seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
7824439491
#LIBRERIAS A UTILIZAR import pandas as pd from sklearn.impute import SimpleImputer import numpy as np from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import seaborn as seabornInstance from sklearn.model_selection import train_test_split #libreria para poder separar los datos entre entrenamiento y test from sklearn.linear_model import LinearRegression #libreria para poder generar la regresion lineal from sklearn import metrics #ANALISIS PREVIO """ En el analisis previo con solo mirar el archivo, puedo deducir que es un archivo que contiene edad de una persona, sexo de la persona solicitante del seguro,bmi(segun lo que googlie es un reembolso que se le puede dar), cuantos hijos tiene, si es fumador o no, y el precio del seguro a abonar. De esto puedo inferir que mi prediccion va a ser con una regresion lineal multiple ya que la variable dependiete es el cargo del seguro, y es afectada por todas las demas columnas, es decir, un seguro aumentara por todas las condiciones anteriores(edad, bmi, hijos, si es fumador o no y de que zona es la persona solicitante) """ #-------------GUARDO MI ARCHIVO A USAR ------------------------------- ruta =r'Unsam.Clase.12.4.6.2021\Unsam.Clase.12.4.6.2021\cvs_para_el_TP\seguro.csv' dataSet = pd.read_csv(ruta) #archivo a utilizar #-----------------ANALISIS DE MIS DATOS --------------------- print(dataSet) #print("CANTIDAD DE FILAS Y COLUMNAS") #print(dataSet.shape) #no hace falta hacer el shape ya que al imprimir el dataSet, me dice cuantas filas y columnas tengo print(dataSet.describe()) #compruebo si hay valores nan en mi codigo print("Valores null o nan en el dataSet: ") print(dataSet.isna().values.any()) print(dataSet.isnull().values.any()) #devuelve falso por ende no tengo valores NaN o null #-------------SEPARO LAS VARIABLES QUE VOY A USAR------------ X = dataSet[['age','sex','bmi','children','smoker','region' ]].values Y = dataSet['charges'].values print("X:\n") print(X) #matriz /variables independientes print("Y:\n") print(Y) #vector /variables dependientes #----------------COMIENZO A PREPARAR LOS DATOS------------- """ La edad y el bmi, son valores numericos ya manipulables , por ende , los dejo como estan para poder realizar mi analisis """ #MODIFICO LA COLUMNA DEL SEXO PARA MANEJARME CON 1 Y 0 labelencoder_X=LabelEncoder() X[:,1]=labelencoder_X.fit_transform(X[:,1]) #MODIFICO LA COMLUNMA DE SI ES FUMADOR CON 1 Y 0 labelencoder_X=LabelEncoder() X[:,4]=labelencoder_X.fit_transform(X[:,4]) #MODIFICO LA COLUMNNA DE SUR Y NORTE (CON ORIENTACION ESTE Y OESTE) labelencoder_X=LabelEncoder() X[:,-1]=labelencoder_X.fit_transform(X[:,-1]) print("Matriz X luego de preparacion de datos : \n") print(X) #PREGUNTAR SI HAY QUE ESCALAR LA EDAD? #-------------GRAFICO MI VARIABLE DEPENDIENTE PARA SACAR ALGUNA CONCLUSION ----------- plt.figure(figsize=(10,5)) plt.tight_layout() plt.title('Densidad de mi variable Dependiente') seabornInstance.distplot(dataSet['charges'], color = 'lightblue') plt.show() """ De este Grafico podemos concluir que mi variable dependiente 'charges' que seria el precio a pagar del seguro, varia entre 0 y 70000 , y la mayor densidad(mayor cantidad de match) las hace desde el 0 hasta el 10000 aproximadamente. """ #------------------DIVIDIR LOS DATOS EN ENTRENAMIENTO Y TEST ----------------- #80 porciento de mis datos en entrenamiento y 20 en test X_train , X_test, Y_train, Y_test = train_test_split(X , Y , test_size = 0.2, random_state=0) #comienzo a entrenar mi modelo regressor = LinearRegression() regressor.fit(X_train, Y_train) #------------------ELIMINO MI COLUMNA QUE ES LA DE CARGOS(VARIABLE DEPENDIENTE)----------- dataFrame= dataSet.drop(['charges'], axis = 1) #dropeo(elimino) mi variale dependiente de mi data frame dataFrame = dataFrame.T #transpongo filas por columnas PODRIA SER TRANSPOSE() dataFrame = dataFrame.index #me guardo en mi dataframe solo las etiquetas print(dataFrame) #imprimo las etiquetas para verificar que estan bien guardadas #-----------------ENCONTRAR LOS COEFICIENTES MAS OPTIMOS PARA MIS ATRIBUTOS---------------- coeficiente_dataFrame = pd.DataFrame(regressor.coef_, dataFrame, columns= ['Coeficiente']) print(coeficiente_dataFrame) #luego de imprimir concluyo que transpuso filas por columnas y tiene sus coeficentes correspondientes #---------------PREDICCION-------------------- y_prediccion = regressor.predict(X_test) #agarro mi dataFrame donde estan mis indices dataFrame = pd.DataFrame({'Actual': Y_test, 'Prediccion': y_prediccion}) dataFrame_prediccion = dataFrame.head(30) print(dataFrame_prediccion) #-------------------GRAFICO MI PREDICCION ----------------- dataFrame_prediccion.plot(kind='bar',figsize=(10,8)) #LE DIGO QUE ES UN GRAFICO DE BARRAS Y EL TAMAÑO plt.title('Actual vs Prediccion') plt.grid(which='major', linestyle='-', linewidth='0.5', color='black') plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black') plt.show() #----------------ME FIJO EL RENDIMIENTO DE MI ALGORITMO --------------- print('Promedio de Error Absoluto:', metrics.mean_absolute_error(Y_test, y_prediccion)) print('Promedio de Error de Raiz:', metrics.mean_squared_error(Y_test, y_prediccion)) print('Error cuadratico medio de la raiz:', np.sqrt(metrics.mean_squared_error(Y_test, y_prediccion))) #CONCLUSION FINAL """ Por el analisis hecho, podemos deducir que la prediccion no es nada buena, ya que los promedios de error superan ampliamente el 10 porciento, es aproximadamente, un 15 porciento (siendo generoso), no es un analisis muy exacto, pero para nuestro caso es aceptable(porque use regresion lineal multiple, entonces entre mas datos afecten a mi variable dependiente , menos me voy a acercar a una prediccion acertada), ya que las columnas en las que supera ese porcentaje son la 14 , la 20 y la 23, que siendo generoso tendrian aproximadamente un 25 porciento extra. """ """ PD: Perdon por mi manera de hablar o escribir pero la verdad que en las conclusiones tarde mas que en el codigo jajaja. Si hay algo que deba cambiar o mejorar porfavor diganmelo Muchas gracias por TODO Atte : Alex Sosa :) """
alextsosa17/Analisis-de-Datos-y-prediccion--Python
TpFinalAlexSosa.py
TpFinalAlexSosa.py
py
6,299
python
es
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 23, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.LabelEncoder", "line_number": 55, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.LabelEncoder", "line_number": 59, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.LabelEncoder", "line_number": 63, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 73, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 74, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 74, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "seaborn.distplot", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 77, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 77, "usage_type": "name" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 85, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LinearRegression", "line_number": 87, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 100, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 108, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 116, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 116, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 117, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 118, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 119, "usage_type": "name" }, { "api_name": "sklearn.metrics.mean_absolute_error", "line_number": 124, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 124, "usage_type": "name" }, { "api_name": "sklearn.metrics.mean_squared_error", "line_number": 125, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 125, "usage_type": "name" }, { "api_name": "numpy.sqrt", "line_number": 126, "usage_type": "call" }, { "api_name": "sklearn.metrics.mean_squared_error", "line_number": 126, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 126, "usage_type": "name" } ]
43918724986
import streamlit as st import pandas as pd import plotly.express as px import seaborn as sns import ssl ssl._create_default_https_context = ssl._create_unverified_context st.set_option('deprecation.showPyplotGlobalUse', False) # Loading dataset df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']) st.title('Exploratory Data Analysis of the Iris Dataset') st.header('This app allows you to explore the Iris dataset and visualize the data using various plots.') st.subheader("DataFrame") st.dataframe(df) selected_column = st.sidebar.selectbox('Select a column to visualize', df.columns) st.write("Histogram Plots") sns.histplot(df[selected_column]) st.pyplot() st.write("Scatter plot") x_axis = st.sidebar.selectbox('Select the x-axis', df.columns) y_axis = st.sidebar.selectbox('Select the y-axis', df.columns) fig = px.scatter(df, x=x_axis, y=y_axis) st.plotly_chart(fig) st.write("Pair Plot") sns.pairplot(df, hue='class') st.pyplot() st.write("Description of the data") st.table(df.describe()) st.header('Correlation Matrix') corr = df.corr() sns.heatmap(corr, annot=True) st.pyplot() st.header('Boxplot') fig = px.box(df, y=selected_column) st.plotly_chart(fig) selected_class = st.sidebar.selectbox('Select a class to visualize', df['class'].unique()) if st.sidebar.button('Show Violin Plot'): fig = px.violin(df[df['class'] == selected_class], y=selected_column) st.plotly_chart(fig)
avrabyt/Holiday-coding-session
streamlit_app.py
streamlit_app.py
py
1,556
python
en
code
3
github-code
6
[ { "api_name": "ssl._create_default_https_context", "line_number": 7, "usage_type": "attribute" }, { "api_name": "ssl._create_unverified_context", "line_number": 7, "usage_type": "attribute" }, { "api_name": "streamlit.set_option", "line_number": 9, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 11, "usage_type": "call" }, { "api_name": "streamlit.title", "line_number": 14, "usage_type": "call" }, { "api_name": "streamlit.header", "line_number": 15, "usage_type": "call" }, { "api_name": "streamlit.subheader", "line_number": 17, "usage_type": "call" }, { "api_name": "streamlit.dataframe", "line_number": 18, "usage_type": "call" }, { "api_name": "streamlit.sidebar.selectbox", "line_number": 19, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 19, "usage_type": "attribute" }, { "api_name": "streamlit.write", "line_number": 21, "usage_type": "call" }, { "api_name": "seaborn.histplot", "line_number": 22, "usage_type": "call" }, { "api_name": "streamlit.pyplot", "line_number": 23, "usage_type": "call" }, { "api_name": "streamlit.write", "line_number": 25, "usage_type": "call" }, { "api_name": "streamlit.sidebar.selectbox", "line_number": 26, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 26, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.selectbox", "line_number": 27, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 27, "usage_type": "attribute" }, { "api_name": "plotly.express.scatter", "line_number": 29, "usage_type": "call" }, { "api_name": "plotly.express", "line_number": 29, "usage_type": "name" }, { "api_name": "streamlit.plotly_chart", "line_number": 30, "usage_type": "call" }, { "api_name": "streamlit.write", "line_number": 32, "usage_type": "call" }, { "api_name": "seaborn.pairplot", "line_number": 33, "usage_type": "call" }, { "api_name": "streamlit.pyplot", "line_number": 34, "usage_type": "call" }, { "api_name": "streamlit.write", "line_number": 35, "usage_type": "call" }, { "api_name": "streamlit.table", "line_number": 36, "usage_type": "call" }, { "api_name": "streamlit.header", "line_number": 38, "usage_type": "call" }, { "api_name": "seaborn.heatmap", "line_number": 41, "usage_type": "call" }, { "api_name": "streamlit.pyplot", "line_number": 42, "usage_type": "call" }, { "api_name": "streamlit.header", "line_number": 44, "usage_type": "call" }, { "api_name": "plotly.express.box", "line_number": 46, "usage_type": "call" }, { "api_name": "plotly.express", "line_number": 46, "usage_type": "name" }, { "api_name": "streamlit.plotly_chart", "line_number": 47, "usage_type": "call" }, { "api_name": "streamlit.sidebar.selectbox", "line_number": 49, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 49, "usage_type": "attribute" }, { "api_name": "streamlit.sidebar.button", "line_number": 51, "usage_type": "call" }, { "api_name": "streamlit.sidebar", "line_number": 51, "usage_type": "attribute" }, { "api_name": "plotly.express.violin", "line_number": 52, "usage_type": "call" }, { "api_name": "plotly.express", "line_number": 52, "usage_type": "name" }, { "api_name": "streamlit.plotly_chart", "line_number": 53, "usage_type": "call" } ]
27937806135
#!/usr/bin/python # coding: utf-8 import numpy as np import cv2 import csv import os import shutil import shutil import logging def to_image_string(image_filepath): return open(image_filepath, "rb").read().encode("base64") def from_base64(base64_data): nparr = np.fromstring(base64_data.decode("base64"), np.uint8) return cv2.imdecode(nparr, cv2.IMREAD_ANYCOLOR) # clean all non-alphanumberic characters def strip(string): words = string.split() words = [word for word in words if "#" not in word] string = " ".join(words) clean = "" for c in string: if str.isalnum(c) or (c in [" ", ".", ","]): clean += c return clean # creating CSV header def create_csv(filename): with open(filename, "w+", newline="", encoding="utf-8") as save_file: writer = csv.writer(save_file) writer.writerow(["Author", "uTime", "Text"]) def write_to_csv(filename, data): with open(filename, "a+", newline="", encoding="utf-8") as save_file: writer = csv.writer(save_file) writer.writerow(data) def empty_folder(folder): for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): empty_folder(file_path) except Exception as e: logging.info("Failed to delete %s. Reason: %s" % (file_path, e)) def move_file(source, dest): shutil.move(source, dest)
Zyniel/DansePlanningManager
src/app/utils.py
utils.py
py
1,569
python
en
code
0
github-code
6
[ { "api_name": "numpy.fromstring", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 17, "usage_type": "attribute" }, { "api_name": "cv2.imdecode", "line_number": 18, "usage_type": "call" }, { "api_name": "cv2.IMREAD_ANYCOLOR", "line_number": 18, "usage_type": "attribute" }, { "api_name": "csv.writer", "line_number": 36, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 42, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 47, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 48, "usage_type": "call" }, { "api_name": "os.path", "line_number": 48, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path", "line_number": 50, "usage_type": "attribute" }, { "api_name": "os.path.islink", "line_number": 50, "usage_type": "call" }, { "api_name": "os.unlink", "line_number": 51, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 52, "usage_type": "call" }, { "api_name": "os.path", "line_number": 52, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 55, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 59, "usage_type": "call" } ]
12267302602
# -*- coding: utf-8 -*- import scrapy from collections import OrderedDict class BriefingEarningsSpider(scrapy.Spider): name = 'briefing_earnings' allowed_domains = ['www.briefing.com'] start_urls = ['https://www.briefing.com/Inv/content/Auth/Calendar/Earnings/week1.htm'] # Current week (week1) def parse(self, response): dates_lst = response.xpath('//*[@class="calDATE"]/text()').getall() # Get list of days (dates) dates = {dates_lst[day]: day for day in range(len(dates_lst))} dates_sort = OrderedDict(sorted(dates.items(), key=lambda x: x[1])) # Ordered dict to save que for i, day in enumerate(dates_sort): block = response.xpath('//*[@class="calDATE"]/following-sibling::ul')[i] # Block for day events_lst = block.xpath('.//div[contains(@class,"calEVENT")]') # Block for ticket tickets = OrderedDict() for event in events_lst: ticket = event.xpath('.//span/@data-ticker-search').get() name = event.xpath('.//strong/text()').get() surprise_value = event.xpath( './/span[contains(text(), "Surprise:")]/following-sibling::span/text()').get() act_value = event.xpath('.//span[contains(text(), "Act:")]/following-sibling::span/text()').get() cons_value = event.xpath('.//span[contains(text(), "Cons:")]/following-sibling::span/text()').get() tickets.update({ticket: {'name': name, 'surprise_value': surprise_value, 'actual_value': act_value, 'consensus_value': cons_value}}) dates_sort.update({day: tickets}) # Add all tickets with values for day yield dates_sort
kompotkot/WebScraper-Stocksinplay
stocksinplay/spiders/briefing_earnings.py
briefing_earnings.py
py
1,854
python
en
code
0
github-code
6
[ { "api_name": "scrapy.Spider", "line_number": 7, "usage_type": "attribute" }, { "api_name": "collections.OrderedDict", "line_number": 15, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 21, "usage_type": "call" } ]
38902423747
import time import subprocess import digitalio import board from PIL import Image, ImageDraw, ImageFont import adafruit_rgb_display.st7789 as st7789 import pynmea2 import sys from subprocess import Popen, PIPE import serial import io # Configuration for CS and DC pins (these are FeatherWing defaults on M0/M4): cs_pin = digitalio.DigitalInOut(board.CE0) dc_pin = digitalio.DigitalInOut(board.D25) reset_pin = None # COLORS ORGANGE = "#ffa600" WHITE = "#FFFFFF" # Config for display baudrate (default max is 24mhz): BAUDRATE = 64000000 # Setup SPI bus using hardware SPI: spi = board.SPI() # Create the ST7789 display: disp = st7789.ST7789( spi, cs=cs_pin, dc=dc_pin, rst=reset_pin, baudrate=BAUDRATE, width=135, height=240, x_offset=53, y_offset=40, ) # Create blank image for drawing. # Make sure to create image with mode 'RGB' for full color. height = disp.width # we swap height/width to rotate it to landscape! width = disp.height image = Image.new("RGB", (width, height)) rotation = 90 # Get drawing object to draw on image. draw = ImageDraw.Draw(image) # Draw a black filled box to clear the image. draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0)) disp.image(image, rotation) # Draw some shapes. # First define some constants to allow easy resizing of shapes. padding = -2 top = padding bottom = height - padding # Move left to right keeping track of the current x position for drawing shapes. x = 0 # Alternatively load a TTF font. Make sure the .ttf font file is in the # same directory as the python script! # Some other nice fonts to try: http://www.dafont.com/bitmap.php font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", 24) # Turn on the backlight backlight = digitalio.DigitalInOut(board.D22) backlight.switch_to_output() backlight.value = True while True: iterator = 0 # Get output from std with Popen(["gpspipe", "/dev/ttyACM0", "-r"], stdout=PIPE, bufsize=1, universal_newlines=True) as p: for line in p.stdout: iterator = iterator + 1 # counting up to 4 lines ignores the headers that would otherwise be unfit for parsing if(iterator >= 4): gpsmsg = pynmea2.parse(line) # handling errors is critical - program will fail without this step try: latitude = gpsmsg.lat longitude = gpsmsg.lon #altitude = gpsmsg.alt y = top if(latitude != 0 and latitude != "null" and latitude != "NULL" and latitude != "" and latitude != " "): #print(latitude) draw.rectangle((0, 0, width, height), outline=0, fill=0) #Write GPS data to screen #y = top draw.text((x, y), "LAT: " + latitude, font=font, fill=WHITE) y += font.getsize("LAT")[1] if(longitude != 0 and longitude != "null" and longitude != "NULL" and longitude != "" and longitude != " "): draw.text((x, y), "LON: " + longitude, font=font, fill=WHITE) y += font.getsize("LON")[1] #if(altitude != 0 and altitude != "null" and altitude != "NULL" and altitude != "" and altitude != " "): #draw.text((x, y), "ALT: " + altitude, font=font, fill=WHITE) #y += font.getsize("ALT")[1] except: print("cannot parse that") #pass disp.image(image, rotation) time.sleep(0.1)
vwls/toolbox
gps_data_to_screen.py
gps_data_to_screen.py
py
4,226
python
en
code
0
github-code
6
[ { "api_name": "digitalio.DigitalInOut", "line_number": 14, "usage_type": "call" }, { "api_name": "board.CE0", "line_number": 14, "usage_type": "attribute" }, { "api_name": "digitalio.DigitalInOut", "line_number": 15, "usage_type": "call" }, { "api_name": "board.D25", "line_number": 15, "usage_type": "attribute" }, { "api_name": "board.SPI", "line_number": 26, "usage_type": "call" }, { "api_name": "adafruit_rgb_display.st7789.ST7789", "line_number": 29, "usage_type": "call" }, { "api_name": "adafruit_rgb_display.st7789", "line_number": 29, "usage_type": "name" }, { "api_name": "PIL.Image.new", "line_number": 45, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 45, "usage_type": "name" }, { "api_name": "PIL.ImageDraw.Draw", "line_number": 49, "usage_type": "call" }, { "api_name": "PIL.ImageDraw", "line_number": 49, "usage_type": "name" }, { "api_name": "PIL.ImageFont.truetype", "line_number": 66, "usage_type": "call" }, { "api_name": "PIL.ImageFont", "line_number": 66, "usage_type": "name" }, { "api_name": "digitalio.DigitalInOut", "line_number": 69, "usage_type": "call" }, { "api_name": "board.D22", "line_number": 69, "usage_type": "attribute" }, { "api_name": "subprocess.Popen", "line_number": 79, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 79, "usage_type": "name" }, { "api_name": "pynmea2.parse", "line_number": 88, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 122, "usage_type": "call" } ]
33415585016
import cv2 as cv import numpy as np from matplotlib import pyplot as plt import scipy.optimize as optimize # Opening image img = cv.imread("red.png") # Uncomment this and run the program to make sure the # convex_hull_pointing_up algorithm works # img = cv.rotate(img, cv.ROTATE_180) # OpenCV stores images as BGR by default # so the following two lines flip the color channels # to RGB and HSV img_rgb = cv.cvtColor(img, cv.COLOR_BGR2RGB) img_hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) # Create the environment of the picture plt.subplot(1, 1, 1) plt.imshow(img_rgb) # Defining thresholds to isolate the HSV pixels that # have the desired color img_thresh_low = cv.inRange(img_hsv, np.array([0, 135, 135]), np.array([15, 255, 255])) img_thresh_high = cv.inRange(img_hsv, np.array([159, 135, 135]), np.array([179, 255, 255])) # Add the two threshold maps together img_thresh = cv.bitwise_or(img_thresh_low, img_thresh_high) # Use erosion followed by dilation to remove noise kernel = np.ones((5, 5)) img_thresh_opened = cv.morphologyEx(img_thresh, cv.MORPH_OPEN, kernel) # Blur the image slightly img_thresh_blurred = cv.medianBlur(img_thresh_opened, 5) # Find edges with the Canny edge detection algorithm img_edges = cv.Canny(img_thresh_blurred, 70, 255) # Get contours contours, _ = cv.findContours(np.array(img_edges), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # Approximate contours using the Douglas-Peucker algorithm approx_contours = [] for c in contours: approx = cv.approxPolyDP(c, 5, closed=True) approx_contours.append(approx) # Find convex hulls of the contours all_convex_hulls = [] for ac in approx_contours: all_convex_hulls.append(cv.convexHull(ac)) # Remove any hulls with more than 10 or less than 3 points convex_hulls_3to10 = [] for ch in all_convex_hulls: if 3 <= len(ch) <= 10: convex_hulls_3to10.append(cv.convexHull(ch)) # Define a function to check if a hull is pointing up def convex_hull_pointing_up(ch: np.ndarray) -> bool: points_above_center, points_below_center = [], [] _, y, _, h = cv.boundingRect(ch) vertical_center = y + h / 2 for point in ch: if point[0][1] < vertical_center: points_above_center.append(point) elif point[0][1] >= vertical_center: points_below_center.append(point) x_above, _, w_above, _ = cv.boundingRect(np.array(points_above_center)) x_below, _, w_below, _ = cv.boundingRect(np.array(points_below_center)) return x_above <= x_below + w_below and x_above + w_above <= x_below + w_below \ and x_above >= x_below and x_above + w_above >= x_below cones = [] bounding_rects = [] # Filter out the contours that aren't pointing up for ch in convex_hulls_3to10: if convex_hull_pointing_up(ch): cones.append(ch) rect = cv.boundingRect(ch) bounding_rects.append(rect) img_res = img_rgb.copy() # Draw rectangles around the identified cones for rect in bounding_rects: x, y, w, h = rect cv.rectangle(img_res, (x, y), (x + w, y + h), (0, 255, 0), 2) # Fit best-fit lines to the left and right sides of the screen cone_points_left = [(rect[0] + rect[2] / 2, rect[1] + rect[3] / 2) for rect in bounding_rects if rect[0] + rect[2] / 2 < img_res.shape[1] / 2] cone_points_right = [(rect[0] + rect[2] / 2, rect[1] + rect[3] / 2) for rect in bounding_rects if rect[0] + rect[2] / 2 > img_res.shape[1] / 2] def least_squares(x, y): # Create the least squares objective function. def func(x, a, b): return a * x + b popt, pcov = optimize.curve_fit(func, x, y) return popt # Get best fit lines for these points a1, b1 = least_squares(np.array([i[0] for i in cone_points_left]), np.array([i[1] for i in cone_points_left])) a2, b2 = least_squares(np.array([i[0] for i in cone_points_right]), np.array([i[1] for i in cone_points_right])) # Draw the best-fit lines on the image cv.line(img_res, [0, int(b1)], [3000, int((3000 * a1) + b1)], (255, 1, 1), 5) cv.line(img_res, [0, int(b2)], [3000, int((3000 * a2) + b2)], (255, 1, 1), 5) # Display and save the final output image plt.imshow(img_res) plt.savefig("answer.png") plt.show()
IamParvSinghal/Wisconsin_Autonomous
CV.py
CV.py
py
4,280
python
en
code
0
github-code
6
[ { "api_name": "cv2.imread", "line_number": 7, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 16, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2HSV", "line_number": 17, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "cv2.inRange", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 25, "usage_type": "call" }, { "api_name": "cv2.inRange", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 26, "usage_type": "call" }, { "api_name": "cv2.bitwise_or", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 31, "usage_type": "call" }, { "api_name": "cv2.morphologyEx", "line_number": 32, "usage_type": "call" }, { "api_name": "cv2.MORPH_OPEN", "line_number": 32, "usage_type": "attribute" }, { "api_name": "cv2.medianBlur", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.Canny", "line_number": 38, "usage_type": "call" }, { "api_name": "cv2.findContours", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 41, "usage_type": "call" }, { "api_name": "cv2.RETR_EXTERNAL", "line_number": 41, "usage_type": "attribute" }, { "api_name": "cv2.CHAIN_APPROX_SIMPLE", "line_number": 41, "usage_type": "attribute" }, { "api_name": "cv2.approxPolyDP", "line_number": 46, "usage_type": "call" }, { "api_name": "cv2.convexHull", "line_number": 52, "usage_type": "call" }, { "api_name": "cv2.convexHull", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 61, "usage_type": "attribute" }, { "api_name": "cv2.boundingRect", "line_number": 63, "usage_type": "call" }, { "api_name": "cv2.boundingRect", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 72, "usage_type": "call" }, { "api_name": "cv2.boundingRect", "line_number": 73, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 73, "usage_type": "call" }, { "api_name": "cv2.boundingRect", "line_number": 85, "usage_type": "call" }, { "api_name": "cv2.rectangle", "line_number": 93, "usage_type": "call" }, { "api_name": "scipy.optimize.curve_fit", "line_number": 104, "usage_type": "call" }, { "api_name": "scipy.optimize", "line_number": 104, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 108, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 109, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 112, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 113, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 116, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 116, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 117, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 118, "usage_type": "name" } ]
11296078217
import requests import json data = { "a": "GetBidYiDong", "Token": "29db4b581d67ec1c46a231e09e919671", "c": "StockBidYiDong", "UserID": 19, "day": "20171026" } url = "https://hq.kaipanla.com/w1/api/index.php" respone = requests.post(url, data) respone.encoding = "unicode_escape" result = respone.text print(result) result = result.replace("zhangfu", "涨幅").replace("BidAmount", "成交").replace("sjltp", "市值")\ .replace("BidAmount", "净额").replace("BuyP", "大单占比").replace("Buy100", "买入")\ .replace("Sell100", "卖出").replace("BidAmount", "净额").replace("Plate", "概念") for p in json.loads(result)["List"]: print("--------------------------------------------------------------------------------") print(p)
mykright/auto_stock_search
竞价.py
竞价.py
py
778
python
en
code
3
github-code
6
[ { "api_name": "requests.post", "line_number": 14, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 21, "usage_type": "call" } ]
70063403388
from multiprocessing import context from pwn import * from LibcSearcher import * context.log_level = 'debug' # p=process('./pwn') p=remote('t.ctf.qwq.cc',49468) pause() elf=ELF('./pwn') context.arch ='amd64' context.bits=64 shellcode=asm('push 0x68;mov rax ,0x68732f6e69622f;push rax;mov rdi,rsp;xor rsi, rsi;xor rdx, rdx;xor rax,rax;add rax,0x3b;syscall') p.recvuntil(b'Do u know what\'s is it?\n') payload=shellcode.ljust(0x38,b'a')+b'\x2a' # payload=b'a'*0x30#+p64(0x7ffdadf3ddf0) p.send(payload) p.interactive()
CookedMelon/mypwn
NPU/shellcode/exp.py
exp.py
py
520
python
en
code
3
github-code
6
[ { "api_name": "multiprocessing.context.log_level", "line_number": 4, "usage_type": "attribute" }, { "api_name": "multiprocessing.context", "line_number": 4, "usage_type": "name" }, { "api_name": "multiprocessing.context.arch", "line_number": 10, "usage_type": "attribute" }, { "api_name": "multiprocessing.context", "line_number": 10, "usage_type": "name" }, { "api_name": "multiprocessing.context.bits", "line_number": 11, "usage_type": "attribute" }, { "api_name": "multiprocessing.context", "line_number": 11, "usage_type": "name" } ]
37197760033
from datetime import datetime class Greeter: def __init__(self, name): self.name = name def day(): return datetime.now().strftime('%A') def part_of_day(): # Определяет часть, дня основываясь на текущем часе current_hour = datetime.now().hour if current_hour < 12: part_of_day = "утра" elif 12 <= current_hour < 17: part_of_day = 'дня' else: part_of_day = 'вечера' return part_of_day def greet(self, store): # Выводит приветствие, используя все расчетные составляющие print(f'Здраствуйте, меня зовут {self.name}, и добро пожаловать' f'в {store}!') print(f'Желаем вам приятного {day()} {part_of_day()}') print('Дарим вам купон на скидку 20%!')
alecksandr-slavin/git_work
stepick_v1/new.py
new.py
py
980
python
ru
code
0
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 9, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 9, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 12, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 12, "usage_type": "name" } ]
4886937902
import numpy as np import torch def ious(box, boxes, isMin = False):#定义iou函数 box_area = (box[3] - box[1]) * (box[4] - box[2])#计算自信度最大框的面积 area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 4] - boxes[:, 2])#计算其他所有框的面积 xx1 = torch.max(box[1], boxes[:, 1])#计算交集左上角x的坐标其他同理 yy1 = torch.max(box[2], boxes[:, 2]) xx2 = torch.min(box[3], boxes[:, 3]) yy2 = torch.min(box[4], boxes[:, 4]) # w = torch.max(0, xx2 - xx1) # h = torch.max(0, yy2 - yy1)#获取最大值也可以用下面这种方法 w = torch.clamp(xx2 - xx1, min=0)#获取最大值 h = torch.clamp(yy2 - yy1, min=0) inter = w * h#计算交集面积 # ovr1 = inter/torch.min(box_area, area) ovr2 = inter/ (box_area + area - inter)#交集面积/并集面积 # ovr = torch.max(ovr2,ovr1) # if isMin:#用于判断是交集/并集,还是交集/最小面积(用于处理大框套小框的情况) # # ovr = inter / torch.min(box_area, area) # else: # ovr = inter / (box_area + area - inter) return ovr2 def nms(boxes, thresh=0.5, isMin = True):#定义nms函数并传3个参数,分别是框,自信度阀值,是否最小面积 if boxes.shape[0] == 0:#获取框的个是看是否为0,为0没框就返回一个空的数组防止代码报错 return torch.Tensor([]) _boxes = boxes[(-boxes[:, 0]).argsort()]#对框进行排序按自信度从大到小的顺序 r_boxes = []#定义一个空的列表用来装合格的框 while _boxes.shape[0] > 1:#循环框的个数 a_box = _boxes[0]#取出第一个(自信度最大的框)框最为目标框与 其他框做iou b_boxes = _boxes[1:]#取出剩下的所有框 r_boxes.append(a_box)#将第一个框添加到列表 # print(iou(a_box, b_boxes)) index = torch.where(ious(a_box, b_boxes,isMin) < thresh)#对框做iou将满足iou阀值条件的框留下并反回其索引 _boxes = b_boxes[index]#根据索引取框并赋值给_boxes,使其覆盖原来的_boxes if _boxes.shape[0] > 0:#判断是否剩下最后一个框 r_boxes.append(_boxes[0])#将最后一个框,说明这是不同物体,并将其放进列表 return torch.stack(r_boxes) if __name__ == '__main__': # a = np.array([1,1,11,11]) # bs = np.array([[1,1,10,10],[11,11,20,20]]) # print(iou(a,bs)) bs = torch.tensor([[1, 1, 10, 10, 40,8], [1, 1, 9, 9, 10,9], [9, 8, 13, 20, 15,3], [6, 11, 18, 17, 13,2]]) # print(bs[:,3].argsort()) print(nms(bs))
RockingHorse-L/yolov3
YOLOV3/tool1.py
tool1.py
py
2,668
python
zh
code
2
github-code
6
[ { "api_name": "torch.max", "line_number": 8, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 9, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 10, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 11, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.clamp", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 35, "usage_type": "call" }, { "api_name": "torch.where", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 61, "usage_type": "call" } ]
26053687100
from itertools import permutations vowels = ["а"] consonants = ["б", "т", "с"] result = set() for index, i in enumerate(permutations("аббатиса")): correct = True for symbol_index in range(0, len(i) - 1): if (i[symbol_index] in vowels and i[symbol_index + 1] in vowels) or \ (i[symbol_index] in consonants and i[symbol_index + 1] in consonants): correct = False break if correct: result.add(i) print(len(result))
Woolfer0097/UGE_IT
8 task/235.py
235.py
py
495
python
en
code
0
github-code
6
[ { "api_name": "itertools.permutations", "line_number": 7, "usage_type": "call" } ]
17430789952
#!/usr/bin/python # https://www.udemy.com/course/complete-python-developer-zero-to-mastery/ # 246. Hacker News Project # https://www.synerzip.com/blog/web-scraping-introduction-applications-and-best-practices/ # https://www.crummy.com/software/BeautifulSoup/ # https://www.crummy.com/software/BeautifulSoup/bs4/doc/ # https://scrapy.org/ # https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors # https://www.w3schools.com/css/css_selectors.asp # https://www.w3schools.com/cssref/css_selectors.asp # https://docs.python.org/3/library/pprint.html # pip install beautifulsoup4 # pip install requests from bs4 import BeautifulSoup import requests import pprint RES= 'https://news.ycombinator.com/news' POINTS = 200 res = requests.get(RES) soup = BeautifulSoup(res.text, 'html.parser') links = soup.select('.storylink') subtext = soup.select('.subtext') for i in range(2,4): res = requests.get(RES+'?p='+str(i)) soup = BeautifulSoup(res.text, 'html.parser') links += soup.select('.storylink') subtext += soup.select('.subtext') def sort_stories_by_votes(hnlist): return sorted(hnlist, key=lambda k:k['points'], reverse=True) def create_custom_hn(links, subtext): hn = [] for idx, item in enumerate(links): title= item.getText() href=item.get('href', None) vote=subtext[idx].select('.score') if len(vote): points=int(vote[0].getText().replace(' points', '')) if points >= POINTS: hn.append({'title':title, 'link':href, 'points':points}) return sort_stories_by_votes(hn) hacker_news= create_custom_hn(links, subtext) pprint.pprint(hacker_news)
olexandrch/UdemyCompletePythonDeveloper
Sec.18 246 Hacker News Project.py
Sec.18 246 Hacker News Project.py
py
1,683
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 28, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 29, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 34, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 35, "usage_type": "call" }, { "api_name": "pprint.pprint", "line_number": 56, "usage_type": "call" } ]
37431499468
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' name: Dlink DIAGNOSTIC.PHP命令执行 referer: https://www.exploit-db.com/exploits/24956 author: Lucifer description: Some D-Link Routers are vulnerable to OS Command injection in the web interface. On DIR-645 versions prior 1.03 authentication isn't needed to exploit it. On version 1.03 authentication is needed in order to trigger the vulnerability, which has been fixed definitely on version 1.04. Other D-Link products, like DIR-300 rev B and DIR-600, are also affected by this vulnerability. Not every device includes wget which we need for deploying our payload. On such devices you could use the cmd generic payload and try to start telnetd or execute other commands. Since it is a blind OS command injection vulnerability, there is no output for the executed command when using the cmd generic payload. A ping command against a controlled system could be used for testing purposes. This module has been tested successfully on DIR-645 prior to 1.03, where authentication isn't needed in order to exploit the vulnerability. ''' import sys import json import requests class router_dlink_command_exec_BaseVerify(): def __init__(self, url): self.url = url def run(self): headers = { "User-Agent":"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50", } post_data = { "act":"ping", "dst":"www.baidu.com" } payload = "/diagnostic.php" vulnurl = self.url + payload try: req = requests.post(vulnurl, data=post_data, headers=headers, timeout=10, verify=False) if r"<report>OK" in req.text: return "[+]存在Dlink DIAGNOSTIC.PHP命令执行漏洞...(高危)\tpayload: "+vulnurl+"\npost: "+json.dumps(post_data, indent=4) else: return "[-]no vuln" except: return "[-] ======>连接超时" if __name__ == "__main__": testVuln = router_dlink_command_exec_BaseVerify(sys.argv[1]) testVuln.run()
iceyhexman/onlinetools
scanner/plugins/hardware/router/router_dlink_command_exec.py
router_dlink_command_exec.py
py
2,122
python
en
code
1,626
github-code
6
[ { "api_name": "requests.post", "line_number": 34, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 36, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 43, "usage_type": "attribute" } ]
42095434916
from selenium import webdriver # driver de selenium from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options from selenium_stealth import stealth # Ayuda a evitar que las webs nos detecten que somos un bot from shutil import which def iniciar_webdriver(headless=True):# Arranca webdriver con Chrome y lo devuelve options = Options() if headless: options.add_argument("--headless") # para ejecutar chromedriver, pero sin abrir la ventana options.add_argument("--window-size=1000,1000") # Configurar dimension ventana alto y ancho options.add_argument("--start-maximized") # para maximizar la ventana options.add_argument("--disable-dev-shm-usage") # Importante para usar en Heroku | Para usar un directorio temporal para crear archivos anonimos de memoria copartida options.add_argument("--disable-blink-features=AutomationControlled") # Para que el navigator.webdriver sea falso options.add_argument("--log-level=3") # Para que no muestre nada en la terminal lista = [ "enable-automation", # Para ocultar "Un software automatizado de pruebas esta controlando chrome" "enable-logging", # Para ocultar Devtools ] options.add_experimental_option("excludeSwitches", lista) s = Service(which("chromedriver")) driver = webdriver.Chrome(service=s, options=options) #añadimos el argumento Options stealth( driver, languages=["es-ES", "es"], vendor="Google Inc.", platform="Win32", webgl_vendor="Intel Inc.", renderer="Intel Iris OpenGL Engine", fix_hairline=True,) return driver
Jonnathan1093/Telegram-Chatbot
ChatHeroku/iniciar_Webdriver.py
iniciar_Webdriver.py
py
1,666
python
es
code
0
github-code
6
[ { "api_name": "selenium.webdriver.chrome.options.Options", "line_number": 8, "usage_type": "call" }, { "api_name": "selenium.webdriver.chrome.service.Service", "line_number": 21, "usage_type": "call" }, { "api_name": "shutil.which", "line_number": 21, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 22, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 22, "usage_type": "name" }, { "api_name": "selenium_stealth.stealth", "line_number": 23, "usage_type": "call" } ]
29250448134
from __future__ import annotations import os import unittest from collections import defaultdict, namedtuple from math import ceil from typing import Any, Iterator import numpy as np from rtree.index import Index, Property, RT_TPRTree class Cartesian( namedtuple( "Cartesian", ("id", "time", "x", "y", "x_vel", "y_vel", "update_time", "out_of_bounds"), ) ): __slots__ = () def getX(self, t: float) -> float: return self.x + self.x_vel * (t - self.time) def getY(self, t: float) -> float: return self.y + self.y_vel * (t - self.time) def getXY(self, t: float) -> tuple[float, float]: return self.getX(t), self.getY(t) def get_coordinates( self, t_now: float | None = None ) -> tuple[ tuple[float, float, float, float], tuple[float, float, float, float], float | tuple[float, float], ]: return ( (self.x, self.y, self.x, self.y), (self.x_vel, self.y_vel, self.x_vel, self.y_vel), self.time if t_now is None else (self.time, t_now), ) class QueryCartesian( namedtuple("QueryCartesian", ("start_time", "end_time", "x", "y", "dx", "dy")) ): __slots__ = () def get_coordinates( self, ) -> tuple[ tuple[float, float, float, float], tuple[float, float, float, float], tuple[float, float], ]: return ( (self.x - self.dx, self.y - self.dy, self.x + self.dx, self.y + self.dy), (0, 0, 0, 0), (self.start_time, self.end_time), ) def data_generator( dataset_size: int = 100, simulation_length: int = 10, max_update_interval: int = 20, queries_per_time_step: int = 5, min_query_extent: float = 0.05, max_query_extent: float = 0.1, horizon: int = 20, min_query_interval: int = 2, max_query_interval: int = 10, agility: float = 0.01, min_speed: float = 0.0025, max_speed: float = 0.0166, min_x: int = 0, min_y: int = 0, max_x: int = 1, max_y: int = 1, ) -> Iterator[tuple[str, int, Any]]: def create_object( id_: float, time: float, x: float | None = None, y: float | None = None ) -> Cartesian: # Create object with random or defined x, y and random velocity if x is None: x = np.random.uniform(min_x, max_x) if y is None: y = np.random.uniform(min_y, max_y) speed = np.random.uniform(min_speed, max_speed) angle = np.random.uniform(-np.pi, np.pi) x_vel, y_vel = speed * np.cos(angle), speed * np.sin(angle) # Set update time for when out of bounds, or max interval for dt in range(1, max_update_interval + 1): if not (0 < x + x_vel * dt < max_x and 0 < y + y_vel * dt < max_y): out_of_bounds = True update_time = time + dt break else: out_of_bounds = False update_time = time + max_update_interval return Cartesian(id_, time, x, y, x_vel, y_vel, update_time, out_of_bounds) objects = list() objects_to_update = defaultdict(set) for id_ in range(dataset_size): object_ = create_object(id_, 0) objects.append(object_) objects_to_update[object_.update_time].add(object_) yield "INSERT", 0, object_ for t_now in range(1, simulation_length): need_to_update = ceil(dataset_size * agility) updated_ids = set() while need_to_update > 0 or objects_to_update[t_now]: kill = False if objects_to_update[t_now]: object_ = objects_to_update[t_now].pop() if object_ not in objects: continue kill = object_.out_of_bounds else: id_ = np.random.randint(0, dataset_size) while id_ in updated_ids: id_ = np.random.randint(0, dataset_size) object_ = objects[id_] updated_ids.add(object_.id) need_to_update -= 1 yield "DELETE", t_now, object_ if kill: x = y = None else: x, y = object_.getXY(t_now) object_ = create_object(object_.id, t_now, x, y) objects[object_.id] = object_ objects_to_update[object_.update_time].add(object_) yield "INSERT", t_now, object_ for _ in range(queries_per_time_step): x = np.random.uniform(min_x, max_x) y = np.random.uniform(min_y, max_y) dx = np.random.uniform(min_query_extent, max_query_extent) dy = np.random.uniform(min_query_extent, max_query_extent) dt = np.random.randint(min_query_interval, max_query_interval + 1) t = np.random.randint(t_now, t_now + horizon - dt) yield "QUERY", t_now, QueryCartesian(t, t + dt, x, y, dx, dy) def intersects( x1: float, y1: float, x2: float, y2: float, x: float, y: float, dx: float, dy: float ) -> bool: # Checks if line from x1, y1 to x2, y2 intersects with rectangle with # bottom left at x-dx, y-dy and top right at x+dx, y+dy. # Implementation of https://stackoverflow.com/a/293052 # Check if line points not both more/less than max/min for each axis if ( (x1 > x + dx and x2 > x + dx) or (x1 < x - dx and x2 < x - dx) or (y1 > y + dy and y2 > y + dy) or (y1 < y - dy and y2 < y - dy) ): return False # Check on which side (+ve, -ve) of the line the rectangle corners are, # returning True if any corner is on a different side. calcs = ( (y2 - y1) * rect_x + (x1 - x2) * rect_y + (x2 * y1 - x1 * y2) for rect_x, rect_y in ( (x - dx, y - dy), (x + dx, y - dy), (x - dx, y + dy), (x + dx, y + dy), ) ) sign = np.sign(next(calcs)) # First corner (bottom left) return any(np.sign(calc) != sign for calc in calcs) # Check remaining 3 class TPRTests(unittest.TestCase): def test_tpr(self) -> None: # TODO : this freezes forever on some windows cloud builds if os.name == "nt": return # Cartesians list for brute force objects = dict() tpr_tree = Index(properties=Property(type=RT_TPRTree)) for operation, t_now, object_ in data_generator(): if operation == "INSERT": tpr_tree.insert(object_.id, object_.get_coordinates()) objects[object_.id] = object_ elif operation == "DELETE": tpr_tree.delete(object_.id, object_.get_coordinates(t_now)) del objects[object_.id] elif operation == "QUERY": tree_intersect = set(tpr_tree.intersection(object_.get_coordinates())) # Brute intersect brute_intersect = set() for tree_object in objects.values(): x_low, y_low = tree_object.getXY(object_.start_time) x_high, y_high = tree_object.getXY(object_.end_time) if intersects( x_low, y_low, x_high, y_high, # Line object_.x, object_.y, object_.dx, object_.dy, ): # Rect brute_intersect.add(tree_object.id) # Tree should match brute force approach assert tree_intersect == brute_intersect
Toblerity/rtree
tests/test_tpr.py
test_tpr.py
py
7,681
python
en
code
573
github-code
6
[ { "api_name": "collections.namedtuple", "line_number": 15, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.random.uniform", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 87, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 89, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 89, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 90, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 90, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 91, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 91, "usage_type": "attribute" }, { "api_name": "numpy.cos", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 92, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 107, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 126, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 126, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 128, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 128, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 147, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 147, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 148, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 148, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 149, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 149, "usage_type": "attribute" }, { "api_name": "numpy.random.uniform", "line_number": 150, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 150, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 151, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 152, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 152, "usage_type": "attribute" }, { "api_name": "typing.Iterator", "line_number": 81, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 81, "usage_type": "name" }, { "api_name": "numpy.sign", "line_number": 184, "usage_type": "call" }, { "api_name": "numpy.sign", "line_number": 185, "usage_type": "call" }, { "api_name": "unittest.TestCase", "line_number": 188, "usage_type": "attribute" }, { "api_name": "os.name", "line_number": 191, "usage_type": "attribute" }, { "api_name": "rtree.index.Index", "line_number": 196, "usage_type": "call" }, { "api_name": "rtree.index.Property", "line_number": 196, "usage_type": "call" }, { "api_name": "rtree.index.RT_TPRTree", "line_number": 196, "usage_type": "name" } ]
15200494736
#!/usr/bin/env python from numpy import array from math import sqrt from pyspark import SparkContext # from pyspark.mllib.clustering import KMeans, KMeansModel from pyspark.mllib.clustering import KMeans sc = SparkContext(appName="Kmeans Pyspark") # Load and parse the data data = sc.textFile("hdfs://localhost:9000/features/w2v/value_only") parsedData = data.map(lambda line: array([float(x) for x in line.strip(' ').split(' ')])) # Build the model (cluster the data) clusters = KMeans.train(parsedData, 2, maxIterations=10, initializationMode="random") # Evaluate clustering by computing Within Set Sum of Squared Errors def error(point): center = clusters.centers[clusters.predict(point)] return sqrt(sum([x**2 for x in (point - center)])) WSSSE = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y) print("Within Set Sum of Squared Error = " + str(WSSSE)) # Save and load model clusters.save(sc, "hdfs://localhost:9000/kmeans/model") # sameModel = KMeansModel.load(sc, "target/org/apache/spark/PythonKMeansExample/KMeansModel")
sindongboy/topinion
python/lda.py
lda.py
py
1,071
python
en
code
0
github-code
6
[ { "api_name": "pyspark.SparkContext", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 16, "usage_type": "call" }, { "api_name": "pyspark.mllib.clustering.KMeans.train", "line_number": 20, "usage_type": "call" }, { "api_name": "pyspark.mllib.clustering.KMeans", "line_number": 20, "usage_type": "name" }, { "api_name": "math.sqrt", "line_number": 26, "usage_type": "call" } ]
31344968208
from tkinter import * import tkinter, threading from tkinter import messagebox as tmsg from tkinter import ttk import random import datetime import imageio import time from PIL import Image, ImageTk import smtplib as s import config root1 = Tk() root1.geometry("1208x830") root1.wm_iconbitmap("Artboard 1.ico") root1.minsize(1208, 830) root1.maxsize(1208, 830) root1.title("RYOCO TOURS© 2021") video_name = "video1.mp4" #This is your video file path video = imageio.get_reader(video_name) def dr1(): time.sleep(2) root1.destroy() def login_window(): root2 =Toplevel() # global dr1, root3 root2.geometry("1202x802") root2.minsize(1202, 802) root2.maxsize(1202, 802) root2.wm_iconbitmap("Artboard 1.ico") root2.title("RYOCO SIGNIN") load = Image.open("LOGIN1.png") render = ImageTk.PhotoImage(load) jpg = Label(root2, image=render) jpg.place(x=0, y=0) #def statusr1(): # for i in range(2): # statusvar.set("Busy.") # statusbar.update() # # time.sleep(0.2) # statusvar.set("Busy..") # statusbar.update() # # time.sleep(0.2) # statusvar.set("Busy...") # statusbar.update() # # time.sleep(0.2) # statusvar.set("Busy....") # statusbar.update() # # time.sleep(0.2) # x = 0 # for i in range(101): # statusvar.set(f"LOADING {x}%") # statusbar.update() # time.sleep(0.0000001) # x += 1 # # statusvar.set("READY TO USE") # statusbar.update() # time.sleep(0.5) # statusvar.set("PROCEED ENTERING YOUR DATA\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tRYOCO TOURS© 2021") def register(): with open("ryoco_credentials.txt", 'r') as l: m = l.read() l.close() if reg_name_entry.get() == "" or reg_cnic_entry.get() == '' or reg_contact_entry == "" or reg_email_entry == "" or reg_password_entry == '' or reg_username_entry == '': tmsg.showerror('ENTRY INVALID', 'PLEASE ENTER COMPLETE DETAILS!', parent=root2) elif len(reg_cnic_entry.get()) != 13: tmsg.showerror('ENTRY INVALID', 'CNIC NOT VALID!', parent=root2) elif len(reg_contact_entry.get()) != 11: tmsg.showerror('ENTRY INVALID', 'CONTACT NOT VALID!', parent=root2) # elif reg_username_entry in m: # tmsg.showerror('ENTRY INVALID', 'USERNAME ALREADY REGISTERED!', parent=root2) else: a = tmsg.showinfo("Registeration Successful", "Your information has been registered!", parent=root2) print(f''' ====================================================================================== First Name: {reg_name_entry.get()} CNIC No : \t {reg_cnic_entry.get()} Contact: \t {reg_contact_entry.get()} E-mail: \t {reg_email_entry.get()} \nCONFIDENTIAL DETAILS username:\t {reg_username_entry.get()}' Password: {reg_password_entry.get()} ''') with open(f"{reg_username_entry.get()}_Record.txt", "a") as f: try: f.write(f''' ========================================================================= First Name: {reg_name_entry.get()} CNIC No : \t {reg_cnic_entry.get()} Contact: \t {reg_contact_entry.get()} E-mail: \t {reg_email_entry.get()} \nCONFIDENTIAL DETAILS username:\t {reg_username_entry.get()} Password: {reg_password_entry.get()} ''') f.close() except: pass with open("ryoco_credentials.txt", 'a') as j: j.write(f"{reg_username_entry.get()}:{reg_password_entry.get()}\n") j.close() def login(): with open("ryoco_credentials.txt", 'r') as f: e = f.read().splitlines() f.close() usernames = [] passwords = [] for items in e: e1 = items.split(":")[0] e2 = items.split(":")[1] usernames.insert(1, e1) passwords.insert(1, e2) if username_entry.get() not in usernames: tmsg.showerror("ERROR", "INVALID USERNAME", parent=root2) elif password_entry.get() not in passwords: tmsg.showerror("ERROR", "INVALID PASSWORD", parent=root2) else: global render1 c = tmsg.showinfo("LOGIN SUCCESSFUL", "LOGIN SUCCESSFUL",parent=root2) root3 = Toplevel() # root3.wm_iconbitmap("Artboard 1.ico") root3.geometry("1202x802") root3.minsize(1202, 802) root3.maxsize(1202, 802) root3.title("RYOCO BOOKING") def logout(): root3.destroy() login_window() def LOCAL(): tmsg.showinfo('DETAILS', ''' \nTOUR-I:\tKumrat Valley (3-Days) \t\t\tvia-Jahaz Band, Katora Lake \nTOUR-II:\tFairy Meadows (4-Days) \t\t\tvia-Naran, Hunza \nTOUR-III:\tHunza (5-Days) \t\t\tvia-Swat, Khunjerab''', parent=root3) def INTERNATIONAL(): tmsg.showinfo('DETAILS', ''' TOUR-I: (14-DAYS) Russia, Turkey, Dubai (290,000 PKR Per Person) TOUR-II: (5-DAYS) Mauritius Tour Package (225,000 PKR Per Person) TOUR-III: (05-Days) TURKEY (45,000 PKR Per Person)''', parent=root3) def dr3(): root3.destroy() root2.destroy() load1 = Image.open("booking1.png") render1 = ImageTk.PhotoImage(load1) jpg1 = Label(root3, image=render1) jpg1.place(x=0, y=0) # def statusr2(): # x = 0 # for i in range(101): # statusvar.set(f"LOADING {x}%") # statusbar.update() # time.sleep(0.000001) # x += 1 # statusvar.set("READY TO USE") # statusbar.update() # time.sleep(0.5) # statusvar.set(f"\t\t{date_of_booking}\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tRYOCO TOURS© 2021") def BOOK(): global listbox, login_window # ============================================ MAILING =========================================================== with open(f'{reg_username_entry}_trip.txt', "a") as b: try: b.write(f''' CLIENT: {reg_name_entry.get()} CNIC: {reg_cnic_entry.get()} USERNAME: {reg_username_entry.get()} PASSWORD: {reg_password_entry.get()} TOUR: {tour.get()} TYPE: {type.get()} DEPARTURE: {departure.get()} Time: {time_of_booking}, {date_of_booking}''') except: b.write(f''' TOUR: {tour.get()} TYPE: {type.get()} DEPARTURE: {departure.get()} Time: {time_of_booking}, {date_of_booking}''') b.close() with open(f'Ryoco_records.txt', "w") as e: try: e.write(f''' Dear MR/MRS.{reg_name_entry.get()}, CNIC NO. {reg_cnic_entry.get()} Your username is "{reg_username_entry.get()}" and password is "{reg_password_entry.get()}" Contact: {reg_contact_entry.get()} ---- Trip Details: TOUR: {tour.get()} TYPE: {type.get()} DEPARTURE: {departure.get()} Time: {time_of_booking}, {date_of_booking} YOUR TOUR HAS BEEN BOOKED, OUR ADMINISTRATION WILL CONTACT YOU SHORTLY. THANK YOU FOR TRUSTING US! :) Regards, RYOCO Tours(PVT), Limited. ''') except: print(username_entry.get()) e.write(f''' Dear MR/MRS.{username_entry.get()} Your username is "{username_entry.get()}" and password is "{password_entry.get()}" ---- Trip Details: TOUR: {tour.get()} TYPE: {type.get()} DEPARTURE: {departure.get()} Time: {time_of_booking}, {date_of_booking} YOUR TOUR HAS BEEN BOOKED, OUR ADMINISTRATION WILL CONTACT YOU SHORTLY. THANK YOU FOR TRUSTING US! :) Regards, RYOCO Tours(PVT), Limited. ''') e.close() if mail.get() == True: print('EMAIL SELECTED') with open('mailingaddress.txt', 'w') as t: t.write(f'{reg_email_entry.get()}') t.close() x = open('mailingaddress.txt', 'r') mailing = x.read() x.close() p = open('Ryoco_records.txt', 'r') contents = p.read() p.close() try: mailfrom = '[email protected]' mailto = mailing subject = 'RYOCO: BOOKING DETIALS' message = contents msg = 'Subject: {}\n\n{}'.format(subject, message) username = config.EMAIL_ADDRESS password = config.PASSWORD server = s.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() server.login(username, password) server.sendmail(mailfrom, mailto, msg) server.quit() print("Successfully mailed") except: print('Failed to mail details') else: print('EMAIL NOT SELECTED') listbox = Text(root3, height=2, width=15, bg='#6F4624', fg="white", font=("Montserrat", 18)) listbox.place(x=700, y=600) listbox.delete("1.0", END) if departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-I' and type.get() == 'local': TotalCost1 = int('11499') if class1.get() == 'business': TotalCost1 += 5000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-I' and type.get() == 'local': TotalCost1 = int('14999') if class1.get() == 'business': TotalCost1 += 5000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-I' and type.get() == 'local': TotalCost1 = int('19999') if class1.get() == 'business': TotalCost1 += 5000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') # =======================================TOUR-II============================================================= elif departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-II' and type.get() == 'local': TotalCost1 = int('14999') if class1.get() == 'business': TotalCost1 += 5000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-II' and type.get() == 'local': TotalCost1 = int('15499') if class1.get() == 'business': TotalCost1 += 5000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-II' and type.get() == 'local': TotalCost1 = int('21999') if class1.get() == 'business': TotalCost1 += 5000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') # ========================================= TOUR-III ======================================================= elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-III' and type.get() == 'local': TotalCost1 = int('19499') if class1.get() == 'business': TotalCost1 += 5000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-III' and type.get() == 'local': TotalCost1 = int('19999') if class1.get() == 'business': TotalCost1 += 5000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-III' and type.get() == 'local': TotalCost1 = int('24999') if class1.get() == 'business': TotalCost1 += 5000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') # =========================================== INTERNATIONAL ============================================== # ==========================================TOUR-I======================================================== elif departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-I' and type.get() == 'international': TotalCost1 = int('299999') if class1.get() == 'business': TotalCost1 += 50000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-I' and type.get() == 'international': TotalCost1 = int('294999') if class1.get() == 'business': TotalCost1 += 50000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-I' and type.get() == 'international': TotalCost1 = int('289999') if class1.get() == 'business': TotalCost1 += 50000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') # ==========================================TOUR-II======================================================== elif departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-II' and type.get() == 'international': TotalCost1 = int('234999') if class1.get() == 'business': TotalCost1 += 50000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-II' and type.get() == 'international': TotalCost1 = int('229999') if class1.get() == 'business': TotalCost1 += 50000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-II' and type.get() == 'international': TotalCost1 = int('224999') if class1.get() == 'business': TotalCost1 += 50000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') # ==========================================TOUR-III======================================================== elif departure.get() == 'ISLAMABAD' and tour.get() == 'TOUR-III' and type.get() == 'international': TotalCost1 = int('54999') if class1.get() == 'business': TotalCost1 += 50000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'LAHORE' and tour.get() == 'TOUR-III' and type.get() == 'international': TotalCost1 = int('49999') if class1.get() == 'business': TotalCost1 += 50000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') elif departure.get() == 'KARACHI' and tour.get() == 'TOUR-III' and type.get() == 'international': TotalCost1 = int('44999') if class1.get() == 'business': TotalCost1 += 50000 Tax = int((TotalCost1 / 100) * 5) SubTotal1 = int(Tax + TotalCost1) print(f"Cost for trip: Rs{TotalCost1}(tax exclusive)") print(f'Total Cost: Rs{SubTotal1}') listbox.insert(END, f'Rs.{TotalCost1}/-\n+{Tax}/-(tax)') local_button = Radiobutton(root3, text="LOCAL", font=("Montserrat Black", 18, "italic"), variable=type, value="local", bg="#FFAA00", fg="#623D28") local_button.place(x=30, y=580) international_button = Radiobutton(root3, text="INTERNATIONAL", font=("Montserrat Black", 18, "italic"), variable=type, value="international", bg="#FFAA00", fg="#623D28") international_button.place(x=165, y=580) type_entry = ttk.Combobox(root3, width=50, textvariable=tour) type_entry['value'] = ('TOUR-I', 'TOUR-II', 'TOUR-III') type_entry.place(x=65, y=630) departure_entry = ttk.Combobox(root3, width=30, textvariable=departure) departure_entry['value'] = ('ISLAMABAD', 'LAHORE', 'KARACHI') departure_entry.place(x=186, y=665) economy_button = Radiobutton(root3, text="ECONOMY", font=("Montserrat Black", 18, "italic"), variable=class1, value="economy", bg="#FFAA00", fg="#623D28") economy_button.place(x=435, y=602) business_button = Radiobutton(root3, text="BUSINESS", font=("Montserrat Black", 18, "italic"), variable=class1, value="business", bg="#FFAA00", fg="#623D28") business_button.place(x=435, y=650) book_button = Button(root3, text="BOOK RIDE", relief=FLAT, bg="#FCD34B", fg="#7F7F7F", font=("TrashHand", 40), command=BOOK) book_button.place(x=985, y=490) listbox = Text(root3, height=2, width=15, bg='#6F4624', fg="white", font=("Montserrat", 18)) listbox.place(x=700, y=600) # listbox8.insert(END, time_of_booking) local_button = Button(root3, text="LOCAL ", width=35, relief=FLAT, bg="#EA7415", fg="#6F4624", font=("Bahnschrift Light", 25), command=LOCAL) local_button.place(x=15, y=724) international_button = Button(root3, text="INTERNATIONAL", width=33, relief=FLAT, bg="#EA7415", fg="#6F4624", font=("Bahnschrift Light", 25), command=INTERNATIONAL) international_button.place(x=585, y=724) mailcheck = Checkbutton(root3, text="EMAIL BOOKING INFO", variable=mail, bg="#FFAA00", font=("Consolas", 13)) mailcheck.place(x=980, y=665) logout_button = Button(root3, width=15, text="🔙 LOGOUT ", bg="#EA7415", font=("Montserrat SemiBold", 14),relief=FLAT,command=logout) logout_button.place(x=950, y=36) # statusvar = StringVar() # statusvar.set("\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tRYOCO TOURS© 2021") # statusbar = Label(root3, textvariable=statusvar, bg="#FEEEC6", relief=GROOVE, anchor=W) # statusbar.pack(side=BOTTOM, fill=X) # statusr2() def admin(): root4 = Toplevel() root4.geometry("1202x802") root4.minsize(1202, 802) root4.maxsize(1202, 802) root4.title("ADMIN CONSOLE") root2.destroy() root4.mainloop() # statusvar = StringVar() # statusvar.set("READY") # statusbar = Label(root2, textvariable=statusvar, bg="#FEEEC6", relief=GROOVE, anchor=W) # statusbar.pack(side=BOTTOM, fill=X) # ==========================================REGISTERIES======================================== reg_name_entry = StringVar() reg_cnic_entry = StringVar() reg_contact_entry = StringVar() reg_email_entry = StringVar() reg_username_entry = StringVar() reg_password_entry = StringVar() username_entry = StringVar() password_entry = StringVar() CNIC = StringVar() CNIC.set("0") # ================================================LOGIN================================================================= username_entryx = Entry(root2, width=23, bg="#F8C43A", textvariable=username_entry, font=("Gill Sans MT", 12)) username_entryx.place(x=985, y=667) password_entryx = Entry(root2, width=23, bg="#F8C43A", textvariable=password_entry, font=("Gill Sans MT", 12), show="*") password_entryx.place(x=985, y=720) # =============================================REGISERATION============================================================= reg_username_entryx = Entry(root2, width=25, bg="#F8C43A", textvariable=reg_username_entry, font=("Gill Sans MT", 12)) reg_username_entryx.place(x=275, y=669) reg_password_entryx = Entry(root2, width=25, bg="#F8C43A", textvariable=reg_password_entry, font=("Gill Sans MT", 12)) reg_password_entryx.place(x=275, y=723) reg_name_entryx = Entry(root2, width=25, bg="#F8C43A", textvariable=reg_name_entry, font=("Gill Sans MT", 12)) reg_name_entryx.place(x=275, y=408) reg_cnic_entryx = Entry(root2, width=36, bg="#F8C43A", textvariable=reg_cnic_entry, font=("Montserrat SemiBold", 12)) reg_cnic_entryx.place(x=80, y=500) reg_contact_entryx = Entry(root2, width=18, bg="#F8C43A", textvariable=reg_contact_entry, font=("Montserrat SemiBold", 12)) reg_contact_entryx.place(x=275, y=560) reg_email_entryx = Entry(root2, width=22, bg="#F8C43A", textvariable = reg_email_entry, font=("Consolas", 12)) reg_email_entryx.place(x=275, y=615) check = Radiobutton(root2, variable=CNIC, bg="#F7BA11", value="cnic") check.place(x=75, y=452) check1 = Radiobutton(root2, variable=CNIC, bg="#F7C235", value="passport") check1.place(x=235, y=452) login_button = Button(root2, width=16, text="LOGIN ", bg="#C6633C", font=("Montserrat SemiBold", 12), relief=FLAT, command=login) login_button.place(x=880, y=756) reg_button = Button(root2, width=16, text="REGISTER ", bg="#C6633C", font=("Montserrat SemiBold", 12), relief=FLAT, command=register) reg_button.place(x=164, y=756) # admin_button = Button(root2, width=16, text="ADMIN ", bg="#C6633C", font=("Montserrat SemiBold", 12), relief=FLAT, # command=admin) # admin_button.place(x=980, y=40) # statusr1() # ================================================ BOOKING TAB ========================================================= mail = IntVar() local = StringVar() international = StringVar() class1 = StringVar() type = StringVar() tour = StringVar() departure = StringVar() type.set('0') class1.set('0') root2.mainloop() try: dr1() except: pass def stream(label): for image in video.iter_data(): frame_image = ImageTk.PhotoImage(Image.fromarray(image)) label.config(image=frame_image) label.image = frame_image #====================================== win-0 ===================================== time_of_booking = (time.strftime("%I:%M:%S %p")) date_of_booking = (time.strftime("%d/%m/%Y")) def begin(): Button(text="BEGIN EXPLORING!", font=("TrashHand 29"), height=2, width=20, bg="#FFBB56", command=login_window, relief=FLAT).place(x=45, y=680) my_label = Label(root1) my_label.pack() thread = threading.Thread(target=stream, args=(my_label,)) thread.daemon = 1 thread.start() begin() root1.mainloop()
zuwanish/Tour-Management-System
MAIN PROJECT GUI BASED.py
MAIN PROJECT GUI BASED.py
py
30,680
python
en
code
0
github-code
6
[ { "api_name": "imageio.get_reader", "line_number": 20, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 24, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 36, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 36, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 37, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 37, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showerror", "line_number": 79, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 79, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showerror", "line_number": 82, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 82, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showerror", "line_number": 85, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 85, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showinfo", "line_number": 89, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 89, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showerror", "line_number": 139, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 139, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showerror", "line_number": 142, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 142, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showinfo", "line_number": 146, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 146, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showinfo", "line_number": 163, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 163, "usage_type": "name" }, { "api_name": "tkinter.messagebox.showinfo", "line_number": 172, "usage_type": "call" }, { "api_name": "tkinter.messagebox", "line_number": 172, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 186, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 186, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 187, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 187, "usage_type": "name" }, { "api_name": "config.EMAIL_ADDRESS", "line_number": 296, "usage_type": "attribute" }, { "api_name": "config.PASSWORD", "line_number": 297, "usage_type": "attribute" }, { "api_name": "smtplib.SMTP", "line_number": 299, "usage_type": "call" }, { "api_name": "tkinter.ttk.Combobox", "line_number": 522, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 522, "usage_type": "name" }, { "api_name": "tkinter.ttk.Combobox", "line_number": 526, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 526, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 679, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 679, "usage_type": "name" }, { "api_name": "PIL.Image.fromarray", "line_number": 679, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 679, "usage_type": "name" }, { "api_name": "time.strftime", "line_number": 683, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 684, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 692, "usage_type": "call" } ]
21433461529
import csv import logging import os logger = logging.getLogger("app_logger") # Channels with extra long videos messing up the stats and to be deleted, # or other channels you just don't want to include. CHANNELS_NOT_TO_IMPORT = ["4k SCREENSAVERS", "Nature Relaxation Films", "4K Relaxation Channel"] # Some extra long videos can be deleted but in that case these channels won't be touched. IMPORTANT_CHANNELS = ["Lex Fridman", "Andrew Huberman"] # Insert the data from the CSV file into the database. def insert_data_into_database(conn, c): csv_file = os.path.abspath(os.getenv("CSV_FILE")) with open(csv_file, "r", encoding="UTF-8-sig") as csvfile: reader = csv.DictReader(csvfile, delimiter=";") inserted_videos = 0 inserted_channels = 0 inserted_actions = 0 skipped_videos = 0 logger.info("Inserting data into the database...") # Loop over each row in the CSV file. for row in reader: if row["Channel"] in CHANNELS_NOT_TO_IMPORT: skipped_videos += 1 continue c.execute("SELECT id FROM activity WHERE action = ? AND timestamp = ?", (row["Action"], row["Timestamp"])) activity = c.fetchone() # If the action is already in the activity table, this is not the first time the script is run. if activity: continue c.execute("SELECT id, url FROM channel WHERE url = ?", (row["Channel URL"],)) channel = c.fetchone() # If the channel doesn"t exist, insert it into the channels table. if not channel: channel_name = row["Channel"].strip() c.execute("""INSERT INTO channel (name, url) VALUES (?, ?)""", (channel_name , row["Channel URL"],)) channel_id = c.lastrowid inserted_channels += 1 else: channel_id = channel[0] if "Title" in row and "URL" in row: c.execute("SELECT id FROM video WHERE title = ? AND url = ?", (row["Title"], row["URL"])) video = c.fetchone() # If the video doesn"t exist, insert it into the videos table. if not video: c.execute("""INSERT INTO video (title, url, channel_id) VALUES (?, ?, ?)""", (row.get("Title", None), row["URL"], channel_id)) video_id = c.lastrowid inserted_videos += 1 else: video_id = video[0] c.execute("""INSERT INTO activity (action, timestamp, video_id, channel_id) VALUES (?, ?, ?, ?)""", (row["Action"], row["Timestamp"], video_id, channel_id)) inserted_actions += 1 conn.commit() logger.info(f"Actions inserted: {inserted_actions}") logger.info(f"Unique videos inserted: {inserted_videos}") logger.info(f"Unique channels inserted: {inserted_channels}") if skipped_videos > 0: logger.info(f"{skipped_videos} videos skipped because channels were defined as excluded") # Many streams are 10+ hours which mess up the watch time stats. 4 hours seemed to be a good average for me. def delete_extra_long_videos(conn, c, max_length=4): min_length = max_length * 3600 excluded_condition = '' if IMPORTANT_CHANNELS: excluded_condition = f"AND channel.name NOT IN ({','.join('?' for _ in IMPORTANT_CHANNELS)})" else: excluded_condition = '' query = f""" DELETE FROM video WHERE id IN ( SELECT video.id FROM video JOIN channel ON video.channel_id = channel.id WHERE video.length > ? {excluded_condition} ORDER BY video.length DESC) """ c.execute(query, [min_length] + IMPORTANT_CHANNELS) conn.commit() if c.rowcount > 0: logger.info(f"Deleted {c.rowcount} extra long videos.") # Delete channels that have no videos and vice versa. def delete_orphans(conn, c): c.execute("DELETE FROM channel WHERE id NOT IN (SELECT DISTINCT channel_id FROM video)") rowcount = c.rowcount c.execute("DELETE FROM activity WHERE channel_id NOT IN (SELECT id FROM channel)") c.execute("DELETE FROM video WHERE channel_id NOT IN (SELECT id FROM channel)") c.execute("DELETE FROM video_stat WHERE video_id NOT IN (SELECT id FROM video)") c.execute("DELETE FROM channel_stat WHERE channel_id NOT IN (SELECT id FROM channel)") conn.commit() if rowcount > 0: logger.info(f"Deleted {c.rowcount} empty channels.")
arilaakso/viewinginsights
import_data_into_db.py
import_data_into_db.py
py
4,855
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 5, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.getenv", "line_number": 19, "usage_type": "call" }, { "api_name": "csv.DictReader", "line_number": 23, "usage_type": "call" } ]
73815165306
from random import random from time import time from cachier import cachier @cachier(next_time=True) def _test_int_pickling(int_1, int_2): """Add the two given ints.""" return int_1 + int_2 def _test_int_pickling_compare(int_1, int_2): """Add the two given ints.""" return int_1 + int_2 def test_pickle_speed(): """Test speeds""" print("Comparing speeds of decorated vs non-decorated functions...") num_of_vals = 1000 times = [] for i in range(1, num_of_vals): tic = time() _test_int_pickling_compare(i, i + 1) toc = time() times.append(toc - tic) print(' - Non-decorated average = {:.8f}'.format( sum(times) / num_of_vals)) _test_int_pickling.clear_cache() times = [] for i in range(1, num_of_vals): tic = time() _test_int_pickling(i, i + 1) toc = time() times.append(toc - tic) print(' - Decorated average = {:.8f}'.format( sum(times) / num_of_vals)) @cachier() def _test_single_file_speed(int_1, int_2): """Add the two given ints.""" # something that takes some memory return [random() for _ in range(1000000)] @cachier(separate_files=True) def _test_separate_files_speed(int_1, int_2): """Add the two given ints.""" # something that takes some memory return [random() for _ in range(1000000)] def test_separate_files_vs_single_file(): _test_separate_files_speed.clear_cache() _test_single_file_speed.clear_cache() start_time = time() for i in range(3): for j in range(10): _test_separate_files_speed(j, 2) print(f'separate files time: {time() - start_time}') start_time = time() for i in range(3): for j in range(10): _test_single_file_speed(j, 2) print(f'single file time: {time() - start_time}') if __name__ == '__main__': test_pickle_speed()
python-cachier/cachier
tests/speed_eval.py
speed_eval.py
py
1,903
python
en
code
470
github-code
6
[ { "api_name": "cachier.cachier", "line_number": 7, "usage_type": "call" }, { "api_name": "time.time", "line_number": 24, "usage_type": "call" }, { "api_name": "time.time", "line_number": 26, "usage_type": "call" }, { "api_name": "time.time", "line_number": 34, "usage_type": "call" }, { "api_name": "time.time", "line_number": 36, "usage_type": "call" }, { "api_name": "random.random", "line_number": 46, "usage_type": "call" }, { "api_name": "cachier.cachier", "line_number": 42, "usage_type": "call" }, { "api_name": "random.random", "line_number": 53, "usage_type": "call" }, { "api_name": "cachier.cachier", "line_number": 49, "usage_type": "call" }, { "api_name": "time.time", "line_number": 59, "usage_type": "call" }, { "api_name": "time.time", "line_number": 63, "usage_type": "call" }, { "api_name": "time.time", "line_number": 64, "usage_type": "call" }, { "api_name": "time.time", "line_number": 68, "usage_type": "call" } ]
40260766080
import gvar as gv import corrfitter as cf import numpy as np import collections import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.ticker import MultipleLocator matplotlib.use('Agg') plt.rc("font",**{"size":18}) import datetime import os import pickle import copy #from plotting import * import lsqfit lsqfit.nonlinear_fit.set(fitter='gsl_multifit',alg='subspace2D',scaler='more',solver='cholesky')#,solver='cholesky') #################################### maxiter=5000 ####################################################################################################### def read_setup(setup): #Reads in setups, and strips out currents, parents and daughters, as well as which is which daughters = [] currents = [] parents = [] for element in setup: lab = element.split('-') daughters.append(lab[0]) currents.append(lab[1]) parents.append(lab[2]) return(daughters,currents,parents) ###################################################################################################### def strip_list(l): #Strips elemenst from list l stripped = '' for element in l: stripped = '{0}{1}'.format(stripped,element) return(stripped) ###################################################################################################### def make_params(Fit,FitMasses,FitTwists,FitTs,daughters,currents,parents): #Removes things we do not want to fit, specified by FitMasses, FitTwists, FitTs assumes parents have varing mass and daughters varing twist j = 0 for i in range(len(Fit['masses'])): if i not in FitMasses: del Fit['masses'][i-j] for element in set(parents): del Fit['tmaxes{0}'.format(element)][i-j] j += 1 j = 0 for i in range(len(Fit['twists'])): if i not in FitTwists: del Fit['twists'][i-j] for element in set(daughters): del Fit['tmaxes{0}'.format(element)][i-j] j += 1 j = 0 for i in range(len(Fit['Ts'])): if i not in FitTs: del Fit['Ts'][i-j] j += 1 return() ####################################################################################################### def make_data(filename,binsize): # Reads in filename.gpl, checks all keys have same configuration numbers, returns averaged data print('Reading data, binsize = ', binsize) dset = cf.read_dataset(filename,binsize=binsize) sizes = [] for key in dset: #print(key,np.shape(dset[key])) sizes.append(np.shape(dset[key])) if len(set(sizes)) != 1: print('Not all elements of gpl the same size') for key in dset: print(key,np.shape(dset[key])) return(gv.dataset.avg_data(dset)) ###################################################################################################### def make_pdata(filename,models,binsize): # Reads in filename.gpl, checks all keys have same configuration numbers, returns averaged data print('Reading processed data, binsize = ', binsize) dset = cf.read_dataset(filename,binsize=binsize) sizes = [] for key in dset: #print(key,np.shape(dset[key])) sizes.append(np.shape(dset[key])) if len(set(sizes)) != 1: print('Not all elements of gpl the same size') for key in dset: print(key,np.shape(dset[key])) return(cf.process_dataset(dset, models)) ####################################################################################################### def effective_mass_calc(tag,correlator,tp): #finds the effective mass and amplitude of a two point correlator M_effs = [] for t in range(2,len(correlator)-2): thing = (correlator[t-2] + correlator[t+2])/(2*correlator[t]) if thing >= 1: M_effs.append(gv.arccosh(thing)/2) #M_effs is all positive masses, we now take a rolling average of 4, and find where this changes the least rav = [] for i in range(len(M_effs)-4): rav.append((M_effs[i] + M_effs[i+1] + M_effs[i+2] + M_effs[i+3])/4) M_eff = rav[0] diff = abs((rav[1] - rav[0]).mean) for i in range(1,len(rav)-1): if abs((rav[i+1]-rav[i]).mean) < diff: diff = abs((rav[i+1]-rav[i]).mean) M_eff = (rav[i] + rav[i+1])/2 return(M_eff) ###################################################################################################### def effective_amplitude_calc(tag,correlator,tp,M_eff,Fit,corr): #finds the effective mass and amplitude of a two point correlator tmin = Fit['tmin{0}'.format(corr)] A_effs = [] if len(correlator) == tp: tmin = 0 for t in range(tmin,tmin+len(correlator)): numerator = correlator[t-tmin] if numerator >= 0: A_effs.append( gv.sqrt(numerator/(gv.exp(-M_eff*t)+gv.exp(-M_eff*(tp-t))))) rav = [] for i in range(len(A_effs)-4): rav.append((A_effs[i] + A_effs[i+1] + A_effs[i+2] + A_effs[i+3])/4) A_eff = rav[0] diff = abs((rav[1] - rav[0]).mean) for i in range(1,len(rav)-1): if abs((rav[i+1]-rav[i]).mean) < diff: diff = abs((rav[i+1]-rav[i]).mean) A_eff = (rav[i] + rav[i+1])/2 an = gv.gvar(Fit['an']) if A_eff.sdev/A_eff.mean > 0.5: print('Replaced A_eff for {0} {1} -> {2}'.format(tag,A_eff,an)) A_eff = an return(A_eff) ######################################################################################## def effective_V_calc(corr,daughter,parent,correlator,dcorr,pcorr,Fit,mass,twist,pA_eff,dA_eff): #finds the effective V_nn[0][0] tp = Fit['tp'] T = Fit['Ts'][-1] dtmin = Fit['tmin{0}'.format(daughter)] ptmin = Fit['tmin{0}'.format(parent)] Vtmin = Fit['{0}tmin'.format(corr)] dcorr2 = [] pcorr2 = [] Vcorr2 = [] V_effs = [] #print(corr,daughter,parent,mass,twist) if len(dcorr) == int(tp): dcorr2 = dcorr else: for i in range(dtmin): dcorr2.append(0) dcorr2.extend(dcorr) for i in range(int(tp/2)-len(dcorr2)+1): dcorr2.append(0) #print(dcorr2) if len(pcorr) == int(tp): pcorr2 = pcorr else: for i in range(ptmin): pcorr2.append(0) pcorr2.extend(pcorr) for i in range(int(tp/2)-len(pcorr2)+1): pcorr2.append(0) #print(pcorr2) if len(correlator) == int(tp): Vcorr2 = correlator else: for i in range(Vtmin): Vcorr2.append(0) Vcorr2.extend(correlator) for i in range(T-len(Vcorr2)+1): Vcorr2.append(0) #print(Vcorr2) for t in range(T): numerator = Vcorr2[t]*pA_eff*dA_eff denominator = dcorr2[t]*pcorr2[T-t] if numerator != 0 and denominator !=0: V_effs.append(numerator/denominator) rav = [] for i in range(len(V_effs)-4): rav.append((V_effs[i] + V_effs[i+1] + V_effs[i+2] + V_effs[i+3])/4) V_eff = rav[0] diff = abs((rav[1] - rav[0]).mean) for i in range(1,len(rav)-1): if abs((rav[i+1]-rav[i]).mean) < diff: diff = abs((rav[i+1]-rav[i]).mean) if (rav[i] + rav[i+1]) > 0: V_eff = (rav[i] + rav[i+1])/2 V = gv.gvar(Fit['{0}Vnn0'.format(corr)]) if abs((V_eff.mean-V).mean/(V_eff.mean-V).sdev) > 1: print('Replaced V_eff for {0} m {1} tw {2}: {3} --> {4}'.format(corr,mass,twist,V_eff,V)) V_eff = V return(V_eff) ####################################################################################################### def SVD_diagnosis(Fit,models,corrs,svdfac,currents,SepMass): binsize = Fit['binsize'] #Feed models and corrs (list of corrs in this SVD cut) if list(set(corrs).intersection(currents)) ==[]: filename = 'SVD/{0}{1}{2}{3}{4}{5}{6}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(corrs),binsize,SepMass) else: filename = 'SVD/{0}{1}{2}{3}{4}{5}{6}{7}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(corrs),strip_list(Fit['Ts']),binsize,SepMass) #print(filename) for corr in corrs: if 'tmin{0}'.format(corr) in Fit: filename += '{0}'.format(Fit['tmin{0}'.format(corr)]) for element in Fit['tmaxes{0}'.format(corr)]: filename += '{0}'.format(element) if '{0}tmin'.format(corr) in Fit: filename += '{0}'.format(Fit['{0}tmin'.format(corr)]) #print(filename) if os.path.isfile(filename) and os.path.getsize(filename) > 0: pickle_off = open(filename,"rb") svd = pickle.load(pickle_off) print('Loaded SVD for {0} : {1:.2g} x {2} = {3:.2g}'.format(corrs,svd,svdfac,svd*svdfac)) pickle_off.close() else: print('Calculating SVD for {0}'.format(corrs)) s = gv.dataset.svd_diagnosis(cf.read_dataset('{0}{1}.gpl'.format(Fit['file_location'],Fit['filename']),binsize=binsize), models=models, nbstrap=20) svd = s.svdcut ######## save plot ########################## plt.figure() x = s.val / s.val[-1] ratio = s.bsval / s.val idx = x > s.mincut ratio = ratio[idx] x = x[idx] y = gv.mean(ratio) yerr = gv.sdev(ratio) plt.errorbar(x=x, y=y, yerr=yerr, fmt='+', color='b') sig = (2. / len(s.val)) ** 0.5 plt.plot([x[0], x[-1]], [1. - sig, 1. - sig], 'k:') plt.axhline(1,ls='--',color='k') plt.axvline(s.svdcut,ls=':',color='g') #plt.axvline(0.013,ls='--',color='g') plt.xscale('log') plt.savefig('svd_plots/{0}.pdf'.format(filename.split('/')[1])) ############################################### pickle_on = open(filename,"wb") print('Calculated SVD for {0} : {1:.2g} x {2} = {3:.2g}'.format(corrs,svd,svdfac,svd*svdfac)) pickle.dump(svd,pickle_on) return(svd*svdfac) ####################################################################################################### def make_models(Fit,FitCorrs,notwist0,non_oscillating,daughters,currents,parents,svdfac,Chained,allcorrs,links,parrlinks,SepMass,NoSVD=False): #several forms [(A,B,C,D)],[(A,B),(C),(D)],[(A,B),[(C),(D)]] #First make all models and then stick them into the correct chain models = collections.OrderedDict() tp = Fit['tp'] for corr in set(parents): if corr in allcorrs: models['{0}'.format(corr)] = [] for i,mass in enumerate(Fit['masses']): tag = Fit['{0}-Tag'.format(corr)].format(mass) models['{0}'.format(corr)].append(cf.Corr2(datatag=tag, tp=tp, tmin=Fit['tmin{0}'.format(corr)], tmax=Fit['tmaxes{0}'.format(corr)][i], a=('{0}:a'.format(tag), 'o{0}:a'.format(tag)), b=('{0}:a'.format(tag), 'o{0}:a'.format(tag)), dE=('dE:{0}'.format(tag), 'dE:o{0}'.format(tag)),s=(1,-1))) for corr in set(daughters): if corr in allcorrs: models['{0}'.format(corr)] = [] for i,twist in enumerate(Fit['twists']): tag = Fit['{0}-Tag'.format(corr)].format(twist) if twist == '0' and corr in notwist0: pass elif twist == '0' and corr in non_oscillating: models['{0}'.format(corr)].append(cf.Corr2(datatag=tag, tp=tp, tmin=Fit['tmin{0}'.format(corr)], tmax=Fit['tmaxes{0}'.format(corr)][i], a=('{0}:a'.format(tag)), b=('{0}:a'.format(tag)), dE=('dE:{0}'.format(tag)))) else: models['{0}'.format(corr)].append(cf.Corr2(datatag=tag, tp=tp, tmin=Fit['tmin{0}'.format(corr)], tmax=Fit['tmaxes{0}'.format(corr)][i], a=('{0}:a'.format(tag), 'o{0}:a'.format(tag)), b=('{0}:a'.format(tag), 'o{0}:a'.format(tag)), dE=('dE:{0}'.format(tag), 'dE:o{0}'.format(tag)),s=(1,-1))) for i,corr in enumerate(currents): if corr in allcorrs: models['{0}'.format(corr)] = [] for mass in Fit['masses']: for twist in Fit['twists']: for T in Fit['Ts']: tag = Fit['threePtTag{0}'.format(corr)].format(T,Fit['m_s'],mass,Fit['m_l'],twist) ptag = Fit['{0}-Tag'.format(parents[i])].format(mass) dtag = Fit['{0}-Tag'.format(daughters[i])].format(twist) if twist == '0' and corr in notwist0: pass elif twist == '0' and daughters[i] in non_oscillating: models['{0}'.format(corr)].append(cf.Corr3(datatag=tag, T=T, tmin=Fit['{0}tmin'.format(corr)], a=('{0}:a'.format(dtag)), dEa=('dE:{0}'.format(dtag)), b=('{0}:a'.format(ptag), 'o{0}:a'.format(ptag)), dEb=('dE:{0}'.format(ptag), 'dE:o{0}'.format(ptag)), sb=(1,-1), Vnn='{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist), Vno='{0}Vno_m{1}_tw{2}'.format(corr,mass,twist))) else: models['{0}'.format(corr)].append(cf.Corr3(datatag=tag, T=T, tmin=Fit['{0}tmin'.format(corr)], a=('{0}:a'.format(dtag), 'o{0}:a'.format(dtag)), dEa=('dE:{0}'.format(dtag), 'dE:o{0}'.format(dtag)), sa=(1,-1), b=('{0}:a'.format(ptag), 'o{0}:a'.format(ptag)), dEb=('dE:{0}'.format(ptag), 'dE:o{0}'.format(ptag)), sb=(1,-1), Vnn='{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist), Vno='{0}Vno_m{1}_tw{2}'.format(corr,mass,twist),Von='{0}Von_m{1}_tw{2}'.format(corr,mass,twist),Voo='{0}Voo_m{1}_tw{2}'.format(corr,mass,twist))) #Now we make these models into our chain calculating an svd cut for each. We make them in two halves so we can sndwich a marginalisation term if we like later if Chained: finalmodelsA = [] finalmodelsB = [] intermediate = [] for key in links: link = [] #link is models in link for corr in links[key]: link.extend(models['{0}'.format(corr)]) svd = SVD_diagnosis(Fit,link,links[key],svdfac,currents,SepMass) finalmodelsA.append({'svdcut':svd}) finalmodelsA.append(tuple(link)) for key in parrlinks: link = [] #link is models in link for corr in parrlinks[key]: link.extend(models['{0}'.format(corr)]) svd = SVD_diagnosis(Fit,link,parrlinks[key],svdfac,currents,SepMass) intermediate.append({'svdcut':svd}) intermediate.append(tuple(link)) finalmodelsB.append(intermediate) return(finalmodelsA,finalmodelsB) else: finalmodels = [] for corr in allcorrs: finalmodels.extend(models['{0}'.format(corr)]) if NoSVD == False: svd = SVD_diagnosis(Fit,finalmodels,allcorrs,svdfac,currents,SepMass) return(tuple(finalmodels),svd) else: return(tuple(finalmodels)) ####################################################################################################### def elements_in_FitCorrs(a): # reads [A,[B,C],[[D,E],F]] and interprets which elements will be chained and how. Returns alphabetical list of all elements, links in chain and links in parallell chain allcorrs = [] links = collections.OrderedDict() parrlinks = collections.OrderedDict() for i in range(np.shape(a)[0]): links[i] =[] if len(np.shape(a[i])) == 0: #deals with one corr in chain #print(a[i],i,'fit alone in chain') allcorrs.append(a[i]) links[i].append(a[i]) elif len(np.shape(a[i][0])) == 0 : #deals with multiple elements in chain for j in range(len(a[i])): #print(a[i][j],i,'fit together in chain') allcorrs.append(a[i][j]) links[i].append(a[i][j]) else: del links[i] #don't need thi key if it is in paralell for j in range(np.shape(a[i])[0]): parrlinks[j] = [] if len(np.shape(a[i][j])) == 0: #deals with one corr in parr chain allcorrs.append(a[i][j]) parrlinks[j].append(a[i][j]) else: # deals with multiple elements in parralell chain for k in range(len(a[i][j])): allcorrs.append(a[i][j][k]) parrlinks[j].append(a[i][j][k]) return(sorted(allcorrs),links,parrlinks) ###################################################################################################### def make_prior(Fit,N,allcorrs,currents,daughters,parents,loosener,data,notwist0,non_oscillating): No = N # number of oscillating exponentials prior = gv.BufferDict() tw_corr = True otw_corr = True if len(daughters) != 0 and '0' in Fit['twists'] and tw_corr: for corr in set(daughters).intersection(allcorrs): prior['d2_{0}'.format(corr)] = gv.gvar('0.0(1.0)') prior['c2_{0}'.format(corr)] = gv.gvar('0.0(1.0)') print('Daughter twists correlated') if len(daughters) != 0 and '0' in Fit['twists'] and otw_corr: for corr in set(daughters).intersection(allcorrs): prior['oc2_{0}'.format(corr)] = gv.gvar('0.0(1.0)') print('Daughter oscillating twists correlated') tp = Fit['tp'] En = '{0}({1})'.format(0.5*Fit['a'],0.25*Fit['a']*loosener) #Lambda with error of half an = '{0}({1})'.format(gv.gvar(Fit['an']).mean,gv.gvar(Fit['an']).sdev*loosener) aon = '{0}({1})'.format(gv.gvar(Fit['aon']).mean,gv.gvar(Fit['aon']).sdev*loosener) for corr in allcorrs: if corr in parents: for mass in Fit['masses']: tag = Fit['{0}-Tag'.format(corr)].format(mass) M_eff = effective_mass_calc(tag,data[tag],tp) a_eff = effective_amplitude_calc(tag,data[tag],tp,M_eff,Fit,corr) # Parent prior['log({0}:a)'.format(tag)] = gv.log(gv.gvar(N * [an])) prior['log(dE:{0})'.format(tag)] = gv.log(gv.gvar(N * [En])) prior['log({0}:a)'.format(tag)][0] = gv.log(gv.gvar(a_eff.mean,loosener*Fit['loosener']*a_eff.mean)) prior['log(dE:{0})'.format(tag)][0] = gv.log(gv.gvar(M_eff.mean,loosener*Fit['Mloosener']*M_eff.mean)) # Parent -- oscillating part prior['log(o{0}:a)'.format(tag)] = gv.log(gv.gvar(No * [an])) prior['log(dE:o{0})'.format(tag)] = gv.log(gv.gvar(No * [En])) prior['log(dE:o{0})'.format(tag)][0] = gv.log(gv.gvar((M_eff+gv.gvar(En)*(4/5)).mean,loosener*Fit['oMloosener']*((M_eff+gv.gvar(En)*(4/5)).mean))) if corr in daughters: for twist in Fit['twists']: if twist =='0' and corr in notwist0: pass else: ap2 = 3*(np.pi*float(twist)/Fit['L'])**2 #print(twist,ap2) tag0 = Fit['{0}-Tag'.format(corr)].format('0') M_eff = np.sqrt(effective_mass_calc(tag0,data[tag0],tp)**2 + ap2) #from dispersion relation tag = Fit['{0}-Tag'.format(corr)].format(twist) a_eff = effective_amplitude_calc(tag,data[tag],tp,M_eff,Fit,corr) # Daughter prior['log({0}:a)'.format(tag)] = gv.log(gv.gvar(N * [an])) prior['log(dE:{0})'.format(tag)] = gv.log(gv.gvar(N * [En])) #prior['log(dE:{0})'.format(tag)][1] = gv.log(gv.gvar(gv.gvar(En).mean,0.01*gv.gvar(En).mean)) if twist !='0' and '0' in Fit['twists'] and 'log(dE:{0})'.format(tag0) in prior and tw_corr: prior['log(dE:{0})'.format(tag)][0] = gv.log(gv.sqrt(prior['dE:{0}'.format(tag0)][0]**2 + ap2) * (1 + prior['c2_{0}'.format(corr)]*ap2/(np.pi)**2) ) prior['log({0}:a)'.format(tag)][0] = gv.log((prior['{0}:a'.format(tag0)][0]/gv.sqrt(gv.sqrt(1 + ap2/(prior['dE:{0}'.format(tag0)][0])**2))) * (1 + prior['d2_{0}'.format(corr)]*ap2/(np.pi)**2) ) else: prior['log(dE:{0})'.format(tag)][0] = gv.log(gv.gvar(M_eff.mean,loosener*Fit['Mloosener']*M_eff.mean)) prior['log({0}:a)'.format(tag)][0] = gv.log(gv.gvar(a_eff.mean,loosener*Fit['loosener']*a_eff.mean)) # Daughter -- oscillating part if twist =='0' and corr in non_oscillating: pass else: newaon = aon if twist == '0': newaon = '{0}({1})'.format(gv.gvar(aon).mean/4,gv.gvar(aon).mean/2) #v small in the case of tw0 prior['log(o{0}:a)'.format(tag)] = gv.log(gv.gvar(No * [newaon])) prior['log(dE:o{0})'.format(tag)] = gv.log(gv.gvar(No * [En])) if twist !='0' and '0' in Fit['twists'] and 'log(dE:o{0})'.format(tag0) in prior and otw_corr: prior['log(dE:o{0})'.format(tag)][0] = gv.log(gv.sqrt(prior['dE:o{0}'.format(tag0)][0]**2 + ap2) * (1 + prior['oc2_{0}'.format(corr)]*ap2/(np.pi)**2) ) #prior['log(o{0}:a)'.format(tag)][0] = gv.log((prior['o{0}:a'.format(tag0)][0]/gv.sqrt(1 + ap2/(prior['dE:o{0}'.format(tag0)][0])**2)) * (1 + prior['od2']*ap2/(np.pi)**2) ) prior['log(o{0}:a)'.format(tag)][0] = gv.log(gv.gvar(gv.gvar(newaon).mean,loosener*Fit['oloosener']*gv.gvar(newaon).mean)) else: prior['log(dE:o{0})'.format(tag)][0] = gv.log(gv.gvar((M_eff+gv.gvar(En)/2).mean,loosener*Fit['oMloosener']*((M_eff+gv.gvar(En)/2).mean))) # kaon splitting #prior['log(dE:o{0})'.format(tag)][0] = gv.log(prior['dE:{0}'.format(tag)][0] + gv.gvar(En)) prior['log(o{0}:a)'.format(tag)][0] = gv.log(gv.gvar(gv.gvar(newaon).mean,loosener*Fit['oloosener']*gv.gvar(newaon).mean)) if corr in currents: for mass in Fit['masses']: for twist in Fit['twists']: if twist =='0' and corr in notwist0: pass else: daughter=daughters[currents.index(corr)] parent=parents[currents.index(corr)] dcorr = data[Fit['{0}-Tag'.format(daughter)].format(twist)] pcorr = data[Fit['{0}-Tag'.format(parent)].format(mass)] correlator = data[Fit['threePtTag{0}'.format(corr)].format(Fit['Ts'][-1],Fit['m_s'],mass,Fit['m_l'],twist)] ptag = Fit['{0}-Tag'.format(parent)].format(mass) pM_eff = effective_mass_calc(ptag,data[ptag],tp) pa_eff = effective_amplitude_calc(ptag,data[ptag],tp,pM_eff,Fit,parent) dtag = Fit['{0}-Tag'.format(daughter)].format(twist) dM_eff = effective_mass_calc(dtag,data[dtag],tp) da_eff = effective_amplitude_calc(dtag,data[dtag],tp,dM_eff,Fit,daughter) V_eff = effective_V_calc(corr,daughter,parent,correlator,dcorr,pcorr,Fit,mass,twist,da_eff,pa_eff) if V_eff.mean != gv.gvar(Fit['{0}Vnn0'.format(corr)]).mean: Vnn0 = '{0}({1})'.format(V_eff.mean,loosener*V_eff.mean*Fit['Vloosener']) else: Vnn0 = '{0}({1})'.format(V_eff.mean,loosener*V_eff.sdev) Vn = '{0}({1})'.format(gv.gvar(Fit['{0}Vn'.format(corr)]).mean,loosener*gv.gvar(Fit['{0}Vn'.format(corr)]).sdev) V0 = '{0}({1})'.format(gv.gvar(Fit['{0}V0'.format(corr)]).mean,loosener*gv.gvar(Fit['{0}V0'.format(corr)]).sdev) if twist =='0' and corr in notwist0: pass elif twist =='0' and daughters[currents.index(corr)] in non_oscillating : prior['{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(N * [N * [Vn]]) prior['{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(Vnn0) prior['{0}Vno_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(N * [No* [Vn]]) prior['{0}Vno_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(V0) else: prior['{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(N * [N * [Vn]]) prior['{0}Vnn_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(Vnn0) prior['{0}Vno_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(N * [No * [Vn]]) prior['{0}Vno_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(V0) prior['{0}Voo_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(No * [No * [Vn]]) prior['{0}Voo_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(V0) prior['{0}Von_m{1}_tw{2}'.format(corr,mass,twist)] = gv.gvar(No * [N * [Vn]]) prior['{0}Von_m{1}_tw{2}'.format(corr,mass,twist)][0][0] = gv.gvar(V0) # for key in prior: # if key[0] == corr: # for i in range(1,N): # for j in range(1,N): # prior[key][i][j] = gv.gvar('0.0(5)') return(prior) ###################################################################################################### def get_p0(Fit,fittype,Nexp,allcorrs,prior,FitCorrs): # We want to take in several scenarios in this order, choosing the highest in preference. # 1) This exact fit has been done before, modulo priors, svds t0s etc # 2) Same but different type of fit, eg marginalised # 3) This fit has been done before with Nexp+1 # 4) This fit has been done beofore with Nexp-1 # 5a) Some elemnts have bene fitted to Nexp before, # 5b) Some elements of the fit have been fitted in other combinations before filename1 = 'p0/{0}{1}{2}{3}{4}{5}{6}{7}{8}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),FitCorrs,strip_list(Fit['Ts']),fittype,Nexp) filename2 = 'p0/{0}{1}{2}{3}{4}{5}{6}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),strip_list(Fit['Ts']),Nexp) filename3 = 'p0/{0}{1}{2}{3}{4}{5}{6}{7}{8}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),FitCorrs,strip_list(Fit['Ts']),fittype,Nexp+1) filename4 = 'p0/{0}{1}{2}{3}{4}{5}{6}{7}{8}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),FitCorrs,strip_list(Fit['Ts']),fittype,Nexp-1) filename5a = 'p0/{0}{1}{2}'.format(Fit['conf'],Fit['filename'],Nexp) filename5b = 'p0/{0}{1}'.format(Fit['conf'],Fit['filename']) #case 1 if os.path.isfile(filename1): p0 = gv.load(filename1) print('Loaded p0 from exact fit') #case 2 elif os.path.isfile(filename2): p0 = gv.load(filename2) print('Loaded p0 from exact fit of different type') #case 3 elif os.path.isfile(filename3): p0 = gv.load(filename3) print('Loaded p0 from exact fit Nexp+1') #case 4 elif os.path.isfile(filename4): p0 = gv.load(filename4) print('Loaded p0 from exact fit Nexp-1') #case 5 elif os.path.isfile(filename5b): p0 = gv.load(filename5b) print('Loaded global p0') if os.path.isfile(filename5a): pnexp = gv.load(filename5a) for key in pnexp: if key in prior: if key not in p0: print('Error: {0} in global Nexp but not in global fit'.format(key)) p0[key] = pnexp[key] del p0[key] p0[key] = pnexp[key] print('Loaded {0} p0 from global Nexp'.format(key)) else: p0 = None return(p0) ###################################################################################################### def update_p0(p,finalp,Fit,fittype,Nexp,allcorrs,FitCorrs,Q,marg=False): # We want to take in several scenarios in this order # 1) This exact fit has been done before, modulo priors, svds t0s etc # 2) Same but different type of fit, eg marginalised # 3) Global Nexp # 4) Global # 5) if Marg is True, we don't want to save anything but filename 1 as Nexp = nmarg and is not similar to if we do other fits filename1 = 'p0/{0}{1}{2}{3}{4}{5}{6}{7}{8}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),FitCorrs,strip_list(Fit['Ts']),fittype,Nexp) filename2 = 'p0/{0}{1}{2}{3}{4}{5}{6}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),strip_list(Fit['Ts']),Nexp) filename3 = 'p0/{0}{1}{2}'.format(Fit['conf'],Fit['filename'],Nexp) filename4 = 'p0/{0}{1}'.format(Fit['conf'],Fit['filename']) #case 1 for element in ['c2','d2','oc2']: for corr in allcorrs: if '{0}_{1}'.format(element,corr) in p: del p['{0}_{1}'.format(element,corr)] for element in ['c2','d2','oc2']: for corr in allcorrs: if '{0}_{1}'.format(element,corr) in finalp: del finalp['{0}_{1}'.format(element,corr)] gv.dump(p,filename1) if marg == False: #case 2 gv.dump(finalp,filename2) #case 3 if os.path.isfile(filename3) and Q > 0.05: p0 = gv.load(filename3) #load exisiting global Nexp for key in finalp: # key in this output p0[key] = finalp[key] #Update exisiting and add new gv.dump(p0,filename3) else: gv.dump(finalp,filename3) if os.path.isfile(filename4) and Q > 0.05: p0 = gv.load(filename4) # load existing, could be any length for key in finalp: # key in new if key in p0: # if if len(np.shape(p0[key])) == 1 and len(p0[key]) <= Nexp: #print('shape p0[key]',np.shape(p0[key]),key) del p0[key] p0[key] = finalp[key] print('Updated global p0 {0}'.format(key)) elif np.shape(p0[key])[0] <= Nexp: #print('shape p0[key]',np.shape(p0[key]),key) del p0[key] p0[key] = finalp[key] print('Updated global p0 {0}'.format(key)) else: p0[key] = finalp[key] print('Added new element to global p0 {0}'.format(key)) gv.dump(p0,filename4) else: gv.dump(finalp,filename4) return() ###################################################################################################### def save_fit(fit,Fit,allcorrs,fittype,Nexp,SvdFactor,PriorLoosener,currents,smallsave): filename = 'Fits/{0}{1}{2}{3}{4}{5}{6}_Nexp{7}_sfac{8}_pfac{9}_Q{10:.2f}_chi{11:.3f}_sm{12}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),strip_list(Fit['Ts']),fittype,Nexp,SvdFactor,PriorLoosener,fit.Q,fit.chi2/fit.dof,smallsave) for corr in allcorrs: if corr in currents: filename += '_{0}tmin{1}'.format(corr,Fit['{0}tmin'.format(corr)]) savedict = gv.BufferDict() if smallsave: for key in fit.p: if key[0] == 'l': key2 = key.split('(')[1].split(')')[0] if key2.split(':')[0] =='dE' and key2.split(':')[1][0] != 'o': savedict[key] = [fit.p[key][0]] #was palt elif key[2] =='n' and key[3] == 'n': savedict[key] = [[fit.p[key][0][0]]] #was palt elif smallsave == False: savedict = fit.p print('Started gv.gdump to {1}, smallsave = {0}'.format(smallsave,'{0}.pickle'.format(filename)),datetime.datetime.now()) gv.gdump(savedict,'{0}.pickle'.format(filename)) print('Finished gv.gdump fit, starting save fit output',datetime.datetime.now()) f = open('{0}.txt'.format(filename),'w') f.write(fit.format(pstyle='v')) f.close() print('Finished save fit output',datetime.datetime.now()) return() ###################################################################################################### def do_chained_fit(data,prior,Nexp,modelsA,modelsB,Fit,noise,currents,allcorrs,SvdFactor,PriorLoosener,FitCorrs,save,smallsave,GBF):#if GBF = None doesn't pass GBF, else passed GBF #do chained fit with no marginalisation Nexp = NMax models = copy.deepcopy(modelsA) if len(modelsB[0]) !=0: models.extend(modelsB) print('Models',models) fitter = cf.CorrFitter(models=models, maxit=maxiter, fast=False, tol=(1e-6,0.0,0.0)) p0 = get_p0(Fit,'chained',Nexp,allcorrs,prior,FitCorrs) print(30 * '=','Chained-Unmarginalised','Nexp =',Nexp,'Date',datetime.datetime.now()) fit = fitter.chained_lsqfit(data=data, prior=prior, p0=p0, noise=noise,debug=True) update_p0([f.pmean for f in fit.chained_fits.values()],fit.pmean,Fit,'chained',Nexp,allcorrs,FitCorrs,fit.Q) #fittype=chained, for marg,includeN if GBF == None: print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior) print_Z_V(fit.p,Fit,allcorrs) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'chained',Nexp,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return() elif fit.logGBF - GBF < 1 and fit.logGBF - GBF > 0: print('log(GBF) went up by less than 1: {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) elif fit.logGBF - GBF < 0: print('log(GBF) went down {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) else: print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior) print_Z_V(fit.p,Fit,allcorrs) print('log(GBF) went up {0:.2f}'.format(fit.logGBF - GBF)) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'chained',Nexp,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return(fit.logGBF) ###################################################################################################### def do_chained_marginalised_fit(data,prior,Nexp,modelsA,modelsB,Fit,noise,currents,allcorrs,SvdFactor,PriorLoosener,FitCorrs,save,smallsave,GBF,Marginalised):#if GBF = None doesn't pass GBF, else passed GBF #do chained fit with marginalisation nterm = nexp,nexp Nmarg=Marginalisation us in p0 bits models = copy.deepcopy(modelsA) if len(modelsB[0]) !=0: models.append(dict(nterm=(Nexp,Nexp))) models.extend(modelsB) else: print('Marginalisation not applied as no parrallelised models') print('Models',models) fitter = cf.CorrFitter(models=models, maxit=maxiter, fast=False, tol=(1e-6,0.0,0.0)) p0 = get_p0(Fit,'chained-marginalised_N{0}{0}'.format(Nexp),Marginalised,allcorrs,prior,FitCorrs) print(30 * '=','Chained-marginalised','Nexp =',Marginalised,'nterm = ({0},{0})'.format(Nexp),'Date',datetime.datetime.now()) fit = fitter.chained_lsqfit(data=data, prior=prior, p0=p0, noise=noise,debug=True) update_p0([f.pmean for f in fit.chained_fits.values()],fit.pmean,Fit,'chained-marginalised_N{0}{0}'.format(Nexp),Marginalised,allcorrs,FitCorrs,fit.Q,True) #fittype=chained, for marg,includeN if GBF == None: print(fit)#.format(pstyle='m')) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior) print_Z_V(fit.p,Fit,allcorrs) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'chained-marginalised_N{0}{0}'.format(Nexp),Marginalised,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return() elif fit.logGBF - GBF < 1 and fit.logGBF - GBF > 0: print('log(GBF) went up by less than 1: {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) elif fit.logGBF - GBF < 0: print('log(GBF) went down {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) else: print(fit)#.format(pstyle='m')) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior) print_Z_V(fit.p,Fit,allcorrs) print('log(GBF) went up {0:.2f}'.format(fit.logGBF - GBF)) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'chained-marginalised_N{0}{0}'.format(Nexp),Marginalised,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return(fit.logGBF) ###################################################################################################### def do_unchained_fit(data,prior,Nexp,models,svdcut,Fit,noise,currents,allcorrs,SvdFactor,PriorLoosener,save,smallsave,GBF):#if GBF = None doesn't pass GBF, else passed GBF #do chained fit with no marginalisation Nexp = NMax print('Models',models) fitter = cf.CorrFitter(models=models, maxit=maxiter, fast=False, tol=(1e-6,0.0,0.0)) p0 = get_p0(Fit,'unchained',Nexp,allcorrs,prior,allcorrs) # FitCorrs = allcorrs print(30 * '=','Unchained-Unmarginalised','Nexp =',Nexp,'Date',datetime.datetime.now()) fit = fitter.lsqfit(pdata=data, prior=prior, p0=p0, svdcut=svdcut, noise=noise,debug=True) update_p0(fit.pmean,fit.pmean,Fit,'unchained',Nexp,allcorrs,allcorrs,fit.Q) #fittype=chained, for marg,includeN if GBF == None: print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior)#,Fit) print_Z_V(fit.p,Fit,allcorrs) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'unchained',Nexp,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return() elif fit.logGBF - GBF < 1 and fit.logGBF - GBF > 0: print('log(GBF) went up by less than 1: {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) elif fit.logGBF - GBF < 0: print('log(GBF) went down: {0:.2f}'.format(fit.logGBF - GBF)) return(fit.logGBF) else: print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior)#,Fit) print_Z_V(fit.p,Fit,allcorrs) print('log(GBF) went up more than 1: {0:.2f}'.format(fit.logGBF - GBF)) if fit.Q > 0.05 and save: #threshold for a 'good' fit save_fit(fit,Fit,allcorrs,'unchained',Nexp,SvdFactor,PriorLoosener,currents,smallsave) #print_fit_results(fit) do this later return(fit.logGBF) ####################################################################################################### def do_sep_mass_fit(data,prior,Nexp,models,svdcut,Fit,noise,currents,allcorrs,SvdFactor,PriorLoosener,save,smallsave,GBF): #if GBF = None doesn't pass GBF, else passed GBF #do chained fit with no marginalisation Nexp = NMax print('Models',models) #print(data) fitter = cf.CorrFitter(models=models, maxit=maxiter, fast=False, tol=(1e-6,0.0,0.0)) p0 = get_p0(Fit,'sepmass',Nexp,allcorrs,prior,allcorrs) # FitCorrs = allcorrs print(30 * '=','Seperate Mass Fit','Nexp =',Nexp,'Date',datetime.datetime.now()) fit = fitter.lsqfit(pdata=data, prior=prior, p0=p0, svdcut=svdcut, noise=noise,debug=True) update_p0(fit.pmean,fit.pmean,Fit,'sepmass',Nexp,allcorrs,allcorrs,fit.Q) #fittype=chained, for marg,includeN print(fit) print('chi^2/dof = {0:.3f} Q = {1:.3f} logGBF = {2:.0f}'.format(fit.chi2/fit.dof,fit.Q,fit.logGBF)) print_results(fit.p,prior)#,Fit) return(fit) ###################################################################################################### def combine_sep_mass_fits(result,Fit,priors,allcorrs,Nexp,SvdFactor,PriorLoosener,currents,save,smallsave): prior = gv.BufferDict() combined = [] for mass in Fit['masses']: smallresult = gv.BufferDict() fit = result[mass].p for key in fit: if key[0] == 'l': key2 = key.split('(')[1].split(')')[0] if key2.split(':')[0] =='dE': smallresult[key] = [fit[key][0]] elif key[2] =='n' and key[3] == 'n': smallresult[key] = [[fit[key][0][0]]] combined.append(smallresult) prior = copy.deepcopy(priors[Fit['masses'][0]]) for mass in Fit['masses']: for key in priors[mass]: if key not in prior: prior[key] = copy.deepcopy(priors[mass][key]) #print(combined) final = lsqfit.wavg(combined) #print(gv.evalcorr([final['SVnn_m0.433_tw0.8563'][0][0],final['SVnn_m0.683_tw0.8563'][0][0]])) chi = 0 Q = 0 GBF = 0 for mass in Fit['masses']: chi += (result[mass].chi2/result[mass].dof)/len(Fit['masses']) Q += (result[mass].Q)/len(Fit['masses']) GBF += result[mass].logGBF print('Mean chi^2/dof = {0:.3f} Q = {1:.3f}, total logGBF {2:.1f}'.format(chi,Q,GBF)) print_results(final,prior)#,Fit) print_Z_V(final,Fit,allcorrs) if save: save_combined_fit(final,Fit,allcorrs,'sep_mass',Nexp,SvdFactor,PriorLoosener,currents,smallsave,chi,Q) return() ###################################################################################################################### def save_combined_fit(fit,Fit,allcorrs,fittype,Nexp,SvdFactor,PriorLoosener,currents,smallsave,chi,Q): filename = 'Fits/{0}{1}{2}{3}{4}{5}{6}_Nexp{7}_sfac{8}_pfac{9}_Q{10:.2f}_chi{11:.3f}_sm{12}'.format(Fit['conf'],Fit['filename'],strip_list(Fit['masses']),strip_list(Fit['twists']),strip_list(allcorrs),strip_list(Fit['Ts']),fittype,Nexp,SvdFactor,PriorLoosener,Q,chi,smallsave) for corr in allcorrs: if corr in currents: filename += '_{0}tmin{1}'.format(corr,Fit['{0}tmin'.format(corr)]) savedict = gv.BufferDict() if smallsave: for key in fit: if key[0] == 'l': key2 = key.split('(')[1].split(')')[0] if key2.split(':')[0] =='dE' and key2.split(':')[1][0] != 'o': savedict[key] = [fit[key][0]] elif key[2] =='n' and key[3] == 'n': savedict[key] = [[fit[key][0][0]]] elif smallsave == False: print('Error, can only do small save with sep masses' ) #print(gv.evalcorr([savedict['SVnn_m0.433_tw0.8563'][0][0],savedict['SVnn_m0.683_tw0.8563'][0][0]])) print('Started gv.gdump to {1}, smallsave = {0}'.format(smallsave,'{0}.pickle'.format(filename)),datetime.datetime.now()) gv.gdump(savedict,'{0}.pickle'.format(filename)) print('Finished gv.gdump fit',datetime.datetime.now()) return() ###################################################################################################### def print_p_p0(p,p0,prior): print('{0:<30}{1:<20}{2:<40}{3:<20}'.format('key','p','p0','prior')) for key in prior: if len(np.shape(p[key])) ==1 : for element in range(len(p[key])): if element == 0: print('{0:<30}{1:<20}{2:<40}{3:<20}'.format(key,p[key][element],p0[key][element],prior[key][element])) else: print('{0:>30}{1:<20}{2:<40}{3:<20}'.format('',p[key][element],p0[key][element],prior[key][element])) return() ##################################################################################################### def print_results(p,prior):#,Fit): print(100*'-') print('{0:<30}{1:<15}{2:<15}{3:<15}{4}'.format('key','p','p error','prior','prior error')) print(100*'-') print('Ground state energies') print(100*'-') for key in prior: if key[0] == 'l': key = key.split('(')[1].split(')')[0] if key.split(':')[0] =='dE' and key.split(':')[1][0] != 'o': print('{0:<30}{1:<15}{2:<15.3%}{3:<15}{4:.2%}'.format(key,p[key][0],p[key][0].sdev/p[key][0].mean,prior[key][0],prior[key][0].sdev/prior[key][0].mean)) #if '{0}'.format(key.split(':')[1]) == Fit['BG-Tag'].format(Fit['masses'][0]): # print('split: ', p['dE:{0}'.format(Fit['BNG-Tag'].format(Fit['masses'][0]))][0]-p[key][0]) print('') print('Oscillating ground state energies') print(100*'-') for key in prior: if key[0] == 'l': key = key.split('(')[1].split(')')[0] if key.split(':')[0] =='dE' and key.split(':')[1][0] == 'o': print('{0:<30}{1:<15}{2:<15.3%}{3:<15}{4:.2%}'.format(key,p[key][0],p[key][0].sdev/p[key][0].mean,prior[key][0],prior[key][0].sdev/prior[key][0].mean)) print('') print('V_nn[0][0]') print(100*'-') for key in prior: if key[1] != '2' and key[2] =='n' and key[3] == 'n': print('{0:<30}{1:<15}{2:<15.3%}{3:<15}{4:.2%}'.format(key,p[key][0][0],p[key][0][0].sdev/p[key][0][0].mean,prior[key][0][0],prior[key][0][0].sdev/prior[key][0][0].mean)) print(100*'-') return() ##################################################################################################### def make_Z_V(m_h,m_s,M_parent,M_daughter,S,V): Z_V = (m_h-m_s)/(M_parent-M_daughter) * S/V return(Z_V) ##################################################################################################### # needs generalising ##################################################################################################### def print_Z_V(p,Fit,allcorrs): if 'S' in allcorrs and 'V' in allcorrs: print(100*'-') for mass in Fit['masses']: M_parent = p['dE:{0}'.format(Fit['{0}-Tag'.format('BG')].format(mass))][0] M_daughter = p['dE:{0}'.format(Fit['{0}-Tag'.format('KG')].format('0'))][0] S = p['SVnn_m{0}_tw0'.format(mass)][0][0] V = p['VVnn_m{0}_tw0'.format(mass)][0][0] Z_V = make_Z_V(float(mass),float(Fit['m_s']),M_parent,M_daughter,S,V) print("Mass = {0} Z_V = {1}".format(mass,Z_V)) print(100*'-') return() #####################################################################################################
WillParrott/New_bodiddley_fitter
functions.py
functions.py
py
47,341
python
en
code
0
github-code
6
[ { "api_name": "matplotlib.use", "line_number": 9, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rc", "line_number": 10, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 10, "usage_type": "name" }, { "api_name": "lsqfit.nonlinear_fit.set", "line_number": 17, "usage_type": "call" }, { "api_name": "lsqfit.nonlinear_fit", "line_number": 17, "usage_type": "attribute" }, { "api_name": "corrfitter.read_dataset", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 80, "usage_type": "call" }, { "api_name": "gvar.dataset.avg_data", "line_number": 81, "usage_type": "call" }, { "api_name": "gvar.dataset", "line_number": 81, "usage_type": "attribute" }, { "api_name": "corrfitter.read_dataset", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 96, "usage_type": "call" }, { "api_name": "corrfitter.process_dataset", "line_number": 97, "usage_type": "call" }, { "api_name": "gvar.arccosh", "line_number": 107, "usage_type": "call" }, { "api_name": "gvar.sqrt", "line_number": 131, "usage_type": "call" }, { "api_name": "gvar.exp", "line_number": 131, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 141, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 205, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 230, "usage_type": "call" }, { "api_name": "os.path", "line_number": 230, "usage_type": "attribute" }, { "api_name": "os.path.getsize", "line_number": 230, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 232, "usage_type": "call" }, { "api_name": "gvar.dataset.svd_diagnosis", "line_number": 237, "usage_type": "call" }, { "api_name": "gvar.dataset", "line_number": 237, "usage_type": "attribute" }, { "api_name": "corrfitter.read_dataset", "line_number": 237, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 240, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 240, "usage_type": "name" }, { "api_name": "gvar.mean", "line_number": 246, "usage_type": "call" }, { "api_name": "gvar.sdev", "line_number": 247, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.errorbar", "line_number": 248, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 248, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 250, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 250, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axhline", "line_number": 251, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 251, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axvline", "line_number": 252, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 252, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xscale", "line_number": 254, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 254, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 255, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 255, "usage_type": "name" }, { "api_name": "pickle.dump", "line_number": 259, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 267, "usage_type": "call" }, { "api_name": "corrfitter.Corr2", "line_number": 274, "usage_type": "call" }, { "api_name": "corrfitter.Corr2", "line_number": 284, "usage_type": "call" }, { "api_name": "corrfitter.Corr2", "line_number": 286, "usage_type": "call" }, { "api_name": "corrfitter.Corr3", "line_number": 300, "usage_type": "call" }, { "api_name": "corrfitter.Corr3", "line_number": 303, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 341, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 342, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 343, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 345, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 349, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 356, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 358, "usage_type": "call" }, { "api_name": "gvar.BufferDict", "line_number": 371, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 376, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 377, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 381, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 386, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 387, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 395, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 395, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 396, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 396, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 397, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 397, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 398, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 398, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 400, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 400, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 401, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 401, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 402, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 402, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 410, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 413, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 417, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 417, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 418, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 418, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 421, "usage_type": "call" }, { "api_name": "gvar.sqrt", "line_number": 421, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 421, "usage_type": "attribute" }, { "api_name": "gvar.log", "line_number": 422, "usage_type": "call" }, { "api_name": "gvar.sqrt", "line_number": 422, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 422, "usage_type": "attribute" }, { "api_name": "gvar.log", "line_number": 425, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 425, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 426, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 426, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 433, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 434, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 434, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 435, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 435, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 437, "usage_type": "call" }, { "api_name": "gvar.sqrt", "line_number": 437, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 437, "usage_type": "attribute" }, { "api_name": "gvar.log", "line_number": 439, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 439, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 441, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 441, "usage_type": "call" }, { "api_name": "gvar.log", "line_number": 443, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 443, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 465, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 469, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 470, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 474, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 475, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 476, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 477, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 479, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 480, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 481, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 482, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 483, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 484, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 485, "usage_type": "call" }, { "api_name": "gvar.gvar", "line_number": 486, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 515, "usage_type": "call" }, { "api_name": "os.path", "line_number": 515, "usage_type": "attribute" }, { "api_name": "gvar.load", "line_number": 516, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 520, "usage_type": "call" }, { "api_name": "os.path", "line_number": 520, "usage_type": "attribute" }, { "api_name": "gvar.load", "line_number": 521, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 524, "usage_type": "call" }, { "api_name": "os.path", "line_number": 524, "usage_type": "attribute" }, { "api_name": "gvar.load", "line_number": 525, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 529, "usage_type": "call" }, { "api_name": "os.path", "line_number": 529, "usage_type": "attribute" }, { "api_name": "gvar.load", "line_number": 530, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 534, "usage_type": "call" }, { "api_name": "os.path", "line_number": 534, "usage_type": "attribute" }, { "api_name": "gvar.load", "line_number": 535, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 537, "usage_type": "call" }, { "api_name": "os.path", "line_number": 537, "usage_type": "attribute" }, { "api_name": "gvar.load", "line_number": 538, "usage_type": "call" }, { "api_name": "gvar.dump", "line_number": 576, "usage_type": "call" }, { "api_name": "gvar.dump", "line_number": 579, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 582, "usage_type": "call" }, { "api_name": "os.path", "line_number": 582, "usage_type": "attribute" }, { "api_name": "gvar.load", "line_number": 583, "usage_type": "call" }, { "api_name": "gvar.dump", "line_number": 586, "usage_type": "call" }, { "api_name": "gvar.dump", "line_number": 589, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 591, "usage_type": "call" }, { "api_name": "os.path", "line_number": 591, "usage_type": "attribute" }, { "api_name": "gvar.load", "line_number": 592, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 595, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 600, "usage_type": "call" }, { "api_name": "gvar.dump", "line_number": 608, "usage_type": "call" }, { "api_name": "gvar.dump", "line_number": 610, "usage_type": "call" }, { "api_name": "gvar.BufferDict", "line_number": 620, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 631, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 631, "usage_type": "attribute" }, { "api_name": "gvar.gdump", "line_number": 632, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 633, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 633, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 637, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 637, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 645, "usage_type": "call" }, { "api_name": "corrfitter.CorrFitter", "line_number": 649, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 651, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 651, "usage_type": "attribute" }, { "api_name": "copy.deepcopy", "line_number": 684, "usage_type": "call" }, { "api_name": "corrfitter.CorrFitter", "line_number": 691, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 693, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 693, "usage_type": "attribute" }, { "api_name": "corrfitter.CorrFitter", "line_number": 727, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 729, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 729, "usage_type": "attribute" }, { "api_name": "corrfitter.CorrFitter", "line_number": 765, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 767, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 767, "usage_type": "attribute" }, { "api_name": "gvar.BufferDict", "line_number": 778, "usage_type": "call" }, { "api_name": "gvar.BufferDict", "line_number": 781, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 792, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 796, "usage_type": "call" }, { "api_name": "lsqfit.wavg", "line_number": 798, "usage_type": "call" }, { "api_name": "gvar.BufferDict", "line_number": 821, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 833, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 833, "usage_type": "attribute" }, { "api_name": "gvar.gdump", "line_number": 834, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 835, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 835, "usage_type": "attribute" }, { "api_name": "numpy.shape", "line_number": 842, "usage_type": "call" } ]
30097122943
""" Comments scraper class""" import json import logging import random from time import sleep import numpy as np import pandas as pd from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from scripts.argparser import ArgParser from scripts.auxiliary.scraper_aux import check_or_create_folders, save from scripts.chrome_driver import ChromeDriver logging.basicConfig( format="%(asctime)s | %(levelname)s: %(message)s", level=logging.CRITICAL ) class CommentsScraper: def __init__(self): pass @staticmethod def iterate(args, ttw, driver): # ~ 24 comments loaded each iteration check = True MAX_ITER = int(args.max_iterations) n = 0 while check and n <= MAX_ITER: sleep(int(random.choice(ttw))) try: load_more_comments_button = WebDriverWait(driver, 5).until( EC.visibility_of_element_located( (By.CSS_SELECTOR, "[aria-label='Load more comments']") ) ) load_more_comments_button.click() except: check = False if n == MAX_ITER: logging.warning( "Reached the max iterations number before exhausting the post comments. \ You may consider to raise the max iterations number" ) else: logging.info("Exhausted all the post comments") n = n + 1 @classmethod def setup(self): argparser = ArgParser() chrome_driver = ChromeDriver() proxy = chrome_driver.set_up_proxy() args = argparser.likes_scraper_read_input() driver = chrome_driver.set_up_driver(proxy=proxy) driver = chrome_driver.make_IG_access_w_creds( driver=driver, ig_usr=args.username, ig_pass=args.password ) return driver, proxy, args @classmethod def scrape(self, driver, proxy, args, save_raw_data=bool, **kwargs): if "target_post" in kwargs: proxy.new_har( kwargs.get("target_post"), options={"captureHeaders": True, "captureContent": True}, ) driver.get(kwargs.get("target_post")) target = kwargs.get("target_post") else: proxy.new_har( args.target_post, options={"captureHeaders": True, "captureContent": True}, ) driver.get(args.target_post) target = args.target_post # Random time intervals to sleep between load more comment button pushes ttw = [] for i in range(0, 20): ttw.append(np.round(random.uniform(4, 8), 2)) # ~ 24 comments loaded each iteration CommentsScraper.iterate(args=args, ttw=ttw, driver=driver) R = json.loads(json.dumps(proxy.har, ensure_ascii=False)) if save_raw_data: save(data=R, target=target, args=args) return R @classmethod def parse_and_save_data(self, raw_data, args, target): "Parse raw scraped data and write to disk" RAW = {} for n, v in enumerate(raw_data["log"]["entries"]): if v["response"]["content"]["mimeType"] in [ "application/json; charset=utf-8", "application/json", ]: try: RAW[n] = json.loads(v["response"]["content"]["text"])["comments"] except: pass comments_df = pd.DataFrame.from_dict(RAW[list(RAW.keys())[0]]) for k in list(RAW.keys())[1:]: comments_df = pd.concat([comments_df, pd.DataFrame.from_dict(RAW[k])]) comments_df = comments_df.reset_index(drop=True) check_or_create_folders(target=target, args=args) short_code = target.split("/")[-1] # TODO FIX get the profile name from somewhere and create the correct folder! comments_df.to_csv( f"{args.output_folder}/{short_code}_comments_clean.csv", mode="w+" ) logging.info("Data correctly saved/overwrote.") # print(f'Dave saved in: {f"{args.output_folder}_{short_code}_comments_clean.csv"}') return comments_df
ScrPzz/InstagramScraper
src/comments_scraper.py
comments_scraper.py
py
4,554
python
en
code
2
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 17, "usage_type": "call" }, { "api_name": "logging.CRITICAL", "line_number": 18, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 34, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 34, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.ui.WebDriverWait", "line_number": 37, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 38, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 38, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.CSS_SELECTOR", "line_number": 39, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 39, "usage_type": "name" }, { "api_name": "logging.warning", "line_number": 46, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 51, "usage_type": "call" }, { "api_name": "scripts.argparser.ArgParser", "line_number": 56, "usage_type": "call" }, { "api_name": "scripts.chrome_driver.ChromeDriver", "line_number": 57, "usage_type": "call" }, { "api_name": "numpy.round", "line_number": 89, "usage_type": "call" }, { "api_name": "random.uniform", "line_number": 89, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 94, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 94, "usage_type": "call" }, { "api_name": "scripts.auxiliary.scraper_aux.save", "line_number": 97, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 112, "usage_type": "call" }, { "api_name": "pandas.DataFrame.from_dict", "line_number": 116, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 116, "usage_type": "attribute" }, { "api_name": "pandas.concat", "line_number": 119, "usage_type": "call" }, { "api_name": "pandas.DataFrame.from_dict", "line_number": 119, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 119, "usage_type": "attribute" }, { "api_name": "scripts.auxiliary.scraper_aux.check_or_create_folders", "line_number": 123, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 131, "usage_type": "call" } ]
6605463296
from itertools import combinations from collections import Counter def solution(orders, course): answer = [] for c in course: temp = [] for order in orders: combi = combinations(sorted(order), c) temp += combi counter = Counter(temp) if len(counter) != 0 and max(counter.values()) != 1: for cnt in counter: if counter[cnt] == max(counter.values()): answer.append("".join(cnt)) return sorted(answer)
JeongGod/Algo-study
3people/6week/p72411.py
p72411.py
py
457
python
en
code
7
github-code
6
[ { "api_name": "itertools.combinations", "line_number": 9, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 11, "usage_type": "call" } ]
33353045212
from django.contrib.auth.models import User from django.db import models # Create your models here. from django.db.models.signals import pre_delete from django.dispatch import receiver class CommonInfo(models.Model): # 开始时间 auto_now_add=True, startday = models.DateField(verbose_name="下单时间", null=True) # 结束时间 endday = models.DateField(verbose_name="交货时间", null=True) # 备注 remark = models.TextField(default="", verbose_name="备注") status_choice = ( ('pending', "未开始"), ('process', "进行中"), ('finish', "已完成") ) status = models.CharField( max_length=10, choices=status_choice, default='pending', verbose_name="订单状态", ) class Meta: abstract = True class Productplan(CommonInfo): # 订单号 orderid = models.CharField(max_length=10, verbose_name="订单号") # 订单分类 category_choice = ( ('std', "标准"), ('unstd', "非标") ) category = models.CharField( max_length=5, choices=category_choice, default='std', verbose_name="订单类型", ) # 型号 productid = models.CharField(max_length=20, verbose_name="产品型号") # 序列号 serial = models.CharField(max_length=20, verbose_name="序列号") # 用户 customer = models.CharField(max_length=20, verbose_name="用户") # 配置单 conffile = models.FileField(upload_to='service_files/%Y%m%d/', blank=True) # 更新时间 updated = models.DateTimeField(auto_now=True) def __str__(self): return self.customer + "_SN" + self.serial class Meta: ordering = ('-updated',) verbose_name_plural = "订单管理" @receiver(pre_delete, sender=Productplan) def delete(sender, instance, **kwargs): instance.conffile.delete(False) class ProcessElPrepare(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='proel', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "电路板准备" class ProcessMePrepare(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prome', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "机械件准备" class ProcessScPrepare(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prosc', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "干涉仪准备" class ProcessAssemble(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='proas', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "装配中" class ProcessTesting(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prots', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "测试中" def __str__(self): return self.orderid.customer # 添加软件状态 class ProcessSoftware(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prosw', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "软件" def __str__(self): return self.orderid.customer # 添加付款状态 class ProcessPayment(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='propm', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "付款" def __str__(self): return self.orderid.customer # 添加发货状态 class ProcessDeliver(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='prodi', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "发货" def __str__(self): return self.orderid.customer # 添加开票状态 class ProcessBilling(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='probi', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "开票" def __str__(self): return self.orderid.customer # 添加尾款状态 class ProcessDueing(CommonInfo): orderid = models.OneToOneField( Productplan, on_delete=models.CASCADE, related_name='produe', primary_key=True ) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "尾款" def __str__(self): return self.orderid.customer class ProductHistory(models.Model): # 操作者 user = models.ForeignKey( User, null=True, blank=True, on_delete=models.SET_NULL, related_name='user' ) # 订单 orderid = models.ForeignKey( Productplan, verbose_name="订单号", on_delete=models.CASCADE, related_name='product_history', primary_key=False ) # 操作项目 proitem = models.CharField(max_length=10, verbose_name="操作项目") # 新内容 newcontent = models.CharField(max_length=10, verbose_name="新内容") # 操作时间 operateday = models.DateTimeField(verbose_name="操作时间", null=True) # 更新时间 updated = models.DateTimeField(auto_now=True) class Meta: ordering = ('-updated',) verbose_name_plural = "订单历史" def __str__(self): return self.orderid.customer
willmaker2022/drfvueblog
productplan/models.py
models.py
py
6,808
python
en
code
0
github-code
6
[ { "api_name": "django.db.models.Model", "line_number": 9, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 9, "usage_type": "name" }, { "api_name": "django.db.models.DateField", "line_number": 11, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 11, "usage_type": "name" }, { "api_name": "django.db.models.DateField", "line_number": 13, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 13, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 15, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 15, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 35, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 35, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 41, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 41, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 48, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 48, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 50, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 50, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 52, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 52, "usage_type": "name" }, { "api_name": "django.db.models.FileField", "line_number": 54, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 54, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 56, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 56, "usage_type": "name" }, { "api_name": "django.dispatch.receiver", "line_number": 66, "usage_type": "call" }, { "api_name": "django.db.models.signals.pre_delete", "line_number": 66, "usage_type": "argument" }, { "api_name": "django.db.models.OneToOneField", "line_number": 72, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 72, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 74, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 74, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 79, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 79, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 87, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 87, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 89, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 89, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 94, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 94, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 102, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 102, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 104, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 104, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 109, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 109, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 117, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 117, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 119, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 119, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 124, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 124, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 132, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 132, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 134, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 134, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 139, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 139, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 151, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 151, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 153, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 153, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 158, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 158, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 170, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 170, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 172, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 172, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 177, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 177, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 189, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 189, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 191, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 191, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 196, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 196, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 208, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 208, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 210, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 210, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 215, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 215, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 227, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 227, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 229, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 229, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 234, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 234, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 244, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 244, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 246, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User", "line_number": 247, "usage_type": "argument" }, { "api_name": "django.db.models", "line_number": 246, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 250, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 250, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 254, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 254, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 257, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 257, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 262, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 262, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 264, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 264, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 266, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 266, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 269, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 269, "usage_type": "name" } ]
43573832015
import argparse from experiment.monitor import monitor from apps.qe import qe if __name__ == '__main__': parser = argparse.ArgumentParser() monitor.setup_run_args(parser) qe.setup_run_args(parser) args, extra_args = parser.parse_known_args() app_conf = qe.QuantumEspressoAppConf(args.node_count, args.benchmark_name) monitor.launch(app_conf=app_conf, args=args, experiment_cli_args=extra_args)
geopm/geopm
integration/experiment/monitor/run_monitor_qe.py
run_monitor_qe.py
py
440
python
en
code
79
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 7, "usage_type": "call" }, { "api_name": "experiment.monitor.monitor.setup_run_args", "line_number": 8, "usage_type": "call" }, { "api_name": "experiment.monitor.monitor", "line_number": 8, "usage_type": "name" }, { "api_name": "apps.qe.qe.setup_run_args", "line_number": 9, "usage_type": "call" }, { "api_name": "apps.qe.qe", "line_number": 9, "usage_type": "name" }, { "api_name": "apps.qe.qe.QuantumEspressoAppConf", "line_number": 12, "usage_type": "call" }, { "api_name": "apps.qe.qe", "line_number": 12, "usage_type": "name" }, { "api_name": "experiment.monitor.monitor.launch", "line_number": 13, "usage_type": "call" }, { "api_name": "experiment.monitor.monitor", "line_number": 13, "usage_type": "name" } ]
38036093112
import logging from collections import defaultdict from typing import Dict, Optional, Tuple, Union import numpy as np from matplotlib import rcParams from matplotlib.axes import SubplotBase from matplotlib.axis import Axis from matplotlib.colors import LogNorm from matplotlib.ticker import AutoMinorLocator, MaxNLocator from pymatgen.electronic_structure.bandstructure import ( BandStructure, BandStructureSymmLine, ) from pymatgen.electronic_structure.core import Spin from pymatgen.electronic_structure.plotter import BSPlotter from sumo.plotting import pretty_plot from sumo.symmetry import Kpath, PymatgenKpath from amset.constants import defaults, hbar from amset.interpolation.bandstructure import Interpolator from amset.interpolation.periodic import PeriodicLinearInterpolator from amset.log import initialize_amset_logger from amset.plot import BaseMeshPlotter, amset_base_style, styled_plot __author__ = "Alex Ganose" __maintainer__ = "Alex Ganose" __email__ = "[email protected]" logger = logging.getLogger(__name__) class LineshapePlotter(BaseMeshPlotter): def __init__( self, data, interpolation_factor=5, print_log=defaults["print_log"], symprec=defaults["symprec"], ): super().__init__(data) self.interpolation_factor = interpolation_factor if print_log: initialize_amset_logger(filename="lineshape.log") self.symprec = symprec def _get_interpolater(self, n_idx, t_idx, mode="linear"): props = defaultdict(dict) for spin in self.spins: # calculate total rate spin_rates = np.sum(self.scattering_rates[spin][:, n_idx, t_idx], axis=0) # easier to interpolate the log log_rates = np.log10(spin_rates) # # handle rates that close to numerical noise log_rates[log_rates > 18] = 15 log_rates[np.isnan(log_rates)] = 15 # map to full k-point mesh props[spin]["rates"] = log_rates if mode == "linear": return _LinearBandStructureInterpolator( self.kpoints, self.ir_to_full_kpoint_mapping, self.energies, self.structure, self.efermi, props, ) elif mode == "fourier": bs = BandStructure( self.ir_kpoints, self.energies, self.structure.lattice, self.efermi, structure=self.structure, ) return Interpolator( bs, self.num_electrons, interpolation_factor=self.interpolation_factor, soc=self.soc, other_properties=props, ) raise ValueError("Unknown interpolation mode; should be 'linear' or 'fourier'.") @styled_plot(amset_base_style) def get_plot( self, n_idx, t_idx, zero_to_efermi=True, estep=0.01, line_density=100, height=3.2, width=3.2, emin=None, emax=None, amin=5e-5, amax=1e-1, ylabel="Energy (eV)", plt=None, aspect=None, kpath=None, cmap="viridis", colorbar=True, style=None, no_base_style=False, fonts=None, ): interpolater = self._get_interpolater(n_idx, t_idx) bs, prop = interpolater.get_line_mode_band_structure( line_density=line_density, return_other_properties=True, kpath=kpath, symprec=self.symprec, ) bs, rates = force_branches(bs, {s: p["rates"] for s, p in prop.items()}) fd_emin, fd_emax = self.fd_cutoffs if not emin: emin = fd_emin if zero_to_efermi: emin -= bs.efermi if not emax: emax = fd_emax if zero_to_efermi: emax -= bs.efermi logger.info("Plotting band structure") if isinstance(plt, (Axis, SubplotBase)): ax = plt else: plt = pretty_plot(width=width, height=height, plt=plt) ax = plt.gca() if zero_to_efermi: bs.bands = {s: b - bs.efermi for s, b in bs.bands.items()} bs.efermi = 0 bs_plotter = BSPlotter(bs) plot_data = bs_plotter.bs_plot_data(zero_to_efermi=zero_to_efermi) energies = np.linspace(emin, emax, int((emax - emin) / estep)) distances = np.array([d for x in plot_data["distances"] for d in x]) # rates are currently log(rate) mesh_data = np.full((len(distances), len(energies)), 0.0) for spin in self.spins: for spin_energies, spin_rates in zip(bs.bands[spin], rates[spin]): for d_idx in range(len(distances)): energy = spin_energies[d_idx] linewidth = 10 ** spin_rates[d_idx] * hbar / 2 broadening = lorentzian(energies, energy, linewidth) broadening /= 1000 # convert 1/eV to 1/meV mesh_data[d_idx] += broadening im = ax.pcolormesh( distances, energies, mesh_data.T, rasterized=True, cmap=cmap, norm=LogNorm(vmin=amin, vmax=amax), shading="auto", ) if colorbar: pos = ax.get_position() cax = plt.gcf().add_axes([pos.x1 + 0.035, pos.y0, 0.035, pos.height]) cbar = plt.colorbar(im, cax=cax) cbar.ax.tick_params(axis="y", length=rcParams["ytick.major.size"] * 0.5) cbar.ax.set_ylabel( r"$A_\mathbf{k}$ (meV$^{-1}$)", rotation=270, va="bottom" ) _maketicks(ax, bs_plotter, ylabel=ylabel) _makeplot( ax, plot_data, bs, zero_to_efermi=zero_to_efermi, width=width, height=height, ymin=emin, ymax=emax, aspect=aspect, ) return plt def _makeplot( ax, data, bs, zero_to_efermi=True, ymin=-3.0, ymax=3.0, height=None, width=None, aspect=None, ): """Tidy the band structure & add the density of states if required.""" # draw line at Fermi level if not zeroing to e-Fermi if not zero_to_efermi: ytick_color = rcParams["ytick.color"] ef = bs.efermi ax.axhline(ef, color=ytick_color) # set x and y limits ax.set_xlim(0, data["distances"][-1][-1]) if bs.is_metal() and not zero_to_efermi: ax.set_ylim(bs.efermi + ymin, bs.efermi + ymax) else: ax.set_ylim(ymin, ymax) # keep correct aspect ratio for axes based on canvas size if aspect is not False: x0, x1 = ax.get_xlim() y0, y1 = ax.get_ylim() if width is None: width = rcParams["figure.figsize"][0] if height is None: height = rcParams["figure.figsize"][1] if not aspect: aspect = height / width ax.set_aspect(aspect * ((x1 - x0) / (y1 - y0))) def _maketicks(ax, bs_plotter, ylabel="Energy (eV)"): """Utility method to add tick marks to a band structure.""" # set y-ticks ax.yaxis.set_major_locator(MaxNLocator(6)) ax.yaxis.set_minor_locator(AutoMinorLocator(2)) # set x-ticks; only plot the unique tick labels ticks = bs_plotter.get_ticks() unique_d = [] unique_l = [] if ticks["distance"]: temp_ticks = list(zip(ticks["distance"], ticks["label"])) unique_d.append(temp_ticks[0][0]) unique_l.append(temp_ticks[0][1]) for i in range(1, len(temp_ticks)): # Append label to sequence if it is not same as predecessor if unique_l[-1] != temp_ticks[i][1]: unique_d.append(temp_ticks[i][0]) unique_l.append(temp_ticks[i][1]) logging.info("Label positions:") for dist, label in list(zip(unique_d, unique_l)): logging.info(f"\t{dist:.4f}: {label}") ax.set_xticks(unique_d) ax.set_xticklabels(unique_l) ax.xaxis.grid(True) ax.set_ylabel(ylabel) def lorentzian(x, x0, gamma): return 1 / np.pi * gamma / ((x - x0) ** 2 + gamma**2) class _LinearBandStructureInterpolator: def __init__( self, full_kpoints, ir_to_full_idx, energies, structure, efermi, other_properties, ): self.structure = structure self.efermi = efermi self.spins = list(energies.keys()) self.nbands = {s: len(e) for s, e in energies.items()} full_energies = {s: e[:, ir_to_full_idx] for s, e in energies.items()} self.bs_interpolator = PeriodicLinearInterpolator.from_data( full_kpoints, full_energies ) self.property_interpolators = {} other_properties = _transpose_dict(other_properties) for prop, prop_data in other_properties.items(): full_prop_data = {s: p[:, ir_to_full_idx] for s, p in prop_data.items()} self.property_interpolators[prop] = PeriodicLinearInterpolator.from_data( full_kpoints, full_prop_data, gaussian=0.75 ) def get_line_mode_band_structure( self, line_density: int = 50, kpath: Optional[Kpath] = None, symprec: Optional[float] = defaults["symprec"], return_other_properties: bool = False, ) -> Union[ BandStructureSymmLine, Tuple[BandStructureSymmLine, Dict[Spin, Dict[str, np.ndarray]]], ]: """Gets the interpolated band structure along high symmetry directions. Args: line_density: The maximum number of k-points between each two consecutive high-symmetry k-points symprec: The symmetry tolerance used to determine the space group and high-symmetry path. return_other_properties: Whether to include the interpolated other_properties data for each k-point along the band structure path. Returns: The line mode band structure. """ if not kpath: kpath = PymatgenKpath(self.structure, symprec=symprec) kpoints, labels = kpath.get_kpoints(line_density=line_density, cart_coords=True) labels_dict = { label: kpoint for kpoint, label in zip(kpoints, labels) if label != "" } rlat = self.structure.lattice.reciprocal_lattice frac_kpoints = rlat.get_fractional_coords(kpoints) energies = {} other_properties = defaultdict(dict) for spin in self.spins: energies[spin] = self._interpolate_spin( spin, frac_kpoints, self.bs_interpolator ) if return_other_properties: for prop, property_interpolator in self.property_interpolators.items(): other_properties[spin][prop] = self._interpolate_spin( spin, frac_kpoints, property_interpolator ) bs = BandStructureSymmLine( kpoints, energies, rlat, self.efermi, labels_dict, coords_are_cartesian=True, structure=self.structure, ) if return_other_properties: return bs, other_properties else: return bs def _interpolate_spin(self, spin, kpoints, interpolator): nkpoints = len(kpoints) spin_nbands = self.nbands[spin] ibands = np.repeat(np.arange(spin_nbands), nkpoints) all_kpoints = np.tile(kpoints, (spin_nbands, 1)) data = interpolator.interpolate(spin, ibands, all_kpoints) return data.reshape(spin_nbands, nkpoints) def _transpose_dict(d): td = defaultdict(dict) for k1, v1 in d.items(): for k2, v2 in v1.items(): td[k2][k1] = v2 return td def force_branches(bandstructure, other_property=None): """Force a linemode band structure to contain branches. Branches give a specific portion of the path from one high-symmetry point to another. Branches are required for the plotting methods to function correctly. Unfortunately, due to the pymatgen BandStructure implementation they require duplicate k-points in the band structure path. To avoid this unnecessary computational expense, this function can reconstruct branches in band structures without the duplicate k-points. Args: bandstructure: A band structure object. other_property: Another property with the format {spin: (nbands, nkpts, ...) to split into branches. Returns: A band structure with brnaches. """ kpoints = np.array([k.frac_coords for k in bandstructure.kpoints]) labels_dict = {k: v.frac_coords for k, v in bandstructure.labels_dict.items()} # pymatgen band structure objects support branches. These are formed when # two kpoints with the same label are next to each other. This bit of code # will ensure that the band structure will contain branches, if it doesn't # already. dup_ids = [] high_sym_kpoints = tuple(map(tuple, labels_dict.values())) for i, k in enumerate(kpoints): dup_ids.append(i) if ( tuple(k) in high_sym_kpoints and i != 0 and i != len(kpoints) - 1 and ( not np.array_equal(kpoints[i + 1], k) or not np.array_equal(kpoints[i - 1], k) ) ): dup_ids.append(i) kpoints = kpoints[dup_ids] eigenvals = {} projections = {} for spin, spin_energies in bandstructure.bands.items(): eigenvals[spin] = spin_energies[:, dup_ids] if len(bandstructure.projections) != 0: projections[spin] = bandstructure.projections[spin][:, dup_ids] new_property = {} if other_property is not None: for spin, spin_prop in other_property.items(): new_property[spin] = spin_prop[:, dup_ids] new_bandstructure = type(bandstructure)( kpoints, eigenvals, bandstructure.lattice_rec, bandstructure.efermi, labels_dict, structure=bandstructure.structure, projections=projections, ) return new_bandstructure, new_property
hackingmaterials/amset
amset/plot/lineshape.py
lineshape.py
py
14,486
python
en
code
110
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 30, "usage_type": "call" }, { "api_name": "amset.plot.BaseMeshPlotter", "line_number": 33, "usage_type": "name" }, { "api_name": "amset.constants.defaults", "line_number": 38, "usage_type": "name" }, { "api_name": "amset.constants.defaults", "line_number": 39, "usage_type": "name" }, { "api_name": "amset.log.initialize_amset_logger", "line_number": 45, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.log10", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 59, "usage_type": "call" }, { "api_name": "pymatgen.electronic_structure.bandstructure.BandStructure", "line_number": 74, "usage_type": "call" }, { "api_name": "amset.interpolation.bandstructure.Interpolator", "line_number": 82, "usage_type": "call" }, { "api_name": "matplotlib.axis.Axis", "line_number": 137, "usage_type": "name" }, { "api_name": "matplotlib.axes.SubplotBase", "line_number": 137, "usage_type": "name" }, { "api_name": "sumo.plotting.pretty_plot", "line_number": 140, "usage_type": "call" }, { "api_name": "pymatgen.electronic_structure.plotter.BSPlotter", "line_number": 147, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 150, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.full", "line_number": 154, "usage_type": "call" }, { "api_name": "amset.constants.hbar", "line_number": 159, "usage_type": "name" }, { "api_name": "matplotlib.colors.LogNorm", "line_number": 170, "usage_type": "call" }, { "api_name": "matplotlib.rcParams", "line_number": 177, "usage_type": "name" }, { "api_name": "amset.plot.styled_plot", "line_number": 91, "usage_type": "call" }, { "api_name": "amset.plot.amset_base_style", "line_number": 91, "usage_type": "argument" }, { "api_name": "matplotlib.rcParams", "line_number": 211, "usage_type": "name" }, { "api_name": "matplotlib.rcParams", "line_number": 227, "usage_type": "name" }, { "api_name": "matplotlib.rcParams", "line_number": 229, "usage_type": "name" }, { "api_name": "matplotlib.ticker.MaxNLocator", "line_number": 240, "usage_type": "call" }, { "api_name": "matplotlib.ticker.AutoMinorLocator", "line_number": 241, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 257, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 259, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 268, "usage_type": "attribute" }, { "api_name": "amset.interpolation.periodic.PeriodicLinearInterpolator.from_data", "line_number": 287, "usage_type": "call" }, { "api_name": "amset.interpolation.periodic.PeriodicLinearInterpolator", "line_number": 287, "usage_type": "name" }, { "api_name": "amset.interpolation.periodic.PeriodicLinearInterpolator.from_data", "line_number": 295, "usage_type": "call" }, { "api_name": "amset.interpolation.periodic.PeriodicLinearInterpolator", "line_number": 295, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 302, "usage_type": "name" }, { "api_name": "sumo.symmetry.Kpath", "line_number": 302, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 303, "usage_type": "name" }, { "api_name": "amset.constants.defaults", "line_number": 303, "usage_type": "name" }, { "api_name": "sumo.symmetry.PymatgenKpath", "line_number": 323, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 334, "usage_type": "call" }, { "api_name": "pymatgen.electronic_structure.bandstructure.BandStructureSymmLine", "line_number": 346, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 305, "usage_type": "name" }, { "api_name": "pymatgen.electronic_structure.bandstructure.BandStructureSymmLine", "line_number": 306, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 307, "usage_type": "name" }, { "api_name": "pymatgen.electronic_structure.bandstructure.BandStructureSymmLine", "line_number": 307, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 307, "usage_type": "name" }, { "api_name": "pymatgen.electronic_structure.core.Spin", "line_number": 307, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 307, "usage_type": "attribute" }, { "api_name": "numpy.repeat", "line_number": 364, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 364, "usage_type": "call" }, { "api_name": "numpy.tile", "line_number": 365, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 371, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 396, "usage_type": "call" }, { "api_name": "numpy.array_equal", "line_number": 412, "usage_type": "call" }, { "api_name": "numpy.array_equal", "line_number": 413, "usage_type": "call" } ]
17532275577
import backtrader as bt import backtrader.analyzers as btanalyzers import matplotlib import matplotlib.dates as mdates from matplotlib import pyplot as plt from datetime import datetime import pandas as pd import datetime as dt # Create a subclass of Strategy to define the indicators and logic class SMA_CrossStrategy(bt.Strategy): def __init__(self): ma_fast = bt.ind.SMA(period = 9) ma_slow = bt.ind.SMA(period = 21) self.crossover = bt.ind.CrossOver(ma_fast, ma_slow) def next(self): if not self.position: if self.crossover > 0: self.buy() elif self.crossover < 0: self.close() # def next(self): # if not self.position: # if self.crossover > 0: # self.buy() # elif self.crossover < 0: # self.sell() # elif self.crossover < 0: # self.close() def main(): cerebro = bt.Cerebro() tickers_list = ['AAPL'] df_tic = pd.read_hdf("datasets/df_SnP_500_ohlcv.h5", "df", mode = 'r') df_tic = df_tic[df_tic['tic'].isin(tickers_list)] df_tic = df_tic.set_index('date') # df_tic['date'] = pd.to_datetime(df_tic['date']) print(df_tic.head(5)) data = bt.feeds.PandasData(dataname = df_tic, # datetime=None, open =1, high=2, low=3, close=4, volume=6, openinterest=-1, timeframe = bt.TimeFrame.Days, fromdate=dt.datetime(2023, 1, 1), # Specify the start date todate=dt.datetime(2023, 8, 24), # Specify the end date ) # data = bt.feeds.YahooFinanceData(dataname = 'AAPL', fromdate = datetime(2010, 1, 1), todate = datetime(2020, 1, 1)) cerebro.adddata(data) cerebro.addstrategy(SMA_CrossStrategy) cerebro.broker.setcash(10000.0) cerebro.addsizer(bt.sizers.PercentSizer, percents = 100) cerebro.addanalyzer(btanalyzers.SharpeRatio, _name = "sharpe") cerebro.addanalyzer(btanalyzers.Transactions, _name = "trans") cerebro.addanalyzer(btanalyzers.TradeAnalyzer, _name = "trades") back = cerebro.run() cerebro.broker.getvalue() back[0].analyzers.sharpe.get_analysis() back[0].analyzers.trans.get_analysis() back[0].analyzers.trades.get_analysis() cerebro.plot(style='candlestick', barup='green', bardown='red') plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) plt.gcf().autofmt_xdate() # Rotates the date labels for better visibility if __name__=="__main__": main()
erkundanec/Trading_Strategies
04_Backtest_Backtrader_SMA_CrossOver.py
04_Backtest_Backtrader_SMA_CrossOver.py
py
3,013
python
en
code
0
github-code
6
[ { "api_name": "backtrader.Strategy", "line_number": 11, "usage_type": "attribute" }, { "api_name": "backtrader.ind.SMA", "line_number": 14, "usage_type": "call" }, { "api_name": "backtrader.ind", "line_number": 14, "usage_type": "attribute" }, { "api_name": "backtrader.ind.SMA", "line_number": 15, "usage_type": "call" }, { "api_name": "backtrader.ind", "line_number": 15, "usage_type": "attribute" }, { "api_name": "backtrader.ind.CrossOver", "line_number": 17, "usage_type": "call" }, { "api_name": "backtrader.ind", "line_number": 17, "usage_type": "attribute" }, { "api_name": "backtrader.Cerebro", "line_number": 37, "usage_type": "call" }, { "api_name": "pandas.read_hdf", "line_number": 40, "usage_type": "call" }, { "api_name": "backtrader.feeds.PandasData", "line_number": 45, "usage_type": "call" }, { "api_name": "backtrader.feeds", "line_number": 45, "usage_type": "attribute" }, { "api_name": "backtrader.TimeFrame", "line_number": 53, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 54, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 55, "usage_type": "call" }, { "api_name": "backtrader.sizers", "line_number": 66, "usage_type": "attribute" }, { "api_name": "backtrader.analyzers.SharpeRatio", "line_number": 68, "usage_type": "attribute" }, { "api_name": "backtrader.analyzers", "line_number": 68, "usage_type": "name" }, { "api_name": "backtrader.analyzers.Transactions", "line_number": 69, "usage_type": "attribute" }, { "api_name": "backtrader.analyzers", "line_number": 69, "usage_type": "name" }, { "api_name": "backtrader.analyzers.TradeAnalyzer", "line_number": 70, "usage_type": "attribute" }, { "api_name": "backtrader.analyzers", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 83, "usage_type": "name" }, { "api_name": "matplotlib.dates.DateFormatter", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.dates", "line_number": 83, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gcf", "line_number": 84, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 84, "usage_type": "name" } ]
27610406237
from flask import Flask, request, render_template, redirect, flash, session from flask_debugtoolbar import DebugToolbarExtension from surveys import surveys, satisfaction_survey, personality_quiz app = Flask(__name__) app.config['SECRET_KEY'] = "secret_code_here" # app.config['DEBUG_TB_INTERCEPT_REDIRECTS'] = False # debug = DebugToolbarExtension(app) @app.route('/') def choose_the_servey(): """ start-page that allows a user to choose a survey from a survey list """ return render_template('choose_survey.html', surveys=surveys.items()) @app.route('/start-page', methods=['POST']) def start_survey(): """render a page for the chosen survey that shows the user the title of the survey, the instructions, and a button to start the survey; setup session variables """ current_survey=surveys[request.form.get('choice')] #current survey object session['title'] = current_survey.title session['num_of_questions'] = len(current_survey.questions) session['survey'] = request.form['choice'] # key of current survey in surveys list session['comments'] = [] return render_template('start.html', instructions = current_survey.instructions) @app.route('/start', methods=['POST']) def handling_start(): """ Set a current session responses-list to an empty list and redirect to the start of the survey """ session['responses'] = [] return redirect('/questions/0') @app.route('/questions/<question_number>') def question_page(question_number): """ Page shows a form asking the current question, and listing the choices as radio buttons, also comments if are allowed """ answers = session['responses'] if len(answers) == session['num_of_questions']: return render_template('thanks.html') if len(answers) == int(question_number): number = int(question_number) else: flash('Could you please answer this question, you tried to access an invalid question','error') number = len(answers) current_survey = surveys[session['survey']] current_question = current_survey.questions[number] return render_template('question.html', number = number, choices = current_question.choices, question = current_question.question, title = current_survey.title, allow_text = current_question.allow_text) @app.route('/answer', methods=['POST']) def handling_answer(): """ function appends the answer to responses list, adds comments if necessary and then redirect user to the next question; if no more questions in the survey - render thanks page .""" comment = request.form.get('comment') current_answer = request.form.get('choice') answers = session['responses'] if current_answer: answers.append(current_answer) session['responses'] = answers if comment: comments = session['comments'] comments.append((len(answers),comment)) session['comments'] = comments else: flash('We are still waiting for your response!','error') if len(answers) < session['num_of_questions']: next_question = f"/questions/{len(answers)}" return redirect(next_question) else: return render_template('thanks.html')
Tetyana-I/flask-survey
app.py
app.py
py
3,204
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 5, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 14, "usage_type": "call" }, { "api_name": "surveys.surveys.items", "line_number": 14, "usage_type": "call" }, { "api_name": "surveys.surveys", "line_number": 14, "usage_type": "name" }, { "api_name": "surveys.surveys", "line_number": 20, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 20, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 20, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 20, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 21, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 22, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 23, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 23, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 23, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 24, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 25, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 30, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 31, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 36, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 37, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 38, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 42, "usage_type": "call" }, { "api_name": "surveys.surveys", "line_number": 44, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 44, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 46, "usage_type": "call" }, { "api_name": "flask.request.form.get", "line_number": 52, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 52, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 52, "usage_type": "name" }, { "api_name": "flask.request.form.get", "line_number": 53, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 53, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 53, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 54, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 57, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 59, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 61, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 63, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 64, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 66, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 68, "usage_type": "call" } ]
72344006587
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import datasets import utils FLAGS = tf.flags.FLAGS def get_lr(global_step, base_lr, steps_per_epoch, # pylint: disable=missing-docstring decay_epochs, lr_decay_factor, warmup_epochs): warmup_lr = 0.0 if warmup_epochs > 0: warmup_lr = (tf.cast(global_step, tf.float32) * (base_lr / (warmup_epochs * steps_per_epoch))) normal_lr = tf.train.piecewise_constant( global_step, [e * steps_per_epoch for e in decay_epochs], [base_lr * (lr_decay_factor ** i) for i in range(len(decay_epochs) + 1)] ) lr = tf.cond(tf.less(global_step, warmup_epochs * steps_per_epoch), lambda: warmup_lr, lambda: normal_lr) return lr # TODO(akolesnikov): add more logging class Trainer(object): """Base trainer class.""" def __init__(self, update_batchnorm_params=True): self.update_batchnorm_params = update_batchnorm_params split = FLAGS.get_flag_value('train_split', 'train') num_samples = datasets.get_count(split) steps_per_epoch = num_samples // FLAGS.batch_size global_step = tf.train.get_or_create_global_step() self.global_step_inc = tf.assign_add(global_step, 1) # lr_scale_batch_size defines a canonical batch size that is coupled with # the initial learning rate. If actual batch size is not the same as # canonical than learning rate is linearly scaled. This is very convinient # as this allows to vary batch size without recomputing learning rate. lr_factor = 1.0 if FLAGS.get_flag_value('lr_scale_batch_size', 0): lr_factor = FLAGS.batch_size / float(FLAGS.lr_scale_batch_size) deps = FLAGS.get_flag_value('decay_epochs', None) decay_epochs = utils.str2intlist(deps) if deps else [FLAGS.epochs] self.lr = get_lr( global_step, base_lr=FLAGS.lr * lr_factor, steps_per_epoch=steps_per_epoch, decay_epochs=decay_epochs, lr_decay_factor=FLAGS.get_flag_value('lr_decay_factor', 0.1), warmup_epochs=FLAGS.get_flag_value('warmup_epochs', 0)) # TODO(marvinritter): Re-enable summaries with support for TPU training. # tf.summary.scalar('learning_rate', self.lr) def get_train_op(self, loss, # pylint: disable=missing-docstring var_list=None, add_reg_loss=True, use_tpu=False): if add_reg_loss: l2_loss = tf.reduce_sum(tf.losses.get_regularization_losses()) loss += l2_loss optimizer = FLAGS.get_flag_value('optimizer', 'sgd') if optimizer == 'sgd': optimizer = tf.train.MomentumOptimizer(learning_rate=self.lr, momentum=0.9) elif optimizer == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) else: raise ValueError('Unknown optimizer: %s' % optimizer) if use_tpu: # Wrap optimizer in CrossShardOptimizer which takes care of # synchronizing the weight updates between TPU cores. optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) opt_step = optimizer.minimize(loss, var_list=var_list, colocate_gradients_with_ops=True) if self.update_batchnorm_params: opt_step = tf.group([opt_step] + tf.get_collection(tf.GraphKeys.UPDATE_OPS)) opt_step = tf.group([opt_step, self.global_step_inc]) return opt_step def make_estimator(mode, loss=None, eval_metrics=None, predictions=None): """Returns an EstimatorSpec (maybe TPU) for all modes.""" # Always use TPUEstimator, even when not using TPU, then it's (almost) no-op. spec_type = tf.contrib.tpu.TPUEstimatorSpec if mode == tf.estimator.ModeKeys.PREDICT: assert predictions is not None, 'Need to pass `predict` arg.' return spec_type(mode=mode, predictions=predictions) if mode == tf.estimator.ModeKeys.EVAL: return spec_type(mode=mode, loss=loss, eval_metrics=eval_metrics) if mode == tf.estimator.ModeKeys.TRAIN: assert loss is not None, 'Need to pass `loss` arg.' trainer = Trainer(update_batchnorm_params=True) train_op = trainer.get_train_op(loss, use_tpu=FLAGS.use_tpu) return spec_type(mode=mode, loss=loss, train_op=train_op) raise ValueError('Unsupported mode %s' % mode)
google/revisiting-self-supervised
trainer.py
trainer.py
py
4,425
python
en
code
349
github-code
6
[ { "api_name": "tensorflow.flags", "line_number": 10, "usage_type": "attribute" }, { "api_name": "tensorflow.cast", "line_number": 18, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 18, "usage_type": "attribute" }, { "api_name": "tensorflow.train.piecewise_constant", "line_number": 21, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 21, "usage_type": "attribute" }, { "api_name": "tensorflow.cond", "line_number": 27, "usage_type": "call" }, { "api_name": "tensorflow.less", "line_number": 27, "usage_type": "call" }, { "api_name": "datasets.get_count", "line_number": 43, "usage_type": "call" }, { "api_name": "tensorflow.train.get_or_create_global_step", "line_number": 46, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 46, "usage_type": "attribute" }, { "api_name": "tensorflow.assign_add", "line_number": 47, "usage_type": "call" }, { "api_name": "utils.str2intlist", "line_number": 58, "usage_type": "call" }, { "api_name": "tensorflow.reduce_sum", "line_number": 77, "usage_type": "call" }, { "api_name": "tensorflow.losses.get_regularization_losses", "line_number": 77, "usage_type": "call" }, { "api_name": "tensorflow.losses", "line_number": 77, "usage_type": "attribute" }, { "api_name": "tensorflow.train.MomentumOptimizer", "line_number": 82, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 82, "usage_type": "attribute" }, { "api_name": "tensorflow.train.AdamOptimizer", "line_number": 85, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 85, "usage_type": "attribute" }, { "api_name": "tensorflow.contrib.tpu.CrossShardOptimizer", "line_number": 92, "usage_type": "call" }, { "api_name": "tensorflow.contrib", "line_number": 92, "usage_type": "attribute" }, { "api_name": "tensorflow.group", "line_number": 98, "usage_type": "call" }, { "api_name": "tensorflow.get_collection", "line_number": 99, "usage_type": "call" }, { "api_name": "tensorflow.GraphKeys", "line_number": 99, "usage_type": "attribute" }, { "api_name": "tensorflow.group", "line_number": 101, "usage_type": "call" }, { "api_name": "tensorflow.contrib", "line_number": 110, "usage_type": "attribute" }, { "api_name": "tensorflow.estimator", "line_number": 112, "usage_type": "attribute" }, { "api_name": "tensorflow.estimator", "line_number": 116, "usage_type": "attribute" }, { "api_name": "tensorflow.estimator", "line_number": 119, "usage_type": "attribute" } ]
26246786176
import argparse import logging from typing import List import torch import torch.nn as nn from .probe_base import ProbeBase logger = logging.getLogger(__name__) class OneWordNNProbe(ProbeBase): """ Computes all squared L2 norm of n words as depths after an MLP projection. Can be used for probing the depth of words in a tree """ def __init__( self, model_hidden_dim: int, probe_hidden_layers: int, intermediate_dim: int ): logging.info("Constructing OneWordNNDepthProbe") super(OneWordNNProbe, self).__init__() initial_linear = nn.Linear(model_hidden_dim, intermediate_dim) intermediate_layers: List[nn.Module] = [] for i in range(probe_hidden_layers): intermediate_layers.append(nn.Linear(intermediate_dim, intermediate_dim)) if i != probe_hidden_layers - 1: intermediate_layers.append(nn.ReLU()) self.nn_probe = nn.Sequential(initial_linear, nn.ReLU(), *intermediate_layers) def forward(self, batch): """ Computes all squared L2 norm of n words as depths after an MLP projection for each sentence in a batch. predicts the depth through an MLP Args: batch: a batch of word representations of the shape (batch_size, max_seq_len, representation_dim) Returns: A tensor of depths of shape (batch_size, max_seq_len) """ batch = self.nn_probe(batch) batchlen, seqlen, rank = batch.size() norms = torch.bmm( batch.view(batchlen * seqlen, 1, rank), batch.view(batchlen * seqlen, rank, 1), ) norms = norms.view(batchlen, seqlen) return norms @staticmethod def add_probe_specific_args( parent_parser: argparse.ArgumentParser, ) -> argparse.ArgumentParser: parser = parent_parser.add_argument_group("ProbeArgs") parser.add_argument( "--probe_hidden_layers", type=int, default=2, help="Number of laers in probe.", ) parser.add_argument( "--intermediate_dim", type=int, default=300, help="Dimension the probe maps embeddings to.", ) return parent_parser
VSJMilewski/multimodal-probes
probing_project/probes/one_word_nn_probe.py
one_word_nn_probe.py
py
2,291
python
en
code
10
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 10, "usage_type": "call" }, { "api_name": "probe_base.ProbeBase", "line_number": 13, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 22, "usage_type": "call" }, { "api_name": "torch.nn.Linear", "line_number": 24, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 24, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 25, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 25, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 25, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 27, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 29, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.bmm", "line_number": 43, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 52, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 53, "usage_type": "attribute" } ]
20519700810
"""! @brief Cluster analysis algorithm: X-Means @details Implementation based on papers @cite article::xmeans::1, @cite article::xmeans::mndl @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """ import copy import numpy from enum import IntEnum from math import log from pyclustering.cluster.encoder import type_encoding from pyclustering.cluster.kmeans import kmeans from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer from pyclustering.core.metric_wrapper import metric_wrapper from pyclustering.core.wrapper import ccore_library import pyclustering.core.xmeans_wrapper as wrapper from pyclustering.utils import distance_metric, type_metric class splitting_type(IntEnum): """! @brief Enumeration of splitting types that can be used as splitting creation of cluster in X-Means algorithm. """ ## Bayesian information criterion (BIC) to approximate the correct number of clusters. ## Kass's formula is used to calculate BIC: ## \f[BIC(\theta) = L(D) - \frac{1}{2}pln(N)\f] ## ## The number of free parameters \f$p\f$ is simply the sum of \f$K - 1\f$ class probabilities, \f$MK\f$ centroid coordinates, and one variance estimate: ## \f[p = (K - 1) + MK + 1\f] ## ## The log-likelihood of the data: ## \f[L(D) = n_jln(n_j) - n_jln(N) - \frac{n_j}{2}ln(2\pi) - \frac{n_jd}{2}ln(\hat{\sigma}^2) - \frac{n_j - K}{2}\f] ## ## The maximum likelihood estimate (MLE) for the variance: ## \f[\hat{\sigma}^2 = \frac{1}{N - K}\sum\limits_{j}\sum\limits_{i}||x_{ij} - \hat{C}_j||^2\f] BAYESIAN_INFORMATION_CRITERION = 0 ## Minimum noiseless description length (MNDL) to approximate the correct number of clusters @cite article::xmeans::mndl. ## Beheshti's formula is used to calculate upper bound: ## \f[Z = \frac{\sigma^2 \sqrt{2K} }{N}(\sqrt{2K} + \beta) + W - \sigma^2 + \frac{2\alpha\sigma}{\sqrt{N}}\sqrt{\frac{\alpha^2\sigma^2}{N} + W - \left(1 - \frac{K}{N}\right)\frac{\sigma^2}{2}} + \frac{2\alpha^2\sigma^2}{N}\f] ## ## where \f$\alpha\f$ and \f$\beta\f$ represent the parameters for validation probability and confidence probability. ## ## To improve clustering results some contradiction is introduced: ## \f[W = \frac{1}{n_j}\sum\limits_{i}||x_{ij} - \hat{C}_j||\f] ## \f[\hat{\sigma}^2 = \frac{1}{N - K}\sum\limits_{j}\sum\limits_{i}||x_{ij} - \hat{C}_j||\f] MINIMUM_NOISELESS_DESCRIPTION_LENGTH = 1 class xmeans: """! @brief Class represents clustering algorithm X-Means. @details X-means clustering method starts with the assumption of having a minimum number of clusters, and then dynamically increases them. X-means uses specified splitting criterion to control the process of splitting clusters. Method K-Means++ can be used for calculation of initial centers. CCORE implementation of the algorithm uses thread pool to parallelize the clustering process. Here example how to perform cluster analysis using X-Means algorithm: @code from pyclustering.cluster import cluster_visualizer from pyclustering.cluster.xmeans import xmeans from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer from pyclustering.utils import read_sample from pyclustering.samples.definitions import SIMPLE_SAMPLES # Read sample 'simple3' from file. sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3) # Prepare initial centers - amount of initial centers defines amount of clusters from which X-Means will # start analysis. amount_initial_centers = 2 initial_centers = kmeans_plusplus_initializer(sample, amount_initial_centers).initialize() # Create instance of X-Means algorithm. The algorithm will start analysis from 2 clusters, the maximum # number of clusters that can be allocated is 20. xmeans_instance = xmeans(sample, initial_centers, 20) xmeans_instance.process() # Extract clustering results: clusters and their centers clusters = xmeans_instance.get_clusters() centers = xmeans_instance.get_centers() # Print total sum of metric errors print("Total WCE:", xmeans_instance.get_total_wce()) # Visualize clustering results visualizer = cluster_visualizer() visualizer.append_clusters(clusters, sample) visualizer.append_cluster(centers, None, marker='*', markersize=10) visualizer.show() @endcode Visualization of clustering results that were obtained using code above and where X-Means algorithm allocates four clusters. @image html xmeans_clustering_simple3.png "Fig. 1. X-Means clustering results (data 'Simple3')." By default X-Means clustering algorithm uses Bayesian Information Criterion (BIC) to approximate the correct number of clusters. There is an example where another criterion Minimum Noiseless Description Length (MNDL) is used in order to find optimal amount of clusters: @code from pyclustering.cluster import cluster_visualizer from pyclustering.cluster.xmeans import xmeans, splitting_type from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer from pyclustering.utils import read_sample from pyclustering.samples.definitions import FCPS_SAMPLES # Read sample 'Target'. sample = read_sample(FCPS_SAMPLES.SAMPLE_TARGET) # Prepare initial centers - amount of initial centers defines amount of clusters from which X-Means will start analysis. random_seed = 1000 amount_initial_centers = 3 initial_centers = kmeans_plusplus_initializer(sample, amount_initial_centers, random_state=random_seed).initialize() # Create instance of X-Means algorithm with MNDL splitting criterion. xmeans_mndl = xmeans(sample, initial_centers, 20, splitting_type=splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH, random_state=random_seed) xmeans_mndl.process() # Extract X-Means MNDL clustering results. mndl_clusters = xmeans_mndl.get_clusters() # Visualize clustering results. visualizer = cluster_visualizer(titles=['X-Means with MNDL criterion']) visualizer.append_clusters(mndl_clusters, sample) visualizer.show() @endcode @image html xmeans_clustering_mndl_target.png "Fig. 2. X-Means MNDL clustering results (data 'Target')." As in many others algorithms, it is possible to specify metric that should be used for cluster analysis, for example, Chebyshev distance metric: @code # Create instance of X-Means algorithm with Chebyshev distance metric. chebyshev_metric = distance_metric(type_metric.CHEBYSHEV) xmeans_instance = xmeans(sample, initial_centers, max_clusters_amount, metric=chebyshev_metric).process() @endcode @see center_initializer """ def __init__(self, data, initial_centers=None, kmax=20, tolerance=0.001, criterion=splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore=True, **kwargs): """! @brief Constructor of clustering algorithm X-Means. @param[in] data (array_like): Input data that is presented as list of points (objects), each point should be represented by list or tuple. @param[in] initial_centers (list): Initial coordinates of centers of clusters that are represented by list: `[center1, center2, ...]`, if it is not specified then X-Means starts from the random center. @param[in] kmax (uint): Maximum number of clusters that can be allocated. @param[in] tolerance (double): Stop condition for each iteration: if maximum value of change of centers of clusters is less than tolerance than algorithm will stop processing. @param[in] criterion (splitting_type): Type of splitting creation (by default `splitting_type.BAYESIAN_INFORMATION_CRITERION`). @param[in] ccore (bool): Defines if C++ pyclustering library should be used instead of Python implementation. @param[in] **kwargs: Arbitrary keyword arguments (available arguments: `repeat`, `random_state`, `metric`, `alpha`, `beta`). <b>Keyword Args:</b><br> - repeat (unit): How many times K-Means should be run to improve parameters (by default is `1`). With larger `repeat` values suggesting higher probability of finding global optimum. - random_state (int): Seed for random state (by default is `None`, current system time is used). - metric (distance_metric): Metric that is used for distance calculation between two points (by default euclidean square distance). - alpha (double): Parameter distributed [0.0, 1.0] for alpha probabilistic bound \f$Q\left(\alpha\right)\f$. The parameter is used only in case of MNDL splitting criterion, in all other cases this value is ignored. - beta (double): Parameter distributed [0.0, 1.0] for beta probabilistic bound \f$Q\left(\beta\right)\f$. The parameter is used only in case of MNDL splitting criterion, in all other cases this value is ignored. """ self.__pointer_data = numpy.array(data) self.__clusters = [] self.__random_state = kwargs.get('random_state', None) self.__metric = copy.copy(kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN_SQUARE))) if initial_centers is not None: self.__centers = numpy.array(initial_centers) else: self.__centers = kmeans_plusplus_initializer(data, 2, random_state=self.__random_state).initialize() self.__kmax = kmax self.__tolerance = tolerance self.__criterion = criterion self.__total_wce = 0.0 self.__repeat = kwargs.get('repeat', 1) self.__alpha = kwargs.get('alpha', 0.9) self.__beta = kwargs.get('beta', 0.9) self.__ccore = ccore and self.__metric.get_type() != type_metric.USER_DEFINED if self.__ccore is True: self.__ccore = ccore_library.workable() self.__verify_arguments() def process(self): """! @brief Performs cluster analysis in line with rules of X-Means algorithm. @return (xmeans) Returns itself (X-Means instance). @see get_clusters() @see get_centers() """ if self.__ccore is True: self.__process_by_ccore() else: self.__process_by_python() return self def __process_by_ccore(self): """! @brief Performs cluster analysis using CCORE (C/C++ part of pyclustering library). """ ccore_metric = metric_wrapper.create_instance(self.__metric) result = wrapper.xmeans(self.__pointer_data, self.__centers, self.__kmax, self.__tolerance, self.__criterion, self.__alpha, self.__beta, self.__repeat, self.__random_state, ccore_metric.get_pointer()) self.__clusters = result[0] self.__centers = result[1] self.__total_wce = result[2][0] def __process_by_python(self): """! @brief Performs cluster analysis using python code. """ self.__clusters = [] while len(self.__centers) <= self.__kmax: current_cluster_number = len(self.__centers) self.__clusters, self.__centers, _ = self.__improve_parameters(self.__centers) allocated_centers = self.__improve_structure(self.__clusters, self.__centers) if current_cluster_number == len(allocated_centers): break else: self.__centers = allocated_centers self.__clusters, self.__centers, self.__total_wce = self.__improve_parameters(self.__centers) def predict(self, points): """! @brief Calculates the closest cluster to each point. @param[in] points (array_like): Points for which closest clusters are calculated. @return (list) List of closest clusters for each point. Each cluster is denoted by index. Return empty collection if 'process()' method was not called. An example how to calculate (or predict) the closest cluster to specified points. @code from pyclustering.cluster.xmeans import xmeans from pyclustering.samples.definitions import SIMPLE_SAMPLES from pyclustering.utils import read_sample # Load list of points for cluster analysis. sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3) # Initial centers for sample 'Simple3'. initial_centers = [[0.2, 0.1], [4.0, 1.0], [2.0, 2.0], [2.3, 3.9]] # Create instance of X-Means algorithm with prepared centers. xmeans_instance = xmeans(sample, initial_centers) # Run cluster analysis. xmeans_instance.process() # Calculate the closest cluster to following two points. points = [[0.25, 0.2], [2.5, 4.0]] closest_clusters = xmeans_instance.predict(points) print(closest_clusters) @endcode """ nppoints = numpy.array(points) if len(self.__clusters) == 0: return [] self.__metric.enable_numpy_usage() npcenters = numpy.array(self.__centers) differences = numpy.zeros((len(nppoints), len(npcenters))) for index_point in range(len(nppoints)): differences[index_point] = self.__metric(nppoints[index_point], npcenters) self.__metric.disable_numpy_usage() return numpy.argmin(differences, axis=1) def get_clusters(self): """! @brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data. @return (list) List of allocated clusters. @see process() @see get_centers() @see get_total_wce() """ return self.__clusters def get_centers(self): """! @brief Returns list of centers for allocated clusters. @return (list) List of centers for allocated clusters. @see process() @see get_clusters() @see get_total_wce() """ return self.__centers def get_cluster_encoding(self): """! @brief Returns clustering result representation type that indicate how clusters are encoded. @return (type_encoding) Clustering result representation. @see get_clusters() """ return type_encoding.CLUSTER_INDEX_LIST_SEPARATION def get_total_wce(self): """! @brief Returns sum of Euclidean Squared metric errors (SSE - Sum of Squared Errors). @details Sum of metric errors is calculated using distance between point and its center: \f[error=\sum_{i=0}^{N}euclidean_square_distance(x_{i}-center(x_{i}))\f] @see process() @see get_clusters() """ return self.__total_wce def __search_optimial_parameters(self, local_data): """! @brief Split data of the region into two cluster and tries to find global optimum by running k-means clustering several times (defined by 'repeat' argument). @param[in] local_data (list): Points of a region that should be split into two clusters. @return (tuple) List of allocated clusters, list of centers and total WCE (clusters, centers, wce). """ optimal_wce, optimal_centers, optimal_clusters = float('+inf'), None, None for _ in range(self.__repeat): candidates = 5 if len(local_data) < candidates: candidates = len(local_data) local_centers = kmeans_plusplus_initializer(local_data, 2, candidates, random_state=self.__random_state).initialize() kmeans_instance = kmeans(local_data, local_centers, tolerance=self.__tolerance, ccore=False, metric=self.__metric) kmeans_instance.process() local_wce = kmeans_instance.get_total_wce() if local_wce < optimal_wce: optimal_centers = kmeans_instance.get_centers() optimal_clusters = kmeans_instance.get_clusters() optimal_wce = local_wce return optimal_clusters, optimal_centers, optimal_wce def __improve_parameters(self, centers, available_indexes=None): """! @brief Performs k-means clustering in the specified region. @param[in] centers (list): Cluster centers, if None then automatically generated two centers using center initialization method. @param[in] available_indexes (list): Indexes that defines which points can be used for k-means clustering, if None then all points are used. @return (tuple) List of allocated clusters, list of centers and total WCE (clusters, centers, wce). """ if available_indexes and len(available_indexes) == 1: index_center = available_indexes[0] return [available_indexes], self.__pointer_data[index_center], 0.0 local_data = self.__pointer_data if available_indexes: local_data = [self.__pointer_data[i] for i in available_indexes] local_centers = centers if centers is None: clusters, local_centers, local_wce = self.__search_optimial_parameters(local_data) else: kmeans_instance = kmeans(local_data, local_centers, tolerance=self.__tolerance, ccore=False, metric=self.__metric).process() local_wce = kmeans_instance.get_total_wce() local_centers = kmeans_instance.get_centers() clusters = kmeans_instance.get_clusters() if available_indexes: clusters = self.__local_to_global_clusters(clusters, available_indexes) return clusters, local_centers, local_wce def __local_to_global_clusters(self, local_clusters, available_indexes): """! @brief Converts clusters in local region define by 'available_indexes' to global clusters. @param[in] local_clusters (list): Local clusters in specific region. @param[in] available_indexes (list): Map between local and global point's indexes. @return Global clusters. """ clusters = [] for local_cluster in local_clusters: current_cluster = [] for index_point in local_cluster: current_cluster.append(available_indexes[index_point]) clusters.append(current_cluster) return clusters def __improve_structure(self, clusters, centers): """! @brief Check for best structure: divides each cluster into two and checks for best results using splitting criterion. @param[in] clusters (list): Clusters that have been allocated (each cluster contains indexes of points from data). @param[in] centers (list): Centers of clusters. @return (list) Allocated centers for clustering. """ allocated_centers = [] amount_free_centers = self.__kmax - len(centers) for index_cluster in range(len(clusters)): # solve k-means problem for children where data of parent are used. (parent_child_clusters, parent_child_centers, _) = self.__improve_parameters(None, clusters[index_cluster]) # If it's possible to split current data if len(parent_child_clusters) > 1: # Calculate splitting criterion parent_scores = self.__splitting_criterion([clusters[index_cluster]], [centers[index_cluster]]) child_scores = self.__splitting_criterion([parent_child_clusters[0], parent_child_clusters[1]], parent_child_centers) split_require = False # Reallocate number of centers (clusters) in line with scores if self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION: if parent_scores < child_scores: split_require = True elif self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH: # If its score for the split structure with two children is smaller than that for the parent structure, # then representing the data samples with two clusters is more accurate in comparison to a single parent cluster. if parent_scores > child_scores: split_require = True if (split_require is True) and (amount_free_centers > 0): allocated_centers.append(parent_child_centers[0]) allocated_centers.append(parent_child_centers[1]) amount_free_centers -= 1 else: allocated_centers.append(centers[index_cluster]) else: allocated_centers.append(centers[index_cluster]) return allocated_centers def __splitting_criterion(self, clusters, centers): """! @brief Calculates splitting criterion for input clusters. @param[in] clusters (list): Clusters for which splitting criterion should be calculated. @param[in] centers (list): Centers of the clusters. @return (double) Returns splitting criterion. High value of splitting criterion means that current structure is much better. @see __bayesian_information_criterion(clusters, centers) @see __minimum_noiseless_description_length(clusters, centers) """ if self.__criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION: return self.__bayesian_information_criterion(clusters, centers) elif self.__criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH: return self.__minimum_noiseless_description_length(clusters, centers) else: assert 0 def __minimum_noiseless_description_length(self, clusters, centers): """! @brief Calculates splitting criterion for input clusters using minimum noiseless description length criterion. @param[in] clusters (list): Clusters for which splitting criterion should be calculated. @param[in] centers (list): Centers of the clusters. @return (double) Returns splitting criterion in line with bayesian information criterion. Low value of splitting cretion means that current structure is much better. @see __bayesian_information_criterion(clusters, centers) """ score = float('inf') W = 0.0 K = len(clusters) N = 0.0 sigma_square = 0.0 alpha = self.__alpha alpha_square = alpha * alpha beta = self.__beta for index_cluster in range(0, len(clusters), 1): Ni = len(clusters[index_cluster]) if Ni == 0: return float('inf') Wi = 0.0 for index_object in clusters[index_cluster]: Wi += self.__metric(self.__pointer_data[index_object], centers[index_cluster]) sigma_square += Wi W += Wi / Ni N += Ni if N - K > 0: sigma_square /= (N - K) sigma = sigma_square ** 0.5 Kw = (1.0 - K / N) * sigma_square Ksa = (2.0 * alpha * sigma / (N ** 0.5)) * (alpha_square * sigma_square / N + W - Kw / 2.0) ** 0.5 UQa = W - Kw + 2.0 * alpha_square * sigma_square / N + Ksa score = sigma_square * K / N + UQa + sigma_square * beta * ((2.0 * K) ** 0.5) / N return score def __bayesian_information_criterion(self, clusters, centers): """! @brief Calculates splitting criterion for input clusters using bayesian information criterion. @param[in] clusters (list): Clusters for which splitting criterion should be calculated. @param[in] centers (list): Centers of the clusters. @return (double) Splitting criterion in line with bayesian information criterion. High value of splitting criterion means that current structure is much better. @see __minimum_noiseless_description_length(clusters, centers) """ scores = [float('inf')] * len(clusters) # splitting criterion dimension = len(self.__pointer_data[0]) # estimation of the noise variance in the data set sigma_sqrt = 0.0 K = len(clusters) N = 0.0 for index_cluster in range(0, len(clusters), 1): for index_object in clusters[index_cluster]: sigma_sqrt += self.__metric(self.__pointer_data[index_object], centers[index_cluster]) N += len(clusters[index_cluster]) if N - K > 0: sigma_sqrt /= (N - K) p = (K - 1) + dimension * K + 1 # in case of the same points, sigma_sqrt can be zero (issue: #407) sigma_multiplier = 0.0 if sigma_sqrt <= 0.0: sigma_multiplier = float('-inf') else: sigma_multiplier = dimension * 0.5 * log(sigma_sqrt) # splitting criterion for index_cluster in range(0, len(clusters), 1): n = len(clusters[index_cluster]) L = n * log(n) - n * log(N) - n * 0.5 * log(2.0 * numpy.pi) - n * sigma_multiplier - (n - K) * 0.5 # BIC calculation scores[index_cluster] = L - p * 0.5 * log(N) return sum(scores) def __verify_arguments(self): """! @brief Verify input parameters for the algorithm and throw exception in case of incorrectness. """ if len(self.__pointer_data) == 0: raise ValueError("Input data is empty (size: '%d')." % len(self.__pointer_data)) if len(self.__centers) == 0: raise ValueError("Initial centers are empty (size: '%d')." % len(self.__pointer_data)) if self.__tolerance < 0: raise ValueError("Tolerance (current value: '%d') should be greater or equal to 0." % self.__tolerance) if self.__repeat <= 0: raise ValueError("Repeat (current value: '%d') should be greater than 0." % self.__repeat) if self.__alpha < 0.0 or self.__alpha > 1.0: raise ValueError("Parameter for the probabilistic bound Q(alpha) should in the following range [0, 1] " "(current value: '%f')." % self.__alpha) if self.__beta < 0.0 or self.__beta > 1.0: raise ValueError("Parameter for the probabilistic bound Q(beta) should in the following range [0, 1] " "(current value: '%f')." % self.__beta)
annoviko/pyclustering
pyclustering/cluster/xmeans.py
xmeans.py
py
28,247
python
en
code
1,113
github-code
6
[ { "api_name": "enum.IntEnum", "line_number": 31, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 181, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 184, "usage_type": "call" }, { "api_name": "pyclustering.utils.distance_metric", "line_number": 184, "usage_type": "call" }, { "api_name": "pyclustering.utils.type_metric.EUCLIDEAN_SQUARE", "line_number": 184, "usage_type": "attribute" }, { "api_name": "pyclustering.utils.type_metric", "line_number": 184, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 187, "usage_type": "call" }, { "api_name": "pyclustering.cluster.center_initializer.kmeans_plusplus_initializer", "line_number": 189, "usage_type": "call" }, { "api_name": "pyclustering.utils.type_metric.USER_DEFINED", "line_number": 199, "usage_type": "attribute" }, { "api_name": "pyclustering.utils.type_metric", "line_number": 199, "usage_type": "name" }, { "api_name": "pyclustering.core.wrapper.ccore_library.workable", "line_number": 201, "usage_type": "call" }, { "api_name": "pyclustering.core.wrapper.ccore_library", "line_number": 201, "usage_type": "name" }, { "api_name": "pyclustering.core.metric_wrapper.metric_wrapper.create_instance", "line_number": 232, "usage_type": "call" }, { "api_name": "pyclustering.core.metric_wrapper.metric_wrapper", "line_number": 232, "usage_type": "name" }, { "api_name": "pyclustering.core.xmeans_wrapper.xmeans", "line_number": 234, "usage_type": "call" }, { "api_name": "pyclustering.core.xmeans_wrapper", "line_number": 234, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 298, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 304, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 305, "usage_type": "call" }, { "api_name": "numpy.argmin", "line_number": 311, "usage_type": "call" }, { "api_name": "pyclustering.cluster.encoder.type_encoding.CLUSTER_INDEX_LIST_SEPARATION", "line_number": 354, "usage_type": "attribute" }, { "api_name": "pyclustering.cluster.encoder.type_encoding", "line_number": 354, "usage_type": "name" }, { "api_name": "pyclustering.cluster.center_initializer.kmeans_plusplus_initializer", "line_number": 388, "usage_type": "call" }, { "api_name": "pyclustering.cluster.kmeans.kmeans", "line_number": 390, "usage_type": "call" }, { "api_name": "pyclustering.cluster.kmeans.kmeans", "line_number": 425, "usage_type": "call" }, { "api_name": "math.log", "line_number": 624, "usage_type": "call" }, { "api_name": "math.log", "line_number": 630, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 630, "usage_type": "attribute" }, { "api_name": "math.log", "line_number": 633, "usage_type": "call" } ]
38149030065
import pygame from pygame.surface import * from pygame.sprite import Sprite from pygame.sprite import RenderUpdates as SpriteGroup from pygame.sprite import spritecollide from pygame.sprite import spritecollideany from pygame.rect import Rect from random import * from config import * from log import * screen = None def createFrames(image): fr_width = image.get_height() fr_size = fr_width, fr_width frames = [] for frame_no in range(0, image.get_width(), fr_width): frame = pygame.Surface(fr_size) frame.blit(image, (0,0), ((frame_no,0), fr_size)) frame.set_colorkey(PUCE) frames.append(frame) return frames def initPygame(): pygame.init() global screen screen = pygame.display.set_mode(RESOLUTION, FLAGS) class Widget(Sprite): """Use Widget class for better movement tracking Widget class inherits from Sprite class. Test cases for class Widget >>> from widget import * >>> import pygame >>> s = pygame.surface.Surface((30,30)) >>> w = Widget(s, (0,0,30,30), (0,0)) >>> w.rect <rect(0, 0, 30, 30)> >>> w.update() >>> w.rect <rect(0, 0, 30, 30)> >>> w.getMovement() [0, 0] >>> w.setX(1) >>> w.getX() 1 >>> w.setY(4) >>> w.getY() 4 >>> w.setMovement((3,5)) >>> w.getMovement() (3, 5) >>> w.getName() (0, 0) >>> w.setPosition((5,7)) >>> w.getPosition() (5, 7) """ def __init__(self, image, rect, name=''): """Instantiate a widget with a given surface, rectangle, and (x,y) movement pair. """ Sprite.__init__(self) self.movement = [0, 0] self.rect = Rect(rect) self.lastRect = self.rect self.image = image self.name = name self.frames = [] self.frameIndex = 0 self.frameRate = 1 self.timeDelay = WIDGETFRAMES self.lastUpdate = 0 self.world = None self.undone = False self.id = self.rect.top + self.rect.left +\ self.rect.width + self.rect.height def attachToWorld(self, world): self.world = world self.id = self.world.curWidgetID self.world.curWidgetID += 1 def startAnimation(self, frames, startIndex, frameRate): self.frames = frames self.frameIndex = startIndex self.frameRate = frameRate self.image = self.frames[startIndex] self.lastUpdate = self.timeDelay def __str__(self): return str(self.rect.left) + str(self.rect.top) + str(self.id) def setMovement(self, vector): """Set movement with a pair""" if(self.movement != [0,0] and vector == [0,0]): self.world.dirtyGroup.add(self) self.movement = vector def getMovement(self): """Return movement as a pair""" return self.movement def setStop(self): """Set movement to 0""" self.setMovement([0,0]) def setY(self, y): """Set y-component of movement""" self.movement[1] = y def setX(self, x): """Set x-component of movement""" self.movement[0] = x def getX(self): """Get x-component of movement""" return self.movement[0] def getY(self): """Set y-component of movement""" return self.movement[1] def setPosition(self, pair): """Set x and y coords of Widget""" self.rect.topleft = pair def getPosition(self): """Get x and y coords of Widget""" return self.rect.topleft def update(self): """Move sprite according to its movement vector""" # Widget needs to be animated if (len(self.frames) > 0): if self.lastUpdate <= 0: self.frameIndex = (self.frameIndex+1)%(len(self.frames)) self.image = self.frames[self.frameIndex] self.lastUpdate = self.timeDelay self.world.dirtyGroup.add(self) else: self.lastUpdate -= 1 elif(self.getMovement != [0,0]): self.lastRect = Rect(self.rect) self.rect.move_ip(self.movement) self.world.dirtyGroup.add(self) def undoUpdate(self): """Widget returns to state prior to last update()""" self.rect = self.lastRect def getShadow(self): shadow = Sprite() shadow.rect = self.lastRect.move(0,0) return shadow def getName(self): """Get name of Widget""" return self.name class WorldlessWidget(Widget): def update(self): """Move sprite according to its movement vector""" # Widget needs to be animated if (len(self.frames) > 0): if self.lastUpdate <= 0: self.frameIndex = (self.frameIndex+1)%(len(self.frames)) self.image = self.frames[self.frameIndex] self.lastUpdate = self.timeDelay self.lastRect = Rect(self.rect) self.rect.move_ip(self.movement)
mikedll/pybomber2
desktop/widget.py
widget.py
py
5,122
python
en
code
1
github-code
6
[ { "api_name": "pygame.Surface", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.init", "line_number": 27, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 30, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 30, "usage_type": "attribute" }, { "api_name": "pygame.sprite.Sprite", "line_number": 33, "usage_type": "name" }, { "api_name": "pygame.sprite.Sprite.__init__", "line_number": 75, "usage_type": "call" }, { "api_name": "pygame.sprite.Sprite", "line_number": 75, "usage_type": "name" }, { "api_name": "pygame.rect.Rect", "line_number": 77, "usage_type": "call" }, { "api_name": "pygame.rect.Rect", "line_number": 157, "usage_type": "call" }, { "api_name": "pygame.sprite.Sprite", "line_number": 166, "usage_type": "call" }, { "api_name": "pygame.rect.Rect", "line_number": 185, "usage_type": "call" } ]
18659256455
import asyncpg from app.main import create_app from app.settings import Settings from tests.test_currencies import test_currencies_success settings = Settings() async def test_rate_success(aiohttp_client, loop): currencies = await test_currencies_success(aiohttp_client, loop) currency = currencies['results']['currencies'][0]['id'] client = await aiohttp_client(create_app) conn = await asyncpg.connect(settings.dsn) try: resp = await client.get(f'/rate/{currency}/') assert resp.status == 200 result = await resp.json() assert 'current_rate' in result assert 'avg_volume' in result resp = await client.get(f'/rate/?id={currency}') assert resp.status == 200 result = await resp.json() assert 'current_rate' in result assert 'avg_volume' in result finally: await conn.close() async def test_rate_not_found(aiohttp_client, loop): curency_name = 'BCH' client = await aiohttp_client(create_app) conn = await asyncpg.connect(settings.dsn) try: currency = await conn.fetchval('select id from currency where name=$1', curency_name) await conn.execute('delete from currency where name=$1', curency_name) resp = await client.get(f'/rate/{currency}/') assert resp.status == 404 result = await resp.json() assert 'error' in result assert 'detail' in result assert 'not found transaction' == result['detail'] finally: await conn.close() async def test_rate_error(aiohttp_client, loop): curency_name = 'BCH' client = await aiohttp_client(create_app) resp = await client.get(f'/rate/{curency_name}/') assert resp.status == 400
ridhid/test_aio
tests/test_rate.py
test_rate.py
py
1,745
python
en
code
0
github-code
6
[ { "api_name": "app.settings.Settings", "line_number": 7, "usage_type": "call" }, { "api_name": "tests.test_currencies.test_currencies_success", "line_number": 11, "usage_type": "call" }, { "api_name": "app.main.create_app", "line_number": 13, "usage_type": "argument" }, { "api_name": "asyncpg.connect", "line_number": 15, "usage_type": "call" }, { "api_name": "app.main.create_app", "line_number": 34, "usage_type": "argument" }, { "api_name": "asyncpg.connect", "line_number": 35, "usage_type": "call" }, { "api_name": "app.main.create_app", "line_number": 52, "usage_type": "argument" } ]
25875832480
#!/usr/bin/env python # This is more of a work in progress, but this script will # test the code for creating vespagrams with our curved wavefront correction. import obspy import numpy as np import time import matplotlib.pyplot as plt import circ_array as c from circ_beam import Vespagram_Lin, Vespagram_PWS, Baz_vespagram_PWS, Baz_vespagram_Lin from array_plotting import plotting # parameters # phase of interest phase = 'SKS' phases = ['SKS','SKKS','ScS','Sdiff','sSKS','sSKKS','PS','SKKKS','pSKS'] # frequency band fmin = 0.13 fmax = 0.26 st = obspy.read('./data/19970525/*SAC') # get array metadata event_time = c.get_eventtime(st) geometry = c.get_geometry(st) distances = c.get_distances(st,type='deg') mean_dist = np.mean(distances) stations = c.get_stations(st) # get travel time information and define a window Target_phase_times, time_header_times = c.get_predicted_times(st,phase) avg_target_time = np.mean(Target_phase_times) min_target = int(np.nanmin(Target_phase_times, axis=0)) max_target = int(np.nanmax(Target_phase_times, axis=0)) + 100 stime = event_time + min_target etime = event_time + max_target # trim the stream # Normalise and cut seismogram around defined window st = st.copy().trim(starttime=stime, endtime=etime) st = st.normalize() # get predicted slownesses and backazimuths predictions = c.pred_baz_slow( stream=st, phases=phases, one_eighty=True) # find the line with the predictions for the phase of interest row = np.where((predictions == phase))[0] P, S, BAZ, PRED_BAZ_X, PRED_BAZ_Y, PRED_AZ_X, PRED_AZ_Y, DIST, TIME = predictions[row, :][0] # make the box around the prediction to search over smin=float(S)-2 smax=float(S)+6 s_step=0.1 # filter st = st.filter('bandpass', freqmin=fmin, freqmax=fmax, corners=4, zerophase=True) # get the traces and phase traces Traces = c.get_traces(st) Phase_traces = c.get_phase_traces(st) # get sampleing rate sampling_rate=st[0].stats.sampling_rate # slowness vespagrams vesp_lin = Vespagram_Lin(traces=Traces, sampling_rate=sampling_rate, geometry=geometry, distance=mean_dist, baz=float(BAZ), smin=smin, smax=smax, s_space=s_step) fig = plt.figure(figsize=(10,8)) ax = fig.add_subplot(211) p = plotting(ax = ax) p.plot_vespagram(vespagram=vesp_lin, ymin=smin, ymax=smax, y_space=s_step, tmin=min_target, tmax=max_target, sampling_rate=sampling_rate, title="Slow - Lin", predictions=predictions, type='slow', envelope=True) vesp_pws = Vespagram_PWS(traces=Traces, phase_traces=Phase_traces, sampling_rate=sampling_rate, geometry=geometry, distance=mean_dist, baz=float(BAZ), smin=smin, smax=smax, s_space=s_step, degree=2) ax = fig.add_subplot(212) p = plotting(ax = ax) p.plot_vespagram(vespagram=vesp_pws, ymin=smin, ymax=smax, y_space=s_step, tmin=min_target, tmax=max_target, sampling_rate=sampling_rate, title="Slow - PWS", predictions=predictions, type='slow', envelope=True) plt.tight_layout() plt.show() # backazimuth vespagrams bmin=float(BAZ)-30 bmax=float(BAZ)+30 b_step=0.05 vesp_lin = Baz_vespagram_Lin(traces=Traces, sampling_rate=sampling_rate, geometry=geometry, distance=mean_dist, slow=float(S), bmin=bmin, bmax=bmax, b_space=b_step) fig = plt.figure(figsize=(10,8)) ax = fig.add_subplot(211) p = plotting(ax = ax) p.plot_vespagram(vespagram=vesp_lin, ymin=bmin, ymax=bmax, y_space=b_step, tmin=min_target, tmax=max_target, sampling_rate=sampling_rate, title="Baz - Lin", predictions=predictions, type='baz', envelope=True) vesp_pws = Baz_vespagram_PWS(traces=Traces, phase_traces=Phase_traces, sampling_rate=sampling_rate, geometry=geometry, distance=mean_dist, slow=float(S), bmin=bmin, bmax=bmax, b_space=b_step, degree=2) ax = fig.add_subplot(212) p = plotting(ax = ax) p.plot_vespagram(vespagram=vesp_pws, ymin=bmin, ymax=bmax, y_space=b_step, tmin=min_target, tmax=max_target, sampling_rate=sampling_rate, title="Baz - PWS", predictions=predictions, npeaks=5, type='baz', envelope=True) plt.tight_layout() plt.show()
eejwa/Array_Seis_Circle
examples/Vespagram_test.py
Vespagram_test.py
py
4,213
python
en
code
7
github-code
6
[ { "api_name": "obspy.read", "line_number": 25, "usage_type": "call" }, { "api_name": "circ_array.get_eventtime", "line_number": 28, "usage_type": "call" }, { "api_name": "circ_array.get_geometry", "line_number": 29, "usage_type": "call" }, { "api_name": "circ_array.get_distances", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 31, "usage_type": "call" }, { "api_name": "circ_array.get_stations", "line_number": 32, "usage_type": "call" }, { "api_name": "circ_array.get_predicted_times", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.nanmin", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.nanmax", "line_number": 40, "usage_type": "call" }, { "api_name": "circ_array.pred_baz_slow", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 55, "usage_type": "call" }, { "api_name": "circ_array.get_traces", "line_number": 70, "usage_type": "call" }, { "api_name": "circ_array.get_phase_traces", "line_number": 71, "usage_type": "call" }, { "api_name": "circ_beam.Vespagram_Lin", "line_number": 77, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name" }, { "api_name": "array_plotting.plotting", "line_number": 82, "usage_type": "call" }, { "api_name": "circ_beam.Vespagram_PWS", "line_number": 88, "usage_type": "call" }, { "api_name": "array_plotting.plotting", "line_number": 92, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 96, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 96, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 98, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 98, "usage_type": "name" }, { "api_name": "circ_beam.Baz_vespagram_Lin", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 109, "usage_type": "name" }, { "api_name": "array_plotting.plotting", "line_number": 111, "usage_type": "call" }, { "api_name": "circ_beam.Baz_vespagram_PWS", "line_number": 118, "usage_type": "call" }, { "api_name": "array_plotting.plotting", "line_number": 123, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.tight_layout", "line_number": 127, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 127, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 128, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 128, "usage_type": "name" } ]
30610778506
""" Meta manager. Defines complex workflow in terms of lower level managers For usage example see tests """ import re from time import time import logging from collections import defaultdict, OrderedDict as odict from copy import copy, deepcopy import yaml from shub_workflow.base import WorkFlowManager from .utils import get_scheduled_jobs_specs logger = logging.getLogger(__name__) _STARTING_JOB_RE = re.compile("--starting-job(?:=(.+))?") class GraphManager(WorkFlowManager): jobs_graph = {} base_failed_outcomes = ('failed', 'killed by oom', 'cancelled', 'cancel_timeout', 'memusage_exceeded', 'cancelled (stalled)') def __init__(self): self.__failed_outcomes = list(self.base_failed_outcomes) # Ensure jobs are traversed in the same order as they went pending. self.__pending_jobs = odict() self.__running_jobs = odict() self._available_resources = {} # map resource : ammount self._acquired_resources = defaultdict(list) # map resource : list of (job, ammount) self.__tasks = {} super(GraphManager, self).__init__() self.__start_time = defaultdict(time) for task in self.configure_workflow() or (): self._add_task(task) @property def description(self): return f"Workflow manager for {self.name!r}" def _add_task(self, task): assert task.task_id not in self.jobs_graph,\ "Workflow inconsistency detected: task %s referenced twice." % task.task_id self.jobs_graph[task.task_id] = task.as_jobgraph_dict() self.__tasks[task.task_id] = task for ntask in task.get_next_tasks(): self._add_task(ntask) def configure_workflow(self): raise NotImplementedError("configure_workflow() method need to be implemented.") def on_start(self): if not self.jobs_graph: self.argparser.error('Jobs graph configuration is empty.') if not self.args.starting_job and not self.args.resume_from_jobid: self.argparser.error('You must provide either --starting-job or --resume-from-jobid.') self._fill_available_resources() ran_tasks = self._maybe_setup_resume() self._setup_starting_jobs(ran_tasks) self.workflow_loop_enabled = True logger.info("Starting '%s' workflow", self.name) def _get_starting_jobs_from_resumed_job(self): starting_jobs = [] job = self.get_project().jobs.get(self.args.resume_from_jobid) next_option_is_task = False for option in job.metadata.get('job_cmd'): if next_option_is_task: starting_jobs.append(option) else: m = _STARTING_JOB_RE.match(option) if m: task = m.groups()[0] if m: starting_jobs.append(task) else: next_option_is_task = True return starting_jobs def _maybe_setup_resume(self): ran_tasks = [] if self.args.resume_from_jobid: # fill tasks job ids logger.info("Will Resume from job (%s)", self.args.resume_from_jobid) for _, name, jobid in get_scheduled_jobs_specs(self, [self.args.resume_from_jobid]): mname, taskid = name.split('/') assert mname == self.name, "Resuming from wrong manager job: %s" % self.args.resume_from_jobid self.__tasks[taskid].append_jobid(jobid) ran_tasks.append(taskid) return ran_tasks def _setup_starting_jobs(self, ran_tasks, candidates=None): candidates = candidates or self.args.starting_job if not candidates: # resuming candidates = self._get_starting_jobs_from_resumed_job() for taskid in candidates: if taskid in ran_tasks: logger.info("Task %s already done %s.", taskid, tuple(self.__tasks[taskid].get_scheduled_jobs())) next_tasks = [t.task_id for t in self.__tasks[taskid].get_next_tasks()] if next_tasks: self._setup_starting_jobs(ran_tasks, next_tasks) else: self._add_initial_pending_job(taskid) logger.info("Resuming at task %s", taskid) def _fill_available_resources(self): """ Ensure there are enough starting resources in order every job can run at some point """ for job in self.jobs_graph.keys(): for required_resources in self.__tasks[job].get_required_resources(): for resource, req_amount in required_resources.items(): old_amount = self._available_resources.get(resource, 0) if old_amount < req_amount: logger.info("Increasing available resources count for %r" " from %r to %r. Old value was not enough" " for job %r to run.", resource, old_amount, req_amount, job) self._available_resources[resource] = req_amount def get_job(self, job, pop=False): if job not in self.jobs_graph: self.argparser.error('Invalid job: %s. Available jobs: %s' % (job, repr(self.jobs_graph.keys()))) if pop: return self.jobs_graph.pop(job) return self.jobs_graph[job] def _add_initial_pending_job(self, job): wait_for = self.get_job(job).get('wait_for', []) self._add_pending_job(job, wait_for=tuple(wait_for)) def _add_pending_job(self, job, wait_for=(), is_retry=False): if job in self.args.skip_job: return if job in self.__tasks: task = self.__tasks[job] parallelization = task.get_parallel_jobs() else: task_id = self.get_job(job).get('origin', job) task = self.__tasks[task_id] parallelization = 1 if parallelization == 1: self.__pending_jobs[job] = { 'wait_for': set(wait_for), 'is_retry': is_retry, 'wait_time': task.wait_time, } else: # Split parallelized task into N parallel jobs. basejobconf = self.get_job(job, pop=True) for i in range(parallelization): job_unit = "%s_%i" % (job, i) job_unit_conf = deepcopy(basejobconf) job_unit_conf['origin'] = job job_unit_conf['index'] = i for _, nextjobs in job_unit_conf.get('on_finish', {}).items(): if i != 0: # only job 0 will conserve finish targets for nextjob in copy(nextjobs): if nextjob != 'retry': if nextjob in self.jobs_graph: self.get_job(nextjob).setdefault('wait_for', []).append(job_unit) if nextjob in self.__pending_jobs: self.__pending_jobs[nextjob]['wait_for'].add(job_unit) else: for i in range(parallelization): nextjobp = "%s_%i" % (job, i) self.get_job(nextjobp).get('wait_for', []).append(job_unit) if nextjobp in self.__pending_jobs: self.__pending_jobs[nextjobp]['wait_for'].add(job_unit) nextjobs.remove(nextjob) self.jobs_graph[job_unit] = job_unit_conf self.__pending_jobs[job_unit] = { 'wait_for': set(wait_for), 'is_retry': is_retry, 'origin': job, 'wait_time': task.wait_time, } for other, oconf in self.jobs_graph.items(): if job in oconf.get('wait_for', []): oconf['wait_for'].remove(job) if other in self.__pending_jobs: self.__pending_jobs[other]['wait_for'].discard(job) for i in range(parallelization): job_unit = "%s_%i" % (job, i) oconf['wait_for'].append(job_unit) if other in self.__pending_jobs: self.__pending_jobs[other]['wait_for'].add(job_unit) def add_argparser_options(self): super(GraphManager, self).add_argparser_options() self.argparser.add_argument('--jobs-graph', help='Define jobs graph_dict on command line', default='{}') self.argparser.add_argument('--starting-job', action='append', default=[], help='Set starting jobs. Can be given multiple times.') self.argparser.add_argument('--only-starting-jobs', action='store_true', help='If given, only run the starting jobs (don\'t follow on finish next jobs)') self.argparser.add_argument('--comment', help='Can be used for differentiate command line and avoid scheduling ' 'fail when a graph manager job is scheduled when another one with same option ' 'signature is running. Doesn\'t do anything else.') self.argparser.add_argument('--skip-job', default=[], action='append', help='Skip given job. Can be given multiple times. Also next jobs for the skipped' 'one will be skipped.') self.argparser.add_argument('--resume-from-jobid', help='Resume from the given graph manager jobid') def parse_args(self): args = super(GraphManager, self).parse_args() self.jobs_graph = yaml.load(args.jobs_graph) or deepcopy(self.jobs_graph) if not self.name: self.argparser.error('Manager name not set.') return args def workflow_loop(self): logger.debug("Pending jobs: %r", self.__pending_jobs) logger.debug("Running jobs: %r", self.__running_jobs) logger.debug("Available resources: %r", self._available_resources) logger.debug("Acquired resources: %r", self._acquired_resources) self.check_running_jobs() if self.__pending_jobs: self.run_pending_jobs() elif not self.__running_jobs: return False return True def run_job(self, job, is_retry=False): task = self.__tasks.get(job) if task is not None: return task.run(self, is_retry) jobconf = self.get_job(job) task = self.__tasks.get(jobconf['origin']) if task is not None: idx = jobconf['index'] return task.run(self, is_retry, index=idx) def _must_wait_time(self, job): status = self.__pending_jobs[job] if status['wait_time'] is not None: wait_time = status['wait_time'] - time() + self.__start_time[job] if wait_time > 0: logger.info("Job %s must wait %d seconds for running", job, wait_time) return True return False def run_pending_jobs(self): """Try running pending jobs. Normally, only jobs that have no outstanding dependencies are started. If all pending jobs have outstanding dependencies, try to start one job ignoring unknown tasks, i.e. those that are not currently pending. If none of the pending jobs cannot be started either way, it means there's a dependency cycle, in this case an error is raised. """ # Normal mode: start jobs without dependencies. for job in sorted(self.__pending_jobs.keys()): if len(self.__running_jobs) >= self.max_running_jobs: break status = self.__pending_jobs[job] job_can_run = not status['wait_for'] and not self._must_wait_time(job) and self._try_acquire_resources(job) if job_can_run: try: jobid = self.run_job(job, status['is_retry']) except: self._release_resources(job) raise self.__pending_jobs.pop(job) self.__running_jobs[job] = jobid if not self.__pending_jobs or self.__running_jobs or \ any(status['wait_time'] is not None for status in self.__pending_jobs.values()): return # At this point, there are pending jobs, but none were started because # of dependencies, try "skip unknown deps" mode: start one job that # only has "unseen" dependencies to try to break the "stalemate." origin_job = None for job in sorted(self.__pending_jobs.keys()): if len(self.__running_jobs) >= self.max_running_jobs: break status = self.__pending_jobs[job] job_can_run = ( all(w not in self.__pending_jobs for w in status['wait_for']) and (not origin_job or status.get('origin') == origin_job) and self._try_acquire_resources(job)) origin_job = status.get('origin') if job_can_run: try: jobid = self.run_job(job, status['is_retry']) except: self._release_resources(job) raise self.__pending_jobs.pop(job) self.__running_jobs[job] = jobid if not origin_job and self.__running_jobs: return if self.__running_jobs: return # Nothing helped, all pending jobs wait for each other somehow. raise RuntimeError("Job dependency cycle detected: %s" % ', '.join( '%s waits for %s' % ( job, sorted(self.__pending_jobs[job]['wait_for'])) for job in sorted(self.__pending_jobs.keys()))) def check_running_jobs(self): for job, jobid in list(self.__running_jobs.items()): outcome = self.is_finished(jobid) if outcome is not None: logger.info('Job "%s/%s" (%s) finished', self.name, job, jobid) for st in self.__pending_jobs.values(): st['wait_for'].discard(job) for conf in self.jobs_graph.values(): if job in conf.get('wait_for', []): conf['wait_for'].remove(job) for nextjob in self._get_next_jobs(job, outcome): if nextjob == 'retry': jobconf = self.get_job(job) retries = jobconf.get('retries', 0) if retries > 0: self._add_pending_job(job, is_retry=True) jobconf['retries'] -= 1 logger.warning('Will retry job %s (outcome: %s, number of retries left: %s)', job, outcome, jobconf['retries']) elif nextjob in self.__pending_jobs: logger.error('Job %s already pending', nextjob) else: wait_for = self.get_job(nextjob).get('wait_for', []) self._add_pending_job(nextjob, wait_for) self._release_resources(job) self.__running_jobs.pop(job) else: logger.info("Job %s (%s) still running", job, jobid) def _try_acquire_resources(self, job): result = True task_id = self.get_job(job).get('origin', job) for required_resources in self.__tasks[task_id].get_required_resources(partial=True): for resource, req_amount in required_resources.items(): if self._available_resources[resource] < req_amount: result = False break else: for resource, req_amount in required_resources.items(): self._available_resources[resource] -= req_amount self._acquired_resources[resource].append((job, req_amount)) return True return result def _release_resources(self, job): for res, acquired in self._acquired_resources.items(): for rjob, res_amount in acquired: if rjob == job: self._available_resources[res] += res_amount self._acquired_resources[res].remove((rjob, res_amount)) def _get_next_jobs(self, job, outcome): if self.args.only_starting_jobs: return [] on_finish = self.get_job(job).get('on_finish', {}) if outcome in on_finish: nextjobs = on_finish[outcome] elif outcome in self.__failed_outcomes: nextjobs = on_finish.get('failed', []) else: nextjobs = on_finish.get('default', []) return nextjobs @property def pending_jobs(self): return self.__pending_jobs
hermit-crab/shub-workflow
shub_workflow/graph/__init__.py
__init__.py
py
17,269
python
en
code
null
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 21, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 24, "usage_type": "call" }, { "api_name": "shub_workflow.base.WorkFlowManager", "line_number": 27, "usage_type": "name" }, { "api_name": "collections.OrderedDict", "line_number": 36, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 37, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 39, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 42, "usage_type": "call" }, { "api_name": "time.time", "line_number": 42, "usage_type": "argument" }, { "api_name": "utils.get_scheduled_jobs_specs", "line_number": 94, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 163, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 169, "usage_type": "call" }, { "api_name": "yaml.load", "line_number": 217, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 217, "usage_type": "call" }, { "api_name": "time.time", "line_number": 249, "usage_type": "call" } ]
18028682844
from pyfiglet import Figlet import os from shutil import copyfile import shutil import sqlite3 import subprocess import winreg import base64 import subprocess import datetime import socket import ctypes def init(): f = Figlet(font='slant') print(f.renderText('Reboot')) print("This program is Artifact collecter\n") def showOptions(): print("\n==========Options==========") print("1) Memory Dump") print("2) Registry Hive") print("3) System Info") print("4) System Audit Policy") print("5) Group Policy") print("6) Event Viewer Log") print("7) Services Log") print("8) Hosts Data") print("9) SRUM (System Resource Utilization Monitor)") print("10) Environment Variables") print("11) Patch List") print("12) Process List") print("13) Opened Port") print("14) IP Config Info") print("15) ARP Info") print("16) Net BIOS") print("17) Opened Handle") print("18) Task Schedule Info") print("19) System Logon Info") print("20) UserAssist") print("21) AutoRun") print("22) Registry User") print("23) Internet Browser History") print("24) Recycle Bin") print("25) LNK File") print("26) PowerShell Log File") print("27) Registerd Service Info") print("28) Recent Activity Info") print("29) Prefetch") print("30) NTFS Artifact") print("777) ALL") print("0) exit program") def registryHive(): print("\n==========Registry Hive File==========") current_directory = os.getcwd() export_registry_hive(current_directory, winreg.HKEY_LOCAL_MACHINE, r"SOFTWARE") export_registry_hive(current_directory, winreg.HKEY_CURRENT_USER, r"Software") def export_registry_hive(output_directory, hive_name, hive_path): registry_folder = os.path.join(output_directory, "RegistryHive") if not os.path.exists(registry_folder): os.makedirs(registry_folder) try: with winreg.ConnectRegistry(None, hive_name) as hive: hive_output_file = os.path.join(registry_folder, f"{hive_name}_hive.txt") with open(hive_output_file, 'w', encoding='utf-16') as file: def export_subkeys(key, indent=""): for i in range(winreg.QueryInfoKey(key)[0]): subkey_name = winreg.EnumKey(key, i) subkey_path = os.path.join(hive_path, subkey_name) file.write(f"{indent}[{subkey_path}]\n") with winreg.OpenKey(key, subkey_name) as subkey: export_subkeys(subkey, indent + " ") export_subkeys(hive) print(f"{hive_name} hive exported to {hive_output_file}") except Exception as e: print(f"Error: {e}") def systemInfo(): print("\n==========System Info File==========") subprocess.run(['systeminfo'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8') output_directory = os.getcwd() system_info_folder = os.path.join(output_directory, "SystemInfo") if not os.path.exists(system_info_folder): os.makedirs(system_info_folder) try: system_info_output_file = os.path.join(system_info_folder, "system_info.txt") with open(system_info_output_file, 'w', encoding='utf-8') as file: file.write(subprocess.getoutput('systeminfo')) print(f"System info exported to {system_info_output_file}") except Exception as e: print(f"Error: {e}") def systemAudit(): print("\n==========System Audit Policy File==========") subprocess.run(['auditpol', '/get', '/category:*'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8') output_directory = os.getcwd() audit_policy_folder = os.path.join(output_directory, "AuditPolicy") if not os.path.exists(audit_policy_folder): os.makedirs(audit_policy_folder) try: audit_policy_output_file = os.path.join(audit_policy_folder, "audit_policy_info.txt") with open(audit_policy_output_file, 'w', encoding='utf-8') as file: file.write(subprocess.getoutput('auditpol /get /category:*')) print(f"Audit policy info exported to {audit_policy_output_file}") except Exception as e: print(f"Error: {e}") def groupPolicy(): print("\n==========Group Policy File==========") subprocess.run(['gpresult', '/R'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8') output_directory = os.getcwd() group_policy_folder = os.path.join(output_directory, "GroupPolicy") if not os.path.exists(group_policy_folder): os.makedirs(group_policy_folder) try: group_policy_output_file = os.path.join(group_policy_folder, "group_policy_info.txt") with open(group_policy_output_file, 'w', encoding='utf-8') as file: file.write(subprocess.getoutput('gpresult /R')) print(f"Group policy info exported to {group_policy_output_file}") except Exception as e: print(f"Error: {e}") def eventLog(): print("\n==========Event Viewer Log File==========") output_directory = os.getcwd() event_logs_folder = os.path.join(output_directory, "EventLogs") if not os.path.exists(event_logs_folder): os.makedirs(event_logs_folder) try: # 시스템 이벤트 로그 내용 가져오기 system_log_output_file = os.path.join(event_logs_folder, "system_event_log.txt") subprocess.run(['wevtutil', 'qe', 'System', '/f:text', '/c:1'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8') with open(system_log_output_file, 'w', encoding='utf-8') as file: file.write(subprocess.getoutput(f'wevtutil qe System /f:text /c:1')) print(f"System event log exported to {system_log_output_file}") # 응용 프로그램 이벤트 로그 내용 가져오기 application_log_output_file = os.path.join(event_logs_folder, "application_event_log.txt") subprocess.run(['wevtutil', 'qe', 'Application', '/f:text', '/c:1'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8') with open(application_log_output_file, 'w', encoding='utf-8') as file: file.write(subprocess.getoutput(f'wevtutil qe Application /f:text /c:1')) print(f"Application event log exported to {application_log_output_file}") except Exception as e: print(f"Error: {e}") def serviceLog(): print("\n==========Service Log File==========") output_directory = os.getcwd() service_log_folder = os.path.join(output_directory, "ServiceLog") if not os.path.exists(service_log_folder): os.makedirs(service_log_folder) try: # 서비스 로그를 가져와서 파일로 저장 service_log_output_file = os.path.join(service_log_folder, "service_log.txt") subprocess.run(['net', 'start'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, encoding='utf-8') with open(service_log_output_file, 'w', encoding='utf-8') as file: file.write(subprocess.getoutput('net start')) print(f"Service log exported to {service_log_output_file}") except Exception as e: print(f"Error: {e}") def hostsData(): print("\n==========Hosts Data File==========") output_directory = os.getcwd() hosts_folder = os.path.join(output_directory, "Hosts") if not os.path.exists(hosts_folder): os.makedirs(hosts_folder) try: hosts_file_path = r"C:\Windows\System32\drivers\etc\hosts" # Hosts 파일 경로 hosts_output_file = os.path.join(hosts_folder, "hosts.txt") with open(hosts_file_path, 'r', encoding='utf-8') as input_file, open(hosts_output_file, 'w', encoding='utf-8') as output_file: hosts_content = input_file.read() output_file.write(hosts_content) print(f"Hosts file exported to {hosts_output_file}") except Exception as e: print(f"Error: {e}") def srum(): print("\n==========SRUM File==========") output_directory = os.getcwd() srum_folder = os.path.join(output_directory, "SRUM") if not os.path.exists(srum_folder): os.makedirs(srum_folder) try: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\SRUM\Extensions", 0, winreg.KEY_READ) as key: i = 0 while True: try: subkey_name = winreg.EnumKey(key, i) subkey_path = os.path.join(r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\SRUM\Extensions", subkey_name) with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, subkey_path, 0, winreg.KEY_READ) as subkey: j = 0 while True: try: value_name, srum_data, _ = winreg.EnumValue(subkey, j) # 각 데이터를 파일로 저장 (바이너리 모드 또는 문자열 모드로 열기) srum_output_file = os.path.join(srum_folder, f"{subkey_name}_{value_name}.txt") with open(srum_output_file, 'wb' if isinstance(srum_data, bytes) else 'w') as file: if isinstance(srum_data, bytes): file.write(srum_data) else: file.write(str(srum_data)) print(f"SRUM data from {subkey_name}/{value_name} exported to {srum_output_file}") j += 1 except OSError as e: break i += 1 except OSError as e: break if i == 0: print("No SRUM data found.") except Exception as e: print(f"Error: {e}") def environmentVar(): print("\n==========Envionment Variable File==========") output_directory = os.getcwd() environ_var_folder = os.path.join(output_directory, "EnvironmentVar") if not os.path.exists(environ_var_folder): os.makedirs(environ_var_folder) output_file = os.path.join(environ_var_folder, "environment_variables.txt") try: with open(output_file, 'w') as file: for key, value in os.environ.items(): file.write(f"{key} = {value}\n") print(f"Environment variables exported to {output_file}") except Exception as e: print(f"Error: {e}") def patchList(): print("\n==========Patch List File==========") output_directory = os.getcwd() patch_list_folder = os.path.join(output_directory, "PatchList") if not os.path.exists(patch_list_folder): os.makedirs(patch_list_folder) try: with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, r"SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based Servicing\Packages", 0, winreg.KEY_READ | winreg.KEY_WOW64_64KEY) as key: i = 0 while True: try: package_name = winreg.EnumKey(key, i) patch_list_file = os.path.join(patch_list_folder, f"{package_name}.txt") with open(patch_list_file, 'w') as file: file.write(package_name) i += 1 except OSError as e: break if i > 0: print(f"Patch list exported to {patch_list_folder}") else: print("No patch list information found.") except Exception as e: print(f"Error: {e}") def processList(): print("\n==========Process List File==========") file_path = os.getcwd() file_path = os.path.join(file_path, "ProcessList") if not os.path.exists(file_path): os.makedirs(file_path) file_path = os.path.join(file_path, "process_list.txt") process_info_list = [] for process in psutil.process_iter(attrs=['pid', 'name', 'username', 'memory_info']): info = process.info pid = info['pid'] name = info['name'] username = info['username'] memory = info['memory_info'].rss # Resident Set Size: 메모리 사용량 process_info = f"PID: {pid}, Process Name: {name}, User: {username}, Memory: {memory} bytes" process_info_list.append(process_info) with open(file_path, 'w') as f: for process in process_info_list: f.write(process + '\n') print(f"실행 중인 프로세스 정보가 {file_path} 에 저장되었습니다.") def openPort(): print("\n==========Open Port File==========") current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "OpenPort") if not os.path.exists(destination_folder): os.makedirs(destination_folder) file_path = os.path.join(destination_folder, "open_ports.txt") open_ports = [] for conn in psutil.net_connections(kind='inet'): laddr, raddr, status, pid = conn.laddr, conn.raddr, conn.status, conn.pid if raddr: open_ports.append(f"{laddr} <--> {raddr} {status} {pid}") else: open_ports.append(f"{laddr} {status} {pid}") with open(file_path, 'w') as f: for port in open_ports: f.write(f"{port}\n") print(f"Open port information has been saved to {file_path}") def IPConfigInfo(): print("\n==========IP Config File==========") current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "IPConfig") if not os.path.exists(destination_folder): os.makedirs(destination_folder) ip_info = {} hostname = socket.gethostname() local_ip = socket.gethostbyname(hostname) ip_info["Hostname"] = hostname ip_info["Local IP"] = local_ip interfaces = psutil.net_if_addrs() for interface, addrs in interfaces.items(): ip_info[interface] = [] for addr in addrs: ip_info[interface].append(str(addr)) filename = os.path.join(destination_folder, f"ip_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt") with open(filename, 'w') as f: for key, value in ip_info.items(): f.write(f"{key}: {value}\n") print(f"IP 설정 정보가 {filename} 에 저장되었습니다.") def arpInfo(): print("\n==========ARP Info File==========") current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "ARPInfo") if not os.path.exists(destination_folder): os.makedirs(destination_folder) try: # 'arp -a' 명령을 실행하고 결과를 반환받습니다. arp_output = subprocess.check_output("arp -a", shell=True, stderr=subprocess.STDOUT, text=True) except subprocess.CalledProcessError as e: arp_output = f"An error occurred while trying to fetch ARP info: {str(e)}" # 파일 이름에 현재 시간을 추가하여 고유하게 만듭니다. filename = os.path.join(destination_folder, f"arp_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt") # ARP 정보를 .txt 파일에 저장합니다. with open(filename, 'w') as f: f.write(arp_output) print(f"ARP 정보가 {filename} 에 저장되었습니다.") def netBIOS(): print("\n==========Net BIOS File==========") current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "NetBIOS") if not os.path.exists(destination_folder): os.makedirs(destination_folder) try: # 'nbtstat -n' 명령을 실행하고 그 결과를 반환합니다. netbios_output = subprocess.check_output("nbtstat -n", shell=True, stderr=subprocess.STDOUT, text=True) except subprocess.CalledProcessError as e: netbios_output = f"An error occurred while trying to fetch NetBIOS info: {str(e)}" # 파일 이름에 현재 시간을 추가해 고유한 파일을 생성합니다. filename = os.path.join(destination_folder, f"netbios_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt") # NetBIOS 정보를 .txt 파일에 저장합니다. with open(filename, 'w') as f: f.write(netbios_output) print(f"NetBIOS 정보가 {filename} 에 저장되었습니다.") def openedHandle(): print("\n==========Opened Handle File==========") current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "OpenHandle") if not os.path.exists(destination_folder): os.makedirs(destination_folder) processes = [] for proc in psutil.process_iter(['pid', 'name', 'open_files']): processes.append(proc.info) # 파일 이름에 현재 시간을 추가해 고유한 파일을 생성합니다. filename = os.path.join(destination_folder, f"handle_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt") # 핸들 정보를 .txt 파일에 저장합니다. with open(filename, 'w') as f: for proc in processes: f.write(f"PID: {proc['pid']}, Name: {proc['name']}\n") if proc['open_files']: for open_file in proc['open_files']: f.write(f"\t{open_file}\n") print(f"열려있는 핸들 정보가 {filename} 에 저장되었습니다.") def taskSchedule(): print("\n==========Task Schedule File==========") current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "JobSchedule") if not os.path.exists(destination_folder): os.makedirs(destination_folder) try: # 'schtasks' 명령을 실행하고 그 결과를 반환합니다. output = subprocess.check_output("schtasks /query /fo LIST", shell=True, stderr=subprocess.STDOUT, text=True) except subprocess.CalledProcessError as e: output = f"An error occurred while trying to fetch task scheduler info: {str(e)}" # 파일 이름에 현재 시간을 추가해 고유한 파일을 생성합니다. filename = os.path.join(destination_folder, f"task_scheduler_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt") # 작업 스케줄러 정보를 .txt 파일에 저장합니다. with open(filename, 'w') as f: f.write(output) print(f"작업 스케줄 정보가 {filename} 에 저장되었습니다.") def systemLogon(): print("\n==========System Logon File==========") current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "SystemLogon") if not os.path.exists(destination_folder): os.makedirs(destination_folder) file_path = os.path.join(destination_folder, "logon_history.txt") query = "wevtutil qe Security /q:\"*[System[Provider[@Name='Microsoft-Windows-Security-Auditing'] and (EventID=4624)]]\" /c:1 /rd:true /f:text" result = subprocess.run(query, capture_output=True, text=True, shell=True) with open(file_path, 'w') as f: f.write(result.stdout) print(f"시스템 로그온 정보가 {file_path} 에 저장되었습니다.") def memoryDump(): print("\n==========MemoryDump File==========") current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "MemoryDump") # "MemoryDump" 폴더 생성 후 저장 if not os.path.exists(destination_folder): os.makedirs(destination_folder) # 메모리 덤프 파일을 저장할 디렉토리 경로 지정 dump_directory = destination_folder # psexec.exe 경로 (psexec을 다운로드한 경로로 설정) psexec_path = os.getcwd() psexec_path = os.path.join(psexec_path, "PSTools") psexec_path = os.path.join(psexec_path, "PsExec.exe") # procdump.exe 경로 (procdump를 설치한 경로로 설정) procdump_path = os.getcwd() procdump_path = os.path.join(procdump_path, "Procdump") procdump_path = os.path.join(procdump_path, "procdump.exe") # 현재 실행 중인 모든 프로세스 가져오기 running_processes = list(psutil.process_iter(attrs=['pid', 'name'])) # 실행 중인 모든 프로세스에 대해 메모리 덤프 생성 for process in running_processes: process_name = process.info['name'] process_pid = process.info['pid'] dump_file_path = os.path.join(dump_directory, f"{process_name}_{process_pid}_dump.dmp") # procdump을 사용하여 메모리 덤프 실행 cmd = [procdump_path, f"-ma", process_name, dump_file_path] try: subprocess.run(cmd, check=True) print(f"{process_name} 프로세스의 메모리 덤프 생성 완료:", dump_file_path) except subprocess.CalledProcessError as e: print(f"{process_name} 프로세스의 메모리 덤프 생성 중 오류 발생:", e) print("모든 프로세스의 메모리 덤프 생성 완료") def userAssist(): print("\n==========UserAssist File==========") keys_to_copy = [ # 실행파일 기록 subkey r"Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{CEBFF5CD-ACE2-4F4F-9178-9926F41749EA}\Count", # 바로가기 실행 기록 subkey r"Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\{F4E57C4B-2036-45F0-A9AB-443BCFE33D9F}\Count" ] current_directory = os.getcwd() destination_folder = os.path.join(current_directory, "UserAssist") if not os.path.exists(destination_folder): os.makedirs(destination_folder) try: with winreg.OpenKey(winreg.HKEY_CURRENT_USER, keys_to_copy[0], 0, winreg.KEY_READ | winreg.KEY_WOW64_64KEY) as key: userAssistRegistry(key, destination_folder, 1) with winreg.OpenKey(winreg.HKEY_CURRENT_USER, keys_to_copy[1], 0, winreg.KEY_READ | winreg.KEY_WOW64_64KEY) as key: userAssistRegistry(key, destination_folder, 2) except Exception as e: print(f"Error: {e}") def sanitize_filename(filename): # 파일 이름에 유효하지 않은 문자를 대체 invalid_chars = ['\\', '/', ':', '*', '?', '"', '<', '>', '|', '.', '&', '!', '@', '#', '$', '%', '^', '(', ')', '[', ']', '{', '}', '+', '=', ',', ';', '`', "'", '~', ' '] for char in invalid_chars: filename = filename.replace(char, '_') # 파일 이름을 최대 100자로 제한 return filename[:100] def userAssistRegistry(subkey, output_directory, num): try: if not os.path.exists(output_directory): os.makedirs(output_directory) if num == 1: subkey_name = str(winreg.QueryInfoKey(subkey)[0]) subkey_path = os.path.join(output_directory, "CEBFF5CD-ACE2-4F4F-9178-9926F41749EA") else: subkey_name = str(winreg.QueryInfoKey(subkey)[0]) subkey_path = os.path.join(output_directory, "F4E57C4B-2036-45F0-A9AB-443BCFE33D9F") if not os.path.exists(subkey_path): os.makedirs(subkey_path) i = 0 while True: try: value_name, value_data, _ = winreg.EnumValue(subkey, i) value_output_file = os.path.join(subkey_path, f"{sanitize_filename(value_name)}.txt") # 중간 디렉터리가 없는 경우 생성 value_output_dir = os.path.dirname(value_output_file) if not os.path.exists(value_output_dir): os.makedirs(value_output_dir) with open(value_output_file, 'w') as file: file.write(str(value_data)) # value_data를 문자열로 변환하여 쓰기 i += 1 except OSError as e: print(f"Error while processing subkey {subkey_name}: {e}") break print(f"Data from subkey {subkey_name} has been saved to {subkey_path}") except Exception as e: print(f"Error: {e}") def autoRun(): print("\n==========AutoRun File==========") output_directory = os.getcwd() autorun_folder = os.path.join(output_directory, "AutoRun") if not os.path.exists(autorun_folder): os.makedirs(autorun_folder) try: with winreg.OpenKey(winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Run", 0, winreg.KEY_READ | winreg.KEY_WOW64_64KEY) as key: values = {} i = 0 while True: try: value_name, value_data, _ = winreg.EnumValue(key, i) values[value_name] = value_data i += 1 except OSError as e: break if values: output_file = os.path.join(autorun_folder, "autorun_values.txt") with open(output_file, 'w') as file: for name, data in values.items(): file.write(f"{name} = {data}\n") print(f"AutoRun values exported to {output_file}") else: print("No AutoRun values found.") except Exception as e: print(f"Error: {e}") def registryUser(): print("\n==========Registry User File==========") output_directory = os.getcwd() registry_folder = os.path.join(output_directory, "AllUserRegistry") if not os.path.exists(registry_folder): os.makedirs(registry_folder) try: with winreg.ConnectRegistry(None, winreg.HKEY_USERS) as users_hive: with winreg.OpenKey(users_hive, None) as users_key: num_subkeys = winreg.QueryInfoKey(users_key)[0] for i in range(num_subkeys): user_sid = winreg.EnumKey(users_key, i) user_hive_path = f"{user_sid}\\Software" # 사용자 하이브 경로 with winreg.ConnectRegistry(None, winreg.HKEY_USERS) as user_hive: with winreg.CreateKey(user_hive, user_hive_path) as user_key: # 사용자 레지스트리 정보를 파일로 저장 user_output_file = os.path.join(registry_folder, f"{user_sid}_registry.txt") with open(user_output_file, 'w', encoding='utf-16') as file: def export_subkeys(key, indent=""): for j in range(winreg.QueryInfoKey(key)[0]): subkey_name = winreg.EnumKey(key, j) subkey_path = os.path.join(user_hive_path, subkey_name) file.write(f"{indent}[{subkey_path}]\n") with winreg.OpenKey(key, subkey_name) as subkey: export_subkeys(subkey, indent + " ") export_subkeys(user_key) print(f"{user_sid} registry exported to {user_output_file}") except Exception as e: print(f"Error: {e}") def export_registry_key(reg_file, hkey, key_path): try: key = winreg.OpenKey(hkey, key_path) for i in range(winreg.QueryInfoKey(key)[0]): sub_key_name = winreg.EnumKey(key, i) sub_key_path = os.path.join(key_path, sub_key_name) reg_file.write(f'\n[{sub_key_path}]\n') export_registry_key(reg_file, hkey, sub_key_path) for i in range(winreg.QueryInfoKey(key)[1]): value_name, value_data, value_type = winreg.EnumValue(key, i) if value_type == winreg.REG_SZ: reg_file.write(f'"{value_name}"="{value_data}"\n') elif value_type == winreg.REG_DWORD: reg_file.write(f'"{value_name}"=dword:{value_data:08X}\n') # 여러 다른 레지스트리 값 유형에 대한 처리 추가 가능 except Exception as e: pass def save_browser_history(): print("\n==========Browser History File==========") current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "BrowserHistory") # "MemoryDump" 폴더 생성 후 저장 if not os.path.exists(destination_folder): os.makedirs(destination_folder) # 크롬 브라우저의 기록 데이터베이스 경로 chrome_history_path = os.path.expanduser('~') + '\\AppData\\Local\\Google\\Chrome\\User Data\\Default\\History' # 복사할 임시 파일 경로 temp_db_path = os.path.join(destination_folder, 'temp_history') # 기록 데이터베이스 파일 복사 copyfile(chrome_history_path, temp_db_path) # 데이터베이스 연결 connection = sqlite3.connect(temp_db_path) cursor = connection.cursor() # 방문 기록 가져오기 cursor.execute("SELECT title, url, last_visit_time FROM urls") history = cursor.fetchall() # 파일로 저장 history_file_path = os.path.join(destination_folder, 'browser_history.txt') with open(history_file_path, 'w', encoding='utf-8') as file: for item in history: title, url, timestamp = item time_formatted = str(timestamp) file.write(f"Title: {title}\nURL: {url}\nTimestamp: {time_formatted}\n\n") # 연결 종료 및 임시 데이터베이스 파일 삭제 cursor.close() connection.close() os.remove(temp_db_path) print("브라우저 기록이 'Browser' 폴더에 저장되었습니다.") def recycleBin(): print("\n==========Recycle Bin File==========") # 'RecycleBin' 폴더 생성 destination_folder = os.path.join(os.getcwd(), 'RecycleBin') if not os.path.exists(destination_folder): os.makedirs(destination_folder) try: # Powershell 스크립트 실행 script_path = os.path.join(os.path.dirname(__file__), 'copy_recycle.ps1') command = ["powershell", "-ExecutionPolicy", "Bypass", "-File", script_path] subprocess.run(command, shell=True, check=True) print("휴지통 내용이 'RecycleBin' 폴더에 복사되었습니다.") except Exception as e: print(f"오류가 발생했습니다: {e}") def lnkFile(): print("\n==========LNK File==========") # LNK 폴더 생성 후 저장 current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "LNK") if not os.path.exists(destination_folder): os.makedirs(destination_folder) # .lnk파일 위치 source_folder = os.path.expanduser("~") + "\\AppData\\Roaming\\Microsoft\\Windows\\Recent" # file copy for root, dirs, files in os.walk(source_folder): for file in files: source_file_path = os.path.join(root, file) destination_file_path = os.path.join(destination_folder, file) try: shutil.copy2(source_file_path, destination_file_path) print(f"복사 완료: {file}") except Exception as e: print(f"복사 실패: {file}, 오류: {e}") def PowerShellLogFile(): print("\n==========PowerShell Log File==========") # PowerShellLog 폴더 생성 후 저장 current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "PowerShellLog") if not os.path.exists(destination_folder): os.makedirs(destination_folder) # .lnk파일 위치 source_folder = os.path.expanduser("~") + "\\AppData\\Roaming\\Microsoft\\Windows\\PowerShell\\PSReadLine" # file copy for root, dirs, files in os.walk(source_folder): for file in files: source_file_path = os.path.join(root, file) destination_file_path = os.path.join(destination_folder, file) try: shutil.copy2(source_file_path, destination_file_path) print(f"복사 완료: {file}") except Exception as e: print(f"복사 실패: {file}, 오류: {e}") def registeredService(): print("\n==========Registered Service File==========") # PowerShellLog 폴더 생성 후 저장 current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "RegisteredService") if not os.path.exists(destination_folder): os.makedirs(destination_folder) filename = os.path.join(destination_folder, f"service_info_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt") try: # 'sc query' 명령을 실행하여 서비스 정보를 가져옵니다. output = subprocess.check_output("sc query", shell=True, text=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: output = f"An error occurred while trying to fetch service info: {str(e)}" # 서비스 정보를 .txt 파일에 저장합니다. with open(filename, 'w') as f: f.write(output) print(f"등록된 서비스 정보가 {filename} 에 저장되었습니다.") def recentActivity(): print("\n==========Recent Activity File==========") # PowerShellLog 폴더 생성 후 저장 current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "RecentActivity") if not os.path.exists(destination_folder): os.makedirs(destination_folder) # Recent Items 폴더의 경로를 가져옵니다. recent_folder = os.path.join(os.environ['USERPROFILE'], r'AppData\Roaming\Microsoft\Windows\Recent') recent_items = [] # 폴더 내의 모든 파일과 폴더를 나열합니다. for item in os.listdir(recent_folder): item_path = os.path.join(recent_folder, item) item_stat = os.stat(item_path) # 파일의 마지막 액세스 시간을 가져옵니다. last_access_time = datetime.datetime.fromtimestamp(item_stat.st_atime).strftime('%Y-%m-%d %H:%M:%S') recent_items.append(f"{item}: Last accessed at {last_access_time}") # 파일 이름에 현재 시간을 추가해 고유한 파일을 생성합니다. filename = os.path.join(destination_folder, f"recent_activity_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.txt") # 최근 활동 정보를 .txt 파일에 저장합니다. with open(filename, 'w') as f: for info in recent_items: f.write(f"{info}\n") print(f"최근 활동 정보가 {filename} 에 저장되었습니다.") def prefetch(): print("\n==========Prefetch File==========") # PowerShellLog 폴더 생성 후 저장 current_directory = os.path.dirname(os.path.abspath(__file__)) destination_folder = os.path.join(current_directory, "Prefetch") if not os.path.exists(destination_folder): os.makedirs(destination_folder) # Prefetch 폴더 경로 prefetch_path = r"C:\Windows\Prefetch" # Prefetch 폴더에서 .pf 파일 목록 수집 try: prefetch_files = [f for f in os.listdir(prefetch_path) if f.endswith('.pf')] except PermissionError: print("관리자 권한이 필요합니다.") exit() for prefetch_file in prefetch_files: source_file = os.path.join(prefetch_path, prefetch_file) destination_file = os.path.join(destination_folder, prefetch_file) shutil.copy(source_file, destination_file) print(f"prefetch 파일이 {destination_file} 에 저장되었습니다.") def NTFS(): print("\n==========NTFS Artifact File==========") script_dir = os.path.dirname(os.path.abspath(__file__)) ntfs_folder = os.path.join(script_dir, 'NTFS') os.makedirs(ntfs_folder, exist_ok=True) # 'NTFS' 폴더 생성 (이미 존재하면 무시) # 복사할 NTFS 시스템 파일 ntfs_files = ["$MFT", "$LogFile", "$Extend\\$UsnJrnl:$J"] for ntfs_file in ntfs_files: source_file = "C:\\" + ntfs_file destination_file_name = ntfs_file.replace('$', '').replace(':', '').replace('\\', '_') + ".txt" destination_file = os.path.join(ntfs_folder, destination_file_name) command = "fsutil file queryextents {} > {}".format(source_file, destination_file) try: subprocess.run(command, shell=True, check=True, stderr=subprocess.PIPE) print("{}를 성공적으로 복사했습니다.".format(source_file)) except subprocess.CalledProcessError as e: print("{}를 복사하는 데 실패했습니다: {}".format(source_file, e.stderr.decode('utf-8'))) print(f"NTFS 파일이 {destination_file} 에 저장되었습니다.") def main(): init() while(True): showOptions() options = input("[Select Option] : ") if options == "0": print("Good Bye!") exit() elif options == "1": memoryDump() elif options == "2": registryHive() elif options == "3": systemInfo() elif options == "4": systemAudit() elif options == "5": groupPolicy() elif options == "6": eventLog() elif options == "7": serviceLog() elif options == "8": hostsData() elif options == "9": srum() elif options == "10": environmentVar() elif options == "11": patchList() elif options == "12": processList() elif options == "13": openPort() elif options == "14": IPConfigInfo() elif options == "15": arpInfo() elif options == "16": netBIOS() elif options == "17": openedHandle() elif options == "18": taskSchedule() elif options == "19": systemLogon() elif options == "20": userAssist() elif options == "21": autoRun() elif options == "22": registryUser() elif options == "23": save_browser_history() elif options == "24": recycleBin() elif options == "25": lnkFile() elif options == "26": PowerShellLogFile() elif options == "27": registeredService() elif options == "28": recentActivity() elif options == "29": prefetch() elif options == "30": NTFS() elif options == "777": memoryDump() registryHive() systemInfo() systemAudit() groupPolicy() eventLog() serviceLog() hostsData() srum() environmentVar() patchList() processList() openPort() IPConfigInfo() arpInfo() netBIOS() openedHandle() taskSchedule() systemLogon() userAssist() autoRun() registryUser() save_browser_history() recycleBin() lnkFile() PowerShellLogFile() registeredService() recentActivity() prefetch() NTFS() else : print("\nPlease input correct options!") pass if __name__ == "__main__": main()
KIMJOONSIG/Reboot3
Windows/reboot3.py
reboot3.py
py
36,418
python
en
code
0
github-code
6
[ { "api_name": "pyfiglet.Figlet", "line_number": 15, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 56, "usage_type": "call" }, { "api_name": "winreg.HKEY_LOCAL_MACHINE", "line_number": 58, "usage_type": "attribute" }, { "api_name": "winreg.HKEY_CURRENT_USER", "line_number": 59, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 62, "usage_type": "call" }, { "api_name": "os.path", "line_number": 62, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 63, "usage_type": "call" }, { "api_name": "os.path", "line_number": 63, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 64, "usage_type": "call" }, { "api_name": "winreg.ConnectRegistry", "line_number": 67, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 68, "usage_type": "call" }, { "api_name": "os.path", "line_number": 68, "usage_type": "attribute" }, { "api_name": "winreg.QueryInfoKey", "line_number": 72, "usage_type": "call" }, { "api_name": "winreg.EnumKey", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 74, "usage_type": "call" }, { "api_name": "os.path", "line_number": 74, "usage_type": "attribute" }, { "api_name": "winreg.OpenKey", "line_number": 78, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 89, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 89, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 91, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 92, "usage_type": "call" }, { "api_name": "os.path", "line_number": 92, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 93, "usage_type": "call" }, { "api_name": "os.path", "line_number": 93, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 94, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 97, "usage_type": "call" }, { "api_name": "os.path", "line_number": 97, "usage_type": "attribute" }, { "api_name": "subprocess.getoutput", "line_number": 99, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 108, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 108, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 110, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 111, "usage_type": "call" }, { "api_name": "os.path", "line_number": 111, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 112, "usage_type": "call" }, { "api_name": "os.path", "line_number": 112, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 113, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 116, "usage_type": "call" }, { "api_name": "os.path", "line_number": 116, "usage_type": "attribute" }, { "api_name": "subprocess.getoutput", "line_number": 118, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 127, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 127, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 128, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 129, "usage_type": "call" }, { "api_name": "os.path", "line_number": 129, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 130, "usage_type": "call" }, { "api_name": "os.path", "line_number": 130, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 131, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 134, "usage_type": "call" }, { "api_name": "os.path", "line_number": 134, "usage_type": "attribute" }, { "api_name": "subprocess.getoutput", "line_number": 136, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 145, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 146, "usage_type": "call" }, { "api_name": "os.path", "line_number": 146, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 147, "usage_type": "call" }, { "api_name": "os.path", "line_number": 147, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 148, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 152, "usage_type": "call" }, { "api_name": "os.path", "line_number": 152, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 153, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 153, "usage_type": "attribute" }, { "api_name": "subprocess.getoutput", "line_number": 155, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 160, "usage_type": "call" }, { "api_name": "os.path", "line_number": 160, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 161, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 161, "usage_type": "attribute" }, { "api_name": "subprocess.getoutput", "line_number": 163, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 172, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 173, "usage_type": "call" }, { "api_name": "os.path", "line_number": 173, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 174, "usage_type": "call" }, { "api_name": "os.path", "line_number": 174, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 175, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 179, "usage_type": "call" }, { "api_name": "os.path", "line_number": 179, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 180, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 180, "usage_type": "attribute" }, { "api_name": "subprocess.getoutput", "line_number": 182, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 191, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 192, "usage_type": "call" }, { "api_name": "os.path", "line_number": 192, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 193, "usage_type": "call" }, { "api_name": "os.path", "line_number": 193, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 194, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 198, "usage_type": "call" }, { "api_name": "os.path", "line_number": 198, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 211, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 212, "usage_type": "call" }, { "api_name": "os.path", "line_number": 212, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 213, "usage_type": "call" }, { "api_name": "os.path", "line_number": 213, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 214, "usage_type": "call" }, { "api_name": "winreg.OpenKey", "line_number": 217, "usage_type": "call" }, { "api_name": "winreg.HKEY_LOCAL_MACHINE", "line_number": 217, "usage_type": "attribute" }, { "api_name": "winreg.KEY_READ", "line_number": 217, "usage_type": "attribute" }, { "api_name": "winreg.EnumKey", "line_number": 221, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 222, "usage_type": "call" }, { "api_name": "os.path", "line_number": 222, "usage_type": "attribute" }, { "api_name": "winreg.OpenKey", "line_number": 224, "usage_type": "call" }, { "api_name": "winreg.HKEY_LOCAL_MACHINE", "line_number": 224, "usage_type": "attribute" }, { "api_name": "winreg.KEY_READ", "line_number": 224, "usage_type": "attribute" }, { "api_name": "winreg.EnumValue", "line_number": 228, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 231, "usage_type": "call" }, { "api_name": "os.path", "line_number": 231, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 256, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 257, "usage_type": "call" }, { "api_name": "os.path", "line_number": 257, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 258, "usage_type": "call" }, { "api_name": "os.path", "line_number": 258, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 259, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 261, "usage_type": "call" }, { "api_name": "os.path", "line_number": 261, "usage_type": "attribute" }, { "api_name": "os.environ.items", "line_number": 264, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 264, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 274, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 275, "usage_type": "call" }, { "api_name": "os.path", "line_number": 275, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 276, "usage_type": "call" }, { "api_name": "os.path", "line_number": 276, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 277, "usage_type": "call" }, { "api_name": "winreg.OpenKey", "line_number": 280, "usage_type": "call" }, { "api_name": "winreg.HKEY_LOCAL_MACHINE", "line_number": 280, "usage_type": "attribute" }, { "api_name": "winreg.KEY_READ", "line_number": 280, "usage_type": "attribute" }, { "api_name": "winreg.KEY_WOW64_64KEY", "line_number": 280, "usage_type": "attribute" }, { "api_name": "winreg.EnumKey", "line_number": 284, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 285, "usage_type": "call" }, { "api_name": "os.path", "line_number": 285, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 303, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 304, "usage_type": "call" }, { "api_name": "os.path", "line_number": 304, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 305, "usage_type": "call" }, { "api_name": "os.path", "line_number": 305, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 306, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 307, "usage_type": "call" }, { "api_name": "os.path", "line_number": 307, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 329, "usage_type": "call" }, { "api_name": "os.path", "line_number": 329, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 329, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 330, "usage_type": "call" }, { "api_name": "os.path", "line_number": 330, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 331, "usage_type": "call" }, { "api_name": "os.path", "line_number": 331, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 332, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 333, "usage_type": "call" }, { "api_name": "os.path", "line_number": 333, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 352, "usage_type": "call" }, { "api_name": "os.path", "line_number": 352, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 352, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 353, "usage_type": "call" }, { "api_name": "os.path", "line_number": 353, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 354, "usage_type": "call" }, { "api_name": "os.path", "line_number": 354, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 355, "usage_type": "call" }, { "api_name": "socket.gethostname", "line_number": 358, "usage_type": "call" }, { "api_name": "socket.gethostbyname", "line_number": 359, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 370, "usage_type": "call" }, { "api_name": "os.path", "line_number": 370, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 370, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 370, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 380, "usage_type": "call" }, { "api_name": "os.path", "line_number": 380, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 380, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 381, "usage_type": "call" }, { "api_name": "os.path", "line_number": 381, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 382, "usage_type": "call" }, { "api_name": "os.path", "line_number": 382, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 383, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 387, "usage_type": "call" }, { "api_name": "subprocess.STDOUT", "line_number": 387, "usage_type": "attribute" }, { "api_name": "subprocess.CalledProcessError", "line_number": 388, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 391, "usage_type": "call" }, { "api_name": "os.path", "line_number": 391, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 391, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 391, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 401, "usage_type": "call" }, { "api_name": "os.path", "line_number": 401, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 401, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 402, "usage_type": "call" }, { "api_name": "os.path", "line_number": 402, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 403, "usage_type": "call" }, { "api_name": "os.path", "line_number": 403, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 404, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 408, "usage_type": "call" }, { "api_name": "subprocess.STDOUT", "line_number": 408, "usage_type": "attribute" }, { "api_name": "subprocess.CalledProcessError", "line_number": 409, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 413, "usage_type": "call" }, { "api_name": "os.path", "line_number": 413, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 413, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 413, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 423, "usage_type": "call" }, { "api_name": "os.path", "line_number": 423, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 423, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 424, "usage_type": "call" }, { "api_name": "os.path", "line_number": 424, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 425, "usage_type": "call" }, { "api_name": "os.path", "line_number": 425, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 426, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 434, "usage_type": "call" }, { "api_name": "os.path", "line_number": 434, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 434, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 434, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 448, "usage_type": "call" }, { "api_name": "os.path", "line_number": 448, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 448, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 449, "usage_type": "call" }, { "api_name": "os.path", "line_number": 449, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 450, "usage_type": "call" }, { "api_name": "os.path", "line_number": 450, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 451, "usage_type": "call" }, { "api_name": "subprocess.check_output", "line_number": 455, "usage_type": "call" }, { "api_name": "subprocess.STDOUT", "line_number": 455, "usage_type": "attribute" }, { "api_name": "subprocess.CalledProcessError", "line_number": 456, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 460, "usage_type": "call" }, { "api_name": "os.path", "line_number": 460, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 460, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 460, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 470, "usage_type": "call" }, { "api_name": "os.path", "line_number": 470, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 470, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 471, "usage_type": "call" }, { "api_name": "os.path", "line_number": 471, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 472, "usage_type": "call" }, { "api_name": "os.path", "line_number": 472, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 473, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 474, "usage_type": "call" }, { "api_name": "os.path", "line_number": 474, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 477, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 487, "usage_type": "call" }, { "api_name": "os.path", "line_number": 487, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 487, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 488, "usage_type": "call" }, { "api_name": "os.path", "line_number": 488, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 491, "usage_type": "call" }, { "api_name": "os.path", "line_number": 491, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 492, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 498, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 499, "usage_type": "call" }, { "api_name": "os.path", "line_number": 499, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 500, "usage_type": "call" }, { "api_name": "os.path", "line_number": 500, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 503, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 504, "usage_type": "call" }, { "api_name": "os.path", "line_number": 504, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 505, "usage_type": "call" }, { "api_name": "os.path", "line_number": 505, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 514, "usage_type": "call" }, { "api_name": "os.path", "line_number": 514, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 520, "usage_type": "call" }, { "api_name": "subprocess.CalledProcessError", "line_number": 522, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 538, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 539, "usage_type": "call" }, { "api_name": "os.path", "line_number": 539, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 541, "usage_type": "call" }, { "api_name": "os.path", "line_number": 541, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 542, "usage_type": "call" }, { "api_name": "winreg.OpenKey", "line_number": 546, "usage_type": "call" }, { "api_name": "winreg.HKEY_CURRENT_USER", "line_number": 546, "usage_type": "attribute" }, { "api_name": "winreg.KEY_READ", "line_number": 546, "usage_type": "attribute" }, { "api_name": "winreg.KEY_WOW64_64KEY", "line_number": 546, "usage_type": "attribute" }, { "api_name": "winreg.OpenKey", "line_number": 548, "usage_type": "call" }, { "api_name": "winreg.HKEY_CURRENT_USER", "line_number": 548, "usage_type": "attribute" }, { "api_name": "winreg.KEY_READ", "line_number": 548, "usage_type": "attribute" }, { "api_name": "winreg.KEY_WOW64_64KEY", "line_number": 548, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 564, "usage_type": "call" }, { "api_name": "os.path", "line_number": 564, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 565, "usage_type": "call" }, { "api_name": "winreg.QueryInfoKey", "line_number": 568, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 569, "usage_type": "call" }, { "api_name": "os.path", "line_number": 569, "usage_type": "attribute" }, { "api_name": "winreg.QueryInfoKey", "line_number": 571, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 572, "usage_type": "call" }, { "api_name": "os.path", "line_number": 572, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 574, "usage_type": "call" }, { "api_name": "os.path", "line_number": 574, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 575, "usage_type": "call" }, { "api_name": "winreg.EnumValue", "line_number": 580, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 581, "usage_type": "call" }, { "api_name": "os.path", "line_number": 581, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 584, "usage_type": "call" }, { "api_name": "os.path", "line_number": 584, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 585, "usage_type": "call" }, { "api_name": "os.path", "line_number": 585, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 586, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 601, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 602, "usage_type": "call" }, { "api_name": "os.path", "line_number": 602, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 603, "usage_type": "call" }, { "api_name": "os.path", "line_number": 603, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 604, "usage_type": "call" }, { "api_name": "winreg.OpenKey", "line_number": 607, "usage_type": "call" }, { "api_name": "winreg.HKEY_CURRENT_USER", "line_number": 607, "usage_type": "attribute" }, { "api_name": "winreg.KEY_READ", "line_number": 607, "usage_type": "attribute" }, { "api_name": "winreg.KEY_WOW64_64KEY", "line_number": 607, "usage_type": "attribute" }, { "api_name": "winreg.EnumValue", "line_number": 612, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 619, "usage_type": "call" }, { "api_name": "os.path", "line_number": 619, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 632, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 633, "usage_type": "call" }, { "api_name": "os.path", "line_number": 633, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 634, "usage_type": "call" }, { "api_name": "os.path", "line_number": 634, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 635, "usage_type": "call" }, { "api_name": "winreg.ConnectRegistry", "line_number": 638, "usage_type": "call" }, { "api_name": "winreg.HKEY_USERS", "line_number": 638, "usage_type": "attribute" }, { "api_name": "winreg.OpenKey", "line_number": 639, "usage_type": "call" }, { "api_name": "winreg.QueryInfoKey", "line_number": 640, "usage_type": "call" }, { "api_name": "winreg.EnumKey", "line_number": 643, "usage_type": "call" }, { "api_name": "winreg.ConnectRegistry", "line_number": 646, "usage_type": "call" }, { "api_name": "winreg.HKEY_USERS", "line_number": 646, "usage_type": "attribute" }, { "api_name": "winreg.CreateKey", "line_number": 647, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 649, "usage_type": "call" }, { "api_name": "os.path", "line_number": 649, "usage_type": "attribute" }, { "api_name": "winreg.QueryInfoKey", "line_number": 652, "usage_type": "call" }, { "api_name": "winreg.EnumKey", "line_number": 653, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 654, "usage_type": "call" }, { "api_name": "os.path", "line_number": 654, "usage_type": "attribute" }, { "api_name": "winreg.OpenKey", "line_number": 658, "usage_type": "call" }, { "api_name": "winreg.OpenKey", "line_number": 671, "usage_type": "call" }, { "api_name": "winreg.QueryInfoKey", "line_number": 672, "usage_type": "call" }, { "api_name": "winreg.EnumKey", "line_number": 673, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 674, "usage_type": "call" }, { "api_name": "os.path", "line_number": 674, "usage_type": "attribute" }, { "api_name": "winreg.QueryInfoKey", "line_number": 679, "usage_type": "call" }, { "api_name": "winreg.EnumValue", "line_number": 680, "usage_type": "call" }, { "api_name": "winreg.REG_SZ", "line_number": 681, "usage_type": "attribute" }, { "api_name": "winreg.REG_DWORD", "line_number": 683, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 693, "usage_type": "call" }, { "api_name": "os.path", "line_number": 693, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 693, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 694, "usage_type": "call" }, { "api_name": "os.path", "line_number": 694, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 697, "usage_type": "call" }, { "api_name": "os.path", "line_number": 697, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 698, "usage_type": "call" }, { "api_name": "os.path.expanduser", "line_number": 701, "usage_type": "call" }, { "api_name": "os.path", "line_number": 701, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 703, "usage_type": "call" }, { "api_name": "os.path", "line_number": 703, "usage_type": "attribute" }, { "api_name": "shutil.copyfile", "line_number": 706, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 709, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 717, "usage_type": "call" }, { "api_name": "os.path", "line_number": 717, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 727, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 735, "usage_type": "call" }, { "api_name": "os.path", "line_number": 735, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 735, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 736, "usage_type": "call" }, { "api_name": "os.path", "line_number": 736, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 737, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 741, "usage_type": "call" }, { "api_name": "os.path", "line_number": 741, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 741, "usage_type": "call" }, { "api_name": "subprocess.run", "line_number": 743, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 752, "usage_type": "call" }, { "api_name": "os.path", "line_number": 752, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 752, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 753, "usage_type": "call" }, { "api_name": "os.path", "line_number": 753, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 754, "usage_type": "call" }, { "api_name": "os.path", "line_number": 754, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 755, "usage_type": "call" }, { "api_name": "os.path.expanduser", "line_number": 758, "usage_type": "call" }, { "api_name": "os.path", "line_number": 758, "usage_type": "attribute" }, { "api_name": "os.walk", "line_number": 761, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 763, "usage_type": "call" }, { "api_name": "os.path", "line_number": 763, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 764, "usage_type": "call" }, { "api_name": "os.path", "line_number": 764, "usage_type": "attribute" }, { "api_name": "shutil.copy2", "line_number": 767, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 775, "usage_type": "call" }, { "api_name": "os.path", "line_number": 775, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 775, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 776, "usage_type": "call" }, { "api_name": "os.path", "line_number": 776, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 777, "usage_type": "call" }, { "api_name": "os.path", "line_number": 777, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 778, "usage_type": "call" }, { "api_name": "os.path.expanduser", "line_number": 781, "usage_type": "call" }, { "api_name": "os.path", "line_number": 781, "usage_type": "attribute" }, { "api_name": "os.walk", "line_number": 784, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 786, "usage_type": "call" }, { "api_name": "os.path", "line_number": 786, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 787, "usage_type": "call" }, { "api_name": "os.path", "line_number": 787, "usage_type": "attribute" }, { "api_name": "shutil.copy2", "line_number": 789, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 797, "usage_type": "call" }, { "api_name": "os.path", "line_number": 797, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 797, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 798, "usage_type": "call" }, { "api_name": "os.path", "line_number": 798, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 799, "usage_type": "call" }, { "api_name": "os.path", "line_number": 799, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 800, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 801, "usage_type": "call" }, { "api_name": "os.path", "line_number": 801, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 801, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 801, "usage_type": "attribute" }, { "api_name": "subprocess.check_output", "line_number": 806, "usage_type": "call" }, { "api_name": "subprocess.STDOUT", "line_number": 806, "usage_type": "attribute" }, { "api_name": "subprocess.CalledProcessError", "line_number": 807, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 819, "usage_type": "call" }, { "api_name": "os.path", "line_number": 819, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 819, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 820, "usage_type": "call" }, { "api_name": "os.path", "line_number": 820, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 821, "usage_type": "call" }, { "api_name": "os.path", "line_number": 821, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 822, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 824, "usage_type": "call" }, { "api_name": "os.path", "line_number": 824, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 824, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 829, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 830, "usage_type": "call" }, { "api_name": "os.path", "line_number": 830, "usage_type": "attribute" }, { "api_name": "os.stat", "line_number": 831, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 834, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 834, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 838, "usage_type": "call" }, { "api_name": "os.path", "line_number": 838, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 838, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 838, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 849, "usage_type": "call" }, { "api_name": "os.path", "line_number": 849, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 849, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 850, "usage_type": "call" }, { "api_name": "os.path", "line_number": 850, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 851, "usage_type": "call" }, { "api_name": "os.path", "line_number": 851, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 852, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 858, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 864, "usage_type": "call" }, { "api_name": "os.path", "line_number": 864, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 865, "usage_type": "call" }, { "api_name": "os.path", "line_number": 865, "usage_type": "attribute" }, { "api_name": "shutil.copy", "line_number": 866, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 872, "usage_type": "call" }, { "api_name": "os.path", "line_number": 872, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 872, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 873, "usage_type": "call" }, { "api_name": "os.path", "line_number": 873, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 874, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 882, "usage_type": "call" }, { "api_name": "os.path", "line_number": 882, "usage_type": "attribute" }, { "api_name": "subprocess.run", "line_number": 887, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 887, "usage_type": "attribute" }, { "api_name": "subprocess.CalledProcessError", "line_number": 889, "usage_type": "attribute" } ]
23404494402
"""Test the concurrency module.""" from typing import Any import pytest from rtasr.concurrency import ConcurrencyHandler, ConcurrencyToken class TestConcurrencyToken: """Test the ConcurrencyToken class.""" @pytest.mark.parametrize("value", [None, "string", True, False, [], {}]) def test_concurrency_token_invalid(self, value: Any) -> None: """Test the concurrency token with invalid values.""" with pytest.raises(TypeError): ConcurrencyToken(value) @pytest.mark.parametrize("value", [0, 1, 2, 1.0, 2.0]) def test_concurrency_token_valid(self, value: int) -> None: """Test the concurrency token.""" token = ConcurrencyToken(value=value) assert token.value == value class TestConcurrencyHandler: """Test the ConcurrencyHandler class.""" @pytest.mark.asyncio async def test_concurrency_handler_with_limit(self) -> None: """Test the concurrency handler with a limit.""" limit = 5 concurrency_handler = ConcurrencyHandler(limit) assert hasattr(concurrency_handler, "limit") assert hasattr(concurrency_handler, "queue") assert concurrency_handler.limit == limit assert concurrency_handler.queue.maxsize == limit tokens = [] for _ in range(limit): token = await concurrency_handler.get() assert isinstance(token, ConcurrencyToken) tokens.append(token) # Queue should be empty now assert concurrency_handler.queue.empty() for token in tokens: concurrency_handler.put(token) # Queue should be refilled for _ in range(limit): token = await concurrency_handler.get() assert isinstance(token, ConcurrencyToken) @pytest.mark.asyncio async def test_concurrency_handler_without_limit(self) -> None: """Test the concurrency handler without a limit.""" concurrency_handler = ConcurrencyHandler(limit=None) token = await concurrency_handler.get() assert token is None
Wordcab/rtasr
tests/test_concurrency.py
test_concurrency.py
py
2,077
python
en
code
5
github-code
6
[ { "api_name": "typing.Any", "line_number": 14, "usage_type": "name" }, { "api_name": "pytest.raises", "line_number": 16, "usage_type": "call" }, { "api_name": "rtasr.concurrency.ConcurrencyToken", "line_number": 17, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 13, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 13, "usage_type": "attribute" }, { "api_name": "rtasr.concurrency.ConcurrencyToken", "line_number": 22, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 19, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 19, "usage_type": "attribute" }, { "api_name": "rtasr.concurrency.ConcurrencyHandler", "line_number": 34, "usage_type": "call" }, { "api_name": "rtasr.concurrency.ConcurrencyToken", "line_number": 44, "usage_type": "argument" }, { "api_name": "rtasr.concurrency.ConcurrencyToken", "line_number": 56, "usage_type": "argument" }, { "api_name": "pytest.mark", "line_number": 30, "usage_type": "attribute" }, { "api_name": "rtasr.concurrency.ConcurrencyHandler", "line_number": 61, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 58, "usage_type": "attribute" } ]
6173790975
import csv import sqlite3 import numpy as np import pandas as pd from nltk.stem.porter import * from nltk.tokenize import word_tokenize from nltk.corpus import stopwords import string from PIL import Image from os import path import matplotlib.pyplot as plt import matplotlib as mpl import pickle from sklearn.svm import LinearSVC from sklearn.feature_extraction.text import TfidfVectorizer from wordcloud import WordCloud, STOPWORDS from collections import Counter from nltk.stem import SnowballStemmer from nltk.stem import WordNetLemmatizer stemmer = SnowballStemmer('english') wordnet_lemmatizer = WordNetLemmatizer() #############################In/out############################ def open_file(csvfile): reader = pd.read_csv(csvfile) return reader def output_file(df,string): df.to_csv(string, index = False) #############################Word Cloud & Feature Extraction############################ def text_process(data): ''' Takes in a df in format of [text,stars] performs the following: 1. Lower capital letters 2. Remove all punctuation 3. Remove all stopwords 4. Reduce words to their word stem 5. Return a list of words ''' for i in range(len(data)): line = data[i] line = line.lower() # lower case translation = str.maketrans("", "", string.punctuation); line = line.translate(translation) split = word_tokenize(line) # filter out any tokens not containing letters (e.g., numeric tokens, raw punctuation) filtered = [] for token in split: if re.search('[a-zA-Z]', token): filtered.append(token) word = [i for i in filtered if i not in stopwords.words('english')] d = [stemmer.stem(word) for word in word] d = [wordnet_lemmatizer.lemmatize(word) for word in d] data[i] = d return data def top_words(business_id,review_ml ): train = review_ml[review_ml['business_id'] == business_id][review_ml['True(1)/Deceptive(0)'] == 'True'] text = list(train['Review']) # text text = text_process(text) text = sum(text, []) counts = Counter(text) wordcloud = WordCloud( background_color='white', max_words=100, max_font_size=50, min_font_size=10, random_state=40, ).fit_words(counts) fig = plt.figure(1) plt.imshow(wordcloud) plt.axis('off') # remove axis plt.show() def change_label(x): for i in range(len(x)): if x[i] >= 3.0: # good review: stars >=3.0 x[i] = 1 else: # bad review: stars 3.0 x[i] = 0 return x def bigram(business_id, review_ml): # only use true review train0 = review_ml[review_ml['business_id'] == business_id] train = train0[train0['True(1)/Deceptive(0)'] == 'True'] #print(train.head()) #train_data = list(train['Review']) # text label = list(train['Stars']) # ratings #print(label) train_label = change_label(label) #print(train_label) # TfidfVectorizer Transform transformer = TfidfVectorizer(stop_words='english', ngram_range=(2, 2)) # "ignore terms that appear in less than 1% of the documents". #print(transformer) cvectorizer = transformer.fit(train['Review']) #print(cvectorizer) transformed = cvectorizer.transform(train['Review']) #print(transformed) # SVM regression clf = LinearSVC() clf.fit(transformed, train_label) coefficients = clf.coef_.ravel() #print(coefficients) pos_coefficients = np.argsort(coefficients)[-10:] neg_coefficients = np.argsort(coefficients)[:10] combine = np.hstack([neg_coefficients, pos_coefficients]) #print("combine:, ",combine) #print("coefficients[combine]: ", coefficients[combine]) plt.figure(figsize=(7, 4)) #print("fisnish 1") colors = ['red' if i < 0 else 'blue' for i in coefficients[combine]] #print("finish 2") plt.bar(np.arange(len(coefficients[combine])), coefficients[combine], color=colors) #print("finish 3") feature_names = np.array(cvectorizer.get_feature_names()) #print("finish 4") plt.title('why the restaurant is rated as bad or good ', fontsize=15) #print("finish 5") plt.xticks(np.arange(0, 2 * 10), feature_names[combine], rotation=40, ha='right') #print("finish 6") plt.show() #print("finish 7") #############################helper function############################# def load_database_data(c, zipcode, business_name_input): c.execute(''' SELECT b_id,r.review, r.r_stars FROM business, review_fact_table r WHERE postal_code = ? AND name = ? AND r.business_id = b_id''', (zipcode, business_name_input,)) dataframe = pd.DataFrame(data=c.fetchall(), columns=['business_id', 'review', 'rating']) return dataframe def select_data(c, zipcode, business_name): c.execute(''' SELECT DISTINCT(b_id) FROM business, review_fact_table r WHERE postal_code = ? AND name = ? AND r.business_id = b_id''', (zipcode, business_name,)) single_df = pd.DataFrame(data=c.fetchall(), columns=['business_id']) return single_df['business_id'][0] def fake_ratio(predict, single): # Load fake results predicted_fake = predict # reviews that has only that business id reviews = predicted_fake[predicted_fake['business_id'] == single] n = reviews.shape[0] # print(n) fake = reviews.groupby('True(1)/Deceptive(0)').count()['Review'][0] # print(fake) fake_percentage = fake / n # print(fake_percentage) return fake_percentage ##############################main###################################### def main(): #open states and income raw data zipcode = input("zipcode:") business_name = input("restaurant name:") print(zipcode,business_name) conn = sqlite3.connect('yelp.db') c = conn.cursor() predicted_fake = open_file('data/predicted_review.csv') # find the business id single = select_data(c, zipcode, business_name) # print(single) fake_review_ratio = fake_ratio(predicted_fake,single) print(fake_review_ratio) #top_words(single, predicted_fake) bigram(single, predicted_fake) #if __name__=="__main__": #main() main()
zzhang83/Yelp_Sentiment_Analysis
Scripts/UI.py
UI.py
py
6,335
python
en
code
20
github-code
6
[ { "api_name": "nltk.stem.SnowballStemmer", "line_number": 23, "usage_type": "call" }, { "api_name": "nltk.stem.WordNetLemmatizer", "line_number": 24, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 28, "usage_type": "call" }, { "api_name": "string.punctuation", "line_number": 49, "usage_type": "attribute" }, { "api_name": "nltk.tokenize.word_tokenize", "line_number": 51, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords.words", "line_number": 57, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords", "line_number": 57, "usage_type": "name" }, { "api_name": "collections.Counter", "line_number": 71, "usage_type": "call" }, { "api_name": "wordcloud.WordCloud", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 81, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 81, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 82, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 82, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 83, "usage_type": "name" }, { "api_name": "sklearn.feature_extraction.text.TfidfVectorizer", "line_number": 108, "usage_type": "call" }, { "api_name": "sklearn.svm.LinearSVC", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 122, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 123, "usage_type": "call" }, { "api_name": "numpy.hstack", "line_number": 124, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 128, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 128, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.bar", "line_number": 134, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 134, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 137, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 139, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 139, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 142, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 142, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 142, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 145, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 145, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 155, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 162, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 185, "usage_type": "call" } ]
8190287555
#!/usr/bin/env python3 # Get sequences from NCBI. # To be called from Snakefile. # Usage: python windows.py <infile> <outfile> <email> <window_size> import os import sys from Bio import Entrez from Bio import SeqIO import pandas as pd def main(): snpfile = sys.argv[1] outfile = sys.argv[2] email = sys.argv[3] window_size = sys.argv[4] interest = pd.read_csv( snpfile, header=0, dtype={"chrom": str, "center": np.int64}, ) interest.columns = interest.columns.str.lower().str.replace(" ", "_") interest[["chrom", "center"]] = ( interest.iloc[:, 0] .str.replace("_[A-Z]{3}?", "") .str.replace(" ", "") .str.split("_", expand=True) ) interest.assign( start=lambda center: center.to_numeric() - window_size, end=lambda center: center.to_numeric() + window_size ) interest.index.rename("Index", inplace=True) summary = pd.read_csv("Data/dmelSummary.csv") summary.index.rename("Index", inplace=True) summary.columns = summary.columns.str.lower().str.replace(" ", "_") seqs = [] Entrez.email = email for index, row in interest.iterrows(): with Entrez.efetch( db="nucleotide", id=summary.loc[summary["name"] == row["chrom"], "refseq"].iat[0], rettype="fasta", strand=1, seq_start=row["start"], seq_stop=row["end"], ) as handle: seqs.append(SeqIO.read(handle, "fasta")) SeqIO.write(seqs, outfile, "fasta") if __name__ == "__main__": main()
mpjuers/SexualSelectionSubstitutions
Scripts/GetData/windows.py
windows.py
py
1,594
python
en
code
0
github-code
6
[ { "api_name": "sys.argv", "line_number": 16, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 17, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 18, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 19, "usage_type": "attribute" }, { "api_name": "pandas.read_csv", "line_number": 21, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 38, "usage_type": "call" }, { "api_name": "Bio.Entrez.email", "line_number": 43, "usage_type": "attribute" }, { "api_name": "Bio.Entrez", "line_number": 43, "usage_type": "name" }, { "api_name": "Bio.Entrez.efetch", "line_number": 45, "usage_type": "call" }, { "api_name": "Bio.Entrez", "line_number": 45, "usage_type": "name" }, { "api_name": "Bio.SeqIO.read", "line_number": 53, "usage_type": "call" }, { "api_name": "Bio.SeqIO", "line_number": 53, "usage_type": "name" }, { "api_name": "Bio.SeqIO.write", "line_number": 54, "usage_type": "call" }, { "api_name": "Bio.SeqIO", "line_number": 54, "usage_type": "name" } ]
29284148447
# -*- coding: utf-8 -*- import sys import re import pdb import sqlite3 def to_numbers(ch): n_dict = {"一":1,\ "二":2,\ "三":3,\ "四":4,\ "五":5,\ "六":6,\ "七":7,\ "八":8,\ "九":9,\ "十":10} return n_dict[ch] def main(args): #pdb.set_trace() #rid = "testrid" rid = args[1].decode("gb18030"); #lines = "||| 小校场 三清殿 小校场 ||| \ | /||| 小校场---武当广场---小校场 ||| / ↑ \||| 小校场 凌霄宫 小校场 ||||||武当广场 - [门派]|||||| 这是一个由大石板铺成的广场,是武当弟子学习武功和互|||相切磋的地点。周围种满了梧桐树,一到秋天就是满地的落叶。|||一个年纪轻轻的道童正在打扫。北边是灵霄宫三清殿。||| 「深秋」: 东方的天空渐渐的发白了,又一个万物初醒的早上!。|||||| 这里明显的出口是 north、east、southeast、northeast、west、southdown、southwest|||、northwest 和 eastdown。|||||| 二位武当派小道士 道童(Daotong)||| 武当派真人 冲虚道长(Chongxu daozhang)|||>".split("|||") lines = args[2].decode("gb18030").encode("utf8").split("|||") p = re.compile(r"^\s*((一|二|三|四|五|六|七|八|九|十)(位|只))?(.*?)\((.*?)\)( <(.*?)>)?$") conn = sqlite3.connect('./tintin/myscripts/pkuxkx/gps/xkxmap.sqlite') cursor = conn.cursor() cursor.execute('delete from room_npc where rid=?',(rid,)) for line in lines: if p.match(line): s = p.match(line) npc_num = 1 if s.group(2) is not None: npc_num = to_numbers(s.group(2)) ps = re.compile(r" |「|」") mylist = ps.split(s.group(4).strip(" ")) npc_title1="" npc_title2="" npc_title3="" npc_cname="" ts = [] for t in mylist: if t=="": continue ts.append(t) if len(ts) == 4: npc_title1 = ts[0] npc_title2 = ts[1] npc_title3 = ts[2] npc_cname = ts[3] if len(ts) == 3: npc_title1 = ts[0] npc_title2 = ts[1] npc_cname = ts[2] if len(ts) == 2: npc_title1 = ts[0] npc_cname = ts[1] if len(ts) == 1: npc_cname = ts[0] npc_ename = s.group(5) npc_status = s.group(7) if npc_status is None: npc_status = "normal" # print(npc_num) # print(npc_title1.decode("utf8").encode("gb18030")) # print(npc_title2.decode("utf8").encode("gb18030")) # print(npc_title3.decode("utf8").encode("gb18030")) # print(npc_cname.decode("utf8").encode("gb18030")) # print(npc_ename.decode("utf8").encode("gb18030")) # print(npc_status.decode("utf8").encode("gb18030")) cursor.execute('insert into room_npc (rid,npc_num,npc_title1,npc_title2,npc_title3,npc_cname,npc_ename) values (?,?,?,?,?,?,?)',(rid,npc_num,npc_title1.decode("utf8"),npc_title2.decode("utf8"),npc_title3.decode("utf8"),npc_cname.decode("utf8"),npc_ename.decode("utf8"))); conn.commit() conn.close() if __name__=="__main__": main(sys.argv)
Tubao/xkx
pkuxkx/gps/store_npcs.py
store_npcs.py
py
3,716
python
en
code
2
github-code
6
[ { "api_name": "re.compile", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 28, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 37, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 80, "usage_type": "attribute" } ]
17233943864
# coding: utf-8 """ Refinery Calc API Documentation Integrate the powerful Refinery Calc Engine into your process using this API. # noqa: E501 OpenAPI spec version: 1.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class OutputTypes(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'balance': 'list[OutputDetails]', 'complexity': 'list[OutputDetails]', 'constraints': 'list[OutputDetails]', 'crude_names': 'list[OutputDetails]', 'crude_percent': 'list[OutputDetails]', 'crude_pricing': 'list[OutputDetails]', 'crude_quality': 'list[OutputDetails]', 'crudes_and_feeds': 'list[OutputDetails]', 'delete_category': 'list[OutputDetails]', 'economics': 'list[OutputDetails]', 'end_points_f': 'list[OutputDetails]', 'expense_factors': 'list[OutputDetails]', 'fcc_hydrk_conv': 'list[OutputDetails]', 'feeds_pricing': 'list[OutputDetails]', 'gasoline_blending': 'list[OutputDetails]', 'general': 'list[OutputDetails]', 'hydrogen': 'list[OutputDetails]', 'product_pricing': 'list[OutputDetails]', 'products': 'list[OutputDetails]', 'refinery_layout_svg': 'list[OutputDetails]', 'sustainability': 'list[OutputDetails]', 'unit_balance': 'list[OutputDetails]' } attribute_map = { 'balance': 'balance', 'complexity': 'complexity', 'constraints': 'constraints', 'crude_names': 'crudeNames', 'crude_percent': 'crudePercent', 'crude_pricing': 'crudePricing', 'crude_quality': 'crudeQuality', 'crudes_and_feeds': 'crudesAndFeeds', 'delete_category': 'deleteCategory', 'economics': 'economics', 'end_points_f': 'endPointsF', 'expense_factors': 'expenseFactors', 'fcc_hydrk_conv': 'fccHydrkConv', 'feeds_pricing': 'feedsPricing', 'gasoline_blending': 'gasolineBlending', 'general': 'general', 'hydrogen': 'hydrogen', 'product_pricing': 'productPricing', 'products': 'products', 'refinery_layout_svg': 'refineryLayoutSVG', 'sustainability': 'sustainability', 'unit_balance': 'unitBalance' } def __init__(self, balance=None, complexity=None, constraints=None, crude_names=None, crude_percent=None, crude_pricing=None, crude_quality=None, crudes_and_feeds=None, delete_category=None, economics=None, end_points_f=None, expense_factors=None, fcc_hydrk_conv=None, feeds_pricing=None, gasoline_blending=None, general=None, hydrogen=None, product_pricing=None, products=None, refinery_layout_svg=None, sustainability=None, unit_balance=None): # noqa: E501 """OutputTypes - a model defined in Swagger""" # noqa: E501 self._balance = None self._complexity = None self._constraints = None self._crude_names = None self._crude_percent = None self._crude_pricing = None self._crude_quality = None self._crudes_and_feeds = None self._delete_category = None self._economics = None self._end_points_f = None self._expense_factors = None self._fcc_hydrk_conv = None self._feeds_pricing = None self._gasoline_blending = None self._general = None self._hydrogen = None self._product_pricing = None self._products = None self._refinery_layout_svg = None self._sustainability = None self._unit_balance = None self.discriminator = None if balance is not None: self.balance = balance if complexity is not None: self.complexity = complexity if constraints is not None: self.constraints = constraints if crude_names is not None: self.crude_names = crude_names if crude_percent is not None: self.crude_percent = crude_percent if crude_pricing is not None: self.crude_pricing = crude_pricing if crude_quality is not None: self.crude_quality = crude_quality if crudes_and_feeds is not None: self.crudes_and_feeds = crudes_and_feeds if delete_category is not None: self.delete_category = delete_category if economics is not None: self.economics = economics if end_points_f is not None: self.end_points_f = end_points_f if expense_factors is not None: self.expense_factors = expense_factors if fcc_hydrk_conv is not None: self.fcc_hydrk_conv = fcc_hydrk_conv if feeds_pricing is not None: self.feeds_pricing = feeds_pricing if gasoline_blending is not None: self.gasoline_blending = gasoline_blending if general is not None: self.general = general if hydrogen is not None: self.hydrogen = hydrogen if product_pricing is not None: self.product_pricing = product_pricing if products is not None: self.products = products if refinery_layout_svg is not None: self.refinery_layout_svg = refinery_layout_svg if sustainability is not None: self.sustainability = sustainability if unit_balance is not None: self.unit_balance = unit_balance @property def balance(self): """Gets the balance of this OutputTypes. # noqa: E501 :return: The balance of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._balance @balance.setter def balance(self, balance): """Sets the balance of this OutputTypes. :param balance: The balance of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._balance = balance @property def complexity(self): """Gets the complexity of this OutputTypes. # noqa: E501 :return: The complexity of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._complexity @complexity.setter def complexity(self, complexity): """Sets the complexity of this OutputTypes. :param complexity: The complexity of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._complexity = complexity @property def constraints(self): """Gets the constraints of this OutputTypes. # noqa: E501 :return: The constraints of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._constraints @constraints.setter def constraints(self, constraints): """Sets the constraints of this OutputTypes. :param constraints: The constraints of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._constraints = constraints @property def crude_names(self): """Gets the crude_names of this OutputTypes. # noqa: E501 :return: The crude_names of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crude_names @crude_names.setter def crude_names(self, crude_names): """Sets the crude_names of this OutputTypes. :param crude_names: The crude_names of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crude_names = crude_names @property def crude_percent(self): """Gets the crude_percent of this OutputTypes. # noqa: E501 :return: The crude_percent of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crude_percent @crude_percent.setter def crude_percent(self, crude_percent): """Sets the crude_percent of this OutputTypes. :param crude_percent: The crude_percent of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crude_percent = crude_percent @property def crude_pricing(self): """Gets the crude_pricing of this OutputTypes. # noqa: E501 :return: The crude_pricing of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crude_pricing @crude_pricing.setter def crude_pricing(self, crude_pricing): """Sets the crude_pricing of this OutputTypes. :param crude_pricing: The crude_pricing of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crude_pricing = crude_pricing @property def crude_quality(self): """Gets the crude_quality of this OutputTypes. # noqa: E501 :return: The crude_quality of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crude_quality @crude_quality.setter def crude_quality(self, crude_quality): """Sets the crude_quality of this OutputTypes. :param crude_quality: The crude_quality of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crude_quality = crude_quality @property def crudes_and_feeds(self): """Gets the crudes_and_feeds of this OutputTypes. # noqa: E501 :return: The crudes_and_feeds of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._crudes_and_feeds @crudes_and_feeds.setter def crudes_and_feeds(self, crudes_and_feeds): """Sets the crudes_and_feeds of this OutputTypes. :param crudes_and_feeds: The crudes_and_feeds of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._crudes_and_feeds = crudes_and_feeds @property def delete_category(self): """Gets the delete_category of this OutputTypes. # noqa: E501 :return: The delete_category of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._delete_category @delete_category.setter def delete_category(self, delete_category): """Sets the delete_category of this OutputTypes. :param delete_category: The delete_category of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._delete_category = delete_category @property def economics(self): """Gets the economics of this OutputTypes. # noqa: E501 :return: The economics of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._economics @economics.setter def economics(self, economics): """Sets the economics of this OutputTypes. :param economics: The economics of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._economics = economics @property def end_points_f(self): """Gets the end_points_f of this OutputTypes. # noqa: E501 :return: The end_points_f of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._end_points_f @end_points_f.setter def end_points_f(self, end_points_f): """Sets the end_points_f of this OutputTypes. :param end_points_f: The end_points_f of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._end_points_f = end_points_f @property def expense_factors(self): """Gets the expense_factors of this OutputTypes. # noqa: E501 :return: The expense_factors of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._expense_factors @expense_factors.setter def expense_factors(self, expense_factors): """Sets the expense_factors of this OutputTypes. :param expense_factors: The expense_factors of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._expense_factors = expense_factors @property def fcc_hydrk_conv(self): """Gets the fcc_hydrk_conv of this OutputTypes. # noqa: E501 :return: The fcc_hydrk_conv of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._fcc_hydrk_conv @fcc_hydrk_conv.setter def fcc_hydrk_conv(self, fcc_hydrk_conv): """Sets the fcc_hydrk_conv of this OutputTypes. :param fcc_hydrk_conv: The fcc_hydrk_conv of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._fcc_hydrk_conv = fcc_hydrk_conv @property def feeds_pricing(self): """Gets the feeds_pricing of this OutputTypes. # noqa: E501 :return: The feeds_pricing of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._feeds_pricing @feeds_pricing.setter def feeds_pricing(self, feeds_pricing): """Sets the feeds_pricing of this OutputTypes. :param feeds_pricing: The feeds_pricing of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._feeds_pricing = feeds_pricing @property def gasoline_blending(self): """Gets the gasoline_blending of this OutputTypes. # noqa: E501 :return: The gasoline_blending of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._gasoline_blending @gasoline_blending.setter def gasoline_blending(self, gasoline_blending): """Sets the gasoline_blending of this OutputTypes. :param gasoline_blending: The gasoline_blending of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._gasoline_blending = gasoline_blending @property def general(self): """Gets the general of this OutputTypes. # noqa: E501 :return: The general of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._general @general.setter def general(self, general): """Sets the general of this OutputTypes. :param general: The general of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._general = general @property def hydrogen(self): """Gets the hydrogen of this OutputTypes. # noqa: E501 :return: The hydrogen of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._hydrogen @hydrogen.setter def hydrogen(self, hydrogen): """Sets the hydrogen of this OutputTypes. :param hydrogen: The hydrogen of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._hydrogen = hydrogen @property def product_pricing(self): """Gets the product_pricing of this OutputTypes. # noqa: E501 :return: The product_pricing of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._product_pricing @product_pricing.setter def product_pricing(self, product_pricing): """Sets the product_pricing of this OutputTypes. :param product_pricing: The product_pricing of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._product_pricing = product_pricing @property def products(self): """Gets the products of this OutputTypes. # noqa: E501 :return: The products of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._products @products.setter def products(self, products): """Sets the products of this OutputTypes. :param products: The products of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._products = products @property def refinery_layout_svg(self): """Gets the refinery_layout_svg of this OutputTypes. # noqa: E501 :return: The refinery_layout_svg of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._refinery_layout_svg @refinery_layout_svg.setter def refinery_layout_svg(self, refinery_layout_svg): """Sets the refinery_layout_svg of this OutputTypes. :param refinery_layout_svg: The refinery_layout_svg of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._refinery_layout_svg = refinery_layout_svg @property def sustainability(self): """Gets the sustainability of this OutputTypes. # noqa: E501 :return: The sustainability of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._sustainability @sustainability.setter def sustainability(self, sustainability): """Sets the sustainability of this OutputTypes. :param sustainability: The sustainability of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._sustainability = sustainability @property def unit_balance(self): """Gets the unit_balance of this OutputTypes. # noqa: E501 :return: The unit_balance of this OutputTypes. # noqa: E501 :rtype: list[OutputDetails] """ return self._unit_balance @unit_balance.setter def unit_balance(self, unit_balance): """Sets the unit_balance of this OutputTypes. :param unit_balance: The unit_balance of this OutputTypes. # noqa: E501 :type: list[OutputDetails] """ self._unit_balance = unit_balance def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(OutputTypes, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OutputTypes): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
refinerycalc/sdk-example-python
python/refinerycalc/models/output_types.py
output_types.py
py
19,790
python
en
code
0
github-code
6
[ { "api_name": "six.iteritems", "line_number": 616, "usage_type": "call" }, { "api_name": "pprint.pformat", "line_number": 641, "usage_type": "call" } ]
32552302191
import threading import wikipedia from kivy.clock import mainthread from kivymd.app import MDApp class MainApp(MDApp): url = "" def build(self): self.title = "Wikipedia-App" @mainthread def search(self, text): t1 = threading.Thread(target=self.get_wiki, args=(text,), daemon=True) t1.start() def get_wiki(self, text): self.root.ids.rc_spin.active = True self.root.ids.summary.text = "" self.root.ids.title.text = "" wikipedia.set_lang("en") try: summary = wikipedia.page(text.strip()) self.root.ids.title.text = summary.title self.root.ids.summary.text = f"\n{summary.summary}" except Exception as e: print(e) self.root.ids.title.text = ( "[color=#EE4B2B]" + "Sorry unable to find " + self.root.ids.fld.text + "[/color]" ) self.root.ids.rc_spin.active = False if __name__ == "__main__": MainApp().run()
Kulothungan16/Example-Kivy-Apps
WikiPedia/main.py
main.py
py
1,052
python
en
code
42
github-code
6
[ { "api_name": "kivymd.app.MDApp", "line_number": 8, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 16, "usage_type": "call" }, { "api_name": "kivy.clock.mainthread", "line_number": 14, "usage_type": "name" }, { "api_name": "wikipedia.set_lang", "line_number": 24, "usage_type": "call" }, { "api_name": "wikipedia.page", "line_number": 26, "usage_type": "call" } ]
457427877
# encoding: utf-8 """ @author: liaoxingyu @contact: [email protected] """ import logging import math from collections import OrderedDict import torch from torch import nn import torch.nn.functional as F from torch.autograd.variable import Variable from fastreid.modeling.ops import MetaConv2d, MetaLinear, MetaBNNorm, MetaINNorm, MetaIBNNorm, MetaGate from fastreid.layers import ( IBN, SELayer, Non_local, get_norm, ) from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message from .build import BACKBONE_REGISTRY from fastreid.utils import comm K = 4 logger = logging.getLogger(__name__) model_urls = { '18x': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', '34x': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', '50x': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', '101x': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'ibn_18x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet18_ibn_a-2f571257.pth', 'ibn_34x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet34_ibn_a-94bc1577.pth', 'ibn_50x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet50_ibn_a-d9d0bb7b.pth', 'ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet101_ibn_a-59ea0ac6.pth', 'se_ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/se_resnet101_ibn_a-fabed4e2.pth', } def repackage_hidden(h): if type(h) == Variable: return Variable(h.data) else: return tuple(repackage_hidden(v) for v in h) class Sequential_ext(nn.Module): """A Sequential container extended to also propagate the gating information that is needed in the target rate loss. """ def __init__(self, *args): super(Sequential_ext, self).__init__() if len(args) == 1 and isinstance(args[0], OrderedDict): for key, module in args[0].items(): self.add_module(key, module) else: for idx, module in enumerate(args): self.add_module(str(idx), module) def __getitem__(self, idx): if not (-len(self) <= idx < len(self)): raise IndexError('index {} is out of range'.format(idx)) if idx < 0: idx += len(self) it = iter(self._modules.values()) for i in range(idx): next(it) return next(it) def __len__(self): return len(self._modules) def forward(self, input, opt=None): for i, module in enumerate(self._modules.values()): input = module(input, opt) return input class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) if with_ibn: self.bn1 = IBN(planes, bn_norm) else: self.bn1 = get_norm(bn_norm, planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = get_norm(bn_norm, planes) self.relu = nn.ReLU(inplace=True) if with_se: self.se = SELayer(planes, reduction) else: self.se = nn.Identity() self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.se(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class MetaSELayer(nn.Module): def __init__(self, channel, reduction=16): super(MetaSELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = MetaLinear(channel, int(channel / reduction), bias=False) self.relu = nn.ReLU() self.fc2 = MetaLinear(int(channel / reduction), channel, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x, opt=None): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.relu(self.fc1(y, opt)) y = self.sigmoid(self.fc2(y, opt)).view(b, c, 1, 1) return x * y.expand_as(x) class Bottleneck2(nn.Module): expansion = 4*K def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16): super(Bottleneck2, self).__init__() self.conv1 = MetaConv2d(inplanes * K, planes, kernel_size=1, bias=False, groups=K) if with_ibn: self.bn1 = MetaIBNNorm(planes) else: self.bn1 = MetaBNNorm(planes) self.conv2 = MetaConv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False, groups=K) self.bn2 = MetaBNNorm(planes) self.conv3 = MetaConv2d(planes, planes * self.expansion, kernel_size=1, bias=False, groups=K) self.bn3 = MetaBNNorm(planes * self.expansion) self.relu = nn.ReLU(inplace=True) if with_se: self.se = SELayer(planes * self.expansion, reduction) else: self.se = nn.Identity() self.downsample = downsample self.stride = stride def forward(self, x, opt=None): residual = x out = self.conv1(x, opt) out = self.bn1(out, opt) out = self.relu(out) out = self.conv2(out, opt) out = self.bn2(out, opt) out = self.relu(out) out = self.conv3(out, opt) out = self.bn3(out, opt) out = self.se(out) if self.downsample is not None: residual = self.downsample(x, opt) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16): super(Bottleneck, self).__init__() if bn_norm == 'IN': norm = MetaINNorm else: norm = MetaBNNorm self.conv1 = MetaConv2d(inplanes, planes, kernel_size=1, bias=False) if with_ibn: self.bn1 = MetaIBNNorm(planes) else: self.bn1 = norm(planes) self.conv2 = MetaConv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = norm(planes) self.conv3 = MetaConv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = norm(planes * self.expansion) self.relu = nn.ReLU(inplace=True) if with_se: self.se = SELayer(planes * self.expansion, reduction) else: self.se = nn.Identity() self.downsample = downsample self.stride = stride def forward(self, x, opt=None): residual = x out = self.conv1(x, opt) out = self.bn1(out, opt) out = self.relu(out) out = self.conv2(out, opt) out = self.bn2(out, opt) out = self.relu(out) out = self.conv3(out, opt) out = self.bn3(out, opt) out = self.se(out) if self.downsample is not None: residual = self.downsample(x, opt) out += residual out = self.relu(out) return out class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x, None class HyperRouter(nn.Module): def __init__(self, planes): super().__init__() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.planes = planes self.fc1 = MetaLinear(planes, planes//16) self.fc2 = MetaLinear(planes//16, planes*K) self.fc_classifier = MetaLinear(planes*K, 3) self.relu = nn.ReLU() self.softmax = nn.Softmax(-1) def forward(self, x, opt=None): x = self.avgpool(x).squeeze(-1).squeeze(-1) weight = self.relu(F.normalize(self.fc1(x, opt), 2, -1)) weight = self.fc2(weight, opt).reshape(-1, self.planes, K) domain_cls_logits = self.fc_classifier(weight.reshape(-1, self.planes*K), opt) x = self.softmax(torch.einsum('bi,bil->bl', x, weight)) return x, domain_cls_logits class ResNet(nn.Module): def __init__(self, last_stride, bn_norm, with_ibn, with_se, with_nl, block, layers, non_layers): self.inplanes = 64 super().__init__() self.conv1 = MetaConv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = MetaBNNorm(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) self.layer1 = self._make_layer(block, 64, layers[0]-1, 1, bn_norm, with_ibn, with_se) self.adaptor1_base = block(256, 64, 'IN', False, with_se) self.adaptor1_sub = Bottleneck2(256, 64, bn_norm, with_ibn, with_se) self.router1 = HyperRouter(256) self.invariant_norm1 = MetaBNNorm(256) self.specific_norm1 = MetaBNNorm(256) self.meta_fuse1 = MetaGate(256) self.meta_se1 = MetaSELayer(256) self.map1 = MetaBNNorm(256, bias_freeze=True) self.layer2 = self._make_layer(block, 128, layers[1]-1, 2, bn_norm, with_ibn, with_se) self.adaptor2_base = block(512, 128, 'IN', False, with_se) self.adaptor2_sub = Bottleneck2(512, 128, bn_norm, with_ibn, with_se) self.router2 = HyperRouter(512) self.invariant_norm2 = MetaBNNorm(512) self.specific_norm2 = MetaBNNorm(512) self.meta_fuse2 = MetaGate(512) self.meta_se2 = MetaSELayer(512) self.map2 = MetaBNNorm(512, bias_freeze=True) self.layer3 = self._make_layer(block, 256, layers[2]-1, 2, bn_norm, with_ibn, with_se) self.adaptor3_base = block(1024, 256, 'IN', False, with_se) self.adaptor3_sub = Bottleneck2(1024, 256, bn_norm, with_ibn, with_se) self.router3 = HyperRouter(1024) self.invariant_norm3 = MetaBNNorm(1024) self.specific_norm3 = MetaBNNorm(1024) self.meta_fuse3 = MetaGate(1024) self.meta_se3 = MetaSELayer(1024) self.map3 = MetaBNNorm(1024, bias_freeze=True) self.layer4 = self._make_layer(block, 512, layers[3]-1, last_stride, bn_norm, with_se=with_se) self.adaptor4_base = block(2048, 512, 'IN', False, with_se) self.adaptor4_sub = Bottleneck2(2048, 512, bn_norm, with_ibn, with_se) self.router4 = HyperRouter(2048) self.invariant_norm4 = MetaBNNorm(2048) self.specific_norm4 = MetaBNNorm(2048) self.meta_fuse4 = MetaGate(2048) self.meta_se4 = MetaSELayer(2048) self.map4 = MetaBNNorm(2048, bias_freeze=True) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # Standard Params self.softmax = nn.Softmax(1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU() self.random_init() # fmt: off if with_nl: self._build_nonlocal(layers, non_layers, bn_norm) else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = [] # fmt: on def _make_layer(self, block, planes, blocks, stride=1, bn_norm="BN", with_ibn=False, with_se=False): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = Sequential_ext( MetaConv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), MetaBNNorm(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se)) return nn.Sequential(*layers) def _build_nonlocal(self, layers, non_layers, bn_norm): self.NL_1 = nn.ModuleList( [Non_local(256, bn_norm) for _ in range(non_layers[0])]) self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])]) self.NL_2 = nn.ModuleList( [Non_local(512, bn_norm) for _ in range(non_layers[1])]) self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])]) self.NL_3 = nn.ModuleList( [Non_local(1024, bn_norm) for _ in range(non_layers[2])]) self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])]) self.NL_4 = nn.ModuleList( [Non_local(2048, bn_norm) for _ in range(non_layers[3])]) self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])]) def get_all_conv_layers(self, module): for m in module: if isinstance(m, Bottleneck): for _m in m.modules(): if isinstance(_m, nn.Conv2d): yield _m def forward(self, x, epoch, opt=None): x = self.conv1(x, opt) x = self.bn1(x, opt) x = self.relu(x) x = self.maxpool(x) weights = [] out_features = [] # layer 1 NL1_counter = 0 if len(self.NL_1_idx) == 0: self.NL_1_idx = [-1] for i in range(len(self.layer1)): x = self.layer1[i](x, opt) if i == self.NL_1_idx[NL1_counter]: _, C, H, W = x.shape x = self.NL_1[NL1_counter](x) NL1_counter += 1 x_invariant = self.adaptor1_base(x, opt) N, C, H, W = x_invariant.shape x_specific = self.adaptor1_sub(x.repeat(1, K, 1, 1), opt).reshape(N, K, C, H, W) weight, domain_cls_logit = self.router1(x, opt) weights.append(weight) x_specific = (x_specific * weight.reshape(-1, K, 1, 1, 1)).sum(1) x_invariant = self.invariant_norm1(x_invariant, opt) x_specific = self.specific_norm1(x_specific, opt) x = self.meta_fuse1(x_invariant, x_specific, opt) x = self.meta_se1(x, opt) temp = self.map1(self.avgpool(x), opt) out_features.append(F.normalize(temp, 2, 1)[..., 0, 0]) # layer 2 NL2_counter = 0 if len(self.NL_2_idx) == 0: self.NL_2_idx = [-1] for i in range(len(self.layer2)): x = self.layer2[i](x, opt) if i == self.NL_2_idx[NL2_counter]: _, C, H, W = x.shape x = self.NL_2[NL2_counter](x) NL2_counter += 1 x_invariant = self.adaptor2_base(x, opt) N, C, H, W = x_invariant.shape x_specific = self.adaptor2_sub(x.repeat(1, K, 1, 1), opt).reshape(N, K, C, H, W) weight, domain_cls_logit = self.router2(x, opt) weights.append(weight) x_specific = (x_specific * weight.reshape(-1, K, 1, 1, 1)).sum(1) x_invariant = self.invariant_norm2(x_invariant, opt) x_specific = self.specific_norm2(x_specific, opt) x = self.meta_fuse2(x_invariant, x_specific, opt) x = self.meta_se2(x, opt) temp = self.map2(self.avgpool(x), opt) out_features.append(F.normalize(temp, 2, 1)[..., 0, 0]) # layer 3 NL3_counter = 0 if len(self.NL_3_idx) == 0: self.NL_3_idx = [-1] for i in range(len(self.layer3)): x = self.layer3[i](x, opt) if i == self.NL_3_idx[NL3_counter]: _, C, H, W = x.shape x = self.NL_3[NL3_counter](x) NL3_counter += 1 x_invariant = self.adaptor3_base(x, opt) N, C, H, W = x_invariant.shape x_specific = self.adaptor3_sub(x.repeat(1, K, 1, 1), opt).reshape(N, K, C, H, W) weight, domain_cls_logit = self.router3(x, opt) weights.append(weight) x_specific = (x_specific * weight.reshape(-1, K, 1, 1, 1)).sum(1) x_invariant = self.invariant_norm3(x_invariant, opt) x_specific = self.specific_norm3(x_specific, opt) x = self.meta_fuse3(x_invariant, x_specific, opt) x = self.meta_se3(x, opt) temp = self.map3(self.avgpool(x), opt) out_features.append(F.normalize(temp, 2, 1)[..., 0, 0]) # layer 4 NL4_counter = 0 if len(self.NL_4_idx) == 0: self.NL_4_idx = [-1] for i in range(len(self.layer4)): x = self.layer4[i](x, opt) if i == self.NL_4_idx[NL4_counter]: _, C, H, W = x.shape x = self.NL_4[NL4_counter](x) NL4_counter += 1 x_invariant = self.adaptor4_base(x, opt) N, C, H, W = x_invariant.shape x_specific = self.adaptor4_sub(x.repeat(1, K, 1, 1), opt).reshape(N, K, C, H, W) weight, domain_cls_logit = self.router4(x, opt) weights.append(weight) x_specific = (x_specific * weight.reshape(-1, K, 1, 1, 1)).sum(1) x_invariant = self.invariant_norm4(x_invariant, opt) x_specific = self.specific_norm4(x_specific, opt) x = self.meta_fuse4(x_invariant, x_specific, opt) x = self.meta_se4(x, opt) temp = self.map4(self.avgpool(x), opt) out_features.append(F.normalize(temp, 2, 1)[..., 0, 0]) weights = torch.cat(weights, -1) return x, weights, out_features def random_init(self): for name, m in self.named_modules(): if isinstance(m, MetaConv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels nn.init.normal_(m.weight, 0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def init_pretrained_weights(key): """Initializes model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ import os import errno import gdown def _get_torch_home(): ENV_TORCH_HOME = 'TORCH_HOME' ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' DEFAULT_CACHE_DIR = '~/.cache' torch_home = os.path.expanduser( os.getenv( ENV_TORCH_HOME, os.path.join( os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch' ) ) ) return torch_home torch_home = _get_torch_home() model_dir = os.path.join(torch_home, 'checkpoints') try: os.makedirs(model_dir) except OSError as e: if e.errno == errno.EEXIST: # Directory already exists, ignore. pass else: # Unexpected OSError, re-raise. raise filename = model_urls[key].split('/')[-1] cached_file = os.path.join(model_dir, filename) if not os.path.exists(cached_file): logger.info(f"Pretrain model don't exist, downloading from {model_urls[key]}") if comm.is_main_process(): gdown.download(model_urls[key], cached_file, quiet=False) comm.synchronize() logger.info(f"Loading pretrained model from {cached_file}") state_dict = torch.load(cached_file, map_location=torch.device('cpu')) #CHANGE Reduction Version state_dict = torch.load('/home/pengyi/.cache/torch/checkpoints/resnet50_ibn_a-d9d0bb7b.pth', map_location=torch.device('cpu')) return state_dict @BACKBONE_REGISTRY.register() def build_meta_dynamic_router_resnet_backbone(cfg): """ Create a ResNet instance from config. Returns: ResNet: a :class:`ResNet` instance. """ # fmt: off pretrain = cfg.MODEL.BACKBONE.PRETRAIN pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE bn_norm = cfg.MODEL.BACKBONE.NORM with_ibn = cfg.MODEL.BACKBONE.WITH_IBN with_se = cfg.MODEL.BACKBONE.WITH_SE with_nl = cfg.MODEL.BACKBONE.WITH_NL depth = cfg.MODEL.BACKBONE.DEPTH # fmt: on num_blocks_per_stage = { '18x': [2, 2, 2, 2], '34x': [3, 4, 6, 3], '50x': [3, 4, 6, 3], '101x': [3, 4, 23, 3], }[depth] nl_layers_per_stage = { '18x': [0, 0, 0, 0], '34x': [0, 0, 0, 0], '50x': [0, 2, 3, 0], '101x': [0, 2, 9, 0] }[depth] block = { '18x': BasicBlock, '34x': BasicBlock, '50x': Bottleneck, '101x': Bottleneck }[depth] model = ResNet(last_stride, bn_norm, with_ibn, with_se, with_nl, block, num_blocks_per_stage, nl_layers_per_stage) if pretrain: # Load pretrain path if specifically if pretrain_path: try: state_dict = torch.load(pretrain_path, map_location=torch.device('cpu')) logger.info(f"Loading pretrained model from {pretrain_path}") except FileNotFoundError as e: logger.info(f'{pretrain_path} is not found! Please check this path.') raise e except KeyError as e: logger.info("State dict keys error! Please check the state dict.") raise e else: key = depth if with_ibn: key = 'ibn_' + key # if with_se: key = 'se_' + key state_dict = init_pretrained_weights(key) model_dict = model.state_dict() for k in model_dict.keys(): if k in state_dict: v = state_dict[k] if model_dict[k].shape == v.shape: model_dict[k] = v else: if len(v.shape) == 1: model_dict[k] = v[:model_dict[k].shape[0]] elif len(v.shape) == 2: model_dict[k] = v[:model_dict[k].shape[0], :model_dict[k].shape[1]] elif len(v.shape) == 3: model_dict[k] = v[:model_dict[k].shape[0], :model_dict[k].shape[1], :model_dict[k].shape[2]] elif len(v.shape) == 4: model_dict[k] = v[:model_dict[k].shape[0], :model_dict[k].shape[1], :model_dict[k].shape[2], :model_dict[k].shape[3]] elif len(v.shape) == 5: model_dict[k] = v[:model_dict[k].shape[0], :model_dict[k].shape[1], :model_dict[k].shape[2], :model_dict[k].shape[3], :model_dict[k].shape[4]] else: raise Exception else: try: if 'adaptor1_base' in k: if model_dict[k].shape == state_dict['layer1.2'+k[13:]].shape: model_dict[k] = state_dict['layer1.2'+k[13:]] print('Done, adaptor', k) else: print('Skip, adaptor', k) elif 'adaptor1_sub' in k: if 'conv3' in k: v = state_dict['layer1.2'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2).repeat(K, 1, 1, 1) elif 'bn3' in k: v = state_dict['layer1.2'+k[12:]] model_dict[k] = v.repeat(K) elif model_dict[k].shape == state_dict['layer1.2'+k[12:]].shape: model_dict[k] = state_dict['layer1.2'+k[12:]] else: v = state_dict['layer1.2'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2) print('Done, adaptor', k) elif 'adaptor2_base' in k: if model_dict[k].shape == state_dict['layer2.3'+k[13:]].shape: model_dict[k] = state_dict['layer2.3'+k[13:]] print('Done, adaptor', k) else: print('Skip, adaptor', k) elif 'adaptor2_sub' in k: if 'conv3' in k: v = state_dict['layer2.3'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2).repeat(K, 1, 1, 1) elif 'bn3' in k: v = state_dict['layer2.3'+k[12:]] model_dict[k] = v.repeat(K) elif model_dict[k].shape == state_dict['layer2.3'+k[12:]].shape: model_dict[k] = state_dict['layer2.3'+k[12:]] else: v = state_dict['layer2.3'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2) print('Done, adaptor', k) elif 'adaptor3_base' in k: if model_dict[k].shape == state_dict['layer3.5'+k[13:]].shape: model_dict[k] = state_dict['layer3.5'+k[13:]] print('Done, adaptor', k) else: print('Skip, adaptor', k) elif 'adaptor3_sub' in k: if 'conv3' in k: v = state_dict['layer3.5'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2).repeat(K, 1, 1, 1) elif 'bn3' in k: v = state_dict['layer3.5'+k[12:]] model_dict[k] = v.repeat(K) elif model_dict[k].shape == state_dict['layer3.5'+k[12:]].shape: model_dict[k] = state_dict['layer3.5'+k[12:]] else: v = state_dict['layer3.5'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2) print('Done, adaptor', k) elif 'adaptor4_base' in k: if model_dict[k].shape == state_dict['layer4.2'+k[13:]].shape: model_dict[k] = state_dict['layer4.2'+k[13:]] print('Done, adaptor', k) else: print('Skip, adaptor', k) elif 'adaptor4_sub' in k: if 'conv3' in k: v = state_dict['layer4.2'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2).repeat(K, 1, 1, 1) elif 'bn3' in k: v = state_dict['layer4.2'+k[12:]] model_dict[k] = v.repeat(K) elif 'bn1' in k: if 'IN' in k: model_dict[k] = state_dict['layer4.2.bn1.'+k.split('.')[-1]][:256] else: model_dict[k] = state_dict['layer4.2.bn1.'+k.split('.')[-1]][256:] elif model_dict[k].shape == state_dict['layer4.2'+k[12:]].shape: model_dict[k] = state_dict['layer4.2'+k[12:]] else: v = state_dict['layer4.2'+k[12:]] Cout, Cin, H, W = v.shape model_dict[k] = F.avg_pool1d(v.permute(0, 2, 3, 1).reshape(Cout, H*W, Cin), kernel_size=K).reshape(Cout, H, W, -1).permute(0, 3, 1, 2) print('Done, adaptor', k) except Exception: pass incompatible = model.load_state_dict(model_dict, strict=False) if incompatible.missing_keys: logger.info( get_missing_parameters_message(incompatible.missing_keys) ) if incompatible.unexpected_keys: logger.info( get_unexpected_parameters_message(incompatible.unexpected_keys) ) return model
peterzpy/ACL-DGReID
fastreid/modeling/backbones/meta_dynamic_router_resnet.py
meta_dynamic_router_resnet.py
py
29,474
python
en
code
8
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.autograd.variable.Variable", "line_number": 43, "usage_type": "name" }, { "api_name": "torch.autograd.variable.Variable", "line_number": 44, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 48, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 48, "usage_type": "name" }, { "api_name": "collections.OrderedDict", "line_number": 55, "usage_type": "argument" }, { "api_name": "torch.nn.Module", "line_number": 81, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 81, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 87, "usage_type": "name" }, { "api_name": "fastreid.layers.IBN", "line_number": 89, "usage_type": "call" }, { "api_name": "fastreid.layers.get_norm", "line_number": 91, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 92, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 92, "usage_type": "name" }, { "api_name": "fastreid.layers.get_norm", "line_number": 93, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 94, "usage_type": "name" }, { "api_name": "fastreid.layers.SELayer", "line_number": 96, "usage_type": "call" }, { "api_name": "torch.nn.Identity", "line_number": 98, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 98, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 122, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 122, "usage_type": "name" }, { "api_name": "torch.nn.AdaptiveAvgPool2d", "line_number": 125, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 125, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaLinear", "line_number": 126, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 127, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 127, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaLinear", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.nn.Sigmoid", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 129, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 140, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 140, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaConv2d", "line_number": 146, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaIBNNorm", "line_number": 148, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 150, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaConv2d", "line_number": 151, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 153, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaConv2d", "line_number": 154, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 155, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 157, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 157, "usage_type": "name" }, { "api_name": "fastreid.layers.SELayer", "line_number": 159, "usage_type": "call" }, { "api_name": "torch.nn.Identity", "line_number": 161, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 161, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 189, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 189, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaINNorm", "line_number": 196, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 198, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaConv2d", "line_number": 199, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaIBNNorm", "line_number": 201, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaConv2d", "line_number": 204, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaConv2d", "line_number": 207, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 209, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 209, "usage_type": "name" }, { "api_name": "fastreid.layers.SELayer", "line_number": 211, "usage_type": "call" }, { "api_name": "torch.nn.Identity", "line_number": 213, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 213, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 241, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 241, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 249, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 249, "usage_type": "name" }, { "api_name": "torch.nn.AdaptiveAvgPool2d", "line_number": 252, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 252, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaLinear", "line_number": 254, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaLinear", "line_number": 255, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaLinear", "line_number": 256, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 257, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 257, "usage_type": "name" }, { "api_name": "torch.nn.Softmax", "line_number": 258, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 258, "usage_type": "name" }, { "api_name": "torch.nn.functional.normalize", "line_number": 264, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 264, "usage_type": "name" }, { "api_name": "torch.einsum", "line_number": 267, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 272, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 272, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaConv2d", "line_number": 276, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 278, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 279, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 279, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 280, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 280, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 286, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 287, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaGate", "line_number": 288, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 290, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 297, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 298, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaGate", "line_number": 299, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 301, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 308, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 309, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaGate", "line_number": 310, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 312, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 319, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 320, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaGate", "line_number": 321, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 323, "usage_type": "call" }, { "api_name": "torch.nn.AdaptiveAvgPool2d", "line_number": 325, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 325, "usage_type": "name" }, { "api_name": "torch.nn.Softmax", "line_number": 328, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 328, "usage_type": "name" }, { "api_name": "torch.nn.Sigmoid", "line_number": 329, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 329, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 330, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 330, "usage_type": "name" }, { "api_name": "fastreid.modeling.ops.MetaConv2d", "line_number": 343, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaBNNorm", "line_number": 345, "usage_type": "call" }, { "api_name": "torch.nn.Sequential", "line_number": 354, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 354, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 357, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 357, "usage_type": "name" }, { "api_name": "fastreid.layers.Non_local", "line_number": 358, "usage_type": "call" }, { "api_name": "torch.nn.ModuleList", "line_number": 360, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 360, "usage_type": "name" }, { "api_name": "fastreid.layers.Non_local", "line_number": 361, "usage_type": "call" }, { "api_name": "torch.nn.ModuleList", "line_number": 363, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 363, "usage_type": "name" }, { "api_name": "fastreid.layers.Non_local", "line_number": 364, "usage_type": "call" }, { "api_name": "torch.nn.ModuleList", "line_number": 366, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 366, "usage_type": "name" }, { "api_name": "fastreid.layers.Non_local", "line_number": 367, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 374, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 374, "usage_type": "name" }, { "api_name": "torch.nn.functional.normalize", "line_number": 410, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 410, "usage_type": "name" }, { "api_name": "torch.nn.functional.normalize", "line_number": 434, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 434, "usage_type": "name" }, { "api_name": "torch.nn.functional.normalize", "line_number": 458, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 458, "usage_type": "name" }, { "api_name": "torch.nn.functional.normalize", "line_number": 482, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 482, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 484, "usage_type": "call" }, { "api_name": "fastreid.modeling.ops.MetaConv2d", "line_number": 490, "usage_type": "argument" }, { "api_name": "torch.nn.init.normal_", "line_number": 492, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 492, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 492, "usage_type": "name" }, { "api_name": "math.sqrt", "line_number": 492, "usage_type": "call" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 493, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 493, "usage_type": "name" }, { "api_name": "torch.nn.init.constant_", "line_number": 494, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 494, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 494, "usage_type": "name" }, { "api_name": "torch.nn.init.constant_", "line_number": 495, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 495, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 495, "usage_type": "name" }, { "api_name": "os.path.expanduser", "line_number": 511, "usage_type": "call" }, { "api_name": "os.path", "line_number": 511, "usage_type": "attribute" }, { "api_name": "os.getenv", "line_number": 512, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 514, "usage_type": "call" }, { "api_name": "os.path", "line_number": 514, "usage_type": "attribute" }, { "api_name": "os.getenv", "line_number": 515, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 522, "usage_type": "call" }, { "api_name": "os.path", "line_number": 522, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 524, "usage_type": "call" }, { "api_name": "errno.EEXIST", "line_number": 526, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 535, "usage_type": "call" }, { "api_name": "os.path", "line_number": 535, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 537, "usage_type": "call" }, { "api_name": "os.path", "line_number": 537, "usage_type": "attribute" }, { "api_name": "fastreid.utils.comm.is_main_process", "line_number": 539, "usage_type": "call" }, { "api_name": "fastreid.utils.comm", "line_number": 539, "usage_type": "name" }, { "api_name": "gdown.download", "line_number": 540, "usage_type": "call" }, { "api_name": "fastreid.utils.comm.synchronize", "line_number": 542, "usage_type": "call" }, { "api_name": "fastreid.utils.comm", "line_number": 542, "usage_type": "name" }, { "api_name": "torch.load", "line_number": 545, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 545, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 547, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 547, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 598, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 598, "usage_type": "call" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 645, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 645, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 654, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 654, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 666, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 666, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 675, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 675, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 688, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 688, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 697, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 697, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 710, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 710, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 724, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 724, "usage_type": "name" }, { "api_name": "fastreid.utils.checkpoint.get_missing_parameters_message", "line_number": 732, "usage_type": "call" }, { "api_name": "fastreid.utils.checkpoint.get_unexpected_parameters_message", "line_number": 736, "usage_type": "call" }, { "api_name": "build.BACKBONE_REGISTRY.register", "line_number": 552, "usage_type": "call" }, { "api_name": "build.BACKBONE_REGISTRY", "line_number": 552, "usage_type": "name" } ]
71578007227
import h5py import os from torch.utils.data import Dataset from DVS_dataload.my_transforms import * from PIL import Image import torch import numpy as np class DVSGestureDataset(Dataset): def __init__(self, root, train=True, transform=None): super(DVSGestureDataset, self).__init__() self.n = 0 self.root = root self.train = train self.transform = transform if train: root_train = os.path.join(self.root, 'DvsGesture_train_40step_downsample') for _, _, self.files_train in os.walk(root_train): pass self.n = len(self.files_train) else: root_test = os.path.join(self.root, 'DvsGesture_test_40step_downsample') for _, _, self.files_test in os.walk(root_test): pass self.n = len(self.files_test) def __len__(self): return self.n def __getitem__(self, idx): if self.train: root_test = os.path.join(self.root, 'DvsGesture_train_40step_downsample') with h5py.File(root_test + os.sep + self.files_train[idx], 'r', swmr=True, libver="latest") as f: target = f['label'][()] data = f['data'][()] if self.transform is not None: data = self.transform(data) return data, target else: root_test = os.path.join(self.root, 'DvsGesture_test_40step_downsample') with h5py.File(root_test + os.sep + self.files_test[idx], 'r', swmr=True, libver="latest") as f: target = f['label'][()] data = f['data'][()] if self.transform is not None: data = self.transform(data) return data, target
langfengQ/MLF-DSResNet
DVS_dataload/DVS_Gesture_dataset.py
DVS_Gesture_dataset.py
py
1,762
python
en
code
8
github-code
6
[ { "api_name": "torch.utils.data.Dataset", "line_number": 10, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.walk", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.walk", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path", "line_number": 34, "usage_type": "attribute" }, { "api_name": "h5py.File", "line_number": 36, "usage_type": "call" }, { "api_name": "os.sep", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 44, "usage_type": "call" }, { "api_name": "os.path", "line_number": 44, "usage_type": "attribute" }, { "api_name": "h5py.File", "line_number": 46, "usage_type": "call" }, { "api_name": "os.sep", "line_number": 46, "usage_type": "attribute" } ]
6020834834
import os import cv2 import shutil source_path = 'test_copy_image' des_path = 'train_image_label' def get_all_label_file_to_image_file(): list_file = os.listdir(source_path) list_label = [file for file in list_file if file.endswith('.txt')] return list_label def copy_image_according_to_label(): label_name = get_all_label_file_to_image_file() print('There are {} label files'.format(len(label_name))) print(label_name) # copy files for name in label_name: # copy text file orig_label = os.path.join(source_path, name) des_label = os.path.join(des_path, name) print(des_label) shutil.copy(orig_label, des_label) # copy image file img_name = name.split('.')[0] + '.jpg' orig_img = os.path.join(source_path, img_name) #print(origin) des_img = os.path.join(des_path, img_name) #print(des) img = cv2.imread(orig_img) cv2.imwrite(des_img, img) copy_image_according_to_label()
hluong89/calc_bounding_box_YOLO
copy_image_according_to_labels.py
copy_image_according_to_labels.py
py
1,014
python
en
code
1
github-code
6
[ { "api_name": "os.listdir", "line_number": 9, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "shutil.copy", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "cv2.imread", "line_number": 32, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 33, "usage_type": "call" } ]
70075665148
#!/usr/bin/env python3 """ Cache class. In the __init__ method, store an instance of the Redis } client as a private variable named _redis (using redis.Redis()) and flush the instance using flushdb. """ import redis from typing import Union, Optional, Callable from uuid import uuid4 from functools import wraps def count_calls(method: Callable) -> Callable: """ count how many times the function was called """ key = method.__qualname__ @wraps(method) def wrapper(self, *args, **kwargs): """ Wrapper for decorator functionality """ self._redis.incr(key) return method(self, *args, **kwargs) return wrapper def call_history(method: Callable) -> Callable: """ store the history of inputs and outputs for a particular function. """ inputs = '{}:inputs'.format(method.__qualname__) outputs = '{}:outputs'.format(method.__qualname__) @wraps(method) def wrapper(self, *args, **kwds): """wrapper function""" self._redis.rpush(inputs, str(args)) output = method(self, *args, **kwds) self._redis.rpush(outputs, output) return output return wrapper def replay(methodName: Callable) -> None: """ Display the history of calls of a function """ _redis = redis.Redis() try: calls = _redis.get(methodName.__qualname__).decode('utf-8') except Exception: calls = 0 print(f'{methodName.__qualname__} was called {calls} times:') inputs = _redis.lrange(methodName.__qualname__ + ':inputs', 0, -1) outputs = _redis.lrange(methodName.__qualname__ + ':outputs', 0, -1) for input, output in zip(inputs, outputs): print('{}(*{}) -> {}'.format(methodName.__qualname__, input.decode('utf-8'), output.decode('utf-8'))) class Cache(): """ Main class for cache """ def __init__(self): """ CONSTRUCTOR""" self._redis = redis.Redis() self._redis.flushdb() @call_history @count_calls def store(self, data: Union[str, bytes, int, float]) -> str: """ Takes a data as argumen a store in a REDIS db Remember that data can be a str, bytes, int or float. Returns: A key in string format """ _randomkey = uuid4().__str__() self._redis.set(_randomkey, data) return _randomkey def get(self, key: str, fn: Optional[Callable] = None) -> Union[str, bytes, int, float]: """ Get the values as specific func""" data = self._redis.get(key) if fn: return fn(data) return data def get_int(self, data: int) -> int: """ Get the values as int" """ try: int(data) return data except Exception: return 0 def get_str(self, data: str) -> str: """ Get the values as str""" return self._redis.get(data).decode('utf_8')
lemejiamo/holbertonschool-backend-storage
0x02-redis_basic/exercise.py
exercise.py
py
3,014
python
en
code
1
github-code
6
[ { "api_name": "typing.Callable", "line_number": 15, "usage_type": "name" }, { "api_name": "functools.wraps", "line_number": 22, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 31, "usage_type": "name" }, { "api_name": "functools.wraps", "line_number": 39, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 50, "usage_type": "name" }, { "api_name": "redis.Redis", "line_number": 55, "usage_type": "call" }, { "api_name": "redis.Redis", "line_number": 78, "usage_type": "call" }, { "api_name": "typing.Union", "line_number": 83, "usage_type": "name" }, { "api_name": "uuid.uuid4", "line_number": 90, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 95, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 95, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 95, "usage_type": "name" } ]
32715528590
#!/usr/bin/env python3 __requires__ = ''' plover>=4.0.0.dev2 setuptools>=30.3.0 ''' from setuptools import setup from plover_build_utils.setup import BuildPy, BuildUi BuildPy.build_dependencies.append('build_ui') BuildUi.hooks = ['plover_build_utils.pyqt:fix_icons'] cmdclass = { 'build_py': BuildPy, 'build_ui': BuildUi, } setup(cmdclass=cmdclass)
morinted/plover_layout_display
setup.py
setup.py
py
362
python
en
code
12
github-code
6
[ { "api_name": "plover_build_utils.setup.BuildPy.build_dependencies.append", "line_number": 12, "usage_type": "call" }, { "api_name": "plover_build_utils.setup.BuildPy.build_dependencies", "line_number": 12, "usage_type": "attribute" }, { "api_name": "plover_build_utils.setup.BuildPy", "line_number": 12, "usage_type": "name" }, { "api_name": "plover_build_utils.setup.BuildUi.hooks", "line_number": 13, "usage_type": "attribute" }, { "api_name": "plover_build_utils.setup.BuildUi", "line_number": 13, "usage_type": "name" }, { "api_name": "plover_build_utils.setup.BuildPy", "line_number": 15, "usage_type": "name" }, { "api_name": "plover_build_utils.setup.BuildUi", "line_number": 16, "usage_type": "name" }, { "api_name": "setuptools.setup", "line_number": 19, "usage_type": "call" } ]
16438405840
# -*- coding: utf-8 -*- """ # @file name : target.py # @author : chenzhanpeng https://github.com/chenzpstar # @date : 2022-01-09 # @brief : FCOS训练目标类 """ import torch import torch.nn as nn from models.config import FCOSConfig from models.utils import coords2centers, coords2offsets, decode_coords, reshape_feat class FCOSTarget(nn.Module): def __init__(self, cfg=None): super(FCOSTarget, self).__init__() if cfg is None: self.cfg = FCOSConfig else: self.cfg = cfg self.strides = self.cfg.strides self.ranges = self.cfg.ranges assert len(self.strides) == len(self.ranges) def forward(self, feats, labels, boxes): stages_num = len(self.strides) assert len(feats) == stages_num cls_targets = [] reg_targets = [] ctr_targets = [] for i in range(stages_num): stage_targets = self._gen_stage_targets( feats[i], labels, boxes, self.strides[i], self.ranges[i], ) cls_targets.append(stage_targets[0]) reg_targets.append(stage_targets[1]) ctr_targets.append(stage_targets[2]) return cls_targets, reg_targets, ctr_targets def _gen_stage_targets(self, feat, labels, boxes, stride, range, sample_radio=1.5): coords = decode_coords(feat, stride).to(device=boxes.device) feat = reshape_feat(feat) # bchw -> b(hw)c batch_size, hw = feat.shape[:2] # b(hw)c boxes_num = boxes.shape[1] # bnc # 1.计算每个坐标到所有标注框四边的偏移量 offsets = coords2offsets(coords, boxes) assert offsets.shape == (batch_size, hw, boxes_num, 4) offsets_min = offsets.min(dim=-1)[0] offsets_max = offsets.max(dim=-1)[0] boxes_mask = offsets_min > 0 stage_mask = (offsets_max > range[0]) & (offsets_max <= range[1]) # 2.计算每个坐标到所有标注框中心的偏移量 ctr_offsets = coords2centers(coords, boxes) assert ctr_offsets.shape == (batch_size, hw, boxes_num, 4) radius = sample_radio * stride ctr_offsets_max = ctr_offsets.max(dim=-1)[0] ctr_mask = ctr_offsets_max <= radius pos_mask = boxes_mask & stage_mask & ctr_mask assert pos_mask.shape == (batch_size, hw, boxes_num) # 3.计算所有标注框面积 areas = (offsets[..., 0] + offsets[..., 2]) * (offsets[..., 1] + offsets[..., 3]) areas[~pos_mask] = 999999 # neg_areas areas_min_idx = areas.min(dim=-1)[1].unsqueeze(dim=-1) areas_min_mask = torch.zeros_like(areas, dtype=torch.bool).scatter( -1, areas_min_idx, 1) assert areas_min_mask.shape == (batch_size, hw, boxes_num) # 4.计算分类目标 labels = torch.broadcast_tensors( labels[:, None, :], areas.long())[0] # [b,1,n] -> [b,h*w,n] cls_targets = labels[areas_min_mask].reshape((batch_size, -1, 1)) assert cls_targets.shape == (batch_size, hw, 1) # 5.计算回归目标 offsets = offsets / stride reg_targets = offsets[areas_min_mask].reshape((batch_size, -1, 4)) assert reg_targets.shape == (batch_size, hw, 4) # 6.计算中心度目标 lr_min = torch.min(reg_targets[..., 0], reg_targets[..., 2]) lr_max = torch.max(reg_targets[..., 0], reg_targets[..., 2]) tb_min = torch.min(reg_targets[..., 1], reg_targets[..., 3]) tb_max = torch.max(reg_targets[..., 1], reg_targets[..., 3]) ctr_targets = ((lr_min * tb_min) / (lr_max * tb_max).clamp(min=1e-10)).sqrt().unsqueeze( dim=-1) assert ctr_targets.shape == (batch_size, hw, 1) # 7.处理负样本 pos_mask = pos_mask.long().sum(dim=-1) pos_mask = pos_mask >= 1 assert pos_mask.shape == (batch_size, hw) cls_targets[~pos_mask] = 0 reg_targets[~pos_mask] = -1 ctr_targets[~pos_mask] = -1 return cls_targets, reg_targets, ctr_targets if __name__ == "__main__": import torch torch.manual_seed(0) model = FCOSTarget() preds = ( [torch.rand(2, 3, 2, 2)] * 5, [torch.rand(2, 4, 2, 2)] * 5, [torch.rand(2, 1, 2, 2)] * 5, ) labels = torch.rand(2, 3) boxes = torch.rand(2, 3, 4) out = model(preds[0], labels, boxes) [print(stage_out.shape) for branch_out in out for stage_out in branch_out]
ydlam/Fcos-main
models/target.py
target.py
py
4,816
python
en
code
0
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 16, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 16, "usage_type": "name" }, { "api_name": "models.config.FCOSConfig", "line_number": 20, "usage_type": "name" }, { "api_name": "models.utils.decode_coords", "line_number": 57, "usage_type": "call" }, { "api_name": "models.utils.reshape_feat", "line_number": 58, "usage_type": "call" }, { "api_name": "models.utils.coords2offsets", "line_number": 64, "usage_type": "call" }, { "api_name": "models.utils.coords2centers", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.zeros_like", "line_number": 88, "usage_type": "call" }, { "api_name": "torch.bool", "line_number": 88, "usage_type": "attribute" }, { "api_name": "torch.broadcast_tensors", "line_number": 93, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 104, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 105, "usage_type": "call" }, { "api_name": "torch.min", "line_number": 106, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 107, "usage_type": "call" }, { "api_name": "torch.manual_seed", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 133, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 134, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 135, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 137, "usage_type": "call" }, { "api_name": "torch.rand", "line_number": 138, "usage_type": "call" } ]
41364868505
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 31 11:56:58 2019 @author: saransh """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn import metrics from scipy.optimize import linear_sum_assignment def purity_score(y_true, y_pred): contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred) row_ind, col_ind = linear_sum_assignment(-contingency_matrix) return contingency_matrix[row_ind, col_ind].sum() / np.sum(contingency_matrix) csv = pd.read_csv("Iris.csv") datay = csv["Species"] data = csv.drop(columns = ["Species"],axis = 1) #pca = PCA(n_components=2).fit(data) data = PCA(n_components=2).fit_transform(data) data=pd.DataFrame(data) print("_________________") print(" ") print("2D-Points After Reducing Dimensions ") print("_________________") plt.scatter(data.iloc[:,0],data.iloc[:,1],color="blue") plt.show() Kmean = KMeans(n_clusters=3) labels = Kmean.fit_predict(data) #labels = Kmean.predict(data) print("_________________") print(" ") print("KMeans Clustering") print("_________________") plt.scatter(data.iloc[:,0],data.iloc[:,1],c=Kmean.labels_,cmap='viridis') centers=Kmean.cluster_centers_ plt.scatter(centers[:,0],centers[:,1],s=100,c='black') plt.show() print("purity score for KMeans Clustering is -") print(purity_score(pd.DataFrame(datay),pd.DataFrame(labels))) print("_________________") print(" ") print(" ") print(" ") print("_________________") print(" ") print("Agglomerative Clustering") print("_________________") cluster = AgglomerativeClustering(n_clusters=3, affinity='euclidean', linkage='average') labelag=cluster.fit_predict(data) plt.scatter(data.iloc[:,0],data.iloc[:,1], c=cluster.labels_, cmap='rainbow') plt.show() ''' Kmean.fit(data) labels = Kmean.predict(data) print("_________________") print(" ") print("KMeans Clustering") print("_________________") plt.scatter(data.iloc[:,0],data.iloc[:,1],c=labels,cmap='viridis') centers=Kmean.cluster_centers_ plt.scatter(centers[:,0],centers[:,1],s=100,c='black') plt.show() print("purity score for KMeans Clustering is -") print(purity_score(pd.DataFrame(datay),pd.DataFrame(labels))) print("_________________") plt.show() ''' print("purity score for Agglomerative Clustering is -") print(purity_score(pd.DataFrame(datay),pd.DataFrame(labelag))) print("_________________") print(" ") print(" ") print("_________________") print(" ") print("DBSCAN") print("_________________") epsp=[0.05,0.5,0.95] min_samplesp=[1,5,10,20] ps=[] arr = [] for i in epsp: for j in min_samplesp: db = DBSCAN(eps = i, min_samples = j) arr.append([i,j]) labels1 = db.fit_predict(data) ps.append([purity_score(pd.DataFrame(datay),pd.DataFrame(labels1)),i,j]) psmax=max(ps) ind = ps.index(psmax) print('for eps = 0.05 and minpts = 1') db = DBSCAN(eps = 0.05, min_samples = 1).fit(data) labels1 = db.labels_ plt.scatter(data.iloc[:,0],data.iloc[:,1], c=db.labels_) plt.show() db = DBSCAN(eps = arr[ind][0], min_samples = arr[ind][1]).fit(data) labels1 = db.labels_ plt.scatter(data.iloc[:,0],data.iloc[:,1], c=db.labels_, cmap='rainbow') plt.show() print("purity score for DBSAN is -") print(purity_score(pd.DataFrame(datay),pd.DataFrame(labels1))) print("_________________")
Saransh0905/Data-Science-3
agglomerativeClustering and DBSCAN/lab11.py
lab11.py
py
3,419
python
en
code
1
github-code
6
[ { "api_name": "sklearn.metrics.cluster.contingency_matrix", "line_number": 20, "usage_type": "call" }, { "api_name": "sklearn.metrics.cluster", "line_number": 20, "usage_type": "attribute" }, { "api_name": "sklearn.metrics", "line_number": 20, "usage_type": "name" }, { "api_name": "scipy.optimize.linear_sum_assignment", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 22, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 25, "usage_type": "call" }, { "api_name": "sklearn.decomposition.PCA", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 48, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 49, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 49, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 51, "usage_type": "call" }, { "api_name": "sklearn.cluster.AgglomerativeClustering", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 64, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 84, "usage_type": "call" }, { "api_name": "sklearn.cluster.DBSCAN", "line_number": 102, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 105, "usage_type": "call" }, { "api_name": "sklearn.cluster.DBSCAN", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 111, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 112, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 112, "usage_type": "name" }, { "api_name": "sklearn.cluster.DBSCAN", "line_number": 114, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 116, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 116, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 117, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 117, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 120, "usage_type": "call" } ]
74743616826
from PyQt4.QtGui import QApplication, QFrame, QPalette, QLabel, QPixmap from PyQt4.QtCore import Qt, QRect, QCoreApplication class BareFrame(QFrame): def __init__(self, parent=None): super(BareFrame, self).__init__(parent) self.setWindowFlags(Qt.FramelessWindowHint) self.setFrameShadow(QFrame.Plain) self.setFrameShape(QFrame.Box) self.setLineWidth(1) def setBGColor(self, color): pal = QCoreApplication.instance().palette() pal.setColor(QPalette.Window, color) self.setPalette(pal) class CloseMark(QLabel): WIDTH = 31 HEIGHT = 31 MARGIN = 10 def __init__(self, pixmap, parent=None): super(CloseMark, self).__init__(parent) self.setPixmap(pixmap) self.toParentTopRight() def mousePressEvent(self, event): self.parent().close() def toParentTopRight(self): parent = self.parent() x = parent.width() - CloseMark.MARGIN - CloseMark.WIDTH y = CloseMark.MARGIN w = CloseMark.WIDTH h = CloseMark.HEIGHT self.setGeometry(QRect(x, y, w, h)) class Dashboard(BareFrame): SCALE = .85 def __init__(self, parent=None): from camelot.view.controls.busy_widget import BusyWidget from camelot.view.model_thread import get_model_thread super(Dashboard, self).__init__(parent) desktop = QCoreApplication.instance().desktop() self.resize(desktop.width() * Dashboard.SCALE, desktop.height() * Dashboard.SCALE) self.closemark = CloseMark(QPixmap('close-mark.png'), self) self.setBGColor(Qt.white) busy_widget = BusyWidget(self) busy_widget.setMinimumSize( desktop.width() * Dashboard.SCALE, desktop.height() * Dashboard.SCALE ) #self.addPermanentWidget(busy_widget, 0) mt = get_model_thread() mt.thread_busy_signal.connect( busy_widget.set_busy ) busy_widget.set_busy(mt.busy()) if __name__ == '__main__': import sys app = QApplication(sys.argv) board = Dashboard() board.show() sys.exit(app.exec_())
kurtraschke/camelot
camelot/view/controls/dashboard.py
dashboard.py
py
2,127
python
en
code
4
github-code
6
[ { "api_name": "PyQt4.QtGui.QFrame", "line_number": 5, "usage_type": "name" }, { "api_name": "PyQt4.QtCore.Qt.FramelessWindowHint", "line_number": 9, "usage_type": "attribute" }, { "api_name": "PyQt4.QtCore.Qt", "line_number": 9, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QFrame.Plain", "line_number": 10, "usage_type": "attribute" }, { "api_name": "PyQt4.QtGui.QFrame", "line_number": 10, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QFrame.Box", "line_number": 11, "usage_type": "attribute" }, { "api_name": "PyQt4.QtGui.QFrame", "line_number": 11, "usage_type": "name" }, { "api_name": "PyQt4.QtCore.QCoreApplication.instance", "line_number": 15, "usage_type": "call" }, { "api_name": "PyQt4.QtCore.QCoreApplication", "line_number": 15, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QPalette.Window", "line_number": 16, "usage_type": "attribute" }, { "api_name": "PyQt4.QtGui.QPalette", "line_number": 16, "usage_type": "name" }, { "api_name": "PyQt4.QtGui.QLabel", "line_number": 20, "usage_type": "name" }, { "api_name": "PyQt4.QtCore.QRect", "line_number": 40, "usage_type": "call" }, { "api_name": "PyQt4.QtCore.QCoreApplication.instance", "line_number": 51, "usage_type": "call" }, { "api_name": "PyQt4.QtCore.QCoreApplication", "line_number": 51, "usage_type": "name" }, { "api_name": "{'BusyWidget': 'camelot.view.controls.busy_widget.BusyWidget', 'get_model_thread': 'camelot.view.model_thread.get_model_thread'}.SCALE", "line_number": 52, "usage_type": "attribute" }, { "api_name": "PyQt4.QtGui.QPixmap", "line_number": 53, "usage_type": "call" }, { "api_name": "PyQt4.QtCore.Qt.white", "line_number": 54, "usage_type": "attribute" }, { "api_name": "PyQt4.QtCore.Qt", "line_number": 54, "usage_type": "name" }, { "api_name": "camelot.view.controls.busy_widget.BusyWidget", "line_number": 55, "usage_type": "call" }, { "api_name": "{'BusyWidget': 'camelot.view.controls.busy_widget.BusyWidget', 'get_model_thread': 'camelot.view.model_thread.get_model_thread'}.SCALE", "line_number": 56, "usage_type": "attribute" }, { "api_name": "camelot.view.model_thread.get_model_thread", "line_number": 58, "usage_type": "call" }, { "api_name": "PyQt4.QtGui.QApplication", "line_number": 66, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 66, "usage_type": "attribute" }, { "api_name": "{'BusyWidget': 'camelot.view.controls.busy_widget.BusyWidget', 'get_model_thread': 'camelot.view.model_thread.get_model_thread'}", "line_number": 67, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 69, "usage_type": "call" } ]
32506946053
import fcntl import logging import socket import struct import urllib.request from urllib.parse import urlparse from xml.dom import minidom from functools import wraps import urllib.error import xml SIOCGIFINDEX = 0x8933 # Get interface index logger = logging.getLogger(__name__) class NotRetrievedError(Exception): """Custom exception for objects that have not been retrieved Custom object not retrieved exception class. Raised whenever a certain property for a device or service was not retrieved. """ pass class NotAvailableError(Exception): """Custom exception for when a certain URL could not be retrieved Custom element not retrieved exception class. Raised whenever a value needed to be accessed could not be retrieved from the URL. """ pass def parse_http_header(header, header_key): """Parse HTTP header value Parse the value of a specific header from a RAW HTTP response. :param header: String containing the RAW HTTP response and headers :type header: str :param header_key: The header name of which to extract a value from :type header_key: str :return: The value of the header :rtype: str """ split_headers = header.split('\r\n') for entry in split_headers: header = entry.strip().split(':', 1) if header[0].strip().lower() == header_key.strip().lower(): return ''.join(header[1::]).split()[0] def make_http_request(url, data=None, headers=None): """Helper function for making HTTP requests Helper function for making HTTP requests using urllib. :param url: The URL to which a request should be made :type url: str :param data: Provide data for the request. Request method will be set to POST if data is provided :type data: str :param headers: Provide headers to send with the request :type headers: dict :return: A urllib.Request.urlopen object :rtype: urllib.Request.urlopen """ if not headers: headers = {} # If data is provided the request method will automatically be set to POST # by urllib request = urllib.request.Request(url, data=data, headers=headers) return urllib.request.urlopen(request) def _device_description_required(func): """Decorator for checking whether the device description is available on a device. """ @wraps(func) def wrapper(device, *args, **kwargs): if device.description is None: raise NotRetrievedError( 'No device description retrieved for this device.') elif device.description == NotAvailableError: return return func(device, *args, **kwargs) return wrapper def _get_if_index(ifname, fd): """Get the index corresponding to interface ifname used by socket fd""" ifreq = struct.pack('16si', ifname.encode(), 0) res = fcntl.ioctl(fd, SIOCGIFINDEX, ifreq) return int(struct.unpack('16si', res)[1]) class SSDPDevice: """Represents an SSDP device Object for representing an SSDP device. :param address: SSDP device address :type address: tuple :param response: Device discovery response data :type response: str """ def __init__(self, address, response): self.address = address self.host = address[0] self.port = address[1] self.response = response self.description = None self.friendly_name = None self.type_ = None self.base_url = None self._get_description_request(parse_http_header(response, 'Location')) self._get_friendly_name_request() self._get_type_request() self._get_base_url_request() def get_friendly_name(self): """Get the friendly name for the device Gets the device's friendly name :return: Friendly name of the device :rtype: str """ return self.friendly_name def _get_description_request(self, url): try: device_description = make_http_request(url).read() self.description = device_description return device_description.decode() except (urllib.error.HTTPError, urllib.error.URLError): self.description = NotAvailableError return None @_device_description_required def _get_friendly_name_request(self): root = minidom.parseString(self.description) device_friendly_name = root.getElementsByTagName( 'friendlyName')[0].firstChild.nodeValue self.friendly_name = device_friendly_name return self.friendly_name @_device_description_required def _get_type_request(self): root = minidom.parseString(self.description) device_type = root.getElementsByTagName( 'deviceType')[0].firstChild.nodeValue self.type_ = device_type return self.type_ @_device_description_required def _get_base_url_request(self): location_header_value = parse_http_header(self.response, 'Location') header_url = urlparse(location_header_value) root = minidom.parseString(self.description) try: parsed_url = urlparse( root.getElementsByTagName('URLBase')[0].firstChild.nodeValue) if parsed_url.port is not None: base_url = '{}://{}'.format(parsed_url.scheme, parsed_url.netloc) else: base_url = '{}://{}:{}'.format(parsed_url.scheme, parsed_url.netloc, header_url.port) except (IndexError, AttributeError): base_url = '{}://{}'.format(header_url.scheme, header_url.netloc) self.base_url = base_url return base_url class SSDPHeader: def __init__(self, **headers): """ Example M-SEARCH header: ------------------------------------------------------------------------ M-SEARCH * HTTP/1.1 SSDP method for search requests HOST: 239.255.255.250:1900 SSDP multicast address and port (REQUIRED) MAN: "ssdp:discover" HTTP Extension Framework scope (REQUIRED) MX: 2 Maximum wait time in seconds (REQUIRED) ST: upnp:rootdevice Search target (REQUIRED) ------------------------------------------------------------------------ """ self.headers = {} self.set_headers(**headers) self._available_methods = ['M-SEARCH'] self.method = None self.host = self.headers.get('HOST') self.man = self.headers.get('MAN') self.mx = self.headers.get('MX') self.st = self.headers.get('ST') def _check_method_required_params(self): if self.method == 'M-SEARCH': # M-SEARCH required parameters: HOST, MAN, MX, ST if None in [self.host, self.man, self.mx, self.st]: raise ValueError( 'M-SEARCH method requires HOST, MAN, MX and ST headers ' 'to be set.') def set_method(self, method): method = method.upper() if method in self._available_methods: self.method = method.upper() else: raise ValueError('Method must be either' + ' or '.join(self._available_methods)) def set_header(self, name, value): self.headers[name.upper()] = value def set_headers(self, **headers): for key, value in headers.items(): self.set_header(key.upper(), value) class SSDPRequest(SSDPHeader): """Create and perform an SSDP request :param method: SSDP request method [M-SEARCH] """ def __init__(self, ssdp_mcast_addr='239.255.255.250', ssdp_port=1900, src_port=None, interface=None, **headers): super().__init__(**headers) self.SSDP_MCAST_ADDR = ssdp_mcast_addr self.SSDP_PORT = ssdp_port self.set_header('HOST', "{}:{}".format(self.SSDP_MCAST_ADDR, self.SSDP_PORT)) self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) if (src_port is not None): self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(('', src_port)) if (interface is not None): try: ifindex = _get_if_index(interface, self.socket.fileno()) except OSError: logger.error( "Could not find interface \"{}\"".format(interface)) return except ValueError: logger.error( "Failed to parse the index of interface \"{}\"".format( interface)) return ip_mreqn = struct.pack( '4s4si', socket.inet_aton(ssdp_mcast_addr), socket.inet_aton('0.0.0.0'), # INADDR_ANY ifindex) self.socket.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_IF, ip_mreqn) def __del__(self): self.socket.close() def m_search(self, discover_delay=2, st='ssdp:all', **headers): """Perform an M-SEARCH SSDP request Send an SSDP M-SEARCH request for finding UPnP devices on the network. :param discover_delay: Device discovery delay in seconds :type discover_delay: int :param st: Specify device Search Target :type st: str :param headers: Specify M-SEARCH specific headers :type headers: str :return: List of device that replied :rtype: list """ self.set_method('M-SEARCH') self.set_header('MAN', '"ssdp:discover"') self.set_header('MX', discover_delay) self.set_header('ST', st) self.set_headers(**headers) self.socket.settimeout(discover_delay) devices = self._send_request(self._get_raw_request()) for device in devices: yield device def _get_raw_request(self): """Get raw request data to send to server""" final_request_data = '' if self.method is not None: ssdp_start_line = '{} * HTTP/1.1'.format(self.method) else: ssdp_start_line = 'HTTP/1.1 200 OK' final_request_data += '{}\r\n'.format(ssdp_start_line) for header, value in self.headers.items(): final_request_data += '{}: {}\r\n'.format(header, value) final_request_data += '\r\n' return final_request_data def _send_request(self, message): self.socket.sendto(message.encode(), (self.SSDP_MCAST_ADDR, self.SSDP_PORT)) devices = [] try: while True: # UDP packet data limit is 65507 imposed by IPv4 # https://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure response, addr = self.socket.recvfrom(65507) try: device = SSDPDevice(addr, response.decode()) except xml.parsers.expat.ExpatError: continue devices.append(device) except socket.timeout: pass return devices class UPnP: """UPnP object A UPnP object used for device discovery """ def __init__(self, src_port=None, interface=None): self.ssdp = SSDPRequest(src_port=src_port, interface=interface) self.discovered_devices = [] def discover(self, delay=2, **headers): """Find UPnP devices on the network Find available UPnP devices on the network by sending an M-SEARCH request. :param delay: Discovery delay, amount of time in seconds to wait for a reply from devices :type delay: int :param headers: Optional headers for the request :return: List of discovered devices :rtype: list """ discovered_devices = [] for device in self.ssdp.m_search(discover_delay=delay, st='upnp:rootdevice', **headers): discovered_devices.append(device) self.discovered_devices = discovered_devices return self.discovered_devices
Blockstream/satellite
blocksatcli/upnp.py
upnp.py
py
12,542
python
en
code
949
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 13, "usage_type": "call" }, { "api_name": "urllib.request.request.Request", "line_number": 79, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 79, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 79, "usage_type": "name" }, { "api_name": "urllib.request.request.urlopen", "line_number": 80, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 80, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 80, "usage_type": "name" }, { "api_name": "functools.wraps", "line_number": 89, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 103, "usage_type": "call" }, { "api_name": "fcntl.ioctl", "line_number": 104, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 105, "usage_type": "call" }, { "api_name": "urllib.request.error", "line_number": 152, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 152, "usage_type": "name" }, { "api_name": "xml.dom.minidom.parseString", "line_number": 158, "usage_type": "call" }, { "api_name": "xml.dom.minidom", "line_number": 158, "usage_type": "name" }, { "api_name": "xml.dom.minidom.parseString", "line_number": 166, "usage_type": "call" }, { "api_name": "xml.dom.minidom", "line_number": 166, "usage_type": "name" }, { "api_name": "urllib.parse.urlparse", "line_number": 175, "usage_type": "call" }, { "api_name": "xml.dom.minidom.parseString", "line_number": 176, "usage_type": "call" }, { "api_name": "xml.dom.minidom", "line_number": 176, "usage_type": "name" }, { "api_name": "urllib.parse.urlparse", "line_number": 178, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 264, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 264, "usage_type": "attribute" }, { "api_name": "socket.SOCK_DGRAM", "line_number": 264, "usage_type": "attribute" }, { "api_name": "socket.SOL_SOCKET", "line_number": 267, "usage_type": "attribute" }, { "api_name": "socket.SO_REUSEADDR", "line_number": 267, "usage_type": "attribute" }, { "api_name": "struct.pack", "line_number": 282, "usage_type": "call" }, { "api_name": "socket.inet_aton", "line_number": 284, "usage_type": "call" }, { "api_name": "socket.inet_aton", "line_number": 285, "usage_type": "call" }, { "api_name": "socket.IPPROTO_IP", "line_number": 287, "usage_type": "attribute" }, { "api_name": "socket.IP_MULTICAST_IF", "line_number": 287, "usage_type": "attribute" }, { "api_name": "xml.parsers", "line_number": 356, "usage_type": "attribute" }, { "api_name": "socket.timeout", "line_number": 359, "usage_type": "attribute" } ]
14629235583
import numpy as np import time import os import sys from scipy.stats import poisson, binom from scipy.special import erf as erf from admin import make_glob_array import multiprocessing # from Sim_show import Sim_fit import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import matplotlib.colors as mcolors from make_3D import make_3D pmts=np.array([0,1,4,6,7,3,10,13,15,17,18,5,11,12,14]) path='/home/gerak/Desktop/DireXeno/011220/' data=np.load(path+'h.npz') Angs=data['Angs'] Angs10=data['Angs10'] Angsbins=data['Angsbins'] H=data['H'] G=data['G'] Spectrum=data['spectrum'] Sbins=data['Sbins'] Spectra=np.transpose(data['spectra'], (2,0,1)) sbins=data['sbins'] FSbins=data['FSbins'] FullSpectrum=data['Fullspectrum'] w=data['W'] Wbins=data['Wbins'] Wbands=data['Wbands'] Sbands=data['Sbands'] W20_40=data['W20_40'] W20_40bins=data['W20_40bins'] data=np.loadtxt(path+'NRel.txt') NDep=[] NSpec=[] for i in range(len(data)): NDep.append(data[i][0]) NSpec.append(data[i][1]) NSpec=NSpec/np.sum(NSpec) N=10 data=np.load('Q.npz') ls=data['ls'] Sspectrum=data['Ravel_Spectrum'].reshape((N, 1, np.shape(Spectrum)[0]))[:,0] Sspectra=data['Ravel_Spectra'].reshape((N, 1, np.shape(Spectra)[0], np.shape(Spectra)[1], np.shape(Spectra)[2]))[:,0] SG=data['Ravel_G'].reshape((N, 1, np.shape(G)[0], np.shape(G)[1], np.shape(G)[2]))[:,0] SH=data['Ravel_H'].reshape((N, 1, np.shape(H)[0], np.shape(H)[1], np.shape(H)[2], np.shape(H)[3]))[:,0] SAngs=data['Ravel_Angs'].reshape((N, 1, np.shape(Angs)[0], np.shape(Angs)[1]))[:,0] SFullspectrum=data['Ravel_Fullspectrum'].reshape((N, 1, np.shape(FullSpectrum)[1]))[:,0] SW=data['Ravel_W'].reshape((N, 1, np.shape(w)[0]))[:,0] keVbins=data['keVbins'] PEbins=data['PEbins'] keVPE=data['Ravel_KeVPE'].reshape((N, len(keVbins)-1, len(PEbins)-1)) y=np.arange(0, 600) y1=data['adn']*y+data['bdn'] y2=data['aup']*y+data['bup'] plt.figure() plt.title('Energy spectrum') plt.step(NDep, NSpec, where='mid') # plt.yscale('log') plt.figure(figsize=(20,10)) X, Y= np.meshgrid(0.5*(keVbins[1:]+keVbins[:-1]), 0.5*(PEbins[1:]+PEbins[:-1])) plt.pcolor(Y, X, np.mean(keVPE, axis=0), norm=mcolors.PowerNorm(0.3)) plt.plot(y, y1, 'k--', label='{}x+{}'.format(np.round(data['adn'],decimals=2), np.round(data['bdn'],decimals=2)), linewidth=5) plt.plot(y, y2, 'k--', label='{}x+{}'.format(np.round(data['aup'],decimals=2), np.round(data['bup'],decimals=2)), linewidth=5) plt.xlabel('PEs', fontsize=25) plt.ylabel('keV', fontsize=25) plt.tick_params(axis='both', which='major', labelsize=20) cbar=plt.colorbar() cbar.ax.tick_params(labelsize=25) plt.legend(fontsize=35, loc='upper right') plt.xlim(0, np.amax(PEbins)) plt.ylim(0, np.amax(keVbins)) plt.figure() plt.title('W') plt.bar(0.5*(Wbins[1:]+Wbins[:-1]), w, width=Wbins[1:]-Wbins[:-1], color='r', alpha=0.5) plt.errorbar(0.5*(Wbins[1:]+Wbins[:-1]), np.mean(SW, axis=0), np.std(SW, axis=0), fmt='.') for i in range(len(Wbands)): plt.axvline(Wbands[i], 0, 1) plt.yscale('log') # plt.figure() plt.title('Full Spectrum') plt.step(0.5*(FSbins[1:]+FSbins[:-1]), np.sum(FullSpectrum, axis=0), where='mid') for i in range(len(Wbands)-1): plt.bar(0.5*(FSbins[1:]+FSbins[:-1]), FullSpectrum[i], width=FSbins[1:]-FSbins[:-1], label='spectrum', alpha=0.5) plt.errorbar(0.5*(FSbins[1:]+FSbins[:-1]), np.mean(SFullspectrum, axis=0), np.std(SFullspectrum, axis=0), fmt='.', label='A') plt.yscale('log') plt.legend() plt.figure() plt.title('Global Spectrum') plt.bar(0.5*(Sbins[1:]+Sbins[:-1]), Spectrum, width=Sbins[1:]-Sbins[:-1], label='spectrum', color='r', alpha=0.5) plt.errorbar(0.5*(Sbins[1:]+Sbins[:-1]), np.mean(Sspectrum, axis=0), np.std(Sspectrum, axis=0), fmt='.', label='A') plt.legend() plt.yscale('log') t=np.arange(100) fig, ax=plt.subplots(2,3) for k in range(len(Sbands)-1): #plt.title('The temporal structure in different energy ranges (NRs) {}-{}'.format(Sbands[k], Sbands[k+1]), fontsize=35) data=np.ravel(G[k]) model=np.ravel(np.mean(SG[:,k], axis=0)) N=np.sum(np.sum(G[k].T*np.arange(np.shape(G)[1]), axis=1)/np.sum(G[k], axis=0)) np.ravel(ax)[k].step(t, (np.sum(G[k].T*np.arange(np.shape(G)[1]), axis=1)/np.sum(G[k], axis=0))/N, where='mid', label='PEs: {}-{}'.format(Sbands[k], Sbands[k+1]), linewidth=3) np.ravel(ax)[k].errorbar(t, np.mean(np.sum(np.transpose(SG[:,k], (0,2,1))*np.arange(np.shape(G)[1]), axis=-1)/np.sum(SG[:,k], axis=1), axis=0)/N, np.std(np.sum(np.transpose(SG[:,k], (0,2,1))*np.arange(np.shape(G)[1]), axis=-1)/np.sum(SG[:,k], axis=1), axis=0)/N, fmt='.', label='{}'.format(-np.sum(data*np.log((model+1e-10)/(data+1e-10))+data-model))) np.ravel(ax)[k].legend(fontsize=10) np.ravel(ax)[k].set_yscale('log') # plt.xlabel('Time [ns]', fontsize=35) # plt.ylabel('The probability to resolve a PE /\naveage number of PEs at\n the energy range', fontsize=35) # plt.ylabel('The average number of\nPEs resolved (normalized)', fontsize=35) # plt.tick_params(axis='both', which='major', labelsize=20) # plt.show() # for k in range(len(Sbands)-1): # fig, ax=plt.subplots(4,4) # fig.suptitle('PMT spectra ({}-{})'.format(Sbands[k], Sbands[k+1])) # for i in range(15): # np.ravel(ax)[i].step(0.5*(sbins[1:]+sbins[:-1]), Spectra[k,:,i], where='mid', label='A') # np.ravel(ax)[i].errorbar(0.5*(sbins[1:]+sbins[:-1]), np.mean(Sspectra[:,k,:,i], axis=0), np.std(Sspectra[:,k,:,i], axis=0), fmt='.', label='A') # np.ravel(ax)[i].legend() # np.ravel(ax)[i].set_yscale('log') # for k in range(len(Sbands)-1): for k in range(1): fig, ax=plt.subplots(4,4) fig.suptitle('PMT temporal ({}-{})'.format(Sbands[k], Sbands[k+1])) for i in range(15): np.ravel(ax)[i].step(t, np.sum(H[k, :,:,i].T*np.arange(np.shape(H)[1]), axis=1)/np.sum(H[k, :,:,i], axis=0), where='mid', label='PMT{}'.format(pmts[i])) # np.ravel(ax)[i].errorbar(t, np.mean(np.sum(np.transpose(SH[k,:,:,:,i], (0,2,1))*np.arange(np.shape(H)[1]), axis=-1)/np.sum(SH[k,:,:,:,i], axis=1), axis=0), # np.std(np.sum(np.transpose(SH[k,:,:,:,i], (0,2,1))*np.arange(np.shape(H)[1]), axis=-1)/np.sum(SH[k,:,:,:,i], axis=1), axis=0), fmt='.') np.ravel(ax)[i].set_yscale('log') np.ravel(ax)[i].legend() plt.show()
gerakolt/DireXeno
fit/show.py
show.py
py
6,250
python
en
code
0
github-code
6
[ { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.transpose", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 54, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 56, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.step", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 67, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "numpy.meshgrid", "line_number": 72, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pcolor", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 73, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.colors.PowerNorm", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.colors", "line_number": 73, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 74, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 74, "usage_type": "name" }, { "api_name": "numpy.round", "line_number": 74, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "numpy.round", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 76, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 77, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 77, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.tick_params", "line_number": 78, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 78, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 79, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 81, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 81, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 82, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 82, "usage_type": "name" }, { "api_name": "numpy.amax", "line_number": 82, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 83, "usage_type": "name" }, { "api_name": "numpy.amax", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 85, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 85, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 86, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 86, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.bar", "line_number": 87, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 87, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.errorbar", "line_number": 88, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 88, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 88, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.axvline", "line_number": 90, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 90, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yscale", "line_number": 91, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 91, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 93, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 93, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 94, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 94, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.step", "line_number": 95, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 95, "usage_type": "name" }, { "api_name": "numpy.sum", "line_number": 95, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.bar", "line_number": 97, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 97, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.errorbar", "line_number": 98, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 98, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 98, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.yscale", "line_number": 99, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 99, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 100, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 103, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 103, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.bar", "line_number": 104, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 104, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.errorbar", "line_number": 105, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 105, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 105, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yscale", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 107, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 109, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 110, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 110, "usage_type": "name" }, { "api_name": "numpy.ravel", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.ravel", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 115, "usage_type": "call" }, { "api_name": "numpy.ravel", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.ravel", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.transpose", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.transpose", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 118, "usage_type": "call" }, { "api_name": "numpy.ravel", "line_number": 119, "usage_type": "call" }, { "api_name": "numpy.ravel", "line_number": 120, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 139, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 139, "usage_type": "name" }, { "api_name": "numpy.ravel", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.ravel", "line_number": 145, "usage_type": "call" }, { "api_name": "numpy.ravel", "line_number": 146, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 147, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 147, "usage_type": "name" } ]
25068821679
import pygame from math import * import time pygame.init() pygame.display.set_caption("sprite sheet") # sets the window title screen = pygame.display.set_mode((1000, 800)) # creates game screen screen.fill((0,0,0)) clock = pygame.time.Clock() #set up clock #Variables and stuff (Start)------------------------------------------------------------------- red_pawn = pygame.image.load('RedPawn.png') #load your spritesheet white_pawn = pygame.image.load('WhitePawn.png') #load your spritesheet background = pygame.image.load('Chess board.png')#loads background white_rook = pygame.image.load('WhiteRook.png') red_rook = pygame.image.load('RedRook.png') white_queen = pygame.image.load('WhiteQueen.png') red_queen = pygame.image.load('RedQueen.png') white_king = pygame.image.load('WhiteKing.png') red_king = pygame.image.load('RedKing.png') white_bishop = pygame.image.load('WhiteBishop.png') red_bishop = pygame.image.load('RedBishop.png') red_knight = pygame.image.load('RedKnight.png') white_knight = pygame.image.load('WhiteKnight.png') White=(255,255,255) PIECEWIDTH = 100 checkmate = False #variable to run our game loop whiteturn = True hasPicked = False clicked = False TurnNum=0 ticks = 1 tickss = 1 t = 600 t2 = 600 pygame.display.set_caption('Show Text') font = pygame.font.Font('freesansbold.ttf', 32) #Variables and stuff (End)-------------------------------------------------------------------- #text to screen setup #text input------------------------------------------ n1 = input('Enter your name player 1:') n2 = input('Enter your name player 2') #End of text input---------------------------------- #Pieces start----------------------------------------------- class pieces: def __init__(self,xpos,ypos,type): self.xpos = xpos self.ypos = ypos self.lifted = False self.type = type self.alive = True self.row=0 self.column=0 def updatePos(self): self.row = int(self.xpos/100) self.column = int(self.ypos/100) print("my row and column is ", self.row, self.column) self.xpos = self.row*100 self.ypos = self.column*100 def isClicked(self,x,y): global hasPicked global TurnNum print("checking distance") if self.alive == True: if hasPicked == False and self.lifted == False: if (sqrt(((self.xpos+50)-x)**2 + ((self.ypos+50)-y)**2)) <= 50:#check if the distance b/t (x, y) and (self.xpos, self.ypos) is LESS than 50 self.lifted = True #if true, set lifted to true hasPicked = True TurnNum+=1 print("lifted!") else: print("no collision") def move(self, x, y): if self.lifted == True:#if islifed is true, set self.xpos to x, and self.ypos to y self.xpos = x-50 self.ypos = y-50 def draw(self): if self.alive == True: #pawns if self.type == "WhitePawn": screen.blit(white_pawn, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedPawn": screen.blit(red_pawn, (self.xpos, self.ypos), (0, 0, 100, 100)) #knights if self.type == "WhiteKnight": screen.blit(white_knight, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedKnight": screen.blit(red_knight, (self.xpos, self.ypos), (0, 0, 100, 100)) #bishop if self.type == "WhiteBishop": screen.blit(white_bishop, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedBishop": screen.blit(red_bishop, (self.xpos, self.ypos), (0, 0, 100, 100)) #rook if self.type == "WhiteRook": screen.blit(white_rook, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedRook": screen.blit(red_rook, (self.xpos, self.ypos), (0, 0, 100, 100)) #king if self.type == "WhiteKing": screen.blit(white_king, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedKing": screen.blit(red_king, (self.xpos, self.ypos), (0, 0, 100, 100)) #queen if self.type == "WhiteQueen": screen.blit(white_queen, (self.xpos, self.ypos), (0, 0, 100, 100)) if self.type == "RedQueen": screen.blit(red_queen, (self.xpos, self.ypos), (0, 0, 100, 100)) #Pieces End----------------------------------------------------------- #python list (like a vector) whitelist = [] redlist = [] #White Pawns WhitePawn1 = pieces(0, 100, "WhitePawn") whitelist.append(WhitePawn1) WhitePawn2 = pieces(100, 100, "WhitePawn") whitelist.append(WhitePawn2) WhitePawn3 = pieces(200, 100, "WhitePawn") whitelist.append(WhitePawn3) WhitePawn4 = pieces(300, 100, "WhitePawn") whitelist.append(WhitePawn4) WhitePawn5 = pieces(400, 100, "WhitePawn") whitelist.append(WhitePawn5) WhitePawn6 = pieces(500, 100, "WhitePawn") whitelist.append(WhitePawn6) WhitePawn7 = pieces(600, 100, "WhitePawn") whitelist.append(WhitePawn7) WhitePawn8 = pieces(700, 100, "WhitePawn") whitelist.append(WhitePawn8) #Red Pawns RedPawn1 = pieces(0, 600, "RedPawn") redlist.append(RedPawn1) RedPawn2 = pieces(100, 600, "RedPawn") redlist.append(RedPawn2) RedPawn3 = pieces(200, 600, "RedPawn") redlist.append(RedPawn3) RedPawn4 = pieces(300, 600, "RedPawn") redlist.append(RedPawn4) RedPawn5 = pieces(400, 600, "RedPawn") redlist.append(RedPawn5) RedPawn6 = pieces(500, 600, "RedPawn") redlist.append(RedPawn6) RedPawn7 = pieces(600, 600, "RedPawn") redlist.append(RedPawn7) RedPawn8 = pieces(700, 600, "RedPawn") redlist.append(RedPawn8) #White Rooks WhiteRook1 = pieces(0, 0, "WhiteRook") whitelist.append(WhiteRook1) WhiteRook2 = pieces(700, 0, "WhiteRook") whitelist.append(WhiteRook2) #Red Rooks RedRook1 = pieces(0, 700, "RedRook") redlist.append(RedRook1) RedRook2 = pieces(700, 700, "RedRook") redlist.append(RedRook2) #White Knights WhiteKnight1 = pieces(100, 0, "WhiteKnight") whitelist.append(WhiteKnight1) WhiteKnight2 = pieces(600, 0, "WhiteKnight") whitelist.append(WhiteKnight2) #Red Knights RedKnight1 = pieces(100, 700, "RedKnight") redlist.append(RedKnight1) RedKnight2 = pieces(600, 700, "RedKnight") redlist.append(RedKnight2) #White Bishops WhiteBishop1 = pieces(200, 0, "WhiteBishop") whitelist.append(WhiteBishop1) WhiteBishop2 = pieces(500, 0, "WhiteBishop") whitelist.append(WhiteBishop2) #Red Bishop RedBishop1 = pieces(200, 700, "RedBishop") redlist.append(RedBishop1) RedBishop2 = pieces(500, 700, "RedBishop") redlist.append(RedBishop2) #White and Red King WhiteKing = pieces(300, 0, "WhiteKing") whitelist.append(WhiteKing) RedKing = pieces(300, 700, "RedKing") redlist.append(RedKing) #White and Red Queen WhiteQueen = pieces(400, 0, "WhiteQueen") whitelist.append(WhiteQueen) RedQueen = pieces(400, 700, "RedQueen") redlist.append(RedQueen) #MAP: map = [[3, 4, 5, 6, 7, 5, 4, 3], [2, 2, 2, 2, 2, 2, 2, 2], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1], [8, 9, 10, 11, 12, 10, 9, 8]] while not checkmate: clock.tick(60) #print("clicked is ", clicked) for event in pygame.event.get(): if event.type == pygame.QUIT: checkmate = True if event.type == pygame.MOUSEBUTTONDOWN: if pygame.MOUSEBUTTONDOWN: print("click") if clicked == False: clicked = True elif clicked == True: clicked = False if event.type == pygame.MOUSEBUTTONUP: print("unclick") clicked = False if event.type == pygame.MOUSEMOTION: #check if mouse moved mousePos = event.pos #refreshes mouse position # print("mouse position: (",mousePos[0]," , ",mousePos[1], ")") #COLLISION #White updatepos for i in range(len(whitelist)): whitelist[i].updatePos() #red updatepos for i in range(len(redlist)): redlist[i].updatePos() if clicked ==True: if whiteturn is True:# if whiteturn is true white pieces go #white clicked function for i in range(len(whitelist)): whitelist[i].isClicked(mousePos[0],mousePos[1]) if whiteturn is False: # if whiteturn is false red goes #red clicked function for i in range(len(redlist)): redlist[i].isClicked(mousePos[0],mousePos[1]) if clicked == False: hasPicked = False #white pieces lifted set down for i in range(len(whitelist)): whitelist[i].lifted = False #red piece lifted set down for i in range(len(redlist)): redlist[i].lifted = False #White pieces move for i in range(len(whitelist)): whitelist[i].move(mousePos[0],mousePos[1]) #Red pieces move for i in range(len(redlist)): redlist[i].move(mousePos[0],mousePos[1]) #print to screen if whiteturn == True: ticks +=1 if ticks%60==0: #add a ticker variable here, add 1 to it, when it hits 60, decrement t and reset time t-=1 if t == 0: gameover = True if whiteturn == False: tickss +=1 if tickss%60==0: t2-=1 if t2 == 0: gameover = True text = font.render(str(t), True, (0,255,0)) textRect = text.get_rect() textRect.center = (900, 0) text2 = font.render(str(t2), True, (0,255,0)) textRect2 = text2.get_rect() textRect2.center = (900, 800) Name = font.render(str(n1), True, (255,255,255)) name = Name.get_rect() name.center = (900, 100) Name2 = font.render(str(n2), True, (255,255,255)) name2 = Name2.get_rect() name2.center = (900, 700) for i in range(len(whitelist)): for j in range(len(redlist)): if whiteturn == False: if whitelist[i].row/100 == redlist[j].row/100 and whitelist[i].column/100 == redlist[j].column/100: redlist[j].alive = False print(redlist[j].type, "got killed") if whiteturn == True: if redlist[j].row/100 == whitelist[i].row/100 and redlist[j].column/100 == whitelist[i].column/100: whitelist[i].alive = False print(whitelist[i].type, "got killed") if WhiteKing.alive == False: checkmate = True if RedKing.alive == False: checkmate = True # RENDER-------------------------------------------------------------------------------- screen.fill((0,0,0)) #wipe screen so it doesn't smear screen.blit(background, (0,0)) if TurnNum % 2==0: whiteturn=True print("white's turn") else: print("red's turn") whiteturn = False print("Turn Num:", TurnNum) #draws white pieces for i in range(len(whitelist)): whitelist[i].draw() #draws red pieces for i in range(len(redlist)): redlist[i].draw() screen.blit(Name, (900,50)) screen.blit(Name2, (900,700)) screen.blit(text, (900, 100)) screen.blit(text2, (900, 750)) pygame.display.flip()#this actually puts the pixel on the screen #end game loop------------------------------------------------------------------------------ pygame.quit()
richfls/chess
main9.py
main9.py
py
11,852
python
en
code
0
github-code
6
[ { "api_name": "pygame.init", "line_number": 4, "usage_type": "call" }, { "api_name": "pygame.display.set_caption", "line_number": 5, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 5, "usage_type": "attribute" }, { "api_name": "pygame.display.set_mode", "line_number": 6, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 6, "usage_type": "attribute" }, { "api_name": "pygame.time.Clock", "line_number": 8, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 8, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 11, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 11, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 12, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 12, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 13, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 13, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 14, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 14, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 15, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 16, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 16, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 17, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 17, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 18, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 18, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 19, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 19, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 20, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 21, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 21, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 22, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 22, "usage_type": "attribute" }, { "api_name": "pygame.image.load", "line_number": 23, "usage_type": "call" }, { "api_name": "pygame.image", "line_number": 23, "usage_type": "attribute" }, { "api_name": "pygame.display.set_caption", "line_number": 37, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 37, "usage_type": "attribute" }, { "api_name": "pygame.font.Font", "line_number": 38, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 38, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 222, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 222, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 223, "usage_type": "attribute" }, { "api_name": "pygame.MOUSEBUTTONDOWN", "line_number": 226, "usage_type": "attribute" }, { "api_name": "pygame.MOUSEBUTTONDOWN", "line_number": 227, "usage_type": "attribute" }, { "api_name": "pygame.MOUSEBUTTONUP", "line_number": 234, "usage_type": "attribute" }, { "api_name": "pygame.MOUSEMOTION", "line_number": 238, "usage_type": "attribute" }, { "api_name": "pygame.display.flip", "line_number": 354, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 354, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 357, "usage_type": "call" } ]
5432983759
import logging import warnings from typing import List, Tuple import numpy as np import pandas as pd from anndata import AnnData from mudata import MuData from pandas.api.types import is_numeric_dtype from sklearn.neighbors import KNeighborsClassifier from ..utils import check_transition_rule, get_views_from_structure from .MultiViewAtlas import MultiViewAtlas, _harmonize_mdata_full warnings.simplefilter(action="ignore", category=FutureWarning) warnings.simplefilter(action="ignore", category=UserWarning) # logger = logging.getLogger(__name__) # logger.propagate = False # ch = RichHandler(level=logging.INFO, show_path=False, show_time=False) # formatter = logging.Formatter("%(message)s") # ch.setFormatter(formatter) # logger.addHandler(ch) def load_query( mvatlas: MultiViewAtlas, adata_query: AnnData, ) -> MultiViewAtlas: """Load query data to full view of multi-view atlas Params: ------- mvatlas: MultiViewAtlas object adata_query: AnnData of query data Returns: -------- MultiViewAtlas object with mapped query cells in full view """ # Define all current view - next view pairs for assignment view_pairs = mvatlas.get_view_pairs() # Check if query cells already in mdata if adata_query.obs_names.isin(mvatlas.mdata.obs_names).all(): vdata_full = mvatlas.mdata["full"].copy() else: vdata_full = concatenate_query(mvatlas, adata_query, "full") # Check that at least one mapping from full view is possible with transition rules rules_from_full = view_pairs[view_pairs.depth == 0]["transition_rule"].unique() missing_rules = [] for r in rules_from_full: try: if check_transition_rule(adata_query, r) is None: continue except ValueError: missing_rules.append(r) if len(rules_from_full) == len(missing_rules): raise ValueError( f""" No mapping possible from full view. Please add info on rules {missing_rules} to query dataset """ ) mdata = mvatlas.mdata.copy() mdata.mod["full"] = vdata_full.copy() try: mdata.update() except KeyError: mdata.update() del mdata.obsm["view_assign"] mvatlas_mapped = MultiViewAtlas(mdata, rename_obsm=False) mvatlas_mapped.view_transition_rule = mvatlas.view_transition_rule.copy() _harmonize_mdata_full(mvatlas_mapped) return mvatlas_mapped def split_query( mvatlas_mapped: MultiViewAtlas, ) -> MultiViewAtlas: """Assign query data to views in atlas, based on transition rules. Params: ------- mvatlas: MultiViewAtlas object Returns: -------- MultiViewAtlas object with mapped query cells """ # Define all current view - next view pairs for assignment view_pairs = mvatlas_mapped.get_view_pairs() # Check that load_query was run try: if sum(mvatlas_mapped.mdata["full"].obs["dataset_group"] == "query") == 0: raise ValueError("No query cells in mdata - run load_query first") except KeyError: raise ValueError("No query cells in mdata - run load_query first") vdata_full = mvatlas_mapped.mdata["full"].copy() new_view_assign = pd.DataFrame() vdata_dict = {} vdata_dict["full"] = vdata_full.copy() for _, row in view_pairs.iterrows(): depth = row["depth"] current_view = row["parent_view"] next_view = row["child_view"] try: n_query_current = sum(vdata_dict[current_view].obs["dataset_group"] == "query") except KeyError: n_query_current = 0 try: n_query_next = sum(mvatlas_mapped.mdata[next_view].obs["dataset_group"] == "query") except KeyError: n_query_next = 0 # if "dataset_group" in vdata_dict[current_view].obs: if n_query_current > 0: adata_query = vdata_dict[current_view][vdata_dict[current_view].obs["dataset_group"] == "query"].copy() logging.info(f"Assigning to {next_view} from {current_view} with rule {row['transition_rule']}") # print(adata_query) # print(vdata_dict[current_view]) # print(mvatlas_mapped.mdata[current_view]) if n_query_next > 0: logging.info(f"Query cells already in {next_view}") v_assign = mvatlas_mapped.mdata.obsm["view_assign"][[next_view]] vdata_dict[next_view] = mvatlas_mapped.mdata[next_view].copy() else: adata_query_concat = AnnData(obs=adata_query.obs, obsm=adata_query.obsm, obsp=adata_query.obsp) if depth > 0: adata_query_concat = adata_query_concat[ new_view_assign.loc[adata_query_concat.obs_names, current_view] == 1 ].copy() v_assign, next_view_adata = map_next_view( mvatlas_mapped, adata_query_concat, current_view=current_view, next_view=next_view ) vdata_dict[next_view] = next_view_adata.copy() else: logging.info(f"No query cells in {current_view}") v_assign = mvatlas_mapped.mdata.obsm["view_assign"][[next_view]] vdata_dict[next_view] = mvatlas_mapped.mdata[next_view].copy() new_view_assign = pd.concat([new_view_assign, v_assign], 1) new_view_assign = new_view_assign.fillna(0) vdata_full.obsm["view_assign"] = new_view_assign.copy() vdata_full.uns["view_hierarchy"] = mvatlas_mapped.view_hierarchy vdata_dict["full"] = vdata_full mdata = MuData({v: vdata_dict[v] for v in get_views_from_structure(mvatlas_mapped.view_hierarchy)}) mdata.mod["full"] = mdata.mod["full"][mdata.obs_names].copy() view_transition_rule = mvatlas_mapped.view_transition_rule.copy() # trans_rule = pd.Series(mvatlas.view_transition_rule.values.ravel()).dropna().unique()[0] mvatlas_mapped = MultiViewAtlas(mdata, rename_obsm=False, transition_rule=view_transition_rule) # mvatlas_mapped.view_transition_rule = view_transition_rule.copy() return mvatlas_mapped def concatenate_query( mvatlas: MultiViewAtlas, adata_query: AnnData, view: str, batch_key: str = "dataset_group", batch_categories: List[str] = None, ): """Concatenate query data to atlas data""" if batch_categories is None: batch_categories = ["atlas", "query"] adata_atlas = mvatlas.mdata[view].copy() assert np.intersect1d(adata_atlas.obs_names, adata_query.obs_names).size == 0 adata_atlas = adata_atlas.concatenate( adata_query, batch_key=batch_key, batch_categories=batch_categories, index_unique=None, uns_merge="unique" ) return adata_atlas def assign_from_similarity(Y_assign_atlas, X_similarity_atlas, X_similarity_query, v_assign, k=10): """Assign query cells to atlas views based on similarity to atlas cells. Similarity can be derived from metadata annotation or from latent space """ if not isinstance(v_assign, pd.DataFrame): raise ValueError("v_assign must be a pandas DataFrame") if not v_assign.shape[1] == 1: raise ValueError("v_assign must have only one column") clf = KNeighborsClassifier(n_neighbors=k, metric="euclidean").fit(X_similarity_atlas, Y_assign_atlas) Y_assign_query = clf.predict(X_similarity_query) assign_predict = pd.DataFrame(Y_assign_query, columns=v_assign.columns) return assign_predict def map_next_view( mvatlas: MultiViewAtlas, adata_query: AnnData, current_view: str, next_view: str, batch_key: str = "dataset_group", batch_categories: List[str] = None, ) -> Tuple[pd.DataFrame, AnnData]: """Assign query cells to next view based on similarity to atlas cells. Similarity is defined by the transition rule. """ if batch_categories is None: batch_categories = ["atlas", "query"] # curr_view_adata = _concatenate_query(mvatlas, adata_query, current_view, batch_key=batch_key, batch_categories=batch_categories) curr_view_adata = mvatlas.mdata[current_view].copy() next_view_adata = mvatlas.mdata[next_view].copy() # Get similarity from transition rule if batch_key in curr_view_adata.obs.columns: v_assign = mvatlas.mdata.obsm["view_assign"].loc[mvatlas.mdata["full"].obs[batch_key] == batch_categories[0]][ [next_view] ] curr_view_adata = curr_view_adata[curr_view_adata.obs[batch_key] == batch_categories[0]].copy() # next_view_adata = next_view_adata[next_view_adata.obs[batch_key] == batch_categories[0]].copy() # assert "dataset_group" not in next_view_adata.obs.columns else: v_assign = mvatlas.mdata.obsm["view_assign"].loc[mvatlas.mdata["full"].obs[batch_key] == batch_categories[0]][ [next_view] ] transition_rule = mvatlas.view_transition_rule[current_view][next_view] if transition_rule is not None: try: check_transition_rule(adata_query, transition_rule) except ValueError: logging.warning( f"Could not check transition rule {transition_rule} for query data - skipping mapping from {current_view} to {next_view}" ) v_assign_query = pd.DataFrame(0, columns=[next_view], index=adata_query.obs_names) v_assign = pd.concat([v_assign, v_assign_query], axis=0) return v_assign, next_view_adata # Split to next view based on transition rule # if transition is in obs if transition_rule in adata_query.obs.columns: if is_numeric_dtype(adata_query.obs[transition_rule]): X_similarity_atlas = curr_view_adata.obs[[transition_rule]].values X_similarity_query = adata_query.obs[[transition_rule]].values else: X_similarity_atlas = pd.get_dummies(curr_view_adata.obs[transition_rule]) X_similarity_query = pd.get_dummies(adata_query.obs[transition_rule]) # Check for missing levels missing_cols = [x for x in X_similarity_atlas.columns if x not in X_similarity_query.columns] if len(missing_cols) > 0: X_similarity_query[missing_cols] = 0 X_similarity_query = X_similarity_query[X_similarity_atlas.columns].copy() X_similarity_atlas = X_similarity_atlas.values X_similarity_query = X_similarity_query.values if transition_rule in adata_query.obsm: X_similarity_atlas = curr_view_adata.obsm[transition_rule] X_similarity_query = adata_query.obsm[transition_rule] # X_similarity = curr_view_adata.obsm[transition_rule] else: raise ValueError(f"No transition rule defined for {current_view} -> {next_view}") # Get assignment to next view Y_assign_atlas = v_assign.loc[curr_view_adata.obs_names].values.ravel() v_assign_query = assign_from_similarity(Y_assign_atlas, X_similarity_atlas, X_similarity_query, v_assign) v_assign_query.index = adata_query.obs_names v_assign = pd.concat([v_assign, v_assign_query], axis=0) next_view_adata = concatenate_query( mvatlas, adata_query[v_assign_query[next_view] == 1], next_view, batch_key=batch_key, batch_categories=batch_categories, ) return v_assign, next_view_adata
Teichlab/multi-view-atlas
src/multi_view_atlas/tl/map_query.py
map_query.py
py
11,557
python
en
code
0
github-code
6
[ { "api_name": "warnings.simplefilter", "line_number": 15, "usage_type": "call" }, { "api_name": "warnings.simplefilter", "line_number": 16, "usage_type": "call" }, { "api_name": "MultiViewAtlas.MultiViewAtlas", "line_number": 27, "usage_type": "name" }, { "api_name": "anndata.AnnData", "line_number": 28, "usage_type": "name" }, { "api_name": "utils.check_transition_rule", "line_number": 56, "usage_type": "call" }, { "api_name": "MultiViewAtlas.MultiViewAtlas", "line_number": 74, "usage_type": "call" }, { "api_name": "MultiViewAtlas._harmonize_mdata_full", "line_number": 77, "usage_type": "call" }, { "api_name": "MultiViewAtlas.MultiViewAtlas", "line_number": 29, "usage_type": "name" }, { "api_name": "MultiViewAtlas.MultiViewAtlas", "line_number": 82, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 107, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 125, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 130, "usage_type": "call" }, { "api_name": "anndata.AnnData", "line_number": 134, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 144, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 147, "usage_type": "call" }, { "api_name": "mudata.MuData", "line_number": 153, "usage_type": "call" }, { "api_name": "utils.get_views_from_structure", "line_number": 153, "usage_type": "call" }, { "api_name": "MultiViewAtlas.MultiViewAtlas", "line_number": 157, "usage_type": "call" }, { "api_name": "MultiViewAtlas.MultiViewAtlas", "line_number": 83, "usage_type": "name" }, { "api_name": "MultiViewAtlas.MultiViewAtlas", "line_number": 163, "usage_type": "name" }, { "api_name": "anndata.AnnData", "line_number": 164, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 167, "usage_type": "name" }, { "api_name": "numpy.intersect1d", "line_number": 174, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 186, "usage_type": "attribute" }, { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 191, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 193, "usage_type": "call" }, { "api_name": "MultiViewAtlas.MultiViewAtlas", "line_number": 198, "usage_type": "name" }, { "api_name": "anndata.AnnData", "line_number": 199, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 203, "usage_type": "name" }, { "api_name": "utils.check_transition_rule", "line_number": 231, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 233, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 236, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 237, "usage_type": "call" }, { "api_name": "pandas.api.types.is_numeric_dtype", "line_number": 242, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 246, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 247, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 271, "usage_type": "call" }, { "api_name": "typing.Tuple", "line_number": 204, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 204, "usage_type": "attribute" }, { "api_name": "anndata.AnnData", "line_number": 204, "usage_type": "name" } ]
18390517391
import re import scrapy base_url = "https://www.senscritique.com/liste/Cine_2017_sur_un_coin_de_table/1562107" class SC_Spider(scrapy.Spider): name = "liste" start_urls = [base_url] summary_done = False current_page = 1 def parse(self, response): if not self.summary_done: list_title = re.sub('\s+', ' ', response.css('h1.d-heading1::text').extract_first()) list_desc = str.join('\n', response.css('div.d-grid')[2].css('p::text').extract()) yield {'list_title': list_title, 'list_desc': list_desc} self.summary_done = True list_fragment = response.css('div.elli-content') for item in list_fragment: title = item.css('a.elco-anchor::text').extract_first() try: comment = str.join('\n', item.css('div.elli-annotation-content::text').extract()) except: comment = '' yield {'title': title, 'comment': comment} try: if self.current_page > 11: raise Exception self.current_page += 1 next_page = response.css('div.eipa-interface')[0].css('li.eipa-page')[min(self.current_page, 7)].css('a.eipa-anchor::attr(href)').extract_first() idx = next_page.rfind('-') next_page = next_page[:idx+1] + str(self.current_page) except: next_page = None if next_page is not None: yield response.follow(next_page, self.parse)
ria4/tln
util/old/crawlers/sc/liste_crawler.py
liste_crawler.py
py
1,503
python
en
code
3
github-code
6
[ { "api_name": "scrapy.Spider", "line_number": 6, "usage_type": "attribute" }, { "api_name": "re.sub", "line_number": 14, "usage_type": "call" } ]
2053824632
# USAGE # python extract_features.py --dataset ../datasets/kaggle_dogs_vs_cats/train --output ../datasets/kaggle_dogs_vs_cats/hdf5/features.hdf5 from keras.applications import ResNet50, imagenet_utils from keras.preprocessing.image import load_img, img_to_array from sklearn.preprocessing import LabelEncoder from pyimagesearch.io import HDF5DatasetWriter from imutils import paths import numpy as np import progressbar import os import random import argparse # construct argument parser and parse the argument ap = argparse.ArgumentParser() ap.add_argument('-d', '--dataset', required=True, help='path to input dataset') ap.add_argument('-o', '--output', required=True, help='path to output hdf5 file') ap.add_argument('-b', '--buffer-size', type=int, default=1000, help='size of feature extraction buffer') ap.add_argument('-s', '--batch-size', type=int, default=32, help='batch size of image to be passed through feature extractor') args = vars(ap.parse_args()) # construct batch size for convenience usr batch_size = args['batch_size'] # grab the list of image paths and extract labels through them print('[INFO] loading images...') image_paths = list(paths.list_images(args['dataset'])) random.shuffle(image_paths) labels = [image_path.split(os.path.sep)[-1].split('.')[0] for image_path in image_paths] le = LabelEncoder() labels = le.fit_transform(labels) # load model print('[INFO] loading model...') model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # initialize HDF5 dataset writer dataset = HDF5DatasetWriter((len(labels), 2048), image_paths, data_key='features', buf_size=args['buffer_size']) dataset.storeClassLabels(le.classes_) # construct progress bar widgets = ['Extracting features: ', progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()] pbar = progressbar.ProgressBar(maxval=len(labels), widgets=widgets).start() # loop over batches of images for i in range(0, len(labels), batch_size): batch_paths = image_paths[i:i+batch_size] batch_labels = labels[i:i+batch_size] batch_images = [] # loop over images for image_path in batch_paths: # load image and convert it to Keras-compatitble array image = load_img(image_path, target_size=(224, 224)) image = img_to_array(image) # add extra dimension image = np.expand_dims(image, axis=0) # preprocess by Resnet50 image = imagenet_utils.preprocess_input(image) # add to batch batch_images.append(image) # pass batch through Resnet50 batch_images = np.vstack(batch_images) features = model.predict(batch_images, batch_size=batch_size) features = features.reshape((len(features), -1)) # add to hdf5 dataset dataset.add(features, batch_labels) pbar.update(i) # close dataset dataset.close() pbar.finish()
lykhahaha/Mine
PractitionerBundle/chapter10-dogs_vs_cats/extract_features.py
extract_features.py
py
2,835
python
en
code
0
github-code
6
[ { "api_name": "argparse.ArgumentParser", "line_number": 15, "usage_type": "call" }, { "api_name": "imutils.paths.list_images", "line_number": 27, "usage_type": "call" }, { "api_name": "imutils.paths", "line_number": 27, "usage_type": "name" }, { "api_name": "random.shuffle", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "sklearn.preprocessing.LabelEncoder", "line_number": 30, "usage_type": "call" }, { "api_name": "keras.applications.ResNet50", "line_number": 35, "usage_type": "call" }, { "api_name": "pyimagesearch.io.HDF5DatasetWriter", "line_number": 38, "usage_type": "call" }, { "api_name": "progressbar.Percentage", "line_number": 42, "usage_type": "call" }, { "api_name": "progressbar.Bar", "line_number": 42, "usage_type": "call" }, { "api_name": "progressbar.ETA", "line_number": 42, "usage_type": "call" }, { "api_name": "progressbar.ProgressBar", "line_number": 43, "usage_type": "call" }, { "api_name": "keras.preprocessing.image.load_img", "line_number": 54, "usage_type": "call" }, { "api_name": "keras.preprocessing.image.img_to_array", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 57, "usage_type": "call" }, { "api_name": "keras.applications.imagenet_utils.preprocess_input", "line_number": 59, "usage_type": "call" }, { "api_name": "keras.applications.imagenet_utils", "line_number": 59, "usage_type": "name" }, { "api_name": "numpy.vstack", "line_number": 64, "usage_type": "call" } ]
34776536653
from django.http import JsonResponse, HttpResponseRedirect from django.shortcuts import render, redirect from django.urls import reverse from ..filters.CRPFilter import CRPFilter from ..forms.CRPForm import UpdateCRPForm, CRPTrackForm, AddCRPForm from django.forms import modelformset_factory from datetime import datetime, timedelta from ..forms.ProductCenterForm import CapacitySchedulingFormCRP from ..models.CRP import CRPTrack, CRP from ..models.Finished import Finished from ..models.OperationList import OperationList from ..models.ProductCenter import ProductCenter, CapacityScheduling from ..models.OperationSequence import OperationSequence from django.contrib import messages list_crp_props = { "title": "CRP", } post_crp_props = { "title": "Add CRP", } views_crp_props = { "title": "View CRP", } update_crp_props = { "title": "Update CRP", 'btn_name': 'Update' } copy_crp_props = { "title": "Copy CRP", 'btn_name': 'Copy' } def ListCRP(request): if request.method == "GET": crp_track = CRPTrack.objects.all() list_crp_props['crp_track'] = crp_track list_crp_props['filters'] = CRPFilter() return render(request, 'PP/planning/crp/list.html', context=list_crp_props) def FilterCRP(request): if request.method == 'POST': filter = CRPFilter(request.POST, queryset=CRPTrack.objects.all()) if filter.is_valid(): if len(filter.qs.values()) != 0: return JsonResponse({ 'CRPTrack': list(filter.qs.values()), 'mass': 'success', }, status=200) else: return JsonResponse({ 'mass': 'error', }, status=200) else: return JsonResponse({ 'mass': 'error', }) else: return JsonResponse({ 'mass': 'error', }) def PostCRP(request): if request.method == "POST": finish = request.POST.get('finished_no') order_ref = request.POST.get('order_ref') order_qty = request.POST.get('order_qty') if request.is_ajax(): finish = Finished.objects.get(id=finish) opl = OperationList.objects.filter(id=finish.operations_list.id).values() opsec = OperationSequence.objects.filter(operation_list=finish.operations_list).values() crp = [] for ops in opsec: pc = ProductCenter.objects.get(id=ops['production_center_id']) cs = CapacityScheduling.objects.filter(ProductCenterId=ops['production_center_id']).last() crp.append({ 'operationSequence': ops['operationSequence'], 'productioncneter': pc.product_center_name, 'AvalStartDate': cs.Date, 'reqdcapunit': ops['reqdcapunit'], 'ReqdMcHrByUnit': ops['totaltime'], 'AvalStartTime': cs.EndTime, 'AvalMcHrOrDay': cs.BalMcOrHour, 'NoOfMCByResAval': int(pc.NoOfMByC) - int(cs.NoOfMCAlloctd), 'AvalCAPByDay': cs.BalanceCap, }) crp_track_form = CRPTrackForm({'finished': finish, 'operationlist': finish.operations_list.id, 'product_description': finish.product_description, 'order_ref': order_ref, 'order_qty': order_qty }) if crp_track_form.is_valid(): crp_track_form = crp_track_form.save() return JsonResponse({ 'mass': "success", 'operation_scheduling': list(opsec), 'crps': crp, 'CRPTrack': list(CRPTrack.objects.filter(id=crp_track_form.id).values()) }, status=200) operationSequence = request.POST.getlist('operationSequence') productioncneter = request.POST.getlist('productioncneter') AvalStartDate = request.POST.getlist('AvalStartDate') StartDate = request.POST.getlist('StartDate') NoOfMCByResAval = request.POST.getlist('NoOfMCByResAval') AvalCAPByDay = request.POST.getlist('AvalCAPByDay') reqdcapunit = request.POST.getlist('reqdcapunit') ReqdCAPByDay = request.POST.getlist('ReqdCAPByDay') AvalMcHrOrDay = request.POST.getlist('AvalMcHrOrDay') ReqdMcHrByUnit = request.POST.getlist('ReqdMcHrByUnit') ReqdMcHour = request.POST.getlist('ReqdMcHour') AvalStartTime = request.POST.getlist('AvalStartTime') StartTime = request.POST.getlist('StartTime') EndTime = request.POST.getlist('EndTime') EndDate = request.POST.getlist('EndDate') NoOfMcByRes = request.POST.getlist('NoOfMcByRes') mc_id_no = request.POST.getlist('mc_id_no') crp_track = request.POST.getlist('crp_track') mass = False if len(operationSequence) != 0: for x in range(0, len(operationSequence)): crp = AddCRPForm({ 'crp_track': CRPTrack.objects.get(id=crp_track[x]), 'operationSequence': operationSequence[x], "productioncneter": productioncneter[x], "reqdcapunit": reqdcapunit[x], "ReqdMcHrByUnit": ReqdMcHrByUnit[x], "AvalStartDate": AvalStartDate[x], 'AvalStartTime': AvalStartTime[x], "NoOfMCByResAval": NoOfMCByResAval[x], "AvalCAPByDay": AvalCAPByDay[x], 'AvalMcHrOrDay': AvalMcHrOrDay[x], 'StartDate': StartDate[x], 'ReqdCAPByDay': ReqdCAPByDay[x], 'ReqdMcHour': ReqdMcHour[x], 'StartTime': StartTime[x], 'EndTime': EndTime[x], 'EndDate': EndDate[x], 'NoOfMcByRes': NoOfMcByRes[x], 'mc_id_no': mc_id_no[x] }) if crp.is_valid(): crp = crp.save() crp_tracks = CRPTrack.objects.get(id=crp.crp_track) BalanceCap = int(crp.AvalCAPByDay) - int(crp.ReqdCAPByDay) cs = CapacitySchedulingFormCRP({ 'ProductCenterId': ProductCenter.objects.get(product_center_name=crp.productioncneter), 'Date': crp.AvalStartDate, 'AvalCapOrDay': crp.AvalCAPByDay, 'CapALlloctdTo': crp_tracks.finished.id, 'AlloctdCap': crp.ReqdCAPByDay, 'BalanceCap': BalanceCap, 'AvalMcOrResHour': crp.AvalMcHrOrDay, 'ReqdMcOrResHour': crp.ReqdMcHour, 'BalMcOrHour': str(float(crp.AvalMcHrOrDay) - float(crp.ReqdMcHour)), 'StartTime': crp.StartTime, 'EndTime': crp.EndTime, 'NoOfMCAlloctd': crp.NoOfMcByRes, }) if cs.is_valid(): cs.save() if BalanceCap == 0: AvalStartDates = datetime.strptime(str(crp.AvalStartDate), '%Y-%m-%d') AvalStartDates = AvalStartDates + timedelta(days=1) pc = ProductCenter.objects.get(product_center_name=crp.productioncneter) csl = CapacityScheduling.objects.filter(ProductCenterId=pc.id).first() cs = CapacitySchedulingFormCRP({ 'ProductCenterId': ProductCenter.objects.get(product_center_name=crp.productioncneter), 'Date': AvalStartDates, 'AvalCapOrDay': csl.AvalCapOrDay, 'CapALlloctdTo': csl.CapALlloctdTo, 'AlloctdCap': csl.AlloctdCap, 'BalanceCap': csl.BalanceCap, 'AvalMcOrResHour': csl.AvalMcOrResHour, 'ReqdMcOrResHour': csl.ReqdMcOrResHour, 'BalMcOrHour': csl.BalMcOrHour, 'StartTime': csl.StartTime, 'EndTime': csl.EndTime, 'NoOfMCAlloctd': csl.NoOfMCAlloctd, }) if cs.is_valid(): cs.save() mass = True else: mass = False if mass: messages.success(request, 'CRP Created Successfully.') return HttpResponseRedirect(reverse('productionplanning:CRP', args={crp_track[0]})) else: messages.error(request, 'CRP Not Created Successfully.') return render(request, 'PP/Planning/crp/general_data_form.html', context=post_crp_props) else: return render(request, 'PP/Planning/crp/general_data_form.html', context=post_crp_props) def AddCRP(request, id): crp_track = CRPTrack.objects.get(id=id) crp = CRP.objects.filter(crp_track=crp_track.id) post_crp_props['crp_track'] = crp_track post_crp_props['crp'] = crp return render(request, 'PP/Planning/crp/add_crp.html', context=post_crp_props) def ViewCRP(request, id): crp_track = CRPTrack.objects.get(id=id) crp = CRP.objects.filter(crp_track=crp_track.id) views_crp_props['crp_track'] = crp_track views_crp_props['crp'] = crp return render(request, 'PP/Planning/crp/views.html', context=views_crp_props) def UpdateCRP(request, id): crp_track = CRPTrack.objects.get(id=id) crp = CRP.objects.filter(crp_track=crp_track.id) update_crp_props['crp_track'] = crp_track update_crp_props['crp'] = crp CRPFoemSet = modelformset_factory(CRP, form=UpdateCRPForm, extra=0) formset = CRPFoemSet(queryset=crp) update_crp_props['formset'] = formset if request.POST: formset = CRPFoemSet(request.POST, queryset=crp) if formset.has_changed(): if formset.is_valid(): formset.save() messages.success(request, 'CRP Update Successfully.') return HttpResponseRedirect(reverse('productionplanning:UpdateCRP', args={crp_track.id})) else: messages.error(request, 'CRP Form is not valid.') return HttpResponseRedirect(reverse('productionplanning:UpdateCRP', args={crp_track.id})) else: messages.error(request, 'Value is not Change.') return HttpResponseRedirect(reverse('productionplanning:UpdateCRP', args={crp_track.id})) else: return render(request, 'PP/Planning/crp/update_crp.html', context=update_crp_props) def CopyCRP(request, id): crp_track = CRPTrack.objects.get(id=id) crp = CRP.objects.filter(crp_track=crp_track.id) copy_crp_props['crp_track'] = crp_track copy_crp_props['crp'] = crp CRPFoemSet = modelformset_factory(CRP, form=UpdateCRPForm, extra=0) formset = CRPFoemSet(queryset=crp) copy_crp_props['formset'] = formset if request.POST: mass = [] crp_trackForm = CRPTrackForm(data={ 'finished': crp_track.finished, 'operationlist': crp_track.operationlist, 'product_description': crp_track.product_description, 'order_ref': crp_track.order_ref, 'order_qty': crp_track.order_qty, }) if crp_trackForm.is_valid(): crp_trackForm = crp_trackForm.save() for x in crp: dirs = { 'crp_track': CRPTrack.objects.get(id=crp_trackForm.id), 'operationSequence': x.operationSequence, 'productioncneter': x.productioncneter, 'AvalStartDate': x.AvalStartDate, 'StartDate': x.StartDate, 'reqdcapunit': x.reqdcapunit, 'ReqdMcHrByUnit': x.ReqdMcHrByUnit, 'AvalStartTime': x.AvalStartTime, 'AvalMcHrOrDay': x.AvalMcHrOrDay, 'NoOfMCByResAval': x.NoOfMCByResAval, 'AvalCAPByDay': x.AvalCAPByDay, 'ReqdCAPByDay': x.ReqdCAPByDay, 'ReqdMcHour': x.ReqdMcHour, 'StartTime': x.StartTime, 'EndTime': x.EndTime, 'EndDate': x.EndDate, 'NoOfMcByRes': x.NoOfMcByRes, 'mc_id_no': x.mc_id_no, } crp_form = UpdateCRPForm(data=dirs) print(2,crp_form.is_valid()) if crp_form.is_valid(): crp_form = crp_form.save(commit=False) crp_form.crp_track = CRPTrack.objects.get(id=crp_trackForm.id) crp_form.save() mass.append(True) else: mass.append(False) if len(mass) == mass.count(True): messages.success(request, '{} to {} Copy Successfully.'.format(id, crp_trackForm.id)) return redirect('/productionplanning/crp/') else: messages.error(request, 'Copy Not Successfully.') return redirect('/productionplanning/crp/') else: messages.error(request, "CRP Form isn't Valid.") return redirect('/productionplanning/crp/') else: return render(request, 'PP/Planning/crp/update_crp.html', context=copy_crp_props) def DeleteCRP(request, id): crp = CRPTrack.objects.get(id=id) crp.delete() messages.error(request, '{} Delete Successfully.'.format(id)) return redirect('/productionplanning/crp/')
nazmul53p/ERP
productionplanning/views/CRPViews.py
CRPViews.py
py
14,011
python
en
code
1
github-code
6
[ { "api_name": "models.CRP.CRPTrack.objects.all", "line_number": 46, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 46, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 46, "usage_type": "name" }, { "api_name": "filters.CRPFilter.CRPFilter", "line_number": 48, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 49, "usage_type": "call" }, { "api_name": "filters.CRPFilter.CRPFilter", "line_number": 54, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.all", "line_number": 54, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 54, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 54, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 57, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 62, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 66, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 70, "usage_type": "call" }, { "api_name": "models.Finished.Finished.objects.get", "line_number": 82, "usage_type": "call" }, { "api_name": "models.Finished.Finished.objects", "line_number": 82, "usage_type": "attribute" }, { "api_name": "models.Finished.Finished", "line_number": 82, "usage_type": "name" }, { "api_name": "models.OperationList.OperationList.objects.filter", "line_number": 83, "usage_type": "call" }, { "api_name": "models.OperationList.OperationList.objects", "line_number": 83, "usage_type": "attribute" }, { "api_name": "models.OperationList.OperationList", "line_number": 83, "usage_type": "name" }, { "api_name": "models.OperationSequence.OperationSequence.objects.filter", "line_number": 84, "usage_type": "call" }, { "api_name": "models.OperationSequence.OperationSequence.objects", "line_number": 84, "usage_type": "attribute" }, { "api_name": "models.OperationSequence.OperationSequence", "line_number": 84, "usage_type": "name" }, { "api_name": "models.ProductCenter.ProductCenter.objects.get", "line_number": 87, "usage_type": "call" }, { "api_name": "models.ProductCenter.ProductCenter.objects", "line_number": 87, "usage_type": "attribute" }, { "api_name": "models.ProductCenter.ProductCenter", "line_number": 87, "usage_type": "name" }, { "api_name": "models.ProductCenter.CapacityScheduling.objects.filter", "line_number": 88, "usage_type": "call" }, { "api_name": "models.ProductCenter.CapacityScheduling.objects", "line_number": 88, "usage_type": "attribute" }, { "api_name": "models.ProductCenter.CapacityScheduling", "line_number": 88, "usage_type": "name" }, { "api_name": "forms.CRPForm.CRPTrackForm", "line_number": 101, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 110, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.filter", "line_number": 114, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 114, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 114, "usage_type": "name" }, { "api_name": "forms.CRPForm.AddCRPForm", "line_number": 138, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.get", "line_number": 139, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 139, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 139, "usage_type": "name" }, { "api_name": "models.CRP.CRPTrack.objects.get", "line_number": 161, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 161, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 161, "usage_type": "name" }, { "api_name": "forms.ProductCenterForm.CapacitySchedulingFormCRP", "line_number": 165, "usage_type": "call" }, { "api_name": "models.ProductCenter.ProductCenter.objects.get", "line_number": 166, "usage_type": "call" }, { "api_name": "models.ProductCenter.ProductCenter.objects", "line_number": 166, "usage_type": "attribute" }, { "api_name": "models.ProductCenter.ProductCenter", "line_number": 166, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 183, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 183, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 184, "usage_type": "call" }, { "api_name": "models.ProductCenter.ProductCenter.objects.get", "line_number": 185, "usage_type": "call" }, { "api_name": "models.ProductCenter.ProductCenter.objects", "line_number": 185, "usage_type": "attribute" }, { "api_name": "models.ProductCenter.ProductCenter", "line_number": 185, "usage_type": "name" }, { "api_name": "models.ProductCenter.CapacityScheduling.objects.filter", "line_number": 186, "usage_type": "call" }, { "api_name": "models.ProductCenter.CapacityScheduling.objects", "line_number": 186, "usage_type": "attribute" }, { "api_name": "models.ProductCenter.CapacityScheduling", "line_number": 186, "usage_type": "name" }, { "api_name": "forms.ProductCenterForm.CapacitySchedulingFormCRP", "line_number": 187, "usage_type": "call" }, { "api_name": "models.ProductCenter.ProductCenter.objects.get", "line_number": 188, "usage_type": "call" }, { "api_name": "models.ProductCenter.ProductCenter.objects", "line_number": 188, "usage_type": "attribute" }, { "api_name": "models.ProductCenter.ProductCenter", "line_number": 188, "usage_type": "name" }, { "api_name": "django.contrib.messages.success", "line_number": 207, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 207, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 208, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 208, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 210, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 210, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 212, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 214, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.get", "line_number": 218, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 218, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 218, "usage_type": "name" }, { "api_name": "models.CRP.CRP.objects.filter", "line_number": 219, "usage_type": "call" }, { "api_name": "models.CRP.CRP.objects", "line_number": 219, "usage_type": "attribute" }, { "api_name": "models.CRP.CRP", "line_number": 219, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 222, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.get", "line_number": 226, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 226, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 226, "usage_type": "name" }, { "api_name": "models.CRP.CRP.objects.filter", "line_number": 227, "usage_type": "call" }, { "api_name": "models.CRP.CRP.objects", "line_number": 227, "usage_type": "attribute" }, { "api_name": "models.CRP.CRP", "line_number": 227, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 230, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.get", "line_number": 234, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 234, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 234, "usage_type": "name" }, { "api_name": "models.CRP.CRP.objects.filter", "line_number": 235, "usage_type": "call" }, { "api_name": "models.CRP.CRP.objects", "line_number": 235, "usage_type": "attribute" }, { "api_name": "models.CRP.CRP", "line_number": 235, "usage_type": "name" }, { "api_name": "django.forms.modelformset_factory", "line_number": 238, "usage_type": "call" }, { "api_name": "models.CRP.CRP", "line_number": 238, "usage_type": "argument" }, { "api_name": "forms.CRPForm.UpdateCRPForm", "line_number": 238, "usage_type": "name" }, { "api_name": "django.contrib.messages.success", "line_number": 246, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 246, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 247, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 247, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 249, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 249, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 250, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 250, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 252, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 252, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 253, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 253, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 255, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.get", "line_number": 259, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 259, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 259, "usage_type": "name" }, { "api_name": "models.CRP.CRP.objects.filter", "line_number": 260, "usage_type": "call" }, { "api_name": "models.CRP.CRP.objects", "line_number": 260, "usage_type": "attribute" }, { "api_name": "models.CRP.CRP", "line_number": 260, "usage_type": "name" }, { "api_name": "django.forms.modelformset_factory", "line_number": 263, "usage_type": "call" }, { "api_name": "models.CRP.CRP", "line_number": 263, "usage_type": "argument" }, { "api_name": "forms.CRPForm.UpdateCRPForm", "line_number": 263, "usage_type": "name" }, { "api_name": "forms.CRPForm.CRPTrackForm", "line_number": 268, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.get", "line_number": 279, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 279, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 279, "usage_type": "name" }, { "api_name": "forms.CRPForm.UpdateCRPForm", "line_number": 298, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.get", "line_number": 302, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 302, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 302, "usage_type": "name" }, { "api_name": "django.contrib.messages.success", "line_number": 308, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 308, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 309, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 311, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 311, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 312, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 314, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 314, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 315, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 318, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects.get", "line_number": 322, "usage_type": "call" }, { "api_name": "models.CRP.CRPTrack.objects", "line_number": 322, "usage_type": "attribute" }, { "api_name": "models.CRP.CRPTrack", "line_number": 322, "usage_type": "name" }, { "api_name": "django.contrib.messages.error", "line_number": 324, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 324, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 325, "usage_type": "call" } ]
18026129984
import requests from bs4 import BeautifulSoup import csv from os import getcwd print('\n'*3) print(" /~________~\ .----------. (| L0L Pull |) '----------' \_~~~~~~~~_/ ") print('\n'*3) print(" .: Author- Jean Paul :. ") print('\n'*3) current_directory=getcwd() print(" Your Current Working Directory is : \n",current_directory) outpath=current_directory+"\\l0lB@S_Output.csv" myFile = open(outpath, 'a+',newline='') csv_out = csv.writer(myFile) csv_out.writerow(["Name","BInary_Link","Function","Code(s)"]) url="https://lolbas-project.github.io" r=requests.get(url) print('_'*60) print("Connected to LOLBAS: ",url) print('\n'*3) soup=BeautifulSoup(r.content) for tag in soup.find_all('a','bin-name'): hrefs=tag['href'].replace("//","") urls=url+hrefs for ur in [urls]: nr=requests.get(ur) sups=BeautifulSoup(nr.content, "html.parser") print('_'*60) funclist=[[t.text for t in f.find_all('a')] for f in sups.find_all('ul','function-list')] code=[i.text for i in sups.find_all('code')] print("Working on binary",tag.text," at location ",ur," ::::Contains ",funclist) csv_out.writerow([tag.text,urls,funclist,code])
PurpleS3Cf0X/Pull_LOLBAS
Pull_L0LBAS_Binaries.py
Pull_L0LBAS_Binaries.py
py
1,292
python
en
code
0
github-code
6
[ { "api_name": "os.getcwd", "line_number": 12, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 16, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 19, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 23, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 29, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 30, "usage_type": "call" } ]
2266571308
import os import fnmatch import datetime from lxml import etree from openpyxl import Workbook from itertools import count try: # Python 2 from itertools import izip except ImportError: # Python 3 izip = zip def save_test_result_to_excel_file(): tc_name_list = [] tc_status_list = [] tc_error_list = [] tc_tag_list = [] xml_files = get_all_xml_files() for each_xml_file in xml_files: context = etree.iterparse(each_xml_file, events=('end',)) for event, elem in context: if elem.tag == 'test': tc_name_attrib = elem.attrib['name'] tc_name_list.append(tc_name_attrib) tc_status_list.append(get_test_status_path( elem, tc_name_attrib)[0].attrib['status']) tc_error_list.append(get_test_status_path(elem, tc_name_attrib)[0].text) tc_tag_list.append(get_test_tags(elem, tc_name_attrib)) elem.clear() while elem.getprevious() is not None: del elem.getparent()[0] del context date_stamp = '{:%Y-%m-%d-%H%M%S}'.format(datetime.datetime.now()) result_file = 'test_result-' + date_stamp + '.xlsx' wb = Workbook() ws = wb.worksheets[0] ws['A1'] = 'Test Case' ws['B1'] = 'Status' ws['C1'] = 'Error Details' ws['D1'] = 'Tags' ws['E1'] = 'Comments' for i, name, status, error, tags in izip(count(), tc_name_list, tc_status_list, tc_error_list, tc_tag_list): ws['A' + str(i + 2)] = name ws['B' + str(i + 2)] = status ws['C' + str(i + 2)] = error ws['D' + str(i + 2)] = ', '.join(tags) ws.auto_filter.ref = 'A1:E1' wb.save(filename=result_file) def get_test_status_path(elem, tc_name_attrib): if "'" in tc_name_attrib: tc_name_quoted = '"%s"' % tc_name_attrib return elem.xpath("//test[@name=" + tc_name_quoted + "]/status") else: return elem.xpath("//test[@name='" + tc_name_attrib + "']/status") def get_test_tags(elem, tc_name_attrib): if "'" in tc_name_attrib: tc_name_quoted = '"%s"' % tc_name_attrib return elem.xpath("//test[@name=" + tc_name_quoted + "]/tags/tag/text()") else: return elem.xpath("//test[@name='" + tc_name_attrib + "']/tags/tag/text()") def get_all_xml_files(): xml_files = [] for root, dirnames, filenames in os.walk('.'): for filename in fnmatch.filter(filenames, '*.xml'): xml_files.append(os.path.join(root, filename)) return xml_files if __name__ == '__main__': save_test_result_to_excel_file()
jsonpanganiban/robotframework-result-extractor
result_extractor_excel.py
result_extractor_excel.py
py
2,706
python
en
code
7
github-code
6
[ { "api_name": "itertools.izip", "line_number": 12, "usage_type": "name" }, { "api_name": "lxml.etree.iterparse", "line_number": 22, "usage_type": "call" }, { "api_name": "lxml.etree", "line_number": 22, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 36, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 36, "usage_type": "attribute" }, { "api_name": "openpyxl.Workbook", "line_number": 38, "usage_type": "call" }, { "api_name": "itertools.izip", "line_number": 45, "usage_type": "call" }, { "api_name": "itertools.count", "line_number": 45, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 72, "usage_type": "call" }, { "api_name": "fnmatch.filter", "line_number": 73, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 74, "usage_type": "call" }, { "api_name": "os.path", "line_number": 74, "usage_type": "attribute" } ]
12793192330
import json import random for i in range(20): num = random.randint(0, 7) cow = "Cow" if num == 6 or num == 7: cow = "Not Cow" data = {"name": "Cowpoly #{0}".format(i), "tokenID": i, "description": "Cowpoly is an experimental NFT collection created for educational purpose only. Credits for all artwork go to original creators.", "image": "https://github.com/eddiekaung/cowpolyNFT/raw/main/images/{0}.jpg".format(num), "attributes": [ {"trait_type": "Type", "value": cow} ]} with open('{0}.json'.format(i), 'w') as f: json.dump(data, f)
eddiekaung/cowpolyNFT
metadata/script.py
script.py
py
580
python
en
code
0
github-code
6
[ { "api_name": "random.randint", "line_number": 6, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 17, "usage_type": "call" } ]
10424727921
#-*- coding: utf-8 -*- """ @author: Jordi Fernández @contact: [email protected] @organization: Whads/Accent SL @since: September 2010 """ import cherrypy from cocktail.events import when from cocktail import schema from cocktail.translations import translations from cocktail.controllers import context from woost.models import Extension, Document, Template, User from woost.models.permission import DeletePermission, ModifyPermission translations.define("MailerExtension", ca = u"Enviament de documents per correu electrònic", es = u"Envio de documentos por correo electrónico", en = u"Sending documents by email" ) translations.define("MailerExtension-plural", ca = u"Enviament de documents per correu electrònic", es = u"Envio de documentos por correo electrónico", en = u"Sending documents by email" ) class MailerExtension(Extension): def __init__(self, **values): Extension.__init__(self, **values) self.extension_author = u"Whads/Accent SL" self.set("description", u"""Permet enviar documents per correu electrònic.""", "ca" ) self.set("description", u"""Permite enviar documents por correo electrónico.""", "es" ) self.set("description", u"""Allows send documents by email.""", "en" ) def _load(self): from woost.controllers.notifications import notify_user from woost.controllers.backoffice.basebackofficecontroller import \ BaseBackOfficeController from woost.controllers.backoffice.itemcontroller import \ ItemController from woost.extensions.mailer import ( sendemailaction, createmailingaction, strings ) from woost.extensions.mailer.mailing import Mailing, \ RunningMailingError from woost.extensions.mailer.sendemailcontroller import \ SendEmailController ItemController.send_email = SendEmailController Template.add_member( schema.Boolean( "per_user_customizable", default = False, listed_by_default = False ) ) Template.members_order.append("per_user_customizable") User.add_member( schema.Collection( "mailingLists", items = "woost.extensions.mailer.mailinglist.MailingList", bidirectional = True, listed_by_default = False ) ) @when(BaseBackOfficeController.exception_raised) def handle_exception_raised(event): if isinstance( event.exception, RunningMailingError ): notify_user(translations(event.exception), "error") raise cherrypy.HTTPRedirect(event.source.contextual_uri()) # Disable interactive features from rendered pages when rendering # static content from woost.controllers.cmscontroller import CMSController @when(CMSController.producing_output) def disable_user_controls(event): if context.get("sending_email", False): event.output["show_user_controls"] = False
marticongost/woost
woost/extensions/mailer/__init__.py
__init__.py
py
3,502
python
en
code
0
github-code
6
[ { "api_name": "cocktail.translations.translations.define", "line_number": 18, "usage_type": "call" }, { "api_name": "cocktail.translations.translations", "line_number": 18, "usage_type": "name" }, { "api_name": "cocktail.translations.translations.define", "line_number": 24, "usage_type": "call" }, { "api_name": "cocktail.translations.translations", "line_number": 24, "usage_type": "name" }, { "api_name": "woost.models.Extension", "line_number": 31, "usage_type": "name" }, { "api_name": "woost.models.Extension.__init__", "line_number": 34, "usage_type": "call" }, { "api_name": "woost.models.Extension", "line_number": 34, "usage_type": "name" }, { "api_name": "woost.controllers.backoffice.itemcontroller.ItemController.send_email", "line_number": 67, "usage_type": "attribute" }, { "api_name": "woost.controllers.backoffice.itemcontroller.ItemController", "line_number": 67, "usage_type": "name" }, { "api_name": "woost.extensions.mailer.sendemailcontroller.SendEmailController", "line_number": 67, "usage_type": "name" }, { "api_name": "woost.models.Template.add_member", "line_number": 69, "usage_type": "call" }, { "api_name": "woost.models.Template", "line_number": 69, "usage_type": "name" }, { "api_name": "cocktail.schema.Boolean", "line_number": 70, "usage_type": "call" }, { "api_name": "cocktail.schema", "line_number": 70, "usage_type": "name" }, { "api_name": "woost.models.Template.members_order.append", "line_number": 76, "usage_type": "call" }, { "api_name": "woost.models.Template.members_order", "line_number": 76, "usage_type": "attribute" }, { "api_name": "woost.models.Template", "line_number": 76, "usage_type": "name" }, { "api_name": "woost.models.User.add_member", "line_number": 78, "usage_type": "call" }, { "api_name": "woost.models.User", "line_number": 78, "usage_type": "name" }, { "api_name": "cocktail.schema.Collection", "line_number": 79, "usage_type": "call" }, { "api_name": "cocktail.schema", "line_number": 79, "usage_type": "name" }, { "api_name": "woost.extensions.mailer.mailing.RunningMailingError", "line_number": 91, "usage_type": "name" }, { "api_name": "woost.controllers.notifications.notify_user", "line_number": 93, "usage_type": "call" }, { "api_name": "cocktail.translations.translations", "line_number": 93, "usage_type": "call" }, { "api_name": "cherrypy.HTTPRedirect", "line_number": 94, "usage_type": "call" }, { "api_name": "cocktail.events.when", "line_number": 87, "usage_type": "call" }, { "api_name": "woost.controllers.backoffice.basebackofficecontroller.BaseBackOfficeController.exception_raised", "line_number": 87, "usage_type": "attribute" }, { "api_name": "woost.controllers.backoffice.basebackofficecontroller.BaseBackOfficeController", "line_number": 87, "usage_type": "name" }, { "api_name": "cocktail.controllers.context.get", "line_number": 102, "usage_type": "call" }, { "api_name": "cocktail.controllers.context", "line_number": 102, "usage_type": "name" }, { "api_name": "cocktail.events.when", "line_number": 100, "usage_type": "call" }, { "api_name": "woost.controllers.cmscontroller.CMSController.producing_output", "line_number": 100, "usage_type": "attribute" }, { "api_name": "woost.controllers.cmscontroller.CMSController", "line_number": 100, "usage_type": "name" } ]
19624665111
# -*- coding: utf-8 -*- import math from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.http import HttpResponse, JsonResponse from django.shortcuts import render, redirect from django.contrib import messages # Create your views here. from django.urls import reverse_lazy from create_profile.forms import CreateFormsB from create_profile.models import CreateNeighbour, CreateBusiness, LikeModel, LikeBusinesModel, AllCities#, \ #Profession # , LikeEndModelNe def index(request): # Главная if request.user.is_authenticated: # при авторизации сообщение пользоваиелям у кого встречные лайки соседей all_likes = LikeModel.objects.filter(like_second=request.user).values('like_first') for all_likes_s in all_likes: # print('all_likes-Neighb') # print(all_likes) step_one = [] step_two = [] if len(all_likes) > 0: # print('шаг1 нашел') step_one = all_likes_s # шаг 2 all_likes_two = LikeModel.objects.filter(like_first=request.user).values('like_second') if len(all_likes_two) > 0: # print('шаг 2 нашел') # print(all_likes_two) step_two = all_likes_two # ii = int(0) # print('step_one :', step_one) # print('step_two :', step_two) for step_two_s in step_two: if step_two_s['like_second'] == step_one['like_first']: messages.success(request, 'Вас лайкнул пользователь: ' + step_two_s['like_second']) email_second = LikeModel.objects.filter(like_second=step_two_s['like_second']).values('email_second') messages.success(request, ' Напишите ему: ' + email_second[0]['email_second']) all_likes_b = LikeBusinesModel.objects.filter(like_second=request.user).values() for all_likes_s_b in all_likes_b: step_one_b = [] step_two_b = [] if len(all_likes_b) > 0: if len(all_likes_b) > 0: step_one_b = all_likes_s_b all_likes_b_two = LikeBusinesModel.objects.filter(like_first=request.user).values('like_second') if len(all_likes_b_two) > 0: step_two_b = all_likes_b_two for all_likes_s_b_s in step_two_b: if all_likes_s_b_s['like_second'] == step_one_b['like_first']: messages.success(request, 'Вас лайкнул бизнес пользователь: ' + all_likes_s_b_s['like_second']) email_second_b = LikeBusinesModel.objects.filter(like_second=all_likes_s_b_s['like_second']).values('email_second') messages.success(request, 'Почта для связи: ' + email_second_b[0]['email_second']) return render(request, 'index.html',) else: return render(request, 'index.html', ) @login_required(login_url=reverse_lazy('login')) def all_filter_search(request): # выводим все анкеты list_tmp_13 = 0 allCities = AllCities.objects.all() catalog_filter = CreateNeighbour.objects.values_list('id', 'name', 'gender', 'gender_neighb', # 'sel_city', # 'sel_distr', 'presence_animals', 'presence_flat', 'attitude_animals', 'attitude_smok', 'about_me', 'image', 'user_neig', 'cities', 'regin',) tmp_append_goods = [] tmp_categ_name = [] tmp_categ_name_list = [] # формируем масив лдя прорисовки в шблоне for all_goods_s in catalog_filter: tmp_append_goods.append(all_goods_s) for tmp_s in tmp_append_goods: p = CreateNeighbour(gender=tmp_s[2]) gender = p.get_gender_display() p = CreateNeighbour(gender_neighb=tmp_s[3]) gender_neighb = p.get_gender_neighb_display() # p = CreateNeighbour(sel_city=tmp_s[4]) # sel_city = p.get_sel_city_display() # # p = CreateNeighbour(sel_distr=tmp_s[5]) # sel_distr = p.get_sel_distr_display() p = CreateNeighbour(attitude_animals=tmp_s[6]) attitude_animals = p.get_attitude_animals_display() p = CreateNeighbour(attitude_smok=tmp_s[7]) attitude_smok = p.get_attitude_smok_display() cities_name = AllCities.objects.filter(name=tmp_s[11]).values('name') distr_name = AllCities.objects.filter(name=tmp_s[12]).values('name') # cities_b = p.get_cities_b_display() # print('allCities_name') # # print(cities_name[0]['name']) # print(distr_name[0]['name']) list_tmp = list(tmp_s) list_tmp[2] = gender list_tmp[3] = gender_neighb # list_tmp[4] = sel_city # list_tmp[5] = sel_distr list_tmp[6] = attitude_animals list_tmp[7] = attitude_smok list_tmp[11] = cities_name[0]['name'] list_tmp[12] = distr_name[0]['name'] user_like = LikeModel.objects.filter(first_id=tmp_s[10]).filter(second_id=request.user.id).values_list('id') # лайки в шаблоне flag = 0 if len(user_like) > 0: flag = '1' else: flag = '0' list_tmp.append(flag) list_tmp = tuple(list_tmp) for list_tmp_s in [list_tmp]: tmp_categ_name_list = list_tmp_s tmp_categ_name.append(tmp_categ_name_list) # формируем массив со всеми анкетами # print('allCities') # print(allCities) return render(request, 'all_neighb.html', {'serxh_filer': tmp_categ_name, 'allCities': allCities,}) @login_required(login_url=reverse_lazy('login')) def all_busines(request): # весь бизнес # формируем массив со всеми анкетами distinr = CreateBusiness.objects.order_by('category_bus').values('category_bus').distinct() print('distin254') print(distinr) allCities = AllCities.objects.all() form = CreateFormsB() search_filer = CreateBusiness.objects.values_list('name_bus', # 'sel_city', # 'sel_distr', 'category_bus', 'about_me', 'image', 'user_bus', 'id', 'cities', 'regin',) tmp_append_goods = [] tmp_categ_name = [] tmp_categ_name_list = [] for all_goods_s in search_filer: tmp_append_goods.append(all_goods_s) for tmp_s in tmp_append_goods: # p = CreateBusiness(sel_city=tmp_s[1]) # sel_city = p.get_sel_city_display() # # p = CreateBusiness(sel_distr=tmp_s[2]) # sel_distr = p.get_sel_distr_display() # cities_name_b = AllCities.objects.filter(id=tmp_s[8]).values('name') # distr_name_b = AllCities.objects.filter(id=tmp_s[9]).values('name') # search_filer_pro = Profession.objects.filter(id=tmp_s[10]).values('name') # cities_b = p.get_cities_b_display() # print('search_filer_pro') # print(search_filer_pro[0]['name']) list_tmp = list(tmp_s) # list_tmp[1] = sel_city # list_tmp[2] = sel_distr # list_tmp[8] = cities_name_b[0]['name'] # list_tmp[9] = distr_name_b[0]['name'] # list_tmp[10] = search_filer_pro[0]['name'] # list_tmp[11] = search_filer_pro[0]['name'] # лайки user_like = LikeBusinesModel.objects.filter(first_id=tmp_s[4]).filter(second_id=request.user.id).values_list('id') flag = 0 if len(user_like) > 0: flag = '1' else: flag = '0' list_tmp.append(flag) list_tmp = tuple(list_tmp) for list_tmp_s in [list_tmp]: tmp_categ_name_list = list_tmp_s # AllCities.cities_b.all() tmp_categ_name.append(tmp_categ_name_list)# формируем массив со всеми анкетами return render(request, 'all_busines.html', {'serxh_filer': tmp_categ_name, 'allCities': allCities, 'form': form, 'distinr': distinr}) def likes(request): # likes заносим в таблицу лайкующего и хозяйна анкеты test_user = User.objects.filter(id=request.POST.get('first')).values('username', 'email') nearly_final = LikeModel(like_first=test_user[0]['username'], email_first=test_user[0]['email'], like_second=request.POST.get('second'), email_second=request.POST.get('email'), first_id=request.POST.get('first'), second_id=request.POST.get('second_id'), id_ancket=request.POST.get('id_ancket'),) nearly_final.save(force_insert=True) return redirect('/all_neighb/') def likes_busines(request): # likes заносим в таблицу лайкующего и хозяйна анкеты test_user = User.objects.filter(id=request.POST.get('first')).values('username', 'email') nearly_final = LikeBusinesModel(like_first=test_user[0]['username'], email_first=test_user[0]['email'], like_second=request.POST.get('second'), email_second=request.POST.get('email'), first_id=request.POST.get('first'), second_id=request.POST.get('second_id'), id_ancket=request.POST.get('id_ancket'),) nearly_final.save(force_insert=True) return redirect('/all_busines/') def statistics(request): # статистика count_us = User.objects.values('username', 'email') count_users = (len(count_us)) all_likes = LikeModel.objects.values() count_stat = len(all_likes)/2 all_likes_n = math.ceil(count_stat) all_likes_b = LikeBusinesModel.objects.values() count_stat = len(all_likes_b)/2 all_likes_bus = math.ceil(count_stat) # for count_us_s in count_us: print(count_us[0]['username']) tmp =count_us[0]['username'] all_likes_count = LikeModel.objects.filter(like_second=count_us[0]['username']).count() all_likes_count_two = LikeModel.objects.filter(like_first=count_us[0]['username']).count() if all_likes_count > 0 and all_likes_count_two > 0: # print('tmp') # print(tmp) all_likes_count_two_two = LikeModel.objects.filter(like_first=count_us[0]['username']).values() # print('all_likes_count_two_two ') # print(all_likes_count_two_two[0]['like_first']) # save_end_like = LikeEndModelNe(like_first=all_likes_count_two_two[0]['like_first'], # email_first=all_likes_count_two_two[0]['email_first'], # like_second=all_likes_count_two_two[0]['like_second'], # email_second=all_likes_count_two_two[0]['email_second'],) # print('save_end_like') # print(save_end_like) # save_end_like.save() # print(all_likes_count, all_likes_count_two) return render(request, 'statistics.html', {'count_users':count_users, 'all_likes_n': all_likes_n, 'all_likes_bus': all_likes_bus}) def tree_form(request): # по айди города получаем районы dict1 = {} # print(request.GET.get('id')) city_id = request.GET.get('id') all_child = AllCities.objects.filter(parent_id=city_id).values('name', 'id') # print('all_child') # print(all_child) dict1['data']=list(all_child)# словарь в словаре для передачи json # print('dict1') # print(dict1) return JsonResponse(dict1) def tree_form_b(request): dict2 = {} print(request.GET.get('id')) city_id = request.GET.get('id') all_child = AllCities.objects.filter(parent_id=city_id).values('name', 'id') print('all_child_b-450') print(all_child) # return HttpResponse('1') dict2['data']=list(all_child) print('dict1_b-456') print(dict2) # return JsonResponse({'all_child': all_child, 'status': 'ok', 'dict1': dict1}) return JsonResponse(dict2) # return HttpResponse({'all_child': all_child,}) def search_fetch(request): # по айди города, района и пол соседа получаем анкты print('distr-461') print(request.GET.get('id')) print('seacrprof464') print(request.GET.get('distr')) print(request.GET) cities_name = AllCities.objects.filter(id=request.GET.get('id')).values('name') distr_name = AllCities.objects.filter(id=request.GET.get('distr')).values('name') catalog_filter=CreateNeighbour.objects.filter(cities=cities_name[0]['name'], regin=distr_name[0]['name'], gender=request.GET.get('ender')).\ values_list('id', 'name', 'gender', 'gender_neighb', # 'sel_city', # 'sel_distr', 'presence_animals', 'presence_flat', 'attitude_animals', 'attitude_smok', 'about_me', 'image', 'user_neig', 'cities', 'regin',) print('catalog_filter') print(catalog_filter) tmp_append_goods = [] tmp_categ_name = [] tmp_categ_name_list = [] # формируем масив лдя прорисовки в шблоне for all_goods_s in catalog_filter: tmp_append_goods.append(all_goods_s) for tmp_s in tmp_append_goods: p = CreateNeighbour(gender=tmp_s[2]) gender = p.get_gender_display() p = CreateNeighbour(gender_neighb=tmp_s[3]) gender_neighb = p.get_gender_neighb_display() # p = CreateNeighbour(sel_city=tmp_s[4]) # sel_city = p.get_sel_city_display() # # p = CreateNeighbour(sel_distr=tmp_s[5]) # sel_distr = p.get_sel_distr_display() p = CreateNeighbour(attitude_animals=tmp_s[4]) attitude_animals = p.get_attitude_animals_display() p = CreateNeighbour(attitude_smok=tmp_s[5]) attitude_smok = p.get_attitude_smok_display() # cities_name = AllCities.objects.filter(id=tmp_s[11]).values('name') # distr_name = AllCities.objects.filter(id=tmp_s[12]).values('name') list_tmp = list(tmp_s) list_tmp[2] = gender list_tmp[3] = gender_neighb # list_tmp[4] = sel_city # list_tmp[5] = sel_distr list_tmp[4] = attitude_animals list_tmp[5] = attitude_smok list_tmp[11] = cities_name[0]['name'] list_tmp[12] = distr_name[0]['name'] user_like = LikeModel.objects.filter(first_id=tmp_s[10]).filter(second_id=request.user.id).values_list('id') # лайки в шаблоне flag = 0 if len(user_like) > 0: flag = '1' else: flag = '0' list_tmp.append(flag) list_tmp = tuple(list_tmp) for list_tmp_s in [list_tmp]: tmp_categ_name_list = list_tmp_s tmp_categ_name.append(tmp_categ_name_list) # формируем массив со всеми анкетами print('allCities') print(tmp_categ_name) return render(request, 'filtr_neig.html', {'filter_ne':tmp_categ_name}) # return JsonResponse(dict1) def search_fetch_b(request): # dict1 = {} # filter_ne= CreateNeighbour.objects.filter(cities_id=request.GET.get('id')).values() # print('filter_ne') # print(filter_ne) print('distr-513') print(request.GET.get('id')) print('seacrprof546') print(request.GET.get('distr')) print('seacrprof-548') print(request.GET.get('prof')) # dict1['data']=list(filter_ne) allCities = AllCities.objects.all() # catalog_filter = CreateNeighbour.objects. \ # catalog_filter=CreateNeighbour.objects.filter(cities_id=request.GET.get('id'),districts_tree=request.GET.get('distr'),gender=request.GET.get('ender')). \, category_bus=request.GET.get('prof'))\ cities_name = AllCities.objects.filter(id=request.GET.get('id')).values('name') distr_name = AllCities.objects.filter(id=request.GET.get('distr')).values('name') search_filer = CreateBusiness.objects.filter(cities=cities_name[0]['name'], regin=distr_name[0]['name'], category_bus=request.GET.get('prof')).values_list('name_bus', # 'sel_city', # 'sel_distr', 'category_bus', 'about_me', 'image', 'user_bus', 'id', 'cities', 'regin',) print('search_filer-561') print(search_filer) tmp_append_goods = [] tmp_categ_name = [] tmp_categ_name_list = [] for all_goods_s in search_filer: tmp_append_goods.append(all_goods_s) for tmp_s in tmp_append_goods: # p = CreateBusiness(sel_city=tmp_s[1]) # sel_city = p.get_sel_city_display() # # p = CreateBusiness(sel_distr=tmp_s[2]) # sel_distr = p.get_sel_distr_display() list_tmp = list(tmp_s) # list_tmp[1] = sel_city # list_tmp[2] = sel_distr user_like = LikeBusinesModel.objects.filter(first_id=tmp_s[4]).filter(second_id=request.user.id).values_list('id') flag = 0 if len(user_like) > 0: flag = '1' else: flag = '0' list_tmp.append(flag) list_tmp = tuple(list_tmp) for list_tmp_s in [list_tmp]: tmp_categ_name_list = list_tmp_s tmp_categ_name.append(tmp_categ_name_list)# формируем массив со всеми анкетами print('tmp_categ_name-598') print(tmp_categ_name) return render(request, 'test_busines.html', {'serxh_filer': tmp_categ_name}) # return JsonResponse(dict1)
drhtka/prifile
main/views.py
views.py
py
21,683
python
en
code
0
github-code
6
[ { "api_name": "create_profile.models.LikeModel.objects.filter", "line_number": 22, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects", "line_number": 22, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeModel", "line_number": 22, "usage_type": "name" }, { "api_name": "create_profile.models.LikeModel.objects.filter", "line_number": 32, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects", "line_number": 32, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeModel", "line_number": 32, "usage_type": "name" }, { "api_name": "django.contrib.messages.success", "line_number": 43, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 43, "usage_type": "name" }, { "api_name": "create_profile.models.LikeModel.objects.filter", "line_number": 44, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects", "line_number": 44, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeModel", "line_number": 44, "usage_type": "name" }, { "api_name": "django.contrib.messages.success", "line_number": 45, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 45, "usage_type": "name" }, { "api_name": "create_profile.models.LikeBusinesModel.objects.filter", "line_number": 49, "usage_type": "call" }, { "api_name": "create_profile.models.LikeBusinesModel.objects", "line_number": 49, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeBusinesModel", "line_number": 49, "usage_type": "name" }, { "api_name": "create_profile.models.LikeBusinesModel.objects.filter", "line_number": 56, "usage_type": "call" }, { "api_name": "create_profile.models.LikeBusinesModel.objects", "line_number": 56, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeBusinesModel", "line_number": 56, "usage_type": "name" }, { "api_name": "django.contrib.messages.success", "line_number": 62, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 62, "usage_type": "name" }, { "api_name": "create_profile.models.LikeBusinesModel.objects.filter", "line_number": 63, "usage_type": "call" }, { "api_name": "create_profile.models.LikeBusinesModel.objects", "line_number": 63, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeBusinesModel", "line_number": 63, "usage_type": "name" }, { "api_name": "django.contrib.messages.success", "line_number": 64, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 64, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 66, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 68, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects.all", "line_number": 75, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 75, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 75, "usage_type": "name" }, { "api_name": "create_profile.models.CreateNeighbour.objects.values_list", "line_number": 76, "usage_type": "call" }, { "api_name": "create_profile.models.CreateNeighbour.objects", "line_number": 76, "usage_type": "attribute" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 76, "usage_type": "name" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 100, "usage_type": "call" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 103, "usage_type": "call" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 112, "usage_type": "call" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 115, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects.filter", "line_number": 118, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 118, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 118, "usage_type": "name" }, { "api_name": "create_profile.models.AllCities.objects.filter", "line_number": 119, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 119, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 119, "usage_type": "name" }, { "api_name": "create_profile.models.LikeModel.objects.filter", "line_number": 136, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects", "line_number": 136, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeModel", "line_number": 136, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 151, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 70, "usage_type": "call" }, { "api_name": "django.urls.reverse_lazy", "line_number": 70, "usage_type": "call" }, { "api_name": "create_profile.models.CreateBusiness.objects.order_by", "line_number": 157, "usage_type": "call" }, { "api_name": "create_profile.models.CreateBusiness.objects", "line_number": 157, "usage_type": "attribute" }, { "api_name": "create_profile.models.CreateBusiness", "line_number": 157, "usage_type": "name" }, { "api_name": "create_profile.models.AllCities.objects.all", "line_number": 160, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 160, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 160, "usage_type": "name" }, { "api_name": "create_profile.forms.CreateFormsB", "line_number": 161, "usage_type": "call" }, { "api_name": "create_profile.models.CreateBusiness.objects.values_list", "line_number": 162, "usage_type": "call" }, { "api_name": "create_profile.models.CreateBusiness.objects", "line_number": 162, "usage_type": "attribute" }, { "api_name": "create_profile.models.CreateBusiness", "line_number": 162, "usage_type": "name" }, { "api_name": "create_profile.models.LikeBusinesModel.objects.filter", "line_number": 202, "usage_type": "call" }, { "api_name": "create_profile.models.LikeBusinesModel.objects", "line_number": 202, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeBusinesModel", "line_number": 202, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 217, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 153, "usage_type": "call" }, { "api_name": "django.urls.reverse_lazy", "line_number": 153, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects.filter", "line_number": 222, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 222, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 222, "usage_type": "name" }, { "api_name": "create_profile.models.LikeModel", "line_number": 223, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 228, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects.filter", "line_number": 232, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 232, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 232, "usage_type": "name" }, { "api_name": "create_profile.models.LikeBusinesModel", "line_number": 233, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 238, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects.values", "line_number": 243, "usage_type": "call" }, { "api_name": "django.contrib.auth.models.User.objects", "line_number": 243, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.models.User", "line_number": 243, "usage_type": "name" }, { "api_name": "create_profile.models.LikeModel.objects.values", "line_number": 247, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects", "line_number": 247, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeModel", "line_number": 247, "usage_type": "name" }, { "api_name": "math.ceil", "line_number": 249, "usage_type": "call" }, { "api_name": "create_profile.models.LikeBusinesModel.objects.values", "line_number": 250, "usage_type": "call" }, { "api_name": "create_profile.models.LikeBusinesModel.objects", "line_number": 250, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeBusinesModel", "line_number": 250, "usage_type": "name" }, { "api_name": "math.ceil", "line_number": 252, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects.filter", "line_number": 256, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects", "line_number": 256, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeModel", "line_number": 256, "usage_type": "name" }, { "api_name": "create_profile.models.LikeModel.objects.filter", "line_number": 257, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects", "line_number": 257, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeModel", "line_number": 257, "usage_type": "name" }, { "api_name": "create_profile.models.LikeModel.objects.filter", "line_number": 262, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects", "line_number": 262, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeModel", "line_number": 262, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 276, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects.filter", "line_number": 283, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 283, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 283, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 289, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects.filter", "line_number": 295, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 295, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 295, "usage_type": "name" }, { "api_name": "django.http.JsonResponse", "line_number": 304, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects.filter", "line_number": 315, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 315, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 315, "usage_type": "name" }, { "api_name": "create_profile.models.AllCities.objects.filter", "line_number": 316, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 316, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 316, "usage_type": "name" }, { "api_name": "create_profile.models.CreateNeighbour.objects.filter", "line_number": 317, "usage_type": "call" }, { "api_name": "create_profile.models.CreateNeighbour.objects", "line_number": 317, "usage_type": "attribute" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 317, "usage_type": "name" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 345, "usage_type": "call" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 348, "usage_type": "call" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 357, "usage_type": "call" }, { "api_name": "create_profile.models.CreateNeighbour", "line_number": 360, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects.filter", "line_number": 376, "usage_type": "call" }, { "api_name": "create_profile.models.LikeModel.objects", "line_number": 376, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeModel", "line_number": 376, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 390, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects.all", "line_number": 407, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 407, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 407, "usage_type": "name" }, { "api_name": "create_profile.models.AllCities.objects.filter", "line_number": 410, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 410, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 410, "usage_type": "name" }, { "api_name": "create_profile.models.AllCities.objects.filter", "line_number": 411, "usage_type": "call" }, { "api_name": "create_profile.models.AllCities.objects", "line_number": 411, "usage_type": "attribute" }, { "api_name": "create_profile.models.AllCities", "line_number": 411, "usage_type": "name" }, { "api_name": "create_profile.models.CreateBusiness.objects.filter", "line_number": 412, "usage_type": "call" }, { "api_name": "create_profile.models.CreateBusiness.objects", "line_number": 412, "usage_type": "attribute" }, { "api_name": "create_profile.models.CreateBusiness", "line_number": 412, "usage_type": "name" }, { "api_name": "create_profile.models.LikeBusinesModel.objects.filter", "line_number": 443, "usage_type": "call" }, { "api_name": "create_profile.models.LikeBusinesModel.objects", "line_number": 443, "usage_type": "attribute" }, { "api_name": "create_profile.models.LikeBusinesModel", "line_number": 443, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 456, "usage_type": "call" } ]
2687378702
import numpy as np import random as rnd import matplotlib.pyplot as plt CORDS = [] avaibleNodes = [] border = 30 x0y0 = [0,0] CORDS.append(x0y0) avaibleNodes.append([x0y0[0]+1,x0y0[1]]) avaibleNodes.append([x0y0[0],x0y0[1]+1]) avaibleNodes.append([x0y0[0]-1,x0y0[1]]) avaibleNodes.append([x0y0[0],x0y0[1]-1]) def AddMass(): global CORDS, avaibleNodes tempCords = [] NavaibleNodes = len(avaibleNodes) rand = rnd.randint(0,NavaibleNodes-1) tempCords = avaibleNodes[rand] CORDS.append(tempCords) avaibleNodes.remove(tempCords) newNodes = [] UpdateANodes(tempCords) for node in avaibleNodes: if node in CORDS: avaibleNodes.remove(node) def UpdateANodes(point): global avaibleNodes, CORDS newNodes = [] newNodes.append([point[0]+1,point[1]]) newNodes.append([point[0],point[1]+1]) newNodes.append([point[0]-1,point[1]]) newNodes.append([point[0],point[1]-1]) for newNode in newNodes: if newNode in CORDS: newNodes.remove(newNode) for newNode in newNodes: if newNode in avaibleNodes: newNodes.remove(newNode) for newNode in newNodes: avaibleNodes.append(newNode) counter = 0 while True: counter +=1 AddMass() if CORDS[-1][0] >= border or CORDS[-1][1] >= border or CORDS[-1][0] <= -border or CORDS[-1][1] <= -border: break CordsX = [] CordsY = [] aNodesX = [] aNodesY = [] for cord in CORDS: CordsX.append(cord[0]) CordsY.append(cord[1]) for node in avaibleNodes: aNodesX.append(node[0]) aNodesY.append(node[1]) COLORS = [ (1,0,0), (1,127/255,0), (1,1,0), (0,1,0), (0,0,1), (75/255,0,130/255), (148/255,0,211/255) ] plt.rcParams['axes.facecolor']='black' for i in range(7): plt.plot(CordsX[i*int(counter/7):(i+1)*int(counter/7)],CordsY[i*int(counter/7):(i+1)*int(counter/7)],'.',color=COLORS[i]) plt.plot(aNodesX,aNodesY,'.',color='white') plt.show()
filipmalecki94/Computer_modeling
lista4/zadanie1.py
zadanie1.py
py
1,915
python
en
code
0
github-code
6
[ { "api_name": "random.randint", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 81, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 81, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 83, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 83, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 84, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 84, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 85, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 85, "usage_type": "name" } ]
43418038023
import cv2 as cv import matplotlib.pyplot as plt import numpy as np img= cv.imread("cat/cat.png") #cv.imshow("cat",img) def rescale(frame, scale=0.5): width = int(frame.shape[1]*scale) height = int(frame.shape[0]*scale) dims=(width,height) return cv.resize(frame, dims, interpolation=cv.INTER_AREA) resize_image=rescale(img) surf = cv.xfeatures2d.SURF_create(800) cv.imshow('Image',resize_image) cv.waitKey(0)
aishanii/Python
main.py
main.py
py
444
python
en
code
1
github-code
6
[ { "api_name": "cv2.imread", "line_number": 5, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.INTER_AREA", "line_number": 11, "usage_type": "attribute" }, { "api_name": "cv2.xfeatures2d.SURF_create", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.xfeatures2d", "line_number": 13, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 16, "usage_type": "call" } ]
73772810746
from typing import List LAND = '1' WATER = '0' # TODO: Review a superior solutions def overlaps(min1, max1, min2, max2): overlap = max(0, min(max1, max2) - max(min1, min2)) if overlap > 0: return True if min1 == min2 or min1 == max2 or max1 == min2 or max1 == max2: return True if (min1 > min2 and max1 < max2) or (min2 > min1 and max2 < max1): return True return False print(overlaps(0, 2, 1, 1)) # Definition for a Bucket. class Bucket: def __init__(self, identifiers: List[int]): self.destination = None self.identifiers = set(identifiers) def hasDestination(self) -> bool: return self.destination != None def getDestination(self): if not self.hasDestination(): return self return self.destination.getDestination() def combine(self, bucket): otherDestination = bucket.getDestination() thisDestination = self.getDestination() uniqueIdentifiers = otherDestination.identifiers | thisDestination.identifiers newBucket = Bucket(uniqueIdentifiers) otherDestination.destination = newBucket thisDestination.destination = newBucket return newBucket def contains(self, identifier: int) -> bool: return identifier in self.getDestination().identifiers class Solution: ''' Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water. ''' def numIslands(self, grid: List[List[str]]) -> int: if len(grid) < 1: return 0 nextRowIsland = 1 rowIslands = {} currentRowIslandStart = None ''' Here we are generating row islands that we will then be pairing with adjacent row islands to form groups that we will then combine into the true islands that are needed to get the correct answer ''' for rowIndex, row in enumerate(grid): lastSpot = WATER lengthOfRow = len(row) rowIslands[rowIndex] = [] for spotIndex, spot in enumerate(row): if lastSpot == WATER and spot == LAND: currentRowIslandStart = spotIndex if spotIndex + 1 >= lengthOfRow and spot == LAND: rowIslands[rowIndex].append((nextRowIsland, currentRowIslandStart, spotIndex)) nextRowIsland += 1 currentRowIslandStart = None elif spot == WATER and currentRowIslandStart != None: rowIslands[rowIndex].append((nextRowIsland, currentRowIslandStart, spotIndex - 1)) nextRowIsland += 1 if spot == WATER: currentRowIslandStart = None lastSpot = spot nextGroup = 1 maxRowIndex = len(grid) rowIslandsToGroups = {} for rowNumber in [rowNumber for rowNumber in range(maxRowIndex)]: for rowIslandNumber, startIndex, endIndex in rowIslands[rowNumber]: rowIslandsToGroups[rowIslandNumber] = [] if rowNumber == 0: rowIslandsToGroups[rowIslandNumber].append(nextGroup) nextGroup += 1 continue for prevRowIslandNumber, prevStartIndex, prevEndIndex in rowIslands[rowNumber - 1]: if overlaps(prevStartIndex, prevEndIndex, startIndex, endIndex): for groupNumber in rowIslandsToGroups[prevRowIslandNumber]: rowIslandsToGroups[rowIslandNumber].append(groupNumber) if len(rowIslandsToGroups[rowIslandNumber]) == 0: rowIslandsToGroups[rowIslandNumber].append(nextGroup) nextGroup += 1 groupBuckets = {} allBuckets = [] for rowIslandNumber in range(1, nextRowIsland): relatedGroups = rowIslandsToGroups[rowIslandNumber] for group in relatedGroups: if (groupBuckets.get(group, None)) == None: newGroupBucket = Bucket([group]) groupBuckets[group] = newGroupBucket allBuckets.append(newGroupBucket) relatedBuckets = [groupBuckets[group] for group in relatedGroups] firstBucket = relatedBuckets[0] for group in relatedGroups: if not firstBucket.contains(group): newCombinedBucket = firstBucket.combine(groupBuckets[group]) allBuckets.append(newCombinedBucket) return len([resultBucket for resultBucket in allBuckets if not resultBucket.hasDestination()]) solver = Solution() # 1 # inputGrid = [ # '11110', # '11010', # '11000', # '00000', # ] # 3 # inputGrid = [ # '11000', # '11000', # '00100', # '00011', # ] # 1 # inputGrid = [ # '11011', # '10001', # '10001', # '11111', # ] # 5 # inputGrid = [ # '101', # '010', # '101', # ] # 1 inputGrid = [ '111', '010', '010', ] print(solver.numIslands(inputGrid))
AndreiBoris/sample-problems
python/0200-numbers-of-islands/number-of-islands.py
number-of-islands.py
py
5,325
python
en
code
0
github-code
6
[ { "api_name": "typing.List", "line_number": 22, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 55, "usage_type": "name" } ]
41636609732
from django.shortcuts import get_object_or_404, render, redirect, reverse from django.http import HttpResponseRedirect from .models import UserNotification # Create your views here. def notification_visited(request, pk): notification = get_object_or_404(UserNotification, pk=pk) question_id = notification.related_question.pk notification.delete() return HttpResponseRedirect(reverse('posts:question_page', args=(question_id,))) def delete(request, pk): get_object_or_404(UserNotification, pk=pk).delete() return HttpResponseRedirect('')
bstecka/overboard
overboard/notifications/views.py
views.py
py
584
python
en
code
0
github-code
6
[ { "api_name": "django.shortcuts.get_object_or_404", "line_number": 9, "usage_type": "call" }, { "api_name": "models.UserNotification", "line_number": 9, "usage_type": "argument" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 12, "usage_type": "call" }, { "api_name": "django.shortcuts.reverse", "line_number": 12, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 16, "usage_type": "call" }, { "api_name": "models.UserNotification", "line_number": 16, "usage_type": "argument" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 17, "usage_type": "call" } ]
10120459329
""" Library and Wrapper for SI7021 temperature/humidity sensor. Based on https://github.com/chrisbalmer/micropython-si7021, which implements a micropython driver. Extensions: Added a wrapper function for getting directly the values """ from time import sleep import sensors import logging class CRCError(Exception): 'Data failed a CRC check.' pass class Si7021(object): 'Driver for the Si7021 temperature sensor.' SI7021_DEFAULT_ADDRESS = 0x40 SI7021_MEASTEMP_NOHOLD_CMD = bytearray([0xF3]) SI7021_MEASRH_NOHOLD_CMD = bytearray([0xF5]) SI7021_RESET_CMD = bytearray([0xFE]) SI7021_ID1_CMD = bytearray([0xFA, 0x0F]) SI7021_ID2_CMD = bytearray([0xFC, 0xC9]) I2C_WAIT_TIME = 0.025 def __init__(self, i2c, address=SI7021_DEFAULT_ADDRESS): 'Initialize an Si7021 sensor object.' self.i2c = i2c self.address = address self.serial, self.identifier = self._get_device_info() @property def temperature(self): 'Return the temperature in Celcius.' temperature = self._get_data(self.SI7021_MEASTEMP_NOHOLD_CMD) celcius = temperature * 175.72 / 65536 - 46.85 return celcius @temperature.setter def temperature(self, value): raise AttributeError('can\'t set attribute') @property def relative_humidity(self): 'Return the relative humidity as a percentage. i.e. 35.59927' relative_humidity = self._get_data(self.SI7021_MEASRH_NOHOLD_CMD) relative_humidity = relative_humidity * 125 / 65536 - 6 return relative_humidity @relative_humidity.setter def relative_humidity(self, value): raise AttributeError('can\'t set attribute') def reset(self): 'Reset the sensor.' self.i2c.writeto(self.address, self.SI7021_RESET_CMD) sleep(self.I2C_WAIT_TIME) def _get_data(self, command): 'Retrieve data from the sensor and verify it with a CRC check.' data = bytearray(3) self.i2c.writeto(self.address, command) sleep(self.I2C_WAIT_TIME) self.i2c.readfrom_into(self.address, data) value = self._convert_to_integer(data[:2]) verified = self._verify_checksum(data) if not verified: raise CRCError('Data read off i2c bus failed CRC check.', data[:2], data[-1]) return value def _get_device_info(self): '''Get the serial number and the sensor identifier. The identifier is part of the bytes returned for the serial number. ''' # Serial 1st half self.i2c.writeto(self.address, self.SI7021_ID1_CMD) id1 = bytearray(8) sleep(self.I2C_WAIT_TIME) self.i2c.readfrom_into(self.address, id1) # Serial 2nd half self.i2c.writeto(self.address, self.SI7021_ID2_CMD) id2 = bytearray(6) sleep(self.I2C_WAIT_TIME) self.i2c.readfrom_into(self.address, id2) combined_id = bytearray([id1[0], id1[2], id1[4], id1[6], id2[0], id2[1], id2[3], id2[4]]) serial = self._convert_to_integer(combined_id) identifier = self._get_device_identifier(id2[0]) return serial, identifier def _convert_to_integer(self, bytes_to_convert): 'Use bitwise operators to convert the bytes into integers.' integer = None for chunk in bytes_to_convert: if not integer: integer = chunk else: integer = integer << 8 integer = integer | chunk return integer def _get_device_identifier(self, identifier_byte): '''Convert the identifier byte to a device identifier. Values are based on the information from page 24 of the datasheet. ''' if identifier_byte == 0x00 or identifier_byte == 0xFF: return 'engineering sample' elif identifier_byte == 0x0D: return 'Si7013' elif identifier_byte == 0x14: return 'Si7020' elif identifier_byte == 0x15: return 'Si7021' else: return 'unknown' def _verify_checksum(self, data): ''''Verify the checksum using the polynomial from page 19 of the datasheet. x8 + x5 + x4 + 1 = 0x131 = 0b100110001 Valid Example: byte1: 0x67 [01100111] byte2: 0x8c [10001100] byte3: 0xfc [11111100] (CRC byte) ''' crc = 0 values = data[:2] checksum = int(data[-1]) for value in values: crc = crc ^ value for _ in range(8, 0, -1): if crc & 0x80: #10000000 crc <<= 1 crc ^= 0x131 #100110001 else: crc <<= 1 if crc != checksum: return False else: return True def convert_celcius_to_fahrenheit(celcius): 'Convert a Celcius measurement into a Fahrenheit measurement.' return celcius * 1.8 + 32 def get_reading(sda_pin, scl_pin, vcc_pin=None): """ Returns temperature/humidity/serial reading, for given I2C SCL/SDA and VCC pins """ from machine import I2C sensors.set_sensor_power_on(vcc_pin) # initialization & measurement i2c = I2C(0, pins=(sda_pin, scl_pin)) # check for i2c scan # method 1: run scan and wait for non-empty list: this seems to hang for more than 500 secs if power supply is not right i2c_scan = i2c.scan() temp = None hum = None # method 2 : read a dummy byte from device id 64 and if there is no device identified it will raise an exception. Seems much faster try: i2c.readfrom(0x40, 1) # here we assume our device has id 0x40 (64) # if we reach this point we can go on with reading values sensor = Si7021(i2c) # get values temp = sensor.temperature hum = sensor.relative_humidity except Exception as e: logging.exception(e, "Exception raised in I2C {}") # disable sensor and supply to sensor i2c.deinit() sensors.set_sensor_power_off(vcc_pin) return(temp, hum)
insighio/insighioNode
insighioNode/lib/sensors/si7021.py
si7021.py
py
6,216
python
en
code
5
github-code
6
[ { "api_name": "time.sleep", "line_number": 63, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 70, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 91, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 97, "usage_type": "call" }, { "api_name": "sensors.set_sensor_power_on", "line_number": 175, "usage_type": "call" }, { "api_name": "machine.I2C", "line_number": 178, "usage_type": "call" }, { "api_name": "logging.exception", "line_number": 195, "usage_type": "call" }, { "api_name": "sensors.set_sensor_power_off", "line_number": 200, "usage_type": "call" } ]
28205735632
poppler_path=r"C:\Users\ahmed\Downloads\New folder\Release-22.04.0-0\poppler-22.04.0\Library\bin" pdf_path = r"D:\certifiaction\freelancing.pdf" from pdf2image import convert_from_path pages=convert_from_path(pdf_path=pdf_path,poppler_path=poppler_path) import os saving_folder=r"D:\certifiaction" c=1 for page in pages: img_name=f"img-{c}.png" page.save(os.path.join(saving_folder,img_name),"png") c+=1
ahmedsayed545/ahmedsayed545
convert pdf to img.py
convert pdf to img.py
py
438
python
en
code
0
github-code
6
[ { "api_name": "pdf2image.convert_from_path", "line_number": 6, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" } ]
41063841441
import logging from threading import Thread class BasicComponent(Thread): """ Basic class, more elaborated components will herit from this class. """ def __init__(self, ID, dest_endpoint, mode, queue): #Assert validity of the parameters received endpoint_above, endpoint_below = dest_endpoint if not (mode == "server" or mode == "client"): raise Exception("Malformed input") if not isinstance(ID, int) or \ not isinstance(endpoint_below, int) or \ not isinstance(endpoint_above, int): raise Exception("Malformed input") self.queue = queue self.dest_above = endpoint_above self.dest_below = endpoint_below self.ID = ID self.mode = mode self.incomming_events = {} self.condition = queue.condition #Init the parent class Thread.__init__(self) def create_payload(self, content): payload = {} payload['event_ID'] = 1 payload['stream_ID'] = 1 payload['timestamp'] = 1.0 payload['valid_for'] = 1 payload['content'] = content return payload #Method to create an event def create_event(self, event_type, endpoint, payload = "payload"): if not (endpoint == self.dest_above or endpoint == self.dest_below): raise Exception("Malformed input") try: event = self.queue.create_event(self.ID, endpoint, event_type) event.set_payload(payload) except Exception as e: logging.error(str(e)) return event #Method to send an event to the queue def send_event(self, event): self.condition.acquire() rsp = self.queue.add(event) self.condition.notify_all() self.condition.release() return rsp #Method to process an event retrieved from the queue, #Must me implemented in child class def process_events(self): pass #Method to get events, depends on what this component do (peek, get or ...) def get_events(self): empty = True prev = self.queue.preview() for key, value in prev.items(): if value.dest_ID == self.ID: self.incomming_events[key] = self.queue.get(self.ID, key) empty = False return empty #Method used to create the thread for a component def run(self): while True: self.condition.acquire() #Loop until it get events related to its component ID while self.get_events(): #Wait to receive a notification for a change in the queue self.condition.wait() #Events received, processing try: self.process_events() except Exception as e: logging.warning(str(e)) #Release the underlying lock self.condition.release() if __name__ == '__main__': pass
ylaker/tweakable-pt
components/Base.py
Base.py
py
2,995
python
en
code
0
github-code
6
[ { "api_name": "threading.Thread", "line_number": 5, "usage_type": "name" }, { "api_name": "threading.Thread.__init__", "line_number": 30, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 30, "usage_type": "name" }, { "api_name": "logging.error", "line_number": 50, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 89, "usage_type": "call" } ]
22676158140
import cv2 import matplotlib.pyplot as plt import numpy as np import selectivesearch from predictors import resnet152 from utils import selectors, nms import xml.etree.ElementTree as ET import random boxes = {} def getImgReady(img, show=False): if img is None: return None if show: plt.imshow(img) plt.axis('off') # convert into format (batch, RGB, width, height) img = cv2.resize(img, (224, 224)) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) img = img[np.newaxis, :] return img def addBox(x, y, w, h, prob, label): x1 = x x2 = x + w y1 = y y2 = y + h if not boxes.has_key(label): boxes[label] = [[x1, y1, x2, y2, prob]] else: boxes[label].append([x1, y1, x2, y2, prob]) def drawGroundTruth(imgName, img): xmlTree = ET.parse(annotationsDir + '{}.xml'.format(imgName.split('.')[0])) # reads corresponding XML file for object in xmlTree.findall('object'): name = object.find('name').text name = nameDict[name] bndbox = object.find('bndbox') xmin = int(float(bndbox.find('xmin').text)) #reads coordinates ymin = int(float(bndbox.find('ymin').text)) xmax = int(float(bndbox.find('xmax').text)) ymax = int(float(bndbox.find('ymax').text)) rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, edgecolor=(0, 1, 0), linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(xmin, ymin - 2, 'Ground Truth:{:s}'.format(name), bbox=dict(facecolor=(0, 1, 0), alpha=0.5), fontsize=12, color='white') def getNameDict(filename): dic = {} with open(filename, 'r') as f: lines = f.readlines() for line in lines: line = line.strip('\n') key = line.split(' ')[0] val = line.split(' ')[1] dic[key] = val return dic annotationsDir = '../Data/ImageNet/ILSVRC2012/val-Annotations/' imgsDir = '../Data/ImageNet/ILSVRC2012/img_val/' nameDict = getNameDict('../synset.txt') imgName = selectors.selectImg(imgsDir) imgPath = imgsDir + imgName img = cv2.cvtColor(cv2.imread(imgPath), cv2.COLOR_BGR2RGB) plt.figure(imgName.split('.')[0]) plt.imshow(img) plt.axis('off') img_label, regions = selectivesearch.selective_search(img, scale = 500, sigma = 0.9, min_size = 500) for i, region in enumerate(regions): #rect:x y w h x = region['rect'][0] y = region['rect'][1] w = region['rect'][2] h = region['rect'][3] croppedImg = img[y:y + h,x:x + w] croppedImg = getImgReady(croppedImg) prob, label = resnet152.predict(croppedImg) if prob < 0.2: #ignore low probability boxes continue addBox(x, y, w, h, prob, label) for label in boxes: color = (random.random(), random.random(), random.random()) indexes = nms.nms(np.array(boxes[label]), 0.3) for i in indexes: x1 = boxes[label][i][0] y1 = boxes[label][i][1] x2 = boxes[label][i][2] y2 = boxes[label][i][3] prob = boxes[label][i][4] rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor=color, linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(x1, y1 - 2, '{:s} {:.3f}'.format(label, prob), bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white') drawGroundTruth(imgName, img) plt.show()
juvu/ImageSearch
test/testPredictorInterface.py
testPredictorInterface.py
py
3,482
python
en
code
null
github-code
6
[ { "api_name": "matplotlib.pyplot.imshow", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 16, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name" }, { "api_name": "cv2.resize", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.swapaxes", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.swapaxes", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.newaxis", "line_number": 22, "usage_type": "attribute" }, { "api_name": "xml.etree.ElementTree.parse", "line_number": 36, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 36, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.Rectangle", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 49, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 49, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 50, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 50, "usage_type": "name" }, { "api_name": "utils.selectors.selectImg", "line_number": 69, "usage_type": "call" }, { "api_name": "utils.selectors", "line_number": 69, "usage_type": "name" }, { "api_name": "cv2.cvtColor", "line_number": 71, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 71, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 71, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 73, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 73, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 74, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 74, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 75, "usage_type": "name" }, { "api_name": "selectivesearch.selective_search", "line_number": 77, "usage_type": "call" }, { "api_name": "predictors.resnet152.predict", "line_number": 86, "usage_type": "call" }, { "api_name": "predictors.resnet152", "line_number": 86, "usage_type": "name" }, { "api_name": "random.random", "line_number": 94, "usage_type": "call" }, { "api_name": "utils.nms.nms", "line_number": 95, "usage_type": "call" }, { "api_name": "utils.nms", "line_number": 95, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 95, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.Rectangle", "line_number": 103, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 103, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 105, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 105, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 111, "usage_type": "name" } ]
39654499374
import os import glob import PIL.Image as I def load_cityscapes_sem_seg_dict(image_dir, gt_dir): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". Returns: list[dict]: a list of dict, each has "file_name" and "sem_seg_file_name". """ ret = [] for image_file in glob.glob(os.path.join(image_dir, "**/*.png")): suffix = "leftImg8bit.png" assert image_file.endswith(suffix) prefix = image_dir label_file = gt_dir + image_file[len(prefix): -len(suffix)] + "gtFine_labelTrainIds.png" assert os.path.isfile( label_file ), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" w, h = I.open(label_file).size ret.append( { 'file_name': image_file, 'sem_seg_file_name': label_file, 'height': h, 'width': w } ) return ret
lqxisok/llSeg
datasets/segmentation/cityscapes.py
cityscapes.py
py
1,152
python
en
code
2
github-code
6
[ { "api_name": "glob.glob", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 26, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 26, "usage_type": "name" } ]
30273124330
from django.contrib.auth.backends import RemoteUserBackend from django.core.exceptions import ImproperlyConfigured from django.conf import settings from django.contrib.auth import get_user_model class GroupEnabledRemoteUserBackend(RemoteUserBackend): def authenticate(self, user, remote_groups): user.remote_groups = remote_groups user.is_superuser = self._is_superuser(user) user.is_staff = self._is_staff(user) return user def _is_superuser(self, user): superuser_groups = getattr(settings, 'CUMULUS_SUPERUSER_GROUPS', []) superusers = getattr(settings, 'CUMULUS_SUPERUSERS', []) result = user.username in superusers or \ set(user.remote_groups).intersection(set(superuser_groups)) return bool(result) def _is_staff(self, user): staff_groups = getattr(settings, 'CUMULUS_STAFF_GROUPS', []) staff_users = getattr(settings, 'CUMULUS_STAFF_USERS', []) result = user.username in staff_users or \ set(user.remote_groups).intersection(set(staff_groups)) return bool(result)
jcmcken/cloudcover-cumulus
cumulus/backends.py
backends.py
py
1,110
python
en
code
0
github-code
6
[ { "api_name": "django.contrib.auth.backends.RemoteUserBackend", "line_number": 6, "usage_type": "name" }, { "api_name": "django.conf.settings", "line_number": 14, "usage_type": "argument" }, { "api_name": "django.conf.settings", "line_number": 15, "usage_type": "argument" }, { "api_name": "django.conf.settings", "line_number": 21, "usage_type": "argument" }, { "api_name": "django.conf.settings", "line_number": 22, "usage_type": "argument" } ]
39938022567
#%% import nltk import vaderSentiment from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import numpy as np import json import glob import errno import pandas import random import requests from bs4 import BeautifulSoup import news_web_scraping as NWS #%% # FUNCTIONS # input: text (string) # output: average sentiment of the text and a list containing a tuple of each sentence with its corresponding sentiment # sentiment is rating between -4 (EXTREAMLY negative) and 4 (EXTREAMLY positive) def calcSentiment(text): analyzer = SentimentIntensityAnalyzer() sentence_list = nltk.sent_tokenize(text) sentiment_list = [] if not sentence_list: return sentence_list, sentiment_list #raise ValueError('no sentences in the text given -> 0/0') for sentence in sentence_list: vs = analyzer.polarity_scores(sentence) compound_sentiment = round(vs["compound"]*4, 4) sentiment_list = sentiment_list + [compound_sentiment] return sentence_list, sentiment_list def get_json_text(json_file): json_string = json_file.read() json_dict = json.loads(json_string) return json_dict["text"] def split_toParagraphs(article_text): paragraph_list = article_text.split("\n") paragraph_list = [paragraph.strip(' ') for paragraph in paragraph_list] paragraph_list = list(filter(None, paragraph_list)) return paragraph_list def paragraph_analysis(paragraph_list): all_para_sentiments = [] all_para_sentences = [] for paragraph in paragraph_list: para_sentences, para_sentiments = calcSentiment(paragraph) if para_sentiments: para_sentiment_avg = np.mean(np.asarray(para_sentiments)) all_para_sentiments = all_para_sentiments + [para_sentiment_avg] all_para_sentences = all_para_sentences + [para_sentences] return all_para_sentences, all_para_sentiments # preforms sentiment analysis on each article in a list of articles def article_list_analysis(article_list): article_sentence_list = [] sentence_sentiment_list = [] avg_article_sentiment_list = [] for article_text in article_list: if article_text: article_text = str(article_text) sentence_list, sentiment_list = calcSentiment(article_text) if sentiment_list: article_sentiment = np.mean(np.asarray(sentiment_list)) article_sentence_list = article_sentence_list + [sentence_list] sentence_sentiment_list = sentence_sentiment_list + [sentiment_list] avg_article_sentiment_list = avg_article_sentiment_list + [article_sentiment] return article_sentence_list, sentence_sentiment_list, avg_article_sentiment_list def politi_buzz_analysis(path): files = glob.glob(path) article_list = [] for file_name in files: try: with open(file_name, 'r') as json_file: article_text = get_json_text(json_file) article_list = article_list + [article_text] except IOError as exc: if exc.errno != errno.EISDIR: raise return article_list_analysis(article_list) def BBC_analysis(path): files = glob.glob(path) article_list = [] for file_name in files: try: with open(file_name, 'r') as txt_file: article_text = txt_file.read() article_list = article_list + [article_text] except IOError as exc: if exc.errno != errno.EISDIR: raise return article_list_analysis(article_list) def kaggle_Fact_Fake_analysis(path): df = pandas.read_csv(path) fake_df = df.loc[df['label'] == 1] real_df = df.loc[df['label'] == 0] article_list_fake = fake_df['text'].values.tolist() article_list_real = real_df['text'].values.tolist() article_list_fake = random.sample(article_list_fake, 100) # needed as 13000 takes too long article_list_real = random.sample(article_list_real, 100) # needed as 13000 takes too long fake_sentence_list, sentence_sentiment_fake_list, article_sentiment_fake_list = article_list_analysis(article_list_fake) real_sentence_list, sentence_sentiment_real_list, article_sentiment_real_list = article_list_analysis(article_list_real) return article_sentiment_fake_list, fake_sentence_list, sentence_sentiment_fake_list, article_sentiment_real_list, real_sentence_list, sentence_sentiment_real_list def avg_var_calculation(sentiment_list, factOrFake, news_source): sentiment_array = np.asarray(sentiment_list) sentiment_avg = np.mean(sentiment_array) sentiment_var = np.var(sentiment_array) print(factOrFake + " article avg " + news_source + ": " + str(sentiment_avg)) print(factOrFake + " article var " + news_source + ": " + str(sentiment_var)) return sentiment_array, sentiment_avg, sentiment_var def cal_article_abs_sentiment(list_list): mean_list = [] for list in list_list: mean = np.mean(np.absolute(np.asarray(list))) mean_list = mean_list + [mean] return np.asarray(mean_list) def kaggle_mult_news_analysis(path, publication): df = pandas.read_csv(path) df_publication = df.loc[df['publication'] == publication] article_list = df_publication['content'].values.tolist() article_list = random.sample(article_list, 100) # needed as otherwise it takes too long sentence_list, sentence_sentiments, article_sentiments = article_list_analysis(article_list) return sentence_list, sentence_sentiments, article_sentiments #def kaggel_Fake_analysis(path): # df = pandas.read_csv(path) # article_list = df['text'].values.tolist() # art_sub_list = random.sample(article_list, 100) # needed as 13000 takes too long # sentence_list, sentence_sentiment_list, article_sentiment_tot_list = article_list_analysis(art_sub_list) # return article_sentiment_tot_list, sentence_list, sentence_sentiment_list # scrapes NYT articles and preforms sentiment analysis on them def NYT_scrape_SA(url): title_list, article_list = NWS.NYT_page_scrape(url) sentence_list, sentence_sentiments, article_sentiments = article_list_analysis(article_list) return title_list, sentence_list, sentence_sentiments, article_sentiments
OrionMat/Sentiment-Analysis
newsSentimentAnalysis.py
newsSentimentAnalysis.py
py
6,297
python
en
code
0
github-code
6
[ { "api_name": "vaderSentiment.vaderSentiment.SentimentIntensityAnalyzer", "line_number": 23, "usage_type": "call" }, { "api_name": "nltk.sent_tokenize", "line_number": 24, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 67, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 74, "usage_type": "call" }, { "api_name": "errno.EISDIR", "line_number": 82, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 87, "usage_type": "call" }, { "api_name": "errno.EISDIR", "line_number": 95, "usage_type": "attribute" }, { "api_name": "pandas.read_csv", "line_number": 100, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 105, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 106, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 113, "usage_type": "call" }, { "api_name": "numpy.var", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 122, "usage_type": "call" }, { "api_name": "numpy.absolute", "line_number": 122, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 122, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 124, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 127, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 130, "usage_type": "call" }, { "api_name": "news_web_scraping.NYT_page_scrape", "line_number": 143, "usage_type": "call" } ]
18399962026
# from autogluon.tabular import TabularDataset, TabularPredictor # train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') # f = open('/workfile.txt', 'r+') # f.write(train_data) # subsample_size = 500 # subsample subset of data for faster demo, try setting this to much larger values # train_data = train_data.sample(n=subsample_size, random_state=0) # train_data.head() # label = 'class' # print("Summary of class variable: \n", train_data[label].describe()) # save_path = 'agModels-predictClass' # specifies folder to store trained models # predictor = TabularPredictor(label=label, path=save_path).fit(train_data) # test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') # y_test = test_data[label] # values to predict # test_data_nolab = test_data.drop(columns=[label]) # delete label column to prove we're not cheating # test_data_nolab.head() # predictor = TabularPredictor.load(save_path) # unnecessary, just demonstrates how to load previously-trained predictor from file # y_pred = predictor.predict(test_data_nolab) # test_data_nolab[label] = y_pred # test_data_nolabel.to_csv(filelist[3],encoding='utf-8', index=False)F # print("Predictions: \n", y_pred) # perf = predictor.evaluate_predictions(y_true=y_test, y_pred=y_pred, auxiliary_metrics=True) # import os # import os.path # from os import path # # import aif360.datasets.compas_dataset # # filelist = ['workfile.csv', 'workfile_test.csv', 'workfile_train.csv', 'workfile_test_predictions.csv'] # # for file in filelist: # # if path.isfile(file): # # os.remove(file) # import pandas as pd # # protected_attributes = ['age', 'sex', 'race', 'gender', 'ethnicity', # # 'marital status', 'religion', 'national origin', # # 'public assistance', 'disability', 'pregnancy', 'maternity'] # # df = pd.read_csv('workfile.csv') # # print(list(df)) # # present_protected_attributes = [] # # for attr in df: # # for prot in protected_attributes: # # if prot in attr: # # present_protected_attributes.append(attr) # # print(present_protected_attributes) from aif360.datasets import StandardDataset from aif360.metrics import BinaryLabelDatasetMetric from sklearn.preprocessing import OrdinalEncoder import pandas as pd from itertools import permutations label = 'decile_score' # protected_attr = 'sex' # priveledged = 'Female' # unpriveledged = 'Male' df = pd.read_csv('compas-scores-low-med-high.csv') # df[label].mask(df[label] <= 4, 0, inplace=True) # df[label].mask(df[label] >= 5, 1, inplace=True) # print(df.head()) # df.fillna(0) # # # now that we have the binary encoding for scores we can calculate bias metrics oe = OrdinalEncoder() df[["sex", "age_cat", "race", "c_days_from_compas", "c_charge_degree", "c_charge_desc"]] = oe.fit_transform( df[["sex", "age_cat", "race", "c_days_from_compas", "c_charge_degree", "c_charge_desc"]]) df.to_csv("compas-scores-orig-processed.csv", encoding='utf-8', index=False) df[label].mask(df[label] == 0, 0, inplace=True) df[label].mask(df[label] >= 2, 1, inplace=True) df.fillna(0) # print(df.head()) # dataset = StandardDataset(df, # label_name=label, # favorable_classes=[0], # protected_attribute_names=[protected_attr], # privileged_classes=[[0]]) # privileged_groups = [{protected_attr: 0}] # unprivileged_groups = [{protected_attr: 1}] # metric_orig_train = BinaryLabelDatasetMetric(dataset, # unprivileged_groups=unprivileged_groups, # privileged_groups=privileged_groups) # print(metric_orig_train.mean_difference()) # print(metric_orig_train.disparate_impact()) # if not path.isfile('woo.csv'): # print('it works') # from flask import Flask, render_template, request # from autogluon.tabular import TabularPredictor import pandas as pd from sklearn.model_selection import train_test_split # import json # import os # import shutil import os.path # from os import path import itertools # label = 'decile_score' # df = pd.read_csv('compas-scores-orig2.csv') # make all headers lowercase # df.columns = df.columns.str.lower() # # make client label input all lowercase # label = label.lower() # df[label].mask(df[label] <= 4, 0, inplace=True) # df[label].mask(df[label].between(5,7), 1, inplace=True) # df[label].mask(df[label] >= 8, 2, inplace=True) # df.fillna(0) # split the csv into train and test data # train_data, test_data = train_test_split(df, test_size=0.2) # # save test and train csv's # df.to_csv('low_medium_high.csv', encoding='utf-8', index=False) # models_dir = 'agModels-predictClass' # predictor = TabularPredictor(label=label, path=models_dir).fit( # train_data=train_data, presets='best_quality') # y_test = test_data[label] # values to predict # # delete label column # test_data_nolabel = test_data.drop(columns=[label]) # # predict # y_pred = predictor.predict(test_data_nolabel) # save predictions # test_data = test_data_nolabel # test_data_nolabel[label] = y_pred # test_data_nolabel.to_csv('compas-test.csv', # encoding='utf-8', index=False) # get random row like in the code # df = test_data.sample() # get protected attributes permutations # protected_attributes = ['age_cat', 'sex', 'race'] # need to make a new df with all permutations of 3 columns # sex_perms = ['Male', 'Female'] # age_cat_perms = ['Greater than 45', '25-45', 'Less than 25'] # race_perms = ['Other', 'African-American', # 'Hispanic', 'Asian', 'Native American'] # protected_atrributes = [sex_perms, age_cat_perms, race_perms] # all_permutations = list(itertools.product(*protected_atrributes)) # print(all_permutations) # new_df = df.reset_index() # new_dict = new_df.to_dict('records') # my_dict = new_dict[0] # del my_dict['index'] # output = pd.DataFrame() # # create new df with all permutations # for permutation in all_permutations: # my_dict['sex'] = permutation[0] # my_dict['age_cat'] = permutation[1] # my_dict['race'] = permutation[2] # print(my_dict) # output = output.append(my_dict, ignore_index=True) # print(output.head()) # predictor = TabularPredictor.load(models_dir) # y_pred = predictor.predict(output) # # append predictions # output[label] = y_pred # # save # output.to_csv('permutations_csv', # encoding='utf-8', index=False) # protected attributes who are the most unpriveledged overall total_dict_unpriveledged_mean = {} # protected attributes who have the highest benefit overall total_dict_higher_benefit = {} protected_attributes = ['age_cat', 'sex', 'race'] processed_data_sex = {'Male': 1, 'Female': 0} processed_data_age_cat = {'age_cat_greater_than_45': 1, 'age_cat_25_to_45': 0, 'age_cat_less_than_25': 2} processed_data_race = {'African-American': 0, 'Asian': 1, 'Caucasion': 2, 'Hispanic': 3, 'Native American': 4, 'Other': 5} dataset = StandardDataset(df, label_name=label, # 0 represents low recidivism score favorable_classes=[0], protected_attribute_names=['sex'], # for priveleged class we will use our dict privileged_classes=[[0]]) # Female # Again using our dict privileged_groups = [{'sex': 0}] # Female unprivileged_groups = [{'sex': 1}] # Male metric_orig_train = BinaryLabelDatasetMetric(dataset, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) # A negative value indicates less favorable outcomes for the unprivileged groups. mean_diff = metric_orig_train.mean_difference() # The ideal value of this metric is 1.0 A value < 1 implies higher benefit for the privileged group and a # value >1 implies a higher benefit for the unprivileged group. disparate_impact = metric_orig_train.disparate_impact() if mean_diff < 0: sex_unpriveledged_mean = (list(processed_data_sex.keys())[list(processed_data_sex.values()).index(1)]) total_dict_unpriveledged_mean[sex_unpriveledged_mean] = mean_diff key = "{}_mean : {}".format(sex_unpriveledged_mean, mean_diff) print(key) if disparate_impact < 1: higher_benefit_priveledged = (list(processed_data_sex.keys())[list(processed_data_sex.values()).index(0)]) total_dict_higher_benefit[higher_benefit_priveledged] = disparate_impact key = "{}_disparate_benefit: {}".format(higher_benefit_priveledged, disparate_impact) print(key) # if disparate_impact > 1: # higher_benefit_unpriveledged = (list(pocessed_data_sex.keys())[list(pocessed_data_sex.values()).index(1)]) # total_dict_higher_benefit[higher_benefit_unpriveledged] = disparate_impact # key = "{}_disparate_benefit: {}".format(higher_benefit_unpriveledged, disparate_impact) # print(key) permutations_age_cat = list( permutations( range( 3 ), 2 ) ) lowest_mean_diff = 0 lowest_disparate_impact = 1 mean_list_unpriveledged = [] disparate_impact_list_benefit = [] for combination in permutations_age_cat: dataset = StandardDataset(df, label_name=label, # 0 represents low recidivism score favorable_classes=[0], protected_attribute_names=['age_cat'], # for priveleged class we will use our dict privileged_classes=[[combination[0]]]) # Again using our dict privileged_groups = [{'age_cat': combination[0]}] unprivileged_groups = [{'age_cat': combination[1]}] metric_orig_train = BinaryLabelDatasetMetric(dataset, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) mean_diff = metric_orig_train.mean_difference() disparate_impact = metric_orig_train.disparate_impact() if mean_diff < 0 and mean_diff < lowest_mean_diff: least_priveledged = combination[1] lowest_mean_diff = mean_diff age_unpriveledged = (list(processed_data_age_cat.keys())[list(processed_data_age_cat.values()).index(least_priveledged)]) mean_list_unpriveledged.append(age_unpriveledged) if disparate_impact < 1 and disparate_impact < lowest_disparate_impact: highest_priveledged = combination[0] lowest_disparate_impact = disparate_impact higher_benefit_priveledged = (list(processed_data_age_cat.keys())[list(processed_data_age_cat.values()).index(highest_priveledged)]) disparate_impact_list_benefit.append(higher_benefit_priveledged) age_unpriveledged = (list(processed_data_age_cat.keys())[list(processed_data_age_cat.values()).index(least_priveledged)]) total_dict_unpriveledged_mean[age_unpriveledged] = lowest_mean_diff key = "{}_mean : {}".format(age_unpriveledged, lowest_mean_diff) print(key) higher_benefit_priveledged = (list(processed_data_age_cat.keys())[list(processed_data_age_cat.values()).index(highest_priveledged)]) total_dict_higher_benefit[higher_benefit_priveledged] = lowest_disparate_impact key = "{}_disparate_benefit: {}".format(higher_benefit_priveledged, lowest_disparate_impact) print(key) age_list = ['age_cat_greater_than_45', 'age_cat_25_to_45', 'age_cat_less_than_25'] age_mean_least_counts = {} for val in age_list: c = mean_list_unpriveledged.count(val) age_mean_least_counts[val] = c # To return age_highest_benefit_counts = {} for val in age_list: c = disparate_impact_list_benefit.count(val) age_highest_benefit_counts[val] = c # print((list(processed_data_age_cat.keys())[list(processed_data_age_cat.values()).index(least_priveledged)])) # print((list(processed_data_age_cat.keys())[list(processed_data_age_cat.values()).index(compared_to)])) # print(worst) permutations_race = permutations_age_cat = list( permutations( range( 6 ), 2 ) ) # reset values lowest_mean_diff = 0 lowest_disparate_impact = 1 mean_list_unpriveledged_race = [] disparate_impact_list_benefit_race = [] for combination in permutations_race: dataset = StandardDataset(df, label_name=label, # 0 represents low recidivism score favorable_classes=[0], protected_attribute_names=['race'], # for priveleged class we will use our dict privileged_classes=[[combination[0]]]) # Again using our dict privileged_groups = [{'race': combination[0]}] unprivileged_groups = [{'race': combination[1]}] metric_orig_train = BinaryLabelDatasetMetric(dataset, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) mean_diff = metric_orig_train.mean_difference() disparate_impact = metric_orig_train.disparate_impact() if mean_diff < 0: if mean_diff < lowest_mean_diff: least_priveledged = combination[1] lowest_mean_diff = mean_diff race_unpriveledged = (list(processed_data_race.keys())[list(processed_data_race.values()).index(combination[1])]) mean_list_unpriveledged_race.append(race_unpriveledged) if disparate_impact < 1: if disparate_impact < lowest_disparate_impact: highest_priveledged = combination[0] lowest_disparate_impact = disparate_impact higher_benefit_priveledged = (list(processed_data_race.keys())[list(processed_data_race.values()).index(combination[0])]) disparate_impact_list_benefit_race.append(higher_benefit_priveledged) race_unpriveledged = (list(processed_data_race.keys())[list(processed_data_race.values()).index(least_priveledged)]) total_dict_unpriveledged_mean[race_unpriveledged] = lowest_mean_diff higher_benefit_priveledged = (list(processed_data_race.keys())[list(processed_data_race.values()).index(highest_priveledged)]) total_dict_higher_benefit[higher_benefit_priveledged] = lowest_disparate_impact race_list = ['African-American', 'Asian', 'Caucasion', 'Hispanic', 'Native American', 'Other'] race_mean_least_counts = {} for val in race_list: c = mean_list_unpriveledged_race.count(val) race_mean_least_counts[val] = c # To return race_highest_benefit_counts = {} for val in race_list: c = disparate_impact_list_benefit_race.count(val) race_highest_benefit_counts[val] = c print("\nAge Category: unpriveledged occurences - mean diffence") print(age_mean_least_counts) print("\nAge Category: higher benefit occurrences - disparate impact") print(age_highest_benefit_counts) print("\nRace: unpriveledged occurences - mean diffence") print(race_mean_least_counts) print("\nRace: higher benefit occurrences - disparate impact") print(race_highest_benefit_counts) print("\nTotal: Highest benefitting attribute - disparate impact") print(total_dict_higher_benefit) print("\nTotal: Most Unpriveledged attribute - mean difference") print(total_dict_unpriveledged_mean) # print((list(processed_data_race.keys())[list(processed_data_race.values()).index(least_priveledged)])) # print((list(processed_data_race.keys())[list(processed_data_race.values()).index(compared_to)])) # # print(worst_mean) # print(least_priveledged_list) # print(max(set(least_priveledged_list), key=least_priveledged_list.count)) # print("Most unpriveledged to Least") # for i in range (5): # print(least_priveledged_list.count(i)) # for unpriv in least_priveledged_list: # print((list(processed_data_race.keys())[list(processed_data_race.values()).index(unpriv)])) dataset = StandardDataset(df, label_name=label, # 0 represents low recidivism score favorable_classes=[0], protected_attribute_names=['race'], # for priveleged class we will use our dict privileged_classes=[[0]]) # Again using our dict privileged_groups = [{'race': 0}] unprivileged_groups = [{'race': 4}] metric_orig_train = BinaryLabelDatasetMetric(dataset, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) mean_diff = metric_orig_train.mean_difference() disparate_impact = metric_orig_train.disparate_impact() print(mean_diff) # from itertools import permutations # all_combinations = list( permutations( range( 6 ), 2 ) ) # print(all_combinations)
kehwhy/HAI-analysis-tool
back-end/test_api_logic.py
test_api_logic.py
py
16,932
python
en
code
2
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 57, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.OrdinalEncoder", "line_number": 66, "usage_type": "call" }, { "api_name": "aif360.datasets.StandardDataset", "line_number": 182, "usage_type": "call" }, { "api_name": "aif360.metrics.BinaryLabelDatasetMetric", "line_number": 192, "usage_type": "call" }, { "api_name": "itertools.permutations", "line_number": 218, "usage_type": "call" }, { "api_name": "aif360.datasets.StandardDataset", "line_number": 225, "usage_type": "call" }, { "api_name": "aif360.metrics.BinaryLabelDatasetMetric", "line_number": 235, "usage_type": "call" }, { "api_name": "itertools.permutations", "line_number": 281, "usage_type": "call" }, { "api_name": "aif360.datasets.StandardDataset", "line_number": 291, "usage_type": "call" }, { "api_name": "aif360.metrics.BinaryLabelDatasetMetric", "line_number": 301, "usage_type": "call" }, { "api_name": "aif360.datasets.StandardDataset", "line_number": 380, "usage_type": "call" }, { "api_name": "aif360.metrics.BinaryLabelDatasetMetric", "line_number": 390, "usage_type": "call" } ]
38424940724
#!/usr/bin/env python3 import cv2 import numpy as np import dlib import Facerecognize as fr font=cv2.FONT_ITALIC cap=cv2.VideoCapture(0) detector=dlib.get_frontal_face_detector() face_data,face_id,dic=fr.training_dataset_and_labels() recognizer=cv2.face.LBPHFaceRecognizer_create() recognizer.train(face_data,np.array(face_id)) while cap.isOpened(): status,frame=cap.read() gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) faces=detector(gray) for face in faces: x1=face.left() y1=face.top() x2=face.right() y2=face.bottom() cv2.rectangle(frame,(x1,y1),(x2,y2),(0,255,0),2) value,confidence=recognizer.predict(gray[y1:y2,x1:x2]) text=dic[str(value)] if confidence < 100: cv2.putText(frame,text,(x1,y1),font,2,(255,0,0),4) #print(value) #print(confidence) cv2.imshow("live",frame) if cv2.waitKey(30) & 0xff==ord('q'): break cv2.destroyAllWindows() cap.release()
prem-pratap/Face-Recognition-System
reco.py
reco.py
py
982
python
en
code
0
github-code
6
[ { "api_name": "cv2.FONT_ITALIC", "line_number": 7, "usage_type": "attribute" }, { "api_name": "cv2.VideoCapture", "line_number": 8, "usage_type": "call" }, { "api_name": "dlib.get_frontal_face_detector", "line_number": 9, "usage_type": "call" }, { "api_name": "Facerecognize.training_dataset_and_labels", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.face.LBPHFaceRecognizer_create", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.face", "line_number": 11, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 15, "usage_type": "attribute" }, { "api_name": "cv2.rectangle", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 26, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 29, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 32, "usage_type": "call" } ]
31188466771
import discord from discord.ext import commands import datetime import nekos import asyncio import wikipedia import pyowm import os from discord import utils from discord.ext.commands import Bot import urllib.parse import re import json import io import requests import random import time from Cybernator import Paginator import COVID19Py Bot = commands.Bot(command_prefix='Lt!') Bot.remove_command('help') def postfix(num:int, end_1:str='год', end_2:str='года', end_3:str='лет'): num = num % 10 if num > 20 else num # Делим число на 10 и получаем то что осталось после деления, дальше проверка это больше чем 20 или нет, если больше то оставляем число не изменныс, а если меньше то заменяем число на остаток деления return end_1 if num == 1 else end_2 if 1 < num < 5 else end_3 # Тут уже просто прлверяем @Bot.event async def on_ready(): print('Ну я тут') @Bot.command() async def help(ctx): embed1 = discord.Embed(title="Привет это все команды", description='Нажимай на стрелки и смотри команды') embed2 = discord.Embed(title="Эмоции", description='Lt!pat(Человек) Погладить \n Lt!hug (Человек) Обнять \n Lt!spal (Человек) ударить \n Lt!kiss (Человек) поцеловать') embed3 = discord.Embed(title="Игры", description='Lt!knb Сыграть в камень ножницы бумага \n Lt!wea (Город) Погода в городе \n Lt!wiki (запрос) Вики-Вики! \n Lt!ball (Запрос) спросить у шара \n Lt!gl (Запрос) гуглю за вас \n Lt!cat Котики! \n Lt!num_msg (Человек) посмотреть сколько у тебя сообшений' ) embed4 = discord.Embed(title="Другое", description='Lt!ava (Человек) посмотреть аву себя или человека \n Lt!ran_ava Аниме ава \n Lt!profile Свой профиль или другое \n Lt!serverinfo Инфо о сервере \n Lt!covid (Название страны в коде из двух букв) Инфо о COVID-19 ') embeds = [embed1, embed2, embed3, embed4] message = await ctx.send(embed=embed1) page = Paginator(Bot, message, only=ctx.author, use_more=False, embeds=embeds) await page.start() @Bot.event async def on_ready(): while True: await Bot.change_presence(activity= discord.Activity(name=' на сервер Лататы', type= discord.ActivityType.watching)) await asyncio.sleep(10) await Bot.change_presence(activity= discord.Game("Команда помощи Lt!help")) await asyncio.sleep(10) @Bot.command() # Декоратор команды async def ava(ctx, member : discord.Member = None): # Название команды и аргументы user = ctx.message.author if member == None else member # Проверка аргуменат и переменная участника emb = discord.Embed( # Переменная ембеда title=f'Аватар пользователя {user}', # Заполняем заголовок description= f'[Ссылка на изображение]({user.avatar_url})', # Запонлняем описание color=user.color # Устанавливаем цвет ) emb.set_image(url=user.avatar_url) # Устанавливаем картинку await ctx.send(embed=emb) # Отпрвака ембеда @Bot.command() async def knb(ctx): solutions = ['✂️', '🧱', '📄'] winner = "**НИЧЬЯ**" msg = await ctx.send('Выберите ход :') for r in solutions: await msg.add_reaction(r) try: react, user = await Bot.wait_for('reaction_add', timeout= 30.0, check= lambda react, user: user == ctx.author and react.message.channel == ctx.channel and react.emoji in solutions) except asyncio.TimeoutError: await ctx.send('Время вышло') await msg.delete() await ctx.message.delete() else: p1 = solutions.index(f'{react.emoji}') p2 = random.randint(0, 2) if p1 == 0 and p2 == 1 or p1 == 1 and p2 == 2 or p1 == 2 and p2 == 0: winner = f"{ctx.message.author.mention} ты **Проиграл**" elif p1 == 1 and p2 == 0 or p1 == 2 and p2 == 1 or p1 == 0 and p2 == 2: winner = f"{ctx.message.author.mention} ты **Выиграл**" await ctx.send( f"{ctx.message.author.mention} **=>** {solutions[p1]}\n" f"{Bot.user.mention} **=>** {solutions[p2]}\n" f"{winner}") await msg.delete() await ctx.message.delete() @Bot.command() # Декоратор команды async def ran_ava(ctx): # Название команды emb = discord.Embed(description= 'Вот подобраная Вам аватарка.') # Переменная ембеда и его описание emb.set_image(url=nekos.img('avatar')) # Тут мы с помощью новой библиотеки ищем картинку на тему аватар и ставим её в ембед await ctx.send(embed=emb) # Отпрвака ембеда @Bot.command() # Декоратор команды async def kiss(ctx, member : discord.Member): # Название команды и аргумент if member == ctx.message.author: # Проверка кого упомянули await ctx.send('Вы не можете поцеловать сами себя.') else: emb = discord.Embed(description= f'{member.mention}, Вас поцеловал(а) {ctx.message.author.mention}.') # Переменная ембеда и описание emb.set_image(url=nekos.img('kiss')) # Ищем картинку и ставим её в ембед await ctx.send(embed=emb) # Отпрвака ембед #work @Bot.command() # Декоратор команды async def hug(ctx, member : discord.Member): # Название команды и аргумент if member == ctx.message.author: # Проверка кого упомянули await ctx.send('Вы не можете обнять сами себя.') else: emb = discord.Embed(description= f'{member.mention}, Вас обнял(а) {ctx.message.author.mention}.') # Переменная ембеда и описание emb.set_image(url=nekos.img('hug')) # Ищем картинку и ставим её в ембед await ctx.send(embed=emb) # Отпрвака ембед #work @Bot.command() # Декоратор команды async def slap(ctx, member : discord.Member): # Название команды и аргумент if member == ctx.message.author: # Проверка кого упомянули await ctx.send('Вы не можете ударить сами себя.') else: emb = discord.Embed(description= f'{member.mention}, Вас ударил(а) {ctx.message.author.mention}.') # Переменная ембеда и описание emb.set_image(url=nekos.img('slap')) # Ищем картинку и ставим её в ембед await ctx.send(embed=emb) # Отпрвака ембед #work @Bot.command() # Декоратор команды async def pat(ctx, member : discord.Member): # Название команды и аргумент if member == ctx.message.author: # Проверка кого упомянули await ctx.send('Вы не можете погладить сами себя.') else: emb = discord.Embed(description= f'{member.mention}, Вас погладил(а) {ctx.message.author.mention}.') # Переменная ембеда и описание emb.set_image(url=nekos.img('pat')) # Ищем картинку и ставим её в ембед await ctx.send(embed=emb) # Отпрвака ембед @Bot.command() # Декоратор команды async def profile(ctx, userf: discord.Member = None): # Название команды и аргумент user = ctx.message.author if userf == None else userf # Проверка указан ли пользователь, если нет то заменяем автором команды status = user.status # Получаем статус if user.is_on_mobile() == True: stat = 'На телефоне' # Проверка статуса и указываем статус if status == discord.Status.online: stat = 'В сети' # Проверка статуса и указываем статус elif status == discord.Status.offline: stat = 'Не в сети' # Проверка статуса и указываем статус elif status == discord.Status.idle: stat = 'Не активен' # Проверка статуса и указываем статус elif status == discord.Status.dnd: stat = 'Не беспокоить' # Проверка статуса и указываем статус create_time = (datetime.datetime.today()-user.created_at).days # Узнаем кол-во дней в дискорде join_time = (datetime.datetime.today()-user.joined_at).days # Узнаем кол-во дней на сервере emb = discord.Embed(title='Профиль', colour= user.color) # Делаем ембед и устанавливаем цвет emb.add_field(name= 'Ник', value= user.display_name, inline= False) # Добавляем поле и заполняем emb.add_field(name= 'ID', value= user.id, inline= False) # Добавляем поле и заполняем if create_time == 0: # Проверка на число дней emb.add_field(name= 'Присоиденился к дискорду', value= f'{user.created_at.strftime("%d.%m.%Y")} ( Меньше дня )', inline= False) # Добавляем поле и заполняем дни в дискорде else: emb.add_field(name= 'Присоиденился к дискорду', value= f'{user.created_at.strftime("%d.%m.%Y")} ( {create_time} {postfix(create_time, "день", "дня", "дней")})', inline= False)# Добавляем поле и заполняем кол-во дней в дискорде и подбираем окончание if join_time == 0: # Проверка на число дней emb.add_field(name= 'Присоединился к серверу', value= f'{user.joined_at.strftime("%d.%m.%Y")} ( Меньше дня )', inline= False) # Добавляем поле и заполняем дни на сервере else: emb.add_field(name= 'Присоединился к серверу', value= f'{user.joined_at.strftime("%d.%m.%Y")} ( {join_time} {postfix(join_time, "день", "дня", "дней")} )', inline= False) # Добавляем поле и заполняем кол-во дней на сервере и подбираем окончание emb.add_field(name= 'Наивысшая роль', value= f"<@&{user.top_role.id}>", inline= False) # Добавляем поле и заполняем роль emb.add_field(name= 'Статус', value= stat, inline= False) # Добавляем поле и заполняем статус emb.set_thumbnail(url= user.avatar_url) # Устанавливаем картинку сбоку ( В душе хз как назвать xD ) await ctx.send(embed=emb) owm = pyowm.OWM('9963f6627710292d5125e8200fc5b2b5', language= 'ru') @Bot.command() async def wea(ctx, *, arg): observation = owm.weather_at_place(arg) w = observation.get_weather() prs = w.get_pressure() tmp = w.get_temperature('celsius') hmd = w.get_humidity() cld = w.get_clouds() wnd = w.get_wind() wnds = wnd.get('speed') wnds_str = '' rn = w.get_rain() emb = discord.Embed( title= 'Текущая погода' ) emb.add_field( name= 'Температура', value= f'{tmp.get("temp")}°' ) emb.add_field( name= 'Давление', value= str(prs.get('press')) + 'мм рт.ст.' ) emb.add_field( name= 'Влажность', value= str(hmd) + '%' ) emb.add_field( name= 'Облачность', value= str(cld) + '%' ) if wnds < 0.2:wnds_str = 'Штиль' elif wnds < 1.5: wnds_str = 'Тихий' elif wnds < 3.3: wnds_str = 'Лёгкий' elif wnds < 5.4: wnds_str = 'Слабый' elif wnds < 7.9: wnds_str = 'Умеренный' elif wnds < 10.7: wnds_str = 'Свежий' elif wnds < 13.8: wnds_str = 'Сильный' elif wnds < 17.1: wnds_str = 'Крепкий' elif wnds < 20.7: wnds_str = 'Очень крепкий' elif wnds < 24.4: wnds_str = 'Шторм' elif wnds < 28.4: wnds_str = 'Сильный шторм' elif wnds < 32.6: wnds_str = 'Жестокий шторм' elif wnds > 32.6: wnds_str = 'Ураган' emb.add_field( name= 'Степень ветра', value= wnds_str ) emb.add_field( name= 'Скорость ветра', value= str(wnds) + ' м/с' ) emb.set_image(url= w.get_weather_icon_url()) await ctx.send(embed=emb) @Bot.command() async def wiki(ctx, *, text): wikipedia.set_lang("ru") new_page = wikipedia.page(text) summ = wikipedia.summary(text) emb = discord.Embed( title= new_page.title, description= summ ) emb.set_author(name= 'Больше информации тут! Кликай!', url= new_page.url, icon_url= 'https://upload.wikimedia.org/wikipedia/commons/thumb/8/80/Wikipedia-logo-v2.svg/1200px-Wikipedia-logo-v2.svg.png') await ctx.send(embed=emb) @Bot.command() async def serverinfo(ctx): members = ctx.guild.members online = len(list(filter(lambda x: x.status == discord.Status.online, members))) offline = len(list(filter(lambda x: x.status == discord.Status.offline, members))) idle = len(list(filter(lambda x: x.status == discord.Status.idle, members))) dnd = len(list(filter(lambda x: x.status == discord.Status.dnd, members))) allchannels = len(ctx.guild.channels) allvoice = len(ctx.guild.voice_channels) alltext = len(ctx.guild.text_channels) allroles = len(ctx.guild.roles) embed = discord.Embed(title=f"{ctx.guild.name}", color=0xff0000, timestamp=ctx.message.created_at) embed.description=( f":timer: Сервер создали **{ctx.guild.created_at.strftime('%A, %b %#d %Y')}**\n\n" f":flag_white: Регион **{ctx.guild.region}\n\nГлава сервера **{ctx.guild.owner}**\n\n" f":tools: Ботов на сервере: **{len([m for m in members if m.bot])}**\n\n" f":green_circle: Онлайн: **{online}**\n\n" f":black_circle: Оффлайн: **{offline}**\n\n" f":yellow_circle: Отошли: **{idle}**\n\n" f":red_circle: Не трогать: **{dnd}**\n\n" f":shield: Уровень верификации: **{ctx.guild.verification_level}**\n\n" f":musical_keyboard: Всего каналов: **{allchannels}**\n\n" f":loud_sound: Голосовых каналов: **{allvoice}**\n\n" f":keyboard: Текстовых каналов: **{alltext}**\n\n" f":briefcase: Всего ролей: **{allroles}**\n\n" f":slight_smile: Людей на сервере **{ctx.guild.member_count}\n\n" ) embed.set_thumbnail(url=ctx.guild.icon_url) embed.set_footer(text=f"ID: {ctx.guild.id}") embed.set_footer(text=f"ID Пользователя: {ctx.author.id}") await ctx.send(embed=embed) @Bot.command() async def ball(ctx, *, arg): message = ['Нет','Да','Возможно','Опредленно нет', 'Попробуй ещё раз' ,'Даже не думай!' ,'Никогда!' ] s = random.choice( message ) await ctx.send(embed = discord.Embed(description = f'Кот кидает шар :pouting_cat: :right_facing_fist: :8ball: \n и шар говорит ** {s}**', color=0x0c0c0c)) return @Bot.command() async def gl( ctx, *, question ): url = 'https://google.gik-team.com/?q=' emb = discord.Embed( title = question, description = 'Вот чего я должен все за тебя делать?', colour = discord.Color.green(), url = url + str(question).replace(' ', '+') ) await ctx.send( embed = emb ) @Bot.command() async def cat(ctx): meow = random.randint(1, 100000) embed = discord.Embed(title='**Вот тебе котик**' ,colour=0x00ffff) embed.set_image(url = f'https://cataas.com/cat?{meow}') await ctx.send(embed=embed) @Bot.command() async def covid(ctx, code: str= None): covid19 = COVID19Py.COVID19() if not code: location = covid19.getLocationByCountryCode("RU")[0] else: code = code.upper() with open('country_codes.json') as h_file: c_codes = json.load(h_file) if not code in c_codes: await ctx.send('Неверный код страны.') return location = covid19.getLocationByCountryCode(code)[0] date = location['last_updated'].split("T") time = date[1].split(".") embed = discord.Embed( title = f'Случаи заболевания COVID-19, {location["country"]}:', description = f'''Заболевших: {location['latest']['confirmed']}\nСмертей: {location['latest']['deaths']}\n\nНаселение: {location['country_population']}\nПоследние обновление: {date[0]} {time[0]}''', color=0x0c0c0c ) await ctx.send(embed = embed) class Messages: def __init__(self, Bot): self.Bot = Bot async def number_messages(self, member): n_messages = 0 for guild in self.Bot.guilds: for channel in guild.text_channels: try: async for message in channel.history(limit = None): if message.author == member: n_messages += 1 except (discord.Forbidden, discord.HTTPException): continue return n_messages @Bot.command(name = "messages") async def num_msg(ctx, member: discord.Member = None): user = ctx.message.author if (member == None) else member number = await Messages(Bot).number_messages(user) embed = discord.Embed(description = f":envelope: Количество сообщений на сервере от **{user.name}** — **{number}**!", color= 0x39d0d6) await ctx.send(embed = embed) token = os.environ.get('BOT_TOKEN') Bot.run(str(token))
Myrvek/CatCat
Cat.py
Cat.py
py
19,363
python
ru
code
0
github-code
6
[ { "api_name": "discord.ext.commands.Bot", "line_number": 21, "usage_type": "name" }, { "api_name": "discord.ext.commands", "line_number": 21, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot.remove_command", "line_number": 22, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 22, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot.event", "line_number": 27, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.Bot", "line_number": 27, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 33, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 34, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 35, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 36, "usage_type": "call" }, { "api_name": "Cybernator.Paginator", "line_number": 39, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 39, "usage_type": "argument" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 31, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 31, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot.change_presence", "line_number": 45, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 45, "usage_type": "name" }, { "api_name": "discord.Activity", "line_number": 45, "usage_type": "call" }, { "api_name": "discord.ActivityType", "line_number": 45, "usage_type": "attribute" }, { "api_name": "asyncio.sleep", "line_number": 46, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.change_presence", "line_number": 47, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 47, "usage_type": "name" }, { "api_name": "discord.Game", "line_number": 47, "usage_type": "call" }, { "api_name": "asyncio.sleep", "line_number": 48, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.event", "line_number": 42, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.Bot", "line_number": 42, "usage_type": "name" }, { "api_name": "discord.Member", "line_number": 51, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 53, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 50, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 50, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot.wait_for", "line_number": 69, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 69, "usage_type": "name" }, { "api_name": "asyncio.TimeoutError", "line_number": 70, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 76, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.user", "line_number": 83, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.Bot", "line_number": 83, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 61, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 61, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 90, "usage_type": "call" }, { "api_name": "nekos.img", "line_number": 91, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 88, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 88, "usage_type": "name" }, { "api_name": "discord.Member", "line_number": 95, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 99, "usage_type": "call" }, { "api_name": "nekos.img", "line_number": 100, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 94, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 94, "usage_type": "name" }, { "api_name": "discord.Member", "line_number": 106, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 110, "usage_type": "call" }, { "api_name": "nekos.img", "line_number": 111, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 105, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 105, "usage_type": "name" }, { "api_name": "discord.Member", "line_number": 117, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 121, "usage_type": "call" }, { "api_name": "nekos.img", "line_number": 122, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 116, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 116, "usage_type": "name" }, { "api_name": "discord.Member", "line_number": 128, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 132, "usage_type": "call" }, { "api_name": "nekos.img", "line_number": 133, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 127, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 127, "usage_type": "name" }, { "api_name": "discord.Member", "line_number": 138, "usage_type": "attribute" }, { "api_name": "discord.Status", "line_number": 143, "usage_type": "attribute" }, { "api_name": "discord.Status", "line_number": 144, "usage_type": "attribute" }, { "api_name": "discord.Status", "line_number": 145, "usage_type": "attribute" }, { "api_name": "discord.Status", "line_number": 146, "usage_type": "attribute" }, { "api_name": "datetime.datetime.today", "line_number": 148, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 148, "usage_type": "attribute" }, { "api_name": "datetime.datetime.today", "line_number": 149, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 149, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 151, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 137, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 137, "usage_type": "name" }, { "api_name": "pyowm.OWM", "line_number": 169, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 182, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 170, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 170, "usage_type": "name" }, { "api_name": "wikipedia.set_lang", "line_number": 227, "usage_type": "call" }, { "api_name": "wikipedia.page", "line_number": 228, "usage_type": "call" }, { "api_name": "wikipedia.summary", "line_number": 229, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 230, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 225, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 225, "usage_type": "name" }, { "api_name": "discord.Status", "line_number": 241, "usage_type": "attribute" }, { "api_name": "discord.Status", "line_number": 242, "usage_type": "attribute" }, { "api_name": "discord.Status", "line_number": 243, "usage_type": "attribute" }, { "api_name": "discord.Status", "line_number": 244, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 249, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 238, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 238, "usage_type": "name" }, { "api_name": "random.choice", "line_number": 274, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 275, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 270, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 270, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 281, "usage_type": "call" }, { "api_name": "discord.Color.green", "line_number": 282, "usage_type": "call" }, { "api_name": "discord.Color", "line_number": 282, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 277, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 277, "usage_type": "name" }, { "api_name": "random.randint", "line_number": 291, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 292, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 289, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 289, "usage_type": "name" }, { "api_name": "COVID19Py.COVID19", "line_number": 297, "usage_type": "call" }, { "api_name": "json.load", "line_number": 303, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 311, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 295, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 295, "usage_type": "name" }, { "api_name": "discord.ext.commands.Bot", "line_number": 324, "usage_type": "name" }, { "api_name": "discord.Forbidden", "line_number": 334, "usage_type": "attribute" }, { "api_name": "discord.HTTPException", "line_number": 334, "usage_type": "attribute" }, { "api_name": "discord.Member", "line_number": 339, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.Bot", "line_number": 341, "usage_type": "argument" }, { "api_name": "discord.Embed", "line_number": 342, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot.command", "line_number": 338, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 338, "usage_type": "name" }, { "api_name": "os.environ.get", "line_number": 345, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 345, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.Bot.run", "line_number": 347, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 347, "usage_type": "name" } ]
23230602110
import ui from PIL import Image as ImageP import io import random mainWindow = ui.View() mainWindow.name = 'Image Conversion' mainWindow.background_color = 'white' mainWindow.width = 700 #ui.get_screen_size().width mainWindow.height = 700 #ui.get_screen_size().height def pil2ui(pil_img): with io.BytesIO() as buffer: pil_img.save(buffer, format='PNG') return ui.Image.from_data(buffer.getvalue()) path = "../Images/" quarter = pil2ui(ImageP.open(path + "quarter.png").resize((70,70), ImageP.ANTIALIAS)) dime = pil2ui(ImageP.open(path + "dime.png").resize((50,50), ImageP.ANTIALIAS)) nickel = pil2ui(ImageP.open(path + "nickel.png").resize((60,60), ImageP.ANTIALIAS)) penny = pil2ui(ImageP.open(path + "penny.png").resize((55,55), ImageP.ANTIALIAS)) picture1 = ui.ImageView() picture1.width = 70 picture1.height = 70 picture1.image = quarter mainWindow.add_subview(picture1) #mainWindow.present('fullscreen') mainWindow.present('sheet')
WhittlinRich/python
ImageConversion.py
ImageConversion.py
py
955
python
en
code
0
github-code
6
[ { "api_name": "ui.View", "line_number": 6, "usage_type": "call" }, { "api_name": "io.BytesIO", "line_number": 14, "usage_type": "call" }, { "api_name": "ui.Image.from_data", "line_number": 16, "usage_type": "call" }, { "api_name": "ui.Image", "line_number": 16, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 19, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 19, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 19, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 20, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 20, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 20, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 21, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 21, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 21, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 22, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 22, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 22, "usage_type": "attribute" }, { "api_name": "ui.ImageView", "line_number": 25, "usage_type": "call" } ]
12465932204
from flask import Flask, flash, redirect,\ url_for, session, g from functools import wraps from database import connect_db, query_db from tigergrader.config import cfg app = Flask(__name__) app.config.update(cfg) class GraderConfiguration(): def __setitem__(self, k, v): g.db.execute('replace into configuration values (?, ?)', (k, v)) g.db.commit() def __getitem__(self, k): v = query_db('select value from configuration where key == ?', [k]) if v and "value" in v[0]: return v[0]["value"] @app.before_request def before_request(): g.db = connect_db() @app.teardown_request def teardown_request(exception): if hasattr(g, 'db'): g.db.close() def login_required(f): @wraps(f) def decorated_function(*args, **kwargs): if "username" not in session: flash('You need to log in') return redirect(url_for('login')) elif session["username"] == app.config["ADMIN_USERNAME"]: return redirect(url_for('admin')) return f(*args, **kwargs) return decorated_function def get_active_modules(): conf = GraderConfiguration() active_modules = conf["active_modules"] if active_modules: active_modules = active_modules.split(",") else: active_modules = [] return active_modules import tigergrader.admin import tigergrader.student
pablooliveira/tigergrader
tigergrader/__init__.py
__init__.py
py
1,408
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 9, "usage_type": "call" }, { "api_name": "tigergrader.config.cfg", "line_number": 10, "usage_type": "argument" }, { "api_name": "flask.g.db.execute", "line_number": 16, "usage_type": "call" }, { "api_name": "flask.g.db", "line_number": 16, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 16, "usage_type": "name" }, { "api_name": "flask.g.db.commit", "line_number": 17, "usage_type": "call" }, { "api_name": "flask.g.db", "line_number": 17, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 17, "usage_type": "name" }, { "api_name": "database.query_db", "line_number": 20, "usage_type": "call" }, { "api_name": "flask.g.db", "line_number": 27, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 27, "usage_type": "name" }, { "api_name": "database.connect_db", "line_number": 27, "usage_type": "call" }, { "api_name": "flask.g", "line_number": 32, "usage_type": "argument" }, { "api_name": "flask.g.db.close", "line_number": 33, "usage_type": "call" }, { "api_name": "flask.g.db", "line_number": 33, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 33, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 39, "usage_type": "name" }, { "api_name": "flask.flash", "line_number": 40, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 41, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 41, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 43, "usage_type": "name" }, { "api_name": "flask.redirect", "line_number": 44, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 44, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 37, "usage_type": "call" } ]
72859056509
import os import tempfile from functools import partial from jinja2 import Environment, FunctionLoader from babel.dates import format_date, format_datetime from babel.numbers import format_currency try: import weasyprint except ImportError: pass from genshi.template import MarkupTemplate from trytond.tools import file_open from trytond.pool import Pool from trytond.transaction import Transaction from trytond.report import Report, TranslateFactory, Translator from executor import execute class ReportWebkit(Report): render_method = "webkit" @classmethod def render(cls, report, report_context): pool = Pool() Translation = pool.get('ir.translation') Company = pool.get('company.company') # Convert to str as buffer from DB is not supported by StringIO report_content = (str(report.report_content) if report.report_content else False) if not report_content: raise Exception('Error', 'Missing report file!') translate = TranslateFactory(cls.__name__, Transaction().language, Translation) report_context['setLang'] = lambda language: translate.set_language( language) company_id = Transaction().context.get('company') report_context['company'] = Company(company_id) return cls.render_template(report_content, report_context, translate) @classmethod def convert(cls, report, data): # Convert the report to PDF if the output format is PDF # Do not convert when report is generated in tests, as it takes # time to convert to PDF due to which tests run longer. # Pool.test is True when running tests. output_format = report.extension or report.template_extension if output_format == "html" or Pool.test: return output_format, data elif cls.render_method == "webkit": return output_format, cls.wkhtml_to_pdf(data) elif cls.render_method == "weasyprint": return output_format, cls.weasyprint(data) @classmethod def render_template_genshi(cls, template_string, localcontext, translator): """ Legacy genshi rendered for backward compatibility. If your report is still dependent on genshi, implement the method render_template in your custom report and call this method with the same arguments and return the value instead. """ report_template = MarkupTemplate(template_string) # Since Genshi >= 0.6, Translator requires a function type report_template.filters.insert( 0, Translator(lambda text: translator(text)) ) stream = report_template.generate(**localcontext) return stream.render('xhtml').encode('utf-8') @classmethod def jinja_loader_func(cls, name): """ Return the template from the module directories using the logic below: The name is expected to be in the format: <module_name>/path/to/template for example, if the account_reports module had a base template in its reports folder, then you should be able to use: {% extends 'account_reports/report/base.html' %} """ module, path = name.split('/', 1) try: with file_open(os.path.join(module, path)) as f: return f.read() except IOError: return None @classmethod def get_jinja_filters(cls): """ Returns filters that are made available in the template context. By default, the following filters are available: * dateformat: Formats a date using babel * datetimeformat: Formats a datetime using babel * currencyformat: Formats the given number as currency * modulepath: Returns the absolute path of a file inside a tryton-module (e.g. sale/sale.css) For additional arguments that can be passed to these filters, refer to the Babel `Documentation <http://babel.edgewall.org/wiki/Documentation>`_. """ def module_path(name): module, path = name.split('/', 1) with file_open(os.path.join(module, path)) as f: return 'file://' + f.name return { 'dateformat': partial(format_date, locale=Transaction().language), 'datetimeformat': partial( format_datetime, locale=Transaction().language ), 'currencyformat': partial( format_currency, locale=Transaction().language ), 'modulepath': module_path } @classmethod def get_environment(cls): """ Create and return a jinja environment to render templates Downstream modules can override this method to easily make changes to environment """ env = Environment(loader=FunctionLoader(cls.jinja_loader_func)) env.filters.update(cls.get_jinja_filters()) return env @classmethod def render_template(cls, template_string, localcontext, translator): """ Render the template using Jinja2 """ env = cls.get_environment() # Update header and footer in context company = localcontext['company'] localcontext.update({ 'header': env.from_string(company.header_html or ''), 'footer': env.from_string(company.footer_html or ''), }) report_template = env.from_string(template_string.decode('utf-8')) return report_template.render(**localcontext).encode('utf-8') @classmethod def weasyprint(cls, data, options=None): return weasyprint.HTML(string=data).write_pdf() @classmethod def wkhtml_to_pdf(cls, data, options=None): """ Call wkhtmltopdf to convert the html to pdf """ with tempfile.NamedTemporaryFile( suffix='.html', prefix='trytond_', delete=False ) as source_file: file_name = source_file.name source_file.write(data) source_file.close() # Evaluate argument to run with subprocess args = 'wkhtmltopdf' # Add Global Options if options: for option, value in options.items(): args += ' --%s' % option if value: args += ' "%s"' % value # Add source file name and output file name args += ' %s %s.pdf' % (file_name, file_name) # Execute the command using executor execute(args) return open(file_name + '.pdf').read()
openlabs/trytond-report-html
openlabs_report_webkit/__init__.py
__init__.py
py
6,758
python
en
code
8
github-code
6
[ { "api_name": "trytond.report.Report", "line_number": 22, "usage_type": "name" }, { "api_name": "trytond.pool.Pool", "line_number": 27, "usage_type": "call" }, { "api_name": "trytond.report.TranslateFactory", "line_number": 37, "usage_type": "call" }, { "api_name": "trytond.transaction.Transaction", "line_number": 37, "usage_type": "call" }, { "api_name": "trytond.transaction.Transaction", "line_number": 42, "usage_type": "call" }, { "api_name": "trytond.pool.Pool.test", "line_number": 55, "usage_type": "attribute" }, { "api_name": "trytond.pool.Pool", "line_number": 55, "usage_type": "name" }, { "api_name": "genshi.template.MarkupTemplate", "line_number": 70, "usage_type": "call" }, { "api_name": "trytond.report.Translator", "line_number": 74, "usage_type": "call" }, { "api_name": "trytond.tools.file_open", "line_number": 98, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 98, "usage_type": "call" }, { "api_name": "os.path", "line_number": 98, "usage_type": "attribute" }, { "api_name": "trytond.tools.file_open", "line_number": 122, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 122, "usage_type": "call" }, { "api_name": "os.path", "line_number": 122, "usage_type": "attribute" }, { "api_name": "functools.partial", "line_number": 126, "usage_type": "call" }, { "api_name": "babel.dates.format_date", "line_number": 126, "usage_type": "argument" }, { "api_name": "trytond.transaction.Transaction", "line_number": 126, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 127, "usage_type": "call" }, { "api_name": "babel.dates.format_datetime", "line_number": 128, "usage_type": "argument" }, { "api_name": "trytond.transaction.Transaction", "line_number": 128, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 130, "usage_type": "call" }, { "api_name": "babel.numbers.format_currency", "line_number": 131, "usage_type": "argument" }, { "api_name": "trytond.transaction.Transaction", "line_number": 131, "usage_type": "call" }, { "api_name": "jinja2.Environment", "line_number": 144, "usage_type": "call" }, { "api_name": "jinja2.FunctionLoader", "line_number": 144, "usage_type": "call" }, { "api_name": "weasyprint.HTML", "line_number": 166, "usage_type": "call" }, { "api_name": "tempfile.NamedTemporaryFile", "line_number": 173, "usage_type": "call" }, { "api_name": "executor.execute", "line_number": 192, "usage_type": "call" } ]
27391305853
import uuid from fastapi import status from fastapi.testclient import TestClient from httpx import Response from internal.types import ScopedSession from models.chat import Room def test_POST_create_new_room_api_success_should_return_200(client: TestClient) -> None: response: Response = client.post("/rooms", json={"name": "New room", "creator_id": None}) assert response.status_code == status.HTTP_200_OK def test_GET_get_all_rooms_api_success_should_return_200(client: TestClient, db_session) -> None: for i in range(10): enc_key: str = uuid.uuid4().hex room = Room(name=f"Room {i}", slug=f"room-{i}", encryption_key=enc_key) db_session.add(room) db_session.commit() response: Response = client.get("/rooms") assert response.status_code == status.HTTP_200_OK assert len(response.json()) == 10 def test_POST_join_existing_room_api_success_should_return_200( client: TestClient, db_session: ScopedSession ) -> None: room = Room(name="Room", slug="room", encryption_key=uuid.uuid4().hex) db_session.add(room) db_session.commit() response: Response = client.post("/rooms/join", json={"name": room.name}) assert response.status_code == status.HTTP_200_OK def test_POST_join_existing_room_api_failed_should_return_404( client: TestClient, db_session: ScopedSession ) -> None: response: Response = client.post("/rooms/join", json={"name": "Some name"}) assert response.status_code == status.HTTP_404_NOT_FOUND
ebysofyan/dcentric-health-hometest
chatroom-backend/tests/test_chat_room_api.py
test_chat_room_api.py
py
1,506
python
en
code
0
github-code
6
[ { "api_name": "fastapi.testclient.TestClient", "line_number": 11, "usage_type": "name" }, { "api_name": "httpx.Response", "line_number": 12, "usage_type": "name" }, { "api_name": "fastapi.status.HTTP_200_OK", "line_number": 13, "usage_type": "attribute" }, { "api_name": "fastapi.status", "line_number": 13, "usage_type": "name" }, { "api_name": "fastapi.testclient.TestClient", "line_number": 16, "usage_type": "name" }, { "api_name": "uuid.uuid4", "line_number": 18, "usage_type": "call" }, { "api_name": "models.chat.Room", "line_number": 19, "usage_type": "call" }, { "api_name": "httpx.Response", "line_number": 23, "usage_type": "name" }, { "api_name": "fastapi.status.HTTP_200_OK", "line_number": 24, "usage_type": "attribute" }, { "api_name": "fastapi.status", "line_number": 24, "usage_type": "name" }, { "api_name": "fastapi.testclient.TestClient", "line_number": 29, "usage_type": "name" }, { "api_name": "internal.types.ScopedSession", "line_number": 29, "usage_type": "name" }, { "api_name": "models.chat.Room", "line_number": 31, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 31, "usage_type": "call" }, { "api_name": "httpx.Response", "line_number": 35, "usage_type": "name" }, { "api_name": "fastapi.status.HTTP_200_OK", "line_number": 36, "usage_type": "attribute" }, { "api_name": "fastapi.status", "line_number": 36, "usage_type": "name" }, { "api_name": "fastapi.testclient.TestClient", "line_number": 40, "usage_type": "name" }, { "api_name": "internal.types.ScopedSession", "line_number": 40, "usage_type": "name" }, { "api_name": "httpx.Response", "line_number": 42, "usage_type": "name" }, { "api_name": "fastapi.status.HTTP_404_NOT_FOUND", "line_number": 43, "usage_type": "attribute" }, { "api_name": "fastapi.status", "line_number": 43, "usage_type": "name" } ]
26798311383
import random import cv2 import cvzone import time from cvzone.HandTrackingModule import HandDetector cap = cv2.VideoCapture(0) cap.set(3, 1080) cap.set(4, 720) detector=HandDetector(maxHands=1) timer=0 stateResult=False startGame=False scores =[0,0] while True: bg_main = cv2.imread('F:/rps/New folder/BG.png') success, img = cap.read() imgScaled = cv2.resize(img,(0,0),None,0.7222, 0.7222) imgScaled = imgScaled[:, 3:515] imgScaled= cv2.resize(imgScaled,(418,388)) #finds Hands hands, img = detector.findHands(imgScaled) if startGame: if stateResult is False: timer = time.time()- initialTime cv2.putText(bg_main, str(int(timer)),(605,435),cv2.FONT_HERSHEY_PLAIN ,6,(255,0,255),4) if timer>3: stateResult = True timer= 0 if hands: playermove = None hand = hands[0] fingers = detector.fingersUp(hand) if fingers == [0,0,0,0,0]: playermove =1 if fingers == [1,1,1,1,1]: playermove = 2 if fingers ==[0,1,1,0,0]: playermove = 3 randomNumber = random.randint(1,3) imgai= cv2.imread(f"F:/rps/New folder/data/{randomNumber}.png",cv2.IMREAD_UNCHANGED) bg_main = cvzone.overlayPNG(bg_main, imgai ,(235,280)) # player Win if (playermove == 1 and randomNumber == 3) or\ (playermove == 2 and randomNumber == 1) or\ (playermove == 3 and randomNumber == 2): scores[1] +=1 # ai Win if (playermove == 3 and randomNumber == 1) or\ (playermove == 1 and randomNumber == 2) or\ (playermove == 2 and randomNumber == 3): scores[0] +=1 bg_main[114:502,756:1174]= imgScaled print(imgScaled.shape) print(bg_main[114:502, 756:1174].shape) if stateResult: bg_main = cvzone.overlayPNG(bg_main, imgai ,(235,280)) cv2.putText(bg_main, str(scores[0]),(410,215),cv2.FONT_HERSHEY_PLAIN ,4,(255,255,255),6) cv2.putText(bg_main, str(scores[1]),(1112,215),cv2.FONT_HERSHEY_PLAIN ,4,(255,255,255),6) #cv2.imshow("image" , img) cv2.imshow("BG" ,bg_main) #cv2.imshow("scaled", imgScaled) key=cv2.waitKey(1) if key == ord('s'): startGame = True initialTime = time.time() stateResult = False
123dhanya/final-project
you.py
you.py
py
2,949
python
en
code
0
github-code
6
[ { "api_name": "cv2.VideoCapture", "line_number": 8, "usage_type": "call" }, { "api_name": "cvzone.HandTrackingModule.HandDetector", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 26, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 28, "usage_type": "call" }, { "api_name": "time.time", "line_number": 34, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_PLAIN", "line_number": 35, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 53, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 54, "usage_type": "call" }, { "api_name": "cv2.IMREAD_UNCHANGED", "line_number": 54, "usage_type": "attribute" }, { "api_name": "cvzone.overlayPNG", "line_number": 55, "usage_type": "call" }, { "api_name": "cvzone.overlayPNG", "line_number": 77, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 79, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_PLAIN", "line_number": 79, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 80, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_PLAIN", "line_number": 80, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 91, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 94, "usage_type": "call" }, { "api_name": "time.time", "line_number": 97, "usage_type": "call" } ]
37061565332
import os import sys import torch import torchvision.models from torch import optim from torch import nn from tqdm import tqdm from collections import Counter from easydict import EasyDict as edict from tools import CustomDataSet, Averagemeter, Speedometer, print_one_line, model_size_mb, ROCEstimator from torch.utils.tensorboard import SummaryWriter from torch.cuda import amp import resnet device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # --------- CONFIG ----------- os.environ['TORCH_HOME'] = './weights' cfg = edict() cfg.train_in_fp16 = True cfg.crop_size = (256, 256) cfg.batch_size = 32 cfg.grad_accum_batches = 4 cfg.num_epochs = 32 cfg.num_classes = 2 cfg.augment = True cfg.model_name = "effnet_v2_s" cfg.pretrained = True cfg.labels_smoothing = 0.05 cfg.max_batches_per_train_epoch = -1 # -1 - all crop_format = '256x60x0.1' if cfg.crop_size[0] == 256 else '224x90x0.2' local_path = f"/home/alex/Fastdata/deepfakes/sequence/{crop_format}" for key in cfg: print(f" - {key}: {cfg[key]}") # ---------- DNN -------------- if cfg.model_name == "effnet_v2_s": model = torchvision.models.efficientnet_v2_s() if cfg.pretrained: model.load_state_dict(torchvision.models.efficientnet_v2_s( weights=torchvision.models.EfficientNet_V2_S_Weights.IMAGENET1K_V1).state_dict()) model.classifier[1] = nn.Linear(in_features=1280, out_features=cfg.num_classes, bias=True) max_lr = 0.001 elif cfg.model_name == "resnet18-ir": model = resnet.ResNetFaceGray(block=resnet.IRBlock, layers=[2, 2, 2, 2], use_se=True, attention=False, output_features=cfg.num_classes) max_lr = 0.01 model = model.to(device) # model = nn.DataParallel(model) print(f" - model size: {model_size_mb(model):.3f} MB") # Loss and optimizer loss_fn = nn.CrossEntropyLoss(label_smoothing=cfg.labels_smoothing) optimizer = optim.Adam(model.parameters(), lr=max_lr) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=2, factor=0.2, min_lr=0.0001, verbose=True) # ---------------------------- writer = SummaryWriter(filename_suffix=cfg.model_name) print("Train dataset:") train_dataset = CustomDataSet([ f"{local_path}/roop", f"{local_path}/FaceForensics++", f"{local_path}/Celeb-DF-v2", f"{local_path}/dfdc", ], cfg.crop_size, do_aug=cfg.augment) print(f" {train_dataset.labels_names()}") assert cfg.num_classes == len(train_dataset.labels_names()) lbls_count = dict(Counter(train_dataset.targets)) print(f" {lbls_count}") class_weights = list(1 / torch.Tensor(list(lbls_count.values()))) samples_weights = [class_weights[lbl] for lbl in train_dataset.targets] sampler = torch.utils.data.WeightedRandomSampler(weights=samples_weights, num_samples=len(train_dataset), replacement=True) train_dataloader = torch.utils.data.DataLoader(train_dataset, sampler=sampler, batch_size=cfg.batch_size, num_workers=8) alive_lbl = None for key in train_dataset.labels_names(): if train_dataset.labels_names()[key] == 'live': alive_lbl = key break print("Test dataset:") test_dataset = CustomDataSet([ f"{local_path}/toloka" ], cfg.crop_size, do_aug=False) print(f" {test_dataset.labels_names()}") print(f" {dict(Counter(test_dataset.targets))}") test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=cfg.batch_size, shuffle=True, num_workers=6) metrics = { 'train': {'EER': float('inf'), 'loss': float('inf'), '[email protected]': float('inf')}, 'test': {'EER': float('inf'), 'loss': float('inf'), '[email protected]': float('inf')} } def update_metrics(mode, epoch, running_loss, roc_estimator): if not os.path.exists('./weights'): os.makedirs('./weights') writer.add_scalar(f"Loss/{mode}", running_loss, epoch) if running_loss < metrics[mode]['loss']: metrics[mode]['loss'] = running_loss print(f" - loss: {running_loss:.5f} - improvement") else: print(f" - loss: {running_loss:.5f}") eer, err_s = roc_estimator.estimate_eer() writer.add_scalar(f"EER/{mode}", eer, epoch) if eer < metrics[mode]['EER']: metrics[mode]['EER'] = eer if mode == 'test': torch.save(model, f"./weights/tmp_{cfg.model_name}@{crop_format}.pth") print(f" - EER: {eer:.4f} (score: {err_s:.3f}) - improvement") else: print(f" - EER: {eer:.4f} (score: {err_s:.3f})") print(f" - [email protected]: {roc_estimator.estimate_bpcer(target_apcer=0.1):.4f}") bpcer01 = roc_estimator.estimate_bpcer(target_apcer=0.01) print(f" - [email protected]: {bpcer01:.4f}") writer.add_scalar(f"[email protected]/{mode}", bpcer01, epoch) print(f" - [email protected]: {roc_estimator.estimate_bpcer(target_apcer=0.001):.4f}") loss_avgm = Averagemeter() ae_avgm = Averagemeter() speedometer = Speedometer() scaler = amp.grad_scaler.GradScaler() train_roc_est = ROCEstimator() test_roc_est = ROCEstimator() def train(epoch, dataloader): print("TRAIN:") train_roc_est.reset() loss_avgm.reset() ae_avgm.reset() speedometer.reset() model.train() running_loss = 0 true_positive_live = 0 false_positive_live = 0 true_negative_live = 0 false_negative_live = 0 samples_enrolled = 0 for batch_idx, (inputs, labels) in enumerate(dataloader): if batch_idx == cfg.max_batches_per_train_epoch: break inputs = inputs.to(device) labels = labels.to(device) #u,c = torch.unique(labels, return_counts=True) #print(u,c) if cfg.train_in_fp16: with amp.autocast(): outputs = model(inputs) loss = loss_fn(outputs, labels) loss = loss / cfg.grad_accum_batches scaler.scale(loss).backward() if (batch_idx + 1) % cfg.grad_accum_batches == 0 or batch_idx == (len(dataloader) - 1): scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), 5) scaler.step(optimizer) scaler.update() optimizer.zero_grad() else: outputs = model(inputs) loss = loss_fn(outputs, labels) loss = loss / cfg.grad_accum_batches loss.backward() if (batch_idx + 1) % cfg.grad_accum_batches == 0 or batch_idx == (len(dataloader) - 1): torch.nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() optimizer.zero_grad() with torch.no_grad(): scores = torch.nn.functional.softmax(outputs, dim=1) train_roc_est.update(live_scores=scores[labels == alive_lbl, alive_lbl].tolist(), attack_scores=scores[labels != alive_lbl, alive_lbl].tolist()) running_loss += loss.item() _, predicted = outputs.max(1) _tp_live = (predicted[labels == alive_lbl] == alive_lbl).sum().item() true_positive_live += _tp_live _fp_live = (predicted[labels != alive_lbl] == alive_lbl).sum().item() false_positive_live += _fp_live _tn_live = (predicted[labels != alive_lbl] != alive_lbl).sum().item() true_negative_live += _tn_live _fn_live = (predicted[labels == alive_lbl] != alive_lbl).sum().item() false_negative_live += _fn_live loss_avgm.update(loss.item()) ae_avgm.update((_fp_live / (_fp_live + _tn_live + 1E-6) + _fn_live / (_fn_live + _tp_live + 1E-6)) / 2) samples_enrolled += labels.size(0) speedometer.update(labels.size(0)) print_one_line( f'Epoch {epoch} >> loss {loss_avgm.val:.3f}, AE {ae_avgm.val * 100:.2f}%, ' f'{samples_enrolled}/{len(train_dataset)} ~ ' f'{100 * samples_enrolled / len(train_dataset):.1f} % | ' f'{speedometer.speed():.0f} samples / s ' ) update_metrics('train', epoch, running_loss / batch_idx, train_roc_est) def test(epoch, dataloader): print("TEST:") test_roc_est.reset() model.eval() running_loss = 0 with torch.no_grad(): for batch_idx, (inputs, labels) in enumerate(tqdm(dataloader, file=sys.stdout)): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = loss_fn(outputs, labels) running_loss += loss.item() _, predicted = outputs.max(1) scores = torch.nn.functional.softmax(outputs, dim=1) test_roc_est.update(live_scores=scores[labels == alive_lbl, alive_lbl].tolist(), attack_scores=scores[labels != alive_lbl, alive_lbl].tolist()) update_metrics('test', epoch, running_loss / len(dataloader), test_roc_est) scheduler.step(metrics['test']['EER']) print("\n") for epoch in range(cfg.num_epochs): train(epoch, train_dataloader) test(epoch, test_dataloader)
pi-null-mezon/antideepfakes
singleshot/train.py
train.py
py
9,075
python
en
code
0
github-code
6
[ { "api_name": "torch.device", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 19, "usage_type": "attribute" }, { "api_name": "easydict.EasyDict", "line_number": 21, "usage_type": "call" }, { "api_name": "torchvision.models.models.efficientnet_v2_s", "line_number": 42, "usage_type": "call" }, { "api_name": "torchvision.models.models", "line_number": 42, "usage_type": "attribute" }, { "api_name": "torchvision.models", "line_number": 42, "usage_type": "name" }, { "api_name": "torchvision.models.models.efficientnet_v2_s", "line_number": 44, "usage_type": "call" }, { "api_name": "torchvision.models.models", "line_number": 44, "usage_type": "attribute" }, { "api_name": "torchvision.models", "line_number": 44, "usage_type": "name" }, { "api_name": "torchvision.models.models", "line_number": 45, "usage_type": "attribute" }, { "api_name": "torchvision.models", "line_number": 45, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 46, "usage_type": "name" }, { "api_name": "resnet.ResNetFaceGray", "line_number": 49, "usage_type": "call" }, { "api_name": "resnet.IRBlock", "line_number": 49, "usage_type": "attribute" }, { "api_name": "tools.model_size_mb", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 59, "usage_type": "name" }, { "api_name": "torch.optim.Adam", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 60, "usage_type": "name" }, { "api_name": "torch.optim.lr_scheduler.ReduceLROnPlateau", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 61, "usage_type": "attribute" }, { "api_name": "torch.utils.tensorboard.SummaryWriter", "line_number": 66, "usage_type": "call" }, { "api_name": "tools.CustomDataSet", "line_number": 69, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 79, "usage_type": "call" }, { "api_name": "torch.utils.data.WeightedRandomSampler", "line_number": 81, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 81, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 83, "usage_type": "attribute" }, { "api_name": "tools.CustomDataSet", "line_number": 92, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 96, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 97, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 97, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 106, "usage_type": "call" }, { "api_name": "os.path", "line_number": 106, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 107, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 119, "usage_type": "call" }, { "api_name": "tools.Averagemeter", "line_number": 130, "usage_type": "call" }, { "api_name": "tools.Averagemeter", "line_number": 131, "usage_type": "call" }, { "api_name": "tools.Speedometer", "line_number": 132, "usage_type": "call" }, { "api_name": "torch.cuda.amp.grad_scaler.GradScaler", "line_number": 133, "usage_type": "call" }, { "api_name": "torch.cuda.amp.grad_scaler", "line_number": 133, "usage_type": "attribute" }, { "api_name": "torch.cuda.amp", "line_number": 133, "usage_type": "name" }, { "api_name": "tools.ROCEstimator", "line_number": 134, "usage_type": "call" }, { "api_name": "tools.ROCEstimator", "line_number": 135, "usage_type": "call" }, { "api_name": "torch.cuda.amp.autocast", "line_number": 159, "usage_type": "call" }, { "api_name": "torch.cuda.amp", "line_number": 159, "usage_type": "name" }, { "api_name": "torch.nn.utils.clip_grad_norm_", "line_number": 166, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 166, "usage_type": "attribute" }, { "api_name": "torch.nn.utils.clip_grad_norm_", "line_number": 176, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 176, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 179, "usage_type": "call" }, { "api_name": "torch.nn.functional.softmax", "line_number": 180, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 180, "usage_type": "attribute" }, { "api_name": "tools.print_one_line", "line_number": 197, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 211, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 212, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 212, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.softmax", "line_number": 219, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 219, "usage_type": "attribute" } ]
71261723068
# -*- coding: utf-8 -*- __all__ = ('random_policy', 'stdin_policy', 'imitation_policy', 'inference_policy') from utils.distribution import sample_by_mask from utils.match_data import MatchData from utils.tile_traits import str2tile, tile2str from torch import nn import numpy as np class random_policy: def __init__(self): pass def __call__(self, obs): return sample_by_mask(obs[1]) class stdin_policy: def __init__(self, env): self.env = env def __call__(self, obs): assert self.env.verbose, "To use stdin policy, you must set env to be verbose." self.env.render() if obs[1].astype(np.uint8).sum() == 1: return obs[1].nonzero()[0] return input('> ') class inference_policy: def __init__(self, match_lines): self.inferred = [[], [], [], []] self.match_lines = match_lines[6:-2] self.idx = 0 self.match_id = match_lines[0].split()[-1] self.quan = int(match_lines[1].split()[-1]) self.tile_wall = [[], [], [], []] self.fan_info = match_lines[-2] self.scores = list(map(int, match_lines[-1].split()[1:])) self.translate_fn = None self.last = None self.count = 0 for i in range(4): self.tile_wall[i] = match_lines[2+i].split()[3:] no_ignored = [] for idx, line in enumerate(self.match_lines): lst = line.split() if lst[2] == "Draw": self.tile_wall[int(lst[1])].append(lst[3]) elif lst[2] == "Chi": lst[2] = "rChi" if 'Ignore' in lst: subset = [' '.join(lst[:lst.index('Ignore')])] while 'Ignore' in lst: j = lst.index('Ignore') subset.append(' '.join(lst[j+1:j+4] + [lst[3]])) lst = lst[:j] + lst[j+4:] subset.sort(key=lambda x:int(x[len('Player x') - 1])) no_ignored += subset else: no_ignored.append(' '.join(lst)) self.match_lines = no_ignored + ['PLAY 4 PASS PASS'] for i in range(4): self.tile_wall[i] = self.tile_wall[i] + ['??'] * (34 - len(self.tile_wall[i])) assert sum([len(self.tile_wall[i]) == 34 for i in range(4)]) == 4 def __call__(self, obs): players = obs[2].reshape(-1) mask = obs[1].reshape(players.shape[0], -1) self.count += (mask.sum(1) > 1).sum() * 4 * 9 * 145 / 1024 / 1024 lst = self.match_lines[self.idx].split() while lst[2] == 'Draw': self.last = None self.idx += 1 lst = self.match_lines[self.idx].split() next_player = int(lst[1]) next_last_tile = lst[3] if lst[2] == 'Play' else None for idx, player in enumerate(players): if player == next_player: action = self.valid_to_do(mask[idx], lst[2], lst[3]) if action is not None: self.inferred[player].append(action) self.idx += 1 lst = self.match_lines[self.idx].split() next_player = int(lst[1]) continue self.inferred[player].append(self.translate_fn('PASS')) if next_last_tile: self.last = next_last_tile if players.shape[0] == 1: return self.inferred[players[0]][-1] return np.asarray([self.inferred[player][-1] for player in players]) def valid_to_do(self, mask, action, tile): action = action.upper() if action in ['DRAW', 'PASS']: return None if action == 'CHI': if tile[1] <= '7': try_action = self.translate_fn(action + ' ' + tile[0] + chr(ord(tile[1]) + 1), self.last) if mask[try_action]: return try_action if '2' <= tile[1] <= '8': try_action = self.translate_fn(action + ' ' + tile, self.last) if mask[try_action]: return try_action if '3' <= tile[1]: try_action = self.translate_fn(action + ' ' + tile[0] + chr(ord(tile[1]) - 1), self.last) if mask[try_action]: return try_action return None if action == 'RCHI': action = 'CHI' if action in ['CHI', 'BUGANG', 'PLAY']: action += ' ' + tile elif action == 'GANG' and self.last is None: action += ' ' + tile try_action = self.translate_fn(action, self.last) if not mask[try_action]: return None return try_action def as_match_data(self, id=0): tile_wall = sum(map(lambda x:list(reversed(x)), self.tile_wall), []) tile_wall = np.asarray([34 if tile == '??' else str2tile[tile] for tile in tile_wall], dtype=np.uint8) return MatchData( match_id=self.match_id, id=id, quan=self.quan, tile_wall=tile_wall, actions=list(map(lambda x:np.asarray(x, dtype=np.uint8), self.inferred)), final_info=self.fan_info, scores=np.asarray(self.scores, dtype=np.int32) ) class imitation_policy: def __init__(self, match): self.actions = np.zeros((4, max([match.actions[i].shape[0] for i in range(4)])), dtype=np.uint8) for i in range(4): self.actions[i, :match.actions[i].shape[0]] = match.actions[i] self.idxs = np.asarray([0] * 4) def __call__(self, obs): action = self.actions[obs[2], self.idxs[obs[2]]] self.idxs[obs[2]] += 1 return action
illusive-chase/ChineseStandardMahjong
utils/policy.py
policy.py
py
5,871
python
en
code
3
github-code
6
[ { "api_name": "utils.distribution.sample_by_mask", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 25, "usage_type": "attribute" }, { "api_name": "numpy.asarray", "line_number": 93, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 127, "usage_type": "call" }, { "api_name": "utils.tile_traits.str2tile", "line_number": 127, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 127, "usage_type": "attribute" }, { "api_name": "utils.match_data.MatchData", "line_number": 128, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 133, "usage_type": "attribute" }, { "api_name": "numpy.asarray", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 135, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 141, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 141, "usage_type": "attribute" }, { "api_name": "numpy.asarray", "line_number": 144, "usage_type": "call" } ]
10343753605
# -*- coding: utf-8 -*- """ Chapter 02 script 02 """ import numpy as np import tensorflow as tf from tensorflow import keras print(tf.__version__) #should see 2.0.0 or higher1.0 print(keras.__version__) #should see 2.2.4 – tf # the four different states of the XOR gate training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32") # the four expected results in the same order target_data = np.array([[0],[1],[1],[0]], "float32") model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[2])) model.add(keras.layers.Dense(16, activation = 'sigmoid')) model.add(keras.layers.Dense(16, activation = 'sigmoid')) model.add(keras.layers.Dense(1, activation = 'sigmoid')) model.summary() model.layers hidden1 = model.layers[1] hidden1.name model.get_layer('dense') is hidden1 weights, biases = hidden1.get_weights() print(weights) print(weights.shape) weights.shape biases biases.shape model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy']) history = model.fit(training_data, target_data, epochs=750, verbose=2) import pandas as pd import matplotlib.pyplot as plt pd.DataFrame(history.history).plot(figsize=(8, 5)) plt.grid(True) plt.gca().set_ylim(0, 1) plt.show() print(model.predict(training_data).round())
sgupta117/ML-Material-Krish_Naik-
Natural-Lanuage-Processing-with-TensorFlow2-master/Chapter_02/chapter_02_03.py
chapter_02_03.py
py
1,339
python
en
code
4
github-code
6
[ { "api_name": "tensorflow.__version__", "line_number": 9, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.__version__", "line_number": 11, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 11, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 18, "usage_type": "call" }, { "api_name": "tensorflow.keras.models.Sequential", "line_number": 20, "usage_type": "call" }, { "api_name": "tensorflow.keras.models", "line_number": 20, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 20, "usage_type": "name" }, { "api_name": "tensorflow.keras.layers.Flatten", "line_number": 21, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers", "line_number": 21, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 21, "usage_type": "name" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 22, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers", "line_number": 22, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 22, "usage_type": "name" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 23, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers", "line_number": 23, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 23, "usage_type": "name" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 24, "usage_type": "call" }, { "api_name": "tensorflow.keras.layers", "line_number": 24, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 24, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.grid", "line_number": 53, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 53, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gca", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" } ]
4947454827
import uuid import datetime import json from oscal_pydantic import ( catalog, assessment_plan, assessment_results, complete, component, poam, profile, ssp, ) cg_uuid=uuid.uuid5(uuid.NAMESPACE_DNS, 'cloud.gov') ssp_au_01 = ssp.SpecificControlStatement( statement_id="au_01_smt", uuid = str(uuid.uuid5(cg_uuid, 'ssp_au_01')), remarks = "This is a remark" ) print(ssp_au_01.json())
pburkholder/oscal-pydantic
ssp.py
ssp.py
py
427
python
en
code
null
github-code
6
[ { "api_name": "uuid.uuid5", "line_number": 16, "usage_type": "call" }, { "api_name": "uuid.NAMESPACE_DNS", "line_number": 16, "usage_type": "attribute" }, { "api_name": "oscal_pydantic.ssp.SpecificControlStatement", "line_number": 18, "usage_type": "call" }, { "api_name": "oscal_pydantic.ssp", "line_number": 18, "usage_type": "name" }, { "api_name": "uuid.uuid5", "line_number": 20, "usage_type": "call" } ]
74523936828
#!/usr/bin/python3 """ script that takes your GitHub credentials """ import requests from sys import argv def getgithub(): url = "https://api.github.com/user" response = requests.get(url, auth=(argv[1], argv[2])) response = response.json() print(response.get("id")) if __name__ == "__main__": getgithub()
BrunoGuerraS/holbertonschool-higher_level_programming
0x11-python-network_1/10-my_github.py
10-my_github.py
py
332
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 13, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 13, "usage_type": "name" } ]
40546855652
# chat/consumers.py import base64 import random from asgiref.sync import async_to_sync from channels.generic.websocket import AsyncWebsocketConsumer from channels.db import database_sync_to_async import json import time from face_machine_client.models import PassInfo, ClientInfo, SyncInfo from face_irobot_main.models import FaceStore import string import random def create_client_id(randomlength=15): """ 生成client_id """ random_str = '' base_str = 'ABCDEFGHIGKLMNOPQRSTUVWXYZabcdefghigklmnopqrstuvwxyz0123456789' length = len(base_str) - 1 for i in range(randomlength): random_str += base_str[random.randint(0, length)] return random_str class FaceWebsocket(AsyncWebsocketConsumer): """ 人脸后台websocket服务 """ def __init__(self, *args, **kwargs): # 初始化参数 super().__init__(args, kwargs) self.client_user = None self.client_id = None self.company_id = None async def connect(self): # 初始化连接 await self.accept() # 生成本次连接的client_id self.client_id = create_client_id() await self.send(text_data=json.dumps( { 'type': 'init', 'message': 'connected', 'error_code': 0, 'client_id': self.client_id # 返还client_id,用于判断是否是本次连接 })) async def disconnect(self, close_code): await self.send(text_data=json.dumps( { 'message': 'disconnect' })) async def receive(self, text_data=None, bytes_data=None): # 处理websocket text_data_json = json.loads(text_data) message_type = text_data_json.get('type') # 登录进程 if message_type == "authenticate": # 设备认证 client_user = text_data_json.get('client_user') client_key = text_data_json.get('client_key') # 校验连接是否有效 if text_data_json.get('client_id') == self.client_id: # 异步database results = await database_sync_to_async(auth_client_token)(client_user, client_key) # 登录成功 if results[0] == 'ok': self.company_id = results[2] self.client_user = client_user await self.send(text_data=json.dumps( { # 返还登录状态与设备参数 'message': 'auth_success', 'client_token': results[1], 'company_id': results[2] })) # 加入到相同企业通信通道中,用于主动下发参数 await self.channel_layer.group_add( str(self.company_id), self.channel_name ) # 加入设备单独通信通道,用于点对点下发参数 await self.channel_layer.group_add( str(client_user), self.channel_name ) # 登录失败 else: await self.send(text_data=json.dumps( { 'message': 'auth_fail' })) await self.close() else: await self.send(text_data=json.dumps( { 'message': 'client_id_error' })) await self.close() # 通行日志 elif message_type == "pass_info": if self.company_id: info_detail = text_data_json.get("info_detail") task_id = text_data_json.get("task_id") update_results = await database_sync_to_async(update_pass_info)(info_detail_list=info_detail, task_id=task_id, client_user=self.client_user ) await self.send(text_data=json.dumps(update_results)) else: await self.send(text_data=json.dumps( { 'message': 'need_auth' })) # 同步人脸数据库 elif message_type == "sync_database": if self.company_id: data_sync_type = text_data_json.get('sync_type') # 全同步模式 if data_sync_type == "full_sync": resp_data = await database_sync_to_async(get_face_store)(client_user=self.client_user, data_sync_type=data_sync_type, company_id=self.company_id) await self.send(text_data=json.dumps(resp_data)) # 检验同步模式,设备发送本地数据库人员列表进行数据量比对 elif data_sync_type == "check_sync": check_sync_list = text_data_json.get("check_sync_list") resp_data = await database_sync_to_async(get_face_store)(client_user=self.client_user, data_sync_type=data_sync_type, company_id=self.company_id, check_sync_list=check_sync_list) await self.send(text_data=json.dumps(resp_data)) # 确认比对状态 elif data_sync_type == "check_finished": check_finished_list = text_data_json.get("check_finished_list") resp_data = await database_sync_to_async(get_face_store)(client_user=self.client_user, data_sync_type=data_sync_type, company_id=self.company_id, check_sync_list=check_finished_list) await self.send(text_data=json.dumps(resp_data)) # 指定人员同步 elif data_sync_type == "single_sync": staff_id_list = text_data_json.get('staff_id_list') resp_data = await database_sync_to_async(get_face_store)(data_sync_type=data_sync_type, staff_id_list=staff_id_list) await self.send(text_data=json.dumps(resp_data)) else: await self.send(text_data=json.dumps( { 'message': 'need_auth' })) # 同步状态 elif message_type == "sync_info": if self.company_id: sync_state = text_data_json.get('sync_state') state = sync_state.get("state") face_data_len = sync_state.get("face_data_len") success_sync = sync_state.get("success_sync") # 判断同步类型 if sync_state['type'] == "full_sync": sync_type = "full_sync" elif sync_state['type'] == 'single_sync': sync_type = "single" elif sync_state['type'] == 'check_sync': sync_type = 'check_sync' face_data_len = 0 success_sync = 0 else: sync_type = '' # 进行数据库同步 await database_sync_to_async(update_sync_state)(sync_type=sync_type, sync_state=state, client_user=self.client_user, face_data_len=face_data_len, success_sync=success_sync) else: await self.send(text_data=json.dumps( { 'message': 'need_auth' })) # 向设备下发通知 async def get_notification(self, event): message = event['message'] # 异步下发 await self.send(text_data=json.dumps({ 'message': message })) def auth_client_token(client_user, client_key): """ 设备认证 """ # 在数据库中检索设备号与认证码 auth = ClientInfo.objects.filter(client_user=client_user, client_key=client_key) # print('auth', auth) auth_state = auth.count() # print('auth_state', auth_state) if auth_state >= 1: # 生成设备唯一token auth.update(client_token=create_token()) return 'ok', auth.get().client_token, auth.get().client_info.company_id else: return 'error', None def create_token(): """ 生成Token """ token = 'time=' + str(int(time.time())) + 'num=' + str(random.randint(1000, 9999)) token = base64.b64encode(token.encode('utf-8')).decode('utf-8') print('token', token) return token def get_face_store(client_user, data_sync_type, company_id=None, staff_id_list=None, check_sync_list=None): """ 获取人脸数据库 """ if check_sync_list is None: check_sync_list = [] resp_data = { 'type': data_sync_type, 'face_store': [] } # 全同步方式 if data_sync_type == "full_sync": full_store = FaceStore.objects.filter(company_id=company_id) for single_face in full_store: single_data = {'name': single_face.name, 'phone': single_face.phone, 'staff_id': single_face.staff_id, 'company_id': single_face.company_id, 'face_code': str(single_face.face_code)} resp_data['face_store'].append(single_data) print(len(resp_data['face_store'])) return resp_data # 指定人员同步 elif data_sync_type == "single_sync": for single_staff in staff_id_list: single_face = FaceStore.objects.filter(staff_id=single_staff).get() print('single_face', single_face) single_data = {'name': single_face.name, 'phone': single_face.phone, 'staff_id': single_face.staff_id, 'company_id': single_face.company_id, 'face_code': str(single_face.face_code)} resp_data['face_store'].append(single_data) print(len(resp_data['face_store'])) return resp_data # 人员列表检查同步 elif data_sync_type == "check_sync": local_staff_list = [] for x in FaceStore.objects.filter(company_id=company_id): local_staff_list.append(x.staff_id) print('local_staff_list', local_staff_list) if check_sync_list: check_sync_list = check_sync_list else: check_sync_list = [] update_list = [] for check_staff in local_staff_list: if check_staff not in check_sync_list: update_list.append(check_staff) # 检测数据库改动(人脸更新,人脸删除) for k in FaceStore.objects.filter(company_id=company_id): local_client_list = eval(k.client_sync_list) print('local_client_list', local_client_list) if client_user in local_client_list: pass else: update_list.append(k.staff_id) print('update_list', update_list) resp_data['update_list'] = update_list return resp_data # 确认比对状态 elif data_sync_type == "check_finished": try: for single_staff in check_sync_list: local_client_list = FaceStore.objects.filter(staff_id=single_staff).get().client_sync_list new_local_client_list = eval(local_client_list) # print('new_local_client_list', new_local_client_list) new_local_client_list.append(client_user) # print('new_local_client_list_return', new_local_client_list) # 设备号去重 new_local_client_list = list(set(new_local_client_list)) FaceStore.objects.filter(staff_id=single_staff).update(client_sync_list=str(new_local_client_list)) except Exception as e: print(e) else: resp_data['update_state'] = "cool" return resp_data def update_sync_state(sync_type, sync_state, client_user, face_data_len=0, success_sync=0): """ 更新同步状态 """ try: # 全同步 if sync_type == "full_sync": SyncInfo.objects.create(sync_type=sync_type, sync_state=sync_state, client_user_id=client_user, face_data_len=face_data_len, success_sync=success_sync) # 人员列表检查同步 elif sync_type == "check_sync": SyncInfo.objects.create(sync_type=sync_type, sync_state=sync_state, client_user_id=client_user) except Exception as e: print(e) return "sync_info_error" else: return 'ok' def update_pass_info(info_detail_list, task_id, client_user): """ 更新通行日志 """ resp_data = { 'task_id': task_id, 'pass_update_state': '' } try: # 分条插入数据库中 for single_info in info_detail_list: name = single_info.get('name') staff_id = single_info.get('staff_id') company_id = single_info.get('company_id') pass_time = single_info.get('pass_time') PassInfo.objects.create(name=name, staff_id=staff_id, company_id=company_id, pass_time=pass_time, client_user=client_user) except Exception as e: print(e) resp_data['pass_update_state'] = 'error' return resp_data else: resp_data['pass_update_state'] = 'success' return resp_data
hamster1963/face-all-in-one-machine-backend
face_machine_client/consumers.py
consumers.py
py
14,986
python
en
code
0
github-code
6
[ { "api_name": "random.randint", "line_number": 25, "usage_type": "call" }, { "api_name": "channels.generic.websocket.AsyncWebsocketConsumer", "line_number": 29, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 46, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 55, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 62, "usage_type": "call" }, { "api_name": "channels.db.database_sync_to_async", "line_number": 72, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 77, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 96, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 102, "usage_type": "call" }, { "api_name": "channels.db.database_sync_to_async", "line_number": 112, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 116, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 118, "usage_type": "call" }, { "api_name": "channels.db.database_sync_to_async", "line_number": 129, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 132, "usage_type": "call" }, { "api_name": "channels.db.database_sync_to_async", "line_number": 137, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 141, "usage_type": "call" }, { "api_name": "channels.db.database_sync_to_async", "line_number": 146, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 150, "usage_type": "call" }, { "api_name": "channels.db.database_sync_to_async", "line_number": 157, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 159, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 163, "usage_type": "call" }, { "api_name": "channels.db.database_sync_to_async", "line_number": 186, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 193, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 202, "usage_type": "call" }, { "api_name": "face_machine_client.models.ClientInfo.objects.filter", "line_number": 212, "usage_type": "call" }, { "api_name": "face_machine_client.models.ClientInfo.objects", "line_number": 212, "usage_type": "attribute" }, { "api_name": "face_machine_client.models.ClientInfo", "line_number": 212, "usage_type": "name" }, { "api_name": "time.time", "line_number": 228, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 228, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 229, "usage_type": "call" }, { "api_name": "face_irobot_main.models.FaceStore.objects.filter", "line_number": 246, "usage_type": "call" }, { "api_name": "face_irobot_main.models.FaceStore.objects", "line_number": 246, "usage_type": "attribute" }, { "api_name": "face_irobot_main.models.FaceStore", "line_number": 246, "usage_type": "name" }, { "api_name": "face_irobot_main.models.FaceStore.objects.filter", "line_number": 259, "usage_type": "call" }, { "api_name": "face_irobot_main.models.FaceStore.objects", "line_number": 259, "usage_type": "attribute" }, { "api_name": "face_irobot_main.models.FaceStore", "line_number": 259, "usage_type": "name" }, { "api_name": "face_irobot_main.models.FaceStore.objects.filter", "line_number": 272, "usage_type": "call" }, { "api_name": "face_irobot_main.models.FaceStore.objects", "line_number": 272, "usage_type": "attribute" }, { "api_name": "face_irobot_main.models.FaceStore", "line_number": 272, "usage_type": "name" }, { "api_name": "face_irobot_main.models.FaceStore.objects.filter", "line_number": 284, "usage_type": "call" }, { "api_name": "face_irobot_main.models.FaceStore.objects", "line_number": 284, "usage_type": "attribute" }, { "api_name": "face_irobot_main.models.FaceStore", "line_number": 284, "usage_type": "name" }, { "api_name": "face_irobot_main.models.FaceStore.objects.filter", "line_number": 298, "usage_type": "call" }, { "api_name": "face_irobot_main.models.FaceStore.objects", "line_number": 298, "usage_type": "attribute" }, { "api_name": "face_irobot_main.models.FaceStore", "line_number": 298, "usage_type": "name" }, { "api_name": "face_irobot_main.models.FaceStore.objects.filter", "line_number": 305, "usage_type": "call" }, { "api_name": "face_irobot_main.models.FaceStore.objects", "line_number": 305, "usage_type": "attribute" }, { "api_name": "face_irobot_main.models.FaceStore", "line_number": 305, "usage_type": "name" }, { "api_name": "face_machine_client.models.SyncInfo.objects.create", "line_number": 320, "usage_type": "call" }, { "api_name": "face_machine_client.models.SyncInfo.objects", "line_number": 320, "usage_type": "attribute" }, { "api_name": "face_machine_client.models.SyncInfo", "line_number": 320, "usage_type": "name" }, { "api_name": "face_machine_client.models.SyncInfo.objects.create", "line_number": 327, "usage_type": "call" }, { "api_name": "face_machine_client.models.SyncInfo.objects", "line_number": 327, "usage_type": "attribute" }, { "api_name": "face_machine_client.models.SyncInfo", "line_number": 327, "usage_type": "name" }, { "api_name": "face_machine_client.models.PassInfo.objects.create", "line_number": 352, "usage_type": "call" }, { "api_name": "face_machine_client.models.PassInfo.objects", "line_number": 352, "usage_type": "attribute" }, { "api_name": "face_machine_client.models.PassInfo", "line_number": 352, "usage_type": "name" } ]
27595046406
from PyQt5.QtGui import QFont from PyQt5.QtWidgets import ( QHBoxLayout, QListWidgetItem, QCheckBox, QGridLayout, QWidget, QComboBox, QListWidget, ) from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib import matplotlib.pyplot as plt from code_SRC.composantes import Time from datetime import date class Save_plot_app(QWidget): """Plot app that shows a plot chart of a specific leaderboard. ##################################################### # # # # # # # # # # # # # # Plot # # DATA # CHART # # LIST # # # # # # # # # # # # # # ##################################################### """ def __init__(self, data): def list_widget() -> QListWidget: self.listwidget = QListWidget() self.listwidget.setFixedWidth(450) for rank, entry in enumerate(runs_times, start=1): delta = Time(entry - runs_times[0]) string = f"{rank:4} {Time(entry)} {str(delta):>10} (-{(runs_times[0] - entry) / runs_times[0]:>6.2%})" one_line = QListWidgetItem(string) one_line.setFont(QFont("Lucida Sans Typewriter", 10)) self.listwidget.addItem(one_line) # self.listwidget.clicked.connect(self.list_clicked) return self.listwidget def plot_widget() -> FigureCanvas: self.canvas = FigureCanvas(plt.Figure(tight_layout=True)) matplotlib.rc("font", **{"weight": "normal", "size": 16}) self.update_plot() return self.canvas runs_times, pb, WR_time = data super().__init__() self.data = runs_times self.pb = pb.seconds self.WR = WR_time self.setMinimumSize(1400, 600) self.layout = QGridLayout() self.setLayout(self.layout) self.layout.addWidget(list_widget(), 0, 0) self.layout.addWidget(plot_widget(), 0, 1) def plot(self): self.canvas.figure.clf() self.ax = self.canvas.figure.subplots() self.ax.plot([x for x in range(1, len(self.data) + 1)], self.data) self.ax.axhline(self.WR, color="goldenrod") self.ax.set_yticks(self.ax.get_yticks()) self.ax.set_yticklabels([str(Time(x)) for x in self.ax.get_yticks()]) self.canvas.draw() def update_plot(self): self.plot()
GB127/SRC-statistics
plots/save_plot.py
save_plot.py
py
2,948
python
en
code
0
github-code
6
[ { "api_name": "PyQt5.QtWidgets.QWidget", "line_number": 18, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QListWidget", "line_number": 38, "usage_type": "call" }, { "api_name": "code_SRC.composantes.Time", "line_number": 41, "usage_type": "call" }, { "api_name": "code_SRC.composantes.Time", "line_number": 42, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QListWidgetItem", "line_number": 44, "usage_type": "call" }, { "api_name": "PyQt5.QtGui.QFont", "line_number": 45, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QListWidget", "line_number": 37, "usage_type": "name" }, { "api_name": "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.Figure", "line_number": 51, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 51, "usage_type": "name" }, { "api_name": "matplotlib.rc", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg", "line_number": 50, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QGridLayout", "line_number": 63, "usage_type": "call" }, { "api_name": "code_SRC.composantes.Time", "line_number": 75, "usage_type": "call" } ]
22432578680
import pandas as pd from openpyxl.styles import PatternFill def rgb_to_hex(rgb): return '%02x%02x%02x' % rgb def darken(hex_code, shade): shade = shade/10 #add something to convert shade number ie 9 actually equals 10% darker RGB = tuple(int(hex_code[i:i + 2], 16) for i in (0, 2, 4)) r = RGB[0] g = RGB[1] b = RGB[2] # darken by 10% darken_R = int(round(r * shade)) darken_G = int(round(g * shade)) darken_B = int(round(b * shade)) rgbTuple = (darken_R, darken_G, darken_B) #tuple of RGB values to convert to Hex return rgb_to_hex(rgbTuple) def lighten(hex_code, shade): shade = shade/10 RGB = tuple(int(hex_code[i:i + 2], 16) for i in (0, 2, 4)) r = RGB[0] g = RGB[1] b = RGB[2] # lighten by 10% lighten_R = int(round(r + ((255 - r) * shade), 0)) lighten_G = int(round(g + ((255 - g) * shade), 0)) lighten_B = int(round(b + ((255 - b) * shade), 0)) rgbTuple = (lighten_R, lighten_G, lighten_B) #tuple of RGB values to convert to Hex return rgb_to_hex(rgbTuple) def create_lighten_df(colorList): empty_df_list = [] df = pd.DataFrame(columns=['Original Color Hex', 'Change %', 'Color Hex', 'Direction', 'Color']) for item in colorList: for num in range(11): original_color = "#" + item change_percent = str(num) + '0%' color_hex = "#" + lighten(hex_code=item, shade=num) direction = 'Lighter' df = pd.concat([df, pd.DataFrame.from_dict({'Original Color Hex': [original_color], 'Change %': [change_percent], 'Color Hex': [color_hex], 'Direction': [direction], 'Color' : ""})], ignore_index=True) return df def create_darken_df(colorList): empty_df_list = [] df = pd.DataFrame(columns=['Original Color Hex', 'Change %', 'Color Hex', 'Direction', 'Color']) for item in colorList: for num in range(11): original_color = "#" + item change_percent = str(num) + '0%' color_hex = "#" + darken(hex_code=item, shade=num) direction = 'Darken' df = pd.concat([df, pd.DataFrame.from_dict({'Original Color Hex': [original_color], 'Change %': [change_percent], 'Color Hex': [color_hex], 'Direction': [direction], 'Color' : ""})], ignore_index=True) print(df) percDict = { '100%': "00%", '90%': "10%", '80%': "20%", '70%': "30%", '60%': "40%", '50%': "50%", '40%': "60%", '30%': "70%", '20%': "80%", '10%': "90%", '00%': "100%" } df['Change %'] = df['Change %'].apply(lambda x: percDict[x]) df['Original Color Hex'] = df['Original Color Hex'].astype('category') df = df.sort_index(ascending=False).reset_index(drop=True) df['Sorting'] = df.index sorter = ['#' + str(x) for x in colorList] df['Original Color Hex'] = df['Original Color Hex'].cat.set_categories(sorter) df = df.sort_values(by=['Original Color Hex', 'Sorting']).drop(columns='Sorting') return df ###############start of work################### # colorList is the list of hex codes that will be used to generate the report colorList = ['CC0000', #red '000000', #black '4d4d4f', #dark gray '969697', #medium gray 'dddddd', # light gray 'f3f3f3', # ultra light gray 'f58025', # ada compliant orange 'fdb913', # ada compliant yellow '97ca3e', # ada compliant green '479cd6', # ada compliant blue '1d3c6d', # ada compliant navy '751c59' # ada compliant purple ] lighten_df = create_lighten_df(colorList) #create a dataframe of lightened colors darken_df = create_darken_df(colorList) # create a dataframe of darkened colors with pd.ExcelWriter("ColorShadeReferenceWorkbook.xlsx", engine="openpyxl") as writer: # create the "Lighten" worksheet sheet_name = "Lighten" # Export DataFrame content lighten_df.to_excel(writer, sheet_name=sheet_name, index=False) # Set column width dimensions sheet = writer.sheets[sheet_name]# open sheet sheet.column_dimensions['A'].width = 18 sheet.column_dimensions['B'].width = 10 sheet.column_dimensions['C'].width = 10 sheet.column_dimensions['D'].width = 10 sheet.column_dimensions['E'].width = 9 # Set background colors depending on cell values for cell, in sheet[f'E2:E{len(lighten_df) + 1}']: # Skip header row, process as many rows as there are DataFrames value = lighten_df["Color Hex"].iloc[cell.row - 2] #set color value to row['Color Hex'] value value = value.strip("#") cell.fill = PatternFill(start_color=value, end_color=value, fill_type='solid') #create the "Darken" worksheet sheet_name = "Darken" # Export DataFrame content darken_df.to_excel(writer, sheet_name=sheet_name, index=False) sheet = writer.sheets[sheet_name] # Set column width dimensions sheet.column_dimensions['A'].width = 18 sheet.column_dimensions['B'].width = 10 sheet.column_dimensions['C'].width = 10 sheet.column_dimensions['D'].width = 10 sheet.column_dimensions['E'].width = 9 # Set background colors depending on cell values for cell, in sheet[f'E2:E{len(darken_df) + 1}']: # Skip header row, process as many rows as there are DataFrames value = darken_df["Color Hex"].iloc[cell.row - 2] #set color value to row['Color Hex'] value value = value.strip("#") #strip # cell.fill = PatternFill(start_color=value, end_color=value, fill_type='solid') #fill cell colid color
mbgoodin/ColorShadeGenerator
main.py
main.py
py
6,351
python
en
code
0
github-code
6
[ { "api_name": "pandas.DataFrame", "line_number": 47, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 54, "usage_type": "call" }, { "api_name": "pandas.DataFrame.from_dict", "line_number": 55, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 55, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 66, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 73, "usage_type": "call" }, { "api_name": "pandas.DataFrame.from_dict", "line_number": 74, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 74, "usage_type": "attribute" }, { "api_name": "pandas.ExcelWriter", "line_number": 128, "usage_type": "call" }, { "api_name": "openpyxl.styles.PatternFill", "line_number": 144, "usage_type": "call" }, { "api_name": "openpyxl.styles.PatternFill", "line_number": 161, "usage_type": "call" } ]
31983482821
"""empty message Revision ID: cadce5b06ea7 Revises: 5c4a7cc7d0e2 Create Date: 2020-03-25 11:23:09.141719 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql # revision identifiers, used by Alembic. revision = 'cadce5b06ea7' down_revision = '5c4a7cc7d0e2' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index('ix_user_email', table_name='user') op.drop_index('ix_user_username', table_name='user') op.drop_table('user') op.drop_table('followers') op.drop_index('ix_post_timestamp', table_name='post') op.drop_table('post') op.add_column('label_data', sa.Column('is_labeled', sa.Integer(), nullable=True)) op.create_index(op.f('ix_label_data_is_labeled'), 'label_data', ['is_labeled'], unique=False) op.drop_index('ix_label_data_is_labled', table_name='label_data') op.drop_column('label_data', 'is_labled') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('label_data', sa.Column('is_labled', mysql.INTEGER(display_width=11), autoincrement=False, nullable=True)) op.create_index('ix_label_data_is_labled', 'label_data', ['is_labled'], unique=False) op.drop_index(op.f('ix_label_data_is_labeled'), table_name='label_data') op.drop_column('label_data', 'is_labeled') op.create_table('post', sa.Column('id', mysql.INTEGER(display_width=11), autoincrement=True, nullable=False), sa.Column('body', mysql.VARCHAR(length=140), nullable=True), sa.Column('timestamp', mysql.DATETIME(), nullable=True), sa.Column('user_id', mysql.INTEGER(display_width=11), autoincrement=False, nullable=True), sa.Column('language', mysql.VARCHAR(length=5), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['user.id'], name='post_ibfk_1'), sa.PrimaryKeyConstraint('id'), mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_post_timestamp', 'post', ['timestamp'], unique=False) op.create_table('followers', sa.Column('follower_id', mysql.INTEGER(display_width=11), autoincrement=False, nullable=True), sa.Column('followed_id', mysql.INTEGER(display_width=11), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['followed_id'], ['user.id'], name='followers_ibfk_1'), sa.ForeignKeyConstraint(['follower_id'], ['user.id'], name='followers_ibfk_2'), mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_table('user', sa.Column('id', mysql.INTEGER(display_width=11), autoincrement=True, nullable=False), sa.Column('username', mysql.VARCHAR(length=64), nullable=True), sa.Column('email', mysql.VARCHAR(length=120), nullable=True), sa.Column('password_hash', mysql.VARCHAR(length=128), nullable=True), sa.Column('about_me', mysql.VARCHAR(length=140), nullable=True), sa.Column('last_seen', mysql.DATETIME(), nullable=True), sa.PrimaryKeyConstraint('id'), mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_user_username', 'user', ['username'], unique=True) op.create_index('ix_user_email', 'user', ['email'], unique=True) # ### end Alembic commands ###
huawenjin1995/Microblog
migrations/versions/cadce5b06ea7_.py
cadce5b06ea7_.py
py
3,298
python
en
code
0
github-code
6
[ { "api_name": "alembic.op.drop_index", "line_number": 21, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 21, "usage_type": "name" }, { "api_name": "alembic.op.drop_index", "line_number": 22, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 22, "usage_type": "name" }, { "api_name": "alembic.op.drop_table", "line_number": 23, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 23, "usage_type": "name" }, { "api_name": "alembic.op.drop_table", "line_number": 24, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 24, "usage_type": "name" }, { "api_name": "alembic.op.drop_index", "line_number": 25, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 25, "usage_type": "name" }, { "api_name": "alembic.op.drop_table", "line_number": 26, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 26, "usage_type": "name" }, { "api_name": "alembic.op.add_column", "line_number": 27, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 27, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 27, "usage_type": "call" }, { "api_name": "alembic.op.create_index", "line_number": 28, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 28, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 28, "usage_type": "call" }, { "api_name": "alembic.op.drop_index", "line_number": 29, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 29, "usage_type": "name" }, { "api_name": "alembic.op.drop_column", "line_number": 30, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 30, "usage_type": "name" }, { "api_name": "alembic.op.add_column", "line_number": 36, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 36, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 36, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.INTEGER", "line_number": 36, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 36, "usage_type": "name" }, { "api_name": "alembic.op.create_index", "line_number": 37, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 37, "usage_type": "name" }, { "api_name": "alembic.op.drop_index", "line_number": 38, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 38, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 38, "usage_type": "call" }, { "api_name": "alembic.op.drop_column", "line_number": 39, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 39, "usage_type": "name" }, { "api_name": "alembic.op.create_table", "line_number": 40, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 40, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 41, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.INTEGER", "line_number": 41, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 41, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 42, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.VARCHAR", "line_number": 42, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 42, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 43, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.DATETIME", "line_number": 43, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 43, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 44, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.INTEGER", "line_number": 44, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 44, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 45, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.VARCHAR", "line_number": 45, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 45, "usage_type": "name" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 46, "usage_type": "call" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 47, "usage_type": "call" }, { "api_name": "alembic.op.create_index", "line_number": 51, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 51, "usage_type": "name" }, { "api_name": "alembic.op.create_table", "line_number": 52, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 52, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 53, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.INTEGER", "line_number": 53, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 53, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 54, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.INTEGER", "line_number": 54, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 54, "usage_type": "name" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 55, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 56, "usage_type": "call" }, { "api_name": "alembic.op.create_table", "line_number": 60, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 60, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 61, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.INTEGER", "line_number": 61, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 61, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 62, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.VARCHAR", "line_number": 62, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 62, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 63, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.VARCHAR", "line_number": 63, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 63, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 64, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.VARCHAR", "line_number": 64, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 64, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 65, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.VARCHAR", "line_number": 65, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 65, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 66, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql.DATETIME", "line_number": 66, "usage_type": "call" }, { "api_name": "sqlalchemy.dialects.mysql", "line_number": 66, "usage_type": "name" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 67, "usage_type": "call" }, { "api_name": "alembic.op.create_index", "line_number": 71, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 71, "usage_type": "name" }, { "api_name": "alembic.op.create_index", "line_number": 72, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 72, "usage_type": "name" } ]
18135169137
from flask import Flask app = Flask(__name__) @app.route('/') def index(): page = '<h1>Powers of two </h1>\n' for i in range(32): line = '2^{} = {}<br/>\n'.format(i, 2**i) page += line return page if __name__ == '__main__': app.run(debug=True)
janirac/Interapt-Labs
Python/Flask/pyflask/ANSWERS/flask_powers_of_two.py
flask_powers_of_two.py
py
297
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 3, "usage_type": "call" } ]
19246991804
from .model import ImageEncoder, ImageDecoder128 import torch class AE(torch.nn.Module): def __init__(self): super().__init__() self.encoder = ImageEncoder([1, 128, 256, 512, 1024, 2048, 4096], kernel_size=3, stride=2) self.decoder = ImageDecoder128() self.tanh = torch.nn.Tanh() # self.gelu = torch.nn.GELU() self.sigmoid = torch.nn.Sigmoid() self.range = 1024.0 def forward(self, image): x = image / self.range x = self.encoder(x) # activate here if u want, tho prob bad idea :( x = self.tanh(x) #maybe not so bad idea, enforces latent space to be between -1 and 1 x = self.decoder(x) x = self.sigmoid(x) * self.range return x
pmistry9597/Climate-Hack-2022
attention_conv/ae.py
ae.py
py
763
python
en
code
2
github-code
6
[ { "api_name": "torch.nn", "line_number": 4, "usage_type": "attribute" }, { "api_name": "model.ImageEncoder", "line_number": 8, "usage_type": "call" }, { "api_name": "model.ImageDecoder128", "line_number": 9, "usage_type": "call" }, { "api_name": "torch.nn.Tanh", "line_number": 11, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 11, "usage_type": "attribute" }, { "api_name": "torch.nn.Sigmoid", "line_number": 13, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 13, "usage_type": "attribute" } ]
31411828229
import requests import unittest import json from Global_base import global_base,globa_phone from parameterized import parameterized from Global_base import login class GetMainLinkBySublink(unittest.TestCase): """我的建议接口""" def setUp(self): self.url = global_base.DefTool.url(self, '/usercenter/user/suggest') def tearDown(self): print("请求地址为{}".format(self.url)) print("请求参数为{}".format(json.dumps(self.params, indent=2, sort_keys=False, ensure_ascii=False))) print("请求结果为:{}".format(json.dumps(self.result, indent=2, sort_keys=False, ensure_ascii=False))) @parameterized.expand([ ( "建议提交", "A11", "", "867910035562539", "2.6.0", "15", "1003", "1", "sinaif", "ef70fb3178dccde19df9295a68aca0a3", "qsj") ]) # @unittest.skip("pass") def test_getMainLinkBySublink(self, name, suggestcontent, contactway, deviceId, ver, verno, productId, deviceType, channelId, deviceToken, mjbname): """我的建议接口""" values = login.LoginByPassWord().login_by_password(int(globa_phone.phone())) token = values[1] header = {"token": token} pa = {"suggestcontent": suggestcontent, "contactway": contactway, "deviceId": deviceId, "ver": ver, "verno": verno, "productId": productId, "channelId": channelId, "deviceToken": deviceToken, "mjbname": mjbname, "deviceType": deviceType} self.params = global_base.DefTool().payload(**pa) self.result = requests.post(url=self.url, headers=header, data=self.params).json() self.assertEqual(self.result["msg"], "ok") self.assertEqual(self.result['code'], 200) if __name__ == '__main__': unittest.main()
chenyongzhiaaron/pytest-test-interface
interface/app/suggest_test.py
suggest_test.py
py
1,803
python
en
code
1
github-code
6
[ { "api_name": "unittest.TestCase", "line_number": 9, "usage_type": "attribute" }, { "api_name": "Global_base.global_base.DefTool.url", "line_number": 12, "usage_type": "call" }, { "api_name": "Global_base.global_base.DefTool", "line_number": 12, "usage_type": "attribute" }, { "api_name": "Global_base.global_base", "line_number": 12, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 16, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 17, "usage_type": "call" }, { "api_name": "Global_base.login.LoginByPassWord", "line_number": 28, "usage_type": "call" }, { "api_name": "Global_base.login", "line_number": 28, "usage_type": "name" }, { "api_name": "Global_base.globa_phone.phone", "line_number": 28, "usage_type": "call" }, { "api_name": "Global_base.globa_phone", "line_number": 28, "usage_type": "name" }, { "api_name": "Global_base.global_base.DefTool", "line_number": 34, "usage_type": "call" }, { "api_name": "Global_base.global_base", "line_number": 34, "usage_type": "name" }, { "api_name": "requests.post", "line_number": 35, "usage_type": "call" }, { "api_name": "parameterized.parameterized.expand", "line_number": 19, "usage_type": "call" }, { "api_name": "parameterized.parameterized", "line_number": 19, "usage_type": "name" }, { "api_name": "unittest.main", "line_number": 41, "usage_type": "call" } ]
26038862506
from __future__ import annotations from dataclasses import dataclass from pants.backend.codegen.soap.soap_subsystem import SoapSubsystem from pants.backend.codegen.soap.target_types import WsdlSourcesGeneratorTarget from pants.core.goals.tailor import ( AllOwnedSources, PutativeTarget, PutativeTargets, PutativeTargetsRequest, ) from pants.engine.fs import PathGlobs, Paths from pants.engine.internals.selectors import Get from pants.engine.rules import collect_rules, rule from pants.engine.unions import UnionRule from pants.util.dirutil import group_by_dir from pants.util.logging import LogLevel @dataclass(frozen=True) class PutativeWsdlTargetsRequest(PutativeTargetsRequest): pass @rule(level=LogLevel.DEBUG, desc="Determine candidate WSDL targets to create") async def find_putative_targets( req: PutativeWsdlTargetsRequest, all_owned_sources: AllOwnedSources, soap_subsystem: SoapSubsystem, ) -> PutativeTargets: if not soap_subsystem.tailor: return PutativeTargets() all_wsdl_files = await Get(Paths, PathGlobs, req.path_globs("*.wsdl")) unowned_wsdl_files = set(all_wsdl_files.files) - set(all_owned_sources) pts = [ PutativeTarget.for_target_type( WsdlSourcesGeneratorTarget, path=dirname, name=None, triggering_sources=sorted(filenames), ) for dirname, filenames in group_by_dir(unowned_wsdl_files).items() ] return PutativeTargets(pts) def rules(): return [ *collect_rules(), UnionRule(PutativeTargetsRequest, PutativeWsdlTargetsRequest), ]
pantsbuild/pants
src/python/pants/backend/codegen/soap/tailor.py
tailor.py
py
1,624
python
en
code
2,896
github-code
6
[ { "api_name": "pants.core.goals.tailor.PutativeTargetsRequest", "line_number": 22, "usage_type": "name" }, { "api_name": "dataclasses.dataclass", "line_number": 21, "usage_type": "call" }, { "api_name": "pants.core.goals.tailor.AllOwnedSources", "line_number": 29, "usage_type": "name" }, { "api_name": "pants.backend.codegen.soap.soap_subsystem.SoapSubsystem", "line_number": 30, "usage_type": "name" }, { "api_name": "pants.core.goals.tailor.PutativeTargets", "line_number": 33, "usage_type": "call" }, { "api_name": "pants.engine.internals.selectors.Get", "line_number": 35, "usage_type": "call" }, { "api_name": "pants.engine.fs.Paths", "line_number": 35, "usage_type": "argument" }, { "api_name": "pants.engine.fs.PathGlobs", "line_number": 35, "usage_type": "argument" }, { "api_name": "pants.core.goals.tailor.PutativeTarget.for_target_type", "line_number": 38, "usage_type": "call" }, { "api_name": "pants.backend.codegen.soap.target_types.WsdlSourcesGeneratorTarget", "line_number": 39, "usage_type": "argument" }, { "api_name": "pants.core.goals.tailor.PutativeTarget", "line_number": 38, "usage_type": "name" }, { "api_name": "pants.util.dirutil.group_by_dir", "line_number": 44, "usage_type": "call" }, { "api_name": "pants.core.goals.tailor.PutativeTargets", "line_number": 46, "usage_type": "call" }, { "api_name": "pants.engine.rules.rule", "line_number": 26, "usage_type": "call" }, { "api_name": "pants.util.logging.LogLevel.DEBUG", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pants.util.logging.LogLevel", "line_number": 26, "usage_type": "name" }, { "api_name": "pants.core.goals.tailor.PutativeTargets", "line_number": 31, "usage_type": "name" }, { "api_name": "pants.engine.rules.collect_rules", "line_number": 51, "usage_type": "call" }, { "api_name": "pants.engine.unions.UnionRule", "line_number": 52, "usage_type": "call" }, { "api_name": "pants.core.goals.tailor.PutativeTargetsRequest", "line_number": 52, "usage_type": "argument" } ]
9023100800
import math import time from selenium import webdriver def calc(x): return str(math.log(abs(12 * math.sin(int(x))))) link = 'http://suninjuly.github.io/redirect_accept.html' try: browser = webdriver.Chrome() browser.get(link) time.sleep(4) # browser.execute_script("document.getElementsByTagName('button')[0].classList.remove('trollface');") browser.find_element_by_css_selector('[type="submit"]').click() lst_win = browser.window_handles current_win = lst_win[1] browser.switch_to.window(current_win) print(browser.current_url) x = browser.find_element_by_id('input_value') print(x.text) browser.find_element_by_id('answer').send_keys(calc(x.text)) browser.find_element_by_css_selector("[type='submit']").click() print(browser.switch_to.alert.text) time.sleep(2) browser.switch_to.alert.accept() finally: browser.quit()
Bulgakoff/auto-tests-course
less_2/windows/less2_step3_wins_1.py
less2_step3_wins_1.py
py
920
python
en
code
0
github-code
6
[ { "api_name": "math.log", "line_number": 8, "usage_type": "call" }, { "api_name": "math.sin", "line_number": 8, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 13, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 13, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 15, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 28, "usage_type": "call" } ]
17141988862
import time import math import torch from torch import nn, Tensor from torch.optim import Adam from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts from transformers import logging from utils.utils import AverageMeter from .adaptformer import AdaptFormer from torch.nn.parallel import DistributedDataParallel as DDP class AdaptFormerm(nn.Module): def __init__(self, num_frames, num_classes, global_pool=True): super().__init__() self.backbone = AdaptFormer(all_frames=num_frames, vpt_on=True, name_ckpt='pretrain_vit_base_1600.pth') self.layer_norm = nn.LayerNorm(self.backbone.num_features) self.classif = nn.Linear(in_features=self.backbone.num_features, out_features=num_classes) self.global_pool = global_pool def forward(self, images): x = self.backbone(images) if self.global_pool: x = x.mean(1) else: x = x[:, 0] x = self.layer_norm(x) out = self.classif(x) return out class AdaptFormermExecutor: def __init__(self, train_loader, test_loader, criterion, eval_metric, class_list, test_every, distributed, gpu_id) -> None: super().__init__() self.train_loader = train_loader self.test_loader = test_loader self.criterion = criterion.to(gpu_id) self.eval_metric = eval_metric.to(gpu_id) self.class_list = class_list self.test_every = test_every self.distributed = distributed self.gpu_id = gpu_id num_frames = self.train_loader.dataset[0][0].shape[0] num_classes = len(class_list) logging.set_verbosity_error() model = AdaptFormerm(num_frames, num_classes).to(gpu_id) if distributed: self.model = DDP(model, device_ids=[gpu_id]) else: self.model = model # train everything other than self.model.backbone for name, p in self.model.named_parameters(): if not name.startswith('backbone'): p.requires_grad = True # within the backbone only train the missing keys in self.model.backbone for name, p in self.model.backbone.named_parameters(): if name in self.model.backbone.msg.missing_keys: p.requires_grad = True else: p.requires_grad = False self.optimizer = self._construct_optimizer() self.scheduler = CosineAnnealingWarmRestarts(self.optimizer, T_0=10, eta_min=1e-8) def _construct_optimizer(self): optim_params = [] for p in self.model.parameters(): if p.requires_grad: optim_params.append(p) return Adam(optim_params, lr=0.01, weight_decay=0.) def _train_batch(self, data, label): self.optimizer.zero_grad() output = self.model(data) loss_this = self.criterion(output, label) loss_this.backward() self.optimizer.step() return loss_this.item() def _train_epoch(self, epoch): self.model.train() loss_meter = AverageMeter() start_time = time.time() for data, label in self.train_loader: data, label = data.to(self.gpu_id, non_blocking=True), label.to(self.gpu_id, non_blocking=True) loss_this = self._train_batch(data, label) loss_meter.update(loss_this, data.shape[0]) elapsed_time = time.time() - start_time if (self.distributed and self.gpu_id == 0) or not self.distributed: print("Epoch [" + str(epoch + 1) + "]" + "[" + str(time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) + "]" + " loss: " + "{:.4f}".format(loss_meter.avg), flush=True) def train(self, start_epoch, end_epoch): for epoch in range(start_epoch, end_epoch): self._train_epoch(epoch) self.scheduler.step() if (epoch + 1) % self.test_every == 0: eval = self.test() if (self.distributed and self.gpu_id == 0) or not self.distributed: print("[INFO] Evaluation Metric: {:.2f}".format(eval * 100), flush=True) def test(self): self.model.eval() eval_meter = AverageMeter() for data, label in self.test_loader: data, label = data.to(self.gpu_id), label.long().to(self.gpu_id) with torch.no_grad(): output = self.model(data) eval_this = self.eval_metric(output, label) eval_meter.update(eval_this.item(), data.shape[0]) return eval_meter.avg def save(self, file_path="./checkpoint.pth"): backbone_state_dict = self.model.backbone.state_dict() optimizer_state_dict = self.optimizer.state_dict() torch.save({"backbone": backbone_state_dict, "optimizer": optimizer_state_dict}, file_path) def load(self, file_path): checkpoint = torch.load(file_path) self.model.backbone.load_state_dict(checkpoint["backbone"]) self.optimizer.load_state_dict(checkpoint["optimizer"]) class PositionalEncoding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 2000): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe = torch.zeros(1, max_len, d_model) pe[0, :, 0::2] = torch.sin(position * div_term) pe[0, :, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe, persistent=False) def forward(self, x: Tensor) -> Tensor: """ Args: x: Tensor, shape [batch_size, seq_len, embedding_dim] """ x = x + self.pe[:, :x.size(1)] out = self.dropout(x) return out class GroupWiseLinear(nn.Module): # could be changed to: # output = torch.einsum('ijk,zjk->ij', x, self.W) # or output = torch.einsum('ijk,jk->ij', x, self.W[0]) def __init__(self, num_class, hidden_dim, bias=True): super().__init__() self.num_class = num_class self.hidden_dim = hidden_dim self.bias = bias self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim)) if bias: self.b = nn.Parameter(torch.Tensor(1, num_class)) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.W.size(2)) for i in range(self.num_class): self.W[0][i].data.uniform_(-stdv, stdv) if self.bias: for i in range(self.num_class): self.b[0][i].data.uniform_(-stdv, stdv) def forward(self, x): # x: B,K,d x = (self.W * x).sum(-1) if self.bias: x = x + self.b return x
mondalanindya/MSQNet
multi-label-action-main/models/adaptformerm.py
adaptformerm.py
py
7,084
python
en
code
8
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 13, "usage_type": "name" }, { "api_name": "adaptformer.AdaptFormer", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.nn.LayerNorm", "line_number": 17, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 17, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 18, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 18, "usage_type": "name" }, { "api_name": "transformers.logging.set_verbosity_error", "line_number": 45, "usage_type": "call" }, { "api_name": "transformers.logging", "line_number": 45, "usage_type": "name" }, { "api_name": "torch.nn.parallel.DistributedDataParallel", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.optim.lr_scheduler.CosineAnnealingWarmRestarts", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.optim.Adam", "line_number": 69, "usage_type": "call" }, { "api_name": "utils.utils.AverageMeter", "line_number": 81, "usage_type": "call" }, { "api_name": "time.time", "line_number": 82, "usage_type": "call" }, { "api_name": "time.time", "line_number": 87, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 90, "usage_type": "call" }, { "api_name": "time.gmtime", "line_number": 90, "usage_type": "call" }, { "api_name": "utils.utils.AverageMeter", "line_number": 104, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 107, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 116, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 121, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 126, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 126, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 133, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 133, "usage_type": "name" }, { "api_name": "torch.arange", "line_number": 134, "usage_type": "call" }, { "api_name": "torch.float", "line_number": 134, "usage_type": "attribute" }, { "api_name": "torch.exp", "line_number": 135, "usage_type": "call" }, { "api_name": "torch.arange", "line_number": 135, "usage_type": "call" }, { "api_name": "math.log", "line_number": 135, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 136, "usage_type": "call" }, { "api_name": "torch.sin", "line_number": 137, "usage_type": "call" }, { "api_name": "torch.cos", "line_number": 138, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 141, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 151, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 151, "usage_type": "name" }, { "api_name": "torch.nn.Parameter", "line_number": 161, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 161, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 161, "usage_type": "call" }, { "api_name": "torch.nn.Parameter", "line_number": 163, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 163, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 163, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 167, "usage_type": "call" } ]
75154654266
import os from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) README = open(os.path.join(here, 'README.md')).read() CHANGES = open(os.path.join(here, 'CHANGES.txt')).read() requires = [ 'django' ] setup(name='djinn', version="1.0.0-snapshot", description='PythonUnited Intranet', long_description=README + '\n\n' + CHANGES, classifiers=[ "Development Status :: 3 - Alpha", "Framework :: Django", "Intended Audience :: Developers", "License :: Freely Distributable", "Programming Language :: Python", "Topic :: Internet :: WWW/HTTP :: Site Management", "Topic :: Software Development :: Libraries :: Application Frameworks" ], author='PythonUnited', author_email='[email protected]', license='beer-ware', url='https://github.com/PythonUnited/djinn', keywords='Djinn Core', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires = requires, tests_require= requires, test_suite="djinn", entry_points = """\ """ )
PythonUnited/djinn
setup.py
setup.py
py
1,172
python
en
code
1
github-code
6
[ { "api_name": "os.path.abspath", "line_number": 5, "usage_type": "call" }, { "api_name": "os.path", "line_number": 5, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 5, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 6, "usage_type": "call" }, { "api_name": "os.path", "line_number": 6, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 7, "usage_type": "call" }, { "api_name": "os.path", "line_number": 7, "usage_type": "attribute" }, { "api_name": "setuptools.setup", "line_number": 13, "usage_type": "call" }, { "api_name": "setuptools.find_packages", "line_number": 31, "usage_type": "call" } ]
73786272509
import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error from math import sqrt from utils import mape def baseline(df): # predict next year by just taking the values from last year predicted = df.loc['2016-01-01':'2016-12-31'] actual = df.loc['2017-01-01':'2017-12-31'] # and padding the missing values with the last datapoint actual.loc[actual < 1] = np.nan actual = actual.fillna(method='pad') # transform df to series predicted = pd.Series(predicted) actual = pd.Series(actual) print("Number of actual days:", len(actual)) print('Number of predicted days:', len(predicted)) rmse = sqrt(mean_squared_error(actual, predicted)) print('For 12 Months RMSE: %.3f' % rmse) mape_value = mape(actual, predicted) print ("For 12 Months MAPE :", mape_value) def calculate_baseline(path): df = pd.read_pickle(path) baseline(df) # Call Baseline Method calculate_baseline("data/preprocessed/branch1.pkl")
coomish/stl-transferability
Baseline.py
Baseline.py
py
995
python
en
code
0
github-code
6
[ { "api_name": "numpy.nan", "line_number": 13, "usage_type": "attribute" }, { "api_name": "pandas.Series", "line_number": 16, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 17, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 20, "usage_type": "call" }, { "api_name": "sklearn.metrics.mean_squared_error", "line_number": 20, "usage_type": "call" }, { "api_name": "utils.mape", "line_number": 22, "usage_type": "call" }, { "api_name": "pandas.read_pickle", "line_number": 27, "usage_type": "call" } ]
39868260221
""" Настройка админки """ import logging from typing import Dict import toml from django.conf import settings from django.contrib import admin from django.contrib.admin.apps import AdminConfig from django.http import HttpRequest from django.template.response import TemplateResponse from django.urls import path class CustomAdmin(admin.AdminSite): site_header = f"{settings.SLOGAN}" index_title = f"{settings.INDEX_TITLE}" def __init__(self, *args, **kwargs): self.version_file = "version.toml" self.changelog_file = "CHANGELOG.md" super().__init__(*args, **kwargs) def get_versions(self) -> Dict: """Получение информации о версии релиза""" try: return toml.load(self.version_file) except (toml.TomlDecodeError, FileNotFoundError) as error: logging.error( "Ошибка при загрузке файла %s: %s", self.version_file, error ) return {} def each_context(self, request): site_data = super().each_context(request) release_data = self.get_versions() return { **site_data, "version": release_data.get("version"), "release_url": release_data.get("release_url"), "release_date": release_data.get("release_date"), } def get_urls(self): urls = super().get_urls() custom_urls = [ path("release/", self.admin_view(self.changelog), name="release") ] return custom_urls + urls def changelog(self, request: HttpRequest) -> TemplateResponse: try: with open(self.changelog_file, "r", encoding="utf-8") as file: changelog = file.read() except (FileNotFoundError, UnicodeEncodeError) as error: logging.error( "Ошибка при загрузке файла %s: %s", self.changelog_file, error ) changelog = "Ошибка при загрузке истории изменений" context = dict(self.each_context(request), changelog=changelog) return TemplateResponse(request, "admin/changelog.html", context) class MainAdminConfig(AdminConfig): """Переопределение класса админки""" default_site = "main.admin_config.CustomAdmin"
artemgv/spacemusic
app/main/admin_config.py
admin_config.py
py
2,473
python
en
code
0
github-code
6
[ { "api_name": "django.contrib.admin.AdminSite", "line_number": 17, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 17, "usage_type": "name" }, { "api_name": "django.conf.settings.SLOGAN", "line_number": 18, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 18, "usage_type": "name" }, { "api_name": "django.conf.settings.INDEX_TITLE", "line_number": 19, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 19, "usage_type": "name" }, { "api_name": "toml.load", "line_number": 29, "usage_type": "call" }, { "api_name": "toml.TomlDecodeError", "line_number": 30, "usage_type": "attribute" }, { "api_name": "logging.error", "line_number": 31, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 26, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 49, "usage_type": "call" }, { "api_name": "django.http.HttpRequest", "line_number": 53, "usage_type": "name" }, { "api_name": "logging.error", "line_number": 59, "usage_type": "call" }, { "api_name": "django.template.response.TemplateResponse", "line_number": 65, "usage_type": "call" }, { "api_name": "django.template.response.TemplateResponse", "line_number": 53, "usage_type": "name" }, { "api_name": "django.contrib.admin.apps.AdminConfig", "line_number": 68, "usage_type": "name" } ]
16621629920
""" refresh_tokens.py """ from __future__ import print_function import getpass import json import requests import sys import time from os import path from .exceptions import AgaveTokenError from ..utils import handle_bad_response_status_code def refresh_token(api_key, api_secret, refresh_token, tenant_url): """ Retrieve a new Oauth bearer token PARAMETERS ---------- api_key: str api_secret: str refresh_token: str tenant_url : str RETURNS ------- token_data: dict access_token: str refresh_token: str expires_in: str created_at: str expires_at: str """ # Set request endpoint. endpoint = "{0}{1}".format(tenant_url, "/token") # Make request. try: headers = {"Content-Type": "application/x-www-form-urlencoded"} data = { "grant_type": "refresh_token", "refresh_token": refresh_token, "scope": "PRODUCTION" } resp = requests.post(endpoint, headers=headers, data=data, auth=(api_key, api_secret)) except requests.exceptions.MissingSchema as err: raise AgaveTokenError(err) # Handle bad status code. handle_bad_response_status_code(resp) # Return pertinent value. response = resp.json() now = int(time.time()) expires_at = now + int(response["expires_in"]) token_data = { "access_token": response["access_token"], "refresh_token": response["refresh_token"], "expires_in": response["expires_in"], "created_at": str(now), "expires_at": time.strftime("%a %b %-d %H:%M:%S %Z %Y", time.localtime(expires_at)) } return token_data
tapis-project/tapispy
tapispy/tokens/refresh_tokens.py
refresh_tokens.py
py
1,724
python
en
code
0
github-code
6
[ { "api_name": "requests.post", "line_number": 47, "usage_type": "call" }, { "api_name": "requests.exceptions", "line_number": 49, "usage_type": "attribute" }, { "api_name": "exceptions.AgaveTokenError", "line_number": 50, "usage_type": "call" }, { "api_name": "utils.handle_bad_response_status_code", "line_number": 53, "usage_type": "call" }, { "api_name": "time.time", "line_number": 58, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 66, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 66, "usage_type": "call" } ]
71718720189
import sys import json asmFilename = sys.argv[1] with open(asmFilename, 'r') as file: lines = file.readlines() pyFile = open("pythonDict.py", 'r') addrDict = json.loads(pyFile.readline()) if addrDict: print("\nChanging labels...") for index, line in enumerate(lines): words = line.split() if words: if words[0][:-1] in addrDict: print(lines[index][:-1] + ' -> ', end='') line = line.replace(words[2], addrDict[words[0][:-1]]) lines[index] = line print(lines[index][:-1]) with open(asmFilename, 'w') as file: file.writelines(lines) print("Labels changed.\n") else: print("No labels to change\n")
mousssse/SystemeInformatique
branching.py
branching.py
py
746
python
en
code
0
github-code
6
[ { "api_name": "sys.argv", "line_number": 4, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 9, "usage_type": "call" } ]