seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
8245327650
from pymongo import MongoClient from fastapi import HTTPException from datetime import datetime class ModekenSystemManager: def __init__(self, username, password): self.client = MongoClient(f'mongodb://{username}:{password}@db.modeken-system.com:27017') self.db = self.client['modeken-system'] self.collections = self.db['collections'] self.manager = {} def new(self, item_type): self.manager[f'{item_type}'] = Manager(self.db[f'tickets-{item_type}'], self.collections, item_type) if not self.collections.find_one({'item_type': item_type}): self.collections.insert_one({'item_type': item_type, 'count': 0}) return self.manager[f'{item_type}'] class CollectionManager: def __init__(self, collections, item_type): self.collections = collections self.item_type = item_type def add_collection(self): if not self.collections.update_one({'item_type': self.item_type}, {'$inc': {'count':1}}): raise HTTPException(status_code=500, detail='Internal Server Error') def get_collection(self): d = self.collections.find_one({'item_type': self.item_type}) if not d: raise HTTPException(status_code=500, detail='Internal Server Error') del d['_id'] del d['item_type'] return d def reset_collection(self): if not self.collections.update_one({'item_type': self.item_type}, {'$set': {'count':0}}): raise HTTPException(status_code=500, detail='Internal Server Error') class TicketManager: def __init__(self, tickets): self.tickets = tickets self.last_ticket = 0 def get_tickets_wait(self, item_type): data = [] for i in self.tickets.find({'status': 'wait'}): del i['_id'] del i['status'] i['item_number'] = item_type + str(i['item_number']) data.append(i) return data def get_tickets_ready(self, item_type): data = [] for i in self.tickets.find({'status': 'ready'}): del i['_id'] del i['status'] i['item_number'] = item_type + str(i['item_number']) data.append(i) return data def get_tickets(self): data = [] for i in self.tickets.find(): del i['_id'] data.append(i) return data def to_ready_ticket(self, item_number): t = self.tickets.find_one({'$and': [{'item_number': item_number}, {'status': 'wait'}]}) if not t: raise HTTPException(status_code=404, detail=f'Not Found: {item_number}') time = t['created_time'] return self.tickets.update_one({'$and': [{'item_number': item_number}, {'status': 'wait'}]}, {'$set': {'status': 'ready'}}), time def to_wait_ticket(self, item_number): t = self.tickets.find_one({'$and': [{'item_number': item_number}, {'status': 'ready'}]}) if not t: raise HTTPException(status_code=404, detail=f'Not Found: {item_number}') time = t['created_time'] return self.tickets.update_one({'$and': [{'item_number': item_number}, {'status': 'ready'}]}, {'$set': {'status': 'wait'}}), time def cancel_ticket(self, item_number): t = self.tickets.find_one({'$and': [{'item_number': item_number}, {'status': 'wait'}]}) if not t: raise HTTPException(status_code=404, detail=f'Not Found: {item_number}') return self.tickets.update_one({'$and': [{'item_number': item_number}, {'status': 'wait'}]}, {'$set': {'status': 'cancel'}}) def delete_ticket(self, item_number): t = self.tickets.find_one({'$and': [{'item_number': item_number}, {'status': 'ready'}]}) if not t: raise HTTPException(status_code=404, detail=f'Not Found: {item_number}') return self.tickets.update_one({'$and': [{'item_number': item_number}, {'status': 'ready'}]}, {'$set': {'status': 'delete'}}) def add_ticket(self): self.last_ticket += 1 item_number = self.last_ticket now = datetime.now().strftime('%H:%M') data = {'item_number': item_number, 'status': 'wait', 'created_time': now} if self.tickets.find_one({'item_number': item_number}): return self.add_ticket() else: if not self.tickets.insert_one(data): raise HTTPException(status_code=500, detail='Internal Server Error') return item_number, now def reset_tickets(self): if not self.tickets.delete_many({}): raise HTTPException(status_code=500, detail='Internal Server Error') else: self.last_ticket = 0 class Manager(CollectionManager, TicketManager): def __init__(self, tickets, collections, item_type): CollectionManager.__init__(self, collections, item_type) TicketManager.__init__(self, tickets) def delete_ticket(self, item_number): super().delete_ticket(item_number) super().add_collection()
tochiman/modeken-ticket-system
backend/src/mongo.py
mongo.py
py
5,068
python
en
code
0
github-code
6
[ { "api_name": "pymongo.MongoClient", "line_number": 8, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 27, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 32, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 39, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 75, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 82, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 89, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 95, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 101, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 101, "usage_type": "name" }, { "api_name": "fastapi.HTTPException", "line_number": 107, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 112, "usage_type": "call" } ]
8366348060
# /usr/bin/env python # -*- coding:utf-8 -*- import sys import math from dataclasses import dataclass from functools import reduce from functools import wraps """ 迭代器 迭代是Python最强大的功能之一,是访问集合元素的一种方式。 迭代器是一个可以记住遍历的位置的对象。 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退 迭代器有两个基本的方法: iter() 创建迭代器 next() 获取迭代器的下一个元素 字符串、列表、元组对象 都可用于创建迭代器 迭代器结束的异常 StopIteration 创建迭代器 把一个类作为一个迭代器使用需要在类中实现两个方法__iter__() 与 __next__() __iter__()方法返回一个特殊的迭代器对象,这个迭代器对象实现了__next__()方法并通过StopIteration异常标识迭代的完成。 __next__()方法会返回下一个迭代器对象 只有实现了__iter__(),才能在使用iter()的时候创建一个迭代器 只有实现了__next__(),才能在使用next()的时候通过__next__()按照规则获取下一个值 注意 只有实现了__iter__()方法,才能使用iter(),对该类的对象创建迭代器。但是不是说实现了__iter__()方法,就已经创建了迭代器。这是单独的概念。 只有实现了__next__(),才能在使用next()的时候通过__next__()按照规则获取下一个值。但是不是说没有实现__next__(),就不能创建迭代器了。 """ """ 实现了迭代器函数的类 """ class iterationNum: def __iter__(self): self.num = 1 # 迭代器迭代的是对象。所以这里需要返回self。self表示对象 return self def __next__(self): # 需要先把self.a保存返回,再加1 # 需要先把self.num保存,用于后序返回,然后再+1。否则开始的地方就不是1了。就是2了 x = self.num self.num += 1 return x """ 迭代器的多种使用方式 """ def mapLearn(): list = [1, 2, 3, 4] # 列表 print("迭代器使用方式01") mapL01 = iter(list) # 使用列表创建迭代器 for mapl in mapL01: # print(mapl) # 使用end修改输出的最后字符,这里将换行替换为空格 print(mapl, end=" ") print("迭代器使用方式02") # 迭代器输出完后,不能在用next,否则会报错StopIteration mapL02 = iter(list) # 使用列表创建迭代器 print(next(mapL02)) print(next(mapL02)) print(next(mapL02)) print(next(mapL02)) # print(next(mapL02)) print("迭代器使用方式03") mapL03 = iter(list) # 使用列表创建迭代器 # i = True # while i: # try: # mapl03 = next(mapL03) # print(mapl03) # except StopIteration: # i = False # print("迭代器03已遍历结束") while True: try: print(next(mapL03)) except StopIteration: print("迭代器03已遍历结束") break print("迭代器对象创建及使用") itClass = iterationNum() itN = iter(itClass) # while True: # try: # b = next(itN) # if b == 10: # break; # else: # print(b) # except StopIteration: # break while True: try: print(next(itN)) except StopIteration: break """ 生成器 用于生成迭代器 在Python中,使用yield的函数被称为生成器(generator) 跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作。 简单理解:生成器就是一个迭代器 调用一个生成器函数,返回的是一个迭代器对象 在调用生成器运行的过程中,每次遇到yield时函数会暂停并保存当前所有的运行信息,返回yield的值,并在下一次执行next()方法时从当前位置继续运行。 使用yield生成迭代器需要配合循环使用 所谓生成器就是利用循环将某个变量或某个值整合到一起,作为一个迭代器返回 也可以理解为将想要的数整合到一起,作为一个迭代器返回 """ """ 生成器函数 斐波那契数列 """ def fibonacci(n): a, b, counter = 0, 1, 0 while True: if (counter > n): return yield a a, b = b, a + b counter += 1 """ 生成器函数练习 使用yield生成迭代器,需要配合循环使用 """ def yieldTest(n): i = 0 while True: yield i if i <= n: i += 1 else: return """ 生成器的使用练习 """ def yieldLearn(): print("通过生成器实现:斐波那契数列") fi = fibonacci(10) while True: try: print(next(fi)) except StopIteration: break print("自定义生成器实现") yt = yieldTest(10) while True: try: print(next(yt)) except StopIteration: break """ map&filter&reduce 函数式编程的代表 内置函数map和filter是在列表(或类似的称为迭代的对象)上运行的非常有用的高阶函数 函数map接受一个函数和一个迭代器作为参数,并返回一个新的迭代器,该函数应用于每个参数 map() 使用迭代器按指定规则生成迭代器 根据提供的函数对指定序列做映射 语法: map(function, iterable, ...) 参数: function 函数 iterable 一个或多个序列 返回值: Python2.x 返回列表 Python3.x 返回迭代器 解释: 第一个参数function以参数序列iterable中的每一个元素调用function函数 返回包含每次function函数返回值的新列表 """ """ 函数式编程map()高阶函数的练习 """ """ 定义一个函数用于测试map 计算平方数 """ def square(x): return x ** 2 """ map()使用练习 """ def mapLearn(): list = [1, 2, 3, 4, 5] # 对list中的每一个元素按照square进行处理,并返回结果集,作为迭代器返回 print("使用函数实现map()") mL01 = map(square, list) for ml in mL01: print(ml) # 使用lambda实现 print("使用lambda表达式实现map()") mL02 = map(lambda x: x ** 2, list) while True: try: print(next(mL02)) except StopIteration: break """ 使用两个列表作为两个参数 使用lambda接受两个参数进行map()计算 """ print("使用lambda计算两个迭代器实现map()") listX = [1, 2, 3, 4, 5] listY = [-1, -2, -3, -4, -5] mL03 = map(lambda x, y: x + y, listX, listY) for ml03 in mL03: print(ml03) """ filter() filter()函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表 语法: filter(function, iterable) 参数: function 判断函数 iterable 可迭代对象 返回值: Python2.x 返回列表 Python3.x 返回可迭代对象 解释: 接收两个参数,第一个是函数,第二个是序列,序列的每个元素作为参数传递给函数进行判断。 然后返回True或False,最后将返回True的元素放到新列表中 """ """ 函数式编程filter()高阶函数的练习 """ """ 定义一个函数用于测试filter 判断是否单数 """ def isOdd(n): return n % 2 == 1 """ filter使用练习 """ def filterLearn(): list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] print("使用函数实现filter") fL01 = filter(isOdd, list) for fl in fL01: print(fl) print("使用lambda实现filter") fL02 = filter(lambda x: x % 2 == 1, list) while True: try: print(next(fL02)) except StopIteration: break print("使用filter过滤除1~100中平方根是整数的数") fL03 = filter(lambda x: math.sqrt(x) % 1 == 0, range(1, 101, 1)) for fl03 in fL03: print(fl03) """ reduce() reduce()函数会对参数序列中元素进行累积 语法: reduce(function, iterable[, initializer]) 参数: function 函数,有两个参数 iterable 可迭代对象 initializer 可选,初始参数 返回值: 函数计算结果 解释: 函数将一个数据集合(链表,元组等)中的所有数据进行下列操作: 用传给reduce中的函数function(有两个参数)先对集合中的第1、2个元素进行操作 得到的结果再与第三个数据用function函数运算,最后得到一个结果 也就是说把iterable中的所有值进行function计算,得到一个计算结果 注意: Python3.x reduce()已经被移动到functools模块里,如果要使用,需要引入functools模块来调用reduce()函数 from functools import reduce """ """ 函数式编程reduce()高阶函数的练习 """ """ 定义一个函数用于测试reduce 加法 """ def addRed(x, y): return x + y """ reduce使用练习 """ def reduceLearn(): list = [1, 2, 3, 4, 5] rL01 = reduce(addRed, list) print("使用函数实现reduce") print(rL01) print("使用lambda实现reduce") rL02 = reduce(lambda x, y: x + y, list) print(rL02) print("使用reduce计算1-100的和") rL03 = reduce(lambda x, y: x + y, range(1, 101, 1)) print(rL03) print("使用reduce计算1-100的积") rL04 = reduce(lambda x, y: x * y, range(1, 101, 1)) print(rL04) """ 装饰器 装饰器(Decorators)是Python的一个重要部分。 简单的说:他们是修改其他函数的功能的函数。 有助于让代码更简单,更Pythonic(Python范儿)。 需要知道在哪里使用装饰器,以及如何开发装饰器。 装饰器是得在一个函数的前后执行代码 工厂模式? 装饰器助力用更少、更简单的代码来实现复杂的逻辑,并在其他地方实现重用。 装饰器就是定义一个嵌套函数,已一个函数作为参数,在嵌套函数中把参数函数前后加一下语句,然后把嵌套函数作为返回值。这样就相当于修改了参数函数的功能 注意: 装饰器可以使用类的方式实现。在类中用下面的函数和标记实现装饰器类 __call__ @wraps(func) 装饰器包装 functools.wraps 装饰器修饰函数 @wraps 接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等功能。 这可以让我们在装饰器里面访问在装饰之前的函数的属性 @装饰器名称 在函数前面加@+装饰器名称,表示使用指定的装饰器对该函数进行装饰。 在后面使用该函数的是,就是已经经过装饰的功能了 装饰器常用实现 授权检查 日志实现 装饰器类 发送邮件 ... 装饰器定义及使用标准语句 from functools import wraps def decorator_name(f): @wraps(f) def decorated(*args, **kwargs): if not can_run: return "Function will not run" return f(*args, **kwargs) return decorated @decorator_name def func(): return("Function is running") can_run = True print(func()) # Output: Function is running can_run = False print(func()) # Output: Function will not run 常见装饰器 https://zhuanlan.zhihu.com/p/602457512 @classmethod: 声明一个类方法,可以通过类名直接调用。 python类中有三种方法类型: Instance methods(实例方法): 绑定一个实例的方法,利用这种方法可以访问和修改实例数据。 通过类的实例调用实例方法,通过self参数访问实例数据。 第一个参数是自身。 Class methods(类方法): @classmethod 绑定一个类的方法,无法利用该方法修改实例数据。 是调用类自身的一种方法,它将类作为第一个参数,通常将其命名为cls Static methods(静态方法): @staticmethod 不绑定实例或类的方法。仅仅因为他们在逻辑上属于那个类,才被包含进来。 静态方法通常用于执行一组相关任务的使用程序类中,如数学计算。通过将相关函数组织成类的静态方法,使代码变得更加有组织、更容易理解。 @staticmethod: 声明一个静态方法,可以通过类名直接调用。 @property: 为Python类设置处理程序和设置程序。 将一个方法转换为只读属性。也可以理解成,将一个方法改成了 __getter__方法。并且可以拿这个方法继续对后面的方法进行装饰。 用于对属性进行保护 Getters和Setters是面向对象编程(OOP)中的重要概念。 对于类中的每个实例变量,getter方法返回其值,而setter方法设置或更新其值。鉴于此,Getters和Setters又分别称为Accessors和Mutators。 它们用于保护数据不被直接意外访问或修改。 不同的OOP语言有不同的机制来定义获取器getters和setters。在Python中,可以简单地使用@property装饰器。 __getter__ __setter__ 通过property装饰后,可以直接取变量,也可以通过函数取变量。函数不能加() @abstractmethod: 声明一个抽象方法,子类必须实现它。 @wraps: 用于保留原始函数的元数据(如函数名、注释等)。 创建装饰器的时候使用。用于保留原始函数的元数据(如函数名、注释等)。 @lru_cache:利用缓存提速程序。是提速Python函数最简易的方法 此装饰器将函数的结果放入缓存,供后续具有相同参数的函数调用,无需再次执行具有相同参数的函数。 @total_ordering: 填充缺失排序方法的类装饰器 函数工具模块中的@total_sordeng装饰器为预定义Python类生成缺失比较方法。 在类中没有对__ge__、__gt__和__le__方法进行定义。对该类的对象进行比较是会有问题。这个装饰器会补充缺失的比较方法 一些旧的类可能未充分定义比较方法,将@total_ordering装饰器添加到其中之后,后续的使用更加安全。 @contextmanager:定制的语境管理器 可以使用with语句打开文件,在写入之后将自动关闭。无需显式地调用f.close()函数来关闭该文件。 @cached_property:将方法的结果作为属性放入缓存 Python 3.8的函数工具模块引入了一个新的功能强大的装饰器-@cached_property,它将类的方法转换为一个属性,计算出该属性的值之后,将其作为实例的普通属性放入缓存。 @dataclass:用更少的代码定义专用类 (在Python3.7中引入)可以自动为一个类生成几种专用的方法,如__init__、__repr__、__eq__、__lt__等。 @atexit.register:注册一个程序正常终止的函数 atexit模块的@register装饰器允许在Python解释器退出时执行一个函数。 @login_required: 用于限制需要用户登录才能访问的视图函数。 @cache: 缓存函数的结果,避免重复计算。 @retry: 在发生错误时自动重试代码块一定次数。 需要自己定义 函数 函数可以赋值 函数中可以定义函数(函数中定义的函数,在函数外无法访问) 函数可以返回函数 funcName() 执行函数 funcName() funcName 把函数整体赋值给另外一个变量 a1 = funcName a1() """ """ 一切皆对象 """ """ 函数赋值使用实例 """ def hi(name="renxw"): return "hi " + name """ 函数中定义函数 函数中定义的函数,在函数外不能被访问 """ def hiFun01(name="renxw"): print("now you are inside the hiFun01() function") def hiFun02(): return "now you are in the hiFun02() function" def hiFun03(): return "now you are in the hiFun03() function" print(hiFun02()) print(hiFun03()) print("now you are back in the hiFun01() function") """ 从函数中返回函数 """ def hiFun04(name="renxw"): print("now you are inside the hiFun04() function") def hiFun02(): return "now you are in the hiFun02() function" def hiFun03(): return "now you are in the hiFun03() function" if name == "renxw": return hiFun02 else: return hiFun03 """ 函数练习 """ def hiFunTest(): print("函数赋值") print(hi()) hi01 = hi print(hi01()) # 可以删除hi01,删除hi报错 # del hi01 # del hi # print(hi()) # print(hi01()) print("在函数中定义函数") hiFun01() print("从函数中返回函数") hiFun05 = hiFun04() print(hiFun05()) """ 装饰器练习 """ """ 装饰器函数定义 functools.wraps 指明装饰的函数 @wraps(a01Fun) 接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等功能。 这可以让我们在装饰器里面访问在装饰之前的函数的属性 """ def a01Decorator(a01Fun): @wraps(a01Fun) def wrapTheFunction(): print("I am doing some boring work before executing a01Fun()") a01Fun() print("I am doing some boring work after executing a01Fun()") return wrapTheFunction """ @指明装饰器 在指明装饰器后,在使用函数的时候就可以直接使用装饰后的功能,不需要再使用装饰器进行包装赋值了 """ @a01Decorator def a02Fun(): print("I am the function which needs some decoration to remove my foul smell") """ 装饰器练习 """ def decoratorLearn(): a02Fun() print(a02Fun.__name__) # a03Fun = a01Decorator(a02Fun) # a03Fun() # print(a03Fun.__name__) return """ 内置装饰器练习 """ class IterClass: def __init__(self): self._score = 0 @property def score1(self): return self._score @score1.setter def score(self, s): if 0 <= s <= 100: self._score = s else: raise Exception("参数太大,只允许0-100") @dataclass class Point: """@dataclass装饰器练习""" x: float y: float def point_func(): point = Point(1.0, 2.0) print(point) """自定义装饰器retry""" def retry(max_retries=3, timeout=1): """ 定义装饰:用于函数重试,和等待重试时长。 这里面的参数时装饰器函数本身的参数 :param max_retries: 最大重试次数 :param timeout: 设置超时重试时长 :return: """ def decorator(func): """ 定义装饰器和将装饰器返回 :param func: 以函数式编程的方式,使用参数接收被装饰函数的函数名,在装饰器中使用 func() 进行执行函数 :return: wrapper(被装饰之后的函数名,在函数被装饰之后,调用别装饰函数的时候,实际上调用的就是wrapper函数) """ @wraps(func) def wrapper(*args, **kwargs): """ 定义被装饰函数,被装饰之后的函数功能 这里的参数时被装饰函数的参数 @wraps(func): 这里可以使用wraps用来标识装饰器,并且接收func函数名。不写也可以 @wraps接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等等的功能。这可以让我们在装饰器里面访问在装饰之前的函数的属性。 :param args: (形参)(元组)用于接收被装饰函数的所有非关键字参数 :param kwargs: (形参)(字典)用于接收被装饰函数的所有关键字参数 :return: """ """使用循环的方式对被装饰函数进行重试""" retries = 0 exce_type = 0 while retries < max_retries: try: """ args: (实参)将通过wrapper函数接收到的被装饰函数的非关键字参数的参数集合(元组),使用*进行展开,将其中所有元素单独传递给被装饰函数 kwargs: (实参)将通过wrapper函数接收到的被装饰函数的关键字参数的参数集合(字典),使用**进行展开,将其中所有元素(键:值对)单独传递给被装饰函数 1、将被装饰函数所有参数传递给被装饰函数 2、执行被装饰函数 3、返回被装饰函数的return值(被装饰函数的返回值需要单独返回,要不然无法被引用) 注意点: 如果func执行没有异常,就会直接执行return语句将func结果返回,那就不会再进行循环了。而不会在func正常的情况下还将func循环执行三次 """ return func(*args, **kwargs) except BaseException as e: """重试次数+1""" retries += 1 """最后失败时,将失败原因进行保存,进行输出!""" exce_type = e if retries == max_retries else None """输出失败日志""" print(f"执行 {func.__name__} 失败,正在进行第 {retries} 次重试!") """失败重试,等待时间""" time.sleep(timeout) """ 最终失败后将异常抛出,并且将失败信息进行提示! 异常抛出的时候使用之前存储好的异常遍历,获取异常类型,准确的进行异常信息输出 """ raise exce_type.__class__(f"执行 {func.__name__} 失败,已达到最大重试次数,最终的失败原因是 {exce_type}!") """函数式编程:将被装饰器装饰后的的函数名返回""" return wrapper """函数式编程:将装饰器函数的函数名返回""" return decorator @retry(max_retries=3, timeout=1) def retry_test(): """ @retry: 使用装饰器retry对函数进行装饰 max_retries: 传递给装饰器的参数 timeout: 传递给装饰器的参数 :return: """ print("retry测试") raise(IOError, "主动抛出异常,用于装饰器测试!") return 1 @retry(max_retries=10, timeout=3) def sum_num(x, y): a = x + y # raise (IOError, "主动抛出异常,用于装饰器测试!") return a """ 递归练习 x! x的阶乘的实现 """ def factorial(x): if x == 1: return 1 else: return x * factorial(x - 1) """ 递归练习 """ def recursionLearn(): print(factorial(10)) if __name__ == "__main__": # print("迭代器练习") # mapLearn() # print("生成器练习") # yieldLearn() # print("函数式编程高阶函数-map练习") # mapLearn() # print("函数式编程高阶函数-filter练习") # filterLearn() # print("函数式编程高阶函数-reduce练习") # reduceLearn() # print("函数练习") # hiFunTest() # print("装饰器练习") # decoratorLearn() print("内置装饰器练习") ic = IterClass() ic.score = 10 print(ic.score) print(ic.score1) ic.score = 100 print(ic.score) print(ic.score1) point_func() # print("递归练习") # recursionLearn()
renxiaowei-1991/pythonLearn
a01PythonLearn/package/b01PythonLearn/c23ClassHighLearn.py
c23ClassHighLearn.py
py
24,298
python
zh
code
0
github-code
6
[ { "api_name": "math.sqrt", "line_number": 314, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 361, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 366, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 370, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 374, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 593, "usage_type": "call" }, { "api_name": "dataclasses.dataclass", "line_number": 646, "usage_type": "name" }, { "api_name": "functools.wraps", "line_number": 673, "usage_type": "call" } ]
20972559660
import torch from tools.image import transforms, cv from tools.image.index_map import default_map from tools import tensor def to_rgb(hex): return ((hex >> 16) & 255, (hex >> 8) & 255, (hex >> 0) & 255) def draw_box(image, box, scale=1.0, name=None, confidence=None, thickness=2, color=(255, 0, 0), text_color=None): text_color = text_color or color image = cv.rectangle(image, box[:2], box[2:], color=color, thickness=int(thickness * scale)) if not (name is None): image = cv.putText(image, name, (box[0], box[1] + int(8 * scale)), scale = 0.7 * scale, color=text_color, thickness=int(1*scale)) if not (confidence is None): str = "{:.2f}".format(confidence) image = cv.putText(image, str, (box[0], box[3] - 2), scale = 0.7 * scale, color=text_color, thickness=int(1*scale)) return image def overlay(eval, mode='target', threshold = 0.5, scale=1.0, classes=None): image = eval.image.clone() def overlay_prediction(): for detection in eval.detections._sequence(): if detection.confidence < threshold: break label_class = classes[detection.label] draw_box(image, detection.bbox, scale=scale, confidence=detection.confidence, name=label_class.name, color=to_rgb(label_class.colour)) def overlay_target(): for target in eval.target._sequence(): label_class = classes[target.label] draw_box(image, target.bbox, scale=scale, name=label_class.name, color=to_rgb(label_class.colour)) def overlay_anchors(): overlay_target() for anchor in eval.anchors: label_class = classes[anchor.label] draw_box(image, anchor.bbox, scale=scale, color=to_rgb(label_class.colour), thickness=1) def overlay_matches(): unmatched = dict(enumerate(eval.target._sequence())) # print(unmatched) for m in eval.matches: if m.confidence < threshold: break if m.match is not None: k, _ = m.match del unmatched[k] for (i, target) in enumerate(eval.target._sequence()): label_class = classes[target.label] color = (255, 0, 0) if i in unmatched else (0, 255, 0) draw_box(image, target.bbox, scale=scale, name=label_class.name, color=color) for m in eval.matches: if m.confidence < threshold: break color = (255, 0, 0) if m.match is not None: color = (0, 255, 0) label_class = classes[m.label] draw_box(image, m.bbox, scale=scale, color=color, confidence=m.confidence, name=label_class.name, thickness=1) target = { 'matches' : overlay_matches, 'prediction' : overlay_prediction, 'target' : overlay_target } if mode in target: target[mode]() if eval.debug is not None: image = cv.blend_over(image, eval.debug) cv.putText(image, eval.id, (0, int(24 * scale)), scale = 2*scale, color=(64, 64, 192), thickness=int(2*scale)) cv.putText(image, "[email protected] " + str(eval.mAP), (0, int(48 * scale)), scale = 2*scale, color=(64, 64, 192), thickness=int(2*scale)) return image def overlay_batch(batch, mode='target', scale=1.0, threshold = 0.5, cols=6, classes=None): images = [] for eval in batch: images.append(overlay(eval, scale=scale, mode=mode, threshold=threshold, classes=classes)) return tensor.tile_batch(torch.stack(images, 0), cols)
oliver-batchelor/detection
detection/display.py
display.py
py
3,548
python
en
code
0
github-code
6
[ { "api_name": "tools.image.cv.rectangle", "line_number": 15, "usage_type": "call" }, { "api_name": "tools.image.cv", "line_number": 15, "usage_type": "name" }, { "api_name": "tools.image.cv.putText", "line_number": 18, "usage_type": "call" }, { "api_name": "tools.image.cv", "line_number": 18, "usage_type": "name" }, { "api_name": "tools.image.cv.putText", "line_number": 22, "usage_type": "call" }, { "api_name": "tools.image.cv", "line_number": 22, "usage_type": "name" }, { "api_name": "tools.image.cv.blend_over", "line_number": 96, "usage_type": "call" }, { "api_name": "tools.image.cv", "line_number": 96, "usage_type": "name" }, { "api_name": "tools.image.cv.putText", "line_number": 98, "usage_type": "call" }, { "api_name": "tools.image.cv", "line_number": 98, "usage_type": "name" }, { "api_name": "tools.image.cv.putText", "line_number": 99, "usage_type": "call" }, { "api_name": "tools.image.cv", "line_number": 99, "usage_type": "name" }, { "api_name": "tools.tensor.tile_batch", "line_number": 112, "usage_type": "call" }, { "api_name": "tools.tensor", "line_number": 112, "usage_type": "name" }, { "api_name": "torch.stack", "line_number": 112, "usage_type": "call" } ]
14242354466
#基类,将原生的方法都封装一遍,让继承的类去调用 import csv import logging import os from time import sleep, strftime from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.by import By from baseView.desired_caps import appium_desired class BaseView(object): def __init__(self,driver): #初始化方法 self.driver = driver def find_element(self,*loc): #传入可变参数,元素定位的方法 return self.driver.find_element(*loc) def find_elements(self,*loc): #传入可变参数,元素定位的方法 return self.driver.find_element(*loc) def get_window_size(self): #获取屏幕大小的方法 return self.driver.get_window_size() def swipe(self,start_x, start_y, end_x, end_y, duration=None): #滑动屏幕的方法 return self.driver.swipe(start_x, start_y, end_x, end_y, duration=None) # 获取屏幕大小方法 def get_size(self): x = self.get_window_size()['width'] y = self.get_window_size()['height'] return x, y loginBtn = (By.ID, 'com.chan.iamabuyer:id/btn_login') # 登录按钮元素 jurBtn = (By.ID, 'com.android.packageinstaller:id/permission_allow_button') # 获取权限按钮元素 #定义一个根据坐标相对定位点击相册照片的方法 def photoSalbum(self): logging.info('调用photosalbum,进行屏幕相对定位点击') l = self.get_size() self.driver.tap([((l[0] * 0.5), (l[1] * 0.14))], 500) sleep(2) self.driver.tap([((l[0] * 0.1), (l[1] * 0.14))], 500) # 从引导页右往左滑动方法 # @classmethod def swipeLeft(self): logging.info('调用swipeLeft滑动引导页') l = self.get_size() # 调用方法获取屏幕大小 x1 = int(l[0] * 0.9) # x1点在最右边 x2 = int(l[0] * 0.1) # x2点在最左边 y1 = int(l[1] * 0.5) # Y1点 self.swipe(x1, y1, x2, y1, 1000) # 从右边划向最左边,y轴不变,持续1秒(1000毫秒) #删除滑动 def addressLeft(self): logging.info('调用addressLeft滑动地址管理') l = self.get_size() # 调用方法获取屏幕大小 x1 = l[0] * 0.7 # x1点在最右边 x2 = l[0] * 0.4 # x2点在最左边 y1 = l[1] * 0.12 # Y1点 self.swipe(x1, y1, x2, y1, 1000) # 从右边划向最左边,y轴不变,持续1秒(1000毫秒) # 定义一个接受当前时间的方法,用来做命名 def getTime(self): # 接收以时间元组,并返回以可读字符串表示的当地时间 self.now = strftime("%Y-%m-%d %H_%M_%S") return self.now # 定义截屏的方法,已传过来的module参数加上日期命名 def getScreenShot(self, module): time = self.getTime() image_file = os.path.dirname(os.path.dirname(__file__)) + '/screenshots/%s_%s.png' % (module, time) logging.info('获取 %s 截图' % module) # get_screenshot_as_file(image_file)是webdriver中的截图方法 self.driver.get_screenshot_as_file(image_file) # 拿account.csv的账户密码 def get_csv_data(self, csv_file, line): # 传过来的是文件地址和账户位置 #logging.info('调用csv文件') with open(csv_file, 'r', encoding='utf-8-sig') as file: reader = csv.reader(file) # 前面的reader是自定义变量,后面的是方法,读取问文件 for i, row in enumerate(reader, 1): # 1为设置初始下标为1 if i == line: return row # 返回找到的位置的账号密码内容 # 定义一个方法,启动页面获取权限,如果没有找到元素就报异常打印没有获取到元素,否则进行点击上 def check_jurisdiction(self): # 因为有写手机打开会有3秒的广告停留,有些手机时间长一点没有写手机时间短一点,所以设置一个隐式等待,在5秒时间内不断扫描元素,全局。 self.driver.implicitly_wait(5) try: # self.driver.implicitly_wait(5) self.driver.find_element(*self.loginBtn) # 登录按钮元素 except NoSuchElementException: try: logging.info("第一次启动app") # 获取权限按钮元素 ok = self.driver.find_element(*self.jurBtn) except NoSuchElementException: # sleep(3) 3秒广告 logging.info("无需手动获取权限,直接滑动引导页") for i in range(0, 3): self.swipeLeft() logging.info('第%d次调用向左滑动', i) # sleep(0.5) else: for i in range(0, 2): ok.click() sleep(0.5) # 第一次启动引导页 # sleep(3) # 3秒广告 for i in range(0, 3): self.swipeLeft() logging.info('第%d次调用向左滑动', i) sleep(0.5) else: logging.info("获取到登录按钮元素,不是第一次启动") # 浏览器前进操作 if __name__=='__main__': driver=appium_desired() ba = BaseView(driver) ba.check_jurisdiction() #然后调用Commom类中的方法 #file = '../data/account.csv' #ba.get_csv_data(file,1)
XiaoChang97/maishou_testProject
baseView/baseView.py
baseView.py
py
5,558
python
zh
code
0
github-code
6
[ { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 32, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 32, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 33, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 33, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 37, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 40, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 46, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 55, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 71, "usage_type": "call" }, { "api_name": "os.path", "line_number": 71, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 72, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 80, "usage_type": "call" }, { "api_name": "selenium.common.exceptions.NoSuchElementException", "line_number": 92, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 94, "usage_type": "call" }, { "api_name": "selenium.common.exceptions.NoSuchElementException", "line_number": 97, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 99, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 102, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 107, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 112, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 113, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 115, "usage_type": "call" }, { "api_name": "baseView.desired_caps.appium_desired", "line_number": 119, "usage_type": "call" } ]
32381382238
import string import os import random import bs4 from urllib import request url = "http://reddit.com" urlPage = request.urlopen(url).read() soup = bs4.BeautifulSoup(urlPage, "html.parser") img_list = [] for img in soup.find_all('img'): img_item = str(img.get('src')).split('//') img_list.append(img_item[1]) #print(img_list) r = 8 all_chars = string.ascii_letters # replace this folder_address variable to the directory which you wish to save # the image files on your computer folder_address = "C:\\Users\\User\\Documents\\Codes\\Python Scripts\\Reddit\\Pics\\" for item in img_list: request.urlretrieve("http://" + item, + ''.join(random.choice(all_chars) for x in range(0, r)) + ".jpg") print("finished downloading images")
techreign/Webscraping
ImageScraper.py
ImageScraper.py
py
739
python
en
code
0
github-code
6
[ { "api_name": "urllib.request.urlopen", "line_number": 8, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 8, "usage_type": "name" }, { "api_name": "bs4.BeautifulSoup", "line_number": 10, "usage_type": "call" }, { "api_name": "string.ascii_letters", "line_number": 19, "usage_type": "attribute" }, { "api_name": "urllib.request.urlretrieve", "line_number": 25, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 25, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 26, "usage_type": "call" } ]
10502966682
from rest_framework.test import APITestCase from ...services.notification_service import NotificationService from django.urls import reverse class TestNotificationAPI(APITestCase): def setUp(self): self.payload = { "title": "Winter discount sale started", "description": "Enter coupon-code to get flat 10% discount" } self.notification_id = NotificationService().create(self.payload).id self.url = reverse("notification") def test_create_notification(self): data = { "title": "Summer discount sale started", "description": "Enter coupon-code to get flat 10% discount" } notification = self.client.post(self.url, data=data, format='json') self.assertEqual(notification.data.get('title'), data.get('title')) def test_get_all_notification(self): notification = self.client.get(self.url) self.assertNotEqual(len(notification.data), 0) def test_get_notification_by_id(self): notification = NotificationService().get_by_id(self.notification_id) self.assertEqual(notification.id, self.notification_id) def test_delete_notification_by_id(self): response = self.client.delete(self.url+"?id={}".format(self.notification_id), data={}, format='json') self.assertEqual(response.data.get('success'), True)
anojkr/onboarding-project
push_notification/apps/notification/tests/unit/test_notification.py
test_notification.py
py
1,381
python
en
code
0
github-code
6
[ { "api_name": "rest_framework.test.APITestCase", "line_number": 6, "usage_type": "name" }, { "api_name": "services.notification_service.NotificationService", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 14, "usage_type": "call" }, { "api_name": "services.notification_service.NotificationService", "line_number": 29, "usage_type": "call" } ]
43447073770
import sys, re from argparse import ArgumentParser parser = ArgumentParser(description = 'Calculate the percentage of each nucleotide in the sequence') parser.add_argument("-s", "--seq", type = str, required = True, help = "Input sequence") args = parser.parse_args() seq = seq.upper() if re.search('^[ACGTU]+$', args.seq): u= seq.count("U") #this counts the U Percentage a= seq.count("A") #this counts the A Percentage c= seq.count("C") #this counts the C Percentage t= seq.count("T") #this counts the T Percentage g= seq.count("G") #this counts the G Percentage u_content= (u/len(seq)) * 100 #Calculate the U percentage a_content= (a/len(seq)) * 100 #Calculate the A percentage c_content= (c/len(seq)) * 100 #Calculate the C percentage t_content= (t/len(seq)) * 100 #Calculate the T percentage g_content= (g/len(seq)) * 100 #Calculate the G percentage print (f"The % of U in sequence is: {u_content}") #Print the U Percentage print (f"The % of A in sequence is: {a_content}") #Print the A Percentage print (f"The % of C in sequence is: {c_content}") #Print the C Percentage print (f"The % of T in sequence is: {t_content}") #Print the T Percentage print (f"The % of G in sequence is: {g_content}") #Print the G Percentage else: print ('The sequence is not DNA or RNA')
stepsnap/git_HandsOn
Percentage.py
Percentage.py
py
1,350
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 4, "usage_type": "call" }, { "api_name": "re.search", "line_number": 9, "usage_type": "call" } ]
27520740533
import os import datetime import netCDF4 def handle_netcdf_scheme_wrf(var_names, file_name, run, model, st): # try: if os.path.exists(file_name): data_list = [] file = netCDF4.Dataset(file_name) var1 = file.variables[var_names[0]][:] var2 = file.variables[var_names[1]][:] times = file.variables["Times"][:].astype("str") var_latlon = (file.variables["XLAT"][0, :, :], file.variables["XLONG"][0, :, :]) file.close() # file de log log = open(st["ensemble_log_directory"][0] + "Loaded_%s_%s.log" % (model, run.strftime("%Y%m%d%H")), 'w') for t in range(times.shape[0]): var_date = datetime.datetime.strptime( "".join(list(times[t])), "%Y-%m-%d_%H:00:00") if var_date <= (st['run'][0] + datetime. timedelta(hours=int(st['hours_ensemble'][0]))): var_value = var1[t, :, :] + var2[t, :, :] accumulation = t if t == 0: data_list.append((model, run, var_date, (var_value, accumulation), "latlon", var_latlon)) else: data_list.append((model, run, var_date, (var_value, accumulation))) log.write("run: %s --- Data: %s --- file: %s \n" % (run.strftime("%Y%m%d%H"), var_date.strftime("%Y%m%d%H"), file_name)) log.close() return data_list # except: # return None
RevertonLuis/Ensemble
lib/handle_netcdfs.py
handle_netcdfs.py
py
2,022
python
en
code
1
github-code
6
[ { "api_name": "os.path.exists", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "netCDF4.Dataset", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 29, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 29, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 33, "usage_type": "call" } ]
200126759
import torch import torchvision.transforms as transforms from PIL import Image from model import LeNet device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def main(): transform = transforms.Compose( [transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') net = LeNet() net = net.to(device) net.load_state_dict(torch.load('Lenet.pth')) im = Image.open(r'data/plane1.jpg') im = transform(im) # [C, H, W] im = torch.unsqueeze(im, dim=0).to(device) # [N, C, H, W] with torch.no_grad(): outputs = net(im) predict = torch.max(outputs, dim=1)[1].cpu().numpy() print(classes[int(predict)]) if __name__ == '__main__': main()
ChengZhangX/Deeplearning-for-cv
LetNet model/predict.py
predict.py
py
893
python
en
code
0
github-code
6
[ { "api_name": "torch.device", "line_number": 7, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 7, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 7, "usage_type": "attribute" }, { "api_name": "torchvision.transforms.Compose", "line_number": 11, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 11, "usage_type": "name" }, { "api_name": "torchvision.transforms.Resize", "line_number": 12, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 12, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 13, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 13, "usage_type": "name" }, { "api_name": "torchvision.transforms.Normalize", "line_number": 14, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 14, "usage_type": "name" }, { "api_name": "model.LeNet", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 21, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 23, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 23, "usage_type": "name" }, { "api_name": "torch.unsqueeze", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 29, "usage_type": "call" } ]
20164701509
import cv2 import mediapipe as mp from handLandmarksDefine import * from objectCoords import * import time import numpy as np import math import serial start_time = 0 end_time = 0 try: arduino = serial.Serial('COM3', 9600) except serial.serialutil.SerialException: print("Arduino not connected") # lm = landmark class HandLandmarkDetector: def __init__(self, static_image_mode, max_num_hands, model_complexity, min_detection_confidence, min_tracking_confidence): self.static_image_mode = static_image_mode self.max_num_hands = max_num_hands self.model_complexity = model_complexity self.min_detection_confidence = min_detection_confidence self.min_tracking_confidence = min_tracking_confidence self.mpHands = mp.solutions.hands self.hands = self.mpHands.Hands(self.static_image_mode, self.max_num_hands, self.model_complexity, self.min_detection_confidence, self.min_tracking_confidence) self.mpDraw = mp.solutions.drawing_utils self.results = None def draw_hand_landmarks(self, img): img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.results = self.hands.process(img_rgb) if self.results.multi_hand_landmarks: for self.handLMS in self.results.multi_hand_landmarks: self.mpDraw.draw_landmarks(img, self.handLMS, self.mpHands.HAND_CONNECTIONS) return img def find_hand_landmark_coordinates(self, img): landmark_list = [] if self.results.multi_hand_landmarks: for id, lm in enumerate(self.handLMS.landmark): print(id,lm) h, w, c = img.shape cx, cy = int(lm.x * w), int(lm.y * h) landmark_list.append([id, cx, cy]) cv2.circle(img, (cx, cy), 7, (255, 255, 255), cv2.FILLED) return landmark_list class HandTracker: def __init__(self, width, height, top_left_x, top_left_y, color, thickness): self.width = width self.height = height self.top_left_x = top_left_x self.top_left_y = top_left_y self.color = color self.thickness = thickness self.object_assembled = False def reset_sizes(self, width, height, top_left_x, top_left_y, color, thickness): self.width = width self.height = height self.top_left_x = top_left_x self.top_left_y = top_left_y self.color = color self.thickness = thickness def draw(self, img): cv2.rectangle(img, (self.top_left_x, self.top_left_y), (self.top_left_x + self.width, self.top_left_y + self.height), self.color, self.thickness) def set_green_color(self): self.color = (0, 255, 0) self.object_assembled = True def set_red_color(self): self.color = (0, 0, 255) self.object_assembled = False def set_object_assembled_false(self): self.object_assembled = False def set_object_assembled_true(self): self.object_assembled = True def detect_hand_inside_area(self, landmark_list): global start_time global end_time if len(landmark_list) != 0 and self.object_assembled is False: if self.top_left_x <= landmark_list[INDEX_FINGER_TIP][1] <= self.top_left_x + self.width and self.top_left_y <= landmark_list[INDEX_FINGER_TIP][2] <= self.top_left_y + self.height\ and self.top_left_x <= landmark_list[THUMB_TIP][1] <= self.top_left_x + self.width and self.top_left_y <= landmark_list[THUMB_TIP][2] <= self.top_left_y + self.height: self.color = (0, 255, 0) if start_time == 0 and end_time == 0: start_time = time.time() end_time = start_time + 3 # print("end time: ") # print(end_time) # print("current time: ") # print(time.time()) else: if time.time() > end_time: start_time = 0 end_time = 0 return 1 else: self.color = (0, 0, 255) def gesture_control(self, landmark_list, resized_frame, arduino): global start_time global end_time if len(landmark_list) != 0: x1, y1 = landmark_list[THUMB_TIP][1], landmark_list[THUMB_TIP][2] x2, y2 = landmark_list[INDEX_FINGER_TIP][1], landmark_list[INDEX_FINGER_TIP][2] cx, cy = (x1 + x2) // 2, (y1 + y2) // 2 cv2.circle(resized_frame, (x1, y1), 15, (255, 0, 255), cv2.FILLED) cv2.circle(resized_frame, (x2, y2), 15, (255, 0, 255), cv2.FILLED) cv2.line(resized_frame, (x1, y1), (x2, y2), (255, 0, 255), 3) cv2.circle(resized_frame, (cx, cy), 15, (255, 0, 255), cv2.FILLED) length = math.hypot(x2 - x1, y2 - y1) vol = np.interp(length, [70, 250], [0, 250]) if start_time == 0 and end_time == 0: start_time = time.time() end_time = start_time + 1 # print("end time: ") # print(end_time) # print("current time: ") # print(time.time()) else: if time.time() > end_time: start_time = 0 end_time = 0 arduino.write(str(vol).encode()) class ObjectAssembler: def draw_work_area(self, resized_frame, work_area_top_left, work_area_bottom_right, work_area_color, work_area_thickness, text_content, text_font, text_font_scale, text_color, text_thickness): cv2.rectangle(resized_frame, work_area_top_left, work_area_bottom_right, work_area_color, work_area_thickness) text_x = work_area_top_left[0] + 5 text_y = work_area_top_left[1] + 30 cv2.putText(resized_frame, text_content, (text_x, text_y), text_font, text_font_scale, text_color, text_thickness) def draw_component_area(self, resized_frame,component_area_top_left, component_area_bottom_right, component_area_color, component_area_thickness, text_content, text_font, text_font_scale, text_color, text_thickness): cv2.rectangle(resized_frame, component_area_top_left, component_area_bottom_right, component_area_color, component_area_thickness) text_x = component_area_top_left[0] + 5 text_y = component_area_top_left[1] + 30 cv2.putText(resized_frame, text_content, (text_x, text_y), text_font, text_font_scale, text_color, text_thickness) def draw_breadboard_outline(self, resized_frame, breadboard_top_left, breadboard_bottom_right, breadboard_outline_color, breadboard_outline_thickness): cv2.rectangle(resized_frame, breadboard_top_left, breadboard_bottom_right, breadboard_outline_color, breadboard_outline_thickness) def draw_next_component(self, resized_frame, next_top_left, next_bottom_right, next_color, next_thickness, text_content, text_font, text_font_scale, text_color, text_thickness): cv2.rectangle(resized_frame, next_top_left, next_bottom_right, next_color, next_thickness) text_x = next_top_left[0] + 40 text_y = next_top_left[1] + 500 cv2.putText(resized_frame, text_content, (text_x, text_y), text_font, text_font_scale, text_color, text_thickness) def draw_previous_component(self, resized_frame, previous_top_left, previous_bottom_right, previous_color, previous_thickness, text_content, text_font, text_font_scale, text_color, text_thickness): cv2.rectangle(resized_frame, previous_top_left, previous_bottom_right, previous_color, previous_thickness) text_x = previous_top_left[0] + 10 text_y = previous_top_left[1] + 500 cv2.putText(resized_frame, text_content, (text_x, text_y), text_font, text_font_scale, text_color, text_thickness) def detect_finger_inside_next_component(self, landmark_list, next_top_left, next_bottom_right): global start_time global end_time if len(landmark_list) != 0: if next_top_left[0] <= landmark_list[PINKY_TIP][1] <= next_bottom_right[0] and \ next_top_left[1] <= landmark_list[PINKY_TIP][2] <= next_bottom_right[1]: if start_time == 0 and end_time == 0: start_time = time.time() end_time = start_time + 3 else: if time.time() > end_time: start_time = 0 end_time = 0 return 1 def detect_finger_inside_previous_component(self, landmark_list, previous_top_left, previous_bottom_right): global start_time global end_time if len(landmark_list) != 0: if previous_top_left[0] <= landmark_list[THUMB_TIP][1] <= previous_bottom_right[0] and \ previous_top_left[1] <= landmark_list[THUMB_TIP][2] <= previous_bottom_right[1]: if start_time == 0 and end_time == 0: start_time = time.time() end_time = start_time + 3 else: if time.time() > end_time: start_time = 0 end_time = 0 return 1 def resize_window(img, max_width, max_height): original_height, original_width, _ = img.shape scale_x = max_width / original_width scale_y = max_height / original_height scale = min(scale_x, scale_y) new_width = int(original_width * scale) new_height = int(original_height * scale) return new_width, new_height def main(): cap = cv2.VideoCapture(0) success, img = cap.read() new_width, new_height = resize_window(img, max_width=1680, max_height=1050) cv2.namedWindow('Scaled Video', cv2.WINDOW_NORMAL) cv2.resizeWindow('Scaled Video', new_width, new_height) cv2.setWindowProperty('Scaled Video', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) hand_detector = HandLandmarkDetector(static_image_mode=False, max_num_hands=1, model_complexity=1, min_detection_confidence=0.1, min_tracking_confidence=0.1) i = 0 gestureControl = False rectangle_width = [ARDUINO_WIDTH, LED_WIDTH, LED_BAR_WIDTH] rectangle_height = [ARDUINO_HEIGHT, LED_HEIGHT, LED_BAR_HEIGHT] rectangle_top_left_x = [ARDUINO_X, LED_X, LED_BAR_X] rectangle_top_left_y = [ARDUINO_Y, LED_Y, LED_BAR_Y] rectangle_color = (0, 0, 255) rectangle_thickness = 2 hand_tracker = HandTracker(rectangle_width[0], rectangle_height[0], rectangle_top_left_x[0], rectangle_top_left_y[0], rectangle_color, rectangle_thickness) component_name = ["Arduino", "LED to PIN D9", "LED bar", "LED dimming"] object_assembler = ObjectAssembler() while True: success, img = cap.read() resized_frame = cv2.resize(img, (new_width, new_height)) hand_tracker.draw(resized_frame) resized_frame = hand_detector.draw_hand_landmarks(resized_frame) landmark_list = hand_detector.find_hand_landmark_coordinates(resized_frame) if hand_tracker.detect_hand_inside_area(landmark_list) == 1: hand_tracker.set_green_color() hand_tracker.set_object_assembled_true() object_assembler.draw_previous_component(resized_frame=resized_frame, previous_top_left=(1, 1), previous_bottom_right=(146, 1061), previous_color=(0, 0, 255), previous_thickness = 20, text_content="Previous", text_font=cv2.FONT_HERSHEY_SIMPLEX, text_font_scale=1.0, text_color=(0, 0, 255), text_thickness=2) object_assembler.draw_next_component(resized_frame=resized_frame, next_top_left=(1250, 1), next_bottom_right=(1395, 1061), next_color=(0, 255, 0), next_thickness=20, text_content="Next", text_font=cv2.FONT_HERSHEY_SIMPLEX, text_font_scale=1.0, text_color=(0, 255, 0), text_thickness=2) object_assembler.draw_work_area(resized_frame=resized_frame, work_area_top_left=(145, 300), work_area_bottom_right=(1245, 1050), work_area_color=(255, 255, 255), work_area_thickness=3, text_content="Work Area", text_font=cv2.FONT_HERSHEY_SIMPLEX, text_font_scale=1.0, text_color=(255, 255, 255), text_thickness=2) object_assembler.draw_breadboard_outline(resized_frame=resized_frame, breadboard_top_left=(550, 400), breadboard_bottom_right=(850, 850), breadboard_outline_color=(0, 0, 255), breadboard_outline_thickness=2) object_assembler.draw_component_area(resized_frame=resized_frame, component_area_top_left=(145, 1), component_area_bottom_right=(1245, 295), component_area_color=(255, 255, 255), component_area_thickness=2, text_content="Component Area", text_font=cv2.FONT_HERSHEY_SIMPLEX, text_font_scale=1.0, text_color=(255, 255, 255), text_thickness=2) if object_assembler.detect_finger_inside_next_component(landmark_list, next_top_left=(1250, 1), next_bottom_right=(1395, 1061)) == 1: hand_tracker.set_object_assembled_false() if i < 2: i = i + 1 hand_tracker.reset_sizes(rectangle_width[i], rectangle_height[i], rectangle_top_left_x[i], rectangle_top_left_y[i], rectangle_color, rectangle_thickness) else: gestureControl = True if gestureControl == True: i=3 try: hand_tracker.gesture_control(landmark_list, resized_frame, arduino) except UnboundLocalError: cv2.putText(resized_frame, "Connect the Arduino and restart!", (170, 400), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 0, 255), 6) except serial.serialutil.SerialException: cv2.putText(resized_frame, "Connect the Arduino and restart!", (170, 400), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 0, 255), 6) except NameError: cv2.putText(resized_frame, "Connect the Arduino and restart!", (170, 400), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 0, 255), 6) if object_assembler.detect_finger_inside_previous_component(landmark_list, previous_top_left=(1, 1), previous_bottom_right=(146, 1061)) == 1: hand_tracker.set_object_assembled_false() gestureControl = False if i == 0: i = 2 else: i = i - 1 hand_tracker.reset_sizes(rectangle_width[i], rectangle_height[i], rectangle_top_left_x[i], rectangle_top_left_y[i], rectangle_color, rectangle_thickness) if hand_tracker.object_assembled == True: cv2.putText(resized_frame, component_name[i], (650, 280), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 255, 0), 4) else: cv2.putText(resized_frame, component_name[i], (650, 280), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 0, 255), 4) cv2.imshow('Scaled Video', resized_frame) if cv2.waitKey(1) & 0xFF == ord('q'): break if __name__ == "__main__": main() # counter = 1 # a = 0 # b = 1 # print(a) # print(b) # # while counter < 10: # c = a+b # a = b # b = c # print(c) # counter = counter + 1
vladpasat/HandFlow0
handTrackingModule.py
handTrackingModule.py
py
16,607
python
en
code
0
github-code
6
[ { "api_name": "serial.Serial", "line_number": 14, "usage_type": "call" }, { "api_name": "serial.serialutil", "line_number": 15, "usage_type": "attribute" }, { "api_name": "mediapipe.solutions", "line_number": 29, "usage_type": "attribute" }, { "api_name": "mediapipe.solutions", "line_number": 32, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 36, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 36, "usage_type": "attribute" }, { "api_name": "cv2.circle", "line_number": 51, "usage_type": "call" }, { "api_name": "cv2.FILLED", "line_number": 51, "usage_type": "attribute" }, { "api_name": "cv2.rectangle", "line_number": 74, "usage_type": "call" }, { "api_name": "time.time", "line_number": 99, "usage_type": "call" }, { "api_name": "time.time", "line_number": 106, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 120, "usage_type": "call" }, { "api_name": "cv2.FILLED", "line_number": 120, "usage_type": "attribute" }, { "api_name": "cv2.circle", "line_number": 121, "usage_type": "call" }, { "api_name": "cv2.FILLED", "line_number": 121, "usage_type": "attribute" }, { "api_name": "cv2.line", "line_number": 122, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 123, "usage_type": "call" }, { "api_name": "cv2.FILLED", "line_number": 123, "usage_type": "attribute" }, { "api_name": "math.hypot", "line_number": 124, "usage_type": "call" }, { "api_name": "numpy.interp", "line_number": 125, "usage_type": "call" }, { "api_name": "time.time", "line_number": 127, "usage_type": "call" }, { "api_name": "time.time", "line_number": 134, "usage_type": "call" }, { "api_name": "cv2.rectangle", "line_number": 143, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 146, "usage_type": "call" }, { "api_name": "cv2.rectangle", "line_number": 152, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 156, "usage_type": "call" }, { "api_name": "cv2.rectangle", "line_number": 161, "usage_type": "call" }, { "api_name": "cv2.rectangle", "line_number": 166, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 169, "usage_type": "call" }, { "api_name": "cv2.rectangle", "line_number": 175, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 178, "usage_type": "call" }, { "api_name": "time.time", "line_number": 188, "usage_type": "call" }, { "api_name": "time.time", "line_number": 191, "usage_type": "call" }, { "api_name": "time.time", "line_number": 203, "usage_type": "call" }, { "api_name": "time.time", "line_number": 206, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 224, "usage_type": "call" }, { "api_name": "cv2.namedWindow", "line_number": 227, "usage_type": "call" }, { "api_name": "cv2.WINDOW_NORMAL", "line_number": 227, "usage_type": "attribute" }, { "api_name": "cv2.resizeWindow", "line_number": 228, "usage_type": "call" }, { "api_name": "cv2.setWindowProperty", "line_number": 229, "usage_type": "call" }, { "api_name": "cv2.WND_PROP_FULLSCREEN", "line_number": 229, "usage_type": "attribute" }, { "api_name": "cv2.WINDOW_FULLSCREEN", "line_number": 229, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 252, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 265, "usage_type": "attribute" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 270, "usage_type": "attribute" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 276, "usage_type": "attribute" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 286, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 304, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 304, "usage_type": "attribute" }, { "api_name": "serial.serialutil", "line_number": 306, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 307, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 307, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 310, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 310, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 325, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 325, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 326, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_SIMPLEX", "line_number": 326, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 328, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 329, "usage_type": "call" } ]
43243820127
from PyQt5.QtCore import QThread, pyqtSignal from simplekml import Kml, Snippet, Types from math import radians, cos, sin, asin, degrees, atan2 import os class PlotFiles(QThread): progressSignal = pyqtSignal(int) threadMessage = pyqtSignal(str) def __init__(self, results, issilist, google, gps): QThread.__init__(self) self.gps = gps self.results = results self.issilist = issilist self.google = google self.maxRange = len(self.issilist) self.stopped = 0 def __del__(self): self.wait() def plot_the_files(self, results, issi, google, gps, firstplot): """ Receives the results and an issi's to plot :param firstplot: :param gps: :param google: :param results: :param issi: :return: """ when = [] coord = [] speeds = [] headings = [] times = [] year = results[issi][0][1][6:10] month = results[issi][0][1][3:5] day = results[issi][0][1][0:2] kml = Kml(name="{}_{}-{}-{}".format(issi, year, month, day), open=1) doc = kml.newdocument(name="{}".format(issi), snippet=Snippet('Created {}-{}-{}'.format(year, month, day))) for x in range(0, len(results[issi])): tup = (results[issi][x][3], results[issi][x][2]) theTime = results[issi][x][1][11:] when.append("{}-{}-{}T{}Z".format(year, month, day, theTime)) coord.append(tup) speeds.append(int(results[issi][x][4])) headings.append(int(results[issi][x][5])) times.append(results[issi][x][1]) # Create circle track if gps[0] != 0 and firstplot: R = 6378.1 d = float(gps[2]) # distance circle_coords = [] lat1 = radians(float(gps[0])) lon1 = radians(float(gps[1])) for b in range(1, 360): brng = radians(b) lat2 = asin(sin(lat1) * cos(d / R) + cos(lat1) * sin(d / R) * cos(brng)) lon2 = lon1 + atan2(sin(brng) * sin(d / R) * cos(lat1), cos(d / R) - sin(lat1) * sin(lat2)) lat2 = degrees(lat2) lon2 = degrees(lon2) circle_coords.append((lon2, lat2)) doc2 = kml.newdocument(name="Search Area", snippet=Snippet('{}-{}-{}'.format(gps[0], gps[1], gps[2]))) fol2 = doc2.newfolder(name='Search Area') trk2 = fol2.newgxtrack(name='search area') trk2.newgxcoord(circle_coords) trk2.stylemap.normalstyle.linestyle.color = '641400FF' trk2.stylemap.normalstyle.linestyle.width = 6 # Folder fol = doc.newfolder(name='Tracks') # schema for extra data schema = kml.newschema() schema.newgxsimplearrayfield(name='speed', type=Types.int, displayname='Speed') schema.newgxsimplearrayfield(name='heading', type=Types.int, displayname='Heading') schema.newgxsimplearrayfield(name='time', type=Types.string, displayname='Time') # New Track trk = fol.newgxtrack(name=issi) # Apply Schema trk.extendeddata.schemadata.schemaurl = schema.id # add all info to track trk.newwhen(when) trk.newgxcoord(coord) trk.extendeddata.schemadata.newgxsimplearraydata('time', times) trk.extendeddata.schemadata.newgxsimplearraydata('speed', speeds) trk.extendeddata.schemadata.newgxsimplearraydata('heading', headings) # Styling trk.stylemap.normalstyle.iconstyle.icon.href = 'http://maps.google.com/mapfiles/kml/shapes/track.png' trk.stylemap.normalstyle.linestyle.color = '99ffac59' trk.stylemap.normalstyle.linestyle.width = 6 trk.stylemap.highlightstyle.iconstyle.icon.href = 'http://maps.google.com/mapfiles/kml/shapes/track.png' trk.stylemap.highlightstyle.iconstyle.scale = 1.2 trk.stylemap.highlightstyle.linestyle.color = '99ffac59' trk.stylemap.highlightstyle.linestyle.width = 8 kml.save("results/{}_{}-{}-{}.kml".format(issi, year, month, day)) if google: try: os.system("start " + "results/{}_{}-{}-{}.kml".format(issi, year, month, day)) except: pass def run(self): firstplot = 1 maxPercent = len(self.issilist) for i in range(len(self.issilist)): if not self.stopped: self.plot_the_files(self.results, self.issilist[i], self.google, self.gps, firstplot) update = ((i + 1) / maxPercent) * 100 self.progressSignal.emit(update) if firstplot: self.sleep(4) firstplot = 0 else: break self.threadMessage.emit('Plotting completed') def stop(self): self.stopped = 1 self.threadMessage.emit('Plotting stopped')
stephenmhall/Coordinator_parser
plotfile.py
plotfile.py
py
5,066
python
en
code
0
github-code
6
[ { "api_name": "PyQt5.QtCore.QThread", "line_number": 7, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSignal", "line_number": 8, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.pyqtSignal", "line_number": 9, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread.__init__", "line_number": 12, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QThread", "line_number": 12, "usage_type": "name" }, { "api_name": "simplekml.Kml", "line_number": 43, "usage_type": "call" }, { "api_name": "simplekml.Snippet", "line_number": 45, "usage_type": "call" }, { "api_name": "math.radians", "line_number": 63, "usage_type": "call" }, { "api_name": "math.radians", "line_number": 64, "usage_type": "call" }, { "api_name": "math.radians", "line_number": 67, "usage_type": "call" }, { "api_name": "math.asin", "line_number": 68, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 68, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 68, "usage_type": "call" }, { "api_name": "math.atan2", "line_number": 69, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 69, "usage_type": "call" }, { "api_name": "math.cos", "line_number": 69, "usage_type": "call" }, { "api_name": "math.degrees", "line_number": 70, "usage_type": "call" }, { "api_name": "math.degrees", "line_number": 71, "usage_type": "call" }, { "api_name": "simplekml.Snippet", "line_number": 75, "usage_type": "call" }, { "api_name": "simplekml.Types.int", "line_number": 87, "usage_type": "attribute" }, { "api_name": "simplekml.Types", "line_number": 87, "usage_type": "name" }, { "api_name": "simplekml.Types.int", "line_number": 88, "usage_type": "attribute" }, { "api_name": "simplekml.Types", "line_number": 88, "usage_type": "name" }, { "api_name": "simplekml.Types.string", "line_number": 89, "usage_type": "attribute" }, { "api_name": "simplekml.Types", "line_number": 89, "usage_type": "name" }, { "api_name": "os.system", "line_number": 117, "usage_type": "call" } ]
26247964346
import six import webob.exc from oslo_log import log from delfin.i18n import _ LOG = log.getLogger(__name__) class ConvertedException(webob.exc.WSGIHTTPException): def __init__(self, exception): self.code = exception.code self.title = '' self.explanation = exception.msg self.error_code = exception.error_code self.error_args = exception.error_args super(ConvertedException, self).__init__() class DelfinException(Exception): """Base Delfin Exception To correctly use this class, inherit from it and define a 'msg_fmt' property. That msg_fmt will get printf'd with the tuple arguments provided to the constructor. """ msg_fmt = _("An unknown exception occurred.") code = 500 def __init__(self, *args, **kwargs): self.error_args = args message = kwargs.get('message') try: if not message: message = self.msg_fmt.format(*args) else: message = six.text_type(message) except Exception: LOG.error("Failed to format message: {0}".format(args)) message = self.msg_fmt self.msg = message super(DelfinException, self).__init__(message) @property def error_code(self): return self.__class__.__name__ class NotAuthorized(DelfinException): msg_fmt = _("Not authorized.") code = 403 class Invalid(DelfinException): msg_fmt = _("Unacceptable parameters.") code = 400 class BadRequest(Invalid): msg_fmt = _('The server could not comply with the request since\r\n' 'it is either malformed or otherwise incorrect.\r\n') code = 400 class MalformedRequestBody(Invalid): msg_fmt = _("Malformed request body: {0}.") class MalformedRequestUrl(Invalid): msg_fmt = _("Malformed request url.") class InvalidCredential(Invalid): msg_fmt = _("The credentials are invalid.") class InvalidResults(Invalid): msg_fmt = _("The results are invalid. {0}") class InvalidInput(Invalid): msg_fmt = _("Invalid input received. {0}") class InvalidName(Invalid): msg_fmt = _("An invalid 'name' value was provided. {0}") class InvalidContentType(Invalid): msg_fmt = _("Invalid content type: {0}.") class StorageSerialNumberMismatch(Invalid): msg_fmt = _("Storage serial number mismatch. {0}") class StorageAlreadyExists(Invalid): msg_fmt = _("Storage already exists.") class InvalidSNMPConfig(Invalid): msg_fmt = _("Invalid SNMP configuration: {0}") class NotFound(DelfinException): msg_fmt = _("Resource could not be found.") code = 404 class NoSuchAction(NotFound): msg_fmt = _("There is no such action: {0}") class AccessInfoNotFound(NotFound): msg_fmt = _("Access information for storage {0} could not be found.") class AlertSourceNotFound(NotFound): msg_fmt = _("Alert source for storage {0} could not be found.") class AlertSourceNotFoundWithHost(NotFound): msg_fmt = _("Alert source could not be found with host {0}.") class SNMPConnectionFailed(BadRequest): msg_fmt = _("Connection to SNMP server failed: {0}") class StorageNotFound(NotFound): msg_fmt = _("Storage {0} could not be found.") class StorageBackendNotFound(NotFound): msg_fmt = _("Storage backend could not be found.") class StoragePoolNotFound(NotFound): msg_fmt = _("Storage pool {0} could not be found.") class VolumeNotFound(NotFound): msg_fmt = _("Volume {0} could not be found.") class StorageHostInitiatorNotFound(NotFound): msg_fmt = _("Storage host initiator {0} could not be found.") class StorageHostNotFound(NotFound): msg_fmt = _("Storage host {0} could not be found.") class StorageHostGroupNotFound(NotFound): msg_fmt = _("Storage host group {0} could not be found.") class PortGroupNotFound(NotFound): msg_fmt = _("Port group {0} could not be found.") class VolumeGroupNotFound(NotFound): msg_fmt = _("Volume group {0} could not be found.") class MaskingViewNotFound(NotFound): msg_fmt = _("Masking View {0} could not be found.") class StorageHostGrpHostRelNotFound(NotFound): msg_fmt = _("Storage Host Group Host Relation {0} could not be found.") class PortGrpPortRelNotFound(NotFound): msg_fmt = _("Port Group Port Relation {0} could not be found.") class VolGrpVolRelationNotFound(NotFound): msg_fmt = _("Volume Group Volume Relation {0} could not be found.") class ControllerNotFound(NotFound): msg_fmt = _("Controller {0} could not be found.") class ControllerListNotFound(NotFound): msg_fmt = _("Controller List for {0} could not be found.") class PortNotFound(NotFound): msg_fmt = _("Port {0} could not be found.") class PortListNotFound(NotFound): msg_fmt = _("Port List for {0} could not be found.") class DiskNotFound(NotFound): msg_fmt = _("Disk {0} could not be found.") class FilesystemNotFound(NotFound): msg_fmt = _("Filesystem {0} could not be found.") class QtreeNotFound(NotFound): msg_fmt = _("Qtree {0} could not be found.") class QuotaNotFound(NotFound): msg_fmt = _("Quota {0} could not be found.") class ShareNotFound(NotFound): msg_fmt = _("Share {0} could not be found.") class StorageDriverNotFound(NotFound): msg_fmt = _("Storage driver '{0}'could not be found.") class TaskNotFound(NotFound): msg_fmt = _("Task {0} could not be found.") class FailedTaskNotFound(NotFound): msg_fmt = _("Failed task {0} could not be found.") class ConfigNotFound(NotFound): msg_fmt = _("Could not find config at {0}.") class PasteAppNotFound(NotFound): msg_fmt = _("Could not load paste app '{0}' from {1}.") class StorageBackendException(DelfinException): msg_fmt = _("Exception from Storage Backend: {0}.") class SSHException(DelfinException): msg_fmt = _("Exception in SSH protocol negotiation or logic. {0}") class SSHInjectionThreat(DelfinException): msg_fmt = _("SSH command injection detected: {0}.") # Tooz locking class LockCreationFailed(DelfinException): msg_fmt = _('Unable to create lock. Coordination backend not started.') class LockAcquisitionFailed(DelfinException): msg_fmt = _('Lock acquisition failed.') class DuplicateExtension(DelfinException): msg_fmt = _('Found duplicate extension: {0}.') class ImproperIPVersion(DelfinException): msg_fmt = _("Provided improper IP version {0}.") class ConnectTimeout(DelfinException): msg_fmt = _("Connect timeout.") code = 500 class InvalidUsernameOrPassword(DelfinException): msg_fmt = _("Invalid username or password.") code = 400 class BadResponse(Invalid): msg_fmt = _('Bad response from server') code = 500 class InvalidPrivateKey(DelfinException): msg_fmt = _("not a valid RSA private key.") code = 400 class SSHConnectTimeout(DelfinException): msg_fmt = _("SSH connect timeout.") code = 500 class SSHNotFoundKnownHosts(NotFound): msg_fmt = _("{0} not found in known_hosts.") code = 400 class StorageClearAlertFailed(DelfinException): msg_fmt = _("Failed to clear alert. Reason: {0}.") class StorageListAlertFailed(DelfinException): msg_fmt = _("Failed to list alerts. Reason: {0}.") class HTTPConnectionTimeout(DelfinException): msg_fmt = _("HTTP connection timeout: {0}.") class InvalidCAPath(DelfinException): msg_fmt = _("Invalid CA path: {0}.") class StoragePerformanceCollectionFailed(DelfinException): msg_fmt = _("Failed to collect performance metrics. Reason: {0}.") class SSLCertificateFailed(Invalid): msg_fmt = _("SSL Certificate Failed.") code = 400 class SSLHandshakeFailed(Invalid): msg_fmt = _("SSL handshake failure.") class StorageIsSyncing(Invalid): msg_fmt = _("Storage {0} is syncing now, please try again later.") class InvalidIpOrPort(DelfinException): msg_fmt = _("Invalid ip or port.") code = 400 class InvalidStorageCapability(Invalid): msg_fmt = _("Invalid capability response: {0}") code = 500 class StorageCapabilityNotSupported(Invalid): msg_fmt = _("Capability feature not supported by storage") code = 501 class EmptyResourceMetrics(DelfinException): msg_fmt = _("Empty resource metric in capabilities") code = 501 class TelemetryTaskExecError(DelfinException): msg_fmt = _("Failure in telemetry task execution") class ComponentNotFound(NotFound): msg_fmt = _("Component {0} could not be found.") class IncompleteTrapInformation(DelfinException): msg_fmt = _("Incomplete trap information." "Storage {0} alert information needs to be synchronized.") class StorageMaxUserCountException(DelfinException): msg_fmt = _( "Exception from storage of users has reached the upper limit: {0}.")
sodafoundation/delfin
delfin/exception.py
exception.py
py
8,827
python
en
code
201
github-code
6
[ { "api_name": "oslo_log.log.getLogger", "line_number": 8, "usage_type": "call" }, { "api_name": "oslo_log.log", "line_number": 8, "usage_type": "name" }, { "api_name": "webob.exc.exc", "line_number": 11, "usage_type": "attribute" }, { "api_name": "webob.exc", "line_number": 11, "usage_type": "name" }, { "api_name": "delfin.i18n._", "line_number": 29, "usage_type": "call" }, { "api_name": "six.text_type", "line_number": 39, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 52, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 57, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 62, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 68, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 72, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 76, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 80, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 84, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 88, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 92, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 96, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 100, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 104, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 108, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 113, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 117, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 121, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 125, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 129, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 133, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 137, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 141, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 145, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 149, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 153, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 157, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 161, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 165, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 169, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 173, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 177, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 181, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 185, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 189, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 193, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 197, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 201, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 205, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 209, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 213, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 217, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 221, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 225, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 229, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 233, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 237, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 241, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 245, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 249, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 254, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 258, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 262, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 266, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 270, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 275, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 280, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 285, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 290, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 295, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 300, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 304, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 308, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 312, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 316, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 320, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 325, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 329, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 333, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 338, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 343, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 348, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 353, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 357, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 361, "usage_type": "call" }, { "api_name": "delfin.i18n._", "line_number": 366, "usage_type": "call" } ]
6250184169
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 19 12:46:12 2018 @author: CTF Team """ from PyQt5 import uic,QtCore, QtGui, QtWidgets from PyQt5.QtCore import QSize, Qt import CompanyTaxUI import sys import pandas as pd import csv import numpy as np class ApplicationWindow(QtWidgets.QMainWindow): def __init__(self): super(ApplicationWindow, self).__init__() self.ui = CompanyTaxUI.Ui_MainWindow() self.ui.setupUi(self) # Connects the calculate button in CompanyTaxUI to CompanyTaxSavingsApp.py self.ui.calculate.clicked.connect(self.taxCalculate) def taxCalculate(self): # Gets the string input from company_netIncome companySGDIncome = self.ui.company_netIncome.text() # Checks if companySGDIncome is empty if not companySGDIncome: self.ui.list_top10.setColumnCount(1) self.ui.list_top10.setHorizontalHeaderLabels(["Output"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeader().setSectionResizeMode(0, QtWidgets.QHeaderView.ResizeToContents) self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem("You have not inputted any SGD Net Income !")) else: # Gets the category input from list_companyindustry selectedCategoryData = self.ui.list_companyindustry.currentText() calCountriesTaxAmt = ApplicationWindow.taxComputation(companySGDIncome, selectedCategoryData) # Gets the option 1 - 5 to indicate the option to generate the tax output if self.ui.option1.isChecked(): # Filter countries that have 0% tax rates for the respective tax rates # Looking at 0 index value for national + branch rate filteredCountries1 = {k:v for k, v in calCountriesTaxAmt.items() if v[0] > 0} minimumTaxCountry1 = min(filteredCountries1.items(), key = lambda x : x[1][0]) # Set ui list to the following parameters for the required output for option 5 self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting output for option 1 self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem(minimumTaxCountry1[0])) value = '%.3f' % minimumTaxCountry1[1][0] self.ui.list_top10.setItem(0 , 1, QtWidgets.QTableWidgetItem(value)) self.ui.list_top10.setItem(0 , 2, QtWidgets.QTableWidgetItem("Tax Option 1")) elif self.ui.option2.isChecked(): # Looking at index 1 value for min tax filteredCountries2 = {k:v for k, v in calCountriesTaxAmt.items() if v[1] > 0} minimumTaxCountry2 = min(filteredCountries2.items(), key = lambda x: x[1][1]) self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting output for option 2 self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem(minimumTaxCountry2[0])) value = '%.3f' % minimumTaxCountry2[1][1] self.ui.list_top10.setItem(0 , 1, QtWidgets.QTableWidgetItem(value)) self.ui.list_top10.setItem(0 , 2, QtWidgets.QTableWidgetItem("Tax Option 2")) elif self.ui.option3.isChecked(): # Looking at index 2 value for progressive tax filteredCountries3 = {k:v for k, v in calCountriesTaxAmt.items() if v[2] > 0} minimumTaxCountry3 = min(filteredCountries3.items(), key = lambda x: x[1][2]) self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting output for option 3 self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem(minimumTaxCountry3[0])) value = '%.3f' % minimumTaxCountry3[1][2] self.ui.list_top10.setItem(0 , 1, QtWidgets.QTableWidgetItem(value)) self.ui.list_top10.setItem(0 , 2, QtWidgets.QTableWidgetItem("Tax Option 3")) elif self.ui.option4.isChecked(): # Looking at index 3 value for category tax filteredCountries4 = {k:v for k, v in calCountriesTaxAmt.items() if v[3] > 0} # If Category is not inputted if bool(filteredCountries4) == False : self.ui.list_top10.setColumnCount(1) self.ui.list_top10.setHorizontalHeaderLabels(["Output"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeader().setSectionResizeMode(0, QtWidgets.QHeaderView.ResizeToContents) self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem("You have not chosen any category !")) # Else shows the category data else: minimumTaxCountry4 = min(filteredCountries4.items(), key=lambda x: x[1][3]) self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(1) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting output for option 4 self.ui.list_top10.setItem(0 , 0, QtWidgets.QTableWidgetItem(minimumTaxCountry4[0])) value = '%.3f' % minimumTaxCountry4[1][3] self.ui.list_top10.setItem(0 , 1, QtWidgets.QTableWidgetItem(value)) self.ui.list_top10.setItem(0 , 2, QtWidgets.QTableWidgetItem("Tax Option 3")) elif self.ui.option5.isChecked(): # Loops through calCountrieTaxAmt and store least tax amount and index as a tuple for key countryName topTenCountriesLowestTaxes = {} for value in calCountriesTaxAmt.items(): val = min((x for x in value[1] if x > 0), default = 0) index = value[1].index(val) topTenCountriesLowestTaxes[value[0]] = (val,index) # Filters countries with 0 values filteredCountries5 = {k:v for k, v in topTenCountriesLowestTaxes.items() if v[0] > 0} minimumTaxCountry5 = sorted(filteredCountries5.items(), key=lambda x:x[1]) self.ui.list_top10.setColumnCount(3) self.ui.list_top10.setHorizontalHeaderLabels(["Country", "Tax Amount", "Tax Option #"]) self.ui.list_top10.setRowCount(10) self.ui.list_top10.horizontalHeaderItem(0).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(1).setTextAlignment(Qt.AlignLeft) self.ui.list_top10.horizontalHeaderItem(2).setTextAlignment(Qt.AlignLeft) # Setting the top 10 least minimum tax and their options onto the output for row in range(10): self.ui.list_top10.setItem(row, 0, QtWidgets.QTableWidgetItem(minimumTaxCountry5[row][0])) value = '%.3f' % minimumTaxCountry5[row][1][0] self.ui.list_top10.setItem(row , 1, QtWidgets.QTableWidgetItem(value)) option = minimumTaxCountry5[row][1][1] + 1 option = "Tax Option " + '%.f' % + option self.ui.list_top10.setItem(row, 2, QtWidgets.QTableWidgetItem(option)) # Convert SGD Net Income to USD Net Income def convertSGDToUSD(companySGDIncome): usdIncome = companySGDIncome * 0.75 return usdIncome # Generate dictionary with key as Country and tuple with 4 spaces containing the different tax rates def generateTaxForOptions(taxData, companyUSDIncome, companyCode): countryTaxAmount = {} for row in taxData.itertuples(index=False, name="None"): # Initialize 4 taxes amount to be stored # 1st tax amount is normal rate + branch rate # 2nd tax amount is minimum tax rate # 3rd tax amount is progressive tax rate # 4th tax amount is pertaining to the specific type of industry differentTaxAmount = [0,0,0,0] # 1st Tax # Finding the tax in USD for tax amount # 1 with normal rate + branch rate differentTaxAmount[0] = round(companyUSDIncome * (row[1] + row[8]), 3) # 2nd Tax # Find the tax in USD for tax amount # 2 with minimum tax rate differentTaxAmount[1] = round(companyUSDIncome * (row[4]), 3) # 3rd Tax # If native currency is not in USD, find the tax in USD and convert to native currency for progressive tax computation nativeCurrency = companyUSDIncome if row[2] != "USD": nativeCurrency = (1.0 / row[3]) * nativeCurrency # Evaluates for fields that are not empty in ProgressiveTaxRate if row[7]: # Split by , for progressive tax condition progressiveTax = row[7].split(',') # For loop inside the progressiveTax and split by white space conditionStatement = [x.split() for x in progressiveTax] # For loop through the condition statement for each list of conditions for x in conditionStatement: # If value is present, break out of loop valuePresent = False # Round off native currency to 3 decimal places and declare it as a string roundedNativeCurrency = round(nativeCurrency, 3) strRoundedNativeCurrency = '%.3f' % roundedNativeCurrency # Use if condition to check for the length of the list of conditionStatement if len(x) == 5: # Evaluate the conditions before final statement lowerBound = x[0] evaluationCondition = x[1] upperBound = x[2] taxPercentage = x[4] # Use eval function to test the test case lowerBoundStatement = "> " + lowerBound upperBoundStatement = evaluationCondition + " " + upperBound # 1st condition to check if figure is bigger than amount lowerCondition = strRoundedNativeCurrency + " " + lowerBoundStatement # 2nd condition to check if figure is smaller than or equal to amount upperCondition = strRoundedNativeCurrency + " " + upperBoundStatement # Checks if 1st and 2nd condition is fulfilled to know if nativeCurrency falls within this range if (eval(lowerCondition)) and (eval(upperCondition)): nativeCalculatedTax = roundedNativeCurrency * float(taxPercentage) # Calculate back the amount in USD USDCalTax1 = nativeCalculatedTax * (row[3]) USDCalTax1 = round(USDCalTax1, 3) # Assign the CalTax into differentTaxAmount differentTaxAmount[2] = USDCalTax1 valuePresent = True break if (valuePresent == True): break elif len(x) == 4: # Evaluate the conditions for final statement lastEvaluationCondition = x[0] lastLowerBound = x[1] lastTaxPercentage = x[3] # last condition to check if figure is bigger than last lower bound lastLowerBoundStatement = lastEvaluationCondition + " " + lastLowerBound # Adding strRoundedNativeCurrency to lastCondition lastCondition = strRoundedNativeCurrency + " " + lastLowerBoundStatement # Checks if last condition is fulfilled if eval(lastCondition): nativeCalculatedTax = roundedNativeCurrency * float(lastTaxPercentage) # Calculate back the amount in USD USDCalTax2 = nativeCalculatedTax * (row[3]) USDCalTax2 = round(USDCalTax2, 3) # Assign the CalTax into differentTaxAmount differentTaxAmount[2] = USDCalTax2 valuePresent = True break # 4th Tax # Calculates the tax amount if categoryTaxCondition1 fulfils the companyCode defined by the user if row[9]: if "," in row[9]: # Split the string by , to get the string statement out categoryStatement1 = row[9].split(',') # For loop inside the categoryStatement and split by white space categoryTaxCondition1 = [x.split() for x in categoryStatement1] # For loop inside the tuple and retrieve dictCode for comparison and multiplication by assigned tax rate if it matches for x in categoryTaxCondition1: dictCode1 = x[0] categoryTax1 = x[2] if (companyCode == dictCode1): categoryTaxAmount1 = companyUSDIncome * float(categoryTax1) differentTaxAmount[3] = categoryTaxAmount1 break # For loop inside the tuple and multiply by taxRate if it matches else: # Account for countries with only 1 type of category special tax rate categoryTaxCondition2 = row[9].split() dictCode2 = categoryTaxCondition2[0] categoryTax2 = categoryTaxCondition2[2] if (companyCode == dictCode2): categoryTaxAmount2 = companyUSDIncome * float(categoryTax2) differentTaxAmount[3] = categoryTaxAmount2 # Assigning the countryName as key, the differentTaxAmount tuple as the value countryTaxAmount[row[0]] = differentTaxAmount return countryTaxAmount # Generate dictionary with key as CategoryName and value as 3 characters code for category def generateCategoryData(categoryData): # Use list comprehension to assign key and data to categoryDict categoryDict = {x['CategoryName']: x['CategoryCode'] for x in categoryData.to_dict(orient="records")} return categoryDict def taxComputation(companySGDIncome, selectedCategoryData): # Load csv data into pandas and na values are not being evaluated as NaN taxData = pd.read_csv('countryTax.csv', keep_default_na=False) # Fill empty fields with blank spaces taxData.fillna({'ProgressiveTaxRange':'', 'CategoryRate': ''}) # Load csv data for company category and load into companyDict dictionary categoryData = pd.read_csv('categoryDict.csv', keep_default_na=False) # Generate categoryDict for categoryData categoryDict = ApplicationWindow.generateCategoryData(categoryData) companyCode = categoryDict.get(selectedCategoryData) companySGDIncome = float(companySGDIncome) companyUSDIncome = ApplicationWindow.convertSGDToUSD(companySGDIncome) # Assign countryName as key, and calculate the value for differentTaxAmount in option 1, 2, 3, 4 in USD countriesTaxAmt = ApplicationWindow.generateTaxForOptions(taxData, companyUSDIncome, companyCode) return countriesTaxAmt if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) application = ApplicationWindow() application.show() sys.exit(app.exec_())
larry2967/academic-projects
taxcalculator/CompanyTaxSavingsApp.py
CompanyTaxSavingsApp.py
py
14,683
python
en
code
0
github-code
6
[ { "api_name": "PyQt5.QtWidgets.QMainWindow", "line_number": 16, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 16, "usage_type": "name" }, { "api_name": "CompanyTaxUI.Ui_MainWindow", "line_number": 19, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 34, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 34, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QHeaderView", "line_number": 35, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 35, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 36, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 36, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 55, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 55, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 56, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 56, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 57, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 57, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 60, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 60, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 62, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 62, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 63, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 63, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 73, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 73, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 74, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 74, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 75, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 75, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 78, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 78, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 80, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 80, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 81, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 81, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 91, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 91, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 92, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 92, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 93, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 93, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 96, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 96, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 98, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 98, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 99, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 99, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 110, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 110, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QHeaderView", "line_number": 111, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets", "line_number": 111, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 112, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 112, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 120, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 120, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 121, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 121, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 122, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 122, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 125, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 125, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 127, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 127, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 128, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 128, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 145, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 145, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 146, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 146, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.AlignLeft", "line_number": 147, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 147, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 151, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 151, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 153, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 153, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTableWidgetItem", "line_number": 156, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 156, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 305, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 311, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QApplication", "line_number": 327, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets", "line_number": 327, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 327, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 330, "usage_type": "call" } ]
23722748410
from django.urls import path from gisapp.views import HomeView, county_datasets, point_datasets from gisapp.api.views import ProvincesListAPIView,ProvincesDetailAPIView urlpatterns = [ path('', HomeView.as_view(), name='home'), path('county_data/', county_datasets, name = 'county'), path('incidence_data/', point_datasets, name = 'incidences'), path("provinces/", ProvincesListAPIView.as_view(), name="pr"), path("provinces/<int:pk>/", ProvincesDetailAPIView.as_view(), name=""), ]
shwky56/geo-django
gisapp/urls.py
urls.py
py
506
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "gisapp.views.HomeView.as_view", "line_number": 7, "usage_type": "call" }, { "api_name": "gisapp.views.HomeView", "line_number": 7, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "gisapp.views.county_datasets", "line_number": 8, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "gisapp.views.point_datasets", "line_number": 9, "usage_type": "argument" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "gisapp.api.views.ProvincesListAPIView.as_view", "line_number": 10, "usage_type": "call" }, { "api_name": "gisapp.api.views.ProvincesListAPIView", "line_number": 10, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "gisapp.api.views.ProvincesDetailAPIView.as_view", "line_number": 11, "usage_type": "call" }, { "api_name": "gisapp.api.views.ProvincesDetailAPIView", "line_number": 11, "usage_type": "name" } ]
42543026750
"""Utility related functions. """ import sys import os import ctypes import pygame from .window import * def quit(): """Shuts down ag_py the correct way.""" destroy_window() pygame.quit() sys.exit() def is_admin() -> bool: """Determines if the user is running your game as admin.""" try: return os.getuid() == 0 except AttributeError: return ctypes.windll.shell32.IsUserAnAdmin() != 0 def percent(n1: int, n2: int) -> int: """Finds the percentage of n1 out of n2. For example, if n1 was 5, and n2 was 10, it would return 50. """ return (n1 / n2) * 100 def generate_string(length: int) -> str: """Generates a random string of a given lentgh.""" symbols: str = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890" final_string: str = "" for i in range(length): final_string += symbols[random.randint(0, len(symbols) - 1)] return final_string
trypolis464/ag_py
agpy/utils.py
utils.py
py
951
python
en
code
0
github-code
6
[ { "api_name": "pygame.quit", "line_number": 16, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 17, "usage_type": "call" }, { "api_name": "os.getuid", "line_number": 23, "usage_type": "call" }, { "api_name": "ctypes.windll.shell32.IsUserAnAdmin", "line_number": 25, "usage_type": "call" }, { "api_name": "ctypes.windll", "line_number": 25, "usage_type": "attribute" } ]
19528118390
__author__ = 'zhaicao' import sys from PyQt5.QtWidgets import (QWidget, QPushButton, QLineEdit, QInputDialog, QApplication, QColorDialog, QFrame, QVBoxLayout, QSizePolicy, QLabel, QFontDialog, QTextEdit, QAction, QFileDialog ,QMainWindow) from PyQt5.QtGui import QColor, QIcon #通过输入框改变文字 class simple_1(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): col = QColor() self.btn = QPushButton('Dialog', self) self.btn.move(20, 20) #绑定按钮点击信号和槽函数 self.btn.clicked.connect(self.showDialog) self.el = QLineEdit(self) self.el.move(130, 22) self.setGeometry(300, 300, 290, 150) self.setWindowTitle('Dialog') self.show() def showDialog(self): text, ok = QInputDialog.getText(self, 'Input Dialog', 'Enter your name:') if ok: self.el.setText(str(text)) #通过对话框改变颜色 class simple_2(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): col = QColor(0, 0, 0) self.btn = QPushButton('Dialog', self) self.btn.move(20, 20) #绑定按钮点击信号和槽函数 self.btn.clicked.connect(self.showDialog) self.frm = QFrame(self) self.frm.setStyleSheet("QWidget { background-color: %s }" % col.name()) self.frm.setGeometry(130, 22, 100, 100) self.setGeometry(300, 300, 250, 180) self.setWindowTitle('Color Dialog') self.show() def showDialog(self): col = QColorDialog.getColor() if col.isValid(): self.frm.setStyleSheet("QWidget { background-color: %s }" % col.name()) #通过对话框改变字体 class simple_3(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): vbox = QVBoxLayout() btn = QPushButton('Dialog', self) btn.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) btn.move(20, 20) vbox.addWidget(btn) btn.clicked.connect(self.showDialog) self.lbl = QLabel('Knowledge only matters', self) self.lbl.move(130, 20) vbox.addWidget(self.lbl) self.setLayout(vbox) self.setGeometry(300, 300, 250, 180) self.setWindowTitle('Color Dialog') self.show() def showDialog(self): font, ok = QFontDialog.getFont() if ok: self.lbl.setFont(font) #通过对话框选择文件或目录 class simple_4(QMainWindow): def __init__(self): super().__init__() self.initUI() def initUI(self): self.textEdit = QTextEdit() self.setCentralWidget(self.textEdit) self.statusBar() openFile = QAction(QIcon('web.png'), 'OPen', self) openFile.setShortcut('Ctrl+o') openFile.setStatusTip('Open new file') openFile.triggered.connect(self.showDialog) menuBar = self.menuBar() fileMenu = menuBar.addMenu('&File') fileMenu.addAction(openFile) self.setGeometry(300, 300, 250, 180) self.setWindowTitle('Color Dialog') self.show() def showDialog(self): fname = QFileDialog.getOpenFileName(self, 'Open File', 'C:/Users/slave/Desktop', 'Xml Files(*.xml);;Excel Files(*.xls *.xlsx);;Word Files(*.doc)') print(fname) if fname[0]: f = open(fname[0], 'r') with f: data = f.read() self.textEdit.setText(str(data)) if __name__=='__main__': app = QApplication(sys.argv) s = simple_4() sys.exit(app.exec_())
zhaicao/pythonWorkspace
Pyqt5Practice/demo_8.py
demo_8.py
py
3,852
python
en
code
0
github-code
6
[ { "api_name": "PyQt5.QtWidgets.QWidget", "line_number": 10, "usage_type": "name" }, { "api_name": "PyQt5.QtGui.QColor", "line_number": 16, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QPushButton", "line_number": 18, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 23, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QInputDialog.getText", "line_number": 31, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QInputDialog", "line_number": 31, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QWidget", "line_number": 36, "usage_type": "name" }, { "api_name": "PyQt5.QtGui.QColor", "line_number": 42, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QPushButton", "line_number": 44, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QFrame", "line_number": 49, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QColorDialog.getColor", "line_number": 58, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QColorDialog", "line_number": 58, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QWidget", "line_number": 65, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 71, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QPushButton", "line_number": 73, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QSizePolicy.Fixed", "line_number": 74, "usage_type": "attribute" }, { "api_name": "PyQt5.QtWidgets.QSizePolicy", "line_number": 74, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 81, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QFontDialog.getFont", "line_number": 93, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QFontDialog", "line_number": 93, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QMainWindow", "line_number": 99, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QTextEdit", "line_number": 105, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QAction", "line_number": 109, "usage_type": "call" }, { "api_name": "PyQt5.QtGui.QIcon", "line_number": 109, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QFileDialog.getOpenFileName", "line_number": 123, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QFileDialog", "line_number": 123, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QApplication", "line_number": 137, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 137, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 139, "usage_type": "call" } ]
9518060798
from ast import Lambda from functools import reduce l2=[1,2,3,4,5,6,7,8,9] l=[1,2,3,4,5,6,7,8,9,10] a=list(filter(lambda x : x>5,l)) print (a) b=list(map(pow,a,l2)) print(b) sum=(reduce(lambda x, y: x + y,b)) print(sum)
SouvikPaul2000/Souvik-paul-2
Basic code/MapFilterLamdaReduce.py
MapFilterLamdaReduce.py
py
222
python
en
code
0
github-code
6
[ { "api_name": "functools.reduce", "line_number": 11, "usage_type": "call" } ]
41234449235
# create by andy at 2022/4/21 # reference: import torchvision from torch.utils.tensorboard import SummaryWriter from torchvision import transforms from torch.utils.data import DataLoader dataset_transform = transforms.Compose([ transforms.ToTensor(), ]) train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, download=True, transform=dataset_transform) test_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, download=False, transform=dataset_transform) test_loader = DataLoader(dataset=test_set, batch_size=64, shuffle=True, num_workers=0, drop_last=False) writer = SummaryWriter("logs") step = 0 for data in test_loader: imgs, targets = data print(imgs.shape) print(targets) writer.add_images("test_batch", imgs, step) step += 1 # writer = SummaryWriter("logs") # for i in range(10): # img, target = test_set[i] # writer.add_image("test_set", img, i) # # writer.close() if __name__ == '__main__': pass
beishangongzi/study_torch
p10_dataset/dataset_download.py
dataset_download.py
py
1,327
python
en
code
0
github-code
6
[ { "api_name": "torchvision.transforms.Compose", "line_number": 9, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 9, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 10, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 10, "usage_type": "name" }, { "api_name": "torchvision.datasets.CIFAR10", "line_number": 13, "usage_type": "call" }, { "api_name": "torchvision.datasets", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torchvision.datasets.CIFAR10", "line_number": 17, "usage_type": "call" }, { "api_name": "torchvision.datasets", "line_number": 17, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 23, "usage_type": "call" }, { "api_name": "torch.utils.tensorboard.SummaryWriter", "line_number": 29, "usage_type": "call" } ]
17459989896
from flask import current_app, render_template, make_response, session from ecom.datastore import db,redis_store from ecom.exceptions import ServiceUnavailableException from ecom.models import Item, Cart, Account import json import razorpay from ecom.utils import general_util class PaymentManager(): @staticmethod def pay(): category_map = general_util.get_category_map() print ("payment manager pay") if 'email' in session: query = Account.query.filter(Account.email == session['email']) account = query.first() query = Cart.query.filter_by(account_id=account.id, active=True) cart = query.first() print (cart.items) value = 0 for item in cart.items: value += item.price amount = int(value*100) print ("checcccc") print (amount) resp = make_response(render_template('payment.html',name=account.name,email=account.email,contact=account.mobile,amount=amount, category_map=category_map)) resp.headers['Content-type'] = 'text/html; charset=utf-8' return resp else: status_message = "SignUp or Login to continue shopping" resp = make_response(render_template('signup.html',category_map=category_map, status_message=status_message)) resp.headers['Content-type'] = 'text/html; charset=utf-8' return resp @staticmethod def charge(data): category_map = general_util.get_category_map() print ("payment manager charge") print (data) client = razorpay.Client(auth=(current_app.config.get('RAZORPAY_KEY'), current_app.config.get('RAZORPAY_SECRET'))) client.set_app_details({"title" : "mmmkart", "version" : "1.0"}) #data = {"amount": 1000, "currency": "INR", "receipt": "654", "payment_capture": 1} #client.order.create(data=data) query = Account.query.filter(Account.email == session['email']) account = query.first() query = Cart.query.filter_by(account_id=account.id, active=True) cart = query.first() print (cart.items) value = 0 for item in cart.items: value += item.price amount = int(value*100) payment_id = data['razorpay_payment_id'] resp = client.payment.capture(payment_id, amount) print (resp) print (resp['status']) if resp["status"] == "captured": print ("sycccecece") cart.active = False try: print ("inserrr") db.session.add(cart) db.session.commit() except Exception as e: print (e) db.session.rollback() message = "Congratulations !!! Your payment is successful" resp = make_response(render_template('paymentresponse.html',message=message,success=1,category_map=category_map,name=session.get('name'))) resp.headers['Content-type'] = 'text/html; charset=utf-8' return resp else: print ("fsasasas") message = "Oops !!! Your payment got declined. Please retry payment" resp = make_response(render_template('paymentresponse.html',message=message,category_map=category_map,name=session.get('name'))) resp.headers['Content-type'] = 'text/html; charset=utf-8' return resp
ubamax/esocial-app
ecom/managers/payment_manager.py
payment_manager.py
py
3,473
python
en
code
0
github-code
6
[ { "api_name": "ecom.utils.general_util.get_category_map", "line_number": 13, "usage_type": "call" }, { "api_name": "ecom.utils.general_util", "line_number": 13, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 15, "usage_type": "name" }, { "api_name": "ecom.models.Account.query.filter", "line_number": 16, "usage_type": "call" }, { "api_name": "ecom.models.Account.query", "line_number": 16, "usage_type": "attribute" }, { "api_name": "ecom.models.Account", "line_number": 16, "usage_type": "name" }, { "api_name": "ecom.models.Account.email", "line_number": 16, "usage_type": "attribute" }, { "api_name": "flask.session", "line_number": 16, "usage_type": "name" }, { "api_name": "ecom.models.Cart.query.filter_by", "line_number": 18, "usage_type": "call" }, { "api_name": "ecom.models.Cart.query", "line_number": 18, "usage_type": "attribute" }, { "api_name": "ecom.models.Cart", "line_number": 18, "usage_type": "name" }, { "api_name": "flask.make_response", "line_number": 27, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 27, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 33, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 33, "usage_type": "call" }, { "api_name": "ecom.utils.general_util.get_category_map", "line_number": 41, "usage_type": "call" }, { "api_name": "ecom.utils.general_util", "line_number": 41, "usage_type": "name" }, { "api_name": "razorpay.Client", "line_number": 44, "usage_type": "call" }, { "api_name": "flask.current_app.config.get", "line_number": 44, "usage_type": "call" }, { "api_name": "flask.current_app.config", "line_number": 44, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 44, "usage_type": "name" }, { "api_name": "ecom.models.Account.query.filter", "line_number": 48, "usage_type": "call" }, { "api_name": "ecom.models.Account.query", "line_number": 48, "usage_type": "attribute" }, { "api_name": "ecom.models.Account", "line_number": 48, "usage_type": "name" }, { "api_name": "ecom.models.Account.email", "line_number": 48, "usage_type": "attribute" }, { "api_name": "flask.session", "line_number": 48, "usage_type": "name" }, { "api_name": "ecom.models.Cart.query.filter_by", "line_number": 50, "usage_type": "call" }, { "api_name": "ecom.models.Cart.query", "line_number": 50, "usage_type": "attribute" }, { "api_name": "ecom.models.Cart", "line_number": 50, "usage_type": "name" }, { "api_name": "ecom.datastore.db.session.add", "line_number": 66, "usage_type": "call" }, { "api_name": "ecom.datastore.db.session", "line_number": 66, "usage_type": "attribute" }, { "api_name": "ecom.datastore.db", "line_number": 66, "usage_type": "name" }, { "api_name": "ecom.datastore.db.session.commit", "line_number": 67, "usage_type": "call" }, { "api_name": "ecom.datastore.db.session", "line_number": 67, "usage_type": "attribute" }, { "api_name": "ecom.datastore.db", "line_number": 67, "usage_type": "name" }, { "api_name": "ecom.datastore.db.session.rollback", "line_number": 70, "usage_type": "call" }, { "api_name": "ecom.datastore.db.session", "line_number": 70, "usage_type": "attribute" }, { "api_name": "ecom.datastore.db", "line_number": 70, "usage_type": "name" }, { "api_name": "flask.make_response", "line_number": 73, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 73, "usage_type": "call" }, { "api_name": "flask.session.get", "line_number": 73, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 73, "usage_type": "name" }, { "api_name": "flask.make_response", "line_number": 79, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 79, "usage_type": "call" }, { "api_name": "flask.session.get", "line_number": 79, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 79, "usage_type": "name" } ]
11038610201
# -*- coding: utf-8 -*- """ Created on Wed Sep 19 14:24:54 2018 @author: henyd """ from sklearn import tree from sklearn import svm import numpy as np from chatterbot import ChatBot from chatterbot.trainers import ListTrainer def get_response(usrText): bot = ChatBot('Couns', storage_adapter='chatterbot.storage.SQLStorageAdapter', logic_adapters=[ 'chatterbot.logic.BestMatch', 'chatterbot.logic.MathematicalEvaluation', { 'import_path': 'chatterbot.logic.LowConfidenceAdapter', 'threshold': 0.70, 'default_response': "Sorry, I didn't understand." } ], trainer='chatterbot.trainers.ListTrainer') bot.set_trainer(ListTrainer) while True: if usrText.strip()!= 'start': result = bot.get_response(usrText) reply = str(result) return(reply) if usrText.strip()== 'start': z = [] with open('features1.txt', 'r') as xf: for xline in xf: x = xline.split(',') for i in range(0,len(x)): x[i] = int(x[i]) z.append(x) w = [] with open('labels1.txt', 'r') as yf: for yline in yf: y = yline w.append(y) clf = tree.DecisionTreeClassifier() clf = clf.fit(z, w) abroad = input("Do you see yourself in some foreign country like USA, Canada, UK, Australia, Russia in about 5 years? [1/0]: ") job = input("Are you satisfied with your bachelor's degree and want to do no more furthur studies ? [1/0]: ") interest = input("Do you love doing coding and are you confident that you can solve the hardest problem if you are given plentiful of time ? [1/0]: ") mba = input("Do you feel so as if you can't perform well in IT and you think that you can't compete well with others from our branch ?: [1/0]: ") prediction = clf.predict([[abroad, job, interest, mba]]) print("You should think of doing: ",prediction) return("Thats all")
henydave/career-counselling-chatbot
chatbot_final2.py
chatbot_final2.py
py
2,211
python
en
code
1
github-code
6
[ { "api_name": "chatterbot.ChatBot", "line_number": 13, "usage_type": "call" }, { "api_name": "chatterbot.trainers.ListTrainer", "line_number": 25, "usage_type": "argument" }, { "api_name": "sklearn.tree.DecisionTreeClassifier", "line_number": 44, "usage_type": "call" }, { "api_name": "sklearn.tree", "line_number": 44, "usage_type": "name" } ]
10966117387
import os import clip import torch.nn as nn from datasets import Action_DATASETS from torch.utils.data import DataLoader from tqdm import tqdm import wandb import argparse import shutil from pathlib import Path import yaml from dotmap import DotMap import pprint import numpy from modules.Visual_Prompt import visual_prompt from utils.Augmentation import get_augmentation import torch from utils.Text_Prompt import * import pdb from sklearn.metrics import f1_score from sklearn.metrics import balanced_accuracy_score import pandas as pd import numpy as np import logging class TextCLIP(nn.Module): def __init__(self, model): super(TextCLIP, self).__init__() self.model = model def forward(self, text): return self.model.encode_text(text) class ImageCLIP(nn.Module): def __init__(self, model): super(ImageCLIP, self).__init__() self.model = model def forward(self, image): return self.model.encode_image(image) def val_metrics(pred, logger): # pdb.set_trace() test_num_each = [5464, 5373, 27014, 4239, 3936, 6258, 10474, 6273, 10512, 6667, 22131, 4661, 8855, 14047, 28896, 4209] test_num_snippet = [43, 42, 212, 34, 31, 49, 82, 50, 83, 53, 173, 37, 70, 110, 226, 33] # test_num_rem = [88, 125, 6, 15, 96, 114, 106, 1, 16, 11, 115, 53, 23, 95, 96, 113] mean_weighted_f1 = 0.0 mean_unweighted_f1 = 0.0 mean_global_f1 = 0.0 mean_balanced_acc = 0.0 each_wf1 = [] each_unf1 = [] each_gf1 = [] each_bacc = [] test_labels_pth = '' for i in range(16): predi = pred[sum(test_num_snippet[:i]): sum(test_num_snippet[:i+1])] predi = [p for p in predi for _ in range(128)] predi = predi[:test_num_each[i]] tl_pth = test_labels_pth + '/test_video_' + str(i).zfill(4) + '.csv' ls = np.array(pd.read_csv(tl_pth, usecols=['frame_label'])) label = [] predict = [] for idx, l in enumerate(ls): if not np.isnan(l): label.append(int(l)) predict.append(predi[idx]) # pdb.set_trace() mean_weighted_f1 += f1_score(label, predict, average='weighted')/16.0 mean_unweighted_f1 += f1_score(label, predict, average='macro') / 16.0 mean_global_f1 += f1_score(label, predict, average='micro') / 16.0 mean_balanced_acc += balanced_accuracy_score(label, predict) / 16.0 each_wf1.append(f1_score(label, predict, average='weighted')) each_unf1.append(f1_score(label, predict, average='macro')) each_gf1.append(f1_score(label, predict, average='micro')) each_bacc.append(balanced_accuracy_score(label, predict)) # print('video: ', i, 'label: ', label, 'predict: ', predict) logger.info('wf1: {}'.format(each_wf1)) logger.info('unf1:{}'.format(each_unf1)) logger.info('gf1:{}'.format(each_gf1)) logger.info('bacc:{}'.format(each_bacc)) return mean_weighted_f1, mean_unweighted_f1, mean_global_f1, mean_balanced_acc def validate_val(epoch, val_loader, classes, device, model, fusion_model, config, num_text_aug): model.eval() fusion_model.eval() num = 0 corr_1 = 0 corr_5 = 0 predict_list = [] label_list = [] label2 = [] pred2 = [] with torch.no_grad(): text_inputs = classes.to(device) text_features = model.encode_text(text_inputs) # (bs*num_classes, 512) for iii, (image, class_id) in enumerate(tqdm(val_loader)): # image: (bs, 24, 224, 224) image = image.view((-1, config.data.num_segments, 3) + image.size()[-2:]) # image: (16, 8, 3, 224, 224) b, t, c, h, w = image.size() class_id = class_id.to(device) image_input = image.to(device).view(-1, c, h, w) image_features = model.encode_image(image_input).view(b, t, -1) image_features = fusion_model(image_features) # (bs, 512) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T) similarity = similarity.view(b, num_text_aug, -1) # pdb.set_trace() similarity = similarity.softmax(dim=-1) similarity = similarity.mean(dim=1, keepdim=False) values_1, indices_1 = similarity.topk(1, dim=-1) # values_5, indices_5 = similarity.topk(5, dim=-1) num += b # print(indices_1) # print(class_id) # pdb.set_trace() for i in range(b): if values_1[i] < 0.5: indices_1[i] = -1 # pdb.set_trace() label_list.append(int(class_id[i].cpu().numpy())) predict_list.append(indices_1[i].cpu().numpy()[0]) # if indices_1[i] == class_id[i]: # corr_1 += 1 # if class_id[i] in indices_5[i]: # corr_5 += 1 # pdb.set_trace() # f1score = f1_score(label2, pred2, average='weighted') # acc = accuracy_score(label2, pred2) # pdb.set_trace() bacc = balanced_accuracy_score(label_list, predict_list) print('Epoch: [{}/{}]: bacc:{}'.format(epoch, config.solver.epochs, bacc)) return bacc def validate(epoch, val_loader, classes, device, model, fusion_model, config, num_text_aug, logger): model.eval() fusion_model.eval() num = 0 corr_1 = 0 corr_5 = 0 predict_list = [] label_list = [] label2 = [] pred2 = [] with torch.no_grad(): text_inputs = classes.to(device) text_features = model.encode_text(text_inputs) # (bs*num_classes, 512) for iii, (image, class_id) in enumerate(tqdm(val_loader)): # image: (bs, 24, 224, 224) image = image.view((-1, config.data.num_segments, 3) + image.size()[-2:]) # image: (16, 8, 3, 224, 224) b, t, c, h, w = image.size() class_id = class_id.to(device) image_input = image.to(device).view(-1, c, h, w) image_features = model.encode_image(image_input).view(b, t, -1) image_features = fusion_model(image_features) # (bs, 512) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T) similarity = similarity.view(b, num_text_aug, -1) # pdb.set_trace() similarity = similarity.softmax(dim=-1) similarity = similarity.mean(dim=1, keepdim=False) values_1, indices_1 = similarity.topk(1, dim=-1) # values_5, indices_5 = similarity.topk(5, dim=-1) num += b # print(indices_1) # print(class_id) # pdb.set_trace() for i in range(b): # if values_1[i] < 0.5: # indices_1[i] = -1 # pdb.set_trace() # label_list.append(int(class_id[i].cpu().numpy())) predict_list.append(indices_1[i].cpu().numpy()[0]) # if indices_1[i] == class_id[i]: # corr_1 += 1 # if class_id[i] in indices_5[i]: # corr_5 += 1 # pdb.set_trace() # f1score = f1_score(label2, pred2, average='weighted') # acc = accuracy_score(label2, pred2) wf1, unf1, gf1, bacc = val_metrics(predict_list, logger) # top1 = f1score # top5 = float(corr_5) / num * 100 # wandb.log({"top1": top1}) # wandb.log({"top5": top5}) # print('Epoch: [{}/{}]: Top1: {}, Top5: {}'.format(epoch, config.solver.epochs, top1, top5)) logger.info('Epoch: [{}/{}]: wf1:{:.3f} unf1:{:.3f} gf1:{:.3f} bacc:{:.3f}'.format(epoch, config.solver.epochs, wf1, unf1, gf1, bacc)) return wf1 def main(): global args, best_prec1 global global_step parser = argparse.ArgumentParser() parser.add_argument('--config', '-cfg', default='') parser.add_argument('--log_time', default='') args = parser.parse_args() with open(args.config, 'r') as f: config = yaml.load(f) working_dir = os.path.join('./exp', config['network']['type'], config['network']['arch'], config['data']['dataset'], args.log_time) wandb.init(project=config['network']['type'], name='{}_{}_{}_{}'.format(args.log_time, config['network']['type'], config['network']['arch'], config['data']['dataset'])) print('-' * 80) print(' ' * 20, "working dir: {}".format(working_dir)) print('-' * 80) print('-' * 80) print(' ' * 30, "Config") pp = pprint.PrettyPrinter(indent=4) pp.pprint(config) print('-' * 80) config = DotMap(config) Path(working_dir).mkdir(parents=True, exist_ok=True) shutil.copy(args.config, working_dir) shutil.copy('test.py', working_dir) device = "cuda" if torch.cuda.is_available() else "cpu" # If using GPU then use mixed precision training. model, clip_state_dict = clip.load(config.network.arch, device=device, jit=False, tsm=config.network.tsm, T=config.data.num_segments, dropout=config.network.drop_out, emb_dropout=config.network.emb_dropout) # Must set jit=False for training ViT-B/32 transform_val = get_augmentation(False, config) fusion_model = visual_prompt(config.network.sim_header, clip_state_dict, config.data.num_segments) model_text = TextCLIP(model) model_image = ImageCLIP(model) model_text = torch.nn.DataParallel(model_text).cuda() model_image = torch.nn.DataParallel(model_image).cuda() fusion_model = torch.nn.DataParallel(fusion_model).cuda() wandb.watch(model) wandb.watch(fusion_model) val_data = Action_DATASETS(config.data.val_list, config.data.label_list, num_segments=config.data.num_segments, image_tmpl=config.data.image_tmpl, transform=transform_val, random_shift=config.random_shift) val_loader = DataLoader(val_data, batch_size=config.data.batch_size, num_workers=config.data.workers, shuffle=False, pin_memory=True, drop_last=True) if device == "cpu": model_text.float() model_image.float() else: clip.model.convert_weights( model_text) # Actually this line is unnecessary since clip by default already on float16 clip.model.convert_weights(model_image) start_epoch = config.solver.start_epoch if config.pretrain: if os.path.isfile(config.pretrain): print(("=> loading checkpoint '{}'".format(config.pretrain))) checkpoint = torch.load(config.pretrain) model.load_state_dict(checkpoint['model_state_dict']) fusion_model.load_state_dict(checkpoint['fusion_model_state_dict']) del checkpoint else: print(("=> no checkpoint found at '{}'".format(config.pretrain))) classes, num_text_aug, text_dict = text_prompt(val_data) best_prec1 = 0.0 prec1 = validate(start_epoch, val_loader, classes, device, model, fusion_model, config, num_text_aug) if __name__ == '__main__': main()
Lycus99/SDA-CLIP
test.py
test.py
py
11,801
python
en
code
0
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 27, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 27, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 36, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 36, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 69, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 74, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 79, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 80, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 81, "usage_type": "call" }, { "api_name": "sklearn.metrics.balanced_accuracy_score", "line_number": 82, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 84, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 85, "usage_type": "call" }, { "api_name": "sklearn.metrics.f1_score", "line_number": 86, "usage_type": "call" }, { "api_name": "sklearn.metrics.balanced_accuracy_score", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 111, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 114, "usage_type": "call" }, { "api_name": "sklearn.metrics.balanced_accuracy_score", "line_number": 157, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 177, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 180, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 236, "usage_type": "call" }, { "api_name": "yaml.load", "line_number": 242, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 243, "usage_type": "call" }, { "api_name": "os.path", "line_number": 243, "usage_type": "attribute" }, { "api_name": "wandb.init", "line_number": 245, "usage_type": "call" }, { "api_name": "pprint.PrettyPrinter", "line_number": 254, "usage_type": "call" }, { "api_name": "dotmap.DotMap", "line_number": 258, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 260, "usage_type": "call" }, { "api_name": "shutil.copy", "line_number": 261, "usage_type": "call" }, { "api_name": "shutil.copy", "line_number": 262, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 264, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 264, "usage_type": "attribute" }, { "api_name": "clip.load", "line_number": 266, "usage_type": "call" }, { "api_name": "utils.Augmentation.get_augmentation", "line_number": 270, "usage_type": "call" }, { "api_name": "modules.Visual_Prompt.visual_prompt", "line_number": 272, "usage_type": "call" }, { "api_name": "torch.nn.DataParallel", "line_number": 277, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 277, "usage_type": "attribute" }, { "api_name": "torch.nn.DataParallel", "line_number": 278, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 278, "usage_type": "attribute" }, { "api_name": "torch.nn.DataParallel", "line_number": 279, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 279, "usage_type": "attribute" }, { "api_name": "wandb.watch", "line_number": 280, "usage_type": "call" }, { "api_name": "wandb.watch", "line_number": 281, "usage_type": "call" }, { "api_name": "datasets.Action_DATASETS", "line_number": 283, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 286, "usage_type": "call" }, { "api_name": "clip.model.convert_weights", "line_number": 293, "usage_type": "call" }, { "api_name": "clip.model", "line_number": 293, "usage_type": "attribute" }, { "api_name": "clip.model.convert_weights", "line_number": 295, "usage_type": "call" }, { "api_name": "clip.model", "line_number": 295, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 300, "usage_type": "call" }, { "api_name": "os.path", "line_number": 300, "usage_type": "attribute" }, { "api_name": "torch.load", "line_number": 302, "usage_type": "call" } ]
39480165735
import numpy as np import scipy.sparse as sp agg1_index = np.load("../trace/agg1_index.npy") agg1_adj = np.load("../trace/agg1_adj.npy") input_feature = np.load("../trace/feat1.npy") coo_row = agg1_index[0] coo_col = agg1_index[1] num_nodes = input_feature.shape[0] """ # Use adjacency matrix to generate norm num_nodes = input_feature.shape[0] agg1_coo_ones = sp.coo_matrix((np.ones(agg1_adj.shape), (coo_row, coo_col)), shape=(num_nodes, num_nodes)) agg1_coo_ones_T = sp.coo_matrix((np.ones(agg1_adj.shape), (coo_col, coo_row)), shape=(num_nodes, num_nodes)) temp_ones = np.ones((num_nodes, num_nodes)) right = agg1_coo_ones.multiply(agg1_coo_ones.dot(temp_ones)) right.data = 1 / right.data left = (agg1_coo_ones_T.multiply(agg1_coo_ones_T.dot(temp_ones))).transpose() left.data = 1 / left.data both = left.multiply(right) both.data = np.sqrt(both.data) """ agg1_coo = sp.coo_matrix((agg1_adj, (coo_row, coo_col)), shape=(num_nodes, num_nodes)) fc1_weight = np.load("../trace/fc1_weight.npy") feat1 = agg1_coo.dot(input_feature.dot(fc1_weight)) feat1 = feat1 * (feat1 > 0) agg2_index = np.load("../trace/agg2_index.npy") agg2_adj = np.load("../trace/agg2_adj.npy") coo_row = agg2_index[0] coo_col = agg2_index[1] num_nodes = feat1.shape[0] agg2_coo = sp.coo_matrix((agg2_adj, (coo_row, coo_col)), shape=(num_nodes, num_nodes)) fc2_weight = np.load("../trace/fc2_weight.npy") feat2 = agg2_coo.dot(feat1.dot(fc2_weight)) from dgl.data import PubmedGraphDataset from dgl import AddSelfLoop from inference import dgl_GraphConv import torch.nn.functional as F import torch raw_dir = "../data/dgl" transform = AddSelfLoop() data = PubmedGraphDataset(raw_dir=raw_dir, transform=transform) g = data[0].int() input_feature_t = torch.from_numpy(input_feature) fc1_weight_t = torch.from_numpy(fc1_weight) feat1_dgl = dgl_GraphConv(fc1_weight.shape[0], fc1_weight.shape[1], g, input_feature_t, fc1_weight_t, norm='both') feat1_dgl = F.relu(feat1_dgl) fc2_weight_t = torch.from_numpy(fc2_weight) feat2_dgl = dgl_GraphConv(fc2_weight.shape[0], fc2_weight.shape[1], g, feat1_dgl, fc2_weight_t, norm='both') feat2_dgl_np = np.array(feat2_dgl) print(f"GraphConv vs. MM-AGG: {np.all(np.isclose(feat2_dgl_np, feat2, rtol=1e-5, atol=1e-6), axis=0)}") print((feat2_dgl_np-feat2)[np.nonzero(np.isclose(feat2_dgl_np, feat2, rtol=1e-5, atol=1e-7) == False)]) import yaml from os import path root = "../trace/" f = open(path.join(root,"ir_generated.yaml"), "r") totinfo = yaml.safe_load(f) bias = None feat = 0 for info in totinfo: if info['op_type'] == 'mm': input_feat = np.load(path.join(root,info['op_input_data']['read_data_path'])) weight = np.load(path.join(root,info['op_weight']['read_data_path'])) feat_shape = info['op_weight']['data_shape'] feat = input_feat.dot(weight) elif info['op_type'] == 'agg': if info['reduce_type'] == 'sum': index = np.load(path.join(root,info['op_adj']['read_index_path'])) adj = np.load(path.join(root,info['op_adj']['read_data_path'])) num_nodes = info['op_adj']['data_shape'][0] agg_coo = sp.coo_matrix((adj, (index[0], index[1])), shape=(num_nodes, num_nodes)) input_feat = np.load(path.join(root,info['op_input_data']['read_data_path'])) feat = agg_coo.dot(input_feat) if info['bias'] == True: bias = np.load(path.join(root,info['op_bias']['read_data_path'])) feat = feat + bias if info['relu'] == True: feat = feat * (feat > 0) np.save(path.join(root,info['op_output_data']['write_data_path']), feat) ir_feat = np.load(path.join(root,"feat5.npy")) print(f"MM-AGG vs. IR: {np.all(np.isclose(ir_feat, feat2, rtol=1e-5, atol=1e-6), axis=0)}") print((ir_feat-feat2)[np.nonzero(np.isclose(ir_feat, feat2, rtol=1e-5, atol=1e-7) == False)]) from utils import enlarge_and_save enlarge_and_save(torch.from_numpy(np.load(path.join(root,"true_output.npy"))), 1, "enlarge_true_output") true_output = np.load(path.join(root,"enlarge_true_output.npy")) print(f"DGL vs. IR: {np.all(np.isclose(ir_feat, true_output, rtol=1e-2, atol=0), axis=0)}") print((np.abs(ir_feat-true_output) / true_output)[np.nonzero(np.isclose(ir_feat, true_output, rtol=1e-2, atol=0) == False)])
zhang677/SparseAcc
train/dgl/check.py
check.py
py
4,271
python
en
code
0
github-code
6
[ { "api_name": "numpy.load", "line_number": 5, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 6, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 7, "usage_type": "call" }, { "api_name": "scipy.sparse.coo_matrix", "line_number": 26, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 26, "usage_type": "name" }, { "api_name": "numpy.load", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 32, "usage_type": "call" }, { "api_name": "scipy.sparse.coo_matrix", "line_number": 36, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 36, "usage_type": "name" }, { "api_name": "numpy.load", "line_number": 37, "usage_type": "call" }, { "api_name": "dgl.AddSelfLoop", "line_number": 47, "usage_type": "call" }, { "api_name": "dgl.data.PubmedGraphDataset", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 50, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 51, "usage_type": "call" }, { "api_name": "inference.dgl_GraphConv", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.nn.functional.relu", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 53, "usage_type": "name" }, { "api_name": "torch.from_numpy", "line_number": 55, "usage_type": "call" }, { "api_name": "inference.dgl_GraphConv", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.nonzero", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 66, "usage_type": "call" }, { "api_name": "os.path", "line_number": 66, "usage_type": "name" }, { "api_name": "yaml.safe_load", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path", "line_number": 72, "usage_type": "name" }, { "api_name": "numpy.load", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path", "line_number": 73, "usage_type": "name" }, { "api_name": "numpy.load", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path", "line_number": 79, "usage_type": "name" }, { "api_name": "numpy.load", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path", "line_number": 80, "usage_type": "name" }, { "api_name": "scipy.sparse.coo_matrix", "line_number": 82, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 82, "usage_type": "name" }, { "api_name": "numpy.load", "line_number": 83, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 83, "usage_type": "call" }, { "api_name": "os.path", "line_number": 83, "usage_type": "name" }, { "api_name": "numpy.load", "line_number": 87, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 87, "usage_type": "call" }, { "api_name": "os.path", "line_number": 87, "usage_type": "name" }, { "api_name": "numpy.save", "line_number": 91, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 91, "usage_type": "call" }, { "api_name": "os.path", "line_number": 91, "usage_type": "name" }, { "api_name": "numpy.load", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path", "line_number": 93, "usage_type": "name" }, { "api_name": "numpy.all", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.nonzero", "line_number": 95, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 95, "usage_type": "call" }, { "api_name": "utils.enlarge_and_save", "line_number": 99, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path", "line_number": 99, "usage_type": "name" }, { "api_name": "numpy.load", "line_number": 100, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 100, "usage_type": "call" }, { "api_name": "os.path", "line_number": 100, "usage_type": "name" }, { "api_name": "numpy.all", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.nonzero", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.isclose", "line_number": 102, "usage_type": "call" } ]
23589518050
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import mne fname ="oddball_example_small-fif.gz" raw = mne.io.read_raw_fif(fname) raw = mne.io.read_raw_fif(fname,preload=True) raw.plot_psd(); raw.plot(); #%%data in 20 different ica components ica = mne.preprocessing.ICA(n_components=20, random_state=0) #%% ica.fit(raw.copy().filter(12,35)) #%% ica.plot_components(outlines="skirt"); #%%we store bad components in ica object ica.exclude=[10,13,15,16,17,18] #%%we could also use one of the automatic algorithms bad_idx,scores = ica.find_bads_eog(raw,"SO2",threshold=1.5) print(bad_idx) #%% ica.exclude=bad_idx #%% raw.plot(); #%% raw=ica.apply(raw.copy(),exclude=ica.exclude) ica.apply(raw.copy(),exclude=ica.exclude).plot(); #%%for epoching the data we need event markers events= mne.find_events(raw) #%% events #%% mne.viz.plot_events(events[:100]); #%%create event ids event_ids= {"standard/stimulus":200, "target/stimulus":100} #%%epochs epochs=mne.Epochs(raw,events,event_id=event_ids) #%% epochs.plot(); #%% #%% epochs=mne.Epochs(raw,events,event_id=event_ids,preload=True) epochs= ica.apply(epochs, exclude=ica.exclude) #%%baseline epochs.apply_baseline((None,0)) #%% epochs["target"]
Sarah436/EEG_Control_Drone
EEG_Drone.py
EEG_Drone.py
py
1,304
python
en
code
0
github-code
6
[ { "api_name": "mne.io.read_raw_fif", "line_number": 9, "usage_type": "call" }, { "api_name": "mne.io", "line_number": 9, "usage_type": "attribute" }, { "api_name": "mne.io.read_raw_fif", "line_number": 10, "usage_type": "call" }, { "api_name": "mne.io", "line_number": 10, "usage_type": "attribute" }, { "api_name": "mne.preprocessing.ICA", "line_number": 14, "usage_type": "call" }, { "api_name": "mne.preprocessing", "line_number": 14, "usage_type": "attribute" }, { "api_name": "mne.find_events", "line_number": 33, "usage_type": "call" }, { "api_name": "mne.viz.plot_events", "line_number": 37, "usage_type": "call" }, { "api_name": "mne.viz", "line_number": 37, "usage_type": "attribute" }, { "api_name": "mne.Epochs", "line_number": 42, "usage_type": "call" }, { "api_name": "mne.Epochs", "line_number": 48, "usage_type": "call" } ]
27591581690
import logging from pymongo import MongoClient from src.utils import Singleton logger = logging.getLogger(__name__) class DBConnection(metaclass=Singleton): def __init__(self, db_settings): self.db_settings = db_settings self.client = MongoClient( host=db_settings['host'], port=int(db_settings['port']), username=db_settings['username'], password=db_settings['password'], authSource='admin' ) def _get_database(self): """ get database :return: database client object """ return self.client['fashion-mnist'] def save_request_info(self, request_id, raw, processed, predictions): """ Save request_id, raw, processed and predictions on mongoDB :param request_id: request id :param raw: raw data (input) :param processed: processed data :param predictions: predictions :return: None """ db = self._get_database() logger.info(f'saving raw_data, processed_data and predictions for {len(raw)} predictions') db['predictions'].insert_many([ { 'request_id': request_id, 'raw_data': raw[i], 'processed_data': processed[i], 'predictions': predictions[i] } for i in range(len(raw))] )
andre1393/fashion-mnist
src/database/mongo_connection.py
mongo_connection.py
py
1,388
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 6, "usage_type": "call" }, { "api_name": "src.utils.Singleton", "line_number": 9, "usage_type": "name" }, { "api_name": "pymongo.MongoClient", "line_number": 13, "usage_type": "call" } ]
27278546383
from cProfile import label from genericpath import exists from math import ceil import os import random import numpy as np import argparse import time import torch import torch.nn as nn import torch.nn.functional as F from torch import optim, autograd from matplotlib import pyplot as plt import seaborn as sns from mpl_toolkits.axes_grid1 import make_axes_locatable from tqdm import tqdm from utils import * from model import * parser = argparse.ArgumentParser() parser.add_argument("-e", "--epochs", type=int, default=30000) parser.add_argument("-lr", "--learningrate", type=float, default=3e-3) parser.add_argument("-i", "--indim", type=int, default=2) parser.add_argument("-o", "--outdim", type=int, default=1) parser.add_argument("-hd", "--hiddim", type=int, default=10) parser.add_argument("-hn", "--hidnum", type=int, default=5) parser.add_argument("-p", "--pretrained", type=bool, default=False) parser.add_argument("-s", "--seed", type=int, default=2022) parser.add_argument("-sp", "--sample", type=int, default=100) parser.add_argument("-skip", "--skip", type=bool, default=True) args = parser.parse_args() EPOCHS = args.epochs LR = args.learningrate IN_DIM = args.indim OUT_DIM = args.outdim HIDDEN_DIM = args.hiddim NUM_HIDDENS = args.hidnum PRETRAINED = args.pretrained SEED = args.seed SAMPLE = args.sample SKIP = args.skip sns.set_style("white") exp_name = "actSiLU" path = os.path.join("./results/", exp_name) os.makedirs(path, exist_ok=True) def u_real(x): return (1 - x[:, 0]**2) * (1 - x[:, 1]**2) def fetch_interior_points(N=128, d=2): return torch.rand(N, d) * 2 - 1 def fetch_boundary_points(N=33): index = torch.rand(N, 1) index1 = torch.rand(N, 1) * 2 - 1 xb1 = torch.cat((index1, torch.ones_like(index1)), dim=1) xb2 = torch.cat((index1, torch.full_like(index1, -1)), dim=1) xb3 = torch.cat((torch.ones_like(index1), index1), dim=1) xb4 = torch.cat((torch.full_like(index1, -1), index1), dim=1) xb = torch.cat((xb1, xb2, xb3, xb4), dim=0) return xb if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Training Device: {device}") seed_everything(SEED) print(f"Random Seed: {SEED}") model = FullConnected_DNN( in_dim=IN_DIM, out_dim=OUT_DIM, hidden_dim=HIDDEN_DIM, num_blks=NUM_HIDDENS, skip=SKIP, act=nn.SiLU(), ).to(device) losses = [] losses_r = [] losses_b = [] model.apply(initialize_weights) optimizer = optim.Adam(model.parameters(), lr=LR) scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=500, T_mult=2, last_epoch=-1) best_loss, best_b, best_r, best_epoch = 0x3F3F3F, 0x3F3F3F, 0x3F3F3F, 0 bar = tqdm(range(EPOCHS)) model.train() t0 = time.time() for epoch in bar: bar.set_description("Training Epoch " + str(epoch)) # generate the data set xr = fetch_interior_points() xb = fetch_boundary_points() xr = xr.to(device) xb = xb.to(device) xr.requires_grad_() output_r = model(xr) output_b = model(xb) # print(output_r.shape, output_b.shape) grads = autograd.grad( outputs=output_r, inputs=xr, grad_outputs=torch.ones_like(output_r), create_graph=True, retain_graph=True, only_inputs=True, )[0] # print(torch.sum(torch.pow(grads, 2), dim=1).shape, output_r.shape) # loss_r = 0.5 * torch.sum(torch.pow(grads, 2), dim=1) - output_r # loss_r = 0.5 * torch.sum(torch.pow(grads, 2), dim=1) loss_r = (0.5 * torch.sum(torch.pow(grads, 2), dim=1) - (4 - 2 * torch.sum(torch.pow(xr, 2), dim=1)) * output_r) loss_r = torch.mean(loss_r) loss_b = torch.mean(torch.pow(output_b, 2)) # loss = 4 * loss_r + 9 * 500 * loss_b loss = loss_r + 100 * loss_b # loss = loss_r + 500 * loss_b bar.set_postfix({ "Tol Loss": "{:.4f}".format(abs(loss)), "Var Loss": "{:.4f}".format(abs(loss_r)), "Bnd Loss": "{:.4f}".format(abs(loss_b)), }) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() loss_t = loss.detach().numpy() losses.append(abs(loss_t)) loss_r = loss_r.detach().numpy() losses_r.append(abs(loss_r)) loss_b = loss_b.detach().numpy() losses_b.append(abs(loss_b)) saved = False if epoch > int(4 * EPOCHS / 5): if torch.abs(loss) < best_loss: best_loss = torch.abs(loss).item() best_b = loss_b best_r = loss_r best_epoch = epoch torch.save(model.state_dict(), os.path.join(path, "ckpt.bin")) if not saved: torch.save(model.state_dict(), os.path.join(path, "ckpt.bin")) print( "Best epoch:", best_epoch, "Best loss:", best_loss, "Best Var loss:", best_r, "Best Boundary loss", best_b, ) elapse = time.time() - t0 print(f"Training time: {elapse}") print(f"# of parameters: {get_param_num(model)}") # plot figure model.eval() model.load_state_dict(torch.load(os.path.join(path, "ckpt.bin"))) print("Load weights from checkpoint!") with torch.no_grad(): x1 = torch.linspace(-1, 1, 1001) x2 = torch.linspace(-1, 1, 1001) X, Y = torch.meshgrid(x1, x2) Z = torch.cat((Y.flatten()[:, None], Y.T.flatten()[:, None]), dim=1) Z = Z.to(device) pred = model(Z) plot_loss_and_save( EPOCHS=EPOCHS, losses=losses, losses_r=losses_r, losses_b=losses_b, SAMPLE=SAMPLE, path=path, ) pred = pred.cpu().numpy() pred = pred.reshape(1001, 1001) plot_result_and_save(pred, path) # print(type(pred), type(u_real(Z))) l2_loss = (np.sqrt( np.sum(np.square(pred - u_real(Z).cpu().numpy().reshape(1001, 1001)))) * (2 / 1000)**2) print(f"l2 Loss: {l2_loss}") print("Output figure saved!")
JiantingFeng/Deep-Ritz-PDE-Solver
new_train.py
new_train.py
py
6,408
python
en
code
3
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 20, "usage_type": "call" }, { "api_name": "seaborn.set_style", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 48, "usage_type": "call" }, { "api_name": "os.path", "line_number": 48, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 49, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.ones_like", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.full_like", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.ones_like", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 66, "usage_type": "call" }, { "api_name": "torch.full_like", "line_number": 66, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 67, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 73, "usage_type": "attribute" }, { "api_name": "torch.nn.SiLU", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 83, "usage_type": "name" }, { "api_name": "model.apply", "line_number": 88, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 89, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 89, "usage_type": "name" }, { "api_name": "model.parameters", "line_number": 89, "usage_type": "call" }, { "api_name": "torch.optim.lr_scheduler.CosineAnnealingWarmRestarts", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.optim.lr_scheduler", "line_number": 90, "usage_type": "attribute" }, { "api_name": "torch.optim", "line_number": 90, "usage_type": "name" }, { "api_name": "tqdm.tqdm", "line_number": 95, "usage_type": "call" }, { "api_name": "model.train", "line_number": 96, "usage_type": "call" }, { "api_name": "time.time", "line_number": 97, "usage_type": "call" }, { "api_name": "torch.autograd.grad", "line_number": 111, "usage_type": "call" }, { "api_name": "torch.autograd", "line_number": 111, "usage_type": "name" }, { "api_name": "torch.ones_like", "line_number": 114, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 122, "usage_type": "call" }, { "api_name": "torch.pow", "line_number": 122, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 123, "usage_type": "call" }, { "api_name": "torch.pow", "line_number": 123, "usage_type": "call" }, { "api_name": "torch.mean", "line_number": 124, "usage_type": "call" }, { "api_name": "torch.mean", "line_number": 125, "usage_type": "call" }, { "api_name": "torch.pow", "line_number": 125, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 146, "usage_type": "call" }, { "api_name": "torch.abs", "line_number": 147, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 151, "usage_type": "call" }, { "api_name": "model.state_dict", "line_number": 151, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 151, "usage_type": "call" }, { "api_name": "os.path", "line_number": 151, "usage_type": "attribute" }, { "api_name": "torch.save", "line_number": 153, "usage_type": "call" }, { "api_name": "model.state_dict", "line_number": 153, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 153, "usage_type": "call" }, { "api_name": "os.path", "line_number": 153, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 164, "usage_type": "call" }, { "api_name": "model.eval", "line_number": 168, "usage_type": "call" }, { "api_name": "model.load_state_dict", "line_number": 169, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 169, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 169, "usage_type": "call" }, { "api_name": "os.path", "line_number": 169, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 171, "usage_type": "call" }, { "api_name": "torch.linspace", "line_number": 172, "usage_type": "call" }, { "api_name": "torch.linspace", "line_number": 173, "usage_type": "call" }, { "api_name": "torch.meshgrid", "line_number": 174, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 191, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 192, "usage_type": "call" }, { "api_name": "numpy.square", "line_number": 192, "usage_type": "call" } ]
22989091213
#!/usr/bin/python # -*- coding: utf-8 -*- # utf-8 中文编码 u""" >>> m=encrypt('123456789','1'*16) >>> m '34430c0e47da2207d0028e778c186d55ba4c1fb1528ee06b09a6856ddf8a9ced' >>> decrypt('123456789',m) '1111111111111111' m = encrypt_verify('123','0123456789') print m print decrypt_verify('123',m) """ from Crypto.Cipher import AES import hashlib from binascii import b2a_hex, a2b_hex import json IV = b'dsfgh478fdshg4gf' def encrypt(key,text): # 密钥key 长度必须为16(AES-128), 24(AES-192),或者32 (AES-256)Bytes 长度 # 所以直接将用户提供的 key md5 一下变成32位的。 key_md5 = hashlib.md5(key).hexdigest() # AES.MODE_CFB 是加密分组模式,详见 http://blog.csdn.net/aaaaatiger/article/details/2525561 # b'0000000000000000' 是初始化向量IV ,16位要求,可以看做另一个密钥。在部分分组模式需要。 # 那个 b 别漏下,否则出错。 cipher = AES.new(key_md5,AES.MODE_CFB,IV) # AES 要求需要加密的内容长度为16的倍数,当密文长度不够的时候用 '\0' 不足。 ntext = text + ('\0' * (16-(len(text)%16))) # b2a_hex 转换一下,默认加密后的字符串有很多特殊字符。 return b2a_hex(cipher.encrypt(ntext)) def decrypt(key,text): key_md5 = hashlib.md5(key).hexdigest() cipher = AES.new(key_md5,AES.MODE_CFB,IV) t=cipher.decrypt(a2b_hex(text)) return t.rstrip('\0') def encrypt_verify(key,text): """加密数据,并附带验证信息 key 加密 key text 需要加密字符串 返回data """ data_dict = {'value':text,'security':hashlib.md5(hashlib.md5(key + IV).hexdigest()).hexdigest()} data_json = json.dumps(data_dict,encoding='utf8') return encrypt(key,data_json) def decrypt_verify(key,aes_data): """解密数据,并验证 key 解密 key text 需要解密字符串 解密正常返回数据,否则返回 None """ data = None try: data_json = decrypt(key,aes_data) data = json.loads(data_json,encoding='utf8') except : return None if data['security'] == hashlib.md5(hashlib.md5(key + IV).hexdigest()).hexdigest(): return data['value'] return None
GameXG/shadowsocks_admin
mycrypto.py
mycrypto.py
py
2,044
python
zh
code
175
github-code
6
[ { "api_name": "hashlib.md5", "line_number": 29, "usage_type": "call" }, { "api_name": "Crypto.Cipher.AES.new", "line_number": 33, "usage_type": "call" }, { "api_name": "Crypto.Cipher.AES", "line_number": 33, "usage_type": "name" }, { "api_name": "Crypto.Cipher.AES.MODE_CFB", "line_number": 33, "usage_type": "attribute" }, { "api_name": "binascii.b2a_hex", "line_number": 37, "usage_type": "call" }, { "api_name": "hashlib.md5", "line_number": 40, "usage_type": "call" }, { "api_name": "Crypto.Cipher.AES.new", "line_number": 41, "usage_type": "call" }, { "api_name": "Crypto.Cipher.AES", "line_number": 41, "usage_type": "name" }, { "api_name": "Crypto.Cipher.AES.MODE_CFB", "line_number": 41, "usage_type": "attribute" }, { "api_name": "binascii.a2b_hex", "line_number": 42, "usage_type": "call" }, { "api_name": "hashlib.md5", "line_number": 53, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 54, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 67, "usage_type": "call" }, { "api_name": "hashlib.md5", "line_number": 70, "usage_type": "call" } ]
74130707068
import datetime def get_next_friday(some_date: datetime.datetime, if_friday_same=True): if if_friday_same: # if a Friday, then same day return some_date + datetime.timedelta((4 - some_date.weekday()) % 7) else: # if a Friday, then next one return some_date + datetime.timedelta((3 - some_date.weekday()) % 7 + 1) if __name__ == "__main__": today = datetime.date.today() print(get_next_friday(today)) another_day = datetime.datetime(2022, 7, 28) # Thursday print(get_next_friday(another_day)) a_friday = datetime.datetime(2022, 7, 29) # Friday print(get_next_friday(a_friday)) a_friday = datetime.datetime(2022, 7, 29) # Friday print(get_next_friday(a_friday, False))
alex-muci/small-projects
snippets/five_min_test.py
five_min_test.py
py
748
python
en
code
0
github-code
6
[ { "api_name": "datetime.datetime", "line_number": 4, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 6, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 8, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 12, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 12, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 18, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 21, "usage_type": "call" } ]
44091100190
import os import os.path import numpy as np from PIL import Image from PIL import ImageDraw from PIL import ImageFont _logo_fonts = { "Arial" : ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/arial.ttf", 200), "ArialBold" : ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/arialbd.ttf", 200), "Courier" : ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/cour.ttf", 200) } _lettercache_unsized = {} _lettercache = {} def _autocrop(I): I = np.array(I) # Cut out all the rows/columns that are all white I = I[np.where(np.any(I[:,:,:3].min(axis=1)!=255,axis=1))[0],:,:] # Crop vertical I = I[:,np.where(np.any(I[:,:,:3].min(axis=0)!=255,axis=1))[0],:] # Crop horizontal # Add white border. Helps avoid edge artifacts when resizing down with anti-aliasing pad1 = 255*np.ones_like(I[:1,:,:]); pad1[:,:,3] = 0 I = np.vstack([pad1, I, pad1]) pad2 = 255*np.ones_like(I[:,:3,:]); pad2[:,:,3] = 0 I = np.hstack([pad2, I, pad2]) return Image.fromarray(I) uparrow_chr = u'\u25B2' def _get_letterimg_unsized(letter, font): global _lettercache_unsized global _logo_fonts colors = { "A" : (0,200,0), "C" : (0,0,200), "G" : (235,140,0), "T" : (200,0,0), "U" : (200,0,0), "N" : (128,128,128), uparrow_chr : (128,128,128) } assert letter in colors, "Unrecognized letter" assert font in _logo_fonts, "Unrecognized font" if (letter,font) not in _lettercache_unsized: # Draw full-sized versions of this letter letterimg = 255*np.ones((256,256,4), np.uint8) letterimg[:,:,3] = 0 # Transparent by default letterimg = Image.fromarray(letterimg) draw = ImageDraw.Draw(letterimg) draw.text((1,1), letter, colors[letter], font=_logo_fonts[font]) letterimg = _autocrop(letterimg) _lettercache_unsized[(letter,font)] = letterimg return _lettercache_unsized[(letter,font)] def get_letterimg(letter, width, height, font="ArialBold"): global _lettercache assert width and height # If we've never been asked for a letter of this width/zheight before, # then we use Image.resize to generate a new one. if (letter,width,height,font) not in _lettercache: letterimg = _get_letterimg_unsized(letter, font) letterimg = letterimg.resize((width, height), Image.ANTIALIAS) _lettercache[(letter,width,height,font)] = np.array(letterimg).reshape((height,width,4)) return _lettercache[(letter,width,height,font)] def tape2logo(tape, height=51, letterwidth=6, bufferzoom=4, refseq=None, vmax=None, style=None, rna=False, transparent=False, complement=False): # Styles "stack" "grow" "growclip" "growfade" "bars" "bar" tapedim,tapelen = tape.shape # n = number of filters if tapedim != 4: raise NotImplementedError("Expected tape with 4 rows") if vmax is not None: tape = np.maximum(-vmax, np.minimum(vmax, tape)) zheight = height*bufferzoom zletterwidth = letterwidth*bufferzoom mid1 = (zheight-bufferzoom)//2 mid2 = (zheight-bufferzoom)//2 + bufferzoom if refseq: assert len(refseq) == tapelen refseq_height = int(letterwidth*bufferzoom*1.1) # Create an up-arrow image arrowheight = int(refseq_height*0.15) uparrow_img = get_letterimg(uparrow_chr, zletterwidth//2, arrowheight, font="Arial") pad1 = 255*np.ones((arrowheight, zletterwidth//4, 4)) pad1[:,:,3] = 0 uparrow_img = np.hstack([pad1, uparrow_img]) pad2 = 255*np.ones((arrowheight, zletterwidth-uparrow_img.shape[1], 4)) pad2[:,:,3] = 0 uparrow_img = np.hstack([uparrow_img, pad2]) mid1 -= refseq_height//2+2*bufferzoom mid2 = mid1+refseq_height+4*bufferzoom positive_only = bool(np.all(tape.ravel() >= 0)) or (style in ("grow", "growfade","bar")) if positive_only: mid1 = zheight mid2 = zheight translate = { "A":"A", "C":"C", "G":"G", "T":"T", "U":"U", "N":"N" } if complement: translate = { "A":"T", "C":"G", "G":"C", "T":"A", "U":"A", "N":"N" } lettertable = ["A","C","G","U" if rna else "T"] barcolors = { "A" : (128,220,128), "C" : (128,128,220), "G" : (245,200,90), "T" : (220,128,128), "U" : (220,128,128), "N" : (192,192,192) } def make_lettercol(t, colheight, reverse): # Only show letters with positive coefficient in f idx = [i for i in range(4) if t[i] > 0] # Put largest positive value first in "above", and put largest negative value last in "below" idx = sorted(idx, key=lambda i: t[i]) # Calculate the individual zheight of each letter in pixels zheights = [int(round(t[i]/sum(t[idx])*colheight)) for i in idx] idx = [i for i,h in zip(idx,zheights) if h > 0] zheights = [h for h in zheights if h > 0] # While the stack of letters is too tall, remove pixel rows from the smallest-zheight entries #print sum(zheights) - mid1 while sum(zheights) > mid1: zheights[-1] -= 1 if zheights[-1] == 0: zheights.pop() idx.pop() # Make the individual images, reversing their order if so requested imgs = [get_letterimg(lettertable[i], zletterwidth, h) for i,h in zip(idx, zheights)] if reverse: imgs = [img for img in reversed(imgs)] return np.vstack(imgs) if imgs else np.empty((0, zletterwidth, 4)) if style == "seqlogo": assert positive_only L = 255*np.ones((zheight,tapelen*zletterwidth,4), np.uint8) L[:,:,3] = 0 # Transparent for j in range(tapelen): bits = 2 + np.sum(tape[:,j] * np.log2(tape[:,j])) letterimg = make_lettercol( tape[:,j], mid1 * bits/2., reverse=True) L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg # Rescale it down to the original requested size L = np.array(Image.fromarray(L).resize((tapelen*letterwidth, height), Image.ANTIALIAS)) if not transparent: L[:,:,3] = 255 # full opacity return L pos_tape = np.maximum(1e-16, tape) neg_tape = np.maximum(1e-16,-tape) pos_colheights = pos_tape.max(axis=0) neg_colheights = neg_tape.max(axis=0) #max_colheight = np.maximum(pos_colheights, neg_colheights).max() #max_colheight = (pos_colheights + neg_colheights).max() max_colheight = neg_colheights.max() #neg_colheights = np.minimum(max_colheight,neg_colheights) pos_colheights /= max_colheight neg_colheights /= max_colheight # If we've been told to scale everything relative to a certain maximum, then adjust our scales accordinly if vmax: pos_colheights *= pos_tape.max() / vmax neg_colheights *= neg_tape.max() / vmax L = 255*np.ones((zheight,tapelen*zletterwidth,4), np.uint8) L[:,:,3] = 0 # Start transparent # For each column of the filter, generate a stack of letters for the logo for j in range(tapelen): if style in (None,"stack"): # Generate the stack of letters that goes above, and below, the dividing ling aboveimg = make_lettercol( tape[:,j], mid1 * pos_colheights[j], reverse=True) belowimg = make_lettercol(-tape[:,j], mid1 * neg_colheights[j], reverse=False) if not positive_only else None # Insert the stacked images into column j of the logo image L[mid1-aboveimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = aboveimg if not positive_only: L[mid2:mid2+belowimg.shape[0],j*zletterwidth:(j+1)*zletterwidth,:] = belowimg if refseq: letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="ArialBold") L[mid1+2*bufferzoom:mid2-2*bufferzoom,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg elif style == "growclip": # Grow the height of each letter based on binding zletterheight = int(mid1 * neg_colheights[j]) if zletterheight: letterimg = get_letterimg(refseq[j] if refseq else "N", zletterwidth, zletterheight, font="ArialBold") L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg elif style == "refseq": letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="Arial") L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg elif style == "growfade" or style == "grow": # Grow the height of each letter based on binding arrowpad_top = 3*bufferzoom arrowpad_btm = 4*bufferzoom arrowheight_padded = 0#arrowheight+arrowpad_top+arrowpad_btm growheight = int((mid1-arrowheight_padded-refseq_height) * neg_colheights[j]) fademin = refseq_height fademax = refseq_height+0.333*(mid1-arrowheight_padded-refseq_height) zletterheight = refseq_height + growheight fade = max(0, min(0.85, (fademax-zletterheight)/(fademax-fademin))) letterimg = get_letterimg(translate[refseq[j]] if refseq else "N", zletterwidth, zletterheight, font="ArialBold") if style == "growfade": letterimg = letterimg*(1-fade) + 255*fade mid0 = mid1-letterimg.shape[0] L[mid0:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg[::-1,::] if complement else letterimg """ #aboveimg = make_lettercol(tape[:,j], (mid1-bufferzoom*2) * pos_colheights[j], reverse=True) #intensity = max(0, min(1.0, (pos_colheights[j]-0.4*refseq_height/mid1)/(1.5*refseq_height/mid1))) #aboveimg = aboveimg*intensity + 255*(1-intensity) tapej = tape[:,j].copy() tapej[tapej < 0.10*abs(tape).max()] = 0.0 #if pos_colheights[j] >= 0.15*max(pos_colheights.max(),neg_colheights[j].max()): if np.any(tapej > 0): aboveimg = make_lettercol(tapej, (mid1-bufferzoom*3) * pos_colheights[j], reverse=True) aboveimg = np.minimum(255,aboveimg*0.61 + 255*0.4) assert mid0-arrowheight-arrowpad_btm >= 0 assert mid0-arrowheight_padded-aboveimg.shape[0] >= 0 L[mid0-arrowheight-arrowpad_btm:mid0-arrowpad_btm,j*zletterwidth:(j+1)*zletterwidth,:] = uparrow_img L[mid0-arrowheight_padded-aboveimg.shape[0]:mid0-arrowheight_padded,j*zletterwidth:(j+1)*zletterwidth,:] = aboveimg #grey = aboveimg.mean(axis=2).reshape(aboveimg.shape[:2]+(1,)) #aboveimg[:,:,:] = np.minimum(255,grey.astype(np.float32)*160./grey.min()) #L[mid0-arrowpad_btm-aboveimg.shape[0]:mid0-arrowpad_btm,j*zletterwidth:(j+1)*zletterwidth,:] = aboveimg """ elif style == "bar": assert refseq, "style topbar needs refseq" # Put the refseq letter, with fixed height letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="Arial") L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg # Draw a bar plot along the top based on neg_colheights barheight = int((mid1-refseq_height-2*bufferzoom) * neg_colheights[j]) L[mid1-letterimg.shape[0]-barheight-2*bufferzoom:mid1-letterimg.shape[0]-2*bufferzoom,j*zletterwidth:(j+1)*zletterwidth,:] = np.array(barcolors[refseq[j]]).reshape((1,1,4)) elif style == "bars": assert refseq, "style topbar needs refseq" # Put the refseq letter, with fixed height letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="Arial") L[mid1+2*bufferzoom:mid2-2*bufferzoom,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg # Draw a bar plot along the top based on neg_colheights aboveheight = int(mid1 * neg_colheights[j]) belowheight = int(mid1 * pos_colheights[j]) L[mid1-aboveheight:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = np.array(barcolors[refseq[j]]).reshape((1,1,4)) L[mid2:mid2+belowheight,j*zletterwidth:(j+1)*zletterwidth,:] = np.array(barcolors[refseq[j]]).reshape((1,1,4)) else: raise NotImplementedError("Unrecognzied style type") if style in (None, "stack") and not refseq: # Put a horizontal line across the middle of this logo L[mid1:mid1+bufferzoom,:,:] = 100 if not positive_only: L[mid2-bufferzoom:mid2,:,:] = 100 if not transparent: L[:,:,3] = 255 # full opacity # Rescale it down to the original requested size L = np.array(Image.fromarray(L).resize((tapelen*letterwidth, height), Image.ANTIALIAS)) if complement: L = L[::-1,:,:] # vertical flip return L
jisraeli/DeepBind
code/libs/deepity/deepity/tape2logo.py
tape2logo.py
py
13,154
python
en
code
85
github-code
6
[ { "api_name": "PIL.ImageFont.truetype", "line_number": 8, "usage_type": "call" }, { "api_name": "PIL.ImageFont", "line_number": 8, "usage_type": "name" }, { "api_name": "os.path.abspath", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path", "line_number": 8, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 8, "usage_type": "call" }, { "api_name": "PIL.ImageFont.truetype", "line_number": 9, "usage_type": "call" }, { "api_name": "PIL.ImageFont", "line_number": 9, "usage_type": "name" }, { "api_name": "os.path.abspath", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 9, "usage_type": "call" }, { "api_name": "PIL.ImageFont.truetype", "line_number": 10, "usage_type": "call" }, { "api_name": "PIL.ImageFont", "line_number": 10, "usage_type": "name" }, { "api_name": "os.path.abspath", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.any", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.any", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.ones_like", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.hstack", "line_number": 25, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 27, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 27, "usage_type": "name" }, { "api_name": "numpy.ones", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 48, "usage_type": "attribute" }, { "api_name": "PIL.Image.fromarray", "line_number": 50, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 50, "usage_type": "name" }, { "api_name": "PIL.ImageDraw.Draw", "line_number": 51, "usage_type": "call" }, { "api_name": "PIL.ImageDraw", "line_number": 51, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 67, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 67, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.maximum", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.minimum", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.hstack", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.hstack", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.all", "line_number": 106, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 149, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 149, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 153, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 153, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 156, "usage_type": "call" }, { "api_name": "numpy.log2", "line_number": 156, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 161, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 161, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 161, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 161, "usage_type": "attribute" }, { "api_name": "numpy.maximum", "line_number": 166, "usage_type": "call" }, { "api_name": "numpy.maximum", "line_number": 167, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 187, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 187, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 262, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 273, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 274, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 289, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 289, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 289, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 289, "usage_type": "attribute" } ]
5897393360
from fastapi import FastAPI, HTTPException from model import Todo from fastapi.middleware.cors import CORSMiddleware from database import( fetch_all_todos, fetch_one_todo, create_todo, remove_todo, patch_todo ) app = FastAPI() origins = [ "https://localhost:3000", "http://localhost:3000", ] app.add_middleware( CORSMiddleware, allow_origins= origins, allow_credentials= True, allow_methods= ["*"], allow_headers= ["*"] ) @app.get("/") async def read_root(): return {"Hello": "Ahosan"} @app.get("/api/todo") async def get_todo(): response = await fetch_all_todos() return response @app.get("/api/todo/{id}", response_model=Todo) async def get_todo_by_id(id): response = await fetch_one_todo(id) if response: return response raise HTTPException(404, f"There is no todo with {id}") @app.post("/api/todo/", response_model=Todo) async def post_todo(todo: Todo): response = await create_todo(todo.dict()) if response: return response raise HTTPException(400, "Something went wrong") @app.patch("/api/todo/update/{id}/", response_model=Todo) async def update_todo(id: int, todo: Todo): response = await patch_todo(id, todo) return response @app.delete("/api/todo/{id}") async def delete_todo(id): response = await remove_todo(id) if response: return "Successfully deleted Todo" raise HTTPException(404, f"There is no todo with the id {id}")
MdAhosanHabib/Redis-Kafka-FastAPI-React
main.py
main.py
py
1,538
python
en
code
0
github-code
6
[ { "api_name": "fastapi.FastAPI", "line_number": 13, "usage_type": "call" }, { "api_name": "fastapi.middleware.cors.CORSMiddleware", "line_number": 21, "usage_type": "argument" }, { "api_name": "database.fetch_all_todos", "line_number": 34, "usage_type": "call" }, { "api_name": "database.fetch_one_todo", "line_number": 39, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 42, "usage_type": "call" }, { "api_name": "model.Todo", "line_number": 37, "usage_type": "name" }, { "api_name": "model.Todo", "line_number": 45, "usage_type": "name" }, { "api_name": "database.create_todo", "line_number": 46, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 49, "usage_type": "call" }, { "api_name": "model.Todo", "line_number": 44, "usage_type": "name" }, { "api_name": "model.Todo", "line_number": 52, "usage_type": "name" }, { "api_name": "database.patch_todo", "line_number": 53, "usage_type": "call" }, { "api_name": "model.Todo", "line_number": 51, "usage_type": "name" }, { "api_name": "database.remove_todo", "line_number": 58, "usage_type": "call" }, { "api_name": "fastapi.HTTPException", "line_number": 61, "usage_type": "call" } ]
15169928273
from fastapi import Depends, Request from fastapi_utils.cbv import cbv from fastapi_utils.inferring_router import InferringRouter from sqlalchemy import select from sqlalchemy.ext.asyncio import AsyncSession from admins.models import TemplateField, Template from permissions import manage_helpdesk from admins.schemas import TemplateFieldSchemaCreate, TemplateFieldSchemaReturn from crud_handler import BaseHandler from database import get_async_session template_fields_router = InferringRouter(tags=["TemplateFields"]) ROUTE = "/api/template_fields" @cbv(template_fields_router) class TemplateFieldView(BaseHandler): session: AsyncSession = Depends(get_async_session) def __init__(self): super().__init__(TemplateField) @template_fields_router.post(f"{ROUTE}/", response_model=TemplateFieldSchemaReturn, status_code=201) async def create_item(self, template_field_object: TemplateFieldSchemaCreate, request: Request): template_field_dict = template_field_object.dict() obj = await self.get_obj(select(Template), self.session, {"id": template_field_dict.get("template").get("id")}) template_field_dict["template"] = obj return await self.create(self.session, template_field_dict) @template_fields_router.delete(f"{ROUTE}/" + "{template_field_id}", status_code=204) async def delete_template_field(self, template_field_id: int, request: Request): return await self.delete(self.session, template_field_id) @template_fields_router.put(f"{ROUTE}/" + "{template_field_id}", response_model=TemplateFieldSchemaReturn, status_code=200) async def update_template_field(self, request: Request, template_field_id: int, template_field: TemplateFieldSchemaReturn): template_field_dict = template_field.dict() template_data = template_field_dict.pop("template") fk_obj = {"template_id": template_data["id"]} template_field_obj = await self.update( session=self.session, id=template_field_id, data=template_field_dict, fk_obj=fk_obj, update_fk=True ) await self.session.commit() return template_field_obj
AlexeyShakov/helpdesk_fast_api
src/admins/endpoints/template_fields.py
template_fields.py
py
2,294
python
en
code
0
github-code
6
[ { "api_name": "fastapi_utils.inferring_router.InferringRouter", "line_number": 13, "usage_type": "call" }, { "api_name": "crud_handler.BaseHandler", "line_number": 18, "usage_type": "name" }, { "api_name": "sqlalchemy.ext.asyncio.AsyncSession", "line_number": 19, "usage_type": "name" }, { "api_name": "fastapi.Depends", "line_number": 19, "usage_type": "call" }, { "api_name": "database.get_async_session", "line_number": 19, "usage_type": "argument" }, { "api_name": "admins.models.TemplateField", "line_number": 22, "usage_type": "argument" }, { "api_name": "admins.schemas.TemplateFieldSchemaCreate", "line_number": 25, "usage_type": "name" }, { "api_name": "fastapi.Request", "line_number": 25, "usage_type": "name" }, { "api_name": "sqlalchemy.select", "line_number": 27, "usage_type": "call" }, { "api_name": "admins.models.Template", "line_number": 27, "usage_type": "argument" }, { "api_name": "admins.schemas.TemplateFieldSchemaReturn", "line_number": 24, "usage_type": "name" }, { "api_name": "fastapi.Request", "line_number": 32, "usage_type": "name" }, { "api_name": "fastapi.Request", "line_number": 38, "usage_type": "name" }, { "api_name": "admins.schemas.TemplateFieldSchemaReturn", "line_number": 39, "usage_type": "name" }, { "api_name": "admins.schemas.TemplateFieldSchemaReturn", "line_number": 36, "usage_type": "name" }, { "api_name": "fastapi_utils.cbv.cbv", "line_number": 17, "usage_type": "call" } ]
24354887610
import csv import requests import xml.etree.ElementTree as ET def parseXML(xmlfile): tree = ET.parse(xmlfile) root = tree.getroot() orderitems = [] for item in root.findall('./AddOrder'): orders = {} for child in item: orders[child.tag] = child.text.encode('utf8') orderitems.append(orders) for item in root.findall('./AddOrder'): orders = {} for child in item: orders[child.tag] = child.text.encode('utf8') orderitems.append(orders) return orderitems def savetoCSV(newsitems, filename): fields = ['book', 'operation', 'price', 'volume', 'orderId'] with open(filename, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames = fields) writer.writeheader() writer.writerows(newsitems) def main(): orderitems = parseXML('orders.xml') savetoCSV(orderitems, 'orders.csv') if __name__ == "__main__": # calling main function main()
actioncamen13/Orderbook-submission
csv_convert.py
csv_convert.py
py
1,032
python
en
code
0
github-code
6
[ { "api_name": "xml.etree.ElementTree.parse", "line_number": 6, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 6, "usage_type": "name" }, { "api_name": "csv.DictWriter", "line_number": 32, "usage_type": "call" } ]
74849030268
""" @author: Tobias Carryer """ import numpy as np import pandas as pd from pyts.image import GASF, GADF, MTF from splitting_data import get_subject_data from matplotlib import pyplot as plt def create_gasf_gadf_mtf_compound_images(observations, image_size=128): """ Designed to take observations of time series data and create compound images from it to analyze with a CNN. The research paper that came up with GASF-GADF-MTF images can be read here: https://arxiv.org/pdf/1506.00327.pdf :param observations: A 2D array. Shape: [n_observations, observation_window_length] :param image_size: Size of the images to create. Must be equal to or smaller than the length of the time series data in each observation. :raises ValueError: If observations is empty. :return: An array of images ready to be used in a CNN. Shape: [n_observations, image_size, image_size, 3] The origin of each image is the top-left corner. When plotted, it would be the point (0,0). """ if len(observations) == 0: raise ValueError("Observations cannot be empty.") gasf_transformer = GASF(image_size) gadf_transformer = GADF(image_size) mtf_transformer = MTF(image_size) gasf = gasf_transformer.fit_transform(observations) gadf = gadf_transformer.fit_transform(observations) mtf = mtf_transformer.fit_transform(observations) return np.stack((gasf, gadf, mtf), axis=3) if __name__ == "__main__": subject_num_to_study = 4 feature_to_study = "HR" # Generate a compound image and display it to the user all_subject_data = pd.read_csv("confocal_all_patient_phys_data.txt", sep="\t") subject_data = get_subject_data(all_subject_data, subject_num_to_study) i = 0 observation = subject_data[feature_to_study].iloc[i:i+128] while observation.isnull().values.any(): observation = subject_data[feature_to_study].iloc[i:i+128] i += 1 observation = observation.values observations = [observation] images = create_gasf_gadf_mtf_compound_images(observations, image_size=128) gasf = images[:,:,:,0] gadf = images[:,:,:,1] mtf = images[:,:,:,2] plt.figure(figsize=(8, 8)) plt.subplot(221) plt.imshow(gasf[0], cmap='rainbow') plt.title("Gramian Angular Summation Field", fontsize=8) plt.tick_params(axis='x', colors=(0, 0, 0, 0)) plt.tick_params(axis='y', colors=(0, 0, 0, 0)) plt.subplot(222) plt.imshow(gadf[0], cmap='rainbow') plt.title("Gramian Angular Difference Field", fontsize=8) plt.tick_params(axis='x', colors=(0, 0, 0, 0)) plt.tick_params(axis='y', colors=(0, 0, 0, 0)) plt.subplot(223) plt.imshow(mtf[0], cmap='rainbow') plt.title("Markov Transition Field", fontsize=8) plt.tick_params(axis='x', colors=(0, 0, 0, 0)) plt.tick_params(axis='y', colors=(0, 0, 0, 0)) plt.subplot(224) plt.plot(observation) plt.title("Heart Rate", fontsize=8) plt.suptitle("Fields generated for a window of heart rate data") plt.show()
TobCar/delirium
demo_compound_images.py
demo_compound_images.py
py
3,064
python
en
code
0
github-code
6
[ { "api_name": "pyts.image.GASF", "line_number": 27, "usage_type": "call" }, { "api_name": "pyts.image.GADF", "line_number": 28, "usage_type": "call" }, { "api_name": "pyts.image.MTF", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 35, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 43, "usage_type": "call" }, { "api_name": "splitting_data.get_subject_data", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 63, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 63, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 64, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tick_params", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tick_params", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 69, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tick_params", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tick_params", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 72, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 74, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 74, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 76, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tick_params", "line_number": 77, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 77, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tick_params", "line_number": 78, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 78, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 81, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 81, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 82, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 82, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.suptitle", "line_number": 84, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 84, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 86, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 86, "usage_type": "name" } ]
23121624875
from flask import render_template, flash from app.giturl_class.url_form import UrlForm from app.giturl_class import bp import json @bp.route('/index', methods = ['GET', 'POST']) def urlPage(): form = UrlForm() citation = None installation = None invocation = None description = None if form.validate_on_submit(): flash("Classifying data") with open('data/output.json') as json_file: data = json.load(json_file) citation = data['citation.sk'] installation = data['installation.sk'] invocation = data['invocation.sk'] description = data['description.sk'] return render_template('giturl_class/giturl.html', form = form, citation = citation, installation = installation, invocation = invocation, description = description) @bp.route('/about', methods = ['GET']) def aboutPage(): return render_template('aboutpage/aboutpage.html') @bp.route('/help', methods = ['GET']) def helpPage(): return render_template('helppage/helppage.html')
quiteaniceguy/SM2KG-WebApp
app/giturl_class/routes.py
routes.py
py
1,182
python
en
code
0
github-code
6
[ { "api_name": "app.giturl_class.url_form.UrlForm", "line_number": 8, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 14, "usage_type": "call" }, { "api_name": "json.load", "line_number": 17, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 23, "usage_type": "call" }, { "api_name": "app.giturl_class.bp.route", "line_number": 6, "usage_type": "call" }, { "api_name": "app.giturl_class.bp", "line_number": 6, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 33, "usage_type": "call" }, { "api_name": "app.giturl_class.bp.route", "line_number": 31, "usage_type": "call" }, { "api_name": "app.giturl_class.bp", "line_number": 31, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 38, "usage_type": "call" }, { "api_name": "app.giturl_class.bp.route", "line_number": 36, "usage_type": "call" }, { "api_name": "app.giturl_class.bp", "line_number": 36, "usage_type": "name" } ]
19990844115
from django.conf.urls import url from . import views, verifycode urlpatterns = [ url(r'^$', views.index), # 生成验证码 url(r'^verifycode/$', verifycode.Verifycode), # 输入验证码试验 url(r'^verifycodeinput/$', views.verifycodeinput), url(r'^verifycodecheck/$', views.checkcode), # 反向解析(针对的是超链接,千万别弄错) # 成功的 # url(r'^$', views.student), # url(r'^return/(\d+)/$', views.retu, name='return'), # 一开始不成功,上面成功后就成功 url(r'^student/$', views.student), url(r'^student/return/(\d+)/$', views.retu, name='return'), # 模板继承 url(r"^main/$", views.main), ]
Evanavevan/Django_Project
Project3/myApp/urls.py
urls.py
py
700
python
en
code
0
github-code
6
[ { "api_name": "django.conf.urls.url", "line_number": 6, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 8, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 20, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 21, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 25, "usage_type": "call" } ]
19065408732
from confluent_kafka import Consumer import redis import time from datetime import datetime ################ r = redis.Redis(host='localhost', port=6379) c=Consumer({'bootstrap.servers':'localhost:9092','group.id':'python-consumer','auto.offset.reset':'earliest'}) print('Available topics to consume: ', c.list_topics().topics) c.subscribe(['Tragos']) ################ def main(): i = 0 while True: msg=c.poll(1.0) #timeout dt = datetime.now() time_p = datetime.timestamp(dt) if msg is None: continue if msg.error(): print('Error: {}'.format(msg.error())) continue data=msg.value().decode('utf-8') print(data) r.set(i,data) i+=1 print("tiempo mensaje: ",time_p); c.close() if __name__ == '__main__': main()
Failedvixo/SD-Tarea2
kafka_consumer.py
kafka_consumer.py
py
857
python
en
code
0
github-code
6
[ { "api_name": "redis.Redis", "line_number": 6, "usage_type": "call" }, { "api_name": "confluent_kafka.Consumer", "line_number": 8, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 21, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 21, "usage_type": "name" }, { "api_name": "datetime.datetime.timestamp", "line_number": 22, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 22, "usage_type": "name" } ]
14205921043
import collections class Node: def __init__(self, value): self.value = value self.neighbours = [] def make_graph(n_of_nodes, edges): graph = [] for i in range(n_of_nodes): node = Node(i+1) graph.append(node) for first_node, second_node in edges: graph[first_node-1].neighbours.append(graph[second_node-1]) graph[second_node-1].neighbours.append(graph[first_node-1]) return graph def calculate_distances_with_bfs(starting_node, n_of_nodes): visited = set() distances = [-1]*n_of_nodes queue = collections.deque() queue.append((starting_node, 0)) while queue: current_node, distance = queue.popleft() if current_node not in visited: visited.add(current_node) distances[current_node.value-1] = distance for neighbour in current_node.neighbours: queue.append((neighbour, distance+6)) return distances def get_distances(n_of_nodes, edges, starting_node_value): graph = make_graph(n_of_nodes, edges) starting_node = graph[starting_node_value-1] distances = calculate_distances_with_bfs(starting_node, n_of_nodes) distances.remove(0) return distances
jdalbosco/hackerrank
preparation-kits/one-week/d6-mock_test.py
d6-mock_test.py
py
1,287
python
en
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 25, "usage_type": "call" } ]
13922774332
import requests from authid_agent_client.listeners.request_listener import RequestListener DEFAULT_HOST = "localhost" DEFAULT_PORT = 8080 API_PATH = "/api/v0.0.1/" IDS_PATH = API_PATH + "ids/" PROCESSOR_KEYS_PATH = API_PATH + "processorKeys/" REQUESTS_PATH = API_PATH + "requests/" ADDRESSES_PATH = API_PATH + "addresses/" TRANSFER_PATH = API_PATH + "ids:transfer/" CHALLENGES_PATH = API_PATH + "challenges/" SIGN_CHALLENGE_PATH = API_PATH + "challenges:sign" VERIFY_CHALLENGE_PATH = API_PATH + "challenges:verify" VERIFY_CERTS_PATH = API_PATH + "certs:verify" SIGN_CERT_PATH = API_PATH + "certs:sign" class AuthIDAgentClient: def __init__(self, host: str = DEFAULT_HOST, port: str = DEFAULT_PORT, request_callback=None): self.__host = host self.__port = port self.__base_url = "http://" + host + ":" + str(port) self.__ids_url = self.__base_url + IDS_PATH self.__requests_url = self.__base_url + REQUESTS_PATH self.__addresses_url = self.__base_url + ADDRESSES_PATH self.__transfer_url = self.__base_url + TRANSFER_PATH self.__processor_keys_path = self.__base_url + PROCESSOR_KEYS_PATH self.__challenges_path = self.__base_url + CHALLENGES_PATH self.__sign_challenge_path = self.__base_url + SIGN_CHALLENGE_PATH self.__verify_challenge_path = self.__base_url + VERIFY_CHALLENGE_PATH self.__verify_certs_path = self.__base_url + VERIFY_CERTS_PATH self.__sign_cert_path = self.__base_url + SIGN_CERT_PATH self.__request_callback = request_callback def get_authid(self, authid: str): request_url = self.__ids_url + authid request = requests.get(request_url) return request.status_code, request.json() def register_authid(self, id: str, protocol: str, address: str, fee: str): request_url = self.__ids_url + id request = requests.post(request_url, {"protocol": protocol, "address": address, "fee": fee}) if request.status_code == 200: self.add_request_listener(request.json()["requestID"]) return request.status_code, request.json() def transfer_authid(self, id: str, protocol: str, address: str): request = requests.post(self.__transfer_url, {"id": id, "protocol": protocol, "address": address}) if request.status_code == 200: self.add_request_listener(request.json()["requestID"]) return request.status_code, request.json() def generate_processor_keys(self, id: str): request_url = self.__processor_keys_path + id request = requests.post(request_url) if request.status_code == 200: self.add_request_listener(request.json()["requestID"]) return request.status_code, request.json() def new_address(self, protocol: str): request_url = self.__addresses_url + "/" + protocol request = requests.post(request_url) if request.status_code == 200: self.add_request_listener(request.json()["requestID"]) return request.status_code, request.json() """ The authentication functions """ def create_challenge(self, challenger_id: str, receiver_id: str): request = requests.post(self.__challenges_path, params={"challengerID": challenger_id, "receiverID": receiver_id}, headers={"Content-Type": "application/json"}) return request.status_code, request.json() def sign_challenge(self, challenge: dict): request = requests.post(self.__sign_challenge_path, json=challenge) if request.status_code == 200: self.add_request_listener(request.json()["requestID"]) return request.status_code, request.json() def verify_challenge(self, signed_challenge: dict): request = requests.post(self.__verify_challenge_path, json=signed_challenge) return request.status_code, request.json() def verify_cert(self, cert: dict): request = requests.post(self.__verify_certs_path, json=cert) return request.status_code, request.json() def sign_cert(self, authid: str, cert: dict): request = requests.post(self.__sign_cert_path, params={"id": authid}, json=cert) if request.status_code == 200: self.add_request_listener(request.json()["requestID"]) return request.status_code, request.json() def add_request_listener(self, request_id: str): listener = RequestListener(request_id, self.__requests_url, self.__request_callback) listener.start()
OnePair/authid-agent-client-py
authid_agent_client/authid_agent_client.py
authid_agent_client.py
py
4,618
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 42, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 49, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 57, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 66, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 75, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 87, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 94, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 102, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 108, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 113, "usage_type": "call" }, { "api_name": "authid_agent_client.listeners.request_listener.RequestListener", "line_number": 121, "usage_type": "call" } ]
26624814566
# # SERMEPA / ServiRed payments module for Satchmo # # Author: Michal Salaban <michal (at) salaban.info> # with a great help of Fluendo S.A., Barcelona # # Based on "Guia de comercios TPV Virtual SIS" ver. 5.18, 15/11/2008, SERMEPA # For more information about integration look at http://www.sermepa.es/ # # TODO: SERMEPA interface provides possibility of recurring payments, which # could be probably used for SubscriptionProducts. This module doesn't support it. # from datetime import datetime from decimal import Decimal from django.core import urlresolvers from django.http import HttpResponse, HttpResponseRedirect, HttpResponseNotFound, HttpResponseBadRequest from django.shortcuts import render_to_response from django.template import RequestContext from django.utils.translation import ugettext_lazy as _ from django.views.decorators.cache import never_cache from livesettings import config_get_group, config_value from payment.utils import get_processor_by_key from payment.views import payship from satchmo_store.shop.models import Order, Cart from satchmo_store.shop.satchmo_settings import get_satchmo_setting from satchmo_utils.dynamic import lookup_url, lookup_template import logging try: from hashlib import sha1 except ImportError: # python < 2.5 from sha import sha as sha1 log = logging.getLogger() def pay_ship_info(request): return payship.base_pay_ship_info( request, config_get_group('PAYMENT_SERMEPA'), payship.simple_pay_ship_process_form, 'shop/checkout/sermepa/pay_ship.html' ) pay_ship_info = never_cache(pay_ship_info) def _resolve_local_url(payment_module, cfgval, ssl=False): try: return lookup_url(payment_module, cfgval.value, include_server=True, ssl=ssl) except urlresolvers.NoReverseMatch: return cfgval.value def confirm_info(request): payment_module = config_get_group('PAYMENT_SERMEPA') try: order = Order.objects.from_request(request) except Order.DoesNotExist: url = lookup_url(payment_module, 'satchmo_checkout-step1') return HttpResponseRedirect(url) tempCart = Cart.objects.from_request(request) if tempCart.numItems == 0: template = lookup_template(payment_module, 'shop/checkout/empty_cart.html') return render_to_response(template, context_instance=RequestContext(request)) # Check if the order is still valid if not order.validate(request): context = RequestContext(request, {'message': _('Your order is no longer valid.')}) return render_to_response('shop/404.html', context_instance=context) # Check if we are in test or real mode live = payment_module.LIVE.value if live: post_url = payment_module.POST_URL.value signature_code = payment_module.MERCHANT_SIGNATURE_CODE.value terminal = payment_module.MERCHANT_TERMINAL.value else: post_url = payment_module.POST_TEST_URL.value signature_code = payment_module.MERCHANT_TEST_SIGNATURE_CODE.value terminal = payment_module.MERCHANT_TEST_TERMINAL.value # SERMEPA system does not accept multiple payment attempts with the same ID, even # if the previous one has never been finished. The worse is that it does not display # any message which could be understood by an end user. # # If user goes to SERMEPA page and clicks 'back' button (e.g. to correct contact data), # the next payment attempt will be rejected. # # To provide higher probability of ID uniqueness, we add mm:ss timestamp part # to the order id, separated by 'T' character in the following way: # # ID: oooooooTmmss # c: 123456789012 # # The Satchmo's Order number is therefore limited to 10 million - 1. now = datetime.now() xchg_order_id = "%07dT%02d%02d" % (order.id, now.minute, now.second) amount = "%d" % (order.balance * 100,) # in cents signature_data = ''.join( map(str, ( amount, xchg_order_id, payment_module.MERCHANT_FUC.value, payment_module.MERCHANT_CURRENCY.value, signature_code, ) ) ) signature = sha1(signature_data).hexdigest() template = lookup_template(payment_module, 'shop/checkout/sermepa/confirm.html') url_callback = _resolve_local_url(payment_module, payment_module.MERCHANT_URL_CALLBACK, ssl=get_satchmo_setting('SSL')) url_ok = _resolve_local_url(payment_module, payment_module.MERCHANT_URL_OK) url_ko = _resolve_local_url(payment_module, payment_module.MERCHANT_URL_KO) ctx = { 'live': live, 'post_url': post_url, 'MERCHANT_CURRENCY': payment_module.MERCHANT_CURRENCY.value, 'MERCHANT_FUC': payment_module.MERCHANT_FUC.value, 'terminal': terminal, 'MERCHANT_TITULAR': payment_module.MERCHANT_TITULAR.value, 'url_callback': url_callback, 'url_ok': url_ok, 'url_ko': url_ko, 'order': order, 'xchg_order_id' : xchg_order_id, 'amount': amount, 'signature': signature, 'default_view_tax': config_value('TAX', 'DEFAULT_VIEW_TAX'), } return render_to_response(template, ctx, context_instance=RequestContext(request)) confirm_info = never_cache(confirm_info) def notify_callback(request): payment_module = config_get_group('PAYMENT_SERMEPA') if payment_module.LIVE.value: log.debug("Live IPN on %s", payment_module.KEY.value) signature_code = payment_module.MERCHANT_SIGNATURE_CODE.value terminal = payment_module.MERCHANT_TERMINAL.value else: log.debug("Test IPN on %s", payment_module.KEY.value) signature_code = payment_module.MERCHANT_TEST_SIGNATURE_CODE.value terminal = payment_module.MERCHANT_TEST_TERMINAL.value data = request.POST log.debug("Transaction data: " + repr(data)) try: sig_data = "%s%s%s%s%s%s" % ( data['Ds_Amount'], data['Ds_Order'], data['Ds_MerchantCode'], data['Ds_Currency'], data['Ds_Response'], signature_code ) sig_calc = sha1(sig_data).hexdigest() if sig_calc != data['Ds_Signature'].lower(): log.error("Invalid signature. Received '%s', calculated '%s'." % (data['Ds_Signature'], sig_calc)) return HttpResponseBadRequest("Checksum error") if data['Ds_MerchantCode'] != payment_module.MERCHANT_FUC.value: log.error("Invalid FUC code: %s" % data['Ds_MerchantCode']) return HttpResponseNotFound("Unknown FUC code") if int(data['Ds_Terminal']) != int(terminal): log.error("Invalid terminal number: %s" % data['Ds_Terminal']) return HttpResponseNotFound("Unknown terminal number") # TODO: fields Ds_Currency, Ds_SecurePayment may be worth checking xchg_order_id = data['Ds_Order'] try: order_id = xchg_order_id[:xchg_order_id.index('T')] except ValueError: log.error("Incompatible order ID: '%s'" % xchg_order_id) return HttpResponseNotFound("Order not found") try: order = Order.objects.get(id=order_id) except Order.DoesNotExist: log.error("Received data for nonexistent Order #%s" % order_id) return HttpResponseNotFound("Order not found") amount = Decimal(data['Ds_Amount']) / Decimal('100') # is in cents, divide it if int(data['Ds_Response']) > 100: log.info("Response code is %s. Payment not accepted." % data['Ds_Response']) return HttpResponse() except KeyError: log.error("Received incomplete SERMEPA transaction data") return HttpResponseBadRequest("Incomplete data") # success order.add_status(status='New', notes=u"Paid through SERMEPA.") processor = get_processor_by_key('PAYMENT_SERMEPA') payment = processor.record_payment( order=order, amount=amount, transaction_id=data['Ds_AuthorisationCode']) # empty customer's carts for cart in Cart.objects.filter(customer=order.contact): cart.empty() return HttpResponse()
dokterbob/satchmo
satchmo/apps/payment/modules/sermepa/views.py
views.py
py
8,365
python
en
code
30
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 34, "usage_type": "call" }, { "api_name": "payment.views.payship.base_pay_ship_info", "line_number": 37, "usage_type": "call" }, { "api_name": "payment.views.payship", "line_number": 37, "usage_type": "name" }, { "api_name": "livesettings.config_get_group", "line_number": 39, "usage_type": "call" }, { "api_name": "payment.views.payship.simple_pay_ship_process_form", "line_number": 39, "usage_type": "attribute" }, { "api_name": "payment.views.payship", "line_number": 39, "usage_type": "name" }, { "api_name": "django.views.decorators.cache.never_cache", "line_number": 42, "usage_type": "call" }, { "api_name": "satchmo_utils.dynamic.lookup_url", "line_number": 47, "usage_type": "call" }, { "api_name": "django.core.urlresolvers.NoReverseMatch", "line_number": 48, "usage_type": "attribute" }, { "api_name": "django.core.urlresolvers", "line_number": 48, "usage_type": "name" }, { "api_name": "livesettings.config_get_group", "line_number": 53, "usage_type": "call" }, { "api_name": "satchmo_store.shop.models.Order.objects.from_request", "line_number": 56, "usage_type": "call" }, { "api_name": "satchmo_store.shop.models.Order.objects", "line_number": 56, "usage_type": "attribute" }, { "api_name": "satchmo_store.shop.models.Order", "line_number": 56, "usage_type": "name" }, { "api_name": "satchmo_store.shop.models.Order.DoesNotExist", "line_number": 57, "usage_type": "attribute" }, { "api_name": "satchmo_store.shop.models.Order", "line_number": 57, "usage_type": "name" }, { "api_name": "satchmo_utils.dynamic.lookup_url", "line_number": 58, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 59, "usage_type": "call" }, { "api_name": "satchmo_store.shop.models.Cart.objects.from_request", "line_number": 61, "usage_type": "call" }, { "api_name": "satchmo_store.shop.models.Cart.objects", "line_number": 61, "usage_type": "attribute" }, { "api_name": "satchmo_store.shop.models.Cart", "line_number": 61, "usage_type": "name" }, { "api_name": "satchmo_utils.dynamic.lookup_template", "line_number": 63, "usage_type": "call" }, { "api_name": "django.shortcuts.render_to_response", "line_number": 64, "usage_type": "call" }, { "api_name": "django.template.RequestContext", "line_number": 65, "usage_type": "call" }, { "api_name": "django.template.RequestContext", "line_number": 69, "usage_type": "call" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 69, "usage_type": "call" }, { "api_name": "django.shortcuts.render_to_response", "line_number": 70, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 97, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 97, "usage_type": "name" }, { "api_name": "sha.sha", "line_number": 112, "usage_type": "call" }, { "api_name": "satchmo_utils.dynamic.lookup_template", "line_number": 114, "usage_type": "call" }, { "api_name": "satchmo_store.shop.satchmo_settings.get_satchmo_setting", "line_number": 116, "usage_type": "call" }, { "api_name": "livesettings.config_value", "line_number": 134, "usage_type": "call" }, { "api_name": "django.shortcuts.render_to_response", "line_number": 136, "usage_type": "call" }, { "api_name": "django.template.RequestContext", "line_number": 136, "usage_type": "call" }, { "api_name": "django.views.decorators.cache.never_cache", "line_number": 137, "usage_type": "call" }, { "api_name": "livesettings.config_get_group", "line_number": 140, "usage_type": "call" }, { "api_name": "sha.sha", "line_number": 160, "usage_type": "call" }, { "api_name": "django.http.HttpResponseBadRequest", "line_number": 163, "usage_type": "call" }, { "api_name": "django.http.HttpResponseNotFound", "line_number": 166, "usage_type": "call" }, { "api_name": "django.http.HttpResponseNotFound", "line_number": 169, "usage_type": "call" }, { "api_name": "django.http.HttpResponseNotFound", "line_number": 177, "usage_type": "call" }, { "api_name": "satchmo_store.shop.models.Order.objects.get", "line_number": 179, "usage_type": "call" }, { "api_name": "satchmo_store.shop.models.Order.objects", "line_number": 179, "usage_type": "attribute" }, { "api_name": "satchmo_store.shop.models.Order", "line_number": 179, "usage_type": "name" }, { "api_name": "satchmo_store.shop.models.Order.DoesNotExist", "line_number": 180, "usage_type": "attribute" }, { "api_name": "satchmo_store.shop.models.Order", "line_number": 180, "usage_type": "name" }, { "api_name": "django.http.HttpResponseNotFound", "line_number": 182, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 183, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 186, "usage_type": "call" }, { "api_name": "django.http.HttpResponseBadRequest", "line_number": 189, "usage_type": "call" }, { "api_name": "payment.utils.get_processor_by_key", "line_number": 192, "usage_type": "call" }, { "api_name": "payment.utils", "line_number": 193, "usage_type": "name" }, { "api_name": "satchmo_store.shop.models.Cart.objects.filter", "line_number": 198, "usage_type": "call" }, { "api_name": "satchmo_store.shop.models.Cart.objects", "line_number": 198, "usage_type": "attribute" }, { "api_name": "satchmo_store.shop.models.Cart", "line_number": 198, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 200, "usage_type": "call" } ]
39122527665
import yaml, tempfile, os, libUi import PinshCmd, ConfigField from bombardier_core.static_data import OK, FAIL from SystemStateSingleton import SystemState system_state = SystemState() class CreateType(PinshCmd.PinshCmd): '''A thing that can be created.''' def __init__(self, name, help_text): PinshCmd.PinshCmd.__init__(self, name, help_text) self.config_field = None self.cmd_owner = 1 def cmd(self, command_line): '''Create a thing that the user is interested in''' if command_line.no_flag: return FAIL, [] if len(command_line) < 3: return FAIL, ["Incomplete command."] conf_str = self.config_field.get_default_data() #conf_str = yaml.dump(current_dict, default_flow_style=False) file_descriptor, file_name = tempfile.mkstemp(suffix=".yml", text=True) file_handle = os.fdopen(file_descriptor, 'w+b') file_handle.write(conf_str) file_handle.close() os.system("vim %s" % file_name) post_data = yaml.load(open(file_name).read()) submit = libUi.ask_yes_no("Commit changes to server", libUi.YES) if submit: _status, output = self.config_field.post_specific_data(command_line, 2, post_data) os.unlink(file_name) return OK, [output] else: msg = "Discarded changes. Edits can be found here: %s" % file_name return OK, [msg] class Machine(CreateType): 'Create a default machine configuration data from the server' def __init__(self): CreateType.__init__(self, "machine", "machine\tcreate a new machine configuration") self.config_field = ConfigField.ConfigField(data_type=ConfigField.MACHINE, new=True) self.children = [self.config_field] class Include(CreateType): 'Create an include file on the server' def __init__(self): CreateType.__init__(self, "include", "include\tcreate a shared include file") self.config_field = ConfigField.ConfigField(data_type=ConfigField.INCLUDE, new=True) self.children = [self.config_field] class User(CreateType): 'Create a package file' def __init__(self): CreateType.__init__(self, "user", "user\tcreate a new user to log in to Bombardier") self.config_field = ConfigField.ConfigField(data_type=ConfigField.USER, new=True) self.children = [self.config_field] class Package(CreateType): 'Create a package file' def __init__(self): CreateType.__init__(self, "package", "package\tcreate new package metadata") self.config_field = ConfigField.ConfigField(data_type=ConfigField.PACKAGE, new=True) self.children = [self.config_field] class Bom(CreateType): 'create new bill-of-materials ("bom") file from the server' def __init__(self): CreateType.__init__(self, "bom", "bom\tcreate a bill of materials") self.config_field = ConfigField.ConfigField(data_type=ConfigField.BOM, new=True) self.children = [self.config_field] class Create(PinshCmd.PinshCmd): '''Create a file''' def __init__(self): PinshCmd.PinshCmd.__init__(self, "create") self.help_text = "create\tcreate a new system component" machine = Machine() include = Include() package = Package() user = User() bom = Bom() self.children = [machine, include, bom, package, user] self.cmd_owner = 1
psbanka/bombardier
cli/lib/Create.py
Create.py
py
3,460
python
en
code
1
github-code
6
[ { "api_name": "SystemStateSingleton.SystemState", "line_number": 5, "usage_type": "call" }, { "api_name": "PinshCmd.PinshCmd", "line_number": 7, "usage_type": "attribute" }, { "api_name": "PinshCmd.PinshCmd.__init__", "line_number": 10, "usage_type": "call" }, { "api_name": "PinshCmd.PinshCmd", "line_number": 10, "usage_type": "attribute" }, { "api_name": "bombardier_core.static_data.FAIL", "line_number": 17, "usage_type": "name" }, { "api_name": "bombardier_core.static_data.FAIL", "line_number": 19, "usage_type": "name" }, { "api_name": "tempfile.mkstemp", "line_number": 23, "usage_type": "call" }, { "api_name": "os.fdopen", "line_number": 24, "usage_type": "call" }, { "api_name": "os.system", "line_number": 27, "usage_type": "call" }, { "api_name": "yaml.load", "line_number": 28, "usage_type": "call" }, { "api_name": "libUi.ask_yes_no", "line_number": 29, "usage_type": "call" }, { "api_name": "libUi.YES", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.unlink", "line_number": 32, "usage_type": "call" }, { "api_name": "bombardier_core.static_data.OK", "line_number": 33, "usage_type": "name" }, { "api_name": "bombardier_core.static_data.OK", "line_number": 36, "usage_type": "name" }, { "api_name": "ConfigField.ConfigField", "line_number": 42, "usage_type": "call" }, { "api_name": "ConfigField.MACHINE", "line_number": 42, "usage_type": "attribute" }, { "api_name": "ConfigField.ConfigField", "line_number": 49, "usage_type": "call" }, { "api_name": "ConfigField.INCLUDE", "line_number": 49, "usage_type": "attribute" }, { "api_name": "ConfigField.ConfigField", "line_number": 56, "usage_type": "call" }, { "api_name": "ConfigField.USER", "line_number": 56, "usage_type": "attribute" }, { "api_name": "ConfigField.ConfigField", "line_number": 63, "usage_type": "call" }, { "api_name": "ConfigField.PACKAGE", "line_number": 63, "usage_type": "attribute" }, { "api_name": "ConfigField.ConfigField", "line_number": 70, "usage_type": "call" }, { "api_name": "ConfigField.BOM", "line_number": 70, "usage_type": "attribute" }, { "api_name": "PinshCmd.PinshCmd", "line_number": 73, "usage_type": "attribute" }, { "api_name": "PinshCmd.PinshCmd.__init__", "line_number": 76, "usage_type": "call" }, { "api_name": "PinshCmd.PinshCmd", "line_number": 76, "usage_type": "attribute" } ]
37108029587
"""2 question 6 sprint""" import json import logging logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s') def parse_user(output_file, *input_files): def get_name(dct): if "name" in dct and dct["name"] not in list(map(lambda x: x["name"], users_list)): users_list.append(dct) with open(output_file, "w") as res_file: users_list = [] for file in input_files: try: with open(file, 'r') as f: json.load(f, object_hook=get_name) except FileNotFoundError: logging.error(f"File {file} doesn't exist") json.dump(users_list, res_file, indent=4) if __name__ == '__main__': parse_user("user3.json", "user1.json", "user2.json")
Misha86/python-online-marathon
6_sprint/6_2question.py
6_2question.py
py
803
python
en
code
0
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 5, "usage_type": "call" }, { "api_name": "json.load", "line_number": 17, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 19, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 20, "usage_type": "call" } ]
910975330
import sys, argparse, os, numpy as np from horton import __version__, IOData # All, except underflows, is *not* fine. np.seterr(divide='raise', over='raise', invalid='raise') def parse_args(): parser = argparse.ArgumentParser(prog='horton-convert.py', description='Convert between file formats supported in HORTON. This ' 'only works of the input contains sufficient data for the ' 'output') parser.add_argument('-V', '--version', action='version', version="%%(prog)s (HORTON version %s)" % __version__) parser.add_argument('input', help='The input file. Supported file types are: ' '*.h5 (HORTON\'s native format), ' '*.cif (Crystallographic Information File), ' '*.cp2k.out (Output from a CP2K atom computation), ' '*.cube (Gaussian cube file), ' '*.log (Gaussian log file), ' '*.fchk (Gaussian formatted checkpoint file), ' '*.molden.input (Molden wavefunction file), ' '*.mkl (Molekel wavefunction file), ' '*.wfn (Gaussian/GAMESS wavefunction file), ' 'CHGCAR, LOCPOT or POSCAR (VASP files), ' '*.xyz (The XYZ format).') parser.add_argument('output', help='The output file. Supported file types are: ' '*.h5 (HORTON\'s native format), ' '*.cif (Crystallographic Information File), ' '*.cube (Gaussian cube file), ' '*.molden.input (Molden wavefunction file), ' 'POSCAR (VASP files), ' '*.xyz (The XYZ format).') return parser.parse_args() def main(): args = parse_args() mol = IOData.from_file(args.input) mol.to_file(args.output) if __name__ == '__main__': main()
theochem/horton
scripts/horton-convert.py
horton-convert.py
py
1,810
python
en
code
83
github-code
6
[ { "api_name": "numpy.seterr", "line_number": 7, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 11, "usage_type": "call" }, { "api_name": "horton.__version__", "line_number": 16, "usage_type": "name" }, { "api_name": "horton.IOData.from_file", "line_number": 45, "usage_type": "call" }, { "api_name": "horton.IOData", "line_number": 45, "usage_type": "name" } ]
4582056106
import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns from scipy import stats import collections import time from sklearn import cluster from sklearn.metrics import adjusted_rand_score import scipy as sp from tqdm import tqdm from sklearn.manifold import MDS from run_dist_mat import * from scipy.cluster.hierarchy import dendrogram, linkage import itertools from mpl_toolkits.mplot3d import Axes3D from multiprocessing import Pool from itertools import repeat def get_sex_of_cell(cell_data): assert cell_data.loc[cell_data.chr == 20].shape[0] > 1, print("data matrix must have sex chromosomes") if cell_data.loc[cell_data.chr == 21].shape[0] > 1: return 'm' ##check this else: return 'f' def make_groups_by_bins(cell_data, bin_size, cum_lens, include_sex_chromosomes = False): if include_sex_chromosomes == False: bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs = 19) num_bins = np.sum(list(num_bins_per_chr.values())) cell_data = cell_data.loc[cell_data.chr < 20].copy() cell_data['abs_pos'] = -1 cell_data['abs_pos'] = cell_data.pos.copy() + [cum_lens[ch-1] for ch in cell_data.chr] #encodes the absolute position of the reads along the linear genome groups = cell_data.groupby([pd.cut(cell_data.abs_pos, bins),pd.cut(cell_data.pckmeans_cluster, [-0.1,0.9,2])]).mean().reindex(pd.MultiIndex.from_product([bins[1:], [0,1]]), fill_value = np.nan) assert groups.shape[0] == 2 * num_bins return groups elif include_sex_chromosomes == True: cell_data = cell_data.loc[cell_data.chr < 22].copy() if get_sex_of_cell(cell_data) == 'f': print("female cell") bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs = 20) autosome_num_bins = np.sum(list(num_bins_per_chr.values())[0:20]) #sum of all autosome chromosomes x_num_bins = num_bins_per_chr[20] cell_data = cell_data.loc[cell_data.chr != 21] #getting rid of the noisy y chromosome reads assert cell_data.loc[cell_data.chr == 20, 'pckmeans_cluster'].unique().shape[0] == 2, "x chromosome must have 2 clusters" assert cell_data.loc[cell_data.chr == 21, 'pckmeans_cluster'].unique().shape[0] == 0, "y chromosome must have no clusters" cell_data['abs_pos'] = -1 cell_data['abs_pos'] = cell_data.pos.copy() + [cum_lens[ch-1] for ch in cell_data.chr] #encodes the absolute position of the reads along the linear genome groups = cell_data.groupby([pd.cut(cell_data.abs_pos, bins),pd.cut(cell_data.pckmeans_cluster, [-0.1,0.9,2])]).mean().reindex(pd.MultiIndex.from_product([bins[1:], [0,1]]), fill_value = np.nan) assert groups.shape[0] == 2 * autosome_num_bins + x_num_bins return groups else: #male cells assert cell_data.loc[cell_data.chr == 20, 'pckmeans_cluster'].unique().shape[0] == 1, "x chromosome must have 2 clusters in male embryo" assert cell_data.loc[cell_data.chr == 21, 'pckmeans_cluster'].unique().shape[0] == 1, "y chromosome must have 2 clusters in male embryo" cell_data['abs_pos'] = -1 cell_data['abs_pos'] = cell_data.pos.copy() + [cum_lens[ch-1] for ch in cell_data.chr] #encodes the absolute position of the reads along the linear genome bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs = 21) autosome_num_bins = np.sum(list(num_bins_per_chr.values())[0:20]) #sum of all autosome chromosomes x_num_bins = num_bins_per_chr[20] y_num_bins = num_bins_per_chr[21] autosome_bins = bins[0:autosome_num_bins+1] x_bins = bins[autosome_num_bins: autosome_num_bins+x_num_bins+1] y_bins = bins[autosome_num_bins+x_num_bins:] autosome_chrs = cell_data.loc[cell_data.chr <= 19] x_chr = cell_data.loc[cell_data.chr == 20] y_chr = cell_data.loc[cell_data.chr == 21] autosome_chr_groups = autosome_chrs.groupby([pd.cut(autosome_chrs.abs_pos, autosome_bins),pd.cut(autosome_chrs.pckmeans_cluster, [-0.1,0.9,2])]).mean().reindex(pd.MultiIndex.from_product([autosome_bins[1:], [0,1]]), fill_value = np.nan) x_chr_groups = x_chr.groupby([pd.cut(x_chr.abs_pos, x_bins),pd.cut(x_chr.pckmeans_cluster, [-0.5,0.5])]).mean().reindex( pd.MultiIndex.from_product([x_bins[1:], [0]]), fill_value = np.nan) y_chr_groups = y_chr.groupby([pd.cut(y_chr.abs_pos, y_bins),pd.cut(y_chr.pckmeans_cluster, [-0.5,0.5])]).mean().reindex(pd.MultiIndex.from_product([y_bins[1:], [0]]), fill_value = np.nan) groups = pd.concat([autosome_chr_groups,x_chr_groups, y_chr_groups], axis = 0) assert groups.shape[0] == 2 * autosome_num_bins + x_num_bins + y_num_bins return groups else: raise ValueError print("please indicate whether sex chromosomes should be included or not") def get_inter_cell_dist(m0,m1): n = m0.shape[0] k = 1 #we don't want to include the diagonal for the 38x38 representations!!!! b/c the 0s on the diagonal artifically raise the correlation value! ut_ind = np.triu_indices(n, k) assert ut_ind[0].shape[0] == n*(n-1)/2 m0_unrav = m0[ut_ind] #len is n*(n+1)/2 m1_unrav = m1[ut_ind] #find indices where both unraveled matrices are not nan filt = (np.isnan(m0_unrav)+np.isnan(m1_unrav))==0 #reduce the matrices to only indices that are not nan for both m0_filt = m0_unrav[filt] m1_filt = m1_unrav[filt] #if the two matrices share one or no indices that are not nan, return nan. Otherwise, findn the pearson correlation. if sum(~np.isnan(m0_filt))<=1: r=np.nan else: #get pearson's r r = sp.stats.pearsonr(m0_filt,m1_filt)[0] return 1 - r, np.sum(filt) #r is the correlation, len(filt) is the size of the intersection """wrapper (utility) function. using this to do data parallelism""" def align_cell_i(cell_id_i, bin_size, sample_from_bin): # random_state = 500 num_samples = 50 print("aligning cell {}".format(cell_id_i)) bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs) cell_i = data.loc[(data.cell_index==cell_id_i) & (data.chr <= num_chrs)].copy() #encodes the absolute position of the reads along the linear genome--> used for binning cell_i['abs_pos'] = -1 cell_i['abs_pos'] = cell_i.pos.copy() + [cum_lens[ch-1] for ch in cell_i.chr] cell_i_dist_mat, _ = pckmeans_get_dist_mat_binned(cell_i, bins, num_bins_per_chr, sample_from_bin) cell_i_dists = [] cell_i_intersection_sizes = [] cids_after_i = data.loc[data.cell_index >= cell_id_i, 'cell_index'].unique() for cell_id_j in cids_after_i: cell_j = data.loc[(data.cell_index==cell_id_j) & (data.chr <= num_chrs)].copy() cell_j['abs_pos'] = -1 cell_j['abs_pos'] = cell_j.pos.copy() + [cum_lens[ch-1] for ch in cell_j.chr] cell_j_dist_mat, _ = pckmeans_get_dist_mat_binned(cell_j, bins, num_bins_per_chr, sample_from_bin) cell_j_dists = [] cell_j_intersection_sizes = [] for sample in range(num_samples): #in order to align cell j with cell i, we run the sequential algorithm on 50 random sequences order = np.arange(1,20) np.random.shuffle(order) #bit_seq is something like x = [0,1,1,1,0,...] of length 19 where x[i]=0 means that in cell j we don't swap the copies of chromosome i. #bin_seq is something like [23,24,12,11,...] which has the actual sequnce of the aligned bins (dist, intersection_size), bit_seq, bin_seq, _ = get_aligned_inter_cell_dist(cell_i_dist_mat, cell_j_dist_mat, num_bins_per_chr, chr_seq = order) #np.arange(19,0,-1) cell_j_dists.append(dist) cell_j_intersection_sizes.append(intersection_size) cell_i_dists.append(np.min(cell_j_dists)) cell_i_intersection_sizes.append(cell_j_intersection_sizes[np.argmin(cell_j_dists)]) np.save("data/temp/aligned_dist_{}_bin_size_{}_{}_numchrs_{}_cell{}.npy".format(reads_to_include, int(bin_size/1e6), sample_from_bin, num_chrs, cell_id_i),np.array(cell_i_dists)) np.save("data/temp/aligned_dist_{}_intersection_size_bin_size_{}_{}_numchrs_{}_cell{}.npy".format(reads_to_include, int(bin_size/1e6), sample_from_bin, num_chrs, cell_id_i),np.array(cell_i_intersection_sizes)) return def read_data(clustering_method, reads_to_inlcude): if clustering_method == "igs": data = pd.read_csv('data/embryo_data.csv') data = data.loc[~data.cell_index.isin([ 80., 84., 105., 113.])] #getting rid of cells with less than 150 reads if reads_to_inlcude == "inliers": data = data.loc[data.inlier == 1] elif clustering_method == "pckmeans": data = pd.read_csv('data/pckmeans_embryo_data.csv') data = data.loc[~data.cell_index.isin([ 80., 84., 105., 113.])] if reads_to_inlcude == "inliers": data = data.loc[data.outlier == 0] return data #the order of chromosomes to consider is 0,1,2,3... """ finds the best chromosome alignment sequentially, for now considering the chromosomes in the order chr_seq num_bins_per_chr: dictionary holding the number or bins for each chromosome (first element is 0:0) {0: 0, 1: 2, 2: 2, 3: 2, 4: 2, 5: 2,...} num_chrs: the number of chromosomes to align assumes the distance matrices to have the following order: chr 1 cluster 0 bin 1 chr 1 cluster 0 bin 2 chr 1 cluster 1 bin 1 chr 1 cluster 1 bin 2 ... chr 19 cluster 0 bin 1 chr 19 cluster 0 bin 2 chr 19 cluster 1 bin 1 chr 19 cluster 1 bin 2 """ def get_aligned_inter_cell_dist(cell_i_dist, cell_j_dist, num_bins_per_chr, num_chrs= 19, chr_seq = None, visualize = False): if chr_seq is None: print("default chromosome sequence") chr_seq = np.arange(1,20) if visualize: fig, axes = plt.subplots(num_chrs,2, figsize = (7,15)) total_haploid_bins = np.sum([val for key,val in num_bins_per_chr.items()][:num_chrs+1]) #total number of bins for the first num_chrschromosomes cum_num_bins = np.cumsum([val for key,val in num_bins_per_chr.items()]) #[0,bins_chr1, bins_chr1+chr2,...] HAPLOID number of bins cell_i_seq = [] cell_j_seq = [] bit_wise_seq = {} # i: 0 --> chromosome i hasn't been switched, 1 means it has been switched for i in chr_seq: i = int(i) if visualize: sns.heatmap(cell_i_dist_subset, square = True, ax = axes[i,0], vmin = 0, vmax = 22, cbar = False) sns.heatmap(cell_j_dist_subset, square = True, ax = axes[i,1], vmin = 0, vmax = 22, cbar = False) cell_i_seq = cell_i_seq + list(np.arange(2*cum_num_bins[i-1], 2*cum_num_bins[i-1] + 2*num_bins_per_chr[i])) #this is the default sequence where we don't touch the order of copies seq1 = cell_j_seq + list(np.arange(2*cum_num_bins[i-1], 2*cum_num_bins[i-1] + 2*num_bins_per_chr[i])) seq2 = cell_j_seq + list(np.arange(2*cum_num_bins[i-1] + num_bins_per_chr[i], 2*cum_num_bins[i-1] + 2*num_bins_per_chr[i])) +\ list(np.arange(2*cum_num_bins[i-1] , 2*cum_num_bins[i-1] + num_bins_per_chr[i])) dist1, inter_size1 = get_inter_cell_dist(cell_i_dist[np.ix_(cell_i_seq, cell_i_seq)], cell_j_dist[np.ix_(seq1, seq1)]) dist2, inter_size2 = get_inter_cell_dist(cell_i_dist[np.ix_(cell_i_seq, cell_i_seq)], cell_j_dist[np.ix_(seq2, seq2)]) # print(seq1, seq2) if dist1 <= dist2: bit_wise_seq[i] = 0 cell_j_seq = seq1 elif dist2 < dist1: bit_wise_seq[i] = 1 cell_j_seq = seq2 else: #dists will be nan when we only have one value in each distance matrix cell_j_seq = seq1 bit_wise_seq[i] = 0 bit_wise_seq_list = [bit_wise_seq[i] for i in np.arange(1, 20)] return get_inter_cell_dist(cell_i_dist[np.ix_(cell_i_seq, cell_i_seq)], cell_j_dist[np.ix_(cell_j_seq, cell_j_seq)]), bit_wise_seq_list, cell_j_seq, cell_i_seq ##############EXTEA OUTPUT def main(): global cum_lens global num_chrs global data global reads_to_include num_chrs = 19 cum_lens = get_chr_cumulative_lengths() clustering_method = "pckmeans" reads_to_include = "inliers" print("clustering method: ", clustering_method) print("including {} reads".format(reads_to_include)) data = read_data(clustering_method, reads_to_include) #global variables data = data.loc[data.stage == "4cell"] cids_4cell = data.cell_index.unique() for bin_size in [30e6]:#200e6, 100e6, 50e6, for sample in ["mean", "first", "last"]: print("bin size: {}, sample {}, Number of chromosomes: {}".format(int(bin_size/1e6), sample, num_chrs)) with Pool(6) as p: p.starmap(align_cell_i, zip(cids_4cell, repeat(bin_size), repeat(sample))) def consistency_analysis(): reads_to_inlcude = "inliers" #"all" clustering_method = "pckmeans" # "igs" num_chrs = 19 data = read_data(clustering_method, reads_to_inlcude) #cells with less than 150 reads are deleted: 80., 84., 105., 113. cum_lens = get_chr_cumulative_lengths() fig, axes = plt.subplots(4,4, figsize = (20,20)) for i, bin_size in tqdm(enumerate([50e6, 25e6, 10e6, 1e6])): for j, num_samples in tqdm(enumerate([5, 25, 50, 75])): print("\n bin size: ", bin_size) print("\n num samples: ", num_samples) proportion_matching = [] variances = [] cell_i_index = 91 cell_j_index = 93 # for cell_i_index in tqdm(data.loc[data.stage == '4cell', 'cell_index'].unique()[0:2]): # cids_after_i = data.loc[data.cell_index >= cell_i_index, 'cell_index'].unique()[1:3] # for cell_j_index in cids_after_i: cell_i = data.loc[(data.cell_index==cell_i_index) & (data.chr < 20)].copy() cell_i['abs_pos'] = -1 cell_i['abs_pos'] = cell_i.pos.copy() + [cum_lens[ch-1] for ch in cell_i.chr] #encodes the absolute position of the reads along the linear genome cell_j = data.loc[(data.cell_index==cell_j_index) & (data.chr < 20)].copy() cell_j['abs_pos'] = -1 cell_j['abs_pos'] = cell_j.pos.copy() + [cum_lens[ch-1] for ch in cell_j.chr] #encodes the absolute position of the reads along the linear genome bins, num_bins_per_chr = get_bins(bin_size, cum_lens, num_chrs) cell_i_dist,_ = pckmeans_get_dist_mat_binned(cell_i, bins, num_bins_per_chr) cell_j_dist,_ = pckmeans_get_dist_mat_binned(cell_j, bins, num_bins_per_chr) # print("intra cell distance matrix shape: ", cell_i_dist.shape) min_dists = [] num_trials = 100 for trial in range(num_trials): dists = [] for sample in range(num_samples): if sample == 0: order = np.arange(1,20) elif sample == 1: order = np.arange(19,0,-1) else: order = np.arange(1,20) np.random.shuffle(order) d, bit_seq, bin_seq, _ = get_aligned_inter_cell_dist(cell_i_dist, cell_j_dist, num_bins_per_chr, chr_seq = order) #np.arange(19,0,-1) dists.append(d[0]) min_dists.append(np.round(np.min(dists), 4)) # proportion_matching.append(np.mean(dists < np.min(dists) +0.05)) # variances.append(np.var(dists)) print(min_dists) axes[j,i].hist(min_dists, bins = 8) axes[j,i].set_title("bin size {}".format(bin_size/1e6)) axes[j,i].set_ylabel("sample size: {}".format(num_samples)) # axes[1,i].hist(variances, bins = 20) # axes[1,i].set_xlabel("variances") plt.suptitle("cell indeces {} and {}".format(cell_i_index, cell_j_index)) plt.savefig("figures/sequential_algorithm_consistency_min_distance_distribution_cells{}_{}.png".format(cell_i_index, cell_j_index)) if __name__ == "__main__": main() # consistency_analysis()
pdavar/Analysis-of-3D-Mouse-Genome-Organization
chromosome_alignment.py
chromosome_alignment.py
py
16,670
python
en
code
0
github-code
6
[ { "api_name": "numpy.sum", "line_number": 32, "usage_type": "call" }, { "api_name": "pandas.cut", "line_number": 38, "usage_type": "call" }, { "api_name": "pandas.MultiIndex.from_product", "line_number": 38, "usage_type": "call" }, { "api_name": "pandas.MultiIndex", "line_number": 38, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 38, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 46, "usage_type": "call" }, { "api_name": "pandas.cut", "line_number": 55, "usage_type": "call" }, { "api_name": "pandas.MultiIndex.from_product", "line_number": 55, "usage_type": "call" }, { "api_name": "pandas.MultiIndex", "line_number": 55, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 55, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 67, "usage_type": "call" }, { "api_name": "pandas.cut", "line_number": 79, "usage_type": "call" }, { "api_name": "pandas.MultiIndex.from_product", "line_number": 79, "usage_type": "call" }, { "api_name": "pandas.MultiIndex", "line_number": 79, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 79, "usage_type": "attribute" }, { "api_name": "pandas.cut", "line_number": 80, "usage_type": "call" }, { "api_name": "pandas.MultiIndex.from_product", "line_number": 80, "usage_type": "call" }, { "api_name": "pandas.MultiIndex", "line_number": 80, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 80, "usage_type": "attribute" }, { "api_name": "pandas.cut", "line_number": 81, "usage_type": "call" }, { "api_name": "pandas.MultiIndex.from_product", "line_number": 81, "usage_type": "call" }, { "api_name": "pandas.MultiIndex", "line_number": 81, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 81, "usage_type": "attribute" }, { "api_name": "pandas.concat", "line_number": 82, "usage_type": "call" }, { "api_name": "numpy.triu_indices", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 113, "usage_type": "attribute" }, { "api_name": "scipy.stats.pearsonr", "line_number": 116, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 116, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 161, "usage_type": "call" }, { "api_name": "numpy.random.shuffle", "line_number": 162, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 162, "usage_type": "attribute" }, { "api_name": "numpy.min", "line_number": 170, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 171, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 174, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 174, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 175, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 182, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 187, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 222, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 225, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 225, "usage_type": "name" }, { "api_name": "numpy.sum", "line_number": 227, "usage_type": "call" }, { "api_name": "numpy.cumsum", "line_number": 228, "usage_type": "call" }, { "api_name": "seaborn.heatmap", "line_number": 236, "usage_type": "call" }, { "api_name": "seaborn.heatmap", "line_number": 237, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 238, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 239, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 240, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 241, "usage_type": "call" }, { "api_name": "numpy.ix_", "line_number": 243, "usage_type": "call" }, { "api_name": "numpy.ix_", "line_number": 244, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 257, "usage_type": "call" }, { "api_name": "numpy.ix_", "line_number": 258, "usage_type": "call" }, { "api_name": "multiprocessing.Pool", "line_number": 288, "usage_type": "call" }, { "api_name": "itertools.repeat", "line_number": 289, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 302, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 302, "usage_type": "name" }, { "api_name": "tqdm.tqdm", "line_number": 303, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 304, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 339, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 341, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 343, "usage_type": "call" }, { "api_name": "numpy.random.shuffle", "line_number": 344, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 344, "usage_type": "attribute" }, { "api_name": "numpy.round", "line_number": 347, "usage_type": "call" }, { "api_name": "numpy.min", "line_number": 347, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.suptitle", "line_number": 358, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 358, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 359, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 359, "usage_type": "name" } ]
19492440920
# -*- coding: utf-8 -*- from flask import Flask,request,abort # 引用flask库 import os import time import sys, getopt from dd.mylog import TNLog import dd logger = TNLog() print(__name__) app= Flask(__name__) app.config.update(DEBUG=True) # 定义路由 @app.route('/') def hello_world(): out = os.popen('docker info').read() return out @app.route('/docker/Info') def getDockerInfo(): out = os.popen('docker info').read() return out @app.route('/docker/deploy',methods=['POST']) def deploy(): if request.method == 'POST': image_name = request.form['image_name'] run_name = request.form['run_name'] port = request.form['port'] other = request.form['other'] loginfo = '' cmd = 'docker pull %s'%(image_name) os.popen(cmd) loginfo+=cmd+'\n' cmd = 'docker stop %s'%(run_name) loginfo+=cmd+'\n' print(os.popen(cmd).read()) cmd = 'docker rm %s'%(run_name) loginfo+=cmd+'\n' print(os.popen(cmd).read()) cmd = 'docker run -d --restart=always --name=%s -p %s %s %s'%(run_name,port,other,image_name) print(os.popen(cmd).read()) loginfo+=cmd+'\n' logger.info(loginfo) cmd = "docker ps |grep '%s'"%(run_name) ret = os.popen(cmd).read() print(ret) if ret == '': return '0' else: return '1' @app.route('/docker/login',methods=['POST']) def dockerLogin(): if request.method == 'POST': user = request.form['u'] pwd = request.form['p'] host = request.form['host'] outs = os.popen('docker login -u %s -p %s %s' %(user,pwd,host)).readlines() is_successful = False for l in outs: print(l) if l.startswith('Login Succeeded'): is_successful=True return '1' if not is_successful: return '0' def getPort(): usage = ''' usage: python3 -m dd [-v | -h | -p <port>] ddService [-v | -h | -p <port>] ''' port = 8866 argv = sys.argv[1:] try: opts, argvs = getopt.getopt(argv,"p:hv",["port=","help","version"]) except getopt.GetoptError: print("parameter format error") print(usage) sys.exit(2) for opt, arg in opts: if opt == '-h': print(usage) sys.exit() elif opt in ("-p", "--port"): port = arg elif opt == '-v': print(dd.__version__) sys.exit() return port def main(): app.run(host='0.0.0.0',port=getPort(),threaded=True,debug=False) # 开启调试模式,程序访问端口为8080 if __name__=="__main__": #main() if(not os.path.exists('log')): os.mkdir('log') #logger.info("info") app.run(host='0.0.0.0',debug=True,port=getPort(),threaded=True) # 开启调试模式,程序访问端口为8080 #http_server = WSGIServer(('', 5001), app) #http_server.serve_forever()
stosc/dockerDeployer
dd/run.py
run.py
py
3,114
python
en
code
0
github-code
6
[ { "api_name": "dd.mylog.TNLog", "line_number": 12, "usage_type": "call" }, { "api_name": "flask.Flask", "line_number": 14, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 20, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 25, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 30, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 30, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 31, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 31, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 32, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 32, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 33, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 33, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 34, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 34, "usage_type": "name" }, { "api_name": "os.popen", "line_number": 38, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 43, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 47, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 50, "usage_type": "call" }, { "api_name": "os.popen", "line_number": 54, "usage_type": "call" }, { "api_name": "flask.request.method", "line_number": 65, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 65, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 66, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 66, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 67, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 67, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 68, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 68, "usage_type": "name" }, { "api_name": "os.popen", "line_number": 69, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 88, "usage_type": "attribute" }, { "api_name": "getopt.getopt", "line_number": 90, "usage_type": "call" }, { "api_name": "getopt.GetoptError", "line_number": 91, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 94, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 98, "usage_type": "call" }, { "api_name": "dd.__version__", "line_number": 102, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 103, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 114, "usage_type": "call" }, { "api_name": "os.path", "line_number": 114, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 115, "usage_type": "call" } ]
72995183868
import os import sys import time import struct import debug import eosapi from eosapi import N, push_transactions from common import prepare, Sync from tools import cpp2wast def init_debug(wasm=True): def init_decorator(func): def func_wrapper(*args, **kwargs): if wasm: _src_dir = os.path.dirname(os.path.abspath(__file__)) cpp2wast.set_src_path(_src_dir) cpp2wast.build_native('lab.cpp', 'lab', debug=False) lib_file = os.path.join(_src_dir, 'liblab.dylib') # debug.set_debug_contract('lab', lib_file) return func(*args, **kwargs) return func_wrapper return init_decorator def init(wasm=True): def init_decorator(func): def func_wrapper(*args, **kwargs): if wasm: prepare('lab', 'lab.wast', 'lab.abi', __file__) return func(*args, **kwargs) else: prepare('lab', 'lab.py', 'lab.abi', __file__) return func(*args, **kwargs) return func_wrapper return init_decorator _dir = os.path.dirname(os.path.abspath(__file__)) sync = Sync(_account = 'lab', _dir = _dir, _ignore = ['lab.py']) @init(True) def test(msg='hello,world'): r = eosapi.push_action('lab', 'sayhello', msg, {'lab':'active'}) assert r @init() def deploy(): sync.deploy_all() @init() def deploy_mpy(): sync.deploy_all_mpy() @init() def test2(count=100): import time import json actions = [] for i in range(count): action = ['lab', 'sayhello', str(i), {'lab':'active'}] actions.append(action) ret, cost = eosapi.push_actions(actions) assert ret print(ret['elapsed']) print(cost) print('total cost time:%.3f s, cost per action: %.3f ms, actions per second: %.3f'%(cost/1e6, cost/count/1000, 1*1e6/(cost/count))) def set_contract(account, src_file, abi_file, vmtype=1, sign=True): '''Set code and abi for the account Args: account (str) : account name src_file (str) : source file path abi_file (str) : abi file path vmtype : virtual machine type, 0 for wasm, 1 for micropython, 2 for evm sign (bool) : True to sign transaction Returns: JsonStruct|None: ''' account = eosapi.N(account) code = struct.pack('QBB', account, vmtype, 0) if vmtype == 0: with open(src_file, 'rb') as f: wasm = eosapi.wast2wasm(f.read()) code += eosapi.pack_bytes(wasm) setcode = [N('eosio'), N('setcode'), [[account, N('active')]], code] return push_transactions([[setcode]], sign, compress = True) def build_native(): _src_dir = os.path.dirname(os.path.abspath(__file__)) cpp2wast.set_src_path(_src_dir) cpp2wast.build_native('lab.cpp', 'lab', debug=False) lib_file = os.path.join(_src_dir, 'liblab.dylib') debug.set_debug_contract('lab', lib_file) @init() #@init_debug() def test3(count=200): actions = [] for i in range(count): action = ['counter', 'count', str(i), {'counter':'active'}] actions.append([action]) ret, cost = eosapi.push_transactions(actions) assert ret print('total cost time:%.3f s, cost per action: %.3f ms, transaction per second: %.3f'%(cost/1e6, cost/count/1000, 1*1e6/(cost/count)))
learnforpractice/pyeos
programs/pyeos/tests/wasm/lab/t.py
t.py
py
3,368
python
en
code
131
github-code
6
[ { "api_name": "os.path.dirname", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 16, "usage_type": "call" }, { "api_name": "tools.cpp2wast.set_src_path", "line_number": 17, "usage_type": "call" }, { "api_name": "tools.cpp2wast", "line_number": 17, "usage_type": "name" }, { "api_name": "tools.cpp2wast.build_native", "line_number": 18, "usage_type": "call" }, { "api_name": "tools.cpp2wast", "line_number": 18, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "common.prepare", "line_number": 29, "usage_type": "call" }, { "api_name": "common.prepare", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path", "line_number": 37, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 37, "usage_type": "call" }, { "api_name": "common.Sync", "line_number": 39, "usage_type": "call" }, { "api_name": "eosapi.push_action", "line_number": 43, "usage_type": "call" }, { "api_name": "eosapi.push_actions", "line_number": 63, "usage_type": "call" }, { "api_name": "eosapi.N", "line_number": 83, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 84, "usage_type": "call" }, { "api_name": "eosapi.wast2wasm", "line_number": 88, "usage_type": "call" }, { "api_name": "eosapi.pack_bytes", "line_number": 89, "usage_type": "call" }, { "api_name": "eosapi.N", "line_number": 91, "usage_type": "call" }, { "api_name": "eosapi.push_transactions", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 96, "usage_type": "call" }, { "api_name": "os.path", "line_number": 96, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 96, "usage_type": "call" }, { "api_name": "tools.cpp2wast.set_src_path", "line_number": 97, "usage_type": "call" }, { "api_name": "tools.cpp2wast", "line_number": 97, "usage_type": "name" }, { "api_name": "tools.cpp2wast.build_native", "line_number": 98, "usage_type": "call" }, { "api_name": "tools.cpp2wast", "line_number": 98, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path", "line_number": 99, "usage_type": "attribute" }, { "api_name": "debug.set_debug_contract", "line_number": 100, "usage_type": "call" }, { "api_name": "eosapi.push_transactions", "line_number": 110, "usage_type": "call" } ]
24998585781
import wizard import pooler import datetime import time from copy import deepcopy import netsvc from tools.translate import _ _schedule_form = '''<?xml version="1.0"?> <form string="Interview Scheduling Of Candidate"> <field name="start_interview"/> <field name="end_interview"/> <field name="interval_time"/> </form>''' _schedule_fields = { 'start_interview' : {'string' : 'Start Interview Time', 'type' : 'datetime','required':True }, 'end_interview' : {'string' : 'End Interview Time', 'type' : 'datetime','required':True }, 'interval_time' : {'string' : 'Interval(Approximate Evaluation Time) ', 'type' : 'integer','required':True }, } form = """<?xml version="1.0"?> <form string="Use Model"> <separator string="Scheduled Candidate List " colspan="4"/> <field name="list_all" nolabel="1"/> <separator string="Some Candidate Still Remaining " colspan="4"/> <field name="list" nolabel="1"/> </form> """ fields = { 'list' : {'string': "",'type':'text','readonly':True}, 'list_all' : {'string': "",'type':'text','readonly':True} } class wiz_schedule(wizard.interface): def _scheduling(self, cr, uid, data, context): pool = pooler.get_pool(cr.dbname) hr_int_obj = pool.get("hr.interview") if time.strptime(str(data['form']['start_interview']),"%Y-%m-%d %H:%M:%S") < time.strptime(data['form']['end_interview'],"%Y-%m-%d %H:%M:%S") and time.strptime(str(data['form']['start_interview']),"%Y-%m-%d %H:%M:%S")[:3] ==time.strptime(str(data['form']['end_interview']),"%Y-%m-%d %H:%M:%S")[:3] : if datetime.datetime(*time.strptime(str(data['form']['end_interview']),"%Y-%m-%d %H:%M:%S")[:6]) >= datetime.datetime(*time.strptime(str(data['form']['start_interview']),"%Y-%m-%d %H:%M:%S")[:6]) + datetime.timedelta(minutes=int(data['form']['interval_time'])): cur_time = data['form']['start_interview'] re_id = deepcopy(data['ids']) list_all="Interview ID \t Name " for rec in data['ids']: wf_service = netsvc.LocalService('workflow') wf_service.trg_validate(uid, 'hr.interview', rec, 'state_scheduled', cr) record = hr_int_obj.read(cr,uid,rec,['hr_id','name']) list_all +="\n" + record['hr_id']+"\t\t" + record['name'] id = hr_int_obj.write(cr,uid,rec,{'date':cur_time,'state':'scheduled'}) cur_time = datetime.datetime(*time.strptime(str(cur_time),"%Y-%m-%d %H:%M:%S")[:6]) + datetime.timedelta(minutes=int(data['form']['interval_time'])) re_id.remove(rec) end_time = datetime.datetime(*time.strptime(str(cur_time),"%Y-%m-%d %H:%M:%S")[:6]) + datetime.timedelta(minutes=int(data['form']['interval_time'])) if len(re_id) > 0 and time.strptime(str(end_time),"%Y-%m-%d %H:%M:%S") > time.strptime(data['form']['end_interview'],"%Y-%m-%d %H:%M:%S") : remain="Interview ID \t Name " for record in hr_int_obj.read(cr,uid,re_id,['hr_id','name']): remain +="\n" + record['hr_id']+"\t\t" + record['name'] data['form']['list']=remain data['form']['list_all']=list_all return data['form'] else : raise wizard.except_wizard(_('UserError'),_('Insert appropriate interval time!!!')) return {} else : raise wizard.except_wizard(_('UserError'),_('The Scheduling is not Appropriate. Enter appropriate date and time ')) return {} data['form']['list_all']= list_all data['form']['list']= "None" return data['form'] states = { 'init': { 'actions': [], 'result': {'type': 'form', 'arch':_schedule_form, 'fields':_schedule_fields, 'state':[('schedule','Schedule','gtk-ok'),('end','Cancel','gtk-cancel')]} }, 'schedule': { 'actions': [_scheduling], 'result': {'type': 'form','arch':form, 'fields':fields, 'state':[('end','Ok')]} }, } wiz_schedule('wiz_interview_scheduling') # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
factorlibre/openerp-extra-6.1
hr_interview/wizard/wiz_schedule.py
wiz_schedule.py
py
4,374
python
en
code
9
github-code
6
[ { "api_name": "wizard.interface", "line_number": 37, "usage_type": "attribute" }, { "api_name": "pooler.get_pool", "line_number": 39, "usage_type": "call" }, { "api_name": "time.strptime", "line_number": 41, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 42, "usage_type": "call" }, { "api_name": "time.strptime", "line_number": 42, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 42, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 44, "usage_type": "call" }, { "api_name": "netsvc.LocalService", "line_number": 47, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 52, "usage_type": "call" }, { "api_name": "time.strptime", "line_number": 52, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 52, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 54, "usage_type": "call" }, { "api_name": "time.strptime", "line_number": 54, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 54, "usage_type": "call" }, { "api_name": "time.strptime", "line_number": 55, "usage_type": "call" }, { "api_name": "wizard.except_wizard", "line_number": 63, "usage_type": "call" }, { "api_name": "tools.translate._", "line_number": 63, "usage_type": "call" }, { "api_name": "wizard.except_wizard", "line_number": 66, "usage_type": "call" }, { "api_name": "tools.translate._", "line_number": 66, "usage_type": "call" } ]
10696495998
# -*- coding: utf-8 -*- import os import uuid import json import requests import re from datetime import datetime import urllib import hmac import base64 from threading import Timer REQUEST_URL = 'https://alidns.aliyuncs.com/' LOCAL_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'ip.txt') ALIYUN_SETTINGS = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'settings.json') def get_common_params(settings): """ 获取公共参数 参考文档:https://help.aliyun.com/document_detail/29745.html?spm=5176.doc29776.6.588.sYhLJ0 """ return { 'Format': 'json', 'Version': '2015-01-09', 'AccessKeyId': settings['access_key'], 'SignatureMethod': 'HMAC-SHA1', 'Timestamp': datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'), 'SignatureVersion': '1.0', 'SignatureNonce': uuid.uuid4() } def get_signed_params(http_method, params, settings): """ 参考文档:https://help.aliyun.com/document_detail/29747.html?spm=5176.doc29745.2.1.V2tmbU """ # 1、合并参数,不包括Signature params.update(get_common_params(settings)) # 2、按照参数的字典顺序排序 sorted_params = sorted(params.items()) # 3、encode 参数 query_params = urllib.parse.urlencode(sorted_params) # 4、构造需要签名的字符串 str_to_sign = http_method + "&" + urllib.parse.quote_plus("/") + "&" + urllib.parse.quote_plus(query_params) # 5、计算签名 signature = base64.b64encode(hmac.new((settings['access_secret']+'&').encode('utf-8'), str_to_sign.encode('utf-8'), digestmod='sha1').digest()) # 6、将签名加入参数中 params['Signature'] = signature return params def update_yun(ip): """ 修改云解析 参考文档: 获取解析记录:https://help.aliyun.com/document_detail/29776.html?spm=5176.doc29774.6.618.fkB0qE 修改解析记录:https://help.aliyun.com/document_detail/29774.html?spm=5176.doc29774.6.616.qFehCg """ with open(ALIYUN_SETTINGS, 'r') as f: settings = json.loads(f.read()) # 首先获取解析列表 get_params = get_signed_params('GET', { 'Action': 'DescribeDomainRecords', 'DomainName': settings['domain'], 'TypeKeyWord': 'A' }, settings) get_resp = requests.get(REQUEST_URL, get_params) records = get_resp.json() print('get_records============') print(records) for record in records['DomainRecords']['Record']: post_params = get_signed_params('POST', { 'Action': 'UpdateDomainRecord', 'RecordId': record['RecordId'], 'RR': record['RR'], 'Type': record['Type'], 'Value': ip }, settings) post_resp = requests.post(REQUEST_URL, post_params) result = post_resp.json() print('update_record============') print(result) def get_curr_ip(): headers = { 'content-type': 'text/html', 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:22.0) Gecko/20100101 Firefox/22.0' } resp = requests.get('http://2018.ip138.com/ic.asp', headers=headers) ip = re.split(r"[\[\]]", resp.text)[1] return ip def get_lastest_local_ip(): """ 获取最近一次保存在本地的ip """ print('ip local path', LOCAL_FILE) with open(LOCAL_FILE, 'r') as f: last_ip = f.readline() return last_ip def task_update(): ip = get_curr_ip() if not ip: print('get ip failed') else: last_ip = get_lastest_local_ip() print('curr_ip:', ip, ' last_ip:', last_ip) if ip != last_ip: print('save ip to {}...'.format(LOCAL_FILE)) with open(LOCAL_FILE, 'w') as f: f.write(ip) print('update remote record...') update_yun(ip) Timer(300, task_update).start() if __name__ == '__main__': print('启动ddns服务,每5分钟执行一次...') Timer(0, task_update).start()
mikuh/aliyun_ddns
ddns.py
ddns.py
py
4,069
python
en
code
0
github-code
6
[ { "api_name": "os.path.join", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 17, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 30, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 30, "usage_type": "name" }, { "api_name": "uuid.uuid4", "line_number": 32, "usage_type": "call" }, { "api_name": "urllib.parse.urlencode", "line_number": 45, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 45, "usage_type": "attribute" }, { "api_name": "urllib.parse.quote_plus", "line_number": 47, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 47, "usage_type": "attribute" }, { "api_name": "base64.b64encode", "line_number": 49, "usage_type": "call" }, { "api_name": "hmac.new", "line_number": 49, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 65, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 74, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 87, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 98, "usage_type": "call" }, { "api_name": "re.split", "line_number": 99, "usage_type": "call" }, { "api_name": "threading.Timer", "line_number": 126, "usage_type": "call" }, { "api_name": "threading.Timer", "line_number": 131, "usage_type": "call" } ]
72683668667
import sys from PyQt5.QtWidgets import QApplication, QDialog, QVBoxLayout, QPushButton, QLabel, QHBoxLayout, QLineEdit button_y_position = 0.1 # Initial Y position for the buttons class Addsubject(QDialog): def __init__(self): super().__init__() self.setWindowTitle('Custom Pop-up Block') self.setGeometry(300, 200, 400, 200) # Create layouts for the dialog main_layout = QVBoxLayout() button_layout = QHBoxLayout() # Create labels and line edits for subject name, teacher name, and number of students subject_label = QLabel("Subject Name:") self.subject_edit = QLineEdit(self) teacher_label = QLabel("Teacher Name:") self.teacher_edit = QLineEdit(self) students_label = QLabel("Number of Students:") self.students_edit = QLineEdit(self) # Create and add a button to the button layout button1 = QPushButton("Create") button1.clicked.connect(self.on_button1_click) # Add labels, line edits, and the button to the layouts main_layout.addWidget(subject_label) main_layout.addWidget(self.subject_edit) main_layout.addWidget(teacher_label) main_layout.addWidget(self.teacher_edit) main_layout.addWidget(students_label) main_layout.addWidget(self.students_edit) button_layout.addWidget(button1) # Set the layouts for the dialog main_layout.addLayout(button_layout) self.setLayout(main_layout) def on_button1_click(self): subject_name = self.subject_edit.text() teacher_name = self.teacher_edit.text() num_students = self.students_edit.text() print(f"Subject Name: {subject_name}, Teacher Name: {teacher_name}, Students: {num_students}") self.accept() def create_class_data(self): subject_name = self.subject_edit.text() teacher_name = self.teacher_edit.text() num_students = self.students_edit.text() return subject_name , teacher_name , num_students
Rush-154/DBMS
Login/flexcards.py
flexcards.py
py
2,119
python
en
code
0
github-code
6
[ { "api_name": "PyQt5.QtWidgets.QDialog", "line_number": 5, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QVBoxLayout", "line_number": 13, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QHBoxLayout", "line_number": 14, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 17, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 18, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 20, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 21, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QLabel", "line_number": 23, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QLineEdit", "line_number": 24, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QPushButton", "line_number": 27, "usage_type": "call" } ]
36411448777
#import logging; logging.basicConfig(level=logging.INFO) import asyncio, os, json, time, base64 from datetime import datetime from aiohttp import web from jinja2 import Environment, FileSystemLoader from log import Log,create_logger import config as conf import common.orm as orm from common.webmiddlewares import logger_factory, data_factory,response_factory,auth_factory from common.coroweb import add_routes, add_static from cryptography import fernet def init_jinja2(app, **kw): Log.info('init jinja2...') options = dict( autoescape = kw.get('autoescape', True), block_start_string = kw.get('block_start_string', '{%'), block_end_string = kw.get('block_end_string', '%}'), variable_start_string = kw.get('variable_start_string', '{{'), variable_end_string = kw.get('variable_end_string', '}}'), auto_reload = kw.get('auto_reload', True) ) path = kw.get('path', None) if path is None: path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates') Log.info('set jinja2 template path: %s' % path) env = Environment(loader=FileSystemLoader(path), **options) filters = kw.get('filters', None) if filters is not None: for name, f in filters.items(): env.filters[name] = f app['__templating__'] = env def datetime_filter(t): delta = int(time.time() - t) if delta < 60: return u'1分钟前' if delta < 3600: return u'%s分钟前' % (delta // 60) if delta < 86400: return u'%s小时前' % (delta // 3600) if delta < 604800: return u'%s天前' % (delta // 86400) dt = datetime.fromtimestamp(t) return u'%s年%s月%s日' % (dt.year, dt.month, dt.day) def index(request): return web.Response(body=b'<h1>Hello</h1>',headers={'content-type':'text/html'}) @asyncio.coroutine async def init(loop): try: create_logger() Log.info("server init...") db = conf.configs['db']; Log.info("init configs...") fernet_key = fernet.Fernet.generate_key() secret_key = base64.urlsafe_b64decode(fernet_key) await orm.create_pool(loop=loop, host=db['host'], port=db['port'], user=db['user'], password=db['password'], db= db['database']) app = web.Application(loop=loop, middlewares=[ logger_factory, data_factory, auth_factory, response_factory, ]) init_jinja2(app, filters=dict(datetime=datetime_filter)) add_routes(app, 'routers') add_static(app) url = 'localhost' port = 8050 srv = await loop.create_server(app.make_handler(),url, port) Log.info("server started at http://"+url+":"+ str(port)) return srv except Exception as ex: print('服务启动失败') print(ex) #app = web.Application(loop=loop) #app.router.add_route('GET', '/', index) #srv = yield from loop.create_server(app.make_handler(), url, port) #logging.info("server started at http://"+url+":"+ str(port)) #return srv loop = asyncio.get_event_loop() loop.run_until_complete(init(loop)) loop.run_forever()
jkilili/python_web
www/app.py
app.py
py
3,208
python
en
code
0
github-code
6
[ { "api_name": "log.Log.info", "line_number": 19, "usage_type": "call" }, { "api_name": "log.Log", "line_number": 19, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 30, "usage_type": "call" }, { "api_name": "log.Log.info", "line_number": 31, "usage_type": "call" }, { "api_name": "log.Log", "line_number": 31, "usage_type": "name" }, { "api_name": "jinja2.Environment", "line_number": 32, "usage_type": "call" }, { "api_name": "jinja2.FileSystemLoader", "line_number": 32, "usage_type": "call" }, { "api_name": "time.time", "line_number": 40, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 49, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 49, "usage_type": "name" }, { "api_name": "aiohttp.web.Response", "line_number": 53, "usage_type": "call" }, { "api_name": "aiohttp.web", "line_number": 53, "usage_type": "name" }, { "api_name": "log.create_logger", "line_number": 58, "usage_type": "call" }, { "api_name": "log.Log.info", "line_number": 60, "usage_type": "call" }, { "api_name": "log.Log", "line_number": 60, "usage_type": "name" }, { "api_name": "config.configs", "line_number": 61, "usage_type": "attribute" }, { "api_name": "log.Log.info", "line_number": 63, "usage_type": "call" }, { "api_name": "log.Log", "line_number": 63, "usage_type": "name" }, { "api_name": "cryptography.fernet.Fernet.generate_key", "line_number": 64, "usage_type": "call" }, { "api_name": "cryptography.fernet.Fernet", "line_number": 64, "usage_type": "attribute" }, { "api_name": "cryptography.fernet", "line_number": 64, "usage_type": "name" }, { "api_name": "base64.urlsafe_b64decode", "line_number": 65, "usage_type": "call" }, { "api_name": "common.orm.create_pool", "line_number": 67, "usage_type": "call" }, { "api_name": "common.orm", "line_number": 67, "usage_type": "name" }, { "api_name": "aiohttp.web.Application", "line_number": 68, "usage_type": "call" }, { "api_name": "aiohttp.web", "line_number": 68, "usage_type": "name" }, { "api_name": "common.webmiddlewares.logger_factory", "line_number": 69, "usage_type": "name" }, { "api_name": "common.webmiddlewares.data_factory", "line_number": 70, "usage_type": "name" }, { "api_name": "common.webmiddlewares.auth_factory", "line_number": 71, "usage_type": "name" }, { "api_name": "common.webmiddlewares.response_factory", "line_number": 72, "usage_type": "name" }, { "api_name": "common.coroweb.add_routes", "line_number": 75, "usage_type": "call" }, { "api_name": "common.coroweb.add_static", "line_number": 76, "usage_type": "call" }, { "api_name": "log.Log.info", "line_number": 81, "usage_type": "call" }, { "api_name": "log.Log", "line_number": 81, "usage_type": "name" }, { "api_name": "asyncio.coroutine", "line_number": 55, "usage_type": "attribute" }, { "api_name": "asyncio.get_event_loop", "line_number": 93, "usage_type": "call" } ]
18527949488
import pytest from selene.support.shared import browser from selene import be, have @pytest.fixture(scope='session', autouse=True) def browser_size(): browser.config.window_width = 1280 browser.config.window_height = 720 def test_search(browser_size): browser.open('https://google.com') browser.element('[name="q"]').should(be.blank).type('yashaka/selene').press_enter() browser.element('[id="search"]').should(have.text('yashaka/selene: User-oriented Web UI browser tests in')) def test_search_no_result(browser_size): browser.open('https://google.com') browser.element('[name="q"]').should(be.blank).type('fdfdfdfdfdh141cnjmmmmmm').press_enter() browser.element('[id="result-stats"]').should(have.text('Результатов: примерно 0'))
ekat-barkova/qa_guru_python_6_2_homework
tests/test_google_should_find_selene.py
test_google_should_find_selene.py
py
788
python
en
code
0
github-code
6
[ { "api_name": "selene.support.shared.browser.config", "line_number": 8, "usage_type": "attribute" }, { "api_name": "selene.support.shared.browser", "line_number": 8, "usage_type": "name" }, { "api_name": "selene.support.shared.browser.config", "line_number": 9, "usage_type": "attribute" }, { "api_name": "selene.support.shared.browser", "line_number": 9, "usage_type": "name" }, { "api_name": "pytest.fixture", "line_number": 6, "usage_type": "call" }, { "api_name": "selene.support.shared.browser.open", "line_number": 13, "usage_type": "call" }, { "api_name": "selene.support.shared.browser", "line_number": 13, "usage_type": "name" }, { "api_name": "selene.support.shared.browser.element", "line_number": 14, "usage_type": "call" }, { "api_name": "selene.support.shared.browser", "line_number": 14, "usage_type": "name" }, { "api_name": "selene.be.blank", "line_number": 14, "usage_type": "attribute" }, { "api_name": "selene.be", "line_number": 14, "usage_type": "name" }, { "api_name": "selene.support.shared.browser.element", "line_number": 15, "usage_type": "call" }, { "api_name": "selene.support.shared.browser", "line_number": 15, "usage_type": "name" }, { "api_name": "selene.have.text", "line_number": 15, "usage_type": "call" }, { "api_name": "selene.have", "line_number": 15, "usage_type": "name" }, { "api_name": "selene.support.shared.browser.open", "line_number": 19, "usage_type": "call" }, { "api_name": "selene.support.shared.browser", "line_number": 19, "usage_type": "name" }, { "api_name": "selene.support.shared.browser.element", "line_number": 20, "usage_type": "call" }, { "api_name": "selene.support.shared.browser", "line_number": 20, "usage_type": "name" }, { "api_name": "selene.be.blank", "line_number": 20, "usage_type": "attribute" }, { "api_name": "selene.be", "line_number": 20, "usage_type": "name" }, { "api_name": "selene.support.shared.browser.element", "line_number": 21, "usage_type": "call" }, { "api_name": "selene.support.shared.browser", "line_number": 21, "usage_type": "name" }, { "api_name": "selene.have.text", "line_number": 21, "usage_type": "call" }, { "api_name": "selene.have", "line_number": 21, "usage_type": "name" } ]
42483141861
import os import json import requests from flask import Flask, jsonify, request, Response from faker import Factory from twilio.access_token import AccessToken, IpMessagingGrant app = Flask(__name__) fake = Factory.create() @app.route('/') def index(): return app.send_static_file('index.html') @app.route('/tone', methods=['POST']) def tone(): try: response = requests.post( url="https://gateway.watsonplatform.net/tone-analyzer/api/v3/tone", params={ "version": "2016-05-19", }, headers={ "Authorization": "Basic MDQ1MjE5ZDUtYzVjNC00ZTE0LTk0MDItMWY1OWJmOTY5OWE3Olk3S1h1bTBNMWY2bw==", "Content-Type": "application/json", }, data=json.dumps({ "text": json.loads(request.data)['text'] }) ) print('Response HTTP Status Code: {status_code}'.format( status_code=response.status_code)) print('Response HTTP Response Body: {content}'.format( content=response.content)) return Response(response.content, mimetype='application/json') except requests.exceptions.RequestException: print('HTTP Request failed') # json_data = json.loads(request.data) @app.route('/token') def token(): # get credentials for environment variables account_sid = "ACcdbab0f13e08eb8b19b6d3025a9ad6f7" api_key = "SK2f52e17a9ca74d4714d28a7c575e1e21" api_secret = "6XYHaD6O5zPKDpM4wU34NknCQj7L1d6C" service_sid = "IS27b6d9077d6c48838881fc41b4748bb2" # create a randomly generated username for the client identity = request.args.get('identity') # Create a unique endpoint ID for the device_id = request.args.get('device') endpoint = "TwilioChatDemo:{0}:{1}".format(identity, device_id) # Create access token with credentials token = AccessToken(account_sid, api_key, api_secret, identity) # Create an IP Messaging grant and add to token ipm_grant = IpMessagingGrant(endpoint_id=endpoint, service_sid=service_sid) token.add_grant(ipm_grant) # Return token info as JSON return jsonify(identity=identity, token=token.to_jwt()) if __name__ == '__main__': #app.run(debug=True) port = os.getenv('PORT', '5000') app.run(host="0.0.0.0", port=int(port))
AvonGenesis/jwms
app.py
app.py
py
2,338
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 10, "usage_type": "call" }, { "api_name": "faker.Factory.create", "line_number": 11, "usage_type": "call" }, { "api_name": "faker.Factory", "line_number": 11, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 20, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 29, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 30, "usage_type": "call" }, { "api_name": "flask.request.data", "line_number": 30, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 30, "usage_type": "name" }, { "api_name": "flask.Response", "line_number": 37, "usage_type": "call" }, { "api_name": "requests.exceptions", "line_number": 38, "usage_type": "attribute" }, { "api_name": "flask.request.args.get", "line_number": 53, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 53, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 53, "usage_type": "name" }, { "api_name": "flask.request.args.get", "line_number": 56, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 56, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 56, "usage_type": "name" }, { "api_name": "twilio.access_token.AccessToken", "line_number": 60, "usage_type": "call" }, { "api_name": "twilio.access_token.IpMessagingGrant", "line_number": 63, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 67, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 71, "usage_type": "call" } ]
11300309585
from django.contrib import admin from django.urls import path from firstapp import views as v1 urlpatterns = [ path('admin/', admin.site.urls), path('home/',v1.home), path('gm/',v1.gm_), path('ga/',v1.ga_), path('gn/',v1.gn_), ]
Ranjith8796/Demo
firstapp/urls.py
urls.py
py
262
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 7, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 7, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "firstapp.views.home", "line_number": 8, "usage_type": "attribute" }, { "api_name": "firstapp.views", "line_number": 8, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "firstapp.views.gm_", "line_number": 9, "usage_type": "attribute" }, { "api_name": "firstapp.views", "line_number": 9, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "firstapp.views.ga_", "line_number": 10, "usage_type": "attribute" }, { "api_name": "firstapp.views", "line_number": 10, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "firstapp.views.gn_", "line_number": 11, "usage_type": "attribute" }, { "api_name": "firstapp.views", "line_number": 11, "usage_type": "name" } ]
5898520470
import os from datetime import datetime, timezone import tweepy def scrape_user_tweets(username: str, num_tweets: int = 10) -> list: """ Scrapes Twitter user's original tweets (i.e., no retweets or replies) and returns them as a list of dictionaries. Each dictionary has three fields: "time_posted" (relative or now), "text", and "url". :param username: Twitter account username :param num_tweets: number of tweets to scrape :return: list """ auth = tweepy.OAuthHandler( os.environ["TWITTER_API_KEY"], os.environ["TWITTER_API_SECRET"] ) auth.set_access_token( os.environ["TWITTER_ACCESS_TOKEN"], os.environ["TWITTER_ACCESS_SECRET"] ) twitter_api = tweepy.API(auth) tweets = twitter_api.user_timeline(screen_name=username, count=num_tweets) tweet_list = [] for tweet in tweets: if "RT @" not in tweet.text and not tweet.text.startswith("@"): tweet_dict = dict() tweet_dict["time_posted"] = str( datetime.now(timezone.utc) - tweet.created_at ) tweet_dict["text"] = tweet.text tweet_dict[ "url" ] = f"https://twitter.com/{tweet.user.screen_name}/status/{tweet.id}" tweet_list.append(tweet_dict) return tweet_list
mdalvi/langchain-with-milind
third_parties/twitter.py
twitter.py
py
1,318
python
en
code
2
github-code
6
[ { "api_name": "tweepy.OAuthHandler", "line_number": 15, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 19, "usage_type": "attribute" }, { "api_name": "tweepy.API", "line_number": 21, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 28, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 28, "usage_type": "name" }, { "api_name": "datetime.timezone.utc", "line_number": 28, "usage_type": "attribute" }, { "api_name": "datetime.timezone", "line_number": 28, "usage_type": "name" } ]
16062801257
import pygame import init from gui_config import Config from widget import Widget class Label(Widget): def __init__(self, text, x,y,width,height, config=Config.default_drawing_conf): Widget.__init__(self,x,y,width,height,config) self.__set_text(text) def init(self): Widget.init(self) self.__set_text(self.__text) def __set_text(self,text): self.__text=text config=self._config font=self.fonts.get_font(config.font_name,config.font_size) (w,h)=font.size(text) inner=self.inner_rect if w > inner.width or h > inner.height: raise Exception(u'Box too small for label "'+text+'"'+\ u'required: '+str((w,h))+u' available: '+\ str((inner.width,inner.height))) if config.label_align=='left': left=inner.x elif config.label_align=='center': left=inner.x+(inner.width-w)/2.0 else: left=inner.right-w self.pos=(left,inner.y+(inner.height-h)/2.0) self.img=font.render(text,config.font_color,config.bckg_color) self.needs_update=True @property def text(self): return self.__text @text.setter def text(self,t): if t==self.__text: return else: self.__set_text(t) # Draw thyself # Return updated rectangle if there was an update, None otherwise def update(self,surface): surface.blit(self.img,self.pos) self.needs_update=False return self.rect # Label doesn't receive input. def focus_queue(self): return [] # Label doesn't receive input. def focus(self): return def unfocus(self): return # Handle event, return True if handled # If some other widget handled it already 'handled' is True def handle(self, event, handled=False): return False if __name__ == "__main__": l1=Label(u'Label One',10,10,150,42) l1.configuration.label_align='right' l1.init() l2=Label(u'label two',10,70,150,40) l3=Label(u'label Three',10,130,150,45) l3.configuration.label_align='center' l3.init() l4=Label(u'label Four',10,190,150,50) from widgets import Widgets scr = pygame.display.set_mode((300,600)) scr.fill(Config.default_drawing_conf.bckg_color) widgets=Widgets(); widgets.add((l1,l2,l3,l4)) l4.text='LABEL FOUR' widgets.run(scr)
unusualcomputers/unusualgui
code/label.py
label.py
py
2,516
python
en
code
0
github-code
6
[ { "api_name": "widget.Widget", "line_number": 6, "usage_type": "name" }, { "api_name": "gui_config.Config.default_drawing_conf", "line_number": 10, "usage_type": "attribute" }, { "api_name": "gui_config.Config", "line_number": 10, "usage_type": "name" }, { "api_name": "widget.Widget.__init__", "line_number": 12, "usage_type": "call" }, { "api_name": "widget.Widget", "line_number": 12, "usage_type": "name" }, { "api_name": "widget.Widget.init", "line_number": 16, "usage_type": "call" }, { "api_name": "widget.Widget", "line_number": 16, "usage_type": "name" }, { "api_name": "pygame.display.set_mode", "line_number": 83, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 83, "usage_type": "attribute" }, { "api_name": "gui_config.Config.default_drawing_conf", "line_number": 84, "usage_type": "attribute" }, { "api_name": "gui_config.Config", "line_number": 84, "usage_type": "name" }, { "api_name": "widgets.Widgets", "line_number": 85, "usage_type": "call" }, { "api_name": "widgets.add", "line_number": 86, "usage_type": "call" }, { "api_name": "widgets.run", "line_number": 88, "usage_type": "call" } ]
71700390588
from django.shortcuts import render from django.shortcuts import render, redirect from .forms import NewUserForm from django.contrib.auth import login, authenticate from django.contrib import messages from django.contrib.auth.forms import AuthenticationForm from django.core.mail import send_mail, BadHeaderError from django.http import HttpResponse from django.contrib.auth.forms import PasswordResetForm from django.contrib.auth import get_user_model User = get_user_model() from datetime import datetime import re from gardenGame.models import buildingOfTheDay from pathlib import Path import os from datetime import date from django.http import HttpResponse DIR = Path(__file__).resolve().parent.parent directory = "static/Users/" BASE_DIR = os.path.join(DIR, directory) building_list = ["Harrison Building","Amory Building","The Forum", "Business School Building One","Cornwall House", "Northcott Theatre","Geoffrey Pope","Great Hall","Hatherly", "Henry Wellcome | Biocatalysis", "Innovation One SWIoT", "Institute of AIS","INTO Study Centre", "Laver","Living Systems","Mary Harris","Old Library", "Peter Chalk Centre","Physics","Queens","Reed Hall","Reed Mews Wellbeing Centre", "Sir Henry Wellcome Building","Sports Park", "Streatham Court","Student Health Centre","Washington Singer","Xfi"] # Create your views here. def homepage(request): return render(request, 'homepage.html') def login_error(request): return render(request, 'loginError.html') def login_request(request): if request.method == "POST": form = AuthenticationForm(request, data=request.POST) if form.is_valid(): username = form.cleaned_data.get('username') password = form.cleaned_data.get('password') user = authenticate(username=username, password=password) if user is not None: login(request, user) messages.info(request, f"You are now logged in as {username}.") today = date.today() d1 = today.strftime("%d/%m/%Y") current_date = d1.split("/") #read in that users file and store it as array #increment the login one, update the date #then write the whole file back file_contents_array = [] with open(os.path.join(BASE_DIR, username + ".txt")) as my_file: for line in my_file: file_contents_array.append(line) my_file.close() login_holder = file_contents_array[0] login_data = login_holder.split(",") last_logged_date = login_data[2] last_logged_date = last_logged_date.split("/") if (last_logged_date[0] < current_date[0]): login_data[1] = str(int(login_data[1]) + 1) login_data[2] = d1 elif (last_logged_date[1] < current_date[1]): login_data[1] = str(int(login_data[1]) + 1) login_data[2] = d1 elif (last_logged_date[2] < current_date[2]): login_data[1] = str(int(login_data[1]) + 1) login_data[2] = d1 login_holder = ','.join(login_data) file_contents_array[0] = login_holder+"\n" fileOverwrite = open(os.path.join(BASE_DIR, form.cleaned_data['username'] + ".txt"), "w") for line in file_contents_array: fileOverwrite.write(line) fileOverwrite.close() return redirect('/main/') else: messages.error(request, "Invalid username or password.") return redirect('/loginError') else: messages.error(request, "Invalid username or password.") return redirect('/loginError') form = AuthenticationForm() return render(request=request, template_name="login.html", context={"login_form":form}) def register_request(request): if request.method == "POST": form = NewUserForm(request.POST) if form.is_valid(): code = form.cleaned_data.get('staffVerification') user = User(username=form.cleaned_data.get('username'), email =form.cleaned_data.get('email') ) user.set_password(form.cleaned_data.get('password1')) if code != "": if code == "54321": user.is_superuser=True user.is_staff=True else: messages.error(request, "Unsuccessful registration, Invalid Staff Code") return redirect('/loginError') user.save() login(request, user) messages.success(request, "Registration successful." ) today = date.today() d1 = today.strftime("%d/%m/%Y") current_date = d1.split("/") current_date[0] = str(int(current_date[0])-1) fileCreate = open(os.path.join(BASE_DIR, form.cleaned_data['username']+".txt"), "x") fileCreate.write("login_streak,0,"+current_date[0]+"/"+current_date[1]+"/"+current_date[2]) fileCreate.close() fileAppend = open(os.path.join(BASE_DIR, form.cleaned_data['username']+".txt"), "a") for build in building_list: fileAppend.write(build + ",0,00/00/0000\n") fileCreate.close() return redirect('/main') messages.error(request, "Unsuccessful registration. Invalid information.") return redirect('/loginError') form = NewUserForm() return render (request=request, template_name="register.html", context={"register_form":form}) def loginStreak(request, user_id): user = User.objects.get(id=user_id) if(user.LastLogin != datatime.today()): user.LoginStreak = user.LoginStreak+1 user.LastLogin = datetime.now().date() user.save() redirect("/main") def simple_function(request): listTemp = str(request).split("?") TempUsername = request.user.username Temp = listTemp[1] Temp = Temp.split("%20&%20")[0] building = re.sub(r'%20', ' ', Temp) building = re.sub(r"'>", '', building) building = re.sub(r'You%20have%20checked%20in%20at%20:%20','',building) ##May need to correct string to be int and then put in error handing userList = User.objects.get(username = TempUsername) user = userList if(building == "Harrison Building"): if(str(user.Harrison_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Harrison_Streak = user.Harrison_Streak + 1 user.Harrison_lastLogin = datetime.now().date() elif(building == "Amory Building"): if(str(user.Amory_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Amory_Streak = user.Amory_Streak + 1 user.Amory_lastLogin = datetime.now().date() elif(building == "The Forum"): if(str(user.Forum_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Forum_Streak = user.Forum_Streak + 1 user.Forum_lastLogin = datetime.now().date() elif(building == "Business School Building One"): if(str(user.Business_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Business_Streak = user.Business_Streak + 1 user.Business_lastLogin = datetime.now().date() elif(building == "Cornwall House Swimming Pool"): if(str(user.Cornwall_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Cornwall_Streak = user.Cornwall_Streak + 1 user.Cornwall_lastLogin = datetime.now().date() elif(building == "Northcott Theatre"): if(str(user.Northcott_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Northcott_Streak = user.Northcott_Streak + 1 user.Northcott_lastLogin = datetime.now().date() elif(building == "Geoffrey Pope"): if(str(user.Geoffrey_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Geoffrey_Streak = user.Geoffrey_Streak + 1 user.Geoffrey_lastLogin = datetime.now().date() elif(building == "Great Hall"): if(str(user.GreatHall_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.GreatHall_Streak = user.GreatHall_Streak + 1 user.GreatHall_lastLogin = datetime.now().date() elif(building == "Hatherly"): if(str(user.Hatherly_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Hatherly_Streak = user.Hatherly_Streak + 1 user.Hatherly_lastLogin = datetime.now().date() elif(building == "Henry Welcome Building for Biocatalysis"): if(str(user.Henry_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Henry_Streak = user.Henry_Streak + 1 user.Henry_lastLogin = datetime.now().date() elif(building == "Innovation One | South West Institute of Technology"): if(str(user.Innovation_One_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Innovation_One_Streak = user.Innovation_One_Streak + 1 user.Innovation_One_lastLogin = datetime.now().date() elif(building == "Institute of Arab and Islamic Studies"): if(str(user.Iais_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Iais_Streak = user.Iais_Streak + 1 user.Iais_lastLogin = datetime.now().date() elif(building == "INTO International Study Centre"): if(str(user.into_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Into_Streak = user.Into_Streak + 1 user.into_lastLogin = datetime.now().date() elif(building == "Laver"): if(str(user.Laver_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Laver_Streak = user.Laver_Streak + 1 user.Laver_lastLogin = datetime.now().date() elif(building == "Library"): if(str(user.Library_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Library_Streak = user.Library_Streak + 1 user.Library_lastLogin = datetime.now().date() elif(building == "Living Systems"): if(str(user.Living_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Living_Streak = user.Living_Streak + 1 user.Living_lastLogin = datetime.now().date() elif(building == "Mary Harris Memorial Chapel"): if(str(user.Mary_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Mary_Streak = user.Mary_Streak + 1 user.Mary_lastLogin = datetime.now().date() elif(building == "Old Library"): if(str(user.Old_Library_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Old_Library_Streak = user.Old_Library_Streak + 1 user.Old_Library_lastLogin = datetime.now().date() elif(building == "Peter Chalk Centre"): if(str(user.Peter_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Peter_Streak = user.Peter_Streak + 1 user.Peter_lastLogin = datetime.now().date() elif(building == "Physics"): if(str(user.Physics_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Physics_Streak = user.Physics_Streak + 1 user.Physics_lastLogin = datetime.now().date() elif(building == "Queens"): if(str(user.Queen_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Queens_Streak = user.Queens_Streak + 1 user.Queen_lastLogin = datetime.now().date() elif(building == "Reed Hall"): if(str(user.Reed_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Reed_Streak = user.Reed_Streak + 1 user.Reed_lastLogin = datetime.now().date() elif(building == "Reed Mews Wellbeing Centre"): if(str(user.Wellbeing_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Wellbeing_Streak = user.Wellbeing_Streak + 1 user.Wellbeing_lastLogin = datetime.now().date() elif(building == "Sir Henry Welcome Building for Mood Disorders Research"): if(str(user.Mood_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Mood_Streak = user.Mood_Streak + 1 user.Mood_lastLogin = datetime.now().date() elif(building == "Sports Park"): if(str(user.Sports_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Sports_Streak = user.Sports_Streak + 1 user.Sports_lastLogin = datetime.now().date() elif(building == "Streatham Court"): if(str(user.Streatham_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Streatham_Streak = user.Streatham_Streak + 1 user.Streatham_lastLogin = datetime.now().date() elif(building == "Student Health Centre"): if(str(user.Health_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Health_Streak = user.Health_Streak + 1 user.Health_lastLogin = datetime.now().date() elif(building == "Washington Singer"): if(str(user.Washington_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Washington_Streak = user.Washington_Streak + 1 user.Washington_lastLogin = datetime.now().date() elif(building == "Xfi"): if(str(user.Xfi_lastLogin) != str(datetime.today().strftime('%Y-%m-%d'))): user.Xfi_Streak = user.Xfi_Streak + 1 user.Xfi_lastLogin = datetime.now().date() buildingsOTDList = buildingOfTheDay.objects.all() buildingOTD = None for i in buildingsOTDList: if(str(i.date) == datetime.today().strftime('%Y-%m-%d')): buildingOTD = i if(buildingOTD.name == building): reward = buildingOTD.reward if(user.UserRewards != ""): user.UserRewards = user.UserRewards + "*" + reward else: user.UserRewards = reward user.save() return redirect("/main") def test(request): if request.GET.get('NameOfYourButton') == 'YourValue': print('\nuser') print('\nuser clicked button') return HttpResponse("""<html><script>window.location.replace('/')</script></html>""")
KeanDelly/GrowExplore
worldBuilder/Login/views.py
views.py
py
13,994
python
en
code
6
github-code
6
[ { "api_name": "django.contrib.auth.get_user_model", "line_number": 11, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "django.shortcuts.render", "line_number": 46, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 50, "usage_type": "call" }, { "api_name": "django.contrib.auth.forms.AuthenticationForm", "line_number": 55, "usage_type": "call" }, { "api_name": "django.contrib.auth.authenticate", "line_number": 59, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 61, "usage_type": "call" }, { "api_name": "django.contrib.messages.info", "line_number": 62, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 62, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 64, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 64, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path", "line_number": 72, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path", "line_number": 99, "usage_type": "attribute" }, { "api_name": "django.shortcuts.redirect", "line_number": 106, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 108, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 108, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 109, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 111, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 111, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 112, "usage_type": "call" }, { "api_name": "django.contrib.auth.forms.AuthenticationForm", "line_number": 113, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 114, "usage_type": "call" }, { "api_name": "forms.NewUserForm", "line_number": 119, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 129, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 129, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 130, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 133, "usage_type": "call" }, { "api_name": "django.contrib.messages.success", "line_number": 134, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 134, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 135, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 135, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 139, "usage_type": "call" }, { "api_name": "os.path", "line_number": 139, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 142, "usage_type": "call" }, { "api_name": "os.path", "line_number": 142, "usage_type": "attribute" }, { "api_name": "django.shortcuts.redirect", "line_number": 146, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 147, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 147, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 148, "usage_type": "call" }, { "api_name": "forms.NewUserForm", "line_number": 149, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 150, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 156, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 156, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 158, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 166, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 167, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 168, "usage_type": "call" }, { "api_name": "datetime.datetime.today", "line_number": 174, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 174, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 176, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 176, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 179, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 179, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 181, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 181, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 184, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 184, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 186, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 186, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 189, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 189, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 191, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 191, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 194, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 194, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 196, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 196, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 199, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 199, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 201, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 201, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 204, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 204, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 206, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 206, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 209, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 209, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 211, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 211, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 214, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 214, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 216, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 216, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 219, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 219, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 221, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 221, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 224, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 224, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 226, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 226, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 229, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 229, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 231, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 231, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 234, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 234, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 236, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 236, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 239, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 239, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 241, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 241, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 244, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 244, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 246, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 246, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 249, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 249, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 251, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 251, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 254, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 254, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 256, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 256, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 259, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 259, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 261, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 261, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 264, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 264, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 266, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 266, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 269, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 269, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 271, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 271, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 274, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 274, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 276, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 276, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 279, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 279, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 281, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 281, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 284, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 284, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 286, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 286, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 289, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 289, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 291, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 291, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 294, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 294, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 296, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 296, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 299, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 299, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 301, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 301, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 304, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 304, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 306, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 306, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 309, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 309, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 311, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 311, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 314, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 314, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 316, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 316, "usage_type": "name" }, { "api_name": "gardenGame.models.buildingOfTheDay.objects.all", "line_number": 319, "usage_type": "call" }, { "api_name": "gardenGame.models.buildingOfTheDay.objects", "line_number": 319, "usage_type": "attribute" }, { "api_name": "gardenGame.models.buildingOfTheDay", "line_number": 319, "usage_type": "name" }, { "api_name": "datetime.datetime.today", "line_number": 322, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 322, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 331, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 338, "usage_type": "call" } ]
6922603466
import os # python -m pip install --upgrade pip # python -m pip install --upgrade Pillow from PIL import Image # pip install numpy import numpy as np ####################################################################### black=[25,25,25] blue=[50,75,175] brown=[100,75,50] cyan=[75,125,151] gray=[75,75,75] green=[100,125,50] light_blue=[100,151,213] light_gray=[151,151,151] lime=[125,201,25] magenta=[175,75,213] orange=[213,125,50] pink=[238,125,162] purple=[125,62,175] red=[151,50,50] white=[251,251,251] yellow=[225,225,50] basic_colors = [black, blue, brown, cyan, gray, green, light_blue, light_gray, lime, magenta, orange, pink, purple, red, white, yellow] ####################################################################### def closest(color): """ https://stackoverflow.com/a/54244301/1106708 """ colors = np.array(basic_colors) color = np.array(color) distances = np.sqrt(np.sum((colors-color)**2,axis=1)) index_of_smallest = np.where(distances==np.amin(distances)) smallest_distance = colors[index_of_smallest] return smallest_distance[0] def concrete_art(closest_color): if (closest_color == black).all(): return "black_concrete" elif (closest_color == blue).all(): return "blue_concrete" elif (closest_color == brown).all(): return "brown_concrete" elif (closest_color == cyan).all(): return "cyan_concrete" elif (closest_color == gray).all(): return "gray_concrete" elif (closest_color == green).all(): return "green_concrete" elif (closest_color == light_blue).all(): return "light_blue_concrete" elif (closest_color == light_gray).all(): return "light_gray_concrete" elif (closest_color == lime).all(): return "lime_concrete" elif (closest_color == magenta).all(): return "magenta_concrete" elif (closest_color == orange).all(): return "orange_concrete" elif (closest_color == pink).all(): return "pink_concrete" elif (closest_color == purple).all(): return "purple_concrete" elif (closest_color == red).all(): return "red_concrete" elif (closest_color == white).all(): return "white_concrete" elif (closest_color == yellow).all(): return "yellow_concrete" def glass_art(closest_color): if (closest_color == black).all(): return "black_stained_glass" elif (closest_color == blue).all(): return "blue_stained_glass" elif (closest_color == brown).all(): return "brown_stained_glass" elif (closest_color == cyan).all(): return "cyan_stained_glass " elif (closest_color == gray).all(): return "gray_stained_glass" elif (closest_color == green).all(): return "green_stained_glass" elif (closest_color == light_blue).all(): return "light_blue_stained_glass" elif (closest_color == light_gray).all(): return "light_gray_stained_glass" elif (closest_color == lime).all(): return "lime_stained_glass" elif (closest_color == magenta).all(): return "magenta_stained_glass" elif (closest_color == orange).all(): return "orange_stained_glass" elif (closest_color == pink).all(): return "pink_stained_glass" elif (closest_color == purple).all(): return "purple_stained_glass" elif (closest_color == red).all(): return "red_stained_glass" elif (closest_color == white).all(): return "white_stained_glass" elif (closest_color == yellow).all(): return "yellow_stained_glass" def create_mcfunction(image_file_name, img_type): im = Image.open(image_file_name) pix = im.load() h = im.size[0] w = im.size[1] offset = (h+w)//4 fileName = f"datapacks/img/data/img/functions/items/{img_type}/{image_file_name.split('.')[0]}.mcfunction" os.remove(fileName) with open(fileName, 'a') as mcfunction: for x in range(h): for y in range(w): rgb = pix[x, y] color = [rgb[0], rgb[1], rgb[2]] closest_color = closest(color) if img_type == "player": func = f"setblock ~{x-offset} ~ ~{y-offset} " elif img_type == "sky": func = f"setblock ~{x-offset} 319 ~{y-offset} " if str(rgb) == "(0, 0, 0, 0)": func+="air" else: if img_type == "player": func+=concrete_art(closest_color) elif img_type == "sky": func+=glass_art(closest_color) mcfunction.write(func+'\n') create_mcfunction("apple.png", "player") create_mcfunction("apple.png", "sky")
kirbycope/map-markers-java
img.py
img.py
py
4,689
python
en
code
0
github-code
6
[ { "api_name": "numpy.array", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.amin", "line_number": 35, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 111, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 111, "usage_type": "name" }, { "api_name": "os.remove", "line_number": 117, "usage_type": "call" } ]
71483943548
# SPDX-License-Identifier: MIT # (c) 2023 knuxify and Ear Tag contributors from gi.repository import GObject, GLib import threading import time class EartagBackgroundTask(GObject.Object): """ Convenience class for creating tasks that run in the background without freezing the UI. Provides a "progress" property that can be used by target functions to signify a progress change. This is a float from 0 to 1 and is passed directly to GtkProgressBar. Also provides an optional "halt" property; target functions can check for this property to stop an operation early. Remember to pass all code that interacts with GTK through GLib.idle_add(). """ def __init__(self, target, *args, **kwargs): super().__init__() self._progress = 0 self.target = target self.reset(args, kwargs) def wait_for_completion(self): while self.thread.is_alive(): time.sleep(0.25) def stop(self): self.halt = True self.wait_for_completion() self.halt = False def run(self): self.thread.start() def reset(self, args=[], kwargs=[]): """Re-creates the inner thread with new args and kwargs.""" self._is_done = False self.thread = None self.halt = False self.failed = False if args and kwargs: self.thread = threading.Thread( target=self.target, daemon=True, args=args, kwargs=kwargs ) elif args: self.thread = threading.Thread( target=self.target, daemon=True, args=args ) elif kwargs: self.thread = threading.Thread( target=self.target, daemon=True, kwargs=kwargs ) else: self.thread = threading.Thread( target=self.target, daemon=True ) @GObject.Property(type=float, minimum=0, maximum=1) def progress(self): """ Float from 0 to 1 signifying the current progress of the operation. When the task is done, this automatically resets to 0. This value is set by the target function. """ return self._progress @progress.setter def progress(self, value): self._progress = value @GObject.Signal def task_done(self): self.reset_progress() self._is_done = True @GObject.Property(type=bool, default=False) def is_running(self): if not self.thread: return False return self.thread.is_alive() def reset_progress(self): self.props.progress = 0 def set_progress_threadsafe(self, value): """ Wrapper around self.props.progress that updates the progress, wrapped around GLib.idle_add. This is the preferred way for users to set the progress variable. """ GLib.idle_add(self.set_property, 'progress', value) def increment_progress(self, value): """ Wrapper around self.props.progress that increments the progress, wrapped around GLib.idle_add. This is the preferred way for users to increment the progress variable. """ self.set_progress_threadsafe(self.props.progress + value) def emit_task_done(self): """ Wrapper around self.emit('task-done') that is wrapped around GLib.idle_add. This is the preferred way for users to emit the task-done signal. """ GLib.idle_add(self.emit, 'task-done')
knuxify/eartag
src/utils/bgtask.py
bgtask.py
py
3,589
python
en
code
67
github-code
6
[ { "api_name": "gi.repository.GObject.Object", "line_number": 8, "usage_type": "attribute" }, { "api_name": "gi.repository.GObject", "line_number": 8, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 31, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 48, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 53, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 58, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 63, "usage_type": "call" }, { "api_name": "gi.repository.GObject.Property", "line_number": 67, "usage_type": "call" }, { "api_name": "gi.repository.GObject", "line_number": 67, "usage_type": "name" }, { "api_name": "gi.repository.GObject.Signal", "line_number": 81, "usage_type": "attribute" }, { "api_name": "gi.repository.GObject", "line_number": 81, "usage_type": "name" }, { "api_name": "gi.repository.GObject.Property", "line_number": 86, "usage_type": "call" }, { "api_name": "gi.repository.GObject", "line_number": 86, "usage_type": "name" }, { "api_name": "gi.repository.GLib.idle_add", "line_number": 101, "usage_type": "call" }, { "api_name": "gi.repository.GLib", "line_number": 101, "usage_type": "name" }, { "api_name": "gi.repository.GLib.idle_add", "line_number": 117, "usage_type": "call" }, { "api_name": "gi.repository.GLib", "line_number": 117, "usage_type": "name" } ]
28108895632
import mat73 import matplotlib.pyplot as plt FORMAT = 'pdf' plt.rcParams.update({'font.size': 22}) datasets = ["Brain", "MAG-10", "Cooking", "DAWN", "Walmart-Trips", "Trivago"] budgets = [0, .01, .05, .1, .15, .2, .25] budget_strings = ['0.0', '0.01', '0.05', '0.1', '0.15', '0.2', '0.25'] n = [638, 80198, 6714, 2109, 88837, 207974] bicrit_apx = [] bicrit_beta = [] greedy_satisfaction = [] for i in range(len(datasets)): print(i) dataset = datasets[i] bicrit_apx.append([]) bicrit_beta.append([]) greedy_satisfaction.append([]) for j in range(len(budgets)): data = mat73.loadmat("Output/RECC/"+dataset+"_b"+budget_strings[j]+"_results.mat") bicrit_apx[i].append(data["ratio"]) bicrit_beta[i].append(data["budget_ratio"]) greedy_satisfaction[i].append(100*data["greedy_satisfaction"]) orange = [x/255.0 for x in [230, 159, 0]] skyblue = [x/255.0 for x in [86, 180, 233]] bluegreen = [x/255.0 for x in [0, 158, 115]] blue = [x/255.0 for x in [0, 114, 178]] vermillion = [x/255.0 for x in [213, 94, 0]] redpurple = [x/255.0 for x in [204, 121, 167]] colors = [orange, skyblue, bluegreen, redpurple, vermillion, blue] legend_text = ["Brain", "MAG-10", "Cooking", "DAWN", "Walmart", "Trivago"] markers = ['^', 'v', 'o', 's', '<', '>'] fig, ax = plt.subplots() x = [budg*100 for budg in budgets] for i in range(len(datasets)): ax.plot(x, bicrit_apx[i], label=legend_text[i], color=colors[i], marker=markers[i]) ax.set_xlabel(r"$b$ = Deletion Budget (% of $V$)") ax.set_ylabel(r"Observed $\alpha$") ax.legend(fontsize=16) fig.savefig(f'Plots/r_alphas.{FORMAT}', format=FORMAT, bbox_inches='tight') fig2, ax2 = plt.subplots() for i in range(len(datasets)): ax2.plot(x, bicrit_beta[i], label=legend_text[i], color=colors[i],marker=markers[i]) ax2.set_xlabel(r"$b$ = Deletion Budget (% of $V$)") ax2.set_ylabel(r"Observed $\beta$") ax2.legend(fontsize=16) fig2.savefig(f'Plots/r_betas.{FORMAT}', format=FORMAT, bbox_inches='tight') fig3, ax3 = plt.subplots() for i in range(len(datasets)): ax3.plot(x, greedy_satisfaction[i], label=legend_text[i], color=colors[i],marker=markers[i]) ax3.set_xlabel(r"$b$ = Deletion Budget (% of $V$)") ax3.set_ylabel(r"Edge Satisfaction (% of $E$)") ax3.legend(fontsize=16) fig3.savefig(f'Plots/r_greedy_satisfactions.{FORMAT}', format=FORMAT, bbox_inches='tight')
TheoryInPractice/overlapping-ecc
Exp1-Algorithm-Evaluation/R_Plots.py
R_Plots.py
py
2,373
python
en
code
null
github-code
6
[ { "api_name": "matplotlib.pyplot.rcParams.update", "line_number": 5, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 5, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 5, "usage_type": "name" }, { "api_name": "mat73.loadmat", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 49, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 49, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 57, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name" } ]
72761928188
import nussl import torch from torch import nn from torch.nn.utils import weight_norm from nussl.ml.networks.modules import ( Embedding, DualPath, DualPathBlock, STFT, LearnedFilterBank, AmplitudeToDB, RecurrentStack, MelProjection, BatchNorm, InstanceNorm, ShiftAndScale ) import numpy as np from . import utils, argbind from typing import Dict, List # ---------------------------------------------------- # --------------------- SEPARATORS ------------------- # ---------------------------------------------------- def dummy_signal(): return nussl.AudioSignal( audio_data_array=np.random.rand(1, 100), sample_rate=100 ) @argbind.bind_to_parser() def deep_mask_estimation( device : torch.device, model_path : str = 'checkpoints/best.model.pth', mask_type : str = 'soft', ): """ Creates a DeepMaskEstimation Separation object. Parameters ---------- device : str Either 'cuda' (needs GPU) or 'cpu'. model_path : str, optional Path to the model, by default 'checkpoints/best.model.pth' mask_type : str, optional Type of mask to use, either 'soft' or 'binary', by default 'soft'. """ separator = nussl.separation.deep.DeepMaskEstimation( dummy_signal(), model_path=model_path, device=device, mask_type=mask_type ) return separator @argbind.bind_to_parser() def deep_audio_estimation( device : torch.device, model_path : str = 'checkpoints/best.model.pth', ): """ Creates a DeepMaskEstimation Separation object. Parameters ---------- device : str Either 'cuda' (needs GPU) or 'cpu'. model_path : str, optional Path to the model, by default 'checkpoints/best.model.pth' mask_type : str, optional Type of mask to use, either 'soft' or 'binary', by default 'soft'. """ separator = nussl.separation.deep.DeepAudioEstimation( dummy_signal(), model_path=model_path, device=device, ) return separator # ---------------------------------------------------- # --------------- MASK ESTIMATION MODELS ------------- # ---------------------------------------------------- class MaskInference(nn.Module): def __init__(self, num_features, num_audio_channels, hidden_size, num_layers, bidirectional, dropout, num_sources, activation='sigmoid'): super().__init__() self.amplitude_to_db = AmplitudeToDB() self.input_normalization = BatchNorm(num_features) self.recurrent_stack = RecurrentStack( num_features * num_audio_channels, hidden_size, num_layers, bool(bidirectional), dropout ) hidden_size = hidden_size * (int(bidirectional) + 1) self.embedding = Embedding(num_features, hidden_size, num_sources, activation, num_audio_channels) def forward(self, data): mix_magnitude = data # save for masking data = self.amplitude_to_db(mix_magnitude) data = self.input_normalization(data) data = self.recurrent_stack(data) mask = self.embedding(data) estimates = mix_magnitude.unsqueeze(-1) * mask output = { 'mask': mask, 'estimates': estimates } return output # Added function @staticmethod @argbind.bind_to_parser() def build(num_features, num_audio_channels, hidden_size, num_layers, bidirectional, dropout, num_sources, activation='sigmoid'): # Step 1. Register our model with nussl nussl.ml.register_module(MaskInference) # Step 2a: Define the building blocks. modules = { 'model': { 'class': 'MaskInference', 'args': { 'num_features': num_features, 'num_audio_channels': num_audio_channels, 'hidden_size': hidden_size, 'num_layers': num_layers, 'bidirectional': bidirectional, 'dropout': dropout, 'num_sources': num_sources, 'activation': activation } } } # Step 2b: Define the connections between input and output. # Here, the mix_magnitude key is the only input to the model. connections = [ ['model', ['mix_magnitude']] ] # Step 2c. The model outputs a dictionary, which SeparationModel will # change the keys to model:mask, model:estimates. The lines below # alias model:mask to just mask, and model:estimates to estimates. # This will be important later when we actually deploy our model. for key in ['mask', 'estimates']: modules[key] = {'class': 'Alias'} connections.append([key, [f'model:{key}']]) # Step 2d. There are two outputs from our SeparationModel: estimates and mask. # Then put it all together. output = ['estimates', 'mask',] config = { 'name': 'MaskInference', 'modules': modules, 'connections': connections, 'output': output } # Step 3. Instantiate the model as a SeparationModel. return nussl.ml.SeparationModel(config) # ---------------------------------------------------- # --------------- AUDIO ESTIMATION MODELS ------------ # ---------------------------------------------------- class BaseAudioModel(nn.Module): def __init__(self, *args, **kwargs): super().__init__() @classmethod def config(cls, **kwargs): nussl.ml.register_module(cls) _config = { 'modules': { 'audio': { 'class': cls.__name__, 'args': kwargs } }, 'connections': [ ['audio', ['mix_audio']] ], 'output': ['audio'] } return _config # ---------------------------------------------------- # ------------- REGISTER MODELS WITH NUSSL ----------- # ---------------------------------------------------- nussl.ml.register_module(MaskInference)
bfredl/tutorial
common/models.py
models.py
py
6,359
python
en
code
1
github-code
6
[ { "api_name": "nussl.AudioSignal", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 20, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 26, "usage_type": "attribute" }, { "api_name": "nussl.separation.deep.DeepMaskEstimation", "line_number": 43, "usage_type": "call" }, { "api_name": "nussl.separation", "line_number": 43, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 51, "usage_type": "attribute" }, { "api_name": "nussl.separation.deep.DeepAudioEstimation", "line_number": 67, "usage_type": "call" }, { "api_name": "nussl.separation", "line_number": 67, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 76, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 76, "usage_type": "name" }, { "api_name": "nussl.ml.networks.modules.AmplitudeToDB", "line_number": 82, "usage_type": "call" }, { "api_name": "nussl.ml.networks.modules.BatchNorm", "line_number": 83, "usage_type": "call" }, { "api_name": "nussl.ml.networks.modules.RecurrentStack", "line_number": 84, "usage_type": "call" }, { "api_name": "nussl.ml.networks.modules.Embedding", "line_number": 89, "usage_type": "call" }, { "api_name": "nussl.ml.register_module", "line_number": 115, "usage_type": "call" }, { "api_name": "nussl.ml", "line_number": 115, "usage_type": "attribute" }, { "api_name": "nussl.ml.SeparationModel", "line_number": 158, "usage_type": "call" }, { "api_name": "nussl.ml", "line_number": 158, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 164, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 164, "usage_type": "name" }, { "api_name": "nussl.ml.register_module", "line_number": 170, "usage_type": "call" }, { "api_name": "nussl.ml", "line_number": 170, "usage_type": "attribute" }, { "api_name": "nussl.ml.register_module", "line_number": 189, "usage_type": "call" }, { "api_name": "nussl.ml", "line_number": 189, "usage_type": "attribute" } ]
23060222816
import math import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches compdata=np.loadtxt('compdata.txt') agelabel=compdata[:,0] compdata=compdata[:,1] obsdata=np.loadtxt('obsdata.txt') error=obsdata[:,3] obsdata=obsdata[:,1] #plt.plot(agelabel, compdata, 'r',label='Computed data') plt.errorbar(agelabel, obsdata, yerr=error,fmt='',label='Observational data') #legend = plt.legend(loc='upper left', shadow=True) plt.ylim(ymin=0.1) plt.xlabel('$\mathrm{t}/\mathrm{t}_{ms}$') plt.ylabel('Probability Density') plt.show()
AndreasMu/Bachelor
Graphs and Tex/obsdataplot.py
obsdataplot.py
py
554
python
en
code
0
github-code
6
[ { "api_name": "numpy.loadtxt", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 10, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.errorbar", "line_number": 15, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 15, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" } ]
8774738477
import gym import numpy as np from cartpole_deep_net import CartpoleDeepNet class CartPole: def __init__(self, render_mode='None'): self.env_title = 'CartPole-v1' self.env=gym.make(self.env_title, render_mode=render_mode) self.single_state_shape_len = 1 self.desired_mean_score = 130 self.observation_space_shape = self.env.observation_space.shape self.no_of_actions = self.env.action_space.n self.hidden_layers = [128] self.model = CartpoleDeepNet(self.observation_space_shape[0], self.hidden_layers, self.no_of_actions) self.model_file_name = 'cartpole_model.pth' self.reset() def reset(self): self.score = 0 self.state = self.env.reset() def get_state(self): if len(self.state) != self.observation_space_shape[0]: return self.state[0] return self.state def play_step(self, action): move = action.index(1) (state, reward, terminated, truncated , _) = self.env.step(move) done = truncated or terminated self.state = state if not done: self.score += 1 return reward, done, self.score
asharali001/Deep-Q-Learning
cartpole.py
cartpole.py
py
1,231
python
en
code
0
github-code
6
[ { "api_name": "gym.make", "line_number": 8, "usage_type": "call" }, { "api_name": "cartpole_deep_net.CartpoleDeepNet", "line_number": 16, "usage_type": "call" } ]
70939657148
from selenium import webdriver import requests from bs4 import BeautifulSoup from pymongo import MongoClient import time import datetime def get_page(url): header = { "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11" } html = requests.get(url,headers=header) html.encoding = 'utf-8' return html def parse_page(html,addr): #获取网页里面目标信息,以字典的方式储存 dict = {} doc = BeautifulSoup(html,'lxml') title = doc.select('h1') if len(title)==0: return articles = doc.select('#artibody p')#得到的是一个列表 content = '' date = time.strftime('%Y.%m.%d',time.localtime(time.time())) for article in articles: content += article.get_text() dict['date'] = date dict['title'] = title[0].get_text().strip() dict['content'] = content dict['url'] = addr.get_attribute('href') write_in_database(dict) def write_in_database(dict): #当文章未存入时存入 client = MongoClient('mongodb://localhost:27017/') database = client.xinlang collection = database.articles dict['Id'] = collection.find().count() print(dict) if collection.find_one({'title':dict['title']}) == None: collection.insert(dict) def main(): url = 'https://mobile.sina.com.cn/' browser = webdriver.Chrome() browser.get(url) addrs = browser.find_elements_by_css_selector('#feedCard #feedCardContent .feed-card-item h2 a') #获取每篇文章的url for addr in addrs: html=get_page(addr.get_attribute('href')).text parse_page(html,addr) if __name__ == '__main__': while(True):#定时在9点和21点时运行 now = datetime.datetime.now() if (now.hour == 9 or now.hour == 21) and now.minute == 0 : main() time.sleep(60) ##ok
lzzandsx/lizhengzhao_python_homework
xinlang.py
xinlang.py
py
1,935
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 13, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 20, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 26, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 26, "usage_type": "call" }, { "api_name": "time.time", "line_number": 26, "usage_type": "call" }, { "api_name": "pymongo.MongoClient", "line_number": 37, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 49, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 49, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 59, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 59, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 62, "usage_type": "call" } ]
74197622589
from rest_framework import serializers from des.models import Exposure, SkybotJob, SkybotJobResult class SkybotJobResultSerializer(serializers.ModelSerializer): # job = serializers.PrimaryKeyRelatedField( # queryset=SkybotJob.objects.all(), many=False # ) # exposure = serializers.PrimaryKeyRelatedField( # queryset=Exposure.objects.all(), many=False # ) job = serializers.PrimaryKeyRelatedField( read_only=True ) exposure = serializers.PrimaryKeyRelatedField( read_only=True ) ticket = serializers.SerializerMethodField() band = serializers.SerializerMethodField() date_obs = serializers.SerializerMethodField() ccds = serializers.SerializerMethodField() class Meta: model = SkybotJobResult fields = ( "id", "job", "exposure", "ticket", "success", "error", "execution_time", "ccds", "ccds_with_asteroids", "positions", "inside_ccd", "outside_ccd", "filename", "band", "date_obs", ) def get_ticket(self, obj): try: return str(obj.ticket) except: return None def get_band(self, obj): try: return obj.exposure.band except: return None def get_date_obs(self, obj): try: return obj.exposure.date_obs except: return None def get_ccds(self, obj): try: return obj.exposure.ccd_set.count() except: return 0
linea-it/tno
backend/des/serializers/skybot_job_result.py
skybot_job_result.py
py
1,678
python
en
code
1
github-code
6
[ { "api_name": "rest_framework.serializers.ModelSerializer", "line_number": 6, "usage_type": "attribute" }, { "api_name": "rest_framework.serializers", "line_number": 6, "usage_type": "name" }, { "api_name": "rest_framework.serializers.PrimaryKeyRelatedField", "line_number": 16, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 16, "usage_type": "name" }, { "api_name": "rest_framework.serializers.PrimaryKeyRelatedField", "line_number": 20, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 20, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 24, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 24, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 26, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 26, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 28, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 28, "usage_type": "name" }, { "api_name": "rest_framework.serializers.SerializerMethodField", "line_number": 30, "usage_type": "call" }, { "api_name": "rest_framework.serializers", "line_number": 30, "usage_type": "name" }, { "api_name": "des.models.SkybotJobResult", "line_number": 33, "usage_type": "name" } ]
22134160802
from django.urls import path from . import views urlpatterns = [ path('', views.index, name = 'home'), path('about', views.about, name = 'about'), path('create', views.create, name = 'create'), path('review', views.review, name = 'review'), path('test1', views.test1, name = 'test1'), path('<int:pk>', views.TaskDetailView.as_view(), name='detail_task'), path('<int:pk>/update_task', views.TaskUpdateView.as_view(), name='update_task'), path('<int:pk>/delete_task', views.TaskDeleteView.as_view(), name='delete_task'), ]
Voron4ikhin/Web_lab
taskmanager/main/urls.py
urls.py
py
553
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 5, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 6, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" } ]
22963907434
import urllib3 # 忽略警告:InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. urllib3.disable_warnings() import json import os # http://www.meituan.com/meishi/api/poi/getMerchantComment?id=42913246&offset=0&pageSize=50&sortType=1 COMMENT_URL = 'http://www.meituan.com/meishi/api/poi/getMerchantComment?id={}&offset={}&pageSize=50&sortType=1' # DIVIDER = '\n' + '=' * 200 + '\n' DIVIDER = '\n\n\n' def repeat(func, retry=10): success = False response = None try: response = func() success = response.code == 200 except: pass if not success and retry > 0: repeat(func, retry - 1) return response def get_comment(id, offset=0, result=None, save_dir=None, sub_dir=False): # result = [] if result is None else result url = COMMENT_URL.format(id, offset) response = urllib3.PoolManager().request('GET', url, headers={ 'Host': 'www.meituan.com', 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Mobile Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', # 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', 'Cookie': 'uuid=d9f34299c1aa4700b57b.1533529950.1.0.0; _lx_utm=utm_source%3Dgoogle%26utm_medium%3Dorganic; _lxsdk_cuid=1650d8210c2c8-01cc48fa57f124-336b7b05-13c680-1650d8210c3c8; __mta=147110536.1533529952707.1533529952707.1533529952707.1; ci=50; client-id=4fb967a2-deb0-4c90-8408-2def9dc61c9a; oc=-3SKHsosP2d57O95hCYTmTexMhVqo4FIr5jQcztD5J5u_GXn3LjVWWou3uvfqHm4cPOGIMmgH3hNpYXXqbtqA66xGDYgxq8SWnCYIRpidQP13Wxum7XxTcrTNbJC_8r_5xlRsKULCrAWTz-CPQfr6HgZM1gLCuOpCxBnDwi_9JQ; lat=30.207471; lng=120.208933', }) # response = urllib2.urlopen(request) # response = repeat(lambda: urllib.urlopen(request)) if not response: return result comments = None try: text = response.data.decode() json_data = json.loads(text, encoding='utf-8') data = json_data['data'] comments = data['comments'] except: return if comments and result: result.extend(comments) n_comments = len(comments) if comments else 0 if sub_dir and save_dir: filename = 'data.txt' final_save_dir = os.path.join(save_dir, str(id), '%05d_%02d' % (offset // 50, n_comments)) else: final_save_dir = './' filename = 'comment_%d.txt' % id filepath = os.path.join(final_save_dir, filename) save_2_json(comments, filepath) total = data['total'] offset += n_comments if offset < total - 1: get_comment(id, offset, result, save_dir, sub_dir) return result def save_2_json(comments, save_dir): if not comments: return dirname = os.path.abspath(os.path.dirname(save_dir)) if not os.path.isdir(dirname): os.makedirs(dirname) with open(save_dir, 'a', encoding='utf-8') as f: for c in comments: # get = lambda name: (c[name].encode('utf-8')) if c[name] else '' get = lambda name: c[name] if c[name] else '' menu = get('menu') text = get('comment') if not text: continue star = c['star'] item = 'menu = %s\nstar = %s\ntext = %s' % (menu, star / 5, text) f.write(item + DIVIDER) print(text) def dump_comment_data(id, save_dir=None, sub_dir=False): save_dir = save_dir or get_root_path('data/comment') get_comment(id, save_dir=save_dir, sub_dir=sub_dir) def get_root_path(relative=None): relative = relative or '' root_dir = os.path.dirname(os.path.dirname(__file__)) return os.path.join(root_dir, relative) if __name__ == '__main__': # dump_comment_data(42913246, save_dir='data/comment') dump_comment_data(42913246) # print(get_root_path()) # print(get_root_path('data'))
puke3615/comment_spider
comment_spider/util.py
util.py
py
4,172
python
en
code
5
github-code
6
[ { "api_name": "urllib3.disable_warnings", "line_number": 4, "usage_type": "call" }, { "api_name": "urllib3.PoolManager", "line_number": 32, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 61, "usage_type": "call" }, { "api_name": "os.path", "line_number": 61, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path", "line_number": 65, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 78, "usage_type": "call" }, { "api_name": "os.path", "line_number": 78, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 78, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 79, "usage_type": "call" }, { "api_name": "os.path", "line_number": 79, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 103, "usage_type": "call" }, { "api_name": "os.path", "line_number": 103, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path", "line_number": 104, "usage_type": "attribute" } ]
31534048424
import telebot; import os import subprocess import re #получение токена при запуске и возможно его сохранение file = open("Token", "r") token = file.read() file.close() bot = telebot.TeleBot(token) os.system("echo запущено") @bot.message_handler(content_types=['text']) def get_text_messages(message): if message.text == "/start": bot.send_message(message.from_user.id, "bashbot для Телеграмм список основных команд /help") elif message.text == "/help": bot.send_message(message.from_user.id, "здесь пока что пусто") ## else: comm_out=(b'',) lst = message.text.split(' ') print(lst[0]) if (lst[0] == 'cd'): del lst[0] if not lst: lst = ['/root'] path="".join(lst) try: os.chdir(path) except FileNotFoundError: bot.send_message(message.from_user.id, "No such file or directory") else: comm = subprocess.Popen('pwd', stdout=subprocess.PIPE) comm_out = comm.communicate() elif(lst[0] == 'echo'): comm = subprocess.Popen(lst, stdout=subprocess.PIPE) comm_out = comm.communicate() print(comm_out)## elif(lst[0] == 'export'): c = "".join(lst) print(message.text) os.system(message.text) bot.send_message(message.from_user.id, "не готово")## else: try: comm = subprocess.Popen(message.text.split(' '), stdout=subprocess.PIPE) comm_out = comm.communicate() print(comm_out) except FileNotFoundError: bot.send_message(message.from_user.id, "No such file or directory") if (comm_out[0] != b''): bot.send_message(message.from_user.id, comm_out) bot.polling(none_stop=True, interval=0) #сделать логи по ID #добавить clear
romazanovma/probable-octo-potato-telegram-bot
bot.py
bot.py
py
1,759
python
ru
code
0
github-code
6
[ { "api_name": "telebot.TeleBot", "line_number": 9, "usage_type": "call" }, { "api_name": "os.system", "line_number": 10, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 27, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 31, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 31, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 34, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 34, "usage_type": "attribute" }, { "api_name": "os.system", "line_number": 40, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 44, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 44, "usage_type": "attribute" } ]
71200356027
from moviepy.editor import * from moviepy.video.tools.subtitles import SubtitlesClip import moviepy.video.fx as vfx def create_srt(line): subs_obj = open(r"D:\Final Renders\your next line.srt", "r") orig_subs = subs_obj.read().split("\n") print(orig_subs) orig_subs[6] = f"\"{line}\"" orig_subs[10] = line new_srt = open(r"D:\Final Renders\result.srt", "w") for x in orig_subs: new_srt.write(x + "\n") new_srt.close() subs_obj.close() def composite_gif(line): video = VideoFileClip(r"D:\Final Renders\tsuginiomaewa.mp4") video = vfx.resize.resize(video,0.5) generator = lambda txt: TextClip(txt, font='Arial',fontsize=16, color='white') create_srt(line) sub = SubtitlesClip(r"D:\Final Renders\result.srt", generator) result = CompositeVideoClip([video, sub.set_position(('center','bottom'))]) result.write_gif(r"D:\Final Renders\result.gif",fps=10,program="ffmpeg", fuzz=100,colors=2) result.close() video.close()
alwynwan/Messenger-Bot
srtgen.py
srtgen.py
py
1,002
python
en
code
0
github-code
6
[ { "api_name": "moviepy.video.fx.resize.resize", "line_number": 24, "usage_type": "call" }, { "api_name": "moviepy.video.fx.resize", "line_number": 24, "usage_type": "attribute" }, { "api_name": "moviepy.video.fx", "line_number": 24, "usage_type": "name" }, { "api_name": "moviepy.video.tools.subtitles.SubtitlesClip", "line_number": 28, "usage_type": "call" } ]
33645109204
from __future__ import print_function import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials from datetime import datetime, timedelta calendar_id = os.environ.get('calendar_id') SCOPES = ['https://www.googleapis.com/auth/calendar'] def connect(): creds = None # The file token.json stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists("token.json"): creds = Credentials.from_authorized_user_file("token.json", SCOPES) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_local_server(port=8080) # Save the credentials for the next run with open("token.json", 'w') as token: token.write(creds.to_json()) return build('calendar', 'v3', credentials=creds) def create_event(service, event): try: eventAdded = service.events().insert(calendarId=calendar_id, body=generate_json(event)).execute() print(f'added {event.name} {event.date} {event.eventId}') except Exception as e: save_error("creating", event.name, e) def delete_event(service, event): if event.eventId is not None: try: service.events().delete(calendarId=calendar_id, eventId=event.eventId).execute() except Exception as e: save_error("deleting", event.name, e) def update_event(service, event): try: service.events().update(calendarId=calendar_id, eventId=event.eventId, body=generate_json(event)).execute() except Exception as e: save_error("updating", event.name, e) def generate_json(event): if event.status == 'Urgente': event.icon = "⭐" elif event.progress == 100 or event.status == 'Completado': event.icon = "✔️" if event.type=="Exam": color = 11 elif event.type == "Assignment": color = 4 else: color = 6 #We have to differentiate between the yyy-mm-dd format and the RFC3339 format. #In the case of all day events, for Notion, the start day and the end day is the same, for G. Calendar the end day is the next one. if len(event.date)>11:date = datetype = "dateTime" else: datetype = "date"; event.endDate = datetime.strftime(datetime.strptime(event.endDate, '%Y-%m-%d') + timedelta(1),'%Y-%m-%d') event_to_add = { 'id': event.eventId, 'colorId':color, 'summary': f'{event.icon} {event.type[:1]}. {event.subject} {event.name} ', 'description': f'{event.type}. of {event.subject}: {event.name} \n{event.comments} \n {f"Progreso: {str(event.progress)}" if event.progress >=0 else ""} Status: {event.status}', 'start': { datetype : event.date, }, 'end': { datetype : event.endDate, }, 'reminders': { 'useDefault': False, 'overrides': [ {'method': 'popup', 'minutes': 10080}, #1 week ], }, } return event_to_add def save_error(type, name, msg = ""): text = f"{datetime.now()} --> Error while {type} the following event: {name} \n" file_object = open('errors.log', 'a') file_object.write(text) print (f"{text} \n {msg}") file_object.close()
Santixs/NotionGSync
gcalendarsync.py
gcalendarsync.py
py
3,727
python
en
code
1
github-code
6
[ { "api_name": "os.path.environ.get", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path.environ", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 10, "usage_type": "name" }, { "api_name": "os.path.path.exists", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 19, "usage_type": "name" }, { "api_name": "google.oauth2.credentials.Credentials.from_authorized_user_file", "line_number": 20, "usage_type": "call" }, { "api_name": "google.oauth2.credentials.Credentials", "line_number": 20, "usage_type": "name" }, { "api_name": "google.auth.transport.requests.Request", "line_number": 26, "usage_type": "call" }, { "api_name": "google_auth_oauthlib.flow.InstalledAppFlow.from_client_secrets_file", "line_number": 29, "usage_type": "call" }, { "api_name": "google_auth_oauthlib.flow.InstalledAppFlow", "line_number": 29, "usage_type": "name" }, { "api_name": "googleapiclient.discovery.build", "line_number": 37, "usage_type": "call" }, { "api_name": "datetime.datetime.strftime", "line_number": 69, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 69, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 69, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 69, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 95, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 95, "usage_type": "name" } ]
71913849148
import requests API_ENDPOINT = 'https://api.openai.com/v1/chat/completions' API_KEY = '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' MODEL_ID = 'gpt-3.5-turbo' def test_chatgpt_api(): headers = { 'Authorization': f'Bearer {API_KEY}', 'Content-Type': 'application/json' } data = { 'model': MODEL_ID, 'messages': [{'role': 'system', 'content': 'Test message'}] } response = requests.post(API_ENDPOINT, headers=headers, json=data) if response.status_code == 200: print("API is working normally.") else: print("API request failed. Status code:", response.status_code) print("Response:", response.json()) # Call the function to test the API test_chatgpt_api()
Ali-Jabowr/TelegramWordBot
commands/chatgpt_testing.py
chatgpt_testing.py
py
777
python
en
code
0
github-code
6
[ { "api_name": "requests.post", "line_number": 16, "usage_type": "call" } ]
9837393322
import networkx as nx # import pulp G = nx.DiGraph() G.add_nodes_from(['A', 'B', 'C', 'D', 'E', 'F']) G.add_edges_from([('A', 'B'), ('A', 'D'), ('B', 'C'), ('B', 'E'), ('C', 'F'), ('D', 'C'), ('E', 'C'), ('E', 'D'), ('E', 'F')]) capacities = [4,5,5,4,4,3,2,2,1] costs = [1,7,7,2,3,2,1,1,4] for i, edge in enumerate(G.edges()): G.edges[edge]['capacity'] = capacities[i] G.edges[edge]['cost'] = costs[i] demands = [-2,-5,-1,3,2,3] for i, node in enumerate(G.nodes()): G.nodes[node]['demand'] = demands[i] myflow = nx.min_cost_flow(G, weight='cost') mycost = nx.cost_of_flow(G, myflow, weight='cost') print(mycost, myflow)
havarpan/verkkomallit-k21-glitchtest
python/luentoesim.py
luentoesim.py
py
639
python
en
code
0
github-code
6
[ { "api_name": "networkx.DiGraph", "line_number": 4, "usage_type": "call" }, { "api_name": "networkx.min_cost_flow", "line_number": 21, "usage_type": "call" }, { "api_name": "networkx.cost_of_flow", "line_number": 22, "usage_type": "call" } ]
17335047402
import sesame import numpy as np ###################################################### ## define the system ###################################################### # dimensions of the system Lx = 3e-4 #[cm] Ly = 3e-4 #[cm] # extent of the junction from the left contact [cm] junction = .1e-4 # [cm] # Mesh x = np.concatenate((np.linspace(0,.2e-4, 30, endpoint=False), np.linspace(0.2e-4, 1.4e-4, 60, endpoint=False), np.linspace(1.4e-4, 2.9e-4, 70, endpoint=False), np.linspace(2.9e-4, 3e-4, 10))) y = np.concatenate((np.linspace(0, 1.75e-4, 50, endpoint=False), np.linspace(1.75e-4, 2.75e-4, 50, endpoint=False), np.linspace(2.75e-4, Ly, 50))) # Create a system sys = sesame.Builder(x, y, periodic=False) # Dictionary with the material parameters mat = {'Nc':8e17, 'Nv':1.8e19, 'Eg':1.5, 'epsilon':9.4, 'Et': 0, 'mu_e':320, 'mu_h':40, 'tau_e':10*1e-9, 'tau_h':10*1e-9, 'B': 1e-10} # Add the material to the system sys.add_material(mat) # define a function specifiying the n-type region def region(pos): x, y = pos return x < junction # define a function specifiying the p-type region region2 = lambda pos: 1 - region(pos) # Add the donors nD = 1e17 # [cm^-3] sys.add_donor(nD, region) # Add the acceptors nA = 1e15 # [cm^-3] sys.add_acceptor(nA, region2) # Use Ohmic contacts Sn_left, Sp_left, Sn_right, Sp_right = 1e7, 1e7, 1e7, 1e7 sys.contact_S(Sn_left, Sp_left, Sn_right, Sp_right) sys.contact_type('Ohmic','Ohmic') # gap state characteristics E = 0 # energy of gap state (eV) from midgap rhoGB = 1e14 # density of defect states s = 1e-14 # defect capture cross section # this implies a surface recombination velocity S = rhoGB*s*vthermal = 1e5 [cm/s] # Specify the two points that make the line containing additional recombination centers p1 = (0, Ly) p2 = (Lx, Ly) # add neutral defect along surface (surface recombination boundary condition) sys.add_defects([p1, p2], rhoGB, s, E=E, transition=(0,0)) # find equilibrium solution with GB. Note we provide the GB-free equilibrium solution as a starting guess solution = sesame.solve(sys, compute='Poisson', periodic_bcs=False) ###################################################### ## EBIC generation profile parameters ###################################################### q = 1.6e-19 # C ibeam = 10e-12 # A Ebeam = 15e3 # eV eg = 1.5 # eV density = 5.85 # g/cm^3 kev = 1e3 # eV # rough approximation for total carrier generation rate from electron beam Gtot = ibeam/q * Ebeam / (3*eg) # length scale of generation volume Rbulb = 0.043 / density * (Ebeam/kev)**1.75 # given in micron Rbulb = Rbulb * 1e-4 # converting to cm # Gaussian spread sigma = Rbulb / np.sqrt(15) # penetration depth y0 = 0.3 * Rbulb # get diffusion length to scale generation density vt = .0258 Ld = np.sqrt(sys.mu_e[0] * sys.tau_e[0]) * sys.scaling.length ###################################################### ## vary position of the electron beam ###################################################### x0list = np.linspace(.1e-4, 2.5e-4, 11) # Array in which to store results jset = np.zeros(len(x0list)) jratio = np.zeros(len(x0list)) rset = np.zeros(len(x0list)) rad_ratio = np.zeros(len(x0list)) # Cycle over beam positions for idx, x0 in enumerate(x0list): # define a function for generation profile def excitation(x,y): return Gtot/(2*np.pi*sigma**2*Ld) * np.exp(-(x-x0)**2/(2*sigma**2)) * np.exp(-(y-Ly+y0)**2/(2*sigma**2)) # add generation to the system at new beam position sys.generation(excitation) # solve the system solution = sesame.solve(sys, periodic_bcs=False, tol=1e-8) # get analyzer object to evaluate current and radiative recombination az = sesame.Analyzer(sys, solution) # compute (dimensionless) current and convert to to dimension-ful form tj = az.full_current() * sys.scaling.current * sys.scaling.length # save the current jset[idx] = tj # obtain total generation from sys object gtot = sys.gtot * sys.scaling.generation * sys.scaling.length**2 jratio[idx] = tj/(q * gtot) # compute (dimensionless) total radiative recombination and convert to to dimension-ful form cl = az.integrated_radiative_recombination() * sys.scaling.generation * sys.scaling.length**2 # save the CL rset[idx] = cl rad_ratio[idx] = cl/gtot # display result for counter in range(len(jset)): print('x = {0:2.1e} [cm], J = {1:5.3e} [mA/cm], CL = {2:5.3e}'.format(x0list[counter],jset[counter]*1e3,rset[counter])) for counter in range(len(jset)): print('x = {0:2.1e} {1:5.3e} {2:5.3e}'.format(x0list[counter],jratio[counter],rad_ratio[counter])) import matplotlib.pyplot as plt plt.plot(x0list,jset) plt.show()
usnistgov/sesame
examples/tutorial5/2d_EBIC.py
2d_EBIC.py
py
4,876
python
en
code
16
github-code
6
[ { "api_name": "numpy.concatenate", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 23, "usage_type": "call" }, { "api_name": "sesame.Builder", "line_number": 26, "usage_type": "call" }, { "api_name": "sesame.solve", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 101, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 109, "usage_type": "attribute" }, { "api_name": "numpy.exp", "line_number": 109, "usage_type": "call" }, { "api_name": "sesame.solve", "line_number": 115, "usage_type": "call" }, { "api_name": "sesame.Analyzer", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 141, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 141, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 142, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 142, "usage_type": "name" } ]
42649131070
""" some tools """ import logging import re import sys from rancon import settings tag_matcher = re.compile("%([A-Z0-9]+)%") def fail(message): """ logs message before calling sys.exit XXX: why is this using print not log? """ if isinstance(message, list) or isinstance(message, tuple): if len(message) > 1: message = "\n - " + "\n - ".join(message) else: message = " " + message[0] else: message = " " + message print("FATAL:%s" % message) sys.exit(-1) def is_true(something): """ checks if something is truthy. for strings this is supposed to be one (lowercased) of "true", "1", "yes", "on" """ if isinstance(something, str): return something.lower() in ("true", "1", "yes", "on") else: return bool(something) def tag_replace(line, replacement_dict, default="UNDEFINED"): """ Replaces a tag content with replacement information from the given replacement hash. The replacement must exist. :param line: The tag value :param replacement_dict: The hash to use for the replacements :return: The processed string """ tags = tag_matcher.findall(line) for tag in tags: replacement = str(replacement_dict.get(tag.lower(), default)) line = line.replace("%{}%".format(tag), replacement) return line def getLogger(*args, **kwargs): """ returns a logger XXX: why not define this in settings? """ logger = logging.getLogger(*args, **kwargs) logger.setLevel(settings.loglevel) return logger
flypenguin/python-rancon
rancon/tools.py
tools.py
py
1,596
python
en
code
0
github-code
6
[ { "api_name": "re.compile", "line_number": 9, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 24, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 56, "usage_type": "call" }, { "api_name": "rancon.settings.loglevel", "line_number": 57, "usage_type": "attribute" }, { "api_name": "rancon.settings", "line_number": 57, "usage_type": "name" } ]
40369189284
from multiprocessing.spawn import old_main_modules from os import listdir from os.path import isfile, join from wordcloud import WordCloud import codecs import jieba import matplotlib.pyplot as plt # read data mypath = 'lab/contexts/' font_filename = 'fonts/STFangSong.ttf' files = [f for f in listdir(mypath) if isfile(join(mypath, f))] text_list=[] text='' for file in files: with open(mypath+file) as f: lines = f.readlines() text = text + ' '.join(lines) text = ' '.join(jieba.cut(text.replace(" ", ""))) stopwords_filename = 'lab/stopwords.txt' stopwords = set([line.strip() for line in codecs.open(stopwords_filename, 'r', 'utf-8')]) # build wordcloud wordcloud = WordCloud(font_path=font_filename, prefer_horizontal=1,stopwords=stopwords, max_font_size=260, width=1000, height=860, max_words=200).generate(text) plt.figure() plt.imshow(wordcloud, interpolation="bilinear") plt.axis("off") plt.show()
NATaaLiAAK/PPE1
cloud_build.py
cloud_build.py
py
1,000
python
en
code
0
github-code
6
[ { "api_name": "os.listdir", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 13, "usage_type": "call" }, { "api_name": "jieba.cut", "line_number": 23, "usage_type": "call" }, { "api_name": "codecs.open", "line_number": 27, "usage_type": "call" }, { "api_name": "wordcloud.WordCloud", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 37, "usage_type": "name" } ]
24362182930
from datetime import date, timedelta from .downloaders import Downloader from .parsers import Parser class RequiredValue(): def __init__(self, child_of=None): self.child_of = child_of def __call__(self, value): return self.child_of is None or isinstance(value, self.child_of) class DefaultValue(): def __init__(self, default): self.default = default class Supplier(): files = [] categories = () def __init__(self, partner=None): self.partner = partner def retrieve(self, files): data = [] parameters = { 'today': date.today().strftime('%Y%m%d'), 'yesterday': (date.today() - timedelta(days=1)).strftime('%Y%m%d'), } join = files.get('join', None) for location, mapping in files['mapping']: source = self.downloader.download(location % parameters) parsed = self.parser.parse(source, mapping, join) for k, v in parsed.items(): parsed[k]['_file'] = files['name'] data.append(parsed) return data def merge(self, files): merged = {} value_keys = set([]) for f in files: if len(f): value_keys.update(f[list(f.keys())[0]].keys()) for i, f in enumerate(files): for key, value in f.items(): for value_key in value_keys: if value_key not in value: value[value_key] = None if key not in merged: if i > 0: continue merged[key] = {} for k, v in value.items(): if merged[key].get(k) is None: merged[key][k] = v return merged.values() def pull(self): data = [] for files in self.files: file_data = self.retrieve(files) file_data = self.merge(file_data) data += file_data return data def validate(self, item): assert True def group(self, item): return None
suningwz/netaddiction_addons
netaddiction_octopus/base/supplier.py
supplier.py
py
2,132
python
en
code
0
github-code
6
[ { "api_name": "datetime.date.today", "line_number": 33, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 33, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 34, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 34, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 34, "usage_type": "call" } ]
30293188969
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path("new", views.create, name='new'), path('list', views.list, name='list'), path('edit/<int:task_id>', views.edit, name='edit'), ]
drazisil/task-zero
tasks/urls.py
urls.py
py
252
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 6, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" } ]
4473417766
import datetime import logging import re from estropadakparser.parsers.parser import Parser from estropadakparser.estropada.estropada import Estropada, TaldeEmaitza class ArcParserLegacy(Parser): '''Base class to parse an ARC legacy(2006-2008) race result''' def __init__(self, **kwargs): pass def parse(self, *args): '''Parse a result and return an estropada object''' document = self.get_content(*args) urla = args[0] estropadaDate = args[2] liga = args[3] d = datetime.datetime.strptime(estropadaDate, '%Y-%m-%d') (estropadaName) = self.parse_headings(document) opts = {'urla': urla, 'data': estropadaDate, 'liga': liga} self.estropada = Estropada(estropadaName, **opts) self.parse_tandas(document, d.year) if d.year <= 2008: self.calculate_tanda_posizioa() else: self.parse_resume(document) return self.estropada def parse_headings(self, document): '''Parse headings table''' heading_one = document.cssselect('#contenido h1') estropada = heading_one[0].text.strip() estropada = estropada.replace("Resultados de: ", "") return (estropada) def parse_date(self, date): new_date = date.replace('Jun', '06') new_date = new_date.replace('Jul', '07') new_date = new_date.replace('Ago', '08') new_date = new_date.replace('Sept', '09') date_list = re.split('-', new_date) if len(date_list) == 3: new_date = date_list[2] + "-" + date_list[1] + "-" + date_list[0] return new_date def parse_tandas(self, document, urtea): tandas = document.cssselect('table.resultados') for num, text in enumerate(tandas): rows = text.findall('.//tr') for kalea, row in enumerate(rows): if kalea == 0: continue data = [x.text for x in row.findall('.//td')] try: if not data[1] is None: if urtea < 2008: pos = 12 aux = re.sub('[^0-9]', '', data[6]) try: pos = int(aux) except ValueError: pos = 12 else: pos = 0 emaitza = TaldeEmaitza(talde_izena=data[1], kalea=kalea, ziabogak=data[2:5], denbora=data[5], tanda=num + 1, posizioa=pos, tanda_postua=4) self.estropada.taldeak_add(emaitza) except TypeError as e: print(e) def calculate_tanda_posizioa(self): tanda_posizioak = [0] + [1] * 7 for pos, taldea in enumerate(sorted(self.estropada.sailkapena)): taldea.posizioa = pos + 1 taldea.tanda_postua = tanda_posizioak[taldea.tanda] tanda_posizioak[taldea.tanda] = tanda_posizioak[taldea.tanda] + 1 def parse_resume(self, document): sailkapenak = document.cssselect('#resultado table') tandaKopurua = len(sailkapenak) rows = sailkapenak[tandaKopurua-1].findall('.//tr') tanda_posizioak = [0] + [1] * 7 for pos, row in enumerate(rows): if pos == 0: continue try: taldea = row.find('.//td[2]').text.strip() posizioa = pos print(posizioa) puntuak = row.find('.//td[4]').text.strip() for t in self.estropada.sailkapena: if re.match(t.talde_izena, taldea, re.I): try: t.posizioa = posizioa t.tanda_postua = tanda_posizioak[t.tanda] t.puntuazioa = int(puntuak) except Exception as e: print(e) t.posizioa = 1 t.tanda_postua = tanda_posizioak[t.tanda] t.puntuazioa = 0 tanda_posizioak[t.tanda] = tanda_posizioak[t.tanda] + 1 except Exception as e: logging.warn(self.estropada.izena) logging.info("Error parsing results", exec_info=True)
ander2/estropadak-lxml
estropadakparser/parsers/arc_legacy_parser.py
arc_legacy_parser.py
py
4,486
python
eu
code
2
github-code
6
[ { "api_name": "estropadakparser.parsers.parser.Parser", "line_number": 8, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 20, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 20, "usage_type": "attribute" }, { "api_name": "estropadakparser.estropada.estropada.Estropada", "line_number": 23, "usage_type": "call" }, { "api_name": "re.split", "line_number": 43, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 60, "usage_type": "call" }, { "api_name": "estropadakparser.estropada.estropada.TaldeEmaitza", "line_number": 67, "usage_type": "call" }, { "api_name": "re.match", "line_number": 95, "usage_type": "call" }, { "api_name": "re.I", "line_number": 95, "usage_type": "attribute" }, { "api_name": "logging.warn", "line_number": 107, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 108, "usage_type": "call" } ]
17615533766
import web import os urls = ('/upload', 'Upload') class Upload: def GET(self): web.header("Content-Type","text/html; charset=utf-8") return open(r'upload.html', 'r').read() def POST(self): try: x = web.input(myfile={}) filedir = 'submit' # change this to the directory you want to store the file in. if 'myfile' in x: # to check if the file-object is created filepath = x.myfile.filename.replace('\\','/') # replaces the windows-style slashes with linux ones. filename = filepath.split('/')[-1] # splits the and chooses the last part (the filename with extension) fout = open(filedir +'/'+ filename,'w+') # creates the file where the uploaded file should be stored fout.write(x.myfile.file.read().decode('utf-8')) # writes the uploaded file to the newly created file. fout.close() # closes the file, upload complete. if filename[-2:] == '.c': # start analyze os.system('echo check') os.system('python3 grade.py > result.txt') os.system('rm ' + filedir + '/' + filename) print('[file deleted]') resultWeb = open(r'result.html', 'r').read() result = open('result.txt', 'r').read() if(result.find('Failed.') != -1): resultWeb = resultWeb[: resultWeb.find('<!--result-->')] + '\n<h3><strong style="color: red"> Test Failed</strong></h3><br>\n' + result + '\n' + resultWeb[resultWeb.find('<!--result-->') + len('<!--result-->'):] else: # add result to website resultWeb = resultWeb[: resultWeb.find('<!--result-->')] + '\n<h3><strong style="color: green"> Test Passed</strong></h3><br>\n' + result + '\n' + resultWeb[resultWeb.find('<!--result-->') + len('<!--result-->'):] else: resultWeb = open(r'error.html', 'r').read() resultWeb = resultWeb[:resultWeb.find('<!--file-->')] + filename +resultWeb[resultWeb.find('<!--file-->'):] os.system('rm ' + filedir + '/' + filename) print('[file deleted]') return resultWeb except: resultWeb = open(r'error.html', 'r').read() resultWeb = resultWeb[:resultWeb.find('<!--file-->')] + 'ERROR:\n No file uploaded or internal error occured while uploading the file.' + resultWeb[resultWeb.find('<!--file-->'):] return resultWeb raise web.seeother('/upload') if __name__ == "__main__": app = web.application(urls, globals()) app.run()
Louis-He/simpleOj
webmain.py
webmain.py
py
2,766
python
en
code
0
github-code
6
[ { "api_name": "web.header", "line_number": 9, "usage_type": "call" }, { "api_name": "web.input", "line_number": 15, "usage_type": "call" }, { "api_name": "os.system", "line_number": 27, "usage_type": "call" }, { "api_name": "os.system", "line_number": 28, "usage_type": "call" }, { "api_name": "os.system", "line_number": 29, "usage_type": "call" }, { "api_name": "os.system", "line_number": 44, "usage_type": "call" }, { "api_name": "web.seeother", "line_number": 54, "usage_type": "call" }, { "api_name": "web.application", "line_number": 57, "usage_type": "call" } ]
31261537971
from collections import namedtuple from itertools import izip from operator import attrgetter from tilequeue.log import LogCategory from tilequeue.log import LogLevel from tilequeue.log import MsgType from tilequeue.metatile import common_parent from tilequeue.metatile import make_metatiles from tilequeue.process import convert_source_data_to_feature_layers from tilequeue.process import process_coord from tilequeue.queue import JobProgressException from tilequeue.queue.message import QueueHandle from tilequeue.store import write_tile_if_changed from tilequeue.tile import coord_children_subrange from tilequeue.tile import coord_to_mercator_bounds from tilequeue.tile import serialize_coord from tilequeue.utils import convert_seconds_to_millis from tilequeue.utils import format_stacktrace_one_line import Queue import signal import sys import time # long enough to not fight with other threads, but not long enough # that it prevents a timely stop timeout_seconds = 5 def _non_blocking_put(q, data): # don't block indefinitely when trying to put to a queue # this helps prevent deadlocks if the destination queue is full # and stops try: q.put(data, timeout=timeout_seconds) except Queue.Full: return False else: return True def _force_empty_queue(q): # expects a sentinel None value to get enqueued # throws out all messages until we receive the sentinel # with no sentinel this will block indefinitely while q.get() is not None: continue # OutputQueue wraps the process of sending data to a multiprocessing queue # so that we can simultaneously check for the "stop" signal when it's time # to shut down. class OutputQueue(object): def __init__(self, output_queue, tile_proc_logger, stop): self.output_queue = output_queue self.tile_proc_logger = tile_proc_logger self.stop = stop def __call__(self, coord, data): """ Send data, associated with coordinate coord, to the queue. While also watching for a signal to stop. If the data is too large to send, then trap the MemoryError and exit the program. Note that `coord` may be a Coordinate instance or a string. It is only used for printing out a message if there's a MemoryError, so for requests which have no meaningful single coordinate, something else can be used. Returns True if the "stop signal" has been set and the thread should shut down. False if normal operations should continue. """ try: while not _non_blocking_put(self.output_queue, data): if self.stop.is_set(): return True except MemoryError as e: stacktrace = format_stacktrace_one_line() self.tile_proc_logger.error( 'MemoryError sending to queue', e, stacktrace, coord) # memory error might not leave the malloc subsystem in a usable # state, so better to exit the whole worker here than crash this # thread, which would lock up the whole worker. sys.exit(1) return False def _ack_coord_handle( coord, coord_handle, queue_mapper, msg_tracker, timing_state, tile_proc_logger, stats_handler): """share code for acknowledging a coordinate""" # returns tuple of (handle, error), either of which can be None track_result = msg_tracker.done(coord_handle) queue_handle = track_result.queue_handle if not queue_handle: return None, None tile_queue = queue_mapper.get_queue(queue_handle.queue_id) assert tile_queue, \ 'Missing tile_queue: %s' % queue_handle.queue_id parent_tile = None if track_result.all_done: parent_tile = track_result.parent_tile try: tile_queue.job_done(queue_handle.handle) except Exception as e: stacktrace = format_stacktrace_one_line() tile_proc_logger.error_job_done( 'tile_queue.job_done', e, stacktrace, coord, parent_tile, ) return queue_handle, e if parent_tile is not None: # we completed a tile pyramid and should log appropriately start_time = timing_state['start'] stop_time = convert_seconds_to_millis(time.time()) tile_proc_logger.log_processed_pyramid( parent_tile, start_time, stop_time) stats_handler.processed_pyramid( parent_tile, start_time, stop_time) else: try: tile_queue.job_progress(queue_handle.handle) except Exception as e: stacktrace = format_stacktrace_one_line() err_details = {"queue_handle": queue_handle.handle} if isinstance(e, JobProgressException): err_details = e.err_details tile_proc_logger.error_job_progress( 'tile_queue.job_progress', e, stacktrace, coord, parent_tile, err_details, ) return queue_handle, e return queue_handle, None # The strategy with each worker is to loop on a thread event. When the # main thread/process receives a kill signal, it will issue stops to # each worker to signal that work should end. # Additionally, all workers that receive work from a python queue will # also wait for a sentinel value, None, before terminating. They will # discard all messages until receiving this sentinel value. Special # care is also given to the scenario where a None value is received # before the stop event is checked. The sentinel value here counts as # a hard stop as well. # Furthermore, all queue gets and puts are done with timeouts. This is # to prevent race conditions where a worker is blocked waiting to read # from a queue that upstream will no longer write to, or try to put to # a queue that downstream will no longer read from. After any timeout, # the stop event is checked before any processing to see whether a # stop event has been received in the interim. class TileQueueReader(object): def __init__( self, queue_mapper, msg_marshaller, msg_tracker, output_queue, tile_proc_logger, stats_handler, stop, max_zoom, group_by_zoom): self.queue_mapper = queue_mapper self.msg_marshaller = msg_marshaller self.msg_tracker = msg_tracker self.output = OutputQueue(output_queue, tile_proc_logger, stop) self.tile_proc_logger = tile_proc_logger self.stats_handler = stats_handler self.stop = stop self.max_zoom = max_zoom self.group_by_zoom = group_by_zoom def __call__(self): while not self.stop.is_set(): msg_handles = () for queue_id, tile_queue in ( self.queue_mapper.queues_in_priority_order()): try: msg_handles = tile_queue.read() except Exception as e: stacktrace = format_stacktrace_one_line() self.tile_proc_logger.error( 'Queue read error', e, stacktrace) continue if msg_handles: break if not msg_handles: continue for msg_handle in msg_handles: # if asked to stop, break as soon as possible if self.stop.is_set(): break now = convert_seconds_to_millis(time.time()) msg_timestamp = None if msg_handle.metadata: msg_timestamp = msg_handle.metadata.get('timestamp') timing_state = dict( msg_timestamp=msg_timestamp, start=now, ) coords = self.msg_marshaller.unmarshall(msg_handle.payload) # it seems unlikely, but just in case there are no coordinates # in the payload, there's nothing to do, so skip to the next # payload. if not coords: continue # check for duplicate coordinates - for the message tracking to # work, we assume that coordinates are unique, as we use them # as keys in a dict. (plus, it doesn't make a lot of sense to # render the coordinate twice in the same job anyway). coords = list(set(coords)) parent_tile = self._parent(coords) queue_handle = QueueHandle(queue_id, msg_handle.handle) coord_handles = self.msg_tracker.track( queue_handle, coords, parent_tile) all_coords_data = [] for coord, coord_handle in izip(coords, coord_handles): if coord.zoom > self.max_zoom: self._reject_coord(coord, coord_handle, timing_state) continue metadata = dict( # the timing is just what will be filled out later timing=dict( fetch=None, process=None, s3=None, ack=None, ), # this is temporary state that is used later on to # determine timing information timing_state=timing_state, coord_handle=coord_handle, ) data = dict( metadata=metadata, coord=coord, ) all_coords_data.append(data) # we might have no coordinates if we rejected all the # coordinates. in which case, there's nothing to do anyway, as # the _reject_coord method will have marked the job as done. if all_coords_data: coord_input_spec = all_coords_data, parent_tile msg = "group of %d tiles below %s" \ % (len(all_coords_data), serialize_coord(parent_tile)) if self.output(msg, coord_input_spec): break for _, tile_queue in self.queue_mapper.queues_in_priority_order(): tile_queue.close() self.tile_proc_logger.lifecycle('tile queue reader stopped') def _reject_coord(self, coord, coord_handle, timing_state): self.tile_proc_logger.log( LogLevel.WARNING, LogCategory.PROCESS, MsgType.INDIVIDUAL, 'Job coordinates above max zoom are not ' 'supported, skipping %d > %d' % ( coord.zoom, self.max_zoom), None, # exception None, # stacktrace coord, ) # delete jobs that we can't handle from the # queue, otherwise we'll get stuck in a cycle # of timed-out jobs being re-added to the # queue until they overflow max-retries. _ack_coord_handle( coord, coord_handle, self.queue_mapper, self.msg_tracker, timing_state, self.tile_proc_logger, self.stats_handler) def _parent(self, coords): if len(coords) == 0: return None parent = reduce(common_parent, coords) if self.group_by_zoom is not None: if parent.zoom < self.group_by_zoom: assert len(coords) == 1, "Expect either a single tile or a " \ "pyramid at or below group zoom." else: parent = parent.zoomTo(self.group_by_zoom).container() return parent class DataFetch(object): def __init__( self, fetcher, input_queue, output_queue, io_pool, tile_proc_logger, stats_handler, metatile_zoom, max_zoom, metatile_start_zoom=0): self.fetcher = fetcher self.input_queue = input_queue self.output_queue = output_queue self.io_pool = io_pool self.tile_proc_logger = tile_proc_logger self.stats_handler = stats_handler self.metatile_zoom = metatile_zoom self.max_zoom = max_zoom self.metatile_start_zoom = metatile_start_zoom def __call__(self, stop): saw_sentinel = False output = OutputQueue(self.output_queue, self.tile_proc_logger, stop) while not stop.is_set(): try: coord_input_spec = self.input_queue.get( timeout=timeout_seconds) except Queue.Empty: continue if coord_input_spec is None: saw_sentinel = True break coord = None parent = None try: all_data, parent = coord_input_spec for fetch, data in self.fetcher.fetch_tiles(all_data): metadata = data['metadata'] coord = data['coord'] if self._fetch_and_output(fetch, coord, metadata, output): break except Exception as e: stacktrace = format_stacktrace_one_line() self.tile_proc_logger.fetch_error(e, stacktrace, coord, parent) self.stats_handler.fetch_error() if not saw_sentinel: _force_empty_queue(self.input_queue) self.tile_proc_logger.lifecycle('data fetch stopped') def _fetch_and_output(self, fetch, coord, metadata, output): data = self._fetch(fetch, coord, metadata) return output(coord, data) def _fetch(self, fetch, coord, metadata): nominal_zoom = coord.zoom + self.metatile_zoom start_zoom = coord.zoom + self.metatile_start_zoom unpadded_bounds = coord_to_mercator_bounds(coord) start = time.time() source_rows = fetch(nominal_zoom, unpadded_bounds) metadata['timing']['fetch'] = convert_seconds_to_millis( time.time() - start) # every tile job that we get from the queue is a "parent" tile # and its four children to cut from it. at zoom 15, this may # also include a whole bunch of other children below the max # zoom. cut_coords = list( coord_children_subrange(coord, start_zoom, nominal_zoom)) return dict( metadata=metadata, coord=coord, source_rows=source_rows, unpadded_bounds=unpadded_bounds, cut_coords=cut_coords, nominal_zoom=nominal_zoom, ) class ProcessAndFormatData(object): scale = 4096 def __init__(self, post_process_data, formats, input_queue, output_queue, buffer_cfg, output_calc_mapping, layer_data, tile_proc_logger, stats_handler): formats.sort(key=attrgetter('sort_key')) self.post_process_data = post_process_data self.formats = formats self.input_queue = input_queue self.output_queue = output_queue self.buffer_cfg = buffer_cfg self.output_calc_mapping = output_calc_mapping self.layer_data = layer_data self.tile_proc_logger = tile_proc_logger self.stats_handler = stats_handler def __call__(self, stop): # ignore ctrl-c interrupts when run from terminal signal.signal(signal.SIGINT, signal.SIG_IGN) output = OutputQueue(self.output_queue, self.tile_proc_logger, stop) saw_sentinel = False while not stop.is_set(): try: data = self.input_queue.get(timeout=timeout_seconds) except Queue.Empty: continue if data is None: saw_sentinel = True break coord = data['coord'] unpadded_bounds = data['unpadded_bounds'] cut_coords = data['cut_coords'] nominal_zoom = data['nominal_zoom'] source_rows = data['source_rows'] start = time.time() try: feature_layers = convert_source_data_to_feature_layers( source_rows, self.layer_data, unpadded_bounds, nominal_zoom) formatted_tiles, extra_data = process_coord( coord, nominal_zoom, feature_layers, self.post_process_data, self.formats, unpadded_bounds, cut_coords, self.buffer_cfg, self.output_calc_mapping) except Exception as e: stacktrace = format_stacktrace_one_line() self.tile_proc_logger.error( 'Processing error', e, stacktrace, coord) self.stats_handler.proc_error() continue metadata = data['metadata'] metadata['timing']['process'] = convert_seconds_to_millis( time.time() - start) metadata['layers'] = extra_data data = dict( metadata=metadata, coord=coord, formatted_tiles=formatted_tiles, ) if output(coord, data): break if not saw_sentinel: _force_empty_queue(self.input_queue) self.tile_proc_logger.lifecycle('processor stopped') class S3Storage(object): def __init__(self, input_queue, output_queue, io_pool, store, tile_proc_logger, metatile_size): self.input_queue = input_queue self.output_queue = output_queue self.io_pool = io_pool self.store = store self.tile_proc_logger = tile_proc_logger self.metatile_size = metatile_size def __call__(self, stop): saw_sentinel = False queue_output = OutputQueue( self.output_queue, self.tile_proc_logger, stop) while not stop.is_set(): try: data = self.input_queue.get(timeout=timeout_seconds) except Queue.Empty: continue if data is None: saw_sentinel = True break coord = data['coord'] start = time.time() try: async_jobs = self.save_tiles(data['formatted_tiles']) except Exception as e: # cannot propagate this error - it crashes the thread and # blocks up the whole queue! stacktrace = format_stacktrace_one_line() self.tile_proc_logger.error('Save error', e, stacktrace, coord) continue async_exc_info = None e = None n_stored = 0 n_not_stored = 0 for async_job in async_jobs: try: did_store = async_job.get() if did_store: n_stored += 1 else: n_not_stored += 1 except Exception as e: # it's important to wait for all async jobs to # complete but we just keep a reference to the last # exception it's unlikely that we would receive multiple # different exceptions when uploading to s3 async_exc_info = sys.exc_info() if async_exc_info: stacktrace = format_stacktrace_one_line(async_exc_info) self.tile_proc_logger.error( 'Store error', e, stacktrace, coord) continue metadata = data['metadata'] metadata['timing']['s3'] = convert_seconds_to_millis( time.time() - start) metadata['store'] = dict( stored=n_stored, not_stored=n_not_stored, ) data = dict( coord=coord, metadata=metadata, ) if queue_output(coord, data): break if not saw_sentinel: _force_empty_queue(self.input_queue) self.tile_proc_logger.lifecycle('s3 storage stopped') def save_tiles(self, tiles): async_jobs = [] if self.metatile_size: tiles = make_metatiles(self.metatile_size, tiles) for tile in tiles: async_result = self.io_pool.apply_async( write_tile_if_changed, ( self.store, tile['tile'], # important to use the coord from the # formatted tile here, because we could have # cut children tiles that have separate zooms # too tile['coord'], tile['format'])) async_jobs.append(async_result) return async_jobs CoordProcessData = namedtuple( 'CoordProcessData', ('coord', 'timing', 'size', 'store_info',), ) class TileQueueWriter(object): def __init__( self, queue_mapper, input_queue, inflight_mgr, msg_tracker, tile_proc_logger, stats_handler, stop): self.queue_mapper = queue_mapper self.input_queue = input_queue self.inflight_mgr = inflight_mgr self.msg_tracker = msg_tracker self.tile_proc_logger = tile_proc_logger self.stats_handler = stats_handler self.stop = stop def __call__(self): saw_sentinel = False while not self.stop.is_set(): try: data = self.input_queue.get(timeout=timeout_seconds) except Queue.Empty: continue if data is None: saw_sentinel = True break metadata = data['metadata'] coord_handle = metadata['coord_handle'] coord = data['coord'] timing_state = metadata['timing_state'] start = time.time() try: self.inflight_mgr.unmark_inflight(coord) except Exception as e: stacktrace = format_stacktrace_one_line() self.tile_proc_logger.error( 'Unmarking in-flight error', e, stacktrace, coord) continue queue_handle, err = _ack_coord_handle( coord, coord_handle, self.queue_mapper, self.msg_tracker, timing_state, self.tile_proc_logger, self.stats_handler) if err is not None: continue timing = metadata['timing'] now = time.time() timing['ack'] = convert_seconds_to_millis(now - start) time_in_queue = 0 msg_timestamp = timing_state['msg_timestamp'] if msg_timestamp: time_in_queue = convert_seconds_to_millis(now) - msg_timestamp timing['queue'] = time_in_queue layers = metadata['layers'] size = layers['size'] store_info = metadata['store'] coord_proc_data = CoordProcessData( coord, timing, size, store_info, ) self.tile_proc_logger.log_processed_coord(coord_proc_data) self.stats_handler.processed_coord(coord_proc_data) if not saw_sentinel: _force_empty_queue(self.input_queue) self.tile_proc_logger.lifecycle('tile queue writer stopped') class QueuePrint(object): def __init__(self, interval_seconds, queue_info, tile_proc_logger, stop): self.interval_seconds = interval_seconds self.queue_info = queue_info self.tile_proc_logger = tile_proc_logger self.stop = stop def __call__(self): # sleep in smaller increments, so that when we're asked to # stop we aren't caught sleeping on the job sleep_interval_seconds = min(timeout_seconds, self.interval_seconds) while not self.stop.is_set(): i = float(0) while i < self.interval_seconds: if self.stop.is_set(): break time.sleep(sleep_interval_seconds) i += sleep_interval_seconds # to prevent the final empty queue log message if self.stop.is_set(): break self.tile_proc_logger.log_queue_sizes(self.queue_info) self.tile_proc_logger.lifecycle('queue printer stopped')
thanhnghiacntt/tilequeue
tilequeue/worker.py
worker.py
py
24,574
python
en
code
0
github-code
6
[ { "api_name": "Queue.Full", "line_number": 36, "usage_type": "attribute" }, { "api_name": "tilequeue.utils.format_stacktrace_one_line", "line_number": 80, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 86, "usage_type": "call" }, { "api_name": "tilequeue.utils.format_stacktrace_one_line", "line_number": 114, "usage_type": "call" }, { "api_name": "tilequeue.utils.convert_seconds_to_millis", "line_number": 125, "usage_type": "call" }, { "api_name": "time.time", "line_number": 125, "usage_type": "call" }, { "api_name": "tilequeue.utils.format_stacktrace_one_line", "line_number": 134, "usage_type": "call" }, { "api_name": "tilequeue.queue.JobProgressException", "line_number": 136, "usage_type": "argument" }, { "api_name": "tilequeue.utils.format_stacktrace_one_line", "line_number": 189, "usage_type": "call" }, { "api_name": "tilequeue.utils.convert_seconds_to_millis", "line_number": 204, "usage_type": "call" }, { "api_name": "time.time", "line_number": 204, "usage_type": "call" }, { "api_name": "tilequeue.queue.message.QueueHandle", "line_number": 228, "usage_type": "call" }, { "api_name": "itertools.izip", "line_number": 233, "usage_type": "call" }, { "api_name": "tilequeue.tile.serialize_coord", "line_number": 265, "usage_type": "call" }, { "api_name": "tilequeue.log.LogLevel.WARNING", "line_number": 275, "usage_type": "attribute" }, { "api_name": "tilequeue.log.LogLevel", "line_number": 275, "usage_type": "name" }, { "api_name": "tilequeue.log.LogCategory.PROCESS", "line_number": 276, "usage_type": "attribute" }, { "api_name": "tilequeue.log.LogCategory", "line_number": 276, "usage_type": "name" }, { "api_name": "tilequeue.log.MsgType.INDIVIDUAL", "line_number": 277, "usage_type": "attribute" }, { "api_name": "tilequeue.log.MsgType", "line_number": 277, "usage_type": "name" }, { "api_name": "tilequeue.metatile.common_parent", "line_number": 296, "usage_type": "argument" }, { "api_name": "Queue.Empty", "line_number": 330, "usage_type": "attribute" }, { "api_name": "tilequeue.utils.format_stacktrace_one_line", "line_number": 346, "usage_type": "call" }, { "api_name": "tilequeue.tile.coord_to_mercator_bounds", "line_number": 362, "usage_type": "call" }, { "api_name": "time.time", "line_number": 364, "usage_type": "call" }, { "api_name": "tilequeue.utils.convert_seconds_to_millis", "line_number": 368, "usage_type": "call" }, { "api_name": "time.time", "line_number": 369, "usage_type": "call" }, { "api_name": "tilequeue.tile.coord_children_subrange", "line_number": 376, "usage_type": "call" }, { "api_name": "operator.attrgetter", "line_number": 395, "usage_type": "call" }, { "api_name": "signal.signal", "line_number": 408, "usage_type": "call" }, { "api_name": "signal.SIGINT", "line_number": 408, "usage_type": "attribute" }, { "api_name": "signal.SIG_IGN", "line_number": 408, "usage_type": "attribute" }, { "api_name": "Queue.Empty", "line_number": 416, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 428, "usage_type": "call" }, { "api_name": "tilequeue.process.convert_source_data_to_feature_layers", "line_number": 431, "usage_type": "call" }, { "api_name": "tilequeue.process.process_coord", "line_number": 434, "usage_type": "call" }, { "api_name": "tilequeue.utils.format_stacktrace_one_line", "line_number": 439, "usage_type": "call" }, { "api_name": "tilequeue.utils.convert_seconds_to_millis", "line_number": 446, "usage_type": "call" }, { "api_name": "time.time", "line_number": 447, "usage_type": "call" }, { "api_name": "Queue.Empty", "line_number": 484, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 492, "usage_type": "call" }, { "api_name": "tilequeue.utils.format_stacktrace_one_line", "line_number": 499, "usage_type": "call" }, { "api_name": "sys.exc_info", "line_number": 519, "usage_type": "call" }, { "api_name": "tilequeue.utils.format_stacktrace_one_line", "line_number": 522, "usage_type": "call" }, { "api_name": "tilequeue.utils.convert_seconds_to_millis", "line_number": 528, "usage_type": "call" }, { "api_name": "time.time", "line_number": 529, "usage_type": "call" }, { "api_name": "tilequeue.metatile.make_metatiles", "line_number": 551, "usage_type": "call" }, { "api_name": "tilequeue.store.write_tile_if_changed", "line_number": 556, "usage_type": "argument" }, { "api_name": "collections.namedtuple", "line_number": 570, "usage_type": "call" }, { "api_name": "Queue.Empty", "line_number": 594, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 605, "usage_type": "call" }, { "api_name": "tilequeue.utils.format_stacktrace_one_line", "line_number": 610, "usage_type": "call" }, { "api_name": "time.time", "line_number": 622, "usage_type": "call" }, { "api_name": "tilequeue.utils.convert_seconds_to_millis", "line_number": 623, "usage_type": "call" }, { "api_name": "tilequeue.utils.convert_seconds_to_millis", "line_number": 628, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 667, "usage_type": "call" } ]
7125623220
###################################################### ### SQL Database Script for PokeDex and TrainerDex ### ###################################################### import numpy as np import pandas as pd from sqlalchemy import create_engine from config import password import pprint as pp # Set locations for CSV Files and create dataframes csv_file1 = "pokedex_clean.csv" pokedex_df = pd.read_csv(csv_file1) csv_file2 = "trainer_clean.csv" trainer_df = pd.read_csv(csv_file2) csv_file3 = "trainer_junction_clean.csv" trainer_junction_df = pd.read_csv(csv_file3) # Connect to PostgreSQL rds_connection_string = "postgres:"+password+"@localhost:5432/pokemon_db" engine = create_engine(f'postgresql://{rds_connection_string}') # Read Dataframes into SQL and replace table if exists pokedex_df.to_sql(name='pokedex', con=engine, if_exists='replace', index=False) trainer_df.to_sql(name='trainer', con=engine, if_exists='replace', index=False) trainer_junction_df.to_sql(name='trainer_junction', con=engine, if_exists='replace', index=False) ################################################# ############ Search Function Script ############ ################################################# # Resume_Search is a nested inner function that allows the user to choose whether or not they want to search again. def search(): def resume_search(): resume = input ("Would you like to search again? (Yes or No) ") if resume.lower() in ["yes", "y"]: search() else: print ('Search Canceled. Closing Script.') request = 0 request = input ("What would you like to search for? (Select the number of the menu option)\ \n1: Trainer Name Containing:\ \n2: Trainers that own (name of pokemon):\ \n3: Pokedex Entry for (pokemon name):\ \n4: Pokedex Entry for (dex number):\ \n0: Cancel search and end program.:\ \nMenu Number: ") if request == 1 or request == str(1): trainer_search = input('Search for a trainer using their name:\nTrainer Name: ') search_return1 = pd.read_sql_query(\ "SELECT tr.trainer_id, tr.trainername, t_j.pokelevel, pk.pokemon_name\ FROM trainer_junction as t_j \ LEFT JOIN trainer AS tr ON tr.trainer_id = t_j.trainer_id \ LEFT JOIN pokedex as pk ON t_j.pokedex_number = pk.pokedex_number \ WHERE tr.trainername LIKE " "'%%" + str((trainer_search).title()) + "%%'", con=engine) print(search_return1) resume_search() elif request == 2 or request == str(2): poke_search = input('For a list of all trainers owning this pokemon: \nPokemon Name: ') search_return2 = pd.read_sql_query(\ "SELECT tr.trainername\ FROM trainer_junction as t_j \ LEFT JOIN trainer AS tr ON tr.trainer_id = t_j.trainer_id \ LEFT JOIN pokedex as pk ON t_j.pokedex_number = pk.pokedex_number \ WHERE pk.pokemon_name = " "'" + str((poke_search).title()) + "'", con=engine) search_result2 = [val[0] for val in search_return2.values] pp.pprint(search_result2) resume_search() elif request == 3 or request == str(3): poke_name = input('What is the name of the pokemon whose pokedex entry you wish to search for? \nPokemon Name: ') search_return3 = pd.read_sql_query("SELECT * FROM pokedex WHERE pokemon_name = " + "'" + str((poke_name).title()) + "'", con=engine) search_result3 = search_return3.transpose() print(search_result3) resume_search() elif request == 4 or request == str(4): poke_num = input('What is the pokedex number of the pokemon whose pokedex entry you wish to search for? \ \nPlease note that we have our own pokedex numbering system. \ \nPokedex Number: ') search_return4 = pd.read_sql_query("SELECT * FROM pokedex WHERE pokedex_number = " + "'" + str(poke_num) + "'", con=engine) search_result4 = search_return4.transpose() print(search_result4) resume_search() elif request == 0 or request == str(0): print ('Search Canceled. Ending Prompt.') else: request = 0 print ("That isn't a menu option number. Please try again.") search() ########################################## ######## Call The Search Function ######## ########################################## if __name__ == '__main__': search() ########################################## ############### END SCRIPT ############### ##########################################
ASooklall/ETL_Project
pokemon_db/pokemon_db.py
pokemon_db.py
py
4,633
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 13, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 16, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 19, "usage_type": "call" }, { "api_name": "config.password", "line_number": 22, "usage_type": "name" }, { "api_name": "sqlalchemy.create_engine", "line_number": 23, "usage_type": "call" }, { "api_name": "pandas.read_sql_query", "line_number": 56, "usage_type": "call" }, { "api_name": "pandas.read_sql_query", "line_number": 67, "usage_type": "call" }, { "api_name": "pprint.pprint", "line_number": 74, "usage_type": "call" }, { "api_name": "pandas.read_sql_query", "line_number": 79, "usage_type": "call" }, { "api_name": "pandas.read_sql_query", "line_number": 88, "usage_type": "call" } ]
35743736914
import sys import os import numpy as np import scipy.sparse from scipy.sparse import csr_matrix, find import read_write as rw import matlab.engine ''' finput_iu_rating_matrix_train = "Data/iu_sparse_matrix_train.npz" finput_title_sim_matrix = "Data/title_similarity_matrix" finput_description_sim_matrix = "Data/description_similarity_matrix" finput_user_cluster_set = "Data/user_cluster_set" finput_train_item_id = "Data/train_item_id" finput_test_item_id = "Data/test_item_id" finput_nonlinreg = "Data/nonlinreg" finput_init_tp = 1.0 finput_init_dp = 1.0 foutput_iuclst_rating_matrix = "Data/iuclst_rating_matrix" foutput_item_sim_matrix = "Data/item_sim_matrix" ''' if (__name__ == '__main__'): #### data path finput_iu_rating_matrix_train = sys.argv[1] finput_iu_rating_matrix_test = sys.argv[2] finput_title_sim_matrix = sys.argv[3] finput_description_sim_matrix = sys.argv[4] finput_user_cluster_set = sys.argv[5] finput_train_item_id = sys.argv[6] finput_test_item_id = sys.argv[7] finput_nonlinreg = sys.argv[8] finput_init_tp = float(sys.argv[9]) finput_init_dp = float(sys.argv[10]) foutput_iuclst_rating_matrix_train = sys.argv[11] foutput_iuclst_rating_matrix_test = sys.argv[12] foutput_item_sim_matrix = sys.argv[13] # load data iu_rating_matrix_train = scipy.sparse.load_npz(finput_iu_rating_matrix_train) iu_rating_matrix_test = scipy.sparse.load_npz(finput_iu_rating_matrix_test) title_sim_matrix = rw.readffile(finput_title_sim_matrix) description_sim_matrix = rw.readffile(finput_description_sim_matrix) user_cluster_set = rw.readffile(finput_user_cluster_set) train_item_id = rw.readffile(finput_train_item_id) test_item_id = rw.readffile(finput_test_item_id) # run matlab script and get parameters for title and description print("call matlab script....") cur_path = os.getcwd() os.chdir("D:\GitCode\Dissertation\Step1-Preprocessing") eng = matlab.engine.start_matlab() x = eng.my_fitnlm(finput_nonlinreg, finput_init_tp, finput_init_dp, nargout=3) theta1, theta2, RMSE = x[0], x[1], x[2] eng.quit() sim_matrix = theta1*title_sim_matrix + theta2*description_sim_matrix os.chdir(cur_path) rw.write2file(sim_matrix, foutput_item_sim_matrix) print("theta1 = ", theta1) print("theta2 = ", theta2) print("RMSE = ", RMSE) print("matlab finished") # extract similarity matrix for training and test item # resort_id = list(train_item_id.keys()) + list(test_item_id.keys()) sim_matrix_train = sim_matrix.loc[list(train_item_id.keys()), list(train_item_id.keys())].values sim_matrix_test = sim_matrix.loc[list(test_item_id.keys()), list(test_item_id.keys())].values # user cluster - item rating matrix iuclst_rating_matrix_train = np.zeros((len(train_item_id), len(user_cluster_set))) iuclst_rating_matrix_test = np.zeros((len(test_item_id), len(user_cluster_set))) item_in_node_train = list(range(iu_rating_matrix_train.shape[0])) item_in_node_test = list(range(iu_rating_matrix_test.shape[0])) for ind, user_cluster in zip(range(len(user_cluster_set)), user_cluster_set): print("user cluster: %d / %d"%(ind+1, len(user_cluster_set)), end="\r") user_cluster_size = len(user_cluster) sub_rating_matrix = iu_rating_matrix_train[np.ix_(item_in_node_train, user_cluster)].T.toarray() # user number * training item number sub_rating_matrix_pred = (np.dot(sub_rating_matrix, sim_matrix_train) / (1e-9+np.dot(sub_rating_matrix != 0, sim_matrix_train))) iuclst_rating_matrix_train[:, ind] = np.sum(sub_rating_matrix + 0.01*(sub_rating_matrix == 0) * sub_rating_matrix_pred, axis=0) / np.sum((sub_rating_matrix == 0)*0.01 + (sub_rating_matrix != 0)*1, axis=0) sub_rating_matrix = iu_rating_matrix_test[np.ix_(item_in_node_test, user_cluster)].T.toarray() # user number * test item number sub_rating_matrix_pred = (np.dot(sub_rating_matrix, sim_matrix_test) / (1e-9+np.dot(sub_rating_matrix != 0, sim_matrix_test))) iuclst_rating_matrix_test[:, ind] = np.sum(sub_rating_matrix + 0.01*(sub_rating_matrix == 0) * sub_rating_matrix_pred, axis=0) / np.sum((sub_rating_matrix == 0)*0.01 + (sub_rating_matrix != 0)*1, axis=0) print("\nuser cluster/item rating matrix generated done!") rw.write2file(iuclst_rating_matrix_train, foutput_iuclst_rating_matrix_train) rw.write2file(iuclst_rating_matrix_test, foutput_iuclst_rating_matrix_test) print("file saved done!")
clamli/Dissertation
Step1-Preprocessing/buildtree_preparation.py
buildtree_preparation.py
py
4,436
python
en
code
28
github-code
6
[ { "api_name": "sys.argv", "line_number": 25, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 26, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 27, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 28, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 29, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 30, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 31, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 32, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 33, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 34, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 35, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 36, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 37, "usage_type": "attribute" }, { "api_name": "scipy.sparse.sparse.load_npz", "line_number": 40, "usage_type": "call" }, { "api_name": "scipy.sparse.sparse", "line_number": 40, "usage_type": "attribute" }, { "api_name": "scipy.sparse", "line_number": 40, "usage_type": "name" }, { "api_name": "scipy.sparse.sparse.load_npz", "line_number": 41, "usage_type": "call" }, { "api_name": "scipy.sparse.sparse", "line_number": 41, "usage_type": "attribute" }, { "api_name": "scipy.sparse", "line_number": 41, "usage_type": "name" }, { "api_name": "read_write.readffile", "line_number": 42, "usage_type": "call" }, { "api_name": "read_write.readffile", "line_number": 43, "usage_type": "call" }, { "api_name": "read_write.readffile", "line_number": 44, "usage_type": "call" }, { "api_name": "read_write.readffile", "line_number": 45, "usage_type": "call" }, { "api_name": "read_write.readffile", "line_number": 46, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 50, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 51, "usage_type": "call" }, { "api_name": "matlab.engine.engine.start_matlab", "line_number": 52, "usage_type": "call" }, { "api_name": "matlab.engine.engine", "line_number": 52, "usage_type": "attribute" }, { "api_name": "matlab.engine", "line_number": 52, "usage_type": "name" }, { "api_name": "os.chdir", "line_number": 57, "usage_type": "call" }, { "api_name": "read_write.write2file", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 71, "usage_type": "call" }, { "api_name": "numpy.ix_", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.ix_", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 82, "usage_type": "call" }, { "api_name": "read_write.write2file", "line_number": 85, "usage_type": "call" }, { "api_name": "read_write.write2file", "line_number": 86, "usage_type": "call" } ]
25033983488
from django.urls import path from . import views urlpatterns = [ # UI & API hybrid routes path("", views.index, name="index"), path("posts/<int:page>", views.posts, name="posts"), path("following/<int:page>", views.following, name="following"), path("profile/<str:username>/<int:page>", views.profile, name="profile"), path("login", views.login_view, name="login"), path("logout", views.logout_view, name="logout"), path("register", views.register, name="register"), # API routes path("post-edit/<int:post_id>", views.post_edit, name="post_edit"), path("toggle-like/<int:post_id>", views.toggle_like, name="toggle_like"), path("toggle-follow/<int:user_id>", views.toggle_follow, name="toggle_follow"), ]
csloan29/HES-e-33a-web-django
network/network/urls.py
urls.py
py
773
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 16, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 17, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 19, "usage_type": "call" } ]
8410504339
#! /usr/bin/python import logging import os from pathlib import Path import coloredlogs from dotenv import load_dotenv PROJECT_ROOT = Path(__file__).parent.resolve() ##################### # CONFIGURE LOGGING # ##################### LOG_PATH = str(PROJECT_ROOT / "worker.log") logging.basicConfig( filename=LOG_PATH, filemode="a+", format="%(asctime)s,%(msecs)d [%(name)s] %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) coloredlogs.install(fmt="%(asctime)s [%(programname)s] %(levelname)s %(message)s") ################# # ENV VARIABLES # ################# ENV_PATH = str(PROJECT_ROOT / ".env") ENV_LOCAL_PATH = str(PROJECT_ROOT / ".env.local") # load default variables load_dotenv(ENV_PATH) # overide variables with .env.local load_dotenv(ENV_LOCAL_PATH, override=True) ####### # AWS # ####### AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") AWS_REGION_NAME = os.getenv("AWS_REGION_NAME") AWS_BUCKET_NAME = os.getenv("AWS_BUCKET_NAME") ######### # MYSQL # ######### MYSQL_HOST = os.getenv("MYSQL_HOST") MYSQL_USER = os.getenv("MYSQL_USER") MYSQL_PASSWORD = os.getenv("MYSQL_PASSWORD") MYSQL_DB = os.getenv("MYSQL_DB")
darwin403/translate-transcribe-videos
settings.py
settings.py
py
1,222
python
en
code
1
github-code
6
[ { "api_name": "pathlib.Path", "line_number": 10, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 18, "usage_type": "call" }, { "api_name": "coloredlogs.install", "line_number": 24, "usage_type": "call" }, { "api_name": "dotenv.load_dotenv", "line_number": 34, "usage_type": "call" }, { "api_name": "dotenv.load_dotenv", "line_number": 37, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 43, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 44, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 45, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 46, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 52, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 53, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 54, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 55, "usage_type": "call" } ]
6148825082
from selenium import webdriver from time import sleep import selenium from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.select import Select import pandas as pd if __name__ == '__main__': # option=webdriver.ChromeOptions() # option.add_argument("--user-data-dir="+r"C:\\Users\\20142266\\AppData\\Local\\Google\\Chrome\\User Data") # driver = webdriver.Chrome(chrome_options=option) # sleep(2) driver = webdriver.Ie() #driver.get('chrome-extension://hehijbfgiekmjfkfjpbkbammjbdenadd/nhc.htm#url=http://tec.cqccms.com.cn/') driver.get('http://tec.cqccms.com.cn/') sleep(1) js = 'document.getElementById("submitButton").click()' driver.execute_script(js) sleep(1) #driver.find_element_by_id("submitButton").send_keys(Keys.ENTER) #testck.input_windows("核对数字证书口令","") ratio = driver.find_elements_by_tag_name("input") for a in ratio: if a.get_attribute('value') == '4005919': a.click() if a.get_attribute("type") == "submit": a.click() sleep(2) #str = driver.get_cookies() #print(str) #cookie1 = str[0]['value'] #driver.add_cookie({'name': 'JSESSIONID', 'value': cookie1}) URL = "http://tec.cqccms.com.cn/cocComplete!cocCompleteCreate.action?" \ "id=201709291432251U8205&carType=HFC5181XXYP3K1A57S2QV&carCellCode" \ "=2017011101011956&carTypeSeqCode=N36N&carCellId=5636338&collection" \ "=A013551N36NZM95ZZEZ420000901@null@20201105173042786997%3B1@@1@0@5254506@1" driver.get(URL) myselect=driver.find_elements_by_tag_name("select") for i in myselect: if i.get_property("name")=="f3": try: Select(i).select_by_visible_text("5700") except selenium.common.exceptions.NoSuchElementException: Select(i).select_by_index(1) if i.get_property("name")=="f7": try: Select(i).select_by_visible_text("5700") except selenium.common.exceptions.NoSuchElementException: Select(i).select_by_index(1)
YN3359/runoob-git-test
PythonScripts/自动备案COC.py
自动备案COC.py
py
2,122
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.Ie", "line_number": 13, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 13, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 16, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 19, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 28, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.select.Select", "line_number": 42, "usage_type": "call" }, { "api_name": "selenium.common", "line_number": 43, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.support.select.Select", "line_number": 44, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.select.Select", "line_number": 47, "usage_type": "call" }, { "api_name": "selenium.common", "line_number": 48, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.support.select.Select", "line_number": 49, "usage_type": "call" } ]
16543689747
import csv import sys from nuitka.__past__ import StringIO from nuitka.Tracing import my_print from nuitka.utils.Execution import check_output def main(): # many cases, pylint: disable=too-many-branches my_print("Querying openSUSE build service status of Nuitka packages.") # spell-checker: ignore kayhayen osc_cmd = ["osc", "pr", "-c", "home:kayhayen"] stdout_osc = check_output(args=osc_cmd) if str is not bytes: stdout_osc = stdout_osc.decode("utf8") # Response is really a CSV file, so use that for parsing. csv_file = StringIO(stdout_osc) osc_reader = csv.reader(csv_file, delimiter=";") osc_reader = iter(osc_reader) bad = ("failed", "unresolvable", "broken", "blocked") titles = next(osc_reader)[1:] # Nuitka (follow git main branch) row1 = next(osc_reader) # Nuitka-Unstable (follow git develop branch) row2 = next(osc_reader) # Nuitka-Experimental (follow git factory branch) row3 = next(osc_reader) problems = [] def decideConsideration(title, status): # Ignore other arch builds, they might to not even boot at times. # spell-checker: ignore aarch if "ppc" in title or "aarch" in title or "arm" in title: return False # This fails for other reasons often, and is not critical to Nuitka. if "openSUSE_Tumbleweed" in title: return False # Ignore old Fedora and RHEL6 32 bit being blocked. if status == "blocked": if ( "Fedora_2" in title or "RedHat_RHEL-6/i586" in title or "CentOS_CentOS-6/i586" in title ): return False # It makes building visible now, that's not an error of course. if status == "building": return False # It makes need to build visible as well, that too is not an error # really. if status == "outdated": return False return True for count, title in enumerate(titles): status = row1[count + 1] if not decideConsideration(title, status): continue if status in bad: problems.append((row1[0], title, status)) for count, title in enumerate(titles): status = row2[count + 1] if not decideConsideration(title, status): continue if status in bad: problems.append((row2[0], title, status)) for count, title in enumerate(titles): status = row3[count + 1] if not decideConsideration(title, status): continue if status in bad: problems.append((row3[0], title, status)) if problems: my_print("There are problems with:", style="yellow") my_print( "\n".join("%s: %s (%s)" % problem for problem in problems), style="yellow" ) if any(problem[0] == "Nuitka" for problem in problems): my_print( "Check here: https://build.opensuse.org/package/show/home:kayhayen/Nuitka" ) if any(problem[0] == "Nuitka-Unstable" for problem in problems): my_print( "Check here: https://build.opensuse.org/package/show/home:kayhayen/Nuitka-Unstable" ) if any(problem[0] == "Nuitka-experimental" for problem in problems): my_print( "Check here: https://build.opensuse.org/package/show/home:kayhayen/Nuitka-experimental" ) sys.exit(1) else: my_print("Looks good.", style="blue") sys.exit(0) if __name__ == "__main__": main()
Nuitka/Nuitka
nuitka/tools/release/osc_check/__main__.py
__main__.py
py
3,651
python
en
code
10,019
github-code
6
[ { "api_name": "nuitka.Tracing.my_print", "line_number": 12, "usage_type": "call" }, { "api_name": "nuitka.utils.Execution.check_output", "line_number": 17, "usage_type": "call" }, { "api_name": "nuitka.__past__.StringIO", "line_number": 23, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 24, "usage_type": "call" }, { "api_name": "nuitka.Tracing.my_print", "line_number": 99, "usage_type": "call" }, { "api_name": "nuitka.Tracing.my_print", "line_number": 100, "usage_type": "call" }, { "api_name": "nuitka.Tracing.my_print", "line_number": 105, "usage_type": "call" }, { "api_name": "nuitka.Tracing.my_print", "line_number": 110, "usage_type": "call" }, { "api_name": "nuitka.Tracing.my_print", "line_number": 115, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 119, "usage_type": "call" }, { "api_name": "nuitka.Tracing.my_print", "line_number": 121, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 122, "usage_type": "call" } ]
40077076852
#!/usr/bin/python # -*- coding: utf-8 -*- import sys import re import logging from .pushbullet import * class Messenger(object): """docstring for Message""" def __init__(self): #, arg): # super(Message, self).__init__() # self.arg = arg self.ready = False self.message = '' self.error_bag = '' self.result_bag = '' self.pattern_time=re.compile(r'\d{1,2}h:\d{1,2}m:\d{1,2}s:\d{1,4}ms') self.pattern_process = re.compile(r'\([0-9\ ]{0,2}/\w{2}\)') self.pattern_stream = re.compile(r'stream\s+\d{1,2}') self.pattern_long_space = re.compile(r'\s+') def _message_chopper(self,line): if 'Finished' in line: return line else: return def bb_message_chopper(self,line): if 'Load test' in line: if 'finished' in line: try: time = re.search(self.pattern_time,line)[0] except: logging.info('re seach time failed') time = 'TIME SEARH FAILED' message = 'Load finished. Time: '+time return message elif 'Power test' in line: if 'finished' in line: try: time = re.search(self.pattern_time,line)[0] except: time = ' TIME SEARH FAILED ' try: process = re.search(self.pattern_process,line)[0] except: if time: process = ' finished.' else: process = ' PROCESS SEARCH FAILED ' # logging.info('re seach time failed') message = 'Power'+process+' Time: '+time if process == ' finished.': return message elif 'throughput' in line: if 'finished' in line: try: self.pattern_long_space = re.compile(r'\s+') stream_buff = re.search(self.pattern_stream,line)[0] stream = self.pattern_long_space.sub(' ',stream_buff) except : stream ='' try: time = re.search(self.pattern_time,line)[0] except: time = ' TIME SEARH FAILED ' try: process = re.search(self.pattern_process,line)[0] except: if time: process = ' finished.' else: process = ' PROCESS SEARCH FAILED ' # logging.info('re seach time failed') message = 'Throughput '+ stream +process+' Time: '+time # if stream == 'stream 0': if process == ' finished.': return message elif 'benchmark: Stop' in line: if 'finished' in line: try: time = re.search(self.pattern_time,line)[0] except: time = ' TIME SEARH FAILED ' message = 'Benchmark Stop. '+'Time: '+time return message elif 'VALID BBQpm' in line: self.result_bag+=line message = line[:-1] return message elif 'Benchmark run terminated' in line: self.error_bag+=line elif 'Reason:' in line: self.error_bag+=line elif 'No final result available.' in line: self.error_bag+=line message=self.error_bag return message def message_buffer(self, line): if line[-1] == '\n': line_tmp=line[:-1] else: line_tmp=line print(line_tmp) sys.stdout.flush() logging.info(line_tmp) if line!='': message2push=self.bb_message_chopper(line) if message2push: self.message+=message2push self.ready=True if self.ready == True: logging.info('Pushing message...(%s)'%self.message) self.send() def test(self,message='Your network seems good.'): p = PushBullet(USER_API_KEY) try: # Get a list of devices devices = p.getDevices() # print_devices(devices) except: print('You may have a network connection probelem to connect pushbullet.com.') sys.stdout.flush() logging.info('You may have a network connection probelem to connect pushbullet.com.') else: if len(devices)!=0: print_devices(devices) sys.stdout.flush() # Send a note p.pushNote(USER_DEVICE_IDEN, 'Alfred is with you.', message) def send(self): p = PushBullet(USER_API_KEY) try: # Get a list of devices devices = p.getDevices() # devices = 'pass' # print_devices(devices) except: print('You may have a network connection probelem to connect pushbullet.com.') sys.stdout.flush() logging.info('You may have a network connection probelem to connect pushbullet.com.') else: if len(devices)!=0: # Send a note p.pushNote(USER_DEVICE_IDEN, 'News from Alfred', self.message) # print('PUSHING NEWS:%s'%self.message) self.message='' self.ready=False def send_all(self,retry=20): while retry>0 and self.message!='': M.send() retry-=1 logging.info('Remaining Attempts:%d'%retry)
lucy9215/jobNotification
pushbullet/messenger.py
messenger.py
py
5,743
python
en
code
0
github-code
6
[ { "api_name": "re.compile", "line_number": 17, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 18, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 19, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 20, "usage_type": "call" }, { "api_name": "re.search", "line_number": 30, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 32, "usage_type": "call" }, { "api_name": "re.search", "line_number": 39, "usage_type": "call" }, { "api_name": "re.search", "line_number": 43, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 56, "usage_type": "call" }, { "api_name": "re.search", "line_number": 57, "usage_type": "call" }, { "api_name": "re.search", "line_number": 62, "usage_type": "call" }, { "api_name": "re.search", "line_number": 66, "usage_type": "call" }, { "api_name": "re.search", "line_number": 80, "usage_type": "call" }, { "api_name": "sys.stdout.flush", "line_number": 103, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 103, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 104, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 111, "usage_type": "call" }, { "api_name": "sys.stdout.flush", "line_number": 121, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 121, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 122, "usage_type": "call" }, { "api_name": "sys.stdout.flush", "line_number": 126, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 126, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 138, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 138, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 139, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 151, "usage_type": "call" } ]
23307657200
from __future__ import print_function try: # For Python 3.0 and later from urllib.request import urlopen from urllib.request import urlretrieve from urllib import request except ImportError: # Fall back to Python 2's urllib2 from urllib2 import urlopen from urllib import urlretrieve import sys import numpy as np import matplotlib.pyplot as plt import pylab from matplotlib.ticker import MaxNLocator import argparse import os import astropy.wcs from astropy.io import fits from astropy.table import Table from astropy.coordinates import SkyCoord from astropy import units as u from astroquery.gaia import Gaia from astropy.wcs import WCS from astropy.visualization.wcsaxes import SphericalCircle from scipy.ndimage.filters import gaussian_filter import warnings warnings.filterwarnings("ignore") def deg2hour(ra, dec, sep=":"): ''' Transforms the coordinates in degrees into HH:MM:SS DD:MM:SS with the requested separator. ''' if ( type(ra) is str and type(dec) is str ): return ra, dec c = SkyCoord(ra, dec, frame='icrs', unit='deg') ra = c.ra.to_string(unit=u.hourangle, sep=sep, precision=2, pad=True) dec = c.dec.to_string(sep=sep, precision=2, alwayssign=True, pad=True) return str(ra), str(dec) def hour2deg(ra, dec): ''' Transforms string HH:MM:SS DD:MM:SS coordinates into degrees (floats). ''' try: ra = float(ra) dec = float(dec) except: c = SkyCoord(ra, dec, frame='icrs', unit=(u.hourangle, u.deg)) ra = c.ra.deg dec = c.dec.deg return ra, dec def get_offset(ra1, dec1, ra2, dec2): ''' Computes the offset in arcsec between two coordinates. The offset is from (ra1, dec1) - generally an offset star to (ra2, dec2) - the fainter target. ''' from astropy.coordinates import SkyCoord bright_star = SkyCoord(ra1, dec1, frame='icrs', unit=(u.deg, u.deg)) target = SkyCoord(ra2, dec2, frame='icrs', unit=(u.deg, u.deg)) dra, ddec = bright_star.spherical_offsets_to(target) return dra.to(u.arcsec).value, ddec.to(u.arcsec).value def query_sky_mapper_catalogue(ra, dec, radius_deg, minmag=15, maxmag=18.5): ''' Sends a VO query to the SkyMapper catalogue. ''' url = "http://skymapper.anu.edu.au/sm-cone/query?RA=%.6f&DEC=%.6f&SR=%.4f&RESPONSEFORMAT=CSV"%(ra, dec, radius_deg) f = open("/tmp/skymapper_cat.csv", "wb") page = urlopen(url) content = page.read() f.write(content) f.close() # Read RA, Dec and magnitude from CSV catalog = Table.read("/tmp/skymapper_cat.csv", format="ascii.csv") mask = (catalog["class_star"]>0.7) * (catalog["ngood"] >5) * (catalog['r_psf']>minmag) * (catalog['r_psf']<maxmag) catalog = catalog[mask] newcat = np.zeros(len(catalog), dtype=[("ra", np.double), ("dec", np.double), ("mag", np.float)]) newcat["ra"] = catalog["raj2000"] newcat["dec"] = catalog["dej2000"] newcat["mag"] = catalog["r_psf"] return newcat def query_ps1_catalogue(ra, dec, radius_deg, minmag=15, maxmag=18.5): ''' Sends a VO query to the PS1 catalogue. Filters the result by mangitude (between 15 and 18.5) and by the PSF-like shape of the sources. ''' url = "http://gsss.stsci.edu/webservices/vo/CatalogSearch.aspx?CAT=PS1V3OBJECTS&RA=%.5f&DEC=%.5f&SR=%.5f&FORMAT=csv"%(ra, dec, radius_deg) #urllib.urlretrieve(url, "/tmp/ps1_cat.xml") f = open("/tmp/ps1_cat.csv", "wb") try: page = request.urlopen(url) except: page = urlopen(url) content = page.read() f.write(content) f.close() # Read RA, Dec and magnitude from CSV catalog = Table.read("/tmp/ps1_cat.csv", format="ascii.csv", header_start=1) mask = (catalog["nDetections"]>3) * (catalog["rMeanPSFMag"] > minmag) * (catalog["rMeanPSFMag"] < maxmag) *\ (catalog["iMeanPSFMag"] - catalog["iMeanKronMag"] < 0.1) #This last one to select stars. #*(catalog["rMeanPSFMag"] > minmag) * (catalog["rMeanPSFMag"] < maxmag) catalog = catalog[mask] newcat = np.zeros(len(catalog), dtype=[("ra", np.double), ("dec", np.double), ("mag", np.float)]) newcat["ra"] = catalog["RaMean"] newcat["dec"] = catalog["DecMean"] newcat["mag"] = catalog["rMeanPSFMag"] return newcat def query_gaia_catalogue(ra, dec, radius_deg, minmag=15, maxmag=18.5): ''' Sends a VO query to the Gaia catalogue. Filters the result by G mangitude (between minmag and maxmag). ''' query = '''SELECT ra, dec, phot_g_mean_mag FROM gaiaedr3.gaia_source WHERE 1=CONTAINS( POINT('ICRS', %.6f, %.6f), CIRCLE('ICRS',ra, dec, %.6f)) AND phot_g_mean_mag>=%.2d AND phot_g_mean_mag<%.2f'''%(ra, dec, radius_deg, minmag, maxmag) print (query) job = Gaia.launch_job_async(query) #, dump_to_file=True, output_format='votable') catalog = job.get_results() newcat = np.zeros(len(catalog), dtype=[("ra", np.double), ("dec", np.double), ("mag", np.float)]) newcat["ra"] = catalog["ra"] newcat["dec"] = catalog["dec"] newcat["mag"] = catalog["phot_g_mean_mag"] return newcat def get_fits_image(ra, dec, rad, debug=True): ''' Connects to the PS1 or SkyMapper image service to retrieve the fits file to be used as a bse for the finder chart. ''' #If dec> -30, we have Pan-STARRS if dec > -30: # Construct URL to download Pan-STARRS image cutout, and save to tmp.fits # First find the index of images and retrieve the file of the image that we want to use. image_index_url = 'http://ps1images.stsci.edu/cgi-bin/ps1filenames.py?ra={0}&dec={1}&filters=r'.format(ra, dec) urlretrieve(image_index_url, '/tmp/ps1_image_index.txt') ix = Table.read('/tmp/ps1_image_index.txt', format="ascii") f = ix['filename'].data[0] image_url = "http://ps1images.stsci.edu/cgi-bin/fitscut.cgi?red={0}&format=fits&size={1}&ra={2}&dec={3}".format(f, int(np.round(rad*3600*8, 0)), ra, dec) if (debug): print ("URL:", image_url) print ("Downloading PS1 r-band image...") #Store the object to a fits file. urlretrieve(image_url, '/tmp/tmp.fits') #Otherwise, we have SkyMapper else: url="http://skymappersiap.asvo.nci.org.au/dr1_cutout/query?POS=%.6f,%.6f&SIZE=%.3f&FORMAT=image/fits&INTERSECT=center&RESPONSEFORMAT=CSV"%(ra, dec, rad*2) page = urlopen(url) content = page.read() f = open("/tmp/skymapper_image_index.csv", "wb") f.write(content) f.close() ix = Table.read('/tmp/skymapper_image_index.csv', format="ascii.csv") mask = ((ix['band']=='r')|(ix['band']=='g')) ix = ix[mask] ix.sort(keys='exptime') image_url = ix['get_image'][-1] urlretrieve(image_url, '/tmp/tmp.fits') #Finally, once we have Pan-STARRS or SkyMapper images, we try to open them. #If there has been any problem with that, we will just go to the DSS image service. try: image = fits.open("/tmp/tmp.fits") #If everything went well, it shall be a fits image and opening it shall cause no issue. return '/tmp/tmp.fits' #If there was an error with the fits, we shall go for the DSS image except IOError: #One of the services may fail, so we need to account for that and provide a backup DSS image service. try: image_url = 'http://archive.eso.org/dss/dss/image?ra=%.5f&dec=%.5f&x=%.2f&y=%.2f&Sky-Survey=DSS1&mime-type=download-fits' % \ ((ra), (dec), (rad*60), (rad*60)) if debug: print ("Downloading DSS image...") urlretrieve(image_url, '/tmp/tmp.fits') except: image_url = 'http://archive.stsci.edu/cgi-bin/dss_search?ra=%.6f&dec=%.6f&generation=DSS2r&equinox=J2000&height=%.4f&width=%.4f&format=FITS' % \ (ra, dec, rad*60, rad*60) urlretrieve(image_url, '/tmp/tmp.fits') #We try one more time to open it. If not successful, we return None as the image filename. try: fits.open("/tmp/tmp.fits") except IOError: print ("Your fits image could not be retrieved.") return None def get_cutout(ra, dec, name, rad, debug=True): ''' Obtains the color composite cutout from the PS1 images. ''' try: ra=float(ra) dec=float(dec) except: ra, dec = hour2deg(ra, dec) catalog = query_ps1_catalogue(ra, dec, rad) if (debug): print (catalog) # Construct URL to download DSS image cutout, and save to tmp.fits image_index_url_red = 'http://ps1images.stsci.edu/cgi-bin/ps1filenames.py?ra={0}&dec={1}&filters=y'.format(ra, dec) image_index_url_green = 'http://ps1images.stsci.edu/cgi-bin/ps1filenames.py?ra={0}&dec={1}&filters=i'.format(ra, dec) image_index_url_blue = 'http://ps1images.stsci.edu/cgi-bin/ps1filenames.py?ra={0}&dec={1}&filters=g'.format(ra, dec) urlretrieve(image_index_url_red, '/tmp/image_index_red.txt') urlretrieve(image_index_url_green, '/tmp/image_index_green.txt') urlretrieve(image_index_url_blue, '/tmp/image_index_blue.txt') ix_red = np.genfromtxt('/tmp/image_index_red.txt', names=True, dtype=None) ix_green = np.genfromtxt('/tmp/image_index_green.txt', names=True, dtype=None) ix_blue = np.genfromtxt('/tmp/image_index_blue.txt', names=True, dtype=None) image_url = "http://ps1images.stsci.edu/cgi-bin/fitscut.cgi?red=%s&green=%s&blue=%s&filetypes=stack&auxiliary=data&size=%d&ra=%.6f&dec=%.6f&output_size=256"%\ (ix_red["filename"], ix_green["filename"], ix_blue["filename"], rad*3600*4, ra, dec) if (debug): print (image_url) print ("Downloading PS1 r-band image...") urlretrieve(image_url, '/tmp/tmp_%s.jpg'%name) def get_finder(ra, dec, name, rad, debug=False, starlist=None, print_starlist=True, \ telescope="P200", directory=".", minmag=15, maxmag=18.5, mag=np.nan, image_file=None): ''' Creates a PDF with the finder chart for the object with the specified name and coordinates. It queries the PS1 catalogue to obtain nearby offset stars and get an R-band image as background. Parameters ---------- ra : float RA of our target in degrees. dec : float DEC of our target in degrees. name : str The name of your target rad : float Search radius for the finder in degrees. debug : bool (optional) Option to activate/ deactivate additional output. starlist : str (optional) Path/name of the file where the coordinates for the object are going to be saved. If the file exists, the content will be appended at the end. If no value is provided, the output just writes to the standard output (in case print_starlist is True). print_starlist : boolean (optional) Indicates if the starlist shall be printed in the standard output. telescope : str (optional) The current accepted values are "Keck", "P200", "Calar". directory : str (optional) The directory where the PDF with the finder chart shall be stored. If no value given, the file will be store in the current directory where the script is run. minmag : float (optional) The minimum magnitud (brightest in this case) star that we would like to use as an offset star. maxmag : float (optional) The maximum magnitude (faintest) star that we would like to use as an offset star. mag : float or `None` (optional) The magnitude of our target. image_file : str (optional) The name of the fits file that you want to use as a background to your finder chart. If none, provided, the script will automatically look for imaging catalogues: PS1 (North), SkyMapper (South), or DSS ''' print ("Got it") try: ra=float(ra) dec=float(dec) except: ra, dec = hour2deg(ra, dec) print ('Image file:', image_file) #If no custom fits image is provided, we query for one from PS1/DSS/SkyMapper if image_file is None: image_file = get_fits_image(ra, dec, rad, debug=debug) image = fits.open(image_file) wcs = astropy.wcs.WCS(image[0].header) else: print ('Reading custom fits') image = fits.open(image_file) # Get pixel coordinates of SN, reference stars in DSS image wcs = astropy.wcs.WCS(fits.open(image_file)[0].header) try: image[0].data = np.rot90(np.rot90(image[0].data)) except ValueError: print ('Rotation failed') if image_file is None or image is None: print ("FATAL ERROR! Your FITS image could not be retrieved.") return # Plot finder chart #Adjust some of the counts to make easier the plotting. image[0].data[image[0].data>20000] = 20000 image[0].data[np.isnan(image[0].data)] = 0 plt.figure(figsize=(8, 6)) plt.set_cmap('gray_r') smoothedimage = gaussian_filter(image[0].data, 1.1) hdu = fits.open(image_file)[0] wcs = WCS(hdu.header) plt.subplot(projection=wcs) #plt.imshow(hdu.data, vmin=-2.e-5, vmax=2.e-4, origin='lower') plt.grid(color='white', ls='solid') plt.imshow(smoothedimage, origin='lower',vmin=np.percentile(smoothedimage.flatten(), 1), \ vmax=np.percentile(smoothedimage.flatten(), 99)) #Mark target in green ax = plt.gca() r = SphericalCircle((ra * u.deg, dec * u.deg), 2 * u.arcsec, edgecolor='green', facecolor='none', transform=ax.get_transform('fk5')) ax.add_patch(r) #Write the name of the target plt.annotate(name, xy=(ra, dec), xycoords='data', xytext=(0.55, 0.5), textcoords='axes fraction', color="g") # Plot compass plt.plot([(image[0].data.shape[0])-10,(image[0].data.shape[0]-40)],[10,10], 'k-', lw=2) plt.plot([(image[0].data.shape[0])-10,(image[0].data.shape[0])-10],[10,40], 'k-', lw=2) plt.annotate("N", xy=((image[0].data.shape[0])-20, 40), xycoords='data', xytext=(-4,5), textcoords='offset points') plt.annotate("E", xy=((image[0].data.shape[0])-40, 20), xycoords='data', xytext=(-12,-5), textcoords='offset points') ax.set_xlabel('%.1f\''%(rad*60*2)) ax.set_ylabel('%.1f\''%(rad*60*2)) #Queries a catalogue to get the offset stars try: catalog = query_gaia_catalogue(ra, dec, rad, minmag=minmag, maxmag=maxmag) except Exception as e: print(e) catalog = [] if len(catalog)==0: try: if dec < -30: catalog = query_sky_mapper_catalogue(ra, dec, (rad)*0.95, minmag=minmag, maxmag=maxmag) else: catalog = query_ps1_catalogue(ra, dec, (rad)*0.95, minmag=minmag, maxmag=maxmag) except Exception as e: print(e) catalog = [] if (debug): print ("Catalog of %d stars retrieved"%len(catalog), catalog) #Possible ways to get more stars if we find nothing in the specified range. '''if (len(catalog)<3): if debug: print ("Looking for a bit fainter stars up to mag: %.2f"%(maxmag+0.25)) catalog = query_ps1_catalogue(ra, dec, (rad/2.)*0.95, minmag=minmag, maxmag=maxmag+0.5) if (len(catalog)<3): print ("Restarting with larger radius %.2f arcmin"%(rad*60+0.5)) get_finder(ra, dec, name, rad+0.5/60, directory=directory, minmag=minmag, \ maxmag=maxmag+0.5, mag=mag, starlist=starlist, telescope=telescope, image_file=image_file) return''' if (not catalog is None and len(catalog)>0): np.random.shuffle(catalog) no_self_object = (np.abs(catalog["ra"]-ra)*np.cos(np.deg2rad(dec))>2./3600)*(np.abs(catalog["dec"]-dec)>2./3600) catalog = catalog[no_self_object] #catalog.sort(order='mag') if (debug): print ("Once removed the object", catalog) if (len(catalog)>0): ref1_pix = wcs.wcs_world2pix(np.array([[catalog["ra"][0], catalog["dec"][0]]], np.float_), 1) if (len(catalog)>1): ref2_pix = wcs.wcs_world2pix(np.array([[catalog["ra"][1], catalog["dec"][1]]], np.float_), 1) # Mark and label reference stars #If we have 1, we mark it if (len(catalog)>0): s1ra = catalog[0]["ra"] s1dec = catalog[0]["dec"] s1= SphericalCircle(( s1ra* u.deg, s1dec* u.deg), 2 * u.arcsec, edgecolor='b', facecolor='none', transform=ax.get_transform('fk5')) ax.add_patch(s1) plt.annotate("S1", xy=(ref1_pix[0][0]+3, ref1_pix[0][1]+3), xycoords='data', color="b") #IFfwe have 2, we mark them as well if (len(catalog)>1): s2ra = catalog[1]["ra"] s2dec = catalog[1]["dec"] s2= SphericalCircle(( s2ra* u.deg, s2dec* u.deg), 2 * u.arcsec, edgecolor='r', facecolor='none', transform=ax.get_transform('fk5')) ax.add_patch(s2) plt.annotate("S2", xy=(ref2_pix[0][0]+3, ref2_pix[0][1]+3), xycoords='data', color="r") # Set size of window (leaving space to right for ref star coords) plt.subplots_adjust(right=0.65,left=0.1, top=0.99, bottom=0.01) #Write the starlist #If no magnitude was supplied, just do not put it on the chart. if not np.isnan(mag): target_mag = "mag=%.2f"%mag else: target_mag = "" # List name, coords, mag of references etc plt.text(1.02, 0.85, name, fontweight='bold', transform=ax.transAxes) plt.text(1.02, 0.85, name, transform=ax.transAxes, fontweight='bold') plt.text(1.02, 0.80, "%s"%target_mag, transform=ax.transAxes, fontweight='bold') plt.text(1.02, 0.75, "%.5f %.5f"%(ra, dec),transform=ax.transAxes) rah, dech = deg2hour(ra, dec) plt.text(1.02, 0.7,rah+" "+dech, transform=ax.transAxes) #Put the text for the offset stars. if (len(catalog)>0): ofR1 = get_offset(catalog["ra"][0], catalog["dec"][0], ra, dec) S1 = deg2hour(catalog["ra"][0], catalog["dec"][0], sep=":") plt.text(1.02, 0.60,'S1, mag=%.2f'%catalog["mag"][0], transform=ax.transAxes, color="b") plt.text(1.02, 0.55,'%s %s'%(S1[0], S1[1]), transform=ax.transAxes, color="b") plt.text(1.02, 0.5,"E: %.2f N: %.2f"%(ofR1[0], ofR1[1]),transform=ax.transAxes, color="b") if (len(catalog)>1): ofR2 = get_offset(catalog["ra"][1], catalog["dec"][1], ra, dec) S2 = deg2hour(catalog["ra"][1], catalog["dec"][1], sep=":") plt.text(1.02, 0.4,'RS, mag=%.2f'%catalog["mag"][1], transform=ax.transAxes, color="r") plt.text(1.02, 0.35,'%s %s'%(S2[0], S2[1]), transform=ax.transAxes, color="r") plt.text(1.02, 0.3,"E: %.2f N: %.2f"%(ofR2[0], ofR2[1]),transform=ax.transAxes, color="r") #Print starlist in the right format for each telescope if telescope == "Keck": commentchar = "#" separator = "" if telescope == "P200": commentchar = "!" separator = "!" if telescope == "Calar": commentchar = "|" separator = "|" if (len(catalog)>0 and (print_starlist or not starlist is None)): ra_h, dec_h = deg2hour(ra, dec, sep=":") print ( "%s %s %s %s %s %s %s %s %s"%("# Object".ljust(20), separator, "alpha".ljust(11), separator, "delta".ljust(12), separator, "eq".ljust(6), separator, "camp de format lliure") ) print ( "%s %s %s %s %s %s 2000.0 %s"%(name.ljust(20), separator, ra_h, separator, dec_h, separator, commentchar) ) S1 = deg2hour(catalog["ra"][0], catalog["dec"][0], sep=":") print ( "{:s} {:s} {:s} {:s} {:s} {:s} 2000.0 {:s} raoffset={:.2f} decoffset={:.2f} r={:.1f} ".format((name+"_S1").ljust(20), separator, S1[0], separator, S1[1], separator, commentchar, ofR1[0], ofR1[1], catalog["mag"][0]) ) if (len(catalog)>1 and (print_starlist or not starlist is None)): S2 = deg2hour(catalog["ra"][1], catalog["dec"][1], sep=":") print ( "{:s} {:s} {:s} {:s} {:s} {:s} 2000.0 {:s} raoffset={:.2f} decoffset={:.2f} r={:.1f} ".format((name+"_S2").ljust(20), separator, S2[0], separator, S2[1], separator, commentchar, ofR2[0], ofR2[1], catalog["mag"][1]) ) r, d = deg2hour(ra, dec, sep=" ") #Write to the starlist if the name of the starlist was provided. if (not starlist is None) and (telescope =="Keck"): with open(starlist, "a") as f: f.write( "{0} {1} {2} 2000.0 # {3} \n".format(name.ljust(17), r, d, target_mag) ) if (len(catalog)>0): f.write ( "{:s} {:s} {:s} 2000.0 raoffset={:.2f} decoffset={:.2f} r={:.1f} # \n".format( (name+"_S1").ljust(17), S1[0], S1[1], ofR1[0], ofR1[1], catalog["mag"][0])) if (len(catalog)>1): f.write ( "{:s} {:s} {:s} 2000.0 raoffset={:.2f} decoffset={:.2f} r={:.1f} # \n".format( (name+"_S2").ljust(17), S2[0], S2[1], ofR2[0], ofR2[1], catalog["mag"][1])) f.write('\n') if (not starlist is None) and (telescope =="P200"): with open(starlist, "a") as f: f.write( "{0} {1} {2} 2000.0 ! {3}\n".format(name.ljust(19), r, d, target_mag) ) if (len(catalog)>0): f.write ( "{:s} {:s} {:s} 2000.0 ! raoffset={:.2f} decoffset={:.2f} r={:.1f} \n".format( (name+"_S1").ljust(19), S1[0], S1[1], ofR1[0], ofR1[1], catalog["mag"][0])) if (len(catalog)>1): f.write ( "{:s} {:s} {:s} 2000.0 ! raoffset={:.2f} decoffset={:.2f} r={:.1f} \n".format( (name+"_S2").ljust(19), S2[0], S2[1], ofR2[0], ofR2[1], catalog["mag"][1])) f.write('\n') if (not starlist is None) and (telescope =="Calar"): with open(starlist, "a") as f: f.write( "{0} {1} {2} %s 2000.0 %s {3}\n".format(separator, separator, name.ljust(19), r, d, target_mag) ) if (len(catalog)>0): f.write ( "{:s} {:s} {:s} %s 2000.0 %s raoffset={:.2f} decoffset={:.2f} r={:.1f} \n".format( (name+"_S1").ljust(19), separator, S1[0], separator, S1[1], ofR1[0], ofR1[1], catalog["mag"][0])) if (len(catalog)>1): f.write ( "{:s} {:s} {:s} %s 2000.0 %s raoffset={:.2f} decoffset={:.2f} r={:.1f} \n".format( (name+"_S2").ljust(19), separator, S2[0], separator, S2[1], ofR2[0], ofR2[1], catalog["mag"][1])) f.write('\n') # Save to pdf pylab.savefig(os.path.join(directory, str(name+'_finder.pdf'))) if debug: print ("Saved to %s"%os.path.join(directory, str(name+'_finder.pdf'))) pylab.close("all") if __name__ == '__main__': parser = argparse.ArgumentParser(description=\ ''' Creates the finder chart for the given RA, DEC and NAME. Usage: finder.py <RA> <Dec> <Name> <rad [deg]> <telescope [P200|Keck]> ''', formatter_class=argparse.RawTextHelpFormatter) print ("Usage: finder_chart.py <RA> <Dec> <Name> <rad [deg]> <telescope [P200|Keck]>") #Check if correct number of arguments are given if len(sys.argv) < 4: print ("Not enough parameters given. Please, provide at least: finder_chart.py <RA> <Dec> <Name>") sys.exit() ra = float(sys.argv[1]) dec = float(sys.argv[2]) name = str(sys.argv[3]) if (len(sys.argv)>=5): rad = float(sys.argv[4]) if (rad > 15./60): print ('Requested search radius of %.2f arcmin is larger than 15 arcmin. Not sure why you need such a large finder chart... reducing to 10 armin for smoother operations...'%(rad * 60)) rad = 10./60 else: rad = 2./60 print ('Using search radius of %.1f arcsec.'%(rad*3600)) if (len(sys.argv)>5): telescope = sys.argv[5] else: telescope = "P200" print ('Assuming that the telescope you observe will be P200. If it is "Keck", please specify otherwise.') get_finder(ra, dec, name, rad, telescope=telescope, debug=False, minmag=7, maxmag=15)
nblago/utils
src/utils/finder_chart.py
finder_chart.py
py
24,759
python
en
code
2
github-code
6
[ { "api_name": "warnings.filterwarnings", "line_number": 31, "usage_type": "call" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 41, "usage_type": "call" }, { "api_name": "astropy.units.hourangle", "line_number": 43, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 43, "usage_type": "name" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 58, "usage_type": "call" }, { "api_name": "astropy.units.hourangle", "line_number": 58, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 58, "usage_type": "name" }, { "api_name": "astropy.units.deg", "line_number": 58, "usage_type": "attribute" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 73, "usage_type": "call" }, { "api_name": "astropy.units.deg", "line_number": 73, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 73, "usage_type": "name" }, { "api_name": "astropy.coordinates.SkyCoord", "line_number": 74, "usage_type": "call" }, { "api_name": "astropy.units.deg", "line_number": 74, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 74, "usage_type": "name" }, { "api_name": "astropy.units.arcsec", "line_number": 77, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 77, "usage_type": "name" }, { "api_name": "urllib2.urlopen", "line_number": 87, "usage_type": "call" }, { "api_name": "astropy.table.Table.read", "line_number": 93, "usage_type": "call" }, { "api_name": "astropy.table.Table", "line_number": 93, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.double", "line_number": 98, "usage_type": "attribute" }, { "api_name": "numpy.float", "line_number": 98, "usage_type": "attribute" }, { "api_name": "urllib.request.urlopen", "line_number": 119, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 119, "usage_type": "name" }, { "api_name": "urllib2.urlopen", "line_number": 121, "usage_type": "call" }, { "api_name": "astropy.table.Table.read", "line_number": 128, "usage_type": "call" }, { "api_name": "astropy.table.Table", "line_number": 128, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 137, "usage_type": "call" }, { "api_name": "numpy.double", "line_number": 137, "usage_type": "attribute" }, { "api_name": "numpy.float", "line_number": 137, "usage_type": "attribute" }, { "api_name": "astroquery.gaia.Gaia.launch_job_async", "line_number": 158, "usage_type": "call" }, { "api_name": "astroquery.gaia.Gaia", "line_number": 158, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 163, "usage_type": "call" }, { "api_name": "numpy.double", "line_number": 163, "usage_type": "attribute" }, { "api_name": "numpy.float", "line_number": 163, "usage_type": "attribute" }, { "api_name": "urllib.urlretrieve", "line_number": 180, "usage_type": "call" }, { "api_name": "astropy.table.Table.read", "line_number": 181, "usage_type": "call" }, { "api_name": "astropy.table.Table", "line_number": 181, "usage_type": "name" }, { "api_name": "numpy.round", "line_number": 184, "usage_type": "call" }, { "api_name": "urllib.urlretrieve", "line_number": 190, "usage_type": "call" }, { "api_name": "urllib2.urlopen", "line_number": 196, "usage_type": "call" }, { "api_name": "astropy.table.Table.read", "line_number": 202, "usage_type": "call" }, { "api_name": "astropy.table.Table", "line_number": 202, "usage_type": "name" }, { "api_name": "urllib.urlretrieve", "line_number": 210, "usage_type": "call" }, { "api_name": "astropy.io.fits.open", "line_number": 217, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 217, "usage_type": "name" }, { "api_name": "urllib.urlretrieve", "line_number": 228, "usage_type": "call" }, { "api_name": "urllib.urlretrieve", "line_number": 232, "usage_type": "call" }, { "api_name": "astropy.io.fits.open", "line_number": 236, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 236, "usage_type": "name" }, { "api_name": "urllib.urlretrieve", "line_number": 264, "usage_type": "call" }, { "api_name": "urllib.urlretrieve", "line_number": 265, "usage_type": "call" }, { "api_name": "urllib.urlretrieve", "line_number": 266, "usage_type": "call" }, { "api_name": "numpy.genfromtxt", "line_number": 268, "usage_type": "call" }, { "api_name": "numpy.genfromtxt", "line_number": 269, "usage_type": "call" }, { "api_name": "numpy.genfromtxt", "line_number": 270, "usage_type": "call" }, { "api_name": "urllib.urlretrieve", "line_number": 278, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 282, "usage_type": "attribute" }, { "api_name": "astropy.io.fits.open", "line_number": 334, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 334, "usage_type": "name" }, { "api_name": "astropy.wcs.wcs.WCS", "line_number": 335, "usage_type": "call" }, { "api_name": "astropy.wcs.wcs", "line_number": 335, "usage_type": "attribute" }, { "api_name": "astropy.wcs", "line_number": 335, "usage_type": "name" }, { "api_name": "astropy.io.fits.open", "line_number": 338, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 338, "usage_type": "name" }, { "api_name": "astropy.wcs.wcs.WCS", "line_number": 340, "usage_type": "call" }, { "api_name": "astropy.wcs.wcs", "line_number": 340, "usage_type": "attribute" }, { "api_name": "astropy.wcs", "line_number": 340, "usage_type": "name" }, { "api_name": "astropy.io.fits.open", "line_number": 340, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 340, "usage_type": "name" }, { "api_name": "numpy.rot90", "line_number": 343, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 357, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 360, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 360, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.set_cmap", "line_number": 361, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 361, "usage_type": "name" }, { "api_name": "scipy.ndimage.filters.gaussian_filter", "line_number": 362, "usage_type": "call" }, { "api_name": "astropy.io.fits.open", "line_number": 364, "usage_type": "call" }, { "api_name": "astropy.io.fits", "line_number": 364, "usage_type": "name" }, { "api_name": "astropy.wcs.WCS", "line_number": 365, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 367, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 367, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 369, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 369, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 370, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 370, "usage_type": "name" }, { "api_name": "numpy.percentile", "line_number": 370, "usage_type": "call" }, { "api_name": "numpy.percentile", "line_number": 371, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 374, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 374, "usage_type": "name" }, { "api_name": "astropy.visualization.wcsaxes.SphericalCircle", "line_number": 375, "usage_type": "call" }, { "api_name": "astropy.units.deg", "line_number": 375, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 375, "usage_type": "name" }, { "api_name": "astropy.units.arcsec", "line_number": 375, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.annotate", "line_number": 380, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 380, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 383, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 383, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 384, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 384, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.annotate", "line_number": 385, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 385, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.annotate", "line_number": 386, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 386, "usage_type": "name" }, { "api_name": "numpy.random.shuffle", "line_number": 425, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 425, "usage_type": "attribute" }, { "api_name": "numpy.abs", "line_number": 427, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 427, "usage_type": "call" }, { "api_name": "numpy.deg2rad", "line_number": 427, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 436, "usage_type": "call" }, { "api_name": "numpy.float_", "line_number": 436, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 438, "usage_type": "call" }, { "api_name": "numpy.float_", "line_number": 438, "usage_type": "attribute" }, { "api_name": "astropy.visualization.wcsaxes.SphericalCircle", "line_number": 445, "usage_type": "call" }, { "api_name": "astropy.units.deg", "line_number": 445, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 445, "usage_type": "name" }, { "api_name": "astropy.units.arcsec", "line_number": 445, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.annotate", "line_number": 449, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 449, "usage_type": "name" }, { "api_name": "astropy.visualization.wcsaxes.SphericalCircle", "line_number": 455, "usage_type": "call" }, { "api_name": "astropy.units.deg", "line_number": 455, "usage_type": "attribute" }, { "api_name": "astropy.units", "line_number": 455, "usage_type": "name" }, { "api_name": "astropy.units.arcsec", "line_number": 455, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.annotate", "line_number": 460, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 460, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots_adjust", "line_number": 463, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 463, "usage_type": "name" }, { "api_name": "numpy.isnan", "line_number": 468, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.text", "line_number": 475, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 475, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 477, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 477, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 478, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 478, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 479, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 479, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 481, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 481, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 489, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 489, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 490, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 490, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 491, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 491, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 497, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 497, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 498, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 498, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.text", "line_number": 499, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 499, "usage_type": "name" }, { "api_name": "pylab.savefig", "line_number": 561, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 561, "usage_type": "call" }, { "api_name": "os.path", "line_number": 561, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 562, "usage_type": "call" }, { "api_name": "os.path", "line_number": 562, "usage_type": "attribute" }, { "api_name": "pylab.close", "line_number": 563, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 568, "usage_type": "call" }, { "api_name": "argparse.RawTextHelpFormatter", "line_number": 575, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 581, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 583, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 585, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 586, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 587, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 588, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 589, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 599, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 600, "usage_type": "attribute" } ]
14927451670
import tkinter as tk from tkinter import filedialog, simpledialog, messagebox, Scale, HORIZONTAL from tkinter.ttk import Notebook from PIL import Image, ImageTk import random import os import shutil import zipfile import json class TraitBubble: def __init__(self, canvas, trait_name, x, y, prob_scale): self.canvas = canvas self.trait_name = trait_name self.x = x self.y = y self.prob_scale = prob_scale self.radius = 25 self.bubble_id = self.canvas.create_oval( self.x - self.radius, self.y - self.radius, self.x + self.radius, self.y + self.radius, fill="white", outline="black" ) self.text_id = self.canvas.create_text( self.x, self.y - self.radius - 15, text=self.trait_name, fill="black", font=("Arial", 10, "bold") ) self.canvas.tag_bind(self.bubble_id, "<Button-1>", self.start_drag) self.canvas.tag_bind(self.bubble_id, "<B1-Motion>", self.move_drag) self.canvas.tag_bind(self.bubble_id, "<ButtonRelease-1>", self.stop_drag) self.canvas.tag_bind(self.bubble_id, "<Double-Button-1>", self.delete_bubble) def start_drag(self, event): self.drag_data = {"x": event.x, "y": event.y} def move_drag(self, event): dx = event.x - self.drag_data["x"] dy = event.y - self.drag_data["y"] self.canvas.move(self.bubble_id, dx, dy) self.canvas.move(self.text_id, dx, dy) self.x += dx self.y += dy self.drag_data["x"] = event.x self.drag_data["y"] = event.y def stop_drag(self, event): self.drag_data = None def delete_bubble(self, event): self.canvas.delete(self.bubble_id) self.canvas.delete(self.text_id) self.prob_scale.destroy() class NFTGeneratorApp: def __init__(self, root): self.root = root self.root.title("NFT Generator") self.trait_categories = {} self.trait_bubbles = [] self.generated_images = [] self.num_nfts = 1 self.unique_combinations = set() # Create and configure the UI elements self.trait_label = tk.Label(self.root, text="Trait Categories:") self.trait_label.pack() self.trait_buttons_frame = tk.Frame(self.root) self.trait_buttons_frame.pack() self.add_trait_button = tk.Button(self.root, text="Add Trait Category", command=self.add_trait_category) self.add_trait_button.pack() self.generate_label = tk.Label(self.root, text="Number of NFTs to Generate:") self.generate_label.pack() self.generate_entry = tk.Entry(self.root) self.generate_entry.insert(tk.END, "1") self.generate_entry.pack() self.generate_button = tk.Button(self.root, text="Generate NFT", command=self.generate_nft) self.generate_button.pack() self.download_button = tk.Button(self.root, text="Download All NFTs", command=self.download_nfts) self.download_button.pack() self.notebook = Notebook(self.root) self.notebook.pack() self.canvas = tk.Canvas(self.root, width=500, height=500) self.canvas.pack() def add_trait_category(self): trait_category = simpledialog.askstring("Add Trait Category", "Enter the name of the trait category:") if trait_category: folder_path = filedialog.askdirectory(title="Select Folder for {}".format(trait_category)) if folder_path: self.trait_categories[trait_category] = self.get_valid_image_files(folder_path) self.create_trait_bubbles(trait_category) def create_trait_bubbles(self, trait_category): x = 60 y = len(self.trait_bubbles) * 60 + 60 prob_scale = Scale(self.root, from_=0, to=100, orient=HORIZONTAL, length=100) prob_scale.set(50) prob_scale.pack() bubble = TraitBubble(self.canvas, trait_category, x, y, prob_scale) self.trait_bubbles.append(bubble) def generate_nft(self): self.num_nfts = int(self.generate_entry.get()) if self.trait_bubbles and self.num_nfts > 0: self.generated_images = [] for _ in range(self.num_nfts): traits_used = [] layers = sorted(self.trait_bubbles, key=lambda bubble: bubble.y) base_image = Image.new("RGBA", (400, 400)) for bubble in layers: trait_category = bubble.trait_name if random.randint(1, 100) <= bubble.prob_scale.get(): trait_image = self.get_random_image(self.trait_categories[trait_category]) traits_used.append((trait_category, trait_image)) trait_image = trait_image.resize((400, 400)) base_image = Image.alpha_composite(base_image, trait_image) trait_combination = frozenset(traits_used) if trait_combination not in self.unique_combinations: self.generated_images.append((base_image, traits_used)) self.unique_combinations.add(trait_combination) self.add_preview(base_image, traits_used) def get_valid_image_files(self, folder_path): valid_extensions = [".png", ".jpg", ".jpeg", ".gif"] image_files = [] for root, dirs, files in os.walk(folder_path): for file in files: _, ext = os.path.splitext(file) if ext.lower() in valid_extensions: image_files.append(os.path.join(root, file)) return image_files def get_random_image(self, image_list): return Image.open(random.choice(image_list)).convert("RGBA") def add_preview(self, image, traits_used): image = image.resize((200, 200)) photo = ImageTk.PhotoImage(image) frame = tk.Frame(self.notebook) label = tk.Label(frame, image=photo) label.image = photo label.pack() text = tk.Text(frame, height=5, width=30) text.pack() text.insert(tk.END, json.dumps({trait: str(image) for trait, image in traits_used}, indent=4)) self.notebook.add(frame, text=f"NFT #{len(self.generated_images)}") def download_nfts(self): if self.generated_images: folder_path = filedialog.askdirectory(title="Select Folder to Save NFTs") if folder_path: zip_path = os.path.join(folder_path, "nfts.zip") with zipfile.ZipFile(zip_path, "w", compression=zipfile.ZIP_DEFLATED, compresslevel=9) as zip_file: for index, (image, traits) in enumerate(self.generated_images): image_path = os.path.join(folder_path, f"nft_{index + 1}.png") image.save(image_path, "PNG", compress_level=9) zip_file.write(image_path, f"nft_{index + 1}.png") os.remove(image_path) metadata = {trait: str(img) for trait, img in traits} metadata_path = os.path.join(folder_path, f"metadata_{index + 1}.json") with open(metadata_path, "w") as f: json.dump(metadata, f, indent=4) zip_file.write(metadata_path, f"metadata_{index + 1}.json") os.remove(metadata_path) messagebox.showinfo("Download Complete", "All NFTs and metadata have been downloaded as a zip file.") if __name__ == "__main__": root = tk.Tk() app = NFTGeneratorApp(root) root.mainloop()
net1ife/NFT-generation
v0.py
v0.py
py
7,914
python
en
code
0
github-code
6
[ { "api_name": "tkinter.Label", "line_number": 67, "usage_type": "call" }, { "api_name": "tkinter.Frame", "line_number": 70, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 73, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 76, "usage_type": "call" }, { "api_name": "tkinter.Entry", "line_number": 79, "usage_type": "call" }, { "api_name": "tkinter.END", "line_number": 80, "usage_type": "attribute" }, { "api_name": "tkinter.Button", "line_number": 83, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 86, "usage_type": "call" }, { "api_name": "tkinter.ttk.Notebook", "line_number": 89, "usage_type": "call" }, { "api_name": "tkinter.Canvas", "line_number": 92, "usage_type": "call" }, { "api_name": "tkinter.simpledialog.askstring", "line_number": 96, "usage_type": "call" }, { "api_name": "tkinter.simpledialog", "line_number": 96, "usage_type": "name" }, { "api_name": "tkinter.filedialog.askdirectory", "line_number": 98, "usage_type": "call" }, { "api_name": "tkinter.filedialog", "line_number": 98, "usage_type": "name" }, { "api_name": "tkinter.Scale", "line_number": 106, "usage_type": "call" }, { "api_name": "tkinter.HORIZONTAL", "line_number": 106, "usage_type": "name" }, { "api_name": "PIL.Image.new", "line_number": 122, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 122, "usage_type": "name" }, { "api_name": "random.randint", "line_number": 126, "usage_type": "call" }, { "api_name": "PIL.Image.alpha_composite", "line_number": 130, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 130, "usage_type": "name" }, { "api_name": "os.walk", "line_number": 142, "usage_type": "call" }, { "api_name": "os.path.splitext", "line_number": 144, "usage_type": "call" }, { "api_name": "os.path", "line_number": 144, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 146, "usage_type": "call" }, { "api_name": "os.path", "line_number": 146, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 151, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 151, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 151, "usage_type": "call" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 155, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 155, "usage_type": "name" }, { "api_name": "tkinter.Frame", "line_number": 156, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 157, "usage_type": "call" }, { "api_name": "tkinter.Text", "line_number": 160, "usage_type": "call" }, { "api_name": "tkinter.END", "line_number": 162, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 162, "usage_type": "call" }, { "api_name": "tkinter.filedialog.askdirectory", "line_number": 167, "usage_type": "call" }, { "api_name": "tkinter.filedialog", "line_number": 167, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 169, "usage_type": "call" }, { "api_name": "os.path", "line_number": 169, "usage_type": "attribute" }, { "api_name": "zipfile.ZipFile", "line_number": 171, "usage_type": "call" }, { "api_name": "zipfile.ZIP_DEFLATED", "line_number": 171, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 173, "usage_type": "call" }, { "api_name": "os.path", "line_number": 173, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 176, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 178, "usage_type": "call" }, { "api_name": "os.path", "line_number": 178, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 180, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 182, "usage_type": "call" }, { "api_name": "tkinter.messagebox.showinfo", "line_number": 184, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 184, "usage_type": "name" }, { "api_name": "tkinter.Tk", "line_number": 187, "usage_type": "call" } ]
2690012282
import boto3 import os class WasabiUploader: def __init__(self, directory): self.directory = directory self.session = boto3.Session(profile_name="default") self.credentials = self.session.get_credentials() self.aws_access_key_id = self.credentials.access_key self.aws_secret_access_key = self.credentials.secret_key self.s3 = boto3.resource('s3', endpoint_url='https://s3.US-central-1.wasabisys.com', aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key ) self.mpdb = self.s3.Bucket('mpdb') def create_list_of_uploaded_parts(self, directory): print("Working...") UploadedPNsFileLocation = "/".join( directory.split("/", )[:-1]) with open(f'{UploadedPNsFileLocation}/Wasabi_UploadedPNS.txt', 'a+') as f: f.seek(0) existing_contents = f.read() for obj in self.mpdb.objects.all(): item = obj.key.split("/", 1)[1] if item not in existing_contents: f.write(f"{item}\n") f.close() print(f"Wasabi Data processed, PN file created. " f"Available at: {UploadedPNsFileLocation}/Wasabi_UploadedPNS.txt'") def upload_photos(self): recordNumber = 0 recordsAdded = 0 for filename in os.listdir(self.directory): recordNumber += 1 with open(f'{self.directory}/Wasabi_UploadedPNS.txt', 'a+') as f: f.seek(0) existing_contents = f.read() file = os.path.join(self.directory, filename) PN = filename.split(".")[0] if os.path.isfile(file): if PN not in existing_contents: try: self.mpdb.upload_file(file, f"productimages/{filename}") f.write(f"{filename}\n") recordsAdded += 1 if recordNumber % 20 == 0: # only printing every 20th record for confirmation of upload print(f"{PN} successfully uploaded to Wasabi ({recordsAdded} images uploaded)") except Exception as e: print(f"failed to upload {PN} to Wasabi. Error: {e}") f.close() print(f"Complete! Records Added: {recordsAdded}") def count_uploads(self): counting_mpdb = self.s3.Bucket('mpdb') count = 0 print("Counting...") for _ in counting_mpdb.objects.all(): count += 1 print(f"{count} objects found in the library's bucket") def count_items_in_part_list(self): """ Counts the number of items inside the part number upload log created by the Image Uploader. Assumes the log file is located at 'Wasabi_UploadedPNS.txt' in the specified directory. """ directory_parts = self.directory.split("/")[:-1] # Remove the last part (file name) from the path directory = "/".join(directory_parts) with open(f'{directory}/Wasabi_UploadedPNS.txt', 'r') as f: x = len(f.readlines()) print(f"{x} items in the part number log")
evanwmeeks/PersonalProjects
wasabi_interface/wasabi.py
wasabi.py
py
3,414
python
en
code
0
github-code
6
[ { "api_name": "boto3.Session", "line_number": 8, "usage_type": "call" }, { "api_name": "boto3.resource", "line_number": 12, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path", "line_number": 50, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 53, "usage_type": "call" }, { "api_name": "os.path", "line_number": 53, "usage_type": "attribute" } ]
73017766588
import json from typing import Dict, List, Tuple from flask import Flask, jsonify, request from rb.complexity.complexity_index import compute_indices from rb.complexity.index_category import IndexCategory from rb.core.document import Document from rb.core.lang import Lang from rb.core.text_element import TextElement from rb.core.word import Word from rb.processings.keywords.keywords_extractor import KeywordExtractor from rb.similarity.vector_model import (CorporaEnum, VectorModel, VectorModelType) from rb.similarity.vector_model_factory import VECTOR_MODELS, get_default_model from rb.utils.utils import str_to_lang from nltk.corpus import wordnet as wn import networkx as nx import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import logging app = Flask(__name__) def keywordsOption(): return "" def transform_for_visualization(dataName, JsonName, textType, keywords: List[Tuple[int, Word]], keywordsWithmax: List[Tuple[int, Word]], lang: Lang) -> Dict: log = logging.getLogger("my-logger") vector_model: VectorModel = get_default_model(lang) edge_list, node_list = [], [] edge_list2, node_list2 = [], [] #sort the keywords G = nx.Graph() edge_labels={} from_node = [] to_node = [] value= [] node_size = [] for kw in keywords: node_list.append({ "type": "Word", "uri": kw[1], "displayName": kw[1], "active": True, "degree": str(max(0, float(kw[0]))) }) for kw in keywordsWithmax: node_list2.append({ "type": "Word", "uri": kw[1], "displayName": kw[1], "active": True, "degree": str(max(0, float(kw[0]))) }) G.add_node(kw[1],weight=max(0, float(kw[0]))) node_size.append(int(max(0, float(kw[0]))*1000)) for i, kw1 in enumerate(keywords): for j, kw2 in enumerate(keywords): try: sim = vector_model.similarity(vector_model.get_vector(kw1[1]), vector_model.get_vector(kw2[1])) if i != j and sim >= 0.3: edge_list.append({ "edgeType": "SemanticDistance", "score": str(max(sim, 0)), "sourceUri": kw1[1], "targetUri": kw2[1] }) except: print("Problem with " + kw1[1] + " or " + kw2[1]) for i, kw1 in enumerate(keywordsWithmax): for j, kw2 in enumerate(keywordsWithmax): try: sim = vector_model.similarity(vector_model.get_vector(kw1[1]), vector_model.get_vector(kw2[1])) if i != j and sim >= 0.3: edge_list2.append({ "edgeType": "SemanticDistance", "score": str(max(sim, 0)), "sourceUri": kw1[1], "targetUri": kw2[1] }) print("Problem with ****************************************") from_node.append(kw1[1]) to_node.append(kw2[1]) if not G.has_edge(str(kw1[1]), str(kw2[1])): G.add_edge(str(kw1[1]), str(kw2[1])) value.append(int(max(sim, 0)*10)) except: print("Problem with " + kw1[1] + " or " + kw2[1]) #pos = nx.nx_agraph.graphviz_layout(G, prog="twopi") #nx.draw(G, with_labels = True, node_size=1500, node_color="skyblue", pos=pos) #nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) # Build a dataframe with your connections #df = pd.DataFrame({ 'from':from_node, 'to':to_node, 'value':value}) # Build your graph #G=nx.from_pandas_edgelist(df, 'from', 'to', create_using=nx.Graph() ) #G = nx.star_graph(30) plt.clf() pos = nx.spring_layout(G, k=1, iterations=20, scale=6) options = { "node_color": "#A0CBE2", "edge_color": value, "width": 2, "edge_cmap": plt.cm.Blues, "with_labels": True, "node_size":node_size } plt.figure(figsize=(8, 5)) nx.draw(G, pos, **options) # Custom the nodes: #nx.draw(G, with_labels=True, node_color='skyblue', node_size=1500, edge_color=df['value'], width=10.0, edge_cmap=plt.cm.Blues) plt.savefig('rb_api/pandoc_filters/images/'+ dataName +'.png', dpi=300) plt.clf() data = getJson('rb_api/pandoc_filters/'+JsonName+'.json') data.update({textType : 'rb_api/pandoc_filters/images/'+dataName+'.png'}) data.update({dataName : node_list}) with open('rb_api/pandoc_filters/'+JsonName+'.json', 'w', encoding='utf-8') as f: json.dump(data, f, ensure_ascii=False, indent=4) return { "data": { "edgeList": edge_list, "nodeList": node_list }, "success": True, "errorMsg": "" } def getJson(url): varData= {} if os.path.isfile(url): # checks if file exists print ("File exists ") with open(url, encoding='UTF-8') as f: varData = json.load(f) return varData def keywordsPost(): """TODO, not working""" params = json.loads(request.get_data()) posTagging = params.get('pos-tagging') bigrams = params.get('bigrams') text = params.get('text') languageString = params.get('language') lang = str_to_lang(languageString) threshold = params.get('threshold') plotName = "wordnet" #plotName = params.get('saveAs') # if lang is Lang.RO: # vector_model = VECTOR_MODELS[lang][CorporaEnum.README][VectorModelType.WORD2VEC]( # name=CorporaEnum.README.value, lang=lang) # elif lang is Lang.EN: # vector_model = VECTOR_MODELS[lang][CorporaEnum.COCA][VectorModelType.WORD2VEC]( # name=CorporaEnum.COCA.value, lang=lang) # elif lang is Lang.ES: # vector_model = VECTOR_MODELS[lang][CorporaEnum.JOSE_ANTONIO][VectorModelType.WORD2VEC]( # name=CorporaEnum.JOSE_ANTONIO.value, lang=lang) # lsa = params.get('lsa') # lda = params.get('lda') # w2v = params.get('w2v') # threshold = params.get('threshold') # textElement = Document(lang=lang, text=text, vector_model=vector_model) # print(textElement.keywords) dataName = params.get('saveAs') textType = params.get('type') JsonName = params.get('topicName') keywords = KeywordExtractor.extract_keywords(True, text=text, lang=lang) keywordsWithmax = KeywordExtractor.extract_keywords(True, text=text, lang=lang, max_keywords=15) return jsonify(transform_for_visualization(dataName, JsonName, textType, keywords=keywords, keywordsWithmax=keywordsWithmax, lang=lang))
rwth-acis/readerbenchpyapi
rb_api/keywords/keywords.py
keywords.py
py
6,881
python
en
code
1
github-code
6
[ { "api_name": "flask.Flask", "line_number": 26, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 32, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 32, "usage_type": "name" }, { "api_name": "rb.core.word.Word", "line_number": 32, "usage_type": "name" }, { "api_name": "rb.core.lang.Lang", "line_number": 32, "usage_type": "name" }, { "api_name": "logging.getLogger", "line_number": 33, "usage_type": "call" }, { "api_name": "rb.similarity.vector_model.VectorModel", "line_number": 34, "usage_type": "name" }, { "api_name": "rb.similarity.vector_model_factory.get_default_model", "line_number": 34, "usage_type": "call" }, { "api_name": "networkx.Graph", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 118, "usage_type": "name" }, { "api_name": "networkx.spring_layout", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.cm", "line_number": 124, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 124, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 128, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 128, "usage_type": "name" }, { "api_name": "networkx.draw", "line_number": 129, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 132, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 132, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 133, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 133, "usage_type": "name" }, { "api_name": "json.dump", "line_number": 138, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 32, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 150, "usage_type": "call" }, { "api_name": "os.path", "line_number": 150, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 154, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 159, "usage_type": "call" }, { "api_name": "flask.request.get_data", "line_number": 159, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 159, "usage_type": "name" }, { "api_name": "rb.utils.utils.str_to_lang", "line_number": 164, "usage_type": "call" }, { "api_name": "rb.processings.keywords.keywords_extractor.KeywordExtractor.extract_keywords", "line_number": 189, "usage_type": "call" }, { "api_name": "rb.processings.keywords.keywords_extractor.KeywordExtractor", "line_number": 189, "usage_type": "name" }, { "api_name": "rb.processings.keywords.keywords_extractor.KeywordExtractor.extract_keywords", "line_number": 190, "usage_type": "call" }, { "api_name": "rb.processings.keywords.keywords_extractor.KeywordExtractor", "line_number": 190, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 191, "usage_type": "call" } ]
40299141620
import numpy as np from typing import List, Optional, Tuple from collections import defaultdict from kaggle_environments.envs.halite.helpers import Ship from .board import MyBoard, ALL_SHIP_ACTIONS from .logger import logger def ship_converts(board: MyBoard): """ Convert our ships into shipyards """ if board.step == 0 or board.moves_left < 20: return if not board.num_my_shipyards: is_final_part = board.moves_left <= 40 _create_shipyard(board, is_final_part) for ship in board.free_ships: # CHECK if in danger without escape, convert if h > 500 if ship.halite <= board.configuration.convert_cost: continue avoid_moves = board.avoid_moves(ship) if ALL_SHIP_ACTIONS - avoid_moves: continue logger.warning( f"Ship {ship.id} at {ship.position}: Can't run away, converting." ) board.create_shipyard(ship) # Generate a shipyard from the best ship min_score = 1000 if board.num_my_shipyards < 2: min_score = 400 if ( board.num_my_shipyards <= 3 and board.num_my_ships > 10 + board.num_my_shipyards * 5 and board.moves_left > 100 ): available_ships = [x for x in board.free_ships if _can_convert_ship(board, x)] if available_ships: ship, score = _choice_ship_to_convert(board, available_ships) if ship is not None and score > min_score: logger.info( f"Ship {ship.id} at {ship.position}: Create a shipyard, cell score = {score}." ) board.create_shipyard(ship) def _can_convert_ship(board: MyBoard, ship: Ship) -> bool: """ Is this the good place for a shipyard? """ pos = ship.position if pos in board.position_to_shipyard: return False if ( ship.halite + board.my_halite < board.configuration.convert_cost or board.is_danger_position(pos, ship) ): return False num_my_shipyards = sum( 1 for x in board.my_shipyards if board.distance(x.position, pos) <= 2 ) if num_my_shipyards > 0: return False num_my_ships = sum( 1 for x in board.my_ships if board.distance(x.position, pos) <= 1 ) if num_my_ships < 1: return False min_distance_to_enemy_ship = min( board.distance(x.position, pos) for x in board.ships.values() if x.player_id != board.me.id ) if min_distance_to_enemy_ship <= 2: return False return True def _create_shipyard(board: MyBoard, is_final_part: bool = False): """ What we do if we haven't shipyards """ if is_final_part: # the end of the game, convert one ship if it makes sense ship_to_halite = defaultdict(int) available_ships = [ x for x in board.my_ships if x.halite + board.my_halite >= board.configuration.convert_cost ] for ship in available_ships: distance_to_enemy_ship = board.distance_to_enemy_ship(ship.position, board.me) distance_to_enemy_ship = distance_to_enemy_ship or board.size if distance_to_enemy_ship < 3: # an enemy vessel nearby, can't convert continue max_my_ship_distance = min(distance_to_enemy_ship, board.moves_left) for other_ship in board.my_ships: if board.distance(ship.position, other_ship.position) < max_my_ship_distance: ship_to_halite[ship] += other_ship.halite if not ship_to_halite: return max_halite = max(ship_to_halite.values()) if max_halite > board.configuration.convert_cost: # it makes sense to convert, choose one ship = [s for s, h in ship_to_halite.items() if h == max_halite][0] board.create_shipyard(ship) else: # meddle of the game, we have to create a shipyard logger.warning("No shipyards! We must create at least one!") available_ships = [ x for x in board.my_ships if x.halite + board.my_halite >= board.configuration.convert_cost ] if not available_ships: logger.warning("Can't create a shipyard, not enough halite! Keep mining.") return if ( len(available_ships) == 1 and board.my_halite + available_ships[0].halite < board.configuration.convert_cost + board.configuration.spawn_cost ): logger.warning("Can't create a shipyard, not enough halite! Keep mining.") return ship, _ = _choice_ship_to_convert(board, available_ships) if ship: board.create_shipyard(ship) def _choice_ship_to_convert( board: MyBoard, ships: List[Ship] ) -> Tuple[Optional[Ship], float]: assert len(ships) > 0 ship, score = None, -np.inf for _ship in ships: pos = _ship.position if pos in board.position_to_shipyard: # shipyard here continue _score = board.environment_reserves(pos) _score -= board.position_to_halite[pos] if _score > score: ship, score = _ship, _score return ship, score
w9PcJLyb/HaliteIV-bot
halite/ship_converts.py
ship_converts.py
py
5,297
python
en
code
0
github-code
6
[ { "api_name": "board.MyBoard", "line_number": 9, "usage_type": "name" }, { "api_name": "board.step", "line_number": 11, "usage_type": "attribute" }, { "api_name": "board.moves_left", "line_number": 11, "usage_type": "attribute" }, { "api_name": "board.num_my_shipyards", "line_number": 14, "usage_type": "attribute" }, { "api_name": "board.moves_left", "line_number": 15, "usage_type": "attribute" }, { "api_name": "board.free_ships", "line_number": 18, "usage_type": "attribute" }, { "api_name": "board.configuration", "line_number": 20, "usage_type": "attribute" }, { "api_name": "board.avoid_moves", "line_number": 23, "usage_type": "call" }, { "api_name": "board.ALL_SHIP_ACTIONS", "line_number": 24, "usage_type": "name" }, { "api_name": "logger.logger.warning", "line_number": 27, "usage_type": "call" }, { "api_name": "logger.logger", "line_number": 27, "usage_type": "name" }, { "api_name": "board.create_shipyard", "line_number": 30, "usage_type": "call" }, { "api_name": "board.num_my_shipyards", "line_number": 34, "usage_type": "attribute" }, { "api_name": "board.num_my_shipyards", "line_number": 37, "usage_type": "attribute" }, { "api_name": "board.num_my_ships", "line_number": 38, "usage_type": "attribute" }, { "api_name": "board.num_my_shipyards", "line_number": 38, "usage_type": "attribute" }, { "api_name": "board.moves_left", "line_number": 39, "usage_type": "attribute" }, { "api_name": "board.free_ships", "line_number": 41, "usage_type": "attribute" }, { "api_name": "logger.logger.info", "line_number": 45, "usage_type": "call" }, { "api_name": "logger.logger", "line_number": 45, "usage_type": "name" }, { "api_name": "board.create_shipyard", "line_number": 48, "usage_type": "call" }, { "api_name": "board.MyBoard", "line_number": 51, "usage_type": "name" }, { "api_name": "kaggle_environments.envs.halite.helpers.Ship", "line_number": 51, "usage_type": "name" }, { "api_name": "board.position_to_shipyard", "line_number": 54, "usage_type": "attribute" }, { "api_name": "board.my_halite", "line_number": 58, "usage_type": "attribute" }, { "api_name": "board.configuration", "line_number": 58, "usage_type": "attribute" }, { "api_name": "board.is_danger_position", "line_number": 59, "usage_type": "call" }, { "api_name": "board.my_shipyards", "line_number": 64, "usage_type": "attribute" }, { "api_name": "board.distance", "line_number": 64, "usage_type": "call" }, { "api_name": "board.my_ships", "line_number": 70, "usage_type": "attribute" }, { "api_name": "board.distance", "line_number": 70, "usage_type": "call" }, { "api_name": "board.distance", "line_number": 76, "usage_type": "call" }, { "api_name": "board.ships.values", "line_number": 77, "usage_type": "call" }, { "api_name": "board.ships", "line_number": 77, "usage_type": "attribute" }, { "api_name": "board.me", "line_number": 78, "usage_type": "attribute" }, { "api_name": "board.MyBoard", "line_number": 86, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 90, "usage_type": "call" }, { "api_name": "board.my_ships", "line_number": 94, "usage_type": "attribute" }, { "api_name": "board.my_halite", "line_number": 95, "usage_type": "attribute" }, { "api_name": "board.configuration", "line_number": 95, "usage_type": "attribute" }, { "api_name": "board.distance_to_enemy_ship", "line_number": 98, "usage_type": "call" }, { "api_name": "board.me", "line_number": 98, "usage_type": "attribute" }, { "api_name": "board.size", "line_number": 99, "usage_type": "attribute" }, { "api_name": "board.moves_left", "line_number": 104, "usage_type": "attribute" }, { "api_name": "board.my_ships", "line_number": 105, "usage_type": "attribute" }, { "api_name": "board.distance", "line_number": 106, "usage_type": "call" }, { "api_name": "board.configuration", "line_number": 113, "usage_type": "attribute" }, { "api_name": "board.create_shipyard", "line_number": 116, "usage_type": "call" }, { "api_name": "logger.logger.warning", "line_number": 120, "usage_type": "call" }, { "api_name": "logger.logger", "line_number": 120, "usage_type": "name" }, { "api_name": "board.my_ships", "line_number": 124, "usage_type": "attribute" }, { "api_name": "board.my_halite", "line_number": 125, "usage_type": "attribute" }, { "api_name": "board.configuration", "line_number": 125, "usage_type": "attribute" }, { "api_name": "logger.logger.warning", "line_number": 128, "usage_type": "call" }, { "api_name": "logger.logger", "line_number": 128, "usage_type": "name" }, { "api_name": "board.my_halite", "line_number": 133, "usage_type": "attribute" }, { "api_name": "board.configuration", "line_number": 134, "usage_type": "attribute" }, { "api_name": "logger.logger.warning", "line_number": 136, "usage_type": "call" }, { "api_name": "logger.logger", "line_number": 136, "usage_type": "name" }, { "api_name": "board.create_shipyard", "line_number": 141, "usage_type": "call" }, { "api_name": "board.MyBoard", "line_number": 145, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 145, "usage_type": "name" }, { "api_name": "kaggle_environments.envs.halite.helpers.Ship", "line_number": 145, "usage_type": "name" }, { "api_name": "numpy.inf", "line_number": 149, "usage_type": "attribute" }, { "api_name": "board.position_to_shipyard", "line_number": 152, "usage_type": "attribute" }, { "api_name": "board.environment_reserves", "line_number": 156, "usage_type": "call" }, { "api_name": "board.position_to_halite", "line_number": 158, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 146, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 146, "usage_type": "name" }, { "api_name": "kaggle_environments.envs.halite.helpers.Ship", "line_number": 146, "usage_type": "name" } ]
73790991549
from typing import List, Tuple from abstract_puzzles import AbstractPuzzles DATA_TYPE = List[Tuple[Tuple[int, int], Tuple[int, int]]] class Puzzles(AbstractPuzzles): def __init__(self, method_name): super().__init__( method_name, day=4, puzzle_1_example_answer=2, puzzle_1_answer=487, puzzle_2_example_answer=4, puzzle_2_answer=849, ) def read(self, file_path: str) -> Tuple[DATA_TYPE]: data = [] with open(file_path, 'r') as f: for line in f.read().splitlines(): elf1, elf2 = line.split(',') elf1_start, elf1_end = elf1.split('-') elf2_start, elf2_end = elf2.split('-') data.append(( (int(elf1_start), int(elf1_end)), (int(elf2_start), int(elf2_end)), )) return data, def puzzle_1(self, schedules: DATA_TYPE) -> int: return len(list(filter( lambda elfs: (elfs[0][0] >= elfs[1][0] and elfs[0][1] <= elfs[1][1]) or (elfs[1][0] >= elfs[0][0] and elfs[1][1] <= elfs[0][1]), schedules ))) def puzzle_2(self, schedules: DATA_TYPE) -> int: return len(list(filter( lambda elfs: elfs[1][0] <= elfs[0][0] <= elfs[1][1] or elfs[1][0] <= elfs[0][1] <= elfs[1][1] or elfs[0][0] <= elfs[1][0] <= elfs[0][1] or elfs[0][0] <= elfs[1][1] <= elfs[0][1], schedules )))
Lynxens/AdventOfCode2022
advent_of_code/day4.py
day4.py
py
1,600
python
en
code
4
github-code
6
[ { "api_name": "typing.List", "line_number": 4, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 4, "usage_type": "name" }, { "api_name": "abstract_puzzles.AbstractPuzzles", "line_number": 7, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 18, "usage_type": "name" } ]
519381337
from openmdao.core.driver import Driver, RecordingDebugging from openmdao.api import SimpleGADriver, Problem, LatinHypercubeGenerator, DOEDriver from dataclasses import dataclass from copy import deepcopy import random import numpy as np from itertools import chain from deap import algorithms, base, tools from deap.benchmarks import rosenbrock class DeapDriver(Driver): def _declare_options(self): self.options.declare("container_class") def _get_name(self): return "DeapDriver" def _setup_driver(self, problem): super()._setup_driver(problem) self.container = self.options["container_class"](driver=self) def run(self): final_population = self.container.run_algorithm() # Evaluates a point in the middle of the pareto front to have one of # the optimal points as the final values in the model # self.container.evaluate(pareto_front[len(pareto_front) // 2]) # print(pareto_front) return False class Individual(list): def __init__(self, *args, fitness_class, **kwargs): super().__init__(*args, **kwargs) self.fitness = fitness_class() def __repr__(self): return f"Individual({super().__repr__()})" @dataclass(frozen=True) class DeapContainer: """ An abstract class for containing the algorithm-specific logic. This is instantiated in the Driver's _setup_driver() function with the driver itself passed in as an argument. This object in itself should be fully stateless. The motivation for having this in a dedicated object is mainly that the Driver class is already heavily bloated. """ driver: DeapDriver def __post_init__(self): # FIXME: this API is inflexible self.fitness_class = type( "Fitness", (base.Fitness,), {"weights": (-1,) * len(self.problem.model.get_objectives())}, ) self.design_var_shapes = { name: np.shape(value) for (name, value) in self.driver.get_design_var_values().items() } self.objective_shapes = { name: np.shape(value) for (name, value) in self.driver.get_objective_values().items() } self.constraint_shapes = { name: np.shape(value) for (name, value) in self.driver.get_constraint_values().items() } self.individual_bounds = self._individual_bounds() @property def problem(self): return self.driver._problem def individual_factory(self, *args, **kwargs): individual = self.individual_class(fitness_class=self.fitness_class, *args, **kwargs) return individual def _individual_bounds(self): design_vars = self.problem.model.get_design_vars() lower, upper = chain.from_iterable( (design_vars[key]["lower"].flat, design_vars[key]["upper"].flat) for key in self.design_var_shapes.keys() ) return tuple(lower), tuple(upper) def convert_design_vars_to_individual(self, design_vars): """ Converts a dict of OpenMDAO design variables into a DEAP individual. """ individual = Individual( chain.from_iterable( design_vars[key].flat for key in self.design_var_shapes.keys() ), fitness_class=self.fitness_class, ) return individual def convert_individual_to_design_vars(self, individual): """ Converts a DEAP individual into a dict of OpenMDAO design variables. """ ind = deepcopy(individual) design_vars = {} for name, shape in self.design_var_shapes.items(): ind_items = np.product(shape) design_vars[name] = np.reshape(ind[:ind_items], shape) ind = ind[ind_items:] return design_vars def get_population_generator(self, count): return LatinHypercubeGenerator( samples=count, criterion="correlation", iterations=count // 10 ) def init_population(self, count): return [ self.convert_design_vars_to_individual(dict(case)) for case in self.get_population_generator(count)( self.problem.model.get_design_vars() ) ] def evaluate(self, individual): pre = id(individual.fitness) for (name, value) in self.convert_individual_to_design_vars(individual).items(): self.driver.set_design_var(name, value) assert id(individual.fitness) == pre with RecordingDebugging( self.driver._get_name(), self.driver.iter_count, self.driver ): failure_flag, abs_error, rel_error = self.problem.model._solve_nonlinear() self.driver.iter_count += 1 # print(tuple(float(x) for x in self.driver.get_objective_values().values())) return tuple( chain.from_iterable( x.flat for x in self.driver.get_objective_values().values() ) ) def run_algorithm(self): raise NotImplemented("run_algorithm() method not implemented.")
ovidner/openmdao-deap
openmdao_deap/__init__.py
__init__.py
py
5,155
python
en
code
0
github-code
6
[ { "api_name": "openmdao.core.driver.Driver", "line_number": 13, "usage_type": "name" }, { "api_name": "deap.base.Fitness", "line_number": 61, "usage_type": "attribute" }, { "api_name": "deap.base", "line_number": 61, "usage_type": "name" }, { "api_name": "numpy.shape", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 70, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 74, "usage_type": "call" }, { "api_name": "itertools.chain.from_iterable", "line_number": 90, "usage_type": "call" }, { "api_name": "itertools.chain", "line_number": 90, "usage_type": "name" }, { "api_name": "itertools.chain.from_iterable", "line_number": 102, "usage_type": "call" }, { "api_name": "itertools.chain", "line_number": 102, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.product", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 118, "usage_type": "call" }, { "api_name": "openmdao.api.LatinHypercubeGenerator", "line_number": 123, "usage_type": "call" }, { "api_name": "openmdao.core.driver.RecordingDebugging", "line_number": 140, "usage_type": "call" }, { "api_name": "itertools.chain.from_iterable", "line_number": 148, "usage_type": "call" }, { "api_name": "itertools.chain", "line_number": 148, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 42, "usage_type": "call" } ]
33914485796
from django.conf.urls import patterns, url from ventas import viewsInforme,viewsPedido urlpatterns = patterns('', url(r'^$', viewsPedido.venta_desktop, name='venta_desktop'), url(r'^fac/', viewsPedido.venta_desktop, name='venta_desktop1'), url(r'^mobile/$', viewsPedido.venta_mobile, name='venta_mobile'), url(r'^listar/$', viewsInforme.listar, name='listar'), url(r'^clientes/', viewsPedido.clientes, name='clientes'), url(r'^vendedores/', viewsPedido.vendedores, name='vendedores'), url(r'^codproducto/', viewsPedido.codproducto, name='codproducto'), url(r'^nomproducto/', viewsPedido.nomproducto, name='nomproducto'), url(r'^save/$', viewsPedido.savePedido, name='save'), url(r'^save/(?P<anyway>\w+)/$', viewsPedido.savePedido, name='save'), url(r'^saveDetalle/$', viewsPedido.saveDetalle, name='saveDetalle'), url(r'^deleteDetalle/(?P<id>\d+)/$', viewsPedido.deleteDetalle, name='deleteDetalle'), url(r'^pagar/$', viewsPedido.pagarPedido, name='pagarPedido'), )
wilmandx/ipos
ventas/urls.py
urls.py
py
1,020
python
es
code
0
github-code
6
[ { "api_name": "django.conf.urls.patterns", "line_number": 5, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 6, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.venta_desktop", "line_number": 6, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 6, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 7, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.venta_desktop", "line_number": 7, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 7, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 8, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.venta_mobile", "line_number": 8, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 8, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 9, "usage_type": "call" }, { "api_name": "ventas.viewsInforme.listar", "line_number": 9, "usage_type": "attribute" }, { "api_name": "ventas.viewsInforme", "line_number": 9, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 10, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.clientes", "line_number": 10, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 10, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.vendedores", "line_number": 11, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 11, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.codproducto", "line_number": 12, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 12, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 13, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.nomproducto", "line_number": 13, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 13, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.savePedido", "line_number": 14, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 14, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 15, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.savePedido", "line_number": 15, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 15, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 16, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.saveDetalle", "line_number": 16, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 16, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 17, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.deleteDetalle", "line_number": 17, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 17, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 18, "usage_type": "call" }, { "api_name": "ventas.viewsPedido.pagarPedido", "line_number": 18, "usage_type": "attribute" }, { "api_name": "ventas.viewsPedido", "line_number": 18, "usage_type": "name" } ]
13538653206
import pygame import numpy as np from util.helpers import * from physics.colliding_object import Colliding class EyeBeam(Colliding): def __init__(self, start, end): self.start = np.array(start) super(EyeBeam, self).__init__(self.start) self.end = np.array(end) self.collide_type = 'line' def unobstructed(self, list_of_game_objects): walls_vector = walls_vector_from_game_objects(list_of_game_objects) edge_vector = np.array((self.start, self.end)) return unobstructed_edges(edge_vector, walls_vector)[0] class Eyes: def __init__(self, view_distance=200): self.view_distance = view_distance self.look_ahead = 10 self.list_of_game_objects = [] def update(self, list_of_game_objects): self.list_of_game_objects = list_of_game_objects def direct_path_to_goal(self, current_position, goal, exclude=[]): obstructions = [i for i in self.list_of_game_objects if i not in exclude] walls_vector = walls_vector_from_game_objects(obstructions) if len(walls_vector) == 0: return True goal_edge = np.array([[current_position[0], current_position[1], goal[0], goal[1]]]) return unobstructed_edges(goal_edge, walls_vector) def get_mouse_position(self): return np.array(pygame.mouse.get_pos()).astype(float) def look_for_collisions(self, coords, vector, radius): for sign in [1.0, 0.0, -1.0]: adjustment = normalise_vector(perpendicular_vector(vector)) * (sign * radius) adjusted_coords = coords + adjustment ahead_end = adjusted_coords + (vector * self.look_ahead) ahead = EyeBeam(adjusted_coords, ahead_end) collision = ahead.get_closest_collision(self.list_of_game_objects) if collision is not None: return collision return None def look_at_object(self, coords, screen_object): if self.direct_path_to_goal(coords, screen_object.coords(), exclude=[screen_object]): return screen_object else: return None def visible_objects(self, coords): visibles = [] for screen_object in self.list_of_game_objects: eyes_see = self.look_at_object(coords, screen_object) if eyes_see is not None: visibles.append(eyes_see) return visibles def look_for_object(self, coords, object_description): matching_objects_in_range = [screen_object for screen_object in \ self.list_of_game_objects \ if screen_object.image['kind'] != 'wall' and distance_between_points(coords, screen_object.coords()) < self.view_distance \ and object_description.viewitems() <= screen_object.image.viewitems()] if len(matching_objects_in_range) > 0: closest_index = find_closest_point_index(coords, [screen_object.coords() for screen_object in matching_objects_in_range]) target_object = matching_objects_in_range[closest_index] return self.look_at_object(coords, target_object) return None
SimonCarryer/video_game_ai
brains/eyes.py
eyes.py
py
3,313
python
en
code
2
github-code
6
[ { "api_name": "physics.colliding_object.Colliding", "line_number": 7, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 38, "usage_type": "call" }, { "api_name": "pygame.mouse.get_pos", "line_number": 38, "usage_type": "call" }, { "api_name": "pygame.mouse", "line_number": 38, "usage_type": "attribute" } ]
74451964986
from core.visualization import PlotGraphics from core.relation_extraction import SpacyRelationExtraction from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report from sklearn.metrics import roc_auc_score from sklearn.metrics import f1_score import numpy as np import joblib import os import sys import warnings warnings.filterwarnings('ignore') class TextPipeline: def __init__(self, predictor_name, data_tuple, classifier_name='decision_tree', resources_path=None): # root path self.resources_folder = os.path.join(os.path.dirname(sys.path[0]), 'resources') \ if resources_path is None else resources_path # initializes the classifier dict classifiers = {'decision_tree': DecisionTreeClassifier(random_state=0), 'k_neighbors': KNeighborsClassifier(n_neighbors=15)} # save the predictor name self.predictor_name = predictor_name # receives the data self.x_train, self.x_test, self.y_train, self.y_test = data_tuple # text extraction pipelines self.text_extraction_pipes = {} # prediction model to use self.prediction_model = classifiers[classifier_name] # init the visualizer self.plt_graphics = PlotGraphics(data_tuple, self.text_extraction_pipes) def create_features_pipeline(self, n_features=150, pipeline_obj=None): # checks if the transformer if pipeline_obj is None: # features vectorization transformer_obj = TfidfVectorizer(strip_accents='unicode', stop_words='english', lowercase=True, max_features=n_features, ngram_range=(1, 2), min_df=0.1, max_df=0.7) # creates the pipeline obj pipeline_obj = Pipeline([('vectorizer', transformer_obj)]) # pipeline mapping self.text_extraction_pipes['feature'] = pipeline_obj # returns the pipeline obj return self.text_extraction_pipes['feature'] def create_label_pipeline(self, relation_extraction=False, n_targets=20, n_jobs=8): # target vectorization if relation_extraction: # uses the spacy relation extraction vectorizer = SpacyRelationExtraction(n_relation=n_targets, n_jobs=n_jobs) else: # otherwise uses a normal vectorizer vectorizer = CountVectorizer(strip_accents='unicode', stop_words='english', lowercase=True, max_features=n_targets, ngram_range=(1, 2), min_df=0.1, max_df=0.7) # pipeline creation self.text_extraction_pipes['target'] = Pipeline([('vectorizer', vectorizer)]) def pickle_predictor(self): # save the labels pipeline labels_extractor = self.text_extraction_pipes['target']['vectorizer'] obj_name = os.path.join(self.resources_folder, '_'.join([self.predictor_name, 'labels', 'vectorizer'])) joblib.dump(labels_extractor, obj_name + '.pkl') # saves the model obj_name = os.path.join(self.resources_folder, '_'.join([self.predictor_name, 'predictor'])) joblib.dump(self.prediction_model, obj_name + '.pkl') def unpickle_predictor(self): # loads the object obj_name = os.path.join(self.resources_folder, '_'.join([self.predictor_name, 'labels', 'vectorizer'])) labels_extractor = joblib.load(obj_name + '.pkl') self.text_extraction_pipes['target'] = Pipeline([('vectorizer', labels_extractor)]) # unpickle the model obj_name = os.path.join(self.resources_folder, '_'.join([self.predictor_name, 'predictor'])) self.prediction_model = joblib.load(obj_name + '.pkl') def fit(self, x_vector): # fit the feature data y_vector = self.text_extraction_pipes['target'].fit_transform(self.y_train).toarray() # convert the y_train y_vector[y_vector > 1] = 1 # print some information data print('\ninput array, shape:', x_vector.shape) print('output array, shape:', y_vector.shape, '\n') # fit the model self.prediction_model.fit(x_vector, y_vector) def predict(self, x_test): # convert using the pipeline x_test_vector = self.text_extraction_pipes['feature'].transform(x_test) # convert the y_test predictions = self.prediction_model.predict(x_test_vector) # returns the predictions return predictions def score(self): # add the exception treatment y_test_vector = self.text_extraction_pipes['target'].transform(self.y_test).toarray() # predict the output for the test set predictions = self.predict(self.x_test) # print some metrics class_labels = self.text_extraction_pipes['target']['vectorizer'].get_feature_names() class_report = self.calculate_metrics(y_test_vector, predictions, class_labels) # plot the data self.plt_graphics.plot_bag_words(class_report) # return the classification report return class_report @staticmethod def calculate_metrics(y_test, predictions, class_labels): # print the results y_test[y_test > 1] = 1 class_report = classification_report(y_test, predictions, target_names=class_labels, output_dict=True) print("Classification report: \n", classification_report(y_test, predictions, target_names=class_labels)) # print("F1 micro averaging:", f1_score(y_test, predictions, average='micro', labels=np.unique(predictions))) print("ROC: ", roc_auc_score(y_test, predictions), '\n') # return the classification results return class_report
eliseu31/MSDS-Analyser
core/text_pipeline.py
text_pipeline.py
py
6,284
python
en
code
8
github-code
6
[ { "api_name": "warnings.filterwarnings", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 24, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "sklearn.tree.DecisionTreeClassifier", "line_number": 27, "usage_type": "call" }, { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 28, "usage_type": "call" }, { "api_name": "core.visualization.PlotGraphics", "line_number": 39, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.TfidfVectorizer", "line_number": 45, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 52, "usage_type": "call" }, { "api_name": "core.relation_extraction.SpacyRelationExtraction", "line_number": 62, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.CountVectorizer", "line_number": 65, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 77, "usage_type": "call" }, { "api_name": "os.path", "line_number": 77, "usage_type": "attribute" }, { "api_name": "joblib.dump", "line_number": 78, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 81, "usage_type": "call" }, { "api_name": "os.path", "line_number": 81, "usage_type": "attribute" }, { "api_name": "joblib.dump", "line_number": 82, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path", "line_number": 86, "usage_type": "attribute" }, { "api_name": "joblib.load", "line_number": 87, "usage_type": "call" }, { "api_name": "sklearn.pipeline.Pipeline", "line_number": 88, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 91, "usage_type": "call" }, { "api_name": "os.path", "line_number": 91, "usage_type": "attribute" }, { "api_name": "joblib.load", "line_number": 92, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 133, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 134, "usage_type": "call" }, { "api_name": "sklearn.metrics.roc_auc_score", "line_number": 136, "usage_type": "call" } ]
21932276295
from discord.ext import commands class ErrorHandeler(commands.Cog): """A cog for global error handling""" def __init__(self, bot: commands.Bot): self.bot = bot @commands.Cog.listener() async def on_command_error(self, ctx: commands.Context, error: commands.CommandError): if isinstance(error, commands.MemberNotFound): await ctx.send("Please input a valid user") if isinstance(error, commands.UnexpectedQuoteError): await ctx.send("Your message must be surrounded by quotes.") def setup(bot: commands.Bot): bot.add_cog(ErrorHandeler(bot))
Jarkyc/Franklin-The-Undying
errorhandler.py
errorhandler.py
py
599
python
en
code
0
github-code
6
[ { "api_name": "discord.ext.commands.Cog", "line_number": 4, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 4, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot", "line_number": 7, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 7, "usage_type": "name" }, { "api_name": "discord.ext.commands.Context", "line_number": 11, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 11, "usage_type": "name" }, { "api_name": "discord.ext.commands.CommandError", "line_number": 11, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.MemberNotFound", "line_number": 12, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 12, "usage_type": "name" }, { "api_name": "discord.ext.commands.UnexpectedQuoteError", "line_number": 14, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 14, "usage_type": "name" }, { "api_name": "discord.ext.commands.Cog.listener", "line_number": 10, "usage_type": "call" }, { "api_name": "discord.ext.commands.Cog", "line_number": 10, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 10, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot", "line_number": 17, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 17, "usage_type": "name" } ]
36697027175
from jinja2 import Environment, PackageLoader import os from typing import Dict import re class SQLTemplate: _templatePath = os.path.join( os.path.dirname(os.path.dirname(os.path.relpath(__file__))), "templates" ) _templatePath = os.path.join("templates") # raise ValueError(f'templatePath = {_templatePath}') def getTemplate(self, sqlAction: str, parameters: Dict, **kwargs) -> str: templateName = f"{sqlAction.lower().strip()}.j2" templateEnv = Environment( loader=PackageLoader( package_name="tips", package_path="framework/templates" ), trim_blocks=True # loader=FileSystemLoader(self._templatePath), trim_blocks=True ) cmd = ( templateEnv.get_template(templateName) .render(parameters=parameters, kwargs=kwargs) .strip() .replace("\n", " ") ) return re.sub(" +", " ", cmd)
ProjectiveGroupUK/tips-snowpark
tips/framework/utils/sql_template.py
sql_template.py
py
1,001
python
en
code
2
github-code
6
[ { "api_name": "os.path.join", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path", "line_number": 8, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.path.relpath", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "typing.Dict", "line_number": 15, "usage_type": "name" }, { "api_name": "jinja2.Environment", "line_number": 17, "usage_type": "call" }, { "api_name": "jinja2.PackageLoader", "line_number": 18, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 30, "usage_type": "call" } ]
72784214587
# https://www.codewars.com/kata/5b76a34ff71e5de9db0000f2 from itertools import starmap def solve(arr): def conv(t1,t2): t1 = tuple(map(int,t1.split(":"))) t2 = tuple(map(int,t2.split(":"))) hd1, md = divmod((t2[1] - t1[1] - 1), 60) hd2 = (t2[0] - t1[0] + hd1) % 24 mm = (hd2 % 24) * 60 + md return mm, ':'.join(str(c).zfill(2) for c in divmod(mm, 60)) arr = sorted(set(arr)) return max(starmap(conv,zip(arr,arr[1:]+arr)))[1]
blzzua/codewars
6-kyu/simple_time_difference.py
simple_time_difference.py
py
487
python
en
code
0
github-code
6
[ { "api_name": "itertools.starmap", "line_number": 13, "usage_type": "call" } ]
21347456845
class IP(): def __init__(self,ipaddress): url='http://m.ip138.com/ip.asp?ip=' self.IP=ipaddress self.site=url+self.IP self.header={'User-Agent' :'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36 Edge/15.15063'} def get_phy(self): import requests as RQ import re try: r=RQ.get(self.site) r.raise_for_status() r.encoding=r.apparent_encoding html=r.text[-1000:] #print(html) answer=re.findall('本站主数据:(.*?)</p><p',html,re.S) answer=answer[0] return '您查询的IP:%s物理地址应该在:%s '%(self.IP,answer) except: return 'sth wrong' #素质裤衩分析 '''<h1 class="query">您查询的IP:1.1.1.1</h1><p class="result"> 本站主数据:澳大利亚 </p><p class="result"> 参考数据一:澳大利亚</p> ''' ''' while True: point='.' for I in range(7,100,7): for j in range(1,100,7): for k in range(1,100,70): for L in range(1,100,20): add=str(I)+point+str(j)+point+str(k)+point+str(L) print(add) #ip=input() i=IP(add) ans=i.get_phy() print(ans) ''' #第一个利用接口写的东西 '''num=input() num_list=list(num) num_list.remove(' ') num_list.remove(' ') new_num_list=[] print(num_list) for i in range(6): if num_list[i]=='-': new_num_list.append(int(num_list[i]+num_list[i+1])) ''' ''' sentinel ='' # 遇到这个就结束 lines = [] for line in iter(input, sentinel): lines.append(line) init=list(str(input())) try: init.remove(' ') except: pass print(int(init[0])+int(init[1])) string=input() str_list=list(string) str_list=str_list.reverse() new_str=str(str_list) print(new_str) '''
Alex-Beng/CubingQQBot
IP.py
IP.py
py
1,869
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 11, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 17, "usage_type": "call" }, { "api_name": "re.S", "line_number": 17, "usage_type": "attribute" } ]
5312412579
import pygame from flame import Flame class Firework: def __init__(self): self.rect = pygame.Rect(640, 720, 25, 50) self.image = pygame.Surface( (25, 50) ) self.image.fill( (255, 255, 255) ) self.exploded = False self.flames = [] def update(self): if not self.exploded: self.rect.y -= 2 if self.rect.y <= 200: self.explode() else: for flame in self.flames: flame.update() def draw(self, screen): if not self.exploded: screen.blit(self.image, self.rect) else: for flame in self.flames: flame.draw(screen) def explode(self): self.exploded = True for i in range(1000): self.flames.append(Flame())
jbedu1024/fajerwerki
firework.py
firework.py
py
822
python
en
code
0
github-code
6
[ { "api_name": "pygame.Rect", "line_number": 6, "usage_type": "call" }, { "api_name": "pygame.Surface", "line_number": 7, "usage_type": "call" }, { "api_name": "flame.update", "line_number": 19, "usage_type": "call" }, { "api_name": "flame.draw", "line_number": 26, "usage_type": "call" }, { "api_name": "flame.Flame", "line_number": 31, "usage_type": "call" } ]
33105484438
#!/usr/bin/env python # -*- coding: UTF-8 -*- import logging; logger = logging.getLogger("main") FORMAT = '%(asctime)s - %(levelname)s: %(message)s' logging.basicConfig(format=FORMAT, level=logging.WARNING) import time from flask import Flask, escape, url_for,render_template, g, request, redirect, jsonify, session from werkzeug import secure_filename import sys, os from jinja2 import Environment, PackageLoader import json app = Flask(__name__, static_folder='static') maze = [] width = 0 height = 0 STARTPOS=[1,1] MAXLIFE = 10 MIN_TIME_BETWEEN_INTERACTIONS=0.2 #seconds robots = {} def store_map(rawmaze): global maze, width, height if is_map_loaded(): logger.warning("Map already loaded. Ignoring it. Restart the backend if you want to update the map.") return width = rawmaze["width"] height = rawmaze["height"] maze = [True if x in [399,431,463,492,493,494,495] else False for x in rawmaze["data"]] for j in range(height): for i in range(width): idx = i + j * width if maze[idx]: sys.stdout.write('.') else: sys.stdout.write(' ') sys.stdout.write('\n') logger.info("Maze successfully loaded!") def is_map_loaded(): return width and height def get_obstacles(x,y): # obstacle at centre, north, south, east, west? obstacles = [True, True, True, True, True] if x >= 0 and y >= 0 and x < width and y < height and maze[x + y * width]: obstacles[0] = False if x >= 0 and y-1 >= 0 and x < width and y-1 < height and maze[x + (y-1) * width]: obstacles[1] = False if x >= 0 and y+1 >= 0 and x < width and y+1 < height and maze[x + (y+1) * width]: obstacles[2] = False if x+1 >= 0 and y >= 0 and x+1 < width and y < height and maze[x+1 + y * width]: obstacles[3] = False if x-1 >= 0 and y >= 0 and x-1 < width and y < height and maze[x-1 + y * width]: obstacles[4] = False logger.info(str(obstacles)) return obstacles @app.route("/set/<name>/<x>/<y>") def set_robot(name, x, y): logger.info("Placing robot %s to %s,%s" % (name,x,y)) x = int(x) y=int(y) c,_,_,_,_ = get_obstacles(x,y) if c: logger.info("Can not place robot there!") return json.dumps(False) robots[name]["pos"] = [x,y] return json.dumps(True) def get_robot(name): if name not in robots: return json.dumps([-1,-1]) return json.dumps(robots[name]["pos"]) @app.route("/") def main(): return render_template('index.html') @app.route("/live") def map(): return render_template('map.html') @app.route("/get_robots") def get_robots(): now = time.time() complete_robots = dict(robots) for k in list(robots.keys()): if robots[k]["life"] <= 0: logger.warning("Robot %s has no life left! killing it!" % k) del robots[k] del complete_robots[k] continue if now - robots[k]["lastinteraction"] > 60 * 10: logger.warning("Robot %s has not being used for 10 min. Removing it." % k) del robots[k] del complete_robots[k] continue complete_robots[k]["age"] = now - robots[k]["created"] return json.dumps(complete_robots) def create_new_robot(name): logger.info("Placing new robot %s at start position" % name) robots[name] = {"pos": STARTPOS, "created": time.time(), "lastinteraction": 0, "life": MAXLIFE } @app.route('/move/<name>/<direction>') def move(name, direction): if not is_map_loaded(): logger.error("Map not loaded yet! Reload webpage.") return json.dumps([False,[]]) if name not in robots: create_new_robot(name) logger.info("Moving robot %s to %s" % (name,direction)) now = time.time() if now - robots[name]["lastinteraction"] < MIN_TIME_BETWEEN_INTERACTIONS: logger.error("Too many interactions with %s. Wait a bit." % name) return json.dumps([False,[]]) robots[name]["lastinteraction"] = now x,y = robots[name]["pos"] if direction == 'N': nx, ny = x, y-1 if direction == 'S': nx, ny = x, y+1 if direction == 'E': nx, ny = x+1, y if direction == 'W': nx, ny = x-1, y c,n,s,e,w = get_obstacles(nx,ny) if c: logger.info("...can not move there!") robots[name]["life"] -= 1 return json.dumps([False,[]]) else: robots[name]["pos"] = [nx,ny] return json.dumps([True,[n,s,e,w]]) @app.route("/map", methods=['POST']) def load_map(): logger.info("Retrieving the map data...") store_map(json.loads([k for k in request.form.keys()][0])) return "" @app.route("/life/<name>") def life(name): return json.dumps(robots[name]["life"] if name in robots else 0)
severin-lemaignan/robomaze
backend/backend.py
backend.py
py
4,956
python
en
code
1
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 4, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 6, "usage_type": "call" }, { "api_name": "logging.WARNING", "line_number": 6, "usage_type": "attribute" }, { "api_name": "flask.Flask", "line_number": 18, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 48, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 48, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 50, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 50, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 51, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 51, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 90, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 93, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 97, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 98, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 102, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 106, "usage_type": "call" }, { "api_name": "time.time", "line_number": 111, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 132, "usage_type": "call" }, { "api_name": "time.time", "line_number": 138, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 147, "usage_type": "call" }, { "api_name": "time.time", "line_number": 154, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 157, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 177, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 181, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 188, "usage_type": "call" }, { "api_name": "flask.request.form.keys", "line_number": 188, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 188, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 188, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 193, "usage_type": "call" } ]