}".format(referrer, "all_transactions"), ) counts = [r["count"] for r in tag_data["data"]] aggregates = [r["aggregate"] for r in tag_data["data"]] # Return early to avoid doing more queries with 0 count transactions or aggregates for columns that dont exist if len(counts) != 1 or counts[0] == 0 or aggregates[0] is None: return None if not tag_data["data"][0]: return None return tag_data["data"][0]
def query_tag_data( params: Mapping[str, str], filter_query: Optional[str] = None, aggregate_column: Optional[str] = None, orderby: Optional[str] = None, referrer: Optional[str] = None, ): with sentry_sdk.start_span( op="discover.discover", description="facets.filter_transform" ) as span: span.set_data("query", filter_query) snuba_filter = discover.get_filter(filter_query, params) # Resolve the public aliases into the discover dataset names. snuba_filter, translated_columns = discover.resolve_discover_aliases(snuba_filter) # TODO(k-fish): Remove this and pass aliases instead, we can convert them back for raw_query column_map = { "duration": "transaction.duration", "measurements[lcp]": "measurements.lcp", "span_op_breakdowns[ops.browser]": "spans.browser", "span_op_breakdowns[ops.http]": "spans.http", "span_op_breakdowns[ops.db]": "spans.db", "span_op_breakdowns[ops.resource]": "spans.resource", } mapped_aggregate_column = column_map.get(aggregate_column) # Only operate on allowed columns if not mapped_aggregate_column: return None initial_selected_columns = ["count()", f"avg({mapped_aggregate_column}) as aggregate"] with sentry_sdk.start_span(op="discover.discover", description="facets.frequent_tags"): # Get the most relevant tag keys tag_data = discover.query( selected_columns=initial_selected_columns, query=filter_query, params=params, orderby=["-count"], referrer=f"{referrer}.all_transactions", ) counts = [r["count"] for r in tag_data["data"]] aggregates = [r["aggregate"] for r in tag_data["data"]] # Return early to avoid doing more queries with 0 count transactions or aggregates for columns that dont exist if len(counts) != 1 or counts[0] == 0 or aggregates[0] is None: return None if not tag_data["data"][0]: return None return tag_data["data"][0]
7,270
def local_binary_pattern(image, P, R, method='default'): """Gray scale and rotation invariant LBP (Local Binary Patterns). LBP is an invariant descriptor that can be used for texture classification. Parameters ---------- image : (N, M) array Graylevel image. P : int Number of circularly symmetric neighbour set points (quantization of the angular space). R : float Radius of circle (spatial resolution of the operator). method : {'default', 'ror', 'uniform', 'var'} Method to determine the pattern: ``default`` Original local binary pattern which is gray scale but not rotation invariant. ``ror`` Extension of default implementation which is gray scale and rotation invariant. ``uniform`` Improved rotation invariance with uniform patterns and finer quantization of the angular space which is gray scale and rotation invariant. ``nri_uniform`` Non rotation-invariant uniform patterns variant which is only gray scale invariant [2]_. ``var`` Rotation invariant variance measures of the contrast of local image texture which is rotation but not gray scale invariant. Returns ------- output : (N, M) array LBP image. References ---------- .. [1] Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. Timo Ojala, Matti Pietikainen, Topi Maenpaa. http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/pdf_94.pdf, 2002. .. [2] Face recognition with local binary patterns. Timo Ahonen, Abdenour Hadid, Matti Pietikainen, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.6851, 2004. """ check_nD(image, 2) methods = { 'default': ord('D'), 'ror': ord('R'), 'uniform': ord('U'), 'nri_uniform': ord('N'), 'var': ord('V') } image = np.ascontiguousarray(image, dtype=np.double) output = _local_binary_pattern(image, P, R, methods[method.lower()]) return output
def local_binary_pattern(image, P, R, method='default'): """Gray scale and rotation invariant LBP (Local Binary Patterns). LBP is an invariant descriptor that can be used for texture classification. Parameters ---------- image : (N, M) array Graylevel image. P : int Number of circularly symmetric neighbour set points (quantization of the angular space). R : float Radius of circle (spatial resolution of the operator). method : {'default', 'ror', 'uniform', 'var'} Method to determine the pattern: ``default`` Original local binary pattern which is gray scale but not rotation invariant. ``ror`` Extension of default implementation which is gray scale and rotation invariant. ``uniform`` Improved rotation invariance with uniform patterns and finer quantization of the angular space which is grayscale and rotation invariant. ``nri_uniform`` Non rotation-invariant uniform patterns variant which is only gray scale invariant [2]_. ``var`` Rotation invariant variance measures of the contrast of local image texture which is rotation but not gray scale invariant. Returns ------- output : (N, M) array LBP image. References ---------- .. [1] Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. Timo Ojala, Matti Pietikainen, Topi Maenpaa. http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/pdf_94.pdf, 2002. .. [2] Face recognition with local binary patterns. Timo Ahonen, Abdenour Hadid, Matti Pietikainen, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.6851, 2004. """ check_nD(image, 2) methods = { 'default': ord('D'), 'ror': ord('R'), 'uniform': ord('U'), 'nri_uniform': ord('N'), 'var': ord('V') } image = np.ascontiguousarray(image, dtype=np.double) output = _local_binary_pattern(image, P, R, methods[method.lower()]) return output
17,332
def list_equiv(first, second): equiv = True if len(first) != len(second): return False else: for i in range(len(first)): equiv = equiv and equivalent(first[i], second[i]) return equiv
def list_equiv(first, second): equiv = True if len(first) != len(second): return False else: for f, s in zip(first, second): equiv = equiv and equivalent(first[i], second[i]) return equiv
20,202
def purge(url=None): akamai_config = settings.WAGTAILFRONTENDCACHE.get('akamai', {}) cloudfront_config = settings.WAGTAILFRONTENDCACHE.get( 'cloudfront', {}) if url: # Use the Wagtail frontendcache PurgeBatch to perform the purge batch = PurgeBatch() batch.add_url(url) # If the URL matches any of our cloudfront distributions, invalidate # with that backend if any(k for k in cloudfront_config.get('DISTRIBUTION_ID', {}) if k in url): logger.info('Purging {} from cloudfront'.format(url)) batch.purge(backends='cloudfront') # Otherwise invalidate with our default backend else: logger.info('Purging {} from akamai'.format(url)) batch.purge(backends='akamai') return "Submitted invalidation for %s" % url else: # purge_all only exists on our AkamaiBackend backend = AkamaiBackend(akamai_config) logger.info('Purging entire site from akamai') backend.purge_all() return "Submitted invalidation for the entire site."
def purge(url=None): akamai_config = settings.WAGTAILFRONTENDCACHE.get('akamai', {}) cloudfront_config = settings.WAGTAILFRONTENDCACHE.get( 'cloudfront', {}) if url: # Use the Wagtail frontendcache PurgeBatch to perform the purge batch = PurgeBatch() batch.add_url(url) # If the URL matches any of our CloudFront distributions, invalidate # If the URL matches any of our cloudfront distributions, invalidate # with that backend if any(k for k in cloudfront_config.get('DISTRIBUTION_ID', {}) if k in url): logger.info('Purging {} from cloudfront'.format(url)) batch.purge(backends='cloudfront') # Otherwise invalidate with our default backend else: logger.info('Purging {} from akamai'.format(url)) batch.purge(backends='akamai') return "Submitted invalidation for %s" % url else: # purge_all only exists on our AkamaiBackend backend = AkamaiBackend(akamai_config) logger.info('Purging entire site from akamai') backend.purge_all() return "Submitted invalidation for the entire site."
16,919
def slug_url(hass, url) -> str | None: """Convert a camera url into a string suitable for a camera name.""" if not url: return None if not isinstance(url, template_helper.Template): url = cv.template(url) url.hass = hass # We shouldn't have any exceptions here, because we verified the url earlier url = url.async_render(parse_result=False) return slugify(yarl.URL(url).host)
def slug_url(hass, url) -> str | None: """Convert a camera url into a string suitable for a camera name.""" if not url: return None if not isinstance(url, template_helper.Template): url = template_helper.Template(url, hass) # We shouldn't have any exceptions here, because we verified the url earlier url = url.async_render(parse_result=False) return slugify(yarl.URL(url).host)
3,648
def _get_mem_available(): """Return available memory in bytes, or None if unknown.""" try: import psutil return psutil.virtual_memory().available except (ImportError, AttributeError): pass if sys.platform.startswith('linux'): info = {} with open('/proc/meminfo', 'r') as f: for line in f: p = line.split() info[p[0].strip(':').lower()] = float(p[1]) * 1e3 if 'memavailable' in info: # Linux >= 3.14 return info['memavailable'] else: return info['memfree'] + info['cached'] return None
def _get_mem_available(): """Return available memory in bytes, or None if unknown.""" try: import psutil return psutil.virtual_memory().available except (ImportError, AttributeError): pass if sys.platform.startswith('linux'): info = {} with open('/proc/meminfo', 'r') as f: for line in f: p = line.split() info[p[0].strip(':').lower()] = int(p[1]) * 1024 if 'memavailable' in info: # Linux >= 3.14 return info['memavailable'] else: return info['memfree'] + info['cached'] return None
17,671
def parse_gitconfig_dump(dump, cwd=None, multi_value=True): """Parse a dump-string from `git config -z --list` This parser has limited support for discarding unrelated output that may contaminate the given dump. It does so performing a relatively strict matching of configuration key syntax, and discarding lines in the output that are not valid git-config keys. There is also built-in support for parsing outputs generated with --show-origin (see return value). Parameters ---------- dump : str Null-byte separated output cwd : path-like, optional Use this absolute path to convert relative paths for origin reports into absolute paths. By default, the process working directory PWD is used. multi_value : bool, optional If True, report values from multiple specifications of the same key as a tuple of values assigned to this key. Otherwise, the last configuration is reported. Returns: -------- dict, set Configuration items are returned as key/value pairs in a dictionary. The second tuple-item will be a set of path objects comprising all source files, if origin information was included in the dump (--show-origin). An empty set is returned otherwise. """ dct = {} fileset = set() for line in dump.split('\0'): # line is a null-delimited chunk k = None # in anticipation of output contamination, process within a loop # scope we can reject non syntax compliant pieces while line: if line.startswith('file:'): # origin line fname = Path(line[5:]) if not fname.is_absolute(): fname = Path(cwd) / fname if cwd else Path.cwd() / fname fileset.add(fname) break if line.startswith('command line:'): # no origin that we could as a pathobj break # try getting key/value pair from the present chunk k, v = _gitcfg_rec_to_keyvalue(line) if k is not None: # we are done with this chunk when there is a good key break # discard the first line and start over ignore, line = line.split('\n', maxsplit=1) lgr.debug('Non-standard git-config output, ignoring: %s', ignore) if not k: # nothing else to log, all ignored dump was reported before continue # multi-value reporting present_v = dct.get(k, None) if present_v is None or not multi_value: dct[k] = v else: if isinstance(present_v, tuple): dct[k] = present_v + (v,) else: dct[k] = (present_v, v) return dct, fileset
def parse_gitconfig_dump(dump, cwd=None, multi_value=True): """Parse a dump-string from `git config -z --list` This parser has limited support for discarding unrelated output that may contaminate the given dump. It does so performing a relatively strict matching of configuration key syntax, and discarding lines in the output that are not valid git-config keys. There is also built-in support for parsing outputs generated with --show-origin (see return value). Parameters ---------- dump : str Null-byte separated output cwd : path-like, optional Use this absolute path to convert relative paths for origin reports into absolute paths. By default, the process working directory PWD is used. multi_value : bool, optional If True, report values from multiple specifications of the same key as a tuple of values assigned to this key. Otherwise, the last configuration is reported. Returns: -------- dict, set Configuration items are returned as key/value pairs in a dictionary. The second tuple-item will be a set of path objects comprising all source files, if origin information was included in the dump (--show-origin). An empty set is returned otherwise. """ dct = {} fileset = set() for line in dump.split('\0'): # line is a null-delimited chunk k = None # in anticipation of output contamination, process within a loop # where we can reject non syntax compliant pieces while line: if line.startswith('file:'): # origin line fname = Path(line[5:]) if not fname.is_absolute(): fname = Path(cwd) / fname if cwd else Path.cwd() / fname fileset.add(fname) break if line.startswith('command line:'): # no origin that we could as a pathobj break # try getting key/value pair from the present chunk k, v = _gitcfg_rec_to_keyvalue(line) if k is not None: # we are done with this chunk when there is a good key break # discard the first line and start over ignore, line = line.split('\n', maxsplit=1) lgr.debug('Non-standard git-config output, ignoring: %s', ignore) if not k: # nothing else to log, all ignored dump was reported before continue # multi-value reporting present_v = dct.get(k, None) if present_v is None or not multi_value: dct[k] = v else: if isinstance(present_v, tuple): dct[k] = present_v + (v,) else: dct[k] = (present_v, v) return dct, fileset
29,572
def start_worker(logdir, scheduler_addr, scheduler_port, worker_addr, nthreads, nprocs, ssh_username, ssh_port, ssh_private_key, nohost, memory_limit, worker_port, nanny_port, remote_python=None, remote_dask_worker=None): cmd = ('{python} -m {remote_dask_worker} ' '{scheduler_addr}:{scheduler_port} ' '--nthreads {nthreads} --nprocs {nprocs} ') if not nohost: cmd += ' --host {worker_addr} ' if memory_limit: cmd += '--memory-limit {memory_limit} ' if worker_port: cmd += '--worker-port {worker_port} ' if nanny_port: cmd += '--nanny-port {nanny_port} ' cmd = cmd.format( python=remote_python or sys.executable, remote_dask_worker=remote_dask_worker or 'distributed.cli.dask_worker', scheduler_addr=scheduler_addr, scheduler_port=scheduler_port, worker_addr=worker_addr, nthreads=nthreads, nprocs=nprocs, memory_limit=memory_limit, worker_port=worker_port, nanny_port=nanny_port) # Optionally redirect stdout and stderr to a logfile if logdir is not None: cmd = 'mkdir -p {logdir} && '.format(logdir=logdir) + cmd cmd += '&> {logdir}/dask_scheduler_{addr}.log'.format( addr=worker_addr, logdir=logdir) label = 'worker {addr}'.format(addr=worker_addr) # Create a command dictionary, which contains everything we need to run and # interact with this command. input_queue = Queue() output_queue = Queue() cmd_dict = {'cmd': cmd, 'label': label, 'address': worker_addr, 'input_queue': input_queue, 'output_queue': output_queue, 'ssh_username': ssh_username, 'ssh_port': ssh_port, 'ssh_private_key': ssh_private_key} # Start the thread thread = Thread(target=async_ssh, args=[cmd_dict]) thread.daemon = True thread.start() return merge(cmd_dict, {'thread': thread})
def start_worker(logdir, scheduler_addr, scheduler_port, worker_addr, nthreads, nprocs, ssh_username, ssh_port, ssh_private_key, nohost, memory_limit, worker_port, nanny_port, remote_python=None, remote_dask_worker='distributed.cli.dask_worker'): cmd = ('{python} -m {remote_dask_worker} ' '{scheduler_addr}:{scheduler_port} ' '--nthreads {nthreads} --nprocs {nprocs} ') if not nohost: cmd += ' --host {worker_addr} ' if memory_limit: cmd += '--memory-limit {memory_limit} ' if worker_port: cmd += '--worker-port {worker_port} ' if nanny_port: cmd += '--nanny-port {nanny_port} ' cmd = cmd.format( python=remote_python or sys.executable, remote_dask_worker=remote_dask_worker or 'distributed.cli.dask_worker', scheduler_addr=scheduler_addr, scheduler_port=scheduler_port, worker_addr=worker_addr, nthreads=nthreads, nprocs=nprocs, memory_limit=memory_limit, worker_port=worker_port, nanny_port=nanny_port) # Optionally redirect stdout and stderr to a logfile if logdir is not None: cmd = 'mkdir -p {logdir} && '.format(logdir=logdir) + cmd cmd += '&> {logdir}/dask_scheduler_{addr}.log'.format( addr=worker_addr, logdir=logdir) label = 'worker {addr}'.format(addr=worker_addr) # Create a command dictionary, which contains everything we need to run and # interact with this command. input_queue = Queue() output_queue = Queue() cmd_dict = {'cmd': cmd, 'label': label, 'address': worker_addr, 'input_queue': input_queue, 'output_queue': output_queue, 'ssh_username': ssh_username, 'ssh_port': ssh_port, 'ssh_private_key': ssh_private_key} # Start the thread thread = Thread(target=async_ssh, args=[cmd_dict]) thread.daemon = True thread.start() return merge(cmd_dict, {'thread': thread})
32,541
def create_indicator_fields(indicator, indicator_type, indicator_value): """Creating an indicator fields from a raw indicator""" params = demisto.params() indicator_fields = TC_INDICATOR_TO_XSOAR_INDICATOR[indicator_type] fields: dict = {} for indicator_key, xsoar_indicator_key in indicator_fields.items(): fields[xsoar_indicator_key] = indicator.get(indicator_key, '') raw_tags = indicator.get('tags', {}).get('data', []) tags = [tag.get('name', '') for tag in raw_tags] fields['tags'] = tags fields['reportedby'] = [name for name in [indicator.get('ownerName', ''), indicator.get('source', '')] if name] fields['feedrelatedindicators'] = indicator.get("associatedIndicators", {}).get('data') or [] fields['feedrelatedindicators'].extend(indicator.get("associatedGroups", {}).get('data') or []) if 'description' not in fields: fields['description'] = indicator.get('attributes', {}).get('description', '') if indicator_type == 'Course of Action': fields['action'] = indicator.get('attributes', {}).get('action', '') if indicator_type == 'Registry Key': fields['namefield'] = indicator.get('Key Name', '') tlp_color = params.get('tlp_color', '') if tlp_color: fields['trafficlightprotocol'] = tlp_color # type: ignore if argToBoolean(params.get('retrieveRelationships')): relationships = create_indicator_relationships(fields, indicator_type, indicator_value) if relationships: fields['relationships'] = relationships remove_nulls_from_dictionary(fields) return fields
def create_indicator_fields(indicator, indicator_type, indicator_value): """Creating an indicator fields from a raw indicator""" params = demisto.params() indicator_fields_mapping = TC_INDICATOR_TO_XSOAR_INDICATOR[indicator_type] fields: dict = {} for indicator_key, xsoar_indicator_key in indicator_fields.items(): fields[xsoar_indicator_key] = indicator.get(indicator_key, '') raw_tags = indicator.get('tags', {}).get('data', []) tags = [tag.get('name', '') for tag in raw_tags] fields['tags'] = tags fields['reportedby'] = [name for name in [indicator.get('ownerName', ''), indicator.get('source', '')] if name] fields['feedrelatedindicators'] = indicator.get("associatedIndicators", {}).get('data') or [] fields['feedrelatedindicators'].extend(indicator.get("associatedGroups", {}).get('data') or []) if 'description' not in fields: fields['description'] = indicator.get('attributes', {}).get('description', '') if indicator_type == 'Course of Action': fields['action'] = indicator.get('attributes', {}).get('action', '') if indicator_type == 'Registry Key': fields['namefield'] = indicator.get('Key Name', '') tlp_color = params.get('tlp_color', '') if tlp_color: fields['trafficlightprotocol'] = tlp_color # type: ignore if argToBoolean(params.get('retrieveRelationships')): relationships = create_indicator_relationships(fields, indicator_type, indicator_value) if relationships: fields['relationships'] = relationships remove_nulls_from_dictionary(fields) return fields
6,619
def update_invoice_status(): """Updates status as Overdue for applicable invoices. Runs daily.""" today = getdate() payment_schedule = frappe.qb.DocType("Payment Schedule") for doctype in ("Sales Invoice", "Purchase Invoice"): invoice = frappe.qb.DocType(doctype) consider_base_amount = invoice.party_account_currency != invoice.currency payment_amount = ( frappe.qb.terms.Case() .when(consider_base_amount, payment_schedule.base_payment_amount) .else_(payment_schedule.payment_amount) ) payable_amount = ( frappe.qb.from_(payment_schedule) .select(Sum(payment_amount)) .where( (payment_schedule.parent == invoice.name) & (payment_schedule.due_date < today) ) ) total = ( frappe.qb.terms.Case() .when(invoice.disable_rounded_total, invoice.grand_total) .else_(invoice.rounded_total) ) base_total = ( frappe.qb.terms.Case() .when(invoice.disable_rounded_total, invoice.base_grand_total) .else_(invoice.base_rounded_total) ) total_amount = ( frappe.qb.terms.Case() .when(consider_base_amount, base_total) .else_(total) ) is_overdue = total_amount - invoice.outstanding_amount < payable_amount conditions = ( (invoice.docstatus == 1) & (invoice.outstanding_amount > 0) & ( invoice.status.like("Unpaid%") | invoice.status.like("Partly Paid%") ) & ( (invoice.is_pos & invoice.due_date < today) | is_overdue if doctype == "Sales Invoice" else is_overdue ) ) status = ( frappe.qb.terms.Case() .when(invoice.status.like("%Discounted"), "Overdue and Discounted") .else_("Overdue") ) frappe.qb.update(invoice).set("status", status).where(conditions).run()
def update_invoice_status(): """Updates status as Overdue for applicable invoices. Runs daily.""" today = getdate() payment_schedule = frappe.qb.DocType("Payment Schedule") for doctype in ("Sales Invoice", "Purchase Invoice"): invoice = frappe.qb.DocType(doctype) consider_base_amount = invoice.party_account_currency != invoice.currency payment_amount = ( frappe.qb.terms.Case() .when(consider_base_amount, payment_schedule.base_payment_amount) .else_(payment_schedule.payment_amount) ) payable_amount = ( ((invoice.is_pos & invoice.due_date < today) | is_overdue) .select(Sum(payment_amount)) .where( (payment_schedule.parent == invoice.name) & (payment_schedule.due_date < today) ) ) total = ( frappe.qb.terms.Case() .when(invoice.disable_rounded_total, invoice.grand_total) .else_(invoice.rounded_total) ) base_total = ( frappe.qb.terms.Case() .when(invoice.disable_rounded_total, invoice.base_grand_total) .else_(invoice.base_rounded_total) ) total_amount = ( frappe.qb.terms.Case() .when(consider_base_amount, base_total) .else_(total) ) is_overdue = total_amount - invoice.outstanding_amount < payable_amount conditions = ( (invoice.docstatus == 1) & (invoice.outstanding_amount > 0) & ( invoice.status.like("Unpaid%") | invoice.status.like("Partly Paid%") ) & ( (invoice.is_pos & invoice.due_date < today) | is_overdue if doctype == "Sales Invoice" else is_overdue ) ) status = ( frappe.qb.terms.Case() .when(invoice.status.like("%Discounted"), "Overdue and Discounted") .else_("Overdue") ) frappe.qb.update(invoice).set("status", status).where(conditions).run()
11,973
def load_stylesheet_from_environment(is_pyqtgraph=False): """ Load the stylesheet from QT_API (or PYQTGRAPH_QT_LIB) environment variable. Args: is_pyqtgraph (bool): True if it is to be set using PYQTGRAPH_QT_LIB. Raises: KeyError: if PYQTGRAPH_QT_LIB does not exist. Returns: str: the stylesheet string. """ warnings.warn(DEPRECATION_MSG, DeprecationWarning) if is_pyqtgraph: stylesheet = _load_stylesheet(qt_api=os.environ.get('PYQTGRAPH_QT_LIB', None)) else: stylesheet = _load_stylesheet() return stylesheet
def load_stylesheet_from_environment(is_pyqtgraph=False): """ Load the stylesheet from QT_API (or PYQTGRAPH_QT_LIB) environment variable. Args: is_pyqtgraph (bool): True if it is to be set using PYQTGRAPH_QT_LIB. Raises: KeyError: if PYQTGRAPH_QT_LIB does not exist. Returns: str: the stylesheet string. """ warnings.warn(DEPRECATION_MSG, DeprecationWarning) if is_pyqtgraph: stylesheet = _load_stylesheet(qt_api=os.environ.get('PYQTGRAPH_QT_LIB')) else: stylesheet = _load_stylesheet() return stylesheet
57,021
def validate_cmd(cmd_name, valid_cmd_attribute_specs, actual_cmd_attributes): """Validates that the attributes of a command contain all the required attributes and some/all of optional attributes. It also checks that the values of attributes belong to a set of allowed values if any. Args: cmd_name: str. The command for which validation process is being done. valid_cmd_attribute_specs: dict. A dict containing the required and optional attributes for a command along with allowed values for attributes if any. actual_cmd_attributes: dict. A dict containing the actual attributes of a command with values for the attributes. Raises: ValidationError. Any required attribute is missing or an extra attribute exists or the value of an attribute is not allowed. """ required_attribute_names = valid_cmd_attribute_specs[ 'required_attribute_names'] optional_attribute_names = valid_cmd_attribute_specs[ 'optional_attribute_names'] actual_attribute_names = list(actual_cmd_attributes.keys()) missing_attribute_names = [ key for key in required_attribute_names if key not in ( actual_attribute_names)] extra_attribute_names = [ key for key in actual_attribute_names if key not in ( required_attribute_names + optional_attribute_names)] error_msg_list = [] if missing_attribute_names: error_msg_list.append( 'The following required attributes are missing: %s' % ( (', ').join(sorted(missing_attribute_names)))) if extra_attribute_names: error_msg_list.append( 'The following extra attributes are present: %s' % ( (', ').join(sorted(extra_attribute_names)))) if error_msg_list: raise utils.ValidationError((', ').join(error_msg_list)) deprecated_values = valid_cmd_attribute_specs.get('deprecated_values') if deprecated_values: for attribute_name, attribute_values in deprecated_values.items(): actual_value = actual_cmd_attributes[attribute_name] if actual_value in attribute_values: raise utils.DeprecatedError( 'Value for %s in cmd %s: %s is deprecated' % ( attribute_name, cmd_name, actual_value)) allowed_values = valid_cmd_attribute_specs.get('allowed_values') if not allowed_values: return for attribute_name, attribute_values in allowed_values.items(): actual_value = actual_cmd_attributes[attribute_name] if actual_value not in attribute_values: raise utils.ValidationError( 'Value for %s in cmd %s: %s is not allowed' % ( attribute_name, cmd_name, actual_value))
def validate_cmd(cmd_name, valid_cmd_attribute_specs, actual_cmd_attributes): """Validates that the attributes of a command contain all the required attributes and some/all of optional attributes. It also checks that the values of attributes belong to a set of allowed values if any. Args: cmd_name: str. The command for which validation process is being done. valid_cmd_attribute_specs: dict. A dict containing the required and optional attributes for a command along with allowed values for attributes if any. actual_cmd_attributes: dict. A dict containing the actual attributes of a command with values for the attributes. Raises: ValidationError. Any required attribute is missing or an extra attribute exists or the value of an attribute is not allowed. """ required_attribute_names = valid_cmd_attribute_specs[ 'required_attribute_names'] optional_attribute_names = valid_cmd_attribute_specs[ 'optional_attribute_names'] actual_attribute_names = list(actual_cmd_attributes.keys()) missing_attribute_names = [ key for key in required_attribute_names if key not in ( actual_attribute_names)] extra_attribute_names = [ key for key in actual_attribute_names if key not in ( required_attribute_names + optional_attribute_names)] error_msg_list = [] if missing_attribute_names: error_msg_list.append( 'The following required attributes are missing: %s' % ( (', ').join(sorted(missing_attribute_names)))) if extra_attribute_names: error_msg_list.append( 'The following extra attributes are present: %s' % ( (', ').join(sorted(extra_attribute_names)))) if error_msg_list: raise utils.ValidationError((', ').join(error_msg_list)) deprecated_values = valid_cmd_attribute_specs.get('deprecated_values', {}) for attribute_name, attribute_values in deprecated_values.items(): actual_value = actual_cmd_attributes[attribute_name] if actual_value in attribute_values: raise utils.DeprecatedError( 'Value for %s in cmd %s: %s is deprecated' % ( attribute_name, cmd_name, actual_value)) allowed_values = valid_cmd_attribute_specs.get('allowed_values') if not allowed_values: return for attribute_name, attribute_values in allowed_values.items(): actual_value = actual_cmd_attributes[attribute_name] if actual_value not in attribute_values: raise utils.ValidationError( 'Value for %s in cmd %s: %s is not allowed' % ( attribute_name, cmd_name, actual_value))
8,947
def auth_after_register(bot): """Do NickServ/AuthServ auth :param bot: a connected Sopel instance :type bot: :class:`sopel.bot.Sopel` This function can be used, **after** the bot is connected, to handle one of these auth methods: * ``nickserv``: send a private message to the NickServ service * ``authserv``: send a ``AUTHSERV`` command * ``Q``: send a ``AUTH`` command * ``userserv``: send a private message to the UserServ service .. important:: If ``core.auth_method`` is set, then ``core.nick_auth_method`` will be ignored. If none is set, then this function does nothing. """ if bot.config.core.auth_method: auth_method = bot.config.core.auth_method auth_username = bot.config.core.auth_username auth_password = bot.config.core.auth_password auth_target = bot.config.core.auth_target elif bot.config.core.nick_auth_method: auth_method = bot.config.core.nick_auth_method auth_username = (bot.config.core.nick_auth_username or bot.config.core.nick) auth_password = bot.config.core.nick_auth_password auth_target = bot.config.core.nick_auth_target else: return # nickserv-based auth method needs to check for current nick if auth_method == 'nickserv': if bot.nick != bot.settings.core.nick: LOGGER.warning('Sending nickserv GHOST command.') bot.say( 'GHOST %s %s' % (bot.settings.core.nick, auth_password), auth_target or 'NickServ') else: bot.say('IDENTIFY %s' % auth_password, auth_target or 'NickServ') # other methods use account instead of nick elif auth_method == 'authserv': bot.write(('AUTHSERV', 'auth', auth_username, auth_password)) elif auth_method == 'Q': bot.write(('AUTH', auth_username, auth_password)) elif auth_method == 'userserv': bot.say("LOGIN %s %s" % (auth_username, auth_password), auth_target or 'UserServ')
def auth_after_register(bot): """Do NickServ/AuthServ auth. :param bot: a connected Sopel instance :type bot: :class:`sopel.bot.Sopel` This function can be used, **after** the bot is connected, to handle one of these auth methods: * ``nickserv``: send a private message to the NickServ service * ``authserv``: send a ``AUTHSERV`` command * ``Q``: send a ``AUTH`` command * ``userserv``: send a private message to the UserServ service .. important:: If ``core.auth_method`` is set, then ``core.nick_auth_method`` will be ignored. If none is set, then this function does nothing. """ if bot.config.core.auth_method: auth_method = bot.config.core.auth_method auth_username = bot.config.core.auth_username auth_password = bot.config.core.auth_password auth_target = bot.config.core.auth_target elif bot.config.core.nick_auth_method: auth_method = bot.config.core.nick_auth_method auth_username = (bot.config.core.nick_auth_username or bot.config.core.nick) auth_password = bot.config.core.nick_auth_password auth_target = bot.config.core.nick_auth_target else: return # nickserv-based auth method needs to check for current nick if auth_method == 'nickserv': if bot.nick != bot.settings.core.nick: LOGGER.warning('Sending nickserv GHOST command.') bot.say( 'GHOST %s %s' % (bot.settings.core.nick, auth_password), auth_target or 'NickServ') else: bot.say('IDENTIFY %s' % auth_password, auth_target or 'NickServ') # other methods use account instead of nick elif auth_method == 'authserv': bot.write(('AUTHSERV', 'auth', auth_username, auth_password)) elif auth_method == 'Q': bot.write(('AUTH', auth_username, auth_password)) elif auth_method == 'userserv': bot.say("LOGIN %s %s" % (auth_username, auth_password), auth_target or 'UserServ')
2,931
def test_groupby_groups_in_BaseGrouper(): # https://github.com/pandas-dev/pandas/issues/26326 m_index = pd.MultiIndex.from_product([['A', 'B'], ['C', 'D']], names=['alpha', 'beta']) df_sample = pd.DataFrame({'foo': [1, 2, 1, 2], 'bar': [1, 2, 3, 4]}, index=m_index) dfGBY_BaseGrouper = df_sample.groupby([pd.Grouper(level='alpha'), 'beta']) dfGBY_noBaseGrouper = df_sample.groupby(['alpha', 'beta']) assert(dfGBY_BaseGrouper.groups == dfGBY_noBaseGrouper.groups)
def test_groupby_groups_in_BaseGrouper(): # GH 26326 m_index = pd.MultiIndex.from_product([['A', 'B'], ['C', 'D']], names=['alpha', 'beta']) df_sample = pd.DataFrame({'foo': [1, 2, 1, 2], 'bar': [1, 2, 3, 4]}, index=m_index) dfGBY_BaseGrouper = df_sample.groupby([pd.Grouper(level='alpha'), 'beta']) dfGBY_noBaseGrouper = df_sample.groupby(['alpha', 'beta']) assert(dfGBY_BaseGrouper.groups == dfGBY_noBaseGrouper.groups)
38,863
def get_spacy_model( spacy_model_name: str, parse: bool, ner: bool, pos_tags: bool = True ) -> SpacyModelType: """ In order to avoid loading spacy models a whole bunch of times, we'll save references to them, keyed by the options we used to create the spacy model, so any particular configuration only gets loaded once. """ options = (spacy_model_name, pos_tags, parse, ner) if options not in LOADED_SPACY_MODELS: disable = ["vectors", "textcat"] if not pos_tags: disable.append("tagger") if not parse: disable.append("parser") if not ner: disable.append("ner") try: spacy_model = spacy.load(spacy_model_name, disable=disable) except OSError: logger.warning( f"Spacy models '{spacy_model_name}' not found. Downloading and installing." ) spacy_download(spacy_model_name) # Import the downloaded model module directly and load from there spacy_model_module = __import__(spacy_model_name) spacy_model = spacy_model_module.load(disable=disable) # type: ignore LOADED_SPACY_MODELS[options] = spacy_model return LOADED_SPACY_MODELS[options]
def get_spacy_model( spacy_model_name: str, pos_tags: bool = True, parse: bool = False, ner: bool = False ) -> SpacyModelType: """ In order to avoid loading spacy models a whole bunch of times, we'll save references to them, keyed by the options we used to create the spacy model, so any particular configuration only gets loaded once. """ options = (spacy_model_name, pos_tags, parse, ner) if options not in LOADED_SPACY_MODELS: disable = ["vectors", "textcat"] if not pos_tags: disable.append("tagger") if not parse: disable.append("parser") if not ner: disable.append("ner") try: spacy_model = spacy.load(spacy_model_name, disable=disable) except OSError: logger.warning( f"Spacy models '{spacy_model_name}' not found. Downloading and installing." ) spacy_download(spacy_model_name) # Import the downloaded model module directly and load from there spacy_model_module = __import__(spacy_model_name) spacy_model = spacy_model_module.load(disable=disable) # type: ignore LOADED_SPACY_MODELS[options] = spacy_model return LOADED_SPACY_MODELS[options]
31,653
def main(): params = demisto.params() args = demisto.args() url = params.get('url') verify_certificate = not params.get('insecure', False) proxy = params.get('proxy', False) headers = {} mock_data = str(args.get('mock-data', '')) if mock_data.lower() == "true": headers['Mock-Data'] = "True" headers['Authorization'] = f'Bearer {params["api_key"]}' headers['Soar-Integration-Origin'] = "Cortex XSOAR" command = demisto.command() demisto.debug(f'Command being called is {command}') try: requests.packages.urllib3.disable_warnings() client = Client(urljoin(url, ''), verify_certificate, proxy, headers=headers, auth=None) commands = { 'abxcortexxsoar-check-the-status-of-an-action-requested-on-a-case': check_the_status_of_an_action_requested_on_a_case_command, 'abxcortexxsoar-check-the-status-of-an-action-requested-on-a-threat': check_the_status_of_an_action_requested_on_a_threat_command, 'abxcortexxsoar-get-a-list-of-abnormal-cases-identified-by-abnormal-security': get_a_list_of_abnormal_cases_identified_by_abnormal_security_command, 'abxcortexxsoar-get-a-list-of-threats': get_a_list_of_threats_command, 'abxcortexxsoar-get-details-of-a-threat': get_details_of_a_threat_command, 'abxcortexxsoar-get-details-of-an-abnormal-case': get_details_of_an_abnormal_case_command, 'abxcortexxsoar-get-the-latest-threat-intel-feed': get_the_latest_threat_intel_feed_command, 'abxcortexxsoar-manage-a-threat-identified-by-abnormal-security': manage_a_threat_identified_by_abnormal_security_command, 'abxcortexxsoar-manage-an-abnormal-case': manage_an_abnormal_case_command, 'abxcortexxsoar-submit-an-inquiry-to-request-a-report-on-misjudgement-by-abnormal-security': submit_an_inquiry_to_request_a_report_on_misjudgement_by_abnormal_security_command, } if command == 'test-module': headers['Mock-Data'] = "True" test_client = Client(urljoin(url, ''), verify_certificate, proxy, headers=headers, auth=None) test_module(test_client) elif command in commands: return_results(commands[command](client, args)) else: raise NotImplementedError(f'{command} command is not implemented.') except Exception as e: return_error(str(e))
def main(): params = demisto.params() args = demisto.args() url = params.get('url') verify_certificate = not params.get('insecure', False) proxy = params.get('proxy', False) headers = {} mock_data = str(args.get('mock-data', '')) if mock_data.lower() == "true": headers['Mock-Data'] = "True" headers['Authorization'] = f'Bearer {params["api_key"]}' headers['Soar-Integration-Origin'] = "Cortex XSOAR" command = demisto.command() demisto.debug(f'Command being called is {command}') try: requests.packages.urllib3.disable_warnings() client = Client(urljoin(url, ''), verify_certificate, proxy, headers=headers, auth=None) commands = { 'abnormal-security-check-case-action-status': check_the_status_of_an_action_requested_on_a_case_command, 'abxcortexxsoar-check-the-status-of-an-action-requested-on-a-threat': check_the_status_of_an_action_requested_on_a_threat_command, 'abxcortexxsoar-get-a-list-of-abnormal-cases-identified-by-abnormal-security': get_a_list_of_abnormal_cases_identified_by_abnormal_security_command, 'abxcortexxsoar-get-a-list-of-threats': get_a_list_of_threats_command, 'abxcortexxsoar-get-details-of-a-threat': get_details_of_a_threat_command, 'abxcortexxsoar-get-details-of-an-abnormal-case': get_details_of_an_abnormal_case_command, 'abxcortexxsoar-get-the-latest-threat-intel-feed': get_the_latest_threat_intel_feed_command, 'abxcortexxsoar-manage-a-threat-identified-by-abnormal-security': manage_a_threat_identified_by_abnormal_security_command, 'abxcortexxsoar-manage-an-abnormal-case': manage_an_abnormal_case_command, 'abxcortexxsoar-submit-an-inquiry-to-request-a-report-on-misjudgement-by-abnormal-security': submit_an_inquiry_to_request_a_report_on_misjudgement_by_abnormal_security_command, } if command == 'test-module': headers['Mock-Data'] = "True" test_client = Client(urljoin(url, ''), verify_certificate, proxy, headers=headers, auth=None) test_module(test_client) elif command in commands: return_results(commands[command](client, args)) else: raise NotImplementedError(f'{command} command is not implemented.') except Exception as e: return_error(str(e))
40,732
def setup_common_training_handlers( trainer: Engine, train_sampler: Optional[DistributedSampler] = None, to_save: Optional[Mapping] = None, save_every_iters: int = 1000, output_path: Optional[str] = None, lr_scheduler: Optional[Union[ParamScheduler, _LRScheduler]] = None, with_gpu_stats: bool = False, output_names: Optional[Iterable[str]] = None, with_pbars: bool = True, with_pbar_on_iters: bool = True, log_every_iters: int = 100, stop_on_nan: bool = True, clear_cuda_cache: bool = True, save_handler: Optional[Union[Callable, BaseSaveHandler]] = None, **kwargs: Any, ) -> None: """Helper method to setup trainer with common handlers (it also supports distributed configuration): - :class:`~ignite.handlers.TerminateOnNan` - handler to setup learning rate scheduling - :class:`~ignite.handlers.ModelCheckpoint` - :class:`~ignite.metrics.RunningAverage` on `update_function` output - Two progress bars on epochs and optionally on iterations Args: trainer: trainer engine. Output of trainer's `update_function` should be a dictionary or sequence or a single tensor. train_sampler: Optional distributed sampler used to call `set_epoch` method on epoch started event. to_save: dictionary with objects to save in the checkpoint. This argument is passed to :class:`~ignite.handlers.Checkpoint` instance. save_every_iters: saving interval. By default, `to_save` objects are stored each 1000 iterations. output_path: output path to indicate where `to_save` objects are stored. Argument is mutually exclusive with ``save_handler``. lr_scheduler: learning rate scheduler as native torch LRScheduler or ignite's parameter scheduler. with_gpu_stats: if True, :class:`~ignite.contrib.metrics.handlers.GpuInfo` is attached to the trainer. This requires `pynvml` package to be installed. output_names: list of names associated with `update_function` output dictionary. with_pbars: if True, two progress bars on epochs and optionally on iterations are attached. Default, True. with_pbar_on_iters: if True, a progress bar on iterations is attached to the trainer. Default, True. log_every_iters: logging interval for :class:`~ignite.contrib.metrics.handlers.GpuInfo` and for epoch-wise progress bar. Default, 100. stop_on_nan: if True, :class:`~ignite.handlers.TerminateOnNan` handler is added to the trainer. Default, True. clear_cuda_cache: if True, `torch.cuda.empty_cache()` is called every end of epoch. Default, True. save_handler: Method or callable class to use to store ``to_save``. See :class:`~ignite.handlers.checkpoint.Checkpoint` for more details. Argument is mutually exclusive with ``output_path``. kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`. """ if idist.get_world_size() > 1: _setup_common_distrib_training_handlers( trainer, train_sampler=train_sampler, to_save=to_save, save_every_iters=save_every_iters, output_path=output_path, lr_scheduler=lr_scheduler, with_gpu_stats=with_gpu_stats, output_names=output_names, with_pbars=with_pbars, with_pbar_on_iters=with_pbar_on_iters, log_every_iters=log_every_iters, stop_on_nan=stop_on_nan, clear_cuda_cache=clear_cuda_cache, save_handler=save_handler, **kwargs, ) else: if train_sampler is not None and isinstance(train_sampler, DistributedSampler): warnings.warn( "Argument train_sampler is a distributed sampler," " but either there is no distributed setting or world size is < 2. " "Train sampler argument will be ignored", UserWarning, ) _setup_common_training_handlers( trainer, to_save=to_save, save_every_iters=save_every_iters, output_path=output_path, lr_scheduler=lr_scheduler, with_gpu_stats=with_gpu_stats, output_names=output_names, with_pbars=with_pbars, with_pbar_on_iters=with_pbar_on_iters, log_every_iters=log_every_iters, stop_on_nan=stop_on_nan, clear_cuda_cache=clear_cuda_cache, save_handler=save_handler, **kwargs, )
def setup_common_training_handlers( trainer: Engine, train_sampler: Optional[DistributedSampler] = None, to_save: Optional[Mapping] = None, save_every_iters: int = 1000, output_path: Optional[str] = None, lr_scheduler: Optional[Union[ParamScheduler, _LRScheduler]] = None, with_gpu_stats: bool = False, output_names: Optional[Iterable[str]] = None, with_pbars: bool = True, with_pbar_on_iters: bool = True, log_every_iters: int = 100, stop_on_nan: bool = True, clear_cuda_cache: bool = True, save_handler: Optional[Union[Callable, BaseSaveHandler]] = None, **kwargs: Any, ) -> None: """Helper method to setup trainer with common handlers (it also supports distributed configuration): - :class:`~ignite.handlers.TerminateOnNan` - handler to setup learning rate scheduling - :class:`~ignite.handlers.ModelCheckpoint` - :class:`~ignite.metrics.RunningAverage` on `update_function` output - Two progress bars on epochs and optionally on iterations Args: trainer: trainer engine. Output of trainer's `update_function` should be a dictionary or sequence or a single tensor. train_sampler: Optional distributed sampler used to call `set_epoch` method on epoch started event. to_save: dictionary with objects to save in the checkpoint. This argument is passed to :class:`~ignite.handlers.Checkpoint` instance. save_every_iters: saving interval. By default, `to_save` objects are stored each 1000 iterations. output_path: output path to indicate where `to_save` objects are stored. Argument is mutually exclusive with ``save_handler``. lr_scheduler: learning rate scheduler as native torch LRScheduler or ignite's parameter scheduler. with_gpu_stats: if True, :class:`~ignite.contrib.metrics.handlers.GpuInfo` is attached to the trainer. This requires `pynvml` package to be installed. output_names: list of names associated with `update_function` output dictionary. with_pbars: if True, two progress bars on epochs and optionally on iterations are attached. Default, True. with_pbar_on_iters: if True, a progress bar on iterations is attached to the trainer. Default, True. log_every_iters: logging interval for :class:`~ignite.contrib.metrics.GpuInfo` and for epoch-wise progress bar. Default, 100. stop_on_nan: if True, :class:`~ignite.handlers.TerminateOnNan` handler is added to the trainer. Default, True. clear_cuda_cache: if True, `torch.cuda.empty_cache()` is called every end of epoch. Default, True. save_handler: Method or callable class to use to store ``to_save``. See :class:`~ignite.handlers.checkpoint.Checkpoint` for more details. Argument is mutually exclusive with ``output_path``. kwargs: optional keyword args to be passed to construct :class:`~ignite.handlers.checkpoint.Checkpoint`. """ if idist.get_world_size() > 1: _setup_common_distrib_training_handlers( trainer, train_sampler=train_sampler, to_save=to_save, save_every_iters=save_every_iters, output_path=output_path, lr_scheduler=lr_scheduler, with_gpu_stats=with_gpu_stats, output_names=output_names, with_pbars=with_pbars, with_pbar_on_iters=with_pbar_on_iters, log_every_iters=log_every_iters, stop_on_nan=stop_on_nan, clear_cuda_cache=clear_cuda_cache, save_handler=save_handler, **kwargs, ) else: if train_sampler is not None and isinstance(train_sampler, DistributedSampler): warnings.warn( "Argument train_sampler is a distributed sampler," " but either there is no distributed setting or world size is < 2. " "Train sampler argument will be ignored", UserWarning, ) _setup_common_training_handlers( trainer, to_save=to_save, save_every_iters=save_every_iters, output_path=output_path, lr_scheduler=lr_scheduler, with_gpu_stats=with_gpu_stats, output_names=output_names, with_pbars=with_pbars, with_pbar_on_iters=with_pbar_on_iters, log_every_iters=log_every_iters, stop_on_nan=stop_on_nan, clear_cuda_cache=clear_cuda_cache, save_handler=save_handler, **kwargs, )
30,746
def get_modified_files_for_testing(files_string): """Get a string of the modified files""" is_conf_json = False is_reputations_json = False is_indicator_json = False sample_tests = [] pack_sample_tests = [] changed_common = [] modified_files_list = [] modified_tests_list = [] all_files = files_string.split('\n') for _file in all_files: file_data = _file.split() if not file_data: continue file_status = file_data[0] if file_status.lower().startswith('r'): file_path = file_data[2] else: file_path = file_data[1] # ignoring deleted files. # also, ignore files in ".circle", ".github" and ".hooks" directories and .gitignore if ((file_status.lower() == 'm' or file_status.lower() == 'a' or file_status.lower().startswith('r')) and not file_path.startswith('.')): if checked_type(file_path, CODE_FILES_REGEX) and validate_not_a_package_test_script(file_path): dir_path = os.path.dirname(file_path) file_path = glob.glob(dir_path + "/*.yml")[0] # Common scripts (globally used so must run all tests) if checked_type(file_path, COMMON_YML_LIST): changed_common.append(file_path) # integrations, scripts, playbooks, test-scripts elif checked_type(file_path, CHECKED_TYPES_REGEXES): modified_files_list.append(file_path) # tests elif checked_type(file_path, YML_TEST_PLAYBOOKS_REGEXES): modified_tests_list.append(file_path) # reputations.json elif re.match(INDICATOR_TYPES_REPUTATIONS_REGEX, file_path, re.IGNORECASE) or \ re.match(PACKS_INDICATOR_TYPES_REPUTATIONS_REGEX, file_path, re.IGNORECASE) or \ re.match(PACKS_INDICATOR_TYPE_JSON_REGEX, file_path, re.IGNORECASE): is_reputations_json = True elif checked_type(file_path, INCIDENT_FIELD_REGEXES): is_indicator_json = True # conf.json elif re.match(CONF_PATH, file_path, re.IGNORECASE): is_conf_json = True # docs and test files do not influence integration tests filtering elif checked_type(file_path, FILES_IN_SCRIPTS_OR_INTEGRATIONS_DIRS_REGEXES): if os.path.splitext(file_path)[-1] not in FILE_TYPES_FOR_TESTING: continue elif re.match(DOCS_REGEX, file_path) or os.path.splitext(file_path)[-1] in ['.md', '.png']: continue elif any(file in file_path for file in (PACKS_PACK_META_FILE_NAME, PACKS_WHITELIST_FILE_NAME)): pack_sample_tests.append(file_path) elif SECRETS_WHITE_LIST not in file_path: sample_tests.append(file_path) return (modified_files_list, modified_tests_list, changed_common, is_conf_json, sample_tests, pack_sample_tests, is_reputations_json, is_indicator_json)
def get_modified_files_for_testing(files_string): """Get a string of the modified files""" is_conf_json = False is_reputations_json = False is_indicator_json = False sample_tests = [] pack_tests = [] changed_common = [] modified_files_list = [] modified_tests_list = [] all_files = files_string.split('\n') for _file in all_files: file_data = _file.split() if not file_data: continue file_status = file_data[0] if file_status.lower().startswith('r'): file_path = file_data[2] else: file_path = file_data[1] # ignoring deleted files. # also, ignore files in ".circle", ".github" and ".hooks" directories and .gitignore if ((file_status.lower() == 'm' or file_status.lower() == 'a' or file_status.lower().startswith('r')) and not file_path.startswith('.')): if checked_type(file_path, CODE_FILES_REGEX) and validate_not_a_package_test_script(file_path): dir_path = os.path.dirname(file_path) file_path = glob.glob(dir_path + "/*.yml")[0] # Common scripts (globally used so must run all tests) if checked_type(file_path, COMMON_YML_LIST): changed_common.append(file_path) # integrations, scripts, playbooks, test-scripts elif checked_type(file_path, CHECKED_TYPES_REGEXES): modified_files_list.append(file_path) # tests elif checked_type(file_path, YML_TEST_PLAYBOOKS_REGEXES): modified_tests_list.append(file_path) # reputations.json elif re.match(INDICATOR_TYPES_REPUTATIONS_REGEX, file_path, re.IGNORECASE) or \ re.match(PACKS_INDICATOR_TYPES_REPUTATIONS_REGEX, file_path, re.IGNORECASE) or \ re.match(PACKS_INDICATOR_TYPE_JSON_REGEX, file_path, re.IGNORECASE): is_reputations_json = True elif checked_type(file_path, INCIDENT_FIELD_REGEXES): is_indicator_json = True # conf.json elif re.match(CONF_PATH, file_path, re.IGNORECASE): is_conf_json = True # docs and test files do not influence integration tests filtering elif checked_type(file_path, FILES_IN_SCRIPTS_OR_INTEGRATIONS_DIRS_REGEXES): if os.path.splitext(file_path)[-1] not in FILE_TYPES_FOR_TESTING: continue elif re.match(DOCS_REGEX, file_path) or os.path.splitext(file_path)[-1] in ['.md', '.png']: continue elif any(file in file_path for file in (PACKS_PACK_META_FILE_NAME, PACKS_WHITELIST_FILE_NAME)): pack_sample_tests.append(file_path) elif SECRETS_WHITE_LIST not in file_path: sample_tests.append(file_path) return (modified_files_list, modified_tests_list, changed_common, is_conf_json, sample_tests, pack_sample_tests, is_reputations_json, is_indicator_json)
3,120
def maybe_cast_result_dtype(dtype: DtypeObj, how: str) -> DtypeObj: """ Get the desired dtype of a result based on the input dtype and how it was computed. Parameters ---------- dtype : DtypeObj Input dtype. how : str How the result was computed. Returns ------- DtypeObj The desired dtype of the result. """ from pandas.core.arrays.boolean import BooleanDtype from pandas.core.arrays.floating import Float64Dtype from pandas.core.arrays.integer import Int64Dtype if how in ["add", "cumsum", "sum"] and (dtype == np.dtype(bool)): return np.dtype(np.int64) elif how in ["add", "cumsum", "sum"] and isinstance(dtype, BooleanDtype): return Int64Dtype() elif how in ["mean", "median", "var"] and isinstance(dtype, Int64Dtype): return Float64Dtype() return dtype
def maybe_cast_result_dtype(dtype: DtypeObj, how: str) -> DtypeObj: """ Get the desired dtype of a result based on the input dtype and how it was computed. Parameters ---------- dtype : DtypeObj Input dtype. how : str How the result was computed. Returns ------- DtypeObj The desired dtype of the result. """ from pandas.core.arrays.boolean import BooleanDtype from pandas.core.arrays.floating import Float64Dtype from pandas.core.arrays.integer import Int64Dtype if how in ["add", "cumsum", "sum"] and (dtype == np.dtype(bool)): return np.dtype(np.int64) elif how in ["add", "cumsum", "sum"] and isinstance(dtype, (BooleanDtype, IntegerDtype)): return Int64Dtype() elif how in ["mean", "median", "var"] and isinstance(dtype, Int64Dtype): return Float64Dtype() return dtype
15,270
def calculate_next_active_alarms(alarms): """ Calculate garmin next active alarms from settings. Alarms are sorted by time """ active_alarms = [] _LOGGER.debug(alarms) for alarm_setting in alarms: if alarm_setting["alarmMode"] != "ON": continue for day in alarm_setting["alarmDays"]: if day == "ONCE": midnight = datetime.combine(date.today(), datetime.min.time()) alarmtime = alarm_setting["alarmTime"] alarm = midnight + timedelta(minutes=alarmtime) if alarm < datetime.now(): alarm += timedelta(days=1) active_alarms.append(alarm.isoformat()) else: start_of_week = datetime.combine( date.today() - timedelta(days=datetime.today().isoweekday() % 7), datetime.min.time(), ) alarmtime = alarm_setting["alarmTime"] days_to_add = DAY_TO_NUMBER[day] % 7 alarm = start_of_week + timedelta(minutes=alarmtime, days=days_to_add) if alarm < datetime.now(): alarm += timedelta(days=7) active_alarms.append(alarm.isoformat()) return sorted(active_alarms) if len(active_alarms) > 0 else None
def calculate_next_active_alarms(alarms): """ Calculate garmin next active alarms from settings. Alarms are sorted by time """ active_alarms = [] _LOGGER.debug(alarms) for alarm_setting in alarms: if alarm_setting["alarmMode"] != "ON": continue for day in alarm_setting["alarmDays"]: if day == "ONCE": midnight = datetime.combine(date.today(), datetime.min.time()) alarm_time = alarm_setting["alarmTime"] alarm = midnight + timedelta(minutes=alarmtime) if alarm < datetime.now(): alarm += timedelta(days=1) active_alarms.append(alarm.isoformat()) else: start_of_week = datetime.combine( date.today() - timedelta(days=datetime.today().isoweekday() % 7), datetime.min.time(), ) alarmtime = alarm_setting["alarmTime"] days_to_add = DAY_TO_NUMBER[day] % 7 alarm = start_of_week + timedelta(minutes=alarmtime, days=days_to_add) if alarm < datetime.now(): alarm += timedelta(days=7) active_alarms.append(alarm.isoformat()) return sorted(active_alarms) if len(active_alarms) > 0 else None
58,010
def format_incidents(resp, eventTypes): """ Format the incidents to feed into XSOAR :param resp: events fetched from the server :param eventTypes: event types available :return: incidents to feed into XSOAR """ alerts: List[Dict[str, Any]] = [] try: for eachalert in resp['data']: for e_type in list(eachalert['alert']['services'].keys()): e_id = eachalert['alert']['id'] e_priority = eachalert['alert']['priority'] e_created = eachalert['alert']['created_at'] e_keyword = eachalert['alert']['tag_name'] e_bucket = eachalert['alert']['bucket']['name'] alert_details = { "name": "Cyble Intel Alert on {}".format(eventTypes[e_type]), "cybleeventtype": "{}".format(e_type), "severity": INCIDENT_SEVERITY[e_priority.lower()], "occurred": "{}".format(e_created), "cybleeventid": "{}".format(e_id), "cybleeventname": "Incident of {} type".format(eventTypes[e_type]), "cybleeventbucket": "{}".format(e_bucket), "cybleeventkeyword": "{}".format(e_keyword), "cybleeventalias": "{}".format(eventTypes[e_type]), } alerts.append(alert_details) return alerts except Exception as e: return "Format incident issue"
def format_incidents(resp, eventTypes): """ Format the incidents to feed into XSOAR :param resp: events fetched from the server :param eventTypes: event types available :return: incidents to feed into XSOAR """ alerts: List[Dict[str, Any]] = [] try: alerts = resp.get('data') or [] for alert in alerts: alert_data = alert.get('alert', {}) alert_id = alert_data.get('id') alert_priority = alert_data.get('priority') alert_created_at = alert_data.get('created_at') alert_keyword = alert_data.get('tag_name') alert_bucket_name = alert_data.get('bucket', {}).get('name') for e_type in list(alert_data.get('services', {}).keys()): event_type = eventTypes.get(e_type) alert_details = { "name": "Cyble Intel Alert on {}".format(event_type), "cybleeventtype": "{}".format(e_type), "severity": INCIDENT_SEVERITY.get(alert_priority.lower()), "occurred": "{}".format(alert_created_at), "cybleeventid": "{}".format(alert_id), "cybleeventname": "Incident of {} type".format(event_type), "cybleeventbucket": "{}".format(alert_bucket_name), "cybleeventkeyword": "{}".format(alert_keyword), "cybleeventalias": "{}".format(event_type), } alerts.append(alert_details) return alerts except Exception as e: return "Format incident issue"
49,643
def validate_html_favicon(app: Sphinx, config: Config) -> None: """Check html_favicon setting.""" if config.html_favicon and not path.isfile(path.join(app.confdir, config.html_favicon)) \ and not urlparse(config.html_favicon).scheme: logger.warning(__('favicon file %r does not exist'), config.html_favicon) config.html_favicon = None # type: ignore
def validate_html_favicon(app: Sphinx, config: Config) -> None: """Check html_favicon setting.""" if (config.html_favicon and not path.isfile(path.join(app.confdir, config.html_favicon)) and not urlparse(config.html_favicon).scheme): logger.warning(__('favicon file %r does not exist'), config.html_favicon) config.html_favicon = None # type: ignore
42,059
def run(args: argparse.Namespace) -> None: kurobako_cmd = os.path.join(args.path_to_kurobako, "kurobako") subprocess.run(f"{kurobako_cmd} --version", shell=True) if not (os.path.exists(args.data_dir) and os.path.isdir(args.data_dir)): raise ValueError(f"Data directory {args.data_dir} cannot be found.") os.makedirs(args.out_dir, exist_ok=True) study_json_fn = os.path.join(args.out_dir, "studies.json") subprocess.check_call(f"echo >| {study_json_fn}", shell=True) solvers_filename = os.path.join(args.out_dir, "solvers.json") subprocess.check_call(f"echo >| {solvers_filename}", shell=True) problems_filename = os.path.join(args.out_dir, "problems.json") subprocess.check_call(f"echo >| {problems_filename}", shell=True) # Create ZDT problems cmd = f"{kurobako_cmd} problem-suite zdt | tee -a {problems_filename}" subprocess.run(cmd, shell=True) # Create NAS bench problem(C) (for Multi-Objective Settings). dataset = os.path.join(args.data_dir, "nasbench_full.bin") cmd = ( f'{kurobako_cmd} problem nasbench "{dataset}"' f"--encoding C --metrics accuracy params | tee -a {problems_filename}" ) subprocess.run(cmd, shell=True) # Create solvers. sampler_list = args.sampler_list.split() sampler_kwargs_list = args.sampler_kwargs_list.split() if len(sampler_list) != len(sampler_kwargs_list): raise ValueError( "The number of samplers does not match the given keyword arguments. \n" f"sampler_list: {sampler_list}, sampler_kwargs_list: {sampler_kwargs_list}." ) for sampler, sampler_kwargs in zip(sampler_list, sampler_kwargs_list): name = f"{args.name_prefix}_{sampler}" python_command = f"mo_runner.py {sampler} {sampler_kwargs}" cmd = ( f"{kurobako_cmd} solver --name {name} command python {python_command}" f"| tee -a {solvers_filename}" ) subprocess.run(cmd, shell=True) # Create study. cmd = ( f"{kurobako_cmd} studies --budget 1000 " f"--solvers $(cat {solvers_filename}) --problems $(cat {problems_filename}) " f"--repeats {args.n_runs} --seed {args.seed} " f"> {study_json_fn}" ) subprocess.run(cmd, shell=True) result_filename = os.path.join(args.out_dir, "results.json") cmd = ( f"cat {study_json_fn} | {kurobako_cmd} run --parallelism {args.n_jobs} " f"> {result_filename}" ) subprocess.run(cmd, shell=True) # Report report_filename = os.path.join(args.out_dir, "report.md") cmd = f"cat {result_filename} | {kurobako_cmd} report > {report_filename}" subprocess.run(cmd, shell=True) # Plot pareto-front. problem_names = ["NASBench", "ZDT1", "ZDT2", "ZDT3", "ZDT4", "ZDT5", "ZDT6"] for problem_name in problem_names: cmd = ( f"cat {result_filename} | grep {problem_name} | " f"{kurobako_cmd} plot pareto-front -o {args.out_dir}" ) subprocess.run(cmd, shell=True)
def run(args: argparse.Namespace) -> None: kurobako_cmd = os.path.join(args.path_to_kurobako, "kurobako") subprocess.run(f"{kurobako_cmd} --version", shell=True) if not (os.path.exists(args.data_dir) and os.path.isdir(args.data_dir)): raise ValueError(f"Data directory {args.data_dir} cannot be found.") os.makedirs(args.out_dir, exist_ok=True) study_json_fn = os.path.join(args.out_dir, "studies.json") subprocess.check_call(f"echo >| {study_json_fn}", shell=True) solvers_filename = os.path.join(args.out_dir, "solvers.json") subprocess.check_call(f"echo >| {solvers_filename}", shell=True) problems_filename = os.path.join(args.out_dir, "problems.json") subprocess.check_call(f"echo >| {problems_filename}", shell=True) # Create ZDT problems cmd = f"{kurobako_cmd} problem-suite zdt | tee -a {problems_filename}" subprocess.run(cmd, shell=True) # Create NAS bench problem(C) (for Multi-Objective Settings). dataset = os.path.join(args.data_dir, "nasbench_full.bin") cmd = ( f'{kurobako_cmd} problem nasbench "{dataset}"' f"--encoding C --metrics accuracy params | tee -a {problems_filename}" ) subprocess.run(cmd, shell=True) # Create solvers. sampler_list = args.sampler_list.split() sampler_kwargs_list = args.sampler_kwargs_list.split() if len(sampler_list) != len(sampler_kwargs_list): raise ValueError( "The number of samplers does not match the given keyword arguments. \n" f"sampler_list: {sampler_list}, sampler_kwargs_list: {sampler_kwargs_list}." ) for sampler, sampler_kwargs in zip(sampler_list, sampler_kwargs_list): name = f"{args.name_prefix}_{sampler}" python_command = f"mo_runner.py {sampler} {sampler_kwargs}" cmd = ( f"{kurobako_cmd} solver --name {name} command python {python_command}" f"| tee -a {solvers_filename}" ) subprocess.run(cmd, shell=True) # Create study. cmd = ( f"{kurobako_cmd} studies --budget 300 " f"--solvers $(cat {solvers_filename}) --problems $(cat {problems_filename}) " f"--repeats {args.n_runs} --seed {args.seed} " f"> {study_json_fn}" ) subprocess.run(cmd, shell=True) result_filename = os.path.join(args.out_dir, "results.json") cmd = ( f"cat {study_json_fn} | {kurobako_cmd} run --parallelism {args.n_jobs} " f"> {result_filename}" ) subprocess.run(cmd, shell=True) # Report report_filename = os.path.join(args.out_dir, "report.md") cmd = f"cat {result_filename} | {kurobako_cmd} report > {report_filename}" subprocess.run(cmd, shell=True) # Plot pareto-front. problem_names = ["NASBench", "ZDT1", "ZDT2", "ZDT3", "ZDT4", "ZDT5", "ZDT6"] for problem_name in problem_names: cmd = ( f"cat {result_filename} | grep {problem_name} | " f"{kurobako_cmd} plot pareto-front -o {args.out_dir}" ) subprocess.run(cmd, shell=True)
29,891
def DefaultFromEnv( item_parser: Callable[[str], T], default_src: str ) -> Callable[[str], OptionalType[T]]: # noqa: D401 """An option of type T or a default. The default is sourced from an environment variable with the name ``default_src``. Either the option or the default must be provided """ default = None env = os.getenv(default_src) if env: default = Optional(item_parser)(env) def default_from_env(text: str) -> OptionalType[T]: if text: return Optional(item_parser)(text) if default: return default raise ValueError("No value provided.") return default_from_env
def DefaultFromEnv( item_parser: Callable[[str], T], default_src: str ) -> Callable[[str], OptionalType[T]]: # noqa: D401 """An option of type T or a default. The default is sourced from an environment variable with the name specified in ``default_src``. Either the option or the default must be provided """ default = None env = os.getenv(default_src) if env: default = Optional(item_parser)(env) def default_from_env(text: str) -> OptionalType[T]: if text: return Optional(item_parser)(text) if default: return default raise ValueError("No value provided.") return default_from_env
327
def _transform_samples(samples, model, keep_untransformed=False): # Find out which RVs we need to compute: free_rv_names = {x.name for x in model.free_RVs} unobserved_names = {x.name for x in model.unobserved_RVs} names_to_compute = unobserved_names - free_rv_names ops_to_compute = [x for x in model.unobserved_RVs if x.name in names_to_compute] # Create function graph for these: fgraph = theano.graph.fg.FunctionGraph(model.free_RVs, ops_to_compute) # Jaxify, which returns a list of functions, one for each op jax_fns = jax_funcify(fgraph) # Put together the inputs inputs = [samples[x.name] for x in model.free_RVs] for cur_op, cur_jax_fn in zip(ops_to_compute, jax_fns): # We need a function taking a single argument to run vmap, while the # jax_fn takes a list, so: to_run = lambda x: cur_jax_fn(*x) result = jax.vmap(jax.vmap(to_run))(inputs) # Add to sample dict samples[cur_op.name] = result # Discard unwanted transformed variables, if desired: vars_to_keep = set( pm.util.get_default_varnames(list(samples.keys()), include_transformed=keep_untransformed) ) samples = {x: y for x, y in samples.items() if x in vars_to_keep} return samples
def _transform_samples(samples, model, keep_untransformed=False): # Find out which RVs we need to compute: free_rv_names = {x.name for x in model.free_RVs} unobserved_names = {x.name for x in model.unobserved_RVs} names_to_compute = unobserved_names - free_rv_names ops_to_compute = [x for x in model.unobserved_RVs if x.name in names_to_compute] # Create function graph for these: fgraph = theano.graph.fg.FunctionGraph(model.free_RVs, ops_to_compute) # Jaxify, which returns a list of functions, one for each op jax_fns = jax_funcify(fgraph) # Put together the inputs inputs = [samples[x.name] for x in model.free_RVs] for cur_op, cur_jax_fn in zip(ops_to_compute, jax_fns): # We need a function taking a single argument to run vmap, while the # jax_fn takes a list, so: result = jax.vmap(jax.vmap(cur_jax_fn))(*inputs) # Add to sample dict samples[cur_op.name] = result # Discard unwanted transformed variables, if desired: vars_to_keep = set( pm.util.get_default_varnames(list(samples.keys()), include_transformed=keep_untransformed) ) samples = {x: y for x, y in samples.items() if x in vars_to_keep} return samples
740
def record_user_interface(d: MitmCliDirector): tmux = d.start_session(width=120, height=36) window = tmux.attached_window d.start_recording("recordings/mitmproxy_user_interface.cast") d.message("Welcome to the mitmproxy tutorial. In this lesson we cover the user interface.") d.pause(1) d.exec("mitmproxy") d.pause(3) d.message("This is the default view of mitmproxy.") d.message("mitmproxy adds rows to the view as new requests come in.") d.message("Let’s generate some requests using `curl` in a separate terminal.") pane_top = d.current_pane pane_bottom = window.split_window(attach=True) pane_bottom.resize_pane(height=12) d.focus_pane(pane_bottom) d.pause(2) d.type("curl") d.message("Use curl’s `-x` option to specify a proxy, e.g., `curl -x http://127.0.0.1:8080` to use mitmproxy.") d.type(" -x http://127.0.0.1:8080") d.message("We use the text-based weather service `wttr.in`.") d.exec(" \"http://wttr.in/Paris?0\"") d.pause(2) d.press_key("Up") d.press_key("Left", count=3) d.press_key("BSpace", count=5) d.exec("Miami") d.pause(2) d.press_key("Up") d.press_key("Left", count=3) d.press_key("BSpace", count=5) d.exec("Tokio") d.pause(2) d.press_key("Up") d.press_key("Left", count=3) d.press_key("BSpace", count=5) d.exec("London") d.pause(2) d.exec("exit", target=pane_bottom) d.focus_pane(pane_top) d.message("You see the requests to `wttr.in` in the list of flows.") d.message("mitmproxy is controlled using keyboard shortcuts.") d.message("Use your arrow keys `↑` and `↓` to change the focused flow (`>>`).") d.press_key("Down", count=3, pause=0.5) d.press_key("Up", count=2, pause=0.5) d.press_key("Down", count=2, pause=0.5) d.message("The focused flow (`>>`) is used as a target for various commands.") d.message("One such command shows the flow details, it is bound to `↵`.") d.message("Press `↵` to view the details of the focused flow.") d.press_key("Enter") d.message("The flow details view has 3 panes: request, response, and detail.") d.message("Use your arrow keys `←` and `→` to switch between panes.") d.press_key("Right", count=2, pause=2.5) d.press_key("Left", count=2, pause=1) d.message("Press `q` to exit the current view.",) d.type("q") d.message("Press `?` to get a list of all available keyboard shortcuts.") d.type("?") d.pause(2) d.press_key("Down", count=20, pause=0.25) d.message("Press `q` to exit the current view.") d.type("q") d.message("Each shortcut is internally bound to a command.") d.message("You can also execute commands directly (without using shortcuts).") d.message("Press `:` to open the command prompt at the bottom.") d.type(":") d.message("Enter `console.view.flow @focus`.") d.type("console.view.flow @focus") d.message("The command `console.view.flow` opens the details view for a flow.") d.message("The argument `@focus` defines the target flow.") d.message("Press `↵` to execute the command.") d.press_key("Enter") d.message("Commands unleash the full power of mitmproxy, i.e., to configure interceptions.") d.message("You now know basics of mitmproxy’s UI and how to control it.") d.pause(1) d.save_instructions("recordings/mitmproxy_user_interface_instructions.json") d.end()
def record_user_interface(d: MitmCliDirector): tmux = d.start_session(width=120, height=36) window = tmux.attached_window d.start_recording("recordings/mitmproxy_user_interface.cast") d.message("Welcome to the mitmproxy tutorial. In this lesson we cover the user interface.") d.pause(1) d.exec("mitmproxy") d.pause(3) d.message("This is the default view of mitmproxy.") d.message("mitmproxy adds rows to the view as new requests come in.") d.message("Let’s generate some requests using `curl` in a separate terminal.") pane_top = d.current_pane pane_bottom = window.split_window(attach=True) pane_bottom.resize_pane(height=12) d.focus_pane(pane_bottom) d.pause(2) d.type("curl") d.message("Use curl’s `-x` option to specify a proxy, e.g., `curl -x http://127.0.0.1:8080` to use mitmproxy.") d.type(" -x http://127.0.0.1:8080") d.message("We use the text-based weather service `wttr.in`.") d.exec(" \"http://wttr.in/Paris?0\"") d.pause(2) d.press_key("Up") d.press_key("Left", count=3) d.press_key("BSpace", count=5) d.exec("Miami") d.pause(2) d.press_key("Up") d.press_key("Left", count=3) d.press_key("BSpace", count=5) d.exec("Tokio") d.pause(2) d.press_key("Up") d.press_key("Left", count=3) d.press_key("BSpace", count=5) d.exec("London") d.pause(2) d.exec("exit", target=pane_bottom) d.focus_pane(pane_top) d.message("You see the requests to `wttr.in` in the list of flows.") d.message("mitmproxy is controlled using keyboard shortcuts.") d.message("Use your arrow keys `↑` and `↓` to change the focused flow (`>>`).") d.press_key("Down", count=3, pause=0.5) d.press_key("Up", count=2, pause=0.5) d.press_key("Down", count=2, pause=0.5) d.message("The focused flow (`>>`) is used as a target for various commands.") d.message("One such command shows the flow details, it is bound to the enter key.") d.message("Press `↵` to view the details of the focused flow.") d.press_key("Enter") d.message("The flow details view has 3 panes: request, response, and detail.") d.message("Use your arrow keys `←` and `→` to switch between panes.") d.press_key("Right", count=2, pause=2.5) d.press_key("Left", count=2, pause=1) d.message("Press `q` to exit the current view.",) d.type("q") d.message("Press `?` to get a list of all available keyboard shortcuts.") d.type("?") d.pause(2) d.press_key("Down", count=20, pause=0.25) d.message("Press `q` to exit the current view.") d.type("q") d.message("Each shortcut is internally bound to a command.") d.message("You can also execute commands directly (without using shortcuts).") d.message("Press `:` to open the command prompt at the bottom.") d.type(":") d.message("Enter `console.view.flow @focus`.") d.type("console.view.flow @focus") d.message("The command `console.view.flow` opens the details view for a flow.") d.message("The argument `@focus` defines the target flow.") d.message("Press `↵` to execute the command.") d.press_key("Enter") d.message("Commands unleash the full power of mitmproxy, i.e., to configure interceptions.") d.message("You now know basics of mitmproxy’s UI and how to control it.") d.pause(1) d.save_instructions("recordings/mitmproxy_user_interface_instructions.json") d.end()
57,868
def search_group_members(default_base_dn, page_size): # this command is equivalent to ADGetGroupMembers script args = demisto.args() member_type = args.get('member-type') group_dn = args.get('group-dn') nested_search = '' if args.get('disable-nested-search') == 'true' else ':1.2.840.113556.1.4.1941:' time_limit = int(args.get('time_limit', 180)) account_name = args.get('sAMAccountName') custom_attributes: List[str] = [] if member_type == 'person': default_attributes = DEFAULT_PERSON_ATTRIBUTES elif member_type == 'computer': default_attributes = DEFAULT_COMPUTER_ATTRIBUTES else: default_attributes = DEFAULT_GROUP_ATTRIBUTES if args.get('attributes'): custom_attributes = args['attributes'].split(",") attributes = list(set(custom_attributes + default_attributes)) if member_type == 'group': query = "(&(objectCategory={})(memberOf{}={})(sAMAccountName={}))".format(member_type, nested_search, group_dn, account_name) else: query = "(&(objectCategory={})(objectClass=user)(memberOf{}={})(sAMAccountName={}))"\ .format(member_type, nested_search, group_dn, account_name) entries = search_with_paging( query, default_base_dn, attributes=attributes, page_size=page_size, time_limit=time_limit ) members = [{'dn': entry['dn'], 'category': member_type} for entry in entries['flat']] demisto_entry = { 'ContentsFormat': formats['json'], 'Type': entryTypes['note'], 'Contents': entries['raw'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown("Active Directory - Get Group Members", entries['flat']), 'EntryContext': { 'ActiveDirectory.Groups(obj.dn ==' + group_dn + ')': { 'dn': group_dn, 'members': members } } } if member_type == 'person': demisto_entry['EntryContext']['ActiveDirectory.Users(obj.dn == val.dn)'] = entries['flat'] demisto_entry['EntryContext']['Account'] = [account_entry( entry, custom_attributes) for entry in entries['flat']] elif member_type == 'computer': demisto_entry['EntryContext']['ActiveDirectory.Computers(obj.dn == val.dn)'] = entries['flat'] demisto_entry['EntryContext']['Endpoint'] = [endpoint_entry( entry, custom_attributes) for entry in entries['flat']] elif member_type == 'group': demisto_entry['EntryContext']['ActiveDirectory.Groups(obj.dn == val.dn)'] = entries['flat'] demisto_entry['EntryContext']['Group'] = [group_entry( entry, custom_attributes) for entry in entries['flat']] demisto.results(demisto_entry)
def search_group_members(default_base_dn, page_size): # this command is equivalent to ADGetGroupMembers script args = demisto.args() member_type = args.get('member-type') group_dn = args.get('group-dn') nested_search = '' if args.get('disable-nested-search') == 'true' else ':1.2.840.113556.1.4.1941:' time_limit = int(args.get('time_limit', 180)) account_name = args.get('sAMAccountName') custom_attributes: List[str] = [] default_attribute_mapping = { 'person': DEFAULT_PERSON_ATTRIBUTES, 'group': DEFAULT_GROUP_ATTRIBUTES, 'computer': DEFAULT_COMPUTER_ATTRIBUTES, } default_attributes = default_attribute_mapping.get(member_type, DEFAULT_COMPUTER_ATTRIBUTES) if args.get('attributes'): custom_attributes = args['attributes'].split(",") attributes = list(set(custom_attributes + default_attributes)) if member_type == 'group': query = "(&(objectCategory={})(memberOf{}={})(sAMAccountName={}))".format(member_type, nested_search, group_dn, account_name) else: query = "(&(objectCategory={})(objectClass=user)(memberOf{}={})(sAMAccountName={}))"\ .format(member_type, nested_search, group_dn, account_name) entries = search_with_paging( query, default_base_dn, attributes=attributes, page_size=page_size, time_limit=time_limit ) members = [{'dn': entry['dn'], 'category': member_type} for entry in entries['flat']] demisto_entry = { 'ContentsFormat': formats['json'], 'Type': entryTypes['note'], 'Contents': entries['raw'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown("Active Directory - Get Group Members", entries['flat']), 'EntryContext': { 'ActiveDirectory.Groups(obj.dn ==' + group_dn + ')': { 'dn': group_dn, 'members': members } } } if member_type == 'person': demisto_entry['EntryContext']['ActiveDirectory.Users(obj.dn == val.dn)'] = entries['flat'] demisto_entry['EntryContext']['Account'] = [account_entry( entry, custom_attributes) for entry in entries['flat']] elif member_type == 'computer': demisto_entry['EntryContext']['ActiveDirectory.Computers(obj.dn == val.dn)'] = entries['flat'] demisto_entry['EntryContext']['Endpoint'] = [endpoint_entry( entry, custom_attributes) for entry in entries['flat']] elif member_type == 'group': demisto_entry['EntryContext']['ActiveDirectory.Groups(obj.dn == val.dn)'] = entries['flat'] demisto_entry['EntryContext']['Group'] = [group_entry( entry, custom_attributes) for entry in entries['flat']] demisto.results(demisto_entry)
32,938
def _set_cookies(span, cookies): # type: (Span, Dict[str, Union[str, List[str]]]) -> None for k in cookies: cookie = cookies[k] # flask~=0.12.0 create a list of values for each cookie instead a string if (isinstance(cookie, list) or isinstance(cookie, tuple)) and len(cookie) == 1: cookie = cookie[0] # since the header value can be a list, use `set_tag()` to ensure it is converted to a string span.set_tag(_normalize_tag_name("request", k, kind="cookies"), cookie)
def _set_cookies(span, cookies): # type: (Span, Dict[str, Union[str, List[str]]]) -> None for k in cookies: cookie = cookies[k] # flask~=0.12.0 create a list of values for each cookie instead a string if isinstance(cookie, (list, tuple)) and len(cookie) == 1: cookie = cookie[0] # since the header value can be a list, use `set_tag()` to ensure it is converted to a string span.set_tag(_normalize_tag_name("request", k, kind="cookies"), cookie)
45,501
def main(args, pacu_main: 'Main'): session = pacu_main.get_active_session() ###### Don't modify these. They can be removed if you are not using the function. args = parser.parse_args(args) print = pacu_main.print input = pacu_main.input key_info = pacu_main.key_info fetch_data = pacu_main.fetch_data ###### summary_data = { 'users_confirmed': 0, 'roles_confirmed': 0 } users = [] roles = [] if args.all_users is True: if fetch_data(['IAM', 'Users'], module_info['prerequisite_modules'][0], '--users') is False: print('FAILURE') print(' SUB-MODULE EXECUTION FAILED') return fetched_users = session.IAM['Users'] for user in fetched_users: users.append({ 'UserName': user['UserName'], 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) elif args.user_name is not None: users.append({ 'UserName': args.user_name, 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) summary_data['single_user'] = args.user_name if args.all_roles is True: if fetch_data(['IAM', 'Roles'], module_info['prerequisite_modules'][0], '--roles') is False: print('FAILURE') print(' SUB-MODULE EXECUTION FAILED') return fetched_roles = session.IAM['Roles'] for role in fetched_roles: roles.append({ 'RoleName': role['RoleName'], 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) elif args.role_name is not None: roles.append({ 'RoleName': args.role_name, 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) summary_data['single_role'] = args.role_name is_user = is_role = False if not any([args.all_users, args.user_name, args.all_roles, args.role_name]): client = pacu_main.get_boto3_client('sts') identity = client.get_caller_identity() active_aws_key = session.get_active_aws_key(pacu_main.database) if re.match(r'arn:aws:iam::\d{12}:user/', identity['Arn']) is not None: is_user = True # GetCallerIdentity away return user's ARN like this if it was a user # arn:aws:iam::123456789012:user/username username = identity['Arn'].split(':user/')[1] active_aws_key.update( pacu_main.database, user_name=username, arn=identity['Arn'], user_id=identity['UserId'], account_id=identity['Account'] ) elif re.match(r'arn:aws:sts::\d{12}:assumed-role/', identity['Arn']) is not None: is_role = True active_aws_key.update( pacu_main.database, role_name=identity['Arn'].split(':assumed-role/')[1].split('/')[-2], arn=identity['Arn'], user_id=identity['UserId'], account_id=identity['Account'] ) else: print('Not an IAM user or role. Exiting...\n') return False if is_user: user = key_info(alias=session.key_alias) user['PermissionsConfirmed'] = True user['Permissions'] = {'Allow': {}, 'Deny': {}} users.append(user) summary_data['single_user'] = user['UserName'] elif is_role: roles.append({ 'RoleName': active_aws_key.role_name, 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) summary_data['single_role'] = active_aws_key.role_name # list-groups-for-user # list-user-policies # list-group-policies # list-role-policies # list-attached-role-policies # list-attached-group-policies # list-attached-user-policies # get-policy # get-policy-version # get-user-policy # get-group-policy # get-role-policy client = pacu_main.get_boto3_client('iam') if any([args.all_users, args.user_name, args.all_roles, args.role_name]): print('Permission Document Location:') print(' {}/confirmed_permissions/\n'.format(downloads_dir())) if roles: print('Confirming permissions for roles:') for role in roles: print(' {}...'.format(role['RoleName'])) role['Policies'] = [] try: # Get inline role policies policies = [] try: response = client.list_role_policies( RoleName=role['RoleName'] ) policies = response['PolicyNames'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_role_policies( RoleName=role['RoleName'], Marker=response['Marker'] ) policies += response['PolicyNames'] for policy in policies: role['Policies'].append({ 'PolicyName': policy }) except ClientError as error: print(' List role policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) role['PermissionsConfirmed'] = False # Get document for each inline policy for policy in policies: try: document = client.get_role_policy( RoleName=role['RoleName'], PolicyName=policy )['PolicyDocument'] except ClientError as error: print(' Get role policy failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) role['PermissionsConfirmed'] = False role = parse_document(document, role) # Get attached role policies attached_policies = [] try: response = client.list_attached_role_policies( RoleName=role['RoleName'] ) attached_policies = response['AttachedPolicies'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_attached_role_policies( RoleName=role['RoleName'], Marker=response['Marker'] ) attached_policies += response['AttachedPolicies'] role['Policies'] += attached_policies except ClientError as error: print(' List attached role policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) role['PermissionsConfirmed'] = False role = parse_attached_policies(client, attached_policies, role) if role['PermissionsConfirmed']: summary_data['roles_confirmed'] += 1 if args.role_name is None and args.all_roles is False: print(' Confirmed permissions for {}'.format(role['RoleName'])) active_aws_key.update( pacu_main.database, role_name=role['RoleName'], policies=role['Policies'], permissions_confirmed=role['PermissionsConfirmed'], allow_permissions=role['Permissions']['Allow'], deny_permissions=role['Permissions']['Deny'] ) else: with save('confirmed_permissions/role-{}.json'.format(role['RoleName']), 'w+') as f: json.dump(role, f, indent=2, default=str) print(' Permissions stored in role-{}.json'.format(role['RoleName'])) except ClientError as error: if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) print('Skipping {}'.format(role['RoleName'])) if users: print() if users: print('Confirming permissions for users:') for user in users: print(' {}...'.format(user['UserName'])) user['Groups'] = [] user['Policies'] = [] try: policies = [] # Get groups that the user is in try: response = client.list_groups_for_user( UserName=user['UserName'] ) user['Groups'] = response['Groups'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_groups_for_user( UserName=user['UserName'], Marker=response['Marker'] ) user['Groups'] += response['Groups'] except ClientError as error: print(' List groups for user failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False # Get inline and attached group policies for group in user['Groups']: group['Policies'] = [] # Get inline group policies try: response = client.list_group_policies( GroupName=group['GroupName'] ) policies = response['PolicyNames'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_group_policies( GroupName=group['GroupName'], Marker=response['Marker'] ) policies += response['PolicyNames'] except ClientError as error: print(' List group policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False # Get document for each inline policy for policy in policies: group['Policies'].append({ # Add policies to list of policies for this group 'PolicyName': policy }) try: document = client.get_group_policy( GroupName=group['GroupName'], PolicyName=policy )['PolicyDocument'] except ClientError as error: print(' Get group policy failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False user = parse_document(document, user) # Get attached group policies attached_policies = [] try: response = client.list_attached_group_policies( GroupName=group['GroupName'] ) attached_policies = response['AttachedPolicies'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_attached_group_policies( GroupName=group['GroupName'], Marker=response['Marker'] ) attached_policies += response['AttachedPolicies'] group['Policies'] += attached_policies except ClientError as error: print(' List attached group policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False user = parse_attached_policies(client, attached_policies, user) # Get inline user policies policies = [] if 'Policies' not in user: user['Policies'] = [] try: response = client.list_user_policies( UserName=user['UserName'] ) policies = response['PolicyNames'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_user_policies( UserName=user['UserName'], Marker=response['Marker'] ) policies += response['PolicyNames'] for policy in policies: user['Policies'].append({ 'PolicyName': policy }) except ClientError as error: print(' List user policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False # Get document for each inline policy for policy in policies: try: document = client.get_user_policy( UserName=user['UserName'], PolicyName=policy )['PolicyDocument'] except ClientError as error: print(' Get user policy failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False user = parse_document(document, user) # Get attached user policies attached_policies = [] try: response = client.list_attached_user_policies( UserName=user['UserName'] ) attached_policies = response['AttachedPolicies'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_attached_user_policies( UserName=user['UserName'], Marker=response['Marker'] ) attached_policies += response['AttachedPolicies'] user['Policies'] += attached_policies except ClientError as error: print(' List attached user policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False user = parse_attached_policies(client, attached_policies, user) if user['PermissionsConfirmed']: summary_data['users_confirmed'] += 1 if args.user_name is None and args.all_users is False: print(' Confirmed Permissions for {}'.format(user['UserName'])) active_aws_key.update( pacu_main.database, user_name=user['UserName'], arn=user['Arn'], user_id=user['UserId'], groups=user['Groups'], policies=user['Policies'], permissions_confirmed=user['PermissionsConfirmed'], allow_permissions=user['Permissions']['Allow'], deny_permissions=user['Permissions']['Deny'] ) else: with save('confirmed_permissions/user-{}.json'.format(session.name, user['UserName']), 'w+') as f: json.dump(user, f, indent=2, default=str) print(' Permissions stored in user-{}.json'.format(user['UserName'])) except ClientError as error: if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) print('Skipping {}'.format(user['UserName'])) return summary_data
def main(args, pacu_main: 'Main'): session = pacu_main.get_active_session() ###### Don't modify these. They can be removed if you are not using the function. args = parser.parse_args(args) print = pacu_main.print input = pacu_main.input key_info = pacu_main.key_info fetch_data = pacu_main.fetch_data ###### summary_data = { 'users_confirmed': 0, 'roles_confirmed': 0 } users = [] roles = [] if args.all_users is True: if fetch_data(['IAM', 'Users'], module_info['prerequisite_modules'][0], '--users') is False: print('FAILURE') print(' SUB-MODULE EXECUTION FAILED') return fetched_users = session.IAM['Users'] for user in fetched_users: users.append({ 'UserName': user['UserName'], 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) elif args.user_name is not None: users.append({ 'UserName': args.user_name, 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) summary_data['single_user'] = args.user_name if args.all_roles is True: if fetch_data(['IAM', 'Roles'], module_info['prerequisite_modules'][0], '--roles') is False: print('FAILURE') print(' SUB-MODULE EXECUTION FAILED') return fetched_roles = session.IAM['Roles'] for role in fetched_roles: roles.append({ 'RoleName': role['RoleName'], 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) elif args.role_name is not None: roles.append({ 'RoleName': args.role_name, 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) summary_data['single_role'] = args.role_name is_user = is_role = False if not any([args.all_users, args.user_name, args.all_roles, args.role_name]): client = pacu_main.get_boto3_client('sts') identity = client.get_caller_identity() active_aws_key = session.get_active_aws_key(pacu_main.database) if re.match(r'arn:aws:iam::\d{12}:user/', identity['Arn']) is not None: is_user = True # GetCallerIdentity away return user's ARN like this if it was a user # arn:aws:iam::123456789012:user/username username = identity['Arn'].split(':user/')[1] active_aws_key.update( pacu_main.database, user_name=username.split('/')[-1], arn=identity['Arn'], user_id=identity['UserId'], account_id=identity['Account'] ) elif re.match(r'arn:aws:sts::\d{12}:assumed-role/', identity['Arn']) is not None: is_role = True active_aws_key.update( pacu_main.database, role_name=identity['Arn'].split(':assumed-role/')[1].split('/')[-2], arn=identity['Arn'], user_id=identity['UserId'], account_id=identity['Account'] ) else: print('Not an IAM user or role. Exiting...\n') return False if is_user: user = key_info(alias=session.key_alias) user['PermissionsConfirmed'] = True user['Permissions'] = {'Allow': {}, 'Deny': {}} users.append(user) summary_data['single_user'] = user['UserName'] elif is_role: roles.append({ 'RoleName': active_aws_key.role_name, 'PermissionsConfirmed': True, 'Permissions': { 'Allow': {}, 'Deny': {} } }) summary_data['single_role'] = active_aws_key.role_name # list-groups-for-user # list-user-policies # list-group-policies # list-role-policies # list-attached-role-policies # list-attached-group-policies # list-attached-user-policies # get-policy # get-policy-version # get-user-policy # get-group-policy # get-role-policy client = pacu_main.get_boto3_client('iam') if any([args.all_users, args.user_name, args.all_roles, args.role_name]): print('Permission Document Location:') print(' {}/confirmed_permissions/\n'.format(downloads_dir())) if roles: print('Confirming permissions for roles:') for role in roles: print(' {}...'.format(role['RoleName'])) role['Policies'] = [] try: # Get inline role policies policies = [] try: response = client.list_role_policies( RoleName=role['RoleName'] ) policies = response['PolicyNames'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_role_policies( RoleName=role['RoleName'], Marker=response['Marker'] ) policies += response['PolicyNames'] for policy in policies: role['Policies'].append({ 'PolicyName': policy }) except ClientError as error: print(' List role policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) role['PermissionsConfirmed'] = False # Get document for each inline policy for policy in policies: try: document = client.get_role_policy( RoleName=role['RoleName'], PolicyName=policy )['PolicyDocument'] except ClientError as error: print(' Get role policy failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) role['PermissionsConfirmed'] = False role = parse_document(document, role) # Get attached role policies attached_policies = [] try: response = client.list_attached_role_policies( RoleName=role['RoleName'] ) attached_policies = response['AttachedPolicies'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_attached_role_policies( RoleName=role['RoleName'], Marker=response['Marker'] ) attached_policies += response['AttachedPolicies'] role['Policies'] += attached_policies except ClientError as error: print(' List attached role policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) role['PermissionsConfirmed'] = False role = parse_attached_policies(client, attached_policies, role) if role['PermissionsConfirmed']: summary_data['roles_confirmed'] += 1 if args.role_name is None and args.all_roles is False: print(' Confirmed permissions for {}'.format(role['RoleName'])) active_aws_key.update( pacu_main.database, role_name=role['RoleName'], policies=role['Policies'], permissions_confirmed=role['PermissionsConfirmed'], allow_permissions=role['Permissions']['Allow'], deny_permissions=role['Permissions']['Deny'] ) else: with save('confirmed_permissions/role-{}.json'.format(role['RoleName']), 'w+') as f: json.dump(role, f, indent=2, default=str) print(' Permissions stored in role-{}.json'.format(role['RoleName'])) except ClientError as error: if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) print('Skipping {}'.format(role['RoleName'])) if users: print() if users: print('Confirming permissions for users:') for user in users: print(' {}...'.format(user['UserName'])) user['Groups'] = [] user['Policies'] = [] try: policies = [] # Get groups that the user is in try: response = client.list_groups_for_user( UserName=user['UserName'] ) user['Groups'] = response['Groups'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_groups_for_user( UserName=user['UserName'], Marker=response['Marker'] ) user['Groups'] += response['Groups'] except ClientError as error: print(' List groups for user failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False # Get inline and attached group policies for group in user['Groups']: group['Policies'] = [] # Get inline group policies try: response = client.list_group_policies( GroupName=group['GroupName'] ) policies = response['PolicyNames'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_group_policies( GroupName=group['GroupName'], Marker=response['Marker'] ) policies += response['PolicyNames'] except ClientError as error: print(' List group policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False # Get document for each inline policy for policy in policies: group['Policies'].append({ # Add policies to list of policies for this group 'PolicyName': policy }) try: document = client.get_group_policy( GroupName=group['GroupName'], PolicyName=policy )['PolicyDocument'] except ClientError as error: print(' Get group policy failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False user = parse_document(document, user) # Get attached group policies attached_policies = [] try: response = client.list_attached_group_policies( GroupName=group['GroupName'] ) attached_policies = response['AttachedPolicies'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_attached_group_policies( GroupName=group['GroupName'], Marker=response['Marker'] ) attached_policies += response['AttachedPolicies'] group['Policies'] += attached_policies except ClientError as error: print(' List attached group policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False user = parse_attached_policies(client, attached_policies, user) # Get inline user policies policies = [] if 'Policies' not in user: user['Policies'] = [] try: response = client.list_user_policies( UserName=user['UserName'] ) policies = response['PolicyNames'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_user_policies( UserName=user['UserName'], Marker=response['Marker'] ) policies += response['PolicyNames'] for policy in policies: user['Policies'].append({ 'PolicyName': policy }) except ClientError as error: print(' List user policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False # Get document for each inline policy for policy in policies: try: document = client.get_user_policy( UserName=user['UserName'], PolicyName=policy )['PolicyDocument'] except ClientError as error: print(' Get user policy failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False user = parse_document(document, user) # Get attached user policies attached_policies = [] try: response = client.list_attached_user_policies( UserName=user['UserName'] ) attached_policies = response['AttachedPolicies'] while 'IsTruncated' in response and response['IsTruncated'] is True: response = client.list_attached_user_policies( UserName=user['UserName'], Marker=response['Marker'] ) attached_policies += response['AttachedPolicies'] user['Policies'] += attached_policies except ClientError as error: print(' List attached user policies failed') if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) user['PermissionsConfirmed'] = False user = parse_attached_policies(client, attached_policies, user) if user['PermissionsConfirmed']: summary_data['users_confirmed'] += 1 if args.user_name is None and args.all_users is False: print(' Confirmed Permissions for {}'.format(user['UserName'])) active_aws_key.update( pacu_main.database, user_name=user['UserName'], arn=user['Arn'], user_id=user['UserId'], groups=user['Groups'], policies=user['Policies'], permissions_confirmed=user['PermissionsConfirmed'], allow_permissions=user['Permissions']['Allow'], deny_permissions=user['Permissions']['Deny'] ) else: with save('confirmed_permissions/user-{}.json'.format(session.name, user['UserName']), 'w+') as f: json.dump(user, f, indent=2, default=str) print(' Permissions stored in user-{}.json'.format(user['UserName'])) except ClientError as error: if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) print('Skipping {}'.format(user['UserName'])) return summary_data
2,223
def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20, random_state=0) lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15, solver='liblinear', multi_class='ovr') lr1.fit(X, y) lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15, solver='liblinear', multi_class='ovr') lr2.fit(X, y) lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15, solver='liblinear', multi_class='ovr') lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" with pytest.raises(ValueError, match=msg): assert_array_almost_equal(lr1.coef_, lr3.coef_)
def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20, random_state=0) lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15, solver='liblinear', multi_class='ovr') lr1.fit(X, y) lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15, solver='liblinear', multi_class='ovr') lr2.fit(X, y) lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15, solver='liblinear', multi_class='ovr') lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" with pytest.raises(AssertionError, match=msg): assert_array_almost_equal(lr1.coef_, lr3.coef_)
1,255
def _infer_intent_from_filename(filename): """Parses output filename for common suffixes and fetches corresponding intent code""" from pathlib import Path ext = Path(filename).suffixes[0] return CIFTI_EXTENSIONS_TO_INTENTS.get(ext)
def _infer_intent_from_filename(filename): """Parses output filename for common suffixes and fetches corresponding intent code""" from pathlib import Path ext = Path(filename).suffixes[-2] return CIFTI_EXTENSIONS_TO_INTENTS.get(ext)
3,242
def quantize_time(time, key_hash, duration=300): """ Adds jitter based on the key_hash around start/end times for caching snuba queries Given a time and a key_hash this should result in a timestamp that remains the same for a duration The end of the duration will be different per key_hash which avoids spikes in the number of queries Must be based on the key_hash so they cache keys are consistent per query For example: the time is 17:02:00, there's two queries query A has a key_hash of 30, query B has a key_hash of 60, we have the default duration of 300 (5 Minutes) - query A will have the suffix of 17:00:30 for a timewindow from 17:00:30 until 17:05:30 - eg. Even when its 17:05:00 the suffix will still be 17:00:30 - query B will have the suffix of 17:01:00 for a timewindow from 17:01:00 until 17:06:00 """ # Use the hash so that seconds past the hour gets rounded differently per query. jitter = key_hash % duration seconds_past_hour = time.minute * 60 + time.second # Round seconds to a multiple of duration, cause this uses "floor" division shouldn't give us a future window time_window_start = seconds_past_hour // duration * duration + jitter # If the time is past the rounded seconds then we want our key to be for this timewindow if time_window_start < seconds_past_hour: seconds_past_hour = time_window_start # Otherwise we're in the previous time window, subtract duration to give us the previous timewindows start else: seconds_past_hour = time_window_start - duration return ( # Since we're adding seconds past the hour, we want time but without minutes or seconds time.replace(minute=0, second=0, microsecond=0) + # Use timedelta here so keys are consistent around hour boundaries timedelta(seconds=seconds_past_hour) )
def quantize_time(time, key_hash, duration=300): """ Adds jitter based on the key_hash around start/end times for caching snuba queries Given a time and a key_hash this should result in a timestamp that remains the same for a duration The end of the duration will be different per key_hash which avoids spikes in the number of queries Must be based on the key_hash so they cache keys are consistent per query For example: the time is 17:02:00, there's two queries query A has a key_hash of 30, query B has a key_hash of 60, we have the default duration of 300 (5 Minutes) - query A will have the suffix of 17:00:30 for a timewindow from 17:00:30 until 17:05:30 - eg. Even when its 17:05:00 the suffix will still be 17:00:30 - query B will have the suffix of 17:01:00 for a timewindow from 17:01:00 until 17:06:00 """ # Use the hash so that seconds past the hour gets rounded differently per query. jitter = key_hash % duration seconds_past_hour = time.minute * 60 + time.second # Round seconds to a multiple of duration, because this uses "floor" division shouldn't give us a future window time_window_start = seconds_past_hour // duration * duration + jitter # If the time is past the rounded seconds then we want our key to be for this timewindow if time_window_start < seconds_past_hour: seconds_past_hour = time_window_start # Otherwise we're in the previous time window, subtract duration to give us the previous timewindows start else: seconds_past_hour = time_window_start - duration return ( # Since we're adding seconds past the hour, we want time but without minutes or seconds time.replace(minute=0, second=0, microsecond=0) + # Use timedelta here so keys are consistent around hour boundaries timedelta(seconds=seconds_past_hour) )
22,391
def check_binary(name, file_path=True): # Handles files if file_path is True or text if file_path is False if file_path: temp = open(name, "rb") read_start = int(os.stat(name).st_size/2) else: temp = BytesIO(name) read_start = int(len(name)/2) try: # Read 1024 from the middle of the file, # to avoid issues with long txt headers on binary files. temp.seek(read_start) return util.is_binary(temp.read(1024)) finally: temp.close()
def check_binary(name, file_path=True): # Handles files if file_path is True or text if file_path is False if file_path: temp = open(name, "rb") read_start = int(os.stat(name).st_size/2) else: temp = BytesIO(name) read_start = int(len(name) / 2) try: # Read 1024 from the middle of the file, # to avoid issues with long txt headers on binary files. temp.seek(read_start) return util.is_binary(temp.read(1024)) finally: temp.close()
10,357
def db_dump(module, host, user, password, db_name, target, all_databases, port, config_file, socket=None, ssl_cert=None, ssl_key=None, ssl_ca=None, single_transaction=None, quick=None, ignore_tables=None, hex_blob=None, encoding=None, only_tables=None, force=False): cmd = module.get_bin_path('mysqldump', True) # If defined, mysqldump demands --defaults-extra-file be the first option if config_file: cmd += " --defaults-extra-file=%s" % shlex_quote(config_file) if user is not None: cmd += " --user=%s" % shlex_quote(user) if password is not None: cmd += " --password=%s" % shlex_quote(password) if ssl_cert is not None: cmd += " --ssl-cert=%s" % shlex_quote(ssl_cert) if ssl_key is not None: cmd += " --ssl-key=%s" % shlex_quote(ssl_key) if ssl_ca is not None: cmd += " --ssl-ca=%s" % shlex_quote(ssl_ca) if force: cmd += " --force" if socket is not None: cmd += " --socket=%s" % shlex_quote(socket) else: cmd += " --host=%s --port=%i" % (shlex_quote(host), port) if all_databases: cmd += " --all-databases" elif only_tables and len(db_name) == 1: cmd += " %s" % db_name[0] else: cmd += " --databases {0} --skip-lock-tables".format(' '.join(db_name)) if (encoding is not None) and (encoding != ""): cmd += " --default-character-set=%s" % shlex_quote(encoding) if single_transaction: cmd += " --single-transaction=true" if quick: cmd += " --quick" if ignore_tables: for an_ignored_table in ignore_tables: cmd += " --ignore-table={0}".format(an_ignored_table) if hex_blob: cmd += " --hex-blob" path = None if os.path.splitext(target)[-1] == '.gz': path = module.get_bin_path('gzip', True) elif os.path.splitext(target)[-1] == '.bz2': path = module.get_bin_path('bzip2', True) elif os.path.splitext(target)[-1] == '.xz': path = module.get_bin_path('xz', True) if path: cmd = '%s | %s > %s' % (cmd, path, shlex_quote(target)) else: cmd += " > %s" % shlex_quote(target) executed_commands.append(cmd) rc, stdout, stderr = module.run_command(cmd, use_unsafe_shell=True) return rc, stdout, stderr
def db_dump(module, host, user, password, db_name, target, all_databases, port, config_file, socket=None, ssl_cert=None, ssl_key=None, ssl_ca=None, single_transaction=None, quick=None, ignore_tables=None, hex_blob=None, encoding=None, only_tables=None, force=False): cmd = module.get_bin_path('mysqldump', True) # If defined, mysqldump demands --defaults-extra-file be the first option if config_file: cmd += " --defaults-extra-file=%s" % shlex_quote(config_file) if user is not None: cmd += " --user=%s" % shlex_quote(user) if password is not None: cmd += " --password=%s" % shlex_quote(password) if ssl_cert is not None: cmd += " --ssl-cert=%s" % shlex_quote(ssl_cert) if ssl_key is not None: cmd += " --ssl-key=%s" % shlex_quote(ssl_key) if ssl_ca is not None: cmd += " --ssl-ca=%s" % shlex_quote(ssl_ca) if force: cmd += " --force" if socket is not None: cmd += " --socket=%s" % shlex_quote(socket) else: cmd += " --host=%s --port=%i" % (shlex_quote(host), port) if all_databases: cmd += " --all-databases" elif only_tables: cmd += " %s" % db_name[0] else: cmd += " --databases {0} --skip-lock-tables".format(' '.join(db_name)) if (encoding is not None) and (encoding != ""): cmd += " --default-character-set=%s" % shlex_quote(encoding) if single_transaction: cmd += " --single-transaction=true" if quick: cmd += " --quick" if ignore_tables: for an_ignored_table in ignore_tables: cmd += " --ignore-table={0}".format(an_ignored_table) if hex_blob: cmd += " --hex-blob" path = None if os.path.splitext(target)[-1] == '.gz': path = module.get_bin_path('gzip', True) elif os.path.splitext(target)[-1] == '.bz2': path = module.get_bin_path('bzip2', True) elif os.path.splitext(target)[-1] == '.xz': path = module.get_bin_path('xz', True) if path: cmd = '%s | %s > %s' % (cmd, path, shlex_quote(target)) else: cmd += " > %s" % shlex_quote(target) executed_commands.append(cmd) rc, stdout, stderr = module.run_command(cmd, use_unsafe_shell=True) return rc, stdout, stderr
51,508
def run_query(data_source, parameter_values, query_text, query_id, max_age=0, parameter_schema={}): if data_source.paused: if data_source.pause_reason: message = '{} is paused ({}). Please try later.'.format(data_source.name, data_source.pause_reason) else: message = '{} is paused. Please try later.'.format(data_source.name) return error_response(message) query = ParameterizedQuery(query_text, parameter_schema).apply(parameter_values) if query.missing_params: return error_response(u'Missing parameter value for: {}'.format(u", ".join(query.missing_params))) if max_age == 0: query_result = None else: query_result = models.QueryResult.get_latest(data_source, query.text, max_age) if query_result: return {'query_result': query_result.to_dict()} else: job = enqueue_query(query.text, data_source, current_user.id, metadata={"Username": current_user.email, "Query ID": query_id}) return {'job': job.to_dict()}
def run_query(data_source, parameter_values, query_text, query_id, max_age=0, parameter_schema=None): if parameter_schema is None: parameter_schema = {} if data_source.paused: if data_source.pause_reason: message = '{} is paused ({}). Please try later.'.format(data_source.name, data_source.pause_reason) else: message = '{} is paused. Please try later.'.format(data_source.name) return error_response(message) query = ParameterizedQuery(query_text, parameter_schema).apply(parameter_values) if query.missing_params: return error_response(u'Missing parameter value for: {}'.format(u", ".join(query.missing_params))) if max_age == 0: query_result = None else: query_result = models.QueryResult.get_latest(data_source, query.text, max_age) if query_result: return {'query_result': query_result.to_dict()} else: job = enqueue_query(query.text, data_source, current_user.id, metadata={"Username": current_user.email, "Query ID": query_id}) return {'job': job.to_dict()}
57,683
def get_machine_guid(machine_name): query_fields = ['elementDisplayName'] path = [ { 'requestedType': 'Machine', 'filters': [ {'facetName': 'elementDisplayName', 'values': [machine_name]} ], 'isResult': True } ] json_body = build_query(query_fields, path) response = http_request('POST', '/rest/visualsearch/query/simple', json_body=json_body).json() data = dict_safe_get(response, ['data', 'resultIdToElementDataMap'], {}, dict) return dict_safe_get(data.keys(), [0])
def get_machine_guid(machine_name): query_fields = ['elementDisplayName'] path = [ { 'requestedType': 'Machine', 'filters': [ {'facetName': 'elementDisplayName', 'values': [machine_name]} ], 'isResult': True } ] json_body = build_query(query_fields, path) response = http_request('POST', '/rest/visualsearch/query/simple', json_body=json_body).json() data = dict_safe_get(response, ['data', 'resultIdToElementDataMap'], {}, dict) if not data: raise ValueError('Could not find machine') return data.keys()[0]
54,840
def sample_to_event(sample: list, max_count_per_mode: int) -> Union[int, None]: r"""Provides the event corresponding to a given sample. For an input ``max_count_per_mode``, events are expressed here simply by the total photon number :math:`k`. **Example usage:** >>> sample = [1, 2, 0, 0, 1, 1, 0, 3] >>> sample_to_event(sample, 4) 8 >>> sample_to_event(sample, 2) None Args: sample (list[int]): a sample from GBS max_count_per_mode (int): the maximum number of photons counted in any given mode for a sample to be categorized as an event. Samples with counts exceeding this value are attributed the event ``None``. Returns: int or None: the event of the sample """ if max(sample) <= max_count_per_mode: return sum(sample) return None
def sample_to_event(sample: list, max_count_per_mode: int) -> Union[int, None]: r"""Provides the event corresponding to a given sample. For an input ``max_count_per_mode``, events are expressed here simply by the total photon number :math:`k`. return int(factorial(modes, exact=False) / np.prod(factorial(counts, exact=False))) **Example usage:** >>> sample = [1, 2, 0, 0, 1, 1, 0, 3] >>> sample_to_event(sample, 4) 8 >>> sample_to_event(sample, 2) None Args: sample (list[int]): a sample from GBS max_count_per_mode (int): the maximum number of photons counted in any given mode for a sample to be categorized as an event. Samples with counts exceeding this value are attributed the event ``None``. Returns: int or None: the event of the sample """ if max(sample) <= max_count_per_mode: return sum(sample) return None
40,478
def main(): dataset = 'Cora' path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset) dataset = Planetoid(path, dataset) data = dataset[0] device = 'cuda' if torch.cuda.is_available() else 'cpu' model = Node2Vec(data.edge_index, embedding_dim=128, walk_length=20, context_size=10, walks_per_node=10, num_negative_samples=1, p=1, q=1, sparse=True).to(device) if sys.platform.startswith('win'): num_workers = 0 else: num_workers = 4 loader = model.loader(batch_size=128, shuffle=True, num_workers=num_workers) optimizer = torch.optim.SparseAdam(list(model.parameters()), lr=0.01) def train(): model.train() total_loss = 0 for pos_rw, neg_rw in loader: optimizer.zero_grad() loss = model.loss(pos_rw.to(device), neg_rw.to(device)) loss.backward() optimizer.step() total_loss += loss.item() return total_loss / len(loader) @torch.no_grad() def test(): model.eval() z = model() acc = model.test(z[data.train_mask], data.y[data.train_mask], z[data.test_mask], data.y[data.test_mask], max_iter=150) return acc for epoch in range(1, 101): loss = train() acc = test() print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Acc: {acc:.4f}') @torch.no_grad() def plot_points(colors): model.eval() z = model(torch.arange(data.num_nodes, device=device)) z = TSNE(n_components=2).fit_transform(z.cpu().numpy()) y = data.y.cpu().numpy() plt.figure(figsize=(8, 8)) for i in range(dataset.num_classes): plt.scatter(z[y == i, 0], z[y == i, 1], s=20, color=colors[i]) plt.axis('off') plt.show() colors = [ '#ffc0cb', '#bada55', '#008080', '#420420', '#7fe5f0', '#065535', '#ffd700' ] plot_points(colors)
def main(): dataset = 'Cora' path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset) dataset = Planetoid(path, dataset) data = dataset[0] device = 'cuda' if torch.cuda.is_available() else 'cpu' model = Node2Vec(data.edge_index, embedding_dim=128, walk_length=20, context_size=10, walks_per_node=10, num_negative_samples=1, p=1, q=1, sparse=True).to(device) num_workers = 0 if sys.platform.startswith('win') else 4 loader = model.loader(batch_size=128, shuffle=True, num_workers=num_workers) optimizer = torch.optim.SparseAdam(list(model.parameters()), lr=0.01) def train(): model.train() total_loss = 0 for pos_rw, neg_rw in loader: optimizer.zero_grad() loss = model.loss(pos_rw.to(device), neg_rw.to(device)) loss.backward() optimizer.step() total_loss += loss.item() return total_loss / len(loader) @torch.no_grad() def test(): model.eval() z = model() acc = model.test(z[data.train_mask], data.y[data.train_mask], z[data.test_mask], data.y[data.test_mask], max_iter=150) return acc for epoch in range(1, 101): loss = train() acc = test() print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Acc: {acc:.4f}') @torch.no_grad() def plot_points(colors): model.eval() z = model(torch.arange(data.num_nodes, device=device)) z = TSNE(n_components=2).fit_transform(z.cpu().numpy()) y = data.y.cpu().numpy() plt.figure(figsize=(8, 8)) for i in range(dataset.num_classes): plt.scatter(z[y == i, 0], z[y == i, 1], s=20, color=colors[i]) plt.axis('off') plt.show() colors = [ '#ffc0cb', '#bada55', '#008080', '#420420', '#7fe5f0', '#065535', '#ffd700' ] plot_points(colors)
830
def test_issue_16350(): d = Derivative(y, x) assert Derivative(d, x) == Derivative(y, (x, 2)) assert Derivative(d, x, evaluate = False) == Derivative(Derivative(y, x), x)
def test_issue_16350(): d = Derivative(y, x) assert Derivative(d, x) == Derivative(y, (x, 2)) assert Derivative(d, x, evaluate=False) == Derivative(Derivative(y, x), x)
54,905
def main(): """Bandit CLI.""" # bring our logging stuff up as early as possible debug = (logging.DEBUG if '-d' in sys.argv or '--debug' in sys.argv else logging.INFO) _init_logger(debug) extension_mgr = _init_extensions() baseline_formatters = [f.name for f in filter(lambda x: hasattr(x.plugin, '_accepts_baseline'), extension_mgr.formatters)] # now do normal startup parser = argparse.ArgumentParser( description='Bandit - a Python source code security analyzer', formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument( 'targets', metavar='targets', type=str, nargs='*', help='source file(s) or directory(s) to be tested' ) parser.add_argument( '-r', '--recursive', dest='recursive', action='store_true', help='find and process files in subdirectories' ) parser.add_argument( '-a', '--aggregate', dest='agg_type', action='store', default='file', type=str, choices=['file', 'vuln'], help='aggregate output by vulnerability (default) or by filename' ) parser.add_argument( '-n', '--number', dest='context_lines', action='store', default=3, type=int, help='maximum number of code lines to output for each issue' ) parser.add_argument( '-c', '--configfile', dest='config_file', action='store', default=None, type=str, help='optional config file to use for selecting plugins and ' 'overriding defaults' ) parser.add_argument( '-p', '--profile', dest='profile', action='store', default=None, type=str, help='profile to use (defaults to executing all tests)' ) parser.add_argument( '-t', '--tests', dest='tests', action='store', default=None, type=str, help='comma-separated list of test IDs to run' ) parser.add_argument( '-s', '--skip', dest='skips', action='store', default=None, type=str, help='comma-separated list of test IDs to skip' ) severity_group = parser.add_mutually_exclusive_group(required=False) severity_group.add_argument( '-l', '--level', dest='severity', action='count', default=1, help='report only issues of a given severity level or ' 'higher (-l for LOW, -ll for MEDIUM, -lll for HIGH)' ) severity_group.add_argument( '--severity-level', dest='severity_string', action='store', help='report only issues of a given severity level or higher.' ' "all" and "low" are likely to produce the same results, but it' ' is possible for rules to be undefined which will' ' not be listed in "low".', choices=['all', 'low', 'medium', 'high'] ) confidence_group = parser.add_mutually_exclusive_group(required=False) confidence_group.add_argument( '-i', '--confidence', dest='confidence', action='count', default=1, help='report only issues of a given confidence level or ' 'higher (-i for LOW, -ii for MEDIUM, -iii for HIGH)' ) confidence_group.add_argument( '--confidence-level', dest='confidence_string', action='store', help='report only issues of a given confidence level or higher.' ' "all" and "low" are likely to produce the same results, but it' ' is possible for rules to be undefined which will' ' not be listed in "low".', choices=["all", "low", "medium", "high"] ) output_format = 'screen' if sys.stdout.isatty() else 'txt' parser.add_argument( '-f', '--format', dest='output_format', action='store', default=output_format, help='specify output format', choices=sorted(extension_mgr.formatter_names) ) parser.add_argument( '--msg-template', action='store', default=None, help='specify output message template' ' (only usable with --format custom),' ' see CUSTOM FORMAT section' ' for list of available values', ) parser.add_argument( '-o', '--output', dest='output_file', action='store', nargs='?', type=argparse.FileType('w', encoding='utf-8'), default=sys.stdout, help='write report to filename' ) group = parser.add_mutually_exclusive_group(required=False) group.add_argument( '-v', '--verbose', dest='verbose', action='store_true', help='output extra information like excluded and included files' ) parser.add_argument( '-d', '--debug', dest='debug', action='store_true', help='turn on debug mode' ) group.add_argument( '-q', '--quiet', '--silent', dest='quiet', action='store_true', help='only show output in the case of an error' ) parser.add_argument( '--ignore-nosec', dest='ignore_nosec', action='store_true', help='do not skip lines with # nosec comments' ) parser.add_argument( '-x', '--exclude', dest='excluded_paths', action='store', default=','.join(constants.EXCLUDE), help='comma-separated list of paths (glob patterns ' 'supported) to exclude from scan ' '(note that these are in addition to the excluded ' 'paths provided in the config file) (default: ' + ','.join(constants.EXCLUDE) + ')' ) parser.add_argument( '-b', '--baseline', dest='baseline', action='store', default=None, help='path of a baseline report to compare against ' '(only JSON-formatted files are accepted)' ) parser.add_argument( '--ini', dest='ini_path', action='store', default=None, help='path to a .bandit file that supplies command line arguments' ) exit_zero_group = parser.add_mutually_exclusive_group(required=False) exit_zero_group.add_argument( '--exit-zero', action='store_true', dest='exit_zero', default=False, help='exit with 0, even with results found' ) exit_zero_group.add_argument( '--exit-zero-severity', dest='exit_zero_severity_string', action='store', default=None, help='control which severity makes bandit to exit with zero ' 'status code. Lower severities to the specified one are ' 'included implicitly ' '(low for LOW, ' 'medium for MEDIUM, ' 'high for HIGH).' ) python_ver = sys.version.replace('\n', '') parser.add_argument( '--version', action='version', version='%(prog)s {version}\n python version = {python}'.format( version=bandit.__version__, python=python_ver) ) parser.set_defaults(debug=False) parser.set_defaults(verbose=False) parser.set_defaults(quiet=False) parser.set_defaults(ignore_nosec=False) plugin_info = ["%s\t%s" % (a[0], a[1].name) for a in extension_mgr.plugins_by_id.items()] blacklist_info = [] for a in extension_mgr.blacklist.items(): for b in a[1]: blacklist_info.append('%s\t%s' % (b['id'], b['name'])) plugin_list = '\n\t'.join(sorted(set(plugin_info + blacklist_info))) dedent_text = textwrap.dedent(''' CUSTOM FORMATTING ----------------- Available tags: {abspath}, {relpath}, {line}, {col}, {test_id}, {severity}, {msg}, {confidence}, {range} Example usage: Default template: bandit -r examples/ --format custom --msg-template \\ "{abspath}:{line}: {test_id}[bandit]: {severity}: {msg}" Provides same output as: bandit -r examples/ --format custom Tags can also be formatted in python string.format() style: bandit -r examples/ --format custom --msg-template \\ "{relpath:20.20s}: {line:03}: {test_id:^8}: DEFECT: {msg:>20}" See python documentation for more information about formatting style: https://docs.python.org/3/library/string.html The following tests were discovered and loaded: ----------------------------------------------- ''') parser.epilog = dedent_text + "\t{0}".format(plugin_list) # setup work - parse arguments, and initialize BanditManager args = parser.parse_args() # Check if `--msg-template` is not present without custom formatter if args.output_format != 'custom' and args.msg_template is not None: parser.error("--msg-template can only be used with --format=custom") # Check if confidence or severity level have been specified with strings if args.severity_string is not None: if args.severity_string == "all": args.severity = 1 elif args.severity_string == "low": args.severity = 2 elif args.severity_string == "medium": args.severity = 3 elif args.severity_string == "high": args.severity = 4 # Other strings will be blocked by argparse if args.confidence_string is not None: if args.confidence_string == "all": args.confidence = 1 elif args.confidence_string == "low": args.confidence = 2 elif args.confidence_string == "medium": args.confidence = 3 elif args.confidence_string == "high": args.confidence = 4 # Other strings will be blocked by argparse if args.exit_zero_severity_string is not None: if args.exit_zero_severity_string == "all": args.exit_zero_severity = 1 elif args.exit_zero_severity_string == "low": args.exit_zero_severity = 2 elif args.exit_zero_severity_string == "medium": args.exit_zero_severity = 3 elif args.exit_zero_severity_string == "high": args.exit_zero_severity = 4 # Other strings will be blocked by argparse try: b_conf = b_config.BanditConfig(config_file=args.config_file) except utils.ConfigError as e: LOG.error(e) sys.exit(2) # Handle .bandit files in projects to pass cmdline args from file ini_options = _get_options_from_ini(args.ini_path, args.targets) if ini_options: # prefer command line, then ini file args.excluded_paths = _log_option_source( args.excluded_paths, ini_options.get('exclude'), 'excluded paths') args.skips = _log_option_source( args.skips, ini_options.get('skips'), 'skipped tests') args.tests = _log_option_source( args.tests, ini_options.get('tests'), 'selected tests') ini_targets = ini_options.get('targets') if ini_targets: ini_targets = ini_targets.split(',') args.targets = _log_option_source( args.targets, ini_targets, 'selected targets') # TODO(tmcpeak): any other useful options to pass from .bandit? args.recursive = _log_option_source( args.recursive, ini_options.get('recursive'), 'recursive scan') args.agg_type = _log_option_source( args.agg_type, ini_options.get('aggregate'), 'aggregate output type') args.context_lines = _log_option_source( args.context_lines, ini_options.get('number'), 'max code lines output for issue') args.profile = _log_option_source( args.profile, ini_options.get('profile'), 'profile') args.severity = _log_option_source( args.severity, ini_options.get('level'), 'severity level') args.confidence = _log_option_source( args.confidence, ini_options.get('confidence'), 'confidence level') args.output_format = _log_option_source( args.output_format, ini_options.get('format'), 'output format') args.msg_template = _log_option_source( args.msg_template, ini_options.get('msg-template'), 'output message template') args.output_file = _log_option_source( args.output_file, ini_options.get('output'), 'output file') args.verbose = _log_option_source( args.verbose, ini_options.get('verbose'), 'output extra information') args.debug = _log_option_source( args.debug, ini_options.get('debug'), 'debug mode') args.quiet = _log_option_source( args.quiet, ini_options.get('quiet'), 'silent mode') args.ignore_nosec = _log_option_source( args.ignore_nosec, ini_options.get('ignore-nosec'), 'do not skip lines with # nosec') args.baseline = _log_option_source( args.baseline, ini_options.get('baseline'), 'path of a baseline report') if not args.targets: LOG.error("No targets found in CLI or ini files, exiting.") sys.exit(2) # if the log format string was set in the options, reinitialize if b_conf.get_option('log_format'): log_format = b_conf.get_option('log_format') _init_logger(log_level=logging.DEBUG, log_format=log_format) if args.quiet: _init_logger(log_level=logging.WARN) try: profile = _get_profile(b_conf, args.profile, args.config_file) _log_info(args, profile) profile['include'].update(args.tests.split(',') if args.tests else []) profile['exclude'].update(args.skips.split(',') if args.skips else []) extension_mgr.validate_profile(profile) except (utils.ProfileNotFound, ValueError) as e: LOG.error(e) sys.exit(2) b_mgr = b_manager.BanditManager(b_conf, args.agg_type, args.debug, profile=profile, verbose=args.verbose, quiet=args.quiet, ignore_nosec=args.ignore_nosec) if args.baseline is not None: try: with open(args.baseline) as bl: data = bl.read() b_mgr.populate_baseline(data) except IOError: LOG.warning("Could not open baseline report: %s", args.baseline) sys.exit(2) if args.output_format not in baseline_formatters: LOG.warning('Baseline must be used with one of the following ' 'formats: ' + str(baseline_formatters)) sys.exit(2) if args.output_format != "json": if args.config_file: LOG.info("using config: %s", args.config_file) LOG.info("running on Python %d.%d.%d", sys.version_info.major, sys.version_info.minor, sys.version_info.micro) # initiate file discovery step within Bandit Manager b_mgr.discover_files(args.targets, args.recursive, args.excluded_paths) if not b_mgr.b_ts.tests: LOG.error('No tests would be run, please check the profile.') sys.exit(2) # initiate execution of tests within Bandit Manager b_mgr.run_tests() LOG.debug(b_mgr.b_ma) LOG.debug(b_mgr.metrics) # trigger output of results by Bandit Manager sev_level = constants.RANKING[args.severity - 1] conf_level = constants.RANKING[args.confidence - 1] b_mgr.output_results(args.context_lines, sev_level, conf_level, args.output_file, args.output_format, args.msg_template) if args.exit_zero: sys.exit(0) if ("exit_zero_severity" in args and not b_mgr.above_threshold_results(args.exit_zero_severity)): sys.exit(0) if b_mgr.results_count(sev_filter=sev_level, conf_filter=conf_level) > 0: sys.exit(1) else: sys.exit(0)
def main(): """Bandit CLI.""" # bring our logging stuff up as early as possible debug = (logging.DEBUG if '-d' in sys.argv or '--debug' in sys.argv else logging.INFO) _init_logger(debug) extension_mgr = _init_extensions() baseline_formatters = [f.name for f in filter(lambda x: hasattr(x.plugin, '_accepts_baseline'), extension_mgr.formatters)] # now do normal startup parser = argparse.ArgumentParser( description='Bandit - a Python source code security analyzer', formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument( 'targets', metavar='targets', type=str, nargs='*', help='source file(s) or directory(s) to be tested' ) parser.add_argument( '-r', '--recursive', dest='recursive', action='store_true', help='find and process files in subdirectories' ) parser.add_argument( '-a', '--aggregate', dest='agg_type', action='store', default='file', type=str, choices=['file', 'vuln'], help='aggregate output by vulnerability (default) or by filename' ) parser.add_argument( '-n', '--number', dest='context_lines', action='store', default=3, type=int, help='maximum number of code lines to output for each issue' ) parser.add_argument( '-c', '--configfile', dest='config_file', action='store', default=None, type=str, help='optional config file to use for selecting plugins and ' 'overriding defaults' ) parser.add_argument( '-p', '--profile', dest='profile', action='store', default=None, type=str, help='profile to use (defaults to executing all tests)' ) parser.add_argument( '-t', '--tests', dest='tests', action='store', default=None, type=str, help='comma-separated list of test IDs to run' ) parser.add_argument( '-s', '--skip', dest='skips', action='store', default=None, type=str, help='comma-separated list of test IDs to skip' ) severity_group = parser.add_mutually_exclusive_group(required=False) severity_group.add_argument( '-l', '--level', dest='severity', action='count', default=1, help='report only issues of a given severity level or ' 'higher (-l for LOW, -ll for MEDIUM, -lll for HIGH)' ) severity_group.add_argument( '--severity-level', dest='severity_string', action='store', help='report only issues of a given severity level or higher.' ' "all" and "low" are likely to produce the same results, but it' ' is possible for rules to be undefined which will' ' not be listed in "low".', choices=['all', 'low', 'medium', 'high'] ) confidence_group = parser.add_mutually_exclusive_group(required=False) confidence_group.add_argument( '-i', '--confidence', dest='confidence', action='count', default=1, help='report only issues of a given confidence level or ' 'higher (-i for LOW, -ii for MEDIUM, -iii for HIGH)' ) confidence_group.add_argument( '--confidence-level', dest='confidence_string', action='store', help='report only issues of a given confidence level or higher.' ' "all" and "low" are likely to produce the same results, but it' ' is possible for rules to be undefined which will' ' not be listed in "low".', choices=["all", "low", "medium", "high"] ) output_format = 'screen' if sys.stdout.isatty() else 'txt' parser.add_argument( '-f', '--format', dest='output_format', action='store', default=output_format, help='specify output format', choices=sorted(extension_mgr.formatter_names) ) parser.add_argument( '--msg-template', action='store', default=None, help='specify output message template' ' (only usable with --format custom),' ' see CUSTOM FORMAT section' ' for list of available values', ) parser.add_argument( '-o', '--output', dest='output_file', action='store', nargs='?', type=argparse.FileType('w', encoding='utf-8'), default=sys.stdout, help='write report to filename' ) group = parser.add_mutually_exclusive_group(required=False) group.add_argument( '-v', '--verbose', dest='verbose', action='store_true', help='output extra information like excluded and included files' ) parser.add_argument( '-d', '--debug', dest='debug', action='store_true', help='turn on debug mode' ) group.add_argument( '-q', '--quiet', '--silent', dest='quiet', action='store_true', help='only show output in the case of an error' ) parser.add_argument( '--ignore-nosec', dest='ignore_nosec', action='store_true', help='do not skip lines with # nosec comments' ) parser.add_argument( '-x', '--exclude', dest='excluded_paths', action='store', default=','.join(constants.EXCLUDE), help='comma-separated list of paths (glob patterns ' 'supported) to exclude from scan ' '(note that these are in addition to the excluded ' 'paths provided in the config file) (default: ' + ','.join(constants.EXCLUDE) + ')' ) parser.add_argument( '-b', '--baseline', dest='baseline', action='store', default=None, help='path of a baseline report to compare against ' '(only JSON-formatted files are accepted)' ) parser.add_argument( '--ini', dest='ini_path', action='store', default=None, help='path to a .bandit file that supplies command line arguments' ) exit_zero_group = parser.add_mutually_exclusive_group(required=False) exit_zero_group.add_argument( '--exit-zero', action='store_true', dest='exit_zero', default=False, help='exit with 0, even with results found' ) exit_zero_group.add_argument( '--exit-zero-severity', dest='exit_zero_severity_string', action='store', default=None, choices=["all", "low", "medium", "high"], help='control which severity makes bandit to exit with zero ' 'status code. Lower severities to the specified one are ' 'included implicitly. ' ) python_ver = sys.version.replace('\n', '') parser.add_argument( '--version', action='version', version='%(prog)s {version}\n python version = {python}'.format( version=bandit.__version__, python=python_ver) ) parser.set_defaults(debug=False) parser.set_defaults(verbose=False) parser.set_defaults(quiet=False) parser.set_defaults(ignore_nosec=False) plugin_info = ["%s\t%s" % (a[0], a[1].name) for a in extension_mgr.plugins_by_id.items()] blacklist_info = [] for a in extension_mgr.blacklist.items(): for b in a[1]: blacklist_info.append('%s\t%s' % (b['id'], b['name'])) plugin_list = '\n\t'.join(sorted(set(plugin_info + blacklist_info))) dedent_text = textwrap.dedent(''' CUSTOM FORMATTING ----------------- Available tags: {abspath}, {relpath}, {line}, {col}, {test_id}, {severity}, {msg}, {confidence}, {range} Example usage: Default template: bandit -r examples/ --format custom --msg-template \\ "{abspath}:{line}: {test_id}[bandit]: {severity}: {msg}" Provides same output as: bandit -r examples/ --format custom Tags can also be formatted in python string.format() style: bandit -r examples/ --format custom --msg-template \\ "{relpath:20.20s}: {line:03}: {test_id:^8}: DEFECT: {msg:>20}" See python documentation for more information about formatting style: https://docs.python.org/3/library/string.html The following tests were discovered and loaded: ----------------------------------------------- ''') parser.epilog = dedent_text + "\t{0}".format(plugin_list) # setup work - parse arguments, and initialize BanditManager args = parser.parse_args() # Check if `--msg-template` is not present without custom formatter if args.output_format != 'custom' and args.msg_template is not None: parser.error("--msg-template can only be used with --format=custom") # Check if confidence or severity level have been specified with strings if args.severity_string is not None: if args.severity_string == "all": args.severity = 1 elif args.severity_string == "low": args.severity = 2 elif args.severity_string == "medium": args.severity = 3 elif args.severity_string == "high": args.severity = 4 # Other strings will be blocked by argparse if args.confidence_string is not None: if args.confidence_string == "all": args.confidence = 1 elif args.confidence_string == "low": args.confidence = 2 elif args.confidence_string == "medium": args.confidence = 3 elif args.confidence_string == "high": args.confidence = 4 # Other strings will be blocked by argparse if args.exit_zero_severity_string is not None: if args.exit_zero_severity_string == "all": args.exit_zero_severity = 1 elif args.exit_zero_severity_string == "low": args.exit_zero_severity = 2 elif args.exit_zero_severity_string == "medium": args.exit_zero_severity = 3 elif args.exit_zero_severity_string == "high": args.exit_zero_severity = 4 # Other strings will be blocked by argparse try: b_conf = b_config.BanditConfig(config_file=args.config_file) except utils.ConfigError as e: LOG.error(e) sys.exit(2) # Handle .bandit files in projects to pass cmdline args from file ini_options = _get_options_from_ini(args.ini_path, args.targets) if ini_options: # prefer command line, then ini file args.excluded_paths = _log_option_source( args.excluded_paths, ini_options.get('exclude'), 'excluded paths') args.skips = _log_option_source( args.skips, ini_options.get('skips'), 'skipped tests') args.tests = _log_option_source( args.tests, ini_options.get('tests'), 'selected tests') ini_targets = ini_options.get('targets') if ini_targets: ini_targets = ini_targets.split(',') args.targets = _log_option_source( args.targets, ini_targets, 'selected targets') # TODO(tmcpeak): any other useful options to pass from .bandit? args.recursive = _log_option_source( args.recursive, ini_options.get('recursive'), 'recursive scan') args.agg_type = _log_option_source( args.agg_type, ini_options.get('aggregate'), 'aggregate output type') args.context_lines = _log_option_source( args.context_lines, ini_options.get('number'), 'max code lines output for issue') args.profile = _log_option_source( args.profile, ini_options.get('profile'), 'profile') args.severity = _log_option_source( args.severity, ini_options.get('level'), 'severity level') args.confidence = _log_option_source( args.confidence, ini_options.get('confidence'), 'confidence level') args.output_format = _log_option_source( args.output_format, ini_options.get('format'), 'output format') args.msg_template = _log_option_source( args.msg_template, ini_options.get('msg-template'), 'output message template') args.output_file = _log_option_source( args.output_file, ini_options.get('output'), 'output file') args.verbose = _log_option_source( args.verbose, ini_options.get('verbose'), 'output extra information') args.debug = _log_option_source( args.debug, ini_options.get('debug'), 'debug mode') args.quiet = _log_option_source( args.quiet, ini_options.get('quiet'), 'silent mode') args.ignore_nosec = _log_option_source( args.ignore_nosec, ini_options.get('ignore-nosec'), 'do not skip lines with # nosec') args.baseline = _log_option_source( args.baseline, ini_options.get('baseline'), 'path of a baseline report') if not args.targets: LOG.error("No targets found in CLI or ini files, exiting.") sys.exit(2) # if the log format string was set in the options, reinitialize if b_conf.get_option('log_format'): log_format = b_conf.get_option('log_format') _init_logger(log_level=logging.DEBUG, log_format=log_format) if args.quiet: _init_logger(log_level=logging.WARN) try: profile = _get_profile(b_conf, args.profile, args.config_file) _log_info(args, profile) profile['include'].update(args.tests.split(',') if args.tests else []) profile['exclude'].update(args.skips.split(',') if args.skips else []) extension_mgr.validate_profile(profile) except (utils.ProfileNotFound, ValueError) as e: LOG.error(e) sys.exit(2) b_mgr = b_manager.BanditManager(b_conf, args.agg_type, args.debug, profile=profile, verbose=args.verbose, quiet=args.quiet, ignore_nosec=args.ignore_nosec) if args.baseline is not None: try: with open(args.baseline) as bl: data = bl.read() b_mgr.populate_baseline(data) except IOError: LOG.warning("Could not open baseline report: %s", args.baseline) sys.exit(2) if args.output_format not in baseline_formatters: LOG.warning('Baseline must be used with one of the following ' 'formats: ' + str(baseline_formatters)) sys.exit(2) if args.output_format != "json": if args.config_file: LOG.info("using config: %s", args.config_file) LOG.info("running on Python %d.%d.%d", sys.version_info.major, sys.version_info.minor, sys.version_info.micro) # initiate file discovery step within Bandit Manager b_mgr.discover_files(args.targets, args.recursive, args.excluded_paths) if not b_mgr.b_ts.tests: LOG.error('No tests would be run, please check the profile.') sys.exit(2) # initiate execution of tests within Bandit Manager b_mgr.run_tests() LOG.debug(b_mgr.b_ma) LOG.debug(b_mgr.metrics) # trigger output of results by Bandit Manager sev_level = constants.RANKING[args.severity - 1] conf_level = constants.RANKING[args.confidence - 1] b_mgr.output_results(args.context_lines, sev_level, conf_level, args.output_file, args.output_format, args.msg_template) if args.exit_zero: sys.exit(0) if ("exit_zero_severity" in args and not b_mgr.above_threshold_results(args.exit_zero_severity)): sys.exit(0) if b_mgr.results_count(sev_filter=sev_level, conf_filter=conf_level) > 0: sys.exit(1) else: sys.exit(0)
37,155
def schedule_circuit(circuit: QuantumCircuit, schedule_config: ScheduleConfig, method: Optional[str] = None) -> Schedule: """ Basic scheduling pass from a circuit to a pulse Schedule, using the backend. If no method is specified, then a basic, as late as possible scheduling pass is performed, i.e. pulses are scheduled to occur as late as possible. Supported methods: * ``as_soon_as_possible``: Schedule pulses greedily, as early as possible on a qubit resource. (alias: ``asap``) * ``as_late_as_possible``: Schedule pulses late-- keep qubits in the ground state when possible. (alias: ``alap``) Args: circuit: The quantum circuit to translate. schedule_config: Backend specific parameters used for building the Schedule. method: The scheduling pass method to use. Returns: Schedule corresponding to the input circuit. Raises: QiskitError: If method isn't recognized. """ methods = { 'as_soon_as_possible': as_soon_as_possible, 'asap': as_soon_as_possible, 'as_late_as_possible': as_late_as_possible, 'alap': as_late_as_possible } if method is None: method = 'as_late_as_possible' try: return methods[method](circuit, schedule_config) except KeyError: raise QiskitError("Scheduling method {method} isn't recognized.".format(method=method))
def schedule_circuit(circuit: QuantumCircuit, schedule_config: ScheduleConfig, method: Optional[str] = None) -> Schedule: """ Basic scheduling pass from a circuit to a pulse Schedule, using the backend. If no method is specified, then a basic, as late as possible scheduling pass is performed, i.e. pulses are scheduled to occur as late as possible. Supported methods: * ``'as_soon_as_possible'``: Schedule pulses greedily, as early as possible on a qubit resource. (alias: ``asap``) * ``as_late_as_possible``: Schedule pulses late-- keep qubits in the ground state when possible. (alias: ``alap``) Args: circuit: The quantum circuit to translate. schedule_config: Backend specific parameters used for building the Schedule. method: The scheduling pass method to use. Returns: Schedule corresponding to the input circuit. Raises: QiskitError: If method isn't recognized. """ methods = { 'as_soon_as_possible': as_soon_as_possible, 'asap': as_soon_as_possible, 'as_late_as_possible': as_late_as_possible, 'alap': as_late_as_possible } if method is None: method = 'as_late_as_possible' try: return methods[method](circuit, schedule_config) except KeyError: raise QiskitError("Scheduling method {method} isn't recognized.".format(method=method))
42,058
def run(args: argparse.Namespace) -> None: kurobako_cmd = os.path.join(args.path_to_kurobako, "kurobako") subprocess.run(f"{kurobako_cmd} --version", shell=True) if not (os.path.exists(args.data_dir) and os.path.isdir(args.data_dir)): raise ValueError(f"Data directory {args.data_dir} cannot be found.") os.makedirs(args.out_dir, exist_ok=True) study_json_fn = os.path.join(args.out_dir, "studies.json") subprocess.check_call(f"echo >| {study_json_fn}", shell=True) solvers_filename = os.path.join(args.out_dir, "solvers.json") subprocess.check_call(f"echo >| {solvers_filename}", shell=True) problems_filename = os.path.join(args.out_dir, "problems.json") subprocess.check_call(f"echo >| {problems_filename}", shell=True) # Create ZDT problems cmd = f"{kurobako_cmd} problem-suite zdt | tee -a {problems_filename}" subprocess.run(cmd, shell=True) # Create NAS bench problem(C) (for Multi-Objective Settings). dataset = os.path.join(args.data_dir, "nasbench_full.bin") cmd = ( f'{kurobako_cmd} problem nasbench "{dataset}"' f"--encoding C --metrics accuracy params | tee -a {problems_filename}" ) subprocess.run(cmd, shell=True) # Create solvers. sampler_list = args.sampler_list.split() sampler_kwargs_list = args.sampler_kwargs_list.split() if len(sampler_list) != len(sampler_kwargs_list): raise ValueError( "The number of samplers does not match the given keyword arguments. \n" f"sampler_list: {sampler_list}, sampler_kwargs_list: {sampler_kwargs_list}." ) for sampler, sampler_kwargs in zip(sampler_list, sampler_kwargs_list): name = f"{args.name_prefix}_{sampler}" python_command = f"mo_runner.py {sampler} {sampler_kwargs}" cmd = ( f"{kurobako_cmd} solver --name {name} command python {python_command}" f"| tee -a {solvers_filename}" ) subprocess.run(cmd, shell=True) # Create study. cmd = ( f"{kurobako_cmd} studies --budget 1000 " f"--solvers $(cat {solvers_filename}) --problems $(cat {problems_filename}) " f"--repeats {args.n_runs} --seed {args.seed} " f"> {study_json_fn}" ) subprocess.run(cmd, shell=True) result_filename = os.path.join(args.out_dir, "results.json") cmd = ( f"cat {study_json_fn} | {kurobako_cmd} run --parallelism {args.n_jobs} " f"> {result_filename}" ) subprocess.run(cmd, shell=True) # Report report_filename = os.path.join(args.out_dir, "report.md") cmd = f"cat {result_filename} | {kurobako_cmd} report > {report_filename}" subprocess.run(cmd, shell=True) # Plot pareto-front. problem_names = ["NASBench", "ZDT1", "ZDT2", "ZDT3", "ZDT4", "ZDT5", "ZDT6"] for problem_name in problem_names: cmd = ( f"cat {result_filename} | grep {problem_name} | " f"{kurobako_cmd} plot pareto-front -o {args.out_dir}" ) subprocess.run(cmd, shell=True)
def run(args: argparse.Namespace) -> None: kurobako_cmd = os.path.join(args.path_to_kurobako, "kurobako") subprocess.run(f"{kurobako_cmd} --version", shell=True) if not (os.path.exists(args.data_dir) and os.path.isdir(args.data_dir)): raise ValueError(f"Data directory {args.data_dir} cannot be found.") os.makedirs(args.out_dir, exist_ok=True) study_json_fn = os.path.join(args.out_dir, "studies.json") subprocess.check_call(f"echo >| {study_json_fn}", shell=True) solvers_filename = os.path.join(args.out_dir, "solvers.json") subprocess.check_call(f"echo >| {solvers_filename}", shell=True) problems_filename = os.path.join(args.out_dir, "problems.json") subprocess.check_call(f"echo >| {problems_filename}", shell=True) # Create ZDT problems cmd = f"{kurobako_cmd} problem-suite zdt | tee -a {problems_filename}" subprocess.run(cmd, shell=True) # Create NAS bench problem(A) (for Multi-Objective Settings). dataset = os.path.join(args.data_dir, "nasbench_full.bin") cmd = ( f'{kurobako_cmd} problem nasbench "{dataset}"' f"--encoding C --metrics accuracy params | tee -a {problems_filename}" ) subprocess.run(cmd, shell=True) # Create solvers. sampler_list = args.sampler_list.split() sampler_kwargs_list = args.sampler_kwargs_list.split() if len(sampler_list) != len(sampler_kwargs_list): raise ValueError( "The number of samplers does not match the given keyword arguments. \n" f"sampler_list: {sampler_list}, sampler_kwargs_list: {sampler_kwargs_list}." ) for sampler, sampler_kwargs in zip(sampler_list, sampler_kwargs_list): name = f"{args.name_prefix}_{sampler}" python_command = f"mo_runner.py {sampler} {sampler_kwargs}" cmd = ( f"{kurobako_cmd} solver --name {name} command python {python_command}" f"| tee -a {solvers_filename}" ) subprocess.run(cmd, shell=True) # Create study. cmd = ( f"{kurobako_cmd} studies --budget 1000 " f"--solvers $(cat {solvers_filename}) --problems $(cat {problems_filename}) " f"--repeats {args.n_runs} --seed {args.seed} " f"> {study_json_fn}" ) subprocess.run(cmd, shell=True) result_filename = os.path.join(args.out_dir, "results.json") cmd = ( f"cat {study_json_fn} | {kurobako_cmd} run --parallelism {args.n_jobs} " f"> {result_filename}" ) subprocess.run(cmd, shell=True) # Report report_filename = os.path.join(args.out_dir, "report.md") cmd = f"cat {result_filename} | {kurobako_cmd} report > {report_filename}" subprocess.run(cmd, shell=True) # Plot pareto-front. problem_names = ["NASBench", "ZDT1", "ZDT2", "ZDT3", "ZDT4", "ZDT5", "ZDT6"] for problem_name in problem_names: cmd = ( f"cat {result_filename} | grep {problem_name} | " f"{kurobako_cmd} plot pareto-front -o {args.out_dir}" ) subprocess.run(cmd, shell=True)
38,990
def make_named_tuple_validator(type_: Type[NamedTupleT]) -> Callable[[Tuple[Any, ...]], NamedTupleT]: from .main import create_model # A named tuple can be created with `typing,NamedTuple` with types # but also with `collections.namedtuple` with just the fields # in which case we consider the type to be `Any` named_tuple_annotations: Dict[str, Type[Any]] = getattr(type_, '__annotations__', {k: Any for k in type_._fields}) field_definitions: Dict[str, Any] = { field_name: (field_type, ...) for field_name, field_type in named_tuple_annotations.items() } NamedTupleModel: Type['BaseModel'] = create_model('NamedTupleModel', **field_definitions) def named_tuple_validator(values: Tuple[Any, ...]) -> NamedTupleT: dict_values: Dict[str, Any] = dict(zip(named_tuple_annotations, values)) validated_dict_values: Dict[str, Any] = dict(NamedTupleModel(**dict_values)) return type_(**validated_dict_values) return named_tuple_validator
def make_named_tuple_validator(type_: Type[NamedTupleT]) -> Callable[[Tuple[Any, ...]], NamedTupleT]: from .main import create_model # A named tuple can be created with `typing.NamedTuple` with types # but also with `collections.namedtuple` with just the fields # in which case we consider the type to be `Any` named_tuple_annotations: Dict[str, Type[Any]] = getattr(type_, '__annotations__', {k: Any for k in type_._fields}) field_definitions: Dict[str, Any] = { field_name: (field_type, ...) for field_name, field_type in named_tuple_annotations.items() } NamedTupleModel: Type['BaseModel'] = create_model('NamedTupleModel', **field_definitions) def named_tuple_validator(values: Tuple[Any, ...]) -> NamedTupleT: dict_values: Dict[str, Any] = dict(zip(named_tuple_annotations, values)) validated_dict_values: Dict[str, Any] = dict(NamedTupleModel(**dict_values)) return type_(**validated_dict_values) return named_tuple_validator
31,025
def panorama_zone_lookup_command(): """ Gets the outgoing interface from the Palo Alto Firewall route table, and the list of interfaces comparing the two """ dest_ip = demisto.args().get("dest_ip") vr = demisto.args().get("virtual_router", None) route = panorama_route_lookup(dest_ip, vr) if not route: demisto.results(f"Could find a matching route to {dest_ip}.") return interface = route["interface"] interfaces = panorama_get_interfaces() r = {} if "ifnet" in interfaces["response"]["result"]: for entry in interfaces["response"]["result"]["ifnet"]["entry"]: if entry["name"] == interface: if "zone" in entry: r = {**entry, **route} if r: demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': r, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': f'The IP {dest_ip} is in zone {r["zone"]}', 'EntryContext': {"Panorama.ZoneLookup(val.Name == obj.Name)": r} # add key -> deleted: true }) return r else: demisto.results(f"Could not map {dest_ip} to zone.") return {}
def panorama_zone_lookup_command(): """ Gets the outgoing interface from the Palo Alto Firewall route table, and the list of interfaces comparing the two """ dest_ip = demisto.args().get("dest_ip") vr = demisto.args().get("virtual_router", None) route = panorama_route_lookup(dest_ip, vr) if not route: demisto.results(f"Could find a matching route to {dest_ip}.") return interface = route["interface"] interfaces = panorama_get_interfaces() r = {} if "ifnet" in interfaces["response"].get("result"): for entry in interfaces["response"]["result"]["ifnet"]["entry"]: if entry["name"] == interface: if "zone" in entry: r = {**entry, **route} if r: demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': r, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': f'The IP {dest_ip} is in zone {r["zone"]}', 'EntryContext': {"Panorama.ZoneLookup(val.Name == obj.Name)": r} # add key -> deleted: true }) return r else: demisto.results(f"Could not map {dest_ip} to zone.") return {}
10,895
def test_union_of_float_and_double_keeps_precision(): """https://github.com/fastavro/fastavro/issues/437""" schema = ["float", "double"] records = [ 1.0, 1e200, # Turns into float("+inf") if parsed as 32 bit float ] parsed_schema = fastavro.parse_schema(schema) assert records == roundtrip(parsed_schema, records)
def test_union_of_float_and_double_keeps_precision(): """https://github.com/fastavro/fastavro/issues/437""" schema = ["float", "string", "double"] records = [ 1.0, 1e200, # Turns into float("+inf") if parsed as 32 bit float ] parsed_schema = fastavro.parse_schema(schema) assert records == roundtrip(parsed_schema, records)
10,307
def has_list_changed(new_list, old_list, sort_lists=True): """ Check two lists have differences. Sort lists by default. """ if new_list is None: return False old_list = old_list or [] if len(new_list) != len(old_list): return True if sort_lists: zip_data = zip(sort(new_list), sort(old_list)) else: zip_data = zip(new_list, old_list) for new_item, old_item in zip_data: is_same_type = type(new_item) == type(old_item) if not is_same_type: return True if isinstance(new_item, dict): if has_dict_changed(new_item, old_item): return True elif new_item != old_item: return True return False
def has_list_changed(new_list, old_list, sort_lists=True): """ Check two lists have differences. Sort lists by default. """ if new_list is None: return False old_list = old_list or [] if len(new_list) != len(old_list): return True if sort_lists: zip_data = zip(sorted(new_list), sorted(old_list)) else: zip_data = zip(new_list, old_list) for new_item, old_item in zip_data: is_same_type = type(new_item) == type(old_item) if not is_same_type: return True if isinstance(new_item, dict): if has_dict_changed(new_item, old_item): return True elif new_item != old_item: return True return False
32,078
def parse_host(host): """ Parse the host and return if domain or ip (using CommonServerPython is_ip_valid). Args: host(str)- host to parse. Returns: ip/domain(str). """ return 'ip' if is_ip_valid(host) else 'domain'
def determine_host_ioc_type(host): """ Parse the host and return if domain or ip (using CommonServerPython is_ip_valid). Args: host(str)- host to parse. Returns: ip/domain(str). """ return 'ip' if is_ip_valid(host) else 'domain'
888
def Rician(name, alpha, beta): r"""Creates a continuous random variable with a Rician distribution. Parameters ========== alpha : Real number, :math:`0 < alpha` beta : Real number, :math:`0 < beta` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Rician, density, cdf >>> from sympy import symbols >>> alpha, beta, x = symbols('alpha, beta, x', positive=True) >>> R = Rician('R', alpha, beta) >>> density(R)(x) x*exp((-alpha**2 - x**2)/(2*beta**2))*besseli(0, alpha*x/beta**2) >>> cdf(R)(x) marcumq(1, alpha/beta, x/beta) Reference ========= .. [1] https://en.wikipedia.org/wiki/Rice_distribution .. [1] https://reference.wolfram.com/language/ref/RiceDistribution.html """ return rv(name, RicianDistribution, (alpha, beta))
def Rician(name, alpha, beta): r"""Creates a continuous random variable with a Rician distribution. Parameters ========== alpha : Real number, :math:`0 < alpha` beta : Real number, :math:`0 < beta` Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Rician, density, cdf >>> from sympy import symbols >>> alpha, beta, x = symbols('alpha, beta, x', positive=True) >>> R = Rician('R', alpha, beta) >>> density(R)(x) x*exp((-alpha**2 - x**2)/(2*beta**2))*besseli(0, alpha*x/beta**2) >>> cdf(R)(x) marcumq(1, alpha/beta, x/beta) References ========= .. [1] https://en.wikipedia.org/wiki/Rice_distribution .. [1] https://reference.wolfram.com/language/ref/RiceDistribution.html """ return rv(name, RicianDistribution, (alpha, beta))
31,267
def splunk_results_command(service): res = [] sid = demisto.args().get('sid', '') count = int(demisto.args().get('count')) try: job = service.job(sid) except HTTPError as error: if error.message == 'HTTP 404 Not Found -- Unknown sid.': demisto.results("Found no job for sid: {}".format(sid)) else: return_error(error.message, error) else: for result in results.ResultsReader(job.results(count=count)): if isinstance(result, results.Message): demisto.results({"Type": 1, "ContentsFormat": "json", "Contents": json.dumps(result.message)}) elif isinstance(result, dict): # Normal events are returned as dicts res.append(result) demisto.results({"Type": 1, "ContentsFormat": "json", "Contents": json.dumps(res)})
def splunk_results_command(service): res = [] sid = demisto.args().get('sid', '') count = int(demisto.args().get('count', 100)) try: job = service.job(sid) except HTTPError as error: if error.message == 'HTTP 404 Not Found -- Unknown sid.': demisto.results("Found no job for sid: {}".format(sid)) else: return_error(error.message, error) else: for result in results.ResultsReader(job.results(count=count)): if isinstance(result, results.Message): demisto.results({"Type": 1, "ContentsFormat": "json", "Contents": json.dumps(result.message)}) elif isinstance(result, dict): # Normal events are returned as dicts res.append(result) demisto.results({"Type": 1, "ContentsFormat": "json", "Contents": json.dumps(res)})
49,626
def from_dict(data, npartitions=None, orient='columns', dtype=None, columns=None): """ Construct a Dask DataFrame from a Python Dictionary Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. npartitions : int, optional The number of partitions of the index to create. Note that depending on the size and index of the dataframe, the output may have fewer partitions than requested. orient : {'columns', 'index', 'tight'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. If 'tight', assume a dict with keys ['index', 'columns', 'data', 'index_names', 'column_names']. dtype: bool Data type to force, otherwise infer. columns: string, optional Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'`` or ``orient='tight'``. Examples -------- >>> import dask.dataframe as dd >>> ddf = dd.from_dict({"num1": [1, 2, 3, 4], "num2": [7, 8, 9, 10]}, npartitions=2) """ pdf = pd.DataFrame.from_dict(data, orient, dtype, columns) ddf = from_pandas(pdf, npartitions) return ddf
def from_dict(data, npartitions=None, orient='columns', dtype=None, columns=None): """ Construct a Dask DataFrame from a Python Dictionary Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. npartitions : int, optional The number of partitions of the index to create. Note that depending on the size and index of the dataframe, the output may have fewer partitions than requested. orient : {'columns', 'index', 'tight'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. If 'tight', assume a dict with keys ['index', 'columns', 'data', 'index_names', 'column_names']. dtype: bool Data type to force, otherwise infer. columns: string, optional Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'`` or ``orient='tight'``. Examples -------- >>> import dask.dataframe as dd >>> ddf = dd.from_dict({"num1": [1, 2, 3, 4], "num2": [7, 8, 9, 10]}, npartitions=2) """ pdf = pd.DataFrame.from_dict(data, orient, dtype, columns) ddf = from_pandas(pdf, npartitions) return ddf
10,429
def main(): argument_spec = dict( state=dict(default='present', choices=['present', 'absent', 'enabled', 'disabled']), name=dict(default='default'), enable_logging=dict(default=True, type='bool'), s3_bucket_name=dict(), s3_key_prefix=dict(), sns_topic_name=dict(), is_multi_region_trail=dict(default=False, type='bool'), enable_log_file_validation=dict(type='bool', aliases=['log_file_validation_enabled']), include_global_events=dict(default=True, type='bool', aliases=['include_global_service_events']), cloudwatch_logs_role_arn=dict(), cloudwatch_logs_log_group_arn=dict(), kms_key_id=dict(), tags=dict(default={}, type='dict'), ) required_if = [('state', 'present', ['s3_bucket_name']), ('state', 'enabled', ['s3_bucket_name'])] required_together = [('cloudwatch_logs_role_arn', 'cloudwatch_logs_log_group_arn')] module = AnsibleAWSModule(argument_spec=argument_spec, supports_check_mode=True, required_together=required_together, required_if=required_if) # collect parameters if module.params['state'] in ('present', 'enabled'): state = 'present' elif module.params['state'] in ('absent', 'disabled'): state = 'absent' tags = module.params['tags'] enable_logging = module.params['enable_logging'] ct_params = dict( Name=module.params['name'], S3BucketName=module.params['s3_bucket_name'], IncludeGlobalServiceEvents=module.params['include_global_events'], IsMultiRegionTrail=module.params['is_multi_region_trail'], ) if module.params['s3_key_prefix']: ct_params['S3KeyPrefix'] = module.params['s3_key_prefix'].rstrip('/') if module.params['sns_topic_name']: ct_params['SnsTopicName'] = module.params['sns_topic_name'] if module.params['cloudwatch_logs_role_arn']: ct_params['CloudWatchLogsRoleArn'] = module.params['cloudwatch_logs_role_arn'] if module.params['cloudwatch_logs_log_group_arn']: ct_params['CloudWatchLogsLogGroupArn'] = module.params['cloudwatch_logs_log_group_arn'] if module.params['enable_log_file_validation'] is not None: ct_params['EnableLogFileValidation'] = module.params['enable_log_file_validation'] if module.params['kms_key_id']: ct_params['KmsKeyId'] = module.params['kms_key_id'] client = module.client('cloudtrail') region = get_aws_connection_info(module, boto3=True)[0] results = dict( changed=False, exists=False ) # Get existing trail facts trail = get_trail_facts(module, client, ct_params['Name']) # If the trail exists set the result exists variable if trail is not None: results['exists'] = True if state == 'absent' and results['exists']: # If Trail exists go ahead and delete results['changed'] = True results['exists'] = False results['trail'] = dict() if not module.check_mode: delete_trail(module, client, trail['TrailARN']) elif state == 'present' and results['exists']: # If Trail exists see if we need to update it do_update = False for key in ct_params: tkey = str(key) # boto3 has inconsistent parameter naming so we handle it here if key == 'EnableLogFileValidation': tkey = 'LogFileValidationEnabled' # We need to make an empty string equal None if ct_params.get(key) == '': val = None else: val = ct_params.get(key) if val != trail.get(tkey): do_update = True results['changed'] = True # If we are in check mode copy the changed values to the trail facts in result output to show what would change. if module.check_mode: trail.update({tkey: ct_params.get(key)}) if not module.check_mode and do_update: update_trail(module, client, ct_params) trail = get_trail_facts(module, client, ct_params['Name']) # Check if we need to start/stop logging if enable_logging and not trail['IsLogging']: results['changed'] = True trail['IsLogging'] = True if not module.check_mode: set_logging(module, client, name=ct_params['Name'], action='start') if not enable_logging and trail['IsLogging']: results['changed'] = True trail['IsLogging'] = False if not module.check_mode: set_logging(module, client, name=ct_params['Name'], action='stop') # Check if we need to update tags on resource tag_dry_run = False if module.check_mode: tag_dry_run = True tags_changed = tag_trail(module, client, tags=tags, trail_arn=trail['TrailARN'], curr_tags=trail['tags'], dry_run=tag_dry_run) if tags_changed: results['changed'] = True trail['tags'] = tags # Populate trail facts in output results['trail'] = camel_dict_to_snake_dict(trail) elif state == 'present' and not results['exists']: # Trail doesn't exist just go create it results['changed'] = True if not module.check_mode: # If we aren't in check_mode then actually create it created_trail = create_trail(module, client, ct_params) # Apply tags tag_trail(module, client, tags=tags, trail_arn=created_trail['TrailARN']) # Get the trail status try: status_resp = client.get_trail_status(Name=created_trail['Name']) except (BotoCoreError, ClientError) as err: module.fail_json_aws(err, msg="Failed to fetch Trail statuc") # Set the logging state for the trail to desired value if enable_logging and not status_resp['IsLogging']: set_logging(module, client, name=ct_params['Name'], action='start') if not enable_logging and status_resp['IsLogging']: set_logging(module, client, name=ct_params['Name'], action='stop') # Get facts for newly created Trail trail = get_trail_facts(module, client, ct_params['Name']) # If we are in check mode create a fake return structure for the newly minted trail if module.check_mode: acct_id = '123456789012' try: sts_client = module.client('sts') acct_id = sts_client.get_caller_identity()['Account'] except (BotoCoreError, ClientError): pass trail = dict() trail.update(ct_params) if 'EnableLogFileValidation' not in ct_params: ct_params['EnableLogFileValidation'] = False trail['EnableLogFileValidation'] = ct_params['EnableLogFileValidation'] trail.pop('EnableLogFileValidation') fake_arn = 'arn:aws:cloudtrail:' + region + ':' + acct_id + ':trail/' + ct_params['Name'] trail['HasCustomEventSelectors'] = False trail['HomeRegion'] = region trail['TrailARN'] = fake_arn trail['IsLogging'] = enable_logging trail['tags'] = tags # Populate trail facts in output results['trail'] = camel_dict_to_snake_dict(trail) module.exit_json(**results)
def main(): argument_spec = dict( state=dict(default='present', choices=['present', 'absent', 'enabled', 'disabled']), name=dict(default='default'), enable_logging=dict(default=True, type='bool'), s3_bucket_name=dict(), s3_key_prefix=dict(), sns_topic_name=dict(), is_multi_region_trail=dict(default=False, type='bool'), enable_log_file_validation=dict(type='bool', aliases=['log_file_validation_enabled']), include_global_events=dict(default=True, type='bool', aliases=['include_global_service_events']), cloudwatch_logs_role_arn=dict(), cloudwatch_logs_log_group_arn=dict(), kms_key_id=dict(), tags=dict(default={}, type='dict'), ) required_if = [('state', 'present', ['s3_bucket_name']), ('state', 'enabled', ['s3_bucket_name'])] required_together = [('cloudwatch_logs_role_arn', 'cloudwatch_logs_log_group_arn')] module = AnsibleAWSModule(argument_spec=argument_spec, supports_check_mode=True, required_together=required_together, required_if=required_if) # collect parameters if module.params['state'] in ('present', 'enabled'): state = 'present' elif module.params['state'] in ('absent', 'disabled'): state = 'absent' tags = module.params['tags'] enable_logging = module.params['enable_logging'] ct_params = dict( Name=module.params['name'], S3BucketName=module.params['s3_bucket_name'], IncludeGlobalServiceEvents=module.params['include_global_events'], IsMultiRegionTrail=module.params['is_multi_region_trail'], ) if module.params['s3_key_prefix']: ct_params['S3KeyPrefix'] = module.params['s3_key_prefix'].rstrip('/') if module.params['sns_topic_name']: ct_params['SnsTopicName'] = module.params['sns_topic_name'] if module.params['cloudwatch_logs_role_arn']: ct_params['CloudWatchLogsRoleArn'] = module.params['cloudwatch_logs_role_arn'] if module.params['cloudwatch_logs_log_group_arn']: ct_params['CloudWatchLogsLogGroupArn'] = module.params['cloudwatch_logs_log_group_arn'] if module.params['enable_log_file_validation'] is not None: ct_params['EnableLogFileValidation'] = module.params['enable_log_file_validation'] if module.params['kms_key_id']: ct_params['KmsKeyId'] = module.params['kms_key_id'] client = module.client('cloudtrail') region = module.params.get('region') results = dict( changed=False, exists=False ) # Get existing trail facts trail = get_trail_facts(module, client, ct_params['Name']) # If the trail exists set the result exists variable if trail is not None: results['exists'] = True if state == 'absent' and results['exists']: # If Trail exists go ahead and delete results['changed'] = True results['exists'] = False results['trail'] = dict() if not module.check_mode: delete_trail(module, client, trail['TrailARN']) elif state == 'present' and results['exists']: # If Trail exists see if we need to update it do_update = False for key in ct_params: tkey = str(key) # boto3 has inconsistent parameter naming so we handle it here if key == 'EnableLogFileValidation': tkey = 'LogFileValidationEnabled' # We need to make an empty string equal None if ct_params.get(key) == '': val = None else: val = ct_params.get(key) if val != trail.get(tkey): do_update = True results['changed'] = True # If we are in check mode copy the changed values to the trail facts in result output to show what would change. if module.check_mode: trail.update({tkey: ct_params.get(key)}) if not module.check_mode and do_update: update_trail(module, client, ct_params) trail = get_trail_facts(module, client, ct_params['Name']) # Check if we need to start/stop logging if enable_logging and not trail['IsLogging']: results['changed'] = True trail['IsLogging'] = True if not module.check_mode: set_logging(module, client, name=ct_params['Name'], action='start') if not enable_logging and trail['IsLogging']: results['changed'] = True trail['IsLogging'] = False if not module.check_mode: set_logging(module, client, name=ct_params['Name'], action='stop') # Check if we need to update tags on resource tag_dry_run = False if module.check_mode: tag_dry_run = True tags_changed = tag_trail(module, client, tags=tags, trail_arn=trail['TrailARN'], curr_tags=trail['tags'], dry_run=tag_dry_run) if tags_changed: results['changed'] = True trail['tags'] = tags # Populate trail facts in output results['trail'] = camel_dict_to_snake_dict(trail) elif state == 'present' and not results['exists']: # Trail doesn't exist just go create it results['changed'] = True if not module.check_mode: # If we aren't in check_mode then actually create it created_trail = create_trail(module, client, ct_params) # Apply tags tag_trail(module, client, tags=tags, trail_arn=created_trail['TrailARN']) # Get the trail status try: status_resp = client.get_trail_status(Name=created_trail['Name']) except (BotoCoreError, ClientError) as err: module.fail_json_aws(err, msg="Failed to fetch Trail statuc") # Set the logging state for the trail to desired value if enable_logging and not status_resp['IsLogging']: set_logging(module, client, name=ct_params['Name'], action='start') if not enable_logging and status_resp['IsLogging']: set_logging(module, client, name=ct_params['Name'], action='stop') # Get facts for newly created Trail trail = get_trail_facts(module, client, ct_params['Name']) # If we are in check mode create a fake return structure for the newly minted trail if module.check_mode: acct_id = '123456789012' try: sts_client = module.client('sts') acct_id = sts_client.get_caller_identity()['Account'] except (BotoCoreError, ClientError): pass trail = dict() trail.update(ct_params) if 'EnableLogFileValidation' not in ct_params: ct_params['EnableLogFileValidation'] = False trail['EnableLogFileValidation'] = ct_params['EnableLogFileValidation'] trail.pop('EnableLogFileValidation') fake_arn = 'arn:aws:cloudtrail:' + region + ':' + acct_id + ':trail/' + ct_params['Name'] trail['HasCustomEventSelectors'] = False trail['HomeRegion'] = region trail['TrailARN'] = fake_arn trail['IsLogging'] = enable_logging trail['tags'] = tags # Populate trail facts in output results['trail'] = camel_dict_to_snake_dict(trail) module.exit_json(**results)
7,183
def circle_perimeter_aa(r, c, radius, shape=None): """Generate anti-aliased circle perimeter coordinates. Parameters ---------- r, c : int Centre coordinate of circle. radius: int Radius of circle. shape : tuple, optional Image shape which is used to determine the maximum extent of output pixel coordinates. This is useful for circles that exceed the image size. If None, the full extent of the circle is used. Must be at least length 2. Only the first two values are used to determine the extent of the input image. Returns ------- rr, cc, val : (N,) ndarray (int, int, float) Indices of pixels (`rr`, `cc`) and intensity values (`val`). ``img[rr, cc] = val``. Notes ----- Wu's method draws anti-aliased circle. This implementation doesn't use lookup table optimization. To apply circle_perimeter_aa to color images use function draw.set_color. References ---------- .. [1] X. Wu, "An efficient antialiasing technique", In ACM SIGGRAPH Computer Graphics, 25 (1991) 143-152. Examples -------- >>> from skimage.draw import circle_perimeter_aa >>> img = np.zeros((10, 10), dtype=np.uint8) >>> rr, cc, val = circle_perimeter_aa(4, 4, 3) >>> img[rr, cc] = val * 255 >>> img array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0], [ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0], [ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0], [ 0, 255, 0, 0, 0, 0, 0, 255, 0, 0], [ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0], [ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0], [ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> from skimage import data, draw >>> image = data.chelsea() >>> rr, cc, val = draw.circle_perimeter_aa(r=100, c=100, radius=75) >>> draw.set_color(image, (rr, cc), [1, 0, 0], alpha=val) """ return _circle_perimeter_aa(r, c, radius, shape)
def circle_perimeter_aa(r, c, radius, shape=None): """Generate anti-aliased circle perimeter coordinates. Parameters ---------- r, c : int Centre coordinate of circle. radius: int Radius of circle. shape : tuple, optional Image shape which is used to determine the maximum extent of output pixel coordinates. This is useful for circles that exceed the image size. If None, the full extent of the circle is used. Must be at least length 2. Only the first two values are used to determine the extent of the input image. Returns ------- rr, cc, val : (N,) ndarray (int, int, float) Indices of pixels (`rr`, `cc`) and intensity values (`val`). ``img[rr, cc] = val``. Notes ----- Wu's method draws anti-aliased circle. This implementation doesn't use lookup table optimization. To apply ``circle_perimeter_aa`` to color images use function ``draw.set_color``. References ---------- .. [1] X. Wu, "An efficient antialiasing technique", In ACM SIGGRAPH Computer Graphics, 25 (1991) 143-152. Examples -------- >>> from skimage.draw import circle_perimeter_aa >>> img = np.zeros((10, 10), dtype=np.uint8) >>> rr, cc, val = circle_perimeter_aa(4, 4, 3) >>> img[rr, cc] = val * 255 >>> img array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0], [ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0], [ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0], [ 0, 255, 0, 0, 0, 0, 0, 255, 0, 0], [ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0], [ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0], [ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> from skimage import data, draw >>> image = data.chelsea() >>> rr, cc, val = draw.circle_perimeter_aa(r=100, c=100, radius=75) >>> draw.set_color(image, (rr, cc), [1, 0, 0], alpha=val) """ return _circle_perimeter_aa(r, c, radius, shape)
58,111
def main(): # get command and args command = demisto.command() args = getArgs() # initialize common args api_key = demisto.params().get('api_key') account_uuid = demisto.params().get('account_uuid') global HEADERS HEADERS = { 'Authorization': 'IBToken ' + api_key, 'User-Agent': 'Cortex_Insight.v3', 'Content-Type': 'application/json', } # attempt command execution try: if command == 'test-module': response = sendRequest('GET', 'Sensors', 'sensors') demisto.results('ok') if command == 'fetch-incidents': # default first fetch to -7days first_fetch_time = datetime.now() - timedelta(days=7) max_results = arg_to_number( arg=demisto.params().get('max_fetch'), arg_name='max_fetch', required=False ) next_run, incidents = fetchIncidents( account_uuid=account_uuid, max_results=max_results, last_run=demisto.getLastRun(), first_fetch_time=first_fetch_time ) demisto.setLastRun(next_run) demisto.incidents(incidents) elif command == 'insight-get-events': if args['response_type'] == "metadata": response_type = "metadata" elif args['response_type'] == "aggregations": pattern = r"^.*[Gg][Rr][Oo][Uu][Pp]\s+[Bb][Yy].*$" if not re.search(pattern, args['query']): demisto.results("Error: No 'group by' statement in query. Aggregation requires a 'group by' statement.") else: response_type = "aggregations" else: response_type = "events" args.pop('response_type') response = sendRequest('POST', 'Events', None, args) response = formatEvents(response, response_type) if response_type in ("metadata", "aggregations"): responseToEntry(response, 'Events', 'Data') else: responseToEntry(response, 'Events', 'Events') elif command == 'insight-get-history': response = sendRequest('GET', 'Events', 'history') responseToEntry(response, 'UserQueryHistory', 'History') elif command == 'insight-get-saved-searches': response = sendRequest('GET', 'Events', 'saved') responseToEntry(response, 'SavedSearches', 'Saved Queries') elif command == 'insight-get-sensors': response = sendRequest('GET', 'Sensors', 'sensors') responseToEntry(response, 'Sensors', 'Sensors') elif command == 'insight-get-devices': response = sendRequest('GET', 'Sensors', 'devices') responseToEntry(response, 'Devices', 'Device List') elif command == 'insight-get-tasks': if 'task_uuid' in args: endpoint = 'pcaptasks/' + args['task_uuid'] response = sendRequest('GET', 'Sensors', endpoint) responseToEntry(response, 'Tasks', 'PCAP Task') else: response = sendRequest('GET', 'Sensors', 'pcaptasks') responseToEntry(response, 'Tasks', 'PCAPTasks') elif command == 'insight-create-task': sensor_ids = [args['sensor_ids']] args.pop('sensor_ids') args['sensor_ids'] = sensor_ids response = sendRequest('POST', 'Sensors', 'pcaptasks', args) demisto.results("Task created successfully") elif command == 'insight-get-detections': response = sendRequest('GET', 'Detections', 'detections', None, encodeArgsToURL(args)) if response['total_count'] > MAX_DETECTIONS: if 'limit' not in args or int(args['limit']) > MAX_DETECTIONS: # pull the remaining detections incrementally response = getDetectionsInc(response, args) # filter out training detections detections = [] for detection in response['detections']: if detection['account_uuid'] != TRAINING_ACC: detections.append(detection) response['detections'] = detections if 'include' in args: if args['include'] == 'rules': response = addDetectionRules(response) responseToEntry(response, 'Detections', 'Detections') elif command == 'insight-get-detection-rules': response = sendRequest('GET', 'Detections', 'rules', None, encodeArgsToURL(args)) responseToEntry(response, 'Rules', 'Rules') elif command == 'insight-get-detection-rule-events': rule_uuid = args['rule_uuid'] endpoint = "rules/" + rule_uuid + "/events" args.pop('rule_uuid') response = sendRequest('GET', 'Detections', endpoint, None, encodeArgsToURL(args)) responseToEntry(response, 'Detections', 'Events') elif command == 'insight-resolve-detection': endpoint = "detections/" + args['detection_uuid'] + "/resolve" body = {"resolution": args['resolution'], "resolution_comment": args['resolution_comment']} sendRequest('PUT', 'Detections', endpoint, body, None) demisto.results("Detection resolved successfully") elif command == 'insight-create-detection-rule': run_accts = [args['run_account_uuids']] dev_ip_fields = [args['device_ip_fields']] args.pop('run_account_uuids') args.pop('device_ip_fields') args['run_account_uuids'] = run_accts args['device_ip_fields'] = dev_ip_fields sendRequest('POST', 'Detections', 'rules', args, None) demisto.results("Rule created successfully") elif command == 'insight-get-entity-summary': endpoint = args['entity'] + "/summary" response = sendRequest('GET', 'Entity', endpoint, None, None) responseToEntry(response, 'Entity.Summary', 'Summary') elif command == 'insight-get-entity-pdns': endpoint = args['entity'] + "/pdns" response = sendRequest('GET', 'Entity', endpoint, None, None) responseToEntry(response, 'Entity.PDNS', 'PassiveDNS') elif command == 'insight-get-entity-dhcp': endpoint = args['entity'] + "/dhcp" response = sendRequest('GET', 'Entity', endpoint, None, None) responseToEntry(response, 'Entity.DHCP', 'DHCP') elif command == 'insight-get-entity-file': endpoint = args['hash'] + "/file" response = sendRequest('GET', 'Entity', endpoint, None, None) responseToEntry(response, 'Entity.File', 'File') elif command == 'insight-get-telemetry-events': response = sendRequest('GET', 'Sensors', 'telemetry/events', None, encodeArgsToURL(args)) responseToEntry(response, 'Telemetry.Events', 'Data') elif command == 'insight-get-telemetry-network': response = sendRequest('GET', 'Sensors', 'telemetry/network', None, encodeArgsToURL(args)) responseToEntry(response, 'Telemetry.Network', 'Data') elif command == 'insight-get-telemetry-packetstats': response = sendRequest('GET', 'Sensors', 'telemetry/packetstats', None, encodeArgsToURL(args)) responseToEntry(response, 'Telemetry.Packetstats', 'Data') # catch exceptions except Exception as e: return_error(str(e))
def main(): # get command and args command = demisto.command() args = getArgs() # initialize common args api_key = demisto.params().get('api_key') account_uuid = demisto.params().get('account_uuid') global HEADERS HEADERS = { 'Authorization': 'IBToken ' + api_key, 'User-Agent': 'Cortex_Insight.v3', 'Content-Type': 'application/json', } # attempt command execution try: if command == 'test-module': response = sendRequest('GET', 'Sensors', 'sensors') demisto.results('ok') if command == 'fetch-incidents': # default first fetch to -7days first_fetch_time = datetime.now() - timedelta(days=7) max_results = arg_to_number( arg=demisto.params().get('max_fetch'), arg_name='max_fetch', required=False ) next_run, incidents = fetchIncidents( account_uuid=account_uuid, max_results=max_results, last_run=demisto.getLastRun(), first_fetch_time=first_fetch_time ) demisto.setLastRun(next_run) demisto.incidents(incidents) elif command == 'insight-get-events': if args['response_type'] == "metadata": response_type = "metadata" elif args['response_type'] == "aggregations": pattern = r"^.*[Gg][Rr][Oo][Uu][Pp]\s+[Bb][Yy].*$" if not re.search(pattern, args['query']): demisto.results("Error: No 'group by' statement in query. Aggregation requires a 'group by' statement.") else: response_type = "aggregations" else: response_type = "events" args.pop('response_type') response = sendRequest('POST', 'Events', None, args) response = formatEvents(response, response_type) if response_type in ("metadata", "aggregations"): responseToEntry(response, 'Events', 'Data') else: responseToEntry(response, 'Events', 'Events') elif command == 'insight-get-history': response = sendRequest('GET', 'Events', 'history') responseToEntry(response, 'UserQueryHistory', 'History') elif command == 'insight-get-saved-searches': response = sendRequest('GET', 'Events', 'saved') responseToEntry(response, 'SavedSearches', 'Saved Queries') elif command == 'insight-get-sensors': response = sendRequest('GET', 'Sensors', 'sensors') responseToEntry(response, 'Sensors', 'Sensors') elif command == 'insight-get-devices': response = sendRequest('GET', 'Sensors', 'devices') responseToEntry(response, 'Devices', 'Device List') elif command == 'insight-get-tasks': if 'task_uuid' in args: endpoint = 'pcaptasks/' + args['task_uuid'] response = sendRequest('GET', 'Sensors', endpoint) responseToEntry(response, 'Tasks', 'PCAP Task') else: response = sendRequest('GET', 'Sensors', 'pcaptasks') responseToEntry(response, 'Tasks', 'PCAPTasks') elif command == 'insight-create-task': sensor_ids = [args['sensor_ids']] args.pop('sensor_ids') args['sensor_ids'] = sensor_ids response = sendRequest('POST', 'Sensors', 'pcaptasks', args) demisto.results("Task created successfully") elif command == 'insight-get-detections': response = sendRequest('GET', 'Detections', 'detections', None, encodeArgsToURL(args)) if response['total_count'] > MAX_DETECTIONS: if 'limit' not in args or int(args['limit']) > MAX_DETECTIONS: # pull the remaining detections incrementally response = getDetectionsInc(response, args) # filter out training detections detections = [] for detection in response['detections']: if detection['account_uuid'] != TRAINING_ACC: detections.append(detection) response['detections'] = detections if 'include' in args: if args['include'] == 'rules': response = addDetectionRules(response) responseToEntry(response, 'Detections', 'Detections') elif command == 'insight-get-detection-rules': response = sendRequest('GET', 'Detections', 'rules', None, encodeArgsToURL(args)) responseToEntry(response, 'Rules', 'Rules') elif command == 'insight-get-detection-rule-events': rule_uuid = args['rule_uuid'] endpoint = "rules/" + rule_uuid + "/events" args.pop('rule_uuid') response = sendRequest('GET', 'Detections', endpoint, None, encodeArgsToURL(args)) responseToEntry(response, 'Detections', 'Events') elif command == 'insight-resolve-detection': endpoint = "detections/" + args['detection_uuid'] + "/resolve" body = {"resolution": args['resolution'], "resolution_comment": args['resolution_comment']} sendRequest('PUT', 'Detections', endpoint, body, None) demisto.results("Detection resolved successfully") elif command == 'insight-create-detection-rule': run_accts = [args['run_account_uuids']] dev_ip_fields = [args['device_ip_fields']] args.pop('run_account_uuids') args.pop('device_ip_fields') args['run_account_uuids'] = run_accts args['device_ip_fields'] = dev_ip_fields sendRequest('POST', 'Detections', 'rules', args, None) demisto.results("Rule created successfully") elif command == 'insight-get-entity-summary': endpoint = args['entity'] + "/summary" response = sendRequest('GET', 'Entity', endpoint, None, None) responseToEntry(response, 'Entity.Summary', 'Summary') elif command == 'insight-get-entity-pdns': endpoint = args['entity'] + "/pdns" response = sendRequest('GET', 'Entity', endpoint, None, None) responseToEntry(response, 'Entity.PDNS', 'PassiveDNS') elif command == 'insight-get-entity-dhcp': endpoint = args['entity'] + "/dhcp" response = sendRequest('GET', 'Entity', endpoint, None, None) responseToEntry(response, 'Entity.DHCP', 'DHCP') elif command == 'insight-get-entity-file': endpoint = args['hash'] + "/file" response = sendRequest('GET', 'Entity', endpoint, None, None) responseToEntry(response, 'Entity.File', 'File') elif command == 'insight-get-telemetry-events': response = sendRequest('GET', 'Sensors', 'telemetry/events', None, encodeArgsToURL(args)) responseToEntry(response, 'Telemetry.Events', 'Data') elif command == 'insight-get-telemetry-network': response = sendRequest('GET', 'Sensors', 'telemetry/network', None, encodeArgsToURL(args)) responseToEntry(response, 'Telemetry.Network', 'Data') elif command == 'insight-get-telemetry-packetstats': response = sendRequest('GET', 'Sensors', 'telemetry/packetstats', None, encodeArgsToURL(args)) responseToEntry(response, 'Telemetry.Packetstats', 'Data') # catch exceptions except Exception as e: demisto.error(traceback.format_exc()) return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}', e)
32,346
def main(): try: if demisto.command() == "fetch-indicators": fetch_indicators() elif demisto.command() == "reset-data-stream": days = demisto.getArg("reset") days = int(days) new_date = reset_data_stream(int(days)) demisto.results(new_date) elif demisto.command() == "test-module": connect() return_results("ok") except Exception as e: demisto.error(traceback.format_exc()) return_error(f"Failed to execute {demisto.command()} command.\nError:\n{str(e)}")
def main(): try: if demisto.command() == "fetch-indicators": fetch_indicators() elif demisto.command() == "reset-data-stream": days = demisto.getArg("reset") days = int(days) new_date = reset_data_stream(days) demisto.results(new_date) elif demisto.command() == "test-module": connect() return_results("ok") except Exception as e: demisto.error(traceback.format_exc()) return_error(f"Failed to execute {demisto.command()} command.\nError:\n{str(e)}")
6,629
def start_import(invoices): errors = 0 names = [] for idx, d in enumerate(invoices): try: invoice_number = '' set_child_names = False if d.invoice_number: invoice_number = d.invoice_number set_child_names = True publish(idx, len(invoices), d.doctype) doc = frappe.get_doc(d) doc.flags.ignore_mandatory = True doc.insert(set_name=invoice_number, set_child_names=set_child_names) doc.submit() frappe.db.commit() names.append(doc.name) except Exception: errors += 1 frappe.db.rollback() message = "\n".join(["Data:", dumps(d, default=str, indent=4), "--" * 50, "\nException:", traceback.format_exc()]) frappe.log_error(title="Error while creating Opening Invoice", message=message) frappe.db.commit() if errors: frappe.msgprint(_("You had {} errors while creating opening invoices. Check {} for more details") .format(errors, "<a href='/app/List/Error Log' class='variant-click'>Error Log</a>"), indicator="red", title=_("Error Occured")) return names
def start_import(invoices): errors = 0 names = [] for idx, d in enumerate(invoices): try: invoice_number = '' set_child_names = False if d.invoice_number: invoice_number = d.invoice_number set_child_names = True publish(idx, len(invoices), d.doctype) doc = frappe.get_doc(d) doc.flags.ignore_mandatory = True doc.insert(set_name=invoice_number) doc.submit() frappe.db.commit() names.append(doc.name) except Exception: errors += 1 frappe.db.rollback() message = "\n".join(["Data:", dumps(d, default=str, indent=4), "--" * 50, "\nException:", traceback.format_exc()]) frappe.log_error(title="Error while creating Opening Invoice", message=message) frappe.db.commit() if errors: frappe.msgprint(_("You had {} errors while creating opening invoices. Check {} for more details") .format(errors, "<a href='/app/List/Error Log' class='variant-click'>Error Log</a>"), indicator="red", title=_("Error Occured")) return names
12,300
def mcsolve(H, psi0, tlist, c_ops=None, e_ops=None, ntraj=1, *, args=None, options=None, seeds=None, target_tol=None, timeout=0): r""" Monte Carlo evolution of a state vector :math:`|\psi \rangle` for a given Hamiltonian and sets of collapse operators. Options for the underlying ODE solver are given by the Options class. Parameters ---------- H : :class:`qutip.Qobj`, :class:`qutip.QobjEvo`, ``list``, callable. System Hamiltonian as a Qobj, QobjEvo, can also be a function or list that can be made into a Qobjevo. (See :class:`qutip.QobjEvo`'s documentation). ``H`` can be a superoperator (liouvillian) if some collapse operators are to be treated deterministically. psi0 : :class:`qutip.Qobj` Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Maximum number of trajectories to run. Can be cut short if a time limit is passed in options (per default, mcsolve will stop after 1e8 sec):: ``options.mcsolve['map_options']['timeout'] = max_sec`` Or if the target tolerance is reached, see ``target_tol``. c_ops : ``list`` A ``list`` of collapse operators. They must be operators even if ``H`` is a superoperator. e_ops : ``list``, [optional] A ``list`` of operator as Qobj, QobjEvo or callable with signature of (t, state: Qobj) for calculating expectation values. When no ``e_ops`` are given, the solver will default to save the states. args : dict, [optional] Arguments for time-dependent Hamiltonian and collapse operator terms. options : SolverOptions, [optional] Options for the evolution. seeds : int, SeedSequence, list, [optional] Seed for the random number generator. It can be a single seed used to spawn seeds for each trajectories or a list of seed, one for each trajectories. Seed are saved in the result, they can be reused with:: seeds=prev_result.seeds target_tol : float, list, [optional] Target tolerance of the evolution. The evolution will compute trajectories until the error on the expectation values is lower than this tolerance. The error is computed using jackknife resampling. ``target_tol`` can be an absolute tolerance, a pair of absolute and relative tolerance, in that order. Lastly, it can be a list of pairs of (atol, rtol) for each e_ops. timeout : float [optional] Maximum time for the evolution in second. When reached, no more trajectories will be computed. Overwrite the option of the same name. Returns ------- results : :class:`qutip.solver.Result` Object storing all results from the simulation. Which results is saved depend on the presence of ``e_ops`` and the options used. ``collapse`` and ``photocurrent`` is available to Monte Carlo simulation results. """ H = QobjEvo(H, args=args, tlist=tlist) c_ops = c_ops if c_ops is not None else [] if not isinstance(c_ops, (list, tuple)): c_ops = [c_ops] c_ops = [QobjEvo(c_op, args=args, tlist=tlist) for c_op in c_ops] if len(c_ops) == 0: return mesolve(H, psi0, tlist, e_ops=e_ops, args=args, options=options) if isinstance(ntraj, list): if isinstance(options, dict): options = SolverOptions(**options) options = copy(options) or SolverOptions() options.results['keep_runs_results'] = True max_ntraj = max(ntraj) else: max_ntraj = ntraj mc = McSolver(H, c_ops, options=options) result = mc.run(psi0, tlist=tlist, ntraj=max_ntraj, e_ops=e_ops, seed=seeds, target_tol=target_tol, timeout=timeout) if isinstance(ntraj, list): result.traj_batch = ntraj return result
def mcsolve(H, psi0, tlist, c_ops=None, e_ops=None, ntraj=1, *, args=None, options=None, seeds=None, target_tol=None, timeout=0): r""" Monte Carlo evolution of a state vector :math:`|\psi \rangle` for a given Hamiltonian and sets of collapse operators. Options for the underlying ODE solver are given by the Options class. Parameters ---------- H : :class:`qutip.Qobj`, :class:`qutip.QobjEvo`, ``list``, callable. System Hamiltonian as a Qobj, QobjEvo, can also be a function or list that can be made into a Qobjevo. (See :class:`qutip.QobjEvo`'s documentation). ``H`` can be a superoperator (liouvillian) if some collapse operators are to be treated deterministically. psi0 : :class:`qutip.Qobj` Initial state vector. tlist : array_like Times at which results are recorded. ntraj : int Maximum number of trajectories to run. Can be cut short if a time limit is passed in options (per default, mcsolve will stop after 1e8 sec):: ``options.mcsolve['map_options']['timeout'] = max_sec`` Or if the target tolerance is reached, see ``target_tol``. c_ops : ``list`` A ``list`` of collapse operators. They must be operators even if ``H`` is a superoperator. e_ops : ``list``, [optional] A ``list`` of operator as Qobj, QobjEvo or callable with signature of (t, state: Qobj) for calculating expectation values. When no ``e_ops`` are given, the solver will default to save the states. args : dict, [optional] Arguments for time-dependent Hamiltonian and collapse operator terms. options : SolverOptions, [optional] Options for the evolution. seeds : int, SeedSequence, list, [optional] Seed for the random number generator. It can be a single seed used to spawn seeds for each trajectories or a list of seed, one for each trajectories. Seed are saved in the result, they can be reused with:: seeds=prev_result.seeds target_tol : float, list, [optional] Target tolerance of the evolution. The evolution will compute trajectories until the error on the expectation values is lower than this tolerance. The error is computed using jackknife resampling. ``target_tol`` can be an absolute tolerance, a pair of absolute and relative tolerance, in that order. Lastly, it can be a list of pairs of (atol, rtol) for each e_ops. timeout : float [optional] Maximum time for the evolution in second. When reached, no more trajectories will be computed. Overwrite the option of the same name. Returns ------- results : :class:`qutip.solver.Result` Object storing all results from the simulation. Which results is saved depend on the presence of ``e_ops`` and the options used. ``collapse`` and ``photocurrent`` is available to Monte Carlo simulation results. """ H = QobjEvo(H, args=args, tlist=tlist) c_ops = c_ops if c_ops is not None else [] if not isinstance(c_ops, (list, tuple)): c_ops = [c_ops] c_ops = [QobjEvo(c_op, args=args, tlist=tlist) for c_op in c_ops] if len(c_ops) == 0: return mesolve(H, psi0, tlist, e_ops=e_ops, args=args, options=options) if isinstance(ntraj, list): if isinstance(options, dict): options = SolverOptions(**options) options = copy(options) or SolverOptions() options.results['keep_runs_results'] = True max_ntraj = max(ntraj) else: max_ntraj = ntraj mc = McSolver(H, c_ops, options=options) result = mc.run(psi0, tlist=tlist, ntraj=max_ntraj, e_ops=e_ops, seed=seeds, target_tol=target_tol, timeout=timeout) if isinstance(ntraj, list): result.traj_batch = ntraj return result
52,211
def destdir_join(d1: str, d2: str) -> str: if not d1: return d2 d2_path = Path(d2) d2_parts = d2_path.parts # c:\destdir + c:\prefix must produce c:\destdir\prefix if d2_path.drive or d2_path.root: d2_parts = d2_parts[1:] return str(Path(d1, *d2_parts))
def destdir_join(d1: str, d2: str) -> str: if not d1: return d2 d2_path = Path(d2) d2_parts = d2_path.parts # c:\destdir + c:\prefix must produce c:\destdir\prefix d2_parts = Path(d2).parts[1:] return str(Path(d1, *d2_parts))
25,979
def flexible_server_restart(cmd, client, resource_group_name, server_name, fail_over=None): instance = client.get(resource_group_name, server_name) if fail_over is not None and instance.high_availability.mode != "ZoneRedundant": raise ArgumentUsageError("Failing over can only be triggered for zone redundant servers.") if fail_over is not None: if fail_over not in ['Planned', 'Forced', 'planned', 'forced']: raise InvalidArgumentValueError("Allowed failover parameters are 'Planned' and 'Forced'.") if fail_over.lower() == 'planned': fail_over = 'plannedFailover' elif fail_over.lower() == 'forced': fail_over = 'forcedFailover' parameters = postgresql_flexibleservers.models.RestartParameter(restart_with_failover=True, failover_mode=fail_over) else: parameters = postgresql_flexibleservers.models.RestartParameter(restart_with_failover=False) return resolve_poller( client.begin_restart(resource_group_name, server_name, parameters), cmd.cli_ctx, 'PostgreSQL Server Restart')
def flexible_server_restart(cmd, client, resource_group_name, server_name, fail_over=None): instance = client.get(resource_group_name, server_name) if fail_over is not None and instance.high_availability.mode != "ZoneRedundant": raise ArgumentUsageError("Failing over can only be triggered for zone redundant servers.") if fail_over is not None: if fail_over.lower() not in ['planned', 'forced']: raise InvalidArgumentValueError("Allowed failover parameters are 'Planned' and 'Forced'.") if fail_over.lower() == 'planned': fail_over = 'plannedFailover' elif fail_over.lower() == 'forced': fail_over = 'forcedFailover' parameters = postgresql_flexibleservers.models.RestartParameter(restart_with_failover=True, failover_mode=fail_over) else: parameters = postgresql_flexibleservers.models.RestartParameter(restart_with_failover=False) return resolve_poller( client.begin_restart(resource_group_name, server_name, parameters), cmd.cli_ctx, 'PostgreSQL Server Restart')
52,496
def handle_hard_bounce( message_id: str, bounceSubType: str, recipient_emails: List[str] ) -> None: """Handle a hard bounce notification received from SNS :param message_id: The unique message id assigned by Amazon SES :param bounceSubType: The subtype of the bounce, as determined by Amazon SES :param recipient_emails: a list of email addresses one per recipient to whom the bounce notification pertains :return: None """ unexpected_events = ["Suppressed", "OnAccountSuppressionList"] for email in recipient_emails: if bounceSubType in unexpected_events: # Handle unexpected bounceSubType events, log a warning logging.warning( f"Unexpected {bounceSubType} hard bounce for {email}" ) # After log the event ban the email address # Only ban email address if it hasn't been previously banned EmailFlag.objects.get_or_create( email_address=email, flag_type="ban", defaults={"reason": bounceSubType}, ) else: # Any other hard bounce even only ban the email address # Only ban email address if it hasn't been previously banned EmailFlag.objects.get_or_create( email_address=email, flag_type="ban", defaults={"reason": bounceSubType}, )
def handle_hard_bounce( message_id: str, bounceSubType: str, recipient_emails: List[str] ) -> None: """Ban any email address that receives a hard bounce. If the bounce is of an unexpected type, also log a warning. :param message_id: The unique message id assigned by Amazon SES :param bounceSubType: The subtype of the bounce, as determined by Amazon SES :param recipient_emails: a list of email addresses one per recipient to whom the bounce notification pertains :return: None """ unexpected_events = ["Suppressed", "OnAccountSuppressionList"] for email in recipient_emails: if bounceSubType in unexpected_events: # Handle unexpected bounceSubType events, log a warning logging.warning( f"Unexpected {bounceSubType} hard bounce for {email}" ) # After log the event ban the email address # Only ban email address if it hasn't been previously banned EmailFlag.objects.get_or_create( email_address=email, flag_type="ban", defaults={"reason": bounceSubType}, ) else: # Any other hard bounce even only ban the email address # Only ban email address if it hasn't been previously banned EmailFlag.objects.get_or_create( email_address=email, flag_type="ban", defaults={"reason": bounceSubType}, )
26,117
def test_set_H_greater_then_last_ppseqno(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_steward, tdir, tconf, allPluginsPath): # send LOG_SIZE requests and check, that all watermarks on all replicas is not changed # and now is (0, LOG_SIZE) """Send random requests for moving watermarks""" sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_steward, LOG_SIZE) # check, that all of node set up watermark greater, then default and # ppSeqNo with number LOG_SIZE + 1 will be out from default watermark assert txnPoolNodeSet[0].replicas[1].last_ordered_3pc[1] == LOG_SIZE for n in txnPoolNodeSet: for r in n.replicas._replicas.values(): assert r.h >= LOG_SIZE assert r.H >= LOG_SIZE + LOG_SIZE """Adding new node, for scheduling propagate primary procedure""" new_node = add_new_node(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_steward, tdir, tconf, allPluginsPath) ensure_all_nodes_have_same_data(looper, txnPoolNodeSet, exclude_from_check=['check_last_ordered_3pc_backup']) """Check, that backup replicas set watermark as (0, maxInt)""" # Check, replica.h is set from last_ordered_3PC and replica.H is set to maxsize for r in new_node.replicas.values(): assert r.h == r.last_ordered_3pc[1] if r.isMaster: assert r.H == r.last_ordered_3pc[1] + LOG_SIZE else: assert r.H == sys.maxsize """Send requests and check. that backup replicas does not stashing it by outside watermarks reason""" sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_steward, 1) # check, that there is no any stashed "outside watermark" messages. for r in new_node.replicas.values(): assert r.stasher.stash_size(STASH_WATERMARKS) == 0 """Force view change and check, that all backup replicas will not reset watermarks""" ensure_view_change(looper, txnPoolNodeSet) ensureElectionsDone(looper, txnPoolNodeSet) for r in new_node.replicas.values(): if not r.isMaster: assert r.h == 0 assert r.H == LOG_SIZE
def test_set_H_greater_then_last_ppseqno(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_steward, tdir, tconf, allPluginsPath): # send LOG_SIZE requests and check, that all watermarks on all replicas is not changed # and now is (0, LOG_SIZE) """Send random requests for moving watermarks""" sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_steward, LOG_SIZE) # check, that all of node set up watermark greater, then default and # ppSeqNo with number LOG_SIZE + 1 will be out from default watermark assert txnPoolNodeSet[0].replicas[1].last_ordered_3pc[1] == LOG_SIZE for n in txnPoolNodeSet: for r in n.replicas._replicas.values(): assert r.h >= LOG_SIZE assert r.H >= LOG_SIZE + LOG_SIZE """Adding new node, for scheduling propagate primary procedure""" new_node = add_new_node(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_steward, tdir, tconf, allPluginsPath) ensure_all_nodes_have_same_data(looper, txnPoolNodeSet, exclude_from_check=['check_last_ordered_3pc_backup']) """Check, that backup replicas set watermark as (0, maxInt)""" # Check, replica.h is set from last_ordered_3PC and replica.H is set to maxsize for r in new_node.replicas.values(): assert r.h == r.last_ordered_3pc[1] if r.isMaster: assert r.H == r.last_ordered_3pc[1] + LOG_SIZE else: assert r.H == sys.maxsize """Send requests and check. that backup replicas does not stashing it by outside watermarks reason""" sdk_send_random_and_check(looper, txnPoolNodeSet, sdk_pool_handle, sdk_wallet_steward, 1) # check, that there is no any stashed "outside watermark" messages. for r in new_node.replicas.values(): assert r.stasher.stash_size(STASH_WATERMARKS) == 0 """Force view change and check, that all backup replicas will reset watermarks""" ensure_view_change(looper, txnPoolNodeSet) ensureElectionsDone(looper, txnPoolNodeSet) for r in new_node.replicas.values(): if not r.isMaster: assert r.h == 0 assert r.H == LOG_SIZE
2,076
def plot_det_curve( estimator, X, y, *, sample_weight=None, response_method="auto", name=None, ax=None, pos_label=None, **kwargs ): """Plot detection error tradeoff (DET) curve. Extra keyword arguments will be passed to matplotlib's `plot`. Read more in the :ref:`User Guide <visualizations>`. .. versionadded:: 0.24 Parameters ---------- estimator : estimator instance Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a classifier. X : {array-like, sparse matrix} of shape (n_samples, n_features) Input values. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. response_method : {'predict_proba', 'decision_function', 'auto'} \ default='auto' Specifies whether to use :term:`predict_proba` or :term:`decision_function` as the target response. If set to 'auto', :term:`predict_proba` is tried first and if it does not exist :term:`decision_function` is tried next. name : str, default=None Name of ROC Curve for labeling. If `None`, use the name of the estimator. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. pos_label : str or int, default=None The label of the positive class. When `pos_label=None`, if `y_true` is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an error will be raised. Returns ------- display : :class:`~sklearn.metrics.DetCurveDisplay` Object that stores computed values. See Also -------- roc_auc_score : Compute the area under the ROC curve roc_curve : Compute Receiver operating characteristic (ROC) curve Examples -------- """ check_matplotlib_support('plot_det_curve') y_pred, pos_label = _get_response( X, estimator, response_method, pos_label=pos_label ) fpr, fnr, _ = det_curve( y, y_pred, pos_label=pos_label, sample_weight=sample_weight, ) name = estimator.__class__.__name__ if name is None else name viz = DetCurveDisplay( fpr=fpr, fnr=fnr, estimator_name=name, pos_label=pos_label ) return viz.plot(ax=ax, name=name, **kwargs)
def plot_det_curve( estimator, X, y, *, sample_weight=None, response_method="auto", name=None, ax=None, pos_label=None, **kwargs ): """Plot detection error tradeoff (DET) curve. Extra keyword arguments will be passed to matplotlib's `plot`. Read more in the :ref:`User Guide <visualizations>`. .. versionadded:: 0.24 Parameters ---------- estimator : estimator instance Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a classifier. X : {array-like, sparse matrix} of shape (n_samples, n_features) Input values. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. response_method : {'predict_proba', 'decision_function', 'auto'} \ default='auto' Specifies whether to use :term:`predict_proba` or :term:`decision_function` as the target response. If set to 'auto', :term:`predict_proba` is tried first and if it does not exist :term:`decision_function` is tried next. name : str, default=None Name of ROC Curve for labeling. If `None`, use the name of the estimator. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. pos_label : str or int, default=None The label of the positive class. When `pos_label=None`, if `y_true` is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an error will be raised. Returns ------- display : :class:`~sklearn.metrics.DetCurveDisplay` Object that stores computed values. See Also -------- roc_auc_score : Compute the area under the ROC curve plot_roc_curve : Plot Receiver operating characteristic (ROC) curve Examples -------- """ check_matplotlib_support('plot_det_curve') y_pred, pos_label = _get_response( X, estimator, response_method, pos_label=pos_label ) fpr, fnr, _ = det_curve( y, y_pred, pos_label=pos_label, sample_weight=sample_weight, ) name = estimator.__class__.__name__ if name is None else name viz = DetCurveDisplay( fpr=fpr, fnr=fnr, estimator_name=name, pos_label=pos_label ) return viz.plot(ax=ax, name=name, **kwargs)
30,921
def http_cmd(url_suffix, data=None, files=None, parse_json=True): data = {} if data is None else data url_params = {} # type:dict use_public_api = demisto.params().get('public_api_key', False) api_key = demisto.params().get('api_key', False) if not api_key and use_public_api: url_params.setdefault('apikey', demisto.params()['secret_public_api_key']) elif api_key: url_params.setdefault('apikey', api_key) LOG('running request with url=%s\n\tdata=%s\n\tfiles=%s' % (BASE_URL + url_suffix, data, files,)) res = {} # type:dict if files: res = requests.post(BASE_URL + url_suffix, # type:ignore verify=USE_SSL, params=url_params, data=data, files=files ) else: res = requests.get(BASE_URL + url_suffix, # type:ignore verify=USE_SSL, params=url_params ) if res.status_code == 401: # type:ignore raise Exception('API Key is incorrect') if res.status_code >= 400: # type:ignore try: LOG('result is: %s' % (res.json(),)) # type:ignore error_msg = res.json()['errors'][0]['msg'] # type:ignore raise Exception('Your request failed with the following status code (%s) and error: %s.\n%s' % (res.status_code, res.reason, error_msg,)) # type:ignore except ValueError: # in case the respons is not parsed as JSON raise Exception('Your request failed with the following status code (%s) and error: %s.' % (res.status_code, res.reason)) if parse_json: return res.json() # type:ignore else: return res.content # type:ignore
def http_cmd(url_suffix, data=None, files=None, parse_json=True): data = {} if data is None else data url_params = {} # type:dict use_public_api = demisto.params().get('public_api_key', False) api_key = demisto.params().get('api_key', False) if not api_key and use_public_api: url_params.setdefault('apikey', demisto.params()['secret_public_api_key']) elif api_key: url_params.setdefault('apikey', api_key) LOG('running request with url=%s\n\tdata=%s\n\tfiles=%s' % (BASE_URL + url_suffix, data, files,)) res = {} # type:dict if files: res = requests.post(BASE_URL + url_suffix, # type:ignore verify=USE_SSL, params=url_params, data=data, files=files ) else: res = requests.get(BASE_URL + url_suffix, # type:ignore verify=USE_SSL, params=url_params ) if res.status_code == 401: # type:ignore raise Exception('API Key is incorrect') if res.status_code >= 400: # type:ignore try: LOG('result is: %s' % (res.json(),)) # type:ignore error_msg = res.json()['errors'][0]['msg'] # type:ignore raise Exception('Your request failed with the following status code (%s) and error: %s.\n%s' % (res.status_code, res.reason, error_msg,)) # type:ignore except ValueError: # in case the response is not parsed as JSON raise Exception('Your request failed with the following status code (%s) and error: %s.' % (res.status_code, res.reason)) if parse_json: return res.json() # type:ignore else: return res.content # type:ignore
19,846
def get_task_form_class(task_model, for_edit=False): """ Generates a form class for the given task model. If the form is to edit an existing task, set for_edit to True. This applies the readonly restrictions on fields defined in admin_form_readonly_on_edit_fields. """ fields = task_model.admin_form_fields form_class = forms.modelform_factory( task_model, form=BaseTaskForm, fields=fields, widgets=getattr(task_model, 'admin_form_widgets', {}) ) if for_edit: for field_name in getattr(task_model, 'admin_form_readonly_on_edit_fields', []): if field_name not in form_class.base_fields: raise ImproperlyConfigured( "`%s.admin_form_readonly_on_edit_fields` contains the field " "'%s' but this field doesn't exist. Have you forgotten to add " "it to `%s.admin_form_fields`?" % (task_model.__name__, field_name, task_model.__name__) ) form_class.base_fields[field_name].disabled = True return form_class
def get_task_form_class(task_model, for_edit=False): """ Generates a form class for the given task model. If the form is to edit an existing task, set for_edit to True. This applies the readonly restrictions on fields defined in admin_form_readonly_on_edit_fields. """ fields = task_model.admin_form_fields form_class = forms.modelform_factory( task_model, form=BaseTaskForm, fields=fields, widgets=getattr(task_model, 'admin_form_widgets', {}) ) if for_edit: for field_name in getattr(task_model, 'admin_form_readonly_on_edit_fields', []): if field_name not in form_class.base_fields: raise ImproperlyConfigured( "`%s.admin_form_readonly_on_edit_fields` contains the field " "'%s' that doesn't exist. Did you forgget to add " "it to `%s.admin_form_fields`?" % (task_model.__name__, field_name, task_model.__name__) ) form_class.base_fields[field_name].disabled = True return form_class
29,763
def scale_ratings(mbids_and_ratings, params): """ Scale the ratings so that they fall on a range from 0.0 -> 1.0. Args: mbids_and_ratings: list of recommended recording mbids and ratings. params: RecommendationParams class object. """ for row in mbids_and_ratings: rating = row[1] scaled_rating = (rating / 2.0) + 0.5 if scaled_rating > 1.0 or scaled_rating < -1.0: params.ratings_beyond_range.append(rating) row[1] = round(min(max(scaled_rating, -1.0), 1.0), 3)
def scale_ratings(mbids_and_ratings, params: RecommendationParams): """ Scale the ratings so that they fall on a range from 0.0 -> 1.0. Args: mbids_and_ratings: list of recommended recording mbids and ratings. params: RecommendationParams class object. """ for row in mbids_and_ratings: rating = row[1] scaled_rating = (rating / 2.0) + 0.5 if scaled_rating > 1.0 or scaled_rating < -1.0: params.ratings_beyond_range.append(rating) row[1] = round(min(max(scaled_rating, -1.0), 1.0), 3)
33,052
def install_unified_kernel( args: MkosiArgs, root: Path, root_hash: Optional[str], do_run_build_script: bool, for_cache: bool, cached: bool, mount: Callable[[], ContextManager[None]], ) -> None: # Iterates through all kernel versions included in the image and generates a combined # kernel+initrd+cmdline+osrelease EFI file from it and places it in the /EFI/Linux directory of the ESP. # sd-boot iterates through them and shows them in the menu. These "unified" single-file images have the # benefit that they can be signed like normal EFI binaries, and can encode everything necessary to boot a # specific root device, including the root hash. if not (args.bootable and args.get_partition(PartitionIdentifier.esp) and args.with_unified_kernel_images): return # Don't run dracut if this is for the cache. The unified kernel # typically includes the image ID, roothash and other data that # differs between cached version and final result. Moreover, we # want that the initrd for the image actually takes the changes we # make to the image into account (e.g. when we build a systemd # test image with this we want that the systemd we just built is # in the initrd, and not one from the cache. Hence even though # dracut is slow we invoke it only during the last final build, # never for the cached builds. if for_cache: return # Don't bother running dracut if this is a development build. Strictly speaking it would probably be a # good idea to run it, so that the development environment differs as little as possible from the final # build, but then again the initrd should not be relevant for building, and dracut is simply very slow, # hence let's avoid it invoking it needlessly, given that we never actually invoke the boot loader on the # development image. if do_run_build_script: return prefix = "boot" if args.get_partition(PartitionIdentifier.xbootldr) else "efi" with mount(), complete_step("Generating combined kernel + initrd boot file…"): for kver, kimg in gen_kernel_images(args, root): if args.image_id: image_id = args.image_id if args.image_version: partlabel = f"{args.image_id}_{args.image_version}" else: partlabel = f"{args.image_id}" else: image_id = f"mkosi-{args.distribution}" partlabel = None # See https://systemd.io/AUTOMATIC_BOOT_ASSESSMENT/ boot_count: str = "" if root.joinpath("etc/kernel/tries").exists(): boot_count=f'+{root.joinpath("etc/kernel/tries").read_text().strip()}' if args.image_version: boot_binary = root / prefix / f"EFI/Linux/{image_id}_{args.image_version}{boot_count}.efi" elif root_hash: boot_binary = root / prefix / f"EFI/Linux/{image_id}-{kver}-{root_hash}{boot_count}.efi" else: boot_binary = root / prefix / f"EFI/Linux/{image_id}-{kver}{boot_count}.efi" if root.joinpath("etc/kernel/cmdline").exists(): boot_options = root.joinpath("etc/kernel/cmdline").read_text().strip() elif root.joinpath("/usr/lib/kernel/cmdline").exists(): boot_options = root.joinpath("usr/lib/kernel/cmdline").read_text().strip() else: boot_options = "" if root_hash: option = "usrhash" if args.usr_only else "roothash" boot_options = f"{boot_options} {option}={root_hash}" elif partlabel: boot_options = f"{boot_options} root=PARTLABEL={partlabel}" osrelease = root / "usr/lib/os-release" cmdline = workspace(root) / "cmdline" cmdline.write_text(boot_options) initrd = root / boot_directory(args, kver) / "initrd" cmd: Sequence[PathString] = [ "objcopy", "--add-section", f".osrel={osrelease}", "--change-section-vma", ".osrel=0x20000", "--add-section", f".cmdline={cmdline}", "--change-section-vma", ".cmdline=0x30000", "--add-section", f".linux={root / kimg}", "--change-section-vma", ".linux=0x2000000", "--add-section", f".initrd={initrd}", "--change-section-vma", ".initrd=0x3000000", root / "lib/systemd/boot/efi/linuxx64.efi.stub", boot_binary, ] run(cmd) cmdline.unlink()
def install_unified_kernel( args: MkosiArgs, root: Path, root_hash: Optional[str], do_run_build_script: bool, for_cache: bool, cached: bool, mount: Callable[[], ContextManager[None]], ) -> None: # Iterates through all kernel versions included in the image and generates a combined # kernel+initrd+cmdline+osrelease EFI file from it and places it in the /EFI/Linux directory of the ESP. # sd-boot iterates through them and shows them in the menu. These "unified" single-file images have the # benefit that they can be signed like normal EFI binaries, and can encode everything necessary to boot a # specific root device, including the root hash. if not (args.bootable and args.get_partition(PartitionIdentifier.esp) and args.with_unified_kernel_images): return # Don't run dracut if this is for the cache. The unified kernel # typically includes the image ID, roothash and other data that # differs between cached version and final result. Moreover, we # want that the initrd for the image actually takes the changes we # make to the image into account (e.g. when we build a systemd # test image with this we want that the systemd we just built is # in the initrd, and not one from the cache. Hence even though # dracut is slow we invoke it only during the last final build, # never for the cached builds. if for_cache: return # Don't bother running dracut if this is a development build. Strictly speaking it would probably be a # good idea to run it, so that the development environment differs as little as possible from the final # build, but then again the initrd should not be relevant for building, and dracut is simply very slow, # hence let's avoid it invoking it needlessly, given that we never actually invoke the boot loader on the # development image. if do_run_build_script: return prefix = "boot" if args.get_partition(PartitionIdentifier.xbootldr) else "efi" with mount(), complete_step("Generating combined kernel + initrd boot file…"): for kver, kimg in gen_kernel_images(args, root): if args.image_id: image_id = args.image_id if args.image_version: partlabel = f"{args.image_id}_{args.image_version}" else: partlabel = f"{args.image_id}" else: image_id = f"mkosi-{args.distribution}" partlabel = None # See https://systemd.io/AUTOMATIC_BOOT_ASSESSMENT/ boot_count = "" if root.joinpath("etc/kernel/tries").exists(): boot_count=f'+{root.joinpath("etc/kernel/tries").read_text().strip()}' if args.image_version: boot_binary = root / prefix / f"EFI/Linux/{image_id}_{args.image_version}{boot_count}.efi" elif root_hash: boot_binary = root / prefix / f"EFI/Linux/{image_id}-{kver}-{root_hash}{boot_count}.efi" else: boot_binary = root / prefix / f"EFI/Linux/{image_id}-{kver}{boot_count}.efi" if root.joinpath("etc/kernel/cmdline").exists(): boot_options = root.joinpath("etc/kernel/cmdline").read_text().strip() elif root.joinpath("/usr/lib/kernel/cmdline").exists(): boot_options = root.joinpath("usr/lib/kernel/cmdline").read_text().strip() else: boot_options = "" if root_hash: option = "usrhash" if args.usr_only else "roothash" boot_options = f"{boot_options} {option}={root_hash}" elif partlabel: boot_options = f"{boot_options} root=PARTLABEL={partlabel}" osrelease = root / "usr/lib/os-release" cmdline = workspace(root) / "cmdline" cmdline.write_text(boot_options) initrd = root / boot_directory(args, kver) / "initrd" cmd: Sequence[PathString] = [ "objcopy", "--add-section", f".osrel={osrelease}", "--change-section-vma", ".osrel=0x20000", "--add-section", f".cmdline={cmdline}", "--change-section-vma", ".cmdline=0x30000", "--add-section", f".linux={root / kimg}", "--change-section-vma", ".linux=0x2000000", "--add-section", f".initrd={initrd}", "--change-section-vma", ".initrd=0x3000000", root / "lib/systemd/boot/efi/linuxx64.efi.stub", boot_binary, ] run(cmd) cmdline.unlink()
3,309
def convert_search_filter_to_snuba_query(search_filter, key=None, params=None): name = search_filter.key.name if key is None else key value = search_filter.value.value if name in no_conversion: return elif name == "id" and search_filter.value.is_wildcard(): raise InvalidSearchQuery("Wildcard conditions are not permitted on `id` field.") elif name == "environment": # conditions added to env_conditions are OR'd env_conditions = [] values = set(value if isinstance(value, (list, tuple)) else [value]) # the "no environment" environment is null in snuba if "" in values: values.remove("") operator = "IS NULL" if search_filter.operator == "=" else "IS NOT NULL" env_conditions.append(["environment", operator, None]) if len(values) == 1: operator = "=" if search_filter.operator == "=" else "!=" env_conditions.append(["environment", operator, values.pop()]) elif values: operator = "IN" if search_filter.operator == "=" else "NOT IN" env_conditions.append(["environment", operator, values]) return env_conditions elif name == "message": if search_filter.value.is_wildcard(): # XXX: We don't want the '^$' values at the beginning and end of # the regex since we want to find the pattern anywhere in the # message. Strip off here value = search_filter.value.value[1:-1] return [["match", ["message", f"'(?i){value}'"]], search_filter.operator, 1] elif value == "": operator = "=" if search_filter.operator == "=" else "!=" return [["equals", ["message", f"{value}"]], operator, 1] else: # https://clickhouse.yandex/docs/en/query_language/functions/string_search_functions/#position-haystack-needle # positionCaseInsensitive returns 0 if not found and an index of 1 or more if found # so we should flip the operator here operator = "=" if search_filter.operator == "!=" else "!=" # make message search case insensitive return [["positionCaseInsensitive", ["message", f"'{value}'"]], operator, 0] elif ( name.startswith("stack.") or name.startswith("error.") ) and search_filter.value.is_wildcard(): # Escape and convert meta characters for LIKE expressions. raw_value = search_filter.value.raw_value like_value = raw_value.replace("%", "\\%").replace("_", "\\_").replace("*", "%") operator = "LIKE" if search_filter.operator == "=" else "NOT LIKE" return [name, operator, like_value] elif name == "transaction.status": # Handle "has" queries if search_filter.value.raw_value == "": return [["isNull", [name]], search_filter.operator, 1] internal_value = SPAN_STATUS_NAME_TO_CODE.get(search_filter.value.raw_value) if internal_value is None: raise InvalidSearchQuery( "Invalid value for transaction.status condition. Accepted values are {}".format( ", ".join(SPAN_STATUS_NAME_TO_CODE.keys()) ) ) return [name, search_filter.operator, internal_value] elif name == "issue.id": # Handle "has" queries if search_filter.value.raw_value == "": if search_filter.operator == "=": # The state os having no issues is represented differently on transactions vs # other events. On the transactions table, it is represented by 0 whereas it is # represented by NULL everywhere else. This means we have to check for both 0 # or NULL. return [ [["isNull", [name]], search_filter.operator, 1], [name, search_filter.operator, 0], ] else: # Based the reasoning above, we should be checking that it is not 0 and not NULL. # However, because NULL != 0 evaluates to NULL in Clickhouse, we can simplify it # to check just not 0. return [name, search_filter.operator, 0] # Skip isNull check on group_id value as we want to # allow snuba's prewhere optimizer to find this condition. return [name, search_filter.operator, value] elif name == USER_DISPLAY_ALIAS: user_display_expr = FIELD_ALIASES[USER_DISPLAY_ALIAS].get_expression(params) # Handle 'has' condition if search_filter.value.raw_value == "": return [["isNull", [user_display_expr]], search_filter.operator, 1] if search_filter.value.is_wildcard(): return [ ["match", [user_display_expr, f"'(?i){value}'"]], search_filter.operator, 1, ] return [user_display_expr, search_filter.operator, value] elif name == ERROR_UNHANDLED_ALIAS: # This field is the inversion of error.handled, otherwise the logic is the same. if search_filter.value.raw_value == "": output = 0 if search_filter.operator == "!=" else 1 return [["isHandled", []], "=", output] if value in ("1", 1): return [["notHandled", []], "=", 1] if value in ("0", 0): return [["isHandled", []], "=", 1] raise InvalidSearchQuery( "Invalid value for error.unhandled condition. Accepted values are 1, 0" ) elif name == "error.handled": # Treat has filter as equivalent to handled if search_filter.value.raw_value == "": output = 1 if search_filter.operator == "!=" else 0 return [["isHandled", []], "=", output] # Null values and 1 are the same, and both indicate a handled error. if value in ("1", 1): return [["isHandled", []], "=", 1] if value in ( "0", 0, ): return [["notHandled", []], "=", 1] raise InvalidSearchQuery( "Invalid value for error.handled condition. Accepted values are 1, 0" ) elif name == KEY_TRANSACTION_ALIAS: key_transaction_expr = FIELD_ALIASES[KEY_TRANSACTION_ALIAS].get_expression(params) if search_filter.value.raw_value == "": operator = "!=" if search_filter.operator == "!=" else "=" return [key_transaction_expr, operator, 0] if value in ("1", 1): return [key_transaction_expr, "=", 1] if value in ("0", 0): return [key_transaction_expr, "=", 0] raise InvalidSearchQuery( "Invalid value for key_transaction condition. Accepted values are 1, 0" ) elif name in ARRAY_FIELDS and search_filter.value.raw_value == "": return [["notEmpty", [name]], "=", 1 if search_filter.operator == "!=" else 0] else: value = ( int(to_timestamp(value)) * 1000 if isinstance(value, datetime) and name != "timestamp" else value ) # Tags are never null, but promoted tags are columns and so can be null. # To handle both cases, use `ifNull` to convert to an empty string and # compare so we need to check for empty values. if search_filter.key.is_tag: name = ["ifNull", [name, "''"]] # Handle checks for existence if search_filter.operator in ("=", "!=") and search_filter.value.value == "": if search_filter.key.is_tag: return [name, search_filter.operator, value] else: # If not a tag, we can just check that the column is null. return [["isNull", [name]], search_filter.operator, 1] is_null_condition = None if search_filter.operator == "!=" and not search_filter.key.is_tag: # Handle null columns on inequality comparisons. Any comparison # between a value and a null will result to null, so we need to # explicitly check for whether the condition is null, and OR it # together with the inequality check. # We don't need to apply this for tags, since if they don't exist # they'll always be an empty string. is_null_condition = [["isNull", [name]], "=", 1] if search_filter.value.is_wildcard(): condition = [["match", [name, f"'(?i){value}'"]], search_filter.operator, 1] else: condition = [name, search_filter.operator, value] # We only want to return as a list if we have the check for null # present. Returning as a list causes these conditions to be ORed # together. Otherwise just return the raw condition, so that it can be # used correctly in aggregates. if is_null_condition: return [is_null_condition, condition] else: return condition
def convert_search_filter_to_snuba_query(search_filter, key=None, params=None): name = search_filter.key.name if key is None else key value = search_filter.value.value if name in no_conversion: return elif name == "id" and search_filter.value.is_wildcard(): raise InvalidSearchQuery("Wildcard conditions are not permitted on `id` field.") elif name == "environment": # conditions added to env_conditions are OR'd env_conditions = [] values = set(value if isinstance(value, (list, tuple)) else [value]) # the "no environment" environment is null in snuba if "" in values: values.remove("") operator = "IS NULL" if search_filter.operator == "=" else "IS NOT NULL" env_conditions.append(["environment", operator, None]) if len(values) == 1: operator = "=" if search_filter.operator == "=" else "!=" env_conditions.append(["environment", operator, values.pop()]) elif values: operator = "IN" if search_filter.operator == "=" else "NOT IN" env_conditions.append(["environment", operator, values]) return env_conditions elif name == "message": if search_filter.value.is_wildcard(): # XXX: We don't want the '^$' values at the beginning and end of # the regex since we want to find the pattern anywhere in the # message. Strip off here value = search_filter.value.value[1:-1] return [["match", ["message", f"'(?i){value}'"]], search_filter.operator, 1] elif value == "": operator = "=" if search_filter.operator == "=" else "!=" return [["equals", ["message", f"{value}"]], operator, 1] else: # https://clickhouse.yandex/docs/en/query_language/functions/string_search_functions/#position-haystack-needle # positionCaseInsensitive returns 0 if not found and an index of 1 or more if found # so we should flip the operator here operator = "=" if search_filter.operator == "!=" else "!=" # make message search case insensitive return [["positionCaseInsensitive", ["message", f"'{value}'"]], operator, 0] elif ( name.startswith("stack.") or name.startswith("error.") ) and search_filter.value.is_wildcard(): # Escape and convert meta characters for LIKE expressions. raw_value = search_filter.value.raw_value like_value = raw_value.replace("%", "\\%").replace("_", "\\_").replace("*", "%") operator = "LIKE" if search_filter.operator == "=" else "NOT LIKE" return [name, operator, like_value] elif name == "transaction.status": # Handle "has" queries if search_filter.value.raw_value == "": return [["isNull", [name]], search_filter.operator, 1] internal_value = SPAN_STATUS_NAME_TO_CODE.get(search_filter.value.raw_value) if internal_value is None: raise InvalidSearchQuery( "Invalid value for transaction.status condition. Accepted values are {}".format( ", ".join(SPAN_STATUS_NAME_TO_CODE.keys()) ) ) return [name, search_filter.operator, internal_value] elif name == "issue.id": # Handle "has" queries if search_filter.value.raw_value == "": if search_filter.operator == "=": # The state of having no issues is represented differently on transactions vs # other events. On the transactions table, it is represented by 0 whereas it is # represented by NULL everywhere else. This means we have to check for both 0 # or NULL. return [ [["isNull", [name]], search_filter.operator, 1], [name, search_filter.operator, 0], ] else: # Based the reasoning above, we should be checking that it is not 0 and not NULL. # However, because NULL != 0 evaluates to NULL in Clickhouse, we can simplify it # to check just not 0. return [name, search_filter.operator, 0] # Skip isNull check on group_id value as we want to # allow snuba's prewhere optimizer to find this condition. return [name, search_filter.operator, value] elif name == USER_DISPLAY_ALIAS: user_display_expr = FIELD_ALIASES[USER_DISPLAY_ALIAS].get_expression(params) # Handle 'has' condition if search_filter.value.raw_value == "": return [["isNull", [user_display_expr]], search_filter.operator, 1] if search_filter.value.is_wildcard(): return [ ["match", [user_display_expr, f"'(?i){value}'"]], search_filter.operator, 1, ] return [user_display_expr, search_filter.operator, value] elif name == ERROR_UNHANDLED_ALIAS: # This field is the inversion of error.handled, otherwise the logic is the same. if search_filter.value.raw_value == "": output = 0 if search_filter.operator == "!=" else 1 return [["isHandled", []], "=", output] if value in ("1", 1): return [["notHandled", []], "=", 1] if value in ("0", 0): return [["isHandled", []], "=", 1] raise InvalidSearchQuery( "Invalid value for error.unhandled condition. Accepted values are 1, 0" ) elif name == "error.handled": # Treat has filter as equivalent to handled if search_filter.value.raw_value == "": output = 1 if search_filter.operator == "!=" else 0 return [["isHandled", []], "=", output] # Null values and 1 are the same, and both indicate a handled error. if value in ("1", 1): return [["isHandled", []], "=", 1] if value in ( "0", 0, ): return [["notHandled", []], "=", 1] raise InvalidSearchQuery( "Invalid value for error.handled condition. Accepted values are 1, 0" ) elif name == KEY_TRANSACTION_ALIAS: key_transaction_expr = FIELD_ALIASES[KEY_TRANSACTION_ALIAS].get_expression(params) if search_filter.value.raw_value == "": operator = "!=" if search_filter.operator == "!=" else "=" return [key_transaction_expr, operator, 0] if value in ("1", 1): return [key_transaction_expr, "=", 1] if value in ("0", 0): return [key_transaction_expr, "=", 0] raise InvalidSearchQuery( "Invalid value for key_transaction condition. Accepted values are 1, 0" ) elif name in ARRAY_FIELDS and search_filter.value.raw_value == "": return [["notEmpty", [name]], "=", 1 if search_filter.operator == "!=" else 0] else: value = ( int(to_timestamp(value)) * 1000 if isinstance(value, datetime) and name != "timestamp" else value ) # Tags are never null, but promoted tags are columns and so can be null. # To handle both cases, use `ifNull` to convert to an empty string and # compare so we need to check for empty values. if search_filter.key.is_tag: name = ["ifNull", [name, "''"]] # Handle checks for existence if search_filter.operator in ("=", "!=") and search_filter.value.value == "": if search_filter.key.is_tag: return [name, search_filter.operator, value] else: # If not a tag, we can just check that the column is null. return [["isNull", [name]], search_filter.operator, 1] is_null_condition = None if search_filter.operator == "!=" and not search_filter.key.is_tag: # Handle null columns on inequality comparisons. Any comparison # between a value and a null will result to null, so we need to # explicitly check for whether the condition is null, and OR it # together with the inequality check. # We don't need to apply this for tags, since if they don't exist # they'll always be an empty string. is_null_condition = [["isNull", [name]], "=", 1] if search_filter.value.is_wildcard(): condition = [["match", [name, f"'(?i){value}'"]], search_filter.operator, 1] else: condition = [name, search_filter.operator, value] # We only want to return as a list if we have the check for null # present. Returning as a list causes these conditions to be ORed # together. Otherwise just return the raw condition, so that it can be # used correctly in aggregates. if is_null_condition: return [is_null_condition, condition] else: return condition
46,253
def _generate_stubs(output=__file__.replace(".py", ".pyi")): """Generat type stubs for view_* functions declared in this file.""" import textwrap pyi = '# THIS FILE IS AUTOGENERATED. DO NOT EDIT\n' pyi += '# flake8: noqa\n' pyi += 'from typing import List, Sequence, Union\n\n' pyi += 'import napari.viewer\n\n' for _layer in sorted(list(layers.NAMES) + ['path']): fname = f'view_{_layer}' func = globals()[fname] pyi += f'def {fname}{inspect.signature(func)}:\n' if func.__doc__: pyi += textwrap.indent(f'"""{func.__doc__}"""', ' ') + "\n" else: pyi += ' ...\n' try: import black pyi = black.format_str( pyi, mode=black.FileMode(line_length=79, is_pyi=True) ) except ImportError: pass with open(output, 'w') as f: f.write(pyi.replace("NoneType", "None"))
def _generate_stubs(output=__file__.replace(".py", ".pyi")): """Generate type stubs for view_* functions declared in this file.""" import textwrap pyi = '# THIS FILE IS AUTOGENERATED. DO NOT EDIT\n' pyi += '# flake8: noqa\n' pyi += 'from typing import List, Sequence, Union\n\n' pyi += 'import napari.viewer\n\n' for _layer in sorted(list(layers.NAMES) + ['path']): fname = f'view_{_layer}' func = globals()[fname] pyi += f'def {fname}{inspect.signature(func)}:\n' if func.__doc__: pyi += textwrap.indent(f'"""{func.__doc__}"""', ' ') + "\n" else: pyi += ' ...\n' try: import black pyi = black.format_str( pyi, mode=black.FileMode(line_length=79, is_pyi=True) ) except ImportError: pass with open(output, 'w') as f: f.write(pyi.replace("NoneType", "None"))
32,719
def test_callproc_invalid(conn_cnx): """Test invalid callproc""" with conn_cnx() as cnx: with cnx.cursor() as cur: cur.execute("drop procedure if exists output_message(varchar)") # stored procedure does not exist with pytest.raises(ProgrammingError) as pe: cur.callproc("output_message") assert pe.errno == 1044 cur.execute( """ create or replace procedure output_message(message varchar) returns varchar not null language sql as begin return message; end; """ ) # parameters do not match the signature with pytest.raises(ProgrammingError) as pe: cur.callproc("output_message") assert pe.errno == 1044 with pytest.raises(TypeError): cur.callproc("output_message", "test varchar") ret = cur.callproc("output_message", ("test varchar",)) assert ret == ("test varchar",) res = cur.fetchall() assert len(res) == 1 assert len(res[0]) == 1 assert res[0][0] == "test varchar"
def test_callproc_invalid(conn_cnx): """Test invalid callproc""" with conn_cnx() as cnx: with cnx.cursor() as cur: cur.execute("drop procedure if exists output_message(varchar)") # stored procedure does not exist with pytest.raises(ProgrammingError) as pe: cur.callproc("output_message") assert pe.errno == 1044 cur.execute( """ create or replace procedure output_message(message varchar) returns varchar not null language sql as begin return message; end; """ ) # parameters do not match the signature with pytest.raises(ProgrammingError) as pe: cur.callproc("output_message") assert pe.errno == 1044 with pytest.raises(TypeError): cur.callproc("output_message", "test varchar") ret = cur.callproc("output_message", ("test varchar",)) assert ret == ("test varchar",) res = cur.fetchall() assert len(res) == 1 assert len(res[0]) == 1 assert res[0][0] == "test varchar"
43,484
def layer2_subcircuit(params): # all preceding gates # non-parametrized gates qml.RY(np.pi/4, wires=0) qml.RY(np.pi/3, wires=1) qml.RY(np.pi/7, wires=2) # Parametrized layer 1 qml.RZ(params[0], wires=0) qml.RZ(params[1], wires=1) # non-parametrized gates qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2])
def layer2_subcircuit(params): # all preceding gates # non-parametrized gates qml.RY(np.pi/4, wires=0) qml.RY(np.pi/3, wires=1) qml.RY(np.pi/7, wires=2) # Parametrized layer 1 qml.RZ(params[0], wires=0) qml.RZ(params[1], wires=1) # non-parametrized gates qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2])
39,436
def get_point_along_spline(distance): """Return the closest point on the spline a given a length along a spline.""" idx = np.argmin(np.abs(spline.point_data['arc_length'] - distance)) return spline.points[idx]
def get_point_along_spline(distance): """Return the closest point on the spline given a length along a spline.""" idx = np.argmin(np.abs(spline.point_data['arc_length'] - distance)) return spline.points[idx]
31,080
def verify_server_paid_packs_by_index(server_paid_packs, index_data_packs): """Compare two pack dictionaries and assert id's and prices are identical. Raise AssertionError if the lists differ. Args: server_paid_packs: Dictionary of packs to check. index_data_packs: Dictionary of packs to compare to. """ # Sorting both lists by id sorted_server_packs = sorted(server_paid_packs, key=lambda i: i['id']) sorted_index_packs = sorted(index_data_packs, key=lambda i: i['id']) # Checking lists are the same. for (server_pack, index_pack) in zip(sorted_server_packs, sorted_index_packs): assert server_pack["id"] == index_pack["id"] assert server_pack["price"] == index_pack["price"] logging.success(f'Pack: {server_pack["id"]} is valid.')
def verify_server_paid_packs_by_index(server_paid_packs, index_data_packs): """Compare two pack dictionaries and assert id's and prices are identical. Raise AssertionError if the lists differ. Args: server_paid_packs: Dictionary of packs to check. index_data_packs: Dictionary of packs to compare to. """ # Sorting both lists by id sorted_server_packs = sorted(server_paid_packs, key=lambda pack: pack['id']) sorted_index_packs = sorted(index_data_packs, key=lambda i: i['id']) # Checking lists are the same. for (server_pack, index_pack) in zip(sorted_server_packs, sorted_index_packs): assert server_pack["id"] == index_pack["id"] assert server_pack["price"] == index_pack["price"] logging.success(f'Pack: {server_pack["id"]} is valid.')
43,634
def observable(me_table, init_term=0, mapping="jordan_wigner"): r"""Builds the many-body observable whose expectation value can be measured in PennyLane. This function can be used to build second-quantized operators in the basis of single-particle states (e.g., HF states) and to transform them into PennyLane observables. In general, single- and two-particle operators can be expanded in a truncated set of orbitals that define an active space, .. math:: &&\hat A = \sum_{\alpha \leq 2N_\mathrm{docc}} \langle \alpha \vert \hat{\mathcal{A}} \vert \alpha \rangle ~ \hat{n}_\alpha + \sum_{\alpha, \beta ~ \in ~ \mathrm{active~space}} \langle \alpha \vert \hat{\mathcal{A}} \vert \beta \rangle ~ \hat{c}_\alpha^\dagger\hat{c}_\beta \\ &&\hat B = \frac{1}{2} \left\{ \sum_{\alpha, \beta \leq 2N_\mathrm{docc}} \langle \alpha, \beta \vert \hat{\mathcal{B}} \vert \beta, \alpha \rangle ~ \hat{n}_\alpha \hat{n}_\beta + \sum_{\alpha, \beta, \gamma, \delta ~ \in ~ \mathrm{active~space}} \langle \alpha, \beta \vert \hat{\mathcal{B}} \vert \gamma, \delta \rangle ~ \hat{c}_{\alpha}^\dagger \hat{c}_{\beta}^\dagger \hat{c}_{\gamma} \hat{c}_{\delta} \right\}. In the latter equations :math:`N_\mathrm{docc}` denotes the doubly-occupied orbitals, if any, not included in the active space and :math:`\langle \alpha \vert \hat{\mathcal{A}} \vert \beta \rangle` and :math:`\langle \alpha, \beta \vert\hat{\mathcal{B}} \vert \gamma, \delta \rangle` are the matrix elements of the one- and two-particle operators :math:`\hat{\mathcal{A}}` and :math:`\hat{\mathcal{B}}`, respectively. The function utilizes tools of `OpenFermion <https://github.com/quantumlib/OpenFermion>`_ to build the second-quantized operator and map it to basis of Pauli matrices via the Jordan-Wigner or Bravyi-Kitaev transformation. Finally, the qubit operator is converted to a a PennyLane observable by the function :func:`~.convert_observable`. Args: me_table (array[float]): Numpy array with the table of matrix elements. For a single-particle operator this array will have shape ``(me_table.shape[0], 3)`` with each row containing the indices :math:`\alpha`, :math:`\beta` and the matrix element :math:`\langle \alpha \vert \hat{\mathcal{A}}\vert \beta \rangle`. For a two-particle operator this array will have shape ``(me_table.shape[0], 5)`` with each row containing the indices :math:`\alpha`, :math:`\beta`, :math:`\gamma`, :math:`\delta` and the matrix elements :math:`\langle \alpha, \beta \vert \hat{\mathcal{B}} \vert \gamma, \delta \rangle`. init_term: the contribution of doubly-occupied orbitals, if any, or other quantity required to initialize the many-body observable. mapping (str): specifies the fermion-to-qubit mapping. Input values can be ``'jordan_wigner'`` or ``'bravyi_kitaev'``. Returns: pennylane.Hamiltonian: the fermionic-to-qubit transformed observable **Example** >>> s2_matrix_elements, init_term = get_spin2_matrix_elements('h2', './pyscf/sto-3g') >>> s2_obs = observable(s2_matrix_elements, init_term=init_term) >>> print(type(s2_obs)) <class 'pennylane.vqe.vqe.Hamiltonian'> >>> print(s2_obs) (0.75) [I0] + (0.375) [Z1] + (-0.375) [Z0 Z1] + (0.125) [Z0 Z2] + (0.375) [Z0] + (-0.125) [Z0 Z3] + (-0.125) [Z1 Z2] + (0.125) [Z1 Z3] + (0.375) [Z2] + (0.375) [Z3] + (-0.375) [Z2 Z3] + (0.125) [Y0 X1 Y2 X3] + (0.125) [Y0 Y1 X2 X3] + (0.125) [Y0 Y1 Y2 Y3] + (-0.125) [Y0 X1 X2 Y3] + (-0.125) [X0 Y1 Y2 X3] + (0.125) [X0 X1 X2 X3] + (0.125) [X0 X1 Y2 Y3] + (0.125) [X0 Y1 X2 Y3] """ if mapping.strip().lower() not in ("jordan_wigner", "bravyi_kitaev"): raise TypeError( "The '{}' transformation is not available. \n " "Please set 'mapping' to 'jordan_wigner' or 'bravyi_kitaev'.".format(mapping) ) sp_op_shape = (3,) tp_op_shape = (5,) for i_table in me_table: if np.array(i_table).shape not in (sp_op_shape, tp_op_shape): raise ValueError( "expected entries of 'me_table' to be of shape (3,) or (5,) ; got {}".format( np.array(i_table).shape ) ) # Initialize the FermionOperator mb_obs = FermionOperator() + FermionOperator("") * init_term for i in me_table: if i.shape == (5,): # two-particle operator mb_obs += FermionOperator( ((int(i[0]), 1), (int(i[1]), 1), (int(i[2]), 0), (int(i[3]), 0)), i[4] ) elif i.shape == (3,): # single-particle operator mb_obs += FermionOperator(((int(i[0]), 1), (int(i[1]), 0)), i[2]) # Map the fermionic to a qubit operator measurable in PennyLane if mapping.strip().lower() == "bravyi_kitaev": return structure.convert_observable(bravyi_kitaev(mb_obs)) return structure.convert_observable(jordan_wigner(mb_obs))
def observable(me_table, init_term=0, mapping="jordan_wigner"): r"""Builds the many-body observable whose expectation value can be measured in PennyLane. This function can be used to build second-quantized operators in the basis of single-particle states (e.g., HF states) and to transform them into PennyLane observables. In general, single- and two-particle operators can be expanded in a truncated set of orbitals that define an active space, .. math:: &&\hat A = \sum_{\alpha \leq 2N_\mathrm{docc}} \langle \alpha \vert \hat{\mathcal{A}} \vert \alpha \rangle ~ \hat{n}_\alpha + \sum_{\alpha, \beta ~ \in ~ \mathrm{active~space}} \langle \alpha \vert \hat{\mathcal{A}} \vert \beta \rangle ~ \hat{c}_\alpha^\dagger\hat{c}_\beta \\ &&\hat B = \frac{1}{2} \left\{ \sum_{\alpha, \beta \leq 2N_\mathrm{docc}} \langle \alpha, \beta \vert \hat{\mathcal{B}} \vert \beta, \alpha \rangle ~ \hat{n}_\alpha \hat{n}_\beta + \sum_{\alpha, \beta, \gamma, \delta ~ \in ~ \mathrm{active~space}} \langle \alpha, \beta \vert \hat{\mathcal{B}} \vert \gamma, \delta \rangle ~ \hat{c}_{\alpha}^\dagger \hat{c}_{\beta}^\dagger \hat{c}_{\gamma} \hat{c}_{\delta} \right\}. In the latter equations :math:`N_\mathrm{docc}` denotes the doubly-occupied orbitals, if any, not included in the active space and :math:`\langle \alpha \vert \hat{\mathcal{A}} \vert \beta \rangle` and :math:`\langle \alpha, \beta \vert\hat{\mathcal{B}} \vert \gamma, \delta \rangle` are the matrix elements of the one- and two-particle operators :math:`\hat{\mathcal{A}}` and :math:`\hat{\mathcal{B}}`, respectively. The function utilizes tools of `OpenFermion <https://github.com/quantumlib/OpenFermion>`_ to build the second-quantized operator and map it to basis of Pauli matrices via the Jordan-Wigner or Bravyi-Kitaev transformation. Finally, the qubit operator is converted to a a PennyLane observable by the function :func:`~.convert_observable`. Args: me_table (array[float]): Numpy array with the table of matrix elements. For a single-particle operator this array will have shape ``(me_table.shape[0], 3)`` with each row containing the indices :math:`\alpha`, :math:`\beta` and the matrix element :math:`\langle \alpha \vert \hat{\mathcal{A}}\vert \beta \rangle`. For a two-particle operator this array will have shape ``(me_table.shape[0], 5)`` with each row containing the indices :math:`\alpha`, :math:`\beta`, :math:`\gamma`, :math:`\delta` and the matrix elements :math:`\langle \alpha, \beta \vert \hat{\mathcal{B}} \vert \gamma, \delta \rangle`. init_term: the contribution of doubly-occupied orbitals, if any, or other quantity required to initialize the many-body observable. mapping (str): specifies the fermion-to-qubit mapping. Input values can be ``'jordan_wigner'`` or ``'bravyi_kitaev'``. Returns: pennylane.Hamiltonian: the fermionic-to-qubit transformed observable **Example** >>> s2_matrix_elements, init_term = get_spin2_matrix_elements('h2', './pyscf/sto-3g') >>> s2_obs = observable(s2_matrix_elements, init_term=init_term) >>> print(type(s2_obs)) <class 'pennylane.vqe.vqe.Hamiltonian'> >>> print(s2_obs) (0.75) [I0] + (0.375) [Z1] + (-0.375) [Z0 Z1] + (0.125) [Z0 Z2] + (0.375) [Z0] + (-0.125) [Z0 Z3] + (-0.125) [Z1 Z2] + (0.125) [Z1 Z3] + (0.375) [Z2] + (0.375) [Z3] + (-0.375) [Z2 Z3] + (0.125) [Y0 X1 Y2 X3] + (0.125) [Y0 Y1 X2 X3] + (0.125) [Y0 Y1 Y2 Y3] + (-0.125) [Y0 X1 X2 Y3] + (-0.125) [X0 Y1 Y2 X3] + (0.125) [X0 X1 X2 X3] + (0.125) [X0 X1 Y2 Y3] + (0.125) [X0 Y1 X2 Y3] """ if mapping.strip().lower() not in ("jordan_wigner", "bravyi_kitaev"): raise TypeError( "The '{}' transformation is not available. \n " "Please set 'mapping' to 'jordan_wigner' or 'bravyi_kitaev'.".format(mapping) ) sp_op_shape = (3,) tp_op_shape = (5,) for i_table in me_table: if np.array(i_table).shape not in (sp_op_shape, tp_op_shape): raise ValueError( "expected entries of 'me_table' to be of shape (3,) or (5,) ; got {}".format( np.array(i_table).shape ) ) # Initialize the FermionOperator mb_obs = FermionOperator() + FermionOperator("") * init_term for i in me_table: if i.shape == (5,): # two-particle operator mb_obs += FermionOperator( ((int(i[0]), 1), (int(i[1]), 1), (int(i[2]), 0), (int(i[3]), 0)), i[4] ) elif i.shape == (3,): # single-particle operator mb_obs += FermionOperator(((int(i[0]), 1), (int(i[1]), 0)), i[2]) # Map the fermionic operator to a qubit operator if mapping.strip().lower() == "bravyi_kitaev": return structure.convert_observable(bravyi_kitaev(mb_obs)) return structure.convert_observable(jordan_wigner(mb_obs))
30,353
def get_relevant_prs(the_time: datetime, label: str, query: str) -> list: reg = re.compile("\.\d{6}$") timestamp, _ = reg.subn('', the_time.isoformat()) query = query.replace('{USER}', USER).replace('{REPOSITORY}', REPOSITORY).replace('{timestamp}', timestamp) # if label was passed then use it in the query otherwise remove that part of the query if label: query = query.replace('{label}', label) elif ' label:{label}' in query: query = query.replace(' label:{label}', '') elif ' -label:{label}' in query: query = query.replace(' -label:{label}', '') matching_issues = search_issue(query).get('items', []) relevant_prs = [get_pull_request(issue.get('number')) for issue in matching_issues] return relevant_prs
def get_relevant_prs(the_time: datetime, label: str, query: str) -> list: reg = re.compile('\.\d{6}$') timestamp, _ = reg.subn('', the_time.isoformat()) query = query.replace('{USER}', USER).replace('{REPOSITORY}', REPOSITORY).replace('{timestamp}', timestamp) # if label was passed then use it in the query otherwise remove that part of the query if label: query = query.replace('{label}', label) elif ' label:{label}' in query: query = query.replace(' label:{label}', '') elif ' -label:{label}' in query: query = query.replace(' -label:{label}', '') matching_issues = search_issue(query).get('items', []) relevant_prs = [get_pull_request(issue.get('number')) for issue in matching_issues] return relevant_prs
41,920
def _filter_out_observation_pairs( values: List[Optional[float]], scores: List[Tuple[float, float]], distribution: BaseDistribution, ) -> Tuple[List[Optional[float]], List[Tuple[float, float]]]: ret_values = [] ret_scores = [] for value, score in zip(values, scores): if value is None or distribution._contains(value): ret_values.append(value) ret_scores.append(score) return ret_values, ret_scores
def _filter_out_observation_pairs( values: List[Optional[float]], scores: List[Tuple[float, float]], distribution: BaseDistribution, ) -> Tuple[List[Optional[float]], List[Tuple[float, float]]]: ret_values = [] ret_scores = [] for value, score in zip(values, scores): if value is not None or distribution._contains(value): ret_values.append(value) ret_scores.append(score) return ret_values, ret_scores
13,439
def registers_from_candidates(candidate_registers_values, args): kamstrupRegisterCopier = KamstrupRegisterCopier( args.host, args.port, int(args.communication_address) ) found_registers = {} not_found_counts = 0 scanned = 0 dumpfile = "kamstrup_dump_{0}.json".format( calendar.timegm(datetime.utcnow().utctimetuple()) ) for x in candidate_registers_values: result = kamstrupRegisterCopier.get_register(x) if len(result) > 12: units = result[5] length = result[6] unknown = result[7] register_value = 0 for p in range(length): register_value += result[8 + p] << (8 * ((length - p) - 1)) found_registers[x] = { "timestamp": datetime.utcnow(), "units": units, "value": register_value, "value_length": length, "unknown": unknown, } print("Found register value at {0}:{1}".format(hex(x), register_value)) with open(dumpfile, "w") as json_file: json_file.write(json.dumps(found_registers, indent=4, default=json_default)) else: not_found_counts += 1 if not_found_counts % 10 == 0: print( "Hang on, still scanning, so far scanned {0} and found {1} registers".format( scanned, len(found_registers) ) ) scanned += 1 return found_registers
def registers_from_candidates(candidate_registers_values, args): kamstrupRegisterCopier = KamstrupRegisterCopier( args.host, args.port, int(args.communication_address) ) found_registers = {} not_found_counts = 0 scanned = 0 dumpfile = "kamstrup_dump_{0}.json".format( calendar.timegm(datetime.utcnow().utctimetuple()) ) for register_id in candidate_registers_values: result = kamstrupRegisterCopier.get_register(x) if len(result) > 12: units = result[5] length = result[6] unknown = result[7] register_value = 0 for p in range(length): register_value += result[8 + p] << (8 * ((length - p) - 1)) found_registers[x] = { "timestamp": datetime.utcnow(), "units": units, "value": register_value, "value_length": length, "unknown": unknown, } print("Found register value at {0}:{1}".format(hex(x), register_value)) with open(dumpfile, "w") as json_file: json_file.write(json.dumps(found_registers, indent=4, default=json_default)) else: not_found_counts += 1 if not_found_counts % 10 == 0: print( "Hang on, still scanning, so far scanned {0} and found {1} registers".format( scanned, len(found_registers) ) ) scanned += 1 return found_registers
857
def primes(n): """ Generate a list of first n prime numbers. This function is equivalent to primerange(2, prime(n) + 1) If the range exists in the default sieve, the values will be returned from there; otherwise values will be returned but will not modify the sieve. Examples ======== >>> from sympy import primes, Symbol >>> print([i for i in primes(10)]) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] See Also ======== nextprime : Return the ith prime greater than n prevprime : Return the largest prime smaller than n randprime : Returns a random prime in a given range primorial : Returns the product of primes based on condition primerange : Generate a list of all prime numbers in the range [a, b) References ========== .. [1] https://en.wikipedia.org/wiki/Prime_number """ if ask(Q.nonpositive(n)): return primerange(0, 0) return primerange(2, prime(n) + 1)
def primes(n): """ Generate a list of first n prime numbers. This function is equivalent to primerange(2, prime(n) + 1) If the range exists in the default sieve, the values will be returned from there; otherwise values will be returned but will not modify the sieve. Examples ======== >>> from sympy import primes >>> print([i for i in primes(10)]) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] See Also ======== nextprime : Return the ith prime greater than n prevprime : Return the largest prime smaller than n randprime : Returns a random prime in a given range primorial : Returns the product of primes based on condition primerange : Generate a list of all prime numbers in the range [a, b) References ========== .. [1] https://en.wikipedia.org/wiki/Prime_number """ if ask(Q.nonpositive(n)): return primerange(0, 0) return primerange(2, prime(n) + 1)
51,523
def migrate(): dest_dir = settings.BANNER_PATH src_dir = os.path.join(settings.DATA_DIR, "banners") # init_lutris() creates the new banners directrory if os.path.isdir(src_dir) and os.path.isdir(dest_dir): for filename in os.listdir(src_dir): try: src_file = os.path.join(src_dir, filename) dest_file = os.path.join(dest_dir, filename) if not os.path.exists(dest_file): os.rename(src_file, dest_file) except OSError: pass # Skip what we can't migrate
def migrate(): dest_dir = settings.BANNER_PATH src_dir = os.path.join(settings.DATA_DIR, "banners") os.makedirs(dest_dir, exist_ok=True) # Check if dirs_exist_ok is defined ( Python >= 3.8) sig = inspect.signature(shutil.copytree) if "dirs_exist_ok" in sig.parameters: shutil.copytree(source, destination, symlinks=False, ignore_dangling_symlinks=True, dirs_exist_ok=True) else: shutil.copytree(source, destination, symlinks=False, ignore_dangling_symlinks=True) shutil.rmtree(src_dir, ignore_errors=True)
49,651
def unwrap_all(obj: Any, *, stop: Callable = None) -> Any: """ Get an original object from wrapped object (unwrapping partials, wrapped functions, and other decorators). """ while True: if stop and stop(obj): return obj elif ispartial(obj): obj = obj.func elif inspect.isroutine(obj) and hasattr(obj, '__wrapped__'): if hasattr(obj.__wrapped__, '__call__'): return obj # Don't unwrap wrapped callable types obj = obj.__wrapped__ # type: ignore elif isclassmethod(obj): obj = obj.__func__ elif isstaticmethod(obj): obj = obj.__func__ else: return obj
def unwrap_all(obj: Any, *, stop: Callable = None) -> Any: """ Get an original object from wrapped object (unwrapping partials, wrapped functions, and other decorators). """ while True: if stop and stop(obj): return obj elif ispartial(obj): obj = obj.func elif inspect.isroutine(obj) and hasattr(obj, '__wrapped__'): # Don't unwrap wrapped callable types: if hasattr(obj.__wrapped__, '__call__'): # From Python 3.10, staticmethod and classmethod have # "__wrapped__" and "__wrapped__.__call__" attributes. # Check that we are in Python 3.9 or earlier, or that the object # isn't a staticmethod or classmethod before returning. # xref: https://docs.python.org/3.10/whatsnew/3.10.html#other-language-changes if sys.version_info[:2] < (3, 10): return obj if not (isstaticmethod(obj) or isclassmethod(obj)): return obj obj = obj.__wrapped__ # type: ignore elif isclassmethod(obj): obj = obj.__func__ elif isstaticmethod(obj): obj = obj.__func__ else: return obj
47,053
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] datasets = load_dataset(extension, data_files=data_files, field="data") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = XLNetConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = XLNetTokenizerFast.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = XLNetForQuestionAnswering.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names question_column_name = "question" if "question" in column_names else column_names[0] context_column_name = "context" if "context" in column_names else column_names[1] answer_column_name = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). pad_on_right = tokenizer.padding_side == "right" # Training preprocessing def prepare_train_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=data_args.max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, return_special_tokens_mask=True, return_token_type_ids=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers). special_tokens = tokenized_examples.pop("special_tokens_mask") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] tokenized_examples["is_impossible"] = [] tokenized_examples["cls_index"] = [] tokenized_examples["p_mask"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) tokenized_examples["cls_index"].append(cls_index) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples["token_type_ids"][i] for k, s in enumerate(special_tokens[i]): if s: sequence_ids[k] = 3 context_idx = 1 if pad_on_right else 0 # Build the p_mask: non special tokens and context gets 0.0, the others get 1.0. # The cls token gets 1.0 too (for predictions of empty answers). tokenized_examples["p_mask"].append( [ 0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0 for k, s in enumerate(sequence_ids) ] ) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] answers = examples[answer_column_name][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) tokenized_examples["is_impossible"].append(1.0) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != context_idx: token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != context_idx: token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) tokenized_examples["is_impossible"].append(1.0) else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) tokenized_examples["is_impossible"].append(0.0) return tokenized_examples if training_args.do_train: train_dataset = datasets["train"].map( prepare_train_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Validation preprocessing def prepare_validation_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=data_args.max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, return_special_tokens_mask=True, return_token_type_ids=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers). special_tokens = tokenized_examples.pop("special_tokens_mask") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. tokenized_examples["example_id"] = [] # We still provide the index of the CLS token and the p_mask to the model, but not the is_impossible label. tokenized_examples["cls_index"] = [] tokenized_examples["p_mask"] = [] for i, input_ids in enumerate(tokenized_examples["input_ids"]): # Find the CLS token in the input ids. cls_index = input_ids.index(tokenizer.cls_token_id) tokenized_examples["cls_index"].append(cls_index) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples["token_type_ids"][i] for k, s in enumerate(special_tokens[i]): if s: sequence_ids[k] = 3 context_idx = 1 if pad_on_right else 0 # Build the p_mask: non special tokens and context gets 0.0, the others 1.0. tokenized_examples["p_mask"].append( [ 0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0 for k, s in enumerate(sequence_ids) ] ) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_idx else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples if training_args.do_eval: validation_dataset = datasets["validation"].map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data # collator. data_collator = ( default_data_collator if data_args.pad_to_max_length else DataCollatorWithPadding( tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None, ) ) # Post-processing: def post_processing_function(examples, features, predictions): # Post-processing: we match the start logits and end logits to answers in the original context. predictions, scores_diff_json = postprocess_qa_predictions_with_beam_search( examples=examples, features=features, predictions=predictions, version_2_with_negative=data_args.version_2_with_negative, n_best_size=data_args.n_best_size, max_answer_length=data_args.max_answer_length, start_n_top=model.config.start_n_top, end_n_top=model.config.end_n_top, output_dir=training_args.output_dir, is_world_process_zero=trainer.is_world_process_zero(), ) # Format the result to the format the metric expects. if data_args.version_2_with_negative: formatted_predictions = [ {"id": k, "prediction_text": v, "no_answer_probability": scores_diff_json[k]} for k, v in predictions.items() ] else: formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in datasets["validation"]] return EvalPrediction(predictions=formatted_predictions, label_ids=references) metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad") def compute_metrics(p: EvalPrediction): return metric.compute(predictions=p.predictions, references=p.label_ids) # Initialize our Trainer trainer = QuestionAnsweringTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=validation_dataset if training_args.do_eval else None, eval_examples=datasets["validation"] if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, post_process_function=post_processing_function, compute_metrics=compute_metrics, ) # Training if training_args.do_train: train_result = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) trainer.save_model() # Saves the tokenizer too for easy upload output_train_file = os.path.join(training_args.output_dir, "train_results.txt") if trainer.is_world_process_zero(): with open(output_train_file, "w") as writer: logger.info("***** Train results *****") for key, value in sorted(train_result.metrics.items()): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") results = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in sorted(results.items()): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") return results
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] datasets = load_dataset(extension, data_files=data_files, field="data") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = XLNetConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = XLNetTokenizerFast.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = XLNetForQuestionAnswering.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names question_column_name = "question" if "question" in column_names else column_names[0] context_column_name = "context" if "context" in column_names else column_names[1] answer_column_name = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). pad_on_right = tokenizer.padding_side == "right" # Training preprocessing def prepare_train_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=data_args.max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, return_special_tokens_mask=True, return_token_type_ids=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers). special_tokens = tokenized_examples.pop("special_tokens_mask") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] tokenized_examples["is_impossible"] = [] tokenized_examples["cls_index"] = [] tokenized_examples["p_mask"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) tokenized_examples["cls_index"].append(cls_index) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples["token_type_ids"][i] for k, s in enumerate(special_tokens[i]): if s: sequence_ids[k] = 3 context_idx = 1 if pad_on_right else 0 # Build the p_mask: non special tokens and context gets 0.0, the others get 1.0. # The cls token gets 1.0 too (for predictions of empty answers). tokenized_examples["p_mask"].append( [ 0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0 for k, s in enumerate(sequence_ids) ] ) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] answers = examples[answer_column_name][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) tokenized_examples["is_impossible"].append(1.0) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != context_idx: token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != context_idx: token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) tokenized_examples["is_impossible"].append(1.0) else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) tokenized_examples["is_impossible"].append(0.0) return tokenized_examples if training_args.do_train: train_dataset = datasets["train"].map( prepare_train_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Validation preprocessing def prepare_validation_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=data_args.max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, return_special_tokens_mask=True, return_token_type_ids=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers). special_tokens = tokenized_examples.pop("special_tokens_mask") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. tokenized_examples["example_id"] = [] # We still provide the index of the CLS token and the p_mask to the model, but not the is_impossible label. tokenized_examples["cls_index"] = [] tokenized_examples["p_mask"] = [] for i, input_ids in enumerate(tokenized_examples["input_ids"]): # Find the CLS token in the input ids. cls_index = input_ids.index(tokenizer.cls_token_id) tokenized_examples["cls_index"].append(cls_index) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples["token_type_ids"][i] for k, s in enumerate(special_tokens[i]): if s: sequence_ids[k] = 3 context_idx = 1 if pad_on_right else 0 # Build the p_mask: non special tokens and context gets 0.0, the others 1.0. tokenized_examples["p_mask"].append( [ 0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0 for k, s in enumerate(sequence_ids) ] ) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_idx else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples if training_args.do_eval: validation_dataset = datasets["validation"].map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data # collator. data_collator = ( default_data_collator if data_args.pad_to_max_length else DataCollatorWithPadding( tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None, ) ) # Post-processing: def post_processing_function(examples, features, predictions): # Post-processing: we match the start logits and end logits to answers in the original context. predictions, scores_diff_json = postprocess_qa_predictions_with_beam_search( examples=examples, features=features, predictions=predictions, version_2_with_negative=data_args.version_2_with_negative, n_best_size=data_args.n_best_size, max_answer_length=data_args.max_answer_length, start_n_top=model.config.start_n_top, end_n_top=model.config.end_n_top, output_dir=training_args.output_dir, is_world_process_zero=trainer.is_world_process_zero(), ) # Format the result to the format the metric expects. if data_args.version_2_with_negative: formatted_predictions = [ {"id": k, "prediction_text": v, "no_answer_probability": scores_diff_json[k]} for k, v in predictions.items() ] else: formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in datasets["validation"]] return EvalPrediction(predictions=formatted_predictions, label_ids=references) metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad") def compute_metrics(p: EvalPrediction): return metric.compute(predictions=p.predictions, references=p.label_ids) # Initialize our Trainer trainer = QuestionAnsweringTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=validation_dataset if training_args.do_eval else None, eval_examples=datasets["validation"] if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, post_process_function=post_processing_function, compute_metrics=compute_metrics, ) # Training if training_args.do_train: train_result = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) trainer.save_model() # Saves the tokenizer too for easy upload output_train_file = os.path.join(training_args.output_dir, "train_results.txt") if trainer.is_world_process_zero(): with open(output_train_file, "w") as writer: logger.info("***** Train results *****") for key, value in sorted(train_result.metrics.items()): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") results = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in sorted(results.items()): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") return results
26,433
def load_font(prefix, ttf_filename, charmap_filename, directory=None): """ Loads a font file and the associated charmap. If ``directory`` the files will be looked for in the qtawesome ``fonts`` directory. Parameters ---------- prefix: str Prefix string to be used when accessing a given font set ttf_filename: str Ttf font filename charmap_filename: str Character map filename directory: str or None, optional Directory path for font and charmap files Example ------- If you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap added to the qtawesome ``fonts`` directory (usually located at ``</path/to/lib/python>/site-packages/qtawesome/fonts/``) you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json' ) However, if you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap located in a specific path outside the qtawesome ``font`` directory like for example ``/path/to/myproject/fonts`` you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json', directory='/path/to/myproject/fonts' ) """ return _instance().load_font(prefix, ttf_filename, charmap_filename, directory)
def load_font(prefix, ttf_filename, charmap_filename, directory=None): """ Loads a font file and the associated charmap. If ``directory`` the files will be looked for in the qtawesome ``fonts`` directory. Parameters ---------- prefix: str Prefix string to be used when accessing a given font set ttf_filename: str Ttf font filename charmap_filename: str Character map filename directory: str or None, optional Directory path for font and charmap files Example ------- If you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap added to the qtawesome ``fonts`` directory (usually located at ``</path/to/lib/python>/site-packages/qtawesome/fonts/``) you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json' ) However, if you want to load a font ``myicon.tff`` with a ``myicon-charmap.json`` charmap located in a specific path outside the qtawesome ``font`` directory like for example ``/path/to/myproject/fonts`` you can use:: qta.load_font( 'myicon', 'myicon.ttf', 'myicon-charmap.json', directory='/path/to/myproject/fonts' ) """ return _instance().load_font(prefix, ttf_filename, charmap_filename, directory)
45,105
def with_logger(func: Callable) -> Callable: """ Decorator, that allows function to use Prefect logger instance. Enrich function signature with keyword-only argument "logger". Use it to write logs from Prefect task. Args: - func (Callable): Function that takes `logger` argument. Returns: - Callable: a wrapper with Prefect logger passed. Example: >>> @task ... def some_task(): ... return 123 ... >>> @task ... @with_logger ... def task_with_logger(arg, logger): ... logger.warning('arg value: %s', arg) ... >>> with Flow('some-flow') as flow: ... res = some_task() ... task_with_logger(res) ... """ def _wrapper(*args, **kwargs) -> Any: import prefect return partial(func, logger=prefect.context.get("logger"))(*args, **kwargs) return with_updated_signature(func, _wrapper, remove_func_args={"logger"})
def with_logger(func: Callable) -> Callable: """ Decorator that allows function to use Prefect logger instance. Enrich function signature with keyword-only argument "logger". Use it to write logs from Prefect task. Args: - func (Callable): Function that takes `logger` argument. Returns: - Callable: a wrapper with Prefect logger passed. Example: >>> @task ... def some_task(): ... return 123 ... >>> @task ... @with_logger ... def task_with_logger(arg, logger): ... logger.warning('arg value: %s', arg) ... >>> with Flow('some-flow') as flow: ... res = some_task() ... task_with_logger(res) ... """ def _wrapper(*args, **kwargs) -> Any: import prefect return partial(func, logger=prefect.context.get("logger"))(*args, **kwargs) return with_updated_signature(func, _wrapper, remove_func_args={"logger"})
7,323
def set_color(image, coords, color, alpha=1): """Set pixel color in the image at the given coordinates. Note that this function modifies the color of the image in-place. Coordinates that exceed the shape of the image will be ignored. Parameters ---------- image : (M, N, D) ndarray Image coords : tuple of ((P,) ndarray, (P,) ndarray) Row and column coordinates of pixels to be colored. color : (D,) ndarray Color to be assigned to coordinates in the image. alpha : scalar or (N,) ndarray Alpha values used to blend color with image. 0 is transparent, 1 is opaque. Examples -------- >>> from skimage.draw import line, set_color >>> img = np.zeros((10, 10), dtype=np.uint8) >>> rr, cc = line(1, 1, 20, 20) >>> set_color(img, (rr, cc), 1) >>> img array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=uint8) """ rr, cc = coords if image.ndim == 2: image = image[..., np.newaxis] color = np.array(color, ndmin=1, copy=False) if image.shape[-1] != color.shape[-1]: raise ValueError(f'Color shape ({color.shape[0]}) must watch last ' 'image dimension ({image.shape[-1]}).') if np.isscalar(alpha): # Can be replaced by ``full_like`` when numpy 1.8 becomes # minimum dependency alpha = np.ones_like(rr) * alpha rr, cc, alpha = _coords_inside_image(rr, cc, image.shape, val=alpha) alpha = alpha[..., np.newaxis] color = color * alpha vals = image[rr, cc] * (1 - alpha) image[rr, cc] = vals + color
def set_color(image, coords, color, alpha=1): """Set pixel color in the image at the given coordinates. Note that this function modifies the color of the image in-place. Coordinates that exceed the shape of the image will be ignored. Parameters ---------- image : (M, N, D) ndarray Image coords : tuple of ((P,) ndarray, (P,) ndarray) Row and column coordinates of pixels to be colored. color : (D,) ndarray Color to be assigned to coordinates in the image. alpha : scalar or (N,) ndarray Alpha values used to blend color with image. 0 is transparent, 1 is opaque. Examples -------- >>> from skimage.draw import line, set_color >>> img = np.zeros((10, 10), dtype=np.uint8) >>> rr, cc = line(1, 1, 20, 20) >>> set_color(img, (rr, cc), 1) >>> img array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=uint8) """ rr, cc = coords if image.ndim == 2: image = image[..., np.newaxis] color = np.array(color, ndmin=1, copy=False) if image.shape[-1] != color.shape[-1]: raise ValueError(f'Color shape ({color.shape[0]}) must match last ' 'image dimension ({image.shape[-1]}).') if np.isscalar(alpha): # Can be replaced by ``full_like`` when numpy 1.8 becomes # minimum dependency alpha = np.ones_like(rr) * alpha rr, cc, alpha = _coords_inside_image(rr, cc, image.shape, val=alpha) alpha = alpha[..., np.newaxis] color = color * alpha vals = image[rr, cc] * (1 - alpha) image[rr, cc] = vals + color
27,710
def test_popen_default_stdin_stderr_and_stdin_None(testdir) -> None: # stdout, stderr default to pipes, # stdin can be None to not close the pipe, avoiding # "ValueError: flush of closed file" with `communicate()`. # # Wraps the test to not make it hang when run with "-s". p1 = testdir.makepyfile( ''' import sys def test_inner(testdir): p1 = testdir.makepyfile( """ import sys print(sys.stdin.read()) # empty print('stdout') sys.stderr.write('stderr') """ ) proc = testdir.popen([sys.executable, str(p1)], stdin=None) stdout, stderr = proc.communicate(b"ignored") assert stdout.splitlines() == [b"", b"stdout"] assert stderr.splitlines() == [b"stderr"] assert proc.returncode == 0 ''' ) result = testdir.runpytest("-p", "pytester", str(p1)) assert result.ret == 0
def test_popen_default_stdin_stderr_and_stdin_None(testdir) -> None: # stdout, stderr default to pipes, # stdin can be None to not close the pipe, avoiding # "ValueError: flush of closed file" with `communicate()`. # # Wraps the test to make it not hang when run with "-s". p1 = testdir.makepyfile( ''' import sys def test_inner(testdir): p1 = testdir.makepyfile( """ import sys print(sys.stdin.read()) # empty print('stdout') sys.stderr.write('stderr') """ ) proc = testdir.popen([sys.executable, str(p1)], stdin=None) stdout, stderr = proc.communicate(b"ignored") assert stdout.splitlines() == [b"", b"stdout"] assert stderr.splitlines() == [b"stderr"] assert proc.returncode == 0 ''' ) result = testdir.runpytest("-p", "pytester", str(p1)) assert result.ret == 0
8,300
def restore_relations(context=None, all_relations=None): """Restore relations from a annotation on the portal. """ portal = getSite() if all_relations is None: all_relations = IAnnotations(portal)[RELATIONS_KEY] logger.info(f'Loaded {len(all_relations)} relations to restore') update_linkintegrity = set() modified_items = set() modified_relation_lists = defaultdict(list) # remove duplicates but keep original order unique_relations = [] seen = set() seen_add = seen.add for rel in all_relations: hashable = tuple(rel.items()) if hashable not in seen: unique_relations.append(rel) seen_add(hashable) else: logger.info(f'Dropping duplicate: {hashable}') if len(unique_relations) < len(all_relations): logger.info(f'Dropping {len(all_relations) - len(unique_relations)} duplicates') all_relations = unique_relations intids = getUtility(IIntIds) for index, item in enumerate(all_relations, start=1): if not index % 500: logger.info(f'Restored {index} of {len(all_relations)} relations...') try: source_obj = uuidToObject(item['from_uuid']) except KeyError: # brain exists but no object source_obj = None try: target_obj = uuidToObject(item['to_uuid']) except KeyError: # brain exists but no object target_obj = None if not source_obj: logger.info(f'{item["from_uuid"]} is missing') continue if not target_obj: logger.info(f'{item["to_uuid"]} is missing') continue if not IDexterityContent.providedBy(source_obj): logger.info(f'{source_obj} is no dexterity content') continue if not IDexterityContent.providedBy(target_obj): logger.info(f'{target_obj} is no dexterity content') continue from_attribute = item['from_attribute'] try: to_id = intids.getId(target_obj) except KeyError as e: logger.info(f'No intid for {target_obj}') continue if from_attribute == referencedRelationship: # Ignore linkintegrity for now. We'll rebuilt it at the end! update_linkintegrity.add(item['from_uuid']) continue if HAS_ITERATE and from_attribute == ITERATE_RELATION_NAME: # Iterate relations are not set as values of fields relation = StagingRelationValue(to_id) event._setRelation(source_obj, ITERATE_RELATION_NAME, relation) continue field_and_schema = get_field_and_schema_for_fieldname(from_attribute, source_obj.portal_type) if field_and_schema is None: # the from_attribute is no field logger.info(f'No field. Setting relation: {item}') event._setRelation(source_obj, from_attribute, RelationValue(to_id)) continue field, schema = field_and_schema relation = RelationValue(to_id) if isinstance(field, RelationList): logger.info(f'Add relation to relationslist {from_attribute} from {source_obj.absolute_url()} to {target_obj.absolute_url()}') if item['from_uuid'] in modified_relation_lists.get(from_attribute, []): # Do not purge relations existing_relations = getattr(source_obj, from_attribute, []) else: # First touch. Make sure we purge! existing_relations = [] existing_relations.append(relation) setattr(source_obj, from_attribute, existing_relations) modified_items.add(item['from_uuid']) modified_relation_lists[from_attribute].append(item['from_uuid']) continue elif isinstance(field, (Relation, RelationChoice)): logger.info(f'Add relation {from_attribute} from {source_obj.absolute_url()} to {target_obj.absolute_url()}') setattr(source_obj, from_attribute, relation) modified_items.add(item['from_uuid']) continue else: # we should never end up here! logger.warn(f'Unexpected relation {from_attribute} from {source_obj.absolute_url()} to {target_obj.absolute_url()}') update_linkintegrity = set(update_linkintegrity) logger.info(f'Updating linkintegrity for {len(update_linkintegrity)} items') for uuid in sorted(update_linkintegrity): modifiedContent(uuidToObject(uuid), None) logger.info(f'Updating relations for {len(modified_items)} items') for uuid in sorted(modified_items): obj = uuidToObject(uuid) # updateRelations from z3c.relationfield does not properly update relations in behaviors # that are registered with a marker-interface. # update_behavior_relations (from plone.app.relationfield) does that but does not update # those in the main schema. Duh! updateRelations(obj, None) update_behavior_relations(obj, None) # purge annotation from portal if they exist if RELATIONS_KEY in IAnnotations(portal): del IAnnotations(portal)[RELATIONS_KEY] logger.info('Done!')
def restore_relations(context=None, all_relations=None): """Restore relations from a annotation on the portal. """ portal = getSite() if all_relations is None: all_relations = IAnnotations(portal)[RELATIONS_KEY] logger.info(f'Loaded {len(all_relations)} relations to restore') update_linkintegrity = set() modified_items = set() modified_relation_lists = defaultdict(list) # remove duplicates but keep original order unique_relations = [] seen = set() seen_add = seen.add for rel in all_relations: hashable = tuple(rel.items()) if hashable not in seen: unique_relations.append(rel) seen_add(hashable) else: logger.info(f'Dropping duplicate: {hashable}') if len(unique_relations) < len(all_relations): logger.info(f'Dropping {len(all_relations) - len(unique_relations)} duplicates') all_relations = unique_relations intids = getUtility(IIntIds) for index, item in enumerate(all_relations, start=1): if not index % 500: logger.info(f'Restored {index} of {len(all_relations)} relations...') try: source_obj = uuidToObject(item['from_uuid']) except KeyError: # brain exists but no object source_obj = None try: target_obj = uuidToObject(item['to_uuid']) except KeyError: # brain exists but no object target_obj = None if not source_obj: logger.info(f'{item["from_uuid"]} is missing') continue if not target_obj: logger.info(f'{item["to_uuid"]} is missing') continue if not IDexterityContent.providedBy(source_obj): logger.info(f'{source_obj} is no dexterity content') continue if not IDexterityContent.providedBy(target_obj): logger.info(f'{target_obj} is no dexterity content') continue from_attribute = item['from_attribute'] try: to_id = intids.getId(target_obj) except KeyError as e: logger.warning(f'No intid for {target_obj}') continue if from_attribute == referencedRelationship: # Ignore linkintegrity for now. We'll rebuilt it at the end! update_linkintegrity.add(item['from_uuid']) continue if HAS_ITERATE and from_attribute == ITERATE_RELATION_NAME: # Iterate relations are not set as values of fields relation = StagingRelationValue(to_id) event._setRelation(source_obj, ITERATE_RELATION_NAME, relation) continue field_and_schema = get_field_and_schema_for_fieldname(from_attribute, source_obj.portal_type) if field_and_schema is None: # the from_attribute is no field logger.info(f'No field. Setting relation: {item}') event._setRelation(source_obj, from_attribute, RelationValue(to_id)) continue field, schema = field_and_schema relation = RelationValue(to_id) if isinstance(field, RelationList): logger.info(f'Add relation to relationslist {from_attribute} from {source_obj.absolute_url()} to {target_obj.absolute_url()}') if item['from_uuid'] in modified_relation_lists.get(from_attribute, []): # Do not purge relations existing_relations = getattr(source_obj, from_attribute, []) else: # First touch. Make sure we purge! existing_relations = [] existing_relations.append(relation) setattr(source_obj, from_attribute, existing_relations) modified_items.add(item['from_uuid']) modified_relation_lists[from_attribute].append(item['from_uuid']) continue elif isinstance(field, (Relation, RelationChoice)): logger.info(f'Add relation {from_attribute} from {source_obj.absolute_url()} to {target_obj.absolute_url()}') setattr(source_obj, from_attribute, relation) modified_items.add(item['from_uuid']) continue else: # we should never end up here! logger.warn(f'Unexpected relation {from_attribute} from {source_obj.absolute_url()} to {target_obj.absolute_url()}') update_linkintegrity = set(update_linkintegrity) logger.info(f'Updating linkintegrity for {len(update_linkintegrity)} items') for uuid in sorted(update_linkintegrity): modifiedContent(uuidToObject(uuid), None) logger.info(f'Updating relations for {len(modified_items)} items') for uuid in sorted(modified_items): obj = uuidToObject(uuid) # updateRelations from z3c.relationfield does not properly update relations in behaviors # that are registered with a marker-interface. # update_behavior_relations (from plone.app.relationfield) does that but does not update # those in the main schema. Duh! updateRelations(obj, None) update_behavior_relations(obj, None) # purge annotation from portal if they exist if RELATIONS_KEY in IAnnotations(portal): del IAnnotations(portal)[RELATIONS_KEY] logger.info('Done!')
59,723
def _blockm(block_method, table, outfile, x, y, z, **kwargs): r""" Block average (x,y,z) data tables by mean, median, or mode estimation. Reads arbitrarily located (x,y,z) triples [or optionally weighted quadruples (x,y,z,w)] from a table and writes to the output a mean, median, or mode (depending on ``block_method``) position and value for every non-empty block in a grid region defined by the ``region`` and ``spacing`` parameters. Parameters ---------- block_method : str Name of the GMT module to call. Must be "blockmean" "blockmedian" or "blockmode". Returns ------- output : pandas.DataFrame or None Return type depends on whether the ``outfile`` parameter is set: - :class:`pandas.DataFrame` table with (x, y, z) columns if ``outfile`` is not set - None if ``outfile`` is set (filtered output will be stored in file set by ``outfile``) """ with GMTTempFile(suffix=".csv") as tmpfile: with Session() as lib: # Choose how data will be passed into the module table_context = lib.virtualfile_from_data( check_kind="vector", data=table, x=x, y=y, z=z ) # Run blockm* on data table with table_context as infile: if outfile is None: outfile = tmpfile.name arg_str = " ".join([infile, build_arg_string(kwargs), "->" + outfile]) lib.call_module(module=block_method, args=arg_str) # Read temporary csv output to a pandas table if outfile == tmpfile.name: # if user did not set outfile, return pd.DataFrame try: column_names = table.columns.to_list() result = pd.read_csv(tmpfile.name, sep="\t", names=column_names) except AttributeError: # 'str' object has no attribute 'columns' result = pd.read_csv(tmpfile.name, sep="\t", header=None, comment=">") elif outfile != tmpfile.name: # return None if outfile set, output in outfile result = None return result
def _blockm(block_method, table, outfile, x, y, z, **kwargs): r""" Block average (x,y,z) data tables by mean, median, or mode estimation. Reads arbitrarily located (x,y,z) triples [or optionally weighted quadruples (x,y,z,w)] from a table and writes to the output a mean, median, or mode (depending on ``block_method``) position and value for every non-empty block in a grid region defined by the ``region`` and ``spacing`` parameters. Parameters ---------- block_method : str Name of the GMT module to call. Must be "blockmean" "blockmedian" or "blockmode". Returns ------- output : pandas.DataFrame or None Return type depends on whether the ``outfile`` parameter is set: - :class:`pandas.DataFrame` table with (x, y, z) columns if ``outfile`` is not set - None if ``outfile`` is set (filtered output will be stored in file set by ``outfile``) """ with GMTTempFile(suffix=".csv") as tmpfile: with Session() as lib: # Choose how data will be passed into the module table_context = lib.virtualfile_from_data( check_kind="vector", data=table, x=x, y=y, z=z ) # Run blockm* on data table with table_context as infile: if outfile is None: outfile = tmpfile.name arg_str = " ".join([infile, build_arg_string(kwargs), "->" + outfile]) lib.call_module(module=block_method, args=arg_str) # Read temporary csv output to a pandas table if outfile == tmpfile.name: # if user did not set outfile, return pd.DataFrame try: column_names = table.columns.to_list() result = pd.read_csv(tmpfile.name, sep="\t", names=column_names) except AttributeError: # 'str' object has no attribute 'columns' result = pd.read_csv(tmpfile.name, sep="\t", header=None, comment=">") elif outfile != tmpfile.name: # return None if outfile set, output in outfile result = None return result
46,588
def test_set_with_invalid_key() -> None: cfg = OmegaConf.create() with pytest.raises(KeyValidationError): cfg[object()] # type: ignore
def test_set_with_invalid_key() -> None: cfg = OmegaConf.create() with pytest.raises(KeyValidationError): cfg[object()] = "a" # type: ignore
14,304
def merge_charstrings(glyphOrder, num_masters, top_dicts, masterModel): vsindex_dict = {} vsindex_by_key = {} varDataList = [] masterSupports = [] default_charstrings = top_dicts[0].CharStrings for gid, gname in enumerate(glyphOrder): all_cs = [ _get_cs(td.CharStrings, gname) for td in top_dicts] if len([gs for gs in all_cs if gs is not None]) == 1: continue model, model_cs = masterModel.getSubModel(all_cs) # create the first pass CFF2 charstring, from # the default charstring. default_charstring = model_cs[0] var_pen = CFF2CharStringMergePen([], gname, num_masters, 0) # We need to override outlineExtractor because these # charstrings do have widths in the 'program'; we need to drop these # values rather than post assertion error for them. default_charstring.outlineExtractor = MergeOutlineExtractor default_charstring.draw(var_pen) # Add the coordinates from all the other regions to the # blend lists in the CFF2 charstring. region_cs = model_cs[1:] for region_idx, region_charstring in enumerate(region_cs, start=1): var_pen.restart(region_idx) region_charstring.outlineExtractor = MergeOutlineExtractor region_charstring.draw(var_pen) # Collapse each coordinate list to a blend operator and its args. new_cs = var_pen.getCharString( private=default_charstring.private, globalSubrs=default_charstring.globalSubrs, var_model=model, optimize=True) default_charstrings[gname] = new_cs if (not var_pen.seen_moveto) or ('blend' not in new_cs.program): # If this is not a marking glyph, or if there are no blend # arguments, then we can use vsindex 0. No need to # check if we need a new vsindex. continue # If the charstring required a new model, create # a VarData table to go with, and set vsindex. key = tuple(v is not None for v in all_cs) try: vsindex = vsindex_by_key[key] except KeyError: vsindex = _add_new_vsindex(model, key,masterSupports, vsindex_dict, vsindex_by_key, varDataList) # We do not need to check for an existing new_cs.private.vsindex, # as we know it doesn't exist yet. if vsindex != 0: new_cs.program[:0] = [vsindex, 'vsindex'] # If there is no variation in any of the charstrings, then vsindex_dict # never gets built. This is could still be needed if there is variation # in the PrivatDict, so we will build the default data for vsindex = 0. if not vsindex_dict: key = (True)*num_masters _add_new_vsindex(model, key, masterSupports, vsindex_dict, vsindex_by_key, varDataList) cvData = CVarData(varDataList=varDataList, masterSupports=masterSupports, vsindex_dict=vsindex_dict) # XXX To do: optimize use of vsindex between the PrivateDicts and # charstrings return cvData
def merge_charstrings(glyphOrder, num_masters, top_dicts, masterModel): vsindex_dict = {} vsindex_by_key = {} varDataList = [] masterSupports = [] default_charstrings = top_dicts[0].CharStrings for gid, gname in enumerate(glyphOrder): all_cs = [ _get_cs(td.CharStrings, gname) for td in top_dicts] if len([gs for gs in all_cs if gs is not None]) == 1: continue model, model_cs = masterModel.getSubModel(all_cs) # create the first pass CFF2 charstring, from # the default charstring. default_charstring = model_cs[0] var_pen = CFF2CharStringMergePen([], gname, num_masters, 0) # We need to override outlineExtractor because these # charstrings do have widths in the 'program'; we need to drop these # values rather than post assertion error for them. default_charstring.outlineExtractor = MergeOutlineExtractor default_charstring.draw(var_pen) # Add the coordinates from all the other regions to the # blend lists in the CFF2 charstring. region_cs = model_cs[1:] for region_idx, region_charstring in enumerate(region_cs, start=1): var_pen.restart(region_idx) region_charstring.outlineExtractor = MergeOutlineExtractor region_charstring.draw(var_pen) # Collapse each coordinate list to a blend operator and its args. new_cs = var_pen.getCharString( private=default_charstring.private, globalSubrs=default_charstring.globalSubrs, var_model=model, optimize=True) default_charstrings[gname] = new_cs if (not var_pen.seen_moveto) or ('blend' not in new_cs.program): # If this is not a marking glyph, or if there are no blend # arguments, then we can use vsindex 0. No need to # check if we need a new vsindex. continue # If the charstring required a new model, create # a VarData table to go with, and set vsindex. key = tuple(v is not None for v in all_cs) try: vsindex = vsindex_by_key[key] except KeyError: vsindex = _add_new_vsindex(model, key, masterSupports, vsindex_dict, vsindex_by_key, varDataList) # We do not need to check for an existing new_cs.private.vsindex, # as we know it doesn't exist yet. if vsindex != 0: new_cs.program[:0] = [vsindex, 'vsindex'] # If there is no variation in any of the charstrings, then vsindex_dict # never gets built. This is could still be needed if there is variation # in the PrivatDict, so we will build the default data for vsindex = 0. if not vsindex_dict: key = (True)*num_masters _add_new_vsindex(model, key, masterSupports, vsindex_dict, vsindex_by_key, varDataList) cvData = CVarData(varDataList=varDataList, masterSupports=masterSupports, vsindex_dict=vsindex_dict) # XXX To do: optimize use of vsindex between the PrivateDicts and # charstrings return cvData