id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
35,043
def _get_name_static(canonical, dtype, shape, batch_dim=None): """Get name for static shape tensor array op corresponding to the canonical name""" dim_names = [] for dim in shape: if isinstance(dim, Any): dim_names.append("any") else: dim_names.append(str(dim)) shape_str = "_".join(dim_names) if len(shape_str) == 0: shape_str = "scalar" if canonical == "tensor_t": return "static_tensor_{}_{}_t".format(dtype, shape_str) if not batch_dim or canonical == "tensor_constructor" or canonical == "tensor_nil": return "{}_{}_{}".format(canonical, dtype, shape_str) if batch_dim != 1: return "{}_{}_{}".format(canonical, dtype, shape_str) else: return "{}_{}_batch{}_{}".format(canonical, dtype, str(batch_dim), shape_str)
def _get_name_static(canonical, dtype, shape, batch_dim=None): """Get name for static shape tensor array op corresponding to the canonical name""" dim_names = [] for dim in shape: if isinstance(dim, Any): dim_names.append("any") else: dim_names.append(str(dim)) shape_str = "_".join(dim_names) if len(shape_str) == 0: shape_str = "scalar" if canonical == "tensor_t": return "static_tensor_{}_{}_t".format(dtype, shape_str) if not batch_dim or canonical == "tensor_constructor" or canonical == "tensor_nil": return "{}_{}_{}".format(canonical, dtype, shape_str) if batch_dim != 1: return "{}_{}_{}".format(canonical, dtype, shape_str) return "{}_{}_batch{}_{}".format(canonical, dtype, str(batch_dim), shape_str)
46,628
def meta_fcnet(fname_objective: str, fname_cost: str, noise: bool=True) -> Tuple[UserFunctionWrapper, ParameterSpace]: """ Interface to the Meta-FCNet benchmark which imitates the hyperparameter optimization of a fully connected neural network on OpenML like classification datasets. Offline generated function samples can be download here: http://www.ml4aad.org/wp-content/uploads/2019/05/profet_data.tar.gz NOTE: make sure that the index for the objective function and the cost function match, e.g for sample_objective_i.pkl and sample_cost.pkl the index i should be the same. For further information about Profet and the generated meta-surrogate benchmarks see: Meta-Surrogate Benchmarking for Hyperparameter Optimization A. Klein and Z. Dai and F. Hutter and N. Lawrence and J. Gonzalez arXiv:1905.12982 [cs.LG] (2019) :param fname_objective: filename for the objective function :param fname_cost: filename for the cost function :param noise: determines whether to add noise on the function value or not :return: Tuple of user function object and parameter space """ parameter_space = ParameterSpace([ ContinuousParameter('lr', 0, 1), # original space [1e-6, 1e-1] ContinuousParameter('batch_size', 0, 1), # original space [8, 128] ContinuousParameter('n_units_1', 0, 1), # original space [16, 512] ContinuousParameter('n_units_2', 0, 1), # original space [16, 512] ContinuousParameter('dropout_1', 0, 1), # original space [0, 0.99] ContinuousParameter('dropout_2', 0, 1), # original space [0, 0.99] ]) data = pickle.load(open(fname_objective, "rb")) x_mean_objective = data["x_mean"] x_std_objective = data["x_std"] task_feature_objective = data["task_feature"] objective = get_default_architecture_classification(x_mean_objective.shape[0]).float() objective.load_state_dict(data["state_dict"]) data = pickle.load(open(fname_cost, "rb")) x_mean_cost = data["x_mean"] x_std_cost = data["x_std"] y_mean_cost = data["y_mean"] y_std_cost = data["y_std"] task_feature_cost = data["task_feature"] cost = get_default_architecture_cost(x_mean_cost.shape[0]).float() cost.load_state_dict(data["state_dict"]) def objective_function(config, with_noise=True): Ht = np.repeat(task_feature_objective[None, :], config.shape[0], axis=0) x = np.concatenate((config, Ht), axis=1) x_norm = torch.from_numpy((x - x_mean_objective) / x_std_objective).float() o = objective.forward(x_norm).data.numpy() m = o[:, 0] log_v = o[:, 1] if with_noise: feval = np.random.randn() * np.sqrt(np.exp(log_v)) + m else: feval = m Ht = np.repeat(task_feature_cost[None, :], config.shape[0], axis=0) x = np.concatenate((config, Ht), axis=1) x_norm = torch.from_numpy((x - x_mean_cost) / x_std_cost).float() o = cost.forward(x_norm).data.numpy() log_m = o[:, 0] * y_std_cost + y_mean_cost log_log_v = o[:, 1] * y_std_cost ** 2 if with_noise: log_c = np.random.randn() * np.sqrt(np.exp(log_log_v)) + log_m else: log_c = log_m return feval[:, None], np.exp(log_c)[:, None] f = partial(objective_function, with_noise=noise) return f, parameter_space
def meta_fcnet(fname_objective: str, fname_cost: str, noise: bool=True) -> Tuple[UserFunctionWrapper, ParameterSpace]: """ Interface to the Meta-FCNet benchmark which imitates the hyperparameter optimization of a fully connected neural network on OpenML like classification datasets. Offline generated function samples can be download here: http://www.ml4aad.org/wp-content/uploads/2019/05/profet_data.tar.gz NOTE: make sure that the index for the objective function and the cost function match, e.g for sample_objective_i.pkl and sample_cost_i.pkl the index i should be the same. For further information about Profet and the generated meta-surrogate benchmarks see: Meta-Surrogate Benchmarking for Hyperparameter Optimization A. Klein and Z. Dai and F. Hutter and N. Lawrence and J. Gonzalez arXiv:1905.12982 [cs.LG] (2019) :param fname_objective: filename for the objective function :param fname_cost: filename for the cost function :param noise: determines whether to add noise on the function value or not :return: Tuple of user function object and parameter space """ parameter_space = ParameterSpace([ ContinuousParameter('lr', 0, 1), # original space [1e-6, 1e-1] ContinuousParameter('batch_size', 0, 1), # original space [8, 128] ContinuousParameter('n_units_1', 0, 1), # original space [16, 512] ContinuousParameter('n_units_2', 0, 1), # original space [16, 512] ContinuousParameter('dropout_1', 0, 1), # original space [0, 0.99] ContinuousParameter('dropout_2', 0, 1), # original space [0, 0.99] ]) data = pickle.load(open(fname_objective, "rb")) x_mean_objective = data["x_mean"] x_std_objective = data["x_std"] task_feature_objective = data["task_feature"] objective = get_default_architecture_classification(x_mean_objective.shape[0]).float() objective.load_state_dict(data["state_dict"]) data = pickle.load(open(fname_cost, "rb")) x_mean_cost = data["x_mean"] x_std_cost = data["x_std"] y_mean_cost = data["y_mean"] y_std_cost = data["y_std"] task_feature_cost = data["task_feature"] cost = get_default_architecture_cost(x_mean_cost.shape[0]).float() cost.load_state_dict(data["state_dict"]) def objective_function(config, with_noise=True): Ht = np.repeat(task_feature_objective[None, :], config.shape[0], axis=0) x = np.concatenate((config, Ht), axis=1) x_norm = torch.from_numpy((x - x_mean_objective) / x_std_objective).float() o = objective.forward(x_norm).data.numpy() m = o[:, 0] log_v = o[:, 1] if with_noise: feval = np.random.randn() * np.sqrt(np.exp(log_v)) + m else: feval = m Ht = np.repeat(task_feature_cost[None, :], config.shape[0], axis=0) x = np.concatenate((config, Ht), axis=1) x_norm = torch.from_numpy((x - x_mean_cost) / x_std_cost).float() o = cost.forward(x_norm).data.numpy() log_m = o[:, 0] * y_std_cost + y_mean_cost log_log_v = o[:, 1] * y_std_cost ** 2 if with_noise: log_c = np.random.randn() * np.sqrt(np.exp(log_log_v)) + log_m else: log_c = log_m return feval[:, None], np.exp(log_c)[:, None] f = partial(objective_function, with_noise=noise) return f, parameter_space
8,066
def test_simple_write_compressed(tmpdir): data, header = sunpy.io.fits.read(AIA_171_IMAGE)[0] outfile = tmpdir / "test.fits" sunpy.io.fits.write(str(outfile), data, header, hdu_type=fits.CompImageHDU) assert outfile.exists() with fits.open(str(outfile)) as hdul: assert len(hdul) == 2 assert isinstance(hdul[1], fits.CompImageHDU)
def test_simple_write_compressed(tmpdir): outfile = os.path.join(tmpdir, "test.fits") outfile = tmpdir / "test.fits" sunpy.io.fits.write(str(outfile), data, header, hdu_type=fits.CompImageHDU) assert outfile.exists() with fits.open(str(outfile)) as hdul: assert len(hdul) == 2 assert isinstance(hdul[1], fits.CompImageHDU)
14,021
def write_to_db(gdf, engine, index, tbl, srid, geom_name, if_exists): import io import csv # Convert columns to lists and make a generator args = [list(gdf[i]) for i in gdf.columns] if index: args.insert(0, list(gdf.index)) data_iter = zip(*args) # get list of columns using pandas keys = tbl.insert_data()[0] columns = ", ".join('"{}"'.format(k) for k in list(keys)) s_buf = io.StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) conn = engine.raw_connection() cur = conn.cursor() try: # If appending to an existing table, temporarily change # the srid to 0, and update the SRID afterwards if if_exists == "append": sql = "SELECT UpdateGeometrySRID('{schema}','{tbl}','{geom}',{crs})".format( schema=tbl.table.schema, tbl=tbl.table.name, geom=geom_name, crs=0 ) cur.execute(sql) sql = "COPY {} ({}) FROM STDIN WITH CSV".format(tbl.table.fullname, columns) cur.copy_expert(sql=sql, file=s_buf) # SRID needs to be updated afterwards as the current approach does not support # the use of EWKT geometries. sql = "SELECT UpdateGeometrySRID('{schema}','{tbl}','{geom}',{srid})".format( schema=tbl.table.schema, tbl=tbl.table.name, geom=geom_name, srid=srid ) cur.execute(sql) conn.commit() except Exception as e: conn.connection.rollback() raise e conn.close()
def _write_to_db(gdf, engine, index, tbl, srid, geom_name, if_exists): import io import csv # Convert columns to lists and make a generator args = [list(gdf[i]) for i in gdf.columns] if index: args.insert(0, list(gdf.index)) data_iter = zip(*args) # get list of columns using pandas keys = tbl.insert_data()[0] columns = ", ".join('"{}"'.format(k) for k in list(keys)) s_buf = io.StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) conn = engine.raw_connection() cur = conn.cursor() try: # If appending to an existing table, temporarily change # the srid to 0, and update the SRID afterwards if if_exists == "append": sql = "SELECT UpdateGeometrySRID('{schema}','{tbl}','{geom}',{crs})".format( schema=tbl.table.schema, tbl=tbl.table.name, geom=geom_name, crs=0 ) cur.execute(sql) sql = "COPY {} ({}) FROM STDIN WITH CSV".format(tbl.table.fullname, columns) cur.copy_expert(sql=sql, file=s_buf) # SRID needs to be updated afterwards as the current approach does not support # the use of EWKT geometries. sql = "SELECT UpdateGeometrySRID('{schema}','{tbl}','{geom}',{srid})".format( schema=tbl.table.schema, tbl=tbl.table.name, geom=geom_name, srid=srid ) cur.execute(sql) conn.commit() except Exception as e: conn.connection.rollback() raise e conn.close()
8,682
def handle_init(options): """Use config's wizard to initialize a new configuration file for the bot :param options: argument parser's parsed options .. note:: Due to how the config's wizard works, the configuration filename's extension must be ``.cfg``. """ config_filename = utils.find_config( config.DEFAULT_HOMEDIR, getattr(options, 'config', None) or 'default') config_name, ext = os.path.splitext(config_filename) if ext and ext != '.cfg': tools.stderr('Configuration wizard accepts .cfg file only') return 1 elif not ext: config_filename = config_name + '.cfg' if os.path.isfile(config_filename): tools.stderr('Configuration file %s already exists' % config_filename) return 1 print('Starting Sopel config wizard for: %s' % config_filename) config._wizard('all', config_name)
def handle_init(options): """Use config wizard to initialize a new configuration file for the bot :param options: argument parser's parsed options .. note:: Due to how the config's wizard works, the configuration filename's extension must be ``.cfg``. """ config_filename = utils.find_config( config.DEFAULT_HOMEDIR, getattr(options, 'config', None) or 'default') config_name, ext = os.path.splitext(config_filename) if ext and ext != '.cfg': tools.stderr('Configuration wizard accepts .cfg file only') return 1 elif not ext: config_filename = config_name + '.cfg' if os.path.isfile(config_filename): tools.stderr('Configuration file %s already exists' % config_filename) return 1 print('Starting Sopel config wizard for: %s' % config_filename) config._wizard('all', config_name)
16,110
def setup(hass: HomeAssistantType, config: Any) -> bool: """Set up the Amcrest IP Camera component.""" hass.data.setdefault(DATA_AMCREST, {DEVICES: {}, CAMERAS: []}) for device in config[DOMAIN]: name: str = device[CONF_NAME] username: str = device[CONF_USERNAME] password: str = device[CONF_PASSWORD] api = AmcrestChecker( hass, name, device[CONF_HOST], device[CONF_PORT], username, password ) ffmpeg_arguments = device[CONF_FFMPEG_ARGUMENTS] resolution = RESOLUTION_LIST[device[CONF_RESOLUTION]] binary_sensors = device.get(CONF_BINARY_SENSORS) sensors = device.get(CONF_SENSORS) stream_source = device[CONF_STREAM_SOURCE] control_light = device.get(CONF_CONTROL_LIGHT) # currently aiohttp only works with basic authentication # only valid for mjpeg streaming if device[CONF_AUTHENTICATION] == HTTP_BASIC_AUTHENTICATION: authentication: aiohttp.BasicAuth | None = aiohttp.BasicAuth( username, password ) else: authentication = None hass.data[DATA_AMCREST][DEVICES][name] = AmcrestDevice( api, authentication, ffmpeg_arguments, stream_source, resolution, control_light, ) discovery.load_platform(hass, CAMERA, DOMAIN, {CONF_NAME: name}, config) event_codes = [] if binary_sensors: discovery.load_platform( hass, BINARY_SENSOR, DOMAIN, {CONF_NAME: name, CONF_BINARY_SENSORS: binary_sensors}, config, ) maybe_event_codes = [ BINARY_SENSORS[sensor_type].code for sensor_type in binary_sensors if sensor_type not in BINARY_POLLED_SENSORS ] event_codes = [code for code in maybe_event_codes if code is not None] _start_event_monitor(hass, name, api, event_codes) if sensors: discovery.load_platform( hass, SENSOR, DOMAIN, {CONF_NAME: name, CONF_SENSORS: sensors}, config ) if not hass.data[DATA_AMCREST][DEVICES]: return False def have_permission(user: User | None, entity_id: str) -> bool: return not user or user.permissions.check_entity(entity_id, POLICY_CONTROL) async def async_extract_from_service(call: ServiceCallType) -> list[str]: if call.context.user_id: user = await hass.auth.async_get_user(call.context.user_id) if user is None: raise UnknownUser(context=call.context) else: user = None if call.data.get(ATTR_ENTITY_ID) == ENTITY_MATCH_ALL: # Return all entity_ids user has permission to control. return [ entity_id for entity_id in hass.data[DATA_AMCREST][CAMERAS] if have_permission(user, entity_id) ] if call.data.get(ATTR_ENTITY_ID) == ENTITY_MATCH_NONE: return [] call_ids = await async_extract_entity_ids(hass, call) entity_ids = [] for entity_id in hass.data[DATA_AMCREST][CAMERAS]: if entity_id not in call_ids: continue if not have_permission(user, entity_id): raise Unauthorized( context=call.context, entity_id=entity_id, permission=POLICY_CONTROL ) entity_ids.append(entity_id) return entity_ids async def async_service_handler(call: ServiceCallType) -> None: args = [] for arg in CAMERA_SERVICES[call.service][2]: args.append(call.data[arg]) for entity_id in await async_extract_from_service(call): async_dispatcher_send(hass, service_signal(call.service, entity_id), *args) for service, params in CAMERA_SERVICES.items(): hass.services.register(DOMAIN, service, async_service_handler, params[0]) return True
def setup(hass: HomeAssistant, config: ConfigType) -> bool: """Set up the Amcrest IP Camera component.""" hass.data.setdefault(DATA_AMCREST, {DEVICES: {}, CAMERAS: []}) for device in config[DOMAIN]: name: str = device[CONF_NAME] username: str = device[CONF_USERNAME] password: str = device[CONF_PASSWORD] api = AmcrestChecker( hass, name, device[CONF_HOST], device[CONF_PORT], username, password ) ffmpeg_arguments = device[CONF_FFMPEG_ARGUMENTS] resolution = RESOLUTION_LIST[device[CONF_RESOLUTION]] binary_sensors = device.get(CONF_BINARY_SENSORS) sensors = device.get(CONF_SENSORS) stream_source = device[CONF_STREAM_SOURCE] control_light = device.get(CONF_CONTROL_LIGHT) # currently aiohttp only works with basic authentication # only valid for mjpeg streaming if device[CONF_AUTHENTICATION] == HTTP_BASIC_AUTHENTICATION: authentication: aiohttp.BasicAuth | None = aiohttp.BasicAuth( username, password ) else: authentication = None hass.data[DATA_AMCREST][DEVICES][name] = AmcrestDevice( api, authentication, ffmpeg_arguments, stream_source, resolution, control_light, ) discovery.load_platform(hass, CAMERA, DOMAIN, {CONF_NAME: name}, config) event_codes = [] if binary_sensors: discovery.load_platform( hass, BINARY_SENSOR, DOMAIN, {CONF_NAME: name, CONF_BINARY_SENSORS: binary_sensors}, config, ) maybe_event_codes = [ BINARY_SENSORS[sensor_type].code for sensor_type in binary_sensors if sensor_type not in BINARY_POLLED_SENSORS ] event_codes = [code for code in maybe_event_codes if code is not None] _start_event_monitor(hass, name, api, event_codes) if sensors: discovery.load_platform( hass, SENSOR, DOMAIN, {CONF_NAME: name, CONF_SENSORS: sensors}, config ) if not hass.data[DATA_AMCREST][DEVICES]: return False def have_permission(user: User | None, entity_id: str) -> bool: return not user or user.permissions.check_entity(entity_id, POLICY_CONTROL) async def async_extract_from_service(call: ServiceCallType) -> list[str]: if call.context.user_id: user = await hass.auth.async_get_user(call.context.user_id) if user is None: raise UnknownUser(context=call.context) else: user = None if call.data.get(ATTR_ENTITY_ID) == ENTITY_MATCH_ALL: # Return all entity_ids user has permission to control. return [ entity_id for entity_id in hass.data[DATA_AMCREST][CAMERAS] if have_permission(user, entity_id) ] if call.data.get(ATTR_ENTITY_ID) == ENTITY_MATCH_NONE: return [] call_ids = await async_extract_entity_ids(hass, call) entity_ids = [] for entity_id in hass.data[DATA_AMCREST][CAMERAS]: if entity_id not in call_ids: continue if not have_permission(user, entity_id): raise Unauthorized( context=call.context, entity_id=entity_id, permission=POLICY_CONTROL ) entity_ids.append(entity_id) return entity_ids async def async_service_handler(call: ServiceCallType) -> None: args = [] for arg in CAMERA_SERVICES[call.service][2]: args.append(call.data[arg]) for entity_id in await async_extract_from_service(call): async_dispatcher_send(hass, service_signal(call.service, entity_id), *args) for service, params in CAMERA_SERVICES.items(): hass.services.register(DOMAIN, service, async_service_handler, params[0]) return True
30,458
def role_to_entry(title, role): context = { 'ETag': role.get('etag').strip('"'), 'IsSuperAdminRole': bool(role.get('isSuperAdminRole')) if role.get('isSuperAdminRole') else False, 'IsSystemRole': bool(role.get('isSystemRole')) if role.get('isSystemRole') else False, 'Kind': role.get('kind'), 'Description': role.get('roleDescription'), 'ID': role.get('roleId'), 'Name': role.get('roleName'), 'Privilege': parse_privileges(role.get('rolePrivileges')) } headers = ['ETag', 'IsSuperAdminRole', 'IsSystemRole', 'Kind', 'Description', 'ID', 'Name'] details_hr = tableToMarkdown(title, context, headers, removeNull=True) privileges = context.get('Privilege', []) privileges_headers = ['ServiceID', 'Name'] privileges_title = 'Role {} privileges:'.format(context.get('ID')) privileges_hr = tableToMarkdown(privileges_title, privileges, privileges_headers, removeNull=True) return { 'ContentsFormat': formats['json'], 'Type': entryTypes['note'], 'Contents': context, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': details_hr + privileges_hr, 'EntryContext': {'Gmail.Role(val.ID && val.ID == obj.ID)': context} }
def role_to_entry(title, role): context = { 'ETag': role.get('etag').strip('"'), 'IsSuperAdminRole': bool(role.get('isSuperAdminRole')) if role.get('isSuperAdminRole') else False, 'IsSystemRole': bool(role.get('isSystemRole')) if role.get('isSystemRole') else False, 'Kind': role.get('kind'), 'Description': role.get('roleDescription'), 'ID': role.get('roleId'), 'Name': role.get('roleName'), 'Privilege': parse_privileges(role.get('rolePrivileges', [])) } headers = ['ETag', 'IsSuperAdminRole', 'IsSystemRole', 'Kind', 'Description', 'ID', 'Name'] details_hr = tableToMarkdown(title, context, headers, removeNull=True) privileges = context.get('Privilege', []) privileges_headers = ['ServiceID', 'Name'] privileges_title = 'Role {} privileges:'.format(context.get('ID')) privileges_hr = tableToMarkdown(privileges_title, privileges, privileges_headers, removeNull=True) return { 'ContentsFormat': formats['json'], 'Type': entryTypes['note'], 'Contents': context, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': details_hr + privileges_hr, 'EntryContext': {'Gmail.Role(val.ID && val.ID == obj.ID)': context} }
5,643
def _fftconv_faster(x, h, mode, test=True): """ See if using fftconvolve or convolve is faster. Parameters ---------- x : np.ndarray Signal h : np.ndarray Kernel mode : str Mode passed to convolve Returns ------- fft_faster : bool Notes ----- The big O ratios were found to hold to different machines, which makes sense as it's the ratio that matters (the effective speed of the computer is found in both big O constants). Regardless, this had been tuned on an mid 2014 15-inch MacBook Pro with 16GB of RAM and an Intel 2.5GHz i7 processor. """ fft_ops, direct_ops = _conv_ops(x.shape, h.shape, mode) big_O_constant = _get_fft_constant(mode, x.ndim, _prod(x.shape), _prod(h.shape)) return big_O_constant * fft_ops < direct_ops
def _fftconv_faster(x, h, mode, test=True): """ See if using fftconvolve or convolve is faster. Parameters ---------- x : np.ndarray Signal h : np.ndarray Kernel mode : str Mode passed to convolve Returns ------- fft_faster : bool Notes ----- The big O ratios were found to hold to different machines, which makes sense as it's the ratio that matters (the effective speed of the computer is found in both big O constants). Regardless, this had been tuned on an mid 2014 15-inch MacBook Pro with 16GB of RAM and an Intel 2.5GHz i7 processor. """ fft_ops, direct_ops = _conv_ops(x.shape, h.shape, mode) big_O_constant = _get_fft_constant(mode, x.ndim, x.size, h.size) return big_O_constant * fft_ops < direct_ops
21,251
def save_and_upload_disclosure( interface, disclosure_key, response, data ) -> Optional[FinancialDisclosure]: sha1_hash = sha1(response.content) if FinancialDisclosure.objects.filter(sha1=sha1_hash).exists(): logger.error( "PDF already in system.", extra={"disclosure_id": disclosure_key}, ) interface.delete(disclosure_key) return page_count = microservice( service="page-count", filename=data["url"].split("/")[-1], file=response.content, ).content if not page_count: logger.error( msg=f"Page count failed", extra={"disclosure_id": disclosure_key, "url": data["url"]}, ) interface.delete(disclosure_key) return # Make disclosure disclosure = FinancialDisclosure( year=int(data["year"]), page_count=page_count, person=Person.objects.get(id=data["person_id"]), sha1=sha1_hash, has_been_extracted=False, report_type=data.get("report_type", -1), download_filepath=data.get("url"), ) # Save and upload & generate thumbnail disclosure.filepath.save( f"{disclosure.person.slug}-disclosure.{data['year']}.pdf", ContentFile(response.content), ) logger.info( f"Uploaded to https://{settings.AWS_S3_CUSTOM_DOMAIN}/" f"{disclosure.filepath}" ) return disclosure
def save_and_upload_disclosure( interface, disclosure_key, response, data ) -> Optional[FinancialDisclosure]: sha1_hash = sha1(response.content) if FinancialDisclosure.objects.filter(sha1=sha1_hash).exists(): logger.error( "PDF already in system.", extra={"disclosure_id": disclosure_key}, ) interface.delete(disclosure_key) return page_count = microservice( service="page-count", filename=data["url"].split("/")[-1], file=response.content, ).content if not page_count: logger.error( msg=f"Page count failed", extra={"disclosure_id": disclosure_key, "url": data["url"]}, ) interface.delete(disclosure_key) return # Make disclosure disclosure = FinancialDisclosure( year=int(data["year"]), page_count=page_count, person=Person.objects.get(id=data["person_id"]), sha1=sha1_hash, has_been_extracted=False, report_type=data.get("report_type", REPORT_TYPES.UNKNOWN), download_filepath=data.get("url"), ) # Save and upload & generate thumbnail disclosure.filepath.save( f"{disclosure.person.slug}-disclosure.{data['year']}.pdf", ContentFile(response.content), ) logger.info( f"Uploaded to https://{settings.AWS_S3_CUSTOM_DOMAIN}/" f"{disclosure.filepath}" ) return disclosure
38,273
def get_status_code_distribution(db_session, endpoint_id): results = db_session.query(Request.status_code, func.count(Request.status_code)).filter( Request.endpoint_id == endpoint_id, Request.status_code.isnot(None)).group_by(Request.status_code).all() total_count = 0 for (_, frequency) in results: total_count += frequency distribution = {} for (status_code, frequency) in results: distribution[status_code] = frequency / total_count return distribution
def get_status_code_distribution(db_session, endpoint_id): results = db_session.query(Request.status_code, func.count(Request.status_code)).filter( Request.endpoint_id == endpoint_id, Request.status_code.isnot(None)).group_by(Request.status_code).all() total_count = sum([f for (_, f) in results]) for (_, frequency) in results: total_count += frequency distribution = {} for (status_code, frequency) in results: distribution[status_code] = frequency / total_count return distribution
30,768
def list_of_objects_to_readable_output(name, items, headers): """Creates readable output from list of items :type name: ``str`` :param name: readable output table name :type items: ``List[Dict[str, any]]`` :param items: original list of objects :type headers: ``List[Dict[str, any]]`` :param headers: original list of objects :return: returns an ``str`` with markdown format :rtype: ``str`` """ return tableToMarkdown(name, list_of_object_to_list_subset(items, *headers), headers)
def list_of_objects_to_readable_output(name, items, headers): """Creates readable output from list of items :type name: ``str`` :param name: readable output table name :type items: ``List[Dict[str, any]]`` :param items: original list of objects :type headers: ``List[Dict[str, any]]`` :param headers: original list of objects :return: returns an ``str`` with markdown format :rtype: ``str`` """ return tableToMarkdown(name, list_of_object_to_list_subset(items, *headers), headers, removeNull=True)
31,767
def main(): params = demisto.params() args = demisto.args() url = params.get('url') verify_certificate = not params.get('insecure', False) proxy = params.get('proxy', False) headers = {} headers['PRIVATE-TOKEN'] = f'{params["api_key"]}' command = demisto.command() LOG(f'Command being called is {command}') try: urllib3.disable_warnings() client = Client(urljoin(url, ""), verify_certificate, proxy, headers=headers) commands = { 'gitlab-get-projects': get_projects_command, 'gitlab-projects-get-access-requests': projects_get_access_requests_command, 'gitlab-projects-request-access': projects_request_access_command, 'gitlab-projects-approve-access': projects_approve_access_command, 'gitlab-projects-deny-access': projects_deny_access_command, 'gitlab-projects-get-repository-branches': projects_get_repository_branches_command, 'gitlab-projects-create-repository-branch': projects_create_repository_branch_command, 'gitlab-projects-delete-repository-branch': projects_delete_repository_branch_command, 'gitlab-projects-delete-repository-merged-branches': projects_delete_repository_merged_branches_command, 'gitlab-get-version': get_version_command, 'gitlab-pipelines-schedules-list': gitlab_pipelines_schedules_list_command, 'gitlab-pipelines-list': gitlab_pipelines_list_command, 'gitlab-jobs-list': gitlab_jobs_list_command, 'gitlab-artifact-get': gitlab_artifact_get_command, 'gitlab-merge-requests-list': gitlab_merge_requests_list_command, 'gitlab-get-merge-request': gitlab_get_merge_request_command, 'gitlab-issues-list': gitlab_issues_list_command, 'gitlab-create-issue': gitlab_create_issue_command, 'gitlab-edit-issue': gitlab_edit_issue_command, 'gitlab-group-projects-list': gitlab_group_projects_list_command, 'gitlab-get-raw-file': gitlab_get_raw_file_command } if command == 'test-module': test_module(client) else: return_results(commands[command](client, args)) except Exception as e: return_error(str(e))
def main(): params = demisto.params() args = demisto.args() url = params.get('url') verify_certificate = not params.get('insecure', False) proxy = params.get('proxy', False) headers = {} headers['PRIVATE-TOKEN'] = f'{params["api_key"]}' command = demisto.command() LOG(f'Command being called is {command}') try: urllib3.disable_warnings() client = Client(urljoin(url, ""), verify_certificate, proxy, headers=headers) commands = { 'gitlab-get-projects': get_projects_command, 'gitlab-projects-get-access-requests': projects_get_access_requests_command, 'gitlab-projects-request-access': projects_request_access_command, 'gitlab-projects-approve-access': projects_approve_access_command, 'gitlab-projects-deny-access': projects_deny_access_command, 'gitlab-projects-get-repository-branches': projects_get_repository_branches_command, 'gitlab-projects-create-repository-branch': projects_create_repository_branch_command, 'gitlab-projects-delete-repository-branch': projects_delete_repository_branch_command, 'gitlab-projects-delete-repository-merged-branches': projects_delete_repository_merged_branches_command, 'gitlab-get-version': get_version_command, 'gitlab-pipelines-schedules-list': gitlab_pipelines_schedules_list_command, 'gitlab-pipelines-list': gitlab_pipelines_list_command, 'gitlab-jobs-list': gitlab_jobs_list_command, 'gitlab-artifact-get': gitlab_artifact_get_command, 'gitlab-merge-requests-list': gitlab_merge_requests_list_command, 'gitlab-get-merge-request': gitlab_get_merge_request_command, 'gitlab-issues-list': gitlab_issues_list_command, 'gitlab-create-issue': gitlab_create_issue_command, 'gitlab-issue-edit': gitlab_edit_issue_command, 'gitlab-group-projects-list': gitlab_group_projects_list_command, 'gitlab-get-raw-file': gitlab_get_raw_file_command } if command == 'test-module': test_module(client) else: return_results(commands[command](client, args)) except Exception as e: return_error(str(e))
3,584
def _unresolve_domain(domain): """ Unresolve domain. :param str domain: Domain to extrac the project slug from. :returns: A tuple with the project slug, domain object, and if the domain is external. """ public_domain = _get_domain_from_host(settings.PUBLIC_DOMAIN) external_domain = _get_domain_from_host(settings.RTD_EXTERNAL_VERSION_DOMAIN) subdomain, *rest_of_domain = domain.split(".", maxsplit=1) rest_of_domain = rest_of_domain[0] if rest_of_domain else "" if public_domain in domain: # Serve from the PUBLIC_DOMAIN, ensuring it looks like `foo.PUBLIC_DOMAIN`. if public_domain == rest_of_domain: project_slug = subdomain return project_slug, None, False # TODO: This can catch some possibly valid domains (docs.readthedocs.io.com) for example, # but these might be phishing, so let's ignore them for now. return None, None, False if external_domain in domain: # Serve custom versions on external-host-domain. if external_domain == rest_of_domain: try: project_slug, _ = subdomain.rsplit("--", maxsplit=1) return project_slug, None, True except ValueError: return None, None, False # Custom domain. domain_object = ( Domain.objects.filter(domain=domain).prefetch_related("project").first() ) if domain_object: project_slug = domain_object.project.slug return project_slug, domain_object, False return None, None, None
def _unresolve_domain(domain): """ Unresolve domain. :param str domain: Domain to extract the project slug from. :returns: A tuple with the project slug, domain object, and if the domain is external. """ public_domain = _get_domain_from_host(settings.PUBLIC_DOMAIN) external_domain = _get_domain_from_host(settings.RTD_EXTERNAL_VERSION_DOMAIN) subdomain, *rest_of_domain = domain.split(".", maxsplit=1) rest_of_domain = rest_of_domain[0] if rest_of_domain else "" if public_domain in domain: # Serve from the PUBLIC_DOMAIN, ensuring it looks like `foo.PUBLIC_DOMAIN`. if public_domain == rest_of_domain: project_slug = subdomain return project_slug, None, False # TODO: This can catch some possibly valid domains (docs.readthedocs.io.com) for example, # but these might be phishing, so let's ignore them for now. return None, None, False if external_domain in domain: # Serve custom versions on external-host-domain. if external_domain == rest_of_domain: try: project_slug, _ = subdomain.rsplit("--", maxsplit=1) return project_slug, None, True except ValueError: return None, None, False # Custom domain. domain_object = ( Domain.objects.filter(domain=domain).prefetch_related("project").first() ) if domain_object: project_slug = domain_object.project.slug return project_slug, domain_object, False return None, None, None
31,344
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ ''' EXECUTION ''' #LOG('command is %s' % (demisto.command(), )) demisto.debug(f'Command being called is {demisto.command()}') try: LOG('Command being called is {command}'.format(command=demisto.command())) if demisto.command() == 'Picus-GetAccessToken': getAccessToken() elif demisto.command() == 'Picus-Vector-Compare': # Makes a comparison of the given vector's results token = getAccessToken() demisto.results(vectorCompare(token)) elif demisto.command() == 'Picus-Attack-Result-List': # Returns the list of the attack results\nhave optional parameters for pagination and filtration token = getAccessToken() demisto.results(attackResultList(token)) elif demisto.command() == 'Picus-Specific-Threats-Results': # Returns the list of the attack results of a single threat\nhave optional token = getAccessToken() demisto.results(specificThreatsResults(token)) elif demisto.command() == 'Picus-Peer-List': # Returns the peer list with current statuses token = getAccessToken() demisto.results(peerList(token)) elif demisto.command() == 'Picus-EMail-Peer-List': # Returns the E-Mail peer list with current statuses token = getAccessToken() demisto.results(eMailPeerList(token)) elif demisto.command() == 'Picus-Attack-All-Vectors': # Schedules given attack on all possible vectors token = getAccessToken() demisto.results(attackAllVectors(token)) elif demisto.command() == 'Picus-Attack-Single': # Schedules a single attack on requested vector token = getAccessToken() demisto.results(attackSingle(token)) elif demisto.command() == 'Picus-Trigger-Update': # Triggers the update mechanism manually, returns if the update-command is taken successfully token = getAccessToken() demisto.results(triggerUpdate(token)) elif demisto.command() == 'Picus-Version': # Returns the current version and the update time config token = getAccessToken() demisto.results(version(token)) elif demisto.command() == 'Picus-Threat-List': # Returns the list of the threats\nhave optional parameters for pagination and filtration token = getAccessToken() demisto.results(threatList(token)) elif demisto.command() == 'Picus-Mitigation-List': # Returns the list of the mitigations of threats\nhave optional parameters for pagination and filtration, this route may not be used associated with your license token = getAccessToken() demisto.results(mitigationList(token)) elif demisto.command() == 'Picus-Mitre-Matrix': # Returns the mitre matrix metadata\ntakes no parameters token = getAccessToken() demisto.results(mitreMatrix(token)) elif demisto.command() == 'Picus-Sigma-Rules-List': # Returns the list of the sigma rules of scenario actions\nhave optional parameters for pagination and filtration, this route may not be used associated with your license token = getAccessToken() demisto.results(sigmaRulesList(token)) elif demisto.command() == 'Picus-Vector-List': # Returns the list of the vectors all disabled and enabled ones\nhave optional parameters for pagination token = getAccessToken() demisto.results(vectorList(token)) elif demisto.command() == 'test-module': demisto.results(test_module()) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ ''' EXECUTION ''' #LOG('command is %s' % (demisto.command(), )) demisto.debug(f'Command being called is {demisto.command()}') try: LOG('Command being called is {command}'.format(command=demisto.command())) if demisto.command() == 'Picus-GetAccessToken': getAccessToken() elif demisto.command() == 'Picus-Vector-Compare': # Makes a comparison of the given vector's results token = getAccessToken() demisto.results(vectorCompare(token)) elif demisto.command() == 'picus-attack-result-list': # Returns the list of the attack results\nhave optional parameters for pagination and filtration token = getAccessToken() demisto.results(attackResultList(token)) elif demisto.command() == 'Picus-Specific-Threats-Results': # Returns the list of the attack results of a single threat\nhave optional token = getAccessToken() demisto.results(specificThreatsResults(token)) elif demisto.command() == 'Picus-Peer-List': # Returns the peer list with current statuses token = getAccessToken() demisto.results(peerList(token)) elif demisto.command() == 'Picus-EMail-Peer-List': # Returns the E-Mail peer list with current statuses token = getAccessToken() demisto.results(eMailPeerList(token)) elif demisto.command() == 'Picus-Attack-All-Vectors': # Schedules given attack on all possible vectors token = getAccessToken() demisto.results(attackAllVectors(token)) elif demisto.command() == 'Picus-Attack-Single': # Schedules a single attack on requested vector token = getAccessToken() demisto.results(attackSingle(token)) elif demisto.command() == 'Picus-Trigger-Update': # Triggers the update mechanism manually, returns if the update-command is taken successfully token = getAccessToken() demisto.results(triggerUpdate(token)) elif demisto.command() == 'Picus-Version': # Returns the current version and the update time config token = getAccessToken() demisto.results(version(token)) elif demisto.command() == 'Picus-Threat-List': # Returns the list of the threats\nhave optional parameters for pagination and filtration token = getAccessToken() demisto.results(threatList(token)) elif demisto.command() == 'Picus-Mitigation-List': # Returns the list of the mitigations of threats\nhave optional parameters for pagination and filtration, this route may not be used associated with your license token = getAccessToken() demisto.results(mitigationList(token)) elif demisto.command() == 'Picus-Mitre-Matrix': # Returns the mitre matrix metadata\ntakes no parameters token = getAccessToken() demisto.results(mitreMatrix(token)) elif demisto.command() == 'Picus-Sigma-Rules-List': # Returns the list of the sigma rules of scenario actions\nhave optional parameters for pagination and filtration, this route may not be used associated with your license token = getAccessToken() demisto.results(sigmaRulesList(token)) elif demisto.command() == 'Picus-Vector-List': # Returns the list of the vectors all disabled and enabled ones\nhave optional parameters for pagination token = getAccessToken() demisto.results(vectorList(token)) elif demisto.command() == 'test-module': demisto.results(test_module()) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
52,007
def test_windows_dumpfiles(image, volatility, python): json_file = open('./test/known_files.json') known_files = json.load(json_file) failed_chksms = 0 if sys.platform == 'win32': file_name = ntpath.basename(image) else: file_name = os.path.basename(image) try: for addr in known_files["windows_dumpfiles"][file_name]: path = tempfile.mkdtemp() rc, out, err = runvol_plugin("windows.dumpfiles.DumpFiles", image, volatility, python, globalargs=["-o", path], pluginargs=["--virtaddr", addr]) for file in os.listdir(path): fp = open(os.path.join(path, file), "rb") if hashlib.md5(fp.read()).hexdigest() not in known_files["windows_dumpfiles"][file_name][addr]: failed_chksms += 1 fp.close() shutil.rmtree(path) json_file.close() assert failed_chksms == 0 assert rc == 0 except Exception as e: json_file.close() print("Key Error raised on " + str(e)) assert False
def test_windows_dumpfiles(image, volatility, python): json_file = open('./test/known_files.json') known_files = json.load(json_file) failed_chksms = 0 if sys.platform == 'win32': file_name = ntpath.basename(image) else: file_name = os.path.basename(image) try: for addr in known_files["windows_dumpfiles"][file_name]: path = tempfile.mkdtemp() rc, out, err = runvol_plugin("windows.dumpfiles.DumpFiles", image, volatility, python, globalargs=["-o", path], pluginargs=["--virtaddr", addr]) for file in os.listdir(path): with open(os.path.join(path, file), "rb") as fp: if hashlib.md5(fp.read()).hexdigest() not in known_files["windows_dumpfiles"][file_name][addr]: failed_chksms += 1 shutil.rmtree(path) json_file.close() assert failed_chksms == 0 assert rc == 0 except Exception as e: json_file.close() print("Key Error raised on " + str(e)) assert False
6,511
def get_context(context): settings = frappe.get_doc("E Commerce Settings") context.categories_enabled = settings.enable_field_filters if context.categories_enabled: categories = [row.fieldname for row in settings.filter_fields] context.tabs = get_tabs(categories) if settings.slideshow: context.slideshow = get_slideshow(settings.slideshow) context.no_cache = 1
def get_context(context): settings = frappe.get_cached_doc("E Commerce Settings") context.categories_enabled = settings.enable_field_filters if context.categories_enabled: categories = [row.fieldname for row in settings.filter_fields] context.tabs = get_tabs(categories) if settings.slideshow: context.slideshow = get_slideshow(settings.slideshow) context.no_cache = 1
3,294
def find_roots(stack_path, source_path): """ Returns a tuple containing the stack_root, and the source_root. If there is no overlap, raise an exception since this should not happen """ overlap_to_check = stack_path stack_root = "" while overlap_to_check: # see if our path ends with the overlap we want if source_path.endswith(overlap_to_check): # determine the source root by removing the overlap source_root = source_path.rpartition(overlap_to_check)[0] return (stack_root, source_root) # increase the stack root specificity # while decreasing the overlap stack_root += overlap_to_check[0] overlap_to_check = overlap_to_check[1:] # validate_source_url should have ensured the file names match # so if we get here something went wrong and there is a bug raise Exception("Could not common root from paths")
def find_roots(stack_path, source_path): """ Returns a tuple containing the stack_root, and the source_root. If there is no overlap, raise an exception since this should not happen """ overlap_to_check = stack_path stack_root = "" while overlap_to_check: # see if our path ends with the overlap we want if source_path.endswith(overlap_to_check): # determine the source root by removing the overlap source_root = source_path.rpartition(overlap_to_check)[0] return (stack_root, source_root) # increase the stack root specificity # while decreasing the overlap stack_root += overlap_to_check[0] overlap_to_check = overlap_to_check[1:] # validate_source_url should have ensured the file names match # so if we get here something went wrong and there is a bug raise Exception("Could not find common root from paths")
58,181
def main(): """ PARSE AND VALIDATE INTEGRATION PARAMS """ secret_key = demisto.params().get('credentials').get('password') client_key = demisto.params().get('credentials').get('identifier') organisation_id = demisto.params().get('organization_id') # get the service API url base_url = demisto.params().get("api_url") # How much time before the first fetch to retrieve incidents proxy = demisto.params().get('proxy', False) LOG(f'Command being called is {demisto.command()}') try: client = Client( base_url=base_url, organisation_id=organisation_id, secret_key=secret_key, client_key=client_key, proxy=proxy) commands = { 'test-module': test_module, "umbrella-reporting-destination-list": get_destinations_list, "umbrella-reporting-category-list": get_categories_list, "umbrella-reporting-identity-list": get_identities_list, "umbrella-reporting-event-type-list": get_event_types_list, "umbrella-reporting-file-list": get_file_list, "umbrella-reporting-threat-list": get_threat_list, "umbrella-reporting-activity-list": get_activity_list, "umbrella-reporting-activity-get": get_activity_by_traffic_type, "umbrella-reporting-summary-list": get_summary_list } args = demisto.args() command = demisto.command() if command in commands: return_results(commands[command](client, args)) else: raise NotImplementedError # Log exceptions except Exception as e: return_error( f'Failed to execute {demisto.command()} command. Error: {str(e)}')
def main(): """ PARSE AND VALIDATE INTEGRATION PARAMS """ secret_key = demisto.params().get('credentials').get('password') client_key = demisto.params().get('credentials').get('identifier') organisation_id = demisto.params().get('organization_id') # get the service API url base_url = demisto.params().get("api_url") # How much time before the first fetch to retrieve incidents proxy = params.get('proxy', False) handle_proxy() LOG(f'Command being called is {demisto.command()}') try: client = Client( base_url=base_url, organisation_id=organisation_id, secret_key=secret_key, client_key=client_key, proxy=proxy) commands = { 'test-module': test_module, "umbrella-reporting-destination-list": get_destinations_list, "umbrella-reporting-category-list": get_categories_list, "umbrella-reporting-identity-list": get_identities_list, "umbrella-reporting-event-type-list": get_event_types_list, "umbrella-reporting-file-list": get_file_list, "umbrella-reporting-threat-list": get_threat_list, "umbrella-reporting-activity-list": get_activity_list, "umbrella-reporting-activity-get": get_activity_by_traffic_type, "umbrella-reporting-summary-list": get_summary_list } args = demisto.args() command = demisto.command() if command in commands: return_results(commands[command](client, args)) else: raise NotImplementedError # Log exceptions except Exception as e: return_error( f'Failed to execute {demisto.command()} command. Error: {str(e)}')
14,420
def get_mfa_state(email, env): c = open_database(env) c.execute('SELECT secret, mru_token FROM totp_credentials WHERE user_email=?', (email,)) credential_row = c.fetchone() if (credential_row == None): return { 'type': None } return { 'type': 'totp', 'secret': credential_row[0], 'mru_token': credential_row[1] }
def get_mfa_state(email, env): c = open_database(env) c.execute('SELECT secret, mru_token FROM totp_credentials WHERE user_email=?', (email,)) credential_row = c.fetchone() if credential_row is None: return { 'type': None } return { 'type': 'totp', 'secret': credential_row[0], 'mru_token': credential_row[1] }
14,174
def isyeildable(thing: Any) -> bool: # name? """ Returns ``True`` if thing can be used in a yield/await statement in cocotb """ return iscoroutine(thing) or isinstance(thing, (cocotb.triggers.Trigger, cocotb.triggers.Waitable))
def isyieldable(thing: Any) -> bool: """ Returns ``True`` if thing can be used in a yield/await statement in cocotb """ return iscoroutine(thing) or isinstance(thing, (cocotb.triggers.Trigger, cocotb.triggers.Waitable))
18,992
def generate_package_index(cache_prefix): """Create the build cache index page. Creates (or replaces) the "index.json" page at the location given in cache_prefix. This page contains a link for each binary package (.yaml) under cache_prefix. """ try: file_list = ( entry for entry in web_util.list_url(cache_prefix) if entry.endswith('.yaml')) except KeyError as inst: msg = 'No packages at {0}: {1}'.format(cache_prefix, inst) tty.warn(msg) return except Exception as err: # If we got some kind of S3 (access denied or other connection # error), the first non boto-specific class in the exception # hierarchy is Exception. Just print a warning and return msg = 'Encountered problem listing packages at {0}: {1}'.format( cache_prefix, err) tty.warn(msg) return tty.debug('Retrieving spec.yaml files from {0} to build index'.format( cache_prefix)) all_mirror_specs = {} for file_path in file_list: try: yaml_url = url_util.join(cache_prefix, file_path) tty.debug('fetching {0}'.format(yaml_url)) _, _, yaml_file = web_util.read_from_url(yaml_url) yaml_contents = codecs.getreader('utf-8')(yaml_file).read() spec_dict = syaml.load(yaml_contents) s = Spec.from_yaml(yaml_contents) num_deps = 0 for d in s.traverse(root=False): num_deps += 1 all_mirror_specs[s.dag_hash()] = { 'yaml_url': yaml_url, 'spec': s, 'num_deps': num_deps, 'binary_cache_checksum': spec_dict['binary_cache_checksum'], 'buildinfo': spec_dict['buildinfo'], } except (URLError, web_util.SpackWebError) as url_err: tty.error('Error reading spec.yaml: {0}'.format(file_path)) tty.error(url_err) sorted_specs = sorted(all_mirror_specs.keys(), key=lambda k: all_mirror_specs[k]['num_deps']) tmpdir = tempfile.mkdtemp() db_root_dir = os.path.join(tmpdir, 'db_root') db = spack_db.Database(None, db_dir=db_root_dir, enable_transaction_locking=False, record_fields=['spec', 'ref_count', 'in_buildcache']) try: tty.debug('Specs sorted by number of dependencies:') for dag_hash in sorted_specs: spec_record = all_mirror_specs[dag_hash] s = spec_record['spec'] num_deps = spec_record['num_deps'] tty.debug(' {0}/{1} -> {2}'.format( s.name, dag_hash[:7], num_deps)) if num_deps > 0: # Check each of this spec's dependencies (which we have already # processed), as they are the source of truth for their own # full hash. If the full hash we have for any deps does not # match what those deps have themselves, then we need to splice # this spec with those deps, and push this spliced spec # (spec.yaml file) back to the mirror, as well as update the # all_mirror_specs dictionary with this spliced spec. to_splice = [] for dep in s.dependencies(): dep_dag_hash = dep.dag_hash() if dep_dag_hash in all_mirror_specs: true_dep = all_mirror_specs[dep_dag_hash]['spec'] if true_dep.full_hash() != dep.full_hash(): to_splice.append(true_dep) if to_splice: tty.debug(' needs the following deps spliced:') for true_dep in to_splice: tty.debug(' {0}/{1}'.format( true_dep.name, true_dep.dag_hash()[:7])) s = s.splice(true_dep, True) # Push this spliced spec back to the mirror spliced_yaml = s.to_dict(hash=ht.full_hash) for key in ['binary_cache_checksum', 'buildinfo']: spliced_yaml[key] = spec_record[key] temp_yaml_path = os.path.join(tmpdir, 'spliced.spec.yaml') with open(temp_yaml_path, 'w') as fd: fd.write(syaml.dump(spliced_yaml)) spliced_yaml_url = spec_record['yaml_url'] web_util.push_to_url( temp_yaml_path, spliced_yaml_url, keep_original=False) tty.debug(' spliced and wrote {0}'.format( spliced_yaml_url)) spec_record['spec'] = s db.add(s, None) db.mark(s, 'in_buildcache', True) # Now that we have fixed any old spec yamls that might have had the wrong # full hash for their dependencies, we can generate the index, compute # the hash, and push those files to the mirror. index_json_path = os.path.join(db_root_dir, 'index.json') with open(index_json_path, 'w') as f: db._write_to_file(f) # Read the index back in and compute it's hash with open(index_json_path) as f: index_string = f.read() index_hash = compute_hash(index_string) # Write the hash out to a local file index_hash_path = os.path.join(db_root_dir, 'index.json.hash') with open(index_hash_path, 'w') as f: f.write(index_hash) # Push the index itself web_util.push_to_url( index_json_path, url_util.join(cache_prefix, 'index.json'), keep_original=False, extra_args={'ContentType': 'application/json'}) # Push the hash web_util.push_to_url( index_hash_path, url_util.join(cache_prefix, 'index.json.hash'), keep_original=False, extra_args={'ContentType': 'text/plain'}) except Exception as err: msg = 'Encountered problem pushing package index to {0}: {1}'.format( cache_prefix, err) tty.warn(msg) traceback.print_exc(file=sys.stdout) finally: shutil.rmtree(tmpdir)
def generate_package_index(cache_prefix): """Create the build cache index page. Creates (or replaces) the "index.json" page at the location given in cache_prefix. This page contains a link for each binary package (.yaml) under cache_prefix. """ try: file_list = ( entry for entry in web_util.list_url(cache_prefix) if entry.endswith('.yaml')) except KeyError as inst: msg = 'No packages at {0}: {1}'.format(cache_prefix, inst) tty.warn(msg) return except Exception as err: # If we got some kind of S3 (access denied or other connection # error), the first non boto-specific class in the exception # hierarchy is Exception. Just print a warning and return msg = 'Encountered problem listing packages at {0}: {1}'.format( cache_prefix, err) tty.warn(msg) return tty.debug('Retrieving spec.yaml files from {0} to build index'.format( cache_prefix)) all_mirror_specs = {} for file_path in file_list: try: yaml_url = url_util.join(cache_prefix, file_path) tty.debug('fetching {0}'.format(yaml_url)) _, _, yaml_file = web_util.read_from_url(yaml_url) yaml_contents = codecs.getreader('utf-8')(yaml_file).read() spec_dict = syaml.load(yaml_contents) s = Spec.from_yaml(yaml_contents) num_deps = len(list(s.traverse(root=False))) all_mirror_specs[s.dag_hash()] = { 'yaml_url': yaml_url, 'spec': s, 'num_deps': num_deps, 'binary_cache_checksum': spec_dict['binary_cache_checksum'], 'buildinfo': spec_dict['buildinfo'], } except (URLError, web_util.SpackWebError) as url_err: tty.error('Error reading spec.yaml: {0}'.format(file_path)) tty.error(url_err) sorted_specs = sorted(all_mirror_specs.keys(), key=lambda k: all_mirror_specs[k]['num_deps']) tmpdir = tempfile.mkdtemp() db_root_dir = os.path.join(tmpdir, 'db_root') db = spack_db.Database(None, db_dir=db_root_dir, enable_transaction_locking=False, record_fields=['spec', 'ref_count', 'in_buildcache']) try: tty.debug('Specs sorted by number of dependencies:') for dag_hash in sorted_specs: spec_record = all_mirror_specs[dag_hash] s = spec_record['spec'] num_deps = spec_record['num_deps'] tty.debug(' {0}/{1} -> {2}'.format( s.name, dag_hash[:7], num_deps)) if num_deps > 0: # Check each of this spec's dependencies (which we have already # processed), as they are the source of truth for their own # full hash. If the full hash we have for any deps does not # match what those deps have themselves, then we need to splice # this spec with those deps, and push this spliced spec # (spec.yaml file) back to the mirror, as well as update the # all_mirror_specs dictionary with this spliced spec. to_splice = [] for dep in s.dependencies(): dep_dag_hash = dep.dag_hash() if dep_dag_hash in all_mirror_specs: true_dep = all_mirror_specs[dep_dag_hash]['spec'] if true_dep.full_hash() != dep.full_hash(): to_splice.append(true_dep) if to_splice: tty.debug(' needs the following deps spliced:') for true_dep in to_splice: tty.debug(' {0}/{1}'.format( true_dep.name, true_dep.dag_hash()[:7])) s = s.splice(true_dep, True) # Push this spliced spec back to the mirror spliced_yaml = s.to_dict(hash=ht.full_hash) for key in ['binary_cache_checksum', 'buildinfo']: spliced_yaml[key] = spec_record[key] temp_yaml_path = os.path.join(tmpdir, 'spliced.spec.yaml') with open(temp_yaml_path, 'w') as fd: fd.write(syaml.dump(spliced_yaml)) spliced_yaml_url = spec_record['yaml_url'] web_util.push_to_url( temp_yaml_path, spliced_yaml_url, keep_original=False) tty.debug(' spliced and wrote {0}'.format( spliced_yaml_url)) spec_record['spec'] = s db.add(s, None) db.mark(s, 'in_buildcache', True) # Now that we have fixed any old spec yamls that might have had the wrong # full hash for their dependencies, we can generate the index, compute # the hash, and push those files to the mirror. index_json_path = os.path.join(db_root_dir, 'index.json') with open(index_json_path, 'w') as f: db._write_to_file(f) # Read the index back in and compute it's hash with open(index_json_path) as f: index_string = f.read() index_hash = compute_hash(index_string) # Write the hash out to a local file index_hash_path = os.path.join(db_root_dir, 'index.json.hash') with open(index_hash_path, 'w') as f: f.write(index_hash) # Push the index itself web_util.push_to_url( index_json_path, url_util.join(cache_prefix, 'index.json'), keep_original=False, extra_args={'ContentType': 'application/json'}) # Push the hash web_util.push_to_url( index_hash_path, url_util.join(cache_prefix, 'index.json.hash'), keep_original=False, extra_args={'ContentType': 'text/plain'}) except Exception as err: msg = 'Encountered problem pushing package index to {0}: {1}'.format( cache_prefix, err) tty.warn(msg) traceback.print_exc(file=sys.stdout) finally: shutil.rmtree(tmpdir)
1,594
def _incremental_weighted_mean_and_var(X, sample_weight, last_weighted_mean, last_weighted_variance, last_weight_sum): """Calculate weighted mean and variance batch update last_weighted_mean and last_weighted_variance are statistics computed at the last step by the function. Both must be initialized to 0.0. In case no scaling is required last_weighted_variance can be None. The weighted_mean is always required and returned because necessary for the calculation of the weighted_variance. last_weight sum is the sum of weights encountered until now. Derived from the paper "Incremental calculation of weighted mean and variance", by Tony Finch. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for statistics update sample_weight : array-like, shape (n_samples,) last_weighted_mean : array-like, shape: (n_features,) last_weighted_variance : array-like, shape: (n_features,) last_weight_sum : array-like, shape (n_features,) Returns ------- updated_weighted_mean : array, shape (n_features,) updated_weighted_variance : array, shape (n_features,) If None, only weighted_mean is computed updated_weight_sum : array, shape (n_features,) Notes ----- NaNs in X are ignored. References ---------- Tony Finch "Incremental calculation of weighted mean and variance" University of Cambridge Computing Service, February 2009 """ # last = stats until now # new = the current increment # updated = the aggregated stats M = np.isnan(X) sample_weight_T = np.transpose(np.reshape(sample_weight, (-1, 1))) new_weight_sum = _safe_accumulator_op(np.dot, sample_weight_T, ~M).ravel() total_weight_sum = _safe_accumulator_op(np.sum, sample_weight, axis=0) X_0 = np.where(np.isnan(X), 0, X) new_weighted_mean = \ _safe_accumulator_op(np.average, X_0, weights=sample_weight, axis=0) new_weighted_mean *= total_weight_sum / new_weight_sum updated_weight_sum = last_weight_sum + new_weight_sum updated_weighted_mean = ( (last_weight_sum * last_weighted_mean + new_weight_sum * new_weighted_mean) / updated_weight_sum) if last_weighted_variance is None: updated_weighted_variance = None else: X_0 = np.where(np.isnan(X), 0, (X-new_weighted_mean)**2) new_weighted_variance = \ _safe_accumulator_op( np.average, X_0, weights=sample_weight, axis=0) new_weighted_variance *= total_weight_sum / new_weight_sum new_element = ( new_weight_sum * (new_weighted_variance + (new_weighted_mean - updated_weighted_mean) ** 2)) last_element = ( last_weight_sum * (last_weighted_variance + (last_weighted_mean - updated_weighted_mean) ** 2)) updated_weighted_variance = ( new_element + last_element) / updated_weight_sum return updated_weighted_mean, updated_weighted_variance, updated_weight_sum
def _incremental_weighted_mean_and_var(X, sample_weight, last_weighted_mean, last_weighted_variance, last_weight_sum): """Calculate weighted mean and variance batch update last_weighted_mean and last_weighted_variance are statistics computed at the last step by the function. Both must be initialized to 0.0. In case no scaling is required last_weighted_variance can be None. The weighted_mean is always required and returned because necessary for the calculation of the weighted_variance. last_weight sum is the sum of weights encountered until now. Derived from the paper "Incremental calculation of weighted mean and variance", by Tony Finch. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for statistics update sample_weight : array-like, shape (n_samples,) last_weighted_mean : array-like, shape: (n_features,) last_weighted_variance : array-like, shape: (n_features,) last_weight_sum : array-like, shape (n_features,) Returns ------- updated_weighted_mean : array, shape (n_features,) updated_weighted_variance : array, shape (n_features,) If None, only weighted_mean is computed updated_weight_sum : array, shape (n_features,) Notes ----- NaNs in X are ignored. References ---------- Tony Finch "Incremental calculation of weighted mean and variance" University of Cambridge Computing Service, February 2009 """ # last = stats until now # new = the current increment # updated = the aggregated stats M = np.isnan(X) sample_weight_T = np.transpose(np.reshape(sample_weight, (-1, 1))) new_weight_sum = _safe_accumulator_op(np.dot, sample_weight_T, ~M).ravel() total_weight_sum = _safe_accumulator_op(np.sum, sample_weight, axis=0) X_0 = np.where(nan_mask, 0, X) new_weighted_mean = \ _safe_accumulator_op(np.average, X_0, weights=sample_weight, axis=0) new_weighted_mean *= total_weight_sum / new_weight_sum updated_weight_sum = last_weight_sum + new_weight_sum updated_weighted_mean = ( (last_weight_sum * last_weighted_mean + new_weight_sum * new_weighted_mean) / updated_weight_sum) if last_weighted_variance is None: updated_weighted_variance = None else: X_0 = np.where(np.isnan(X), 0, (X-new_weighted_mean)**2) new_weighted_variance = \ _safe_accumulator_op( np.average, X_0, weights=sample_weight, axis=0) new_weighted_variance *= total_weight_sum / new_weight_sum new_element = ( new_weight_sum * (new_weighted_variance + (new_weighted_mean - updated_weighted_mean) ** 2)) last_element = ( last_weight_sum * (last_weighted_variance + (last_weighted_mean - updated_weighted_mean) ** 2)) updated_weighted_variance = ( new_element + last_element) / updated_weight_sum return updated_weighted_mean, updated_weighted_variance, updated_weight_sum
17,723
def to_networkx(compound, names_only=False): """Create a NetworkX graph representing the hierarchy of a Compound. Parameters ---------- compound : mb.Compound The mbuild Compound that need to be converted. names_only : bool, optional, default=False Store only the names of the compounds in the graph, appended with their IDs, for distinction even if they have the same name. When set to False, the default behavior, the nodes are the compounds themselves. Return ------ G : networkx.DiGraph Notes ----- This digraph is not the bondgraph of the compound. See Also -------- mbuild.bond_graph """ nx = import_('networkx') nodes = list() edges = list() if names_only: nodes.append(compound.name + '_' + str(id(compound))) else: nodes.append(compound) nodes, edges = _iterate_children(compound, nodes, edges, names_only=names_only) graph = nx.DiGraph() graph.add_nodes_from(nodes) graph.add_edges_from(edges) return graph
def to_networkx(compound, names_only=False): """Create a NetworkX graph representing the hierarchy of a Compound. Parameters ---------- compound : mb.Compound The mbuild Compound that need to be converted. names_only : bool, optional, default=False Store only the names of the compounds in the graph, appended with their IDs, for distinction even if they have the same name. When set to False, the default behavior, the nodes are the compounds themselves. Returns ------ G : networkx.DiGraph Notes ----- This digraph is not the bondgraph of the compound. See Also -------- mbuild.bond_graph """ nx = import_('networkx') nodes = list() edges = list() if names_only: nodes.append(compound.name + '_' + str(id(compound))) else: nodes.append(compound) nodes, edges = _iterate_children(compound, nodes, edges, names_only=names_only) graph = nx.DiGraph() graph.add_nodes_from(nodes) graph.add_edges_from(edges) return graph
28,579
def plot_ppc( data, kind="kde", alpha=None, mean=True, observed=True, color=None, colors=None, grid=None, figsize=None, textsize=None, data_pairs=None, var_names=None, filter_vars=None, coords=None, flatten=None, flatten_pp=None, num_pp_samples=None, random_seed=None, jitter=None, animated=False, animation_kwargs=None, legend=True, labeller=None, ax=None, backend=None, backend_kwargs=None, group="posterior", show=None, ): """ Plot for posterior/prior predictive checks. Parameters ---------- data: :class:`arviz.InferenceData` object InferenceData object containing the observed and posterior/prior predictive data. kind: str Type of plot to display ("kde", "cumulative", or "scatter"). Defaults to `kde`. alpha: float Opacity of posterior/prior predictive density curves. Defaults to `0.2` for ``kind`` = kde and cumulative, for scatter defaults to `0.7`. mean: bool Whether or not to plot the mean posterior/prior predictive distribution. Defaults to ``True``. observed: bool, default ``True`` Whether or not to plot the observed data. color: str Valid matplotlib ``color``. Defaults to `C0`. color: list List with valid matplotlib colors corresponding to the posterior/prior predictive distribution, observed data and mean of the posterior/prior predictive distribution. Defaults to ["C0", "k", "C1"]. grid : tuple Number of rows and columns. Defaults to None, the rows and columns are automatically inferred. figsize: tuple Figure size. If None, it will be defined automatically. textsize: float Text size scaling factor for labels, titles and lines. If None, it will be autoscaled based on ``figsize``. data_pairs: dict Dictionary containing relations between observed data and posterior/prior predictive data. Dictionary structure: - key = data var_name - value = posterior/prior predictive var_name For example, ``data_pairs = {'y' : 'y_hat'}`` If None, it will assume that the observed data and the posterior/prior predictive data have the same variable name. var_names: list of variable names Variables to be plotted, if `None` all variable are plotted. Prefix the variables by ``~`` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la ``pandas.filter``. coords: dict Dictionary mapping dimensions to selected coordinates to be plotted. Dimensions without a mapping specified will include all coordinates for that dimension. Defaults to including all coordinates for all dimensions if None. flatten: list List of dimensions to flatten in observed_data. Only flattens across the coordinates specified in the ``coords`` argument. Defaults to flattening all of the dimensions. flatten_pp: list List of dimensions to flatten in posterior_predictive/prior_predictive. Only flattens across the coordinates specified in the ``coords`` argument. Defaults to flattening all of the dimensions. Dimensions should match flatten excluding dimensions for ``data_pairs`` parameters. If ``flatten`` is defined and ``flatten_pp`` is None, then ``flatten_pp`` = `flatten`. num_pp_samples: int The number of posterior/prior predictive samples to plot. For ``kind`` = 'scatter' and `animation` = ``False`` if defaults to a maximum of 5 samples and will set jitter to `0.7`. unless defined. Otherwise it defaults to all provided samples. random_seed: int Random number generator seed passed to ``numpy.random.seed`` to allow reproducibility of the plot. By default, no seed will be provided and the plot will change each call if a random sample is specified by ``num_pp_samples``. jitter: float If ``kind`` is "scatter", jitter will add random uniform noise to the height of the ppc samples and observed data. By default `0`. animated: bool Create an animation of one posterior/prior predictive sample per frame. Defaults to ``False``. Only works with matploblib backend. To run animations inside a notebook you have to use the `nbAgg` matplotlib's backend. Try with `%matplotlib notebook` or `%matplotlib nbAgg`. You can switch back to the default matplotlib's backend with `%matplotlib inline` or `%matplotlib auto`. If switching back and forth between matplotlib's backend, you may need to run twice the cell with the animation. If you experience problems rendering the animation try setting `animation_kwargs({'blit':False}) or changing the matplotlib's backend (e.g. to TkAgg) If you run the animation from a script write `ax, ani = az.plot_ppc(.)` animation_kwargs : dict Keywords passed to ``animation.FuncAnimation``. Ignored with matplotlib backend. legend : bool Add legend to figure. By default ``True``. labeller : labeller instance, optional Class providing the method ``make_pp_label`` to generate the labels in the plot titles. Read the :ref:`label_guide` for more details and usage examples. ax: numpy array-like of matplotlib axes or bokeh figures, optional A 2D array of locations into which to plot the densities. If not supplied, Arviz will create its own array of plot areas (and return it). backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default to "matplotlib". backend_kwargs: bool, optional These are kwargs specific to the backend being used, passed to :func:`matplotlib.pyplot.subplots` or :func:`bokeh.plotting.figure`. For additional documentation check the plotting method of the backend. group: {"prior", "posterior"}, optional Specifies which InferenceData group should be plotted. Defaults to `'posterior'`. Other value can be `'prior'`. show: bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures See Also -------- plot_bvp: Plot Bayesian p-value for observed data and Posterior/Prior predictive. Examples -------- Plot the observed data KDE overlaid on posterior predictive KDEs. .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data('radon') >>> az.plot_ppc(data, data_pairs={"y":"y"}) Plot the overlay with empirical CDFs. .. plot:: :context: close-figs >>> az.plot_ppc(data, kind='cumulative') Use the ``coords`` and ``flatten`` parameters to plot selected variable dimensions across multiple plots. We will now modify the dimension `obs_id` to contain indicate the name of the county where the measure was taken. The change has to be done on both ``posterior_predictive`` and ``observed_data`` groups, which is why we will use :meth:`~arviz.InferenceData.map` to apply the same function to both groups. Afterwards, we will select the counties to be plotted with the ``coords`` arg. .. plot:: :context: close-figs >>> obs_county = data.posterior["County"][data.constant_data["county_idx"]] >>> data = data.assign_coords(obs_id=obs_county, groups="observed_vars") >>> az.plot_ppc(data, coords={'obs_id': ['ANOKA', 'BELTRAMI']}, flatten=[]) Plot the overlay using a stacked scatter plot that is particularly useful when the sample sizes are small. .. plot:: :context: close-figs >>> az.plot_ppc(data, kind='scatter', flatten=[], >>> coords={'obs_id': ['AITKIN', 'BELTRAMI']}) Plot random posterior predictive sub-samples. .. plot:: :context: close-figs >>> az.plot_ppc(data, num_pp_samples=30, random_seed=7) """ if group not in ("posterior", "prior"): raise TypeError("`group` argument must be either `posterior` or `prior`") for groups in (f"{group}_predictive", "observed_data"): if not hasattr(data, groups): raise TypeError(f'`data` argument must have the group "{groups}" for ppcplot') if kind.lower() not in ("kde", "cumulative", "scatter"): raise TypeError("`kind` argument must be either `kde`, `cumulative`, or `scatter`") if colors is None: colors = ["C0", "k", "C1"] if isinstance(colors, str): raise TypeError("colors should be a list with 3 items.") if len(colors) != 3: raise ValueError("colors should be a list with 3 items.") if color is not None: warnings.warn("color has been deprecated in favor of colors", FutureWarning) colors[0] = color if data_pairs is None: data_pairs = {} if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() if backend == "bokeh": if animated: raise TypeError("Animation option is only supported with matplotlib backend.") observed_data = data.observed_data if group == "posterior": predictive_dataset = data.posterior_predictive elif group == "prior": predictive_dataset = data.prior_predictive if var_names is None: var_names = list(observed_data.data_vars) var_names = _var_names(var_names, observed_data, filter_vars) pp_var_names = [data_pairs.get(var, var) for var in var_names] pp_var_names = _var_names(pp_var_names, predictive_dataset, filter_vars) if flatten_pp is None and flatten is None: flatten_pp = list(predictive_dataset.dims.keys()) elif flatten_pp is None: flatten_pp = flatten if flatten is None: flatten = list(observed_data.dims.keys()) if coords is None: coords = {} if labeller is None: labeller = BaseLabeller() if random_seed is not None: np.random.seed(random_seed) total_pp_samples = predictive_dataset.sizes["chain"] * predictive_dataset.sizes["draw"] if num_pp_samples is None: if kind == "scatter" and not animated: num_pp_samples = min(5, total_pp_samples) else: num_pp_samples = total_pp_samples if ( not isinstance(num_pp_samples, Integral) or num_pp_samples < 1 or num_pp_samples > total_pp_samples ): raise TypeError( "`num_pp_samples` must be an integer between 1 and " + f"{total_pp_samples}." ) pp_sample_ix = np.random.choice(total_pp_samples, size=num_pp_samples, replace=False) for key in coords.keys(): coords[key] = np.where(np.in1d(observed_data[key], coords[key]))[0] obs_plotters = filter_plotters_list( list( xarray_var_iter( observed_data.isel(coords), skip_dims=set(flatten), var_names=var_names, combined=True, ) ), "plot_ppc", ) length_plotters = len(obs_plotters) pp_plotters = [ tup for _, tup in zip( range(length_plotters), xarray_var_iter( predictive_dataset.isel(coords), var_names=pp_var_names, skip_dims=set(flatten_pp), combined=True, ), ) ] rows, cols = default_grid(length_plotters, grid=grid) ppcplot_kwargs = dict( ax=ax, length_plotters=length_plotters, rows=rows, cols=cols, figsize=figsize, animated=animated, obs_plotters=obs_plotters, pp_plotters=pp_plotters, predictive_dataset=predictive_dataset, pp_sample_ix=pp_sample_ix, kind=kind, alpha=alpha, colors=colors, jitter=jitter, textsize=textsize, mean=mean, observed=observed, total_pp_samples=total_pp_samples, legend=legend, labeller=labeller, group=group, animation_kwargs=animation_kwargs, num_pp_samples=num_pp_samples, backend_kwargs=backend_kwargs, show=show, ) # TODO: Add backend kwargs plot = get_plotting_function("plot_ppc", "ppcplot", backend) axes = plot(**ppcplot_kwargs) return axes
def plot_ppc( data, kind="kde", alpha=None, mean=True, observed=True, color=None, colors=None, grid=None, figsize=None, textsize=None, data_pairs=None, var_names=None, filter_vars=None, coords=None, flatten=None, flatten_pp=None, num_pp_samples=None, random_seed=None, jitter=None, animated=False, animation_kwargs=None, legend=True, labeller=None, ax=None, backend=None, backend_kwargs=None, group="posterior", show=None, ): """ Plot for posterior/prior predictive checks. Parameters ---------- data: :class:`arviz.InferenceData` object InferenceData object containing the observed and posterior/prior predictive data. kind: str Type of plot to display ("kde", "cumulative", or "scatter"). Defaults to `kde`. alpha: float Opacity of posterior/prior predictive density curves. Defaults to `0.2` for ``kind`` = kde and cumulative, for scatter defaults to `0.7`. mean: bool Whether or not to plot the mean posterior/prior predictive distribution. Defaults to ``True``. observed: bool, default ``True`` Whether or not to plot the observed data. color: str Valid matplotlib ``color``. Defaults to `C0`. color: list List with valid matplotlib colors corresponding to the posterior/prior predictive distribution, observed data and mean of the posterior/prior predictive distribution. Defaults to ["C0", "k", "C1"]. grid : tuple Number of rows and columns. Defaults to None, the rows and columns are automatically inferred. figsize: tuple Figure size. If None, it will be defined automatically. textsize: float Text size scaling factor for labels, titles and lines. If None, it will be autoscaled based on ``figsize``. data_pairs: dict Dictionary containing relations between observed data and posterior/prior predictive data. Dictionary structure: - key = data var_name - value = posterior/prior predictive var_name For example, ``data_pairs = {'y' : 'y_hat'}`` If None, it will assume that the observed data and the posterior/prior predictive data have the same variable name. var_names: list of variable names Variables to be plotted, if `None` all variable are plotted. Prefix the variables by ``~`` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la ``pandas.filter``. coords: dict Dictionary mapping dimensions to selected coordinates to be plotted. Dimensions without a mapping specified will include all coordinates for that dimension. Defaults to including all coordinates for all dimensions if None. flatten: list List of dimensions to flatten in observed_data. Only flattens across the coordinates specified in the ``coords`` argument. Defaults to flattening all of the dimensions. flatten_pp: list List of dimensions to flatten in posterior_predictive/prior_predictive. Only flattens across the coordinates specified in the ``coords`` argument. Defaults to flattening all of the dimensions. Dimensions should match flatten excluding dimensions for ``data_pairs`` parameters. If ``flatten`` is defined and ``flatten_pp`` is None, then ``flatten_pp = flatten``. num_pp_samples: int The number of posterior/prior predictive samples to plot. For ``kind`` = 'scatter' and `animation` = ``False`` if defaults to a maximum of 5 samples and will set jitter to `0.7`. unless defined. Otherwise it defaults to all provided samples. random_seed: int Random number generator seed passed to ``numpy.random.seed`` to allow reproducibility of the plot. By default, no seed will be provided and the plot will change each call if a random sample is specified by ``num_pp_samples``. jitter: float If ``kind`` is "scatter", jitter will add random uniform noise to the height of the ppc samples and observed data. By default `0`. animated: bool Create an animation of one posterior/prior predictive sample per frame. Defaults to ``False``. Only works with matploblib backend. To run animations inside a notebook you have to use the `nbAgg` matplotlib's backend. Try with `%matplotlib notebook` or `%matplotlib nbAgg`. You can switch back to the default matplotlib's backend with `%matplotlib inline` or `%matplotlib auto`. If switching back and forth between matplotlib's backend, you may need to run twice the cell with the animation. If you experience problems rendering the animation try setting `animation_kwargs({'blit':False}) or changing the matplotlib's backend (e.g. to TkAgg) If you run the animation from a script write `ax, ani = az.plot_ppc(.)` animation_kwargs : dict Keywords passed to ``animation.FuncAnimation``. Ignored with matplotlib backend. legend : bool Add legend to figure. By default ``True``. labeller : labeller instance, optional Class providing the method ``make_pp_label`` to generate the labels in the plot titles. Read the :ref:`label_guide` for more details and usage examples. ax: numpy array-like of matplotlib axes or bokeh figures, optional A 2D array of locations into which to plot the densities. If not supplied, Arviz will create its own array of plot areas (and return it). backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default to "matplotlib". backend_kwargs: bool, optional These are kwargs specific to the backend being used, passed to :func:`matplotlib.pyplot.subplots` or :func:`bokeh.plotting.figure`. For additional documentation check the plotting method of the backend. group: {"prior", "posterior"}, optional Specifies which InferenceData group should be plotted. Defaults to `'posterior'`. Other value can be `'prior'`. show: bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures See Also -------- plot_bvp: Plot Bayesian p-value for observed data and Posterior/Prior predictive. Examples -------- Plot the observed data KDE overlaid on posterior predictive KDEs. .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data('radon') >>> az.plot_ppc(data, data_pairs={"y":"y"}) Plot the overlay with empirical CDFs. .. plot:: :context: close-figs >>> az.plot_ppc(data, kind='cumulative') Use the ``coords`` and ``flatten`` parameters to plot selected variable dimensions across multiple plots. We will now modify the dimension `obs_id` to contain indicate the name of the county where the measure was taken. The change has to be done on both ``posterior_predictive`` and ``observed_data`` groups, which is why we will use :meth:`~arviz.InferenceData.map` to apply the same function to both groups. Afterwards, we will select the counties to be plotted with the ``coords`` arg. .. plot:: :context: close-figs >>> obs_county = data.posterior["County"][data.constant_data["county_idx"]] >>> data = data.assign_coords(obs_id=obs_county, groups="observed_vars") >>> az.plot_ppc(data, coords={'obs_id': ['ANOKA', 'BELTRAMI']}, flatten=[]) Plot the overlay using a stacked scatter plot that is particularly useful when the sample sizes are small. .. plot:: :context: close-figs >>> az.plot_ppc(data, kind='scatter', flatten=[], >>> coords={'obs_id': ['AITKIN', 'BELTRAMI']}) Plot random posterior predictive sub-samples. .. plot:: :context: close-figs >>> az.plot_ppc(data, num_pp_samples=30, random_seed=7) """ if group not in ("posterior", "prior"): raise TypeError("`group` argument must be either `posterior` or `prior`") for groups in (f"{group}_predictive", "observed_data"): if not hasattr(data, groups): raise TypeError(f'`data` argument must have the group "{groups}" for ppcplot') if kind.lower() not in ("kde", "cumulative", "scatter"): raise TypeError("`kind` argument must be either `kde`, `cumulative`, or `scatter`") if colors is None: colors = ["C0", "k", "C1"] if isinstance(colors, str): raise TypeError("colors should be a list with 3 items.") if len(colors) != 3: raise ValueError("colors should be a list with 3 items.") if color is not None: warnings.warn("color has been deprecated in favor of colors", FutureWarning) colors[0] = color if data_pairs is None: data_pairs = {} if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() if backend == "bokeh": if animated: raise TypeError("Animation option is only supported with matplotlib backend.") observed_data = data.observed_data if group == "posterior": predictive_dataset = data.posterior_predictive elif group == "prior": predictive_dataset = data.prior_predictive if var_names is None: var_names = list(observed_data.data_vars) var_names = _var_names(var_names, observed_data, filter_vars) pp_var_names = [data_pairs.get(var, var) for var in var_names] pp_var_names = _var_names(pp_var_names, predictive_dataset, filter_vars) if flatten_pp is None and flatten is None: flatten_pp = list(predictive_dataset.dims.keys()) elif flatten_pp is None: flatten_pp = flatten if flatten is None: flatten = list(observed_data.dims.keys()) if coords is None: coords = {} if labeller is None: labeller = BaseLabeller() if random_seed is not None: np.random.seed(random_seed) total_pp_samples = predictive_dataset.sizes["chain"] * predictive_dataset.sizes["draw"] if num_pp_samples is None: if kind == "scatter" and not animated: num_pp_samples = min(5, total_pp_samples) else: num_pp_samples = total_pp_samples if ( not isinstance(num_pp_samples, Integral) or num_pp_samples < 1 or num_pp_samples > total_pp_samples ): raise TypeError( "`num_pp_samples` must be an integer between 1 and " + f"{total_pp_samples}." ) pp_sample_ix = np.random.choice(total_pp_samples, size=num_pp_samples, replace=False) for key in coords.keys(): coords[key] = np.where(np.in1d(observed_data[key], coords[key]))[0] obs_plotters = filter_plotters_list( list( xarray_var_iter( observed_data.isel(coords), skip_dims=set(flatten), var_names=var_names, combined=True, ) ), "plot_ppc", ) length_plotters = len(obs_plotters) pp_plotters = [ tup for _, tup in zip( range(length_plotters), xarray_var_iter( predictive_dataset.isel(coords), var_names=pp_var_names, skip_dims=set(flatten_pp), combined=True, ), ) ] rows, cols = default_grid(length_plotters, grid=grid) ppcplot_kwargs = dict( ax=ax, length_plotters=length_plotters, rows=rows, cols=cols, figsize=figsize, animated=animated, obs_plotters=obs_plotters, pp_plotters=pp_plotters, predictive_dataset=predictive_dataset, pp_sample_ix=pp_sample_ix, kind=kind, alpha=alpha, colors=colors, jitter=jitter, textsize=textsize, mean=mean, observed=observed, total_pp_samples=total_pp_samples, legend=legend, labeller=labeller, group=group, animation_kwargs=animation_kwargs, num_pp_samples=num_pp_samples, backend_kwargs=backend_kwargs, show=show, ) # TODO: Add backend kwargs plot = get_plotting_function("plot_ppc", "ppcplot", backend) axes = plot(**ppcplot_kwargs) return axes
10,496
def main(): module = AnsibleModule( argument_spec=dict( state=dict(type='str', default='present', choices=['absent', 'build-dep', 'fixed', 'latest', 'present']), update_cache=dict(type='bool', aliases=['update-cache']), update_cache_retries=dict(type='int', default=5), update_cache_retry_max_delay=dict(type='int', default=12), cache_valid_time=dict(type='int', default=0), purge=dict(type='bool', default=False), package=dict(type='list', elements='str', aliases=['pkg', 'name']), deb=dict(type='path'), default_release=dict(type='str', aliases=['default-release']), install_recommends=dict(type='bool', aliases=['install-recommends']), force=dict(type='bool', default=False), upgrade=dict(type='str', choices=['dist', 'full', 'no', 'safe', 'yes']), dpkg_options=dict(type='str', default=DPKG_OPTIONS), autoremove=dict(type='bool', default=False), autoclean=dict(type='bool', default=False), no_remove=dict(type='bool', default=False, aliases=['no-remove']), policy_rc_d=dict(type='int', default=None), only_upgrade=dict(type='bool', default=False), force_apt_get=dict(type='bool', default=False), allow_unauthenticated=dict(type='bool', default=False, aliases=['allow-unauthenticated']), ), mutually_exclusive=[['deb', 'package', 'upgrade']], required_one_of=[['autoremove', 'deb', 'package', 'update_cache', 'upgrade']], supports_check_mode=True, ) module.run_command_environ_update = APT_ENV_VARS if not HAS_PYTHON_APT: if module.check_mode: module.fail_json(msg="%s must be installed to use check mode. " "If run normally this module can auto-install it." % PYTHON_APT) try: # We skip cache update in auto install the dependency if the # user explicitly declared it with update_cache=no. if module.params.get('update_cache') is False: module.warn("Auto-installing missing dependency without updating cache: %s" % PYTHON_APT) else: module.warn("Updating cache and auto-installing missing dependency: %s" % PYTHON_APT) module.run_command(['apt-get', 'update'], check_rc=True) module.run_command(['apt-get', 'install', '--no-install-recommends', PYTHON_APT, '-y', '-q'], check_rc=True) global apt, apt_pkg import apt import apt.debfile import apt_pkg except ImportError: module.fail_json(msg="Could not import python modules: apt, apt_pkg. " "Please install %s package." % PYTHON_APT) global APTITUDE_CMD APTITUDE_CMD = module.get_bin_path("aptitude", False) global APT_GET_CMD APT_GET_CMD = module.get_bin_path("apt-get") p = module.params if p['upgrade'] == 'no': p['upgrade'] = None use_apt_get = p['force_apt_get'] if not use_apt_get and not APTITUDE_CMD: use_apt_get = True updated_cache = False updated_cache_time = 0 install_recommends = p['install_recommends'] allow_unauthenticated = p['allow_unauthenticated'] dpkg_options = expand_dpkg_options(p['dpkg_options']) autoremove = p['autoremove'] no_remove = p['no_remove'] autoclean = p['autoclean'] # Get the cache object cache = get_cache(module) try: if p['default_release']: try: apt_pkg.config['APT::Default-Release'] = p['default_release'] except AttributeError: apt_pkg.Config['APT::Default-Release'] = p['default_release'] # reopen cache w/ modified config cache.open(progress=None) mtimestamp, updated_cache_time = get_updated_cache_time() # Cache valid time is default 0, which will update the cache if # needed and `update_cache` was set to true updated_cache = False if p['update_cache'] or p['cache_valid_time']: now = datetime.datetime.now() tdelta = datetime.timedelta(seconds=p['cache_valid_time']) if not mtimestamp + tdelta >= now: # Retry to update the cache with exponential backoff err = '' update_cache_retries = module.params.get('update_cache_retries') update_cache_retry_max_delay = module.params.get('update_cache_retry_max_delay') randomize = random.randint(0, 1000) / 1000.0 for retry in range(update_cache_retries): try: cache.update() break except apt.cache.FetchFailedException as e: err = to_native(e) # Use exponential backoff plus a little bit of randomness delay = 2 ** retry + randomize if delay > update_cache_retry_max_delay: delay = update_cache_retry_max_delay + randomize time.sleep(delay) else: module.fail_json(msg='Failed to update apt cache: %s' % (err if err else 'unknown reason')) cache.open(progress=None) mtimestamp, post_cache_update_time = get_updated_cache_time() if updated_cache_time != post_cache_update_time: updated_cache = True updated_cache_time = post_cache_update_time # If there is nothing else to do exit. This will set state as # changed based on if the cache was updated. if not p['package'] and not p['upgrade'] and not p['deb']: module.exit_json( changed=updated_cache, cache_updated=updated_cache, cache_update_time=updated_cache_time ) force_yes = p['force'] if p['upgrade']: upgrade(module, p['upgrade'], force_yes, p['default_release'], use_apt_get, dpkg_options, autoremove, no_remove, allow_unauthenticated) if p['deb']: if p['state'] != 'present': module.fail_json(msg="deb only supports state=present") if '://' in p['deb']: p['deb'] = fetch_file(module, p['deb']) install_deb(module, p['deb'], cache, install_recommends=install_recommends, allow_unauthenticated=allow_unauthenticated, force=force_yes, no_remove=no_remove, dpkg_options=p['dpkg_options']) unfiltered_packages = p['package'] or () packages = [package.strip() for package in unfiltered_packages if package != '*'] all_installed = '*' in unfiltered_packages latest = p['state'] == 'latest' if latest and all_installed: if packages: module.fail_json(msg='unable to install additional packages when upgrading all installed packages') upgrade(module, 'yes', force_yes, p['default_release'], use_apt_get, dpkg_options, autoremove, no_remove, allow_unauthenticated) if packages: for package in packages: if package.count('=') > 1: module.fail_json(msg="invalid package spec: %s" % package) if latest and '=' in package: module.fail_json(msg='version number inconsistent with state=latest: %s' % package) if not packages: if autoclean: cleanup(module, p['purge'], force=force_yes, operation='autoclean', dpkg_options=dpkg_options) if autoremove: cleanup(module, p['purge'], force=force_yes, operation='autoremove', dpkg_options=dpkg_options) if p['state'] in ('latest', 'present', 'build-dep', 'fixed'): state_upgrade = False state_builddep = False state_fixed = False if p['state'] == 'latest': state_upgrade = True if p['state'] == 'build-dep': state_builddep = True if p['state'] == 'fixed': state_fixed = True success, retvals = install( module, packages, cache, upgrade=state_upgrade, default_release=p['default_release'], install_recommends=install_recommends, force=force_yes, dpkg_options=dpkg_options, build_dep=state_builddep, fixed=state_fixed, autoremove=autoremove, no_remove=no_remove, only_upgrade=p['only_upgrade'], allow_unauthenticated=allow_unauthenticated ) # Store if the cache has been updated retvals['cache_updated'] = updated_cache # Store when the update time was last retvals['cache_update_time'] = updated_cache_time if success: module.exit_json(**retvals) else: module.fail_json(**retvals) elif p['state'] == 'absent': remove(module, packages, cache, p['purge'], force=force_yes, dpkg_options=dpkg_options, autoremove=autoremove) except apt.cache.LockFailedException: module.fail_json(msg="Failed to lock apt for exclusive operation") except apt.cache.FetchFailedException: module.fail_json(msg="Could not fetch updated apt files")
def main(): module = AnsibleModule( argument_spec=dict( state=dict(type='str', default='present', choices=['absent', 'build-dep', 'fixed', 'latest', 'present']), update_cache=dict(type='bool', aliases=['update-cache']), update_cache_retries=dict(type='int', default=5), update_cache_retry_max_delay=dict(type='int', default=12), cache_valid_time=dict(type='int', default=0), purge=dict(type='bool', default=False), package=dict(type='list', elements='str', aliases=['pkg', 'name']), deb=dict(type='path'), default_release=dict(type='str', aliases=['default-release']), install_recommends=dict(type='bool', aliases=['install-recommends']), force=dict(type='bool', default=False), upgrade=dict(type='str', choices=['dist', 'full', 'no', 'safe', 'yes']), dpkg_options=dict(type='str', default=DPKG_OPTIONS), autoremove=dict(type='bool', default=False), autoclean=dict(type='bool', default=False), no_remove=dict(type='bool', default=False, aliases=['no-remove']), policy_rc_d=dict(type='int', default=None), only_upgrade=dict(type='bool', default=False), force_apt_get=dict(type='bool', default=False), allow_unauthenticated=dict(type='bool', default=False, aliases=['allow-unauthenticated']), ), mutually_exclusive=[['deb', 'package', 'upgrade']], required_one_of=[['autoremove', 'deb', 'package', 'update_cache', 'upgrade']], supports_check_mode=True, ) module.run_command_environ_update = APT_ENV_VARS if not HAS_PYTHON_APT: if module.check_mode: module.fail_json(msg="%s must be installed to use check mode. " "If run normally this module can auto-install it." % PYTHON_APT) try: # We skip cache update in auto install the dependency if the # user explicitly declared it with update_cache=no. if module.params.get('update_cache') is False: module.warn("Auto-installing missing dependency without updating cache: %s" % PYTHON_APT) else: module.warn("Updating cache and auto-installing missing dependency: %s" % PYTHON_APT) module.run_command(['apt-get', 'update'], check_rc=True) module.run_command(['apt-get', 'install', '--no-install-recommends', PYTHON_APT, '-y', '-q'], check_rc=True) global apt, apt_pkg import apt import apt.debfile import apt_pkg except ImportError: module.fail_json(msg="Could not import python modules: apt, apt_pkg. " "Please install %s package." % PYTHON_APT) global APTITUDE_CMD APTITUDE_CMD = module.get_bin_path("aptitude", False) global APT_GET_CMD APT_GET_CMD = module.get_bin_path("apt-get") p = module.params if p['upgrade'] == 'no': p['upgrade'] = None use_apt_get = p['force_apt_get'] if not use_apt_get and not APTITUDE_CMD: use_apt_get = True updated_cache = False updated_cache_time = 0 install_recommends = p['install_recommends'] allow_unauthenticated = p['allow_unauthenticated'] dpkg_options = expand_dpkg_options(p['dpkg_options']) autoremove = p['autoremove'] no_remove = p['no_remove'] autoclean = p['autoclean'] # Get the cache object cache = get_cache(module) try: if p['default_release']: try: apt_pkg.config['APT::Default-Release'] = p['default_release'] except AttributeError: apt_pkg.Config['APT::Default-Release'] = p['default_release'] # reopen cache w/ modified config cache.open(progress=None) mtimestamp, updated_cache_time = get_updated_cache_time() # Cache valid time is default 0, which will update the cache if # needed and `update_cache` was set to true updated_cache = False if p['update_cache'] or p['cache_valid_time']: now = datetime.datetime.now() tdelta = datetime.timedelta(seconds=p['cache_valid_time']) if not mtimestamp + tdelta >= now: # Retry to update the cache with exponential backoff err = '' update_cache_retries = module.params.get('update_cache_retries') update_cache_retry_max_delay = module.params.get('update_cache_retry_max_delay') randomize = random.randint(0, 1000) / 1000.0 for retry in range(update_cache_retries): try: cache.update() break except apt.cache.FetchFailedException as e: err = to_native(e) # Use exponential backoff plus a little bit of randomness delay = 2 ** retry + randomize if delay > update_cache_retry_max_delay: delay = update_cache_retry_max_delay + randomize time.sleep(delay) else: module.fail_json(msg='Failed to update apt cache: %s' % (err if err else 'unknown reason')) cache.open(progress=None) mtimestamp, post_cache_update_time = get_updated_cache_time() if updated_cache_time != post_cache_update_time: updated_cache = True updated_cache_time = post_cache_update_time # If there is nothing else to do exit. This will set state as # changed based on if the cache was updated. if not p['package'] and not p['upgrade'] and not p['deb']: module.exit_json( changed=updated_cache, cache_updated=updated_cache, cache_update_time=updated_cache_time ) force_yes = p['force'] if p['upgrade']: upgrade(module, p['upgrade'], force_yes, p['default_release'], use_apt_get, dpkg_options, autoremove, fail_on_autoremove, allow_unauthenticated) if p['deb']: if p['state'] != 'present': module.fail_json(msg="deb only supports state=present") if '://' in p['deb']: p['deb'] = fetch_file(module, p['deb']) install_deb(module, p['deb'], cache, install_recommends=install_recommends, allow_unauthenticated=allow_unauthenticated, force=force_yes, no_remove=no_remove, dpkg_options=p['dpkg_options']) unfiltered_packages = p['package'] or () packages = [package.strip() for package in unfiltered_packages if package != '*'] all_installed = '*' in unfiltered_packages latest = p['state'] == 'latest' if latest and all_installed: if packages: module.fail_json(msg='unable to install additional packages when upgrading all installed packages') upgrade(module, 'yes', force_yes, p['default_release'], use_apt_get, dpkg_options, autoremove, no_remove, allow_unauthenticated) if packages: for package in packages: if package.count('=') > 1: module.fail_json(msg="invalid package spec: %s" % package) if latest and '=' in package: module.fail_json(msg='version number inconsistent with state=latest: %s' % package) if not packages: if autoclean: cleanup(module, p['purge'], force=force_yes, operation='autoclean', dpkg_options=dpkg_options) if autoremove: cleanup(module, p['purge'], force=force_yes, operation='autoremove', dpkg_options=dpkg_options) if p['state'] in ('latest', 'present', 'build-dep', 'fixed'): state_upgrade = False state_builddep = False state_fixed = False if p['state'] == 'latest': state_upgrade = True if p['state'] == 'build-dep': state_builddep = True if p['state'] == 'fixed': state_fixed = True success, retvals = install( module, packages, cache, upgrade=state_upgrade, default_release=p['default_release'], install_recommends=install_recommends, force=force_yes, dpkg_options=dpkg_options, build_dep=state_builddep, fixed=state_fixed, autoremove=autoremove, no_remove=no_remove, only_upgrade=p['only_upgrade'], allow_unauthenticated=allow_unauthenticated ) # Store if the cache has been updated retvals['cache_updated'] = updated_cache # Store when the update time was last retvals['cache_update_time'] = updated_cache_time if success: module.exit_json(**retvals) else: module.fail_json(**retvals) elif p['state'] == 'absent': remove(module, packages, cache, p['purge'], force=force_yes, dpkg_options=dpkg_options, autoremove=autoremove) except apt.cache.LockFailedException: module.fail_json(msg="Failed to lock apt for exclusive operation") except apt.cache.FetchFailedException: module.fail_json(msg="Could not fetch updated apt files")
5,932
def parse_editable(editable_req): # type: (str) -> Tuple[Optional[str], str, Set[str]] """Parses an editable requirement into: - a requirement name - an URL - extras - editable options Accepted requirements: svn+http://blahblah@rev#egg=Foobar[baz]&subdirectory=version_subdir .[some_extra] """ url = editable_req # If a file path is specified with extras, strip off the extras. url_no_extras, extras = _strip_extras(url) if os.path.isdir(url_no_extras): if not os.path.exists(os.path.join(url_no_extras, 'setup.py')): msg = ( 'File "setup.py" not found. Directory cannot be installed ' 'in editable mode: {}'.format(os.path.abspath(url_no_extras)) ) pyproject_path = make_pyproject_path(url_no_extras) if os.path.isfile(pyproject_path): msg += ( '\n(A "pyproject.toml" file was found, but editable ' 'mode currently requires a setup.py based build.)' ) raise InstallationError(msg) # Treating it as code that has already been checked out url_no_extras = path_to_url(url_no_extras) if url_no_extras.lower().startswith('file:'): package_name = Link(url_no_extras).egg_fragment if extras: return ( package_name, url_no_extras, Requirement("placeholder" + extras.lower()).extras, ) else: return package_name, url_no_extras, set() for version_control in vcs: if url.lower().startswith(f'{version_control}:'): url = f'{version_control}+{url}' break link = Link(url) if not link.is_vcs: backends = ", ".join([backend.name + '+' for backend in vcs.backends]) raise InstallationError( f'{editable_req} is not a valid editable requirement. ' f'It should either be a path to a local project or a VCS URL ' f'(beginning with {backends}).' ) package_name = link.egg_fragment if not package_name: raise InstallationError( "Could not detect requirement name for '{}', please specify one " "with #egg=your_package_name".format(editable_req) ) return package_name, url, set()
def parse_editable(editable_req): # type: (str) -> Tuple[Optional[str], str, Set[str]] """Parses an editable requirement into: - a requirement name - an URL - extras - editable options Accepted requirements: svn+http://blahblah@rev#egg=Foobar[baz]&subdirectory=version_subdir .[some_extra] """ url = editable_req # If a file path is specified with extras, strip off the extras. url_no_extras, extras = _strip_extras(url) if os.path.isdir(url_no_extras): if not os.path.exists(os.path.join(url_no_extras, 'setup.py')): msg = ( 'File "setup.py" not found. Directory cannot be installed ' 'in editable mode: {}'.format(os.path.abspath(url_no_extras)) ) pyproject_path = make_pyproject_path(url_no_extras) if os.path.isfile(pyproject_path): msg += ( '\n(A "pyproject.toml" file was found, but editable ' 'mode currently requires a setup.py based build.)' ) raise InstallationError(msg) # Treating it as code that has already been checked out url_no_extras = path_to_url(url_no_extras) if url_no_extras.lower().startswith('file:'): package_name = Link(url_no_extras).egg_fragment if extras: return ( package_name, url_no_extras, Requirement("placeholder" + extras.lower()).extras, ) else: return package_name, url_no_extras, set() for version_control in vcs: if url.lower().startswith(f'{version_control}:'): url = f'{version_control}+{url}' break link = Link(url) if not link.is_vcs: backends = ", ".join(f"{backend.name}+" for backend in vcs.backends) raise InstallationError( f'{editable_req} is not a valid editable requirement. ' f'It should either be a path to a local project or a VCS URL ' f'(beginning with {backends}).' ) package_name = link.egg_fragment if not package_name: raise InstallationError( "Could not detect requirement name for '{}', please specify one " "with #egg=your_package_name".format(editable_req) ) return package_name, url, set()
1,848
def test_poisson_zero_nodes(): """Test that sum(y)=0 and therefore y_pred=0 never happens on nodes.""" X = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 2], [1, 3]] y = [0, 0, 0, 0, 1, 2, 3, 4] reg = DecisionTreeRegressor(criterion="poisson", random_state=1) reg.fit(X, y) assert np.all(reg.predict(X) > 0)
def test_poisson_zero_nodes(): """Test that sum(y)=0 and therefore y_pred=0 is forbidden on nodes.""" X = [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 2], [1, 3]] y = [0, 0, 0, 0, 1, 2, 3, 4] reg = DecisionTreeRegressor(criterion="poisson", random_state=1) reg.fit(X, y) assert np.all(reg.predict(X) > 0)
22,042
def upload_to_google_bigquery_table(df, dataset, table, job_config=None, client_project=None, credentials=None, chunk_size=None, progress=None): '''Upload a Vaex DataFrame to a Google BigQuery Table. Note that the upload creates a temporary parquet file on the local disk, which is then upload to Google BigQuery. :param DataFrame df: The Vaex DataFrame to be uploaded. :param str dataset: The name of the dataset to which the table belongs :param str table: The name of the table :param job_config: Optional, an instance of google.cloud.bigquery.job.load.LoadJobConfig :param str client_project: The ID of the project that executes the query. Will be passed when creating a job. If `None`, falls back to the default inferred from the environment. :param credentials: The authorization credentials to attach to requests. See google.auth.credentials.Credentials for more details. :param chunk_size: In case the local disk space is limited, export the dataset in chunks. This is considerably slower than a single file upload and it should be avoided. :param progress: Valid only if chunk_size is not None. A callable that takes one argument (a floating point value between 0 and 1) indicating the progress, calculations are cancelled when this callable returns False Example: >>> import os >>> os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = '../path/to/project_access_key.json' >>> import vaex >>> from vaex.contrib.io.gbq import upload_to_google_bigquery_table >>> df = vaex.example() >>> dataset = 'my_dataset' >>> table = 'my_table' >>> upload_to_google_bigquery_table(df=df, dataset=dataset, table=table) ''' # Instantiate the BigQuery Client client = google.cloud.bigquery.Client(project=client_project, credentials=credentials) # Confirm configuration of the LoadJobConfig if job_config is not None: assert isinstance(job_config, google.cloud.bigquery.job.load.LoadJobConfig) job_config.source_format = google.cloud.bigquery.SourceFormat.PARQUET else: job_config = google.cloud.bigquery.LoadJobConfig(source_format=google.cloud.bigquery.SourceFormat.PARQUET) # Table to which to upload table_bq = f"{dataset}.{table}" if chunk_size is None: with tempfile.NamedTemporaryFile(suffix='.parquet') as tmp: df.export_parquet(tmp.name) with open(tmp.name, "rb") as source_file: job = client.load_table_from_file(source_file, table_bq, job_config=job_config) job.result() else: progressbar = vaex.utils.progressbars(progress) n_samples = len(df) for i1, i2, table in df.to_arrow_table(chunk_size=chunk_size): progressbar(i1 / n_samples) with tempfile.NamedTemporaryFile(suffix='.parquet') as tmp: pq.write_table(table, tmp.name) with open(tmp.name, "rb") as source_file: job = client.load_table_from_file(source_file, table_bq, job_config=job_config) job.result() progressbar(1.0)
def to_table(df, dataset, table, job_config=None, client_project=None, credentials=None, chunk_size=None, progress=None): '''Upload a Vaex DataFrame to a Google BigQuery Table. Note that the upload creates a temporary parquet file on the local disk, which is then upload to Google BigQuery. :param DataFrame df: The Vaex DataFrame to be uploaded. :param str dataset: The name of the dataset to which the table belongs :param str table: The name of the table :param job_config: Optional, an instance of google.cloud.bigquery.job.load.LoadJobConfig :param str client_project: The ID of the project that executes the query. Will be passed when creating a job. If `None`, falls back to the default inferred from the environment. :param credentials: The authorization credentials to attach to requests. See google.auth.credentials.Credentials for more details. :param chunk_size: In case the local disk space is limited, export the dataset in chunks. This is considerably slower than a single file upload and it should be avoided. :param progress: Valid only if chunk_size is not None. A callable that takes one argument (a floating point value between 0 and 1) indicating the progress, calculations are cancelled when this callable returns False Example: >>> import os >>> os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = '../path/to/project_access_key.json' >>> import vaex >>> from vaex.contrib.io.gbq import upload_to_google_bigquery_table >>> df = vaex.example() >>> dataset = 'my_dataset' >>> table = 'my_table' >>> upload_to_google_bigquery_table(df=df, dataset=dataset, table=table) ''' # Instantiate the BigQuery Client client = google.cloud.bigquery.Client(project=client_project, credentials=credentials) # Confirm configuration of the LoadJobConfig if job_config is not None: assert isinstance(job_config, google.cloud.bigquery.job.load.LoadJobConfig) job_config.source_format = google.cloud.bigquery.SourceFormat.PARQUET else: job_config = google.cloud.bigquery.LoadJobConfig(source_format=google.cloud.bigquery.SourceFormat.PARQUET) # Table to which to upload table_bq = f"{dataset}.{table}" if chunk_size is None: with tempfile.NamedTemporaryFile(suffix='.parquet') as tmp: df.export_parquet(tmp.name) with open(tmp.name, "rb") as source_file: job = client.load_table_from_file(source_file, table_bq, job_config=job_config) job.result() else: progressbar = vaex.utils.progressbars(progress) n_samples = len(df) for i1, i2, table in df.to_arrow_table(chunk_size=chunk_size): progressbar(i1 / n_samples) with tempfile.NamedTemporaryFile(suffix='.parquet') as tmp: pq.write_table(table, tmp.name) with open(tmp.name, "rb") as source_file: job = client.load_table_from_file(source_file, table_bq, job_config=job_config) job.result() progressbar(1.0)
58,763
def sparsereshape(sparse_indices, sparse_values, prev_shape, new_shape): """ Reshape a Sparse Tensor Parameters ---------- inputs : List[relay.Expr] Input tensor and indices. The first tensor is input data and rests are indices. Returns ------- result: relay.Expr Output tensor. Examples -------- .. code-block:: python sparse_indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 2, 3]] sparse_values = [7, 5, 6, 3, 9] prev_shape = [2, 3, 4] new_shape = [9, -1] relay.sparsereshape(sparse_indices, sparse_values, prev_shape, new_shape) = [[0, 0], [0, 1], [1, 2], [4, 2], [8, 1]] """ return cpp.sparsereshape(sparse_indices, sparse_values, prev_shape, new_shape)
def sparsereshape(sparse_indices, sparse_values, prev_shape, new_shape): """ Reshape a Sparse Tensor Parameters ---------- inputs : List[relay.Expr] Input tensor and indices. The first tensor is input data and rests are indices. Returns ------- result: relay.Expr Output tensor. Examples -------- .. code-block:: python sparse_indices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 2, 3]] sparse_values = [7, 5, 6, 3, 9] prev_shape = [2, 3, 4] new_shape = [9, -1] relay.sparsereshape(sparse_indices, sparse_values, prev_shape, new_shape) = [[0, 0], [0, 1], [1, 2], [4, 2], [8, 1]] """ return cpp.sparsereshape(sparse_indices, sparse_values, prev_shape, new_shape)
35,587
def densenet161(pretrained: bool = False, progress: bool = True, **kwargs) -> DenseNet: r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress, **kwargs)
def densenet161(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet: r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress, **kwargs)
57,825
def http_request(method, url, body=None, headers=None, url_params=None): """ returns the http response body uses TOKEN global var to send requests to RSA end (this enables using a token for multiple requests and avoiding unnecessary creation of a new token) catches and handles token expiration: in case of 'request timeout' the token will be renewed and the request will be resent once more. """ if headers is None: headers = {} global TOKEN # add token to headers headers['NetWitness-Token'] = TOKEN request_kwargs = { 'headers': headers, 'verify': USE_SSL } # add optional arguments if specified if body is not None: request_kwargs['data'] = body if url_params is not None: request_kwargs['params'] = url_params LOG('Attempting {} request to {}\nWith params:{}\nWith body:\n{}'.format(method, url, json.dumps(url_params, indent=4), json.dumps(body, indent=4))) response = requests.request( method, url, **request_kwargs ) # handle timeout (token expired): renew token and try again if response.status_code == 408: LOG('Timeout detected - renewing token') TOKEN = get_token() headers['NetWitness-Token'] = TOKEN response = requests.request( method, url, **request_kwargs ) # successful request if response.status_code == 200: try: return response.json() except Exception as e: demisto.debug('Could not parse response as a JSON.\nResponse is: {}.' '\nError is:{}'.format(response.content, e.message)) return None # bad request - NetWitness returns a common json structure for errors; a list of error objects error_lst = response.json().get('errors') raise ValueError('Request failed with status: {}\n{}'.format(response.status_code, dict_list_to_str(error_lst)))
def http_request(method, url, body=None, headers=None, url_params=None): """ returns the http response body uses TOKEN global var to send requests to RSA end (this enables using a token for multiple requests and avoiding unnecessary creation of a new token) catches and handles token expiration: in case of 'request timeout' the token will be renewed and the request will be resent once more. """ if headers is None: headers = {} global TOKEN # add token to headers headers['NetWitness-Token'] = TOKEN request_kwargs = { 'headers': headers, 'verify': USE_SSL } # add optional arguments if specified if body is not None: request_kwargs['data'] = body if url_params is not None: request_kwargs['params'] = url_params LOG('Attempting {} request to {}\nWith params:{}\nWith body:\n{}'.format(method, url, json.dumps(url_params, indent=4), json.dumps(body, indent=4))) response = requests.request( method, url, **request_kwargs ) # handle timeout (token expired): renew token and try again if response.status_code == 408: LOG('Timeout detected - renewing token') TOKEN = get_token() headers['NetWitness-Token'] = TOKEN response = requests.request( method, url, **request_kwargs ) # successful request if response.status_code == 200: try: return response.json() except Exception as e: demisto.debug('Could not parse response as a JSON.\nResponse is: {}.' '\nError is: {}'.format(response.content, e.message)) return None # bad request - NetWitness returns a common json structure for errors; a list of error objects error_lst = response.json().get('errors') raise ValueError('Request failed with status: {}\n{}'.format(response.status_code, dict_list_to_str(error_lst)))
10,775
def push_call_vars(blocks, saved_globals, saved_getattrs, typemap, nested=False): """push call variables to right before their call site. assuming one global/getattr is created for each call site and control flow doesn't change it. """ for block in blocks.values(): new_body = [] # global/attr variables that are defined in this block already, # no need to reassign them block_defs = set() # Some definitions are copied right before the call but then we # need to rename that symbol in that block so that typing won't # generate an error trying to lock the save var twice. # In rename_dict, we collect the symbols that must be renamed in # this block. We collect them then apply the renaming at the end. rename_dict = {} for stmt in block.body: def process_assign(stmt): if isinstance(stmt, ir.Assign): rhs = stmt.value lhs = stmt.target if (isinstance(rhs, ir.Global)): saved_globals[lhs.name] = stmt block_defs.add(lhs.name) elif isinstance(rhs, ir.Expr) and rhs.op == 'getattr': if (rhs.value.name in saved_globals or rhs.value.name in saved_getattrs): saved_getattrs[lhs.name] = stmt block_defs.add(lhs.name) if not nested and isinstance(stmt, Parfor): for s in stmt.init_block.body: process_assign(s) pblocks = stmt.loop_body.copy() push_call_vars(pblocks, saved_globals, saved_getattrs, typemap, nested=True) new_body.append(stmt) continue else: process_assign(stmt) for v in stmt.list_vars(): new_body += _get_saved_call_nodes(v.name, saved_globals, saved_getattrs, block_defs, rename_dict) new_body.append(stmt) block.body = new_body # If there is anything to rename then apply the renaming here. if len(rename_dict) > 0: # Fix-up the typing for the renamed vars. for k,v in rename_dict.items(): typemap[v] = typemap[k] # This is only to call replace_var_names which takes a dict. temp_blocks = {0:block} replace_var_names(temp_blocks, rename_dict) return
def push_call_vars(blocks, saved_globals, saved_getattrs, typemap, nested=False): """push call variables to right before their call site. assuming one global/getattr is created for each call site and control flow doesn't change it. """ for block in blocks.values(): new_body = [] # global/attr variables that are defined in this block already, # no need to reassign them block_defs = set() # Some definitions are copied right before the call but then we # need to rename that symbol in that block so that typing won't # generate an error trying to lock the save var twice. # In rename_dict, we collect the symbols that must be renamed in # this block. We collect them then apply the renaming at the end. rename_dict = {} for stmt in block.body: def process_assign(stmt): if isinstance(stmt, ir.Assign): rhs = stmt.value lhs = stmt.target if (isinstance(rhs, ir.Global)): saved_globals[lhs.name] = stmt block_defs.add(lhs.name) elif isinstance(rhs, ir.Expr) and rhs.op == 'getattr': if (rhs.value.name in saved_globals or rhs.value.name in saved_getattrs): saved_getattrs[lhs.name] = stmt block_defs.add(lhs.name) if not nested and isinstance(stmt, Parfor): for s in stmt.init_block.body: process_assign(s) pblocks = stmt.loop_body.copy() push_call_vars(pblocks, saved_globals, saved_getattrs, typemap, nested=True) new_body.append(stmt) continue else: process_assign(stmt) for v in stmt.list_vars(): new_body += _get_saved_call_nodes(v.name, saved_globals, saved_getattrs, block_defs, rename_dict) new_body.append(stmt) block.body = new_body # If there is anything to rename then apply the renaming here. if len(rename_dict) > 0: # Fix-up the typing for the renamed vars. for k,v in rename_dict.items(): typemap[v] = typemap[k] # This is only to call replace_var_names which takes a dict. temp_blocks = {0: block} replace_var_names(temp_blocks, rename_dict) return
30,482
def get_layout_data(path): data = OrderedDict() json_data = get_json(path) layout = json_data.get('layout') name = layout.get('name', '-') id = layout.get('id', '-') typeID = json_data.get('typeId') typeName = json_data.get('TypeName') fromversion = json_data.get('fromVersion') toversion = json_data.get('toVersion') pack = get_pack_name(path) if typeID: data['typeID'] = typeID if typeName: data['typename'] = typeName if name: data['name'] = name if not name: data['name'] = '-' if toversion: data['toversion'] = toversion if fromversion: data['fromversion'] = fromversion if pack: data['pack'] = pack return {id: data}
def get_layout_data(path): data = OrderedDict() json_data = get_json(path) layout = json_data.get('layout') name = layout.get('name', '-') id = layout.get('id', '-') typeID = json_data.get('typeId') typeName = json_data.get('TypeName') fromversion = json_data.get('fromVersion') toversion = json_data.get('toVersion') pack = get_pack_name(path) if typeID: data['typeID'] = typeID if typeName: data['typename'] = typeName if name: data['name'] = name else: data['name'] = '-' if toversion: data['toversion'] = toversion if fromversion: data['fromversion'] = fromversion if pack: data['pack'] = pack return {id: data}
16,663
def run(runtime_config: RuntimeConfig) -> int: """Run Home Assistant.""" asyncio.set_event_loop_policy(HassEventLoopPolicy(runtime_config.debug)) # Backport of cpython 3.9 asyncio.run with a _cancel_all_tasks that times out loop = asyncio.new_event_loop() try: asyncio.set_event_loop(loop) return loop.run_until_complete(setup_and_run_hass(runtime_config)) finally: try: _cancel_all_tasks_with_timeout(loop, TASK_CANCELATION_TIMEOUT) loop.run_until_complete(loop.shutdown_asyncgens()) loop.shutdown_default_executor() finally: asyncio.set_event_loop(None) loop.close()
def run(runtime_config: RuntimeConfig) -> int: """Run Home Assistant.""" asyncio.set_event_loop_policy(HassEventLoopPolicy(runtime_config.debug)) # Backport of cpython 3.9 asyncio.run with a _cancel_all_tasks that times out loop = asyncio.new_event_loop() try: asyncio.set_event_loop(loop) return loop.run_until_complete(setup_and_run_hass(runtime_config)) finally: try: _cancel_all_tasks_with_timeout(loop, TASK_CANCELATION_TIMEOUT) loop.run_until_complete(loop.shutdown_asyncgens()) loop.run_until_complete(loop.shutdown_default_executor()) finally: asyncio.set_event_loop(None) loop.close()
32,173
def main(): options = arguments_handler() pr_number = options.pr_number github_token = options.github_token org_name = 'demisto' repo_name = 'content' github_client: Github = Github(github_token, verify=False) content_repo: Repository = github_client.get_repo(f'{org_name}/{repo_name}') pr: PullRequest = content_repo.get_pull(int(pr_number)) t = Terminal() pr_label_names = [label.name for label in pr.labels] is_contribution_form_filled_label_exist = CONTRIBUTION_FORM_FILLED_LABEL in pr_label_names is_community_label_exist = COMMUNITY_LABEL in pr_label_names is_partner_label_exist = PARTNER_LABEL in pr_label_names is_internal_label_exist = INTERNAL_LABEL in pr_label_names print(f'{t.cyan}Check that {CONTRIBUTION_FORM_FILLED_LABEL} label exist in PR {pr_number}') if not is_contribution_form_filled_label_exist: print( f'{t.red}ERROR: Contribution form was not filled for PR: {pr_number}.\nMake sure to register your' f' contribution by filling the contribution registration form in - https://forms.gle/XDfxU4E61ZwEESSMA' ) sys.exit(1) print(f'{t.cyan}Check that one of Community/Partner/Internal labels exist in PR {pr_number}') if not (is_community_label_exist ^ is_partner_label_exist ^ is_internal_label_exist): print( f'{t.red}ERROR: PR labels {pr_label_names} ' f'must contain one of {COMMUNITY_LABEL}/{PARTNER_LABEL}/{INTERNAL_LABEL} labels' ) sys.exit(1) print(f'{t.cyan}PR labels {pr_label_names} are valid') print(f'{t.cyan} Contribution form was filled successfully for PR: {pr_number}') sys.exit(0)
def main(): options = arguments_handler() pr_number = options.pr_number github_token = options.github_token org_name = 'demisto' repo_name = 'content' github_client: Github = Github(github_token, verify=False) content_repo: Repository = github_client.get_repo(f'{org_name}/{repo_name}') pr: PullRequest = content_repo.get_pull(int(pr_number)) t = Terminal() pr_label_names = [label.name for label in pr.labels] is_contribution_form_filled_label_exist = CONTRIBUTION_FORM_FILLED_LABEL in pr_label_names is_community_label_exist = COMMUNITY_LABEL in pr_label_names is_partner_label_exist = PARTNER_LABEL in pr_label_names is_internal_label_exist = INTERNAL_LABEL in pr_label_names print(f'{t.cyan}Check that {CONTRIBUTION_FORM_FILLED_LABEL} label exist in PR {pr_number}') if not is_contribution_form_filled_label_exist: print( f'{t.red}ERROR: Contribution form was not filled for PR: {pr_number}.\nMake sure to register your' f' contribution by filling the contribution registration form in - https://forms.gle/XDfxU4E61ZwEESSMA' ) sys.exit(1) print(f'{t.cyan}Checking if one of Community/Partner/Internal labels exist in PR {pr_number}') if not (is_community_label_exist ^ is_partner_label_exist ^ is_internal_label_exist): print( f'{t.red}ERROR: PR labels {pr_label_names} ' f'must contain one of {COMMUNITY_LABEL}/{PARTNER_LABEL}/{INTERNAL_LABEL} labels' ) sys.exit(1) print(f'{t.cyan}PR labels {pr_label_names} are valid') print(f'{t.cyan} Contribution form was filled successfully for PR: {pr_number}') sys.exit(0)
50,207
def _preprocessed_interpreter_search_paths( env_tgt: EnvironmentTarget, _search_paths: Iterable[str], is_default: bool, ) -> tuple[str, ...]: """Checks for special search path strings, and errors if any are invalid for the environment. This will return: * The search paths, unaltered, for local/undefined environments, OR * The search paths, with invalid tokens removed, if the provided value was unaltered from the default value in the options system (see `PythonBootstrapSubsystem.EnvironmentAware.search_paths`) * The search paths unaltered, if the search paths do not contain tokens invalid for this environment If the environment is non-local and there are invalid tokens for those environments, raise `ValueError`. """ env = env_tgt.val search_paths = tuple(_search_paths) if isinstance(env, LocalEnvironmentTarget): return search_paths if env is None: return search_paths not_allowed = {"<PYENV>", "<PYENV_LOCAL>", "<ASDF>", "<ASDF_LOCAL>", "<PEXRC>"} if is_default: # Strip out the not-allowed special strings from search_paths. # An error will occur on the off chance the non-local environment expects pyenv # but there's nothing we can do here to detect it. return tuple(path for path in search_paths if path not in not_allowed) any_not_allowed = set(search_paths) & not_allowed if any_not_allowed: env_type = type(env) raise ValueError( f"`[python-bootstrap].search_paths` is configured to use local Python discovery " f"tools, which do not work in {env_type.__name__} runtime environments. To fix this, " f"set the value of `python_bootstrap_search_path` in the {env.alias} defined at " f"`{env.address}` to contain only hardcoded paths or the `<PATH>` special string." ) return search_paths
def _preprocessed_interpreter_search_paths( env_tgt: EnvironmentTarget, _search_paths: Iterable[str], is_default: bool, ) -> tuple[str, ...]: """Checks for special search path strings, and errors if any are invalid for the environment. This will return: * The search paths, unaltered, for local/undefined environments, OR * The search paths, with invalid tokens removed, if the provided value was unaltered from the default value in the options system (see `PythonBootstrapSubsystem.EnvironmentAware.search_paths`) * The search paths unaltered, if the search paths do not contain tokens invalid for this environment If the environment is non-local and there are invalid tokens for those environments, raise `ValueError`. """ env = env_tgt.val search_paths = tuple(_search_paths) if env is None or isinstance(env, LocalEnvironmentTarget): return search_paths not_allowed = {"<PYENV>", "<PYENV_LOCAL>", "<ASDF>", "<ASDF_LOCAL>", "<PEXRC>"} if is_default: # Strip out the not-allowed special strings from search_paths. # An error will occur on the off chance the non-local environment expects pyenv # but there's nothing we can do here to detect it. return tuple(path for path in search_paths if path not in not_allowed) any_not_allowed = set(search_paths) & not_allowed if any_not_allowed: env_type = type(env) raise ValueError( f"`[python-bootstrap].search_paths` is configured to use local Python discovery " f"tools, which do not work in {env_type.__name__} runtime environments. To fix this, " f"set the value of `python_bootstrap_search_path` in the {env.alias} defined at " f"`{env.address}` to contain only hardcoded paths or the `<PATH>` special string." ) return search_paths
17,436
def mean(array, axis=None, skipna=None, **kwargs): """inhouse mean that can handle np.datetime64 or cftime.datetime dtypes""" from .common import _contains_cftime_datetimes # The mean over an empty axis shouldn't change the data # See https://github.com/pydata/xarray/issues/4885 if axis == tuple(): return array array = asarray(array) if array.dtype.kind in "Mm": offset = _datetime_nanmin(array) # xarray always uses np.datetime64[ns] for np.datetime64 data dtype = "timedelta64[ns]" return ( _mean( datetime_to_numeric(array, offset), axis=axis, skipna=skipna, **kwargs ).astype(dtype) + offset ) elif _contains_cftime_datetimes(array): if is_duck_dask_array(array): raise NotImplementedError( "Computing the mean of an array containing " "cftime.datetime objects is not yet implemented on " "dask arrays." ) offset = min(array) timedeltas = datetime_to_numeric(array, offset, datetime_unit="us") mean_timedeltas = _mean(timedeltas, axis=axis, skipna=skipna, **kwargs) return _to_pytimedelta(mean_timedeltas, unit="us") + offset else: return _mean(array, axis=axis, skipna=skipna, **kwargs)
def mean(array, axis=None, skipna=None, **kwargs): """inhouse mean that can handle np.datetime64 or cftime.datetime dtypes""" from .common import _contains_cftime_datetimes # The mean over an empty axis shouldn't change the data # See https://github.com/pydata/xarray/issues/4885 if axis == (): return array array = asarray(array) if array.dtype.kind in "Mm": offset = _datetime_nanmin(array) # xarray always uses np.datetime64[ns] for np.datetime64 data dtype = "timedelta64[ns]" return ( _mean( datetime_to_numeric(array, offset), axis=axis, skipna=skipna, **kwargs ).astype(dtype) + offset ) elif _contains_cftime_datetimes(array): if is_duck_dask_array(array): raise NotImplementedError( "Computing the mean of an array containing " "cftime.datetime objects is not yet implemented on " "dask arrays." ) offset = min(array) timedeltas = datetime_to_numeric(array, offset, datetime_unit="us") mean_timedeltas = _mean(timedeltas, axis=axis, skipna=skipna, **kwargs) return _to_pytimedelta(mean_timedeltas, unit="us") + offset else: return _mean(array, axis=axis, skipna=skipna, **kwargs)
32,075
def main(): try: demisto_params = demisto.params() command = demisto.command() params = { 'api_url': demisto_params['url'].rstrip('/'), 'use_ssl': not demisto_params.get('insecure', False), 'threshold': int(demisto_params.get('threshold', 1)), 'create_relationships': bool(demisto_params.get('create_relationships', True)), 'max_num_of_relationships': int(demisto_params.get('max_num_of_relationships', 1)) if int( demisto_params.get('max_num_of_relationships', 1)) < 1000 else 1000, } reliability = demisto_params.get('integrationReliability', DBotScoreReliability.C) if DBotScoreReliability.is_valid_type(reliability): params['reliability'] = DBotScoreReliability.get_dbot_score_reliability_from_str(reliability) else: Exception('Please provide a valid value for the Source Reliability parameter.') # Remove proxy if not set to true in params handle_proxy() if command == 'test-module': # This is the call made when pressing the integration test button. test_module(**params) demisto.results('ok') elif command == 'url': return_results(results=url_command(**params)) elif command == 'domain': return_results(results=domain_command(**params)) elif command == 'file': return_results(results=file_command(**params)) elif command == 'urlhaus-download-sample': urlhaus_download_sample_command(**params) # Log exceptions except Exception as exc: return_error(f'Failed to execute command "{command}".\nError: {exc}', error=exc)
def main(): try: demisto_params = demisto.params() command = demisto.command() params = { 'api_url': demisto_params['url'].rstrip('/'), 'use_ssl': not demisto_params.get('insecure', False), 'threshold': int(demisto_params.get('threshold', 1)), 'create_relationships': demisto_params.get('create_relationships', True), 'max_num_of_relationships': int(demisto_params.get('max_num_of_relationships', 1)) if int( demisto_params.get('max_num_of_relationships', 1)) < 1000 else 1000, } reliability = demisto_params.get('integrationReliability', DBotScoreReliability.C) if DBotScoreReliability.is_valid_type(reliability): params['reliability'] = DBotScoreReliability.get_dbot_score_reliability_from_str(reliability) else: Exception('Please provide a valid value for the Source Reliability parameter.') # Remove proxy if not set to true in params handle_proxy() if command == 'test-module': # This is the call made when pressing the integration test button. test_module(**params) demisto.results('ok') elif command == 'url': return_results(results=url_command(**params)) elif command == 'domain': return_results(results=domain_command(**params)) elif command == 'file': return_results(results=file_command(**params)) elif command == 'urlhaus-download-sample': urlhaus_download_sample_command(**params) # Log exceptions except Exception as exc: return_error(f'Failed to execute command "{command}".\nError: {exc}', error=exc)
6,435
def get_context(context): context.no_cache = 1 s = frappe.get_doc("Support Settings", "Support Settings") # Get Started sections if s.get_started_sections: sections = json.loads(s.get_started_sections) context.get_started_sections = sections # Forum posts if s.show_latest_forum_posts: topics_data, post_params = get_forum_posts(s) context.post_params = post_params context.forum_url = s.forum_url context.topics = topics_data[:3] # Issues if frappe.session.user != "Guest": context.issues = frappe.get_list("Issue", fields=["name", "status", "subject", "modified"])[:3] else: context.issues = []
def get_context(context): context.no_cache = 1 settings = frappe.get_doc("Support Settings") # Get Started sections if s.get_started_sections: sections = json.loads(s.get_started_sections) context.get_started_sections = sections # Forum posts if s.show_latest_forum_posts: topics_data, post_params = get_forum_posts(s) context.post_params = post_params context.forum_url = s.forum_url context.topics = topics_data[:3] # Issues if frappe.session.user != "Guest": context.issues = frappe.get_list("Issue", fields=["name", "status", "subject", "modified"])[:3] else: context.issues = []
21,530
def _filter_results( direction: str, from_token: Optional[RoomStreamToken], to_token: Optional[RoomStreamToken], instance_name: str, stream_ordering: int, ) -> bool: """Filter results from fetching events in the DB against the given tokens. This is necessary to handle the case where the tokens include positions maps, which we handle by fetching more than necessary from the DB and then filtering (rather than attempting to construct a complicated SQL query). """ # We will have already filtered by the topological tokens, so we don't # bother checking topological token bounds again. if from_token and from_token.topological: from_token = None if to_token and to_token.topological: to_token = None lower_bound = None if direction == "f" and from_token: lower_bound = from_token.get_stream_pos_for_instance(instance_name) elif direction == "b" and to_token: lower_bound = to_token.get_stream_pos_for_instance(instance_name) if lower_bound and stream_ordering <= lower_bound: return False upper_bound = None if direction == "b" and from_token: upper_bound = from_token.get_stream_pos_for_instance(instance_name) elif direction == "f" and to_token: upper_bound = to_token.get_stream_pos_for_instance(instance_name) if upper_bound and upper_bound < stream_ordering: return False return True
def _filter_results( direction: str, from_token: Optional[RoomStreamToken], to_token: Optional[RoomStreamToken], instance_name: str, stream_ordering: int, ) -> bool: """Filter results from fetching events in the DB against the given tokens. This is necessary to handle the case where the tokens include position maps, which we handle by fetching more than necessary from the DB and then filtering (rather than attempting to construct a complicated SQL query). """ # We will have already filtered by the topological tokens, so we don't # bother checking topological token bounds again. if from_token and from_token.topological: from_token = None if to_token and to_token.topological: to_token = None lower_bound = None if direction == "f" and from_token: lower_bound = from_token.get_stream_pos_for_instance(instance_name) elif direction == "b" and to_token: lower_bound = to_token.get_stream_pos_for_instance(instance_name) if lower_bound and stream_ordering <= lower_bound: return False upper_bound = None if direction == "b" and from_token: upper_bound = from_token.get_stream_pos_for_instance(instance_name) elif direction == "f" and to_token: upper_bound = to_token.get_stream_pos_for_instance(instance_name) if upper_bound and upper_bound < stream_ordering: return False return True
52,882
def run_sniffers_raw(filename_or_file_prefix: Union[str, FilePrefix], sniff_order, is_binary=None): """Run through sniffers specified by sniff_order, return None of None match.""" file_prefix = _get_file_prefix(filename_or_file_prefix) fname = file_prefix.filename file_ext = None for datatype in sniff_order: """ Some classes may not have a sniff function, which is ok. In fact, Binary, Data, Tabular and Text are examples of classes that should never have a sniff function. Since these classes are default classes, they contain few rules to filter out data of other formats, so they should be called from this function after all other datatypes in sniff_order have not been successfully discovered. """ if is_binary is not None and is_binary != datatype.is_binary: continue try: if hasattr(datatype, "sniff_prefix"): datatype_compressed = getattr(datatype, "compressed", False) if datatype_compressed and not file_prefix.compressed_format: continue if not datatype_compressed and file_prefix.compressed_format: continue if file_prefix.compressed_format and getattr(datatype, "compressed_format", None): # In this case go a step further and compare the compressed format detected # to the expected. if file_prefix.compressed_format != datatype.compressed_format: continue if datatype.sniff_prefix(file_prefix): file_ext = datatype.file_ext break elif datatype.sniff(fname): file_ext = datatype.file_ext break except Exception: pass return file_ext
def run_sniffers_raw(filename_or_file_prefix: Union[str, FilePrefix], sniff_order, is_binary=None): """Run through sniffers specified by sniff_order, return None of None match.""" file_prefix = _get_file_prefix(filename_or_file_prefix) fname = file_prefix.filename file_ext = None for datatype in sniff_order: """ Some classes may not have a sniff function, which is ok. In fact, Binary, Data, Tabular and Text are examples of classes that should never have a sniff function. Since these classes are default classes, they contain few rules to filter out data of other formats, so they should be called from this function after all other datatypes in sniff_order have not been successfully discovered. """ if is_binary and not datatype.is_binary: continue file_prefix = FilePrefix(filename) datatype_compressed = getattr(self, "compressed", False) if file_prefix.compressed_format and not datatype_compressed: return False if datatype_compressed: if not file_prefix.compressed_format: # This not a compressed file we are looking but the type expects it to be # must return False. return False if hasattr(self, "compressed_format"): if self.compressed_format != file_prefix.compressed_format: return False return self.sniff_prefix(file_prefix) klass.sniff = auto_sniff return klass
35,190
def pinv(a, rcond=1e-15): """Compute the Moore-Penrose pseudoinverse of a matrix. It computes a pseudoinverse of a matrix ``a``, which is a generalization of the inverse matrix with Singular Value Decomposition (SVD). Note that it automatically removes small singular values for stability. Args: a (cupy.ndarray): The matrix with dimension ``(..., M, N)`` rcond (float or cupy.ndarray): Cutoff parameter for small singular values. For stability it computes the largest singular value denoted by ``s``, and sets all singular values smaller than ``s`` to zero. Broadcasts against the stack of matrices. Returns: cupy.ndarray: The pseudoinverse of ``a`` with dimension ``(..., N, M)``. .. warning:: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input conditions are not met. To detect these invalid results, you can set the `linalg` configuration to a value that is not `ignore` in :func:`cupyx.errstate` or :func:`cupyx.seterr`. .. seealso:: :func:`numpy.linalg.pinv` """ if a.size == 0: m, n = a.shape[-2:] return cupy.empty(a.shape[:-2] + (n, m), dtype=a.dtype) u, s, vt = _decomposition.svd(a.conj(), full_matrices=False) # discard small singular values if cupy.isscalar(rcond): rcond = cupy.asarray(rcond) cutoff = rcond[..., None] * cupy.amax(s, axis=-1, keepdims=True) leq = s <= cutoff s = 1 / s s[leq] = 0 return cupy.matmul(vt.swapaxes(-2, -1), s[..., None] * u.swapaxes(-2, -1))
def pinv(a, rcond=1e-15): """Compute the Moore-Penrose pseudoinverse of a matrix. It computes a pseudoinverse of a matrix ``a``, which is a generalization of the inverse matrix with Singular Value Decomposition (SVD). Note that it automatically removes small singular values for stability. Args: a (cupy.ndarray): The matrix with dimension ``(..., M, N)`` rcond (float or cupy.ndarray): Cutoff parameter for small singular values. For stability it computes the largest singular value denoted by ``s``, and sets all singular values smaller than ``rcond * s`` to zero. Broadcasts against the stack of matrices. Returns: cupy.ndarray: The pseudoinverse of ``a`` with dimension ``(..., N, M)``. .. warning:: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input conditions are not met. To detect these invalid results, you can set the `linalg` configuration to a value that is not `ignore` in :func:`cupyx.errstate` or :func:`cupyx.seterr`. .. seealso:: :func:`numpy.linalg.pinv` """ if a.size == 0: m, n = a.shape[-2:] return cupy.empty(a.shape[:-2] + (n, m), dtype=a.dtype) u, s, vt = _decomposition.svd(a.conj(), full_matrices=False) # discard small singular values if cupy.isscalar(rcond): rcond = cupy.asarray(rcond) cutoff = rcond[..., None] * cupy.amax(s, axis=-1, keepdims=True) leq = s <= cutoff s = 1 / s s[leq] = 0 return cupy.matmul(vt.swapaxes(-2, -1), s[..., None] * u.swapaxes(-2, -1))
30,849
def query_malops_command(): total_result_limit = demisto.args().get('totalResultLimit') per_group_limit = demisto.args().get('perGroupLimit') template_context = demisto.args().get('templasteContext') filters = safe_load_json(demisto.args().get('filters', [])) within_last_days = demisto.args().get('withinLastDays') guid_list = argToList(demisto.args().get('malopGuid')) request_type = demisto.args().get('requestType', 'MalopProcess') if within_last_days: current_timestamp = time.time() current_datetime = datetime.fromtimestamp(current_timestamp) within_last_days_datetime = current_datetime - timedelta(days=int(within_last_days)) within_last_days_timestamp = time.mktime( # Converting datetime to time within_last_days_datetime.timetuple()) + within_last_days_datetime.microsecond / 1E6 within_last_days_timestamp = within_last_days_timestamp * 1000 filters.append({ 'facetName': 'malopLastUpdateTime', 'values': [within_last_days_timestamp], 'filterType': 'GreaterThan' }) response = query_malops(total_result_limit, per_group_limit, template_context, filters, guid_list=guid_list, request_type=request_type) data = response['data'] malops_map = data.get('resultIdToElementDataMap') if not data or not malops_map: demisto.results('No malops found') return outputs = [] for malop_id in malops_map: malop = malops_map[malop_id] management_status = malop['simpleValues']['managementStatus']['values'][0] if management_status and management_status.lower() == 'closed': continue creation_time = translate_timestamp(malop['simpleValues']['creationTime']['values'][0]) malop_last_update_time = translate_timestamp(malop['simpleValues']['malopLastUpdateTime']['values'][0]) decision_failure = malop['simpleValues']['decisionFeature']['values'][0].replace('Process.', '') suspects_string = '' raw_suspects = malop['elementValues'].get('suspects') if raw_suspects: suspects = raw_suspects['elementValues'][0] suspects_string = '{}: {}'.format(suspects['elementType'], suspects['name']) affected_machines = [] for machine in malop['elementValues']['affectedMachines']['elementValues']: machine_name = machine.get('name', '') affected_machines.append(machine_name) involved_hashes = [] # type: List[str] if 'rootCauseElementHashes' in malop['simpleValues']: if malop['simpleValues']['rootCauseElementHashes']['totalValues'] != 0: involved_hashes.extend(malop['simpleValues']['rootCauseElementHashes']['values']) malop_output = { 'GUID': malop_id, 'Link': SERVER + '/#/malop/' + malop_id, 'CreationTime': creation_time, 'DecisionFailure': re.sub(r'\([^)]*\)', '', decision_failure), 'Suspects': suspects_string, 'LastUpdateTime': malop_last_update_time, 'Status': management_status, 'AffectedMachine': affected_machines, 'InvolvedHash': involved_hashes } outputs.append(malop_output) ec = { 'Cybereason.Malops(val.GUID && val.GUID === obj.GUID)': outputs } demisto.results({ 'Type': entryTypes['note'], 'Contents': data, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Cybereason Malops', outputs, ['GUID', 'Link', 'CreationTime', 'Status', 'LastUpdateTime', 'DecisionFailure', 'Suspects', 'AffectedMachine', 'InvolvedHash']), 'EntryContext': ec })
def query_malops_command(): total_result_limit = demisto.args().get('totalResultLimit') per_group_limit = demisto.args().get('perGroupLimit') template_context = demisto.args().get('templateContext') filters = safe_load_json(demisto.args().get('filters', [])) within_last_days = demisto.args().get('withinLastDays') guid_list = argToList(demisto.args().get('malopGuid')) request_type = demisto.args().get('requestType', 'MalopProcess') if within_last_days: current_timestamp = time.time() current_datetime = datetime.fromtimestamp(current_timestamp) within_last_days_datetime = current_datetime - timedelta(days=int(within_last_days)) within_last_days_timestamp = time.mktime( # Converting datetime to time within_last_days_datetime.timetuple()) + within_last_days_datetime.microsecond / 1E6 within_last_days_timestamp = within_last_days_timestamp * 1000 filters.append({ 'facetName': 'malopLastUpdateTime', 'values': [within_last_days_timestamp], 'filterType': 'GreaterThan' }) response = query_malops(total_result_limit, per_group_limit, template_context, filters, guid_list=guid_list, request_type=request_type) data = response['data'] malops_map = data.get('resultIdToElementDataMap') if not data or not malops_map: demisto.results('No malops found') return outputs = [] for malop_id in malops_map: malop = malops_map[malop_id] management_status = malop['simpleValues']['managementStatus']['values'][0] if management_status and management_status.lower() == 'closed': continue creation_time = translate_timestamp(malop['simpleValues']['creationTime']['values'][0]) malop_last_update_time = translate_timestamp(malop['simpleValues']['malopLastUpdateTime']['values'][0]) decision_failure = malop['simpleValues']['decisionFeature']['values'][0].replace('Process.', '') suspects_string = '' raw_suspects = malop['elementValues'].get('suspects') if raw_suspects: suspects = raw_suspects['elementValues'][0] suspects_string = '{}: {}'.format(suspects['elementType'], suspects['name']) affected_machines = [] for machine in malop['elementValues']['affectedMachines']['elementValues']: machine_name = machine.get('name', '') affected_machines.append(machine_name) involved_hashes = [] # type: List[str] if 'rootCauseElementHashes' in malop['simpleValues']: if malop['simpleValues']['rootCauseElementHashes']['totalValues'] != 0: involved_hashes.extend(malop['simpleValues']['rootCauseElementHashes']['values']) malop_output = { 'GUID': malop_id, 'Link': SERVER + '/#/malop/' + malop_id, 'CreationTime': creation_time, 'DecisionFailure': re.sub(r'\([^)]*\)', '', decision_failure), 'Suspects': suspects_string, 'LastUpdateTime': malop_last_update_time, 'Status': management_status, 'AffectedMachine': affected_machines, 'InvolvedHash': involved_hashes } outputs.append(malop_output) ec = { 'Cybereason.Malops(val.GUID && val.GUID === obj.GUID)': outputs } demisto.results({ 'Type': entryTypes['note'], 'Contents': data, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Cybereason Malops', outputs, ['GUID', 'Link', 'CreationTime', 'Status', 'LastUpdateTime', 'DecisionFailure', 'Suspects', 'AffectedMachine', 'InvolvedHash']), 'EntryContext': ec })
43,513
def rand_circuit(params, random_gate_sequence=None, num_qubits=None): """A random variational quantum circuit Args: params (array[float]): array of parameters random_gate_sequence (dict): a dictionary of random gates num_qubits (int): the number of qubits in the circuit Returns: float: the expectation value of the target observable """ for i in range(num_qubits): qml.RY(np.pi / 4, wires=i) for i in range(num_qubits): random_gate_sequence[i](params[i], wires=i) for i in range(num_qubits - 1): qml.CZ(wires=[i, i + 1]) H = np.zeros((2 ** num_qubits, 2 ** num_qubits)) H[0, 0] = 1 wirelist = [i for i in range(num_qubits)] return qml.expval(qml.Hermitian(H, wirelist))
def rand_circuit(params, random_gate_sequence=None, num_qubits=None): """A random variational quantum circuit. Args: params (array[float]): array of parameters random_gate_sequence (dict): a dictionary of random gates num_qubits (int): the number of qubits in the circuit Returns: float: the expectation value of the target observable """ for i in range(num_qubits): qml.RY(np.pi / 4, wires=i) for i in range(num_qubits): random_gate_sequence[i](params[i], wires=i) for i in range(num_qubits - 1): qml.CZ(wires=[i, i + 1]) H = np.zeros((2 ** num_qubits, 2 ** num_qubits)) H[0, 0] = 1 wirelist = [i for i in range(num_qubits)] return qml.expval(qml.Hermitian(H, wirelist))
14,469
def main() -> int: """Linter CLI entry point.""" cwd = pathlib.Path.cwd() options = cli.get_config(sys.argv[1:]) initialize_logger(options.verbosity) _logger.debug("Options: %s", options) formatter_factory = choose_formatter_factory(options) formatter = formatter_factory(cwd, options.display_relative_path) rulesdirs = get_rules_dirs([str(rdir) for rdir in options.rulesdir], options.use_default_rules) rules = RulesCollection(rulesdirs) if options.listrules: console.print( _rule_format_map[options.format](rules), highlight=False) return 0 if options.listtags: print(rules.listtags()) return 0 if isinstance(options.tags, str): options.tags = options.tags.split(',') skip = set() for s in options.skip_list: skip.update(str(s).split(',')) options.skip_list = frozenset(skip) matches = _get_matches(rules, options) # Assure we do not print duplicates and the order is consistent matches = sorted(set(matches)) mark_as_success = False if matches and options.progressive: _logger.info( "Matches found, running again on previos revision in order to detect regressions") with _previous_revision(): old_matches = _get_matches(rules, options) # remove old matches from current list if len(old_matches) > len(matches): _logger.warning( "Total violation(s) reducted from %s to %s since previous " "commit, will mark result as success", len(old_matches), len(matches)) mark_as_success = True current_len = len(matches) matches = list(set(matches) - set(old_matches)) _logger.warning("Removed %s previously known violation(s)", current_len - len(matches)) for match in matches: print(formatter.format(match, options.colored)) # If run under GitHub Actions we also want to emit output recognized by it. if os.getenv('GITHUB_ACTIONS') == 'true' and os.getenv('GITHUB_WORKFLOW'): formatter = formatters.AnnotationsFormatter(cwd, True) for match in matches: print(formatter.format(match)) if matches and not mark_as_success: return report_outcome(matches, options=options) else: return 0
def main() -> int: """Linter CLI entry point.""" cwd = pathlib.Path.cwd() options = cli.get_config(sys.argv[1:]) initialize_logger(options.verbosity) _logger.debug("Options: %s", options) formatter_factory = choose_formatter_factory(options) formatter = formatter_factory(cwd, options.display_relative_path) rulesdirs = get_rules_dirs([str(rdir) for rdir in options.rulesdir], options.use_default_rules) rules = RulesCollection(rulesdirs) if options.listrules: console.print( _rule_format_map[options.format](rules), highlight=False) return 0 if options.listtags: print(rules.listtags()) return 0 if isinstance(options.tags, str): options.tags = options.tags.split(',') skip = set() for s in options.skip_list: skip.update(str(s).split(',')) options.skip_list = frozenset(skip) matches = _get_matches(rules, options) # Assure we do not print duplicates and the order is consistent matches = sorted(set(matches)) mark_as_success = False if matches and options.progressive: _logger.info( "Matches found, running again on previous revision in order to detect regressions") with _previous_revision(): old_matches = _get_matches(rules, options) # remove old matches from current list if len(old_matches) > len(matches): _logger.warning( "Total violation(s) reducted from %s to %s since previous " "commit, will mark result as success", len(old_matches), len(matches)) mark_as_success = True current_len = len(matches) matches = list(set(matches) - set(old_matches)) _logger.warning("Removed %s previously known violation(s)", current_len - len(matches)) for match in matches: print(formatter.format(match, options.colored)) # If run under GitHub Actions we also want to emit output recognized by it. if os.getenv('GITHUB_ACTIONS') == 'true' and os.getenv('GITHUB_WORKFLOW'): formatter = formatters.AnnotationsFormatter(cwd, True) for match in matches: print(formatter.format(match)) if matches and not mark_as_success: return report_outcome(matches, options=options) else: return 0
3,221
def test_retries(): """ Tests that, even if I set up 5 retries, there is only one request made since it times out. """ conneciton_mock = mock.Mock() conneciton_mock.request.side_effect = ReadTimeoutError(None, "test.com", "Timeout") snuba_pool = FakeConnectionPool( connection=conneciton_mock, host="www.test.com", port=80, retries=RetrySkipTimeout(total=5, method_whitelist={"GET", "POST"}), timeout=30, maxsize=10, ) with pytest.raises(HTTPError): snuba_pool.urlopen("POST", "/query", body="{}") assert conneciton_mock.request.call_count == 1
def test_retries(): """ Tests that, even if I set up 5 retries, there is only one request made since it times out. """ connection_mock = mock.Mock() conneciton_mock.request.side_effect = ReadTimeoutError(None, "test.com", "Timeout") snuba_pool = FakeConnectionPool( connection=conneciton_mock, host="www.test.com", port=80, retries=RetrySkipTimeout(total=5, method_whitelist={"GET", "POST"}), timeout=30, maxsize=10, ) with pytest.raises(HTTPError): snuba_pool.urlopen("POST", "/query", body="{}") assert conneciton_mock.request.call_count == 1
24,257
def git_commit(targets, message, force=False, sign=False, update=False): """ Commit the changes for the given targets. `targets` - be files or directiries `message` - the commit message `force` - (optional) force the commit `sign` - sign with `-S` option `update` - only commit updated files already tracked by git, via `-u` """ root = get_root() target_paths = [] for t in targets: target_paths.append(os.path.join(root, t)) with chdir(root): if updated: result = run_command(f"git add{' -f' if force else ''} -u {' '.join(target_paths)}") else: result = run_command(f"git add{' -f' if force else ''} {' '.join(target_paths)}") if result.code != 0: return result return run_command('git commit{} -m "{}"'.format(' -S' if sign else '', message))
def git_commit(targets, message, force=False, sign=False, update=False): """ Commit the changes for the given targets. `targets` - be files or directiries `message` - the commit message `force` - (optional) force the commit `sign` - sign with `-S` option `update` - only commit updated files already tracked by git, via `-u` """ root = get_root() target_paths = [] for t in targets: target_paths.append(os.path.join(root, t)) with chdir(root): if update: result = run_command(f"git add{' -f' if force else ''} -u {' '.join(target_paths)}") else: result = run_command(f"git add{' -f' if force else ''} {' '.join(target_paths)}") if result.code != 0: return result return run_command('git commit{} -m "{}"'.format(' -S' if sign else '', message))
38,927
def test_unsupported_field_type(): with pytest.raises(TypeError): @pydantic.dataclasses.dataclass class TestUnsupported: unsupported: MutableSet[int]
def test_unsupported_field_type(): with pytest.raises(TypeError) as exc_info: @pydantic.dataclasses.dataclass class TestUnsupported: unsupported: MutableSet[int]
20,876
def csv_from_excel(excel_content, delimiter, quote): decoded_data = base64.decodestring(excel_content) wb = xlrd.open_workbook(file_contents=decoded_data) sh = wb.sheet_by_index(0) content = StringIO() quoting = csv.QUOTE_ALL if not quote: quoting = csv.QUOTE_NONE if delimiter == " " and quoting == csv.QUOTE_NONE: quoting = csv.QUOTE_MINIMAL wr = csv.writer(content, delimiter=delimiter, quoting=quoting) for rownum in xrange(sh.nrows): row = [] for x in sh.row_values(rownum): # if isinstance(x, str): # x = x.strip() if quoting == csv.QUOTE_NONE and delimiter in x: raise ValidationError( _('Template with CSV Quoting = False, data must not ' 'containg same char with delimeter -> "%s"') % delimiter) row.append(x) wr.writerow(row) content.seek(0) # Set index to 0, and start reading out_file = base64.b64encode(content.getvalue().encode('utf-8')) return out_file
def csv_from_excel(excel_content, delimiter, quote): decoded_data = base64.decodestring(excel_content) wb = xlrd.open_workbook(file_contents=decoded_data) sh = wb.sheet_by_index(0) content = StringIO() quoting = csv.QUOTE_ALL if not quote: quoting = csv.QUOTE_NONE if delimiter == " " and quoting == csv.QUOTE_NONE: quoting = csv.QUOTE_MINIMAL wr = csv.writer(content, delimiter=delimiter, quoting=quoting) for rownum in xrange(sh.nrows): row = [] for x in sh.row_values(rownum): # if isinstance(x, str): # x = x.strip() if quoting == csv.QUOTE_NONE and delimiter in x: raise ValidationError( _('Template with CSV Quoting = False, data must not ' 'contain the same char as delimiter -> "%s"') % delimiter) row.append(x) wr.writerow(row) content.seek(0) # Set index to 0, and start reading out_file = base64.b64encode(content.getvalue().encode('utf-8')) return out_file
45,745
def forecast( precip, metadata, velocity, timesteps, n_ens_members=24, n_cascade_levels=6, win_size=256, overlap=0.1, war_thr=0.1, extrap_method="semilagrangian", decomp_method="fft", bandpass_filter_method="gaussian", noise_method="ssft", ar_order=2, vel_pert_method=None, probmatching_method="cdf", mask_method="incremental", callback=None, fft_method="numpy", return_output=True, seed=None, num_workers=1, extrap_kwargs=None, filter_kwargs=None, noise_kwargs=None, vel_pert_kwargs=None, mask_kwargs=None, measure_time=False, ): """ Generate a nowcast ensemble by using the Short-space ensemble prediction system (SSEPS) method. This is an experimental version of STEPS which allows for localization by means of a window function. Parameters ---------- precip: array-like Array of shape (ar_order+1,m,n) containing the input precipitation fields ordered by timestamp from oldest to newest. The time steps between the inputs are assumed to be regular, and the inputs are required to have finite values. metadata: dict Metadata dictionary containing the accutime, xpixelsize, threshold and zerovalue attributes as described in the documentation of :py:mod:`pysteps.io.importers`. xpixelsize is assumed to be in meters. velocity: array-like Array of shape (2,m,n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. All values are required to be finite. win_size: int or two-element sequence of ints Size-length of the localization window. overlap: float [0,1[ A float between 0 and 1 prescribing the level of overlap between successive windows. If set to 0, no overlap is used. war_thr: float Threshold for the minimum fraction of rain in a given window. timesteps: int or list of floats Number of time steps to forecast or a list of time steps for which the forecasts are computed (relative to the input time step). The elements of the list are required to be in ascending order. n_ens_members: int The number of ensemble members to generate. n_cascade_levels: int The number of cascade levels to use. extrap_method: {'semilagrangian'} Name of the extrapolation method to use. See the documentation of pysteps.extrapolation.interface. decomp_method: {'fft'} Name of the cascade decomposition method to use. See the documentation of pysteps.cascade.interface. bandpass_filter_method: {'gaussian', 'uniform'} Name of the bandpass filter method to use with the cascade decomposition. noise_method: {'parametric','nonparametric','ssft','nested',None} Name of the noise generator to use for perturbating the precipitation field. See the documentation of pysteps.noise.interface. If set to None, no noise is generated. ar_order: int The order of the autoregressive model to use. Must be >= 1. vel_pert_method: {'bps',None} Name of the noise generator to use for perturbing the advection field. See the documentation of pysteps.noise.interface. If set to None, the advection field is not perturbed. mask_method: {'incremental', None} The method to use for masking no precipitation areas in the forecast field. The masked pixels are set to the minimum value of the observations. 'incremental' = iteratively buffer the mask with a certain rate (currently it is 1 km/min), None=no masking. probmatching_method: {'cdf', None} Method for matching the statistics of the forecast field with those of the most recently observed one. 'cdf'=map the forecast CDF to the observed one, None=no matching applied. Using 'mean' requires that mask_method is not None. callback: function Optional function that is called after computation of each time step of the nowcast. The function takes one argument: a three-dimensional array of shape (n_ens_members,h,w), where h and w are the height and width of the input field precip, respectively. This can be used, for instance, writing the outputs into files. return_output: bool Set to False to disable returning the outputs as numpy arrays. This can save memory if the intermediate results are written to output files using the callback function. seed: int Optional seed number for the random generators. num_workers: int The number of workers to use for parallel computation. Applicable if dask is enabled or pyFFTW is used for computing the FFT. When num_workers>1, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads. fft_method: str A string defining the FFT method to use (see utils.fft.get_method). Defaults to 'numpy' for compatibility reasons. If pyFFTW is installed, the recommended method is 'pyfftw'. extrap_kwargs: dict Optional dictionary containing keyword arguments for the extrapolation method. See the documentation of pysteps.extrapolation. filter_kwargs: dict Optional dictionary containing keyword arguments for the filter method. See the documentation of pysteps.cascade.bandpass_filters.py. noise_kwargs: dict Optional dictionary containing keyword arguments for the initializer of the noise generator. See the documentation of pysteps.noise.fftgenerators. vel_pert_kwargs: dict Optional dictionary containing keyword arguments "p_pert_par" and "p_pert_perp" for the initializer of the velocity perturbator. See the documentation of pysteps.noise.motion. mask_kwargs: dict Optional dictionary containing mask keyword arguments 'mask_f' and 'mask_rim', the factor defining the the mask increment and the rim size, respectively. The mask increment is defined as mask_f*timestep/kmperpixel. measure_time: bool If set to True, measure, print and return the computation time. Returns ------- out: ndarray If return_output is True, a four-dimensional array of shape (n_ens_members,num_timesteps,m,n) containing a time series of forecast precipitation fields for each ensemble member. Otherwise, a None value is returned. The time series starts from t0+timestep, where timestep is taken from the input precipitation fields R. See also -------- psysteps.extrapolation.interface, pysteps.cascade.interface, pysteps.noise.interface, pysteps.noise.utils.compute_noise_stddev_adjs Notes ----- Please be aware that this represents a (very) experimental implementation. References ---------- :cite:`Seed2003`, :cite:`BPS2006`, :cite:`SPN2013`, :cite:`NBSG2017` """ _check_inputs(precip, velocity, timesteps, ar_order) if extrap_kwargs is None: extrap_kwargs = dict() else: extrap_kwargs = extrap_kwargs.copy() if filter_kwargs is None: filter_kwargs = dict() if noise_kwargs is None: noise_kwargs = dict() if vel_pert_kwargs is None: vel_pert_kwargs = dict() if mask_kwargs is None: mask_kwargs = dict() if np.any(~np.isfinite(precip)): raise ValueError("precip contains non-finite values") if np.any(~np.isfinite(velocity)): raise ValueError("velocity contains non-finite values") if mask_method not in ["incremental", None]: raise ValueError( "unknown mask method %s: must be 'incremental' or None" % mask_method ) if np.isscalar(win_size): win_size = (int(win_size), int(win_size)) else: win_size = tuple([int(win_size[i]) for i in range(2)]) timestep = metadata["accutime"] kmperpixel = metadata["xpixelsize"] / 1000 print("Computing SSEPS nowcast") print("-----------------------") print("") print("Inputs") print("------") print("input dimensions: %dx%d" % (precip.shape[1], precip.shape[2])) print(f"km/pixel: {kmperpixel}") print(f"time step: {timestep} minutes") print("") print("Methods") print("-------") print(f"extrapolation: {extrap_method}") print(f"bandpass filter: {bandpass_filter_method}") print(f"decomposition: {decomp_method}") print(f"noise generator: {noise_method}") print(f"velocity perturbator: {vel_pert_method}") print(f"precip. mask method: {mask_method}") print(f"probability matching: {probmatching_method}") print(f"FFT method: {fft_method}") print("") print("Parameters") print("----------") print(f"localization window: {win_size[0]}x{win_size[1]}") print(f"overlap: {overlap:.1f}") print(f"war thr: {war_thr:.2f}") if isinstance(timesteps, int): print(f"number of time steps: {timesteps}") else: print(f"time steps: {timesteps}") print(f"ensemble size: {n_ens_members}") print(f"number of cascade levels: {n_cascade_levels}") print(f"order of the AR(p) model: {ar_order}") print("dask imported: {}".format(("yes" if dask_imported else "no"))) print(f"num workers: {num_workers}") if vel_pert_method == "bps": vp_par = vel_pert_kwargs.get( "p_pert_par", noise.motion.get_default_params_bps_par() ) vp_perp = vel_pert_kwargs.get( "p_pert_perp", noise.motion.get_default_params_bps_perp() ) print( f"velocity perturbations, parallel: {vp_par[0]},{vp_par[1]},{vp_par[2]}" ) print( f"velocity perturbations, perpendicular: {vp_perp[0]},{vp_perp[1]},{vp_perp[2]}" ) precip_thr = metadata["threshold"] precip_min = metadata["zerovalue"] num_ensemble_workers = n_ens_members if num_workers > n_ens_members else num_workers if measure_time: starttime_init = time.time() # get methods extrapolator_method = extrapolation.get_method(extrap_method) x_values, y_values = np.meshgrid( np.arange(precip.shape[2]), np.arange(precip.shape[1]) ) xy_coords = np.stack([x_values, y_values]) decomp_method, __ = cascade.get_method(decomp_method) filter_method = cascade.get_method(bandpass_filter_method) if noise_method is not None: init_noise, generate_noise = noise.get_method(noise_method) # advect the previous precipitation fields to the same position with the # most recent one (i.e. transform them into the Lagrangian coordinates) precip = precip[-(ar_order + 1) :, :, :].copy() extrap_kwargs = extrap_kwargs.copy() extrap_kwargs["xy_coords"] = xy_coords extrap_kwargs["allow_nonfinite_values"] = ( True if np.any(~np.isfinite(precip)) else False ) res = [] f = lambda precip, i: extrapolator_method( precip[i, :, :], velocity, ar_order - i, "min", **extrap_kwargs )[-1] for i in range(ar_order): if not dask_imported: precip[i, :, :] = f(precip, i) else: res.append(dask.delayed(f)(precip, i)) if dask_imported: num_workers_ = len(res) if num_workers > len(res) else num_workers precip = np.stack( list(dask.compute(*res, num_workers=num_workers_)) + [precip[-1, :, :]] ) if mask_method == "incremental": # get mask parameters mask_rim = mask_kwargs.get("mask_rim", 10) mask_f = mask_kwargs.get("mask_f", 1.0) # initialize the structuring element struct = scipy.ndimage.generate_binary_structure(2, 1) # iterate it to expand it nxn n = mask_f * timestep / kmperpixel struct = scipy.ndimage.iterate_structure(struct, int((n - 1) / 2.0)) noise_kwargs.update( { "win_size": win_size, "overlap": overlap, "war_thr": war_thr, "rm_rdisc": True, "donorm": True, } ) print("Estimating nowcast parameters...", end="") def estimator(precip, parsglob=None, idxm=None, idxn=None): pars = {} # initialize the perturbation generator for the precipitation field if noise_method is not None and parsglob is None: P = init_noise(precip, fft_method=fft_method, **noise_kwargs) else: P = None pars["P"] = P # initialize the band-pass filter if parsglob is None: filter = filter_method(precip.shape[1:], n_cascade_levels, **filter_kwargs) pars["filter"] = filter else: pars["filter"] = None # compute the cascade decompositions of the input precipitation fields if parsglob is None: R_d = [] for i in range(ar_order + 1): R_d_ = decomp_method( precip[i, :, :], filter, fft_method=fft_method, normalize=True, compute_stats=True, ) R_d.append(R_d_) R_d_ = None # normalize the cascades and rearrange them into a four-dimensional array # of shape (n_cascade_levels,ar_order+1,m,n) for the autoregressive model if parsglob is None: R_c = nowcast_utils.stack_cascades(R_d, n_cascade_levels) mu = R_d[-1]["means"] sigma = R_d[-1]["stds"] R_d = None else: R_c = parsglob["R_c"][0][ :, :, idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ].copy() mu = np.mean(R_c, axis=(2, 3)) sigma = np.std(R_c, axis=(2, 3)) R_c = (R_c - mu[:, :, None, None]) / sigma[:, :, None, None] mu = mu[:, -1] sigma = sigma[:, -1] pars["mu"] = mu pars["sigma"] = sigma # compute lag-l temporal autocorrelation coefficients for each cascade level GAMMA = np.empty((n_cascade_levels, ar_order)) for i in range(n_cascade_levels): R_c_ = np.stack([R_c[i, j, :, :] for j in range(ar_order + 1)]) GAMMA[i, :] = correlation.temporal_autocorrelation(R_c_) R_c_ = None if ar_order == 2: # adjust the local lag-2 correlation coefficient to ensure that the AR(p) # process is stationary for i in range(n_cascade_levels): GAMMA[i, 1] = autoregression.adjust_lag2_corrcoef2( GAMMA[i, 0], GAMMA[i, 1] ) # estimate the parameters of the AR(p) model from the autocorrelation # coefficients PHI = np.empty((n_cascade_levels, ar_order + 1)) for i in range(n_cascade_levels): PHI[i, :] = autoregression.estimate_ar_params_yw(GAMMA[i, :]) pars["PHI"] = PHI # stack the cascades into a five-dimensional array containing all ensemble # members R_c = [R_c.copy() for i in range(n_ens_members)] pars["R_c"] = R_c if mask_method is not None and parsglob is None: MASK_prec = precip[-1, :, :] >= precip_thr if mask_method == "incremental": # initialize precip mask for each member MASK_prec = nowcast_utils.compute_dilated_mask( MASK_prec, struct, mask_rim ) MASK_prec = [MASK_prec.copy() for j in range(n_ens_members)] else: MASK_prec = None pars["MASK_prec"] = MASK_prec return pars # prepare windows M, N = precip.shape[1:] n_windows_M = np.ceil(1.0 * M / win_size[0]).astype(int) n_windows_N = np.ceil(1.0 * N / win_size[1]).astype(int) idxm = np.zeros((2, 1), dtype=int) idxn = np.zeros((2, 1), dtype=int) if measure_time: starttime = time.time() # compute global parameters to be used as defaults parsglob = estimator(precip) # loop windows if n_windows_M > 1 or n_windows_N > 1: war = np.empty((n_windows_M, n_windows_N)) PHI = np.empty((n_windows_M, n_windows_N, n_cascade_levels, ar_order + 1)) mu = np.empty((n_windows_M, n_windows_N, n_cascade_levels)) sigma = np.empty((n_windows_M, n_windows_N, n_cascade_levels)) ff = [] rc = [] pp = [] mm = [] for m in range(n_windows_M): ff_ = [] pp_ = [] rc_ = [] mm_ = [] for n in range(n_windows_N): # compute indices of local window idxm[0] = int(np.max((m * win_size[0] - overlap * win_size[0], 0))) idxm[1] = int( np.min((idxm[0] + win_size[0] + overlap * win_size[0], M)) ) idxn[0] = int(np.max((n * win_size[1] - overlap * win_size[1], 0))) idxn[1] = int( np.min((idxn[0] + win_size[1] + overlap * win_size[1], N)) ) mask = np.zeros((M, N), dtype=bool) mask[idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1)] = True precip_ = precip[ :, idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ] war[m, n] = ( np.sum(precip_[-1, :, :] >= precip_thr) / precip_[-1, :, :].size ) if war[m, n] > war_thr: # estimate local parameters pars = estimator(precip, parsglob, idxm, idxn) ff_.append(pars["filter"]) pp_.append(pars["P"]) rc_.append(pars["R_c"]) mm_.append(pars["MASK_prec"]) mu[m, n, :] = pars["mu"] sigma[m, n, :] = pars["sigma"] PHI[m, n, :, :] = pars["PHI"] else: # dry window ff_.append(None) pp_.append(None) rc_.append(None) mm_.append(None) ff.append(ff_) pp.append(pp_) rc.append(rc_) mm.append(mm_) # remove unnecessary variables ff_ = None pp_ = None rc_ = None mm_ = None pars = None if measure_time: print(f"{time.time() - starttime:.2f} seconds.") else: print(" done.") # initialize the random generators if noise_method is not None: randgen_prec = [] randgen_motion = [] np.random.seed(seed) for j in range(n_ens_members): rs = np.random.RandomState(seed) randgen_prec.append(rs) seed = rs.randint(0, high=1e9) rs = np.random.RandomState(seed) randgen_motion.append(rs) seed = rs.randint(0, high=1e9) if vel_pert_method is not None: init_vel_noise, generate_vel_noise = noise.get_method(vel_pert_method) # initialize the perturbation generators for the motion field vps = [] for j in range(n_ens_members): kwargs = { "randstate": randgen_motion[j], "p_par": vp_par, "p_perp": vp_perp, } vp_ = init_vel_noise(velocity, 1.0 / kmperpixel, timestep, **kwargs) vps.append(vp_) D = [None for j in range(n_ens_members)] R_f = [[] for j in range(n_ens_members)] if measure_time: init_time = time.time() - starttime_init precip = precip[-1, :, :] print("Starting nowcast computation.") if measure_time: starttime_mainloop = time.time() if isinstance(timesteps, int): timesteps = range(timesteps + 1) timestep_type = "int" else: original_timesteps = [0] + list(timesteps) timesteps = nowcast_utils.binned_timesteps(original_timesteps) timestep_type = "list" extrap_kwargs["return_displacement"] = True R_f_prev = [precip for i in range(n_ens_members)] t_prev = [0.0 for j in range(n_ens_members)] t_total = [0.0 for j in range(n_ens_members)] # iterate each time step for t, subtimestep_idx in enumerate(timesteps): if timestep_type == "list": subtimesteps = [original_timesteps[t_] for t_ in subtimestep_idx] else: subtimesteps = [t] if (timestep_type == "list" and subtimesteps) or ( timestep_type == "int" and t > 0 ): is_nowcast_time_step = True else: is_nowcast_time_step = False if is_nowcast_time_step: print( f"Computing nowcast for time step {t}... ", end="", flush=True, ) if measure_time: starttime = time.time() # iterate each ensemble member def worker(j): # first the global step if noise_method is not None: # generate noise field EPS = generate_noise( parsglob["P"], randstate=randgen_prec[j], fft_method=fft_method ) # decompose the noise field into a cascade EPS_d = decomp_method( EPS, parsglob["filter"], fft_method=fft_method, normalize=True, compute_stats=True, ) else: EPS_d = None # iterate the AR(p) model for each cascade level R_c = parsglob["R_c"][j].copy() if R_c.shape[1] >= ar_order: R_c = R_c[:, -ar_order:, :, :].copy() for i in range(n_cascade_levels): # normalize the noise cascade if EPS_d is not None: EPS_ = ( EPS_d["cascade_levels"][i, :, :] - EPS_d["means"][i] ) / EPS_d["stds"][i] else: EPS_ = None # apply AR(p) process to cascade level R_c[i, :, :, :] = autoregression.iterate_ar_model( R_c[i, :, :, :], parsglob["PHI"][i, :], eps=EPS_ ) EPS_ = None parsglob["R_c"][j] = R_c.copy() EPS = None # compute the recomposed precipitation field(s) from the cascades # obtained from the AR(p) model(s) R_f_new = _recompose_cascade(R_c, parsglob["mu"], parsglob["sigma"]) R_c = None # then the local steps if n_windows_M > 1 or n_windows_N > 1: idxm = np.zeros((2, 1), dtype=int) idxn = np.zeros((2, 1), dtype=int) R_l = np.zeros((M, N), dtype=float) M_s = np.zeros((M, N), dtype=float) for m in range(n_windows_M): for n in range(n_windows_N): # compute indices of local window idxm[0] = int( np.max((m * win_size[0] - overlap * win_size[0], 0)) ) idxm[1] = int( np.min((idxm[0] + win_size[0] + overlap * win_size[0], M)) ) idxn[0] = int( np.max((n * win_size[1] - overlap * win_size[1], 0)) ) idxn[1] = int( np.min((idxn[0] + win_size[1] + overlap * win_size[1], N)) ) # build localization mask mask = _get_mask((M, N), idxm, idxn) mask_l = mask[ idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ] M_s += mask # skip if dry if war[m, n] > war_thr: R_c = rc[m][n][j].copy() if R_c.shape[1] >= ar_order: R_c = R_c[:, -ar_order:, :, :] if noise_method is not None: # extract noise field EPS_d_l = EPS_d["cascade_levels"][ :, idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1), ].copy() mu_ = np.mean(EPS_d_l, axis=(1, 2)) sigma_ = np.std(EPS_d_l, axis=(1, 2)) else: EPS_d_l = None # iterate the AR(p) model for each cascade level for i in range(n_cascade_levels): # normalize the noise cascade if EPS_d_l is not None: EPS_ = ( EPS_d_l[i, :, :] - mu_[i, None, None] ) / sigma_[i, None, None] else: EPS_ = None # apply AR(p) process to cascade level R_c[i, :, :, :] = autoregression.iterate_ar_model( R_c[i, :, :, :], PHI[m, n, i, :], eps=EPS_ ) EPS_ = None rc[m][n][j] = R_c.copy() EPS_d_l = mu_ = sigma_ = None # compute the recomposed precipitation field(s) from the cascades # obtained from the AR(p) model(s) mu_ = mu[m, n, :] sigma_ = sigma[m, n, :] R_c = [ ((R_c[i, -1, :, :] * sigma_[i]) + mu_[i]) * parsglob["sigma"][i] + parsglob["mu"][i] for i in range(len(mu_)) ] R_l_ = np.sum(np.stack(R_c), axis=0) R_c = mu_ = sigma_ = None # R_l_ = _recompose_cascade(R_c[:, :, :], mu[m, n, :], sigma[m, n, :]) else: R_l_ = R_f_new[ idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ].copy() if probmatching_method == "cdf": # adjust the CDF of the forecast to match the most recently # observed precipitation field R_ = precip[ idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ].copy() R_l_ = probmatching.nonparam_match_empirical_cdf(R_l_, R_) R_ = None R_l[ idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ] += (R_l_ * mask_l) R_l_ = None ind = M_s > 0 R_l[ind] *= 1 / M_s[ind] R_l[~ind] = precip_min R_f_new = R_l.copy() R_l = None if probmatching_method == "cdf": # adjust the CDF of the forecast to match the most recently # observed precipitation field R_f_new[R_f_new < precip_thr] = precip_min R_f_new = probmatching.nonparam_match_empirical_cdf(R_f_new, precip) if mask_method is not None: # apply the precipitation mask to prevent generation of new # precipitation into areas where it was not originally # observed if mask_method == "incremental": MASK_prec = parsglob["MASK_prec"][j].copy() R_f_new = R_f_new.min() + (R_f_new - R_f_new.min()) * MASK_prec MASK_prec = None if mask_method == "incremental": parsglob["MASK_prec"][j] = nowcast_utils.compute_dilated_mask( R_f_new >= precip_thr, struct, mask_rim ) R_f_out = [] extrap_kwargs_ = extrap_kwargs.copy() extrap_kwargs_["xy_coords"] = xy_coords extrap_kwargs_["return_displacement"] = True V_pert = velocity # advect the recomposed precipitation field to obtain the forecast for # the current time step (or subtimesteps if non-integer time steps are # given) for t_sub in subtimesteps: if t_sub > 0: t_diff_prev_int = t_sub - int(t_sub) if t_diff_prev_int > 0.0: R_f_ip = (1.0 - t_diff_prev_int) * R_f_prev[ j ] + t_diff_prev_int * R_f_new else: R_f_ip = R_f_prev[j] t_diff_prev = t_sub - t_prev[j] t_total[j] += t_diff_prev # compute the perturbed motion field if vel_pert_method is not None: V_pert = velocity + generate_vel_noise( vps[j], t_total[j] * timestep ) extrap_kwargs_["displacement_prev"] = D[j] R_f_ep, D[j] = extrapolator_method( R_f_ip, V_pert, [t_diff_prev], **extrap_kwargs_, ) R_f_ep[0][R_f_ep[0] < precip_thr] = precip_min R_f_out.append(R_f_ep[0]) t_prev[j] = t_sub # advect the forecast field by one time step if no subtimesteps in the # current interval were found if not subtimesteps: t_diff_prev = t + 1 - t_prev[j] t_total[j] += t_diff_prev # compute the perturbed motion field if vel_pert_method is not None: V_pert = velocity + generate_vel_noise( vps[j], t_total[j] * timestep ) extrap_kwargs_["displacement_prev"] = D[j] _, D[j] = extrapolator_method( None, V_pert, [t_diff_prev], **extrap_kwargs_, ) t_prev[j] = t + 1 R_f_prev[j] = R_f_new return R_f_out res = [] for j in range(n_ens_members): if not dask_imported or n_ens_members == 1: res.append(worker(j)) else: res.append(dask.delayed(worker)(j)) R_f_ = ( dask.compute(*res, num_workers=num_ensemble_workers) if dask_imported and n_ens_members > 1 else res ) res = None if is_nowcast_time_step: if measure_time: print(f"{time.time() - starttime:.2f} seconds.") else: print("done.") if callback is not None: R_f_stacked = np.stack(R_f_) if R_f_stacked.shape[1] > 0: callback(R_f_stacked.squeeze()) R_f_ = None if return_output: for j in range(n_ens_members): R_f[j].extend(R_f_[j]) if measure_time: mainloop_time = time.time() - starttime_mainloop if return_output: outarr = np.stack([np.stack(R_f[j]) for j in range(n_ens_members)]) if measure_time: return outarr, init_time, mainloop_time else: return outarr else: return None
def forecast( precip, metadata, velocity, timesteps, n_ens_members=24, n_cascade_levels=6, win_size=256, overlap=0.1, war_thr=0.1, extrap_method="semilagrangian", decomp_method="fft", bandpass_filter_method="gaussian", noise_method="ssft", ar_order=2, vel_pert_method=None, probmatching_method="cdf", mask_method="incremental", callback=None, fft_method="numpy", return_output=True, seed=None, num_workers=1, extrap_kwargs=None, filter_kwargs=None, noise_kwargs=None, vel_pert_kwargs=None, mask_kwargs=None, measure_time=False, ): """ Generate a nowcast ensemble by using the Short-space ensemble prediction system (SSEPS) method. This is an experimental version of STEPS which allows for localization by means of a window function. Parameters ---------- precip: array-like Array of shape (ar_order+1,m,n) containing the input precipitation fields ordered by timestamp from oldest to newest. The time steps between the inputs are assumed to be regular, and the inputs are required to have finite values. metadata: dict Metadata dictionary containing the accutime, xpixelsize, threshold and zerovalue attributes as described in the documentation of :py:mod:`pysteps.io.importers`. xpixelsize is assumed to be in meters. velocity: array-like Array of shape (2,m,n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. All values are required to be finite. win_size: int or two-element sequence of ints Size-length of the localization window. overlap: float [0,1[ A float between 0 and 1 prescribing the level of overlap between successive windows. If set to 0, no overlap is used. war_thr: float Threshold for the minimum fraction of rain in a given window. timesteps: int or list of floats Number of time steps to forecast or a list of time steps for which the forecasts are computed (relative to the input time step). The elements of the list are required to be in ascending order. n_ens_members: int The number of ensemble members to generate. n_cascade_levels: int The number of cascade levels to use. extrap_method: {'semilagrangian'} Name of the extrapolation method to use. See the documentation of pysteps.extrapolation.interface. decomp_method: {'fft'} Name of the cascade decomposition method to use. See the documentation of pysteps.cascade.interface. bandpass_filter_method: {'gaussian', 'uniform'} Name of the bandpass filter method to use with the cascade decomposition. noise_method: {'parametric','nonparametric','ssft','nested',None} Name of the noise generator to use for perturbating the precipitation field. See the documentation of pysteps.noise.interface. If set to None, no noise is generated. ar_order: int The order of the autoregressive model to use. Must be >= 1. vel_pert_method: {'bps',None} Name of the noise generator to use for perturbing the advection field. See the documentation of pysteps.noise.interface. If set to None, the advection field is not perturbed. mask_method: {'incremental', None} The method to use for masking no precipitation areas in the forecast field. The masked pixels are set to the minimum value of the observations. 'incremental' = iteratively buffer the mask with a certain rate (currently it is 1 km/min), None=no masking. probmatching_method: {'cdf', None} Method for matching the statistics of the forecast field with those of the most recently observed one. 'cdf'=map the forecast CDF to the observed one, None=no matching applied. Using 'mean' requires that mask_method is not None. callback: function Optional function that is called after computation of each time step of the nowcast. The function takes one argument: a three-dimensional array of shape (n_ens_members,h,w), where h and w are the height and width of the input field precip, respectively. This can be used, for instance, writing the outputs into files. return_output: bool Set to False to disable returning the outputs as numpy arrays. This can save memory if the intermediate results are written to output files using the callback function. seed: int Optional seed number for the random generators. num_workers: int The number of workers to use for parallel computation. Applicable if dask is enabled or pyFFTW is used for computing the FFT. When num_workers>1, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads. fft_method: str A string defining the FFT method to use (see utils.fft.get_method). Defaults to 'numpy' for compatibility reasons. If pyFFTW is installed, the recommended method is 'pyfftw'. extrap_kwargs: dict Optional dictionary containing keyword arguments for the extrapolation method. See the documentation of pysteps.extrapolation. filter_kwargs: dict Optional dictionary containing keyword arguments for the filter method. See the documentation of pysteps.cascade.bandpass_filters.py. noise_kwargs: dict Optional dictionary containing keyword arguments for the initializer of the noise generator. See the documentation of pysteps.noise.fftgenerators. vel_pert_kwargs: dict Optional dictionary containing keyword arguments "p_pert_par" and "p_pert_perp" for the initializer of the velocity perturbator. See the documentation of pysteps.noise.motion. mask_kwargs: dict Optional dictionary containing mask keyword arguments 'mask_f' and 'mask_rim', the factor defining the the mask increment and the rim size, respectively. The mask increment is defined as mask_f*timestep/kmperpixel. measure_time: bool If set to True, measure, print and return the computation time. Returns ------- out: ndarray If return_output is True, a four-dimensional array of shape (n_ens_members,num_timesteps,m,n) containing a time series of forecast precipitation fields for each ensemble member. Otherwise, a None value is returned. The time series starts from t0+timestep, where timestep is taken from the input precipitation fields R. See also -------- pysteps.extrapolation.interface, pysteps.cascade.interface, pysteps.noise.interface, pysteps.noise.utils.compute_noise_stddev_adjs Notes ----- Please be aware that this represents a (very) experimental implementation. References ---------- :cite:`Seed2003`, :cite:`BPS2006`, :cite:`SPN2013`, :cite:`NBSG2017` """ _check_inputs(precip, velocity, timesteps, ar_order) if extrap_kwargs is None: extrap_kwargs = dict() else: extrap_kwargs = extrap_kwargs.copy() if filter_kwargs is None: filter_kwargs = dict() if noise_kwargs is None: noise_kwargs = dict() if vel_pert_kwargs is None: vel_pert_kwargs = dict() if mask_kwargs is None: mask_kwargs = dict() if np.any(~np.isfinite(precip)): raise ValueError("precip contains non-finite values") if np.any(~np.isfinite(velocity)): raise ValueError("velocity contains non-finite values") if mask_method not in ["incremental", None]: raise ValueError( "unknown mask method %s: must be 'incremental' or None" % mask_method ) if np.isscalar(win_size): win_size = (int(win_size), int(win_size)) else: win_size = tuple([int(win_size[i]) for i in range(2)]) timestep = metadata["accutime"] kmperpixel = metadata["xpixelsize"] / 1000 print("Computing SSEPS nowcast") print("-----------------------") print("") print("Inputs") print("------") print("input dimensions: %dx%d" % (precip.shape[1], precip.shape[2])) print(f"km/pixel: {kmperpixel}") print(f"time step: {timestep} minutes") print("") print("Methods") print("-------") print(f"extrapolation: {extrap_method}") print(f"bandpass filter: {bandpass_filter_method}") print(f"decomposition: {decomp_method}") print(f"noise generator: {noise_method}") print(f"velocity perturbator: {vel_pert_method}") print(f"precip. mask method: {mask_method}") print(f"probability matching: {probmatching_method}") print(f"FFT method: {fft_method}") print("") print("Parameters") print("----------") print(f"localization window: {win_size[0]}x{win_size[1]}") print(f"overlap: {overlap:.1f}") print(f"war thr: {war_thr:.2f}") if isinstance(timesteps, int): print(f"number of time steps: {timesteps}") else: print(f"time steps: {timesteps}") print(f"ensemble size: {n_ens_members}") print(f"number of cascade levels: {n_cascade_levels}") print(f"order of the AR(p) model: {ar_order}") print("dask imported: {}".format(("yes" if dask_imported else "no"))) print(f"num workers: {num_workers}") if vel_pert_method == "bps": vp_par = vel_pert_kwargs.get( "p_pert_par", noise.motion.get_default_params_bps_par() ) vp_perp = vel_pert_kwargs.get( "p_pert_perp", noise.motion.get_default_params_bps_perp() ) print( f"velocity perturbations, parallel: {vp_par[0]},{vp_par[1]},{vp_par[2]}" ) print( f"velocity perturbations, perpendicular: {vp_perp[0]},{vp_perp[1]},{vp_perp[2]}" ) precip_thr = metadata["threshold"] precip_min = metadata["zerovalue"] num_ensemble_workers = n_ens_members if num_workers > n_ens_members else num_workers if measure_time: starttime_init = time.time() # get methods extrapolator_method = extrapolation.get_method(extrap_method) x_values, y_values = np.meshgrid( np.arange(precip.shape[2]), np.arange(precip.shape[1]) ) xy_coords = np.stack([x_values, y_values]) decomp_method, __ = cascade.get_method(decomp_method) filter_method = cascade.get_method(bandpass_filter_method) if noise_method is not None: init_noise, generate_noise = noise.get_method(noise_method) # advect the previous precipitation fields to the same position with the # most recent one (i.e. transform them into the Lagrangian coordinates) precip = precip[-(ar_order + 1) :, :, :].copy() extrap_kwargs = extrap_kwargs.copy() extrap_kwargs["xy_coords"] = xy_coords extrap_kwargs["allow_nonfinite_values"] = ( True if np.any(~np.isfinite(precip)) else False ) res = [] f = lambda precip, i: extrapolator_method( precip[i, :, :], velocity, ar_order - i, "min", **extrap_kwargs )[-1] for i in range(ar_order): if not dask_imported: precip[i, :, :] = f(precip, i) else: res.append(dask.delayed(f)(precip, i)) if dask_imported: num_workers_ = len(res) if num_workers > len(res) else num_workers precip = np.stack( list(dask.compute(*res, num_workers=num_workers_)) + [precip[-1, :, :]] ) if mask_method == "incremental": # get mask parameters mask_rim = mask_kwargs.get("mask_rim", 10) mask_f = mask_kwargs.get("mask_f", 1.0) # initialize the structuring element struct = scipy.ndimage.generate_binary_structure(2, 1) # iterate it to expand it nxn n = mask_f * timestep / kmperpixel struct = scipy.ndimage.iterate_structure(struct, int((n - 1) / 2.0)) noise_kwargs.update( { "win_size": win_size, "overlap": overlap, "war_thr": war_thr, "rm_rdisc": True, "donorm": True, } ) print("Estimating nowcast parameters...", end="") def estimator(precip, parsglob=None, idxm=None, idxn=None): pars = {} # initialize the perturbation generator for the precipitation field if noise_method is not None and parsglob is None: P = init_noise(precip, fft_method=fft_method, **noise_kwargs) else: P = None pars["P"] = P # initialize the band-pass filter if parsglob is None: filter = filter_method(precip.shape[1:], n_cascade_levels, **filter_kwargs) pars["filter"] = filter else: pars["filter"] = None # compute the cascade decompositions of the input precipitation fields if parsglob is None: R_d = [] for i in range(ar_order + 1): R_d_ = decomp_method( precip[i, :, :], filter, fft_method=fft_method, normalize=True, compute_stats=True, ) R_d.append(R_d_) R_d_ = None # normalize the cascades and rearrange them into a four-dimensional array # of shape (n_cascade_levels,ar_order+1,m,n) for the autoregressive model if parsglob is None: R_c = nowcast_utils.stack_cascades(R_d, n_cascade_levels) mu = R_d[-1]["means"] sigma = R_d[-1]["stds"] R_d = None else: R_c = parsglob["R_c"][0][ :, :, idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ].copy() mu = np.mean(R_c, axis=(2, 3)) sigma = np.std(R_c, axis=(2, 3)) R_c = (R_c - mu[:, :, None, None]) / sigma[:, :, None, None] mu = mu[:, -1] sigma = sigma[:, -1] pars["mu"] = mu pars["sigma"] = sigma # compute lag-l temporal autocorrelation coefficients for each cascade level GAMMA = np.empty((n_cascade_levels, ar_order)) for i in range(n_cascade_levels): R_c_ = np.stack([R_c[i, j, :, :] for j in range(ar_order + 1)]) GAMMA[i, :] = correlation.temporal_autocorrelation(R_c_) R_c_ = None if ar_order == 2: # adjust the local lag-2 correlation coefficient to ensure that the AR(p) # process is stationary for i in range(n_cascade_levels): GAMMA[i, 1] = autoregression.adjust_lag2_corrcoef2( GAMMA[i, 0], GAMMA[i, 1] ) # estimate the parameters of the AR(p) model from the autocorrelation # coefficients PHI = np.empty((n_cascade_levels, ar_order + 1)) for i in range(n_cascade_levels): PHI[i, :] = autoregression.estimate_ar_params_yw(GAMMA[i, :]) pars["PHI"] = PHI # stack the cascades into a five-dimensional array containing all ensemble # members R_c = [R_c.copy() for i in range(n_ens_members)] pars["R_c"] = R_c if mask_method is not None and parsglob is None: MASK_prec = precip[-1, :, :] >= precip_thr if mask_method == "incremental": # initialize precip mask for each member MASK_prec = nowcast_utils.compute_dilated_mask( MASK_prec, struct, mask_rim ) MASK_prec = [MASK_prec.copy() for j in range(n_ens_members)] else: MASK_prec = None pars["MASK_prec"] = MASK_prec return pars # prepare windows M, N = precip.shape[1:] n_windows_M = np.ceil(1.0 * M / win_size[0]).astype(int) n_windows_N = np.ceil(1.0 * N / win_size[1]).astype(int) idxm = np.zeros((2, 1), dtype=int) idxn = np.zeros((2, 1), dtype=int) if measure_time: starttime = time.time() # compute global parameters to be used as defaults parsglob = estimator(precip) # loop windows if n_windows_M > 1 or n_windows_N > 1: war = np.empty((n_windows_M, n_windows_N)) PHI = np.empty((n_windows_M, n_windows_N, n_cascade_levels, ar_order + 1)) mu = np.empty((n_windows_M, n_windows_N, n_cascade_levels)) sigma = np.empty((n_windows_M, n_windows_N, n_cascade_levels)) ff = [] rc = [] pp = [] mm = [] for m in range(n_windows_M): ff_ = [] pp_ = [] rc_ = [] mm_ = [] for n in range(n_windows_N): # compute indices of local window idxm[0] = int(np.max((m * win_size[0] - overlap * win_size[0], 0))) idxm[1] = int( np.min((idxm[0] + win_size[0] + overlap * win_size[0], M)) ) idxn[0] = int(np.max((n * win_size[1] - overlap * win_size[1], 0))) idxn[1] = int( np.min((idxn[0] + win_size[1] + overlap * win_size[1], N)) ) mask = np.zeros((M, N), dtype=bool) mask[idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1)] = True precip_ = precip[ :, idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ] war[m, n] = ( np.sum(precip_[-1, :, :] >= precip_thr) / precip_[-1, :, :].size ) if war[m, n] > war_thr: # estimate local parameters pars = estimator(precip, parsglob, idxm, idxn) ff_.append(pars["filter"]) pp_.append(pars["P"]) rc_.append(pars["R_c"]) mm_.append(pars["MASK_prec"]) mu[m, n, :] = pars["mu"] sigma[m, n, :] = pars["sigma"] PHI[m, n, :, :] = pars["PHI"] else: # dry window ff_.append(None) pp_.append(None) rc_.append(None) mm_.append(None) ff.append(ff_) pp.append(pp_) rc.append(rc_) mm.append(mm_) # remove unnecessary variables ff_ = None pp_ = None rc_ = None mm_ = None pars = None if measure_time: print(f"{time.time() - starttime:.2f} seconds.") else: print(" done.") # initialize the random generators if noise_method is not None: randgen_prec = [] randgen_motion = [] np.random.seed(seed) for j in range(n_ens_members): rs = np.random.RandomState(seed) randgen_prec.append(rs) seed = rs.randint(0, high=1e9) rs = np.random.RandomState(seed) randgen_motion.append(rs) seed = rs.randint(0, high=1e9) if vel_pert_method is not None: init_vel_noise, generate_vel_noise = noise.get_method(vel_pert_method) # initialize the perturbation generators for the motion field vps = [] for j in range(n_ens_members): kwargs = { "randstate": randgen_motion[j], "p_par": vp_par, "p_perp": vp_perp, } vp_ = init_vel_noise(velocity, 1.0 / kmperpixel, timestep, **kwargs) vps.append(vp_) D = [None for j in range(n_ens_members)] R_f = [[] for j in range(n_ens_members)] if measure_time: init_time = time.time() - starttime_init precip = precip[-1, :, :] print("Starting nowcast computation.") if measure_time: starttime_mainloop = time.time() if isinstance(timesteps, int): timesteps = range(timesteps + 1) timestep_type = "int" else: original_timesteps = [0] + list(timesteps) timesteps = nowcast_utils.binned_timesteps(original_timesteps) timestep_type = "list" extrap_kwargs["return_displacement"] = True R_f_prev = [precip for i in range(n_ens_members)] t_prev = [0.0 for j in range(n_ens_members)] t_total = [0.0 for j in range(n_ens_members)] # iterate each time step for t, subtimestep_idx in enumerate(timesteps): if timestep_type == "list": subtimesteps = [original_timesteps[t_] for t_ in subtimestep_idx] else: subtimesteps = [t] if (timestep_type == "list" and subtimesteps) or ( timestep_type == "int" and t > 0 ): is_nowcast_time_step = True else: is_nowcast_time_step = False if is_nowcast_time_step: print( f"Computing nowcast for time step {t}... ", end="", flush=True, ) if measure_time: starttime = time.time() # iterate each ensemble member def worker(j): # first the global step if noise_method is not None: # generate noise field EPS = generate_noise( parsglob["P"], randstate=randgen_prec[j], fft_method=fft_method ) # decompose the noise field into a cascade EPS_d = decomp_method( EPS, parsglob["filter"], fft_method=fft_method, normalize=True, compute_stats=True, ) else: EPS_d = None # iterate the AR(p) model for each cascade level R_c = parsglob["R_c"][j].copy() if R_c.shape[1] >= ar_order: R_c = R_c[:, -ar_order:, :, :].copy() for i in range(n_cascade_levels): # normalize the noise cascade if EPS_d is not None: EPS_ = ( EPS_d["cascade_levels"][i, :, :] - EPS_d["means"][i] ) / EPS_d["stds"][i] else: EPS_ = None # apply AR(p) process to cascade level R_c[i, :, :, :] = autoregression.iterate_ar_model( R_c[i, :, :, :], parsglob["PHI"][i, :], eps=EPS_ ) EPS_ = None parsglob["R_c"][j] = R_c.copy() EPS = None # compute the recomposed precipitation field(s) from the cascades # obtained from the AR(p) model(s) R_f_new = _recompose_cascade(R_c, parsglob["mu"], parsglob["sigma"]) R_c = None # then the local steps if n_windows_M > 1 or n_windows_N > 1: idxm = np.zeros((2, 1), dtype=int) idxn = np.zeros((2, 1), dtype=int) R_l = np.zeros((M, N), dtype=float) M_s = np.zeros((M, N), dtype=float) for m in range(n_windows_M): for n in range(n_windows_N): # compute indices of local window idxm[0] = int( np.max((m * win_size[0] - overlap * win_size[0], 0)) ) idxm[1] = int( np.min((idxm[0] + win_size[0] + overlap * win_size[0], M)) ) idxn[0] = int( np.max((n * win_size[1] - overlap * win_size[1], 0)) ) idxn[1] = int( np.min((idxn[0] + win_size[1] + overlap * win_size[1], N)) ) # build localization mask mask = _get_mask((M, N), idxm, idxn) mask_l = mask[ idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ] M_s += mask # skip if dry if war[m, n] > war_thr: R_c = rc[m][n][j].copy() if R_c.shape[1] >= ar_order: R_c = R_c[:, -ar_order:, :, :] if noise_method is not None: # extract noise field EPS_d_l = EPS_d["cascade_levels"][ :, idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1), ].copy() mu_ = np.mean(EPS_d_l, axis=(1, 2)) sigma_ = np.std(EPS_d_l, axis=(1, 2)) else: EPS_d_l = None # iterate the AR(p) model for each cascade level for i in range(n_cascade_levels): # normalize the noise cascade if EPS_d_l is not None: EPS_ = ( EPS_d_l[i, :, :] - mu_[i, None, None] ) / sigma_[i, None, None] else: EPS_ = None # apply AR(p) process to cascade level R_c[i, :, :, :] = autoregression.iterate_ar_model( R_c[i, :, :, :], PHI[m, n, i, :], eps=EPS_ ) EPS_ = None rc[m][n][j] = R_c.copy() EPS_d_l = mu_ = sigma_ = None # compute the recomposed precipitation field(s) from the cascades # obtained from the AR(p) model(s) mu_ = mu[m, n, :] sigma_ = sigma[m, n, :] R_c = [ ((R_c[i, -1, :, :] * sigma_[i]) + mu_[i]) * parsglob["sigma"][i] + parsglob["mu"][i] for i in range(len(mu_)) ] R_l_ = np.sum(np.stack(R_c), axis=0) R_c = mu_ = sigma_ = None # R_l_ = _recompose_cascade(R_c[:, :, :], mu[m, n, :], sigma[m, n, :]) else: R_l_ = R_f_new[ idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ].copy() if probmatching_method == "cdf": # adjust the CDF of the forecast to match the most recently # observed precipitation field R_ = precip[ idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ].copy() R_l_ = probmatching.nonparam_match_empirical_cdf(R_l_, R_) R_ = None R_l[ idxm.item(0) : idxm.item(1), idxn.item(0) : idxn.item(1) ] += (R_l_ * mask_l) R_l_ = None ind = M_s > 0 R_l[ind] *= 1 / M_s[ind] R_l[~ind] = precip_min R_f_new = R_l.copy() R_l = None if probmatching_method == "cdf": # adjust the CDF of the forecast to match the most recently # observed precipitation field R_f_new[R_f_new < precip_thr] = precip_min R_f_new = probmatching.nonparam_match_empirical_cdf(R_f_new, precip) if mask_method is not None: # apply the precipitation mask to prevent generation of new # precipitation into areas where it was not originally # observed if mask_method == "incremental": MASK_prec = parsglob["MASK_prec"][j].copy() R_f_new = R_f_new.min() + (R_f_new - R_f_new.min()) * MASK_prec MASK_prec = None if mask_method == "incremental": parsglob["MASK_prec"][j] = nowcast_utils.compute_dilated_mask( R_f_new >= precip_thr, struct, mask_rim ) R_f_out = [] extrap_kwargs_ = extrap_kwargs.copy() extrap_kwargs_["xy_coords"] = xy_coords extrap_kwargs_["return_displacement"] = True V_pert = velocity # advect the recomposed precipitation field to obtain the forecast for # the current time step (or subtimesteps if non-integer time steps are # given) for t_sub in subtimesteps: if t_sub > 0: t_diff_prev_int = t_sub - int(t_sub) if t_diff_prev_int > 0.0: R_f_ip = (1.0 - t_diff_prev_int) * R_f_prev[ j ] + t_diff_prev_int * R_f_new else: R_f_ip = R_f_prev[j] t_diff_prev = t_sub - t_prev[j] t_total[j] += t_diff_prev # compute the perturbed motion field if vel_pert_method is not None: V_pert = velocity + generate_vel_noise( vps[j], t_total[j] * timestep ) extrap_kwargs_["displacement_prev"] = D[j] R_f_ep, D[j] = extrapolator_method( R_f_ip, V_pert, [t_diff_prev], **extrap_kwargs_, ) R_f_ep[0][R_f_ep[0] < precip_thr] = precip_min R_f_out.append(R_f_ep[0]) t_prev[j] = t_sub # advect the forecast field by one time step if no subtimesteps in the # current interval were found if not subtimesteps: t_diff_prev = t + 1 - t_prev[j] t_total[j] += t_diff_prev # compute the perturbed motion field if vel_pert_method is not None: V_pert = velocity + generate_vel_noise( vps[j], t_total[j] * timestep ) extrap_kwargs_["displacement_prev"] = D[j] _, D[j] = extrapolator_method( None, V_pert, [t_diff_prev], **extrap_kwargs_, ) t_prev[j] = t + 1 R_f_prev[j] = R_f_new return R_f_out res = [] for j in range(n_ens_members): if not dask_imported or n_ens_members == 1: res.append(worker(j)) else: res.append(dask.delayed(worker)(j)) R_f_ = ( dask.compute(*res, num_workers=num_ensemble_workers) if dask_imported and n_ens_members > 1 else res ) res = None if is_nowcast_time_step: if measure_time: print(f"{time.time() - starttime:.2f} seconds.") else: print("done.") if callback is not None: R_f_stacked = np.stack(R_f_) if R_f_stacked.shape[1] > 0: callback(R_f_stacked.squeeze()) R_f_ = None if return_output: for j in range(n_ens_members): R_f[j].extend(R_f_[j]) if measure_time: mainloop_time = time.time() - starttime_mainloop if return_output: outarr = np.stack([np.stack(R_f[j]) for j in range(n_ens_members)]) if measure_time: return outarr, init_time, mainloop_time else: return outarr else: return None
35,789
def read_pfm(file_name: str, slice_channels: int = 2) -> np.ndarray: """Read file in .pfm format. Might contain Args: file_name (str): Path to the file. slice_channels (int): Number of channels to slice out of the file. Useful for reading different data formats stored in .pfm files: Optical Flows, Stereo Disparity Maps, etc. """ with open(file_name, "rb") as f: header = f.readline().rstrip() if header not in [b"PF", b"Pf"]: raise ValueError("Invalid PFM file") dim_match = re.match(rb"^(\d+)\s(\d+)\s$", f.readline()) if not dim_match: raise Exception("Malformed PFM header.") w, h = (int(dim) for dim in dim_match.groups()) scale = float(f.readline().rstrip()) if scale < 0: # little-endian endian = "<" scale = -scale else: endian = ">" # big-endian data = np.fromfile(f, dtype=endian + "f") pfm_channels = 3 if header == b"PF" else 1 data = data.reshape(h, w, pfm_channels).transpose(2, 0, 1) data = np.flip(data, axis=1) # flip on h dimension data = data[:slice_channels, :, :] return data.astype(np.float32)
def _read_pfm(file_name: str, slice_channels: int = 2) -> np.ndarray: """Read file in .pfm format. Might contain Args: file_name (str): Path to the file. slice_channels (int): Number of channels to slice out of the file. Useful for reading different data formats stored in .pfm files: Optical Flows, Stereo Disparity Maps, etc. """ with open(file_name, "rb") as f: header = f.readline().rstrip() if header not in [b"PF", b"Pf"]: raise ValueError("Invalid PFM file") dim_match = re.match(rb"^(\d+)\s(\d+)\s$", f.readline()) if not dim_match: raise Exception("Malformed PFM header.") w, h = (int(dim) for dim in dim_match.groups()) scale = float(f.readline().rstrip()) if scale < 0: # little-endian endian = "<" scale = -scale else: endian = ">" # big-endian data = np.fromfile(f, dtype=endian + "f") pfm_channels = 3 if header == b"PF" else 1 data = data.reshape(h, w, pfm_channels).transpose(2, 0, 1) data = np.flip(data, axis=1) # flip on h dimension data = data[:slice_channels, :, :] return data.astype(np.float32)
1,512
def get_package_status(package, min_version): """ Returns a dictionary containing a boolean specifying whether given package is up-to-date, along with the version string (empty string if not installed). """ package_status = {} try: p = importlib.import_module(package) package_version = p.__version__ package_status['up_to_date'] = parse_version( package_version) >= parse_version(min_version) package_status['version'] = package_version except ImportError: traceback.print_exc() package_status['up_to_date'] = False package_status['version'] = "" return package_status
def get_package_status(package, min_version): """ Returns a dictionary containing a boolean specifying whether given package is up-to-date, along with the version string (empty string if not installed). """ package_status = {} try: module = importlib.import_module(package) package_version = p.__version__ package_status['up_to_date'] = parse_version( package_version) >= parse_version(min_version) package_status['version'] = package_version except ImportError: traceback.print_exc() package_status['up_to_date'] = False package_status['version'] = "" return package_status
13,656
def _post_processing(samples, svs, itpl_part, d_nsp, L_rk_tol): """Compute coefficients/partition to construct minimal interpolant.""" num_vars = len(svs) max_idx = np.argmax([*(len(ip) for ip in itpl_part)]) max_rks = [] for i in range(num_vars): max_rk = 0 # we don't need to compute this max rank since we exploit nullspace structure if i == max_idx: max_rks.append(len(itpl_part[max_idx])-1) continue shapes = [] for j in range(num_vars): if i != j: shapes.append(samples.shape[j]) # compute max ranks of all possible 1-D Loewner matrices for idc in itertools.product(*(range(s) for s in shapes)): l_idc = list(idc) l_idc.insert(i, slice(None)) L = nd_loewner(samples[tuple(l_idc)], [svs[i]], [itpl_part[i]]) rk = np.linalg.matrix_rank(L, tol=L_rk_tol) if rk > max_rk: max_rk = rk max_rks.append(max_rk) # exploit nullspace structure to obtain final max rank denom = np.prod([*(len(itpl_part[k])-max_rks[k] for k in range(len(itpl_part)))]) if denom == 0 or d_nsp % denom != 0: return None, None max_rks[max_idx] = len(itpl_part[max_idx]) - d_nsp / denom max_rks[max_idx] = round(max_rks[max_idx]) for i in range(len(max_rks)): itpl_part[i] = itpl_part[i][0:max_rks[i]+1] # solve LS problem L = full_nd_loewner(samples, svs, itpl_part) _, S, V = np.linalg.svd(L) VH = np.conj(V.T) coefs = VH[:, -1:] return coefs, itpl_part
def _post_processing(samples, svs, itpl_part, d_nsp, L_rk_tol): """Compute coefficients/partition to construct minimal interpolant.""" num_vars = len(svs) max_idx = np.argmax([len(ip) for ip in itpl_part]) max_rks = [] for i in range(num_vars): max_rk = 0 # we don't need to compute this max rank since we exploit nullspace structure if i == max_idx: max_rks.append(len(itpl_part[max_idx])-1) continue shapes = [] for j in range(num_vars): if i != j: shapes.append(samples.shape[j]) # compute max ranks of all possible 1-D Loewner matrices for idc in itertools.product(*(range(s) for s in shapes)): l_idc = list(idc) l_idc.insert(i, slice(None)) L = nd_loewner(samples[tuple(l_idc)], [svs[i]], [itpl_part[i]]) rk = np.linalg.matrix_rank(L, tol=L_rk_tol) if rk > max_rk: max_rk = rk max_rks.append(max_rk) # exploit nullspace structure to obtain final max rank denom = np.prod([*(len(itpl_part[k])-max_rks[k] for k in range(len(itpl_part)))]) if denom == 0 or d_nsp % denom != 0: return None, None max_rks[max_idx] = len(itpl_part[max_idx]) - d_nsp / denom max_rks[max_idx] = round(max_rks[max_idx]) for i in range(len(max_rks)): itpl_part[i] = itpl_part[i][0:max_rks[i]+1] # solve LS problem L = full_nd_loewner(samples, svs, itpl_part) _, S, V = np.linalg.svd(L) VH = np.conj(V.T) coefs = VH[:, -1:] return coefs, itpl_part
7,358
def quickshift(image, ratio=1.0, kernel_size=5, max_dist=10, return_tree=False, sigma=0, convert2lab=True, random_seed=42, channel_axis=-1): """Segments image using quickshift clustering in Color-(x,y) space. Produces an oversegmentation of the image using the quickshift mode-seeking algorithm. Parameters ---------- image : (width, height, channels) ndarray Input image. The axis corresponding to color channels can be specified via the `channel_axis` argument. ratio : float, optional, between 0 and 1 Balances color-space proximity and image-space proximity. Higher values give more weight to color-space. kernel_size : float, optional Width of Gaussian kernel used in smoothing the sample density. Higher means fewer clusters. max_dist : float, optional Cut-off point for data distances. Higher means fewer clusters. return_tree : bool, optional Whether to return the full segmentation hierarchy tree and distances. sigma : float, optional Width for Gaussian smoothing as preprocessing. Zero means no smoothing. convert2lab : bool, optional Whether the input should be converted to Lab colorspace prior to segmentation. For this purpose, the input is assumed to be RGB. random_seed : int, optional Random seed used for breaking ties. channel_axis : int, optional The axis of `image` corresponding to color channels. Defaults to the last axis. Returns ------- segment_mask : (width, height) ndarray Integer mask indicating segment labels. Notes ----- The authors advocate to convert the image to Lab color space prior to segmentation, though this is not strictly necessary. For this to work, the image must be given in RGB format. References ---------- .. [1] Quick shift and kernel methods for mode seeking, Vedaldi, A. and Soatto, S. European Conference on Computer Vision, 2008 """ image = img_as_float(np.atleast_3d(image)) float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) if image.ndim > 3: raise ValueError("only 2D color images are supported") # move channels to last position as expected by the Cython code image = np.moveaxis(image, source=channel_axis, destination=-1) if convert2lab: if image.shape[-1] != 3: ValueError("Only RGB images can be converted to Lab space.") image = rgb2lab(image) if kernel_size < 1: raise ValueError("`kernel_size` should be >= 1.") image = ndi.gaussian_filter(image, [sigma, sigma, 0]) image = np.ascontiguousarray(image * ratio) segment_mask = _quickshift_cython( image, kernel_size=kernel_size, max_dist=max_dist, return_tree=return_tree, random_seed=random_seed) return segment_mask
def quickshift(image, ratio=1.0, kernel_size=5, max_dist=10, return_tree=False, sigma=0, convert2lab=True, random_seed=42, *, channel_axis=-1): """Segments image using quickshift clustering in Color-(x,y) space. Produces an oversegmentation of the image using the quickshift mode-seeking algorithm. Parameters ---------- image : (width, height, channels) ndarray Input image. The axis corresponding to color channels can be specified via the `channel_axis` argument. ratio : float, optional, between 0 and 1 Balances color-space proximity and image-space proximity. Higher values give more weight to color-space. kernel_size : float, optional Width of Gaussian kernel used in smoothing the sample density. Higher means fewer clusters. max_dist : float, optional Cut-off point for data distances. Higher means fewer clusters. return_tree : bool, optional Whether to return the full segmentation hierarchy tree and distances. sigma : float, optional Width for Gaussian smoothing as preprocessing. Zero means no smoothing. convert2lab : bool, optional Whether the input should be converted to Lab colorspace prior to segmentation. For this purpose, the input is assumed to be RGB. random_seed : int, optional Random seed used for breaking ties. channel_axis : int, optional The axis of `image` corresponding to color channels. Defaults to the last axis. Returns ------- segment_mask : (width, height) ndarray Integer mask indicating segment labels. Notes ----- The authors advocate to convert the image to Lab color space prior to segmentation, though this is not strictly necessary. For this to work, the image must be given in RGB format. References ---------- .. [1] Quick shift and kernel methods for mode seeking, Vedaldi, A. and Soatto, S. European Conference on Computer Vision, 2008 """ image = img_as_float(np.atleast_3d(image)) float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) if image.ndim > 3: raise ValueError("only 2D color images are supported") # move channels to last position as expected by the Cython code image = np.moveaxis(image, source=channel_axis, destination=-1) if convert2lab: if image.shape[-1] != 3: ValueError("Only RGB images can be converted to Lab space.") image = rgb2lab(image) if kernel_size < 1: raise ValueError("`kernel_size` should be >= 1.") image = ndi.gaussian_filter(image, [sigma, sigma, 0]) image = np.ascontiguousarray(image * ratio) segment_mask = _quickshift_cython( image, kernel_size=kernel_size, max_dist=max_dist, return_tree=return_tree, random_seed=random_seed) return segment_mask
58,668
def _is_same_entity_annotation(entity, other) -> Any: return ( entity["value"] == other["value"] and entity["entity"] == other["entity"] and entity.get("group", None) == other.get("group", None) and entity.get("role", None) == other.get("group", None) )
def _is_same_entity_annotation(entity, other) -> Any: return ( entity["value"] == other["value"] and entity["entity"] == other["entity"] and entity.get("group") == other.get("group") and entity.get("role") == other.get("group") )
59,805
def create_agent_from_model_file(model_file, opt_overides=None): """ Load agent from model file if it exists. An optional dict of option overrides can also be provided. """ opt = {} opt['model_file'] = model_file if opt_overides is None: opt_overides = {} opt['overrride'] = opt_overides return create_agent_from_opt_file(opt)
def create_agent_from_model_file(model_file, opt_overides=None): """ Load agent from model file if it exists. :param opt_overrides: An optional dict of option overrides can also be provided. :return: The agent """ opt = {} opt['model_file'] = model_file if opt_overides is None: opt_overides = {} opt['overrride'] = opt_overides return create_agent_from_opt_file(opt)
52,694
def connect(sys, Q, inputv, outputv): """Index-based interconnection of an LTI system. The system `sys` is a system typically constructed with `append`, with multiple inputs and outputs. The inputs and outputs are connected according to the interconnection matrix `Q`, and then the final inputs and outputs are trimmed according to the inputs and outputs listed in `inputv` and `outputv`. NOTE: Inputs and outputs are indexed starting at 1 and negative values correspond to a negative feedback interconnection. Parameters ---------- sys : StateSpace Transferfunction System to be connected Q : 2D array Interconnection matrix. First column gives the input to be connected. The second column gives the index of an output that is to be fed into that input. Each additional column gives the index of an additional input that may be optionally added to that input. Negative values mean the feedback is negative. A zero value is ignored. Inputs and outputs are indexed starting at 1 to communicate sign information. inputv : 1D array list of final external inputs, indexed starting at 1 outputv : 1D array list of final external outputs, indexed starting at 1 Returns ------- sys: LTI system Connected and trimmed LTI system Examples -------- >>> sys1 = ss([[1., -2], [3., -4]], [[5.], [7]], [[6, 8]], [[9.]]) >>> sys2 = ss([[-1.]], [[1.]], [[1.]], [[0.]]) >>> sys = append(sys1, sys2) >>> Q = [[1, 2], [2, -1]] # negative feedback interconnection >>> sysc = connect(sys, Q, [2], [1, 2]) """ inputv, outputv, Q = np.asarray(inputv), np.asarray(outputv), np.asarray(Q) # check indices index_errors = (inputv - 1 > sys.inputs) | (inputv < 1) if np.any(index_errors): raise IndexError( "inputv index %s out of bounds"%inputv[np.where(index_errors)]) index_errors = (outputv - 1 > sys.outputs) | (outputv < 1) if np.any(index_errors): raise IndexError( "outputv index %s out of bounds"%outputv[np.where(index_errors)]) index_errors = (Q[:,0:1] - 1 > sys.inputs) | (Q[:,0:1] < 1) if np.any(index_errors): raise IndexError( "Q input index %s out of bounds"%Q[np.where(index_errors)]) index_errors = (np.abs(Q[:,1:]) - 1 > sys.outputs) if np.any(index_errors): raise IndexError( "Q output index %s out of bounds"%Q[np.where(index_errors)]) # first connect K = np.zeros((sys.inputs, sys.outputs)) for r in np.array(Q).astype(int): inp = r[0]-1 for outp in r[1:]: if outp < 0: K[inp,-outp-1] = -1. elif outp > 0: K[inp,outp-1] = 1. sys = sys.feedback(np.array(K), sign=1) # now trim Ytrim = np.zeros((len(outputv), sys.outputs)) Utrim = np.zeros((sys.inputs, len(inputv))) for i,u in enumerate(inputv): Utrim[u-1,i] = 1. for i,y in enumerate(outputv): Ytrim[i,y-1] = 1. return Ytrim * sys * Utrim
def connect(sys, Q, inputv, outputv): """Index-based interconnection of an LTI system. The system `sys` is a system typically constructed with `append`, with multiple inputs and outputs. The inputs and outputs are connected according to the interconnection matrix `Q`, and then the final inputs and outputs are trimmed according to the inputs and outputs listed in `inputv` and `outputv`. NOTE: Inputs and outputs are indexed starting at 1 and negative values correspond to a negative feedback interconnection. Parameters ---------- sys : StateSpace Transferfunction System to be connected Q : 2D array Interconnection matrix. First column gives the input to be connected. The second column gives the index of an output that is to be fed into that input. Each additional column gives the index of an additional input that may be optionally added to that input. Negative values mean the feedback is negative. A zero value is ignored. Inputs and outputs are indexed starting at 1 to communicate sign information. inputv : 1D array list of final external inputs, indexed starting at 1 outputv : 1D array list of final external outputs, indexed starting at 1 Returns ------- sys: LTI system Connected and trimmed LTI system Examples -------- >>> sys1 = ss([[1., -2], [3., -4]], [[5.], [7]], [[6, 8]], [[9.]]) >>> sys2 = ss([[-1.]], [[1.]], [[1.]], [[0.]]) >>> sys = append(sys1, sys2) >>> Q = [[1, 2], [2, -1]] # negative feedback interconnection >>> sysc = connect(sys, Q, [2], [1, 2]) """ inputv, outputv, Q = np.asarray(inputv), np.asarray(outputv), np.asarray(Q) # check indices index_errors = (inputv - 1 > sys.inputs) | (inputv < 1) if np.any(index_errors): raise IndexError( "inputv index %s out of bounds"%inputv[np.where(index_errors)]) index_errors = (outputv - 1 > sys.outputs) | (outputv < 1) if np.any(index_errors): raise IndexError( "outputv index %s out of bounds"%outputv[np.where(index_errors)]) index_errors = (Q[:,0:1] - 1 > sys.inputs) | (Q[:,0:1] < 1) if np.any(index_errors): raise IndexError( "Q input index %s out of bounds"%Q[np.where(index_errors)]) index_errors = (np.abs(Q[:,1:]) - 1 > sys.outputs) if np.any(index_errors): raise IndexError( "Q output index %s out of bounds"%Q[np.where(index_errors)]) # first connect K = np.zeros((sys.inputs, sys.outputs)) for r in np.array(Q).astype(int): inp = r[0]-1 for outp in r[1:]: if outp < 0: K[inp,-outp-1] = -1. elif outp > 0: K[inp,outp-1] = 1. sys = sys.feedback(np.array(K), sign=1) # now trim Ytrim = np.zeros((len(outputv), sys.outputs)) Utrim = np.zeros((sys.inputs, len(inputv))) for i,u in enumerate(inputv): Utrim[u-1,i] = 1. for i,y in enumerate(outputv): Ytrim[i,y-1] = 1. return Ytrim * sys * Utrim
52,877
def test_import_export_history_hidden_false_with_hidden_dataset(): app = _mock_app() u, h, d1, d2, j = _setup_simple_cat_job(app) d2.visible = False app.model.session.flush() imported_history = _import_export_history(app, h, export_files="copy", include_hidden=False) assert d2.dataset.get_size() > 0 assert imported_history.datasets[-1].get_size() == 0
def test_import_export_history_hidden_false_with_hidden_dataset(): app = _mock_app() u, h, d1, d2, j = _setup_simple_cat_job(app) d2.visible = False app.model.session.flush() imported_history = _import_export_history(app, h, export_files="copy", include_hidden=False) assert d1.dataset.get_size() == imported_history.datasets[0].get_size() assert imported_history.datasets[1].get_size() == 0
45,137
def flag_is_enabled( flag_name: str, default=False, client: FeatureFlagClient = None, **conditions: Optional[Any] ): """ Check if a feature flag is enabled. This function always returns False if the setting PREFECT_CLOUD_ENABLE_FEATURE_FLAGGING is false. NOTE: If `flag_is_enabled()` is called for a feature that has conditions, but the caller does not give any conditions, the current state of the flag is returned. Args: flag_name: the name of the feature flag default: the default return value to use if no feature flag with the given name exists. Defaults to False. client: The FeatureFlagClient instance to use. Defaults to a client configured to look at an in-memory feature store. conditions: keyword arguments, e.g. is_admin=True, to check against any Conditions on the flag Returns: bool: whether the flag is enabled """ if not settings.PREFECT_FEATURE_FLAGGING_ENABLED.value(): return False if not client: client = get_features_client() return client.is_enabled(flag_name, default=default, **conditions)
def flag_is_enabled( flag_name: str, default=False, client: FeatureFlagClient = None, **conditions: Optional[Any] ): """ Check if a feature flag is enabled. This function always returns False if the setting PREFECT_CLOUD_ENABLE_FEATURE_FLAGGING is false. NOTE: If `flag_is_enabled()` is called for a feature that has conditions, but the caller does not give any conditions, the current state of the flag is returned. Args: flag_name: the name of the feature flag default: the default return value to use if no feature flag with the given name exists. Defaults to False. client: The FeatureFlagClient instance to use. Defaults to a client configured to look at an in-memory feature store. conditions: keyword arguments, e.g. `is_admin=True`, to check against any Conditions on the flag Returns: bool: whether the flag is enabled """ if not settings.PREFECT_FEATURE_FLAGGING_ENABLED.value(): return False if not client: client = get_features_client() return client.is_enabled(flag_name, default=default, **conditions)
21,180
def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: bool): nF = model.get_dim("nF") tok2vec = model.get_ref("tok2vec") lower_pad = model.get_param("lower_pad") lower_W = model.get_param("lower_W") lower_b = model.get_param("lower_b") upper_W = model.get_param("upper_W") upper_b = model.get_param("upper_b") nH = model.get_dim("nH") nP = model.get_dim("nP") nO = model.get_dim("nO") nI = model.get_dim("nI") beam_width = model.attrs.get("beam_width", 1) beam_density = model.attrs.get("beam_density", 0.0) ops = model.ops docs, moves = docs_moves states = moves.init_batch(docs) tokvecs, backprop_tok2vec = tok2vec(docs, is_train) tokvecs = model.ops.xp.vstack((tokvecs, lower_pad)) feats, backprop_feats = _forward_precomputable_affine(model, tokvecs, is_train) all_ids = [] all_which = [] all_statevecs = [] all_scores = [] if beam_width == 1: batch = GreedyBatch(moves, states, None) else: batch = _beam_utils.BeamBatch( moves, states, None, beam_width, density=beam_density ) seen_mask = _get_seen_mask(model) arange = model.ops.xp.arange(nF) while not batch.is_done: ids = numpy.zeros((len(batch.get_unfinished_states()), nF), dtype="i") for i, state in enumerate(batch.get_unfinished_states()): state.set_context_tokens(ids, i, nF) # Sum the state features, add the bias and apply the activation (maxout) # to create the state vectors. preacts2f = feats[ids, arange].sum(axis=1) # type: ignore preacts2f += lower_b preacts = model.ops.reshape3f(preacts2f, preacts2f.shape[0], nH, nP) assert preacts.shape[0] == len(batch.get_unfinished_states()), preacts.shape statevecs, which = ops.maxout(preacts) # Multiply the state-vector by the scores weights and add the bias, # to get the logits. scores = model.ops.gemm(statevecs, upper_W, trans2=True) scores += upper_b scores[:, seen_mask] = model.ops.xp.nanmin(scores) # Transition the states, filtering out any that are finished. cpu_scores = model.ops.to_numpy(scores) batch.advance(cpu_scores) all_scores.append(scores) if is_train: # Remember intermediate results for the backprop. all_ids.append(ids) all_statevecs.append(statevecs) all_which.append(which) def backprop_parser(d_states_d_scores): d_tokvecs = model.ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1]) ids = model.ops.xp.vstack(all_ids) which = ops.xp.vstack(all_which) statevecs = model.ops.xp.vstack(all_statevecs) _, d_scores = d_states_d_scores if model.attrs.get("unseen_classes"): # If we have a negative gradient (i.e. the probability should # increase) on any classes we filtered out as unseen, mark # them as seen. for clas in set(model.attrs["unseen_classes"]): if (d_scores[:, clas] < 0).any(): model.attrs["unseen_classes"].remove(clas) d_scores *= seen_mask == False # Calculate the gradients for the parameters of the upper layer. # The weight gemm is (nS, nO) @ (nS, nH).T model.inc_grad("upper_b", d_scores.sum(axis=0)) model.inc_grad("upper_W", model.ops.gemm(d_scores, statevecs, trans1=True)) # Now calculate d_statevecs, by backproping through the upper linear layer. # This gemm is (nS, nO) @ (nO, nH) d_statevecs = model.ops.gemm(d_scores, upper_W) # Backprop through the maxout activation d_preacts = model.ops.backprop_maxout(d_statevecs, which, nP) d_preacts2f = model.ops.reshape2f(d_preacts, d_preacts.shape[0], nH * nP) model.inc_grad("lower_b", d_preacts2f.sum(axis=0)) # We don't need to backprop the summation, because we pass back the IDs instead d_state_features = backprop_feats((d_preacts2f, ids)) d_tokvecs = model.ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1]) model.ops.scatter_add(d_tokvecs, ids, d_state_features) model.inc_grad("lower_pad", d_tokvecs[-1]) return (backprop_tok2vec(d_tokvecs[:-1]), None) return (list(batch), all_scores), backprop_parser
def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: bool): nF = model.get_dim("nF") tok2vec = model.get_ref("tok2vec") lower_pad = model.get_param("lower_pad") lower_W = model.get_param("lower_W") lower_b = model.get_param("lower_b") upper_W = model.get_param("upper_W") upper_b = model.get_param("upper_b") nH = model.get_dim("nH") nP = model.get_dim("nP") nO = model.get_dim("nO") nI = model.get_dim("nI") beam_width = model.attrs.get("beam_width", 1) beam_density = model.attrs.get("beam_density", 0.0) ops = model.ops docs, moves = docs_moves states = moves.init_batch(docs) tokvecs, backprop_tok2vec = tok2vec(docs, is_train) tokvecs = model.ops.xp.vstack((tokvecs, lower_pad)) feats, backprop_feats = _forward_precomputable_affine(model, tokvecs, is_train) all_ids = [] all_which = [] all_statevecs = [] all_scores = [] if beam_width == 1: batch = GreedyBatch(moves, states, None) else: batch = _beam_utils.BeamBatch( moves, states, None, width=beam_width, density=beam_density ) seen_mask = _get_seen_mask(model) arange = model.ops.xp.arange(nF) while not batch.is_done: ids = numpy.zeros((len(batch.get_unfinished_states()), nF), dtype="i") for i, state in enumerate(batch.get_unfinished_states()): state.set_context_tokens(ids, i, nF) # Sum the state features, add the bias and apply the activation (maxout) # to create the state vectors. preacts2f = feats[ids, arange].sum(axis=1) # type: ignore preacts2f += lower_b preacts = model.ops.reshape3f(preacts2f, preacts2f.shape[0], nH, nP) assert preacts.shape[0] == len(batch.get_unfinished_states()), preacts.shape statevecs, which = ops.maxout(preacts) # Multiply the state-vector by the scores weights and add the bias, # to get the logits. scores = model.ops.gemm(statevecs, upper_W, trans2=True) scores += upper_b scores[:, seen_mask] = model.ops.xp.nanmin(scores) # Transition the states, filtering out any that are finished. cpu_scores = model.ops.to_numpy(scores) batch.advance(cpu_scores) all_scores.append(scores) if is_train: # Remember intermediate results for the backprop. all_ids.append(ids) all_statevecs.append(statevecs) all_which.append(which) def backprop_parser(d_states_d_scores): d_tokvecs = model.ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1]) ids = model.ops.xp.vstack(all_ids) which = ops.xp.vstack(all_which) statevecs = model.ops.xp.vstack(all_statevecs) _, d_scores = d_states_d_scores if model.attrs.get("unseen_classes"): # If we have a negative gradient (i.e. the probability should # increase) on any classes we filtered out as unseen, mark # them as seen. for clas in set(model.attrs["unseen_classes"]): if (d_scores[:, clas] < 0).any(): model.attrs["unseen_classes"].remove(clas) d_scores *= seen_mask == False # Calculate the gradients for the parameters of the upper layer. # The weight gemm is (nS, nO) @ (nS, nH).T model.inc_grad("upper_b", d_scores.sum(axis=0)) model.inc_grad("upper_W", model.ops.gemm(d_scores, statevecs, trans1=True)) # Now calculate d_statevecs, by backproping through the upper linear layer. # This gemm is (nS, nO) @ (nO, nH) d_statevecs = model.ops.gemm(d_scores, upper_W) # Backprop through the maxout activation d_preacts = model.ops.backprop_maxout(d_statevecs, which, nP) d_preacts2f = model.ops.reshape2f(d_preacts, d_preacts.shape[0], nH * nP) model.inc_grad("lower_b", d_preacts2f.sum(axis=0)) # We don't need to backprop the summation, because we pass back the IDs instead d_state_features = backprop_feats((d_preacts2f, ids)) d_tokvecs = model.ops.alloc2f(tokvecs.shape[0], tokvecs.shape[1]) model.ops.scatter_add(d_tokvecs, ids, d_state_features) model.inc_grad("lower_pad", d_tokvecs[-1]) return (backprop_tok2vec(d_tokvecs[:-1]), None) return (list(batch), all_scores), backprop_parser
5,339
def installed(name, channel=None): """ Ensure that the named snap package is installed name The snap package channel Optional. The channel to install the package from. """ ret = {"name": name, "changes": {}, "pchanges": {}, "result": None, "comment": ""} old = __salt__["snap.versions_installed"](name) if not old: if __opts__["test"]: ret["comment"] = 'Package "{0}" would have been installed'.format(name) ret["pchanges"]["new"] = name ret["pchanges"]["old"] = None ret["result"] = None return ret install = __salt__["snap.install"](name, channel=channel) if install["result"]: ret["comment"] = 'Package "{0}" was installed'.format(name) ret["changes"]["new"] = name ret["changes"]["old"] = None ret["result"] = True return ret ret["comment"] = 'Package "{0}" failed to install'.format(name) ret["comment"] += "\noutput:\n" + install["output"] ret["result"] = False return ret # Currently snap always returns only one line? old_channel = old[0]["tracking"] if old_channel != channel and channel is not None: if __opts__["test"]: ret[ "comment" ] = 'Package "{0}" would have been switched to channel {1}'.format( name, channel ) ret["pchanges"]["old_channel"] = old_channel ret["pchanges"]["new_channel"] = channel ret["result"] = None return ret refresh = __salt__["snap.install"](name, channel=channel, refresh=True) if refresh["result"]: ret["comment"] = 'Package "{0}" was switched to channel {1}'.format( name, channel ) ret["pchanges"]["old_channel"] = old_channel ret["pchanges"]["new_channel"] = channel ret["result"] = True return ret ret["comment"] = 'Failed to switch Package "{0}" to channel {1}'.format( name, channel ) ret["comment"] += "\noutput:\n" + install["output"] ret["result"] = False return ret ret["comment"] = 'Package "{0}" is already installed'.format(name) if __opts__["test"]: ret["result"] = None return ret ret["result"] = True return ret
def installed(name, channel=None): """ Ensure that the named snap package is installed name The snap package channel Optional. The channel to install the package from. """ ret = {"name": name, "changes": {}, "pchanges": {}, "result": None, "comment": ""} old = __salt__["snap.versions_installed"](name) if not old: if __opts__["test"]: ret["comment"] = 'Package "{0}" would have been installed'.format(name) ret["pchanges"]["new"] = name ret["pchanges"]["old"] = None ret["result"] = None return ret install = __salt__["snap.install"](name, channel=channel) if install["result"]: ret["comment"] = 'Package "{0}" was installed'.format(name) ret["changes"]["new"] = name ret["changes"]["old"] = None ret["result"] = True return ret ret["comment"] = 'Package "{0}" failed to install'.format(name) ret["comment"] += "\noutput:\n" + install["output"] ret["result"] = False return ret # Currently snap always returns only one line? old_channel = old[0]["tracking"] if old_channel != channel and channel is not None: if __opts__["test"]: ret[ "comment" ] = 'Package "{0}" would have been switched to channel {1}'.format( name, channel ) ret["pchanges"]["old_channel"] = old_channel ret["pchanges"]["new_channel"] = channel ret["result"] = None return ret refresh = __salt__["snap.install"](name, channel=channel, refresh=True) if refresh["result"]: ret["comment"] = 'Package "{0}" was switched to channel {1}'.format( name, channel ) ret["pchanges"]["old_channel"] = old_channel ret["pchanges"]["new_channel"] = channel ret["result"] = True return ret ret["comment"] = 'Failed to switch Package "{0}" to channel {1}'.format( name, channel ) ret["comment"] += "\noutput:\n" + refresh["output"] ret["result"] = False return ret ret["comment"] = 'Package "{0}" is already installed'.format(name) if __opts__["test"]: ret["result"] = None return ret ret["result"] = True return ret
57,697
def main(): """ PARSE AND VALIDATE INTEGRATION PARAMS """ # get the service API url base_url = API_PATH commands = { 'url': url_command, 'openphish-reload': reload_command, 'openphish-status': status_command, } hours_to_refresh = demisto.params().get('fetchIntervalHours', '1') try: hours_to_refresh = float(hours_to_refresh) use_ssl = not demisto.params().get('insecure', False) use_proxy = demisto.params().get('proxy', False) client = Client( url=base_url, use_ssl=use_ssl, use_proxy=use_proxy, fetch_interval_hours=hours_to_refresh) command = demisto.command() if command == 'test-module': # This is the call made when pressing the integration Test button. result = test_module(client) return_results(result) elif command in commands: return_results(commands[command](client, **demisto.args())) # Log exceptions except ValueError: return_error('Invalid parameter was given as database refresh interval.') except Exception as e: return_error(f'Failed to execute {demisto.command()} command. Error: {str(e)} \n ' f'tracback: {traceback.format_exc()}')
def main(): """ PARSE AND VALIDATE INTEGRATION PARAMS """ # get the service API url base_url = API_PATH commands = { 'url': url_command, 'openphish-reload': reload_command, 'openphish-status': status_command, } params = demisto.params() hours_to_refresh = params.get('fetchIntervalHours', '1') try: hours_to_refresh = float(hours_to_refresh) use_ssl = not demisto.params().get('insecure', False) use_proxy = demisto.params().get('proxy', False) client = Client( url=base_url, use_ssl=use_ssl, use_proxy=use_proxy, fetch_interval_hours=hours_to_refresh) command = demisto.command() if command == 'test-module': # This is the call made when pressing the integration Test button. result = test_module(client) return_results(result) elif command in commands: return_results(commands[command](client, **demisto.args())) # Log exceptions except ValueError: return_error('Invalid parameter was given as database refresh interval.') except Exception as e: return_error(f'Failed to execute {demisto.command()} command. Error: {str(e)} \n ' f'tracback: {traceback.format_exc()}')
43,998
def edges_to_wires(graph) -> Dict[Tuple, int]: r"""Maps the edges of a graph to corresponding wires. **Example** >>> g = nx.complete_graph(4).to_directed() >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} >>> g = rx.generators.directed_mesh_graph(4, [0,1,2,3]) >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} Args: graph (nx.Graph or rx.Py(Di)Graph): the graph specifying possible edges Returns: Dict[Tuple, int]: a mapping from graph edges to wires """ if isinstance(graph, nx.Graph): return {edge: i for i, edge in enumerate(graph.edges)} elif isinstance(graph, (rx.PyGraph, rx.PyDiGraph)): gnodes = graph.nodes() return { (gnodes.index(e[0]), gnodes.index(e[1])): i for i, e in enumerate(sorted(graph.edge_list())) } raise ValueError(f"Input graph must be a nx.Graph, rx.Py(Di)Graph, got {type(graph).__name__}")
def edges_to_wires(graph) -> Dict[Tuple, int]: r"""Maps the edges of a graph to corresponding wires. **Example** >>> g = nx.complete_graph(4).to_directed() >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} >>> g = rx.generators.directed_mesh_graph(4, [0,1,2,3]) >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} Args: graph (nx.Graph or rx.Py(Di)Graph): the graph specifying possible edges Returns: Dict[Tuple, int]: a mapping from graph edges to wires """ if isinstance(graph, nx.Graph): return {edge: i for i, edge in enumerate(graph.edges)} if isinstance(graph, (rx.PyGraph, rx.PyDiGraph)): gnodes = graph.nodes() return { (gnodes.index(e[0]), gnodes.index(e[1])): i for i, e in enumerate(sorted(graph.edge_list())) } raise ValueError(f"Input graph must be a nx.Graph, rx.Py(Di)Graph, got {type(graph).__name__}")
23,246
def babel_format_date(date: datetime, format: str, locale: str, formatter: Callable = babel.dates.format_date) -> str: if locale is None: warnings.warn('The locale argument for babel_format_date() becomes required.', RemovedInSphinx60Warning) locale = 'en' # Check if we have the tzinfo attribute. If not we cannot do any time # related formats. if not hasattr(date, 'tzinfo'): formatter = babel.dates.format_date try: return formatter(date, format, locale=locale) except (ValueError, babel.core.UnknownLocaleError): # fallback to English return formatter(date, format, locale='en') except AttributeError: logger.warning(__('Invalid date format. Quote the string by single quote ' 'if you want to output it directly: %s'), format) return format
def babel_format_date(date: datetime, format: str, locale: str, formatter: Callable = babel.dates.format_date) -> str: if locale is None: warnings.warn('The locale argument for babel_format_date() becomes required.', RemovedInSphinx70Warning) locale = 'en' # Check if we have the tzinfo attribute. If not we cannot do any time # related formats. if not hasattr(date, 'tzinfo'): formatter = babel.dates.format_date try: return formatter(date, format, locale=locale) except (ValueError, babel.core.UnknownLocaleError): # fallback to English return formatter(date, format, locale='en') except AttributeError: logger.warning(__('Invalid date format. Quote the string by single quote ' 'if you want to output it directly: %s'), format) return format
31,367
def is_there_private_packs_to_upload(public_index_json, private_index_path): """ Checks if there are private packs that should be uploaded. The check compares the private index with the public one to verify if Content commit hash of each private pack in those files (private and public index files) are equal. If there is one private pack that has a different content commit hash, it tells us that this pack was updated and should be uploaded. So, an upload flow should NOT be skipped. Args: public_index_json (dict) : The public index file. private_index_path : Path to where the private index is located. Returns: (bool) True is there is at least one private pack that should be upload. False otherwise (i.e there are no private packs that should upload) """ logging.debug("Checking if there are private packs to upload") with open(os.path.join(private_index_path, f"{GCPConfig.INDEX_NAME}.json")) as private_index_file: private_index_json = json.load(private_index_file) if was_private_pack_updated(private_index_json, public_index_json): logging.debug(f"There is at least one private pack that was updated, upload should not be skipped") return True return False
def is_private_packs_updated(public_index_json, private_index_path): """ Checks if there are private packs that should be uploaded. The check compares the private index with the public one to verify if Content commit hash of each private pack in those files (private and public index files) are equal. If there is one private pack that has a different content commit hash, it tells us that this pack was updated and should be uploaded. So, an upload flow should NOT be skipped. Args: public_index_json (dict) : The public index file. private_index_path : Path to where the private index is located. Returns: (bool) True is there is at least one private pack that should be upload. False otherwise (i.e there are no private packs that should upload) """ logging.debug("Checking if there are private packs to upload") with open(os.path.join(private_index_path, f"{GCPConfig.INDEX_NAME}.json")) as private_index_file: private_index_json = json.load(private_index_file) if was_private_pack_updated(private_index_json, public_index_json): logging.debug(f"There is at least one private pack that was updated, upload should not be skipped") return True return False
29,659
def test_nprocs_deprecation(): runner = CliRunner() with pytest.warns(UserWarning, match="nprocs"): try: runner.invoke(distributed.cli.dask_worker.main, ["--nprocs=2"]) except ValueError: # didn't pass scheduler pass
def test_nprocs_deprecation(): runner = CliRunner() with pytest.warns(FutureWarning, match="renamed to --num-workers"): try: runner.invoke(distributed.cli.dask_worker.main, ["--nprocs=2"]) except ValueError: # didn't pass scheduler pass
25,212
def _get_namedtuple_fields(node: nodes.Call) -> str: """Get and return fields of a NamedTuple in code-as-a-string. Because the fields are represented in their code form we can extract a node from them later on. """ names = [] container = None try: container = next(node.args[1].infer()) except (InferenceError, StopIteration) as exc: raise UseInferenceDefault from exc # We pass on IndexError as well try to infer 'field_names' from the keywords except IndexError: pass if not container: for keyword_node in node.keywords: if keyword_node.arg == "field_names": try: container = next(keyword_node.value.infer()) except (InferenceError, StopIteration) as exc: raise UseInferenceDefault from exc break if not isinstance(container, nodes.BaseContainer): raise UseInferenceDefault for elt in container.elts: if isinstance(elt, nodes.Const): names.append(elt.as_string()) continue if not isinstance(elt, (nodes.List, nodes.Tuple)): raise UseInferenceDefault if len(elt.elts) != 2: raise UseInferenceDefault names.append(elt.elts[0].as_string()) if names: field_names = f"({','.join(names)},)" else: field_names = "" return field_names
def _get_namedtuple_fields(node: nodes.Call) -> str: """Get and return fields of a NamedTuple in code-as-a-string. Because the fields are represented in their code form we can extract a node from them later on. """ names = [] container = None try: container = next(node.args[1].infer()) except (InferenceError, StopIteration) as exc: raise UseInferenceDefault from exc # We pass on IndexError as we'll try to infer 'field_names' from the keywords except IndexError: pass if not container: for keyword_node in node.keywords: if keyword_node.arg == "field_names": try: container = next(keyword_node.value.infer()) except (InferenceError, StopIteration) as exc: raise UseInferenceDefault from exc break if not isinstance(container, nodes.BaseContainer): raise UseInferenceDefault for elt in container.elts: if isinstance(elt, nodes.Const): names.append(elt.as_string()) continue if not isinstance(elt, (nodes.List, nodes.Tuple)): raise UseInferenceDefault if len(elt.elts) != 2: raise UseInferenceDefault names.append(elt.elts[0].as_string()) if names: field_names = f"({','.join(names)},)" else: field_names = "" return field_names
35,911
def validate_serenity_proposer_signature(state: BeaconState, block: BaseBeaconBlock, beacon_chain_shard_number: int, epoch_length: int) -> None: block_without_signature_root = block.block_without_signature_root # TODO: Replace this root with tree hash root proposal_root = ProposalSignedData( state.slot, beacon_chain_shard_number, block_without_signature_root ).root # Get the public key of proposer beacon_proposer_index = get_beacon_proposer_index(state, state.slot, epoch_length) proposer_pubkey = state.validator_registry[beacon_proposer_index].pubkey is_valid_signature = bls.verify( pubkey=proposer_pubkey, message=proposal_root, signature=block.signature, domain=get_domain(state.fork_data, state.slot, SignatureDomain.DOMAIN_PROPOSAL) ) if not is_valid_signature: raise ValidationError("Invalid Proposer Signature on block")
def validate_serenity_proposer_signature(state: BeaconState, block: BaseBeaconBlock, beacon_chain_shard_number: int, epoch_length: int) -> None: block_without_signature_root = block.block_without_signature_root # TODO: Replace this root with tree hash root proposal_root = ProposalSignedData( state.slot, beacon_chain_shard_number, block_without_signature_root ).root # Get the public key of proposer beacon_proposer_index = get_beacon_proposer_index(state, state.slot, epoch_length) proposer_pubkey = state.validator_registry[beacon_proposer_index].pubkey is_valid_signature = bls.verify( pubkey=proposer_pubkey, message=proposal_root, signature=block.signature, domain=get_domain(state.fork_data, state.slot, SignatureDomain.DOMAIN_PROPOSAL), ) if not is_valid_signature: raise ValidationError("Invalid Proposer Signature on block")
39,662
def main(): module = ForemanEntityApypieAnsibleModule( argument_spec=dict( name=dict(required=True), operatingsystems=dict(type='list'), state=dict(default='present', choices=['present', 'absent']), ), supports_check_mode=True, ) (entity_dict, state) = module.parse_params() module.connect() if 'operatingsystems' in entity_dict: entity_dict['operatingsystems'] = module.find_resources('operatingsystems', entity_dict['operatingsystems'], thin=True) entity = module.find_resource_by_name('architectures', name=entity_dict['name'], failsafe=True) changed = module.ensure_resource_state('architectures', entity_dict, entity, state, name_map) module.exit_json(changed=changed)
def main(): module = ForemanEntityApypieAnsibleModule( argument_spec=dict( name=dict(required=True), operatingsystems=dict(type='list'), state=dict(default='present', choices=['present', 'absent']), ), supports_check_mode=True, ) (entity_dict, state) = module.parse_params() module.connect() if 'operatingsystems' in entity_dict: entity_dict['operatingsystems'] = module.find_resources('operatingsystems', entity_dict['operatingsystems'], thin=True) entity = module.find_resource_by_name('architectures', name=entity_dict['name'], failsafe=True) changed = module.ensure_resource_state('architectures', entity_dict, entity, module.state, name_map) module.exit_json(changed=changed)
59,153
def test_qc_metrics(): adata = AnnData(X=sparse.csr_matrix(np.random.binomial(100, 0.005, (1000, 1000)))) adata.var["mito"] = np.concatenate( (np.ones(100, dtype=bool), np.zeros(900, dtype=bool)) ) adata.var["negative"] = False sc.pp.calculate_qc_metrics(adata, qc_vars=["mito", "negative"], inplace=True) assert (adata.obs["n_genes_by_counts"] < adata.shape[1]).all() assert ( adata.obs["n_genes_by_counts"] >= adata.obs["log1p_n_genes_by_counts"] ).all() assert (adata.obs["total_counts"] == np.ravel(adata.X.sum(axis=1))).all() assert (adata.obs["total_counts"] >= adata.obs["log1p_total_counts"]).all() assert ( adata.obs["total_counts_mito"] >= adata.obs["log1p_total_counts_mito"] ).all() assert (adata.obs["total_counts_negative"] == 0).all() assert ( adata.obs["pct_counts_in_top_50_genes"] <= adata.obs["pct_counts_in_top_100_genes"] ).all() for col in filter(lambda x: "negative" not in x, adata.obs.columns): assert (adata.obs[col] >= 0).all() # Values should be positive or zero assert (adata.obs[col] != 0).any().all() # Nothing should be all zeros if col.startswith("pct_counts_in_top"): assert (adata.obs[col] <= 100).all() assert (adata.obs[col] >= 0).all() for col in adata.var.columns: assert (adata.var[col] >= 0).all() assert (adata.var["mean_counts"] < np.ravel(adata.X.max(axis=0).todense())).all() assert (adata.var["mean_counts"] >= adata.var["log1p_mean_counts"]).all() assert (adata.var["total_counts"] >= adata.var["log1p_total_counts"]).all() # Should return the same thing if run again old_obs, old_var = adata.obs.copy(), adata.var.copy() sc.pp.calculate_qc_metrics(adata, qc_vars=["mito", "negative"], inplace=True) assert set(adata.obs.columns) == set(old_obs.columns) assert set(adata.var.columns) == set(old_var.columns) for col in adata.obs: assert np.allclose(adata.obs[col], old_obs[col]) for col in adata.var: assert np.allclose(adata.var[col], old_var[col]) # with log1p=False adata = AnnData(X=sparse.csr_matrix(np.random.binomial(100, 0.005, (1000, 1000)))) adata.var["mito"] = np.concatenate( (np.ones(100, dtype=bool), np.zeros(900, dtype=bool)) ) adata.var["negative"] = False sc.pp.calculate_qc_metrics(adata, qc_vars=["mito", "negative"], log1p=False, inplace=True) assert "log1p_total_counts" not in adata.obs.keys()
def test_qc_metrics(): adata = AnnData(X=sparse.csr_matrix(np.random.binomial(100, 0.005, (1000, 1000)))) adata.var["mito"] = np.concatenate( (np.ones(100, dtype=bool), np.zeros(900, dtype=bool)) ) adata.var["negative"] = False sc.pp.calculate_qc_metrics(adata, qc_vars=["mito", "negative"], inplace=True) assert (adata.obs["n_genes_by_counts"] < adata.shape[1]).all() assert ( adata.obs["n_genes_by_counts"] >= adata.obs["log1p_n_genes_by_counts"] ).all() assert (adata.obs["total_counts"] == np.ravel(adata.X.sum(axis=1))).all() assert (adata.obs["total_counts"] >= adata.obs["log1p_total_counts"]).all() assert ( adata.obs["total_counts_mito"] >= adata.obs["log1p_total_counts_mito"] ).all() assert (adata.obs["total_counts_negative"] == 0).all() assert ( adata.obs["pct_counts_in_top_50_genes"] <= adata.obs["pct_counts_in_top_100_genes"] ).all() for col in filter(lambda x: "negative" not in x, adata.obs.columns): assert (adata.obs[col] >= 0).all() # Values should be positive or zero assert (adata.obs[col] != 0).any().all() # Nothing should be all zeros if col.startswith("pct_counts_in_top"): assert (adata.obs[col] <= 100).all() assert (adata.obs[col] >= 0).all() for col in adata.var.columns: assert (adata.var[col] >= 0).all() assert (adata.var["mean_counts"] < np.ravel(adata.X.max(axis=0).todense())).all() assert (adata.var["mean_counts"] >= adata.var["log1p_mean_counts"]).all() assert (adata.var["total_counts"] >= adata.var["log1p_total_counts"]).all() # Should return the same thing if run again old_obs, old_var = adata.obs.copy(), adata.var.copy() sc.pp.calculate_qc_metrics(adata, qc_vars=["mito", "negative"], inplace=True) assert set(adata.obs.columns) == set(old_obs.columns) assert set(adata.var.columns) == set(old_var.columns) for col in adata.obs: assert np.allclose(adata.obs[col], old_obs[col]) for col in adata.var: assert np.allclose(adata.var[col], old_var[col]) # with log1p=False adata = AnnData(X=sparse.csr_matrix(np.random.binomial(100, 0.005, (1000, 1000)))) adata.var["mito"] = np.concatenate( (np.ones(100, dtype=bool), np.zeros(900, dtype=bool)) ) adata.var["negative"] = False sc.pp.calculate_qc_metrics(adata, qc_vars=["mito", "negative"], log1p=False, inplace=True) assert not np.any(adata.obs.columns.str.startswith("log1p_")) assert not np.any(adata.var.columns.str.startswith("log1p_"))
41,100
def _get_real_path(path, frozen_with): if getattr(sys, 'frozen', False): if frozen_with == 'cx_freeze': return os.path.join(sys.executable, path) elif frozen_with == 'PyInstaller': return os.path.join(sys._MEIPASS, path) else: return os.path.abspath(path)
def _get_real_path(path, frozen_with): if getattr(sys, 'frozen', False): return os.path.join(getattr(sys, '_MEIPASS', sys.executable), path) else: return os.path.abspath(path)
40,023
def binary_encoding(v: Variable, upper_bound: int) -> BinaryQuadraticModel: """Return a binary quadratic model encoding an integer. Args: v: The integer variable label. upper_bound: The upper bound on the integer value (inclusive). Returns: A binary quadratic model. The variables in the BQM will be labelled with tuples of length two or three. The first value of the tuple will be the variable label ``v`` provided. The second value will the the coefficient in the integer encoding. One of the variables will have a third value in the tuple, ``'msb'``. This is the variable occupying the position of the most significant bit. Though it may actually be a smaller number in order to enforce the ``upper_bound``. Example: >>> bqm = dimod.generators.binary_encoding('i', 6) >>> bqm BinaryQuadraticModel({('i', 1): 1.0, ('i', 2): 2.0, ('i', 3, 'msb'): 3.0}, {}, 0.0, 'BINARY') We can use a sample to restore the original integer value. >>> sample = {('i', 1): 1, ('i', 2): 0, ('i', 3, 'msb'): 1} >>> bqm.energy(sample) 4.0 >>> sum(v[1]*val for v, val in sample.items()) + bqm.offset 4.0 If you wish to encode integers with a lower bound, you can use the binary quadratic model's :attr:`~BinaryQuadraticModel.offset` attribute. >>> i = dimod.generators.binary_encoding('i', 10) + 5 # integer in [5, 15] References: [1]: Sahar Karimi, Pooya Ronagh (2017), Practical Integer-to-Binary Mapping for Quantum Annealers. arxiv.org:1706.01945. """ # note: the paper above also gives a nice way to handle bounded coefficients # if we want to do that in the future. if upper_bound <= 1: raise ValueError("upper_bound must be a greater than or equal to 1, " f"received {upper_bound}") upper_bound = math.floor(upper_bound) bqm = BinaryQuadraticModel(Vartype.BINARY) max_pow = math.floor(math.log2(upper_bound)) for exp in range(max_pow): val = 1 << exp bqm.set_linear((v, val), val) else: val = upper_bound - ((1 << max_pow) - 1) bqm.set_linear((v, val, 'msb'), val) return bqm
def binary_encoding(v: Variable, upper_bound: int) -> BinaryQuadraticModel: """Return a binary quadratic model encoding an integer. Args: v: The integer variable label. upper_bound: The upper bound on the integer value (inclusive). Returns: A binary quadratic model. The variables in the BQM will be labelled with tuples of length two or three. The first value of the tuple will be the variable label ``v`` provided. The second value will be the coefficient in the integer encoding. One of the variables will have a third value in the tuple, ``'msb'``. This is the variable occupying the position of the most significant bit. Though it may actually be a smaller number in order to enforce the ``upper_bound``. Example: >>> bqm = dimod.generators.binary_encoding('i', 6) >>> bqm BinaryQuadraticModel({('i', 1): 1.0, ('i', 2): 2.0, ('i', 3, 'msb'): 3.0}, {}, 0.0, 'BINARY') We can use a sample to restore the original integer value. >>> sample = {('i', 1): 1, ('i', 2): 0, ('i', 3, 'msb'): 1} >>> bqm.energy(sample) 4.0 >>> sum(v[1]*val for v, val in sample.items()) + bqm.offset 4.0 If you wish to encode integers with a lower bound, you can use the binary quadratic model's :attr:`~BinaryQuadraticModel.offset` attribute. >>> i = dimod.generators.binary_encoding('i', 10) + 5 # integer in [5, 15] References: [1]: Sahar Karimi, Pooya Ronagh (2017), Practical Integer-to-Binary Mapping for Quantum Annealers. arxiv.org:1706.01945. """ # note: the paper above also gives a nice way to handle bounded coefficients # if we want to do that in the future. if upper_bound <= 1: raise ValueError("upper_bound must be a greater than or equal to 1, " f"received {upper_bound}") upper_bound = math.floor(upper_bound) bqm = BinaryQuadraticModel(Vartype.BINARY) max_pow = math.floor(math.log2(upper_bound)) for exp in range(max_pow): val = 1 << exp bqm.set_linear((v, val), val) else: val = upper_bound - ((1 << max_pow) - 1) bqm.set_linear((v, val, 'msb'), val) return bqm
24,655
def null_point_find( x_arr=None, y_arr=None, z_arr=None, u_arr=None, v_arr=None, w_arr=None, maxiter=500, err=1e-10, ): r""" Returns an array of ``~plasmapy.analysis.nullpoint.NullPoint` object, representing the null points of the given vector space. .. note:: Please note that this functionality is still under development and the API may change in future releases. Parameters ---------- x_arr: array_like The array representing the coordinates in the x-dimension. If not given, then range values are used to construct a uniform array on that interval. y_arr: array_like The array representing the coordinates in the y-dimension. If not given, then range values are used to construct a uniform array on that interval. z_arr: array_like The array representing the coordinates in the z-dimension. If not given, then range values are used to construct a uniform array on that interval. u_arr: array_like A 3D array containing the x-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. v_arr: array_like A 3D array containing the y-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. w_arr: array_like A 3D array containing the z-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. maxiter: int The maximum iterations of the Newton-Raphson method. The default value is 500. err: float The threshold/error that determines if convergence has occurred using the Newton-Raphson method. The default value is ``1e-10``. Returns ------- array_like of `~plasmapy.analysis.nullpoint.NullPoint` An array of `~plasmapy.analysis.nullpoint.NullPoint` objects representing the null points of the given vector space. Notes ----- This method is described by :cite:t:`haynes:2007`. """ # Constructing the vspace vspace = _vector_space( x_arr, y_arr, z_arr, None, None, None, u_arr, v_arr, w_arr, None, None, ) return _vspace_iterator(vspace, maxiter, err)
def null_point_find( x_arr=None, y_arr=None, z_arr=None, u_arr=None, v_arr=None, w_arr=None, maxiter=500, err=1e-10, ): r""" Returns an array of `~plasmapy.analysis.nullpoint.NullPoint` object, representing the null points of the given vector space. .. note:: Please note that this functionality is still under development and the API may change in future releases. Parameters ---------- x_arr: array_like The array representing the coordinates in the x-dimension. If not given, then range values are used to construct a uniform array on that interval. y_arr: array_like The array representing the coordinates in the y-dimension. If not given, then range values are used to construct a uniform array on that interval. z_arr: array_like The array representing the coordinates in the z-dimension. If not given, then range values are used to construct a uniform array on that interval. u_arr: array_like A 3D array containing the x-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. v_arr: array_like A 3D array containing the y-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. w_arr: array_like A 3D array containing the z-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. maxiter: int The maximum iterations of the Newton-Raphson method. The default value is 500. err: float The threshold/error that determines if convergence has occurred using the Newton-Raphson method. The default value is ``1e-10``. Returns ------- array_like of `~plasmapy.analysis.nullpoint.NullPoint` An array of `~plasmapy.analysis.nullpoint.NullPoint` objects representing the null points of the given vector space. Notes ----- This method is described by :cite:t:`haynes:2007`. """ # Constructing the vspace vspace = _vector_space( x_arr, y_arr, z_arr, None, None, None, u_arr, v_arr, w_arr, None, None, ) return _vspace_iterator(vspace, maxiter, err)
58,096
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ demisto.debug("Enter MAIN method") args = demisto.args() command = demisto.command() username = demisto.params().get('auth', {}).get('identifier') password = demisto.params().get('auth', {}).get('password') account_settings_id = demisto.params().get('account_settings_id') verify_certificate = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) demisto.debug(f'Command being called is {demisto.command()}') try: client = Client( username=username, password=password, account_settings_id=account_settings_id, verify=verify_certificate, proxy=proxy) if command == 'test-module': return_results(test_module(client)) elif command == 'ip': return_results(ip_lookup(client, args)) elif command == 'url': return_results(url_lookup(client, args)) elif command == 'domain': return_results(domain_lookup(client, args)) elif command == 'iboss-add-entity-to-block-list': return_results(add_entity_to_block_list_command(client, args)) elif command == 'iboss-remove-entity-from-block-list': return_results(remove_entity_from_block_list_command(client, args)) elif command == 'iboss-add-entity-to-allow-list': return_results(add_entity_to_allow_list_command(client, args)) elif command == 'iboss-remove-entity-from-allow-list': return_results(remove_entity_from_allow_list_command(client, args)) else: raise NotImplementedError(f"Command {command} is not implemented.") # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {command} command.\nError:\n{str(e)}')
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ demisto.debug("Enter MAIN method") args = demisto.args() params = demisto.params() command = demisto.command() username = params.get('auth', {}).get('identifier') password = params.get('auth', {}).get('password') account_settings_id = params.get('account_settings_id') verify_certificate = not params.get('insecure', False) proxy = params.get('proxy', False) demisto.debug(f'Command being called is {command}') try: client = Client( username=username, password=password, account_settings_id=account_settings_id, verify=verify_certificate, proxy=proxy) if command == 'test-module': return_results(test_module(client)) elif command == 'ip': return_results(ip_lookup(client, args)) elif command == 'url': return_results(url_lookup(client, args)) elif command == 'domain': return_results(domain_lookup(client, args)) elif command == 'iboss-add-entity-to-block-list': return_results(add_entity_to_block_list_command(client, args)) elif command == 'iboss-remove-entity-from-block-list': return_results(remove_entity_from_block_list_command(client, args)) elif command == 'iboss-add-entity-to-allow-list': return_results(add_entity_to_allow_list_command(client, args)) elif command == 'iboss-remove-entity-from-allow-list': return_results(remove_entity_from_allow_list_command(client, args)) else: raise NotImplementedError(f"Command {command} is not implemented.") # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {command} command.\nError:\n{str(e)}')
21,205
def test_requires_dists_none(pygoogleearth_zip_sdist): # type: (str) -> None assert [] == list(requires_dists(pygoogleearth_zip_sdist)) with example_distribution("MarkupSafe-1.0-cp27-cp27mu-linux_x86_64.whl") as (wheel_path, dist): assert [] == list(requires_dists(wheel_path)) assert [] == list(requires_dists(dist)) # This tests a strange case detailed here: # https://github.com/pantsbuild/pex/issues/1201#issuecomment-791715585 with downloaded_sdist("et-xmlfile==1.0.1") as sdist, warnings.catch_warnings( record=True ) as events: assert [] == list(requires_dists(sdist)) assert len(events) == 1 warning = events[0] assert PEXWarning == warning.category assert ( dedent( """\ Ignoring 1 `Requires` field in {sdist} metadata: 1.) Requires: python (>=2.6.0) You may have issues using using the 'et_xmlfile' distribution as a result. More information on this workaround can be found here: https://github.com/pantsbuild/pex/issues/1201#issuecomment-791715585 """ ).format(sdist=sdist) == str(warning.message) )
def test_requires_dists_none(pygoogleearth_zip_sdist): # type: (str) -> None assert [] == list(requires_dists(pygoogleearth_zip_sdist)) with example_distribution("MarkupSafe-1.0-cp27-cp27mu-linux_x86_64.whl") as (wheel_path, dist): assert [] == list(requires_dists(wheel_path)) assert [] == list(requires_dists(dist)) # This tests a strange case detailed here: # https://github.com/pantsbuild/pex/issues/1201#issuecomment-791715585 with downloaded_sdist("et-xmlfile==1.0.1") as sdist, warnings.catch_warnings( record=True ) as events: assert [] == list(requires_dists(sdist)) assert len(events) == 1 warning = events[0] assert PEXWarning == warning.category assert ( dedent( """\ Ignoring 1 `Requires` field in {sdist} metadata: 1.) Requires: python (>=2.6.0) You may have issues using the 'et_xmlfile' distribution as a result. More information on this workaround can be found here: https://github.com/pantsbuild/pex/issues/1201#issuecomment-791715585 """ ).format(sdist=sdist) == str(warning.message) )
55,383
def test_list_artifacts_with_absolute_path(ftp_mock): artifact_root_path = "/experiment_id/run_id/" repo = FTPArtifactRepository("ftp://test_ftp"+artifact_root_path) repo.get_ftp_client = MagicMock() call_mock = MagicMock(return_value=ftp_mock) repo.get_ftp_client.return_value = MagicMock(__enter__=call_mock) # mocked file structure # |- file # |- model # |- model.pb file_path = "/file" file_name = os.path.basename(file_path) dir_path = "/model" dir_name = os.path.basename(dir_path) file_size = 678 ftp_mock.cwd = MagicMock(side_effect=[None, ftplib.error_perm, None]) ftp_mock.nlst = MagicMock(return_value=[file_path, dir_path]) ftp_mock.size = MagicMock(return_value=file_size) artifacts = repo.list_artifacts(path=None) ftp_mock.nlst.assert_called_once_with(artifact_root_path) ftp_mock.size.assert_called_once_with(artifact_root_path + file_name) assert len(artifacts) == 2 assert artifacts[0].path == file_name assert artifacts[0].is_dir is False assert artifacts[0].file_size == file_size assert artifacts[1].path == dir_name assert artifacts[1].is_dir is True assert artifacts[1].file_size is None
def test_list_artifacts_with_absolute_path(ftp_mock): artifact_root_path = "/experiment_id/run_id/" repo = FTPArtifactRepository("ftp://test_ftp"+artifact_root_path) repo.get_ftp_client = MagicMock() call_mock = MagicMock(return_value=ftp_mock) repo.get_ftp_client.return_value = MagicMock(__enter__=call_mock) # mocked file structure # |- file # |- model # |- model.pb file_path = "file" dir_path = "model" file_size = 678 ftp_mock.cwd = MagicMock(side_effect=[None, ftplib.error_perm, None]) ftp_mock.nlst = MagicMock(return_value=[ posixpath.join(artifact_root_path, file_path), posixpath.join(artifact_root_path, dir_path) ]) ftp_mock.size = MagicMock(return_value=file_size) artifacts = repo.list_artifacts(path=None) ftp_mock.nlst.assert_called_once_with(artifact_root_path) ftp_mock.size.assert_called_once_with(artifact_root_path + file_name) assert len(artifacts) == 2 assert artifacts[0].path == file_name assert artifacts[0].is_dir is False assert artifacts[0].file_size == file_size assert artifacts[1].path == dir_name assert artifacts[1].is_dir is True assert artifacts[1].file_size is None
44,807
def _is_available_on_pypi(package, version=None): """ Returns True if the specified package version is available on PyPI. """ resp = requests.get("https://pypi.python.org/pypi/{}/json".format(package)) if not resp.ok: return False dist_files = resp.json()["releases"].get(version) return ( dist_files is not None # specified version exists and (len(dist_files) > 0) # at least one distribution file exists and dist_files[0].get("yanked", False) # specified version is not yanked )
def _is_available_on_pypi(package, version): """ Returns True if the specified package version is available on PyPI. """ resp = requests.get("https://pypi.python.org/pypi/{}/json".format(package)) if not resp.ok: return False dist_files = resp.json()["releases"].get(version) return ( dist_files is not None # specified version exists and (len(dist_files) > 0) # at least one distribution file exists and dist_files[0].get("yanked", False) # specified version is not yanked )
50,572
def _clip_gdf_with_mask(gdf, mask): """Clip geometry to the polygon/rectangle extent. Clip an input GeoDataFrame to the polygon extent of the polygon parameter. Parameters ---------- gdf : GeoDataFrame, GeoSeries Dataframe to clip. mask : (Multi)Polygon, tuple Reference polygon/rectangle for clipping. Returns ------- GeoDataFrame The returned GeoDataFrame is a clipped subset of gdf that intersects with polygon/rectangle. """ clipping_by_rectangle = isinstance(mask, tuple) intersection_polygon = mask if clipping_by_rectangle: intersection_polygon = box(*mask) gdf_sub = gdf.iloc[gdf.sindex.query(intersection_polygon, predicate="intersects")] # For performance reasons points don't need to be intersected with poly non_point_mask = gdf_sub.geom_type != "Point" if not non_point_mask.any(): # only points, directly return return gdf_sub # Clip the data with the polygon if isinstance(gdf_sub, GeoDataFrame): clipped = gdf_sub.copy() if clipping_by_rectangle: clipped.loc[ non_point_mask, clipped._geometry_column_name ] = gdf_sub.geometry.values[non_point_mask].clip_by_rect(*mask) else: clipped.loc[ non_point_mask, clipped._geometry_column_name ] = gdf_sub.geometry.values[non_point_mask].intersection(mask) else: # GeoSeries clipped = gdf_sub.copy() if clipping_by_rectangle: clipped[non_point_mask] = gdf_sub.values[non_point_mask].clip_by_rect(*mask) else: clipped[non_point_mask] = gdf_sub.values[non_point_mask].intersection(mask) if clipping_by_rectangle: # clip_by_rect might return empty geometry collections in edge cases clipped = clipped[~clipped.is_empty] return clipped
def _clip_gdf_with_mask(gdf, mask): """Clip geometry to the polygon/rectangle extent. Clip an input GeoDataFrame to the polygon extent of the polygon parameter. Parameters ---------- gdf : GeoDataFrame, GeoSeries Dataframe to clip. mask : (Multi)Polygon, tuple Reference polygon/rectangle for clipping. Returns ------- GeoDataFrame The returned GeoDataFrame is a clipped subset of gdf that intersects with polygon/rectangle. """ clipping_by_rectangle = isinstance(mask, tuple) if clipping_by_rectangle: intersection_polygon = box(*mask) else: intersection_polygon = mask gdf_sub = gdf.iloc[gdf.sindex.query(intersection_polygon, predicate="intersects")] # For performance reasons points don't need to be intersected with poly non_point_mask = gdf_sub.geom_type != "Point" if not non_point_mask.any(): # only points, directly return return gdf_sub # Clip the data with the polygon if isinstance(gdf_sub, GeoDataFrame): clipped = gdf_sub.copy() if clipping_by_rectangle: clipped.loc[ non_point_mask, clipped._geometry_column_name ] = gdf_sub.geometry.values[non_point_mask].clip_by_rect(*mask) else: clipped.loc[ non_point_mask, clipped._geometry_column_name ] = gdf_sub.geometry.values[non_point_mask].intersection(mask) else: # GeoSeries clipped = gdf_sub.copy() if clipping_by_rectangle: clipped[non_point_mask] = gdf_sub.values[non_point_mask].clip_by_rect(*mask) else: clipped[non_point_mask] = gdf_sub.values[non_point_mask].intersection(mask) if clipping_by_rectangle: # clip_by_rect might return empty geometry collections in edge cases clipped = clipped[~clipped.is_empty] return clipped
8,025
def write_map( filename, m, nest=False, dtype=None, fits_IDL=True, coord=None, partial=False, column_names=None, column_units=None, extra_header=(), overwrite=False, ): """Writes a healpix map into a healpix FITS file. WARNING: starting from healpy 1.15.0, if you do not specify `dtype`, the map will be written to disk with the same precision it is stored in memory. Previously, by default `healpy` wrote maps in `float32`. To reproduce the same behaviour of `healpy` 1.14.0 and below, set `dtype=np.float32`. Parameters ---------- filename : str the fits file name m : array or sequence of 3 arrays the map to write. Possibly a sequence of 3 maps of same size. They will be considered as I, Q, U maps. Supports masked maps, see the `ma` function. nest : bool, optional If True, ordering scheme is assumed to be NESTED, otherwise, RING. Default: RING. The map ordering is not modified by this function, the input map array should already be in the desired ordering (run `ud_grade` beforehand). fits_IDL : bool, optional If True, reshapes columns in rows of 1024, otherwise all the data will go in one column. Default: True coord : str The coordinate system, typically 'E' for Ecliptic, 'G' for Galactic or 'C' for Celestial (equatorial) partial : bool, optional If True, fits file is written as a partial-sky file with explicit indexing. Otherwise, implicit indexing is used. Default: False. column_names : str or list Column name or list of column names, if None here the default column names based on the number of columns: 1 : "TEMPERATURE", 2 : ["Q_POLARISATION", "U_POLARISATION"], 3 : ["TEMPERATURE", "Q_POLARISATION", "U_POLARISATION"], 6 : ["II", "IQ", "IU", "QQ", "QU", "UU"] COLUMN_1, COLUMN_2... otherwise (FITS is 1-based) column_units : str or list Units for each column, or same units for all columns. extra_header : list Extra records to add to FITS header. dtype: np.dtype or list of np.dtypes, optional The datatype in which the columns will be stored. Will be converted internally from the numpy datatype to the fits convention. If a list, the length must correspond to the number of map arrays. Default: use the data type of the input array(s) (WARNING: this changed in 1.15.0, previous versions saved in float32 by default) overwrite : bool, optional If True, existing file is silently overwritten. Otherwise trying to write an existing file raises an OSError (IOError for Python 2). """ if not hasattr(m, "__len__"): raise TypeError("The map must be a sequence") m = pixelfunc.ma_to_array(m) if pixelfunc.maptype(m) == 0: # a single map is converted to a list m = [m] # check the dtype and convert it if dtype is None: dtype = [x.dtype for x in m] logging.info("setting the output map dtype to %s", str(dtype)) try: fitsformat = [] for curr_dtype in dtype: fitsformat.append(getformat(curr_dtype)) except TypeError: # dtype is not iterable fitsformat = [getformat(dtype)] * len(m) if column_names is None: column_names = standard_column_names.get( len(m), ["COLUMN_%d" % n for n in range(1, len(m) + 1)] ) else: assert len(column_names) == len(m), "Length column_names != number of maps" if column_units is None or isinstance(column_units, str): column_units = [column_units] * len(m) # maps must have same length assert len(set(map(len, m))) == 1, "Maps must have same length" nside = pixelfunc.npix2nside(len(m[0])) if nside < 0: raise ValueError("Invalid healpix map : wrong number of pixel") cols = [] if partial: fits_IDL = False mask = pixelfunc.mask_good(m[0]) pix = np.where(mask)[0] if len(pix) == 0: raise ValueError("Invalid healpix map : empty partial map") m = [mm[mask] for mm in m] ff = getformat(np.min_scalar_type(-pix.max())) if ff is None: ff = "I" cols.append(pf.Column(name="PIXEL", format=ff, array=pix, unit=None)) for cn, cu, mm, curr_fitsformat in zip(column_names, column_units, m, fitsformat): if len(mm) > 1024 and fits_IDL: # I need an ndarray, for reshape: mm2 = np.asarray(mm) cols.append( pf.Column( name=cn, format="1024%s" % curr_fitsformat, array=mm2.reshape(mm2.size // 1024, 1024), unit=cu, ) ) else: cols.append( pf.Column(name=cn, format="%s" % curr_fitsformat, array=mm, unit=cu) ) tbhdu = pf.BinTableHDU.from_columns(cols) # add needed keywords tbhdu.header["PIXTYPE"] = ("HEALPIX", "HEALPIX pixelisation") if nest: ordering = "NESTED" else: ordering = "RING" tbhdu.header["ORDERING"] = ( ordering, "Pixel ordering scheme, either RING or NESTED", ) if coord: tbhdu.header["COORDSYS"] = ( coord, "Ecliptic, Galactic or Celestial (equatorial)", ) tbhdu.header["EXTNAME"] = ("xtension", "name of this binary table extension") tbhdu.header["NSIDE"] = (nside, "Resolution parameter of HEALPIX") if not partial: tbhdu.header["FIRSTPIX"] = (0, "First pixel # (0 based)") tbhdu.header["LASTPIX"] = ( pixelfunc.nside2npix(nside) - 1, "Last pixel # (0 based)", ) tbhdu.header["INDXSCHM"] = ( "EXPLICIT" if partial else "IMPLICIT", "Indexing: IMPLICIT or EXPLICIT", ) tbhdu.header["OBJECT"] = ( "PARTIAL" if partial else "FULLSKY", "Sky coverage, either FULLSKY or PARTIAL", ) # FIXME: In modern versions of Pyfits, header.update() understands a # header as an argument, and headers can be concatenated with the `+' # operator. for args in extra_header: tbhdu.header[args[0]] = args[1:] # Add str to convert pathlib.Path into str # Due to https://github.com/astropy/astropy/issues/10594 tbhdu.writeto(str(filename), overwrite=overwrite)
def write_map( filename, m, nest=False, dtype=None, fits_IDL=True, coord=None, partial=False, column_names=None, column_units=None, extra_header=(), overwrite=False, ): """Writes a healpix map into a healpix FITS file. WARNING: starting from healpy 1.15.0, if you do not specify `dtype`, the map will be written to disk with the same precision it is stored in memory. Previously, by default `healpy` wrote maps in `float32`. To reproduce the same behaviour of `healpy` 1.14.0 and below, set `dtype=np.float32`. Parameters ---------- filename : str the fits file name m : array or sequence of 3 arrays the map to write. Possibly a sequence of 3 maps of same size. They will be considered as I, Q, U maps. Supports masked maps, see the `ma` function. nest : bool, optional If True, ordering scheme is assumed to be NESTED, otherwise, RING. Default: RING. The map ordering is not modified by this function, the input map array should already be in the desired ordering (run `ud_grade` beforehand). fits_IDL : bool, optional If True, reshapes columns in rows of 1024, otherwise all the data will go in one column. Default: True coord : str The coordinate system, typically 'E' for Ecliptic, 'G' for Galactic or 'C' for Celestial (equatorial) partial : bool, optional If True, fits file is written as a partial-sky file with explicit indexing. Otherwise, implicit indexing is used. Default: False. column_names : str or list Column name or list of column names, if None here the default column names based on the number of columns: 1 : "TEMPERATURE", 2 : ["Q_POLARISATION", "U_POLARISATION"], 3 : ["TEMPERATURE", "Q_POLARISATION", "U_POLARISATION"], 6 : ["II", "IQ", "IU", "QQ", "QU", "UU"] COLUMN_1, COLUMN_2... otherwise (FITS is 1-based) column_units : str or list Units for each column, or same units for all columns. extra_header : list Extra records to add to FITS header. dtype: np.dtype or list of np.dtypes, optional The datatype in which the columns will be stored. Will be converted internally from the numpy datatype to the fits convention. If a list, the length must correspond to the number of map arrays. Default: use the data type of the input array(s) (WARNING: this changed in 1.15.0, previous versions saved in float32 by default) overwrite : bool, optional If True, existing file is silently overwritten. Otherwise trying to write an existing file raises an OSError (IOError for Python 2). """ if not hasattr(m, "__len__"): raise TypeError("The map must be a sequence") m = pixelfunc.ma_to_array(m) if pixelfunc.maptype(m) == 0: # a single map is converted to a list m = [m] # check the dtype and convert it if dtype is None: dtype = [x.dtype for x in m] logging.info("setting the output map dtype to %s", dtype) try: fitsformat = [] for curr_dtype in dtype: fitsformat.append(getformat(curr_dtype)) except TypeError: # dtype is not iterable fitsformat = [getformat(dtype)] * len(m) if column_names is None: column_names = standard_column_names.get( len(m), ["COLUMN_%d" % n for n in range(1, len(m) + 1)] ) else: assert len(column_names) == len(m), "Length column_names != number of maps" if column_units is None or isinstance(column_units, str): column_units = [column_units] * len(m) # maps must have same length assert len(set(map(len, m))) == 1, "Maps must have same length" nside = pixelfunc.npix2nside(len(m[0])) if nside < 0: raise ValueError("Invalid healpix map : wrong number of pixel") cols = [] if partial: fits_IDL = False mask = pixelfunc.mask_good(m[0]) pix = np.where(mask)[0] if len(pix) == 0: raise ValueError("Invalid healpix map : empty partial map") m = [mm[mask] for mm in m] ff = getformat(np.min_scalar_type(-pix.max())) if ff is None: ff = "I" cols.append(pf.Column(name="PIXEL", format=ff, array=pix, unit=None)) for cn, cu, mm, curr_fitsformat in zip(column_names, column_units, m, fitsformat): if len(mm) > 1024 and fits_IDL: # I need an ndarray, for reshape: mm2 = np.asarray(mm) cols.append( pf.Column( name=cn, format="1024%s" % curr_fitsformat, array=mm2.reshape(mm2.size // 1024, 1024), unit=cu, ) ) else: cols.append( pf.Column(name=cn, format="%s" % curr_fitsformat, array=mm, unit=cu) ) tbhdu = pf.BinTableHDU.from_columns(cols) # add needed keywords tbhdu.header["PIXTYPE"] = ("HEALPIX", "HEALPIX pixelisation") if nest: ordering = "NESTED" else: ordering = "RING" tbhdu.header["ORDERING"] = ( ordering, "Pixel ordering scheme, either RING or NESTED", ) if coord: tbhdu.header["COORDSYS"] = ( coord, "Ecliptic, Galactic or Celestial (equatorial)", ) tbhdu.header["EXTNAME"] = ("xtension", "name of this binary table extension") tbhdu.header["NSIDE"] = (nside, "Resolution parameter of HEALPIX") if not partial: tbhdu.header["FIRSTPIX"] = (0, "First pixel # (0 based)") tbhdu.header["LASTPIX"] = ( pixelfunc.nside2npix(nside) - 1, "Last pixel # (0 based)", ) tbhdu.header["INDXSCHM"] = ( "EXPLICIT" if partial else "IMPLICIT", "Indexing: IMPLICIT or EXPLICIT", ) tbhdu.header["OBJECT"] = ( "PARTIAL" if partial else "FULLSKY", "Sky coverage, either FULLSKY or PARTIAL", ) # FIXME: In modern versions of Pyfits, header.update() understands a # header as an argument, and headers can be concatenated with the `+' # operator. for args in extra_header: tbhdu.header[args[0]] = args[1:] # Add str to convert pathlib.Path into str # Due to https://github.com/astropy/astropy/issues/10594 tbhdu.writeto(str(filename), overwrite=overwrite)
15,006
def _serial_from_status(status): """Find the best serialvalue from the status.""" serial = status.get("device.serial") or status.get("ups.serial") if serial and (serial.lower() == "unknown" or re.search(r"^0+$", serial)): return None return serial
def _serial_from_status(status): """Find the best serialvalue from the status.""" serial = status.get("device.serial") or status.get("ups.serial") if serial and (serial.lower() == "unknown" or serial.count("0") == len(serial)): return None return serial
57,864
def add_notes(incident_id, comment): body = {'text': {'format': 'text', 'content': comment}} CLIENT.post('/incidents/' + str(incident_id) + '/comments', body) # type: ignore return 'The note was added successfully.'
def add_notes(incident_id, comment): body = { 'text': { 'format': 'text', 'content': comment } } CLIENT.post('/incidents/' + str(incident_id) + '/comments', body) # type: ignore return 'The note was added successfully.'
42,416
def crop_image(raster, geoms, all_touched=True): """Crop a single file using geometry objects. Parameters ---------- raster : rasterio.io.DatasetReader object The rasterio object to be cropped. geoms : geopandas geodataframe or list of polygons The spatial polygon boundaries in GeoJSON-like dict format to be used to crop the image. All data outside of the polygon boundaries will be set to nodata and/or removed from the image. all_touched : bool (default=True) Include a pixel in the mask if it touches any of the shapes. If False, include a pixel only if its center is within one of the shapes, or if it is selected by Bresenham's line algorithm. (from rasterio) Returns ---------- tuple out_image: cropped numpy array A numpy array that is cropped to the geoms object extent with shape (bands, rows, columns) out_meta: dict A dictionary containing updated metadata for the cropped raster, including extent (shape elements) and transform properties. Example ------- >>> import geopandas as gpd >>> import rasterio as rio >>> import earthpy.spatial as es >>> from earthpy.io import path_to_example >>> # Clip an RGB image to the extent of Rocky Mountain National Park >>> rmnp = gpd.read_file(path_to_example("rmnp.shp")) >>> with rio.open(path_to_example("rmnp-rgb.tif")) as src: ... in_image = src.read() ... out_image, out_meta = es.crop_image(src, rmnp) >>> in_image.shape (3, 373, 485) >>> out_image.shape (3, 265, 281) """ if isinstance(geoms, gpd.geodataframe.GeoDataFrame): clip_extent = [extent_to_json(geoms)] else: clip_extent = geoms out_image, out_transform = mask( raster, clip_extent, crop=True, all_touched=all_touched ) out_meta = raster.meta.copy() out_meta.update( { "driver": "GTiff", "height": out_image.shape[1], "width": out_image.shape[2], "transform": out_transform, } ) return out_image, out_meta
def crop_image(raster, geoms, all_touched=True): """Crop a single file using geometry objects. Parameters ---------- raster : rasterio.io.DatasetReader object The rasterio object to be cropped. geoms : geopandas geodataframe or list of polygons The spatial polygon boundaries in GeoJSON-like dict format to be used to crop the image. All data outside of the polygon boundaries will be set to nodata and/or removed from the image. all_touched : bool (default=True) Include a pixel in the mask if it touches any of the shapes. If False, include a pixel only if its center is within one of the shapes, or if it is selected by Bresenham's line algorithm. (from rasterio) Returns ---------- tuple out_image: cropped numpy array A numpy array that is cropped to the geoms object extent with shape (bands, rows, columns) out_meta: dict A dictionary containing updated metadata for the cropped raster, including extent (shape elements) and transform properties. Example ------- >>> import geopandas as gpd >>> import rasterio as rio >>> import earthpy.spatial as es >>> from earthpy.io import path_to_example >>> # Clip an RGB image to the extent of Rocky Mountain National Park >>> rmnp = gpd.read_file(path_to_example("rmnp.shp")) >>> with rio.open(path_to_example("rmnp-rgb.tif")) as src: ... in_image = src.read() ... out_image, out_meta = es.crop_image(src, rmnp) >>> src_raster.shape[1:3] (3, 373, 485) >>> out_image.shape (3, 265, 281) """ if isinstance(geoms, gpd.geodataframe.GeoDataFrame): clip_extent = [extent_to_json(geoms)] else: clip_extent = geoms out_image, out_transform = mask( raster, clip_extent, crop=True, all_touched=all_touched ) out_meta = raster.meta.copy() out_meta.update( { "driver": "GTiff", "height": out_image.shape[1], "width": out_image.shape[2], "transform": out_transform, } ) return out_image, out_meta
27,556
def parse_new_changelog(changelog_path): """Parse changelog data from specified new-format file.""" if not os.path.exists(changelog_path): return None changelog_list = None for encoding_name in ('utf_8', 'utf_16'): try: with codecs.open(changelog_path, 'r', encoding=encoding_name) as changelog_file: # Generate match object with fields from all matching lines matches = re.findall( r"^-\s?([0-9a-f]{40})\s(\d{4,4}-\d{2,2}-\d{2,2})\s(.*)\s\[(.*)\]\s*$", changelog_file.read(), re.MULTILINE) log.debug("Parsed {} changelog lines from {}".format(len(matches), changelog_file)) changelog_list = [{ "hash": entry[0], "date": entry[1], "subject": entry[2], "author": entry[3], } for entry in matches] except UnicodeError: log.debug('Failed to parse log file %s with encoding %s' % (changelog_path, encoding_name)) continue except Exception: log.warning("Parse error reading {}".format(changelog_path), exc_info=1) return None return changelog_list
def parse_new_changelog(changelog_path): """Parse changelog data from specified new-format file.""" if not os.path.exists(changelog_path): return None changelog_list = None for encoding_name in ('utf_8', 'utf_16'): try: with codecs.open(changelog_path, 'r', encoding=encoding_name) as changelog_file: # Generate match object with fields from all matching lines matches = re.findall( r"^-\s?([0-9a-f]{40})\s(\d{4,4}-\d{2,2}-\d{2,2})\s(.*)\s\[(.*)\]\s*$", changelog_file.read(), re.MULTILINE) log.debug("Parsed {} changelog lines from {}".format(len(matches), changelog_path)) changelog_list = [{ "hash": entry[0], "date": entry[1], "subject": entry[2], "author": entry[3], } for entry in matches] except UnicodeError: log.debug('Failed to parse log file %s with encoding %s' % (changelog_path, encoding_name)) continue except Exception: log.warning("Parse error reading {}".format(changelog_path), exc_info=1) return None return changelog_list
43,791
def pauli_mult_with_phase(pauli_1, pauli_2, wire_map=None): r"""Multiply two Pauli words together including the global phase. Two Pauli operations can be multiplied together by taking the additive OR of their binary symplectic representations. The phase is computed by looking at the number of times we have the products XY, YZ, or ZX (adds a phase of :math:`i`), or YX, ZY, XZ (adds a phase of :math:`-i`). Args: pauli_1 (.Operation): A Pauli word. pauli_2 (.Operation): A Pauli word to multiply with the first one. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values. If no wire map is provided, the map will be constructed from the set of wires acted on by the input Pauli words. Returns: tuple[.Operation, complex]: The product of ``pauli_1`` and ``pauli_2``, and the global phase. **Example** This function works the same as ``pauli_mult`` but also returns the global phase accumulated as a result of the Pauli product rules :math:`\sigma_i \sigma_j = i \sigma_k`. >>> from pennylane.pauli import pauli_mult_with_phase >>> pauli_1 = qml.PauliX(0) @ qml.PauliZ(1) >>> pauli_2 = qml.PauliY(0) @ qml.PauliZ(1) >>> product, phase = pauli_mult_with_phase(pauli_1, pauli_2) >>> product PauliZ(wires=[0]) >>> phase 1j """ # If no wire map is specified, generate one from the union of wires # in both Paulis. if wire_map is None: wire_labels = set(pauli_1.wires.labels + pauli_2.wires.labels) wire_map = {label: i for i, label in enumerate(wire_labels)} # Get the product; use our earlier function pauli_product = pauli_mult(pauli_1, pauli_2, wire_map) pauli_1_names = [pauli_1.name] if isinstance(pauli_1.name, str) else pauli_1.name pauli_2_names = [pauli_2.name] if isinstance(pauli_2.name, str) else pauli_2.name pauli_1_placeholder = 0 pauli_2_placeholder = 0 phase = 1 for wire in wire_map.keys(): if wire in pauli_1.wires: pauli_1_op_name = pauli_1_names[pauli_1_placeholder] pauli_1_placeholder += 1 else: pauli_1_op_name = "Identity" if wire in pauli_2.wires: pauli_2_op_name = pauli_2_names[pauli_2_placeholder] pauli_2_placeholder += 1 else: pauli_2_op_name = "Identity" # If we have identities anywhere we don't pick up a phase if pauli_1_op_name == "Identity" or pauli_2_op_name == "Identity": continue # Likewise, no additional phase if the Paulis are the same if pauli_1_op_name == pauli_2_op_name: continue # Use Pauli commutation rules to determine the phase pauli_ordering = (pauli_1_op_name, pauli_2_op_name) pos_phases = [("PauliX", "PauliY"), ("PauliY", "PauliZ"), ("PauliZ", "PauliX")] if pauli_ordering in pos_phases: phase *= 1j else: phase *= -1j return pauli_product, phase
def pauli_mult_with_phase(pauli_1, pauli_2, wire_map=None): r"""Multiply two Pauli words together including the global phase. Two Pauli operations can be multiplied together by taking the additive OR of their binary symplectic representations. The phase is computed by looking at the number of times we have the products XY, YZ, or ZX (adds a phase of :math:`i`), or YX, ZY, XZ (adds a phase of :math:`-i`). Args: pauli_1 (.Operation): A Pauli word. pauli_2 (.Operation): A Pauli word to multiply with the first one. wire_map (dict[Union[str, int], int]): dictionary containing all wire labels used in the Pauli word as keys, and unique integer labels as their values. If no wire map is provided, the map will be constructed from the set of wires acted on by the input Pauli words. Returns: tuple[.Operation, complex]: The product of ``pauli_1`` and ``pauli_2``, and the global phase. **Example** This function works the same as ``pauli_mult`` but also returns the global phase accumulated as a result of the Pauli product rules :math:`\sigma_i \sigma_j = i \sigma_k`. >>> from pennylane.grouping import pauli_mult_with_phase >>> pauli_1 = qml.PauliX(0) @ qml.PauliZ(1) >>> pauli_2 = qml.PauliY(0) @ qml.PauliZ(1) >>> product, phase = pauli_mult_with_phase(pauli_1, pauli_2) >>> product PauliZ(wires=[0]) >>> phase 1j """ # If no wire map is specified, generate one from the union of wires # in both Paulis. if wire_map is None: wire_labels = set(pauli_1.wires.labels + pauli_2.wires.labels) wire_map = {label: i for i, label in enumerate(wire_labels)} # Get the product; use our earlier function pauli_product = pauli_mult(pauli_1, pauli_2, wire_map) pauli_1_names = [pauli_1.name] if isinstance(pauli_1.name, str) else pauli_1.name pauli_2_names = [pauli_2.name] if isinstance(pauli_2.name, str) else pauli_2.name pauli_1_placeholder = 0 pauli_2_placeholder = 0 phase = 1 for wire in wire_map.keys(): if wire in pauli_1.wires: pauli_1_op_name = pauli_1_names[pauli_1_placeholder] pauli_1_placeholder += 1 else: pauli_1_op_name = "Identity" if wire in pauli_2.wires: pauli_2_op_name = pauli_2_names[pauli_2_placeholder] pauli_2_placeholder += 1 else: pauli_2_op_name = "Identity" # If we have identities anywhere we don't pick up a phase if pauli_1_op_name == "Identity" or pauli_2_op_name == "Identity": continue # Likewise, no additional phase if the Paulis are the same if pauli_1_op_name == pauli_2_op_name: continue # Use Pauli commutation rules to determine the phase pauli_ordering = (pauli_1_op_name, pauli_2_op_name) pos_phases = [("PauliX", "PauliY"), ("PauliY", "PauliZ"), ("PauliZ", "PauliX")] if pauli_ordering in pos_phases: phase *= 1j else: phase *= -1j return pauli_product, phase
36,185
def custom404_view(request, exception): """ This view handlers which 404 template to render, based on which host the request was a 404 for. We do this, because wagtail does not allow us to (currently) specify 404 pages using the site admin UI, so we need to rely on the Django methodology for handling 404 responses. It would be great if we could pull the "which domain uses which 404 template" information from the wagtail "sites" configuration, but there is no way to know which template belongs to which site, as "a site" is not tied to "a django app" in the wagtail way of things. """ if request.site.hostname == 'mozillafestival.org': html = render(request, 'mozfest/404.html') return HttpResponseNotFound(html) else: html = render(request, '404.html') return HttpResponseNotFound(html)
def custom404_view(request, exception): """ This view handlers which 404 template to render, based on which host the request was a 404 for. We do this, because wagtail does not allow us to (currently) specify 404 pages using the site admin UI, so we need to rely on the Django methodology for handling 404 responses. It would be great if we could pull the "which domain uses which 404 template" information from the wagtail "sites" configuration, but there is no way to know which template belongs to which site, as "a site" is not tied to "a django app" in the wagtail way of things. """ if request.site.hostname == 'mozillafestival.org': html = render(request, 'mozfest/404.html') return HttpResponseNotFound(html) else: html = render(request, '404.html') return HttpResponseNotFound(html.content)
32,055
def qradar_offenses_list_command(client: Client, args: Dict) -> CommandResults: """ Retrieves list of offenses from QRadar service. possible arguments: - offense_id: Retrieves details of the specific offense that corresponds to the ID given. - range: Range of offenses to return (e.g.: 0-20, 3-5, 3-3). - filter: Query filter to filter results returned by QRadar service. see https://www.ibm.com/support/knowledgecenter/SS42VS_SHR/com.ibm.qradarapi.doc/c_rest_api_filtering.html for more details. - fields: If used, will filter all fields except for the specified ones. Use this parameter to specify which fields you would like to get back in the response. Fields that are not explicitly named are excluded. Args: client (Client): QRadar client to perform the API call. args (Dict): Demisto args. Returns: CommandResults. """ offense_id = args.get('offense_id') range_ = f'''items={args.get('range', DEFAULT_RANGE_VALUE)}''' filter_ = args.get('filter') fields = args.get('fields') ip_enrich, asset_enrich = get_offense_enrichment(args.get('enrichment', 'None')) # if this call fails raise an error and stop command execution response = client.offenses_list(range_, offense_id, filter_, fields) enriched_outputs = enrich_offenses_result(client, response, ip_enrich, asset_enrich) final_outputs = sanitize_outputs(enriched_outputs, OFFENSE_OLD_NEW_NAMES_MAP) headers = build_headers(['ID', 'Description', 'OffenseType', 'Status', 'Severity'], set(OFFENSE_OLD_NEW_NAMES_MAP.values())) return CommandResults( readable_output=tableToMarkdown('Offenses List', final_outputs, headers=headers, removeNull=True), outputs_prefix='QRadar.Offense', outputs_key_field='ID', outputs=final_outputs, raw_response=response )
def qradar_offenses_list_command(client: Client, args: Dict) -> CommandResults: """ Retrieves list of offenses from QRadar service. possible arguments: - offense_id: Retrieves details of the specific offense that corresponds to the ID given. - range: Range of offenses to return (e.g.: 0-20, 3-5, 3-3). - filter: Query filter to filter results returned by QRadar service. see https://www.ibm.com/support/knowledgecenter/SS42VS_SHR/com.ibm.qradarapi.doc/c_rest_api_filtering.html for more details. - fields: If used, will filter all fields except for the specified ones. Use this parameter to specify which fields you would like to get back in the response. Fields that are not explicitly named are excluded. Args: client (Client): QRadar client to perform the API call. args (Dict): Demisto args. Returns: CommandResults. """ offense_id = args.get('offense_id') range_ = f'''items={args.get('range', DEFAULT_RANGE_VALUE)}''' filter_ = args.get('filter') fields = args.get('fields') ip_enrich, asset_enrich = get_offense_enrichment(args.get('enrichment', 'None')) # if this call fails, raise an error and stop command execution response = client.offenses_list(range_, offense_id, filter_, fields) enriched_outputs = enrich_offenses_result(client, response, ip_enrich, asset_enrich) final_outputs = sanitize_outputs(enriched_outputs, OFFENSE_OLD_NEW_NAMES_MAP) headers = build_headers(['ID', 'Description', 'OffenseType', 'Status', 'Severity'], set(OFFENSE_OLD_NEW_NAMES_MAP.values())) return CommandResults( readable_output=tableToMarkdown('Offenses List', final_outputs, headers=headers, removeNull=True), outputs_prefix='QRadar.Offense', outputs_key_field='ID', outputs=final_outputs, raw_response=response )
31,699
def fetch_emails_as_incidents(account_email, folder_name): last_run = get_last_run() excluded_ids = set(last_run.get(LAST_RUN_IDS)) try: account = get_account(account_email) last_emails = fetch_last_emails(account, folder_name, last_run.get(LAST_RUN_TIME), last_run.get(LAST_RUN_IDS)) incidents = [] incident = {} # type: Dict[Any, Any] current_fetch_ids = set() for item in last_emails: if item.message_id: current_fetch_ids.add(item.message_id) incident = parse_incident_from_item(item, True) if incident: incidents.append(incident) if len(incidents) >= MAX_FETCH: break demisto.debug(f'EWS V2 - ending fetch - got {len(incidents)} incidents.') last_run_time = incident.get("occurred", last_run.get(LAST_RUN_TIME)) if isinstance(last_run_time, EWSDateTime): last_run_time = last_run_time.ewsformat() if last_run_time > LAST_RUN_TIME: ids = current_fetch_ids else: ids = current_fetch_ids | excluded_ids new_last_run = { LAST_RUN_TIME: last_run_time, LAST_RUN_FOLDER: folder_name, LAST_RUN_IDS: list(ids), ERROR_COUNTER: 0 } demisto.setLastRun(new_last_run) return incidents except RateLimitError: if LAST_RUN_TIME in last_run: last_run[LAST_RUN_TIME] = last_run[LAST_RUN_TIME].ewsformat() if ERROR_COUNTER not in last_run: last_run[ERROR_COUNTER] = 0 last_run[ERROR_COUNTER] += 1 demisto.setLastRun(last_run) if last_run[ERROR_COUNTER] > 2: raise return []
def fetch_emails_as_incidents(account_email, folder_name): last_run = get_last_run() excluded_ids = set(last_run.get(LAST_RUN_IDS, [])) try: account = get_account(account_email) last_emails = fetch_last_emails(account, folder_name, last_run.get(LAST_RUN_TIME), last_run.get(LAST_RUN_IDS)) incidents = [] incident = {} # type: Dict[Any, Any] current_fetch_ids = set() for item in last_emails: if item.message_id: current_fetch_ids.add(item.message_id) incident = parse_incident_from_item(item, True) if incident: incidents.append(incident) if len(incidents) >= MAX_FETCH: break demisto.debug(f'EWS V2 - ending fetch - got {len(incidents)} incidents.') last_run_time = incident.get("occurred", last_run.get(LAST_RUN_TIME)) if isinstance(last_run_time, EWSDateTime): last_run_time = last_run_time.ewsformat() if last_run_time > LAST_RUN_TIME: ids = current_fetch_ids else: ids = current_fetch_ids | excluded_ids new_last_run = { LAST_RUN_TIME: last_run_time, LAST_RUN_FOLDER: folder_name, LAST_RUN_IDS: list(ids), ERROR_COUNTER: 0 } demisto.setLastRun(new_last_run) return incidents except RateLimitError: if LAST_RUN_TIME in last_run: last_run[LAST_RUN_TIME] = last_run[LAST_RUN_TIME].ewsformat() if ERROR_COUNTER not in last_run: last_run[ERROR_COUNTER] = 0 last_run[ERROR_COUNTER] += 1 demisto.setLastRun(last_run) if last_run[ERROR_COUNTER] > 2: raise return []
45,698
def extrapolate( precip, velocity, timesteps, outval=np.nan, xy_coords=None, allow_nonfinite_values=False, vel_timestep=1, **kwargs, ): """Apply semi-Lagrangian backward extrapolation to a two-dimensional precipitation field. Parameters ---------- precip: array-like or None Array of shape (m,n) containing the input precipitation field. All values are required to be finite by default. If set to None, only the displacement field is returned without interpolating the inputs. This requires that return_displacement is set to True. velocity: array-like Array of shape (2,m,n) containing the x- and y-components of the m*n advection field. All values are required to be finite by default. timesteps: int or list If timesteps is integer, it specifies the number of time steps to extrapolate. If a list is given, each element is the desired extrapolation time step from the current time. The elements of the list are required to be in ascending order. outval: float, optional Optional argument for specifying the value for pixels advected from outside the domain. If outval is set to 'min', the value is taken as the minimum value of precip. Default: np.nan xy_coords: ndarray, optional Array with the coordinates of the grid dimension (2, m, n ). * xy_coords[0]: x coordinates * xy_coords[1]: y coordinates By default, the *xy_coords* are computed for each extrapolation. allow_nonfinite_values: bool, optional If True, allow non-finite values in the precipitation and advection fields. This option is useful if the input fields contain a radar mask (i.e. pixels with no observations are set to nan). Other Parameters ---------------- displacement_prev: array-like Optional initial displacement vector field of shape (2,m,n) for the extrapolation. Default: None n_iter: int Number of inner iterations in the semi-Lagrangian scheme. If n_iter > 0, the integration is done using the midpoint rule. Otherwise, the advection vectors are taken from the starting point of each interval. Default: 1 return_displacement: bool If True, return the displacement between the initial input field and the one obtained by integrating along the advection field. Default: False vel_timestep: float The time step of the velocity field. It is assumed to have the same unit as the timesteps argument. Applicable if timeseps is a list. Default: 1. interp_order: int The order of interpolation to use. Default: 1 (linear). Setting this to 0 (nearest neighbor) gives the best computational performance but may produce visible artefacts. Setting this to 3 (cubic) gives the best ability to reproduce small-scale variability but may significantly increase the computation time. Returns ------- out: array or tuple If return_displacement=False, return a time series extrapolated fields of shape (num_timesteps,m,n). Otherwise, return a tuple containing the extrapolated fields and the integrated trajectory (displacement) along the advection field. References ---------- :cite:`GZ2002` """ if precip is not None and len(precip.shape) != 2: raise ValueError("precip must be a two-dimensional array") if len(velocity.shape) != 3: raise ValueError("velocity must be a three-dimensional array") if precip is not None and not allow_nonfinite_values: if np.any(~np.isfinite(precip)): raise ValueError("precip contains non-finite values") if np.any(~np.isfinite(velocity)): raise ValueError("velocity contains non-finite values") if isinstance(timesteps, list) and not sorted(timesteps) == timesteps: raise ValueError("timesteps is not in ascending order") # defaults verbose = kwargs.get("verbose", False) displacement_prev = kwargs.get("displacement_prev", None) n_iter = kwargs.get("n_iter", 1) return_displacement = kwargs.get("return_displacement", False) interp_order = kwargs.get("interp_order", 1) if precip is None and not return_displacement: raise ValueError("precip is None but return_displacement is False") if "D_prev" in kwargs.keys(): warnings.warn( "deprecated argument D_prev is ignored, use displacement_prev instead", ) # if interp_order > 1, apply separate masking to preserve nan and # non-precipitation values if precip is not None and interp_order > 1: minval = np.nanmin(precip) mask_min = (precip > minval).astype(float) if allow_nonfinite_values: mask_finite = np.isfinite(precip) precip = precip.copy() precip[~mask_finite] = 0.0 mask_finite = mask_finite.astype(float) prefilter = True if interp_order > 1 else False if isinstance(timesteps, int): timesteps = np.arange(1, timesteps + 1) vel_timestep = 1.0 elif np.any(np.diff(timesteps) <= 0.0): raise ValueError("the given timestep sequence is not monotonously increasing") timestep_diff = np.hstack([[timesteps[0]], np.diff(timesteps)]) if verbose: print("Computing the advection with the semi-lagrangian scheme.") t0 = time.time() if precip is not None and outval == "min": outval = np.nanmin(precip) if xy_coords is None: x_values, y_values = np.meshgrid( np.arange(velocity.shape[2]), np.arange(velocity.shape[1]) ) xy_coords = np.stack([x_values, y_values]) def interpolate_motion(displacement, velocity_inc, td): coords_warped = xy_coords + displacement coords_warped = [coords_warped[1, :, :], coords_warped[0, :, :]] velocity_inc_x = ip.map_coordinates( velocity[0, :, :], coords_warped, mode="nearest", order=1, prefilter=False, ) velocity_inc_y = ip.map_coordinates( velocity[1, :, :], coords_warped, mode="nearest", order=1, prefilter=False, ) velocity_inc[0, :, :] = velocity_inc_x velocity_inc[1, :, :] = velocity_inc_y if n_iter > 1: velocity_inc /= n_iter velocity_inc *= td / vel_timestep precip_extrap = [] if displacement_prev is None: displacement = np.zeros((2, velocity.shape[1], velocity.shape[2])) velocity_inc = velocity.copy() * timestep_diff[0] / vel_timestep else: displacement = displacement_prev.copy() velocity_inc = np.empty(velocity.shape) interpolate_motion(displacement, velocity_inc, timestep_diff[0]) for ti, td in enumerate(timestep_diff): if n_iter > 0: for k in range(n_iter): interpolate_motion(displacement - velocity_inc / 2.0, velocity_inc, td) displacement -= velocity_inc interpolate_motion(displacement, velocity_inc, td) else: if ti > 0 or displacement_prev is not None: interpolate_motion(displacement, velocity_inc, td) displacement -= velocity_inc coords_warped = xy_coords + displacement coords_warped = [coords_warped[1, :, :], coords_warped[0, :, :]] if precip is not None: precip_warped = ip.map_coordinates( precip, coords_warped, mode="constant", cval=outval, order=interp_order, prefilter=prefilter, ) if interp_order > 1: mask_warped = ip.map_coordinates( mask_min, coords_warped, mode="constant", cval=0, order=1, prefilter=False, ) precip_warped[mask_warped < 0.5] = minval if allow_nonfinite_values: mask_warped = ip.map_coordinates( mask_finite, coords_warped, mode="constant", cval=0, order=1, prefilter=False, ) precip_warped[mask_warped < 0.5] = np.nan precip_extrap.append(np.reshape(precip_warped, precip.shape)) if verbose: print("--- %s seconds ---" % (time.time() - t0)) if precip is not None: if not return_displacement: return np.stack(precip_extrap) else: return np.stack(precip_extrap), displacement else: return None, displacement
def extrapolate( precip, velocity, timesteps, outval=np.nan, xy_coords=None, allow_nonfinite_values=False, vel_timestep=1, **kwargs, ): """Apply semi-Lagrangian backward extrapolation to a two-dimensional precipitation field. Parameters ---------- precip: array-like or None Array of shape (m,n) containing the input precipitation field. All values are required to be finite by default. If set to None, only the displacement field is returned without interpolating the inputs. This requires that return_displacement is set to True. velocity: array-like Array of shape (2,m,n) containing the x- and y-components of the m*n advection field. All values are required to be finite by default. timesteps: int or list If timesteps is integer, it specifies the number of time steps to extrapolate. If a list is given, each element is the desired extrapolation time step from the current time. The elements of the list are required to be in ascending order. outval: float, optional Optional argument for specifying the value for pixels advected from outside the domain. If outval is set to 'min', the value is taken as the minimum value of precip. Default: np.nan xy_coords: ndarray, optional Array with the coordinates of the grid dimension (2, m, n ). * xy_coords[0]: x coordinates * xy_coords[1]: y coordinates By default, the *xy_coords* are computed for each extrapolation. allow_nonfinite_values: bool, optional If True, allow non-finite values in the precipitation and advection fields. This option is useful if the input fields contain a radar mask (i.e. pixels with no observations are set to nan). Other Parameters ---------------- displacement_prev: array-like Optional initial displacement vector field of shape (2,m,n) for the extrapolation. Default: None n_iter: int Number of inner iterations in the semi-Lagrangian scheme. If n_iter > 0, the integration is done using the midpoint rule. Otherwise, the advection vectors are taken from the starting point of each interval. Default: 1 return_displacement: bool If True, return the displacement between the initial input field and the one obtained by integrating along the advection field. Default: False vel_timestep: float The time step of the velocity field. It is assumed to have the same unit as the timesteps argument. Applicable if timeseps is a list. Default: 1. interp_order: int The order of interpolation to use. Default: 1 (linear). Setting this to 0 (nearest neighbor) gives the best computational performance but may produce visible artefacts. Setting this to 3 (cubic) gives the best ability to reproduce small-scale variability but may significantly increase the computation time. Returns ------- out: array or tuple If return_displacement=False, return a time series extrapolated fields of shape (num_timesteps,m,n). Otherwise, return a tuple containing the extrapolated fields and the integrated trajectory (displacement) along the advection field. References ---------- :cite:`GZ2002` """ if precip is not None and precip.ndim != 2: raise ValueError("precip must be a two-dimensional array") if len(velocity.shape) != 3: raise ValueError("velocity must be a three-dimensional array") if precip is not None and not allow_nonfinite_values: if np.any(~np.isfinite(precip)): raise ValueError("precip contains non-finite values") if np.any(~np.isfinite(velocity)): raise ValueError("velocity contains non-finite values") if isinstance(timesteps, list) and not sorted(timesteps) == timesteps: raise ValueError("timesteps is not in ascending order") # defaults verbose = kwargs.get("verbose", False) displacement_prev = kwargs.get("displacement_prev", None) n_iter = kwargs.get("n_iter", 1) return_displacement = kwargs.get("return_displacement", False) interp_order = kwargs.get("interp_order", 1) if precip is None and not return_displacement: raise ValueError("precip is None but return_displacement is False") if "D_prev" in kwargs.keys(): warnings.warn( "deprecated argument D_prev is ignored, use displacement_prev instead", ) # if interp_order > 1, apply separate masking to preserve nan and # non-precipitation values if precip is not None and interp_order > 1: minval = np.nanmin(precip) mask_min = (precip > minval).astype(float) if allow_nonfinite_values: mask_finite = np.isfinite(precip) precip = precip.copy() precip[~mask_finite] = 0.0 mask_finite = mask_finite.astype(float) prefilter = True if interp_order > 1 else False if isinstance(timesteps, int): timesteps = np.arange(1, timesteps + 1) vel_timestep = 1.0 elif np.any(np.diff(timesteps) <= 0.0): raise ValueError("the given timestep sequence is not monotonously increasing") timestep_diff = np.hstack([[timesteps[0]], np.diff(timesteps)]) if verbose: print("Computing the advection with the semi-lagrangian scheme.") t0 = time.time() if precip is not None and outval == "min": outval = np.nanmin(precip) if xy_coords is None: x_values, y_values = np.meshgrid( np.arange(velocity.shape[2]), np.arange(velocity.shape[1]) ) xy_coords = np.stack([x_values, y_values]) def interpolate_motion(displacement, velocity_inc, td): coords_warped = xy_coords + displacement coords_warped = [coords_warped[1, :, :], coords_warped[0, :, :]] velocity_inc_x = ip.map_coordinates( velocity[0, :, :], coords_warped, mode="nearest", order=1, prefilter=False, ) velocity_inc_y = ip.map_coordinates( velocity[1, :, :], coords_warped, mode="nearest", order=1, prefilter=False, ) velocity_inc[0, :, :] = velocity_inc_x velocity_inc[1, :, :] = velocity_inc_y if n_iter > 1: velocity_inc /= n_iter velocity_inc *= td / vel_timestep precip_extrap = [] if displacement_prev is None: displacement = np.zeros((2, velocity.shape[1], velocity.shape[2])) velocity_inc = velocity.copy() * timestep_diff[0] / vel_timestep else: displacement = displacement_prev.copy() velocity_inc = np.empty(velocity.shape) interpolate_motion(displacement, velocity_inc, timestep_diff[0]) for ti, td in enumerate(timestep_diff): if n_iter > 0: for k in range(n_iter): interpolate_motion(displacement - velocity_inc / 2.0, velocity_inc, td) displacement -= velocity_inc interpolate_motion(displacement, velocity_inc, td) else: if ti > 0 or displacement_prev is not None: interpolate_motion(displacement, velocity_inc, td) displacement -= velocity_inc coords_warped = xy_coords + displacement coords_warped = [coords_warped[1, :, :], coords_warped[0, :, :]] if precip is not None: precip_warped = ip.map_coordinates( precip, coords_warped, mode="constant", cval=outval, order=interp_order, prefilter=prefilter, ) if interp_order > 1: mask_warped = ip.map_coordinates( mask_min, coords_warped, mode="constant", cval=0, order=1, prefilter=False, ) precip_warped[mask_warped < 0.5] = minval if allow_nonfinite_values: mask_warped = ip.map_coordinates( mask_finite, coords_warped, mode="constant", cval=0, order=1, prefilter=False, ) precip_warped[mask_warped < 0.5] = np.nan precip_extrap.append(np.reshape(precip_warped, precip.shape)) if verbose: print("--- %s seconds ---" % (time.time() - t0)) if precip is not None: if not return_displacement: return np.stack(precip_extrap) else: return np.stack(precip_extrap), displacement else: return None, displacement
39,033
def test_secretstr_is_hashable(): assert hash(SecretStr('secret'))
def test_secretstr_is_hashable(): assert type(hash(SecretStr('secret'))) is int
30,620
def get_request_args(params): limit = try_parse_integer(request.args.get('n', params.get('edl_size', 10000)), EDL_LIMIT_ERR_MSG) offset = try_parse_integer(request.args.get('s', 0), EDL_OFFSET_ERR_MSG) query = request.args.get('q', params.get('indicators_query')) strip_port = request.args.get('sp', params.get('url_port_stripping', False)) drop_invalids = request.args.get('di', params.get('drop_invalids', False)) collapse_ips = request.args.get('tr', params.get('collapse_ips', DONT_COLLAPSE)) # handle flags if drop_invalids is not None and drop_invalids == '': drop_invalids = True if strip_port is not None and strip_port == '': strip_port = True if collapse_ips is not None and collapse_ips not in [DONT_COLLAPSE, COLLAPSE_TO_CIDR, COLLAPSE_TO_RANGES]: collapse_ips = try_parse_integer(collapse_ips, EDL_COLLAPSE_ERR_MSG) if collapse_ips not in [0, 1, 2]: raise DemistoException(EDL_COLLAPSE_ERR_MSG) collapse_options = { 0: DONT_COLLAPSE, 1: COLLAPSE_TO_RANGES, 2: COLLAPSE_TO_CIDR } collapse_ips = collapse_options[collapse_ips] return RequestArguments(query, limit, offset, strip_port, drop_invalids, collapse_ips)
def get_request_args(params): limit = try_parse_integer(request.args.get('n', params.get('edl_size', 10000)), EDL_LIMIT_ERR_MSG) offset = try_parse_integer(request.args.get('s', 0), EDL_OFFSET_ERR_MSG) query = request.args.get('q', params.get('indicators_query')) strip_port = request.args.get('sp', params.get('url_port_stripping', False)) drop_invalids = request.args.get('di', params.get('drop_invalids', False)) collapse_ips = request.args.get('tr', params.get('collapse_ips', DONT_COLLAPSE)) # handle flags if drop_invalids is not None and drop_invalids == '': drop_invalids = True if strip_port == '': strip_port = True if collapse_ips is not None and collapse_ips not in [DONT_COLLAPSE, COLLAPSE_TO_CIDR, COLLAPSE_TO_RANGES]: collapse_ips = try_parse_integer(collapse_ips, EDL_COLLAPSE_ERR_MSG) if collapse_ips not in [0, 1, 2]: raise DemistoException(EDL_COLLAPSE_ERR_MSG) collapse_options = { 0: DONT_COLLAPSE, 1: COLLAPSE_TO_RANGES, 2: COLLAPSE_TO_CIDR } collapse_ips = collapse_options[collapse_ips] return RequestArguments(query, limit, offset, strip_port, drop_invalids, collapse_ips)
42,970
def gbs_params( w: np.ndarray, wp: np.ndarray, Ud: np.ndarray, d: np.ndarray, T: float ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: r"""Converts molecular information to GBS gate parameters. **Example usage:** >>> w = np.array([3765.2386, 3088.1826, 1825.1799, 1416.9512, 1326.4684, 1137.0490, 629.7144]) >>> wp = np.array([3629.9472, 3064.9143, 1566.4602, 1399.6554, 1215.3421, 1190.9077, 496.2845]) >>> Ud = np.array( >>> [ >>> [0.9934, 0.0144, 0.0153, 0.0268, 0.0638, 0.0751, -0.0428], >>> [-0.0149, 0.9931, 0.0742, 0.0769, -0.0361, -0.0025, 0.0173], >>> [-0.0119, -0.0916, 0.8423, 0.1799, -0.3857, 0.3074, 0.0801], >>> [0.0381, 0.0409, -0.3403, -0.5231, -0.6679, 0.3848, 0.1142], >>> [-0.0413, -0.0342, -0.4004, 0.7636, -0.1036, 0.4838, 0.0941], >>> [0.0908, -0.0418, -0.0907, 0.3151, -0.5900, -0.7193, 0.1304], >>> [-0.0325, 0.0050, -0.0206, 0.0694, -0.2018, 0.0173, -0.9759], >>> ] >>> ) >>> d = np.array([0.2254, 0.1469, 1.5599, -0.3784, 0.4553, -0.3439, 0.0618]) >>> T = 0.0 >>> p = gbs_params(w, wp, Ud, d, T) Args: w (array): normal mode frequencies of the electronic ground state (:math:`\text{cm}^{-1}`) wp (array): normal mode frequencies of the electronic excited state (:math:`\text{cm}^{-1}`) Ud (array): Duschinsky matrix d (array): Duschinsky displacement vector corrected with wp T (float): temperature Returns: tuple[array, array, array, array, array]: the first interferometer unitary matrix :math:`U_{1}`, the squeezing parameters :math:`r`, the second interferometer unitary matrix :math:`U_{2}`, the displacement parameters :math:`\alpha`, and finally the two-mode squeezing parameters :math:`t` """ c = 299792458 h = 6.62607015e-34 k = 1.380649e-23 if T < 0: raise ValueError("Temperature must be zero or positive") elif T > 0: t = np.arctanh(np.exp(-0.5 * h * (w * c * 100) / k / T)) else: t = np.zeros(len(w)) U2, s, U1 = np.linalg.svd(np.diag(wp ** 0.5) @ Ud @ np.diag(w ** -0.5)) alpha = d / np.sqrt(2) return U1, np.log(s), U2, alpha, t
def gbs_params( w: np.ndarray, wp: np.ndarray, Ud: np.ndarray, d: np.ndarray, T: float ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: r"""Converts molecular information to GBS gate parameters. **Example usage:** >>> w = np.array([3765.2386, 3088.1826, 1825.1799, 1416.9512, 1326.4684, 1137.0490, 629.7144]) >>> wp = np.array([3629.9472, 3064.9143, 1566.4602, 1399.6554, 1215.3421, 1190.9077, 496.2845]) >>> Ud = np.array( >>> [ >>> [0.9934, 0.0144, 0.0153, 0.0268, 0.0638, 0.0751, -0.0428], >>> [-0.0149, 0.9931, 0.0742, 0.0769, -0.0361, -0.0025, 0.0173], >>> [-0.0119, -0.0916, 0.8423, 0.1799, -0.3857, 0.3074, 0.0801], >>> [0.0381, 0.0409, -0.3403, -0.5231, -0.6679, 0.3848, 0.1142], >>> [-0.0413, -0.0342, -0.4004, 0.7636, -0.1036, 0.4838, 0.0941], >>> [0.0908, -0.0418, -0.0907, 0.3151, -0.5900, -0.7193, 0.1304], >>> [-0.0325, 0.0050, -0.0206, 0.0694, -0.2018, 0.0173, -0.9759], >>> ] >>> ) >>> d = np.array([0.2254, 0.1469, 1.5599, -0.3784, 0.4553, -0.3439, 0.0618]) >>> T = 0.0 >>> p = gbs_params(w, wp, Ud, d, T) Args: w (array): normal mode frequencies of the electronic ground state (:math:`\text{cm}^{-1}`) wp (array): normal mode frequencies of the electronic excited state (:math:`\text{cm}^{-1}`) Ud (array): Duschinsky matrix d (array): Duschinsky displacement vector corrected with wp T (float): temperature Returns: tuple[array, array, array, array, array]: the first interferometer unitary matrix :math:`U_{1}`, the squeezing parameters :math:`r`, the second interferometer unitary matrix :math:`U_{2}`, the displacement parameters :math:`\alpha`, and finally the two-mode squeezing parameters :math:`t` """ c = 299792458 h = 6.62607015e-34 k = 1.380649e-23 if T < 0: raise ValueError("Temperature must be zero or positive") if T > 0: t = np.arctanh(np.exp(-0.5 * h * (w * c * 100) / k / T)) else: t = np.zeros(len(w)) U2, s, U1 = np.linalg.svd(np.diag(wp ** 0.5) @ Ud @ np.diag(w ** -0.5)) alpha = d / np.sqrt(2) return U1, np.log(s), U2, alpha, t
31,026
def panorama_zone_lookup_command(): """ Gets the outgoing interface from the Palo Alto Firewall route table, and the list of interfaces comparing the two """ dest_ip = demisto.args().get("dest_ip") vr = demisto.args().get("virtual_router", None) route = panorama_route_lookup(dest_ip, vr) if not route: demisto.results(f"Could find a matching route to {dest_ip}.") return interface = route["interface"] interfaces = panorama_get_interfaces() r = {} if "ifnet" in interfaces["response"]["result"]: for entry in interfaces["response"]["result"]["ifnet"]["entry"]: if entry["name"] == interface: if "zone" in entry: r = {**entry, **route} if r: demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': r, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': f'The IP {dest_ip} is in zone {r["zone"]}', 'EntryContext': {"Panorama.ZoneLookup(val.Name == obj.Name)": r} # add key -> deleted: true }) return r else: demisto.results(f"Could not map {dest_ip} to zone.") return {}
def panorama_zone_lookup_command(): """ Gets the outgoing interface from the Palo Alto Firewall route table, and the list of interfaces comparing the two """ dest_ip = demisto.args().get("dest_ip") vr = demisto.args().get("virtual_router", None) route = panorama_route_lookup(dest_ip, vr) if not route: demisto.results(f"Could find a matching route to {dest_ip}.") return interface = route.get("interface") interfaces = panorama_get_interfaces() r = {} if "ifnet" in interfaces["response"]["result"]: for entry in interfaces["response"]["result"]["ifnet"]["entry"]: if entry["name"] == interface: if "zone" in entry: r = {**entry, **route} if r: demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': r, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': f'The IP {dest_ip} is in zone {r["zone"]}', 'EntryContext': {"Panorama.ZoneLookup(val.Name == obj.Name)": r} # add key -> deleted: true }) return r else: demisto.results(f"Could not map {dest_ip} to zone.") return {}
6,429
def get_partywise_advanced_payment_amount(party_type, posting_date = None, future_payment=0, company=None): cond = "1=1" if posting_date: if future_payment: cond = "DATE(creation) <= '{0}'".format(posting_date) else: cond = "posting_date <= '{0}'".format(posting_date) if company: cond += "and company = '{0}'".format(company) data = frappe.db.sql(""" SELECT party, sum({0}) as amount FROM `tabGL Entry` WHERE party_type = %s and against_voucher is null and {1} GROUP BY party""" .format(("credit") if party_type == "Customer" else "debit", cond) , party_type) if data: return frappe._dict(data)
def get_partywise_advanced_payment_amount(party_type, posting_date = None, future_payment=0, company=None): cond = "1=1" if posting_date: if future_payment: cond = "posting_date <= '{0}' or DATE(creation) <= '{0}'".format(posting_date, posting_date) else: cond = "posting_date <= '{0}'".format(posting_date) if company: cond += "and company = '{0}'".format(company) data = frappe.db.sql(""" SELECT party, sum({0}) as amount FROM `tabGL Entry` WHERE party_type = %s and against_voucher is null and {1} GROUP BY party""" .format(("credit") if party_type == "Customer" else "debit", cond) , party_type) if data: return frappe._dict(data)
35,491
def main(sm=None, pm=None): gc.disable() set_realtime_priority(5) if sm is None: sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll=['liveLocationKalman']) if pm is None: pm = messaging.PubMaster(['liveParameters']) params_reader = Params() # wait for stats about the car to come in from controls cloudlog.info("paramsd is waiting for CarParams") CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True)) cloudlog.info("paramsd got CarParams") min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio params = params_reader.get("LiveParameters") # Check if car model matches if params is not None: params = json.loads(params) if params.get('carFingerprint', None) != CP.carFingerprint: cloudlog.info("Parameter learner found parameters for wrong car.") params = None # Check if starting values are sane if params is not None: try: angle_offset_sane = abs(params.get('angleOffsetAverageDeg')) < 10.0 steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr params_sane = angle_offset_sane and steer_ratio_sane if not params_sane: cloudlog.info(f"Invalid starting values found {params}") params = None except Exception as e: cloudlog.info(f"Error reading params {params}: {str(e)}") params = None # TODO: cache the params with the capnp struct if params is None: params = { 'carFingerprint': CP.carFingerprint, 'steerRatio': CP.steerRatio, 'stiffnessFactor': 1.0, 'angleOffsetAverageDeg': 0.0, } cloudlog.info("Parameter learner resetting to default values") # When driving in wet conditions the stiffness can go down, and then be too low on the next drive # Without a way to detect this we have to reset the stiffness every drive params['stiffnessFactor'] = 1.0 learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg'])) angle_offset_average = params['angleOffsetAverageDeg'] angle_offset = angle_offset_average while True: sm.update() for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]): if sm.updated[which] and sm.all_alive_and_valid(): t = sm.logMonoTime[which] * 1e-9 learner.handle_log(t, which, sm[which]) if sm.updated['liveLocationKalman']: x = learner.kf.x P = np.sqrt(learner.kf.P.diagonal()) if not all(map(math.isfinite, x)): cloudlog.error("NaN in liveParameters estimate. Resetting to default values") learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0) x = learner.kf.x angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET]), angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA) angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET] + x[States.ANGLE_OFFSET_FAST]), angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA) msg = messaging.new_message('liveParameters') msg.logMonoTime = sm.logMonoTime['carState'] liveParameters = msg.liveParameters liveParameters.posenetValid = True liveParameters.sensorValid = True liveParameters.steerRatio = float(x[States.STEER_RATIO]) liveParameters.stiffnessFactor = float(x[States.STIFFNESS]) liveParameters.roll = float(x[States.ROAD_ROLL]) liveParameters.angleOffsetAverageDeg = angle_offset_average liveParameters.angleOffsetDeg = angle_offset liveParameters.valid = all(( abs(liveParameters.angleOffsetAverageDeg) < 10.0, abs(liveParameters.angleOffsetDeg) < 10.0, 0.2 <= liveParameters.stiffnessFactor <= 5.0, min_sr <= liveParameters.steerRatio <= max_sr, )) liveParameters.steerRatioStd = float(P[States.STEER_RATIO]) liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS]) liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET]) liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST]) msg.valid = liveParameters.valid and sm.all_alive_and_valid() if sm.frame % 1200 == 0: # once a minute params = { 'carFingerprint': CP.carFingerprint, 'steerRatio': liveParameters.steerRatio, 'stiffnessFactor': liveParameters.stiffnessFactor, 'angleOffsetAverageDeg': liveParameters.angleOffsetAverageDeg, } put_nonblocking("LiveParameters", json.dumps(params)) pm.send('liveParameters', msg)
def main(sm=None, pm=None): gc.disable() set_realtime_priority(5) if sm is None: sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll=['liveLocationKalman']) if pm is None: pm = messaging.PubMaster(['liveParameters']) params_reader = Params() # wait for stats about the car to come in from controls cloudlog.info("paramsd is waiting for CarParams") CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True)) cloudlog.info("paramsd got CarParams") min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio params = params_reader.get("LiveParameters") # Check if car model matches if params is not None: params = json.loads(params) if params.get('carFingerprint', None) != CP.carFingerprint: cloudlog.info("Parameter learner found parameters for wrong car.") params = None # Check if starting values are sane if params is not None: try: angle_offset_sane = abs(params.get('angleOffsetAverageDeg')) < 10.0 steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr params_sane = angle_offset_sane and steer_ratio_sane if not params_sane: cloudlog.info(f"Invalid starting values found {params}") params = None except Exception as e: cloudlog.info(f"Error reading params {params}: {str(e)}") params = None # TODO: cache the params with the capnp struct if params is None: params = { 'carFingerprint': CP.carFingerprint, 'steerRatio': CP.steerRatio, 'stiffnessFactor': 1.0, 'angleOffsetAverageDeg': 0.0, } cloudlog.info("Parameter learner resetting to default values") # When driving in wet conditions the stiffness can go down, and then be too low on the next drive # Without a way to detect this we have to reset the stiffness every drive params['stiffnessFactor'] = 1.0 learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg'])) angle_offset_average = params['angleOffsetAverageDeg'] angle_offset = angle_offset_average while True: sm.update() for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]): if sm.updated[which] and sm.all_alive_and_valid([which]): t = sm.logMonoTime[which] * 1e-9 learner.handle_log(t, which, sm[which]) if sm.updated['liveLocationKalman']: x = learner.kf.x P = np.sqrt(learner.kf.P.diagonal()) if not all(map(math.isfinite, x)): cloudlog.error("NaN in liveParameters estimate. Resetting to default values") learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0) x = learner.kf.x angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET]), angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA) angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET] + x[States.ANGLE_OFFSET_FAST]), angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA) msg = messaging.new_message('liveParameters') msg.logMonoTime = sm.logMonoTime['carState'] liveParameters = msg.liveParameters liveParameters.posenetValid = True liveParameters.sensorValid = True liveParameters.steerRatio = float(x[States.STEER_RATIO]) liveParameters.stiffnessFactor = float(x[States.STIFFNESS]) liveParameters.roll = float(x[States.ROAD_ROLL]) liveParameters.angleOffsetAverageDeg = angle_offset_average liveParameters.angleOffsetDeg = angle_offset liveParameters.valid = all(( abs(liveParameters.angleOffsetAverageDeg) < 10.0, abs(liveParameters.angleOffsetDeg) < 10.0, 0.2 <= liveParameters.stiffnessFactor <= 5.0, min_sr <= liveParameters.steerRatio <= max_sr, )) liveParameters.steerRatioStd = float(P[States.STEER_RATIO]) liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS]) liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET]) liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST]) msg.valid = liveParameters.valid and sm.all_alive_and_valid() if sm.frame % 1200 == 0: # once a minute params = { 'carFingerprint': CP.carFingerprint, 'steerRatio': liveParameters.steerRatio, 'stiffnessFactor': liveParameters.stiffnessFactor, 'angleOffsetAverageDeg': liveParameters.angleOffsetAverageDeg, } put_nonblocking("LiveParameters", json.dumps(params)) pm.send('liveParameters', msg)
45,466
def test_additional_headers(test_client_factory): def app(scope): async def asgi(receive, send): websocket = WebSocket(scope, receive=receive, send=send) await websocket.accept(headers=[(b"additional", b"header")]) await websocket.close() return asgi client = test_client_factory(app) with client.websocket_connect("/") as websocket: websocket.additional_headers = [(b"additional", b"header")]
def test_additional_headers(test_client_factory): def app(scope): async def asgi(receive, send): websocket = WebSocket(scope, receive=receive, send=send) await websocket.accept(headers=[(b"additional", b"header")]) await websocket.close() return asgi client = test_client_factory(app) with client.websocket_connect("/") as websocket: assert websocket.additional_headers == [(b"additional", b"header")]
16,369
def _schema_with_defaults( username="", host="", port=80, path="/", ssl=False, verifiy_ssl=True ): return vol.Schema( { vol.Required(CONF_USERNAME, default=username): str, vol.Required(CONF_HOST, default=host): str, vol.Required(CONF_PORT, default=port): cv.port, vol.Required(CONF_PATH, default=path): str, vol.Required(CONF_SSL, default=ssl): bool, vol.Required(CONF_VERIFY_SSL, default=verifiy_ssl): bool, }, extra=vol.ALLOW_EXTRA, )
def _schema_with_defaults( username="", host="", port=80, path="/", ssl=False, verify_ssl=True ): return vol.Schema( { vol.Required(CONF_USERNAME, default=username): str, vol.Required(CONF_HOST, default=host): str, vol.Required(CONF_PORT, default=port): cv.port, vol.Required(CONF_PATH, default=path): str, vol.Required(CONF_SSL, default=ssl): bool, vol.Required(CONF_VERIFY_SSL, default=verifiy_ssl): bool, }, extra=vol.ALLOW_EXTRA, )
34,952
def make_search_policies( search_policy, tasks, num_measures_per_round, load_model_file=None, load_log_file=None ): """Make a list of search policies for a list of search tasks. It creates one policy per task. Parameters ---------- search_policy: Union[str, List[SearchPolicy]] The name of search policy. tasks: List[SearchTask] The list of all tasks num_measures_per_round: int The number of schedules to be measured at each search round. This should be the same as `TuningOptions.num_measures_per_round` load_model_file: Optional[str] Load pre-trained model from this file load_log_file: Optional[str] Load measurement records from this file Returns ------- policies: List[SearchPolicy] The list of search policies """ if search_policy == "default": search_policy = "sketch.xgb" if isinstance(search_policy, str): policy_type, model_type = search_policy.split(".") if model_type == "xgb": cost_model = XGBModel(num_warmup_sample=len(tasks) * num_measures_per_round) if load_model_file: logger.info("Load pretrained model...") cost_model.load(load_model_file) elif load_log_file: cost_model.load_log_file(load_log_file) elif model_type == "random": cost_model = RandomModel() else: raise ValueError("Invalid search policy: " + search_policy) if policy_type == "sketch": search_policies = [SketchPolicy(task, cost_model) for task in tasks] else: raise ValueError("Invalid search policy: " + search_policy) else: # check type assert isinstance(search_policy, (tuple, list)) for item in search_policy: assert isinstance(item, SearchPolicy) search_policies = search_policy return search_policies
def make_search_policies( search_policy, tasks, num_measures_per_round, load_model_file=None, load_log_file=None ): """Make a list of search policies for a list of search tasks. It creates one policy per task. Parameters ---------- search_policy: Union[str, List[SearchPolicy]] The name of search policy. tasks: List[SearchTask] The list of all tasks num_measures_per_round: int The number of schedules to be measured at each search round. This should be the same as `TuningOptions.num_measures_per_round` load_model_file: Optional[str] Load pre-trained model from this file. If not presented, the cost model will be trained from scratch. load_log_file: Optional[str] Load measurement records from this file Returns ------- policies: List[SearchPolicy] The list of search policies """ if search_policy == "default": search_policy = "sketch.xgb" if isinstance(search_policy, str): policy_type, model_type = search_policy.split(".") if model_type == "xgb": cost_model = XGBModel(num_warmup_sample=len(tasks) * num_measures_per_round) if load_model_file: logger.info("Load pretrained model...") cost_model.load(load_model_file) elif load_log_file: cost_model.load_log_file(load_log_file) elif model_type == "random": cost_model = RandomModel() else: raise ValueError("Invalid search policy: " + search_policy) if policy_type == "sketch": search_policies = [SketchPolicy(task, cost_model) for task in tasks] else: raise ValueError("Invalid search policy: " + search_policy) else: # check type assert isinstance(search_policy, (tuple, list)) for item in search_policy: assert isinstance(item, SearchPolicy) search_policies = search_policy return search_policies
50,532
def read_postgis( sql, con, geom_col="geom", crs=None, index_col=None, coerce_float=True, parse_dates=None, params=None, ): """ Returns a GeoDataFrame corresponding to the result of the query string, which must contain a geometry column in WKB representation. Parameters ---------- sql : string SQL query to execute in selecting entries from database, or name of the table to read from the database. con : DB connection object or SQLAlchemy engine Active connection to the database to query. geom_col : string, default 'geom' column name to convert to shapely geometries crs : multiple types allowed, optional Coordinate Reference System to use for the returned GeoDataFrame; can accept anything accepted by pyproj.CRS.from_user_input() The following types are accepted: CRS WKT string An authority string (i.e. "epsg:4326") An EPSG integer code (i.e. 4326) A pyproj.CRS An object with a to_wkt method. PROJ string Dictionary of PROJ parameters PROJ keyword arguments for parameters JSON string with PROJ parameters For reference, a few very common projections and their EPSG codes: WGS84 Latitude/Longitude: "EPSG:4326" UTM Zones (North): "EPSG:32633" UTM Zones (South): "EPSG:32733" See geopandas/doc/source/projections.rst for more info on CRS See the documentation for pandas.read_sql for further explanation of the following parameters: index_col, coerce_float, parse_dates, params Returns ------- GeoDataFrame Example ------- PostGIS >>> sql = "SELECT geom, kind FROM polygons" SpatiaLite >>> sql = "SELECT ST_AsBinary(geom) AS geom, kind FROM polygons" >>> df = geopandas.read_postgis(sql, con) """ df = pd.read_sql( sql, con, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, params=params, ) if geom_col not in df: raise ValueError("Query missing geometry column '{}'".format(geom_col)) geoms = df[geom_col].dropna() if not geoms.empty: load_geom_bytes = shapely.wkb.loads """Load from Python 3 binary.""" def load_geom_buffer(x): """Load from Python 2 binary.""" return shapely.wkb.loads(str(x)) def load_geom_text(x): """Load from binary encoded as text.""" return shapely.wkb.loads(str(x), hex=True) if sys.version_info.major < 3: if isinstance(geoms.iat[0], buffer): load_geom = load_geom_buffer else: load_geom = load_geom_text elif isinstance(geoms.iat[0], bytes): load_geom = load_geom_bytes else: load_geom = load_geom_text df[geom_col] = geoms = geoms.apply(load_geom) if crs is None: srid = shapely.geos.lgeos.GEOSGetSRID(geoms.iat[0]._geom) # if no defined SRID in geodatabase, returns SRID of 0 if srid != 0: crs = "epsg:{}".format(srid) return GeoDataFrame(df, crs=crs, geometry=geom_col)
def read_postgis( sql, con, geom_col="geom", crs=None, index_col=None, coerce_float=True, parse_dates=None, params=None, ): """ Returns a GeoDataFrame corresponding to the result of the query string, which must contain a geometry column in WKB representation. Parameters ---------- sql : string SQL query to execute in selecting entries from database, or name of the table to read from the database. con : DB connection object or SQLAlchemy engine Active connection to the database to query. geom_col : string, default 'geom' column name to convert to shapely geometries crs : pyproj.CRS, optional CRS to use for the returned GeoDataFrame. The value can be anything accepted by :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`, such as an authority string (eg "EPSG:4326") or a WKT string. If not set, tries to determine CRS from the SRID associated with the first geometry in the database, and assigns that to all geometries. See the documentation for pandas.read_sql for further explanation of the following parameters: index_col, coerce_float, parse_dates, params Returns ------- GeoDataFrame Example ------- PostGIS >>> sql = "SELECT geom, kind FROM polygons" SpatiaLite >>> sql = "SELECT ST_AsBinary(geom) AS geom, kind FROM polygons" >>> df = geopandas.read_postgis(sql, con) """ df = pd.read_sql( sql, con, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, params=params, ) if geom_col not in df: raise ValueError("Query missing geometry column '{}'".format(geom_col)) geoms = df[geom_col].dropna() if not geoms.empty: load_geom_bytes = shapely.wkb.loads """Load from Python 3 binary.""" def load_geom_buffer(x): """Load from Python 2 binary.""" return shapely.wkb.loads(str(x)) def load_geom_text(x): """Load from binary encoded as text.""" return shapely.wkb.loads(str(x), hex=True) if sys.version_info.major < 3: if isinstance(geoms.iat[0], buffer): load_geom = load_geom_buffer else: load_geom = load_geom_text elif isinstance(geoms.iat[0], bytes): load_geom = load_geom_bytes else: load_geom = load_geom_text df[geom_col] = geoms = geoms.apply(load_geom) if crs is None: srid = shapely.geos.lgeos.GEOSGetSRID(geoms.iat[0]._geom) # if no defined SRID in geodatabase, returns SRID of 0 if srid != 0: crs = "epsg:{}".format(srid) return GeoDataFrame(df, crs=crs, geometry=geom_col)
7,210
def map_histogram(hist, min_val, max_val, n_pixels): """Calculate the equalized lookup table (mapping). It does so by cumulating the input histogram. Parameters ---------- hist : ndarray Clipped histogram. min_val : int Minimum value for mapping. max_val : int Maximum value for mapping. n_pixels : int Number of pixels in the region. Returns ------- out : ndarray Mapped intensity LUT. """ warnings.warn("map_histogram is deprecated and will be removed in version " "0.19. Please use the rivate function _map_histogram " "instead.", category=FutureWarning, stacklevel=2) return _map_histogram(hist, min_val, max_val, n_pixels)
def map_histogram(hist, min_val, max_val, n_pixels): """Calculate the equalized lookup table (mapping). It does so by cumulating the input histogram. Parameters ---------- hist : ndarray Clipped histogram. min_val : int Minimum value for mapping. max_val : int Maximum value for mapping. n_pixels : int Number of pixels in the region. Returns ------- out : ndarray Mapped intensity LUT. """ warnings.warn("map_histogram is deprecated and will be removed in version " "0.19. Please use the private function _map_histogram " "instead.", category=FutureWarning, stacklevel=2) return _map_histogram(hist, min_val, max_val, n_pixels)
26,350
def run_stubtest(dist: Path) -> None: with open(dist / "METADATA.toml") as f: metadata = dict(tomli.loads(f.read())) # Ignore stubs that don't support Python 3 if not has_py3_stubs(dist): return with tempfile.TemporaryDirectory() as tmp: venv_dir = Path(tmp) venv.create(venv_dir, with_pip=True, clear=True) pip_exe = str(venv_dir / "bin" / "pip") python_exe = str(venv_dir / "bin" / "python") dist_version = metadata.get("version") assert isinstance(dist_version, str) if dist_version == "0.1": dist_req = dist.name elif dist_version.endswith(".*"): dist_req = f"{dist.name}=={dist_version}" else: dist_req = f"{dist.name}=={dist_version}.*" # If @tests/requirements-stubtest.txt exists, run "pip install" on it. req_path = dist / "@tests" / "requirements-stubtest.txt" if req_path.exists(): try: pip_cmd = [pip_exe, "install", "-r", str(req_path)] subprocess.run(pip_cmd, check=True, capture_output=True) except subprocess.CalledProcessError as e: print(f"Failed to install requirements for {dist.name}", file=sys.stderr) print(e.stdout.decode(), file=sys.stderr) print(e.stderr.decode(), file=sys.stderr) raise # We need stubtest to be able to import the package, so install mypy into the venv # Hopefully mypy continues to not need too many dependencies # TODO: Maybe find a way to cache these in CI dists_to_install = [dist_req, get_mypy_req()] dists_to_install.extend(metadata.get("requires", [])) pip_cmd = [pip_exe, "install"] + dists_to_install print(" ".join(pip_cmd), file=sys.stderr) try: subprocess.run(pip_cmd, check=True, capture_output=True) except subprocess.CalledProcessError as e: print(f"Failed to install {dist.name}", file=sys.stderr) print(e.stdout.decode(), file=sys.stderr) print(e.stderr.decode(), file=sys.stderr) raise packages_to_check = [d.name for d in dist.iterdir() if d.is_dir() and d.name.isidentifier()] modules_to_check = [d.stem for d in dist.iterdir() if d.is_file() and d.suffix == ".pyi"] cmd = [ python_exe, "-m", "mypy.stubtest", # Use --ignore-missing-stub, because if someone makes a correct addition, they'll need to # also make a allowlist change and if someone makes an incorrect addition, they'll run into # false negatives. "--ignore-missing-stub", # Use --custom-typeshed-dir in case we make linked changes to stdlib or _typeshed "--custom-typeshed-dir", str(dist.parent.parent), *packages_to_check, *modules_to_check, ] allowlist_path = dist / "@tests/stubtest_allowlist.txt" if allowlist_path.exists(): cmd.extend(["--allowlist", str(allowlist_path)]) try: print(f"MYPYPATH={dist}", " ".join(cmd), file=sys.stderr) subprocess.run(cmd, env={"MYPYPATH": str(dist), "MYPY_FORCE_COLOR": "1"}, check=True) except subprocess.CalledProcessError: print(f"stubtest failed for {dist.name}", file=sys.stderr) print("\n\n", file=sys.stderr) if not allowlist_path.exists(): print( "Re-running stubtest with --generate-allowlist.\n" f"Add the following to {allowlist_path}:" ) subprocess.run(cmd + ["--generate-allowlist"], env={"MYPYPATH": str(dist)}) print("\n\n") raise StubtestFailed from None else: print(f"stubtest succeeded for {dist.name}", file=sys.stderr) print("\n\n", file=sys.stderr)
def run_stubtest(dist: Path) -> None: with open(dist / "METADATA.toml") as f: metadata = dict(tomli.loads(f.read())) # Ignore stubs that don't support Python 3 if not has_py3_stubs(dist): return with tempfile.TemporaryDirectory() as tmp: venv_dir = Path(tmp) venv.create(venv_dir, with_pip=True, clear=True) pip_exe = str(venv_dir / "bin" / "pip") python_exe = str(venv_dir / "bin" / "python") dist_version = metadata["version"] assert isinstance(dist_version, str) if dist_version == "0.1": dist_req = dist.name elif dist_version.endswith(".*"): dist_req = f"{dist.name}=={dist_version}" else: dist_req = f"{dist.name}=={dist_version}.*" # If @tests/requirements-stubtest.txt exists, run "pip install" on it. req_path = dist / "@tests" / "requirements-stubtest.txt" if req_path.exists(): try: pip_cmd = [pip_exe, "install", "-r", str(req_path)] subprocess.run(pip_cmd, check=True, capture_output=True) except subprocess.CalledProcessError as e: print(f"Failed to install requirements for {dist.name}", file=sys.stderr) print(e.stdout.decode(), file=sys.stderr) print(e.stderr.decode(), file=sys.stderr) raise # We need stubtest to be able to import the package, so install mypy into the venv # Hopefully mypy continues to not need too many dependencies # TODO: Maybe find a way to cache these in CI dists_to_install = [dist_req, get_mypy_req()] dists_to_install.extend(metadata.get("requires", [])) pip_cmd = [pip_exe, "install"] + dists_to_install print(" ".join(pip_cmd), file=sys.stderr) try: subprocess.run(pip_cmd, check=True, capture_output=True) except subprocess.CalledProcessError as e: print(f"Failed to install {dist.name}", file=sys.stderr) print(e.stdout.decode(), file=sys.stderr) print(e.stderr.decode(), file=sys.stderr) raise packages_to_check = [d.name for d in dist.iterdir() if d.is_dir() and d.name.isidentifier()] modules_to_check = [d.stem for d in dist.iterdir() if d.is_file() and d.suffix == ".pyi"] cmd = [ python_exe, "-m", "mypy.stubtest", # Use --ignore-missing-stub, because if someone makes a correct addition, they'll need to # also make a allowlist change and if someone makes an incorrect addition, they'll run into # false negatives. "--ignore-missing-stub", # Use --custom-typeshed-dir in case we make linked changes to stdlib or _typeshed "--custom-typeshed-dir", str(dist.parent.parent), *packages_to_check, *modules_to_check, ] allowlist_path = dist / "@tests/stubtest_allowlist.txt" if allowlist_path.exists(): cmd.extend(["--allowlist", str(allowlist_path)]) try: print(f"MYPYPATH={dist}", " ".join(cmd), file=sys.stderr) subprocess.run(cmd, env={"MYPYPATH": str(dist), "MYPY_FORCE_COLOR": "1"}, check=True) except subprocess.CalledProcessError: print(f"stubtest failed for {dist.name}", file=sys.stderr) print("\n\n", file=sys.stderr) if not allowlist_path.exists(): print( "Re-running stubtest with --generate-allowlist.\n" f"Add the following to {allowlist_path}:" ) subprocess.run(cmd + ["--generate-allowlist"], env={"MYPYPATH": str(dist)}) print("\n\n") raise StubtestFailed from None else: print(f"stubtest succeeded for {dist.name}", file=sys.stderr) print("\n\n", file=sys.stderr)