File size: 18,215 Bytes
bcd86b7
abbd38c
0ea086a
abbd38c
 
0ea086a
abbd38c
0ea086a
abbd38c
0ea086a
 
bcd86b7
a991ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d1de5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a991ba6
bcd86b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6c399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b05948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea086a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
976ddea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2daf0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c5553
b2daf0f
c5b8690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663f244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72a40f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1b3ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70cabee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69ff50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c9475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff408b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fb846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcd86b7
a991ba6
 
 
 
d8d1de5
 
 
 
bcd86b7
 
 
 
6e6c399
 
 
 
8b05948
 
 
 
0ea086a
 
 
 
976ddea
 
 
 
b2daf0f
 
 
 
c5b8690
 
 
 
663f244
 
 
 
72a40f4
 
 
 
a1b3ba0
 
 
 
70cabee
 
 
 
69ff50b
 
 
 
c2c9475
 
 
 
eff408b
 
 
 
64fb846
 
 
 
bcd86b7
abbd38c
 
 
 
 
e422d09
 
abbd38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372c1fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e422d09
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
---
annotations_creators:
- no-annotation
license: other
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: epf_electricity_be
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[us]
  - name: target
    sequence: float64
  - name: Generation forecast
    sequence: float64
  - name: System load forecast
    sequence: float64
  splits:
  - name: train
    num_bytes: 1677334
    num_examples: 1
  download_size: 1001070
  dataset_size: 1677334
- config_name: epf_electricity_de
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[us]
  - name: target
    sequence: float64
  - name: Ampirion Load Forecast
    sequence: float64
  - name: PV+Wind Forecast
    sequence: float64
  splits:
  - name: train
    num_bytes: 1677334
    num_examples: 1
  download_size: 1285249
  dataset_size: 1677334
- config_name: epf_electricity_fr
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[us]
  - name: target
    sequence: float64
  - name: Generation forecast
    sequence: float64
  - name: System load forecast
    sequence: float64
  splits:
  - name: train
    num_bytes: 1677334
    num_examples: 1
  download_size: 1075381
  dataset_size: 1677334
- config_name: epf_electricity_np
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[us]
  - name: target
    sequence: float64
  - name: Grid load forecast
    sequence: float64
  - name: Wind power forecast
    sequence: float64
  splits:
  - name: train
    num_bytes: 1677334
    num_examples: 1
  download_size: 902996
  dataset_size: 1677334
- config_name: epf_electricity_pjm
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[us]
  - name: target
    sequence: float64
  - name: System load forecast
    sequence: float64
  - name: Zonal COMED load foecast
    sequence: float64
  splits:
  - name: train
    num_bytes: 1677335
    num_examples: 1
  download_size: 1396603
  dataset_size: 1677335
- config_name: favorita_store_sales
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[us]
  - name: sales
    sequence: float64
  - name: onpromotion
    sequence: int64
  - name: oil_price
    sequence: float64
  - name: holiday
    sequence: string
  - name: store_nbr
    dtype: int64
  - name: family
    dtype: string
  - name: city
    dtype: string
  - name: state
    dtype: string
  - name: type
    dtype: string
  - name: cluster
    dtype: int64
  splits:
  - name: train
    num_bytes: 113609820
    num_examples: 1782
  download_size: 8385672
  dataset_size: 113609820
- config_name: favorita_transactions
  features:
  - name: id
    dtype: int64
  - name: timestamp
    sequence: timestamp[us]
  - name: transactions
    sequence: int64
  - name: oil_price
    sequence: float64
  - name: holiday
    sequence: string
  - name: store_nbr
    dtype: int64
  - name: city
    dtype: string
  - name: state
    dtype: string
  - name: type
    dtype: string
  - name: cluster
    dtype: int64
  splits:
  - name: train
    num_bytes: 2711975
    num_examples: 54
  download_size: 207866
  dataset_size: 2711975
- config_name: m5_with_covariates
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[us]
  - name: target
    sequence: float64
  - name: snap_CA
    sequence: int64
  - name: snap_TX
    sequence: int64
  - name: snap_WI
    sequence: int64
  - name: sell_price
    sequence: float64
  - name: event_Cultural
    sequence: int64
  - name: event_National
    sequence: int64
  - name: event_Religious
    sequence: int64
  - name: event_Sporting
    sequence: int64
  - name: item_id
    dtype: string
  - name: dept_id
    dtype: string
  - name: cat_id
    dtype: string
  - name: store_id
    dtype: string
  - name: state_id
    dtype: string
  splits:
  - name: train
    num_bytes: 3815531330
    num_examples: 30490
  download_size: 81672751
  dataset_size: 3815531330
- config_name: proenfo_bull
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: airtemperature
    sequence: float64
  - name: dewtemperature
    sequence: float64
  - name: sealvlpressure
    sequence: float64
  splits:
  - name: train
    num_bytes: 28773967
    num_examples: 41
  download_size: 3893651
  dataset_size: 28773967
- config_name: proenfo_cockatoo
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: airtemperature
    sequence: float64
  - name: dewtemperature
    sequence: float64
  - name: sealvlpressure
    sequence: float64
  - name: winddirection
    sequence: float64
  - name: windspeed
    sequence: float64
  splits:
  - name: train
    num_bytes: 982517
    num_examples: 1
  download_size: 408973
  dataset_size: 982517
- config_name: proenfo_covid19
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: pressure_kpa
    sequence: float64
  - name: cloud_cover_perc
    sequence: float64
  - name: humidity_perc
    sequence: float64
  - name: airtemperature
    sequence: float64
  - name: wind_direction_deg
    sequence: float64
  - name: wind_speed_kmh
    sequence: float64
  splits:
  - name: train
    num_bytes: 2042408
    num_examples: 1
  download_size: 965912
  dataset_size: 2042408
- config_name: proenfo_gfc12_load
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: airtemperature
    sequence: float64
  splits:
  - name: train
    num_bytes: 10405494
    num_examples: 11
  download_size: 3161406
  dataset_size: 10405494
- config_name: proenfo_gfc14_load
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: airtemperature
    sequence: float64
  splits:
  - name: train
    num_bytes: 420500
    num_examples: 1
  download_size: 200463
  dataset_size: 420500
- config_name: proenfo_gfc17_load
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: airtemperature
    sequence: int64
  splits:
  - name: train
    num_bytes: 3368608
    num_examples: 8
  download_size: 1562067
  dataset_size: 3368608
- config_name: proenfo_hog
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: airtemperature
    sequence: float64
  - name: dewtemperature
    sequence: float64
  - name: sealvlpressure
    sequence: float64
  - name: winddirection
    sequence: float64
  - name: windspeed
    sequence: float64
  splits:
  - name: train
    num_bytes: 23580325
    num_examples: 24
  download_size: 3291179
  dataset_size: 23580325
- config_name: proenfo_pdb
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: airtemperature
    sequence: int64
  splits:
  - name: train
    num_bytes: 420500
    num_examples: 1
  download_size: 226285
  dataset_size: 420500
- config_name: proenfo_spain
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ms]
  - name: target
    sequence: float64
  - name: generation_biomass
    sequence: float64
  - name: generation_fossil_brown_coal_lignite
    sequence: float64
  - name: generation_fossil_coal_derived_gas
    sequence: float64
  - name: generation_fossil_gas
    sequence: float64
  - name: generation_fossil_hard_coal
    sequence: float64
  - name: generation_fossil_oil
    sequence: float64
  - name: generation_fossil_oil_shale
    sequence: float64
  - name: generation_fossil_peat
    sequence: float64
  - name: generation_geothermal
    sequence: float64
  - name: generation_hydro_pumped_storage_consumption
    sequence: float64
  - name: generation_hydro_run_of_river_and_poundage
    sequence: float64
  - name: generation_hydro_water_reservoir
    sequence: float64
  - name: generation_marine
    sequence: float64
  - name: generation_nuclear
    sequence: float64
  - name: generation_other
    sequence: float64
  - name: generation_other_renewable
    sequence: float64
  - name: generation_solar
    sequence: float64
  - name: generation_waste
    sequence: float64
  - name: generation_wind_offshore
    sequence: float64
  - name: generation_wind_onshore
    sequence: float64
  splits:
  - name: train
    num_bytes: 6171357
    num_examples: 1
  download_size: 1275626
  dataset_size: 6171357
configs:
- config_name: epf_electricity_be
  data_files:
  - split: train
    path: epf/electricity_be/train-*
- config_name: epf_electricity_de
  data_files:
  - split: train
    path: epf/electricity_de/train-*
- config_name: epf_electricity_fr
  data_files:
  - split: train
    path: epf/electricity_fr/train-*
- config_name: epf_electricity_np
  data_files:
  - split: train
    path: epf/electricity_np/train-*
- config_name: epf_electricity_pjm
  data_files:
  - split: train
    path: epf/electricity_pjm/train-*
- config_name: favorita_store_sales
  data_files:
  - split: train
    path: favorita/store_sales/train-*
- config_name: favorita_transactions
  data_files:
  - split: train
    path: favorita/transactions/train-*
- config_name: m5_with_covariates
  data_files:
  - split: train
    path: m5_with_covariates/train-*
- config_name: proenfo_bull
  data_files:
  - split: train
    path: proenfo/bull/train-*
- config_name: proenfo_cockatoo
  data_files:
  - split: train
    path: proenfo/cockatoo/train-*
- config_name: proenfo_covid19
  data_files:
  - split: train
    path: proenfo/covid19/train-*
- config_name: proenfo_gfc12_load
  data_files:
  - split: train
    path: proenfo/gfc12_load/train-*
- config_name: proenfo_gfc14_load
  data_files:
  - split: train
    path: proenfo/gfc14_load/train-*
- config_name: proenfo_gfc17_load
  data_files:
  - split: train
    path: proenfo/gfc17_load/train-*
- config_name: proenfo_hog
  data_files:
  - split: train
    path: proenfo/hog/train-*
- config_name: proenfo_pdb
  data_files:
  - split: train
    path: proenfo/pdb/train-*
- config_name: proenfo_spain
  data_files:
  - split: train
    path: proenfo/spain/train-*
---

## Forecast evaluation datasets

This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.

The main focus of this repository is on datasets that reflect real-world forecasting scenarios, such as those involving covariates, missing values, and other practical complexities.

The datasets follow a format that is compatible with the [`fev`](https://github.com/autogluon/fev) package.

## Data format and usage

Each dataset satisfies the following schema:
- each dataset entry (=row) represents a single univariate or multivariate time series
- each entry contains
  - 1/ a field of type `Sequence(timestamp)` that contains the timestamps of observations
  - 2/ at least one field of type `Sequence(float)` that can be used as the target time series or dynamic covariates
  - 3/ a field of type `string` that contains the unique ID of each time series
- all fields of type `Sequence` have the same length

Datasets can be loaded using the [🤗 `datasets`](https://huggingface.co/docs/datasets/en/index) library.

```python
import datasets

ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
ds.set_format("numpy")  # sequences returned as numpy arrays
```
Example entry in the `epf_electricity_de` dataset
```python
>>> ds[0]
{'id': 'DE',
 'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
        '2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
        '2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
       dtype='datetime64[us]'),
 'target': array([34.97, 33.43, 32.74, ...,  5.3 ,  1.86, -0.92], dtype=float32),
 'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
       dtype=float32),
 'PV+Wind Forecast': array([ 3569.5276,  3315.275 ,  3107.3076, ..., 29653.008 , 29520.33  ,
        29466.408 ], dtype=float32)}
```

For more details about the dataset format and usage, check out the [`fev` documentation on GitHub](https://github.com/autogluon/fev?tab=readme-ov-file#tutorials).

## Dataset statistics

**Disclaimer:** These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data.


| config                  | freq   |   # items |     # obs |   # dynamic cols |   # static cols | source                                                                  | citation                                                                                         |
|:------------------------|:-------|----------:|----------:|-----------------:|----------------:|:------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| `epf_electricity_be`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_de`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_fr`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_np`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_pjm`   | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `favorita_store_sales`  | D      |      1782 |  12032064 |                4 |               6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[2]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `favorita_transactions` | D      |        54 |    273456 |                3 |               5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[2]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `m5_with_covariates`    | D      |     30490 | 428849460 |                9 |               5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy             | [[3]](https://doi.org/10.1016/j.ijforecast.2021.07.007)                                          |
| `proenfo_bull`          | h      |        41 |   2877216 |                4 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[4]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_cockatoo`      | h      |         1 |    105264 |                6 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[4]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_covid19`       | h      |         1 |    223384 |                7 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[4]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc12_load`    | h      |        11 |    867108 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[4]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc14_load`    | h      |         1 |     35040 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[4]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc17_load`    | h      |         8 |    280704 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[4]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_hog`           | h      |        24 |   2526336 |                6 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[4]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_pdb`           | h      |         1 |     35040 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[4]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_spain`         | h      |         1 |    736344 |               21 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[4]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |

## Publications using these datasets

- ["ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables"](https://arxiv.org/abs/2503.12107)