seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
6555235
import scrapy from ..items import GuaziItem class GuaziSpider(scrapy.Spider): name = 'guazi2' allowed_domains = ['www.guazi.com'] #重写start_url start_requests()方法 def start_requests(self): """生成所有的url地址,一次性交给调度器""" for i in range(1,6): url = 'https://www.guazi.com/ty/buy/o{}/#bread'.format(i) yield scrapy.Request(url=url,callback=self.parse) def parse(self, response): #基准xpath:匹配所有汽车节点对象 li_list = response.xpath('//ul[@class="carlist clearfix js-top"]/li') item = GuaziItem() for li in li_list: item['url'] = li.xpath('./a/@href').extract()[0] item['name'] = li.xpath('./a/@title').extract()[0] item['price'] = li.xpath('./a/div[@class="t-price"]/p').extract()[0] #把抓取的数据,传递给了管道文件piplines.py yield item
null
Spider/day08/Guazi/Guazi/spiders/guazi2.py
guazi2.py
py
962
python
en
code
null
code-starcoder2
83
[ { "api_name": "scrapy.Spider", "line_number": 4, "usage_type": "attribute" }, { "api_name": "scrapy.Request", "line_number": 13, "usage_type": "call" }, { "api_name": "items.GuaziItem", "line_number": 18, "usage_type": "call" } ]
565145640
from django.test import TestCase from django.urls import reverse from complaint.apps import ComplaintConfig from complaint.models import Complaint from django.utils import timezone class ComplaintConfigTest(TestCase): def test_apps(self): self.assertEqual(ComplaintConfig.name, "complaint") class ComplaintViewTests(TestCase): def test_map_view_works(self): response = self.client.get(reverse("issue-complaint")) self.assertEqual(response.status_code, 200) def test_right_complaint_post_request(self): holder = self.client.post( reverse("issue-complaint"), data={ "subject": "Subject1", "message": "I have a problem", "image": "", }, ) self.assertEqual(holder.status_code, 200) class ComplaintModelTests(TestCase): def test_complaint_contains_correct_info(self): test_complaint_1 = Complaint( subject="I hate math", message="I hate math", uploaded_at=timezone.now(), image=None, ) test_complaint_1.save() response = self.client.get(reverse("issue-complaint")) self.assertEqual(response.status_code, 200) def test_complaint_contains_no_data(self): form = Complaint() self.assertFalse(form.save()) def test_complaint_contains_wrong_message_data(self): form = Complaint( subject="hi all,", message="", uploaded_at=timezone.now(), image=None, ) self.assertFalse(form.save()) def test_complaint_contains_wrong_subject_data(self): form = Complaint( subject="", message="yippie", uploaded_at=timezone.now(), image=None, ) self.assertFalse(form.save()) def test_complaint_contains_without_subject_message_data(self): form = Complaint( uploaded_at=timezone.now(), image=None, ) self.assertFalse(form.save()) def test_complaint_contains_without_image(self): form = Complaint( subject="hi all,", message="yippie", uploaded_at=timezone.now(), ) self.assertFalse(form.save())
null
complaint/tests.py
tests.py
py
2,300
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.test.TestCase", "line_number": 8, "usage_type": "name" }, { "api_name": "complaint.apps.ComplaintConfig.name", "line_number": 10, "usage_type": "attribute" }, { "api_name": "complaint.apps.ComplaintConfig", "line_number": 10, "usage_type": "name" }, { "api_name": "django.test.TestCase", "line_number": 13, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 15, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 20, "usage_type": "call" }, { "api_name": "django.test.TestCase", "line_number": 30, "usage_type": "name" }, { "api_name": "complaint.models.Complaint", "line_number": 32, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 35, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 35, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 40, "usage_type": "call" }, { "api_name": "complaint.models.Complaint", "line_number": 44, "usage_type": "call" }, { "api_name": "complaint.models.Complaint", "line_number": 48, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 51, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 51, "usage_type": "name" }, { "api_name": "complaint.models.Complaint", "line_number": 57, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 60, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 60, "usage_type": "name" }, { "api_name": "complaint.models.Complaint", "line_number": 66, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 67, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 67, "usage_type": "name" }, { "api_name": "complaint.models.Complaint", "line_number": 73, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 76, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 76, "usage_type": "name" } ]
43966129
import json import datetime from collections import Counter import json import datetime import sys out = {"books": [], "cds": [], "films": []} everything = {"library": {}} helabiblan = "my_library_register.json" def get_inputs_book(): #user input to record the log dbok = {} print("******************Böcker************************") dbok['BookTitel'] = input("Lägg in en bok titel: ") dbok['Bookforfattare'] = input("Vad heter forfattaren: ") dbok['BookAntal'] = input("Hur många sidor har boken: ") dbok['BookInkopspris'] = input("Vad var EttInkopspris: ") dbok['BookInkopesar'] = input("Vad var EttInkopesar: ") out['books'].append(dbok) return out def get_inputs_cd(): #user input to record the log dcd = {} print("******************CD************************") dcd['CdTitel'] = input("Lägg in en cd titel: ") dcd['CdArtist'] = input("Vad heter artisten: ") dcd['CdAntalspar'] = input("Hur många spår finns det: ") dcd['CdLangd'] = input("Vad är längden: ") dcd['CdInkopspris'] = input("Vad var inköpspriset: ") out['cds'].append(dcd) return out def get_inputs_film(): #user input to record the log dfilm = {} print("******************FILM************************") dfilm['FilmTitel'] = input("Lägg in en film titel: ") dfilm['FilmRegissor'] = input("Vad heter artisten: ") dfilm['FilmLangd'] = input("Hur lång är filmen: ") dfilm['FilmInkopspris'] = input("Vad var FilmInkopspris: ") dfilm['FilmInkopesar'] = input("Vad var inköpsåret: ") dfilm['Forslitningsgrad'] = input("Ange forslitningsgrad mellan 1-10 : ") out['films'].append(dfilm) return out def visaplus(): savetest() Final_Lista = makealista() skrivut_hela_biblioteket(Final_Lista) def menufinal(): while True: a = input(""" Chose the details you like to register A: Registera böcker B: Registera cdskivor C: Registera filmer D: VISA LIBRARY Q: Quit Please enter your val: """).lower() if a=="a": get_inputs_book() elif a=="b": get_inputs_cd() elif a=="c": get_inputs_film() elif a=="d": visaplus() elif a=="q": savetest() break else: print("Välj ett alternative") def savetest(): everything["library"].update(out) with open(helabiblan,'w') as f: json.dump(everything, f, indent=2) #--------------------------book---------------------- def rakna_bok(År, price): ÅretNu = datetime.datetime.now() age = ÅretNu.year - År if age > 50: price = price*(0.9**50)*(1.08**(age-50)) return price else: price = price*(0.9**age) return price #---------------------------film----------------------------------- def taborttioprocent(År, price): ÅretNu = datetime.datetime.now() age = ÅretNu.year - År price = price*(0.9**age) return round(price) def the_film_worth(FilmInkopspris, förslitningsgrad ): # // annvänd om dom råka trycka enter if förslitningsgrad == 1: tioprocent = FilmInkopspris * 0.10 tioNya = tioprocent + FilmInkopspris return round(tioNya) elif förslitningsgrad == 2: tjugoprocent = FilmInkopspris * 0.20 tjugoNya = tjugoprocent + FilmInkopspris return round(tjugoNya) elif förslitningsgrad == 3: trettioprocent = FilmInkopspris * 0.30 trettioNya = trettioprocent + FilmInkopspris return round(trettioNya) elif förslitningsgrad == 4: fyrtioprocent = FilmInkopspris * 0.40 fyrtioNya = fyrtioprocent + FilmInkopspris return round(fyrtioNya) elif förslitningsgrad == 5: femtioprocent = FilmInkopspris * 0.50 femtioNya = femtioprocent + FilmInkopspris return round(femtioNya) elif förslitningsgrad == 6: sextioprocent = FilmInkopspris * 0.60 sextio = sextioprocent + FilmInkopspris return round(sextio) elif förslitningsgrad == 7: sjutioprocent = FilmInkopspris * 0.70 sjutioNya = sjutioprocent + FilmInkopspris return round(sjutioNya) elif förslitningsgrad == 8: åttioprocent = FilmInkopspris * 0.80 åttioNya = åttioprocent + FilmInkopspris return round(åttioNya) elif förslitningsgrad == 9: nittoprocent = FilmInkopspris * 0.90 nittioNya = nittoprocent + FilmInkopspris return round(nittioNya) elif förslitningsgrad == 10: hundraprocent = FilmInkopspris return round(hundraprocent) #---------------------------cd----------------------------------- def taborttioprocent(År, price): ÅretNu = datetime.datetime.now() age = ÅretNu.year - År price = price*(0.9**age) # print("s4", price) return round(price) def finalworth(Titel, Artist, Thelist, FirstPris): TitelPlusArtist = Titel + " " + Artist Sametitels = Thelist.count(TitelPlusArtist) # print(Sametitels) Worth = FirstPris / Sametitels return round(Worth) def makealista(): with open(helabiblan, 'r') as f: info = json.load(f) access_library = info['library'] lista1 = [] lista2 = [] lista = [] # här vill jag nå sakerna under results som komver vara titel och artist for cd_data in access_library['cds']: titel_cd = cd_data['CdTitel'] artist_cd = cd_data['CdArtist'] lista1.append(titel_cd) lista2.append(artist_cd) for name, surname in zip(lista1, lista2): lista.append(name + " " + surname) return lista #----------------------------------------- def skrivut_hela_biblioteket(lista): with open(helabiblan, 'r') as f: info = json.load(f) access_library = info['library'] books = access_library['books'] cds = access_library['cds'] films = access_library['films'] sorted_list_books = sorted(books, key=lambda k: (k['BookTitel'])) sorted_list_cds = sorted(cds, key=lambda k: (k['CdTitel'])) sorted_list_films = sorted(films, key=lambda k: (k['FilmTitel'])) for book_data in sorted_list_books: BookTitel = book_data['BookTitel'] Bookforfattare = book_data['Bookforfattare'] BookAntal = book_data['BookAntal'] BookInkopspris = int(book_data['BookInkopspris']) BookInkopesar = int(book_data['BookInkopesar']) VardetNu = int(rakna_bok(BookInkopesar, BookInkopspris)) print("-------------------------------------------------------------sorterad----------------------------------------------------------------") print("BookTitel", BookTitel , "forfattare",Bookforfattare, "Antalsidor", BookAntal, "Inkopspris", BookInkopspris, "Inkopesar", BookInkopesar, "NyaVärdet:", VardetNu, "kr") for cd_data in sorted_list_cds: CdTitel = cd_data['CdTitel'] CdArtist = cd_data['CdArtist'] CdAntalspar = cd_data['CdAntalspar'] CdLangd = int(cd_data['CdLangd']) CdInkopspris = int(cd_data['CdInkopspris']) nyttpris = finalworth(CdTitel, CdArtist, lista, CdInkopspris) print("-------------------------------------------------------------sorterad----------------------------------------------------------------") print("CdTitel:", CdTitel , "Artist:", CdArtist, "EttAntalspar:",CdAntalspar, "EnLangd:", CdLangd, "EttInkopspris:", CdInkopspris, "NyaVärdet:", nyttpris, "kr") for film_data in sorted_list_films: FilmTitel = film_data['FilmTitel'] FilmRegissor = film_data['FilmRegissor'] FilmLangd = int(film_data['FilmLangd']) FilmInkopspris = int(film_data['FilmInkopspris']) FilmInkopesar = int(film_data['FilmInkopesar']) Forslitningsgrad = int(film_data['Forslitningsgrad']) MinusTio = taborttioprocent(FilmInkopesar, FilmInkopspris) filmpris = the_film_worth(MinusTio, Forslitningsgrad) print("-------------------------------------------------------------sorterad-----------------------------------------------------------------") print("FilmTitel:", FilmTitel , "Regissor:", FilmRegissor, "EnfilmLangd:",FilmLangd , "min", "FilmInkopspris:", FilmInkopspris, "kr", "EttInkopesar:", FilmInkopesar, "NyaVärdet:", filmpris, "kr") menufinal()
null
tonymain.py
tonymain.py
py
8,879
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.dump", "line_number": 105, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 112, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 112, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 126, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 126, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 184, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 184, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 201, "usage_type": "call" }, { "api_name": "json.load", "line_number": 224, "usage_type": "call" } ]
464662086
import codecs from scrapy.crawler import CrawlerProcess from scrapy.utils.project import get_project_settings from scrapy.utils.log import configure_logging from website_scraper.spiders.presales_spider import PresalesSpider from elasticsearch import Elasticsearch from urlparse import urlparse, urlunparse ELASTICSEARCH_URL = "http://localhost:9200/" ## Sample crawl config. Its a list of company confis. crawl_config = [ { "company_name": "Enthought", "allowed_domains": ['www.docker.com'], "start_urls": ['https://www.docker.com/careers', 'https://boards.greenhouse.io/embed/job_board?for=docker&b=https://www.docker.com/careers'], "record_type": "data", }, { "company_name": "SiteControls", "allowed_domains": ['koiosworks.com'], "start_urls": ['http://koiosworks.com/careers'], "record_type": "data", }, { "company_name": "QuoraInc.", "allowed_domains": ['www.quora.com'], "start_urls": ['https://www.quora.com/careers'], "record_type": "data", }, { "company_name": "SensorLogic(AquiredByGemalto)", "allowed_domains": ["www.sensorlogic.com"], "start_urls": ["http://www.sensorlogic.com"], "record_type": "data", }, ] def get_crawl_config(): """ This function is used to get company configurations from elasticsearch database. """ config_list = [] search_conn = Elasticsearch([ELASTICSEARCH_URL]) resp = search_conn.search(index="%s"%('presales'), body={"from": 0, "size": 1000, "_source": {"exclude": ["recent_activity", "company_description", "careers_page_data"]}, "query": {"match_all": {}}}) data = resp["hits"]["hits"] for hit in data: record = hit['_source'] config = {} config['company_name'] = record['company_name'] with codecs.open('companies.txt', 'a', encoding='utf8') as company_names: company_names.write(config['company_name']+'\n') url_params = urlparse(record['website']) # Forming the start url with path /careers new_url = urlparse('') new_url = new_url._replace(scheme=url_params.scheme if url_params.scheme else 'http') new_url = new_url._replace(netloc=url_params.netloc if url_params.netloc else url_params.path.rstrip('/')) #new_url = new_url._replace(path='careers') new_url = new_url._replace(path='') start_url = urlunparse(new_url) config['start_urls'] = [start_url] config['record_type'] = 'data' config['allowed_domains'] = [new_url.netloc] config_list.append(config) return config_list crawl_config = get_crawl_config() configure_logging({'LOG_FORMAT': '%(levelname)s: %(message)s'}) process = CrawlerProcess(get_project_settings()) #crawl_config = crawl_config[3:4] for config in crawl_config: process.crawl('presales', company_name = config["company_name"], allowed_domains = config["allowed_domains"], start_urls = config["start_urls"], record_type = config['record_type']) process.start() # the script will block here until the crawling is finished
null
presales_scraper/scrape_companies.py
scrape_companies.py
py
3,142
python
en
code
null
code-starcoder2
83
[ { "api_name": "elasticsearch.Elasticsearch", "line_number": 48, "usage_type": "call" }, { "api_name": "codecs.open", "line_number": 55, "usage_type": "call" }, { "api_name": "urlparse.urlparse", "line_number": 57, "usage_type": "call" }, { "api_name": "urlparse.urlparse", "line_number": 59, "usage_type": "call" }, { "api_name": "urlparse.urlunparse", "line_number": 64, "usage_type": "call" }, { "api_name": "scrapy.utils.log.configure_logging", "line_number": 73, "usage_type": "call" }, { "api_name": "scrapy.crawler.CrawlerProcess", "line_number": 74, "usage_type": "call" }, { "api_name": "scrapy.utils.project.get_project_settings", "line_number": 74, "usage_type": "call" } ]
392703441
from math import sqrt, atan2, log import pygame.gfxdraw as gfx import pygame NICE = True if NICE: def line(surface, colour, start, end, width=1): dx = end[0] - start[0] dy = end[1] - start[1] linelength = sqrt(dx * dx + dy * dy) if linelength == 0: return dx /= linelength dy /= linelength px = 0.5 * width * -dy py = 0.5 * width * dx poly = ( (start[0] + px, start[1] + py), (end[0] + px, end[1] + py), (end[0] - px, end[1] - py), (start[0] - px, start[1] - py), ) try: gfx.filled_polygon(surface, poly, colour) gfx.aapolygon(surface, poly, colour) except OverflowError: pass def arrow(surface, colour, start, end, width=1, asize=None): line(surface, colour, start, end, width) dx = end[0] - start[0] dy = end[1] - start[1] length = sqrt(dx * dx + dy * dy) if length == 0: return if asize is None: asize = log(length) dx /= length dy /= length px = 0.5 * asize * -dy py = 0.5 * asize * dx poly = ( (end[0] + px * 3, end[1] + py * 3), (end[0] - px * 3, end[1] - py * 3), (end[0] + dx * asize * 2, end[1] + dy * asize * 2), ) try: gfx.filled_polygon(surface, poly, colour) gfx.aapolygon(surface, poly, colour) except OverflowError: pass def circle(surface, colour, centre, radius, width=None): try: gfx.filled_circle(surface, *centre, radius, colour) gfx.aacircle(surface, *centre, radius, colour) except OverflowError: pass def polygon(surface, colour, points, width=None): gfx.filled_polygon(surface, points, colour) gfx.aapolygon(surface, points, colour) def rect(surface, colour, rect, width=None): polygon(surface, colour, ( (rect[0], rect[1]), (rect[0] + rect[2], rect[1]), (rect[0] + rect[2], rect[1] + rect[3]), (rect[0], rect[1] + rect[3]) ), width) def path(surface, colour, points, width, tail=False): if not tail: for n in range(1, len(points)): line(surface, colour, points[n - 1], points[n], width) else: for n in range(1, len(points)): line(surface, colour, points[n - 1], points[n], min(width, n // 2)) else: line = pygame.draw.line circle = pygame.draw.circle rect = pygame.draw.rect polygon = pygame.draw.polygon def path(surface, colour, points, width, tail=False): if not tail: for n in range(1, len(points)): line(self.screen, colour.green, points[n - 1], points[n], width) else: for n in range(1, len(points)): line(self.screen, colour.green, points[n - 1], points[n], min(width, n // 2))
null
animlib/draw.py
draw.py
py
3,050
python
en
code
null
code-starcoder2
83
[ { "api_name": "math.sqrt", "line_number": 13, "usage_type": "call" }, { "api_name": "pygame.gfxdraw.filled_polygon", "line_number": 32, "usage_type": "call" }, { "api_name": "pygame.gfxdraw", "line_number": 32, "usage_type": "name" }, { "api_name": "pygame.gfxdraw.aapolygon", "line_number": 33, "usage_type": "call" }, { "api_name": "pygame.gfxdraw", "line_number": 33, "usage_type": "name" }, { "api_name": "math.sqrt", "line_number": 42, "usage_type": "call" }, { "api_name": "math.log", "line_number": 47, "usage_type": "call" }, { "api_name": "pygame.gfxdraw.filled_polygon", "line_number": 62, "usage_type": "call" }, { "api_name": "pygame.gfxdraw", "line_number": 62, "usage_type": "name" }, { "api_name": "pygame.gfxdraw.aapolygon", "line_number": 63, "usage_type": "call" }, { "api_name": "pygame.gfxdraw", "line_number": 63, "usage_type": "name" }, { "api_name": "pygame.gfxdraw.filled_circle", "line_number": 69, "usage_type": "call" }, { "api_name": "pygame.gfxdraw", "line_number": 69, "usage_type": "name" }, { "api_name": "pygame.gfxdraw.aacircle", "line_number": 70, "usage_type": "call" }, { "api_name": "pygame.gfxdraw", "line_number": 70, "usage_type": "name" }, { "api_name": "pygame.gfxdraw.filled_polygon", "line_number": 75, "usage_type": "call" }, { "api_name": "pygame.gfxdraw", "line_number": 75, "usage_type": "name" }, { "api_name": "pygame.gfxdraw.aapolygon", "line_number": 76, "usage_type": "call" }, { "api_name": "pygame.gfxdraw", "line_number": 76, "usage_type": "name" }, { "api_name": "pygame.draw", "line_number": 94, "usage_type": "attribute" }, { "api_name": "pygame.draw", "line_number": 95, "usage_type": "attribute" }, { "api_name": "pygame.draw", "line_number": 96, "usage_type": "attribute" }, { "api_name": "pygame.draw", "line_number": 97, "usage_type": "attribute" } ]
335574123
from stdnet.exceptions import * from stdnet.utils import encoders from .fields import Field from . import related from .struct import * __all__ = ['ManyFieldManagerProxy', 'Many2ManyManagerProxy', 'MultiField', 'SetField', 'ListField', 'HashField'] class ManyFieldManagerProxy(object): def __init__(self, name, cache_name, pickler, value_pickler, scorefun): self.name = name self.cache_name = cache_name self.pickler = pickler self.value_pickler = value_pickler self.scorefun = scorefun def __get__(self, instance, instance_type=None): if instance is None: return self if instance.id is None: raise MultiFieldError('id for %s is not available.\ Call save on instance before accessing %s.' % (instance._meta,self.name)) cache_name = self.cache_name try: return getattr(instance, cache_name) except AttributeError: rel_manager = self.get_related_manager(instance) setattr(instance, cache_name, rel_manager) return rel_manager def get_related_manager(self, instance): return self.get_structure(instance) def get_structure(self, instance): session = instance.session st = getattr(backend,self.stype) return st(backend.basekey(instance._meta,'id',instance.id,self.name), instance = instance, #timeout = meta.timeout, pickler = self.pickler, value_pickler = self.value_pickler, scorefun = self.scorefun) class Many2ManyManagerProxy(ManyFieldManagerProxy): def __init__(self, name, cache_name, stype, to_name, to): super(Many2ManyManagerProxy,self).__init__(name, cache_name, stype, ModelFieldPickler(to), None, None) self.to_name = to_name self.model = to def get_related_manager(self, instance): st = self.get_structure(instance) return M2MRelatedManager(self.model, st, self.to_name, instance = instance) class MultiField(Field): '''Virtual class for fields which are proxies to remote :ref:`data structures <structures-backend>` such as :class:`stdnet.List`, :class:`stdnet.Set`, :class:`stdnet.OrderedSet` and :class:`stdnet.HashTable`. Sometimes you want to structure your data model without breaking it up into multiple entities. For example, you might want to define model that contains a list of messages an instance receive:: from stdnet import orm class MyModel(orm.StdModel): ... messages = orm.ListField() By defining structured fields in a model, an instance of that model can access a stand alone structure in the back-end server with very little effort. :parameter model: an optional :class:`stdnet.orm.StdModel` class. If specified, the structured will contains ids of instances of the model. It is saved in the :attr:`relmodel` attribute. .. attribute:: relmodel Optional :class:`stdnet.otm.StdModel` class contained in the structure. It can also be specified as a string. .. attribute:: pickler an instance of :class:`stdnet.utils.encoders.Encoder` used to serialize and userialize data. It contains the ``dumps`` and ``loads`` methods. Default :class:`stdnet.utils.encoders.Json`. .. attribute:: value_pickler Same as the :attr:`pickler` attribute, this serializer is applaied to values (used by hash table) Default: ``None``. ''' default_pickler = encoders.Json() default_value_pickler = None def __init__(self, model = None, pickler = None, value_pickler = None, required = False, scorefun = None, **kwargs): # Force required to be false super(MultiField,self).__init__(required = False, **kwargs) self.relmodel = model self.index = False self.unique = False self.primary_key = False self.pickler = pickler self.value_pickler = value_pickler self.scorefun = scorefun def register_with_model(self, name, model): super(MultiField,self).register_with_model(name, model) if self.relmodel: related.load_relmodel(self,self._set_relmodel) else: self._register_with_model() def _set_relmodel(self, relmodel): self.relmodel = relmodel if not self.pickler: self.pickler = related.ModelFieldPickler(self.relmodel) self._register_with_model() def _register_with_model(self): self._install_encoders() self.pickler = self.pickler or self.default_pickler self.value_pickler = self.value_pickler or self.default_value_pickler setattr(self.model, self.name, ManyFieldManagerProxy(self.name, self.get_cache_name(), pickler = self.pickler, value_pickler = self.value_pickler, scorefun = self.scorefun)) def _install_encoders(self): if self.relmodel and not self.pickler: self.pickler = related.ModelFieldPickler(self.relmodel) def add_to_fields(self): self.model._meta.multifields.append(self) def to_python(self, instance): return None def id(self, obj): return getattr(obj,self.attname).id def todelete(self): return True def structure_class(self): raise NotImplementedError class SetField(MultiField): '''A field maintaining an unordered collection of values. It is initiated without any argument other than an optional model class. When accessed from the model instance, it returns an instance of :class:`stdnet.Set` structure. For example:: class User(orm.StdModel): username = orm.AtomField(unique = True) password = orm.AtomField() following = orm.SetField(model = 'self') It can be used in the following way:: >>> user = User(username = 'lsbardel', password = 'mypassword').save() >>> user2 = User(username = 'pippo', password = 'pippopassword').save() >>> user.following.add(user2) >>> user.save() >>> user2 in user.following True ''' def structure_class(self): return Zset if self.ordered else Set class ListField(MultiField): '''A field maintaining a list of values. When accessed from the model instance, it returns an instance of :class:`stdnet.List` structure. For example:: class UserMessage(orm.StdModel): user = orm.SymbolField() messages = orm.ListField() Lets register it with redis:: >>> orm.register(UserMessage,''redis://127.0.0.1:6379/?db=11') 'redis db 7 on 127.0.0.1:6379' Can be used as:: >>> m = UserMessage(user = 'pippo').save() >>> m.messages.push_back("adding my first message to the list") >>> m.messages.push_back("ciao") >>> m.save() >>> type(u.messages) <class 'stdnet.backends.structures.structredis.List'> >>> u.messages.size() 2 ''' type = 'list' def structure_class(self): return List class HashField(MultiField): '''A Hash table field, the networked equivalent of a python dictionary. Keys are string while values are string/numeric. it returns an instance of :class:`stdnet.HashTable` structure. ''' type = 'hash' default_pickler = encoders.NoEncoder() default_value_pickler = encoders.Json() def get_pipeline(self): return 'hash' def _install_encoders(self): if self.relmodel and not self.value_pickler: self.value_pickler = related.ModelFieldPickler(relmodel) def structure_class(self): return HashTable
null
stdnet/orm/std.py
std.py
py
8,337
python
en
code
null
code-starcoder2
83
[ { "api_name": "fields.Field", "line_number": 69, "usage_type": "name" }, { "api_name": "stdnet.utils.encoders.Json", "line_number": 111, "usage_type": "call" }, { "api_name": "stdnet.utils.encoders", "line_number": 111, "usage_type": "name" }, { "api_name": "stdnet.utils.encoders.NoEncoder", "line_number": 236, "usage_type": "call" }, { "api_name": "stdnet.utils.encoders", "line_number": 236, "usage_type": "name" }, { "api_name": "stdnet.utils.encoders.Json", "line_number": 237, "usage_type": "call" }, { "api_name": "stdnet.utils.encoders", "line_number": 237, "usage_type": "name" } ]
397230784
from __future__ import print_function from PIL import Image from numpy import clip from math import pi,atan2,hypot,floor import os import shutil import time restriction=['Cancel', 'cancel', 'CANCEL', ' Cancel', ' cancel', ' CANCEL', 'Cancel ', 'cancel ', 'CANCEL '] print("Wirte a direction as the example or write a name..") path=input("Example.... C:\\name1\\name2\\....\n") saver=input("Where do you want to save?...\nWrite a second path...\nif you have done a mistake, write Cancel and try again\n") while saver in restriction: print("Please, try again") print("Wirte a direction as the example or write a name..") path=input("Example.... C:\\name1\\name2\\....\n") print("Write Cancel if you want to go back") saver=input("Where do you want to save?...\nWrite a second path...\n") imagesfiles = [] imagesDirection = os.walk(path) file_extension = ".png" os.mkdir('360transform') #-----------------------360 TO CUBE ----------------------------------- print("360 to Cube Image....") def outImgToXYZ(i,j,face,edge): a = 2.0*float(i)/edge b = 2.0*float(j)/edge if face==0: # back (x,y,z) = (-1.0, 1.0-a, 3.0 - b) elif face==1: # left (x,y,z) = (a-3.0, -1.0, 3.0 - b) elif face==2: # front (x,y,z) = (1.0, a - 5.0, 3.0 - b) elif face==3: # right (x,y,z) = (7.0-a, 1.0, 3.0 - b) elif face==4: # top (x,y,z) = (b-1.0, a -5.0, 1.0) elif face==5: # bottom (x,y,z) = (5.0-b, a-5.0, -1.0) return (x,y,z) def convertBack(imgIn,imgOut): inSize = imgIn.size outSize = imgOut.size inPix = imgIn.load() outPix = imgOut.load() edge = int(inSize[0]/4) # the length of each edge in pixels for i in range(outSize[0]): face = int(i/edge) # 0 - back, 1 - left 2 - front, 3 - right if face==2: rng = range(0,edge*3) else: rng = range(edge,edge*2) for j in rng: if j<edge: face2 = 4 # top elif j>=2*edge: face2 = 5 # bottom else: face2 = face (x,y,z) = outImgToXYZ(i,j,face2,edge) theta = atan2(y,x) # range -pi to pi r = hypot(x,y) phi = atan2(z,r) # range -pi/2 to pi/2 # source img coords uf = ( 2.0*edge*(theta + pi)/pi ) vf = ( 2.0*edge * (pi/2 - phi)/pi) # Use bilinear interpolation between the four surrounding pixels ui = floor(uf) # coord of pixel to bottom left vi = floor(vf) u2 = ui+1 # coords of pixel to top right v2 = vi+1 mu = uf-ui # fraction of way across pixel nu = vf-vi # Pixel values of four corners A = inPix[int(ui % inSize[0]),int(clip(vi,0,inSize[1]-1))] B = inPix[int(u2 % inSize[0]),int(clip(vi,0,inSize[1]-1))] C = inPix[int(ui % inSize[0]),int(clip(v2,0,inSize[1]-1))] D = inPix[int(u2 % inSize[0]),int(clip(v2,0,inSize[1]-1))] # interpolate (r,g,b) = ( A[0]*(1-mu)*(1-nu) + B[0]*(mu)*(1-nu) + C[0]*(1-mu)*nu+D[0]*mu*nu, A[1]*(1-mu)*(1-nu) + B[1]*(mu)*(1-nu) + C[1]*(1-mu)*nu+D[1]*mu*nu, A[2]*(1-mu)*(1-nu) + B[2]*(mu)*(1-nu) + C[2]*(1-mu)*nu+D[2]*mu*nu ) outPix[i,j] = (int(round(r)),int(round(g)),int(round(b))) #------------Lista De imagenes------------- for root, dirs,files in imagesDirection: print("root ", root) print("files ", files) for infiles in files: (nombreFichero, extension) = os.path.splitext(infiles) if(extension == ".jpg"): imagesfiles.append(infiles) elif(extension == ".jpeg"): imagesfiles.append(infiles) elif (extension == ".png"): imagesfiles.append(infiles) for infile in imagesfiles: print("------") print(infile) full_path = os.path.join(root, infile) os.mkdir('Carpet {}'.format(infile)) imgIn = Image.open(full_path) inSize = imgIn.size imgOut = Image.new("RGB",(inSize[0],int(inSize[0]*3/4)),"black") convertBack(imgIn,imgOut) #imgOut.save("filtre.png") print("Cube Image Finished...") imgOut.save("Cube.png") #--------------------Map cube sort------------------------------------ print("Cube Image Map...") name_map = [ \ ["", "", "posy", ""], ["negz", "negx", "posz", "posx"], ["","", "negy", "0"]] image=Image.open("Cube.png") #print(image, image.format, "%dx%d" % image.size, image.mode) imSize=image.size cube_size = imSize[0] / 4 for row in range(3): for col in range(4): if name_map[row][col] != "": sx = cube_size * col sy = cube_size * row fn = name_map[row][col] + file_extension images=image.crop((sx, sy, sx + cube_size, sy + cube_size)) if row==0 and col==2 : images.save("n1.jpg") elif row ==1 and col==0 : images.save("n2.jpg") elif row ==1 and col==1 : images.save("n3.jpg") elif row==1 and col==2 : images.save("n4.jpg") elif row==1 and col==3 : images.save("n5.jpg") elif row==2 and col==2 : images.save("n6.jpg") elif row==2 and col==3 : images.save("n7.jpg") print("Cube map Finished....") #-------Crop Large image--------- negative = Image.open("n7.jpg") neg = negative.resize((512, 3072), Image.ANTIALIAS) #------Image.paste------ line = [2, 6, 4, 3, 5, 1] jack = (0, 0) a = 512 for i in line: #print(i) img = Image.open("n{}.jpg".format(i)) piece=img.resize((512, 512), Image.ANTIALIAS) for j in range(0,i): jack = (0, a*j) #print(jack) neg.paste(piece,jack) neg.save("cube.jpg") shutil.move('cube.jpg'.format(infile),'Carpet {}'.format(infile)) #------------Image zooms binders --------- lectura=Image.open("n7.jpg") an=lectura.width al=lectura.height general=512 pha=an/general ta=al/general if pha>ta: nuom=int(pha) elif pha<ta: nuom=int(ta) elif pha==ta: nuom=int(pha) for i in range(1,nuom+2): os.mkdir('z{}'.format(i)) print("Zooms binder done") time.sleep(5) #---------------------Zooms Crop------------------------------------- for photo in range(1,7): imz=Image.open("n{}.jpg".format(photo)) ancho=imz.width alto=imz.height general=512 numero=0 alpha=ancho/general beta=alto/general area=(0,0,0,0) if alpha>beta: numero=int(alpha) elif alpha<beta: numero=int(beta) elif alpha==beta: numero=int(alpha) print("Total Zooms..{}".format(numero+1)) print("Zooms Process...") #shutil.move('{}'.format(jpgs),'Carpet {}'.format(jpgs)) #shutil.move('Carpet {}'.format(jpgs),'{}'.format(direcction)) for zooms in range(1,numero+2): if photo==1: os.makedirs('u') #1 elif photo==2: os.makedirs('b') #2 elif photo==3: os.makedirs('l') #3 elif photo==4: os.makedirs('f') #4 elif photo==5: os.makedirs('r') #5 elif photo==6: os.makedirs('d') #6 ex=2**zooms div=int(ex/2) y=0 yy=0 x=0 xx=0 for yi in range(1,div+1): ny=alto/div m=yi if yi==1: y=0 yy=alto/div else: y=((yi-1)*ny) yy=(m*(alto/div)) #----------Carpetas de X----------------- os.makedirs('{}'.format(yi-1)) for xi in range(1,div+1): nx=ancho/div mm=xi if xi ==1: x=0 xx=ancho/div else: x=((xi-1)*nx) xx=(mm*(ancho/div)) area=(x,y,xx,yy) copys=imz.crop(area) copyn=copys.resize((general,general),Image.ANTIALIAS) copyn.save('{}.jpg'.format(xi-1)) shutil.move('{}.jpg'.format(xi-1),'{}'.format(yi-1)) if photo==1: shutil.move('{}'.format(yi-1),'u') elif photo==2: shutil.move('{}'.format(yi-1),'b') elif photo==3: shutil.move('{}'.format(yi-1),'l') elif photo==4: shutil.move('{}'.format(yi-1),'f') elif photo==5: shutil.move('{}'.format(yi-1),'r') elif photo==6: shutil.move('{}'.format(yi-1),'d') if photo==1: shutil.move('u','z{}'.format(zooms)) elif photo==2: shutil.move('b','z{}'.format(zooms)) elif photo==3: shutil.move('l','z{}'.format(zooms)) elif photo==4: shutil.move('f','z{}'.format(zooms)) elif photo==5: shutil.move('r','z{}'.format(zooms)) elif photo==6: shutil.move('d','z{}'.format(zooms)) os.rename('z{}'.format(zooms),'{}'.format(zooms)) shutil.move('{}'.format(zooms),'Carpet {}'.format(infile)) shutil.move('Carpet {}'.format(infile),'360transform') print("delet process.... ") os.mkdir('delet') shutil.move('cube.png','delet') for delet in range(1,7): shutil.move('n{}.jpg'.format(delet),'delet') time.sleep(1) shutil.rmtree('delet') try: shutil.rmtree('n7.jpg') except: print("Fail") try: time.sleep(1) shutil.move('360transform',saver) except: print("Saver Doesn´t exist") shutil.move('360transform',path) # time.sleep(10) print("Zooms Finished...") break
null
Python Converter/360image.py
360image.py
py
11,487
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.walk", "line_number": 22, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 24, "usage_type": "call" }, { "api_name": "math.atan2", "line_number": 68, "usage_type": "call" }, { "api_name": "math.hypot", "line_number": 69, "usage_type": "call" }, { "api_name": "math.atan2", "line_number": 70, "usage_type": "call" }, { "api_name": "math.pi", "line_number": 72, "usage_type": "name" }, { "api_name": "math.pi", "line_number": 73, "usage_type": "name" }, { "api_name": "math.floor", "line_number": 75, "usage_type": "call" }, { "api_name": "math.floor", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.clip", "line_number": 82, "usage_type": "call" }, { "api_name": "numpy.clip", "line_number": 83, "usage_type": "call" }, { "api_name": "numpy.clip", "line_number": 84, "usage_type": "call" }, { "api_name": "numpy.clip", "line_number": 85, "usage_type": "call" }, { "api_name": "os.path.splitext", "line_number": 100, "usage_type": "call" }, { "api_name": "os.path", "line_number": 100, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 111, "usage_type": "call" }, { "api_name": "os.path", "line_number": 111, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 112, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 114, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 114, "usage_type": "name" }, { "api_name": "PIL.Image.new", "line_number": 116, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 116, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 128, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 128, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 159, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 159, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 160, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 160, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 170, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 170, "usage_type": "name" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 171, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 171, "usage_type": "name" }, { "api_name": "shutil.move", "line_number": 178, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 181, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 181, "usage_type": "name" }, { "api_name": "os.mkdir", "line_number": 197, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 199, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 204, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 204, "usage_type": "name" }, { "api_name": "os.makedirs", "line_number": 231, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 233, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 235, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 237, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 239, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 241, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 260, "usage_type": "call" }, { "api_name": "PIL.Image.ANTIALIAS", "line_number": 275, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 275, "usage_type": "name" }, { "api_name": "shutil.move", "line_number": 277, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 280, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 282, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 284, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 286, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 288, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 290, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 293, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 295, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 297, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 299, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 301, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 303, "usage_type": "call" }, { "api_name": "os.rename", "line_number": 304, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 305, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 306, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 309, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 310, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 312, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 313, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 314, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 317, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 322, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 323, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 326, "usage_type": "call" } ]
575439170
#-*- coding:utf-8 -*- ''' Normal Distribution, also called Gaussian Distribution ''' import numpy as np import matplotlib.pyplot as plt def simple_plot(): x = np.linspace(0, 10, 10000) y = np.random.normal(0, x) z = np.cos(x**2) plt.figure(figsize = (8, 4)) plt.plot(x, y, label = "sin(x)", color = "red", linewidth = 2) plt.plot(x, z, "b--", label = "cos(x^2)") plt.xlabel("Time(s)") plt.ylabel("Volt") plt.title("PyPlot First Example") plt.ylim(-1.2, 1.2) plt.legend() plt.show() def normal_plot(mu = 0, sigma = 1, num = 1000): y = np.random.normal(mu, sigma, num) plt.figure(figsize = (8, 4)) plt.plot(y, label = "norm", color = "red", linewidth = 2) plt.xlabel("X") plt.ylabel("Distribution") plt.title("Normal-Distribution") plt.legend() plt.show() def normal_distribution(mu = 0, sigma = 1, start = None, end = None, num = 1000): if start and end: x = np.linspace(start, end, num) else: x = np.linspace(mu - 5 * sigma, mu + 5 * sigma, num) # gaussian density function y = np.e ** ((x - mu)**2 / (-2 * sigma ** 2)) / np.sqrt(2 * np.pi * sigma) plt.figure(figsize = (8, 4)) plt.plot(x, y, color = "red", linewidth = 2) plt.xlabel("X") plt.ylabel("density") plt.title("Normal-Distribution") plt.show() #simple_plot() #normal_plot() normal_distribution()
null
python/distribution/Gaussian.py
Gaussian.py
py
1,404
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.linspace", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.random.normal", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 11, "usage_type": "attribute" }, { "api_name": "numpy.cos", "line_number": 12, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 15, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 15, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 16, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 18, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 18, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 22, "usage_type": "name" }, { "api_name": "numpy.random.normal", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 25, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.legend", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 33, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 33, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.e", "line_number": 41, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 41, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 46, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 46, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 47, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 48, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 48, "usage_type": "name" } ]
512803119
from django.contrib.auth import authenticate, login from django.shortcuts import redirect from django.views.decorators.csrf import csrf_exempt from .models import * from django.http import HttpResponse from django.core import serializers from app.settings import PROJECT_ROOT import json import os @csrf_exempt def loginFacebook(request): infoArray = request.body.decode('UTF-8') # request becomes string infoArray = infoArray.split("&") if "%C3%85" in infoArray[2]: infoArray[2] = infoArray[2].replace("%C3%85", "Å") if "%C3%86" in infoArray[2]: infoArray[2] = infoArray[2].replace("%C3%86", "Æ") if "%C3%98" in infoArray[2]: infoArray[2] = infoArray[2].replace("%C3%98", "Ø") if "%C3%A5" in infoArray[2]: infoArray[2] = infoArray[2].replace("%C3%A5", "å") if "%C3%A6" in infoArray[2]: infoArray[2] = infoArray[2].replace("%C3%A6", "æ") if "%C3%B8" in infoArray[2]: infoArray[2] = infoArray[2].replace("%C3%B8", "ø") if "%C3%85" in infoArray[3]: infoArray[3] = infoArray[3].replace("%C3%85", "Å") if "%C3%86" in infoArray[3]: infoArray[3] = infoArray[3].replace("%C3%86", "Æ") if "%C3%98" in infoArray[3]: infoArray[3] = infoArray[3].replace("%C3%98", "Ø") if "%C3%A5" in infoArray[3]: infoArray[3] = infoArray[3].replace("%C3%A5", "å") if "%C3%A6" in infoArray[3]: infoArray[3] = infoArray[3].replace("%C3%A6", "æ") if "%C3%B8" in infoArray[3]: infoArray[3] = infoArray[3].replace("%C3%B8", "ø") if "+" in infoArray[2]: infoArray[2] = infoArray[2].replace("+", " ") if "+" in infoArray[3]: infoArray[3] = infoArray[3].replace("+", " ") if len(infoArray) > 4: email = infoArray[4].split("=")[1] email = email.replace("%40", "@") else: email = "" facebookId = infoArray[0].split("=")[1] age = infoArray[1].split("=")[1] first_name = infoArray[2].split("=")[1] last_name = infoArray[3].split("=")[1] password = facebookId[:5] + first_name user = authenticate(username=facebookId, password=password) if user is None: user = User(username=facebookId, email=email, first_name=first_name, last_name=last_name, is_staff=False) user.set_password(facebookId[:5] + first_name) user.save() if int(age) >= 21: type = "P" else: type = "C" userProfile = UserProfile(user=user, type=type, phone=None, profile_name=first_name, last_name=last_name, email=email, provider={}, is_active=True) userProfile.save() login(request, user) request.session['username'] = user.username request.session['profile_name'] = userProfile.profile_name request.session['profile_pk'] = userProfile.pk return redirect("skalvi:index") elif user is not None: profiles = UserProfile.objects.filter(user=user) login(request,user) if user.is_staff: for profile in profiles: profile.is_active = True profile.save() request.session['username'] = user.username request.session['profile_name'] = profile.profile_name request.session['profile_pk'] = profile.pk break return redirect("/admin") elif len(profiles) > 1: return redirect("skalvi:choose") else: # if only one profile for profile in profiles: profile.is_active = True profile.save() request.session['username'] = user.username request.session['profile_name'] = profile.profile_name request.session['profile_pk'] = profile.pk return redirect("/") # Admin function to populate the SQLdatabase with all providers from Aktørdatabasen. def populate(request): with open(os.path.join(PROJECT_ROOT, '../app/aktordatabasen.json')) as json_file: json_data = json.load(json_file) # run through each object that is saved for i in json_data: try: i['Navn'] # throws exception if there is no attribute 'Navn' try: entry = UserProfile.objects.filter(profile_name=i['Navn']) except Exception as e: entry = False if entry: org = Organisation(user=entry.user, userprofile=entry, aktordatabase=i) else: org = Organisation(aktordatabase=i) except: org = Organisation(aktordatabase=i) org.save() return HttpResponse('Done! not sure if faulty tho, please check.') def getProviders(request): json_serializer = serializers.get_serializer("json")() providers = Organisation.objects.all() providers = json_serializer.serialize(providers, ensure_ascii=False) return HttpResponse(providers, content_type='application/json') def getUserProviders(request): profile = UserProfile.objects.get(user=request.user, profile_name=request.session["profile_name"]) providers = profile.provider.split(",") profileProviders = Organisation.objects.filter(pk__in=providers) json_serializer = serializers.get_serializer("json")() json = json_serializer.serialize(profileProviders, ensure_ascii=False) return HttpResponse(json, content_type='application/json') def getUser(request): profile = UserProfile.objects.get(user=request.user, profile_name=request.session["profile_name"]) providers = profile.provider.split(",") username = profile.profile_name data = {'name': username, 'providers': providers} return HttpResponse(json.dumps(data), content_type='application/json') def getProvider(request, pk): provider = Organisation.objects.get(pk=pk) data = { 'aktordatabase': provider.aktordatabase } return HttpResponse(json.dumps(data), content_type='application/json')
null
skalvi/ApiFunctions.py
ApiFunctions.py
py
6,023
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.contrib.auth.authenticate", "line_number": 61, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 76, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 81, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 85, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 95, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 97, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 106, "usage_type": "call" }, { "api_name": "django.views.decorators.csrf.csrf_exempt", "line_number": 11, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 110, "usage_type": "call" }, { "api_name": "app.settings.PROJECT_ROOT", "line_number": 110, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 110, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 111, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 129, "usage_type": "call" }, { "api_name": "django.core.serializers.get_serializer", "line_number": 132, "usage_type": "call" }, { "api_name": "django.core.serializers", "line_number": 132, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 135, "usage_type": "call" }, { "api_name": "django.core.serializers.get_serializer", "line_number": 141, "usage_type": "call" }, { "api_name": "django.core.serializers", "line_number": 141, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 143, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 150, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 150, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 157, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 157, "usage_type": "call" } ]
295428308
import os import yaml import torch import nibabel as nib import numpy as np import pandas as pd import torch.nn as nn import torch.nn.functional as F from torch import optim import time import pickle from torch.utils.data import Dataset, DataLoader from torch.optim.lr_scheduler import LambdaLR,MultiStepLR import matplotlib.pyplot as plt import sys # build model from Liu et al.'s github code sys.path.insert(1, "./CNN_design_for_AD-master/models/") import build_model_extrablock # for untrained use: #config_name = './CNN_design_for_AD-master/config.yaml' # pretrained model config_name = './CNN_design_for_AD-master/config2.yaml' with open(os.path.join('./'+config_name), 'r') as f: cfg = yaml.load(f) device = torch.device('cuda') model = build_model_extrablock.build_model(cfg).to(device) class hcp_dataset(Dataset): def __init__(self, df_path, train = False): self.df = pd.read_csv(df_path) self.train = train def __len__(self): return len(self.df) def __getitem__(self,idx): subject_name = self.df.iloc[idx]['Subject'] image_path ='./data/hcp2/'+str(subject_name)+'/T1w/T1w_acpc_dc_restore_brain.nii.gz' image = nib.load(image_path) image_array = image.get_fdata() #Normalization image_array = (image_array - image_array.mean()) / image_array.std() #label = self.df.loc[idx][['N','E','O','A','C']].values.astype(int) label = self.df.loc[idx][['N']].values[0].astype(int) # predict C sample = {'x': image_array[None,:], 'y': label} return sample bs = 1 # full dataset train_df_path = './train.csv' val_df_path = './test.csv' test_df_path = './val.csv' transformed_dataset = {'train': hcp_dataset(train_df_path, train = True), 'validate':hcp_dataset(val_df_path), 'test':hcp_dataset(test_df_path),} # for debugging and to see if model can learn training set on tiny sample #sample_df_path = './sample.csv' #sample_transformed_dataset = {'train': hcp_dataset(sample_df_path, train = True), # 'validate':hcp_dataset(sample_df_path), # 'test':hcp_dataset(sample_df_path),} # #dataloader_sample = {x: DataLoader(sample_transformed_dataset[x], batch_size=bs, # shuffle=True, num_workers=0) for x in ['train', 'validate','test']} # get data_loader dataloader = {x: DataLoader(transformed_dataset[x], batch_size=bs, shuffle=True, num_workers=0) for x in ['train', 'validate','test']} data_sizes ={x: len(transformed_dataset[x]) for x in ['train', 'validate','test']} def train_model(model, dataloader, optimizer, loss_fn, interpolation_scale, num_epochs = 10, verbose = True, scheduler=None, output_name="test.txt"): acc_dict = {'train':[],'validate':[]} loss_dict = {'train':[],'validate':[]} best_acc = 0 phases = ['train','validate'] since = time.time() number = 0 for i in range(num_epochs): print('Epoch: {}/{}'.format(i, num_epochs-1)) print('-'*10) for p in phases: running_correct = 0 running_loss = 0 running_total = 0 if p == 'train': model.train() else: model.eval() for data in dataloader[p]: optimizer.zero_grad() image = F.interpolate(data['x'], mode="trilinear", scale_factor=interpolation_scale) image = image.to(device,dtype=torch.float) label = data['y'].to(device,dtype=torch.long) output = model(image) loss = loss_fn(output, label) print(number) number += 1 _, preds = torch.max(output, dim = 1) num_imgs = image.size()[0] running_correct += torch.sum(preds ==label).item() running_loss += loss.item()*num_imgs running_total += num_imgs if p== 'train': loss.backward() optimizer.step() epoch_acc = float(running_correct/running_total) epoch_loss = float(running_loss/running_total) if verbose or (i%10 == 0): print('Phase:{}, epoch loss: {:.4f} Acc: {:.4f}'.format(p, epoch_loss, epoch_acc)) acc_dict[p].append(epoch_acc) loss_dict[p].append(epoch_loss) if p == 'validate': if epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = model.state_dict() save_model(best_model_wts, model, acc_dict, loss_dict) else: if scheduler: scheduler.step() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val acc: {:4f}'.format(best_acc)) model.load_state_dict(best_model_wts) return model, acc_dict, loss_dict def save_model(best_model_wts, model, acc_dict, loss_dict): model_saved = {'best_model_wts':best_model_wts, 'model':model, 'acc_dict':acc_dict, 'loss_dict':loss_dict} f=open(output_name,'wb') pickle.dump(model_saved,f) f.close() return None # from Liu et al. lr_rate = 0.001 loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=lr_rate) interpolation_scale = 0.6 output_name = "pretrained_point001_point6.txt" model, acc_dict, loss_dict = train_model(model, dataloader, optimizer, loss_fn, interpolation_scale, num_epochs = 50, verbose = True, scheduler= MultiStepLR(optimizer, milestones=[20,40], gamma=0.1), output_name = "")
null
Models/Model 1/Additional Hyperparameter Tuning Scripts/pretrained_point001_point6.py
pretrained_point001_point6.py
py
5,721
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path.insert", "line_number": 19, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path", "line_number": 28, "usage_type": "attribute" }, { "api_name": "yaml.load", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.device", "line_number": 31, "usage_type": "call" }, { "api_name": "build_model_extrablock.build_model", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.utils.data.Dataset", "line_number": 35, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 37, "usage_type": "call" }, { "api_name": "nibabel.load", "line_number": 46, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 83, "usage_type": "call" }, { "api_name": "time.time", "line_number": 93, "usage_type": "call" }, { "api_name": "torch.nn.functional.interpolate", "line_number": 109, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 109, "usage_type": "name" }, { "api_name": "torch.float", "line_number": 110, "usage_type": "attribute" }, { "api_name": "torch.long", "line_number": 111, "usage_type": "attribute" }, { "api_name": "torch.max", "line_number": 116, "usage_type": "call" }, { "api_name": "torch.sum", "line_number": 118, "usage_type": "call" }, { "api_name": "time.time", "line_number": 140, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 151, "usage_type": "call" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 157, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 157, "usage_type": "name" }, { "api_name": "torch.optim.SGD", "line_number": 158, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 158, "usage_type": "name" }, { "api_name": "torch.optim.lr_scheduler.MultiStepLR", "line_number": 162, "usage_type": "call" } ]
624394066
# uncompyle6 version 3.7.4 # Python bytecode 3.6 (3379) # Decompiled from: Python 3.6.9 (default, Apr 18 2020, 01:56:04) # [GCC 8.4.0] # Embedded file name: build/bdist.macosx-10.7-x86_64/egg/airflow/contrib/sensors/aws_sqs_sensor.py # Compiled at: 2019-09-11 03:47:34 # Size of source mod 2**32: 3692 bytes from airflow.sensors.base_sensor_operator import BaseSensorOperator from airflow.utils.decorators import apply_defaults from airflow.contrib.hooks.aws_sqs_hook import SQSHook from airflow.exceptions import AirflowException class SQSSensor(BaseSensorOperator): __doc__ = '\n Get messages from an SQS queue and then deletes the message from the SQS queue.\n If deletion of messages fails an AirflowException is thrown otherwise, the message\n is pushed through XCom with the key ``message``.\n\n :param aws_conn_id: AWS connection id\n :type aws_conn_id: str\n :param sqs_queue: The SQS queue url (templated)\n :type sqs_queue: str\n :param max_messages: The maximum number of messages to retrieve for each poke (templated)\n :type max_messages: int\n :param wait_time_seconds: The time in seconds to wait for receiving messages (default: 1 second)\n :type wait_time_seconds: int\n ' template_fields = ('sqs_queue', 'max_messages') @apply_defaults def __init__(self, sqs_queue, aws_conn_id='aws_default', max_messages=5, wait_time_seconds=1, *args, **kwargs): (super(SQSSensor, self).__init__)(*args, **kwargs) self.sqs_queue = sqs_queue self.aws_conn_id = aws_conn_id self.max_messages = max_messages self.wait_time_seconds = wait_time_seconds def poke(self, context): """ Check for message on subscribed queue and write to xcom the message with key ``messages`` :param context: the context object :type context: dict :return: ``True`` if message is available or ``False`` """ sqs_hook = SQSHook(aws_conn_id=(self.aws_conn_id)) sqs_conn = sqs_hook.get_conn() self.log.info('SQSSensor checking for message on queue: %s', self.sqs_queue) messages = sqs_conn.receive_message(QueueUrl=(self.sqs_queue), MaxNumberOfMessages=(self.max_messages), WaitTimeSeconds=(self.wait_time_seconds)) self.log.info('reveived message %s', str(messages)) if 'Messages' in messages: if len(messages['Messages']) > 0: entries = [{'Id':message['MessageId'], 'ReceiptHandle':message['ReceiptHandle']} for message in messages['Messages']] result = sqs_conn.delete_message_batch(QueueUrl=(self.sqs_queue), Entries=entries) if 'Successful' in result: context['ti'].xcom_push(key='messages', value=messages) return True raise AirflowException('Delete SQS Messages failed ' + str(result) + ' for messages ' + str(messages)) return False
null
pycfiles/apache_airflow_arup-1.10.5-py3.6/aws_sqs_sensor.cpython-36.py
aws_sqs_sensor.cpython-36.py
py
2,946
python
en
code
null
code-starcoder2
83
[ { "api_name": "airflow.sensors.base_sensor_operator.BaseSensorOperator", "line_number": 13, "usage_type": "name" }, { "api_name": "airflow.utils.decorators.apply_defaults", "line_number": 17, "usage_type": "name" }, { "api_name": "airflow.contrib.hooks.aws_sqs_hook.SQSHook", "line_number": 33, "usage_type": "call" }, { "api_name": "airflow.exceptions.AirflowException", "line_number": 46, "usage_type": "call" } ]
521203540
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import parler.models import aldryn_translation_tools.models import django.contrib.postgres.fields import djangocms_text_ckeditor.fields class Migration(migrations.Migration): dependencies = [ ('aldryn_people', '0019_auto_20170225_2314'), ] operations = [ migrations.CreateModel( name='RegionalGroup', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('latitudes', django.contrib.postgres.fields.ArrayField(default=[], size=None, base_field=models.FloatField(), blank=True)), ('longitudes', django.contrib.postgres.fields.ArrayField(default=[], size=None, base_field=models.FloatField(), blank=True)), ('number_of_sections', models.IntegerField(default=1, verbose_name='number of sections', blank=True)), ], options={ 'verbose_name': 'Regional Group', 'verbose_name_plural': 'Regional Groups', }, bases=(aldryn_translation_tools.models.TranslationHelperMixin, aldryn_translation_tools.models.TranslatedAutoSlugifyMixin, parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='RegionalGroupTranslation', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('language_code', models.CharField(max_length=15, verbose_name='Language', db_index=True)), ('name', models.CharField(help_text="Provide this regional group's name.", max_length=255, verbose_name='name')), ('description', djangocms_text_ckeditor.fields.HTMLField(verbose_name='description', blank=True)), ('slug', models.SlugField(default='', max_length=255, blank=True, help_text='Leave blank to auto-generate a unique slug.', verbose_name='slug')), ('master', models.ForeignKey(related_name='translations', editable=False, to='aldryn_people.RegionalGroup', null=True)), ], options={ 'managed': True, 'db_table': 'aldryn_people_regionalgroup_translation', 'db_tablespace': '', 'default_permissions': (), 'verbose_name': 'Regional Group Translation', }, ), migrations.AddField( model_name='person', name='regional_section_number', field=models.IntegerField(default=None, null=True, verbose_name='Regional section number', blank=True), ), migrations.AddField( model_name='person', name='regional_group', field=models.ForeignKey(related_name='people', default=None, blank=True, to='aldryn_people.RegionalGroup', help_text='Choose the regional groups for this person.', null=True), ), migrations.AlterUniqueTogether( name='regionalgrouptranslation', unique_together=set([('language_code', 'master')]), ), ]
null
aldryn_people/migrations/0020_auto_20170228_1549.py
0020_auto_20170228_1549.py
py
3,217
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.db.migrations.Migration", "line_number": 11, "usage_type": "attribute" }, { "api_name": "django.db.migrations", "line_number": 11, "usage_type": "name" }, { "api_name": "django.db.migrations.CreateModel", "line_number": 18, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 18, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 21, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 21, "usage_type": "name" }, { "api_name": "django.db.contrib.postgres.fields.ArrayField", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.contrib", "line_number": 22, "usage_type": "attribute" }, { "api_name": "django.db", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 22, "usage_type": "name" }, { "api_name": "django.db.contrib.postgres.fields.ArrayField", "line_number": 23, "usage_type": "call" }, { "api_name": "django.db.contrib", "line_number": 23, "usage_type": "attribute" }, { "api_name": "django.db", "line_number": 23, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 23, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 23, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 24, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 24, "usage_type": "name" }, { "api_name": "aldryn_translation_tools.models.models", "line_number": 30, "usage_type": "attribute" }, { "api_name": "aldryn_translation_tools.models", "line_number": 30, "usage_type": "name" }, { "api_name": "parler.models.models", "line_number": 30, "usage_type": "attribute" }, { "api_name": "parler.models", "line_number": 30, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 30, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 30, "usage_type": "name" }, { "api_name": "django.db.migrations.CreateModel", "line_number": 32, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 32, "usage_type": "name" }, { "api_name": "django.db.models.AutoField", "line_number": 35, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 35, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 36, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 36, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 37, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 37, "usage_type": "name" }, { "api_name": "djangocms_text_ckeditor.fields.fields.HTMLField", "line_number": 38, "usage_type": "call" }, { "api_name": "djangocms_text_ckeditor.fields.fields", "line_number": 38, "usage_type": "attribute" }, { "api_name": "djangocms_text_ckeditor.fields", "line_number": 38, "usage_type": "name" }, { "api_name": "django.db.models.SlugField", "line_number": 39, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 39, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 40, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 40, "usage_type": "name" }, { "api_name": "django.db.migrations.AddField", "line_number": 50, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 50, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 53, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 53, "usage_type": "name" }, { "api_name": "django.db.migrations.AddField", "line_number": 55, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 55, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 58, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 58, "usage_type": "name" }, { "api_name": "django.db.migrations.AlterUniqueTogether", "line_number": 60, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 60, "usage_type": "name" } ]
395763368
import cv2 import numpy as np from keras.models import model_from_json import base64 import face.CNN_MODEL as cnn def predict_emotion(face_image_gray,sess): resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA) pixel = np.zeros((48,48)) for i in range(48): for j in range(48): pixel[i][j] = resized_img[i][j] list = cnn.Predict(pixel,sess) return list[0] def get_emotion(str,faceCascade,sess): data =base64.b64decode(str) dataStr = np.fromstring(data, np.uint8) frame = cv2.imdecode(dataStr,cv2.IMREAD_COLOR) img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale( img_gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags= cv2.CASCADE_SCALE_IMAGE ) ret = [] for (x, y, w, h) in faces: face_image_gray = img_gray[y:y+h, x:x+w] cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) list= predict_emotion(face_image_gray,sess) # list = ["angry","disgust","fear","happy","sad","surprise","neutral"] ret += [(int)(list[3]+list[5]-list[0]-list[1]-list[2]-list[4])] return ret
null
face/FACE.py
FACE.py
py
1,127
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.resize", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.INTER_AREA", "line_number": 10, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 11, "usage_type": "call" }, { "api_name": "face.CNN_MODEL.Predict", "line_number": 15, "usage_type": "call" }, { "api_name": "face.CNN_MODEL", "line_number": 15, "usage_type": "name" }, { "api_name": "base64.b64decode", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.fromstring", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 21, "usage_type": "attribute" }, { "api_name": "cv2.imdecode", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.IMREAD_COLOR", "line_number": 22, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 23, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 23, "usage_type": "attribute" }, { "api_name": "cv2.CASCADE_SCALE_IMAGE", "line_number": 29, "usage_type": "attribute" }, { "api_name": "cv2.rectangle", "line_number": 34, "usage_type": "call" } ]
265298716
import sys import constants as c from config import Config from irc.session import Session from lunatic import Lunatic def main(): c.write("Lunatic started") if c.DEBUG: config = Config("lunatic.yaml.debug") else: config = Config("lunatic.yaml") config.load() irc_session = Session(config) irc_session.connect() lunatic = Lunatic(irc_session, config) lunatic.loop() if __name__ == "__main__": main() sys.exit(0)
null
lunatic/__main__.py
__main__.py
py
478
python
en
code
null
code-starcoder2
83
[ { "api_name": "constants.write", "line_number": 11, "usage_type": "call" }, { "api_name": "constants.DEBUG", "line_number": 13, "usage_type": "attribute" }, { "api_name": "config.Config", "line_number": 14, "usage_type": "call" }, { "api_name": "config.Config", "line_number": 16, "usage_type": "call" }, { "api_name": "config.load", "line_number": 17, "usage_type": "call" }, { "api_name": "irc.session.Session", "line_number": 19, "usage_type": "call" }, { "api_name": "lunatic.Lunatic", "line_number": 22, "usage_type": "call" }, { "api_name": "lunatic.loop", "line_number": 24, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 29, "usage_type": "call" } ]
114608526
#!/bin/env python # -*- coding:UTF8 -*- #菜鸟教程: http://www.runoob.com/python3/python-mongodb.html import time import pymongo from datetime import datetime from datetime import timedelta from pymongo import MongoClient from pymongo.collation import Collation import re import os import sys path='./include' sys.path.insert(0,path) import functions as func HOST=func.get_config('mongo','host') PORT=int(func.get_config('mongo','port')) """ dbname: 数据库命令, RequestResponse collection_pattern: 集合模式字符串,api_requestresponse column_name: 索引列名,requesttime order_type: 排序方式,asc 升序、desc降序 """ def create_index(db,collection_pattern,column_name,order_type): conn = pymongo.MongoClient(host=HOST, port=PORT) admin = conn.admin #获取数据库 v_db = conn[db] #获取集合列表 v_cols = v_db.list_collection_names() print(v_cols) v_pattern1 = collection_pattern for v_col in v_cols: if re.match(v_pattern1,v_col): print("create index for %r" % v_col) if order_type == "asc" or order_type == "ASC": v_db[v_col].create_index([(column_name,pymongo.ASCENDING)],background=True) else: v_db[v_col].create_index([(column_name,pymongo.DESCENDING)],background=True) conn.close() def drop_index(db,collection_pattern,column_name,order_type): conn = pymongo.MongoClient(host=HOST, port=PORT) admin = conn.admin #获取数据库 v_db = conn[db] #获取集合列表 v_cols = v_db.list_collection_names() print(v_cols) v_pattern1 = collection_pattern for v_col in v_cols: if re.match(v_pattern1,v_col): print("drop index for %r" % v_col) if order_type == "asc" or order_type == "ASC": try: v_db[v_col].drop_index([(column_name,pymongo.ASCENDING)]) except pymongo.errors.OperationFailure as e: print (e) pass else: try: v_db[v_col].drop_index([(column_name,pymongo.DESCENDING)]) except pymongo.errors.OperationFailure as e: print (e) pass conn.close() if __name__ == '__main__': #v_pattern = "ShipOrder_6|ShipOrder_7|ShipOrder_8|ShipOrder_9" #create_index('AutoSendMessage2',v_pattern,'OrderId','asc') #create_index('EbayMessage','ebaymailmessagechat','MessageId','asc') create_index('RequestResponse','api_requestresponse','requesttime','desc') #drop_index('RequestResponse','api_requestresponse','requesttime','as
null
tools/mongo_index.py
mongo_index.py
py
2,391
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path.insert", "line_number": 16, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "functions.get_config", "line_number": 19, "usage_type": "call" }, { "api_name": "functions.get_config", "line_number": 20, "usage_type": "call" }, { "api_name": "pymongo.MongoClient", "line_number": 34, "usage_type": "call" }, { "api_name": "re.match", "line_number": 43, "usage_type": "call" }, { "api_name": "pymongo.ASCENDING", "line_number": 46, "usage_type": "attribute" }, { "api_name": "pymongo.DESCENDING", "line_number": 48, "usage_type": "attribute" }, { "api_name": "pymongo.MongoClient", "line_number": 52, "usage_type": "call" }, { "api_name": "re.match", "line_number": 61, "usage_type": "call" }, { "api_name": "pymongo.ASCENDING", "line_number": 65, "usage_type": "attribute" }, { "api_name": "pymongo.errors", "line_number": 66, "usage_type": "attribute" }, { "api_name": "pymongo.DESCENDING", "line_number": 71, "usage_type": "attribute" }, { "api_name": "pymongo.errors", "line_number": 72, "usage_type": "attribute" } ]
107261190
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler def normalizer(x): m = x.shape[0] x = x - np.mean(x) x = (x * m) / (np.sum(x ** 2)) # x = x - np.mean(x) # x = x / np.sqrt(np.sum(x**2) / len(x) - 1) return x train = pd.read_csv("./datasets/train.csv") ########### Pclass ################ # sns.countplot(x='Survived',hue='Pclass',data=train) # plt.show() # Pclass 2 is obviously insignificant # Pclass 1 should be tested ######### Embarked ############# # sns.countplot(x='Survived',hue='Embarked',data=train) # plt.show() # print(train[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().sort_values(by='Survived', ascending=False)) # should be tested ######### SEX ############# # sns.countplot(x='Survived',hue='Sex',data=train) # plt.show() # print(train[['Sex', 'Survived']].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False)) # obviously important ######### Name ############# # name = train.Name # name = name.map( lambda name: name.split( ',' )[1].split( '.' )[0].strip() ) # name = name.replace(['Lady', 'the Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') # # name = name.replace(['Mlle', 'Ms'], 'Miss') # # name = name.replace('Mme', 'Mrs') # name = name.replace(['Mme', 'Mrs', 'Mlle', 'Ms', 'Miss'], 'Female') # name = pd.get_dummies(name, drop_first=False) # print(name.head) # name.drop('Miss', axis=1, inplace=True) # tmp = pd.concat([train['Survived'],name], axis=1) # sns.countplot(x='Survived',hue='Name',data=tmp) # plt.show() # print(tmp[['Name', 'Survived']].groupby(['Name'], as_index=False).mean().sort_values(by='Survived', ascending=False)) # Master is not important ########## Ticket ############ # ticket = train.Ticket def ticket_handler(ticket): ticket = ticket.replace( '.' , '' ) ticket = ticket.replace( '/' , '' ) ticket = ticket.split() ticket = map( lambda t : t.strip() , ticket ) ticket = list(filter( lambda t : not t.isdigit() , ticket )) if len( ticket ) > 0: return (ticket[0]) else: return 'X' # ticket = ticket.map( ticket_handler ) # ticket = pd.get_dummies(ticket, drop_first=False) # print(ticket.head(5)) # tmp = pd.concat([train['Survived'],ticket], axis=1) # print(tmp.head(3)) # sns.countplot(x='Survived',hue='Ticket',data=tmp) # plt.show() # print(tmp[['Ticket', 'Survived']].groupby(['Ticket'], as_index=False).mean().sort_values(by='Survived', ascending=False)) # print(tmp.head(10)) ############# Cabin ####################### # cabin = train.Cabin # cabin = cabin.fillna( 'Without Cabin' ) # cabin = cabin.map( lambda c : c[0] ) # tmp = pd.concat([train['Survived'],cabin], axis=1) # sns.countplot(x='Survived',hue='Cabin',data=tmp) # plt.show() # print(tmp[['Cabin', 'Survived']].groupby(['Cabin'], as_index=False).mean().sort_values(by='Survived', ascending=False)) # use only E,B,D,W if they have significant impact ############# Family #################### # siblings = train.SibSp # parents = train.Parch # size = siblings + parents # train['isAlone'] = size.map( lambda s : 1 if s == 1 else 0 ) # tmp = pd.concat([train['Survived'],siblings], axis=1) # sns.countplot(x='Survived',hue='SibSp',data=tmp) # plt.show() # print(tmp[['SibSp', 'Survived']].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False)) # tmp = pd.concat([train['Survived'],train['isAlone']], axis=1) # print(tmp.head()) # sns.countplot(x='Survived',hue='isAlone',data=tmp) # plt.show() # print(tmp[['isAlone', 'Survived']].groupby(['isAlone'], as_index=False).mean().sort_values(by='Survived', ascending=False)) z = pd.DataFrame() z['E'] = train['Embarked'] z['S'] = train['Sex'] z = pd.get_dummies(z, drop_first=False) # print(z.head()) z['new'] = z['E_C']*z['S_male'] + z['E_S']*z['S_female'] + z['E_Q']*z['S_female'] z['Survived'] = train['Survived'] # sns.countplot(x='Survived',hue='new',data=z) # plt.show() # print(z[['new', 'Survived']].groupby(['new'], as_index=False).mean().sort_values(by='Survived', ascending=False)) z = pd.DataFrame() z['A'] = train['Age'] z['S'] = train['Sex'] z['S'] = z['S'].replace('male', 1) z['S'] = z['S'].replace('female', -1) z['N'] = z['S'] * z['A'] z['N'] = z['N'].mask(z['N'].between(0,11.2), 0) z['N'] = z['N'].mask(z['N'].between(-38,-30), 0) z['N'] = z['N'].mask(z['N']!=0, 1) z['Survived'] = train['Survived'] # print(z.head()) # sns.countplot(x='Survived',hue='N',data=z) # plt.show() # print(z[['N', 'Survived']].groupby(['N'], as_index=False).mean().sort_values(by='Survived', ascending=False)) ### Numercial features ### def correlating_numerical_features(data, feature): g = sns.FacetGrid(data, col='Survived') g.map(plt.hist, feature, bins=20) plt.show() # correlating_numerical_features(train, 'Age') def correlating_numerical_and_ordinal_features(data, feature_A, feature_B): grid = sns.FacetGrid(data, col='Survived', row=feature_A, height=2.2, aspect=1.6) grid.map(plt.hist, feature_B, alpha=.5, bins=20) grid.add_legend() plt.show() # correlating_numerical_and_ordinal_features(train, 'Sex', 'Embarked') def correlating_categorical_features(data, feature_A, feature_B, feature_C): grid = sns.FacetGrid(data, row=feature_A, height=2.2, aspect=1.6) grid.map(sns.pointplot, feature_B, 'Survived', feature_C, palette='deep') grid.add_legend() plt.show() # correlating_categorical_features(train, 'Embarked', 'Pclass', 'Sex') # correlating_categorical_features(train, 'Embarked', 'Pclass', 'Sex') def correlating_categorical_and_numerical_features(data, feature_A, feature_B, feature_C): grid = sns.FacetGrid(data, row=feature_A, col='Survived', height=2.2, aspect=1.6) grid.map(sns.barplot, feature_B, feature_C, alpha=.5, ci=None) grid.add_legend() plt.show() # correlating_categorical_and_numerical_features(train, 'Embarked', 'Sex', 'Fare') # correlating_categorical_and_numerical_features(train, 'Embarked', 'Sex', 'Age') def plot_distribution( df , var , target , **kwargs ): row = kwargs.get( 'row' , None ) col = kwargs.get( 'col' , None ) facet = sns.FacetGrid( df , hue=target , aspect=4 , row = row , col = col ) facet.map( sns.kdeplot , var , shade= True ) facet.set( xlim=( 0 , df[ var ].max() ) ) facet.add_legend() plt.show() # plot_distribution( train , var = 'Age' , target = 'Survived' , row = 'Sex' ) ########### Age ############# # train['AgeBand'] = pd.qcut(train['Age'], 20) # print(train[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True)) ############ Fare ############## # train['FareBand'] = pd.qcut(train['Fare'], 4) # print(train[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True)) survived = train['Survived'] train.drop('Survived', axis=1, inplace=True) test = pd.read_csv("./datasets/test.csv") data = train.append(test , ignore_index = True) data = data.sort_values('Name') # data.drop('PassengerId', axis=1, inplace=True) # sns.heatmap(data.isnull(), yticklabels=False, cbar=False, cmap='YlGnBu') # plt.show() # print(data.describe()) # print(data.describe(include=['O'])) # print(data.info()) """ 1 nan in Fare Embarked has two nans Cabin and Age have many nans """ passenger_id = data['PassengerId'] sex = pd.get_dummies(data['Sex'], drop_first=True) embarked = pd.get_dummies(data['Embarked'], drop_first=False, prefix='Embark') #fills nan with 0 0 0 embarked.drop('Embark_C', axis=1, inplace=True) # embarked.drop('Embark_Q', axis=1, inplace=True) # pclass = data['Pclass'] pclass = pd.get_dummies(data['Pclass'], drop_first=False, prefix='class') pclass.drop('class_2', axis=1, inplace=True) pclass.drop('class_1', axis=1, inplace=True) # sns.boxplot(x='Pclass', y='Age', data=data) # plt.show() #### 39 for pclass=1 & 29 pclass=2 & 24 pclass=3 def age_handler(cols): Age=cols[0] Pclass=cols[1] if pd.isnull(Age): if Pclass==1: return 39 elif Pclass==2: return 29 else: return 24 else: return Age age = data[['Age', 'Pclass']].apply(age_handler, axis=1) bins = (0, 20, 28, 38, 80) #LR coefficient = -0.29 # group_names = [0, 1, 2, 3] group_names = [1, 2, 3, 4] age = pd.cut(age, bins, labels=group_names) # data['age'] = age ## Solving naming issue fare = data['Fare'].fillna( data.Fare.mean() ) # print(data.Fare.describe()) # plt.hist(fare, bins=100) # plt.show() bins = (-1, 12, 31, 1000) #LR Coefficient = -0.16 group_names = [0, 1, 2] fare = pd.cut(fare, bins, labels=group_names) name = data['Name'] name = name.map( lambda name: name.split( ',' )[1].split( '.' )[0].strip() ) name = name.replace(['Lady', 'the Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') name = name.replace(['Mme', 'Mrs', 'Mlle', 'Ms', 'Miss'], 'Female') name = pd.get_dummies(name, drop_first=False) name.drop('Master', axis=1, inplace=True) ticket = data.Ticket def ticket_handler(ticket): ticket = ticket.replace( '.' , '' ) ticket = ticket.replace( '/' , '' ) ticket = ticket.split() ticket = map( lambda t : t.strip() , ticket ) ticket = list(filter( lambda t : not t.isdigit() , ticket )) if len( ticket ) > 0: return (ticket[0]) else: return 'XX' ticket = ticket.map( ticket_handler ) ticket = ticket.replace(['SWPP', 'SC'], 'AAA') ticket = ticket.replace('FCC', 'BBB') ticket = ticket.replace(['SCAH', 'PP', 'PC'], 'CCC') ticket = ticket.replace(['CA', 'WEP'], 'DDD') ticket = ticket.replace('LINE', 'EEE') ticket = ticket.replace(['SOC', 'SOTONOQ'], 'FFF') ticket = ticket.replace(['WC', 'A5'], 'GGG') ticket = ticket.replace(['AS', 'CASOTON', 'SP', 'SOTONO2', 'SCA4', 'SOPP', 'SOP', 'FC', 'Fa', 'SCOW', 'A4'], 'HHH') ticket = pd.get_dummies(ticket, drop_first=False) ticket.drop(['PPP', 'STONO', 'STONO2', 'SCParis', 'SCPARIS', 'XX'], axis=1, inplace=True) ticket.drop(['A', 'AQ3', 'AQ4', 'C', 'LP', 'SCA3', 'STONOQ'], axis=1, inplace=True) cabin = data.Cabin cabin = cabin.fillna( 'Without Cabin' ) cabin = cabin.map( lambda c : c[0] ) cabin = cabin.replace(['A','C','F','G','T'], 'drop') cabin = pd.get_dummies(cabin, drop_first=False) cabin.drop('drop', axis=1, inplace=True) siblings = data.SibSp parents = data.Parch size = siblings + parents Fare_Per_Person = (data['Fare'].fillna(data.Fare.mean()))/ (size + 1) Age_class = data[['Age', 'Pclass']].apply(age_handler, axis=1) * data['Pclass'] isAlone = size.map( lambda s : 'Alone' if s == 1 else 'Not Alone' ) isAlone = pd.get_dummies(isAlone, drop_first=True) siblings = pd.get_dummies(siblings, drop_first=False) # siblings.drop([1,2,3,4,5,8], axis=1, inplace=True) family = pd.DataFrame() family['Name'] = data['Name'] family['Name'] = family['Name'].map( lambda nam: nam.split( ',' )[0]) family['distinction'] = 0 last = '' last_index = 0 for index, row in family.iterrows(): if row['Name']==last : family.loc[index, 'distinction'] = last_index else: last_index += 1 last = row['Name'] family.loc[index, 'distinction'] = last_index family['distinction'] = normalizer(family['distinction']) families = pd.DataFrame() families['Sex'] = data['Sex'] families['PassengerId'] = data['PassengerId'] families['Name'] = data['Name'].map( lambda nam: nam.split( ',' )[0]) families['Survived'] = survived families['Survived'] = families['Survived'].fillna(-1) families['Ticket'] = data['Ticket'] families['male_alive'] = 0 families['male_dead'] = 0 families['female_dead'] = 0 families['female_alive'] = 0 # print(families.head()) for grp, grp_df in families.groupby(['Name','Ticket']): if (len(grp_df) != 1): # a family male_alive = 0 male_dead = 0 female_dead = 0 female_alive = 0 for ind, row in grp_df.iterrows(): if row['Survived']==1 and row['Sex']=='male': male_alive=1 elif row['Survived']==0 and row['Sex']=='male': male_dead=1 elif row['Survived']==1 and row['Sex']=='female': female_alive=1 elif row['Survived']==0 and row['Sex']=='female': female_dead=1 for ind, row in grp_df.iterrows(): passID = row['PassengerId'] if row['Sex']=='male': families.loc[families['PassengerId'] == passID, 'male_alive'] = male_alive families.loc[families['PassengerId'] == passID, 'male_dead'] = male_dead families.loc[families['PassengerId'] == passID, 'female_dead'] = female_dead else: families.loc[families['PassengerId'] == passID, 'male_alive'] = male_alive families.loc[families['PassengerId'] == passID, 'female_dead'] = female_dead families.loc[families['PassengerId'] == passID, 'female_alive'] = female_alive z = pd.DataFrame() z['E'] = data['Embarked'] z['S'] = data['Sex'] z = pd.get_dummies(z, drop_first=False) z['new'] = z['E_C']*z['S_male'] + z['E_S']*z['S_female'] + z['E_Q']*z['S_female'] my_feature = pd.DataFrame() my_feature['feature'] = z['new'] my_feature = pd.get_dummies(my_feature['feature'], drop_first=False) z = pd.DataFrame() z['S'] = data['Sex'] z['S'] = z['S'].replace('male', 1) z['S'] = z['S'].replace('female', -1) z['N'] = z['S'] * train['Age'] z['N'] = z['N'].mask(z['N'].between(0,11.2), 0) z['N'] = z['N'].mask(z['N'].between(-38,-30), 0) z['N'] = z['N'].mask(z['N']!=0, 'Y') my_feature2 = z['N'] my_feature2 = my_feature2.replace(0, 'X') my_feature2 = my_feature2.replace(1, 'Y') my_feature2 = pd.get_dummies(my_feature2, drop_first=False) my_feature2.drop('Y', axis=1, inplace=True) # print(my_feature2.head()) ############## other features ######################### # sexx = train['Sex'] # sexx = sexx.replace('male', 1) # sexx = sexx.replace('female', -1) # age_sex = age.astype(np.int8) * sexx # tmp = pd.DataFrame() # tmp['survived'] = survived # tmp['age_sex'] = age_sex # sns.countplot(x='survived',hue='age_sex',data=tmp) # plt.show() # print(tmp[['age_sex', 'survived']].groupby(['age_sex'], as_index=False).mean().sort_values(by='survived', ascending=False)) sexx = data['Sex'] sexx = sexx.replace('male', 1) sexx = sexx.replace('female', -1) age_sex = age.astype(np.int8) * sexx age_sex = pd.get_dummies(age_sex, drop_first=False) age_sex.drop([-4,-3,-2,-1,2,3,4], axis=1, inplace=True) processed_data = pd.concat([sex,pclass,fare,name,ticket,cabin,my_feature,age_sex], axis=1) processed_data['age'] = age processed_data['isAlone'] = isAlone processed_data['distinction'] = family['distinction'] processed_data['id'] = passenger_id Fare_Per_Person = normalizer(Fare_Per_Person) # processed_data['Fare_Per_Person'] = Fare_Per_Person Age_class = normalizer(Age_class) processed_data['Age_class'] = Age_class # age = data[['Age', 'Pclass']].apply(age_handler, axis=1) # age = normalizer(age) # processed_data['age'] = age # fare = data['Fare'].fillna(data.Fare.mean()) # fare = normalizer(fare) # processed_data['fare'] = fare # processed_data['m_a'] = families['male_alive'] # processed_data['m_d'] = families['male_dead'] processed_data['f_d'] = families['female_dead'] processed_data['f_a'] = families['female_alive'] processed_data = processed_data.sort_values('id') processed_data.drop('id', axis=1, inplace=True) # print(processed_data.head()) # if __name__ == '__main__': def after_preprocessing(): return processed_data
null
codes/preprocessing.py
preprocessing.py
py
15,810
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.mean", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 11, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 17, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 117, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 120, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 129, "usage_type": "call" }, { "api_name": "seaborn.FacetGrid", "line_number": 148, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 149, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 149, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 150, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 150, "usage_type": "name" }, { "api_name": "seaborn.FacetGrid", "line_number": 154, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 155, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 155, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 157, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 157, "usage_type": "name" }, { "api_name": "seaborn.FacetGrid", "line_number": 161, "usage_type": "call" }, { "api_name": "seaborn.pointplot", "line_number": 162, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.show", "line_number": 164, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 164, "usage_type": "name" }, { "api_name": "seaborn.FacetGrid", "line_number": 169, "usage_type": "call" }, { "api_name": "seaborn.barplot", "line_number": 170, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.show", "line_number": 172, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 172, "usage_type": "name" }, { "api_name": "seaborn.FacetGrid", "line_number": 180, "usage_type": "call" }, { "api_name": "seaborn.kdeplot", "line_number": 181, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.show", "line_number": 184, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 184, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 203, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 225, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 227, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 232, "usage_type": "call" }, { "api_name": "pandas.isnull", "line_number": 245, "usage_type": "call" }, { "api_name": "pandas.cut", "line_number": 261, "usage_type": "call" }, { "api_name": "pandas.cut", "line_number": 272, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 280, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 307, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 320, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 334, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 335, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 339, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 358, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 400, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 403, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 405, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 407, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 410, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 421, "usage_type": "call" }, { "api_name": "numpy.int8", "line_number": 444, "usage_type": "attribute" }, { "api_name": "pandas.get_dummies", "line_number": 445, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 449, "usage_type": "call" } ]
294036281
import settings import packages.ipm_cloud_postgresql.model as model import bth.interacao_cloud as interacao_cloud from datetime import datetime def iniciar(): print(':: Iniciando migração do sistema Protocolo') global ano_inicial # ano_inicial = 2000 ano_inicial = input("Ano inicial para migração: ") global ano_final # ano_final = 2005 ano_final = input("Ano final para migração: ") global ano for ano in range(int(ano_inicial), int(ano_final) + 1): print("------------- INICIO MIGRAÇÃO DO ANO: " + str(ano) + " --------------") params_exec = { 'clicodigo': '2016', 'somente_pre_validar': False, 'token': '', 'token': '', # Token base oficial biguaçu 'ano': str(ano) } mensagem_inicio(params_exec) interacao_cloud.verifica_token(params_exec['token']) verifica_tabelas_controle() enviar(params_exec, 'postmultpart', ano) # buscar(params_exec, 'buscaPessoas', ano) # buscar(params_exec, 'buscaTiposVeiculoEquipamento', ano) # buscar(params_exec, 'buscaUnidadesMedida', ano) # buscar(params_exec, 'buscaMateriaisServicos', ano) # buscar(params_exec, 'buscaOrganogramas', ano) # buscar(params_exec, 'buscaMotoristas', ano) # buscar(params_exec, 'buscaFornecedores', ano) # buscar(params_exec, 'buscaMateriaisEspecificacao', ano) # enviar(params_exec, 'funcionario', ano) # enviar(params_exec, 'veiculoEquipamento', ano) # enviar(params_exec, 'ordemAbastecimento', ano) print("------------- TERMINO MIGRAÇÃO DO ANO: " + str(ano) + " -------------") ano = ano + 1 def enviar(params_exec, tipo_registro, ano, *args, **kwargs): print(f'\n:: Iniciando execução do serviço {tipo_registro}') tempo_inicio = datetime.now() path_padrao = f'packages.{settings.BASE_ORIGEM}.{settings.SISTEMA_ORIGEM}.rotinas_envio' print(path_padrao) try: modulo = __import__(f'{path_padrao}.{tipo_registro}', globals(), locals(), ['iniciar_processo_envio'], 0) # print(modulo) modulo.iniciar_processo_envio(params_exec, ano) print(f'- Rotina de {tipo_registro} finalizada. ' f'\nTempo total de execução: {(datetime.now() - tempo_inicio).total_seconds()} segundos.') except: print("Erro ao executar rotina para o tipo de registro: " + tipo_registro) def buscar(params_exec, tipo_registro, ano, *args, **kwargs): print(f'\n:: Iniciando execução do serviço {tipo_registro}') tempo_inicio = datetime.now() path_padrao = f'packages.{settings.BASE_ORIGEM}.{settings.SISTEMA_ORIGEM}.rotinas_envio' print(path_padrao) try: modulo = __import__(f'{path_padrao}.{tipo_registro}', globals(), locals(), ['iniciar_processo_busca'], 0) # print(modulo) modulo.iniciar_processo_busca(params_exec, ano) print(f'- Rotina de {tipo_registro} finalizada. ' f'\nTempo total de execução: {(datetime.now() - tempo_inicio).total_seconds()} segundos.') except: print("Erro ao executar rotina para o tipo de registro: " + tipo_registro) def mensagem_inicio(params_exec): print(f'\n:: Iniciando execução ferramenta {settings.BASE_ORIGEM}, utilizando os ' f'seguintes parâmetros: \n- {params_exec}') def verifica_tabelas_controle(): pgcnn = model.PostgreSQLConnection() pgcnn.verifica_tabelas_controle()
null
packages/ipm_cloud_postgresql/frotas/enviar.py
enviar.py
py
3,519
python
en
code
null
code-starcoder2
83
[ { "api_name": "bth.interacao_cloud.verifica_token", "line_number": 27, "usage_type": "call" }, { "api_name": "bth.interacao_cloud", "line_number": 27, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 51, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 51, "usage_type": "name" }, { "api_name": "settings.BASE_ORIGEM", "line_number": 52, "usage_type": "attribute" }, { "api_name": "settings.SISTEMA_ORIGEM", "line_number": 52, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 59, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 59, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 66, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 66, "usage_type": "name" }, { "api_name": "settings.BASE_ORIGEM", "line_number": 67, "usage_type": "attribute" }, { "api_name": "settings.SISTEMA_ORIGEM", "line_number": 67, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 74, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 74, "usage_type": "name" }, { "api_name": "settings.BASE_ORIGEM", "line_number": 80, "usage_type": "attribute" }, { "api_name": "packages.ipm_cloud_postgresql.model.PostgreSQLConnection", "line_number": 85, "usage_type": "call" }, { "api_name": "packages.ipm_cloud_postgresql.model", "line_number": 85, "usage_type": "name" } ]
370308293
# Import Table, Column, String, Integer, Float, Boolean from sqlalchemy from sqlalchemy import create_engine, MetaData, Table, Column, String, Integer, Float, Boolean engine = create_engine('sqlite://') # in memory metadata = MetaData() # Define a new table with a name, count, amount, and valid column: data data = Table('data', metadata, Column('name', String(255)), Column('count', Integer()), Column('amount', Float()), Column('valid', Boolean()) ) # Use the metadata to create the table metadata.create_all(engine) # Print table details print(repr(data)) # Define a new table with a name, count, amount, and valid column: data data2 = Table('data2', metadata, Column('name', String(255), unique=True), Column('count', Integer(), default=1), Column('amount', Float()), Column('valid', Boolean(), default=False) ) # Use the metadata to create the table metadata.create_all(engine) # Print the table details print(repr(metadata.tables['data2']))
null
datacamp/sqlalchemy/create_table.py
create_table.py
py
1,060
python
en
code
null
code-starcoder2
83
[ { "api_name": "sqlalchemy.create_engine", "line_number": 4, "usage_type": "call" }, { "api_name": "sqlalchemy.MetaData", "line_number": 6, "usage_type": "call" }, { "api_name": "sqlalchemy.Table", "line_number": 8, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 9, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 9, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 10, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 10, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 11, "usage_type": "call" }, { "api_name": "sqlalchemy.Float", "line_number": 11, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 12, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 12, "usage_type": "call" }, { "api_name": "sqlalchemy.Table", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.Float", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 27, "usage_type": "call" } ]
292007069
# map # filter # reduce # numbers = ["3","34","64"] # # # for i in range(len(numbers)) : # # numbers[i] = int(numbers[i]) # numbers = list(map(int,numbers)) # # numbers[2] = numbers[2] + 1 # print(numbers[2]) # 65 # numbers = list(map(int,numbers)) # def sq(a) : # return a*a # num = [2,3,4,5,44,1,3,2] # # square = list(map(sq,num)) # square = list(map(lambda x:x*x,num)) # print(square) # [4, 9, 16, 25, 1936, 1, 9, 4] # ############################### map ####### # def square(a) : # return a*a # def cube(a) : # return a*a*a # func = [square,cube] # for i in range(5) : # val = list(map(lambda x:x(i),func)) # print(val) ################################ Filter ######## # lisi1 = [1,2,34,5,56,3,2,27,8] # # def is_greater_5(num): # return num>5 # # gr_than_5 = list(filter(is_greater_5,lisi1)) # print(gr_than_5) # [34, 56, 27, 8] ############################ Reduce ################################### from functools import reduce lisi1 = [1,2,3,4] num = reduce(lambda x,y:x+y,lisi1) # num = 0 # for i in lisi1 : # num = num + i print(num) # 10
null
38_map_filter.py
38_map_filter.py
py
1,305
python
en
code
null
code-starcoder2
83
[ { "api_name": "functools.reduce", "line_number": 46, "usage_type": "call" } ]
618335268
import psutil class Stat(object): def __init__(self): self.connections = [] self.io_stat = [] def scan_stat(process, stat): try: stat.connections.extend(process.connections()) if hasattr(process, "io_counters"): stat.io_stat.append(process.io_counters()) for child in process.children(): scan_stat(child, stat) except psutil.NoSuchProcess: pass def extract_fields(obj, fields, decoders={}): return { k: decoders[k](obj.__dict__[k]) if k in decoders else obj.__dict__[k] for k in fields if hasattr(obj, k) } def normalize_addr(addr): return extract_fields(addr, ["ip", "port"]) # pconn(fd=47, family=2, type=1, laddr=addr(ip='172.31.1.100', port=59498), raddr=addr(ip='149.154.175.50', port=443), status='ESTABLISHED') def normalize_connection(con): return extract_fields( con, [ "fd", "family", "type", "laddr", "raddr", "status"], { "laddr": normalize_addr, "raddr": normalize_addr } ) # pio(read_count=5, write_count=14402, read_bytes=3590590464, write_bytes=5259264, read_chars=0, write_chars=47240294) def normalize_io_stat(io_stat): return extract_fields( io_stat, [ "read_count", "write_count", "read_bytes", "write_bytes", "read_chars", "write_chars" ] ) def make_stat(pid): process = psutil.Process(pid) stat = Stat() scan_stat(process, stat) return { "connections": [normalize_connection(con) for con in stat.connections], "io_stat": [normalize_io_stat(io_stat) for io_stat in stat.io_stat] }
null
monitor/psstat.py
psstat.py
py
1,659
python
en
code
null
code-starcoder2
83
[ { "api_name": "psutil.NoSuchProcess", "line_number": 17, "usage_type": "attribute" }, { "api_name": "psutil.Process", "line_number": 54, "usage_type": "call" } ]
429324191
# from bunch import Bunch import logging import numpy as np import pandas as pd import tigerml.core.dataframe as td from tigerml.core.utils import DictObject, compute_if_dask _LOGGER = logging.getLogger(__name__) class Encoder: """Encoder class.""" METHODS = DictObject({"onehot": "onehot", "ordinal": "ordinal", "target": "target"}) MAX_BUCKETS = 20 MIN_SAMPLE_PERC = 0.02 MIN_SAMPLE_ABS = 20 LONG_TAIL_CHECK = 0.1 def __init__(self, data, y=None): if not data.__module__.startswith("tigerml"): from tigerml.core.dataframe.helpers import tigerify data = tigerify(data) data = data.categorize() self.data = data self.encoding_rules = [] self.encoded_data = self.data self.encoding_summary = {} self.encoding_mapping = {} self.y = None if y: self.y = self.data[y] self.data = self.data.drop(y, axis=1) def add_encode_rule(self, cols, method, **kwargs): """Adds rule dictionary to encoding rules.""" cols_already_applied = [ col for col in cols if any([col in rule[0] for rule in self.encoding_rules]) ] if cols_already_applied: raise Exception( "Encoding rule already applied " "for {}".format(cols_already_applied) ) if [col for col in cols if col not in self.data]: raise Exception( "Columns not present in " "data - {}".format([col for col in cols if col not in self.data]) ) if method not in self.METHODS: raise Exception( "Supported imputation methods: " "{}".format(self.METHODS.keys()) ) rule_dict = {"cols": cols, "method": method} rule_dict.update(kwargs) self.encoding_rules.append(rule_dict) return self def _default_encoding(self, encode_columns): _LOGGER.info( "Encoding categorical variables with default settings which will " "not be ideal. " "Processing these variables manually is highly recommended." ) # encode_columns = [col for col in non_numeric_columns if col in cols] if self.y is not None: self.encoding_rules.append( {"cols": encode_columns, "method": self.METHODS.target} ) for col in encode_columns: min_samples = ( round(self.MIN_SAMPLE_PERC * len(self.data)) if self.MIN_SAMPLE_PERC else self.MIN_SAMPLE_ABS ) levels_with_less_min_for_target = [ x for x in compute_if_dask(self.data[col].unique()) if len(self.data[self.data[col] == x]) < min_samples ] if levels_with_less_min_for_target: _LOGGER.info( "{} has levels with less than {}{} values. " "Target encoding in such cases is not " "recommended.".format( col, min_samples, f" ({self.MIN_SAMPLE_PERC*100}%)" if self.MIN_SAMPLE_PERC else "", ) ) else: for col in encode_columns: num_of_levels = self.data[col].nunique() if num_of_levels <= self.MAX_BUCKETS: self.encoding_rules.append( {"cols": col, "method": self.METHODS.onehot} ) else: min_samples = ( (self.MIN_SAMPLE_PERC * len(self.data)) if self.MIN_SAMPLE_PERC else self.MIN_SAMPLE_ABS ) buckets_with_min_samples = [ x for x in compute_if_dask(self.data[col].unique()) if len(self.data[self.data[col] == x]) >= min_samples ] if ( len(buckets_with_min_samples) > num_of_levels * self.LONG_TAIL_CHECK ): groups = buckets_with_min_samples self.encoding_rules.append( { "cols": col, "method": self.METHODS.onehot, "groups": groups, } ) else: _LOGGER.info( "CANNOT ENCODE {}. A good encoding " "method is not found.".format(col) ) continue def transform(self, cols=[]): """Returns encoded data after transformation.""" if not cols: from tigerml.core.utils import get_num_cols, get_dt_cols numeric_columns = get_num_cols(self.data) + get_dt_cols(self.data) cols = [col for col in self.data.columns if col not in numeric_columns] cols_set = [ col for col in cols if not ( any( [ "encoded_{}".format(col) in data_col for data_col in self.data.columns ] ) ) ] if len(cols_set) < len(cols): _LOGGER.info( "Encoding {} columns. Columns - {} are " "already encoded.".format( len(cols_set), list(set(cols) - set(cols_set)) ) ) else: cols_set = cols self.encoded_data = self.data if not self.encoding_rules: self._default_encoding(cols_set) for rule in self.encoding_rules: cols = rule.pop("cols") if isinstance(cols, str): cols = [cols] cols = [col for col in cols if col in cols_set] method = rule.pop("method") kwargs = rule.copy() if method == self.METHODS.target and "target" not in kwargs: if self.y is None: raise Exception("Need target for target encoding") else: kwargs.update({"target": self.y}) for col in cols: if method == self.METHODS.onehot: encoded = self.onehotEncode(self.data[col], **kwargs) self.encoded_data = td.concat([self.encoded_data, encoded], axis=1) elif method == self.METHODS.ordinal: encoded, mapper = self.ordinalEncode(self.data[col], **kwargs) self.encoding_mapping.update({col: mapper}) if encoded.name in self.encoded_data: _LOGGER.info( "{} already exists in data. " "Overriding it.".format(encoded.name) ) self.encoded_data[encoded.name] = encoded else: self.encoded_data = td.concat( [self.encoded_data, encoded], axis=1 ) elif method == self.METHODS.target: encoded, mapper = self.targetEncode(self.data[col], **kwargs) encoded.index = self.encoded_data.index self.encoding_mapping.update({col: mapper}) if encoded.name in self.encoded_data.columns: _LOGGER.info( "{} already exists in data. " "Overriding it.".format(encoded.name) ) self.encoded_data[encoded.name] = encoded else: self.encoded_data = td.concat( [self.encoded_data, encoded], axis=1 ) self.encoding_summary.update( { col: { "original_type": self.data.dtypes.astype(str)[col], "new_columns": encoded.columns if hasattr(encoded, "columns") else encoded.name, "method": "{} encoded".format(method), } } ) if self.y is not None: # import pdb # pdb.set_trace() self.encoded_data = td.concat([self.encoded_data, self.y], axis=1) return self.encoded_data def get_encoding_method(self, col_name): """Gets encoding method.""" if [rule for rule in self.encoding_rules if col_name in rule["cols"]]: return [rule for rule in self.encoding_rules if col_name in rule["cols"]][ 0 ]["method"] else: return None @staticmethod def onehotEncode(feature, prefix="onehot_encoded", **kwargs): """ This method one hot encodes all the factors in category variable. Parameters ---------- feature : str Name of the category variable to be encoded. prefix : str Default is 'OHE'. The prefex will be appended to encoded variable. Ex: 'OHE_VariableName_FactorName' Returns ------- dataframe : Modified dataframe will be returned. """ prefix = prefix + "_" + feature.name if feature.isna().sum() > 0: include_na = True else: include_na = False dummies = td.get_dummies(feature, dummy_na=include_na) dummies = dummies.rename( columns=dict( zip( list(dummies.columns), [(prefix + "_" + str(x)) for x in dummies.columns], ) ) ) if "groups" in kwargs: new_dummies = td.DataFrame(backend=feature.backend) for group in kwargs["groups"]: group_name = prefix + "_" + str(group) if isinstance(group, str): new_dummies[prefix + "_" + group] = dummies[group_name] elif isinstance(group, list): if len(group) == 1: group = group[0] new_dummies[prefix + "_" + group] = dummies[group_name] else: dummy_name = "grouped_{}".format("_".join(group)) new_dummies[dummy_name] = dummies[group_name].sum() else: raise Exception("Incorrect input for groups") dummies = dummies.drop(group_name, axis=1) if not dummies.empty: new_dummies[prefix + "_other"] = dummies.sum() dummies = new_dummies return dummies @staticmethod def ordinalEncode(feature, mapper, prefix="ordinal_encoded"): """ This method ordinally encodes all the factors in category variable. Parameters ---------- feature : str Name of the category variable to be encoded. mapper : dict Dictionary with factor to encoding value mapping. Ex: If the variable has following levels low, medium and high and you want to ordinal encode them use the following mapper. mapper = {'low':1, 'medium':2, 'high':3} prefix : str Default is 'ORB'. The prefex will be appended to encoded variable. Ex: 'ORB_VariableName_FactorName' Returns ------- dataframe : Modified dataframe will be returned. """ encoded_name = prefix + "_" + feature.name encoded = feature.map(mapper) encoded.rename(encoded_name) if encoded.isnull().sum() > 0: _LOGGER.info( "Few levels are missing in the mapper, " "appended such records with nans" ) return encoded, mapper @staticmethod def targetEncode( feature, target, min_samples=1, smoothing=1, prefix="target_encoded" ): """Target Encode. This transformation is applied on categorical variable for a regression task. Each factor value is replaced by the average of the response variable within the factor group. Parameters ---------- feature : str Name of the category variable to be encoded. min_samples : int Default is 1. Min no of samples required within each factor. smoothing : int Default is 1. Smoothens variation in the transformation by giving more weight to the prior average. prefix : str Default is 'TGE'. The prefex will be appended to encoded variable. Ex: 'TGE_VariableName_FactorName' Returns ------- dataframe : Modified dataframe will be returned. """ encoded_name = prefix + "_" + feature.name df = td.concat([feature, target], axis=1) averages = df.groupby(by=feature.name)[target.name].agg(["mean", "count"]) smoothing = 1 / (1 + np.exp(-(averages["count"] - min_samples) / smoothing)) prior = df.loc[:, target.name].mean() averages[target.name] = prior * (1 - smoothing) + averages["mean"] * (smoothing) averages = averages.drop(["mean", "count"], axis=1) encoded = td.merge( td.DataFrame(feature), td.DataFrame( averages.reset_index().rename( columns={"index": feature.name, target.name: "average"} ) ), on=feature.name, how="left", )["average"].fillna(prior) encoded = encoded.rename(encoded_name) return encoded, averages.rename(columns={target.name: "encoded values"})
null
src/ta_lib/_vendor/tigerml/core/preprocessing/encoder.py
encoder.py
py
14,469
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 10, "usage_type": "call" }, { "api_name": "tigerml.core.utils.DictObject", "line_number": 16, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe.helpers.tigerify", "line_number": 27, "usage_type": "call" }, { "api_name": "tigerml.core.utils.compute_if_dask", "line_number": 81, "usage_type": "call" }, { "api_name": "tigerml.core.utils.compute_if_dask", "line_number": 111, "usage_type": "call" }, { "api_name": "tigerml.core.utils.get_num_cols", "line_number": 138, "usage_type": "call" }, { "api_name": "tigerml.core.utils.get_dt_cols", "line_number": 138, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe.concat", "line_number": 179, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 179, "usage_type": "name" }, { "api_name": "tigerml.core.dataframe.concat", "line_number": 190, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 190, "usage_type": "name" }, { "api_name": "tigerml.core.dataframe.concat", "line_number": 204, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 204, "usage_type": "name" }, { "api_name": "tigerml.core.dataframe.concat", "line_number": 221, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 221, "usage_type": "name" }, { "api_name": "tigerml.core.dataframe.get_dummies", "line_number": 257, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 257, "usage_type": "name" }, { "api_name": "tigerml.core.dataframe.DataFrame", "line_number": 267, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 267, "usage_type": "name" }, { "api_name": "tigerml.core.dataframe.concat", "line_number": 349, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 349, "usage_type": "name" }, { "api_name": "numpy.exp", "line_number": 351, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe.merge", "line_number": 355, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 355, "usage_type": "name" }, { "api_name": "tigerml.core.dataframe.DataFrame", "line_number": 356, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 356, "usage_type": "name" }, { "api_name": "tigerml.core.dataframe.DataFrame", "line_number": 357, "usage_type": "call" }, { "api_name": "tigerml.core.dataframe", "line_number": 357, "usage_type": "name" } ]
620317379
#!/usr/bin/python2.7 import rospy from geometry_msgs.msg import PoseStamped, PoseWithCovarianceStamped from nav_msgs.msg import OccupancyGrid, Path from visualization_msgs.msg import MarkerArray, Marker import visualization_msgs import copy import planners.astar from move import Move from state import State from robot import Robot from map import Map class TrajectoryPlanner: def __init__(self): self.map = None self.start = None self.goal = None self.moves = [Move(0.1, 0), # forward Move(-0.1, 0), # back Move(0, 1.5708), # turn left 90 Move(0, -1.5708)] # turn right 90 self.robot = Robot(0.5, 0.5) self.is_working = False # Replace with mutex after all self.map_subscriber = rospy.Subscriber("map", OccupancyGrid, self.new_map_callback) self.start_subscriber = rospy.Subscriber("initialpose", PoseWithCovarianceStamped, self.new_start_callback) self.goal_subscriber = rospy.Subscriber("goal", PoseStamped, self.new_goal_callback) self.path_publisher = rospy.Publisher("trajectory", MarkerArray, queue_size=1) self.pose_publisher = rospy.Publisher("debug_pose", PoseStamped, queue_size=1) # what will be there. A module goes into variable. Isn't it too much memory consumption. Maybe I should assign function replan() to this variable? self.planner = planners.astar.replan def ready_to_plan(self): return self.map is not None and self.start is not None and self.goal is not None def new_goal_callback(self, goal_pose): if not self.is_working: self.is_working = True new_goal = State.from_pose(goal_pose.pose) if self.map is not None and self.map.is_allowed(new_goal, self.robot): self.goal = new_goal rospy.loginfo("New goal was set") if self.ready_to_plan(): self.replan() else: rospy.logwarn("New goal is bad or no map available") self.is_working = False def new_start_callback(self, start_pose): if not self.is_working: self.is_working = True new_start = State.from_pose(start_pose.pose.pose) if self.map is not None and self.map.is_allowed(new_start, self.robot): self.start = new_start rospy.loginfo("New start was set") if self.ready_to_plan(): self.replan() else: rospy.logwarn("New start is bad or no map available") self.is_working = False def new_map_callback(self, grid_map): if not self.is_working: self.is_working = True self.map = Map(grid_map) rospy.loginfo("New map was set") if self.ready_to_plan(): self.replan() self.is_working = False def replan(self): rospy.loginfo("Planning was started") final_state = self.planner(self.map, self.moves, self.robot, self.start, self.goal, self.pose_publisher) if final_state is None: rospy.loginfo("No path found") else: # Restore and publish path rospy.loginfo("Restoring path from final state...") path = self.restore_path(final_state) self.path_publisher.publish(path) rospy.loginfo("Planning was finished...") def restore_path(self, final_state): current_state = copy.copy(final_state) path = MarkerArray() pose_id = 0 while True: pose_marker = current_state.to_marker(self.robot) pose_marker.id = pose_id path.markers.append(pose_marker) current_state = current_state.parent pose_id += 1 if current_state is None: break return path def main(): rospy.init_node("trajectory_planner") planner = TrajectoryPlanner() rospy.spin() main()
null
visualization/rviz_tools_py/src/rviz_tools_py/test_bug.py
test_bug.py
py
4,057
python
en
code
null
code-starcoder2
83
[ { "api_name": "move.Move", "line_number": 21, "usage_type": "call" }, { "api_name": "move.Move", "line_number": 22, "usage_type": "call" }, { "api_name": "move.Move", "line_number": 23, "usage_type": "call" }, { "api_name": "move.Move", "line_number": 24, "usage_type": "call" }, { "api_name": "robot.Robot", "line_number": 25, "usage_type": "call" }, { "api_name": "rospy.Subscriber", "line_number": 28, "usage_type": "call" }, { "api_name": "nav_msgs.msg.OccupancyGrid", "line_number": 28, "usage_type": "argument" }, { "api_name": "rospy.Subscriber", "line_number": 29, "usage_type": "call" }, { "api_name": "geometry_msgs.msg.PoseWithCovarianceStamped", "line_number": 29, "usage_type": "argument" }, { "api_name": "rospy.Subscriber", "line_number": 30, "usage_type": "call" }, { "api_name": "geometry_msgs.msg.PoseStamped", "line_number": 30, "usage_type": "argument" }, { "api_name": "rospy.Publisher", "line_number": 32, "usage_type": "call" }, { "api_name": "visualization_msgs.msg.MarkerArray", "line_number": 32, "usage_type": "argument" }, { "api_name": "rospy.Publisher", "line_number": 33, "usage_type": "call" }, { "api_name": "geometry_msgs.msg.PoseStamped", "line_number": 33, "usage_type": "argument" }, { "api_name": "planners.astar.astar", "line_number": 36, "usage_type": "attribute" }, { "api_name": "planners.astar", "line_number": 36, "usage_type": "name" }, { "api_name": "state.State.from_pose", "line_number": 44, "usage_type": "call" }, { "api_name": "state.State", "line_number": 44, "usage_type": "name" }, { "api_name": "rospy.loginfo", "line_number": 47, "usage_type": "call" }, { "api_name": "rospy.logwarn", "line_number": 51, "usage_type": "call" }, { "api_name": "state.State.from_pose", "line_number": 58, "usage_type": "call" }, { "api_name": "state.State", "line_number": 58, "usage_type": "name" }, { "api_name": "rospy.loginfo", "line_number": 61, "usage_type": "call" }, { "api_name": "rospy.logwarn", "line_number": 65, "usage_type": "call" }, { "api_name": "map.Map", "line_number": 71, "usage_type": "call" }, { "api_name": "rospy.loginfo", "line_number": 72, "usage_type": "call" }, { "api_name": "rospy.loginfo", "line_number": 78, "usage_type": "call" }, { "api_name": "rospy.loginfo", "line_number": 82, "usage_type": "call" }, { "api_name": "rospy.loginfo", "line_number": 85, "usage_type": "call" }, { "api_name": "rospy.loginfo", "line_number": 88, "usage_type": "call" }, { "api_name": "copy.copy", "line_number": 91, "usage_type": "call" }, { "api_name": "visualization_msgs.msg.MarkerArray", "line_number": 92, "usage_type": "call" }, { "api_name": "rospy.init_node", "line_number": 108, "usage_type": "call" }, { "api_name": "rospy.spin", "line_number": 110, "usage_type": "call" } ]
647500287
import os import csv from reportlab.pdfgen import Canvas from reportlab.lib.pagesizes import letter from reportlab.lib.units import inch from reportlab.lib import colors from reporlab.platypus import Table xmargin = 3.2 * inch ymargin = 6 * inch my_path = "/Users/staniya/Downloads/book1-exercises-master/chp09/practice_files" with open(os.path.join(my_path, "pastimes.csv"), "r") as my_input, open(os.path.join(my_path, "categorized pastimes.csv"), "w") as my_output: my_file_reader = csv.reader(my_input) my_file_writer = csv.writer(my_output) next(my_file_reader) my_file_writer.writerow(["Name", "Favorite Pastime", "Type of Pastime"]) for row in my_file_reader: if row[1].find("fighting") != False: row.append("Combat") else: row.append("Other") my_file_writer.writerow(row) print(row) with open(os.path.join(my_path, "categorized_pastimes.csv"), "r") as my_csv_input: data_reader = csv.reader(my_csv_input) c = canvas.Canvas("reportLab test.pdf", pagesize=letter) c.setFont('Helvetica', 12) t = Table(data_reader) t.setStyle([("TEXTCOLOR", colors.blue)]) t.wrapOn(c, xmargin, ymargin) t.drawOn(c, xmargin, ymargin) c.save()
null
ReportLab.py
ReportLab.py
py
1,245
python
en
code
null
code-starcoder2
83
[ { "api_name": "reportlab.lib.units.inch", "line_number": 9, "usage_type": "name" }, { "api_name": "reportlab.lib.units.inch", "line_number": 10, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "csv.reader", "line_number": 15, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "csv.reader", "line_number": 31, "usage_type": "call" }, { "api_name": "reportlab.lib.pagesizes.letter", "line_number": 32, "usage_type": "name" }, { "api_name": "reporlab.platypus.Table", "line_number": 34, "usage_type": "call" }, { "api_name": "reportlab.lib.colors.blue", "line_number": 35, "usage_type": "attribute" }, { "api_name": "reportlab.lib.colors", "line_number": 35, "usage_type": "name" } ]
430362458
#!/usr/bin/env python import array import json import sys import re from time import sleep import traceback import usb.core import argparse import struct import sys HOST_TO_DEVICE = 0x40 DEVICE_TO_HOST = 0xC0 TIMEOUT_MS = 1000 PAGE_SIZE = 64 class Fixture(object): def __init__(self): self.eeprom_pages = None self.fields = {} self.field_names = [] parser = argparse.ArgumentParser() parser.add_argument("--debug", action="store_true", help="debug output") parser.add_argument("--dump", action="store_true", help="just dump and exit (default)") parser.add_argument("--erase", action="store_true", help="erase (write all 0xff)") parser.add_argument("--hex", action="store_true", help="output in hex") parser.add_argument("--force-offset", action="store_true", help="force ARMs to use the old 'offset' write method") parser.add_argument("--pid", default="1000", help="USB PID in hex (default 1000)", choices=["1000", "2000", "4000"]) parser.add_argument("--restore", type=str, help="restore an EEPROM from text file") parser.add_argument("--max-pages", type=int, help="override standard max pages (default 8)", default=8) parser.add_argument("--reprogram", action="store_true", help="overwrites first 8 pages with zeros, then populates minimal defaults (HIGHLY DANGEROUS)") parser.add_argument("--pixels", type=int, default=1024, help="active_pixels_horizontal when reprogramming") self.args = parser.parse_args() if not (self.args.dump or \ self.args.restore): self.args.dump = True self.pid = int(self.args.pid, 16) self.dev = usb.core.find(idVendor=0x24aa, idProduct=self.pid) if not self.dev: print("No spectrometers found with PID 0x%04x" % self.pid) def run(self): self.read_eeprom() self.parse_eeprom() self.dump_eeprom() if self.args.erase: self.do_erase() self.write_eeprom() if self.args.reprogram: self.do_reprogram() if self.args.dump: return if self.args.restore: self.do_restore() def do_restore(self): self.load(filename = self.args.restore) self.dump_eeprom("Proposed") cont = input("\nWrite EEPROM? (y/N)") if cont.lower() != "y": print("Cancelled") return self.write_eeprom() def do_erase(self, value=0xff): print("Erasing buffers") for page in range(len(self.eeprom_pages)): for i in range(PAGE_SIZE): self.pack((page, i, 1), "B", value) def load(self, filename): if filename.endswith(".json"): self.load_json(filename) else: self.load_other(filename) def load_json(self, filename): with open(filename) as f: doc = json.load(f) buffers_string = doc["buffers"][1:-2] # strip first/last [] page_strings = buffers_string.split(", array") for page in range(len(page_strings)): m = re.search(r"\[(.*)\]", page_strings[page]) delimited = m.group(1) values = [ int(v.strip()) for v in delimited.split(",") ] self.pack_page(page, values) ## # This function will load an EEPROM definition from an external # text file. It supports a couple of different file formats, # including: # # - extract of ENLIGHTEN logfile # - output of this program (eeprom-util.py) def load_other(self, filename): linecount = 0 filetype = None print(f"restoring from {filename}") with open(filename) as f: for line in f: self.debug("read: %s" % line) line = line.strip() if line.startswith("#") or len(line) == 0: continue linecount += 1 values = None page = None ################################################################ # use first non-blank, non-comment line to determine filetype ################################################################ if linecount == 1: # ENLIGHTEN logfile: 2020-03-19 12:05:41,726 Process-2 wasatch.FeatureIdentificationDevice DEBUG GET_MODEL_CONFIG(0): get_code: request 0xff value 0x0001 index 0x0000 = [array('B', [87, 80, 45, 55, 56, 53, 45, 88, 45, 83, 82, 45, 83, 0, 0, 0, 87, 80, 45, 48, 48, 53, 54, 49, 0, 0, 0, 0, 0, 0, 0, 0, 44, 1, 0, 0, 1, 0, 0, 17, 3, 50, 0, 2, 0, 10, 0, 0, 51, 51, 243, 63, 0, 0, 51, 51, 243, 63, 0, 0, 0, 0, 0, 6])] if "wasatch.FeatureIdentificationDevice" in line and "GET_MODEL_CONFIG" in line: filetype = "ENLIGHTEN_LOG" # eeprom-util.py: Page 0: array('B', [83, 105, 71, 45, 55, 56, 53, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 80, 45, 48, 48, 54, 52, 54, 0, 0, 0, 0, 0, 0, 0, 0, 44, 1, 0, 0, 0, 1, 1, 2, 0, 25, 0, 15, 0, 15, 0, 0, 0, 0, 0, 65, 0, 0, 51, 51, 243, 63, 0, 0, 0, 0, 0, 9]) elif re.match(r"Page\s+\d+:\s*array\('B',\s*\[", line): filetype = "eeprom-util" # unknown else: raise Exception("ERROR: could not determine filetype") self.debug(f"filetype: {filetype}") ################################################################ # filetype has been determined, so parse each line as read ################################################################ if filetype == "ENLIGHTEN_LOG": m = re.search("GET_MODEL_CONFIG\((\d)\)", line) if not m: raise Exception("can't parse page number") page = int(m.group(1)) m = re.search("array\('B', \[([0-9, ]+)\]\)", line) if not m: raise Exception("can't parse data") delimited = m.group(1) values = [ int(v.strip()) for v in delimited.split(",")] elif filetype == "eeprom-util": m = re.search(r"""Page\s+(\d+)\s*:\s*array\('B',\s*\[(.*)\]\)""", line) if not m: raise Exception("could not parse line: %s" % line) page = int(m.group(1)) if not (0 <= page <= self.args.max_pages): raise Exception("invalid page") delimited = m.group(2) values = [ int(v.strip()) for v in delimited.split(",")] else: raise Exception(f"Unsupported filetype: {filetype}") if page is None or values is None: raise Exception(f"could not parse line: {line}") self.pack_page(page, values) self.debug(f"parsed and packed page {page}") def pack_page(self, page, values): if not (0 <= page <= self.args.max_pages): raise Exception(f"invalid page: {page}") length = len(values) if length != 64: raise Exception(f"wrong array length: {length}") self.debug(f"packing {length} values") for i in range(length): v = values[i] if not (0 <= v <= 255): raise Exception(f"invalid byte: {v}") self.pack((page, i, 1), "B", values[i]) def read_eeprom(self): print("Reading EEPROM") self.eeprom_pages = [] for page in range(self.args.max_pages): buf = self.get_cmd(cmd=0xff, value=0x01, index=page, length=PAGE_SIZE) self.eeprom_pages.append(buf) def dump_eeprom(self, state="Current"): print("%s EEPROM:" % state) for page in range(len(self.eeprom_pages)): print(f" Page {page}: ", end='') if self.args.hex: print(" ".join([f"{i:02x}" for i in self.eeprom_pages[page]])) else: print(self.eeprom_pages[page]) def write_eeprom(self): print("Writing EEPROM") for page in range(len(self.eeprom_pages)): buf = self.eeprom_pages[page] print(f" writing page {page}: {buf}") if self.pid == 0x4000 and not self.args.force_offset: self.send_cmd(cmd=0xff, value=0x02, index=page, buf=buf) else: DATA_START = 0x3c00 offset = DATA_START + page * 64 self.send_cmd(cmd=0xa2, value=offset, buf=buf) sleep(0.2) def do_reprogram(self): print("\n*** HAZARDOUS OPERATION ***\n") print("Reprogram EEPROM to bland defaults? This is a destructive") print("operation which will overwrite all configuration data on") print("the spectrometer, destroying any factory calibrations.\n") cont = input("\nReprogram EEPROM to bland defaults? (y/N)") if cont.lower() != "y": print("Cancelled") return # set all buffers to zero self.do_erase(value=0x00) # minimum set of defaults to allow ENLIGHTEN operation self.pack((0, 63, 1), "B", 15, "format") self.pack((0, 0, 16), "s", "WP-FOO", "model") self.pack((0, 16, 16), "s", "WP-00000", "serial_number") self.pack((0, 48, 4), "f", 1, "gain") self.pack((1, 4, 4), "f", 1, "wavecal_c1") self.pack((2, 0, 16), "s", "unknown", "detector") self.pack((2, 16, 2), "H", self.args.pixels, "active_pixels_horizontal") self.pack((2, 25, 2), "H", self.args.pixels, "actual_pixels_horizontal") self.pack((3, 40, 4), "I", 1, "min_integ") self.pack((3, 44, 4), "I", 60000, "max_integ") self.write_eeprom() def parse_eeprom(self): print("Parsing EEPROM") self.format = self.unpack((0, 63, 1), "B", "format") self.unpack((0, 0, 16), "s", "model") self.unpack((0, 16, 16), "s", "serial_number") self.unpack((0, 32, 4), "I", "baud_rate") self.unpack((0, 36, 1), "?", "has_cooling") self.unpack((0, 37, 1), "?", "has_battery") self.unpack((0, 38, 1), "?", "has_laser") self.unpack((0, 39, 2), "H", "feature_mask") self.unpack((0, 39, 2), "H", "excitation_nm") self.unpack((0, 41, 2), "H", "slit_um") self.unpack((0, 43, 2), "H", "start_integ") self.unpack((0, 45, 2), "h", "start_temp") self.unpack((0, 47, 1), "B", "start_trigger") self.unpack((0, 48, 4), "f", "gain") self.unpack((0, 52, 2), "h", "offset") self.unpack((0, 54, 4), "f", "gain_odd") self.unpack((0, 58, 2), "h", "offset_odd") self.unpack((1, 0, 4), "f", "wavecal_c0") self.unpack((1, 4, 4), "f", "wavecal_c1") self.unpack((1, 8, 4), "f", "wavecal_c2") self.unpack((1, 12, 4), "f", "wavecal_c3") self.unpack((1, 16, 4), "f", "degCtoDAC_c0") self.unpack((1, 20, 4), "f", "degCtoDAC_c1") self.unpack((1, 24, 4), "f", "degCtoDAC_c2") self.unpack((1, 28, 2), "h", "max_temp") self.unpack((1, 30, 2), "h", "min_temp") self.unpack((1, 32, 4), "f", "adcToDegC_c0") self.unpack((1, 36, 4), "f", "adcToDegC_c1") self.unpack((1, 40, 4), "f", "adcToDegC_c2") self.unpack((1, 44, 2), "h", "r298") self.unpack((1, 46, 2), "h", "beta") self.unpack((1, 48, 12), "s", "cal_date") self.unpack((1, 60, 3), "s", "cal_tech") self.unpack((2, 0, 16), "s", "detector") self.unpack((2, 16, 2), "H", "active_pixels_horizontal") self.unpack((2, 18, 1), "B", "laser_warmup_sec") self.unpack((2, 19, 2), "H", "active_pixels_vertical") self.unpack((2, 21, 4), "f", "wavecal_c4") self.unpack((2, 25, 2), "H", "actual_pixels_horizontal") self.unpack((2, 27, 2), "H", "roi_horiz_start") self.unpack((2, 29, 2), "H", "roi_horiz_end") self.unpack((2, 31, 2), "H", "roi_vertical_region_1_start") self.unpack((2, 33, 2), "H", "roi_vertical_region_1_end") self.unpack((2, 35, 2), "H", "roi_vertical_region_2_start") self.unpack((2, 37, 2), "H", "roi_vertical_region_2_end") self.unpack((2, 39, 2), "H", "roi_vertical_region_3_start") self.unpack((2, 41, 2), "H", "roi_vertical_region_3_end") self.unpack((2, 43, 4), "f", "linearity_c0") self.unpack((2, 47, 4), "f", "linearity_c1") self.unpack((2, 51, 4), "f", "linearity_c2") self.unpack((2, 55, 4), "f", "linearity_c3") self.unpack((2, 59, 4), "f", "linearity_c4") self.unpack((3, 12, 4), "f", "laser_power_c0") self.unpack((3, 16, 4), "f", "laser_power_c1") self.unpack((3, 20, 4), "f", "laser_power_c2") self.unpack((3, 24, 4), "f", "laser_power_c3") self.unpack((3, 28, 4), "f", "max_laser_mW") self.unpack((3, 32, 4), "f", "min_laser_mW") self.unpack((3, 36, 4), "f", "excitation_nm_float") self.unpack((3, 40, 4), "I", "min_integ") self.unpack((3, 44, 4), "I", "max_integ") self.unpack((3, 48, 4), "f", "avg_resolution") for field in self.field_names: print("%30s %s" % (field, self.fields[field])) ############################################################################ # Utility Methods ############################################################################ def debug(self, msg): if self.args.debug: print("DEBUG: %s" % msg) def send_cmd(self, cmd, value, index=0, buf=None): if buf is None: if self.pid == 0x4000: buf = [0] * 8 else: buf = "" self.debug("ctrl_transfer(%02x, %02x, %04x, %04x) >> %s" % (HOST_TO_DEVICE, cmd, value, index, buf)) self.dev.ctrl_transfer(HOST_TO_DEVICE, cmd, value, index, buf, TIMEOUT_MS) def get_cmd(self, cmd, value=0, index=0, length=64): return self.dev.ctrl_transfer(DEVICE_TO_HOST, cmd, value, index, length, TIMEOUT_MS) ## # Unpack a single field at a given buffer offset of the given datatype. # # @param address a tuple of the form (buf, offset, len) # @param data_type see https://docs.python.org/2/library/struct.html#format-characters # @param field where to store def unpack(self, address, data_type, field): page = address[0] start_byte = address[1] length = address[2] end_byte = start_byte + length if page > len(self.eeprom_pages): print("error unpacking EEPROM page %d, offset %d, len %d as %s: invalid page (field %s)" % ( page, start_byte, length, data_type, field)) return buf = self.eeprom_pages[page] if buf is None or end_byte > len(buf): print("error unpacking EEPROM page %d, offset %d, len %d as %s: buf is %s (field %s)" % ( page, start_byte, length, data_type, buf, field)) return if data_type == "s": # This stops at the first NULL, so is not appropriate for binary data (user_data). # OTOH, it doesn't currently enforce "printable" characters either (nor support Unicode). unpack_result = "" for c in buf[start_byte:end_byte]: if c == 0: break unpack_result += chr(c) else: unpack_result = 0 try: unpack_result = struct.unpack(data_type, buf[start_byte:end_byte])[0] except: print("error unpacking EEPROM page %d, offset %d, len %d as %s" % (page, start_byte, length, data_type)) return if field is None: self.debug("Unpacked [%s]: %s" % (data_type, unpack_result)) else: self.debug("Unpacked [%s]: %s (%s)" % (data_type, unpack_result, field)) self.field_names.append(field) self.fields[field] = unpack_result return unpack_result ## # Marshall or serialize a single field at a given buffer offset of the given datatype. # # @param address a tuple of the form (buf, offset, len) # @param data_type see https://docs.python.org/2/library/struct.html#format-characters # @param value value to serialize def pack(self, address, data_type, value, label=None): page = address[0] start_byte = address[1] length = address[2] end_byte = start_byte + length if page > len(self.eeprom_pages): raise Exception("error packing EEPROM page %d, offset %d, len %d as %s: invalid page (label %s)" % ( page, start_byte, length, data_type, label)) # don't try to write negatives to unsigned types if data_type in ["H", "I"] and value < 0: self.debug("rounding negative to zero when writing to unsigned field (address %s, data_type %s, value %s)" % (address, data_type, value)) value = 0 buf = self.eeprom_pages[page] if buf is None or end_byte > 64: # byte [63] for revision raise Exception("error packing EEPROM page %d, offset %2d, len %2d as %s: buf is %s" % ( page, start_byte, length, data_type, buf)) if data_type == "s": for i in range(min(length, len(value))): if i < len(value): buf[start_byte + i] = ord(value[i]) else: buf[start_byte + i] = 0 else: struct.pack_into(data_type, buf, start_byte, value) # self.debug("Packed (%d, %2d, %2d) '%s' value %s -> %s" % (page, start_byte, length, data_type, value, buf[start_byte:end_byte])) fixture = Fixture() if fixture.dev: fixture.run()
null
generic/eeprom-util.py
eeprom-util.py
py
18,429
python
en
code
null
code-starcoder2
83
[ { "api_name": "argparse.ArgumentParser", "line_number": 27, "usage_type": "call" }, { "api_name": "usb.core.core.find", "line_number": 46, "usage_type": "call" }, { "api_name": "usb.core.core", "line_number": 46, "usage_type": "attribute" }, { "api_name": "usb.core", "line_number": 46, "usage_type": "name" }, { "api_name": "json.load", "line_number": 93, "usage_type": "call" }, { "api_name": "re.search", "line_number": 98, "usage_type": "call" }, { "api_name": "re.match", "line_number": 137, "usage_type": "call" }, { "api_name": "re.search", "line_number": 151, "usage_type": "call" }, { "api_name": "re.search", "line_number": 155, "usage_type": "call" }, { "api_name": "re.search", "line_number": 162, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 224, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 377, "usage_type": "call" }, { "api_name": "struct.pack_into", "line_number": 425, "usage_type": "call" } ]
209464419
# -*- coding: utf-8 -*- #------------------------ # v2021-10-30 1. update test #======================== from flask import Flask, request, abort, render_template, Response from flask import json, jsonify, session, redirect, url_for #from flask_cors import CORS, cross_origin # for cross domain problem from flask import send_file import requests import csv import folium import geocoder from apscheduler.schedulers.background import BackgroundScheduler import os from sqlalchemy import create_engine import time app = Flask(__name__, static_url_path='', static_folder='static') @app.route("/", methods=['GET']) def basic_url(): return 'hello' @app.route("/hello", methods=['GET']) def hello(): name = request.args.get('name') return 'hello ' + name @app.route("/map/kh-parking", methods=['GET']) def map_kh_parking(): url = "https://data.kcg.gov.tw/dataset/449e45d9-dead-4873-95a9-cc34dabbb3af/resource/fe3f93da-9673-4f7b-859c-9017d793f798/download/108.6.21.csv" r = requests.get(url) print(r) decoded_content = r.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter=',') data_list = list(cr) # 開始產生地圖 location = geocoder.osm('高雄市').latlng m = folium.Map(location=location, zoom_start=14) for item in data_list[1:]: try: name = item[2] total = item[7] fee = item[10] lat = item[5] lng = item[4] info = '%s<br>%s<br>停車格數:%s' %(name, fee, total) folium.Marker([float(lat), float(lng)], tooltip=info, icon=folium.Icon(color='green', prefix='fa', icon='fa-car')).add_to(m) except Exception as e: print(e.args) m.save('./map_kh_parking.html') return send_file('./map_kh_parking.html') @app.route("/map/w01-6", methods=['GET']) def map_w01_6(): return app.send_static_file('W01-6.html') ##################### # Scheduler ##################### def job_wakeup(): print('cron fun1: awake myself') url = 'https://malo-cron2.herokuapp.com/' r = requests.get(url) print(r) def send_line(msg, token='rpHUQIIMkArQh6EtQpqfjK6hjPN2jjNxh0zDbcFVoD2'): url = "https://notify-api.line.me/api/notify" # --> 不支援http, 只能用https headers = {"Authorization" : "Bearer "+ token} title = '排程測試' message = '[%s] %s' %(title, msg) payload = {"message" : message} r = requests.post(url ,headers = headers ,params=payload) #- 空污通報 def job_function2(): url = 'https://data.epa.gov.tw/api/v1/aqx_p_432?format=json&api_key=9be7b239-557b-4c10-9775-78cadfc555e9' r = requests.get(url) print(r) data = r.json() records = data['records'] for item in records: if item['County']=='高雄市' and item['SiteName']=='鳳山': send_line('%s>> AQI=%s' %(item['SiteName'], item['AQI'])) #- 空污資料收集 def job_function3(): mysql_db_url = 'mysql+pymysql://user1:[email protected]:32769/testdb' my_db = create_engine(mysql_db_url) # check and create table resultProxy = my_db.execute("CREATE TABLE IF NOT EXISTS your_table (uuid text NOT NULL, time text NOT NULL, aqi text, pm25 text)") # get data url = 'https://data.epa.gov.tw/api/v1/aqx_p_432?format=json&api_key=9be7b239-557b-4c10-9775-78cadfc555e9' r = requests.get(url) data = r.json() records = data['records'] uuid = '' my_time = '' aqi = '' pm25 = '' for item in records: if item['County']=='高雄市': uuid = item['SiteName'] my_time = item['PublishTime'] aqi = item['AQI'] pm25 = item['PM2.5'] # insert resultProxy=my_db.execute("insert into your_table (uuid, time, aqi, pm25) values('%s', '%s', '%s', '%s')" %(uuid, my_time, aqi, pm25)) # get data from db resultProxy=my_db.execute("select * from your_table") data = resultProxy.fetchall() print('-- data --') print(data) def start_scheduler(): scheduler = BackgroundScheduler() # run every 10 minute scheduler.add_job(job_wakeup, 'cron', minute='*/10') # 每天早上6:30執行 scheduler.add_job(job_function2, 'cron', hour='6', minute='30') #scheduler.add_job(job_function2, 'cron', minute='*/1') # 每小時的20分執行 scheduler.add_job(job_function3, 'cron', minute='20') # start the scheduler scheduler.start() def run_web(): os.system('gunicorn -w 2 app:app') if __name__ == "__main__": #app.run() start_scheduler() run_web()
null
W05/W04_補充/flask-cron-03/app.py
app.py
py
4,674
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.Flask", "line_number": 22, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 30, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 30, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 30, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 36, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 39, "usage_type": "call" }, { "api_name": "geocoder.osm", "line_number": 43, "usage_type": "call" }, { "api_name": "folium.Map", "line_number": 44, "usage_type": "call" }, { "api_name": "folium.Marker", "line_number": 54, "usage_type": "call" }, { "api_name": "folium.Icon", "line_number": 55, "usage_type": "call" }, { "api_name": "flask.send_file", "line_number": 62, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 76, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 86, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 91, "usage_type": "call" }, { "api_name": "sqlalchemy.create_engine", "line_number": 102, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 109, "usage_type": "call" }, { "api_name": "apscheduler.schedulers.background.BackgroundScheduler", "line_number": 133, "usage_type": "call" }, { "api_name": "os.system", "line_number": 149, "usage_type": "call" } ]
410073298
# -*- coding: utf-8 -*- import json """ --- Day 12: JSAbacusFramework.io --- Santa's Accounting-Elves need help balancing the books after a recent order. Unfortunately, their accounting software uses a peculiar storage format. That's where you come in. They have a JSON document which contains a variety of things: arrays ([1,2,3]), objects ({"a":1, "b":2}), numbers, and strings. Your first job is to simply find all of the numbers throughout the document and add them together. For example: [1,2,3] and {"a":2,"b":4} both have a sum of 6. [[[3]]] and {"a":{"b":4},"c":-1} both have a sum of 3. {"a":[-1,1]} and [-1,{"a":1}] both have a sum of 0. [] and {} both have a sum of 0. You will not encounter any strings containing numbers. What is the sum of all numbers in the document? """ def advent_day_12(json_doc, red_matters=False): def find_numbers_sum(json_object): nsum = 0 if isinstance(json_object, int): return json_object elif isinstance(json_object, list): for obj in json_object: nsum += find_numbers_sum(obj) elif isinstance(json_object, dict): dict_sum = 0 for k, v in json_object.items(): if red_matters and v == 'red': dict_sum = 0 break dict_sum += find_numbers_sum(v) nsum += dict_sum return nsum doc = json.loads(json_doc) return find_numbers_sum(doc)
null
day12.py
day12.py
py
1,386
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.loads", "line_number": 48, "usage_type": "call" } ]
132469264
#!/usr/bin/python3 ''' starts a Flask web application ''' from flask import Flask, render_template from models import storage app = Flask(__name__) @app.route('/hbnb', strict_slashes=False) def states_hbnb(): ''' display “states HBNB!” ''' list_state = list(storage.all("State").values()) list_amenity = list(storage.all("Amenity").values()) list_place = list(storage.all("Place").values()) list_user = list(storage.all("User").values()) return render_template('100-hbnb.html', list_state=list_state, list_amenity=list_amenity, list_place=list_place, list_user=list_user) @app.teardown_appcontext def state_close(error): ''' close the session ''' storage.close() if __name__ == '__main__': app.run(host='0.0.0.0')
null
web_flask/100-hbnb.py
100-hbnb.py
py
813
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.Flask", "line_number": 5, "usage_type": "call" }, { "api_name": "models.storage.all", "line_number": 11, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 11, "usage_type": "name" }, { "api_name": "models.storage.all", "line_number": 12, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 12, "usage_type": "name" }, { "api_name": "models.storage.all", "line_number": 13, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 13, "usage_type": "name" }, { "api_name": "models.storage.all", "line_number": 14, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 14, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 15, "usage_type": "call" }, { "api_name": "models.storage.close", "line_number": 23, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 23, "usage_type": "name" } ]
123157719
# -*- coding: utf-8 -*- """ Created on Wed Jul 18 17:37:51 2018 @author: 10257 """ import urllib.request as r import json url = [] for i in range(0,100): i+=44 url.append("https://s.taobao.com/search?q=%E8%A3%99%E5%AD%90&imgfile=&commend=all&ssid=s5-e&search_type=item&sourceId=tb.index&spm=a21bo.2017.201856-taobao-item.1&ie=utf8&initiative_id=tbindexz_20170306&bcoffset=3&ntoffset=3&p4ppushleft=1%2C48&s="+str(i)+"&ajax=true") def PaQu(): f=open('淘宝数据.csv','w',encoding='gbk') for i in range(100): data = r.urlopen(url[i]).read().decode('utf-8','ignore') data = json.loads(data) for i in range(40): f.write(data["mods"]["itemlist"]["data"]["auctions"][i]["view_price"] ,data["mods"]["itemlist"]["data"]["auctions"][i]["view_sales"], data["mods"]["itemlist"]["data"]["auctions"][i]["raw_title"]+'\n') f.close() print("爬取结束") PaQu()
null
case7.py
case7.py
py
976
python
en
code
null
code-starcoder2
83
[ { "api_name": "urllib.request.urlopen", "line_number": 17, "usage_type": "call" }, { "api_name": "urllib.request", "line_number": 17, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 18, "usage_type": "call" } ]
174146171
#Flask RestFul #Get #Post #Put #Delete from flask import Flask from flask_restful import Api,Resource from Controller.cerveja_controller import CervejaController app=Flask(__name__) api=Api(app) api.add_resource(CervejaController,'/api/cerveja') @app.route('/') def inicio(): return 'Bem vindo a API' app.run(debug=True,port=80)
null
Aula36/aula36.py
aula36.py
py
335
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.Flask", "line_number": 10, "usage_type": "call" }, { "api_name": "flask_restful.Api", "line_number": 11, "usage_type": "call" }, { "api_name": "Controller.cerveja_controller.CervejaController", "line_number": 12, "usage_type": "argument" } ]
618230781
# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from ..items import JobboleSpiderItem from scrapy.loader import ItemLoader class JobboleSpider(CrawlSpider): name = 'jobbole' allowed_domains = ['web.jobbole.com'] start_urls = ['http://web.jobbole.com/all-posts/page/1/'] rules = ( Rule(LinkExtractor( allow=r'http:\/\/web.jobbole.com\/all-posts\/page\/\d+\/')), Rule(LinkExtractor(allow=r'http:\/\/web.jobbole.com\/\d+\/$'), callback='parse_item', follow=True), ) def parse_item(self, response): loader = ItemLoader(item=JobboleSpiderItem(), response=response) loader.add_css('title', '.entry-header h1::text') loader.add_css('tags', '.entry-meta-hide-on-mobile') loader.add_css('create_time', '.entry-meta-hide-on-mobile') loader.add_value('link', response.url) yield loader.load_item()
null
jobbole_spider/spiders/jobbole.py
jobbole.py
py
987
python
en
code
null
code-starcoder2
83
[ { "api_name": "scrapy.spiders.CrawlSpider", "line_number": 9, "usage_type": "name" }, { "api_name": "scrapy.spiders.Rule", "line_number": 15, "usage_type": "call" }, { "api_name": "scrapy.linkextractors.LinkExtractor", "line_number": 15, "usage_type": "call" }, { "api_name": "scrapy.spiders.Rule", "line_number": 17, "usage_type": "call" }, { "api_name": "scrapy.linkextractors.LinkExtractor", "line_number": 17, "usage_type": "call" }, { "api_name": "scrapy.loader.ItemLoader", "line_number": 22, "usage_type": "call" }, { "api_name": "items.JobboleSpiderItem", "line_number": 22, "usage_type": "call" } ]
67376494
import mysql.connector import logging import pandas as pd import os from pathlib import Path logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) from util.json_util import * class db_connector: def __init__(self): self.connectorCode = "DB" conn_relative_path = Path('config') try: config = read_json(os.path.join(conn_relative_path, "db_param.json")) self.config = config except Exception: logger.fatal("NO Database Connection Configuration") raise Exception def initial_connection_cursor(self): conn = mysql.connector.connect(**self.config) return conn ,conn.cursor(buffered=True) def GET(self,table_name,column=None, condition=None): if column: column_str = ','.join(column) else: column_str = '*' logger.info(condition) if condition: tmp = [] for item in condition.keys(): tmp.append(f"{item} = '{condition[item]}'") tmp_str = ' AND '.join(tmp) condition_str = f'WHERE {tmp_str}' else: condition_str = '' query = f'SELECT {column_str} FROM {table_name} {condition_str}' logger.info(query) conn , cursor = self._execute(query) ret = pd.DataFrame(cursor.fetchall()) logger.info(ret) return ret def UPDATE(self,table_name,value:dict,condition:dict): set_tmp = [] condition_tmp = [] for item in value.keys(): set_tmp.append(f"{item}='{value[item]}'") for item in condition.keys(): condition_tmp.append(f"{item} = '{condition[item]}'") set_str = ','.join(set_tmp) tmp_str = ' AND '.join(condition_tmp) condition_str = f'WHERE {tmp_str}' query = f'UPDATE {table_name} SET {set_str} {condition_str}' logger.info(query) conn, cursor = self._execute(query) conn.close() def INSERT(self,table_name,data_dict): #retrieve data column_str,value_str = self.form_column(data_dict) query = f'INSERT INTO {table_name} ' \ f'{column_str} VALUES {value_str}' #(example,example) conn , cursor = self._execute(query,data_dict) conn.close() def INSERT_MANY(self,table_name,data_list): #retrieve data for item in data_list: data_dict = item column_str,value_str = self.form_column(data_dict) query = f'INSERT INTO {table_name} ' \ f'{column_str} VALUES {value_str}' #(example,example) conn , cursor = self._execute(query,data_dict) conn.close() def DELETE(self,table_name:str,condition:dict): if condition is None: raise Exception return None tmp = [] for item in condition.keys(): tmp.append(f"{item} = '{condition[item]}'") tmp_str = ' AND '.join(tmp) condition_str = f'WHERE {tmp_str}' query = f'DELETE FROM {table_name} {condition_str}' conn , cursor = self._execute(query) conn.close() def form_column(self,data_dict:dict): column_key = data_dict.keys() column = ','.join(column_key) ret_column = f'({column})' tmp = [] for item in column_key: tmp.append(f'%({item})s') value = ','.join(tmp) ret_value = f'({value})' return ret_column , ret_value def CUSTOM(self,query): conn , cursor = self._execute(query) ret = pd.DataFrame(cursor.fetchall()) conn.close() return ret def _execute(self,query,value_dict=()): try: conn , cursor = self.initial_connection_cursor() cursor.execute(query,value_dict) conn.commit() return conn , cursor #conn.close() except Exception as e: logger.error(e)
null
transport/db_transport.py
db_transport.py
py
4,188
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.basicConfig", "line_number": 6, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 6, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 7, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "mysql.connector.connector.connect", "line_number": 23, "usage_type": "call" }, { "api_name": "mysql.connector.connector", "line_number": 23, "usage_type": "attribute" }, { "api_name": "mysql.connector", "line_number": 23, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 46, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 114, "usage_type": "call" } ]
64076946
from django.shortcuts import render,redirect from .models import Question from django.http import HttpResponse,HttpResponseRedirect from django.core.urlresolvers import reverse import json def Home_view(request): msg='Hi' return render(request,'QDemo/Home.html',{'msg':msg}) def RootQuestion_view(request): question=Question.objects.all().order_by('id')[0] return render(request,'QDemo/Questions.html',{'question':question}) def GetQuestion_view(request): if request.method=='POST': pk=int(request.POST['pkOfPrecedentQ']) response=request.POST['responseToPrecedentQ'] nextQuestion=Question.objects.get(pk=pk).childID if nextQuestion: leaf=1 nextQtext=nextQuestion.text nextQpk=nextQuestion.id nextQResponses=nextQuestion.responses nextQCategory=nextQuestion.category datarespons=json.dumps({'text': nextQtext,'pk':nextQpk,'responses':nextQResponses,'category':nextQCategory,'IsAleaf':leaf}) print (datarespons) return HttpResponse(datarespons, content_type="application/json") else: leaf=0 url=reverse('Result') datarespons=json.dumps({'url':url,'IsAleaf':leaf}) return HttpResponse(datarespons, content_type="application/json") def Result_view (request): cadeau='TaMere' return render(request,'QDemo/result.html',{'cadeau':cadeau}) # Create your views here.
null
QDemo/views.py
views.py
py
1,313
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.shortcuts.render", "line_number": 8, "usage_type": "call" }, { "api_name": "models.Question.objects.all", "line_number": 10, "usage_type": "call" }, { "api_name": "models.Question.objects", "line_number": 10, "usage_type": "attribute" }, { "api_name": "models.Question", "line_number": 10, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 11, "usage_type": "call" }, { "api_name": "models.Question.objects.get", "line_number": 16, "usage_type": "call" }, { "api_name": "models.Question.objects", "line_number": 16, "usage_type": "attribute" }, { "api_name": "models.Question", "line_number": 16, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 23, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 25, "usage_type": "call" }, { "api_name": "django.core.urlresolvers.reverse", "line_number": 28, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 29, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 30, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 33, "usage_type": "call" } ]
130556696
import voluptuous as vol import esphomeyaml.config_validation as cv from esphomeyaml import automation from esphomeyaml.const import CONF_DEVICE_CLASS, CONF_ID, CONF_INTERNAL, CONF_INVERTED, \ CONF_MAX_LENGTH, CONF_MIN_LENGTH, CONF_MQTT_ID, CONF_ON_CLICK, CONF_ON_DOUBLE_CLICK, \ CONF_ON_PRESS, CONF_ON_RELEASE, CONF_TRIGGER_ID, CONF_FILTERS, CONF_INVERT, CONF_DELAYED_ON, \ CONF_DELAYED_OFF, CONF_LAMBDA, CONF_HEARTBEAT from esphomeyaml.helpers import App, NoArg, Pvariable, add, add_job, esphomelib_ns, \ setup_mqtt_component, bool_, process_lambda, ArrayInitializer DEVICE_CLASSES = [ '', 'battery', 'cold', 'connectivity', 'door', 'garage_door', 'gas', 'heat', 'light', 'lock', 'moisture', 'motion', 'moving', 'occupancy', 'opening', 'plug', 'power', 'presence', 'problem', 'safety', 'smoke', 'sound', 'vibration', 'window' ] PLATFORM_SCHEMA = cv.PLATFORM_SCHEMA.extend({ }) binary_sensor_ns = esphomelib_ns.namespace('binary_sensor') PressTrigger = binary_sensor_ns.PressTrigger ReleaseTrigger = binary_sensor_ns.ReleaseTrigger ClickTrigger = binary_sensor_ns.ClickTrigger DoubleClickTrigger = binary_sensor_ns.DoubleClickTrigger BinarySensor = binary_sensor_ns.BinarySensor InvertFilter = binary_sensor_ns.InvertFilter LambdaFilter = binary_sensor_ns.LambdaFilter DelayedOnFilter = binary_sensor_ns.DelayedOnFilter DelayedOffFilter = binary_sensor_ns.DelayedOffFilter HeartbeatFilter = binary_sensor_ns.HeartbeatFilter MQTTBinarySensorComponent = binary_sensor_ns.MQTTBinarySensorComponent FILTER_KEYS = [CONF_INVERT, CONF_DELAYED_ON, CONF_DELAYED_OFF, CONF_LAMBDA, CONF_HEARTBEAT] FILTERS_SCHEMA = vol.All(cv.ensure_list, [vol.All({ vol.Optional(CONF_INVERT): None, vol.Optional(CONF_DELAYED_ON): cv.positive_time_period_milliseconds, vol.Optional(CONF_DELAYED_OFF): cv.positive_time_period_milliseconds, vol.Optional(CONF_HEARTBEAT): cv.positive_time_period_milliseconds, vol.Optional(CONF_LAMBDA): cv.lambda_, }, cv.has_exactly_one_key(*FILTER_KEYS))]) BINARY_SENSOR_SCHEMA = cv.MQTT_COMPONENT_SCHEMA.extend({ cv.GenerateID(CONF_MQTT_ID): cv.declare_variable_id(MQTTBinarySensorComponent), cv.GenerateID(): cv.declare_variable_id(BinarySensor), vol.Optional(CONF_DEVICE_CLASS): vol.All(vol.Lower, cv.one_of(*DEVICE_CLASSES)), vol.Optional(CONF_FILTERS): FILTERS_SCHEMA, vol.Optional(CONF_ON_PRESS): vol.All(cv.ensure_list, [automation.validate_automation({ cv.GenerateID(CONF_TRIGGER_ID): cv.declare_variable_id(PressTrigger), })]), vol.Optional(CONF_ON_RELEASE): vol.All(cv.ensure_list, [automation.validate_automation({ cv.GenerateID(CONF_TRIGGER_ID): cv.declare_variable_id(ReleaseTrigger), })]), vol.Optional(CONF_ON_CLICK): vol.All(cv.ensure_list, [automation.validate_automation({ cv.GenerateID(CONF_TRIGGER_ID): cv.declare_variable_id(ClickTrigger), vol.Optional(CONF_MIN_LENGTH, default='50ms'): cv.positive_time_period_milliseconds, vol.Optional(CONF_MAX_LENGTH, default='350ms'): cv.positive_time_period_milliseconds, })]), vol.Optional(CONF_ON_DOUBLE_CLICK): vol.All(cv.ensure_list, [automation.validate_automation({ cv.GenerateID(CONF_TRIGGER_ID): cv.declare_variable_id(DoubleClickTrigger), vol.Optional(CONF_MIN_LENGTH, default='50ms'): cv.positive_time_period_milliseconds, vol.Optional(CONF_MAX_LENGTH, default='350ms'): cv.positive_time_period_milliseconds, })]), vol.Optional(CONF_INVERTED): cv.invalid( "The inverted binary_sensor property has been replaced by the " "new 'invert' binary sensor filter. Please see " "https://esphomelib.com/esphomeyaml/components/binary_sensor/index.html." ), }) BINARY_SENSOR_PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend(BINARY_SENSOR_SCHEMA.schema) def setup_filter(config): if CONF_INVERT in config: yield InvertFilter.new() elif CONF_DELAYED_OFF in config: yield App.register_component(DelayedOffFilter.new(config[CONF_DELAYED_OFF])) elif CONF_DELAYED_ON in config: yield App.register_component(DelayedOnFilter.new(config[CONF_DELAYED_ON])) elif CONF_HEARTBEAT in config: yield App.register_component(HeartbeatFilter.new(config[CONF_HEARTBEAT])) elif CONF_LAMBDA in config: lambda_ = None for lambda_ in process_lambda(config[CONF_LAMBDA], [(bool_, 'x')]): yield None yield LambdaFilter.new(lambda_) def setup_filters(config): filters = [] for conf in config: filter = None for filter in setup_filter(conf): yield None filters.append(filter) yield ArrayInitializer(*filters) def setup_binary_sensor_core_(binary_sensor_var, mqtt_var, config): if CONF_INTERNAL in config: add(binary_sensor_var.set_internal(CONF_INTERNAL)) if CONF_DEVICE_CLASS in config: add(binary_sensor_var.set_device_class(config[CONF_DEVICE_CLASS])) if CONF_INVERTED in config: add(binary_sensor_var.set_inverted(config[CONF_INVERTED])) if CONF_FILTERS in config: filters = None for filters in setup_filters(config[CONF_FILTERS]): yield add(binary_sensor_var.add_filters(filters)) for conf in config.get(CONF_ON_PRESS, []): rhs = binary_sensor_var.make_press_trigger() trigger = Pvariable(conf[CONF_TRIGGER_ID], rhs) automation.build_automation(trigger, NoArg, conf) for conf in config.get(CONF_ON_RELEASE, []): rhs = binary_sensor_var.make_release_trigger() trigger = Pvariable(conf[CONF_TRIGGER_ID], rhs) automation.build_automation(trigger, NoArg, conf) for conf in config.get(CONF_ON_CLICK, []): rhs = binary_sensor_var.make_click_trigger(conf[CONF_MIN_LENGTH], conf[CONF_MAX_LENGTH]) trigger = Pvariable(conf[CONF_TRIGGER_ID], rhs) automation.build_automation(trigger, NoArg, conf) for conf in config.get(CONF_ON_DOUBLE_CLICK, []): rhs = binary_sensor_var.make_double_click_trigger(conf[CONF_MIN_LENGTH], conf[CONF_MAX_LENGTH]) trigger = Pvariable(conf[CONF_TRIGGER_ID], rhs) automation.build_automation(trigger, NoArg, conf) setup_mqtt_component(mqtt_var, config) def setup_binary_sensor(binary_sensor_obj, mqtt_obj, config): binary_sensor_var = Pvariable(config[CONF_ID], binary_sensor_obj, has_side_effects=False) mqtt_var = Pvariable(config[CONF_MQTT_ID], mqtt_obj, has_side_effects=False) add_job(setup_binary_sensor_core_, binary_sensor_var, mqtt_var, config) def register_binary_sensor(var, config): binary_sensor_var = Pvariable(config[CONF_ID], var, has_side_effects=True) rhs = App.register_binary_sensor(binary_sensor_var) mqtt_var = Pvariable(config[CONF_MQTT_ID], rhs, has_side_effects=True) add_job(setup_binary_sensor_core_, binary_sensor_var, mqtt_var, config) BUILD_FLAGS = '-DUSE_BINARY_SENSOR'
null
esphomeyaml/components/binary_sensor/__init__.py
__init__.py
py
7,072
python
en
code
null
code-starcoder2
83
[ { "api_name": "esphomeyaml.config_validation.PLATFORM_SCHEMA.extend", "line_number": 19, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.PLATFORM_SCHEMA", "line_number": 19, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 19, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.esphomelib_ns.namespace", "line_number": 23, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.esphomelib_ns", "line_number": 23, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_INVERT", "line_number": 36, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_DELAYED_ON", "line_number": 36, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_DELAYED_OFF", "line_number": 36, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_LAMBDA", "line_number": 36, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_HEARTBEAT", "line_number": 36, "usage_type": "name" }, { "api_name": "voluptuous.All", "line_number": 38, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.ensure_list", "line_number": 38, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 38, "usage_type": "name" }, { "api_name": "voluptuous.Optional", "line_number": 39, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_INVERT", "line_number": 39, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 40, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_DELAYED_ON", "line_number": 40, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 41, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_DELAYED_OFF", "line_number": 41, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 42, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_HEARTBEAT", "line_number": 42, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 43, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_LAMBDA", "line_number": 43, "usage_type": "argument" }, { "api_name": "esphomeyaml.config_validation.positive_time_period_milliseconds", "line_number": 40, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 40, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.positive_time_period_milliseconds", "line_number": 41, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 41, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.positive_time_period_milliseconds", "line_number": 42, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 42, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.lambda_", "line_number": 43, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 43, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.has_exactly_one_key", "line_number": 44, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation", "line_number": 44, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.MQTT_COMPONENT_SCHEMA.extend", "line_number": 46, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.MQTT_COMPONENT_SCHEMA", "line_number": 46, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 46, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.GenerateID", "line_number": 47, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_MQTT_ID", "line_number": 47, "usage_type": "argument" }, { "api_name": "esphomeyaml.config_validation", "line_number": 47, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.GenerateID", "line_number": 48, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation", "line_number": 48, "usage_type": "name" }, { "api_name": "voluptuous.Optional", "line_number": 50, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_DEVICE_CLASS", "line_number": 50, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 51, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_FILTERS", "line_number": 51, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 52, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_ON_PRESS", "line_number": 52, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 55, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_ON_RELEASE", "line_number": 55, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 58, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_ON_CLICK", "line_number": 58, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 63, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_ON_DOUBLE_CLICK", "line_number": 63, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 70, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_INVERTED", "line_number": 70, "usage_type": "argument" }, { "api_name": "esphomeyaml.config_validation.declare_variable_id", "line_number": 47, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.declare_variable_id", "line_number": 48, "usage_type": "call" }, { "api_name": "voluptuous.All", "line_number": 50, "usage_type": "call" }, { "api_name": "voluptuous.Lower", "line_number": 50, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation.one_of", "line_number": 50, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation", "line_number": 50, "usage_type": "name" }, { "api_name": "voluptuous.All", "line_number": 52, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.ensure_list", "line_number": 52, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 52, "usage_type": "name" }, { "api_name": "esphomeyaml.automation.validate_automation", "line_number": 52, "usage_type": "call" }, { "api_name": "esphomeyaml.automation", "line_number": 52, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.GenerateID", "line_number": 53, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_TRIGGER_ID", "line_number": 53, "usage_type": "argument" }, { "api_name": "esphomeyaml.config_validation", "line_number": 53, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.declare_variable_id", "line_number": 53, "usage_type": "call" }, { "api_name": "voluptuous.All", "line_number": 55, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.ensure_list", "line_number": 55, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 55, "usage_type": "name" }, { "api_name": "esphomeyaml.automation.validate_automation", "line_number": 55, "usage_type": "call" }, { "api_name": "esphomeyaml.automation", "line_number": 55, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.GenerateID", "line_number": 56, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_TRIGGER_ID", "line_number": 56, "usage_type": "argument" }, { "api_name": "esphomeyaml.config_validation", "line_number": 56, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.declare_variable_id", "line_number": 56, "usage_type": "call" }, { "api_name": "voluptuous.All", "line_number": 58, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.ensure_list", "line_number": 58, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 58, "usage_type": "name" }, { "api_name": "esphomeyaml.automation.validate_automation", "line_number": 58, "usage_type": "call" }, { "api_name": "esphomeyaml.automation", "line_number": 58, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.GenerateID", "line_number": 59, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_TRIGGER_ID", "line_number": 59, "usage_type": "argument" }, { "api_name": "esphomeyaml.config_validation", "line_number": 59, "usage_type": "name" }, { "api_name": "voluptuous.Optional", "line_number": 60, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_MIN_LENGTH", "line_number": 60, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 61, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_MAX_LENGTH", "line_number": 61, "usage_type": "argument" }, { "api_name": "esphomeyaml.config_validation.declare_variable_id", "line_number": 59, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.positive_time_period_milliseconds", "line_number": 60, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 60, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.positive_time_period_milliseconds", "line_number": 61, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 61, "usage_type": "name" }, { "api_name": "voluptuous.All", "line_number": 64, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.ensure_list", "line_number": 64, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 64, "usage_type": "name" }, { "api_name": "esphomeyaml.automation.validate_automation", "line_number": 64, "usage_type": "call" }, { "api_name": "esphomeyaml.automation", "line_number": 64, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.GenerateID", "line_number": 65, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_TRIGGER_ID", "line_number": 65, "usage_type": "argument" }, { "api_name": "esphomeyaml.config_validation", "line_number": 65, "usage_type": "name" }, { "api_name": "voluptuous.Optional", "line_number": 66, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_MIN_LENGTH", "line_number": 66, "usage_type": "argument" }, { "api_name": "voluptuous.Optional", "line_number": 67, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_MAX_LENGTH", "line_number": 67, "usage_type": "argument" }, { "api_name": "esphomeyaml.config_validation.declare_variable_id", "line_number": 65, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation.positive_time_period_milliseconds", "line_number": 66, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 66, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.positive_time_period_milliseconds", "line_number": 67, "usage_type": "attribute" }, { "api_name": "esphomeyaml.config_validation", "line_number": 67, "usage_type": "name" }, { "api_name": "esphomeyaml.config_validation.invalid", "line_number": 70, "usage_type": "call" }, { "api_name": "esphomeyaml.config_validation", "line_number": 70, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_INVERT", "line_number": 81, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_DELAYED_OFF", "line_number": 83, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.App.register_component", "line_number": 84, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.App", "line_number": 84, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_DELAYED_OFF", "line_number": 84, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_DELAYED_ON", "line_number": 85, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.App.register_component", "line_number": 86, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.App", "line_number": 86, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_DELAYED_ON", "line_number": 86, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_HEARTBEAT", "line_number": 87, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.App.register_component", "line_number": 88, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.App", "line_number": 88, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_HEARTBEAT", "line_number": 88, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_LAMBDA", "line_number": 89, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.process_lambda", "line_number": 91, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_LAMBDA", "line_number": 91, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.bool_", "line_number": 91, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.ArrayInitializer", "line_number": 103, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_INTERNAL", "line_number": 107, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.add", "line_number": 108, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_INTERNAL", "line_number": 108, "usage_type": "argument" }, { "api_name": "esphomeyaml.const.CONF_DEVICE_CLASS", "line_number": 109, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.add", "line_number": 110, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_DEVICE_CLASS", "line_number": 110, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_INVERTED", "line_number": 111, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.add", "line_number": 112, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_INVERTED", "line_number": 112, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_FILTERS", "line_number": 113, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_FILTERS", "line_number": 115, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.add", "line_number": 117, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_ON_PRESS", "line_number": 119, "usage_type": "argument" }, { "api_name": "esphomeyaml.helpers.Pvariable", "line_number": 121, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_TRIGGER_ID", "line_number": 121, "usage_type": "name" }, { "api_name": "esphomeyaml.automation.build_automation", "line_number": 122, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.NoArg", "line_number": 122, "usage_type": "argument" }, { "api_name": "esphomeyaml.automation", "line_number": 122, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_ON_RELEASE", "line_number": 124, "usage_type": "argument" }, { "api_name": "esphomeyaml.helpers.Pvariable", "line_number": 126, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_TRIGGER_ID", "line_number": 126, "usage_type": "name" }, { "api_name": "esphomeyaml.automation.build_automation", "line_number": 127, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.NoArg", "line_number": 127, "usage_type": "argument" }, { "api_name": "esphomeyaml.automation", "line_number": 127, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_ON_CLICK", "line_number": 129, "usage_type": "argument" }, { "api_name": "esphomeyaml.const.CONF_MIN_LENGTH", "line_number": 130, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_MAX_LENGTH", "line_number": 130, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.Pvariable", "line_number": 131, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_TRIGGER_ID", "line_number": 131, "usage_type": "name" }, { "api_name": "esphomeyaml.automation.build_automation", "line_number": 132, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.NoArg", "line_number": 132, "usage_type": "argument" }, { "api_name": "esphomeyaml.automation", "line_number": 132, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_ON_DOUBLE_CLICK", "line_number": 134, "usage_type": "argument" }, { "api_name": "esphomeyaml.const.CONF_MIN_LENGTH", "line_number": 135, "usage_type": "name" }, { "api_name": "esphomeyaml.const.CONF_MAX_LENGTH", "line_number": 136, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.Pvariable", "line_number": 137, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_TRIGGER_ID", "line_number": 137, "usage_type": "name" }, { "api_name": "esphomeyaml.automation.build_automation", "line_number": 138, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.NoArg", "line_number": 138, "usage_type": "argument" }, { "api_name": "esphomeyaml.automation", "line_number": 138, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.setup_mqtt_component", "line_number": 140, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.Pvariable", "line_number": 144, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_ID", "line_number": 144, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.Pvariable", "line_number": 146, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_MQTT_ID", "line_number": 146, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.add_job", "line_number": 148, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.Pvariable", "line_number": 152, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_ID", "line_number": 152, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.App.register_binary_sensor", "line_number": 153, "usage_type": "call" }, { "api_name": "esphomeyaml.helpers.App", "line_number": 153, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.Pvariable", "line_number": 154, "usage_type": "call" }, { "api_name": "esphomeyaml.const.CONF_MQTT_ID", "line_number": 154, "usage_type": "name" }, { "api_name": "esphomeyaml.helpers.add_job", "line_number": 155, "usage_type": "call" } ]
279953303
"""Table-of-contents magic for IPython Notebook Just do: %load_ext nbtoc %nbtoc to get a floating table of contents All the interesting code, c/o @magican and @nonamenix: https://gist.github.com/magican/5574556 """ import io import os from IPython.display import display_html, display_javascript here = os.path.abspath(os.path.dirname(__file__)) if not os.path.isfile(os.path.join(here, 'nbtoc.js')) or not os.path.isfile(os.path.join(here, 'nbtoc.js')): import urllib2 def download(url, fout): """ Saves the url file to fout filename """ filein = urllib2.urlopen(url) fileout = open(fout, "wb") while True: bytes = filein.read(1*1024) # 1*1024bytes fileout.write(bytes) if bytes == "": break filein.close() fileout.close() download('https://raw.github.com/minrk/ipython_extensions/master/nbtoc.js', os.path.join(here, 'nbtoc.js')) download('https://raw.github.com/minrk/ipython_extensions/master/nbtoc.html', os.path.join(here, 'nbtoc.html')) with io.open(os.path.join(here, 'nbtoc.js')) as f: toc_js = f.read() with io.open(os.path.join(here, 'nbtoc.html')) as f: toc_html = f.read() def nbtoc(line): display_html(toc_html, raw=True) display_javascript(toc_js, raw=True) def load_ipython_extension(ip): ip.magics_manager.register_function(nbtoc)
null
nbtoc.py
nbtoc.py
py
1,386
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.abspath", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path", "line_number": 23, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 23, "usage_type": "call" }, { "api_name": "urllib2.urlopen", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 39, "usage_type": "call" }, { "api_name": "os.path", "line_number": 39, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path", "line_number": 40, "usage_type": "attribute" }, { "api_name": "io.open", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 42, "usage_type": "call" }, { "api_name": "os.path", "line_number": 42, "usage_type": "attribute" }, { "api_name": "io.open", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "IPython.display.display_html", "line_number": 49, "usage_type": "call" }, { "api_name": "IPython.display.display_javascript", "line_number": 50, "usage_type": "call" } ]
381817887
import paho.mqtt.client as mqtt import time import csv import datetime import pyradamsa rad = pyradamsa.Radamsa() topic = "dev/test" m = "Sending message " def on_connect(client, userdata, flags, rc): print(f"Connected with result code {rc}") client = mqtt.Client() cases = [] with open("usernames-to-mutate.txt") as f: lines = f.readlines() for ele in lines: cases.append(ele.rstrip())#they have a \n so I removed it def write_to_file(testCase, topic, message): with open("sent_log.csv", 'a', encoding="utf-8", newline="") as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow([datetime.datetime.now(), testCase, topic, message]) for ele in cases: for i in range(10000): case = rad.fuzz(ele.encode("UTF-8")) decodedCase = case.decode("UTF-8", "ignore") client.username_pw_set(username=decodedCase, password="password")#make sure allow anonymous is true and there is no linked password file client.on_connect = on_connect client.connect("192.168.0.25", 1883, 60) message = m + str(i) + " with original topic " + ele client.publish(topic, payload=message, qos=0, retain=False) write_to_file(decodedCase, topic, message) client.disconnect() print("Done")
null
Simple fuzzer/username fuzz/mqtt username fuzz.py
mqtt username fuzz.py
py
1,291
python
en
code
null
code-starcoder2
83
[ { "api_name": "pyradamsa.Radamsa", "line_number": 7, "usage_type": "call" }, { "api_name": "paho.mqtt.client.Client", "line_number": 14, "usage_type": "call" }, { "api_name": "paho.mqtt.client", "line_number": 14, "usage_type": "name" }, { "api_name": "csv.writer", "line_number": 24, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 25, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 25, "usage_type": "attribute" } ]
18329281
import os os.environ['KMP_DUPLICATE_LIB_OK']='True' import warnings warnings.filterwarnings("ignore") from PIL import Image import numpy as np from colorizers import eccv16, siggraph17 from skimage import color import torch import torch.nn.functional as F from IPython import embed import argparse import matplotlib.pyplot as plt import cv2 import sys image_path = sys.argv[1] image_name = sys.argv[2] def load_img(img_path): out_np = np.asarray(Image.open(img_path)) if(out_np.ndim==2): out_np = np.tile(out_np[:,:,None],3) return out_np def resize_img(img, HW=(256,256), resample=3): return np.asarray(Image.fromarray(img).resize((HW[1],HW[0]), resample=resample)) def preprocess_img(img_rgb_orig, HW=(256,256), resample=3): # return original size L and resized L as torch Tensors img_rgb_rs = resize_img(img_rgb_orig, HW=HW, resample=resample) img_lab_orig = color.rgb2lab(img_rgb_orig) img_lab_rs = color.rgb2lab(img_rgb_rs) img_l_orig = img_lab_orig[:,:,0] img_l_rs = img_lab_rs[:,:,0] tens_orig_l = torch.Tensor(img_l_orig)[None,None,:,:] tens_rs_l = torch.Tensor(img_l_rs)[None,None,:,:] return (tens_orig_l, tens_rs_l) def postprocess_tens(tens_orig_l, out_ab, mode='bilinear'): # tens_orig_l 1 x 1 x H_orig x W_orig # out_ab 1 x 2 x H x W HW_orig = tens_orig_l.shape[2:] HW = out_ab.shape[2:] # call resize function if needed if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]): out_ab_orig = F.interpolate(out_ab, size=HW_orig, mode='bilinear') else: out_ab_orig = out_ab out_lab_orig = torch.cat((tens_orig_l, out_ab_orig), dim=1) return color.lab2rgb(out_lab_orig.data.cpu().numpy()[0,...].transpose((1,2,0))) # load colorizers colorizer_eccv16 = eccv16(pretrained=True).eval() colorizer_siggraph17 = siggraph17(pretrained=True).eval() #load image # image_path = 'SampleImage/2in.jpg' # img = load_img(str(image_path)) img = cv2.imread(str(image_path)) # default size to process images is 256x256 # grab L channel in both original ("orig") and resized ("rs") resolutions (tens_l_orig, tens_l_rs) = preprocess_img(img, HW=(256,256)) # colorizer outputs 256x256 ab map # resize and concatenate to original L channel img_bw = postprocess_tens(tens_l_orig, torch.cat((0*tens_l_orig,0*tens_l_orig),dim=1)) out_img_eccv16 = postprocess_tens(tens_l_orig, colorizer_eccv16(tens_l_rs).cpu()) out_img_siggraph17 = postprocess_tens(tens_l_orig, colorizer_siggraph17(tens_l_rs).cpu()) # plt.imsave('ouput_eccv16.png', out_img_eccv16) # plt.imsave('output_siggraph17.png', out_img_siggraph17) image_save_path = image_path.replace(image_name, "temp.png") # cv2.imwrite(str(image_save_path), out_img_siggraph17) plt.imsave(str(image_save_path), out_img_siggraph17) print('media/temp.png')
null
image_colorization.py
image_colorization.py
py
2,727
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ", "line_number": 2, "usage_type": "attribute" }, { "api_name": "warnings.filterwarnings", "line_number": 5, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 18, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 19, "usage_type": "attribute" }, { "api_name": "numpy.asarray", "line_number": 22, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 22, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 22, "usage_type": "name" }, { "api_name": "numpy.tile", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 28, "usage_type": "call" }, { "api_name": "PIL.Image.fromarray", "line_number": 28, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 28, "usage_type": "name" }, { "api_name": "skimage.color.rgb2lab", "line_number": 34, "usage_type": "call" }, { "api_name": "skimage.color", "line_number": 34, "usage_type": "name" }, { "api_name": "skimage.color.rgb2lab", "line_number": 35, "usage_type": "call" }, { "api_name": "skimage.color", "line_number": 35, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 40, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.nn.functional.interpolate", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 54, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 58, "usage_type": "call" }, { "api_name": "skimage.color.lab2rgb", "line_number": 59, "usage_type": "call" }, { "api_name": "skimage.color", "line_number": 59, "usage_type": "name" }, { "api_name": "colorizers.eccv16", "line_number": 62, "usage_type": "call" }, { "api_name": "colorizers.siggraph17", "line_number": 63, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imsave", "line_number": 85, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 85, "usage_type": "name" } ]
301619966
import argparse import numpy as np import os def scale(x): x_min, x_max = np.min(x, axis=0), np.max(x, axis=0) return (x - x_min)/(x_max-x_min) def normalize(x): x_mean, x_std = np.mean(x, axis=0), np.std(x, axis=0) return (x - x_mean)/x_std def preprocess(filepath): input_data = np.loadtxt(filepath, delimiter=',') x_data, y_data = input_data[:, :8], input_data[:, 8] x_data = normalize(scale(x_data)) y_data = np.expand_dims(y_data, -1) data = np.hstack((x_data, y_data)) np.random.shuffle(data) train_split = int(data.shape[0]*0.7) train_data = data[:train_split, :] test_data = data[train_split:, :] output_filepath = filepath[:filepath.rfind(".")] np.save(output_filepath+"_train", train_data) np.save(output_filepath+"_test", test_data) def main(): parser = argparse.ArgumentParser() parser.add_argument('--filepath', default=os.path.join("..", "dataset", "cal_housing.data"), help="Path to the training data") args = parser.parse_args() preprocess(args.filepath) if __name__ == '__main__': main()
null
Assignment_1/utils/data_preprocessing_part_b.py
data_preprocessing_part_b.py
py
1,123
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.min", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.loadtxt", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.hstack", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.random.shuffle", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 22, "usage_type": "attribute" }, { "api_name": "numpy.save", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 28, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" } ]
379473309
import optparse from django.core.management import base class Command(base.BaseCommand): """ Base class for a declarative management command API. """ option_list = () option_groups = () option_names = () actions = () def usage(self, subcommand): """ Override the usage display. """ usage = "%prog {subcommand:s} {args:}".format( subcommand=subcommand, args=self.args) if self.help: return "{usage:s}\n\n{help:s}".format( usage=usage, help=self.help) return usage def create_parser(self, prog_name, subcommand): """ Customize the OptionParser. """ parser = super(Command, self).create_parser(prog_name, subcommand) for name, description, option_list in self.option_groups: group = optparse.OptionGroup(parser, name, description); map(group.add_option, option_list) parser.add_option_group(group) return parser def parse_options(self): for name in self.option_names: parse = getattr(self, "parse_option_{name:s}".format( name=name), None) if parse is not None and callable(parse): self.options[name] = parse() def handle(self, *args, **options): self.args = args self.options = options self.parse_options() for name in self.actions: validate = getattr(self, "validate_{name:s}".format( name=name), None) if validate is not None and callable(validate): validate() for name in self.actions: handle = getattr(self, "handle_{name:s}".format( name=name), None) if handle is not None and callable(handle): handle() class BaseCommandMixin(object): """ Base Django management command options. """ option_list = base.BaseCommand.option_list option_groups = ( ("[standard options]", "Standard Django management command options.", option_list, ), ) option_names = ("verbosity",) actions = () def parse_option_verbosity(self): try: verbosity = int(self.options.get("verbosity", 1)) except (ValueError, TypeError): verbosity = 1 return verbosity class BaseCommand(BaseCommandMixin, Command): """ Base Django management command. """ pass
null
grunt/management/base.py
base.py
py
2,568
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.core.management.base.BaseCommand", "line_number": 6, "usage_type": "attribute" }, { "api_name": "django.core.management.base", "line_number": 6, "usage_type": "name" }, { "api_name": "optparse.OptionGroup", "line_number": 35, "usage_type": "call" }, { "api_name": "django.core.management.base.BaseCommand", "line_number": 69, "usage_type": "attribute" }, { "api_name": "django.core.management.base", "line_number": 69, "usage_type": "name" } ]
392091621
#wapp to wish the user gm/ga/ge import datetime dt = datetime.datetime.now() hour = dt.hour if( hour >=6 and hour <=12): print("gm") elif( hour >=12 and hour <=15): print("ga") else: print("ge")
null
L11/P4.py
P4.py
py
201
python
en
code
null
code-starcoder2
83
[ { "api_name": "datetime.datetime.now", "line_number": 5, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 5, "usage_type": "attribute" } ]
524764222
from sklearn.naive_bayes import MultinomialNB #[possui brilho?, Possui vários metros cúbicos ?, Possui Trasnparência ?, É denso?] rocha1 = [0,1,0,0] rocha2 = [1,1,0,0] rocha3 = [0,1,0,0] mineral1 = [1,0,1,1] mineral2 = [0,0,1,1] mineral3 = [1,0,0,1] dados = [rocha1, rocha2, rocha3, mineral1, mineral2, mineral3] marcacoes = ['rocha', 'rocha', 'rocha', 'mineral', 'mineral', 'mineral'] modelo = MultinomialNB() modelo.fit(dados, marcacoes) #[possui brilho?, Possui vários metros cúbicos ?, Possui Transparência ?, É denso?] misterioso1 = [1,0,0,0] misterioso2 = [1,1,0,0] misterioso3 = [1,1,1,0] misterioso4 = [1,1,1,1] misterioso5 = [0,1,0,0] misterioso6 = [0,1,1,0] misterioso7 = [0,1,1,1] misterioso8 = [0,0,0,0]#erro misterioso9 = [0,0,1,0] misterioso10 = [0,0,1,1] misterioso11 = [0,0,0,1] misterioso12 = [1,0,1,0] misterioso13 = [1,0,1,1] misterioso14 = [1,0,0,1] misterioso15 = [1,1,0,1]#erro misterioso16 = [0,1,0,1] #taxa de erro de 87.5 misteriosos = [misterioso1, misterioso2, misterioso3, misterioso4, misterioso5, misterioso6,misterioso7, misterioso8 , misterioso9, misterioso10, misterioso11, misterioso12, misterioso13, misterioso14, misterioso15, misterioso16] print(modelo.predict(misteriosos))
null
Questao02.py
Questao02.py
py
1,255
python
en
code
null
code-starcoder2
83
[ { "api_name": "sklearn.naive_bayes.MultinomialNB", "line_number": 13, "usage_type": "call" } ]
570160576
# -*- coding: utf-8 -*- """ Created on Wed Dec 5 14:01:30 2018 @author: bazzz """ import numpy as np from math import sqrt import matplotlib.pyplot as plt from scipy.misc import face import time from imageio import imread, imsave #Z = face()[100:500,400:1000,1]/255 #imgName = 'Face' Z = imread('Rain.jpg')[:,:,0]/255 imgName = 'Rain' #Z = imread('Bas.png')[:,:,0]/255 #imgName = 'Bas' np.random.seed(3929) def imgNoise(A): Anew = A+ 0.1 * np.random.normal(size=A.shape) return Anew def anorm(x): return np.sqrt((x*x).sum(-1)) def nabla(A): h,w = A.shape dA = np.zeros([h,w,2]) #dA_x = A(x+1,y) - A(x,y) (Border = 0) dA[:-1,:,1] = A[1:,:] - A[:-1,:] #dA_y = A(x,y+1) - A(x,y) (Border = 0) dA[:,:-1,0] = A[:,1:] - A[:,:-1] return dA #TV-L_1 Norm def g1(X, Orig, clambda): TV = anorm(nabla(X)).sum() Edata = (np.abs(X-Orig)).sum() return TV + Edata*clambda def gradg_ij(Y,i,j,X,clambda,alph = .001): padY[1:-1,1:-1] = Y return clambda*np.sign(Y[i,j] - X[i,j]) + ( (2*padY[i+1,j+1]-padY[i+2,j+1]-padY[i+1,j+2])/sqrt(alph+(padY[i+2,j+1]-padY[i+1,j+1])**2+(padY[i+1,j+2]-padY[i+1,j+1])**2)+ (padY[i+1,j+1]-padY[i,j+1])/sqrt(alph+(padY[i+1,j+1]-padY[i,j+1])**2 + (padY[i,j+2]-padY[i,j+1])**2)+ (padY[i+1,j+1]-padY[i+1,j])/sqrt(alph + (padY[i+2,j]-padY[i+1,j])**2 + (padY[i+1,j+1]-padY[i+1,j])**2)) def gradg(Y,X,clambda,alph = .0001): for i in range(0,h): for j in range(0,w): gradY[i,j] = gradg_ij(Y,i,j,X,clambda,alph) return gradY Y = imgNoise(Z) X = Y padY = np.pad(Y,1,'constant') h,w = Y.shape gradY = np.zeros((h,w)) clock1 = time.clock() diff = 1E-3 clambda = 1 rho = 0.5 c1 = 10**(-4) gr = gradg(Y,X,clambda) counter = 0 grOld = np.zeros((h,w)) while (abs(np.linalg.norm(gr)-np.linalg.norm(grOld))> diff and counter < 150): grOld = np.copy(gr) counter += 1 pk = -gr alph = 1 while (g1(Y+alph*pk,X,clambda) > g1(Y,X,clambda) + c1*alph*np.reshape(pk,pk.size).dot(np.reshape(gr,gr.size))): #Backtracking Algo alph *= rho Y = Y + alph*pk gr = gradg(Y,X,clambda) print(f'{counter}, : , {np.linalg.norm(gr)}') clock2 = time.clock() print(clock2-clock1) plt.gray() plt.imshow(Z) imsave('.\TVL1Steepest\ Orig'+imgName+'.png',Z) plt.show() plt.gray() plt.imshow(X) imsave('.\TVL1Steepest\ Noisy'+imgName+'.png',X) plt.show() plt.gray() plt.imshow(Y) imsave('.\TVL1Steepest\ Denoi'+imgName+'.png',Y) plt.show()
null
Total Variation Denoising - Fall 2018/TVL1 Steepest.py
TVL1 Steepest.py
py
2,495
python
en
code
null
code-starcoder2
83
[ { "api_name": "imageio.imread", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 24, "usage_type": "attribute" }, { "api_name": "numpy.random.normal", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 26, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.sign", "line_number": 49, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 50, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 51, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.pad", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 67, "usage_type": "call" }, { "api_name": "time.clock", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 75, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 76, "usage_type": "attribute" }, { "api_name": "numpy.copy", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.linalg.norm", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 85, "usage_type": "attribute" }, { "api_name": "time.clock", "line_number": 87, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.gray", "line_number": 89, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 89, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 90, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 90, "usage_type": "name" }, { "api_name": "imageio.imsave", "line_number": 91, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 92, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 92, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gray", "line_number": 94, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 94, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 95, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 95, "usage_type": "name" }, { "api_name": "imageio.imsave", "line_number": 96, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 97, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 97, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gray", "line_number": 99, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 99, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 100, "usage_type": "name" }, { "api_name": "imageio.imsave", "line_number": 101, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 102, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 102, "usage_type": "name" } ]
251476502
from __future__ import print_function from time import time import csv import sys import os from sklearn.feature_extraction.text import CountVectorizer import numpy as np import lda import logging logging.basicConfig(filename='lda_analyser.log', level=logging.DEBUG) if not os.path.exists("results"): os.makedirs("results") for n_topics in [10, 20, 50, 100]: n_features = 10000 n_top_words = int(sys.argv[1]) + 1 corpus = [] topics_write_file = csv.writer(open("results/lda_topics_{}topics_{}words.csv".format(n_topics, n_top_words - 1), "wb"), delimiter="\t", quotechar='|', quoting=csv.QUOTE_MINIMAL) write_file = csv.writer(open("results/lda_topics_{}topics_{}words_mapping.csv".format(n_topics, n_top_words - 1), "wb"), delimiter="\t", quotechar='|', quoting=csv.QUOTE_MINIMAL) def print_top_words(model, doc_topic, feature_names, n_top_words, dictionary): for i, topic_dist in enumerate(model): topic_words = np.array(feature_names)[np.argsort(topic_dist)][:-n_top_words:-1] #write_file.write('Topic {}: {}\n'.format(i, ' '.join(topic_words))) topic_row = [str(i)] topic_row.extend(topic_words) topics_write_file.writerow(topic_row) for i in range(len(corpus)): document_row = [dictionary[i][0], dictionary[i][1]] document_row.append(doc_topic[i].argmax()) #document_row.append(corpus[i]) write_file.writerow(document_row) entity_day_dict = dict() # read all files and store their contents on a dictionary for i in os.listdir(os.getcwd() + "/filtered_tweets"): for filename in os.listdir(os.getcwd() + "/filtered_tweets" + "/" + i): entity_day_dict[i+" "+filename] = open(os.getcwd() + "/filtered_tweets" + "/" + i + "/" + filename, 'r').read() corpus = [] entity_day_key_index = dict() i = 0 for key in entity_day_dict: entity_day_key_index[i] = key.split(" ") corpus.append(entity_day_dict[key]) i += 1 # Use tf (raw term count) features for LDA. logging.info("Extracting tf features for LDA...") tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tf = tf_vectorizer.fit_transform(corpus) logging.info("done in %0.3fs." % (time() - t0)) logging.info("Fitting LDA models with tf") model = lda.LDA(n_topics=n_topics, n_iter=1500, random_state=1) #LatentDirichletAllocation(n_topics=n_topics, max_iter=5, learning_method='online', #learning_offset=50., random_state=0) t0 = time() model.fit(tf) logging.info("done in %0.3fs." % (time() - t0)) topic_word = model.topic_word_ doc_topic = model.doc_topic_ logging.info("\nTopics in LDA model:") tf_feature_names = tf_vectorizer.get_feature_names() print_top_words(topic_word, doc_topic, tf_feature_names, n_top_words, entity_day_key_index)
null
src/lda_without_tf_idf.py
lda_without_tf_idf.py
py
3,013
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.basicConfig", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 16, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 20, "usage_type": "attribute" }, { "api_name": "csv.writer", "line_number": 24, "usage_type": "call" }, { "api_name": "csv.QUOTE_MINIMAL", "line_number": 24, "usage_type": "attribute" }, { "api_name": "csv.writer", "line_number": 25, "usage_type": "call" }, { "api_name": "csv.QUOTE_MINIMAL", "line_number": 25, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 32, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 48, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 48, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 49, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 49, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 50, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 64, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.CountVectorizer", "line_number": 65, "usage_type": "call" }, { "api_name": "time.time", "line_number": 67, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 70, "usage_type": "call" }, { "api_name": "time.time", "line_number": 70, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 72, "usage_type": "call" }, { "api_name": "lda.LDA", "line_number": 73, "usage_type": "call" }, { "api_name": "time.time", "line_number": 75, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 77, "usage_type": "call" }, { "api_name": "time.time", "line_number": 77, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 82, "usage_type": "call" } ]
146724018
from igraph import * import igraph import xml.etree.ElementTree as ET from skimage import io from skimage import transform import cv2 import numpy as np import argparse def parserargs(): parser = argparse.ArgumentParser() parser.add_argument('-image', action='store', dest='image') parser.add_argument('-target', action='store', dest='target') parser.add_argument('-source', action='store', dest='source') parser.add_argument('-plot', action='store', dest='plot', default=False) results = parser.parse_args() return results.image, results.source, results.target, results.plot def imshow(name, image): cv2.imshow(name, image) cv2.waitKey(0) cv2.destroyAllWindows() def do_dictionary_label_list(image): dictionary = {} label_list = [] count = 0 for i, row in enumerate(image): for j, pixel in enumerate(row): label_list.append(str(count)) dictionary["({}, {})".format(i, j)] = count count += 1 return dictionary, label_list def remove_duplicate(vextex_list): temp = [] for a,b in vextex_list : if (a,b) not in temp and (b,a) not in temp: #to check for the duplicate tuples temp.append((a,b)) vextex_list = temp * 1 #copy temp to d return vextex_list if __name__ == '__main__': image_path, source, target, plot = parserargs() print("LOG:\nImage: {}\nSource: {}\nTarget: {}\nPlot: {}".format(image_path, source, target, plot)) image = cv2.imread(image_path, 0) # image = np.array([ # [20, 220, 46], # [55, 98, 33], # [22, 11, 99], # ] # ) X = image.shape[0]-1 Y = image.shape[1]-1 neighbors = lambda x, y : [(x2, y2) for x2 in range(x-1, x+2) for y2 in range(y-1, y+2) if (-1 < x <= X and -1 < y <= Y and (x != x2 or y != y2) and (0 <= x2 <= X) and (0 <= y2 <= Y))] vextex_list = [] weight_list = [] dictionary = {} label_list = [] weight_list = {} dictionary, label_list = do_dictionary_label_list(image) for i, row in enumerate(image): for j, pixel in enumerate(row): for n in neighbors(i, j): vextex_list.append( (dictionary["({}, {})".format(i, j)], dictionary["({}, {})".format(n[0], n[1])]) ) weight_list[(dictionary["({}, {})".format(i, j)], dictionary["({}, {})".format(n[0], n[1])])] = abs(float(image[(i,j)]) - float(image[n])) vextex_list = remove_duplicate(vextex_list) g = Graph() g.add_vertices(image.shape[0]*image.shape[1]) g.add_edges(vextex_list) g.vs["name"] = label_list g.vs["label"] = label_list g.es["weight"] = 0 ks = list(weight_list) while ks: pair = ks.pop(0) aux = str(pair).replace("(","").replace(")", "").replace(",","").split(" ") first = aux[0] second = aux[1] g[first, second] = weight_list[pair] path = g.shortest_paths_dijkstra(source=source, target=target, weights=g.es["weight"], mode=OUT) print("****\nShortest_path: ", path[0][0]) if plot: layout = g.layout("kk") igraph.plot(g, layout = layout)
null
contextual_extractor.py
contextual_extractor.py
py
3,504
python
en
code
null
code-starcoder2
83
[ { "api_name": "argparse.ArgumentParser", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 33, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 34, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 35, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 62, "usage_type": "call" }, { "api_name": "igraph.plot", "line_number": 124, "usage_type": "call" } ]
508767213
from loguru import logger from util import util import requests import json # Using math.js web service for expression eval API_URL = "http://api.mathjs.org/v4/?expr=" def handle(update, context): util.log_chat("calc", update) query = update.message.text query = query.split(" ") try: calc_str = " ".join(query[1:]) response = calc_engine(calc_str) except Exception as e: response = str(e) finally: logger.info("[calc] calc_str='{}' ; response='{}'", calc_str, response) update.message.reply_text(response) def calc_engine(calc_str): query_url = API_URL + requests.utils.quote(calc_str) response = requests.request("GET", query_url) response = json.loads(response.text) return str(response)
null
src/handlers/calc.py
calc.py
py
780
python
en
code
null
code-starcoder2
83
[ { "api_name": "util.util.log_chat", "line_number": 13, "usage_type": "call" }, { "api_name": "util.util", "line_number": 13, "usage_type": "name" }, { "api_name": "loguru.logger.info", "line_number": 24, "usage_type": "call" }, { "api_name": "loguru.logger", "line_number": 24, "usage_type": "name" }, { "api_name": "requests.utils.quote", "line_number": 31, "usage_type": "call" }, { "api_name": "requests.utils", "line_number": 31, "usage_type": "attribute" }, { "api_name": "requests.request", "line_number": 33, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 34, "usage_type": "call" } ]
326811944
# In[] import sys, os sys.path.append('../') import numpy as np from umap import UMAP import time import torch import matplotlib.pyplot as plt import pandas as pd import scipy.sparse as sp import scmomat.model as model import scmomat.utils as utils import scmomat.bmk as bmk import scmomat.umap_batch as umap_batch device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") plt.rcParams["font.size"] = 10 import warnings warnings.filterwarnings("ignore") def lsi(counts): from sklearn.feature_extraction.text import TfidfTransformer from sklearn.decomposition import TruncatedSVD tfidf = TfidfTransformer(norm='l2', sublinear_tf=True) normed_count = tfidf.fit_transform(counts) # perform SVD on the sparse matrix lsi = TruncatedSVD(n_components=50, random_state=42) lsi_r = lsi.fit_transform(normed_count) lsi.explained_variance_ratio_ X_lsi = lsi_r[:, 1:] return X_lsi # # In[] # # ------------------------------------------------------------------------------------------------------------------------------------------------------ # # # # NOTE: 1. Subsampling the data batches to create imbalanced datasets # # # # ------------------------------------------------------------------------------------------------------------------------------------------------------ # # NOTE: read in dataset # data_dir = "../data/simulated/6b16c_test_10/unequal/" # # subsample batches 0, 3, 5 by 10: [::10] # imbalanced_dir = "../data/simulated/6b16c_test_10/imbalanced/" # if not os.path.exists(imbalanced_dir): # os.makedirs(imbalanced_dir) # n_batches = 6 # for batch in range(n_batches): # label = pd.read_csv(os.path.join(data_dir, 'cell_label' + str(batch + 1) + '.txt'), index_col=0, sep = "\t") # if batch in [0,3,5]: # # subsample by 10 # label = label.iloc[::10,:] # label.to_csv(os.path.join(imbalanced_dir, 'cell_label' + str(batch + 1) + '.txt'), sep = "\t") # print("number of cells: {:d}".format(label.shape[0])) # counts_atac = np.loadtxt(os.path.join(data_dir, 'RxC' + str(batch + 1) + ".txt"), delimiter = "\t") # if batch in [0,3,5]: # # subsample by 10 # counts_atac = counts_atac[:,::10] # np.savetxt(os.path.join(imbalanced_dir, 'RxC' + str(batch + 1) + '.txt'), X = counts_atac, delimiter = "\t") # counts_rna = np.loadtxt(os.path.join(data_dir, 'GxC' + str(batch + 1) + ".txt"), delimiter = "\t") # if batch in [0,3,5]: # # subsample by 10 # counts_rna = counts_rna[:,::10] # np.savetxt(os.path.join(imbalanced_dir, 'GxC' + str(batch + 1) + '.txt'), X = counts_rna, delimiter = "\t") # A = np.loadtxt(os.path.join(data_dir +'region2gene.txt'), delimiter = "\t") # np.savetxt(os.path.join(imbalanced_dir, 'region2gene.txt'), X = A, delimiter = "\t") # In[] # ------------------------------------------------------------------------------------------------------------------------------------------------------ # # NOTE: 1. Load dataset and running scmomat (without retraining, retraining see the third section) # # ------------------------------------------------------------------------------------------------------------------------------------------------------ # NOTE: read in dataset data_dir = "../data/simulated/6b16c_test_1/imbalanced/" result_dir = "simulated/6b16c_test_1/imbalanced" scmomat_dir = result_dir + "/scmomat/" if not os.path.exists(scmomat_dir): os.makedirs(scmomat_dir) n_batches = 6 counts_rnas = [] counts_atacs = [] labels = [] for batch in range(n_batches): label = pd.read_csv(os.path.join(data_dir, 'cell_label' + str(batch + 1) + '.txt'), index_col=0, sep = "\t")["pop"].values.squeeze() labels.append(label) print("number of cells: {:d}".format(label.shape[0])) try: counts_atac = np.loadtxt(os.path.join(data_dir, 'RxC' + str(batch + 1) + ".txt"), delimiter = "\t").T counts_atac = utils.preprocess(counts_atac, modality = "ATAC") print("read atac for batch" + str(batch + 1)) except: counts_atac = None try: counts_rna = np.loadtxt(os.path.join(data_dir, 'GxC' + str(batch + 1) + ".txt"), delimiter = "\t").T print("read rna for batch" + str(batch + 1)) counts_rna = utils.preprocess(counts_rna, modality = "RNA", log = False) except: counts_rna = None # preprocess the count matrix counts_rnas.append(counts_rna) counts_atacs.append(counts_atac) counts = {"rna":counts_rnas, "atac": counts_atacs} # NOTE: SCENARIO 1: diagonal integration counts["rna"][0] = None counts["rna"][1] = None counts["rna"][2] = None # counts["atac"][3] = None counts["atac"][4] = None counts["atac"][5] = None # No need for pseudo-count matrix A = np.loadtxt(os.path.join(data_dir +'region2gene.txt'), delimiter = "\t").T # CALCULATE PSEUDO-SCRNA-SEQ for idx in range(len(counts["atac"])): if (counts["rna"][idx] is None) & (counts["atac"][idx] is not None): counts["rna"][idx] = counts["atac"][idx] @ A.T #BINARIZE, still is able to see the cluster pattern, much denser than scRNA-Seq (cluster pattern clearer) counts["rna"][idx] = (counts["rna"][idx]!=0).astype(int) # obtain the feature name genes = np.array(["gene_" + str(x) for x in range(counts["rna"][-1].shape[1])]) regions = np.array(["region_" + str(x) for x in range(counts["atac"][0].shape[1])]) feats_name = {"rna": genes, "atac": regions} counts["feats_name"] = feats_name counts["nbatches"] = n_batches # In[] # NOTE: Running scmomat # weight on regularization term lamb = 0.001 batchsize = 0.1 # running seed seed = 0 # number of latent dimensions K = 20 interval = 1000 T = 4000 lr = 1e-2 # start_time = time.time() # model1 = model.scmomat_model(counts = counts, K = K, batch_size = batchsize, interval = interval, lr = lr, lamb = lamb, seed = seed, device = device) # losses1 = model1.train_func(T = T) # end_time = time.time() # print("running time: " + str(end_time - start_time)) # torch.save(model1, scmomat_dir + f'CFRM_{K}_{T}.pt') model1 = torch.load(scmomat_dir + f'CFRM_{K}_{T}.pt') # In[] # NOTE: Plot the result before post-processing plt.rcParams["font.size"] = 10 umap_op = UMAP(n_components = 2, n_neighbors = 30, min_dist = 0.2, random_state = 0) zs = [] for batch in range(n_batches): z = model1.softmax(model1.C_cells[str(batch)].cpu().detach()).numpy() zs.append(z) x_umap = umap_op.fit_transform(np.concatenate(zs, axis = 0)) # separate into batches x_umaps = [] leiden_labels = [] for batch in range(n_batches): if batch == 0: start_pointer = 0 end_pointer = start_pointer + zs[batch].shape[0] x_umaps.append(x_umap[start_pointer:end_pointer,:]) elif batch == (n_batches - 1): start_pointer = start_pointer + zs[batch - 1].shape[0] x_umaps.append(x_umap[start_pointer:,:]) else: start_pointer = start_pointer + zs[batch - 1].shape[0] end_pointer = start_pointer + zs[batch].shape[0] x_umaps.append(x_umap[start_pointer:end_pointer,:]) utils.plot_latent_ext(x_umaps, annos = labels, mode = "separate", save = scmomat_dir + f'latent_separate_{K}_{T}.png', figsize = (15,30), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = True) utils.plot_latent_ext(x_umaps, annos = labels, mode = "modality", save = scmomat_dir + f'latent_batches_{K}_{T}.png', figsize = (15,10), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = True) # In[] # NOTE: Post-processing, clustering, and plot the result after post-processing n_neighbors = 30 r = 0.7 zs = [] for batch in range(n_batches): z = model1.softmax(model1.C_cells[str(batch)].cpu().detach()).numpy() zs.append(z) s_pair_dist, knn_indices, knn_dists = utils.post_process(zs, n_neighbors, njobs = 8, r = r) resolution = 0.5 labels_tmp = utils.leiden_cluster(X = None, knn_indices = knn_indices, knn_dists = knn_dists, resolution = resolution) umap_op = umap_batch.UMAP(n_components = 2, n_neighbors = n_neighbors, min_dist = 0.30, random_state = 0, metric='precomputed', knn_dists=knn_dists, knn_indices=knn_indices) x_umap = umap_op.fit_transform(s_pair_dist) # separate into batches x_umaps = [] leiden_labels = [] for batch in range(n_batches): if batch == 0: start_pointer = 0 end_pointer = start_pointer + zs[batch].shape[0] x_umaps.append(x_umap[start_pointer:end_pointer,:]) leiden_labels.append(labels_tmp[start_pointer:end_pointer]) elif batch == (n_batches - 1): start_pointer = start_pointer + zs[batch - 1].shape[0] x_umaps.append(x_umap[start_pointer:,:]) leiden_labels.append(labels_tmp[start_pointer:]) else: start_pointer = start_pointer + zs[batch - 1].shape[0] end_pointer = start_pointer + zs[batch].shape[0] x_umaps.append(x_umap[start_pointer:end_pointer,:]) leiden_labels.append(labels_tmp[start_pointer:end_pointer]) utils.plot_latent_ext(x_umaps, annos = labels, mode = "separate", save = scmomat_dir + f'latent_separate_{K}_{T}_processed.png', figsize = (7,20), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = True, alpha = 0.7, text_size = "x-large") utils.plot_latent_ext(x_umaps, annos = labels, mode = "joint", save = scmomat_dir + f'latent_joint_{K}_{T}_processed.png', figsize = (7,5), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = False, alpha = 0.7, text_size = "x-large") utils.plot_latent_ext(x_umaps, annos = labels, mode = "modality", save = scmomat_dir + f'latent_batches_{K}_{T}_processed.png', figsize = (7,5), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = False, alpha = 0.7) utils.plot_latent_ext(x_umaps, annos = leiden_labels, mode = "joint", save = scmomat_dir + f'latent_leiden_clusters_{K}_{T}_{resolution}_processed.png', figsize = (7,5), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = False, alpha = 0.7) # In[] # ------------------------------------------------------------------------------------------------------------------------------------------------------ # # NOTE: 2. Benchmarking with baseline methods # # ------------------------------------------------------------------------------------------------------------------------------------------------------ # NOTE: Baseline methods # 1. UINMF uinmf_path = result_dir + "/uinmf/" H1_uinmf = pd.read_csv(uinmf_path + "H1_norm.csv", index_col = 0).values H2_uinmf = pd.read_csv(uinmf_path + "H2_norm.csv", index_col = 0).values H3_uinmf = pd.read_csv(uinmf_path + "H3_norm.csv", index_col = 0).values H4_uinmf = pd.read_csv(uinmf_path + "H4_norm.csv", index_col = 0).values H5_uinmf = pd.read_csv(uinmf_path + "H5_norm.csv", index_col = 0).values H6_uinmf = pd.read_csv(uinmf_path + "H6_norm.csv", index_col = 0).values uinmf_umap = UMAP(n_components = 2, min_dist = 0.4, random_state = 0).fit_transform(np.concatenate((H1_uinmf, H2_uinmf, H3_uinmf, H4_uinmf, H5_uinmf, H6_uinmf), axis = 0)) uinmf_umaps = [] for batch in range(n_batches): if batch == 0: start_pointer = 0 end_pointer = start_pointer + zs[batch].shape[0] uinmf_umaps.append(uinmf_umap[start_pointer:end_pointer,:]) elif batch == (n_batches - 1): start_pointer = start_pointer + zs[batch - 1].shape[0] uinmf_umaps.append(uinmf_umap[start_pointer:,:]) else: start_pointer = start_pointer + zs[batch - 1].shape[0] end_pointer = start_pointer + zs[batch].shape[0] uinmf_umaps.append(uinmf_umap[start_pointer:end_pointer,:]) utils.plot_latent_ext(uinmf_umaps, annos = labels, mode = "separate", save = uinmf_path + f'latent_separate_uinmf.png', figsize = (7,20), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = True, text_size = "large", alpha = 0.7) utils.plot_latent_ext(uinmf_umaps, annos = labels, mode = "modality", save = uinmf_path + f'latent_batches_uinmf.png', figsize = (7,5), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = False, text_size = "large", alpha = 0.7) utils.plot_latent_ext(uinmf_umaps, annos = labels, mode = "joint", save = uinmf_path + f'latent_joint_uinmf.png', figsize = (7,5), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = False, text_size = "large", alpha = 0.7) # # 1. Liger # liger_path = result_dir + "/liger/" # H1_liger = pd.read_csv(liger_path + "H1_norm.csv", index_col = 0).values # H2_liger = pd.read_csv(liger_path + "H2_norm.csv", index_col = 0).values # H3_liger = pd.read_csv(liger_path + "H3_norm.csv", index_col = 0).values # H4_liger = pd.read_csv(liger_path + "H4_norm.csv", index_col = 0).values # H5_liger = pd.read_csv(liger_path + "H5_norm.csv", index_col = 0).values # H6_liger = pd.read_csv(liger_path + "H6_norm.csv", index_col = 0).values # liger_umap = UMAP(n_components = 2, min_dist = 0.4, random_state = 0).fit_transform(np.concatenate((H1_liger, H2_liger, H3_liger, H4_liger, H5_liger, H6_liger), axis = 0)) # liger_umaps = [] # for batch in range(n_batches): # if batch == 0: # start_pointer = 0 # end_pointer = start_pointer + zs[batch].shape[0] # liger_umaps.append(liger_umap[start_pointer:end_pointer,:]) # elif batch == (n_batches - 1): # start_pointer = start_pointer + zs[batch - 1].shape[0] # liger_umaps.append(liger_umap[start_pointer:,:]) # else: # start_pointer = start_pointer + zs[batch - 1].shape[0] # end_pointer = start_pointer + zs[batch].shape[0] # liger_umaps.append(liger_umap[start_pointer:end_pointer,:]) # utils.plot_latent_ext(liger_umaps, annos = labels, mode = "separate", save = liger_path + f'latent_separate_liger.png', # figsize = (10,27), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = True, text_size = "large", colormap = "Paired", alpha = 0.7) # utils.plot_latent_ext(liger_umaps, annos = labels, mode = "modality", save = liger_path + f'latent_batches_liger.png', # figsize = (10,7), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = True, text_size = "large", colormap = "Paired", alpha = 0.7) # utils.plot_latent_ext(liger_umaps, annos = labels, mode = "joint", save = liger_path + f'latent_joint_liger.png', # figsize = (12,7), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = True, text_size = "large", colormap = "Paired", alpha = 0.7) # Multimap multimap_path = result_dir + "/multimap/" batches = pd.read_csv(multimap_path + "batch_id.csv", index_col = 0) X_multimap = np.load(multimap_path + "multimap.npy") G_multimap = sp.load_npz(multimap_path + "multimap_graph.npz").toarray() X_multimaps = [] for batch in ["C1", "C2", "C3", "C4", "C5", "C6"]: X_multimaps.append(X_multimap[batches.values.squeeze() == batch, :]) utils.plot_latent_ext(X_multimaps, annos = labels, mode = "separate", save = multimap_path + f'latent_separate_multimap.png', figsize = (7,20), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = True, alpha = 0.7, text_size = "x-large") utils.plot_latent_ext(X_multimaps, annos = labels, mode = "modality", save = multimap_path + f'latent_batches_multimap.png', figsize = (7,5), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = False, alpha = 0.7, text_size = "x-large") utils.plot_latent_ext(X_multimaps, annos = labels, mode = "joint", save = multimap_path + f'latent_joint_multimap.png', figsize = (7,5), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = False, alpha = 0.7) # Stabmap stabmap_path = result_dir + "/stabmap/" stabmap_b1 = pd.read_csv(stabmap_path + "stab_b1.csv", index_col = 0).values stabmap_b2 = pd.read_csv(stabmap_path + "stab_b2.csv", index_col = 0).values stabmap_b3 = pd.read_csv(stabmap_path + "stab_b3.csv", index_col = 0).values stabmap_b4 = pd.read_csv(stabmap_path + "stab_b4.csv", index_col = 0).values stabmap_b5 = pd.read_csv(stabmap_path + "stab_b5.csv", index_col = 0).values stabmap_b6 = pd.read_csv(stabmap_path + "stab_b6.csv", index_col = 0).values stabmap_umap = UMAP(n_components = 2, min_dist = 0.4, random_state = 0).fit_transform(np.concatenate((stabmap_b1, stabmap_b2, stabmap_b3, stabmap_b4, stabmap_b5, stabmap_b6), axis = 0)) stabmap_umaps = [] for batch in range(n_batches): if batch == 0: start_pointer = 0 end_pointer = start_pointer + zs[batch].shape[0] stabmap_umaps.append(stabmap_umap[start_pointer:end_pointer,:]) elif batch == (n_batches - 1): start_pointer = start_pointer + zs[batch - 1].shape[0] stabmap_umaps.append(stabmap_umap[start_pointer:,:]) else: start_pointer = start_pointer + zs[batch - 1].shape[0] end_pointer = start_pointer + zs[batch].shape[0] stabmap_umaps.append(stabmap_umap[start_pointer:end_pointer,:]) utils.plot_latent_ext(stabmap_umaps, annos = labels, mode = "separate", save = stabmap_path + f'latent_separate_stabmap.png', figsize = (7,20), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = True, text_size = "large", alpha = 0.7) utils.plot_latent_ext(stabmap_umaps, annos = labels, mode = "modality", save = stabmap_path + f'latent_batches_stabmap.png', figsize = (7,5), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = False, text_size = "large", alpha = 0.7) utils.plot_latent_ext(stabmap_umaps, annos = labels, mode = "joint", save = stabmap_path + f'latent_joint_stabmap.png', figsize = (7,5), axis_label = "UMAP", markerscale = 6, s = 5, label_inplace = False, text_size = "large", alpha = 0.7) # In[] n_neighbors = knn_indices.shape[1] # graph connectivity score (gc) measure the batch effect removal per cell identity # 1. scMoMaT knn_graph = np.zeros((knn_indices.shape[0], knn_indices.shape[0])) knn_graph[np.arange(knn_indices.shape[0])[:, None], knn_indices] = 1 gc_scmomat = bmk.graph_connectivity(G = knn_graph, groups = np.concatenate(labels, axis = 0)) print('GC (scmomat): {:.3f}'.format(gc_scmomat)) # 2. UINMF gc_uinmf = bmk.graph_connectivity(X = np.concatenate((H1_uinmf, H2_uinmf, H3_uinmf, H4_uinmf, H5_uinmf, H6_uinmf), axis = 0), groups = np.concatenate(labels, axis = 0), k = n_neighbors) print('GC (UINMF): {:.3f}'.format(gc_uinmf)) # # 2. LIGER # gc_liger = bmk.graph_connectivity(X = np.concatenate((H1_liger, H2_liger, H3_liger, H4_liger, H5_liger, H6_liger), axis = 0), groups = np.concatenate(labels, axis = 0), k = n_neighbors) # print('GC (LIGER): {:.3f}'.format(gc_liger)) # 3. Multimap # NOTE: G_multimap is an affinity graph, closer neighbor with larger value # argsort from small to large, select the last n_neighbors G_multimap = sp.load_npz(multimap_path + "multimap_graph.npz").toarray() knn_indices_multimap = G_multimap.argsort(axis = 1)[:, -n_neighbors:] knn_graph_multimap = np.zeros_like(G_multimap) knn_graph_multimap[np.arange(knn_indices_multimap.shape[0])[:, None], knn_indices_multimap] = 1 gc_multimap = bmk.graph_connectivity(G = knn_graph_multimap, groups = np.concatenate(labels, axis = 0), k = n_neighbors) gc_multimap2 = bmk.graph_connectivity(X = np.concatenate(X_multimaps, axis = 0), groups = np.concatenate(labels, axis = 0), k = n_neighbors) print('GC (MultiMap Graph): {:.3f}'.format(gc_multimap)) print('GC (MultiMap): {:.3f}'.format(gc_multimap2)) # 4. Stabmap gc_stabmap = bmk.graph_connectivity(X = np.concatenate((stabmap_b1, stabmap_b2, stabmap_b3, stabmap_b4, stabmap_b5, stabmap_b6), axis = 0), groups = np.concatenate(labels, axis = 0), k = n_neighbors) print('GC (Stabmap): {:.3f}'.format(gc_stabmap)) # Conservation of biological identity # NMI, ARI, and F1 # F1 score: rare cell type detection gt_labels = np.concatenate(labels) uniq_labels, label_counts = np.unique(gt_labels, return_counts = True) rare_label = uniq_labels[np.argsort(label_counts)[0]] gt_rare_labels = np.where(gt_labels == rare_label, 1, 0) # 1. scMoMaT nmi_scmomat = [] ari_scmomat = [] f1_scmomat = [] for resolution in np.arange(0.1, 10, 0.5): # use the post-processed graph leiden_labels_scmomat = utils.leiden_cluster(X = None, knn_indices = knn_indices, knn_dists = knn_dists, resolution = resolution) nmi_scmomat.append(bmk.nmi(group1 = np.concatenate(labels), group2 = leiden_labels_scmomat)) ari_scmomat.append(bmk.ari(group1 = np.concatenate(labels), group2 = leiden_labels_scmomat)) # calculate F1 score uniq_labels, label_counts = np.unique(leiden_labels_scmomat[np.where(gt_labels == rare_label)[0]], return_counts = True) predict_rare_label = uniq_labels[np.argsort(label_counts)[-1]] predict_rare_labels = np.where(leiden_labels_scmomat == predict_rare_label, 1, 0) f1_scmomat.append(bmk.F1_score(gt_rare_labels, predict_rare_labels)) print('NMI (scMoMaT): {:.3f}'.format(max(nmi_scmomat))) print('ARI (scMoMaT): {:.3f}'.format(max(ari_scmomat))) print('F1 (scMoMaT): {:.3f}'.format(max(f1_scmomat))) # 2. UINMF nmi_uinmf = [] ari_uinmf = [] f1_uinmf = [] for resolution in np.arange(0.1, 10, 0.5): leiden_labels_uinmf = utils.leiden_cluster(X = np.concatenate((H1_uinmf, H2_uinmf, H3_uinmf, H4_uinmf, H5_uinmf, H6_uinmf), axis = 0), knn_indices = None, knn_dists = None, resolution = resolution) nmi_uinmf.append(bmk.nmi(group1 = np.concatenate(labels), group2 = leiden_labels_uinmf)) ari_uinmf.append(bmk.ari(group1 = np.concatenate(labels), group2 = leiden_labels_uinmf)) # calculate F1 score uniq_labels, label_counts = np.unique(leiden_labels_uinmf[np.where(gt_labels == rare_label)[0]], return_counts = True) predict_rare_label = uniq_labels[np.argsort(label_counts)[-1]] predict_rare_labels = np.where(leiden_labels_uinmf == predict_rare_label, 1, 0) f1_uinmf.append(bmk.F1_score(gt_rare_labels, predict_rare_labels)) print('NMI (UINMF): {:.3f}'.format(max(nmi_uinmf))) print('ARI (UINMF): {:.3f}'.format(max(ari_uinmf))) print('F1 (UINMF): {:.3f}'.format(max(f1_uinmf))) # # 2. Liger # nmi_liger = [] # ari_liger = [] # for resolution in np.arange(0.1, 10, 0.5): # leiden_labels_liger = utils.leiden_cluster(X = np.concatenate((H1_liger, H2_liger, H3_liger, H4_liger, H5_liger, H6_liger), axis = 0), knn_indices = None, knn_dists = None, resolution = resolution) # nmi_liger.append(bmk.nmi(group1 = np.concatenate(labels), group2 = leiden_labels_liger)) # ari_liger.append(bmk.ari(group1 = np.concatenate(labels), group2 = leiden_labels_liger)) # print('NMI (LIGER): {:.3f}'.format(max(nmi_liger))) # print('ARI (LIGER): {:.3f}'.format(max(ari_liger))) # 3. Multimap G_multimap = sp.load_npz(multimap_path + "multimap_graph.npz").toarray() nmi_multimap = [] ari_multimap = [] f1_multimap = [] for resolution in np.arange(0.1, 10, 0.5): # leiden_labels_seurat = utils.leiden_cluster(X = np.concatenate(seurat_pcas, axis = 0), knn_indices = None, knn_dists = None, resolution = resolution) # Multimap state to use graph for clustering, leiden cluster the same as multimap tutorial [Checked] leiden_labels_multimap = utils.leiden_cluster(affin = G_multimap, resolution = resolution) nmi_multimap.append(bmk.nmi(group1 = np.concatenate(labels), group2 = leiden_labels_multimap)) ari_multimap.append(bmk.ari(group1 = np.concatenate(labels), group2 = leiden_labels_multimap)) # calculate F1 score uniq_labels, label_counts = np.unique(leiden_labels_multimap[np.where(gt_labels == rare_label)[0]], return_counts = True) predict_rare_label = uniq_labels[np.argsort(label_counts)[-1]] predict_rare_labels = np.where(leiden_labels_multimap == predict_rare_label, 1, 0) f1_multimap.append(bmk.F1_score(gt_rare_labels, predict_rare_labels)) print('NMI (MultiMap): {:.3f}'.format(max(nmi_multimap))) print('ARI (MultiMap): {:.3f}'.format(max(ari_multimap))) print('F1 (MultiMap): {:.3f}'.format(max(f1_multimap))) # 4. Stabmap nmi_stabmap = [] ari_stabmap = [] f1_stabmap = [] for resolution in np.arange(0.1, 10, 0.5): leiden_labels_stabmap = utils.leiden_cluster(X = np.concatenate((stabmap_b1, stabmap_b2, stabmap_b3, stabmap_b4, stabmap_b5, stabmap_b6), axis = 0), knn_indices = None, knn_dists = None, resolution = resolution) nmi_stabmap.append(bmk.nmi(group1 = np.concatenate(labels), group2 = leiden_labels_stabmap)) ari_stabmap.append(bmk.ari(group1 = np.concatenate(labels), group2 = leiden_labels_stabmap)) # calculate F1 score uniq_labels, label_counts = np.unique(leiden_labels_stabmap[np.where(gt_labels == rare_label)[0]], return_counts = True) predict_rare_label = uniq_labels[np.argsort(label_counts)[-1]] predict_rare_labels = np.where(leiden_labels_stabmap == predict_rare_label, 1, 0) f1_stabmap.append(bmk.F1_score(gt_rare_labels, predict_rare_labels)) print('NMI (Stabmap): {:.3f}'.format(max(nmi_stabmap))) print('ARI (Stabmap): {:.3f}'.format(max(ari_stabmap))) print('F1 (Stabmap): {:.3f}'.format(max(f1_stabmap))) # Label transfer accuracy # randomly select a half of cells as query np.random.seed(0) query_cell = np.array([False] * knn_indices.shape[0]) query_cell[np.random.choice(np.arange(knn_indices.shape[0]), size = int(0.5 * knn_indices.shape[0]), replace = False)] = True training_cell = (1 - query_cell).astype(np.bool) query_label = np.concatenate(labels)[query_cell] training_label = np.concatenate(labels)[training_cell] # NOTE: KNN graph should be constructed between train and query cells. We should have n_neighbors train cells around each query cell, and then vote # however, the pre-reconstructed knn graph for scMoMaT and MultiMap find n_neighbors from all cells (train+query), it's hard to modify pre-reconstructed graph to match the requirement. # We use the pre-reconstructed graph directly and ignore the query cells when voting, to methods still have the same number of n_neighbors # scmomat knn_graph = np.zeros((knn_indices.shape[0], knn_indices.shape[0])) knn_graph[np.arange(knn_indices.shape[0])[:, None], knn_indices] = 1 knn_graph = knn_graph[query_cell, :][:, training_cell] lta_scmomat = bmk.transfer_accuracy(query_label = query_label, train_label = training_label, knn_graph = knn_graph) # UINMF lta_uinmf = bmk.transfer_accuracy(query_label = query_label, train_label = training_label, z_query = np.concatenate((H1_uinmf, H2_uinmf, H3_uinmf, H4_uinmf, H5_uinmf, H6_uinmf), axis = 0)[query_cell,:], z_train = np.concatenate((H1_uinmf, H2_uinmf, H3_uinmf, H4_uinmf, H5_uinmf, H6_uinmf), axis = 0)[training_cell,:]) # MultiMap G_multimap = sp.load_npz(multimap_path + "multimap_graph.npz").toarray() knn_indices_multimap = G_multimap.argsort(axis = 1)[:, -n_neighbors:] knn_graph_multimap = np.zeros_like(G_multimap) knn_graph_multimap[np.arange(knn_indices_multimap.shape[0])[:, None], knn_indices_multimap] = 1 lta_multimap = bmk.transfer_accuracy(query_label = query_label, train_label = training_label, knn_graph = knn_graph_multimap[query_cell, :][:, training_cell]) lta_multimap2 = bmk.transfer_accuracy(query_label = query_label, train_label = training_label, z_query = np.concatenate(X_multimaps, axis = 0)[query_cell,:], z_train = np.concatenate(X_multimaps, axis = 0)[training_cell,:]) # stabmap lta_stabmap = bmk.transfer_accuracy(query_label = query_label, train_label = training_label, z_query = np.concatenate((stabmap_b1, stabmap_b2, stabmap_b3, stabmap_b4, stabmap_b5, stabmap_b6), axis = 0)[query_cell,:], z_train = np.concatenate((stabmap_b1, stabmap_b2, stabmap_b3, stabmap_b4, stabmap_b5, stabmap_b6), axis = 0)[training_cell,:]) print("Label transfer accuracy (scMoMaT): {:.3f}".format(lta_scmomat)) print("Label transfer accuracy (UINMF): {:.3f}".format(lta_uinmf)) print("Label transfer accuracy (MultiMap Graph): {:.3f}".format(lta_multimap)) print("Label transfer accuracy (MultiMap): {:.3f}".format(lta_multimap2)) print("Label transfer accuracy (Stabmap): {:.3f}".format(lta_stabmap)) # scores = pd.DataFrame(columns = ["methods", "resolution", "NMI", "ARI", "GC"]) # scores["NMI"] = np.array(nmi_scmomat + nmi_uinmf + nmi_liger + nmi_multimap) # scores["ARI"] = np.array(ari_scmomat + ari_uinmf + ari_liger + ari_multimap) # scores["GC"] = np.array([gc_scmomat] * len(nmi_scmomat) + [gc_uinmf] * len(nmi_uinmf) + [gc_liger] * len(nmi_liger) +[gc_multimap] * len(ari_multimap)) # scores["resolution"] = np.array([x for x in np.arange(0.1, 10, 0.5)] * 4) # scores["methods"] = np.array(["scMoMaT"] * len(nmi_scmomat) + ["UINMF"] * len(nmi_uinmf) + ["LIGER"] * len(nmi_liger) + ["MultiMap"] * len(ari_multimap)) # NO LIGER scores = pd.DataFrame(columns = ["methods", "resolution", "NMI", "ARI", "GC", "LTA", "F1"]) scores["NMI"] = np.array(nmi_scmomat + nmi_uinmf + nmi_multimap + nmi_stabmap) scores["ARI"] = np.array(ari_scmomat + ari_uinmf + ari_multimap + ari_stabmap) scores["F1"] = np.array(f1_scmomat + f1_uinmf + f1_multimap + f1_stabmap) scores["GC"] = np.array([gc_scmomat] * len(nmi_scmomat) + [gc_uinmf] * len(nmi_uinmf) + [gc_multimap] * len(ari_multimap) + [gc_stabmap] * len(ari_stabmap)) scores["LTA"] = np.array([lta_scmomat] * len(nmi_scmomat) + [lta_uinmf] * len(nmi_uinmf) + [lta_multimap] * len(ari_multimap) + [lta_stabmap] * len(ari_stabmap)) scores["resolution"] = np.array([x for x in np.arange(0.1, 10, 0.5)] * 4) scores["methods"] = np.array(["scMoMaT"] * len(nmi_scmomat) + ["UINMF"] * len(nmi_uinmf) + ["MultiMap"] * len(ari_multimap) + ["Stabmap"] * len(ari_stabmap)) scores.to_csv(result_dir + "/score.csv") # In[] if True: nmi_scmomat = [] ari_scmomat = [] gc_scmomat = [] lta_scmomat = [] f1_scmomat = [] nmi_uinmf = [] ari_uinmf = [] gc_uinmf = [] lta_uinmf = [] f1_uinmf = [] nmi_liger = [] ari_liger = [] gc_liger = [] lta_liger = [] f1_liger = [] nmi_multimap = [] ari_multimap = [] gc_multimap = [] lta_multimap = [] f1_multimap = [] nmi_stabmap = [] ari_stabmap = [] gc_stabmap = [] lta_stabmap = [] f1_stabmap = [] # for seed in [1,2,3,4,9]: # ARI higher: 2, 3, 9 for seed in [1,2,3,4,5,6,7,9]: result_dir = f'simulated/6b16c_test_{seed}/imbalanced/' scores = pd.read_csv(result_dir + "score.csv", index_col = 0) scores_scmomat = scores[scores["methods"] == "scMoMaT"] scores_uinmf = scores[scores["methods"] == "UINMF"] # scores_liger = scores[scores["methods"] == "LIGER"] scores_multimap = scores[scores["methods"] == "MultiMap"] scores_stabmap = scores[scores["methods"] == "Stabmap"] nmi_scmomat.append(np.max(scores_scmomat["NMI"].values)) ari_scmomat.append(np.max(scores_scmomat["ARI"].values)) gc_scmomat.append(np.max(scores_scmomat["GC"].values)) lta_scmomat.append(np.max(scores_scmomat["LTA"].values)) f1_scmomat.append(np.max(scores_scmomat["F1"].values)) nmi_uinmf.append(np.max(scores_uinmf["NMI"].values)) ari_uinmf.append(np.max(scores_uinmf["ARI"].values)) gc_uinmf.append(np.max(scores_uinmf["GC"].values)) lta_uinmf.append(np.max(scores_uinmf["LTA"].values)) f1_uinmf.append(np.max(scores_uinmf["F1"].values)) # nmi_liger.append(np.max(scores_liger["NMI"].values)) # ari_liger.append(np.max(scores_liger["ARI"].values)) # gc_liger.append(np.max(scores_liger["GC"].values)) # lta_liger.append(np.max(scores_liger["LTA"].values)) nmi_multimap.append(np.max(scores_multimap["NMI"].values)) ari_multimap.append(np.max(scores_multimap["ARI"].values)) gc_multimap.append(np.max(scores_multimap["GC"].values)) lta_multimap.append(np.max(scores_multimap["LTA"].values)) f1_multimap.append(np.max(scores_multimap["F1"].values)) nmi_stabmap.append(np.max(scores_stabmap["NMI"].values)) ari_stabmap.append(np.max(scores_stabmap["ARI"].values)) gc_stabmap.append(np.max(scores_stabmap["GC"].values)) lta_stabmap.append(np.max(scores_stabmap["LTA"].values)) f1_stabmap.append(np.max(scores_stabmap["F1"].values)) new_score = pd.DataFrame() new_score["method"] = ["scMoMaT"] * len(ari_scmomat) + ["MultiMap"] * len(ari_multimap) + ["UINMF"] * len(ari_uinmf) + ["Stabmap"] * len(ari_stabmap) new_score["ARI"] = ari_scmomat + ari_multimap + ari_uinmf + ari_stabmap new_score["NMI"] = nmi_scmomat + nmi_multimap + nmi_uinmf + nmi_stabmap new_score["GC"] = gc_scmomat + gc_multimap + gc_uinmf + gc_stabmap new_score["LTA"] = lta_scmomat + lta_multimap + lta_uinmf + lta_stabmap new_score["F1"] = f1_scmomat + f1_multimap + f1_uinmf + f1_stabmap import seaborn as sns plt.rcParams["font.size"] = 20 fig = plt.figure(figsize = (32, 5)) ax = fig.subplots(nrows = 1, ncols = 5) sns.boxplot(data = new_score, x = "method", y = "GC", ax = ax[0]) sns.stripplot(data = new_score, x = "method", y = "GC", ax = ax[0], color = "black") sns.boxplot(data = new_score, x = "method", y = "ARI", ax = ax[1]) sns.stripplot(data = new_score, x = "method", y = "ARI", ax = ax[1], color = "black") sns.boxplot(data = new_score, x = "method", y = "NMI", ax = ax[2]) sns.stripplot(data = new_score, x = "method", y = "NMI", ax = ax[2], color = "black") sns.boxplot(data = new_score, x = "method", y = "LTA", ax = ax[3]) sns.stripplot(data = new_score, x = "method", y = "LTA", ax = ax[3], color = "black") sns.boxplot(data = new_score, x = "method", y = "F1", ax = ax[4]) sns.stripplot(data = new_score, x = "method", y = "F1", ax = ax[4], color = "black") ax[0].set_title("Graph connectivity") ax[1].set_title("ARI") ax[2].set_title("NMI") ax[3].set_title("Lable Transfer Accuracy") ax[4].set_title("Rare cell type detection") fig.tight_layout() fig.savefig("simulated/scores_imbalanced.png", bbox_inches = "tight") # %%
null
test/test_simulated_imbalanced.py
test_simulated_imbalanced.py
py
34,257
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path.append", "line_number": 3, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 18, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 18, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 18, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 19, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "warnings.filterwarnings", "line_number": 21, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.TfidfTransformer", "line_number": 27, "usage_type": "call" }, { "api_name": "sklearn.decomposition.TruncatedSVD", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 87, "usage_type": "call" }, { "api_name": "os.path", "line_number": 87, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 88, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 95, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 95, "usage_type": "call" }, { "api_name": "os.path", "line_number": 95, "usage_type": "attribute" }, { "api_name": "numpy.loadtxt", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path", "line_number": 99, "usage_type": "attribute" }, { "api_name": "scmomat.utils.preprocess", "line_number": 100, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 100, "usage_type": "name" }, { "api_name": "numpy.loadtxt", "line_number": 106, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 106, "usage_type": "call" }, { "api_name": "os.path", "line_number": 106, "usage_type": "attribute" }, { "api_name": "scmomat.utils.preprocess", "line_number": 108, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 108, "usage_type": "name" }, { "api_name": "numpy.loadtxt", "line_number": 128, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 128, "usage_type": "call" }, { "api_name": "os.path", "line_number": 128, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 138, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 139, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 167, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 172, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 172, "usage_type": "name" }, { "api_name": "umap.UMAP", "line_number": 173, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 179, "usage_type": "call" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 199, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 199, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 200, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 200, "usage_type": "name" }, { "api_name": "scmomat.utils.post_process", "line_number": 212, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 212, "usage_type": "name" }, { "api_name": "scmomat.utils.leiden_cluster", "line_number": 215, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 215, "usage_type": "name" }, { "api_name": "scmomat.umap_batch.UMAP", "line_number": 216, "usage_type": "call" }, { "api_name": "scmomat.umap_batch", "line_number": 216, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 243, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 243, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 246, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 246, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 249, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 249, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 252, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 252, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 265, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 266, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 267, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 268, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 269, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 270, "usage_type": "call" }, { "api_name": "umap.UMAP", "line_number": 272, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 272, "usage_type": "call" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 287, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 287, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 290, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 290, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 293, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 293, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 332, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 333, "usage_type": "call" }, { "api_name": "scipy.sparse.load_npz", "line_number": 334, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 334, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 340, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 340, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 343, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 343, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 346, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 346, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 352, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 353, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 354, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 355, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 356, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 357, "usage_type": "call" }, { "api_name": "umap.UMAP", "line_number": 359, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 359, "usage_type": "call" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 374, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 374, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 377, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 377, "usage_type": "name" }, { "api_name": "scmomat.utils.plot_latent_ext", "line_number": 380, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 380, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 388, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 389, "usage_type": "call" }, { "api_name": "scmomat.bmk.graph_connectivity", "line_number": 390, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 390, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 390, "usage_type": "call" }, { "api_name": "scmomat.bmk.graph_connectivity", "line_number": 394, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 394, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 394, "usage_type": "call" }, { "api_name": "scipy.sparse.load_npz", "line_number": 404, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 404, "usage_type": "name" }, { "api_name": "numpy.zeros_like", "line_number": 406, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 407, "usage_type": "call" }, { "api_name": "scmomat.bmk.graph_connectivity", "line_number": 408, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 408, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 408, "usage_type": "call" }, { "api_name": "scmomat.bmk.graph_connectivity", "line_number": 409, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 409, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 409, "usage_type": "call" }, { "api_name": "scmomat.bmk.graph_connectivity", "line_number": 414, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 414, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 414, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 421, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 422, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 423, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 424, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 430, "usage_type": "call" }, { "api_name": "scmomat.utils.leiden_cluster", "line_number": 432, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 432, "usage_type": "name" }, { "api_name": "scmomat.bmk.nmi", "line_number": 433, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 433, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 433, "usage_type": "call" }, { "api_name": "scmomat.bmk.ari", "line_number": 434, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 434, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 434, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 436, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 436, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 437, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 438, "usage_type": "call" }, { "api_name": "scmomat.bmk.F1_score", "line_number": 439, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 439, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 450, "usage_type": "call" }, { "api_name": "scmomat.utils.leiden_cluster", "line_number": 451, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 451, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 451, "usage_type": "call" }, { "api_name": "scmomat.bmk.nmi", "line_number": 452, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 452, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 452, "usage_type": "call" }, { "api_name": "scmomat.bmk.ari", "line_number": 453, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 453, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 453, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 455, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 455, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 456, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 457, "usage_type": "call" }, { "api_name": "scmomat.bmk.F1_score", "line_number": 458, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 458, "usage_type": "name" }, { "api_name": "scipy.sparse.load_npz", "line_number": 476, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 476, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 480, "usage_type": "call" }, { "api_name": "scmomat.utils.leiden_cluster", "line_number": 483, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 483, "usage_type": "name" }, { "api_name": "scmomat.bmk.nmi", "line_number": 484, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 484, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 484, "usage_type": "call" }, { "api_name": "scmomat.bmk.ari", "line_number": 485, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 485, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 485, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 487, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 487, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 488, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 489, "usage_type": "call" }, { "api_name": "scmomat.bmk.F1_score", "line_number": 490, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 490, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 500, "usage_type": "call" }, { "api_name": "scmomat.utils.leiden_cluster", "line_number": 501, "usage_type": "call" }, { "api_name": "scmomat.utils", "line_number": 501, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 501, "usage_type": "call" }, { "api_name": "scmomat.bmk.nmi", "line_number": 502, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 502, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 502, "usage_type": "call" }, { "api_name": "scmomat.bmk.ari", "line_number": 503, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 503, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 503, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 505, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 505, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 506, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 507, "usage_type": "call" }, { "api_name": "scmomat.bmk.F1_score", "line_number": 508, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 508, "usage_type": "name" }, { "api_name": "numpy.random.seed", "line_number": 516, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 516, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 517, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 518, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 518, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 518, "usage_type": "call" }, { "api_name": "numpy.bool", "line_number": 519, "usage_type": "attribute" }, { "api_name": "numpy.concatenate", "line_number": 520, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 521, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 527, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 528, "usage_type": "call" }, { "api_name": "scmomat.bmk.transfer_accuracy", "line_number": 530, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 530, "usage_type": "name" }, { "api_name": "scmomat.bmk.transfer_accuracy", "line_number": 533, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 533, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 534, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 535, "usage_type": "call" }, { "api_name": "scipy.sparse.load_npz", "line_number": 538, "usage_type": "call" }, { "api_name": "scipy.sparse", "line_number": 538, "usage_type": "name" }, { "api_name": "numpy.zeros_like", "line_number": 540, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 541, "usage_type": "call" }, { "api_name": "scmomat.bmk.transfer_accuracy", "line_number": 542, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 542, "usage_type": "name" }, { "api_name": "scmomat.bmk.transfer_accuracy", "line_number": 543, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 543, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 544, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 545, "usage_type": "call" }, { "api_name": "scmomat.bmk.transfer_accuracy", "line_number": 548, "usage_type": "call" }, { "api_name": "scmomat.bmk", "line_number": 548, "usage_type": "name" }, { "api_name": "numpy.concatenate", "line_number": 549, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 550, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 567, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 568, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 569, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 570, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 571, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 572, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 573, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 573, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 574, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 611, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 618, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 619, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 620, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 621, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 622, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 624, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 625, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 626, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 627, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 628, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 635, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 636, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 637, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 638, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 639, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 641, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 642, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 643, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 644, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 645, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 647, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 657, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 657, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 658, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 658, "usage_type": "name" }, { "api_name": "seaborn.boxplot", "line_number": 660, "usage_type": "call" }, { "api_name": "seaborn.stripplot", "line_number": 661, "usage_type": "call" }, { "api_name": "seaborn.boxplot", "line_number": 662, "usage_type": "call" }, { "api_name": "seaborn.stripplot", "line_number": 663, "usage_type": "call" }, { "api_name": "seaborn.boxplot", "line_number": 664, "usage_type": "call" }, { "api_name": "seaborn.stripplot", "line_number": 665, "usage_type": "call" }, { "api_name": "seaborn.boxplot", "line_number": 666, "usage_type": "call" }, { "api_name": "seaborn.stripplot", "line_number": 667, "usage_type": "call" }, { "api_name": "seaborn.boxplot", "line_number": 668, "usage_type": "call" }, { "api_name": "seaborn.stripplot", "line_number": 669, "usage_type": "call" } ]
571621997
from django import forms from django.conf import settings from .models import Event from .exceptions import EventStartDateTimeException import datetime class EventForm(forms.ModelForm): class Meta: model = Event fields = [ 'title', 'place', 'description', 'type', ] widgets = { 'place': forms.TextInput(attrs={"type": "hidden"}), 'type': forms.NumberInput(attrs={ 'min': settings.TYPE_CLOSE_EVENT, 'max': settings.TYPE_OPEN_EVENT, 'default': settings.TYPE_CLOSE_EVENT}), 'title': forms.TextInput() } labels = { 'place': 'Search place in map', 'type': "Select type to event" } start_date_time = forms.DateTimeField(input_formats=[settings.DATETIME_FORMAT], label='start', widget=forms.DateTimeInput(attrs={'class': "form-control"}) ) def is_valid(self): super(EventForm, self).is_valid() return self.is_valid_start_dtime() def is_valid_start_dtime(self): dt_event = self.cleaned_data.get('start_date_time') print(self.cleaned_data) if not dt_event: return False event_info = dt_event.astimezone().tzinfo now = datetime.datetime.now(tz=event_info) if now > dt_event: raise EventStartDateTimeException("Event cannot be earlier than current date.") return True def save(self, commit=True): event = Event() event.create( self.cleaned_data.get('title', ''), self.cleaned_data.get('description', ''), self.cleaned_data.get('place', ''), self.cleaned_data.get('type', 0), self.cleaned_data.get('start_date_time') ) if commit: event.save() return event
null
events/forms.py
forms.py
py
2,018
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.forms.ModelForm", "line_number": 8, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 8, "usage_type": "name" }, { "api_name": "models.Event", "line_number": 10, "usage_type": "name" }, { "api_name": "django.forms.TextInput", "line_number": 18, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 18, "usage_type": "name" }, { "api_name": "django.forms.NumberInput", "line_number": 19, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 19, "usage_type": "name" }, { "api_name": "django.conf.settings.TYPE_CLOSE_EVENT", "line_number": 20, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 20, "usage_type": "name" }, { "api_name": "django.conf.settings.TYPE_OPEN_EVENT", "line_number": 21, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 21, "usage_type": "name" }, { "api_name": "django.conf.settings.TYPE_CLOSE_EVENT", "line_number": 22, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 22, "usage_type": "name" }, { "api_name": "django.forms.TextInput", "line_number": 23, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 23, "usage_type": "name" }, { "api_name": "django.forms.DateTimeField", "line_number": 31, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 31, "usage_type": "name" }, { "api_name": "django.conf.settings.DATETIME_FORMAT", "line_number": 31, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 31, "usage_type": "name" }, { "api_name": "django.forms.DateTimeInput", "line_number": 33, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 33, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 47, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 47, "usage_type": "attribute" }, { "api_name": "exceptions.EventStartDateTimeException", "line_number": 49, "usage_type": "call" }, { "api_name": "models.Event", "line_number": 53, "usage_type": "call" } ]
444671274
import re from django.utils import timezone from django.core.exceptions import ValidationError from django.utils.encoding import force_text from django.utils.html import strip_tags from django import forms from sidrun.models import Tag class CustomSelectMultipleTags(forms.ModelMultipleChoiceField): def label_from_instance(self, obj): return obj.name class AddTaskForm(forms.ModelForm): tags = CustomSelectMultipleTags(widget=forms.CheckboxSelectMultiple, queryset=Tag.objects.all()) def __init__(self, *args, **kwargs): self.request = kwargs.pop('request', None) super(AddTaskForm, self).__init__(*args, **kwargs) def clean(self): data = super(AddTaskForm, self).clean() deadline = data.get('deadline') time_to_complete_task = data.get('time_to_complete_task') try: hours_between_dates = (deadline - timezone.now()).total_seconds() / 3600 except TypeError: return data if time_to_complete_task > hours_between_dates: raise ValidationError("Hours to complete task has to fit between now and deadline!") return data def clean_deadline(self): deadline = self.cleaned_data.get("deadline") if deadline and deadline < timezone.now(): raise ValidationError("Please enter a deadline that is not in the past!") return deadline def save(self, commit=True): instance = super(AddTaskForm, self).save(commit=False) if '_publish' in self.request.POST: instance.start_date = timezone.now() if commit: instance.save() return instance class CustomForm(forms.ModelForm): def __init__(self, *args, **kwargs): self.request = kwargs.pop('request', None) super(CustomForm, self).__init__(*args, **kwargs) self.regex = re.compile( r'^(?:http|ftp)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain... r'localhost|' # localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # ...or ipv4 r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # ...or ipv6 r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) def need_to_validate(self): return '_preview' in self.request.POST def clean_body(self): body = self.data.get("body") or '' if self.need_to_validate(): min_body_length = 280 body_length = len(strip_tags(body)) if body_length < min_body_length: raise ValidationError( "Body length needs to be at least %d characters. You have %d." % (min_body_length, body_length)) return body def clean_summary_pitch(self): summary_pitch = self.data.get("summary_pitch") or '' if self.need_to_validate(): min_summary_length = 140 summary_length = len(strip_tags(summary_pitch)) if summary_length < min_summary_length: raise ValidationError("Summary pitch length needs to be at least %d characters. You have %d." % ( min_summary_length, summary_length)) return summary_pitch def clean_conclusion(self): conclusion = self.data.get("conclusion") or '' if self.need_to_validate(): min_conclusion_length = 140 conclusion_length = len(strip_tags(conclusion)) if conclusion_length < min_conclusion_length: raise ValidationError("Conclusion length needs to be at least %d characters. You have %d." % ( min_conclusion_length, conclusion_length)) return conclusion def clean_references(self): references = self.data.get("references") if self.need_to_validate() and self.instance.task.require_references: references_prepared_for_validation = re.findall(r'href=[\'"]?([^\'" >]+)', references) if not references_prepared_for_validation: raise ValidationError("There needs to be at least one url address in references. Please use the link icon to add one!") validation_errors = [] for reference in references_prepared_for_validation: if not self.regex.search(force_text(reference)): validation_errors.append(ValidationError("'%s' is not valid url address." % reference)) if validation_errors: raise ValidationError(validation_errors) return references def clean_videos(self): videos = self.data.get("videos") if self.need_to_validate() and self.instance.task.require_videos: video_urls_prepared_for_validation = re.findall(r'href=[\'"]?([^\'" >]+)', videos) if not video_urls_prepared_for_validation: raise ValidationError("There needs to be at least one url address in videos. Please use the link icon to add one!") validation_errors = [] for video in video_urls_prepared_for_validation: if not self.regex.search(force_text(video)): validation_errors.append(ValidationError("'%s' is not a valid url address." % video)) if validation_errors: raise ValidationError(validation_errors) return videos
null
sidrun/forms.py
forms.py
py
5,397
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.forms.ModelMultipleChoiceField", "line_number": 12, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 12, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 17, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 17, "usage_type": "name" }, { "api_name": "django.forms.CheckboxSelectMultiple", "line_number": 18, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 18, "usage_type": "name" }, { "api_name": "sidrun.models.Tag.objects.all", "line_number": 18, "usage_type": "call" }, { "api_name": "sidrun.models.Tag.objects", "line_number": 18, "usage_type": "attribute" }, { "api_name": "sidrun.models.Tag", "line_number": 18, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 29, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 29, "usage_type": "name" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 33, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 38, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 38, "usage_type": "name" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 39, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 45, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 45, "usage_type": "name" }, { "api_name": "django.forms.ModelForm", "line_number": 51, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 51, "usage_type": "name" }, { "api_name": "re.compile", "line_number": 55, "usage_type": "call" }, { "api_name": "re.IGNORECASE", "line_number": 62, "usage_type": "attribute" }, { "api_name": "django.utils.html.strip_tags", "line_number": 71, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 73, "usage_type": "call" }, { "api_name": "django.utils.html.strip_tags", "line_number": 81, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 83, "usage_type": "call" }, { "api_name": "django.utils.html.strip_tags", "line_number": 91, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 93, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 100, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 102, "usage_type": "call" }, { "api_name": "django.utils.encoding.force_text", "line_number": 105, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 106, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 108, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 114, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 116, "usage_type": "call" }, { "api_name": "django.utils.encoding.force_text", "line_number": 119, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 120, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 122, "usage_type": "call" } ]
412240504
from time import strftime from baobab.lims.config import VOLUME_UNITS from bika.lims import PMF from bika.lims import logger from bika.lims.browser.bika_listing import WorkflowAction from bika.lims.workflow import doActionFor from Products.Archetypes.exceptions import ReferenceException from Products.CMFCore.WorkflowCore import WorkflowException from Products.CMFCore.utils import getToolByName from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from smtplib import SMTPServerDisconnected, SMTPRecipientsRefused import plone import transaction class BiospecimenWorkflowAction(WorkflowAction): def __call__(self): form = self.request.form plone.protect.CheckAuthenticator(form) action, _ = WorkflowAction._get_form_workflow_action(self) if type(action) in (list, tuple): action = action[0] # Call out to the workflow action method method_name = 'workflow_action_' + action method = getattr(self, method_name, False) if method: method() else: WorkflowAction.__call__(self) def workflow_action_receive(self): form = self.request.form # print form selected_biospecimens = WorkflowAction._get_selected_items(self) biospecimens = [] for uid in selected_biospecimens.keys(): if not form['Volume'][0][uid] or \ not form['Unit'][0][uid]: # or \ # not form['SubjectID'][0][uid]: continue try: obj = selected_biospecimens.get(uid, None) if 'Volume' in form and form['Volume'][0][uid]: obj.getField('Volume').set(obj, form['Volume'][0][uid]) if 'SubjectID' in form and form['SubjectID'][0][uid]: obj.getField('SubjectID').set(obj, form['SubjectID'][0][uid]) if 'Urgent' in form and form['Urgent'][0][uid]: obj.getField('Urgent').set(obj, form['Urgent'][0][uid]) if 'SamplingDate' in form and form['SamplingDate'][0][uid]: obj.getField('SamplingDate').set(obj, form['SamplingDate'][0][uid]) # unit = 'ml' # for u in VOLUME_UNITS: # if u['ResultValue'] == form['Unit'][0][uid]: # unit = u['ResultText'] if 'Unit' in form and form['Unit'][0][uid]: obj.getField('Unit').set(obj, form['Unit'][0][uid]) if 'CountryOfOrigin' in form and form['CountryOfOrigin'][0][uid]: obj.getField('CountryOfOrigin').set(obj, form['CountryOfOrigin'][0][uid]) if 'SiteCentreOfOrigin' in form and form['SiteCentreOfOrigin'][0][uid]: obj.getField('SiteCentreOfOrigin').set(obj, form['SiteCentreOfOrigin'][0][uid]) location = obj.getStorageLocation() if location: doActionFor(location, 'occupy') obj.reindexObject() biospecimens.append(obj) except ReferenceException: continue message = PMF("Changes saved.") self.context.plone_utils.addPortalMessage(message, 'info') if biospecimens: samples_received = biospecimens[:] for biospecimen in biospecimens: biospecimen.from_grid = True doActionFor(biospecimen, 'receive') for partition in biospecimen.objectValues('SamplePartition'): doActionFor(partition, 'receive') self.send_sample_status_update_emails(samples_received, 'receive') # raise Exception('samples received') self.destination_url = self.context.absolute_url() if form['portal_type'] == 'Kit' or \ form['portal_type'] == 'SampleBatch': self.destination_url = form['view_url'] self.destination_url += '/biospecimens' self.request.response.redirect(self.destination_url) def send_sample_status_update_emails(self, biospecimens, samples_status): projects = {} for biospecimen in biospecimens: print(biospecimen) project = biospecimen.aq_parent if project.Title() in projects: projects[project.Title()].append(biospecimen) else: projects[project.Title()] = [biospecimen] for project, samples in projects.iteritems(): sample_parent = None text_samples = [] for sample in samples: if not sample_parent: sample_parent = sample.aq_parent barcode = sample.getField('Barcode').get(sample) volume = sample.getField('Volume').get(sample) + ' ' + sample.getField('Unit').get(sample) text_samples.append('Barcode: %s: - Volume: %s' % (barcode, volume)) if samples_status == 'receive': subject = 'Samples received: ' elif samples_status == 'due': subject = 'Samples due: ' subject += 'Total %s - Project %s' % (str(len(text_samples)), sample_parent.Title()) if samples_status == 'receive': email_message = 'The following samples were received.\n\n' elif samples_status == 'due': email_message = 'The following samples are due.\n\n' else: raise Exception('Sample new status cannot be %s' %samples_status) email_message += '\n'.join(text_samples) client = sample_parent.getClient() sender = client.EmailAddress receiver = sender self.send_email(sender, receiver, subject, email_message) lab_contacts = sample_parent.getLabContacts() for contact in lab_contacts: self.send_email(sender, contact.EmailAddress, subject, email_message) def send_email(self, sender, receiver, subject, email_message): mime_msg = MIMEMultipart('related') mime_msg['Subject'] = subject mime_msg['From'] = sender mime_msg['To'] = receiver msg_txt = MIMEText(email_message, 'plain') mime_msg.attach(msg_txt) try: host = getToolByName(self, 'MailHost') host.send(mime_msg.as_string(), immediate=True) except SMTPServerDisconnected as msg: logger.warn("SMTPServerDisconnected: %s." % msg) except SMTPRecipientsRefused as msg: raise WorkflowException(str(msg)) except Exception as e: logger.warn('Receive sample email exception: %s' %str(e)) def workflow_action_sample_due(self): form = self.request.form selected_biospecimens = WorkflowAction._get_selected_items(self) biospecimens = [] for uid in selected_biospecimens.keys(): if not form['Barcode'][0][uid] or \ not form['Type'][0][uid]: continue try: obj = selected_biospecimens.get(uid, None) if 'SamplingDate' in form and form['SamplingDate'][0][uid]: obj.getField('SamplingDate').set(obj, form['SamplingDate'][0][uid]) obj.getField('Barcode').set(obj, form['Barcode'][0][uid]) obj.getField('SampleType').set(obj, form['Type'][0][uid]) obj.setId(form['Barcode'][0][uid]) if 'CountryOfOrigin' in form and form['CountryOfOrigin'][0][uid]: obj.getField('CountryOfOrigin').set(obj, form['CountryOfOrigin'][0][uid]) if 'SiteCentreOfOrigin' in form and form['SiteCentreOfOrigin'][0][uid]: obj.getField('SiteCentreOfOrigin').set(obj, form['SiteCentreOfOrigin'][0][uid]) obj.edit(SampleID=obj.getId()) obj.reindexObject() biospecimens.append(obj) except ReferenceException: continue message = PMF("Changes saved.") self.context.plone_utils.addPortalMessage(message, 'info') if biospecimens: samples_due = biospecimens[:] for biospecimen in biospecimens: doActionFor(biospecimen, 'sample_due') for partition in biospecimen.objectValues('SamplePartition'): doActionFor(partition, 'sample_due') self.send_sample_status_update_emails(samples_due, 'due') self.destination_url = self.context.absolute_url() if form['portal_type'] == 'Kit' or \ form['portal_type'] == 'SampleBatch': self.destination_url = form['view_url'] self.destination_url += '/biospecimens' self.request.response.redirect(self.destination_url) def workflow_action_dispose(self): form = self.request.form selected_biospecimens = WorkflowAction._get_selected_items(self) biospecimens = [] for uid in selected_biospecimens.keys(): try: obj = selected_biospecimens.get(uid, None) if 'Rebleed' in form and form['Rebleed'][0][uid]: obj.getField('Rebleed').set(obj, form['Rebleed'][0][uid]) else: obj.getField('Rebleed').set(obj, 'No') obj.edit(SampleID=obj.getId()) obj.reindexObject() biospecimens.append(obj) except ReferenceException: continue message = PMF("Changes saved.") self.context.plone_utils.addPortalMessage(message, 'info') for biospecimen in biospecimens: doActionFor(biospecimen, 'dispose') for partition in biospecimen.objectValues('SamplePartition'): doActionFor(partition, 'dispose') self.destination_url = self.context.absolute_url() if form['portal_type'] == 'Kit' or \ form['portal_type'] == 'SampleBatch': self.destination_url = form['view_url'] self.destination_url += '/biospecimens' self.request.response.redirect(self.destination_url) def workflow_action_return(self): form = self.request.form selected_biospecimens = WorkflowAction._get_selected_items(self) biospecimens = [] for uid in selected_biospecimens.keys(): try: obj = selected_biospecimens.get(uid, None) if 'Rebleed' in form and form['Rebleed'][0][uid]: obj.getField('Rebleed').set(obj, form['Rebleed'][0][uid]) else: obj.getField('Rebleed').set(obj, 'No') obj.edit(SampleID=obj.getId()) obj.reindexObject() biospecimens.append(obj) except ReferenceException: continue message = PMF("Changes saved.") self.context.plone_utils.addPortalMessage(message, 'info') for biospecimen in biospecimens: doActionFor(biospecimen, 'return') for partition in biospecimen.objectValues('SamplePartition'): doActionFor(partition, 'return') self.destination_url = self.context.absolute_url() if form['portal_type'] == 'Kit' or \ form['portal_type'] == 'SampleBatch': self.destination_url = form['view_url'] self.destination_url += '/biospecimens' self.request.response.redirect(self.destination_url) def workflow_action_delete(self): form = self.request.form selected_biospecimens = WorkflowAction._get_selected_items(self) for uid in selected_biospecimens.keys(): try: # raise Exception('Test exception') obj = selected_biospecimens.get(uid, None) obj.aq_parent.manage_delObjects([obj.getId()]) transaction.commit() self.context.plone_utils.addPortalMessage('Deleted sample: %s' %obj.Title(), 'info') except Exception as e: self.context.plone_utils.addPortalMessage(str(e), 'error') continue # message = PMF("Changes saved.") # self.context.plone_utils.addPortalMessage(message, 'info') self.destination_url = self.context.absolute_url() if form['portal_type'] == 'Kit' or \ form['portal_type'] == 'SampleBatch': self.destination_url = form['view_url'] self.destination_url += '/biospecimens/folder_view?list_review_state=returned_disposed&list_sort_on=sortable_title' self.request.response.redirect(self.destination_url)
null
baobab/lims/browser/biospecimen/workflow.py
workflow.py
py
12,711
python
en
code
null
code-starcoder2
83
[ { "api_name": "bika.lims.browser.bika_listing.WorkflowAction", "line_number": 21, "usage_type": "name" }, { "api_name": "plone.protect.CheckAuthenticator", "line_number": 25, "usage_type": "call" }, { "api_name": "plone.protect", "line_number": 25, "usage_type": "attribute" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction._get_form_workflow_action", "line_number": 26, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction", "line_number": 26, "usage_type": "name" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction.__call__", "line_number": 36, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction", "line_number": 36, "usage_type": "name" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction._get_selected_items", "line_number": 41, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction", "line_number": 41, "usage_type": "name" }, { "api_name": "bika.lims.workflow.doActionFor", "line_number": 71, "usage_type": "call" }, { "api_name": "Products.Archetypes.exceptions.ReferenceException", "line_number": 75, "usage_type": "name" }, { "api_name": "bika.lims.PMF", "line_number": 78, "usage_type": "call" }, { "api_name": "bika.lims.workflow.doActionFor", "line_number": 86, "usage_type": "call" }, { "api_name": "bika.lims.workflow.doActionFor", "line_number": 88, "usage_type": "call" }, { "api_name": "email.mime.multipart.MIMEMultipart", "line_number": 153, "usage_type": "call" }, { "api_name": "email.mime.text.MIMEText", "line_number": 157, "usage_type": "call" }, { "api_name": "Products.CMFCore.utils.getToolByName", "line_number": 160, "usage_type": "call" }, { "api_name": "smtplib.SMTPServerDisconnected", "line_number": 162, "usage_type": "name" }, { "api_name": "bika.lims.logger.warn", "line_number": 163, "usage_type": "call" }, { "api_name": "bika.lims.logger", "line_number": 163, "usage_type": "name" }, { "api_name": "smtplib.SMTPRecipientsRefused", "line_number": 164, "usage_type": "name" }, { "api_name": "Products.CMFCore.WorkflowCore.WorkflowException", "line_number": 165, "usage_type": "call" }, { "api_name": "bika.lims.logger.warn", "line_number": 167, "usage_type": "call" }, { "api_name": "bika.lims.logger", "line_number": 167, "usage_type": "name" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction._get_selected_items", "line_number": 171, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction", "line_number": 171, "usage_type": "name" }, { "api_name": "Products.Archetypes.exceptions.ReferenceException", "line_number": 191, "usage_type": "name" }, { "api_name": "bika.lims.PMF", "line_number": 193, "usage_type": "call" }, { "api_name": "bika.lims.workflow.doActionFor", "line_number": 200, "usage_type": "call" }, { "api_name": "bika.lims.workflow.doActionFor", "line_number": 202, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction._get_selected_items", "line_number": 216, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction", "line_number": 216, "usage_type": "name" }, { "api_name": "Products.Archetypes.exceptions.ReferenceException", "line_number": 229, "usage_type": "name" }, { "api_name": "bika.lims.PMF", "line_number": 231, "usage_type": "call" }, { "api_name": "bika.lims.workflow.doActionFor", "line_number": 235, "usage_type": "call" }, { "api_name": "bika.lims.workflow.doActionFor", "line_number": 237, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction._get_selected_items", "line_number": 249, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction", "line_number": 249, "usage_type": "name" }, { "api_name": "Products.Archetypes.exceptions.ReferenceException", "line_number": 262, "usage_type": "name" }, { "api_name": "bika.lims.PMF", "line_number": 264, "usage_type": "call" }, { "api_name": "bika.lims.workflow.doActionFor", "line_number": 268, "usage_type": "call" }, { "api_name": "bika.lims.workflow.doActionFor", "line_number": 270, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction._get_selected_items", "line_number": 282, "usage_type": "call" }, { "api_name": "bika.lims.browser.bika_listing.WorkflowAction", "line_number": 282, "usage_type": "name" }, { "api_name": "transaction.commit", "line_number": 289, "usage_type": "call" } ]
158398789
#!/usr/bin/env python # encoding: utf-8 from random import choice import string import logging from termcolor import colored import os, sys class ColorLogFiler(logging.StreamHandler): """ Override logging class to enable terminal colors """ def emit(self, record): try: msg = self.format(record) msg = msg.replace("[+]",colored("[+]", "green")) msg = msg.replace("[-]",colored("[-]", "green")) msg = msg.replace("[!]",colored("[!]", "red")) stream = self.stream stream.write(msg) stream.write(self.terminator) self.flush() except Exception: self.handleError(record) def randomAlpha(length): """ Returns a random alphabetic string of length 'length' """ key = '' for i in range(length): # @UnusedVariable key += choice(string.ascii_lowercase) return key def getRunningApp(): if getattr(sys, 'frozen', False): return sys.executable else: return os.path.abspath(__file__) class MSTypes(): XL="Excel" XL97="Excel97" WD="Word" WD97="Word97" PPT="PowerPoint" PPT97="PowerPoint97" PUB="Publisher" VBA="VBA" UNKNOWN = "Unknown" @classmethod def guessApplicationType(self, documentPath): """ Guess MS office application type based on extension """ result = "" extension = os.path.splitext(documentPath)[1] if ".xls" == extension: result = self.XL97 elif ".xlsx" == extension or extension == ".xlsm": result = self.XL elif ".doc" == extension: result = self.WD97 elif ".docx" == extension or extension == ".docm": result = self.WD elif ".ppt" == extension: result = self.PPT97 elif ".pptm" == extension or extension == ".pptx": result = self.PPT elif ".pub" == extension: result = self.PUB elif ".vba" == extension: result = self.VBA else: result = self.UNKNOWN return result
null
src/common/utils.py
utils.py
py
2,133
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.StreamHandler", "line_number": 13, "usage_type": "attribute" }, { "api_name": "termcolor.colored", "line_number": 18, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 19, "usage_type": "call" }, { "api_name": "termcolor.colored", "line_number": 20, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 32, "usage_type": "call" }, { "api_name": "string.ascii_lowercase", "line_number": 32, "usage_type": "attribute" }, { "api_name": "sys.executable", "line_number": 38, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 40, "usage_type": "call" }, { "api_name": "os.path", "line_number": 40, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 58, "usage_type": "call" }, { "api_name": "os.path", "line_number": 58, "usage_type": "attribute" } ]
45273461
import sys import math import random import maya.OpenMaya as om import maya.OpenMayaMPx as omMPx import maya.mel as mel kPluginNodeTypeName = "MASH_Delay" mashDelayId = om.MTypeId(0x0011BE07) class mashDelay( omMPx.MPxNode ): inputs = om.MObject() outputArray = om.MObject() #AETemplate embedded in the .py file, get me. mel.eval(''' global proc AEMASH_DelayTemplate( string $nodeName ) { editorTemplate -callCustom "headerIcons_MASH" "headerIconsEdit_MASH" "ae_MASH_Delay" "Delay"; editorTemplate -beginScrollLayout; editorTemplate -beginLayout "MASH Delay" -collapse 0; editorTemplate -label "Time Step" -addControl "timeStep"; editorTemplate -label "Time Variance" -addControl "timeVariance"; editorTemplate -label "Time Offset" -addControl "offset"; editorTemplate -beginLayout "Inputs" -collapse 1; editorTemplate -ccu "createInputs_MASH" "editInputs_MASH" "inputs" "Leader Object"; editorTemplate -callCustom "AEaddLeaderButtons" "AEaddLeaderButtonsEdit" ""; //editorTemplate -label "Inputs" -addControl "inputs"; editorTemplate -label "Time" -addControl "time"; editorTemplate -suppress "inIterations"; editorTemplate -endLayout; editorTemplate -endLayout; AEdependNodeTemplate $nodeName; editorTemplate -addExtraControls; editorTemplate -endScrollLayout; } global proc AEaddLeaderButtons ( string $attr ) { string $nodeName[]; tokenize($attr, ".", $nodeName); button -label "Connect Leader" -c ("delayButtonCMDS " + $nodeName[0] + " 1") connLeadMASHButton; separator -w 100 -h 5 -hr 1 -st "none"; } global proc AEaddLeaderButtonsEdit ( string $attr ) { string $nodeName[]; tokenize($attr, ".", $nodeName); button -e -c ("distButtonCMDS " + $nodeName[0] + " 1") connLeadMASHButton; } global proc delayButtonCMDS (string $nodeName, int $whichCMD) { if ($whichCMD == 1) { string $obj[] = `ls -sl -tr`; if (size($obj) > 0) { connectAttr -force ($obj[0]+".translate") ($nodeName+".inputs"); print "Translate connected."; } else { warning "Please select a translate."; } } evalDeferred("updateAE " + $nodeName); } ''') def __init__( self ): omMPx.MPxNode.__init__( self ) def compute(self, plug, dataBlock): if plug != mashDelay.outputArray: return om.kUnknownParameter outResultArray = om.MVectorArray() outResultArray.clear() #Get input array inputArray_dataHandle = dataBlock.inputValue(mashDelay.inputArray) #Get output array outputArray_dataHandle = dataBlock.outputValue(mashDelay.outputArray) numberOfCalcs = dataBlock.inputValue(mashDelay.inIterations).asInt() timeStepValue = dataBlock.inputValue(mashDelay.timeStep).asFloat() timeVarianceValue = dataBlock.inputValue(mashDelay.timeVar).asFloat() timeOffsetValue = dataBlock.inputValue(mashDelay.timeOffset).asFloat() inputValues = dataBlock.inputValue(mashDelay.inputs).asFloat3() currentTime = dataBlock.inputValue(self.aTime).asTime() time = currentTime.value() #Organise the input array inDArray = om.MVectorArray() inDArray.clear() inDArrData = dataBlock.inputValue(self.inputArray).data() inDArrFn = om.MFnVectorArrayData(inDArrData) inDArray = inDArrFn.array() testRead = om.MVector(0.0,0.0,0.0) #Set the outputArray outDData = dataBlock.outputValue(mashDelay.outputArray) nData = om.MFnVectorArrayData() #Get the time currentTime = dataBlock.inputValue(self.aTime).asTime() #are there more items in the input array then calculations from the waiter? - This almost certainly means echo mode, so compensate for that. if inDArray.length() > numberOfCalcs: numberOfCalcs = inDArray.length() for i in range(numberOfCalcs): if (inDArray.length() > 0): testRead = om.MVector(0.0,0.0,0.0) testRead = inDArray[i] # Get the element index index = i random.seed(i) variation = random.uniform(0.0,timeVarianceValue) stepValue = (timeStepValue/numberOfCalcs)*i calcTime = (time-variation)-stepValue-timeOffsetValue #get the results at the previous time ctx = om.MDGContext(om.MTime(calcTime)) thisNode = self.thisMObject() fnThisNode = om.MFnDependencyNode ( thisNode ) plugX = fnThisNode.findPlug( 'inputs0' ) plugY = fnThisNode.findPlug( 'inputs1' ) plugZ = fnThisNode.findPlug( 'inputs2' ) outX = plugX.asFloat(ctx) outY = plugY.asFloat(ctx) outZ = plugZ.asFloat(ctx) inNormalArray = om.MFloatArray() inNormalArray.clear() #if there is an input array, add those values if (inDArray.length() > 0): resultX = testRead.x+outX resultY = testRead.y+outY resultZ = testRead.z+outZ # else: resultX = outX resultY = outY resultZ = outZ #add the results to the out array thisResult = om.MVector(resultX,resultY,resultZ) outResultArray.append(thisResult) #set the output nDataObj = nData.create(outResultArray) outDData.setMObject(nDataObj) dataBlock.setClean(plug) def nodeCreator(): return omMPx.asMPxPtr( mashDelay() ) def nodeInitializer(): defaultVectorArray = om.MVectorArray(); dArrayDataFn = om.MFnVectorArrayData(); dArrayDataFn.create( defaultVectorArray ); tAttr = om.MFnTypedAttribute() mashDelay.inputArray = tAttr.create("inputArray", "inArray", om.MFnData.kVectorArray, dArrayDataFn.object()) tAttr.setWritable(1) tAttr.setStorable(0) tAttr.setReadable(1) tAttr.setKeyable(0) tAttr.setHidden(1) mashDelay.addAttribute( mashDelay.inputArray) nAttr = om.MFnNumericAttribute() mashDelay.inIterations = nAttr.create ( "inIterations", "cal", om.MFnNumericData.kInt, 0 ) nAttr.setStorable(0) nAttr.setKeyable(0) tAttr.setHidden(1) mashDelay.addAttribute ( mashDelay.inIterations ) tAttr = om.MFnTypedAttribute() mashDelay.outputArray = tAttr.create("outputArray", "outArray", om.MFnData.kVectorArray, dArrayDataFn.object()) tAttr.setWritable(1) tAttr.setStorable(0) tAttr.setKeyable(False) tAttr.setReadable(True) tAttr.setHidden(1) tAttr.setUsesArrayDataBuilder(True) mashDelay.addAttribute( mashDelay.outputArray ) nAttr = om.MFnNumericAttribute() mashDelay.timeStep = nAttr.create ( "timeStep", "ts", om.MFnNumericData.kFloat, 10 ) nAttr.setHidden(0) nAttr.setSoftMax(10) nAttr.setMin(0) nAttr.setStorable(1) mashDelay.addAttribute ( mashDelay.timeStep ) nAttr = om.MFnNumericAttribute() mashDelay.timeOffset = nAttr.create ( "offset", "off", om.MFnNumericData.kFloat, 0 ) nAttr.setHidden(0) nAttr.setSoftMin(0) nAttr.setSoftMax(10) nAttr.setStorable(1) mashDelay.addAttribute ( mashDelay.timeOffset ) nAttr = om.MFnNumericAttribute() mashDelay.timeVar = nAttr.create ( "timeVariance", "tva", om.MFnNumericData.kFloat, 20 ) nAttr.setHidden(0) nAttr.setSoftMax(50) nAttr.setMin(0) nAttr.setStorable(1) mashDelay.addAttribute ( mashDelay.timeVar ) nAttr = om.MFnNumericAttribute() mashDelay.inputs = nAttr.create ( "inputs", "in", om.MFnNumericData.k3Float, 0 ) nAttr.setHidden(0) nAttr.setStorable(1) mashDelay.addAttribute ( mashDelay.inputs ) uAttr = om.MFnUnitAttribute() mashDelay.aTime = uAttr.create("time", "ti", om.MFnUnitAttribute.kTime, 0.0) mashDelay.addAttribute(mashDelay.aTime) mashDelay.attributeAffects(mashDelay.timeOffset, mashDelay.outputArray) mashDelay.attributeAffects(mashDelay.aTime, mashDelay.outputArray) mashDelay.attributeAffects( mashDelay.timeVar, mashDelay.outputArray) mashDelay.attributeAffects( mashDelay.timeStep, mashDelay.outputArray) mashDelay.attributeAffects( mashDelay.inputs, mashDelay.outputArray) mashDelay.attributeAffects( mashDelay.inputArray, mashDelay.outputArray) def initializePlugin(mobject): mplugin = omMPx.MFnPlugin(mobject, "Ian_Waters", "1.0", "Any") try: mplugin.registerNode( kPluginNodeTypeName, mashDelayId, nodeCreator, nodeInitializer ) except: sys.stderr.write( "Failed to register node: %s" % kPluginNodeTypeName ) raise def uninitializePlugin(mobject): mplugin = omMPx.MFnPlugin(mobject) try: mplugin.deregisterNode( mashDelayId ) except: sys.stderr.write( "Failed to deregister node: %s" % PluginNodeTypeName )
null
BDmaya/plugins/win/2013/MASH_Delay.py
MASH_Delay.py
py
9,638
python
en
code
null
code-starcoder2
83
[ { "api_name": "maya.OpenMaya.MTypeId", "line_number": 10, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 10, "usage_type": "name" }, { "api_name": "maya.OpenMayaMPx.MPxNode", "line_number": 12, "usage_type": "attribute" }, { "api_name": "maya.OpenMayaMPx", "line_number": 12, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MObject", "line_number": 14, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 14, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MObject", "line_number": 15, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 15, "usage_type": "name" }, { "api_name": "maya.mel.eval", "line_number": 18, "usage_type": "call" }, { "api_name": "maya.mel", "line_number": 18, "usage_type": "name" }, { "api_name": "maya.OpenMayaMPx.MPxNode.__init__", "line_number": 95, "usage_type": "call" }, { "api_name": "maya.OpenMayaMPx.MPxNode", "line_number": 95, "usage_type": "attribute" }, { "api_name": "maya.OpenMayaMPx", "line_number": 95, "usage_type": "name" }, { "api_name": "maya.OpenMaya.kUnknownParameter", "line_number": 100, "usage_type": "attribute" }, { "api_name": "maya.OpenMaya", "line_number": 100, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MVectorArray", "line_number": 102, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 102, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MVectorArray", "line_number": 119, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 119, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnVectorArrayData", "line_number": 122, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 122, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MVector", "line_number": 125, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 125, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnVectorArrayData", "line_number": 129, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 129, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MVector", "line_number": 141, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 141, "usage_type": "name" }, { "api_name": "random.seed", "line_number": 147, "usage_type": "call" }, { "api_name": "random.uniform", "line_number": 148, "usage_type": "call" }, { "api_name": "maya.OpenMaya.MDGContext", "line_number": 154, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 154, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MTime", "line_number": 154, "usage_type": "call" }, { "api_name": "maya.OpenMaya.MFnDependencyNode", "line_number": 156, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 156, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFloatArray", "line_number": 165, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 165, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MVector", "line_number": 181, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 181, "usage_type": "name" }, { "api_name": "maya.OpenMayaMPx.asMPxPtr", "line_number": 193, "usage_type": "call" }, { "api_name": "maya.OpenMayaMPx", "line_number": 193, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MVectorArray", "line_number": 197, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 197, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnVectorArrayData", "line_number": 198, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 198, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnTypedAttribute", "line_number": 201, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 201, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnData", "line_number": 202, "usage_type": "attribute" }, { "api_name": "maya.OpenMaya", "line_number": 202, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericAttribute", "line_number": 210, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 210, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericData", "line_number": 211, "usage_type": "attribute" }, { "api_name": "maya.OpenMaya", "line_number": 211, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnTypedAttribute", "line_number": 217, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 217, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnData", "line_number": 218, "usage_type": "attribute" }, { "api_name": "maya.OpenMaya", "line_number": 218, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericAttribute", "line_number": 227, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 227, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericData", "line_number": 228, "usage_type": "attribute" }, { "api_name": "maya.OpenMaya", "line_number": 228, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericAttribute", "line_number": 235, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 235, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericData", "line_number": 236, "usage_type": "attribute" }, { "api_name": "maya.OpenMaya", "line_number": 236, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericAttribute", "line_number": 243, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 243, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericData", "line_number": 244, "usage_type": "attribute" }, { "api_name": "maya.OpenMaya", "line_number": 244, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericAttribute", "line_number": 251, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 251, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnNumericData", "line_number": 252, "usage_type": "attribute" }, { "api_name": "maya.OpenMaya", "line_number": 252, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnUnitAttribute", "line_number": 257, "usage_type": "call" }, { "api_name": "maya.OpenMaya", "line_number": 257, "usage_type": "name" }, { "api_name": "maya.OpenMaya.MFnUnitAttribute", "line_number": 258, "usage_type": "attribute" }, { "api_name": "maya.OpenMaya", "line_number": 258, "usage_type": "name" }, { "api_name": "maya.OpenMayaMPx.MFnPlugin", "line_number": 269, "usage_type": "call" }, { "api_name": "maya.OpenMayaMPx", "line_number": 269, "usage_type": "name" }, { "api_name": "sys.stderr.write", "line_number": 275, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 275, "usage_type": "attribute" }, { "api_name": "maya.OpenMayaMPx.MFnPlugin", "line_number": 280, "usage_type": "call" }, { "api_name": "maya.OpenMayaMPx", "line_number": 280, "usage_type": "name" }, { "api_name": "sys.stderr.write", "line_number": 286, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 286, "usage_type": "attribute" } ]
457877611
from django.urls import path from . import views app_name = 'requirements' urlpatterns = [ path("", views.view_all_groups, name="all_groups"), path("<int:group_id>/", views.view_group, name="one_group"), path("reqs/<int:requirement_id>/", views.view_requirement, name="one_requirement"), ]
null
requirements/urls.py
urls.py
py
306
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" } ]
204269597
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from db import Base, ToDoItem engine = create_engine("sqlite:///tasks.db", echo=True) Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) s = Session() for desc in ("прочитать книгу", "выучить django", "помыть посуду","поесть"): t = ToDoItem(desc) s.add(t) s.commit()
null
init_db.py
init_db.py
py
414
python
en
code
null
code-starcoder2
83
[ { "api_name": "sqlalchemy.create_engine", "line_number": 6, "usage_type": "call" }, { "api_name": "db.Base.metadata.create_all", "line_number": 7, "usage_type": "call" }, { "api_name": "db.Base.metadata", "line_number": 7, "usage_type": "attribute" }, { "api_name": "db.Base", "line_number": 7, "usage_type": "name" }, { "api_name": "sqlalchemy.orm.sessionmaker", "line_number": 9, "usage_type": "call" }, { "api_name": "db.ToDoItem", "line_number": 13, "usage_type": "call" } ]
142317483
import cfnresponse import json import boto3 import time import sys responseStr = {'Status' : {}} def getRouteTableID(PrimarySubnetId,SecondarySubnetId,vpcId,AWSRegion): session = boto3.Session() ec2 = session.client('ec2', region_name=AWSRegion) response = ec2.describe_route_tables( Filters=[{'Name': 'association.subnet-id','Values': [PrimarySubnetId]}] ) if len(response['RouteTables']) == 0: response = ec2.describe_route_tables(Filters=[{'Name': 'vpc-id', 'Values': [vpcId]},{'Name': 'association.main', 'Values': ['true',]}]) PrimaryRouteTableID=response['RouteTables'][0]['Associations'][0]['RouteTableId'] response = ec2.describe_route_tables( Filters=[{'Name': 'association.subnet-id','Values': [SecondarySubnetId]}] ) if len(response['RouteTables']) == 0: response = ec2.describe_route_tables(Filters=[{'Name': 'vpc-id', 'Values': [vpcId]},{'Name': 'association.main', 'Values': ['true',]}]) SecondaryRouteTableID=response['RouteTables'][0]['Associations'][0]['RouteTableId'] if PrimaryRouteTableID == SecondaryRouteTableID : return PrimaryRouteTableID else: return 0 def updateRouteTable(HANAPrimaryInstanceID,HANAVirtualIP,RTabId,AWSRegion): session = boto3.Session() ec2 = session.client('ec2', region_name=AWSRegion) response=ec2.create_route( RouteTableId=RTabId, DestinationCidrBlock=HANAVirtualIP+'/32', InstanceId=HANAPrimaryInstanceID ) return 1 def deleteVirtualIPRoute(HANAVirtualIP,RTabId,AWSRegion): session = boto3.Session() ec2 = session.client('ec2', region_name=AWSRegion) response=ec2.delete_route( DestinationCidrBlock=HANAVirtualIP+'/32', RouteTableId=RTabId ) def executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion): session = boto3.Session() ssmClient = session.client('ssm', region_name=AWSRegion) ssmCommand = ssmClient.send_command( InstanceIds=InstanceIDArray, DocumentName='AWS-RunShellScript', TimeoutSeconds=30, Comment=CommentStr, Parameters={ 'commands': CommandArray } ) L_SSMCommandID = ssmCommand['Command']['CommandId'] status = 'Pending' while status == 'Pending' or status == 'InProgress': status = (ssmClient.list_commands(CommandId=L_SSMCommandID))['Commands'][0]['Status'] time.sleep(3) if (status == "Success"): #response = ssmClient.list_command_invocations(CommandId=L_SSMCommandID,InstanceId=InstanceIDArray[0],Details=True) return 1 else: return 0 def setupAWSConfigProfile(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion): CommandArray = [] CommandArray.append('mkdir /root/.aws') CommandArray.append('echo "[default]" > /root/.aws/config') CommandArray.append('echo "region = '+AWSRegion+'" >> /root/.aws/config') CommandArray.append('echo "[profile cluster]" >> /root/.aws/config') CommandArray.append('echo "region = '+AWSRegion+'" >> /root/.aws/config') CommandArray.append('echo "output = text" >> /root/.aws/config') CommandArray.append('chmod 600 /root/.aws/config') CommentStr = 'AWS cofig file on Primary & Secondary' InstanceIDArray =[HANAPrimaryInstanceID,HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def disableSourceDestinationCheck(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion): session = boto3.Session() ec2 = session.client('ec2', region_name=AWSRegion) ec2.modify_instance_attribute(SourceDestCheck={'Value': False}, InstanceId=HANAPrimaryInstanceID) ec2.modify_instance_attribute(SourceDestCheck={'Value': False}, InstanceId=HANASecondaryInstanceID) return verifySourceDestinationCheck(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion) def verifySourceDestinationCheck(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion): session = boto3.Session() ec2 = session.client('ec2', region_name=AWSRegion) retPri=ec2.describe_instance_attribute(Attribute='sourceDestCheck', InstanceId=HANAPrimaryInstanceID) if (retPri['SourceDestCheck']['Value'] == False): retSec=ec2.describe_instance_attribute(Attribute='sourceDestCheck', InstanceId=HANASecondaryInstanceID) if (retSec['SourceDestCheck']['Value'] == False): return 1 else: return 0 else: return 0 def createPacemakerTag(HANAPrimaryInstanceID,HANASecondaryInstanceID,PaceMakerTag,HANAPrimaryHostname,HANASecondaryHostname,hanaSID,AWSRegion): session = boto3.Session() ec2 = session.client('ec2', region_name=AWSRegion) ec2.create_tags(Resources=[HANAPrimaryInstanceID],Tags=[{'Key': PaceMakerTag,'Value': HANAPrimaryHostname}]) ec2.create_tags(Resources=[HANAPrimaryInstanceID],Tags=[{'Key': 'Name','Value': 'HANA - ' + hanaSID +' - Primary'}]) ec2.create_tags(Resources=[HANASecondaryInstanceID],Tags=[{'Key': PaceMakerTag,'Value': HANASecondaryHostname}]) ec2.create_tags(Resources=[HANASecondaryInstanceID],Tags=[{'Key': 'Name','Value': 'HANA - ' + hanaSID +' - Secondary'}]) return verifyPackemakerTag(HANAPrimaryInstanceID,HANASecondaryInstanceID,PaceMakerTag,HANAPrimaryHostname,HANASecondaryHostname,hanaSID,AWSRegion) def verifyPackemakerTag(HANAPrimaryInstanceID,HANASecondaryInstanceID,PaceMakerTag,HANAPrimaryHostname,HANASecondaryHostname,hanaSID,AWSRegion): session = boto3.Session() ec2 = session.client('ec2', region_name=AWSRegion) instDetail = ec2.describe_tags(Filters=[{'Name': 'tag:'+PaceMakerTag,'Values': [HANAPrimaryHostname,HANASecondaryHostname]}]) count = 0 for idx, tag in enumerate(instDetail['Tags']): if (tag['ResourceId'] == HANAPrimaryInstanceID or tag['ResourceId'] == HANASecondaryInstanceID): count = count + 1 if (count == 2): return 1 else: return 0 def installRsyslog(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion): CommandArray = [] # SLES12 SP4 & SLES 15 do not have aws-vpc-move-ip installed by default CommandArray.append('zypper install -y aws-vpc-move-ip') CommandArray.append('zypper install -y rsyslog') CommentStr = 'Install rsyslog' InstanceIDArray =[HANAPrimaryInstanceID,HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def copySSFSFilesFromPrimaryToS3(HANAPrimaryInstanceID,TempS3Bucket,hanaSID,AWSRegion): CommandArray = [] CommandArray.append('aws s3 cp /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/data/SSFS_'+hanaSID+'.DAT '+TempS3Bucket) CommandArray.append('aws s3 cp /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/key/SSFS_'+hanaSID+'.KEY '+TempS3Bucket) CommentStr = 'Copy SSFS from Primary to TempBucket' InstanceIDArray =[HANAPrimaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def copySSFSFilesFromS3ToSecondary(HANASecondaryInstanceID,TempS3Bucket,hanaSID,AWSRegion): CommandArray = [] CommandArray.append('su - '+hanaSID.lower()+'adm -c "HDB stop"') CommandArray.append('mv /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/data/SSFS_'+hanaSID+'.DAT /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/data/SSFS_'+hanaSID+'.DAT.BAK') CommandArray.append('mv /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/key/SSFS_'+hanaSID+'.KEY /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/key/SSFS_'+hanaSID+'.KEY.BAK') CommandArray.append('aws s3 cp '+TempS3Bucket+'SSFS_'+hanaSID+'.DAT /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/data/SSFS_'+hanaSID+'.DAT') CommandArray.append('aws s3 cp '+TempS3Bucket+'SSFS_'+hanaSID+'.KEY /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/key/SSFS_'+hanaSID+'.KEY') CommandArray.append('chown '+hanaSID.lower()+'adm:sapsys /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/data/SSFS_'+hanaSID+'.DAT') CommandArray.append('chown '+hanaSID.lower()+'adm:sapsys /usr/sap/'+hanaSID+'/SYS/global/security/rsecssfs/key/SSFS_'+hanaSID+'.KEY') CommentStr = 'Copy SSFS from TempBucket to Secondary' InstanceIDArray =[HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def disableHANAAutoStartSecondary(HANASecondaryInstanceID,HANASecondaryHostname,hanaSID,hanaInstanceNo,AWSRegion): CommandArray = [] CommandArray.append("sed -i 's,^\(Autostart[ ]*=\).*,\1'Autostart=0',g' /usr/sap/"+hanaSID.upper()+"/SYS/profile/"+hanaSID.upper()+"_HDB"+hanaInstanceNo+"_"+HANASecondaryHostname) CommentStr = 'Disable HANA AutoStart on Secondary' InstanceIDArray =[HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def disableHANAAutoStartPrimary(HANAPrimaryInstanceID,HANAPrimaryHostname,hanaSID,hanaInstanceNo,AWSRegion): CommandArray = [] CommandArray.append("sed -i 's,^\(Autostart[ ]*=\).*,\1'Autostart=0',g' /usr/sap/"+hanaSID.upper()+"/SYS/profile/"+hanaSID.upper()+"_HDB"+hanaInstanceNo+"_"+HANAPrimaryHostname) CommentStr = 'Disable HANA AutoStart on Primary' InstanceIDArray =[HANAPrimaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def updateHostFileSecondary(HANASecondaryInstanceID,HANAPrimaryHostname,HANAPrimaryIPAddress,domainName,AWSRegion): CommandArray = [] CommandArray.append('echo "'+HANAPrimaryIPAddress+' '+HANAPrimaryHostname+'.'+domainName+' '+HANAPrimaryHostname+'" >> /etc/hosts') CommentStr = 'Update Host File on Secondary' InstanceIDArray =[HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def updateHostFilePrimary(HANAPrimaryInstanceID,HANASecondaryHostname,HANASecondaryIPAddress,domainName,AWSRegion): CommandArray = [] CommandArray.append('echo "'+HANASecondaryIPAddress+' '+HANASecondaryHostname+'.'+domainName+' '+HANASecondaryHostname+'" >> /etc/hosts') CommentStr = 'Update Host File on Primary' InstanceIDArray =[HANAPrimaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def updatePreserveHostName(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion): CommandArray = [] CommandArray.append("sed -i 's,^\(preserve_hostname[ ]*:\).*,\1'preserve_hostname:\ true',g' /etc/cloud/cloud.cfg") CommentStr = 'Update Preserve Hostname in cloud.cfg on Primary & Secondary' InstanceIDArray =[HANAPrimaryInstanceID,HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def updateDefaultTasksMax(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion): #https://www.novell.com/support/kb/doc.php?id=7018594 CommandArray = [] CommandArray.append('sed -i".bak" "/\bDefaultTasksMax\b/d" /etc/systemd/system.conf') CommandArray.append('echo -e "DefaultTasksMax=8192">> /etc/systemd/system.conf') CommandArray.append('systemctl daemon-reload') CommentStr = 'Update DefaultTasksMax on Primary & Secondary' InstanceIDArray =[HANAPrimaryInstanceID,HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def CompleteCoroSyncSetup(HANAPrimaryInstanceID,RTabId,HANAVirtualIP,hanaSID,hanaInstanceNo,PaceMakerTag,AWSRegion): CommandArray = [] CommandArray.append('mkdir /root/ClusterSetup') CommandArray.append('echo "primitive res_AWS_STONITH stonith:external/ec2 \\\\" > /root/ClusterSetup/aws-stonith.txt') CommandArray.append('echo "op start interval=0 timeout=180 \\\\" >> /root/ClusterSetup/aws-stonith.txt') CommandArray.append('echo "op stop interval=0 timeout=180 \\\\" >> /root/ClusterSetup/aws-stonith.txt') CommandArray.append('echo "op monitor interval=120 timeout=60 \\\\" >> /root/ClusterSetup/aws-stonith.txt') CommandArray.append('echo "meta target-role=Started \\\\" >> /root/ClusterSetup/aws-stonith.txt') CommandArray.append('echo "params tag='+PaceMakerTag+' profile=cluster" >> /root/ClusterSetup/aws-stonith.txt') CommandArray.append('crm configure load update /root/ClusterSetup/aws-stonith.txt') CommandArray.append('echo "primitive res_AWS_IP ocf:suse:aws-vpc-move-ip \\\\" > /root/ClusterSetup/aws-ip-move.txt') #changed address to ip as address has been deprecated in lastest version (also added zypper install aws-vpc-move-ip so that latest version of agents is installed) CommandArray.append('echo "params ip='+HANAVirtualIP+' routing_table='+RTabId+' interface=eth0 profile=cluster \\\\" >> /root/ClusterSetup/aws-ip-move.txt') CommandArray.append('echo "op start interval=0 timeout=180 \\\\" >> /root/ClusterSetup/aws-ip-move.txt') CommandArray.append('echo "op stop interval=0 timeout=180 \\\\" >> /root/ClusterSetup/aws-ip-move.txt') CommandArray.append('echo "op monitor interval=60 timeout=60 \\\\" >> /root/ClusterSetup/aws-ip-move.txt') CommandArray.append('echo "meta target-role=Started" >> /root/ClusterSetup/aws-ip-move.txt') CommandArray.append('crm configure load update /root/ClusterSetup/aws-ip-move.txt') CommandArray.append('echo "property \$id=cib-bootstrap-options \\\\" > /root/ClusterSetup/crm-bs.txt') CommandArray.append('echo " stonith-enabled=true \\\\" >> /root/ClusterSetup/crm-bs.txt') #Changed poweroff to off as poweroff has been deprecated CommandArray.append('echo " stonith-action=off \\\\" >> /root/ClusterSetup/crm-bs.txt') CommandArray.append('echo "stonith-timeout=150s" >> /root/ClusterSetup/crm-bs.txt') CommandArray.append('echo "rsc_defaults \$id=rsc-options \\\\" >> /root/ClusterSetup/crm-bs.txt') CommandArray.append('echo "resource-stickiness=1000 \\\\" >> /root/ClusterSetup/crm-bs.txt') CommandArray.append('echo "migration-threshold=5000" >> /root/ClusterSetup/crm-bs.txt') CommandArray.append('echo "op_defaults \$id=op-options \\\\" >> /root/ClusterSetup/crm-bs.txt') CommandArray.append('echo "timeout=600" >> /root/ClusterSetup/crm-bs.txt') CommandArray.append('crm configure load update /root/ClusterSetup/crm-bs.txt') CommandArray.append('echo "primitive rsc_SAPHanaTopology_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+' ocf:suse:SAPHanaTopology \\\\" > /root/ClusterSetup/crm-hana-topology.txt') CommandArray.append('echo "operations \$id=rsc_sap2_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+'-operations \\\\" >> /root/ClusterSetup/crm-hana-topology.txt') CommandArray.append('echo "op monitor interval=10 timeout=300 \\\\" >> /root/ClusterSetup/crm-hana-topology.txt') CommandArray.append('echo "op start interval=0 timeout=300 \\\\" >> /root/ClusterSetup/crm-hana-topology.txt') CommandArray.append('echo "op stop interval=0 timeout=300 \\\\" >> /root/ClusterSetup/crm-hana-topology.txt') CommandArray.append('echo "params SID='+hanaSID.upper()+' InstanceNumber='+hanaInstanceNo+'" >> /root/ClusterSetup/crm-hana-topology.txt') CommandArray.append('echo "clone cln_SAPHanaTopology_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+' rsc_SAPHanaTopology_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+' \\\\" >> /root/ClusterSetup/crm-hana-topology.txt') CommandArray.append('echo "meta clone-node-max=1 interleave=true" >> /root/ClusterSetup/crm-hana-topology.txt') CommandArray.append('crm configure load update /root/ClusterSetup/crm-hana-topology.txt') CommandArray.append('echo "primitive rsc_SAPHana_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+' ocf:suse:SAPHana \\\\" > /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "operations \$id=rsc_sap_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+'-operations \\\\" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "op start interval=0 timeout=3600 \\\\" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "op stop interval=0 timeout=3600 \\\\" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "op promote interval=0 timeout=3600 \\\\" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "op monitor interval=60 role=Master timeout=700 \\\\" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "op monitor interval=61 role=Slave timeout=700 \\\\" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "params SID='+hanaSID.upper()+' InstanceNumber='+hanaInstanceNo+' PREFER_SITE_TAKEOVER=true \\\\" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "DUPLICATE_PRIMARY_TIMEOUT=7200 AUTOMATED_REGISTER=true" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "ms msl_SAPHana_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+' rsc_SAPHana_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+' \\\\" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "meta clone-max=2 clone-node-max=1 interleave=true" >> /root/ClusterSetup/crm-saphana.txt') CommandArray.append('crm configure load update /root/ClusterSetup/crm-saphana.txt') CommandArray.append('echo "colocation col_IP_Primary 2000: res_AWS_IP:Started msl_SAPHana_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+':Master" > /root/ClusterSetup/aws-constraint.txt') CommandArray.append('echo "order ord_SAPHana 2000: cln_SAPHanaTopology_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+' msl_SAPHana_'+hanaSID.upper()+'_HDB'+hanaInstanceNo+'" >> /root/ClusterSetup/aws-constraint.txt') CommandArray.append('crm configure load update /root/ClusterSetup/aws-constraint.txt') CommentStr = 'corosycn setup for SAP HANA' InstanceIDArray =[HANAPrimaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def StartPaceMaker(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAMasterPass,AWSRegion): CommandArray=[] CommandArray.append('systemctl start pacemaker') CommandArray.append('chkconfig pacemaker on') CommandArray.append('systemctl start hawk') CommandArray.append('chkconfig hawk on') CommandArray.append('echo "hacluster:'+HANAMasterPass+'" | chpasswd') CommentStr = 'Start Pacemaker on Primary and configure for autostart with OS' InstanceIDArray =[HANAPrimaryInstanceID] if ( executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) == 1 ): CommentStr = 'Start Pacemaker on Secondary and configure for autostart with OS' InstanceIDArray =[HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) else: return 0 def createCoroSyncConfig(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANASecondaryIPAddress,HANAPrimaryIPAddress,HANAPrimaryCorosync2ndIP,HANASecondaryCorosync2ndIP,AWSRegion): CommandArray = [] CommandArray.append('echo "# Please read the corosync.conf.5 manual page" > /etc/corosync/corosync.conf') CommandArray.append('echo "totem {" >> /etc/corosync/corosync.conf') CommandArray.append('echo " version: 2" >> /etc/corosync/corosync.conf') CommandArray.append('echo " token: 30000" >> /etc/corosync/corosync.conf') CommandArray.append('echo " consensus: 36000" >> /etc/corosync/corosync.conf') CommandArray.append('echo " token_retransmits_before_loss_const: 6" >> /etc/corosync/corosync.conf') CommandArray.append('echo " crypto_cipher: none" >> /etc/corosync/corosync.conf') CommandArray.append('echo " crypto_hash: none" >> /etc/corosync/corosync.conf') CommandArray.append('echo " clear_node_high_bit: yes" >> /etc/corosync/corosync.conf') CommandArray.append('echo " rrp_mode: passive" >> /etc/corosync/corosync.conf') CommandArray.append('echo " " >> /etc/corosync/corosync.conf') CommandArray.append('echo " interface {" >> /etc/corosync/corosync.conf') CommandArray.append('echo " ringnumber: 0" >> /etc/corosync/corosync.conf') CommandArray.append('echo " bindnetaddr: '+HANAPrimaryIPAddress+'" >> /etc/corosync/corosync.conf') CommandArray.append('echo " mcastport: 5405" >> /etc/corosync/corosync.conf') CommandArray.append('echo " ttl: 1" >> /etc/corosync/corosync.conf') CommandArray.append('echo " }" >> /etc/corosync/corosync.conf') CommandArray.append('echo " transport: udpu" >> /etc/corosync/corosync.conf') CommandArray.append('echo "}" >> /etc/corosync/corosync.conf') CommandArray.append('echo "logging {" >> /etc/corosync/corosync.conf') CommandArray.append('echo " fileline: off" >> /etc/corosync/corosync.conf') CommandArray.append('echo " to_logfile: yes" >> /etc/corosync/corosync.conf') CommandArray.append('echo " to_syslog: yes" >> /etc/corosync/corosync.conf') CommandArray.append('echo " logfile: /var/log/cluster/corosync.log" >> /etc/corosync/corosync.conf') CommandArray.append('echo " debug: off" >> /etc/corosync/corosync.conf') CommandArray.append('echo " timestamp: on" >> /etc/corosync/corosync.conf') CommandArray.append('echo " logger_subsys {" >> /etc/corosync/corosync.conf') CommandArray.append('echo " subsys: QUORUM" >> /etc/corosync/corosync.conf') CommandArray.append('echo " debug: off" >> /etc/corosync/corosync.conf') CommandArray.append('echo " }" >> /etc/corosync/corosync.conf') CommandArray.append('echo "}" >> /etc/corosync/corosync.conf') CommandArray.append('echo "nodelist {" >> /etc/corosync/corosync.conf') CommandArray.append('echo " node {" >> /etc/corosync/corosync.conf') CommandArray.append('echo " ring0_addr: '+HANAPrimaryIPAddress+'" >> /etc/corosync/corosync.conf') CommandArray.append('echo " ring1_addr: '+HANAPrimaryCorosync2ndIP+'" >> /etc/corosync/corosync.conf') CommandArray.append('echo " nodeid: 1" >> /etc/corosync/corosync.conf') CommandArray.append('echo " }" >> /etc/corosync/corosync.conf') CommandArray.append('echo " node {" >> /etc/corosync/corosync.conf') CommandArray.append('echo " ring0_addr: '+HANASecondaryIPAddress+'" >> /etc/corosync/corosync.conf') CommandArray.append('echo " ring1_addr: '+HANASecondaryCorosync2ndIP+'" >> /etc/corosync/corosync.conf') CommandArray.append('echo " nodeid: 2" >> /etc/corosync/corosync.conf') CommandArray.append('echo " }" >> /etc/corosync/corosync.conf') CommandArray.append('echo "}" >> /etc/corosync/corosync.conf') CommandArray.append('echo " " >> /etc/corosync/corosync.conf') CommandArray.append('echo " quorum {" >> /etc/corosync/corosync.conf') CommandArray.append('echo " # Enable and configure quorum subsystem (default: off)" >> /etc/corosync/corosync.conf') CommandArray.append('echo " # see also corosync.conf.5 and votequorum.5" >> /etc/corosync/corosync.conf') CommandArray.append('echo " provider: corosync_votequorum" >> /etc/corosync/corosync.conf') CommandArray.append('echo " expected_votes: 2" >> /etc/corosync/corosync.conf') CommandArray.append('echo " two_node: 1" >> /etc/corosync/corosync.conf') CommandArray.append('echo "}" >> /etc/corosync/corosync.conf') CommandArray.append('chown root:root /etc/corosync/corosync.conf') CommandArray.append('chmod 400 /etc/corosync/corosync.conf') CommentStr = 'CoroSync cofigfile on Primary' InstanceIDArray =[HANAPrimaryInstanceID] if ( executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) == 1 ): CommandArray[13]=None CommandArray[13]='echo " bindnetaddr: '+HANASecondaryIPAddress+'" >> /etc/corosync/corosync.conf' CommentStr = 'CoroSync cofigfile on Secondary' InstanceIDArray =[HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) else: return 0 def setupCoroSyncKeyPrimary(HANAPrimaryInstanceID,HANASecondaryInstanceID,TempS3Bucket,AWSRegion): CommandArray = [] CommandArray.append('corosync-keygen') CommandArray.append('aws s3 cp /etc/corosync/authkey '+TempS3Bucket+'authkey') CommentStr = 'CoroSync Key Generate On Primary' InstanceIDArray =[HANAPrimaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def copyCoroSyncKeyToSecondary(HANAPrimaryInstanceID,HANASecondaryInstanceID,TempS3Bucket,AWSRegion): CommandArray = [] CommandArray.append('aws s3 cp '+TempS3Bucket+'authkey '+'/etc/corosync/authkey') CommandArray.append('chown root:root /etc/corosync/authkey') CommandArray.append('chmod 400 /etc/corosync/authkey') CommentStr = 'CoroSync Key Copy On Secondary' InstanceIDArray =[HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def setupHSRPrimary(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAPrimarySite,HANASecondarySite,HANAPrimaryHostname,hanaSID,hanaInstanceNo,AWSRegion): CommandArray = [] CommandArray.append('su - '+hanaSID.lower()+'adm -c "hdbnsutil -sr_enable --name='+HANAPrimarySite+'"') CommentStr = 'Enable HSR on Primary' InstanceIDArray =[HANAPrimaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def setupHSRSecondary(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAPrimarySite,HANASecondarySite,HANAPrimaryHostname,hanaSID,hanaInstanceNo,AWSRegion): CommandArray = [] CommandArray.append('su - '+hanaSID.lower()+'adm -c "HDB stop"') CommandArray.append('su - '+hanaSID.lower()+'adm -c "hdbnsutil -sr_register --name='+HANASecondarySite+' --remoteHost='+HANAPrimaryHostname+' --remoteInstance='+hanaInstanceNo+' --replicationMode=sync --operationMode=logreplay"') CommentStr = 'Enable HSR on Secondary' InstanceIDArray =[HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def manageRetValue(retValue,FuncName,input, context): global responseStr if (retValue == 1): responseStr['Status'][FuncName] = "Success" else: responseStr['Status'][FuncName] = "Failed" cfnresponse.send(input, context, cfnresponse.FAILED, {'Status':json.dumps(responseStr)}) sys.exit(0) def setupSUSESAPHanaHook(HANAPrimaryInstanceID,HANASecondaryInstanceID,hanaSID,sidadm,AWSRegion): CommandArray = [] CommandArray.append('echo " " >> /hana/shared/'+hanaSID.upper()+'/global/hdb/custom/config/global.ini') CommandArray.append('echo "[ha_dr_provider_SAPHanaSR]" >> /hana/shared/'+hanaSID.upper()+'/global/hdb/custom/config/global.ini') CommandArray.append('echo "provider = SAPHanaSR" >> /hana/shared/'+hanaSID.upper()+'/global/hdb/custom/config/global.ini') CommandArray.append('echo "path = /usr/share/SAPHanaSR" >> /hana/shared/'+hanaSID.upper()+'/global/hdb/custom/config/global.ini') CommandArray.append('echo "execution_order = 1" >> /hana/shared/'+hanaSID.upper()+'/global/hdb/custom/config/global.ini') CommandArray.append('echo " " >> /hana/shared/'+hanaSID.upper()+'/global/hdb/custom/config/global.ini') CommandArray.append('echo "[trace]" >> /hana/shared/'+hanaSID.upper()+'/global/hdb/custom/config/global.ini') CommandArray.append('echo "ha_dr_saphanasr = info" >> /hana/shared/'+hanaSID.upper()+'/global/hdb/custom/config/global.ini') CommandArray.append('echo "'+sidadm+' ALL=(ALL) NOPASSWD: /usr/sbin/crm_attribute -n hana_'+hanaSID.lower()+'_site_srHook_*" >> /etc/sudoers') CommentStr = 'Enable SAP HANA Hook' InstanceIDArray =[HANAPrimaryInstanceID] if ( executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) == 1 ): InstanceIDArray =[HANASecondaryInstanceID] return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) else: return 0 def RHELStartPCSService(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAMasterPass,AWSRegion): CommandArray = [] CommandArray.append('[ ! -e /usr/bin/aws ] && ln -s /usr/local/bin/aws /usr/bin/aws') CommandArray.append('yum install -y pcs pacemaker fence-agents-aws aws-vpc-move-ip') CommandArray.append('yum install -y resource-agents-sap-hana resource-agents') CommandArray.append('mkdir -p /var/log/pcsd') CommandArray.append('mkdir -p /var/log/cluster') CommandArray.append('mkdir -p /var/log/sa') CommandArray.append('systemctl start pcsd.service') CommandArray.append('systemctl enable pcsd.service') CommandArray.append('echo "hacluster:'+HANAMasterPass+'" | chpasswd') InstanceIDArray =[HANAPrimaryInstanceID,HANASecondaryInstanceID] CommentStr = 'Setup user hacluster and PCSD Service' return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def RHELSetupHANACluster(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAPrimaryHostname,HANASecondaryHostname,HANAMasterPass,AWSRegion,hanaSID,hanaInstanceNo,HANAVirtualIP,RTabId): CommandArray = [] CommandArray.append('pcs cluster auth '+HANAPrimaryHostname+' '+HANASecondaryHostname+' -u hacluster -p '+HANAMasterPass) CommandArray.append('pcs cluster setup --name hanacluster '+HANAPrimaryHostname+' '+HANASecondaryHostname) CommandArray.append('pcs cluster enable --all') CommandArray.append('pcs cluster start --all') CommandArray.append('pcs stonith create clusterfence fence_aws region='+AWSRegion+' pcmk_host_map="'+HANAPrimaryHostname+':'+HANAPrimaryInstanceID+';'+HANASecondaryHostname+':'+HANASecondaryInstanceID+'" power_timeout=240 pcmk_reboot_timeout=480 pcmk_reboot_retries=4') #Removed resource-stickiness & migration-threshold based on recommendations from Red Hat #CommandArray.append('pcs resource defaults resource-stickiness=1000') #CommandArray.append('pcs resource defaults migration-threshold=5000') CommandArray.append('pcs resource create SAPHanaTopology_'+hanaSID+'_'+hanaInstanceNo+' SAPHanaTopology SID='+hanaSID+' InstanceNumber='+hanaInstanceNo+' op start timeout=600 op stop timeout=300 op monitor interval=10 timeout=600 --clone clone-max=2 clone-node-max=1 interleave=true') CommandArray.append('pcs resource create SAPHana_'+hanaSID+'_'+hanaInstanceNo+' SAPHana SID='+hanaSID+' InstanceNumber='+hanaInstanceNo+' PREFER_SITE_TAKEOVER=true DUPLICATE_PRIMARY_TIMEOUT=7200 AUTOMATED_REGISTER=true op start timeout=3600 op stop timeout=3600 op monitor interval=61 role="Slave" timeout=700 op monitor interval=59 role="Master" timeout=700 op promote timeout=3600 op demote timeout=3600 master meta notify=true clone-max=2 clone-node-max=1 interleave=true') CommandArray.append('pcs resource create SAPHana_'+hanaSID+'_OIP aws-vpc-move-ip ip='+HANAVirtualIP+' interface=eth0 routing_table='+RTabId) CommandArray.append('pcs constraint order SAPHanaTopology_'+hanaSID+'_'+hanaInstanceNo+'-clone then SAPHana_'+hanaSID+'_'+hanaInstanceNo+'-master symmetrical=false') CommandArray.append('pcs constraint colocation add SAPHana_'+hanaSID+'_OIP with master SAPHana_'+hanaSID+'_'+hanaInstanceNo+'-master 2000') InstanceIDArray =[HANAPrimaryInstanceID] CommentStr = 'Setup HANA Cluster Config' return executeSSMCommands(CommandArray,InstanceIDArray,CommentStr,AWSRegion) def lambda_handler(input, context): global responseStr try: if (input['RequestType'] == "Update") or (input['RequestType'] == "Create"): HANAPrimaryInstanceID = input['ResourceProperties']['PrimaryInstanceId'] HANASecondaryInstanceID = input['ResourceProperties']['SecondaryInstanceId'] HANAPrimaryHostname = input['ResourceProperties']['PrimaryHostName'] HANASecondaryHostname = input['ResourceProperties']['SecondaryHostName'] PaceMakerTag = input['ResourceProperties']['PaceMakerTag'] AWSRegion = input['ResourceProperties']['AWSRegion'] HANAVirtualIP = input['ResourceProperties']['VirtualIP'] PrimarySubnetId = input['ResourceProperties']['PrimarySubnetId'] SecondarySubnetId = input['ResourceProperties']['SecondarySubnetId'] hanaSID = input['ResourceProperties']['SID'] hanaInstanceNo = input['ResourceProperties']['InstanceNo'] HANAMasterPass = input['ResourceProperties']['HANAMasterPass'] TempS3Bucket = input['ResourceProperties']['TempS3Bucket'] HANAPrimaryIPAddress = input['ResourceProperties']['HANAPrimaryIPAddress'] HANASecondaryIPAddress = input['ResourceProperties']['HANASecondaryIPAddress'] domainName = input['ResourceProperties']['domainName'] HANAPrimarySite = input['ResourceProperties']['PrimaryHANASite'] HANASecondarySite = input['ResourceProperties']['SecondaryHANASite'] VPCID=input['ResourceProperties']['VPCID'] MyOS = input['ResourceProperties']['MyOS'] MyOS = MyOS.upper() HANAPrimaryCorosync2ndIP = input['ResourceProperties']['HANAPrimaryCorosync2ndIP'] HANASecondaryCorosync2ndIP = input['ResourceProperties']['HANASecondaryCorosync2ndIP'] sidadm = hanaSID.lower()+"adm" retValue = setupAWSConfigProfile(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion) manageRetValue(retValue,"setupAWSConfigProfile",input, context) retValue = createPacemakerTag(HANAPrimaryInstanceID,HANASecondaryInstanceID,PaceMakerTag,HANAPrimaryHostname,HANASecondaryHostname,hanaSID,AWSRegion) manageRetValue(retValue,"createPacemakerTag",input, context) retValue = disableSourceDestinationCheck(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion) manageRetValue(retValue,"disableSourceDestinationCheck",input, context) RTabId = getRouteTableID(PrimarySubnetId,SecondarySubnetId,VPCID,AWSRegion) updateRouteTable(HANAPrimaryInstanceID,HANAVirtualIP,RTabId,AWSRegion) manageRetValue(retValue,"getRouteTableID",input, context) if 'SUSE' in MyOS : retValue = installRsyslog(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion) responseStr["Status"]["installRsyslog"] = "Success" retValue = copySSFSFilesFromPrimaryToS3(HANAPrimaryInstanceID,TempS3Bucket,hanaSID,AWSRegion) manageRetValue(retValue,"copySSFSFilesFromPrimaryToS3",input, context) retValue = copySSFSFilesFromS3ToSecondary(HANASecondaryInstanceID,TempS3Bucket,hanaSID,AWSRegion) manageRetValue(retValue,"copySSFSFilesFromS3ToSecondary",input, context) retValue = disableHANAAutoStartSecondary(HANASecondaryInstanceID,HANASecondaryHostname,hanaSID,hanaInstanceNo,AWSRegion) manageRetValue(retValue,"disableHANAAutoStartSecondary",input, context) retValue = disableHANAAutoStartPrimary(HANAPrimaryInstanceID,HANAPrimaryHostname,hanaSID,hanaInstanceNo,AWSRegion) manageRetValue(retValue,"disableHANAAutoStartPrimary",input, context) retValue = updateHostFileSecondary(HANASecondaryInstanceID,HANAPrimaryHostname,HANAPrimaryIPAddress,domainName,AWSRegion) manageRetValue(retValue,"updateHostFileSecondary",input, context) retValue = updateHostFilePrimary(HANAPrimaryInstanceID,HANASecondaryHostname,HANASecondaryIPAddress,domainName,AWSRegion) manageRetValue(retValue,"updateHostFilePrimary",input, context) retValue = updatePreserveHostName(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion) manageRetValue(retValue,"updatePreserveHostName",input, context) if 'SUSE' in MyOS : retValue = updateDefaultTasksMax(HANAPrimaryInstanceID,HANASecondaryInstanceID,AWSRegion) manageRetValue(retValue,"updateDefaultTasksMax",input, context) retValue = setupHSRPrimary(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAPrimarySite,HANASecondarySite,HANAPrimaryHostname,hanaSID,hanaInstanceNo,AWSRegion) manageRetValue(retValue,"setupHSRPrimary",input, context) retValue = setupHSRSecondary(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAPrimarySite,HANASecondarySite,HANAPrimaryHostname,hanaSID,hanaInstanceNo,AWSRegion) manageRetValue(retValue,"setupHSRSecondary",input, context) if 'SUSE' in MyOS : retValue = setupCoroSyncKeyPrimary(HANAPrimaryInstanceID,HANASecondaryInstanceID,TempS3Bucket,AWSRegion) manageRetValue(retValue,"setupCoroSyncKeyPrimary",input, context) retValue = copyCoroSyncKeyToSecondary(HANAPrimaryInstanceID,HANASecondaryInstanceID,TempS3Bucket,AWSRegion) manageRetValue(retValue,"copyCoroSyncKeyToSecondary",input, context) retValue = createCoroSyncConfig(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANASecondaryIPAddress,HANAPrimaryIPAddress,HANAPrimaryCorosync2ndIP,HANASecondaryCorosync2ndIP,AWSRegion) manageRetValue(retValue,"createCoroSyncConfig",input, context) retValue = setupSUSESAPHanaHook(HANAPrimaryInstanceID,HANASecondaryInstanceID,hanaSID,sidadm,AWSRegion) manageRetValue(retValue,"setupSUSESAPHanaHook",input, context) retValue = StartPaceMaker(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAMasterPass,AWSRegion) manageRetValue(retValue,"StartPaceMaker",input, context) retValue = CompleteCoroSyncSetup(HANAPrimaryInstanceID,RTabId,HANAVirtualIP,hanaSID,hanaInstanceNo,PaceMakerTag,AWSRegion) manageRetValue(retValue,"CompleteCoroSyncSetup",input, context) else: retValue = RHELStartPCSService(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAMasterPass,AWSRegion) manageRetValue(retValue,"CompletePCSDServiceRHEL",input, context) retValue = RHELSetupHANACluster(HANAPrimaryInstanceID,HANASecondaryInstanceID,HANAPrimaryHostname,HANASecondaryHostname,HANAMasterPass,AWSRegion,hanaSID,hanaInstanceNo,HANAVirtualIP,RTabId) manageRetValue(retValue,"HANAClusterConfigRHEL",input, context) cfnresponse.send(input, context, cfnresponse.SUCCESS, {'Status':json.dumps(responseStr)}) elif (input['RequestType'] == "Delete"): AWSRegion = input['ResourceProperties']['AWSRegion'] HANAVirtualIP = input['ResourceProperties']['VirtualIP'] PrimarySubnetId = input['ResourceProperties']['PrimarySubnetId'] SecondarySubnetId = input['ResourceProperties']['SecondarySubnetId'] VPCID=input['ResourceProperties']['VPCID'] RTabId = getRouteTableID(PrimarySubnetId,SecondarySubnetId,VPCID,AWSRegion) deleteVirtualIPRoute(HANAVirtualIP,RTabId,AWSRegion) responseStr['Status'] = 'Virtual IP ' + HANAVirtualIP +'Removed From Route Table :' + RTabId cfnresponse.send(input, context, cfnresponse.SUCCESS, {'Status':json.dumps(responseStr)}) else: responseStr['Status'] = 'Nothing to do as Request Type is : ' + input['RequestType'] cfnresponse.send(input, context, cfnresponse.SUCCESS, {'Status':json.dumps(responseStr)}) except Exception as e: responseStr['Status'] = str(e) cfnresponse.send(input, context, cfnresponse.FAILED, {'Status':json.dumps(responseStr)})
null
scripts/HAConfig/HAConfig.py
HAConfig.py
py
39,780
python
en
code
null
code-starcoder2
83
[ { "api_name": "boto3.Session", "line_number": 11, "usage_type": "call" }, { "api_name": "boto3.Session", "line_number": 35, "usage_type": "call" }, { "api_name": "boto3.Session", "line_number": 45, "usage_type": "call" }, { "api_name": "boto3.Session", "line_number": 53, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 68, "usage_type": "call" }, { "api_name": "boto3.Session", "line_number": 90, "usage_type": "call" }, { "api_name": "boto3.Session", "line_number": 97, "usage_type": "call" }, { "api_name": "boto3.Session", "line_number": 110, "usage_type": "call" }, { "api_name": "boto3.Session", "line_number": 119, "usage_type": "call" }, { "api_name": "cfnresponse.send", "line_number": 390, "usage_type": "call" }, { "api_name": "cfnresponse.FAILED", "line_number": 390, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 390, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 391, "usage_type": "call" }, { "api_name": "cfnresponse.send", "line_number": 548, "usage_type": "call" }, { "api_name": "cfnresponse.SUCCESS", "line_number": 548, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 548, "usage_type": "call" }, { "api_name": "cfnresponse.send", "line_number": 558, "usage_type": "call" }, { "api_name": "cfnresponse.SUCCESS", "line_number": 558, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 558, "usage_type": "call" }, { "api_name": "cfnresponse.send", "line_number": 561, "usage_type": "call" }, { "api_name": "cfnresponse.SUCCESS", "line_number": 561, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 561, "usage_type": "call" }, { "api_name": "cfnresponse.send", "line_number": 564, "usage_type": "call" }, { "api_name": "cfnresponse.FAILED", "line_number": 564, "usage_type": "attribute" }, { "api_name": "json.dumps", "line_number": 564, "usage_type": "call" } ]
131677521
# -*- coding: utf-8 -*- #------------------------------------------------------------------------------- # Name: csvmixin # Purpose: csv mixin for dyndmod # # Author: jojosati # # Created: 05/01/2012 # Copyright: (c) jojosati 2012 # Licence: MIT #------------------------------------------------------------------------------- #!/usr/bin/env python import datetime from dyndmod import sqla, re from dyndmod import _unicode, attr_name_dimension class _CSV_implement(object) : # _Model mixin class to sunpport CSV encoding = 'utf8' # 'cp874' dateformat = '%Y-%m-%d' timeformat = '%H:%M:%S' datetimeformat = dateformat+' '+timeformat numseperator = ',' typecasters = { sqla.Integer : lambda cls,v: int(float(v.replace(cls.numseperator,''))), sqla.Float : lambda cls,v: float(v.replace(cls.numseperator,'')), sqla.Date : lambda cls,v: datetime.datetime.strptime(v,cls.dateformat).date(), sqla.DateTime : lambda cls,v: datetime.datetime.strptime(v,cls.datetimeformat), sqla.Time : lambda cls,v: datetime.datetime.strptime(v,cls.timeformat).time(), } colmappings = {} class _CSV_mixin(object): import random def csv_importer (self,csvfile,**kwargs) : return self.csv_importer_imp(csvfile,**kwargs) def csv_importer_imp (self,csvfile,**kwargs) : ''' implemented method for csv_importer with built-in transformer function using csv_imp class to control transform data or self's class attribute ''' model = kwargs.get('model') or self #csvimp = csvimp or self csvimp = getattr(self,'_csv_implement_class_',None) or self encoding = kwargs.pop('encoding',csvimp.encoding) # default encoding rawmode = 0 if ',' in csvfile : files = csvfile.split(',',1) csvfile = files.pop(0) if 'raw' in files : rawmode = 1 files.remove('raw') if 'rawonly' in files : rawmode = 2 files.remove('rawonly') if files : encoding = files.pop(0) fake = 0 while csvfile[0]=='!': fake += 1 csvfile = csvfile[1:] if fake : import random colnamed = kwargs.get('colnamed') mappings = csvimp.colmappings def setdata(data,k,c,v=None) : # k use as referrence to csv column header, for error reporting if isinstance(c,tuple) : # if c is tuple, ignore v for cv in c : setdata(data,k,*cv) return if isinstance(c,dict): # if c is dict, ignore v for cv in c.iteritems() : setdata(data,k,*cv) return if not v : return if not c : # support raw mode if not rawmode : return c = k if callable(colnamed) : c = colnamed(c,'import') if not c : # support raw mode if not rawmode : return c = k n,dim = attr_name_dimension(c) t = model._fld_dbtype(n,*dim) if rawmode and t is None : return cc = c fn = csvimp.typecasters.get(t) if fn : try: v = fn(csvimp,v) except Exception as e : errmsg = _unicode(_unicode("{0} ({1}/{2})={3!r}").format(str(e),k,c,v)) if model.debug and not rawmode : raise type(e)(errmsg) else: try : v = model.cast_result_value(t,v) except : model.echo_(errmsg) if model.debug : raise model.echo_('suppress to None.') v = None if fake and isinstance(v,float): v = ((v+5000)*2)*(random.random()+0.3) if v is not None : data[cc] = v def transformer(csvdata) : # if fake skip enable if fake>=2 and (10 * random.random()) < 0.1 : return data = {} for k,v in csvdata.iteritems() : if rawmode>=2 : c = None else : c = mappings.get(k) if callable(c) : c = c(k,csvdata,data) setdata(data,k,c,v) return data kwargs['encoding'] = encoding return self.csv_importer_base(csvfile,transformer=transformer,**kwargs) def csv_importer_base(self,csvfile,transformer=None,**kwargs) : import csv model = kwargs.get('model') or self newtable = kwargs.pop("newtable",False) encoding = kwargs.pop('encoding','utf8') limit = kwargs.pop('limit',0) start = kwargs.pop('start',0) encoding = encoding or 'utf8' echo_ = model.echo_ echo_('CSV file: {0} encoding: {1}',csvfile,encoding) if newtable : echo_('drop all tables, before create new.') model.metadata.drop_all() model.create_all() session = model.session csvcnt = 0 rowcnt = 0 errcnt = 0 with open(csvfile) as f: cf = csv.DictReader(f, delimiter=',') for data in cf: csvcnt += 1 if csvcnt < start : continue csvdata = {} for k,v in data.iteritems(): k,v = _unicode(k,encoding).rstrip(),_unicode(v,encoding).rstrip() csvdata[k] = v data = csvdata try : try: if transformer : data = transformer(data) if isinstance(data,dict) : data = model.mainbase(data) if isinstance(data,model.ormbase) : session.add(data) if not session.new : continue except: session.expunge_all() raise else: try : session.commit() except : session.rollback() raise except Exception as e: errcnt += 1 #errmsg = _unicode("{0} csvrow #{1}".format(str(e),csvcnt)) if model.debug : for k,v in csvdata.iteritems() : model.debug_("{0}={1}",k,v) raise #type(e)(errmsg) else: echo_('{0}',e) continue rowcnt += 1 if rowcnt % 100 == 0 : echo_('reading {0}, writing {1} so far...',csvcnt,rowcnt) if rowcnt == limit : break echo_('--- end of csv data ---') echo_('Total read {0}, write {1}, error {2}',csvcnt,rowcnt,errcnt) return [csvcnt,rowcnt,errcnt] if __name__ == '__main__': pass
null
csvmixin.py
csvmixin.py
py
7,647
python
en
code
null
code-starcoder2
83
[ { "api_name": "dyndmod.sqla.Integer", "line_number": 27, "usage_type": "attribute" }, { "api_name": "dyndmod.sqla", "line_number": 27, "usage_type": "name" }, { "api_name": "dyndmod.sqla.Float", "line_number": 29, "usage_type": "attribute" }, { "api_name": "dyndmod.sqla", "line_number": 29, "usage_type": "name" }, { "api_name": "dyndmod.sqla.Date", "line_number": 31, "usage_type": "attribute" }, { "api_name": "dyndmod.sqla", "line_number": 31, "usage_type": "name" }, { "api_name": "dyndmod.sqla.DateTime", "line_number": 33, "usage_type": "attribute" }, { "api_name": "dyndmod.sqla", "line_number": 33, "usage_type": "name" }, { "api_name": "dyndmod.sqla.Time", "line_number": 35, "usage_type": "attribute" }, { "api_name": "dyndmod.sqla", "line_number": 35, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 32, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 32, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 34, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 34, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 36, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 36, "usage_type": "attribute" }, { "api_name": "dyndmod.attr_name_dimension", "line_number": 103, "usage_type": "call" }, { "api_name": "dyndmod._unicode", "line_number": 113, "usage_type": "call" }, { "api_name": "random.random", "line_number": 126, "usage_type": "call" }, { "api_name": "random.random", "line_number": 132, "usage_type": "call" }, { "api_name": "csv.DictReader", "line_number": 169, "usage_type": "call" }, { "api_name": "dyndmod._unicode", "line_number": 176, "usage_type": "call" } ]
49330128
from django import forms from django.core import validators class Empform(forms.Form): name = forms.CharField() salary = forms.IntegerField() opinion = forms.CharField(widget=forms.Textarea, validators=[validators.MaxLengthValidator(40), validators.MinLengthValidator(10)]) def clean(self): print("Total form Validation") total_cleaned_data = super().clean() inputname = total_cleaned_data['name'] if len(inputname) < 10: raise forms.ValidationError("Name must be min 10 chars") inputsal = total_cleaned_data['salary'] if inputsal==0: raise forms.ValidationError("sal must be > 0")
null
corevalidator2/webapp/forms.py
forms.py
py
673
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.forms.Form", "line_number": 5, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 5, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 6, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 6, "usage_type": "name" }, { "api_name": "django.forms.IntegerField", "line_number": 7, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 7, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 8, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 8, "usage_type": "name" }, { "api_name": "django.forms.Textarea", "line_number": 8, "usage_type": "attribute" }, { "api_name": "django.core.validators.MaxLengthValidator", "line_number": 8, "usage_type": "call" }, { "api_name": "django.core.validators", "line_number": 8, "usage_type": "name" }, { "api_name": "django.core.validators.MinLengthValidator", "line_number": 8, "usage_type": "call" }, { "api_name": "django.forms.ValidationError", "line_number": 15, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 15, "usage_type": "name" }, { "api_name": "django.forms.ValidationError", "line_number": 18, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 18, "usage_type": "name" } ]
342655923
import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "prs_project.settings") import django django.setup() import decimal import pandas as pd from recommender.models import Similarity from analytics.models import Rating from sklearn.metrics.pairwise import cosine_similarity from scipy import sparse from datetime import datetime class ItemSimilarityMatrixBuilder(object): def __init__(self, min_overlap=15, min_sim=0.2): self.min_overlap = min_overlap self.min_sim = min_sim def save_sparse_matrix(self, sm, index, created=datetime.now()): start_time = datetime.now() Similarity.objects.all().delete() sims = [] no_saved = 0 for i in sm.itertuples(): for j in range(1, len(i)): row = i[0] col = sm.columns[j - 1] sim = i[j] if sim > self.min_sim: if len(sims) == 1000: Similarity.objects.bulk_create(sims) sims = [] if row != col: new_similarity = Similarity( created=created, source=row, target=col, similarity=decimal.Decimal(str(sim)) ) no_saved +=1 sims.append(new_similarity) Similarity.objects.bulk_create(sims) print('{} Similarity items saved, done in {} seconds'.format(no_saved, datetime.now() - start_time)) def build(self, ratings, save=True): print("Calculating similarities ... using {} ratings".format(len(ratings))) start_time = datetime.now() ratings['avg'] = ratings.groupby('user_id')['rating'].transform(lambda x: normalize(x)) ratings['avg'] = ratings['avg'].astype(float) print("normalized ratings.") rp = ratings.pivot_table(index=['movie_id'], columns=['user_id'], values='avg', fill_value=0) rp = rp.transpose() items_to_keep = rp.astype(bool).sum(axis=0) > self.min_overlap for i, column in zip(rp.columns, items_to_keep): if not column: rp.drop(i, axis=1, inplace=True) print( f"rating matrix (size {rp.shape[0]}x{rp.shape[1]})finished, done in {datetime.now() - start_time} seconds") sparsity_level = 1-(ratings.shape[0] / (rp.shape[0] * rp.shape[1])) print("sparsity level is ", sparsity_level) start_time = datetime.now() #cor = cosine_similarity(sparse.csr_matrix(rp.transpose()), dense_output=False) cor = rp.corr(method='pearson', min_periods=self.min_overlap) print('correlation is finished, done in {} seconds'.format(datetime.now() - start_time)) if save: self.save_sparse_matrix(cor, rp.transpose().index) return cor def normalize(x): x = x.astype(float) if x.std() == 0: return 0.0 return (x - x.mean()) / (x.max() - x.min()) def split_ratings2(min_rank=3): print('loading ratings') ratings = Rating.objects.all() print('ranking ratings') df = pd.DataFrame.from_records(ratings.values()) print(df.head()) df['rank'] = df.groupby('user_id')['rating_timestamp'].rank(ascending=False) return df[df['rank'] <= min_rank] def load_all_ratings(): columns = ['user_id', 'movie_id', 'rating', 'type'] ratings_data = Rating.objects.all().values(*columns) ratings = pd.SparseDataFrame.from_records(ratings_data, columns=columns) ratings['rating'] = ratings['rating'].astype(float) return ratings if __name__ == '__main__': TEST = True if TEST: ratings = pd.DataFrame( [[1, '0011', 5, '2013-10-12 23:20:27+00:00'], [1, '12', 3, '2014-10-12 23:20:27+00:00'], [1, '14', 2, '2015-10-12 23:20:27+00:00'], [2, '0011', 4, '2013-10-12 23:20:27+00:00'], [2, '12', 3, '2014-10-12 23:20:27+00:00'], [2, '13', 4, '2015-10-12 23:20:27+00:00'], [3, '0011', 5, '2013-10-12 23:20:27+00:00'], [3, '12', 2, '2014-10-12 23:20:27+00:00'], [3, '13', 5, '2015-10-12 23:20:27+00:00'], [3, '14', 2, '2016-10-12 23:20:27+00:00'], [4, '0011', 3, '2013-10-12 23:20:27+00:00'], [4, '12', 5, '2014-10-12 23:20:27+00:00'], [4, '13', 3, '2015-10-12 23:20:27+00:00'], [5, '0011', 3, '2013-10-12 23:20:27+00:00'], [5, '12', 3, '2014-10-12 23:20:27+00:00'], [5, '13', 3, '2015-10-12 23:20:27+00:00'], [5, '14', 2, '2016-10-12 23:20:27+00:00'], [6, '0011', 2, '2013-10-12 23:20:27+00:00'], [6, '12', 3, '2014-10-12 23:20:27+00:00'], [6, '13', 2, '2015-10-12 23:20:27+00:00'], [6, '14', 3, '2016-10-12 23:20:27+00:00'], ], columns=['user_id', 'movie_id', 'rating', 'rating_timestamp']) result = ItemSimilarityMatrixBuilder(2).build(ratings) print(result) else: ItemSimilarityMatrixBuilder().build(load_all_ratings())
null
builder/item_similarity_calculator.py
item_similarity_calculator.py
py
5,203
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ.setdefault", "line_number": 3, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 3, "usage_type": "attribute" }, { "api_name": "django.setup", "line_number": 7, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 26, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 26, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 27, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 27, "usage_type": "name" }, { "api_name": "recommender.models.Similarity.objects.all", "line_number": 28, "usage_type": "call" }, { "api_name": "recommender.models.Similarity.objects", "line_number": 28, "usage_type": "attribute" }, { "api_name": "recommender.models.Similarity", "line_number": 28, "usage_type": "name" }, { "api_name": "recommender.models.Similarity.objects.bulk_create", "line_number": 40, "usage_type": "call" }, { "api_name": "recommender.models.Similarity.objects", "line_number": 40, "usage_type": "attribute" }, { "api_name": "recommender.models.Similarity", "line_number": 40, "usage_type": "name" }, { "api_name": "recommender.models.Similarity", "line_number": 44, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 48, "usage_type": "call" }, { "api_name": "recommender.models.Similarity.objects.bulk_create", "line_number": 53, "usage_type": "call" }, { "api_name": "recommender.models.Similarity.objects", "line_number": 53, "usage_type": "attribute" }, { "api_name": "recommender.models.Similarity", "line_number": 53, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 54, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 54, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 59, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 59, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 76, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 76, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 81, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 81, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 84, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 84, "usage_type": "name" }, { "api_name": "analytics.models.Rating.objects.all", "line_number": 103, "usage_type": "call" }, { "api_name": "analytics.models.Rating.objects", "line_number": 103, "usage_type": "attribute" }, { "api_name": "analytics.models.Rating", "line_number": 103, "usage_type": "name" }, { "api_name": "pandas.DataFrame.from_records", "line_number": 105, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 105, "usage_type": "attribute" }, { "api_name": "analytics.models.Rating.objects.all", "line_number": 115, "usage_type": "call" }, { "api_name": "analytics.models.Rating.objects", "line_number": 115, "usage_type": "attribute" }, { "api_name": "analytics.models.Rating", "line_number": 115, "usage_type": "name" }, { "api_name": "pandas.SparseDataFrame.from_records", "line_number": 116, "usage_type": "call" }, { "api_name": "pandas.SparseDataFrame", "line_number": 116, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 125, "usage_type": "call" } ]
52787123
#imports import numpy as np import string import re import csv from nltk.corpus import stopwords from nltk.stem import SnowballStemmer from nltk.tokenize import RegexpTokenizer from nltk.text import Text from nltk.stem import WordNetLemmatizer import copy #imports end ##train test load train = np.load("./data/data_train.pkl",allow_pickle=True) test=np.load("./data/data_test.pkl",allow_pickle=True) x_train=train[0][:60000] y_train=train[1][:60000] x_valid=train[0][60000:] y_valid=train[1][60000:] ##train test load ##required classes stop_words = set(stopwords.words('english')) tokenizer = RegexpTokenizer(r'\w+') wordnet_lemmatizer = WordNetLemmatizer() SnowballStemmer = SnowballStemmer("english") ##required class end class navieBayes(): def __init__(self,x_train,y_train): self.x_train=x_train self.y_train=y_train def TrainNavie(self): print("Started Traning") for index,temp in enumerate(self.x_train): self.x_train[index]=self.preProcess(temp) self.log_prior=self.calculate_prior(self.y_train) self.class_frequencies=self.bag_of_word(self.x_train,self.y_train) #self.class_frequencies=self.curdownFreq(self.class_frequencies) #print(log_prior) #print(len(class_frequencies)) #print(class_frequencies[0].keys()) self.class_vocab,self.total_vocab=self.calculate_class_vocab(self.class_frequencies) print(self.class_vocab) print(self.total_vocab) print("Train completed ") def preProcess(self,content): content=content.lower() #to lower case content=re.sub(r'\d+', '', content) #remove digits content=content.translate(str.maketrans('', '', string.punctuation))#remove puctuations content=content.strip()#remove extra space return content def Tokenize(self,content): tokens = tokenizer.tokenize(content)## remove if nltk is restricted and deelop new method tokens = [w for w in tokens if not w in stop_words] #remove stop words #tokens = [wordnet_lemmatizer.lemmatize(w) for w in tokens] #lemmitization #tokens = [SnowballStemmer.stem(w) for w in tokens] NLTKText = Text(tokens)## remove if nltk is restricted develop new method return NLTKText.vocab() def calculate_prior(self,y_train): classes=np.unique(y_train,return_counts=True) self.unique_class_Names=classes[0] self.class_counts=classes[1] log_prior=[] for i in range (len(classes[0])): #print() log_prior.append(np.log(self.class_counts[i]/len(self.unique_class_Names))) return log_prior def curdownFreq(self,class_frequencies): filtered_table=[] for classtable in class_frequencies: dummyclassfreq=copy.deepcopy(classtable) for j in classtable.items(): word=j[0] #print(j) wordcount=j[1] if(wordcount<2): del dummyclassfreq[word] filtered_table.append(dummyclassfreq) return filtered_table def bag_of_word(self,x_train,y_train): class_frequencies=[] for label in self.unique_class_Names: label_list=np.where(np.array(y_train)==label)[0] text="" for i in label_list: #x_train[i]=x_train[i] text+=x_train[i]+"\n" classwordsfrequencies=(self.Tokenize(text)) class_frequencies.append(classwordsfrequencies) return class_frequencies def calculate_class_vocab(self,class_frequencies): vocab=set() class_vocab=[] #cl_fre=[] #class_vocab_names=[] for rowIndex,data in enumerate(class_frequencies): class_vocab.append(sum(data.values())) # class_vocab_names.append(set(data.keys())) vocab=vocab.union(data.keys()) #for i in len(class_vocab_names): # cl_fre[i]=vocab-class_vocab_names[i] return class_vocab,len(vocab) def predict(self,test_data): test_data = self.preProcess(test_data) fre=self.Tokenize(test_data) label_score=[] #print(self.class_frequencies[0]['enjoy']) for i in range(len(self.unique_class_Names)): word_label_score=[] class_word_freq=self.class_frequencies[i] for j in fre.items(): word=j[0] wordcount=j[1] class_word_occurence=0 if word in class_word_freq.keys(): class_word_occurence=class_word_freq[word] p_i=(class_word_occurence+0.25)/(self.class_vocab[i]+(self.total_vocab*0.25)) word_score=wordcount*np.log(p_i) word_label_score.append(word_score) label_score.append(sum(word_label_score)+self.log_prior[i]) return label_score.index(max(label_score)) Test=navieBayes(x_train,y_train) Test.TrainNavie() #count=0 #for row,i in enumerate(x_train[100:500]): # test=Test.predict(i) # pred_label=Test.unique_class_Names[test] # if(pred_label==y_train[100+row]): # count+=1 #print(count) def report_predict_test(test,filename="Submission.csv"): print("prediction_started") csvfile=open(filename,'w', newline='') obj=csv.writer(csvfile) obj.writerow(("Id","Category")) for rowIndex,test_sample in enumerate(test): test=Test.predict(test_sample) print(rowIndex) pred_class=Test.unique_class_Names[test] obj.writerow((rowIndex,pred_class)) csvfile.close() def validate(x_valid,y_valid): accuracy=0 #print(len(x_valid)) for rowIndex,test_sample in enumerate(x_valid): test=Test.predict(test_sample) print(rowIndex) pred_class=Test.unique_class_Names[test] if(pred_class==y_valid[rowIndex]): accuracy+=1 return accuracy/len(x_valid) acc=validate(x_valid,y_valid) print(acc) #report_predict_test(test,"abc.csv") #print(len(x_train)) #hyper=range(100) #hyper/=100 #best_accuracy_h=0 #for i in hyper: #accuracy=validate(x_valid,y_valid) #print(accuracy) #print(accuracy) #print(x_train[1]) #a=Test.Tokenize(Test.preProcess(x_train[1])) #print(a.items()) """ y_test=[] with open('abc.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for row in csv_reader: if line_count == 0: print(f'Column names are {", ".join(row)}') line_count += 1 else: y_test.append(row[1]) line_count += 1 #print(f'Processed {line_count} lines.') accuracy=validate(test,y_test) print(accuracy) """
null
naviebayes.py
naviebayes.py
py
6,792
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.load", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 16, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords.words", "line_number": 24, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords", "line_number": 24, "usage_type": "name" }, { "api_name": "nltk.tokenize.RegexpTokenizer", "line_number": 25, "usage_type": "call" }, { "api_name": "nltk.stem.WordNetLemmatizer", "line_number": 26, "usage_type": "call" }, { "api_name": "nltk.stem.SnowballStemmer", "line_number": 27, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 52, "usage_type": "call" }, { "api_name": "string.punctuation", "line_number": 53, "usage_type": "attribute" }, { "api_name": "nltk.text.Text", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 72, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 78, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 128, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 146, "usage_type": "call" } ]
298405180
import pandas as pd import numpy as np import argparse import os """ This script takes the individual UrbanSim input .csv files and compiles them into an (python 2) .h5 data store object, stored locally, and used for either estimation, simulation or both in bayarea_urbansim UrbanSim implementation. The last simulation step in bayarea_urbansim then converts the updated .h5 back to individual csv's for use in ActivitySynth and elsewhere. """ baseyear = False beam_bucket = 'urbansim-beam' csv_fnames = { 'parcels': 'parcels.csv', 'buildings': 'buildings.csv', 'jobs': 'jobs.csv', 'establishments': 'establishments.csv', 'households': 'households.csv', 'persons': 'persons.csv', 'rentals': 'craigslist.csv', 'units': 'units.csv', 'mtc_skims': 'mtc_skims.csv', 'beam_skims_raw': '30.skims-smart-23April2019-baseline.csv.gz', 'zones': 'zones.csv', # the following nodes and edges .csv's aren't used by bayarea_urbansim # they're just being loaded here so they can be passed through to the # output data directory for use in activitysynth 'drive_nodes': 'bay_area_tertiary_strongly_nodes.{0}', 'drive_edges': 'bay_area_tertiary_strongly_edges.{0}', 'walk_nodes': 'bayarea_walk_nodes.{0}', 'walk_edges': 'bayarea_walk_edges.{0}', } data_store_fname = 'baus_model_data.h5' nodes_and_edges = False if __name__ == "__main__": parser = argparse.ArgumentParser(description='Make H5 store from csvs.') parser.add_argument( '--baseyear', '-b', action='store_true', help='specify the simulation year') parser.add_argument( '--input-data-dir', '-i', action='store', dest='input_data_dir', help='full (pandas-compatible) path to input data directory', required=True) parser.add_argument( '--output-data-dir', '-o', action='store', dest='output_data_dir', help='full path to the LOCAL output data directory', required=True) parser.add_argument( '--output-fname', '-f', action='store', dest='output_fname', help='filename of the .h5 datastore') parser.add_argument( '--nodes-and-edges', '-n', action='store_true', dest='nodes_and_edges') options = parser.parse_args() if options.baseyear: baseyear = options.baseyear if options.nodes_and_edges: nodes_and_edges = options.nodes_and_edges if options.output_fname: data_store_fname = options.output_fname input_data_dir = options.input_data_dir output_data_dir = options.output_data_dir try: parcels = pd.read_csv( input_data_dir + csv_fnames['parcels'], index_col='parcel_id', dtype={'parcel_id': int, 'block_id': str, 'apn': str}) except ValueError: parcels = pd.read_csv( input_data_dir + csv_fnames['parcels'], index_col='primary_id', dtype={'primary_id': int, 'block_id': str, 'apn': str}) buildings = pd.read_csv( input_data_dir + csv_fnames['buildings'], index_col='building_id', dtype={'building_id': int, 'parcel_id': int}) buildings['res_sqft_per_unit'] = buildings[ 'residential_sqft'] / buildings['residential_units'] buildings['res_sqft_per_unit'][ buildings['res_sqft_per_unit'] == np.inf] = 0 # building_types = pd.read_csv( # d + 'building_types.csv', # index_col='building_type_id', dtype={'building_type_id': int}) # building_types.head() try: rentals = pd.read_csv( input_data_dir + csv_fnames['rentals'], index_col='pid', dtype={ 'pid': int, 'date': str, 'region': str, 'neighborhood': str, 'rent': float, 'sqft': float, 'rent_sqft': float, 'longitude': float, 'latitude': float, 'county': str, 'fips_block': str, 'state': str, 'bathrooms': str}) except ValueError: rentals = pd.read_csv( input_data_dir + csv_fnames['rentals'], index_col=0, dtype={ 'date': str, 'region': str, 'neighborhood': str, 'rent': float, 'sqft': float, 'rent_sqft': float, 'longitude': float, 'latitude': float, 'county': str, 'fips_block': str, 'state': str, 'bathrooms': str}) units = pd.read_csv( input_data_dir + csv_fnames['units'], index_col='unit_id', dtype={'unit_id': int, 'building_id': int}) try: households = pd.read_csv( input_data_dir + csv_fnames['households'], index_col='household_id', dtype={ 'household_id': int, 'block_group_id': str, 'state': str, 'county': str, 'tract': str, 'block_group': str, 'building_id': int, 'unit_id': int, 'persons': float}) except ValueError: households = pd.read_csv( input_data_dir + csv_fnames['households'], index_col=0, dtype={ 'household_id': int, 'block_group_id': str, 'state': str, 'county': str, 'tract': str, 'block_group': str, 'building_id': int, 'unit_id': int, 'persons': float}) households.index.name = 'household_id' try: persons = pd.read_csv( input_data_dir + csv_fnames['persons'], index_col='person_id', dtype={'person_id': int, 'household_id': int}) except ValueError: persons = pd.read_csv( input_data_dir + csv_fnames['persons'], index_col=0, dtype={'person_id': int, 'household_id': int}) persons.index.name = 'person_id' try: jobs = pd.read_csv( input_data_dir + csv_fnames['jobs'], index_col='job_id', dtype={'job_id': int, 'building_id': int}) except ValueError: jobs = pd.read_csv( input_data_dir + csv_fnames['jobs'], index_col=0, dtype={'job_id': int, 'building_id': int}) jobs.index.name = 'job_id' establishments = pd.read_csv( input_data_dir + csv_fnames['establishments'], index_col='establishment_id', dtype={ 'establishment_id': int, 'building_id': int, 'primary_id': int}) zones = pd.read_csv( input_data_dir + 'zones.csv', index_col='zone_id') mtc_skims = pd.read_csv( input_data_dir + csv_fnames['mtc_skims'], index_col=0) beam_skims_raw = pd.read_csv( input_data_dir + csv_fnames['beam_skims_raw']) beam_skims_raw.rename(columns={ 'generalizedCost': 'gen_cost', 'origTaz': 'from_zone_id', 'destTaz': 'to_zone_id'}, inplace=True) # this data store is just a temp file that only needs to exist # while the simulation is running. data is stored as csv's # before and afterwards. therefore a temporary, relative filepath # is specified here. output_filepath = os.path.join(output_data_dir, data_store_fname) if os.path.exists(output_filepath): os.remove(output_filepath) print('Deleting existing data store to create the new one...') store = pd.HDFStore(output_filepath) store.put('parcels', parcels, format='t') store.put('units', units, format='t') store.put('rentals', rentals, format='t') # data pre-processing hasn't yet taken place if # starting with base-year input data if baseyear: store.put('households', households, format='t') store.put('jobs', jobs, format='t') store.put('buildings', buildings, format='t') # if starting from non-base-year (i.e. intra-simulation) data # then the pre-processing data steps should have already # occurred and we simply rename the main data tables so that # bayarea_urbansim doesn't try to re-pre-process them else: store.put('households_preproc', households, format='t') store.put('jobs_preproc', jobs, format='t') store.put('buildings_preproc', buildings, format='t') store.put('persons', persons, format='t') store.put('establishments', establishments, format='t') store.put('mtc_skims', mtc_skims, format='t') store.put('zones', zones, format='t') store.put('beam_skims_raw', beam_skims_raw, format='t') if nodes_and_edges: drive_nodes = pd.read_csv( input_data_dir + csv_fnames['drive_nodes']).set_index('osmid') drive_edges = pd.read_csv( input_data_dir + csv_fnames['drive_edges']).set_index('uniqueid') walk_nodes = pd.read_csv( input_data_dir + csv_fnames['walk_nodes']).set_index('osmid') walk_edges = pd.read_csv( input_data_dir + csv_fnames['walk_edges']).set_index('uniqueid') store.put('drive_nodes', drive_nodes, format='t') store.put('drive_edges', drive_edges, format='t') store.put('walk_nodes', walk_nodes, format='t') store.put('walk_edges', walk_edges, format='t') store.keys() store.close() print('UrbanSim model data now available at {0}'.format( os.path.abspath(output_filepath)))
null
scripts/make_model_data_hdf.py
make_model_data_hdf.py
py
9,053
python
en
code
null
code-starcoder2
83
[ { "api_name": "argparse.ArgumentParser", "line_number": 43, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 77, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 81, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.inf", "line_number": 91, "usage_type": "attribute" }, { "api_name": "pandas.read_csv", "line_number": 100, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 109, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 118, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 123, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 130, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 139, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 143, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 149, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 153, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 158, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 164, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 167, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 170, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 181, "usage_type": "call" }, { "api_name": "os.path", "line_number": 181, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 182, "usage_type": "call" }, { "api_name": "os.path", "line_number": 182, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 183, "usage_type": "call" }, { "api_name": "pandas.HDFStore", "line_number": 185, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 217, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 219, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 221, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 223, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 235, "usage_type": "call" }, { "api_name": "os.path", "line_number": 235, "usage_type": "attribute" } ]
47636741
from django.urls import path from cms import views app_name = 'cms' urlpatterns = [ #カード path('card/', views.card_list, name='card_list'), #一覧 path('card/add', views.card_edit, name='card_add'), #登録 path('card/mod/<int:card_id>/', views.card_edit, name='card_mod'), #修正 path('card/del/<int:card_id>/', views.card_del, name='card_del'), #削除 ]
null
mydeck/cms/urls.py
urls.py
py
396
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "cms.views.card_list", "line_number": 8, "usage_type": "attribute" }, { "api_name": "cms.views", "line_number": 8, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "cms.views.card_edit", "line_number": 9, "usage_type": "attribute" }, { "api_name": "cms.views", "line_number": 9, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "cms.views.card_edit", "line_number": 10, "usage_type": "attribute" }, { "api_name": "cms.views", "line_number": 10, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "cms.views.card_del", "line_number": 11, "usage_type": "attribute" }, { "api_name": "cms.views", "line_number": 11, "usage_type": "name" } ]
31562265
import requests import json from time import sleep as s def errorLogger(error): with open("log", "a") as f: f.write(f"\n\n{error}") def makeReadable(number): if type(number) != int: return number numberstring = str(number) newNumberstring = "" for x in numberstring: if len(numberstring) == 7: newNumberstring += x if len(newNumberstring) == 1: newNumberstring += "." if len(newNumberstring) == 5: newNumberstring += "." if len(numberstring) == 6: newNumberstring += x if len(newNumberstring) == 3: newNumberstring += "." if len(numberstring) == 5: newNumberstring += x if len(newNumberstring) == 2: newNumberstring += "." if len(numberstring) == 4: newNumberstring += x if len(newNumberstring) == 1: newNumberstring += "." return newNumberstring def requestStats(): try: r = requests.get("https://api.covid19api.com/summary") returner = json.loads(str(r.text)) return returner except Exception as e: print("! While trying to establish a internet-connection, \nan error occured, \ntry disabling your firewall, or adding this program to the whitelist !") errorLogger(e) RESPONSE = requestStats() def globalStats(): rr = RESPONSE c = "" x = 0 for x in rr['Global']: if x == 'NewConfirmed': continue if x == 'NewDeaths': continue if x == 'NewRecovered': continue c += f"{x}: {makeReadable(rr['Global'][x])}\n" c += f"\nCurrently ill: {makeReadable(rr['Global']['TotalConfirmed'] - (rr['Global']['TotalDeaths'] + rr['Global']['TotalRecovered']))} | {round((rr['Global']['TotalConfirmed'] - (rr['Global']['TotalDeaths'] + rr['Global']['TotalRecovered'])) * 100/rr['Global']['TotalConfirmed'])}%\n" c += f"\nGlobalLethalityRate : {round((rr['Global']['TotalDeaths']*100)/rr['Global']['TotalConfirmed'], 2)}%\n*not accurate, because there are not tested infectious cases*" return c def displayAllCountries(): rr = RESPONSE c = "" for x in rr['Countries']: c += f"{x['Country']} | {x['CountryCode']}\n" return c def displayOneCountry(Country): rr = RESPONSE c = "" for x in rr['Countries']: if x['Country'].lower() == Country.lower(): for y in x: if y == 'Date': continue if y == 'NewConfirmed': continue if y == 'NewDeaths': continue if y == 'NewRecovered': continue if y == 'TotalConfirmed': c += "\n" c += f"{y}: {makeReadable(x[y])}\n" c += f"Currently ill: {makeReadable(x['TotalConfirmed'] - (x['TotalDeaths'] + x['TotalRecovered']))} | {round((x['TotalConfirmed'] - (x['TotalDeaths'] + x['TotalRecovered'])) * 100/x['TotalConfirmed'])}%\n" c += f"\nDeaths from Global: {round((x['TotalDeaths']*100)/rr['Global']['TotalDeaths'], 2)}%\n" c += f"Cases from Global: {round((x['TotalConfirmed']*100)/rr['Global']['TotalConfirmed'], 2)}%" c += f"\nRecovered from Global: {round((x['TotalRecovered']*100)/rr['Global']['TotalRecovered'], 2)}%" c += f"\nLethality rate in {x['Country']}: {round((x['TotalDeaths']*100)/x['TotalConfirmed'], 2)}% \n*not accurate, because there are not tested infectious cases*" break if x['Slug'].lower() == Country.lower(): for y in x: if y == 'Date': continue if y == 'NewConfirmed': continue if y == 'NewDeaths': continue if y == 'NewRecovered': continue if y == 'TotalConfirmed': c += "\n" c += f"{y}: {makeReadable(x[y])}\n" c += f"Currently ill: {makeReadable(x['TotalConfirmed'] - (x['TotalDeaths'] + x['TotalRecovered']))} | {round((x['TotalConfirmed'] - (x['TotalDeaths'] + x['TotalRecovered'])) * 100/x['TotalConfirmed'])}%\n" c += f"\nDeaths from Global: {round((x['TotalDeaths']*100)/rr['Global']['TotalDeaths'], 2)}%\n" c += f"Cases from Global: {round((x['TotalConfirmed']*100)/rr['Global']['TotalConfirmed'], 2)}%" c += f"\nRecovered from Global: {round((x['TotalRecovered']*100)/rr['Global']['TotalRecovered'], 2)}%" c += f"\nLethality rate in {x['Country']}: {round((x['TotalDeaths']*100)/x['TotalConfirmed'], 2)}% \n*not accurate, because there are not tested infectious cases*" break if x['CountryCode'].lower() == Country.lower(): for y in x: if y == 'Date': continue if y == 'NewConfirmed': continue if y == 'NewDeaths': continue if y == 'NewRecovered': continue if y == 'TotalConfirmed': c += "\n" c += f"{y}: {makeReadable(x[y])}\n" c += f"Currently ill: {makeReadable(x['TotalConfirmed'] - (x['TotalDeaths'] + x['TotalRecovered']))} | {round((x['TotalConfirmed'] - (x['TotalDeaths'] + x['TotalRecovered'])) * 100/x['TotalConfirmed'])}%\n" c += f"\nDeaths from Global: {round((x['TotalDeaths']*100)/rr['Global']['TotalDeaths'], 2)}%" c += f"\nCases from Global: {round((x['TotalConfirmed']*100)/rr['Global']['TotalConfirmed'], 2)}%" c += f"\nRecovered from Global: {round((x['TotalRecovered']*100)/rr['Global']['TotalRecovered'], 2)}%" c += f"\nLethality rate in {x['Country']}: {round((x['TotalDeaths']*100)/x['TotalConfirmed'], 2)}% \n*not accurate, because there are not tested infectious cases*" break if c == "": c = "Country not found - try using `c!countries` for a list of all available countries" return c def displayLeaderboards(Type): Type.lower() if Type == "deaths": typestring = "TotalDeaths" elif Type == "cases": typestring = "TotalConfirmed" elif Type == "recovered": typestring = "TotalRecovered" else: typestring = "TotalConfirmed" numberarray = [] for x in RESPONSE['Countries']: for y in x: if y == typestring: numberarray.append(x[typestring]) break numberarray.sort(reverse=True) y = 0 topFive = [] for x in numberarray: if y == 5: break topFive.append(x) y = y + 1 finalTopFive = "" for x in topFive: for y in RESPONSE['Countries']: if x == y[typestring]: finalTopFive += f"{y['Country']}: {makeReadable(x)}\n" return finalTopFive
null
Covid19/covid_backend.py
covid_backend.py
py
5,892
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.get", "line_number": 37, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 38, "usage_type": "call" } ]
129650987
from Bio import PDB from Bio.PDB import PDBParser, PDBIO from Bio.PDB.Atom import Atom from Bio.PDB.Residue import Residue from Bio.PDB.Chain import Chain from Bio.PDB.Model import Model from Bio.PDB.Structure import Structure import array #create structure cytosine cytosine = Structure('cytosine') #create model my_model = Model(0) cytosine.add(my_model) #create chain my_chain = Chain('A') my_model.add(my_chain) #create residue my_residue = Residue((' ', 1, ' '), 'C', '') my_chain.add(my_residue) #atoms from task_2.py atoms = [ {'name': 'N1', 'coord': array.array('f',[64.612, 45.818, 10.877]), 'bfactor': 42.59, 'occupancy': 1.0, 'altloc': ' ', 'fullname': 'N1', 'serial_number': 1}, {'name': 'C2', 'coord': array.array('f',[65.472, 46.868, 10.634]), 'bfactor': 44.48, 'occupancy': 1.0, 'altloc': ' ', 'fullname': 'C2', 'serial_number': 2}, {'name': 'O2', 'coord': array.array('f',[64.981, 47.978, 10.348]), 'bfactor': 42.73, 'occupancy': 1.0, 'altloc': ' ', 'fullname': 'O2', 'serial_number': 3}, {'name': 'N3', 'coord': array.array('f',[66.821, 46.659, 10.722]), 'bfactor': 42.28, 'occupancy': 1.0, 'altloc': ' ', 'fullname': 'N3', 'serial_number': 4}, {'name': 'C4', 'coord': array.array('f',[67.275, 45.452, 11.056]), 'bfactor': 43.75, 'occupancy': 1.0, 'altloc': ' ', 'fullname': 'C4', 'serial_number': 5}, {'name': 'N4', 'coord': array.array('f',[68.586, 45.272, 11.180]), 'bfactor': 44.57, 'occupancy': 1.0, 'altloc': ' ', 'fullname': 'N4', 'serial_number': 6}, {'name': 'C5', 'coord': array.array('f',[66.402, 44.364, 11.291]), 'bfactor': 44.20, 'occupancy': 1.0, 'altloc': ' ', 'fullname': 'C5', 'serial_number': 7}, {'name': 'C6', 'coord': array.array('f',[65.095, 44.589, 11.192]), 'bfactor': 44.33, 'occupancy': 1.0, 'altloc': ' ', 'fullname': 'C6', 'serial_number': 8} ] #create atoms for atom in atoms: my_atom = Atom( atom['name'], atom['coord'], atom['bfactor'], atom['occupancy'], atom['altloc'], atom['fullname'], atom['serial_number'] ) my_residue.add(my_atom) #save to file out = PDBIO() out.set_structure(cytosine) out.save('my_residue.pdb')
null
task2.py
task2.py
py
2,103
python
en
code
null
code-starcoder2
83
[ { "api_name": "Bio.PDB.Structure.Structure", "line_number": 11, "usage_type": "call" }, { "api_name": "Bio.PDB.Model.Model", "line_number": 14, "usage_type": "call" }, { "api_name": "Bio.PDB.Chain.Chain", "line_number": 18, "usage_type": "call" }, { "api_name": "Bio.PDB.Residue.Residue", "line_number": 22, "usage_type": "call" }, { "api_name": "array.array", "line_number": 27, "usage_type": "call" }, { "api_name": "array.array", "line_number": 28, "usage_type": "call" }, { "api_name": "array.array", "line_number": 29, "usage_type": "call" }, { "api_name": "array.array", "line_number": 30, "usage_type": "call" }, { "api_name": "array.array", "line_number": 31, "usage_type": "call" }, { "api_name": "array.array", "line_number": 32, "usage_type": "call" }, { "api_name": "array.array", "line_number": 33, "usage_type": "call" }, { "api_name": "array.array", "line_number": 34, "usage_type": "call" }, { "api_name": "Bio.PDB.Atom.Atom", "line_number": 39, "usage_type": "call" }, { "api_name": "Bio.PDB.PDBIO", "line_number": 51, "usage_type": "call" } ]
542783565
from datetime import timedelta class Settings: "A class to store all settings for alen invasion." def __init__ (self): """initialize the game's settings""" #version self.version = "1.0.1 git (2020.03.30)" #screen settings self.screen_width = 1080 self.screen_height = 720 self.bg_colour = (10, 3, 7) #ship settings self.max_ship_speed = 1.9 self.max_ship_acceleration = .02 #bullet settings self.bullet_speed = 1.9 self.bullet_width = 4 self.bullet_height = 20 self.bullet_colour = ((20, 200, 20),(20, 200, 20), (90, 200, 20),(90, 200, 20),(200, 200, 20),(200, 200, 20), (200, 150, 60),(200, 150, 60),(255, 90, 20),(255, 90, 20), (200, 00, 00),(200, 00, 00)) self.bullets_allowed = 10 self.max_bullet_acceleration = 0.005 self.max_blaster_temp = 12 self.heat_penalty = timedelta(seconds=1.8) self.shot_cooldown = timedelta(seconds=0.3) self.cooldown_time = timedelta(seconds=0.15)
null
alien_invasion_Alpha_1.0.1/alien_invasion/settings.py
settings.py
py
1,144
python
en
code
null
code-starcoder2
83
[ { "api_name": "datetime.timedelta", "line_number": 33, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 34, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 35, "usage_type": "call" } ]
11342966
from hpsklearn import HyperoptEstimator, xgboost_classification from hyperopt import tpe import pandas as pd def main(): df_train = pd.read_csv('../train_dataset.csv') df_test = pd.read_csv('../test_dataset.csv') X_train, y_train = df_train.iloc[:, 2:].values, df_train.iloc[:, 0].values X_test, y_test = df_test.iloc[:, 2:].values, df_test.iloc[:, 0].values estim = HyperoptEstimator(classifier=xgboost_classification('myXG'), algo=tpe.suggest, max_evals=100, trial_timeout=120, verbose=True) estim.fit(X_train, y_train) print("\n\n{}\n\n".format(estim.score(X_test, y_test))) print("\n\n{}\n\n".format(estim.best_model())) if __name__ == '__main__': main()
null
MachineLearning/supervised_training/XGBOOST/XG_hyperopt.py
XG_hyperopt.py
py
713
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandas.read_csv", "line_number": 10, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 11, "usage_type": "call" }, { "api_name": "hpsklearn.HyperoptEstimator", "line_number": 16, "usage_type": "call" }, { "api_name": "hpsklearn.xgboost_classification", "line_number": 16, "usage_type": "call" }, { "api_name": "hyperopt.tpe.suggest", "line_number": 17, "usage_type": "attribute" }, { "api_name": "hyperopt.tpe", "line_number": 17, "usage_type": "name" } ]
128867638
import sys if sys.version_info < (3,6): sys.exit('Sorry, Python < 3.6 is not supported') from setuptools import setup, find_packages with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setup( name='PyBIS', version= '1.18.12', author='Swen Vermeul • ID SIS • ETH Zürich', author_email='[email protected]', description='openBIS connection and interaction, optimized for using with Jupyter', long_description=long_description, long_description_content_type="text/markdown", url='https://sissource.ethz.ch/sispub/openbis/tree/master/pybis', packages=find_packages(), license='Apache Software License Version 2.0', install_requires=[ 'pytest', 'requests', 'datetime', 'pandas', 'click', 'texttable', 'tabulate', ], python_requires=">=3.6", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], )
null
pybis/src/python/setup.py
setup.py
py
1,068
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.version_info", "line_number": 3, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 4, "usage_type": "call" }, { "api_name": "setuptools.setup", "line_number": 12, "usage_type": "call" }, { "api_name": "setuptools.find_packages", "line_number": 21, "usage_type": "call" } ]
479449955
#!/usr/bin/env python import argparse import pprint from time import sleep from scapy.all import sendp, sendpfast, hexdump, get_if_hwaddr from scapy.all import Ether, IP, UDP def main(): parser = argparse.ArgumentParser() parser.add_argument("ip", metavar="IP", type=str, help="IP addr of the receiver") parser.add_argument("time", metavar="Time", type=int, help="Time (in seconds) to send the traffic") parser.add_argument("--bw", metavar="Bandwidth", default=0.02, type=float, help="Bandwidth (in Mbps) of the traffic (default=20Kbps)") args = parser.parse_args() iface = "eth0" load = ''.join('f' for _ in range(1000)) # Each packet has ~8Kb load pkt = Ether(src=get_if_hwaddr(iface), dst="ff:ff:ff:ff:ff:ff") / IP(dst=args.ip) / UDP(dport=4321, sport=1234) / load pkt.show2() num_packets = args.bw * 1000 * args.time / 8 num_packets = int(1.1 * num_packets) summary = sendpfast(pkt, iface=iface, mbps=args.bw, loop=num_packets, file_cache=True, parse_results=True) del summary['warnings'] print("Summary:") pprint.pprint(summary) return if __name__ == '__main__': main()
null
assignment2/send.py
send.py
py
1,163
python
en
code
null
code-starcoder2
83
[ { "api_name": "argparse.ArgumentParser", "line_number": 14, "usage_type": "call" }, { "api_name": "scapy.all.Ether", "line_number": 23, "usage_type": "call" }, { "api_name": "scapy.all.get_if_hwaddr", "line_number": 23, "usage_type": "call" }, { "api_name": "scapy.all.IP", "line_number": 23, "usage_type": "call" }, { "api_name": "scapy.all.UDP", "line_number": 23, "usage_type": "call" }, { "api_name": "scapy.all.sendpfast", "line_number": 29, "usage_type": "call" }, { "api_name": "pprint.pprint", "line_number": 32, "usage_type": "call" } ]
482679700
# -*- coding: utf-8 -*- import time from functools import wraps import logging logger = logging.getLogger(__file__) def fn_timer(function): @wraps(function) def function_timer(*args, **kwargs): t0 = time.time() result = function(*args, **kwargs) t1 = time.time() logger.info("Total time running %s(%s): %s seconds" % (function.func_name, str(args), str(t1 - t0))) return result return function_timer @fn_timer def test(a): import time time.sleep(1) if __name__ == "__main__": test("ssss")
null
src/Common/Tools/FNDecorator.py
FNDecorator.py
py
572
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 6, "usage_type": "call" }, { "api_name": "time.time", "line_number": 11, "usage_type": "call" }, { "api_name": "time.time", "line_number": 13, "usage_type": "call" }, { "api_name": "functools.wraps", "line_number": 9, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 22, "usage_type": "call" } ]
588621746
# Solar Wifi Weather Station # Very alpha at this stage # Last updated October 19, 2019 # # This is heavily based on 3KUdelta's Solar WiFi Weather Station. # There was much cutting and pasting! # See https://github.com/3KUdelta/Solar_WiFi_Weather_Station # This in turn was based on the work of Open Green Energy: # https://www.instructables.com/id/Solar-Powered-WiFi-Weather-Station-V20/ # Everyone has done very solid work! I am impressed! # # I wanted to be able to update the code over WiFi and watch the serial # output on my machine locally, thus MicroPython. # It also helps me hone my craft, whatever little I have :) # VERSION = '0.5.0' import time, sys, gc # DST CALCULATION SECS_IN_DAY = 86400 SECS_IN_HOUR = 3600 DST_ADJ_AMT = 0 # Amount of seconds to adjust for seasonal time change # See dst_us.json for sample configuration curr_dst_status = 0 # Currrent DST Status -- 0 = Winter, 1 = Summer saved_dst_status = 0 # DST Status stored in SPIFFS # FORECAST CALCULATION current_timestamp = 0 # Actual timestamp read from NTPtime saved_timestamp = 0 # Timestamp stored in SPIFFS # FORECAST RESULT accuracy = 0 # Counter, if enough values for accurate forecasting # END GLOBAL VARIABLES def LoadConfig(): import json f = open('config.json', 'r') return json.loads(f.read()) def ConnectWiFi(CONF_WIFI, SLEEP_TIME_MIN, ERRORFILE): import network sta_if = network.WLAN(network.STA_IF) ap_if = network.WLAN(network.AP_IF) ap_if.active(False) if not sta_if.isconnected(): print('Connecting to network...') sta_if.active(True) sta_if.connect(CONF_WIFI['ssid'], CONF_WIFI['pass']) count = 0 while not sta_if.isconnected(): count += 1 print('.', end='') if count == 15: from cycle_machine import GoToSleep print('Could not connect. Taking a nap.') GoToSleep(SLEEP_TIME_MIN * 60, ERRORFILE, 'Could not connect to network.') time.sleep(1) print('network config:', sta_if.ifconfig()) def SetNTPTime(NTP_HOSTS, SLEEP_TIME_MIN, ERRORFILE): import sntp # modified ntptime print('Now setting clock with NTP server') time_is_set = False count = 0 while not time_is_set: print('.', end='') time_is_set = sntp.settime(NTP_HOSTS) if time_is_set: print('Set time successfully.') time.sleep(1) count += 1 if count == 5: from cycle_machine import GoToSleep print('Could not connect to NTP Server!\nSleeping...') GoToSleep(SLEEP_TIME_MIN * 60, ERRORFILE, 'Could not connect to NTP Server.') del sys.modules['sntp'] gc.collect() def CheckForSummerTime(COUNTRY): global curr_dst_status, current_timestamp, DST_ADJ_AMT import dst (curr_dst_status, current_timestamp, DST_ADJ_AMT) = dst.SummerTimeAdjustment(COUNTRY, current_timestamp) del sys.modules['dst'] gc.collect() def FmtDateTime(timestamp): t = time.localtime(timestamp) fmt = '%02d/%02d/%04d %02d:%02d:%02d' return fmt % (t[1], t[2], t[0], t[3], t[4], t[5]) def ConfigureTime(CONF_TIME, SLEEP_TIME_MIN, ERRORFILE): global current_timestamp SetNTPTime(CONF_TIME['NTP_HOSTS'], SLEEP_TIME_MIN, ERRORFILE) current_timestamp = time.time() + CONF_TIME['TZ'] * SECS_IN_HOUR if CONF_TIME['DST']['USE_DST']: CheckForSummerTime(CONF_TIME['DST']['COUNTRY']) print('Current UNIX timestamp: %d\nDST Status: %d\nDate & Time: %s' % (current_timestamp, curr_dst_status, FmtDateTime(current_timestamp))) def MeasurementEvent(CONF_WEATHER): import measurement result = measurement.TakeMeasurement(CONF_WEATHER) del sys.modules['measurement'] gc.collect() return result def FirstTimeRun(CONF_FILE, rel_Pres_Rounded_hPa): from cycle_machine import ResetMachine global accuracy print('---> Starting initialization process') accuracy = 1 try: myDataFile = open(CONF_FILE['DATAFILE'], 'w') except: print('ERROR: Failed to open datafile.') print('Stopping process - there is an OS problem here.') sys.exit() myDataFile.write('%d\n%d\n%d\n%d\n' % (current_timestamp, curr_dst_status, accuracy, current_timestamp)) for _ in range(12): myDataFile.write('%d\n' % rel_Pres_Rounded_hPa) print('*** Saved initial pressure data. ***') myDataFile.close() myDataFile = open(CONF_FILE['VERIFYFILE'], 'w') myDataFile.write('%d\n' % current_timestamp) myDataFile.close() print('Doing a reset now.') ResetMachine() def VerifyLastRunCompleted(verify_ts, VERIFYFILE, ERRORFILE): f = open(VERIFYFILE, 'r') last_ts = int(f.readline()) f.close() if last_ts != verify_ts: import machine f = open(ERRORFILE, 'a+') f.write('Reset after %s\tCause: %s\n' % (FmtDateTime(verify_ts), machine.reset_cause())) f.close() def ReadDataFile(CONF_FILE, rel_Pres_Rounded_hPa): global saved_dst_status, saved_timestamp, accuracy try: myDataFile = open(CONF_FILE['DATAFILE'], 'r') except: print('Failed to open file for reading -- assuming First Run') FirstTimeRun(CONF_FILE, rel_Pres_Rounded_hPa) print('---> Now reading from ESP8266') saved_timestamp = int(myDataFile.readline()) saved_dst_status = int(myDataFile.readline()) accuracy = int(myDataFile.readline()) verifier = int(myDataFile.readline()) VerifyLastRunCompleted(verifier, CONF_FILE['VERIFYFILE'], CONF_FILE['ERRORFILE']) print('Saved Timestamp: %d\nSaved DST Status: %d\nSaved Accuracy Value: %d' % (saved_timestamp, saved_dst_status, accuracy)) pressure_value = [] for _ in range(12): pval = int(myDataFile.readline()) pressure_value.append(pval) print('Last 12 saved pressure values:', ('%d; ' * 12)[:-2] % tuple(pressure_value)) myDataFile.close() return pressure_value def CheckForTimeChange(): # Has the time just changed? # Return adjustment to time difference calculation in seconds if curr_dst_status != saved_dst_status: if curr_dst_status: # Switch to Summer Time return DST_ADJ_AMT else: # Switch to Daylight Saving Time return -DST_ADJ_AMT else: return 0 def WriteDataFile(write_timestamp, DATAFILE, pressure_value): try: myDataFile = open(DATAFILE, 'w') print('---> Now writing to ESP8266') myDataFile.write('%d\n%d\n%d\n%d\n' % (write_timestamp, curr_dst_status, accuracy, current_timestamp)) for value in pressure_value: myDataFile.write('%d\n' % value) myDataFile.close() except: print('ERROR: Failure writing to data file!') sys.exit() def ZambrettiPrediction(LANGUAGE, rel_Pres_Rounded_hPa, pressure_value): import zambretti month = time.localtime(current_timestamp)[1] prediction = zambretti.MakePrediction( LANGUAGE, rel_Pres_Rounded_hPa, pressure_value, accuracy, month) del sys.modules['zambretti'] gc.collect() return prediction def main(): global accuracy pressure_value = [] # holds 12 pressure values in hPa (6 hours data, [0] most recent) print('Start of Solar WiFi Weather Station %s' % VERSION) print('Free mem: %d' % gc.mem_free()) CONF = LoadConfig() ConnectWiFi(CONF['wifi'], CONF['other']['SLEEP_TIME_MIN'], CONF['file']['ERRORFILE']) ConfigureTime(CONF['time'], CONF['other']['SLEEP_TIME_MIN'], CONF['file']['ERRORFILE']) result = MeasurementEvent(CONF['weather']) #acquire sensor data pressure_value = ReadDataFile(CONF['file'], result['rel_Pres_Rounded_hPa']) #read stored values and update data if more recent data is available if CONF['time']['DST']['USE_DST']: dst_adjustment = CheckForTimeChange() else: dst_adjustment = 0 ts_diff = current_timestamp - saved_timestamp + dst_adjustment print('Timestamp difference: %s' % ts_diff) if ts_diff >= 6 * SECS_IN_HOUR: FirstTimeRun(CONF['file'], result['rel_Pres_Rounded_hPa']) elif ts_diff >= SECS_IN_HOUR / 2: # prepend list with new pressure value and move it right one notch pressure_value = [result['rel_Pres_Rounded_hPa']] + pressure_value[:-1] if accuracy < 12: accuracy += 1 WriteDataFile(current_timestamp, CONF['file']['DATAFILE'], pressure_value) else: WriteDataFile(saved_timestamp + dst_adjustment, CONF['file']['DATAFILE'], pressure_value) # make sure we record on the half hour interval = CONF['other']['SLEEP_TIME_MIN'] * 60 diff_from_half_hour = SECS_IN_HOUR / 2 - ts_diff if diff_from_half_hour >= 0: if diff_from_half_hour >= interval: sleep_time_secs = interval else: sleep_time_secs = diff_from_half_hour else: sleep_time_secs = interval (ZambrettisWords, trend_in_words, accuracy_in_percent) = ZambrettiPrediction(CONF['other']['LANGUAGE'], result['rel_Pres_Rounded_hPa'], pressure_value) package = { 'values':[ result['temp_F'], result['humidity'], result['dewPt_F'], result['dewPtSpread_F'], result['heatIndex_F'], result['measured_Pres_inHg'], result['rel_Pres_inHg'], result['volt'], accuracy_in_percent, ZambrettisWords, trend_in_words ], 'apps': CONF['apps'], 'sleep_time_secs': sleep_time_secs, 'verify_file': CONF['file']['VERIFYFILE'], 'error_file': CONF['file']['ERRORFILE'], 'timestamp': current_timestamp } del CONF del result del pressure_value gc.collect() # take out the garbage print('Free mem when leaving weather_station: %d' % gc.mem_free()) return package
null
weather_station.py
weather_station.py
py
10,654
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.loads", "line_number": 42, "usage_type": "call" }, { "api_name": "network.WLAN", "line_number": 47, "usage_type": "call" }, { "api_name": "network.STA_IF", "line_number": 47, "usage_type": "attribute" }, { "api_name": "network.WLAN", "line_number": 48, "usage_type": "call" }, { "api_name": "network.AP_IF", "line_number": 48, "usage_type": "attribute" }, { "api_name": "cycle_machine.GoToSleep", "line_number": 63, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 64, "usage_type": "call" }, { "api_name": "sntp.settime", "line_number": 75, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 78, "usage_type": "call" }, { "api_name": "cycle_machine.GoToSleep", "line_number": 83, "usage_type": "call" }, { "api_name": "sys.modules", "line_number": 85, "usage_type": "attribute" }, { "api_name": "gc.collect", "line_number": 86, "usage_type": "call" }, { "api_name": "dst.SummerTimeAdjustment", "line_number": 95, "usage_type": "call" }, { "api_name": "sys.modules", "line_number": 98, "usage_type": "attribute" }, { "api_name": "gc.collect", "line_number": 99, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 102, "usage_type": "call" }, { "api_name": "time.time", "line_number": 110, "usage_type": "call" }, { "api_name": "measurement.TakeMeasurement", "line_number": 120, "usage_type": "call" }, { "api_name": "sys.modules", "line_number": 122, "usage_type": "attribute" }, { "api_name": "gc.collect", "line_number": 123, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 139, "usage_type": "call" }, { "api_name": "cycle_machine.ResetMachine", "line_number": 156, "usage_type": "call" }, { "api_name": "machine.reset_cause", "line_number": 168, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 231, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 236, "usage_type": "call" }, { "api_name": "zambretti.MakePrediction", "line_number": 238, "usage_type": "call" }, { "api_name": "sys.modules", "line_number": 245, "usage_type": "attribute" }, { "api_name": "gc.collect", "line_number": 246, "usage_type": "call" }, { "api_name": "gc.mem_free", "line_number": 256, "usage_type": "call" }, { "api_name": "gc.collect", "line_number": 332, "usage_type": "call" }, { "api_name": "gc.mem_free", "line_number": 333, "usage_type": "call" } ]
91697717
"""No adversarial training """ #import os #os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" see issue #152 #os.environ["CUDA_VISIBLE_DEVICES"] = "" from keras.layers import Input, Conv1D, Embedding, Dropout from keras.layers import MaxPool1D, Dense, Flatten from keras.models import Model from utils_dann import flipGradientTF import numpy as np from sklearn.metrics.classification import f1_score from sklearn.metrics import classification_report # original paper: https://arxiv.org/pdf/1505.07818.pdf # model reference: https://cloud.githubusercontent.com/assets/7519133/19722698/9d1851fc-9bc3-11e6-96af-c2c845786f28.png import sys data_list = [ ('vaccine', 'vaccine_year'), # ('amazon', 'amazon_month'), ('amazon', 'amazon_year'), # ('dianping', 'dianping_month'), ('dianping', 'dianping_year'), # ('google', 'economy_month'), # ('google', 'economy_year'), # ('google', 'parties_year'), # ('vaccine', 'vaccine_month'), # ('yelp_hotel', 'yelp_hotel_month'), ('yelp_hotel', 'yelp_hotel_year'), # ('yelp_rest', 'yelp_rest_month'), ('yelp_rest', 'yelp_rest_year'), # ('economy', 'economy_year'), # ('economy', 'economy_month'), ] def data_loader(data_name): train_path = './data/'+ data_name + '_source.txt' valid_path = './data/' + data_name + '_valid.txt' test_path = './data/' + data_name + '_target.txt' domain_data = [] train_data = [] valid_data = [] test_data = [] label_encoder = set() domain_encoder = set() for dpath in [train_path, valid_path, test_path]: with open(dpath) as dfile: dfile.readline() for line in dfile: line = line.strip() if len(line.strip()) < 5: continue # filter out blank lines line = line.split('\t') dlabel = [int(line[1])] label = [int(line[0])] line = [int(item) for item in line[2:]] label_encoder.add(label[0]) domain_encoder.add(dlabel[0]) if dpath == train_path: train_data.append(label+line) if dpath == test_path: test_data.append(label+line) if dpath == valid_path: valid_data.append(label+line) if dpath in [train_path, valid_path]: domain_data.append(dlabel + line) return domain_data, train_data, valid_data, test_data, label_encoder, domain_encoder def data_gen(docs, batch_size=64): """ Batch generator """ np.random.shuffle(docs) # random shuffle the training documents steps = int(len(docs) / batch_size) if len(docs) % batch_size != 0: steps += 1 for step in range(steps): batch_docs = [] batch_labels = [] for idx in range(step*batch_size, (step+1)*batch_size): if idx > len(docs) -1: break batch_docs.append(np.asarray(docs[idx][1:])) batch_labels.append(int(docs[idx][0])) # convert to array batch_docs = np.asarray(batch_docs) batch_labels = np.asarray(batch_labels) yield batch_docs, batch_labels def domain_data_gen(domain_docs, batch_size=64): """ Generate domain data """ # load the data tmp_docs = np.random.choice(list(range(len(domain_docs))), size=batch_size, replace=False) tmp_docs = [domain_docs[idx] for idx in tmp_docs] batch_docs = {'domain_input': []} batch_labels = {'domain': []} for tmp_doc in tmp_docs: batch_docs['domain_input'].append(tmp_doc[1:]) batch_labels['domain'].append(tmp_doc[0]) return batch_docs, batch_labels def run_dnn(data_pair): print('Working on: '+data_pair[1]) wt_path = './weights/'+ data_pair[1] + '.npy' train_path = './data/'+ data_pair[1] + '_source.txt' valid_path = './data/' + data_pair[1] + '_valid.txt' test_path = './data/'+ data_pair[1] + '_target.txt' epoch_num = 15 # parameters sent_len = 60 # the max length of sentence # load the data domain_data, train_data, valid_data, test_data, label_encoder, domain_encoder = data_loader(data_pair[1]) label_encoder = list(sorted(label_encoder)) domain_encoder = list(sorted(domain_encoder)) """Preprocess""" # load weights weights = np.load(wt_path) # inputs text_input = Input(shape=(sent_len,), dtype='int32', name='text_input') domain_input = Input(shape=(sent_len,), dtype='int32', name='domain_input') # shared embedding embedding = Embedding( weights.shape[0], weights.shape[1], # size of data embedding weights=[weights], input_length=sent_len, trainable=True, name='embedding' ) # shared CNN conv1 = Conv1D( filters=300, kernel_size=5, padding='valid', strides=1, ) conv2 = Conv1D( filters=200, kernel_size=7, padding='valid', strides=1, ) max_pool = MaxPool1D() flatten = Flatten() # start to share sent_embed = embedding(text_input) domain_embed = embedding(domain_input) sent_conv1 = conv1(sent_embed) domain_conv1 = conv1(domain_embed) sent_conv2 = conv2(sent_conv1) domain_conv2 = conv2(domain_conv1) sent_pool = max_pool(sent_conv2) domain_pool = max_pool(domain_conv2) sent_flat = flatten(sent_pool) domain_flat = flatten(domain_pool) # for sentiment clf dense_1 = Dense(128, activation='relu')(sent_flat) dense_dp = Dropout(0.2)(dense_1) # for domain prediction hp_lambda = 0.01 # flip = flipGradientTF.GradientReversal(hp_lambda)(domain_flat) dense_da = Dense(128, activation='relu')(domain_flat) dense_da_dp = Dropout(0.2)(dense_da) da_preds = Dense(len(domain_encoder), activation='softmax', name='domain')(dense_da_dp) # multiple if 'dianping' in data_pair[1] or 'amazon' in data_pair[1] or 'yelp' in data_pair[1]: sentiment_preds = Dense(3, activation='softmax', name='senti')(dense_dp) # multilabels model_sent = Model( inputs=[text_input, domain_input], outputs=[sentiment_preds, da_preds], ) model_sent.compile( loss={'senti': 'categorical_crossentropy', 'domain':'categorical_crossentropy'}, loss_weights={'senti': 1, 'domain':0.005}, optimizer='adam') else: sentiment_preds = Dense(1, activation='sigmoid', name='senti')(dense_dp) # binary model_sent = Model( inputs=[text_input, domain_input], outputs=[sentiment_preds, da_preds], ) model_sent.compile( loss={'senti': 'binary_crossentropy', 'domain':'categorical_crossentropy'}, loss_weights={'senti': 1, 'domain':0.005}, optimizer='adam') print(model_sent.summary()) best_valid_f1 = 0.0 # fit the model for e in range(epoch_num): accuracy = 0.0 loss = 0.0 step = 1 print('--------------Epoch: {}--------------'.format(e)) train_iter = data_gen(train_data) # train sentiment # train on batches for x_train, y_train in train_iter: # skip only 1 class in the training data if len(np.unique(y_train)) == 1: continue batch_docs, batch_labels = domain_data_gen(domain_data, len(x_train)) batch_docs['text_input'] = x_train # encoder the (domain) labels if len(label_encoder) > 2: y_train_tmp = [] for idx in range(len(y_train)): dlabel = [0]*len(label_encoder) dlabel[label_encoder.index(y_train[idx])] = 1 y_train_tmp.append(dlabel) y_train = y_train_tmp dlabels = [] for idx in range(len(batch_labels['domain'])): dlabel = [0]*len(domain_encoder) dlabel[domain_encoder.index(batch_labels['domain'][idx])] = 1 dlabels.append(dlabel) batch_labels['domain'] = dlabels batch_labels['senti'] = y_train # convert to arrays for key in batch_docs: batch_docs[key] = np.asarray(batch_docs[key]) for key in batch_labels: batch_labels[key] = np.asarray(batch_labels[key]) # train sentiment model tmp_senti = model_sent.train_on_batch( batch_docs, batch_labels, class_weight={'senti:': 'auto', 'domain': 'auto'} ) # calculate loss and accuracy loss += tmp_senti[0] loss_avg = loss / step if step % 40 == 0: print('Step: {}'.format(step)) print('\tLoss: {}.'.format(loss_avg)) print('-------------------------------------------------') step += 1 # each epoch try the valid data, get the best valid-weighted-f1 score print('Validating....................................................') valid_iter = data_gen(valid_data) y_preds_valids = [] y_valids = [] for x_valid, y_valid in valid_iter: x_valid = np.asarray(x_valid) tmp_preds_valid = model_sent.predict([x_valid, x_valid]) for item_tmp in tmp_preds_valid[0]: y_preds_valids.append(item_tmp) for item_tmp in y_valid: y_valids.append(int(item_tmp)) if len(y_preds_valids[0]) > 2: y_preds_valids = np.argmax(y_preds_valids, axis=1) else: y_preds_valids = [np.round(item[0]) for item in y_preds_valids] f1_valid = f1_score(y_true=y_valids, y_pred=y_preds_valids, average='weighted') print('Validating f1-weighted score: ' + str(f1_valid)) # if the validation f1 score is good, then test if f1_valid > best_valid_f1: best_valid_f1 = f1_valid test_iter = data_gen(test_data) y_preds = [] y_tests = [] for x_test, y_test in test_iter: x_test = np.asarray(x_test) tmp_preds = model_sent.predict([x_test, x_test]) for item_tmp in tmp_preds[0]: y_preds.append(item_tmp) for item_tmp in y_test: y_tests.append(int(item_tmp)) if len(y_preds[0]) > 2: y_preds = np.argmax(y_preds, axis=1) else: y_preds = [np.round(item[0]) for item in y_preds] test_result = open('./results_no.txt', 'a') test_result.write(data_pair[1] + '\n') test_result.write('Epoch ' + str(e) + '..................................................\n') test_result.write(str(f1_score(y_true=y_tests, y_pred=y_preds, average='weighted')) + '\n') test_result.write('#####\n\n') test_result.write(classification_report(y_true=y_tests, y_pred=y_preds, digits=3)) test_result.write('...............................................................\n\n') if __name__ == '__main__': for data_pair in data_list: run_dnn(data_pair)
null
baselines/DANN/DANN_keras_no.py
DANN_keras_no.py
py
11,343
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.random.shuffle", "line_number": 82, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 82, "usage_type": "attribute" }, { "api_name": "numpy.asarray", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 108, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 108, "usage_type": "attribute" }, { "api_name": "numpy.load", "line_number": 140, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 143, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 144, "usage_type": "call" }, { "api_name": "keras.layers.Embedding", "line_number": 147, "usage_type": "call" }, { "api_name": "keras.layers.Conv1D", "line_number": 155, "usage_type": "call" }, { "api_name": "keras.layers.Conv1D", "line_number": 161, "usage_type": "call" }, { "api_name": "keras.layers.MaxPool1D", "line_number": 167, "usage_type": "call" }, { "api_name": "keras.layers.Flatten", "line_number": 168, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 187, "usage_type": "call" }, { "api_name": "keras.layers.Dropout", "line_number": 188, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 194, "usage_type": "call" }, { "api_name": "keras.layers.Dropout", "line_number": 195, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 196, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 199, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 200, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 208, "usage_type": "call" }, { "api_name": "keras.models.Model", "line_number": 209, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 233, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 259, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 261, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 284, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 292, "usage_type": "call" }, { "api_name": "numpy.round", "line_number": 294, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification.f1_score", "line_number": 296, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 306, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 314, "usage_type": "call" }, { "api_name": "numpy.round", "line_number": 316, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification.f1_score", "line_number": 321, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 323, "usage_type": "call" } ]
246247736
from EligibleAgeChecker import EligibleAgeChecker from abc import ABC, abstractmethod import re import pytest from WebDataScraper import DataScraper, WebDataScraper test_wds = WebDataScraper() url = "https://www.nhs.uk/conditions/coronavirus-covid-19/coronavirus-vaccination/coronavirus-vaccine/?gaclid=Cj0KCQjw16KFBhCgARIsALB0g8Ib9I_i92EiECD35ULdvHx52ozQVLgCMfVzPf-rm9Q-IAh_qVTM-usaAryPEALw_wcB" test_wds.create_request(url) test_wds.collect_response() test_wds.format_response() test_eac = EligibleAgeChecker(test_wds) def test_extract_age(): assert test_eac.age == "" test_eac.extract_age() assert test_eac.age.isdigit() == True def test_is_vaccination_open(): assert test_eac.is_eligible == False test_eac.is_vaccination_open(int(test_eac.age)+1) assert test_eac.is_eligible == True test_eac.is_vaccination_open(int(test_eac.age)-1) assert test_eac.is_eligible == False def test_exception_extract_age(): test_wds.formatted_response = None with pytest.raises(Exception) as exception_object: test_eac.extract_age() assert str(exception_object.value) == "Something went wrong when extracting age from formatted response string"
null
test_EligibleAgeChecker.py
test_EligibleAgeChecker.py
py
1,184
python
en
code
null
code-starcoder2
83
[ { "api_name": "WebDataScraper.WebDataScraper", "line_number": 7, "usage_type": "call" }, { "api_name": "EligibleAgeChecker.EligibleAgeChecker", "line_number": 12, "usage_type": "call" }, { "api_name": "pytest.raises", "line_number": 28, "usage_type": "call" } ]
172351546
#! /usr/bin/env python3 # coding: utf-8 import math import urllib.parse import requests from view.consoleapiview import ConsoleApiView class OpenFoodFactsInteractions: """ This class manages all the interactions with the OpenFoodFacts API """ def __init__(self): self.interface = ConsoleApiView() #Categories renseignées en dur 'pour le moment' self.category_list = ['sandwichs', 'barres', 'pizzas', 'biscuits-aperitifs'] def __get_search_url(self, category, page_size, page): """ This method creates the products url needed """ suffixe_url_element = { 'action' : 'process', 'tagtype_0' : 'categories', 'tag_contains_0' : 'contains', 'tag_0' : category, 'page_size' : page_size, 'page' : page, 'json' : '1' } prefixe_url = 'https://fr.openfoodfacts.org/cgi/search.pl?' return prefixe_url + urllib.parse.urlencode(suffixe_url_element) def get_product_pages_number(self, category, products_per_page): """ This method gets the necessary page number to request for a category """ url = self.__get_search_url(category, '20', '1') request = requests.get(url) data = request.json() page_number = math.ceil(int(data['count']) / int(products_per_page)) return page_number def get_product_page(self, category, page_size, page): """ This method gets the json linked to a specific page """ url = self.__get_search_url(category, page_size, page) request = requests.get(url) return request.json()
null
app/controller/api_interaction.py
api_interaction.py
py
1,645
python
en
code
null
code-starcoder2
83
[ { "api_name": "view.consoleapiview.ConsoleApiView", "line_number": 12, "usage_type": "call" }, { "api_name": "urllib.parse.parse.urlencode", "line_number": 30, "usage_type": "call" }, { "api_name": "urllib.parse.parse", "line_number": 30, "usage_type": "attribute" }, { "api_name": "urllib.parse", "line_number": 30, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 37, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 40, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 49, "usage_type": "call" } ]
96994735
from django import forms from django.utils.translation import ugettext_lazy as _ from django_countries import data as country_data from postal.settings import POSTAL_ADDRESS_LINE1, POSTAL_ADDRESS_LINE2, POSTAL_ADDRESS_CITY, POSTAL_ADDRESS_STATE, \ POSTAL_ADDRESS_CODE, POSTAL_USE_CRISPY_FORMS if POSTAL_USE_CRISPY_FORMS: from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Div, Hidden def country_sort_key(country_data): if country_data[0] == 'US': return 'AAA' if country_data[0] == 'CA': return 'AAAA' return country_data[1] country_list = sorted([('', '-' * 45)] + list(country_data.COUNTRIES.items()), key=country_sort_key) form_helpers = {} def register_postal_form_helper(form_id, form_helper): form_helpers[form_id] = form_helper class PostalAddressForm(forms.Form): line1 = forms.CharField(label=POSTAL_ADDRESS_LINE1[0], required=POSTAL_ADDRESS_LINE1[1], max_length=100) line2 = forms.CharField(label=POSTAL_ADDRESS_LINE2[0], required=POSTAL_ADDRESS_LINE2[1], max_length=100) city = forms.CharField(label=POSTAL_ADDRESS_CITY[0], required=POSTAL_ADDRESS_CITY[1], max_length=100) state = forms.CharField(label=POSTAL_ADDRESS_STATE[0], required=POSTAL_ADDRESS_STATE[1], max_length=100) code = forms.CharField(label=POSTAL_ADDRESS_CODE[0], required=POSTAL_ADDRESS_CODE[1], max_length=100) country = forms.ChoiceField(label=_(u"Country"), choices=country_list) def __init__(self, *args, **kwargs): prefix = kwargs.pop('prefix', None) postal_form_id = kwargs.pop('postal_form_id', 'postal-address-form') if POSTAL_USE_CRISPY_FORMS: css_id = 'postal_address' if prefix is not None: css_id = prefix + '-' + css_id if postal_form_id in form_helpers: self.helper = form_helpers[postal_form_id] else: self.helper = FormHelper() self.helper.form_tag = False self.helper.layout = Layout( Div( 'country', 'line1', 'line2', 'city', 'state', 'code', css_id=css_id, css_class='postal_address' ), Hidden('postal-form-id', postal_form_id), ) super().__init__(*args, **kwargs) def clean_country(self): data = self.cleaned_data['country'] if data not in country_data.COUNTRIES.keys(): raise forms.ValidationError("You must select a country") return data
null
src/postal/forms/__init__.py
__init__.py
py
2,670
python
en
code
null
code-starcoder2
83
[ { "api_name": "postal.settings.POSTAL_USE_CRISPY_FORMS", "line_number": 9, "usage_type": "name" }, { "api_name": "django_countries.data", "line_number": 15, "usage_type": "name" }, { "api_name": "django_countries.data", "line_number": 17, "usage_type": "name" }, { "api_name": "django_countries.data", "line_number": 19, "usage_type": "name" }, { "api_name": "django_countries.data.COUNTRIES.items", "line_number": 22, "usage_type": "call" }, { "api_name": "django_countries.data.COUNTRIES", "line_number": 22, "usage_type": "attribute" }, { "api_name": "django_countries.data", "line_number": 22, "usage_type": "name" }, { "api_name": "django.forms.Form", "line_number": 31, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 31, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 32, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 32, "usage_type": "name" }, { "api_name": "postal.settings.POSTAL_ADDRESS_LINE1", "line_number": 32, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 33, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 33, "usage_type": "name" }, { "api_name": "postal.settings.POSTAL_ADDRESS_LINE2", "line_number": 33, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 34, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 34, "usage_type": "name" }, { "api_name": "postal.settings.POSTAL_ADDRESS_CITY", "line_number": 34, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 35, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 35, "usage_type": "name" }, { "api_name": "postal.settings.POSTAL_ADDRESS_STATE", "line_number": 35, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 36, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 36, "usage_type": "name" }, { "api_name": "postal.settings.POSTAL_ADDRESS_CODE", "line_number": 36, "usage_type": "name" }, { "api_name": "django.forms.ChoiceField", "line_number": 37, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 37, "usage_type": "name" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 37, "usage_type": "call" }, { "api_name": "postal.settings.POSTAL_USE_CRISPY_FORMS", "line_number": 42, "usage_type": "name" }, { "api_name": "crispy_forms.helper.FormHelper", "line_number": 49, "usage_type": "call" }, { "api_name": "crispy_forms.layout.Layout", "line_number": 51, "usage_type": "call" }, { "api_name": "crispy_forms.layout.Div", "line_number": 52, "usage_type": "call" }, { "api_name": "crispy_forms.layout.Hidden", "line_number": 62, "usage_type": "call" }, { "api_name": "django_countries.data.COUNTRIES.keys", "line_number": 68, "usage_type": "call" }, { "api_name": "django_countries.data.COUNTRIES", "line_number": 68, "usage_type": "attribute" }, { "api_name": "django_countries.data", "line_number": 68, "usage_type": "name" }, { "api_name": "django.forms.ValidationError", "line_number": 69, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 69, "usage_type": "name" } ]
482851298
#-*- coding: utf-8 -*- """ FrostyX's Qtile config Don't be dumb and test it with Xephyr first https://wiki.archlinux.org/index.php/Xephyr Xephyr -br -ac -noreset -screen 1600x600 :1 & DISPLAY=:1 qtile & DISPLAY=:1 urxvt & """ import re import subprocess from datetime import date from os import uname from os.path import expanduser from libqtile.config import Key, Screen, Group, Drag, Click, Match, Rule from libqtile.command import lazy, Client from libqtile import layout, bar, widget, hook from contrib import (VimwikiUnfinished, Newsboat, DaysCounter, Mu, CurrentLayoutTextIcon) terminal = "gnome-terminal" run = "gmrun" vol_cur = "amixer -D pulse get Master" vol_up = "amixer -q -D pulse sset Master 2%+" vol_down = "amixer -q -D pulse sset Master 2%-" mute = "amixer -q -D pulse set Master toggle" #bright_up = "xbacklight -inc 10" #bright_down = "xbacklight -dec 10" bright_up = "light -A 5" bright_down = "light -U 5" lock = "gnome-screensaver-command -l" scrot = "" scrot_all = "" battery = "BAT0" suspend = "systemctl suspend" player_prev = "playerctl previous --player=spotify" player_next = "playerctl next --player=spotify" player_play_pause = "playerctl play-pause --player=spotify" hostname = uname()[1] if hostname == "chromie": battery = "BAT1" scrot = "/home/jkadlcik/.bin/screenshot.sh" scrot_all = "/home/jkadlcik/git/qtile-screenshot/qtile-screenshot.py -o /home/jkadlcik/images/scrot" # https://github.com/FrostyX/qtile-screenshot/blob/master/qtile-screenshot.py elif hostname == "localhost.localdomain": # New work laptop is not named yet scrot = "/home/jkadlcik/.bin/screenshot.sh" terminal = "urxvt256c -e tmux" lock = "i3lock -i /home/jkadlcik/.dotfiles/.config/qtile/img/bsod.png" mod = "mod1" # Left alt sup = "mod4" # Left win-key keys = [ # Switch window focus to other pane(s) of stack Key([mod], "Tab", lazy.layout.next()), Key([mod], "Return", lazy.spawn(terminal)), Key([mod], "F1", lazy.spawn(terminal)), Key([mod], "F2", lazy.spawn(run)), # Toggle between different layouts as defined below Key([mod], "space", lazy.next_layout()), Key([mod], "F4", lazy.window.kill()), Key([mod, "control"], "r", lazy.restart()), Key([mod, "control"], "q", lazy.shutdown()), Key([mod], "w", lazy.screen.togglegroup()), # cycle to previous and next group Key([mod], "h", lazy.screen.prev_group(skip_managed=True)), Key([mod], "l", lazy.screen.next_group(skip_managed=True)), Key([sup], "f", lazy.window.toggle_fullscreen()), Key([sup], "t", lazy.window.toggle_floating()), # Process `gnome-screensaver` must run Key([mod, sup], "l", lazy.spawn(lock)), # Multihead magic Key([sup], "h", lazy.prev_screen()), Key([sup], "l", lazy.next_screen()), # Function keys Key([], "XF86AudioRaiseVolume", lazy.spawn(vol_up)), Key([], "XF86AudioLowerVolume", lazy.spawn(vol_down)), Key([], "XF86AudioMute", lazy.spawn(mute)), Key([], "XF86MonBrightnessUp", lazy.spawn(bright_up)), Key([], "XF86MonBrightnessDown", lazy.spawn(bright_down)), Key([], "Print", lazy.spawn(scrot)), Key([sup], "Print", lazy.spawn(scrot_all)), # Multimedia Key([sup], "Left", lazy.spawn(player_prev)), Key([sup], "Right", lazy.spawn(player_next)), Key([sup], "Down", lazy.spawn(player_play_pause)), # Quiting Key([mod], "F10", lazy.spawn(suspend)), ] # dnf install fontawesome-fonts # https://fortawesome.github.io/Font-Awesome/cheatsheet/ # For v4.7 see https://fontawesome.com/v4.7.0/cheatsheet/ icons = { "logo": "", # fa-redhat "temp": "", # fa-fire-extinguisher "battery": "", # fa-battery-three-quarters "light": "", # fa-lightbulb-o "volume": "", # fa-bullhorn "rss": "", # fa-rss "tasks": "", # fa-calendar-check-o "repeat": "", # fa-repeat "email": "", # fa-at "gmail": "", # fa-google "chat": "", # fa-comment-dots "web": "", # fa-internet-explorer "terminal": "", # fa-keyboard "dev": "", # fa-heart "doc": "", # fa-folder "misc": "", # fa-file "ssh": "", # fa-hashtag "virtual": "", # fa-cogs "games": "", # fa-playstation "music": "", # fa-headphones "max": "", # fa-window-maximize "monadtall": "", # fa-columns "treetab": "", # fa-tree } def get_layout_icon(name): return { "max": icons["max"], "monadtall": icons["monadtall"], "treetab": icons["treetab"], }.get(name, name) workspaces = [ {"name": "i", "key": "i", "label": icons["chat"], "matches": [Match(wm_class=["Pidgin"])]}, {"name": "r", "key": "r", "label": icons["web"], "matches": [Match(wm_class=["Chromium-browser", "Firefox", "Google-chrome"])]}, {"name": "f", "key": "f", "label": icons["terminal"], "matches": [Match(wm_class=["dolphin", "Thunar", "File-roller"])]}, {"name": "d", "key": "d", "label": icons["dev"], "matches": [Match(wm_class=["Lispworks", "jetbrains-pycharm", "Eclipse" ])]}, {"name": "q", "key": "q", "label": icons["doc"], "matches": [Match(wm_class=["Acroread", "Zathura", "Evince"])]}, {"name": "n", "key": "n", "label": icons["misc"], "matches": [Match(wm_class=["Claws-mail"])]}, {"name": "c", "key": "c", "label": icons["ssh"]}, {"name": "v", "key": "v", "label": icons["virtual"], "matches": [Match(wm_class=["VirtualBox"])]}, {"name": "g", "key": "g", "label": icons["games"], "matches": [Match(wm_class=["Wine", "Python2.7", "Steam", "Progress"])]}, # Python2.7 is playonlinux; Progress is steam updater {"name": "o", "key": "o", "label": icons["music"], "matches": [Match(wm_class=["Vlc", "Totem"])]}, ] groups = [] for workspace in workspaces: matches = workspace["matches"] if "matches" in workspace else None groups.append(Group(workspace["name"], label=workspace["label"], matches=matches, layout="max")) keys.append(Key([mod], workspace["key"], lazy.group[workspace["name"]].toscreen())) keys.append(Key([mod, sup], workspace["key"], lazy.window.togroup(workspace["name"]))) # float dialog windows @hook.subscribe.client_new def dialogs(window): floating = ["gmrun", "gcr-prompter"] try: wm_type = window.window.get_wm_type() wm_class = window.window.get_wm_class()[0] transient_for = window.window.get_wm_transient_for() if wm_type == 'dialog' or transient_for or wm_class in floating: window.floating = True except: pass # Preivew: https://chriskempson.github.io/base16/#eighties # Codes: https://chriskempson.github.io/base16/css/base16-eighties.css colors = { "greybg": "#2d2d2d", "greyfg": "#d3d0c8", "red": "#f2777a", "blue": "#6699cc", "lgrey": "#747369", "green": "#99cc99", } base16_chalk = { "black" : "#151515", "red": "#fb9fb1", "green": "#acc267", "yellow": "#ddb26f", "blue": "#6fc2ef", "magenta": "#e1a3ee", "cyan": "#12cfc0", "white": "#d0d0d0", "gray": "#505050", } # http://docs.qtile.org/en/latest/manual/ref/layouts.html layout_theme = { "border_width": 1, "border_focus": colors["blue"], "border_normal": colors["lgrey"], "margin": 10, "single_margin": 10, } layouts = [ layout.MonadTall(**layout_theme), layout.TreeTab(**layout_theme), layout.xmonad.MonadTall(ratio=0.75, **layout_theme), layout.max.Max(**layout_theme), ] floating_layout = layout.Floating(**layout_theme) widget_defaults = dict( font='Arial', fontsize=12, padding=3, ) def num_screens(): process = subprocess.Popen(["xrandr"], stdout=subprocess.PIPE) out = str(process.communicate()[0]).split("\n") i = 0 for line in out: if " connected " in line: i += 1 return i style = { "padding": 5, } sep = { "foreground": colors["lgrey"], "padding": 15, } screens = [ Screen( # Let's have a gap on the bottom, but instead of showing a wallpaper, # make it seamless with emacs and termianl backgrounds bottom=bar.Bar([widget.TextBox("")], 15, background=base16_chalk["black"]), top=bar.Bar([ widget.Spacer(length=5), # Logo widget.TextBox( text=icons["logo"], fontsize=14, mouse_callbacks = {'Button1': lambda qtile: qtile.cmd_spawn("urxvt")}, foreground=base16_chalk["magenta"], padding_y=5, **style ), widget.Sep(**sep), # Workspaces widget.GroupBox( highlight_method="text", urgent_alert_method="text", this_current_screen_border=base16_chalk["blue"], active=base16_chalk["white"], inactive=base16_chalk["gray"], rounded=False, padding_x=6, padding_y=5, margin=0, fontsize=14, hide_unused=True, ), widget.Sep(**sep), # Current layout CurrentLayoutTextIcon( fun=get_layout_icon, length=20, foreground=base16_chalk["green"], **style ), widget.Sep(**sep), widget.TaskList( icon_size=0, background=colors["greybg"], foreground=base16_chalk["white"], highlight_method="text", border=base16_chalk["blue"], urgent_border=base16_chalk["red"], ), # Notify # We want low priority color to be also red because some # applications (not looking at you Spotify) are using that color for # highlights. widget.Spacer(length=100), widget.Notify( default_timeout=15, foreground=base16_chalk["white"], foreground_low=base16_chalk["red"], foreground_urgent=base16_chalk["red"], **style ), widget.Spacer(length=100), # Emails widget.TextBox( text=icons["email"], foreground=base16_chalk["green"], **style ), Mu( "/home/jkadlcik/Mail", "/seznam/I/BOX", "[email protected]", foreground=base16_chalk["green"], **style ), widget.TextBox( text=icons["gmail"], foreground=base16_chalk["green"], **style ), Mu( "/home/jkadlcik/Mail", "/gmail/*", "[email protected]", foreground=base16_chalk["green"], **style ), widget.Sep(**sep), # Temp widget.TextBox( text=icons["temp"], foreground=base16_chalk["yellow"], **style ), widget.ThermalSensor( threshold=65, foreground=base16_chalk["yellow"], foreground_alert=colors["red"], **style ), widget.Sep(**sep), # Battery widget.TextBox( text=icons["battery"], foreground=base16_chalk["magenta"], **style ), widget.Battery( battery_name=battery, foreground=base16_chalk["magenta"], format="{percent:2.0%}", low_foreground=colors["red"], **style ), widget.Sep(**sep), # Light widget.TextBox( text=icons["light"], foreground=base16_chalk["blue"], **style ), widget.Backlight( brightness_file="/sys/class/backlight/intel_backlight/actual_brightness", max_brightness_file="/sys/class/backlight/intel_backlight/max_brightness", foreground=base16_chalk["blue"], **style ), widget.Sep(**sep), # Volume widget.TextBox( text=icons["volume"], foreground=base16_chalk["green"], **style ), widget.Volume( get_volume_command=vol_cur.split(), foreground=base16_chalk["green"], **style ), widget.Sep(**sep), # Unread news count widget.TextBox( text=icons["rss"], foreground=base16_chalk["yellow"], **style ), Newsboat( dbfile="/home/jkadlcik/.newsboat/cache.db", foreground=base16_chalk["yellow"], **style ), widget.Sep(**sep), # Time widget.Clock( timezone="Europe/Prague", format="%H:%M", foreground=base16_chalk["magenta"], **style ), widget.Sep(**sep), # Date widget.Clock( timezone="Europe/Prague", format="%d. %m. (%b) %Y", foreground=base16_chalk["blue"], **style ), widget.Sep(**sep), # Week widget.Clock( timezone="Europe/Prague", format="#%W", foreground=base16_chalk["green"], **style ), widget.Sep(**sep), # The meaning of this date is a private matter DaysCounter( starting_date=date(year=2019, month=2, day=3), foreground=base16_chalk["yellow"], ), widget.Sep(**sep), # Systray widget.Systray(), widget.Spacer(length=5), ], 25, background=colors["greybg"]), ) ] if num_screens() == 2: screens.append( Screen( bottom=bar.Bar([ widget.GroupBox(highlight_method="block", this_current_screen_border=colors["blue"], active=colors["greyfg"], inactive=colors["lgrey"], **style), widget.Sep(**sep), widget.CurrentLayout(**style), widget.Sep(**sep), widget.Prompt(), widget.WindowTabs(separator=" | ", **style), widget.Systray(), ], 25, background=colors["greybg"]))) # Drag floating layouts. mouse = [ Drag([mod], "Button1", lazy.window.set_position_floating(), start=lazy.window.get_position()), Drag([mod], "Button3", lazy.window.set_size_floating(), start=lazy.window.get_size()), Click([mod], "Button2", lazy.window.bring_to_front()) ] follow_mouse_focus = False bring_front_click = False dgroups_key_binder = None dgroups_app_rules = [ # floating windows Rule(Match(wm_class=['Synfigstudio', 'Wine', 'Xephyr', 'postal2-bin']), float=True), ] main = None cursor_warp = False auto_fullscreen = True wmname = "LG3D" # Autostart @hook.subscribe.startup_once def autostart(): home = expanduser("~") subprocess.Popen([home + "/.config/qtile/autostart.sh"]) # xrandr --output DP2 --auto --right-of eDP1 @hook.subscribe.screen_change def restart_on_randr(qtile, ev): # qtile.cmd_restart() pass
null
.config/qtile/examples/FrostyX.py
FrostyX.py
py
15,911
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.uname", "line_number": 51, "usage_type": "call" }, { "api_name": "libqtile.config.Key", "line_number": 69, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.layout.next", "line_number": 69, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.layout", "line_number": 69, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 69, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 71, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 71, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 71, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 72, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 72, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 72, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 73, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 73, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 73, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 76, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.next_layout", "line_number": 76, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 76, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 77, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window.kill", "line_number": 77, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window", "line_number": 77, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 77, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 79, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.restart", "line_number": 79, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 79, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 80, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.shutdown", "line_number": 80, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 80, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 82, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.screen.togglegroup", "line_number": 82, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.screen", "line_number": 82, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 82, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 85, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.screen.prev_group", "line_number": 85, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.screen", "line_number": 85, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 85, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 86, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.screen.next_group", "line_number": 86, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.screen", "line_number": 86, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 86, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 88, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window.toggle_fullscreen", "line_number": 88, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window", "line_number": 88, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 88, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 89, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window.toggle_floating", "line_number": 89, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window", "line_number": 89, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 89, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 92, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 92, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 92, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 95, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.prev_screen", "line_number": 95, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 95, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 96, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.next_screen", "line_number": 96, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 96, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 99, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 99, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 99, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 100, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 100, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 100, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 101, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 101, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 101, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 102, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 102, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 102, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 103, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 103, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 103, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 104, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 104, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 104, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 105, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 105, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 105, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 108, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 108, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 108, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 109, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 109, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 109, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 110, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 110, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 110, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 113, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.spawn", "line_number": 113, "usage_type": "call" }, { "api_name": "libqtile.command.lazy", "line_number": 113, "usage_type": "name" }, { "api_name": "libqtile.config.Match", "line_number": 158, "usage_type": "call" }, { "api_name": "libqtile.config.Match", "line_number": 159, "usage_type": "call" }, { "api_name": "libqtile.config.Match", "line_number": 160, "usage_type": "call" }, { "api_name": "libqtile.config.Match", "line_number": 161, "usage_type": "call" }, { "api_name": "libqtile.config.Match", "line_number": 162, "usage_type": "call" }, { "api_name": "libqtile.config.Match", "line_number": 163, "usage_type": "call" }, { "api_name": "libqtile.config.Match", "line_number": 165, "usage_type": "call" }, { "api_name": "libqtile.config.Match", "line_number": 166, "usage_type": "call" }, { "api_name": "libqtile.config.Match", "line_number": 167, "usage_type": "call" }, { "api_name": "libqtile.config.Group", "line_number": 173, "usage_type": "call" }, { "api_name": "libqtile.config.Key", "line_number": 174, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.group", "line_number": 174, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 174, "usage_type": "name" }, { "api_name": "libqtile.config.Key", "line_number": 175, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window.togroup", "line_number": 175, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window", "line_number": 175, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 175, "usage_type": "name" }, { "api_name": "libqtile.hook.subscribe", "line_number": 179, "usage_type": "attribute" }, { "api_name": "libqtile.hook", "line_number": 179, "usage_type": "name" }, { "api_name": "libqtile.layout.MonadTall", "line_number": 224, "usage_type": "call" }, { "api_name": "libqtile.layout", "line_number": 224, "usage_type": "name" }, { "api_name": "libqtile.layout.TreeTab", "line_number": 225, "usage_type": "call" }, { "api_name": "libqtile.layout", "line_number": 225, "usage_type": "name" }, { "api_name": "libqtile.layout.xmonad.MonadTall", "line_number": 226, "usage_type": "call" }, { "api_name": "libqtile.layout.xmonad", "line_number": 226, "usage_type": "attribute" }, { "api_name": "libqtile.layout", "line_number": 226, "usage_type": "name" }, { "api_name": "libqtile.layout.max.Max", "line_number": 227, "usage_type": "call" }, { "api_name": "libqtile.layout.max", "line_number": 227, "usage_type": "attribute" }, { "api_name": "libqtile.layout", "line_number": 227, "usage_type": "name" }, { "api_name": "libqtile.layout.Floating", "line_number": 229, "usage_type": "call" }, { "api_name": "libqtile.layout", "line_number": 229, "usage_type": "name" }, { "api_name": "subprocess.Popen", "line_number": 239, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 239, "usage_type": "attribute" }, { "api_name": "libqtile.config.Screen", "line_number": 258, "usage_type": "call" }, { "api_name": "libqtile.bar.Bar", "line_number": 261, "usage_type": "call" }, { "api_name": "libqtile.bar", "line_number": 261, "usage_type": "name" }, { "api_name": "libqtile.widget.TextBox", "line_number": 261, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 261, "usage_type": "name" }, { "api_name": "libqtile.bar.Bar", "line_number": 263, "usage_type": "call" }, { "api_name": "libqtile.bar", "line_number": 263, "usage_type": "name" }, { "api_name": "libqtile.widget.Spacer", "line_number": 265, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 265, "usage_type": "name" }, { "api_name": "libqtile.widget.TextBox", "line_number": 268, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 268, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 276, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 276, "usage_type": "name" }, { "api_name": "libqtile.widget.GroupBox", "line_number": 280, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 280, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 293, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 293, "usage_type": "name" }, { "api_name": "contrib.CurrentLayoutTextIcon", "line_number": 297, "usage_type": "call" }, { "api_name": "libqtile.widget.Sep", "line_number": 303, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 303, "usage_type": "name" }, { "api_name": "libqtile.widget.TaskList", "line_number": 306, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 306, "usage_type": "name" }, { "api_name": "libqtile.widget.Spacer", "line_number": 321, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 321, "usage_type": "name" }, { "api_name": "libqtile.widget.Notify", "line_number": 322, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 322, "usage_type": "name" }, { "api_name": "libqtile.widget.Spacer", "line_number": 329, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 329, "usage_type": "name" }, { "api_name": "libqtile.widget.TextBox", "line_number": 333, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 333, "usage_type": "name" }, { "api_name": "contrib.Mu", "line_number": 338, "usage_type": "call" }, { "api_name": "libqtile.widget.TextBox", "line_number": 345, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 345, "usage_type": "name" }, { "api_name": "contrib.Mu", "line_number": 350, "usage_type": "call" }, { "api_name": "libqtile.widget.Sep", "line_number": 357, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 357, "usage_type": "name" }, { "api_name": "libqtile.widget.TextBox", "line_number": 361, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 361, "usage_type": "name" }, { "api_name": "libqtile.widget.ThermalSensor", "line_number": 366, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 366, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 372, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 372, "usage_type": "name" }, { "api_name": "libqtile.widget.TextBox", "line_number": 376, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 376, "usage_type": "name" }, { "api_name": "libqtile.widget.Battery", "line_number": 381, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 381, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 388, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 388, "usage_type": "name" }, { "api_name": "libqtile.widget.TextBox", "line_number": 392, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 392, "usage_type": "name" }, { "api_name": "libqtile.widget.Backlight", "line_number": 397, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 397, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 403, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 403, "usage_type": "name" }, { "api_name": "libqtile.widget.TextBox", "line_number": 407, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 407, "usage_type": "name" }, { "api_name": "libqtile.widget.Volume", "line_number": 412, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 412, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 417, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 417, "usage_type": "name" }, { "api_name": "libqtile.widget.TextBox", "line_number": 421, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 421, "usage_type": "name" }, { "api_name": "contrib.Newsboat", "line_number": 426, "usage_type": "call" }, { "api_name": "libqtile.widget.Sep", "line_number": 431, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 431, "usage_type": "name" }, { "api_name": "libqtile.widget.Clock", "line_number": 435, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 435, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 441, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 441, "usage_type": "name" }, { "api_name": "libqtile.widget.Clock", "line_number": 445, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 445, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 451, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 451, "usage_type": "name" }, { "api_name": "libqtile.widget.Clock", "line_number": 455, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 455, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 461, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 461, "usage_type": "name" }, { "api_name": "contrib.DaysCounter", "line_number": 465, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 466, "usage_type": "call" }, { "api_name": "libqtile.widget.Sep", "line_number": 469, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 469, "usage_type": "name" }, { "api_name": "libqtile.widget.Systray", "line_number": 473, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 473, "usage_type": "name" }, { "api_name": "libqtile.widget.Spacer", "line_number": 476, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 476, "usage_type": "name" }, { "api_name": "libqtile.config.Screen", "line_number": 483, "usage_type": "call" }, { "api_name": "libqtile.bar.Bar", "line_number": 484, "usage_type": "call" }, { "api_name": "libqtile.bar", "line_number": 484, "usage_type": "name" }, { "api_name": "libqtile.widget.GroupBox", "line_number": 485, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 485, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 486, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 486, "usage_type": "name" }, { "api_name": "libqtile.widget.CurrentLayout", "line_number": 487, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 487, "usage_type": "name" }, { "api_name": "libqtile.widget.Sep", "line_number": 488, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 488, "usage_type": "name" }, { "api_name": "libqtile.widget.Prompt", "line_number": 489, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 489, "usage_type": "name" }, { "api_name": "libqtile.widget.WindowTabs", "line_number": 490, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 490, "usage_type": "name" }, { "api_name": "libqtile.widget.Systray", "line_number": 491, "usage_type": "call" }, { "api_name": "libqtile.widget", "line_number": 491, "usage_type": "name" }, { "api_name": "libqtile.config.Drag", "line_number": 497, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window.set_position_floating", "line_number": 497, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window", "line_number": 497, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 497, "usage_type": "name" }, { "api_name": "libqtile.command.lazy.window.get_position", "line_number": 497, "usage_type": "call" }, { "api_name": "libqtile.config.Drag", "line_number": 498, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window.set_size_floating", "line_number": 498, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window", "line_number": 498, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 498, "usage_type": "name" }, { "api_name": "libqtile.command.lazy.window.get_size", "line_number": 498, "usage_type": "call" }, { "api_name": "libqtile.config.Click", "line_number": 499, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window.bring_to_front", "line_number": 499, "usage_type": "call" }, { "api_name": "libqtile.command.lazy.window", "line_number": 499, "usage_type": "attribute" }, { "api_name": "libqtile.command.lazy", "line_number": 499, "usage_type": "name" }, { "api_name": "libqtile.config.Rule", "line_number": 508, "usage_type": "call" }, { "api_name": "libqtile.config.Match", "line_number": 508, "usage_type": "call" }, { "api_name": "os.path.expanduser", "line_number": 518, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 519, "usage_type": "call" }, { "api_name": "libqtile.hook.subscribe", "line_number": 516, "usage_type": "attribute" }, { "api_name": "libqtile.hook", "line_number": 516, "usage_type": "name" }, { "api_name": "libqtile.hook.subscribe", "line_number": 523, "usage_type": "attribute" }, { "api_name": "libqtile.hook", "line_number": 523, "usage_type": "name" } ]
474279302
import time import datetime import socket import asyncio import matplotlib.pyplot as plt import numpy as np import argparse import select import selectors import sys from sklearn import datasets from sklearn import metrics from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import load_svmlight_file from sklearn.datasets import load_iris from sklearn.model_selection import validation_curve from sklearn.linear_model import Ridge from sklearn.svm import SVC plt.ion() plt.rcParams['figure.figsize'] = (16, 9) def clear_logfile(f_name): with open(f_name, "r+") as writer: writer.truncate(0) class Sleeper: def __init__(self, duration, df, config_file): #TODO: add timescale functionality self.duration = int(duration) self.time_start = datetime.datetime.now() self.config_file = config_file self.dyn_x = [] self.dyn_y = [] f = open(config_file, "r") self.name = f.readline()[:-1] self.wakeup_span = int(f.readline()) # float val of num minutes to perform the wakeup cycle self.predictive_max = f.readline() # earliest wakeup where a state transition will be permitted self.num_divisions = int(f.readline()) # how many steps to break wakeup into, bounded [1, 100] on Windows and [1, 1000] on Unix due to clock limits (for now) self.port = int(f.readline()) # port for local communication to send control signals self.log_file = f.readline()[:-1] # ouput logfile self.use_data = f.readline() # whether or not to use predictive wakeup feature self.data_file = f.readline()[:-1] # (optional) dataset for predictive optimal wakeup self.sets = f.readline().split(';') # (optional) additional datasets for prediction f.close() if (df != "__no__"): self.data_file = df self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.connect(('localhost', self.port)) self.max = 0 self.bk_avg_counter = 0 self.bucket = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.prev_buckets_avg = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.state = "LIGHT " self.do_g = True #self.prev_state = "LIGHT " for k in range(10): self.bucket.append(float(0)) self.prev_buckets_avg.append(float(0)) #self.clf = svm.SVC(gamma = 0.001, C = 100.0) #self.train_data = load_svmlight_file(self.data_file) # caveat: data must be of form line by line < [identifier] [feature-id]:[value] ... > #self.clf.fit(self.train_data.data[:-1], self.train_data.target[:-1]) # fit the datafile to a dataset which can now facilitate predictions # plt.xlabel("HRV") # plt.ylabel("Time (s)") # plt.show() def enable_graph(self): self.do_g = True def disable_graph(self): self.do_g = False def fill_bucket(self, pos, val): if val > self.max: self.max = val self.bucket[pos % 10] = val def get_bucket_avg(self): tmp = float(0) for i in range(10): tmp = tmp + self.bucket[i] tmp = tmp / 10 return tmp def fill_bucket_avg(self, pos, val): if (pos % 10 == 0): self.prev_buckets_avg[self.bk_avg_counter % 10] = self.get_bucket_avg() self.bk_avg_counter = self.bk_avg_counter + 1 def get_state(self, pos): n_count = int(0) my_sum = float(0) for ii in range(10): if (self.prev_buckets_avg[ii] != 0) and (ii != pos): my_sum = my_sum + self.prev_buckets_avg[ii] n_count = n_count + 1 my_sum = my_sum / n_count if(self.prev_buckets_avg[pos % 10] > my_sum): if(self.prev_buckets_avg[pos % 10] > (my_sum * 1.0)): self.state = "LIGHT " else: if(self.prev_buckets_avg[pos % 10] < (my_sum * 1.0)): self.state = "DEEP " print(str(self.prev_buckets_avg[pos % 10]) + " " + str(my_sum)) def log(self, line): with open(self.log_file, "a+") as writer: writer.write(str(line+"\n")) def graph_baseline(self): # graph historical dataset files using format self.fig, (self.ax, self.ax2) = plt.subplots(2) self.x = [] self.y = [] self.x_acc = [] self.y_acc = [] n_counted = [] for i in range(2000): n_counted.append(int(0)) #self.x.append(float(0)) #self.y.append(float(0)) #self.x_acc.append(float(0)) #self.y_acc.append(float(0)) for num in self.sets: print(num) # self.x = [] # self.y = [] fd = open(str("datasets/hrv_fake_" + num + ".txt"), "r") dataset = fd.readlines() fd.close() lc = 0 for line in dataset[1:-1]: split_tupple = line.split(';') split_tupple[1] = split_tupple[1].split('\n')[0] if len(self.x) > lc: # average the datasets n_counted[lc] = n_counted[lc] + 1 self.y[lc] = (float(self.y[lc]*(n_counted[lc]-1)) + float(split_tupple[1])) / n_counted[lc] #("acc: "+str(self.y[lc])) else: n_counted[lc] = 1 self.x.append(split_tupple[0]) self.y.append(split_tupple[1]) # print("append") lc = lc + 1 # plt.plot(x, y, color = 'blue', linestyle = 'solid', linewidth = 2) # marker = 'o', markerfacecolor = 'blue', markersize = 5) #self.ax.plot(self.x, self.y, color = 'blue', linestyle = 'solid', linewidth = 1) # self.x = [] # self.y = [] fd = open(str("datasets/acc_fake_"+ num + ".txt"), "r") dataset = fd.readlines() fd.close() lc = int(0) for line in dataset[1:-1]: #print(line) split_tupple = line.split(';') split_tupple[1] = split_tupple[1].split('\n')[0] if len(self.x_acc) > lc: n_counted[lc] = n_counted[lc] + 1 # self.x_acc[lc] = (self.x_acc[lc]*(n_counted[lc]-1) + split_tupple[0]) / n_counted[lc] self.y_acc[lc] = (self.y_acc[lc]*int(n_counted[lc]-1) + float(split_tupple[1])) / n_counted[lc] else: n_counted[lc] = 1 self.x_acc.append(split_tupple[0]) self.y_acc.append(float(split_tupple[1])) lc = lc + 1 #print(str(lc) + " " + str(self.y_acc[lc])) print('-_-') print(str(len(self.x_acc))) print(str(len(self.y_acc))) print(str(len(self.x))) self.ax.set_autoscaley_on(True) l1 = self.ax.plot(self.x_acc, self.y_acc, color = 'blue', linestyle = 'solid', linewidth = 1, label = 'Acceleration Data') self.ax.tick_params(axis = 'y', labelcolor = 'blue') self.ax3 = self.ax.twinx() self.ax3.set_autoscaley_on(True) l2 = self.ax3.plot(self.x, self.y, color = 'green', linestyle = 'solid', linewidth = 1, label = 'Heart Rate Variability Data') self.ax3.tick_params(axis = 'y', labelcolor = 'green') self.ax.autoscale_view() self.ax3.autoscale_view() #self.ax.set_yticks(self.ax.get_yticks()[::10]) self.ax.set_xticks(self.ax.get_xticks()[::10]) self.ax3.set_yticks(self.ax3.get_yticks()[::25]) #self.ax3.set_xticks(self.ax3.get_xticks()[::100]) t_lines = l1 + l2 lbs = [ll.get_label() for ll in t_lines] self.ax.legend(t_lines, lbs, loc = 0) plt.gcf().autofmt_xdate() plt.xlabel('Time') #plt.ylabel('HRV(B) & ACC(G)') plt.title('HRV and ACC Composite Data') plt.show() def mdecode(self, msg): tmp = msg.rstrip('\n') tmp = msg.split(' ') return [int(tmp[0]), float(tmp[1])] def send_com(self, msg): n_sent = 0 n_max = len(msg) while n_sent < n_max: status = self.sock.send(msg[n_sent:]) if status == 0: print("Socket dropped") self.sock.shutdown() return None n_sent = n_sent + status def update(self, data_file, regex): with open(data_file) as reader: new_data = reader.readlines() for line in new_data: split_tupple = line.split(regex) self.dyn_x.append(split_tupple[0]) self.dyn_y.append(str(datetime.datetime.now())) self.ax3 = plt.subplots() self.ax3.plot(self.dyn_x, self.dyn_y, color = 'green', linestype = 'dashdot', linewidth = 1) self.ax3.set_ylabel('Live HRV') self.ax3.set_xticks([]) # adjust later after tests plt.show() def simple(self): # simple wakeup with no real-time predictive analysis print("Sleep ", str(60*(self.duration - self.wakeup_span))) #time.sleep(60*(self.duration - self.wakeup_span)) print(datetime.datetime.now()) # n_hrv_per_interval = int(len(self.x) / self.duration) # it = int(0) for zz in range(self.num_divisions): self.send_com(str(datetime.datetime.now()).encode()) # send time for debug purposes, normally send a float on [0, 1] representing intensity time.sleep(1/self.num_divisions) self.send_com("WAKEUP".encode()) y2 = [] it = int(0); start = len(self.x) - int(float(float(self.wakeup_span) / float(self.duration)) * len(self.x)) print("Start", start) for k in range(len(self.x)): if k < start: print('set 0') y2.append(0) else: print('set val') y2.append(it / self.num_divisions) it = it + 1 self.ax4 = self.ax.twinx() self.ax4.plot(self.x, y2, color = 'red', linestyle = 'dashed', linewidth = 1) self.ax4.set_ylabel('Light Intensity') self.ax4.set_xticks([]) # self.ax2.ylim(0, 1) # plt.figure(figsize = (13.3, 10)) plt.rcParams['figure.figsize'] = [13.3, 10] plt.show() def sim(self, speedup, run_file): # Data points will be read at a rate of 1 * speedup per second predict_begin = False wake_begin = False split_tupple = [] since_last_max = 0 prev_5 = [0, 0, 0, 0, 0] prev_5_avg = 0 prev_5_counter = 0 #sec_elapsed = int(0) intensity = float(0.0) prev_t = 0 cur_t = 0 del_t = 0 if self.do_g == True: #print("Good") #time.sleep(10) self.ax_int = self.ax2.twinx() sim_x = [] sim_y = [] # g1, ax3 = plt.subplots() linez, = self.ax2.plot([],[], color = 'blue', linewidth = 1) line_intensity, = self.ax_int.plot([],[], color = 'red', linestyle = 'dashed', linewidth = 1) self.ax_int.set_ylim([-0.025, 1]) self.ax2.set_autoscaley_on(True) # self.ax_int.set_autoscaley_on(True) # self.ax_int.grid() self.ax2.grid() with open(self.data_file) as reader: data = reader.readlines() wk_start = len(data) - int(float(float(self.wakeup_span) / float(self.duration)) * len(data)) pr_start = wk_start - int(float(float(self.wakeup_span) / float(self.duration)) * len(data)) dur = (len(data) - 2) * 60 t_elapsed = 0 t_wake_sec = len(data) - wk_start - 1 print(wk_start) print(len(data)) elapsed = 0 #intensity = 0 for line in data[1:-1]: time.sleep(1/speedup) split_tupple = line.split(';') split_tupple[1] = split_tupple[1][:-1] elapsed = elapsed + 1 t_elapsed = int(split_tupple[0]) # TODO swap from elapsed to t_elapsed print(split_tupple[1]) #split_tupple[1] = split_tupple[1].split('\n')[0] if self.do_g == True: linez.set_xdata(np.append(linez.get_xdata(), float(t_elapsed))) linez.set_ydata(np.append(linez.get_ydata(), float(split_tupple[1]))) self.fill_bucket(elapsed, float(split_tupple[1])) if (elapsed % 10 == 0): self.fill_bucket_avg(elapsed, self.get_bucket_avg()) self.get_state(self.bk_avg_counter) if (intensity / (len(data)-wk_start-1) <= 0): self.log(self.state + str(intensity / (len(data)-wk_start-1))) self.send_com(str(self.state + str(intensity / (len(data)-wk_start-1))).encode()) if (intensity / (len(data)-wk_start-1) > 0): self.log(self.state + str(100 * (intensity / (len(data)-wk_start-1)))[:6]) self.send_com(str(self.state + str(100 * (intensity / (len(data)-wk_start-1)))[:6]).encode()) if self.do_g == True: line_intensity.set_xdata(np.append(line_intensity.get_xdata(), t_elapsed)) if elapsed >= pr_start: predict_begin = True if predict_begin == True: prev_5_avg = 0 for jj in range(5): prev_5_avg = prev_5_avg + prev_5[jj] prev_5_avg = prev_5_avg / 5 if(prev_5_counter > 4) and (split_tupple[1] > (2 * prev_5_avg)): wake_begin = True predict_begin = False t_wake_sec = float(dur - t_elapsed) prev_5[prev_5_counter % 5] = float(split_tupple[1]) prev_5_coutner = prev_5_counter + 1 if elapsed >= wk_start: predict_begin = False wake_begin = True if wake_begin == True: val = intensity / (len(data) - wk_start - 1) if self.do_g == True: line_intensity.set_ydata(np.append(line_intensity.get_ydata(), (intensity / (len(data) - wk_start - 1)))) print(intensity / (len(data) - wk_start)) intensity = intensity + 1 #self.send_com(str("DEEP " + str(100 * val)).encode()) else: if self.do_g == True: line_intensity.set_ydata(np.append(line_intensity.get_ydata(), 0)) if self.do_g == True: self.ax_int.relim() self.ax_int.autoscale_view() self.ax2.relim() self.ax2.autoscale_view() self.fig.canvas.draw() self.fig.canvas.flush_events() #if elapsed % 20 == 0 and elapsed < wk_start: # self.send_com(str("DEEP 0.0").encode()) #print("Sim") #plt.show() def manage(self, duration_sec, duration_wakeup_minimum, duration_predict): # manage control signals from the ECG feeding to the State Machine while asleep SIZE = 1024 pos = 0 r_lines = [] data = [] tupple = [] maxim = 0 since_last_max = 0 prev_5 = [0, 0, 0, 0, 0] prev_5_avg = 0 prev_5_counter = 0 intensity = float(0.0) sec_elapsed = int(0) prev_t = 0 cur_t = 0 del_t = 0 start_force_wake = duration_sec - duration_wakeup_minimum start_predict_time = start_force_wake - duration_predict trigger = False predict_begin = False wake_begin = False time_wake_sec = float(duration_wakeup_minimum) #self.sock.listen(1) if self.do_g == True: self.ax_int = self.ax2.twinx() linez, = self.ax2.plot([],[], color = 'blue', linewidth = 1) line_intensity, = self.ax_int.plot([],[], color = 'red', linestyle = 'dashed', linewidth = 1) self.ax_int.set_ylim([-0.025, 1]) self.ax2.set_autoscaley_on(True) self.ax2.grid() while True: # Poll Loop trigger = False with open('../AccelData/AccelData.txt') as reader: # with open('Parse_Test/FakeAccel.txt') as reader: # Can swap this and the above line out for the purpose of testing r_lines = reader.readlines() for line in r_lines[pos:]: tupple = self.mdecode(line) print(tupple) data.append(tupple) self.fill_bucket(tupple[0], tupple[1]) prev_t = cur_t cur_t = tupple[0] del_t = int(cur_t - prev_t) # Important: with this line the program depends on an accurate elapsed time in the read file sec_elapsed = tupple[0] # In the first part of the night, search for a maximum to compare against if(tupple[1] > maxim): maxim = tupple[1] since_last_max = 0 else: since_last_max = since_last_max + 1 if (predict_begin == True): prev_5_avg = 0 for jj in range(5): prev_5_avg = prev_5_avg + prev_5[jj] prev_5_avg = prev_5_avg / 5 # This is arbitrary, one might even say Byzantine behavior if (prev_5_counter > 4) and (tupple[1] > (2 * prev_5_avg)): wake_begin = True predict_begin = False time_wake_sec = float(duration_sec - sec_elapsed) prev_5[prev_5_counter % 5] = tupple[1] prev_5_counter = prev_5_counter + 1 # Trigger indicates a probability of wakeup beginning if(tupple[1] > maxim * 0.75): trigger = True # If in wakeup, appropriately increment the intensity and send a message if (wake_begin == True): time.sleep(0.05) # make sure socket has enough time to read msg, then log and send msg on socket if (intensity < time_wake_sec): intensity = intensity + del_t if (intensity > time_wake_sec): intensity = time_wake_sec self.log(self.state + str(100 * (intensity/time_wake_sec))[:6]) self.send_com(str(self.state + str(100 * (intensity/time_wake_sec))[:6]).encode()) if (int(sec_elapsed) >= int(start_predict_time)): predict_begin = True if (int(sec_elapsed) >= int(start_force_wake)): wake_begin = True if (wake_begin == False): # If it's been over 2.5 hours since the last max value and we are over 3/4 through the sleep cycle, check for an early wakeup if (since_last_max >= 600 and sec_elapsed > ((duration_sec * 3) / 4)): # If light sleep and relatively high movement, start the wakeup early if (self.state == "LIGHT " and trigger == True): wake_begin = True time_wake_sec = float(duration_sec - sec_elapsed) print(intensity) print(time_wake_sec) print('---') # Graph stuff if self.do_g == True: linez.set_xdata(np.append(linez.get_xdata(), float(tupple[0]))) linez.set_ydata(np.append(linez.get_ydata(), float(tupple[1]))) line_intensity.set_xdata(np.append(line_intensity.get_xdata(), float(tupple[0]))) line_intensity.set_ydata(np.append(line_intensity.get_ydata(), intensity/time_wake_sec)) self.ax_int.relim() self.ax_int.autoscale_view() self.ax2.relim() self.ax2.autoscale_view() self.fig.canvas.draw() self.fig.canvas.flush_events() if (intensity >= time_wake_sec): return ppos = pos pos = len(r_lines) for jj in range(ppos, pos): if (jj % 10) == 0: self.fill_bucket_avg(jj, self.get_bucket_avg()) self.get_state(self.bk_avg_counter) self.log(self.state + str(100 * (intensity/time_wake_sec))[:6]) self.send_com(str(self.state + str(100 * (intensity/time_wake_sec))[:6]).encode()) time.sleep(0.2) print(wake_begin) print(sec_elapsed) print(start_force_wake) #if (int(sec_elapsed) >= int(start_force_wake)): # wake_begin = True # #if (wake_begin == False): # # If it's been over 2.5 hours since the last max value and we are over 3/4 through the sleep cycle, check for an early wakeup # if (since_last_max >= 600 and sec_elapsed > ((duration_sec * 3) / 4)): # # If light sleep and relatively high movement, start the wakeup early # if (self.state == "LIGHT " and trigger == True): # wake_begin = True # time_wake_sec = float(duration_sec - sec_elapsed) time.sleep(15) # time.sleep(2) # for testing, normally 15 second poll intervals # sec_elapsed = sec_elapsed + 15 if __name__ == '__main__': data_f = None do_g = False do_verbose = False dot_sim = False dot_live = False do_sim = '' g_flag = False use_argv = False sleeper_time = 0 wake_time = 0 pred_time = 0 if (len(sys.argv) <= 1): print("Specify Dataset? (Y/N)") use_ds = str(input()) if use_ds == 'y' or use_ds == 'Y': print("Enter datafile:") df = str(input()) S1 = Sleeper(100, df, "sleep_config.txt") else: S1 = Sleeper(100, "__no__", "sleep_config.txt") print("Enable Graphing (Slow)? (Y/N)") do_g = str(input()) if do_g == 'n' or do_g == 'N': S1.disable_graph() #plt.ioff() else: S1.enable_graph() plt.ion() elif (len(sys.argv) > 1): use_argv = True for jj in sys.argv[1:]: if (jj.strip() == '-h' or jj.strip() == '--h'): print("Usage: <python3 parse_data.py> or <python3 parse_data.py [-h] [-verbose] [-no_g] [-sim OR -live] [-file:<filename>] [-t:<time[s]>] [-p:<time[s]>] [-w:<time[s]>]") if (jj.strip() == '-verbose'): do_verbose = True if (jj.strip() == '-no_g'): g_flag = True if (jj.strip()[0:5] == '-file:'): data_f = jj.strip()[6:] if (jj.strip() == '-sim'): dot_sim = True if (jj.strip() == '-live'): dot_live = True if (jj.strip()[0:2] == '-t'): sleeper_time = int(jj.strip()[3:]) if (jj.strip()[0:2] == '-p'): pred_time = int(jj.strip()[3:]) if (jj.strip()[0:2] == '-w'): wake_time = int(jj.strip()[3:]) print(sleeper_time) print(pred_time) print(wake_time) time.sleep(5) if data_f is not None: S1 = Sleeper(100, data_f, "sleep_config.txt") else: S1 = Sleeper(100, "__no__", "sleep_config.txt") if (g_flag == True): S1.disable_graph() else: S1.enable_graph() plt.ion() clear_logfile(S1.log_file) dset = [] with open('config.txt', 'r') as reader: dset = reader.readline().split(';') if (wake_time > 0 and pred_time > 0): print(dset[3]) print(dset[4]) pred_time = int(dset[3]) wake_time = int(dset[4]) while True: if use_argv == False: print("Run Simulation or Live Transfer? (S/L)") do_sim = str(input()) S1.send_com("DONE 0".encode()) time.sleep(0.25) if do_g != 'n' and do_sim != 'N': S1.graph_baseline() # S1.simple # S1.manage S1.log(str("DONE 0")) if do_sim == 'y' or do_sim == 'Y' or do_sim == 's' or do_sim == 'S' or dot_sim == True: S1.sim(10000, "datasets/hrv_fake_4.txt") S1.send_com(str(S1.state + "100.0").encode()) S1.log(str(S1.state + "100.0")) time.sleep(0.25) S1.send_com("DONE 100.0".encode()) S1.log("DONE 100.0") elif do_sim == 'n' or do_sim == 'N' or do_sim == 'l' or do_sim == 'L' or dot_live == True: if use_argv == False: print("Enter duration of sleep in seconds:") sleep_time = int(input()) print("Enter minimum duration of wakeup in seconds:") wake_time = int(input()) S1.manage(sleeper_time, wake_time, pred_time) S1.send_com(str(S1.state + "100.0").encode()) S1.log(str(S1.state + "100.0")) time.sleep(0.25) S1.send_com("DONE 100.0".encode()) S1.log("DONE 100.0") input()
null
StateMachine/parse_data.py
parse_data.py
py
26,924
python
en
code
null
code-starcoder2
83
[ { "api_name": "matplotlib.pyplot.ion", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 21, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 31, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 31, "usage_type": "attribute" }, { "api_name": "socket.socket", "line_number": 52, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 52, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 52, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 118, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 118, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.gcf", "line_number": 201, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 201, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 202, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 202, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 204, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 204, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 205, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 205, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 230, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 230, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 231, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 231, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 235, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 235, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 240, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 240, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 246, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 246, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 247, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 268, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 268, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 269, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 269, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 324, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 336, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 337, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 352, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 378, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 384, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 484, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 513, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 514, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 515, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 516, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 536, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 553, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 573, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.ion", "line_number": 590, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 590, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 591, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 593, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 616, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.ion", "line_number": 627, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 627, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 649, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 660, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 675, "usage_type": "call" } ]
320262697
import matplotlib.pyplot as plt import torch from IPython import display import numpy as np import random num_inputs = 2 num_examples = 1000 true_w = [2, -3.4] true_b = 4.2 features = torch.randn(num_examples, num_inputs, dtype=torch.float32) labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float32) # print(features) # 所有行的第一个列,index = 0 # print(features[:, 0]) # 第一行 # print(features[0]) def use_svg_display(): display.set_matplotlib_formats('svg') def set_figsize(figsize=(5, 5)): use_svg_display() plt.rcParams['figure.figsize'] = figsize set_figsize() plt.scatter(features[:, 1].numpy(), labels.numpy(), 1) # plt.show() # 每次返回batch_size(批量大小)个随机样本的特征和标签。 def data_iter(batch_size, features, labels): num_examples = len(features) # 创建一个从0到num_examples的数组,用来做下标 indices = list(range(num_examples)) random.shuffle(indices) print(indices) for i in range(0, num_examples, batch_size): j = torch.LongTensor(indices[i:min(i + batch_size, num_examples)]) # 返回第0维度,即以行为索引,下标为j的数据,如 第j = torch.tensor[0,1] ,就是返回第一行,第二行的数据 yield features.index_select(0, j), labels.index_select(0, j) batch_size = 5 for X, y in data_iter(batch_size, features, labels): print(X, y) # 权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0。 # np.random.normal()的意思是一个正态分布,normal这里是正态的意思。一个例子:numpy.random.normal(loc=0,scale=1e-2,size=shape) ,意义如下: # 参数loc(float):正态分布的均值,对应着这个分布的中心。loc=0说明这一个以Y轴为对称轴的正态分布, # 参数scale(float):正态分布的标准差,对应分布的宽度,scale越大,正态分布的曲线越矮胖,scale越小,曲线越高瘦。 # 参数size(int 或者整数元组):输出的值赋在shape里,默认为None。 w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32) b = torch.zeros(1, dtype=torch.float32) w.requires_grad_(requires_grad=True) b.requires_grad_(requires_grad=True) # 定义模型 def linreg(X, w, b): return torch.mm(X, w) + b # 定义损失函数 def squared_loss(y_hat, y): return (y_hat - y.view(y_hat.size())) ** 2 / 2 # 定义优化算法 def sgd(params, lr, batch_size): for param in params: param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data lr = 0.03 num_epochs = 3 net = linreg loss = squared_loss for epoch in range(num_epochs): for X,y in data_iter(batch_size,features,labels): l = loss(net(X,w,b),y).sum()# l是有关小批量X和y的损失 l.backward()# 小批量的损失对模型参数求梯度 sgd([w,b],lr,batch_size)# 使用小批量随机梯度下降迭代模型参数 w.grad.data.zero_() b.grad.data.zero_() train_l = loss(net(features,w,b),labels) print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))
null
Coding/Chapter03.py
Chapter03.py
py
3,258
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.randn", "line_number": 12, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 13, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.random.normal", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 15, "usage_type": "attribute" }, { "api_name": "torch.float32", "line_number": 15, "usage_type": "attribute" }, { "api_name": "IPython.display.set_matplotlib_formats", "line_number": 26, "usage_type": "call" }, { "api_name": "IPython.display", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 31, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "random.shuffle", "line_number": 45, "usage_type": "call" }, { "api_name": "torch.LongTensor", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.random.normal", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 62, "usage_type": "attribute" }, { "api_name": "torch.float32", "line_number": 62, "usage_type": "attribute" }, { "api_name": "torch.zeros", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 63, "usage_type": "attribute" }, { "api_name": "torch.mm", "line_number": 70, "usage_type": "call" } ]
629404196
# Copyright (c) LinkedIn Corporation. All rights reserved. Licensed under the BSD-2 Clause license. # See LICENSE in the project root for license information. from urllib import unquote from falcon import HTTP_201, HTTPError, HTTPBadRequest from ujson import dumps as json_dumps from ...utils import load_json_body from ...auth import login_required, check_team_auth from ... import db HOUR = 60 * 60 WEEK = 24 * HOUR * 7 simple_ev_lengths = set([WEEK, 2 * WEEK]) simple_12hr_num_events = set([7, 14]) columns = { 'id': '`schedule`.`id` as `id`', 'roster': '`roster`.`name` as `roster`, `roster`.`id` AS `roster_id`', 'auto_populate_threshold': '`schedule`.`auto_populate_threshold` as `auto_populate_threshold`', 'role': '`role`.`name` as `role`, `role`.`id` AS `role_id`', 'team': '`team`.`name` as `team`, `team`.`id` AS `team_id`', 'events': '`schedule_event`.`start`, `schedule_event`.`duration`, `schedule`.`id` AS `schedule_id`', 'advanced_mode': '`schedule`.`advanced_mode` AS `advanced_mode`', 'timezone': '`team`.`scheduling_timezone` AS `timezone`' } all_columns = columns.keys() constraints = { 'id': '`schedule`.`id` = %s', 'id__eq': '`schedule`.`id` = %s', 'id__ge': '`schedule`.`id` >= %s', 'id__gt': '`schedule`.`id` > %s', 'id__le': '`schedule`.`id` <= %s', 'id__lt': '`schedule`.`id` < %s', 'id__ne': '`schedule`.`id` != %s', 'name': '`roster`.`name` = %s', 'name__contains': '`roster`.`name` LIKE CONCAT("%%", %s, "%%")', 'name__endswith': '`roster`.`name` LIKE CONCAT("%%", %s)', 'name__eq': '`roster`.`name` = %s', 'name__startswith': '`roster`.`name` LIKE CONCAT(%s, "%%")', 'role': '`role`.`name` = %s', 'role__contains': '`role`.`name` LIKE CONCAT("%%", %s, "%%")', 'role__endswith': '`role`.`name` LIKE CONCAT("%%", %s)', 'role__eq': '`role`.`name` = %s', 'role__startswith': '`role`.`name` LIKE CONCAT(%s, "%%")', 'team': '`team`.`name` = %s', 'team__contains': '`team`.`name` LIKE CONCAT("%%", %s, "%%")', 'team__endswith': '`team`.`name` LIKE CONCAT("%%", %s)', 'team__eq': '`team`.`name` = %s', 'team__startswith': '`team`.`name` LIKE CONCAT(%s, "%%")', 'team_id': '`schedule`.`team_id` = %s', 'roster_id': '`schedule`.`roster_id` = %s' } def validate_simple_schedule(events): ''' Return boolean whether a schedule can be represented in simple mode. Simple schedules can have: 1. One event that is one week long 2. One event that is two weeks long 3. Seven events that are 12 hours long 4. Fourteen events that are 12 hours long ''' if len(events) == 1 and events[0]['duration'] in simple_ev_lengths: return True else: return len(events) in simple_12hr_num_events and all([ev['duration'] == 12 * HOUR for ev in events]) def get_schedules(filter_params, dbinfo=None, fields=None): """ Get schedule data for a request """ events = False from_clause = ['`schedule`'] if fields is None: fields = columns.keys() if any(f not in columns for f in fields): raise HTTPBadRequest('Bad fields', 'One or more invalid fields') if 'roster' in fields: from_clause.append('JOIN `roster` ON `roster`.`id` = `schedule`.`roster_id`') if 'team' in fields or 'timezone' in fields: from_clause.append('JOIN `team` ON `team`.`id` = `schedule`.`team_id`') if 'role' in fields: from_clause.append('JOIN `role` ON `role`.`id` = `schedule`.`role_id`') if 'events' in fields: from_clause.append('LEFT JOIN `schedule_event` ON `schedule_event`.`schedule_id` = `schedule`.`id`') events = True fields = map(columns.__getitem__, fields) cols = ', '.join(fields) from_clause = ' '.join(from_clause) connection_opened = False if dbinfo is None: connection = db.connect() connection_opened = True cursor = connection.cursor(db.DictCursor) else: connection, cursor = dbinfo where = ' AND '.join(constraints[key] % connection.escape(value) for key, value in filter_params.iteritems() if key in constraints) query = 'SELECT %s FROM %s' % (cols, from_clause) if where: query = '%s WHERE %s' % (query, where) cursor.execute(query) data = cursor.fetchall() if connection_opened: cursor.close() connection.close() # Format schedule events if events: # end result accumulator ret = {} for row in data: schedule_id = row.pop('schedule_id') # add data row into accumulator only if not already there if schedule_id not in ret: ret[schedule_id] = row ret[schedule_id]['events'] = [] start = row.pop('start') duration = row.pop('duration') ret[schedule_id]['events'].append({'start': start, 'duration': duration}) data = ret.values() return data def insert_schedule_events(schedule_id, events, cursor): insert_events = '''INSERT INTO `schedule_event` (`schedule_id`, `start`, `duration`) VALUES (%(schedule)s, %(start)s, %(duration)s)''' # Merge consecutive events for db storage raw_events = sorted(events, key=lambda e: e['start']) new_events = [] for e in raw_events: if len(new_events) > 0 and e['start'] == new_events[-1]['start'] + new_events[-1]['duration']: new_events[-1]['duration'] += e['duration'] else: new_events.append(e) for e in new_events: e['schedule'] = schedule_id cursor.executemany(insert_events, new_events) def on_get(req, resp, team, roster): team = unquote(team) roster = unquote(roster) fields = req.get_param_as_list('fields') if not fields: fields = all_columns params = req.params params['team'] = team params['roster'] = roster data = get_schedules(params, fields=fields) resp.body = json_dumps(data) required_params = frozenset(['events', 'role', 'advanced_mode']) @login_required def on_post(req, resp, team, roster): ''' See below for sample JSON requests. Weekly 7*24 shift that starts at Monday 6PM PST: .. code-block:: javascript { 'role': 'primary' 'auto_populate_threshold': 21, 'events':[ {'start': SECONDS_IN_A_DAY + 18 * SECONDS_IN_AN_HOUR, 'duration': SECONDS_IN_A_WEEK} ], 'advanced_mode': 0 } Weekly 7*12 shift that starts at Monday 8AM PST: .. code-block:: javascript { 'role': 'oncall', 'events':[ {'start': SECONDS_IN_A_DAY + 8 * SECONDS_IN_AN_HOUR, 'duration': 12 * SECONDS_IN_AN_HOUR}, {'start': 2 * SECONDS_IN_A_DAY + 8 * SECONDS_IN_AN_HOUR, 'duration': 12 * SECONDS_IN_AN_HOUR} ... *5 more* ], 'advanced_mode': 1 } ''' data = load_json_body(req) data['team'] = unquote(team) data['roster'] = unquote(roster) check_team_auth(data['team'], req) missing_params = required_params - set(data.keys()) if missing_params: raise HTTPBadRequest('invalid schedule', 'missing required parameters: %s' % ', '.join(missing_params)) schedule_events = data.pop('events') for sev in schedule_events: if 'start' not in sev or 'duration' not in sev: raise HTTPBadRequest('invalid schedule', 'schedule event requires both start and duration fields') if 'auto_populate_threshold' not in data: # default to autopopulate 3 weeks forward data['auto_populate_threshold'] = 21 if not data['advanced_mode']: if not validate_simple_schedule(schedule_events): raise HTTPBadRequest('invalid schedule', 'invalid advanced mode setting') insert_schedule = '''INSERT INTO `schedule` (`roster_id`,`team_id`,`role_id`, `auto_populate_threshold`, `advanced_mode`) VALUES ((SELECT `roster`.`id` FROM `roster` JOIN `team` ON `roster`.`team_id` = `team`.`id` WHERE `roster`.`name` = %(roster)s AND `team`.`name` = %(team)s), (SELECT `id` FROM `team` WHERE `name` = %(team)s), (SELECT `id` FROM `role` WHERE `name` = %(role)s), %(auto_populate_threshold)s, %(advanced_mode)s)''' connection = db.connect() cursor = connection.cursor(db.DictCursor) try: cursor.execute(insert_schedule, data) schedule_id = cursor.lastrowid insert_schedule_events(schedule_id, schedule_events, cursor) except db.IntegrityError as e: err_msg = str(e.args[1]) if err_msg == 'Column \'roster_id\' cannot be null': err_msg = 'roster "%s" not found' % roster raise HTTPError('422 Unprocessable Entity', 'IntegrityError', err_msg) connection.commit() cursor.close() connection.close() resp.status = HTTP_201 resp.body = json_dumps({'id': schedule_id})
null
src/oncall/api/v0/schedules.py
schedules.py
py
9,398
python
en
code
null
code-starcoder2
83
[ { "api_name": "falcon.HTTPBadRequest", "line_number": 82, "usage_type": "call" }, { "api_name": "urllib.unquote", "line_number": 152, "usage_type": "call" }, { "api_name": "urllib.unquote", "line_number": 153, "usage_type": "call" }, { "api_name": "ujson.dumps", "line_number": 163, "usage_type": "call" }, { "api_name": "utils.load_json_body", "line_number": 203, "usage_type": "call" }, { "api_name": "urllib.unquote", "line_number": 204, "usage_type": "call" }, { "api_name": "urllib.unquote", "line_number": 205, "usage_type": "call" }, { "api_name": "auth.check_team_auth", "line_number": 206, "usage_type": "call" }, { "api_name": "falcon.HTTPBadRequest", "line_number": 210, "usage_type": "call" }, { "api_name": "falcon.HTTPBadRequest", "line_number": 216, "usage_type": "call" }, { "api_name": "falcon.HTTPBadRequest", "line_number": 225, "usage_type": "call" }, { "api_name": "falcon.HTTPError", "line_number": 246, "usage_type": "call" }, { "api_name": "falcon.HTTP_201", "line_number": 252, "usage_type": "name" }, { "api_name": "ujson.dumps", "line_number": 253, "usage_type": "call" }, { "api_name": "auth.login_required", "line_number": 169, "usage_type": "name" } ]
254119100
import json import os products = [] with open("scans.json", "r") as f: data = json.load(f) for e in data: id = e['id'] name = e['name'] type = e['type'] t = str(e["timestamp"]) l = e["location"] l = [str(i) for i in l] l = ' '.join(l) found = False for p in products: if p[0] == id: p[3].append(t+" "+l) found = True break if not found: products.append( [id, name, type, [t+" "+l]] ) os.chdir("Packages") for i in products: name = i[0] with open(name+".pac", "w") as f: for j in i[:3]: print(j, file=f) for j in i[3]: print(j, file=f)
null
out/production/resources/pathfinder.py
pathfinder.py
py
778
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.load", "line_number": 6, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 26, "usage_type": "call" } ]
329737460
import xlsxwriter def main(): workbook = xlsxwriter.Workbook('dados_gRPC.xlsx') worksheet = workbook.add_worksheet() arq = open('tempos_gRPC.txt', 'r') texto = arq.readlines() inicializaWorksheet(texto, worksheet) row = 0 col = 0 for linha in texto : if(row%21 == 0): row = 0 col = col + 1 worksheet.write(row, col, linha.split(' ')[1].replace("\n", "").replace(".", ",")) row += 1 arq.close() def inicializaWorksheet(texto, worksheet): col = 0 row = 0 for linha in texto: worksheet.write(row, col, linha.split(' ')[0]) row += 1 if(row == 21): break if __name__ == "__main__": main()
null
escrevePlanilha.py
escrevePlanilha.py
py
771
python
en
code
null
code-starcoder2
83
[ { "api_name": "xlsxwriter.Workbook", "line_number": 5, "usage_type": "call" } ]
163006824
__author__ = 'damienpuig' from setuptools import setup setup(name='damienpuig', version='0.1', description='The funniest joke', url='http://github.com/damienpuig/library_test', author='Damien PUIG', author_email='[email protected]', license='MIT', packages=['damienpuig'], install_requires=[ 'termcolor' ], zip_safe=False)
null
pypi_install_script/damienpuig-0.1.tar/setup.py
setup.py
py
399
python
en
code
null
code-starcoder2
83
[ { "api_name": "setuptools.setup", "line_number": 5, "usage_type": "call" } ]
276380495
# Copyright (C) 2008-2015 Ruben Decrop # Copyright (C) 2015-2016 Chessdevil Consulting import io import sys import urllib.request import zipfile from reddevil.models import rdr from bjk2016.models import init_db fidetitle = { '': 0, 'WCM': 1, 'WFM': 2, 'CM': 3, 'FM': 4, 'WIM': 5, 'WGM': 6, 'IM': 7, 'GM': 8 } def fetchfide(): """ fetches the curretn fide list :return: None """ print('fetching fide player list') url = 'http://ratings.fide.com/download/players_list.zip' try: f = urllib.request.urlopen(url) except urllib.request.URLError: print('Cannot open url %s', url) sys.exit(1) fdata = f.read() f.close() fs1 = io.BytesIO(fdata) zipfile_fide(fs1) def zipfile_fide(fs1): """ reads the ratinglist zipfile, decrompress it and store all active players in the fideplayer collection :param fs1: filename (or file stream) of the zipfile :return: None """ # read the zipfile in pldata and convert it to a byte stream print('decompressing zip file and inserting players') zf = zipfile.ZipFile(fs1, mode='r') plist = zf.open(zf.namelist()[0]) # read first file in zipfile plist.readline() # skip header line # Read all the players # recreate the collection col = rdr.db['fideplayer'] col.remove() col.ensure_index('id_fide') i = 0 # read every dbase record for row in plist: line = row.decode('utf-8') p = dict() p['id_fide'] = line[0:15].strip() nfn = line[15:76].split(',') p['name'] = nfn[0].strip() p['firstname'] = nfn[1].strip() if len(nfn) == 2 else '' p['fidenation'] = line[76:79] p['gender'] = line[80] p['chesstitle'] = fidetitle.get(line[84:89].strip(), 0) i += 1 p['fiderating'] = int(line[113:117].strip() or 0) col.insert(p) i += 1 zf.close() print('{0:d} players created to fideplayer'.format(i)) if __name__ == '__main__': init_db() fetchfide()
null
bjk2016/scripts/fideplayer.py
fideplayer.py
py
2,043
python
en
code
null
code-starcoder2
83
[ { "api_name": "urllib.request.request.urlopen", "line_number": 25, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 25, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 25, "usage_type": "name" }, { "api_name": "urllib.request.request", "line_number": 26, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 26, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 28, "usage_type": "call" }, { "api_name": "io.BytesIO", "line_number": 31, "usage_type": "call" }, { "api_name": "zipfile.ZipFile", "line_number": 44, "usage_type": "call" }, { "api_name": "reddevil.models.rdr.db", "line_number": 49, "usage_type": "attribute" }, { "api_name": "reddevil.models.rdr", "line_number": 49, "usage_type": "name" }, { "api_name": "bjk2016.models.init_db", "line_number": 73, "usage_type": "call" } ]
503809346
# What should be take care of here: # - Security # - Transaction control # - Audit. # - Customization # - Model intelligence # - Logging LOGAUDIT = False import medhist.models as md import medhist.session as ss from django.db import transaction as trc import datetime as dt current_audit = None class Audit(): def __init__(self,operation,description): self.operation = operation self.description = description def save(self,event,error = None): if LOGAUDIT: if ss.current_session: print("AUDIT:[{}][{}]{}:{}:{}".format( ss.current_session.schema, ss.current_session.user, self.operation, self.description, event)) else: print("AUDIT:{}:{}:{}".format(self.operation,self.description,event)) if error: print(error) def __enter__(self): global current_audit if not current_audit: current_audit = self self.save('START') return self else: return None def __exit__(self, type, value, tb): global current_audit if current_audit == self: if tb is None: self.save('END') else: self.save('ERROR',(type,value)) import traceback traceback.print_exc() current_audit = None BHV_Classes = {} class baseBHV(): model = None # # NON BHV SPECIFIC METHODS @classmethod def noun(cls): return cls.model._meta.verbose_name @classmethod def nouns(cls): return cls.model._meta.verbose_name_plural @classmethod def security(cls,bhv,args,context): method_name = '{0}_{1}'.format(bhv,'security') if hasattr(cls,method_name): getattr(cls,method_name)(args,context) @classmethod def pre_hook(cls,bhv,args,context): method_name = '{0}_{1}'.format(bhv,'pre_hook') if hasattr(cls,method_name): getattr(cls,method_name)(args,context) @classmethod def post_hook(cls,bhv,args,context): method_name = '{0}_{1}'.format(bhv,'post_hook') if hasattr(cls,method_name): getattr(cls,method_name)(args,context) # # BHV ADD @classmethod @trc.atomic def add(cls,template): bhv = 'add' with Audit('{0} {1}'.format(bhv,cls.noun()),''): context = {} cls.security(bhv,template,context=context) # pre_hook is meant to work for customizations cls.pre_hook(bhv,template,context=context) # The one that actualy does something cls.add_do(template,context=context) # post_hook is meant to work for customizations cls.post_hook(bhv,template,context=context) return context['added_object'] @classmethod def add_do(cls,template,context): if issubclass(cls.model,md.SchemaModel): obj = cls.model(schema = ss.current_schema(),**template) else: obj = cls.model(**template) obj.save() context['added_object'] = obj # # BHV EDIT @classmethod @trc.atomic def update(cls,id,template): bhv = 'update' with Audit('{0} {1}'.format(bhv,cls.noun()),''): context = {'id' : id} cls.security(bhv,template,context=context) context['updated_object'] = cls.model.objects.get(pk=id) # pre_hook is meant to work for customizations cls.pre_hook(bhv,template,context=context) # The one that actualy does something cls.update_do(template,context=context) # post_hook is meant to work for customizations cls.post_hook(bhv,template,context=context) return context['updated_object'] @classmethod def update_do(cls,template,context): obj = context['updated_object'] for att,val in template.items(): setattr(obj,att,val) obj.save() # # BHV QUERY @classmethod def query(cls,args,kwargs): bhv = 'query' with Audit('{0} {1}'.format(bhv,cls.noun()),''): context = {} cls.security(bhv,(args,kwargs),context=context) # pre_hook is meant to work for customizations cls.query_pre_hook(bhv,args,kwargs,context=context) # The one that actualy does something cls.query_do(args,kwargs,context=context) # post_hook is meant to work for customizations cls.query_post_hook(bhv,args,kwargs,context=context) return context['result'] @classmethod def query_do(cls,args,kwargs,context): if issubclass(cls.model,md.SchemaModel): schkwargs = kwargs.copy() schkwargs['schema'] = ss.current_schema() else: schkwargs = kwargs if not args and not schkwargs: context['result'] = cls.model.objects.all() else: context['result'] = cls.model.objects.filter(*args,**schkwargs) @classmethod def query_pre_hook(cls,bhv,args,kwargs,context): pass @classmethod def query_post_hook(cls,bhv,args,kwargs,context): pass # # BHV QUERY @classmethod def query(cls,args,kwargs): bhv = 'query' with Audit('{0} {1}'.format(bhv,cls.noun()),''): context = {} cls.security(bhv,(args,kwargs),context=context) # pre_hook is meant to work for customizations cls.query_pre_hook(bhv,args,kwargs,context=context) # The one that actualy does something cls.query_do(args,kwargs,context=context) # post_hook is meant to work for customizations cls.query_post_hook(bhv,args,kwargs,context=context) return context['result'] # # BHV GET @classmethod def get_do(cls,args,kwargs,context): if issubclass(cls.model,md.SchemaModel): skwargs = kwargs.copy() skwargs["schema"] = ss.current_schema() else: skwargs = kwargs if not args and not skwargs: raise RuntimeError("get must have filter") else: context['result'] = cls.model.objects.get(*args,**skwargs) @classmethod def get(cls,**kwargs): with Audit('{0} {1}'.format("get",cls.noun()),''): context = {} cls.security("query",([],kwargs),context=context) # pre_hook is meant to work for customizations cls.query_pre_hook("query",args,kwargs,context=context) # The one that actualy does something cls.get_do(args,kwargs,context=context) # post_hook is meant to work for customizations cls.query_post_hook("query",args,kwargs,context=context) return context['result'] class DoctorAPI(baseBHV): model = md.Doctor BHV_Classes['Doctor'] = DoctorAPI class PatientAPI(baseBHV): model = md.Patient BHV_Classes['Patient'] = PatientAPI class InsurerAPI(baseBHV): model = md.Insurer BHV_Classes['Insurer'] = InsurerAPI class ProcedureAPI(baseBHV): model = md.Procedure BHV_Classes['Procedure'] = ProcedureAPI class MedicineAPI(baseBHV): model = md.Medicine BHV_Classes['Medicine'] = MedicineAPI class StateAPI(baseBHV): model = md.State BHV_Classes['State'] = StateAPI class CityAPI(baseBHV): model = md.City BHV_Classes['City'] = CityAPI # # BHV functions # def add(object_name,template): return BHV_Classes[object_name].add(template) def query(object_name,*args,**kwargs): return BHV_Classes[object_name].query(args,kwargs) def update(object_name,id,template): return BHV_Classes[object_name].update(id,template)
null
medsoft_proj/medhist/modelapi.py
modelapi.py
py
8,081
python
en
code
null
code-starcoder2
83
[ { "api_name": "medhist.session.current_session", "line_number": 28, "usage_type": "attribute" }, { "api_name": "medhist.session", "line_number": 28, "usage_type": "name" }, { "api_name": "medhist.session.current_session", "line_number": 30, "usage_type": "attribute" }, { "api_name": "medhist.session", "line_number": 30, "usage_type": "name" }, { "api_name": "medhist.session.current_session", "line_number": 31, "usage_type": "attribute" }, { "api_name": "medhist.session", "line_number": 31, "usage_type": "name" }, { "api_name": "traceback.print_exc", "line_number": 57, "usage_type": "call" }, { "api_name": "django.db.transaction.atomic", "line_number": 97, "usage_type": "attribute" }, { "api_name": "django.db.transaction", "line_number": 97, "usage_type": "name" }, { "api_name": "medhist.models.SchemaModel", "line_number": 113, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 113, "usage_type": "name" }, { "api_name": "medhist.session.current_schema", "line_number": 114, "usage_type": "call" }, { "api_name": "medhist.session", "line_number": 114, "usage_type": "name" }, { "api_name": "django.db.transaction.atomic", "line_number": 123, "usage_type": "attribute" }, { "api_name": "django.db.transaction", "line_number": 123, "usage_type": "name" }, { "api_name": "medhist.models.SchemaModel", "line_number": 163, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 163, "usage_type": "name" }, { "api_name": "medhist.session.current_schema", "line_number": 165, "usage_type": "call" }, { "api_name": "medhist.session", "line_number": 165, "usage_type": "name" }, { "api_name": "medhist.models.SchemaModel", "line_number": 201, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 201, "usage_type": "name" }, { "api_name": "medhist.session.current_schema", "line_number": 203, "usage_type": "call" }, { "api_name": "medhist.session", "line_number": 203, "usage_type": "name" }, { "api_name": "medhist.models.Doctor", "line_number": 226, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 226, "usage_type": "name" }, { "api_name": "medhist.models.Patient", "line_number": 230, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 230, "usage_type": "name" }, { "api_name": "medhist.models.Insurer", "line_number": 234, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 234, "usage_type": "name" }, { "api_name": "medhist.models.Procedure", "line_number": 238, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 238, "usage_type": "name" }, { "api_name": "medhist.models.Medicine", "line_number": 242, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 242, "usage_type": "name" }, { "api_name": "medhist.models.State", "line_number": 246, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 246, "usage_type": "name" }, { "api_name": "medhist.models.City", "line_number": 250, "usage_type": "attribute" }, { "api_name": "medhist.models", "line_number": 250, "usage_type": "name" } ]
83444363
#!/usr/bin/env python3 # encoding: utf-8 import argparse import errno import os import re import requests import sys from timeit import default_timer as timer import urllib class Subreddit: """ Scrapes a subreddit and downloads the .jpg and .png images. Attributes: subreddit (str) : the subreddit to scrape. type_sort (str) : a sort of the subreddit (default ''). url (str) : the url of the subreddit. image_links (set) : the .jpg and .png links to images. Methods: __init__ : initializes class Subreddit. __repr__ : returns a string of the image_links. _get_image_links : scrapes a subreddit for .jpg and .png images. download_images : downloads a subreddit's .jpg and .png images. _is_image_sub : determines if a subreddit is an image sub. Examples: >>> foo = Subreddit("bar") >>> foo.download_images() >>> foo = Subreddit("bar", "baz") >>> foo.download_images() >>> foo = Subreddit("bar", type_sort="baz") >>> foo.download_images() """ def __init__(self, subreddit, type_sort=''): """ Initializes Subreddit. Args: subreddit (str) : a subreddit to scrape. type_sort (str) : a subreddit sort (default ''). Returns: SEE: _get_image_links() """ self.subreddit = subreddit NON_TIME_OPTION = ("hot", "new", "rising") TIME_OPTION = ("top", "controversial") # Reddit's default subreddit sort is "hot" if not type_sort: self.url = f"https://reddit.com/r/{subreddit}" # Subreddit sorts that do not allow for time sort # (i.e., past 24 hours, past week, past month, past year, all-time) elif type_sort in NON_TIME_OPTION: self.url = f"https://reddit.com/r/{subreddit}/{type_sort}" elif type_sort in TIME_OPTION: # All-time sort instead of past 24 hours, week, month, or year self.url = f"https://reddit.com/r/{subreddit}/{type_sort}/?t=all" else: print("Not a valid type sort...\n" \ "Reverting to default Reddit sort...") self.url = f"https://reddit.com/r/{subreddit}" self._get_image_links() def __repr__(self): return str(self.image_links) def _get_image_links(self): """ Scrapes a subreddit for its .jpg and .png url links. Returns: A set of image links if len(set) >= 5 else an empty set. """ resp = requests.get(self.url, headers={"User-Agent": "Piccit"}) # Could use BeautifulSoup to parse, but regex is faster. string_pattern = "http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|"\ "(?:%[0-9a-fA-F][0-9a-fA-F]))+" retrieved_links = re.findall(string_pattern, resp.text) # Make sure only image files are downloaded (else, some random mp3 # and other file formats because of ads will download). # Using set() instead of [] or list() removes need to handle any # duplicate links. self.image_links = set(link for link in retrieved_links if len(link) <= 40 # longest links are about 35 and ("i.redd" in link or "imgur" in link) and (".jpg" in link or ".png" in link)) if self._is_image_sub(): return self.image_links else: print(f"{self.subreddit} is either not primarily an image " \ "subreddit or it may not exist.") return set() def download_images(self): """ Downloads a subreddit's .jpg and .png images. Returns: None """ if not self.image_links: return images_processed = 0 start = timer() if len(self.image_links) > 0: Directory.create_directory(self) for link in self.image_links: url = urllib.parse.urlparse(link) file_name = os.path.basename(url.path) save_directory = Directory.get_current_directory(self) complete_name = os.path.join(save_directory, file_name) with open(complete_name, "wb") as file: response = requests.get(link) file.write(response.content) images_processed += 1 _progress_bar(images_processed, len(self.image_links)) end = timer() # new line so the finished download message is not on the same line # as the progress bar print(f"\nDownload complete. {images_processed} images downloaded." \ f"\nDownload time: {end-start : .3f} seconds.") def _is_image_sub(self): """ Checks if a subreddit has 5 or more .jpg and .png images. Subreddits that require age verification, subreddits that are quaranteed or banned, and subreddits that do not exist count as a non image subreddit. Returns: A bool for image_links <= 5. """ return len(self.image_links) >= 5 class Directory: """ Handles directory logic. Methods: create_directory : create a directory if it does not exist. get_current_directory : return the current working directory. Examples: >>> Directory.create_directory() >>> current_directory = Directory.get_current_directory() """ def create_directory(self): """ Creates a directory "PiccitPhotos" in the ~/Pictures directory. Raises: OSError: If the path does not exist. Returns: Directory if directory exists else None. """ try: os.chdir("./Pictures") except OSError as e: if e.errno != e.errno.EEXIST: sys.exit(e) directory = "PiccitPhotos" try: if not os.path.isdir(directory): os.mkdir(directory) os.chdir(directory) else: os.chdir(directory) return directory except OSError as e: if e.errno != e.errno.EEXIST: sys.exit(e) def get_current_directory(self): """ Gets the current working directory. Returns: The current working directory. """ return os.getcwd() class Formatter(argparse.ArgumentDefaultsHelpFormatter, argparse.RawDescriptionHelpFormatter): pass def _progress_bar(start, end, bar_length=25): """ Outputs the progress of the download to the console. Args: start (int) : current number of downloaded photos end (int) : total number of photos to be downloaded bar_length (int) : length of bar displayed on the console (default 25) Raises: ValueError: if start is greater than end Returns: None """ if int(start) > int(end): raise ValueError("start must be less than or equal to end") percent = float(start / end) fill = "\u2588" * int(round(percent * bar_length)) # full block: █ space = " " * (bar_length - len(fill)) progress = fill + space percent_complete = int(round(percent*100)) sys.stdout.write(f"\rProgress: |{progress}| {percent}") sys.stdout.flush() def main(): """Handles the command line logic.""" description_message = "download .jpg and .png images on the " \ "subreddit's first page" usage_message = "piccit.py subreddit_name [-h] [-t type_sort]" parser = argparse.ArgumentParser(description=description_message, usage=usage_message, formatter_class=Formatter) parser.add_argument("subreddit_name", type=str, help="a subreddit to scrape") type_sort_help_message = "sort of subreddit with options: hot, new, " \ "rising, top, controversial" parser.add_argument("-t", "--type_sort", type=str, default="hot", help=type_sort_help_message) args = parser.parse_args() subreddit_images = Subreddit(args.subreddit_name, args.type_sort) subreddit_images.download_images() sys.exit(0) if __name__ == '__main__': main()
null
src/piccit.py
piccit.py
py
8,538
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.get", "line_number": 90, "usage_type": "call" }, { "api_name": "re.findall", "line_number": 95, "usage_type": "call" }, { "api_name": "timeit.default_timer", "line_number": 126, "usage_type": "call" }, { "api_name": "urllib.parse.urlparse", "line_number": 132, "usage_type": "call" }, { "api_name": "urllib.parse", "line_number": 132, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 133, "usage_type": "call" }, { "api_name": "os.path", "line_number": 133, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 135, "usage_type": "call" }, { "api_name": "os.path", "line_number": 135, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 138, "usage_type": "call" }, { "api_name": "timeit.default_timer", "line_number": 144, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 191, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 194, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 199, "usage_type": "call" }, { "api_name": "os.path", "line_number": 199, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 200, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 201, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 203, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 207, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 217, "usage_type": "call" }, { "api_name": "argparse.ArgumentDefaultsHelpFormatter", "line_number": 220, "usage_type": "attribute" }, { "api_name": "argparse.RawDescriptionHelpFormatter", "line_number": 221, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 250, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 250, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 251, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 251, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 259, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 279, "usage_type": "call" } ]
409823890
# -*- encoding: utf-8 -*- # Especificamos que nuestro archivo .py está codificado en UTF-8 #!/usr/bin/python """ Plataforma de experimentacion SERGIO DE LA CRUZ GUTIERREZ ALGORITMO MARTINELLI Parametros: Succion motor (50-100) Duracion de la experimentacion (en muestras) Tiempo de apertura de cada válvula (en segundos) Sentencia de ejecucion: tgs2600martinelli.py succion muestras switch """ ## Declaracion de librerias a utilizar. import Adafruit_BBIO.ADC as ADC import Adafruit_BBIO.GPIO as GPIO import Adafruit_BBIO.PWM as PWM import Adafruit_DHT import sys import os import time import math import random import numpy from scipy import stats from datetime import datetime, date import _thread ## ASIGNACION DE PUERTOS. electrovalve1 = 'P8_10' #Electrovalvula 1 (METANOL) electrovalve2 = 'P8_12' #Electrovalvula 2 (ETANOL) electrovalve3 = 'P8_14' #Electrovalvula 3 (BUTANOL) electrovalve4 = 'P8_16' #Electrovalvula 4 (AIRE) motorPin = 'P9_21' #Motor de succion sensorPin555 = 'P9_12' #Sensor TGS2600 tras conversion con 555 (Puerto GPIO_60) heatPin2600 = 'P9_14' #Calentamiento sensor TGS2600 (Puerto GPIO_50) sensorTemp22 = Adafruit_DHT.DHT22 Temp22 = 'P8_11' #Pin de lectura de temperatura/Humedad con DHT22 (Puerto GPIO_45) ## DECLARACION DE ENTRADAS/SALIDAS DEL SISTEMA. GPIO.setup("P8_10",GPIO.OUT) GPIO.setup("P8_12",GPIO.OUT) GPIO.setup("P8_14",GPIO.OUT) GPIO.setup("P8_16",GPIO.OUT) GPIO.setup("P9_12",GPIO.IN) #Salida 555 ## DECLARACION DE VARIABLES DEL SISTEMA. # Martinelli. SAMPLESINICIO=1 #Capturas iniciales heat2600=100 #Temperatura de calentamiento del sensor x=[] #Almacena el numero de muestra up=[] #Almacena el tiempo de los pulsos en estado alto down=[] #Almacena el tiempo de los pulsos en estado bajo tempTGS2600=[] #Almacena las temperaturas de calentamiento del sensor duracion=[] #Almacena la duracion de cada pulso duracion_k=[] #Almacena la duracion de k pulso # Sensor TGS2600. Lectura ADC concentTGS2600=[] #Almacena las muestras de odorante (lectura ADC) SLEEP_ADC = 1 NM=10 #Numero lecturas ADC T=0.1 #Las NM lecturas se hacen en T segundos tsub=T/NM; #Subdivisiones de tiempo para las lecturas ADC Rl_2600=27000 #Ohm Vc=5 #V # Measure temperatura y humedad SLEEP_tyh = 59 ## NOMBRE Y RUTA DE LOS FICHEROS DE SALIDA. nameFile = "Martinelli_TGS2600.txt" #Fichero de informacion con parámetros y lecturas de la experimentacion nameFile_data1 = "Martinelli_data1.dat" #Fichero de salida de datos, duracion de los pulsos Martinelli nameFile_data2 = 'Martinelli_data2.dat' #Fichero da salida de datos, duracion de los k pulsos nameFile_tyh = "TyH_TGS2600.dat" #Fichero de informacion de temperatura y humedad dela experimentacion fileString = time.strftime("%a%d%b%Y-%HH%MM%SS", time.localtime())+'_' +nameFile fileString_data1 = time.strftime("%a%d%b%Y-%HH%MM%SS", time.localtime())+'_' +nameFile_data1 fileString_data2 = time.strftime("%a%d%b%Y-%HH%MM%SS", time.localtime())+'_' +nameFile_data2 fileString_tyh = time.strftime("%a%d%b%Y-%HH%MM%SS", time.localtime())+'_' +nameFile_tyh ahora=datetime.now() ruta = "/media/microSD/FRECUENCIA/MARTINELLI/"+str(ahora.month)+"/"+str(ahora.day)+"/" #Ruta de salida if not os.path.exists(ruta): os.makedirs(ruta) #Si la ruta no existe, se crea ruta_fichero = ruta.strip() + str(fileString) ruta_fichero_data1 = ruta.strip() + str(fileString_data1) ruta_fichero_data2 = ruta.strip() + str(fileString_data2) ruta_fichero_tyh = ruta.strip() + str(fileString_tyh) ## Creacion de ficheros del experimento. g=open(ruta_fichero_data1, "w+") #fichero de datos del experimento, Duracion de cada pulso. k=open(ruta_fichero_data2, "w+") #fichero que guarda la duracion de los 16 pulsos h = open(ruta_fichero_tyh, "w+") #fichero que guarda la temperatura y humedad ## FUNCION de creacion del fichero salida sensor TGS2600 (modo escritura) y cabecera. def file_TGS2600(vec_open_valve,succion,heat2600,SAMPLES): f = open(ruta_fichero, "w+") f.write ('/////////////////////////////////////////////////////////////////////\n') f.write ('\n\nPlataforma de experimentacion: \n\n\n\n') f.write ('Sensor TGS2600\n') f.write ('Algoritmo MARTINELLI\n') date=time.strftime("%a%d%b%Y-%HH%MM%SS", time.localtime()) f.write ('Fecha y hora de inicio: ' + str(date) + '\n') f.write ('Ruta del fichero: ' + str(ruta) + '\n\n') f.write ('Nombre del fichero: ' + str(fileString) + '\n') f.write ('Nombre del fichero de datos 1: ' + str(fileString_data1) + '\n') f.write ('Nombre del fichero de datos 2: ' + str(fileString_data2) + '\n\n') f.write ('Nombre del fichero de TyH: ' + str(nameFile_tyh) + '\n') f.write ('Electrovalvula (1-METANOL, 2-ETANOL, 3-BUTANOL, 4-AIRE ) \n\n') f.write ('Conmutacion entre electrovalvulas: ' +str(vec_open_valve)+ '\n') f.write ('\n') f.write ('Parametros para la experimetacion, se introducen como argumentos \n') f.write ('Succion motor (50-100) >>> '+ str(succion)+ '%\n') f.write ('Duracion del experimento: ' +str(SAMPLES)+ ' muestras\n') f.write ('/////////////////////////////////////////////////////////////////////\n\n') f.write (' CAPTURA DE DATOS:\n\n') ## DECLARACION DE FUNCIONES DEL SISTEMA. # Apertura electrovalvula. def apertura(electrovalvula): if electrovalvula ==1: print ('electrovalvula 1\n') GPIO.output(electrovalve1, GPIO.LOW) GPIO.output(electrovalve2, GPIO.HIGH) GPIO.output(electrovalve3, GPIO.HIGH) GPIO.output(electrovalve4, GPIO.HIGH) elif electrovalvula == 2: print ('electrovalvula 2\n') GPIO.output(electrovalve1, GPIO.HIGH) GPIO.output(electrovalve2, GPIO.LOW) GPIO.output(electrovalve3, GPIO.HIGH) GPIO.output(electrovalve4, GPIO.HIGH) elif electrovalvula == 3: print ('electrovalvula 3\n') GPIO.output(electrovalve1, GPIO.HIGH) GPIO.output(electrovalve2, GPIO.HIGH) GPIO.output(electrovalve3, GPIO.LOW) GPIO.output(electrovalve4, GPIO.HIGH) elif electrovalvula == 4: print ('electrovalvula 4\n') GPIO.output(electrovalve1, GPIO.HIGH) GPIO.output(electrovalve2, GPIO.HIGH) GPIO.output(electrovalve3, GPIO.HIGH) GPIO.output(electrovalve4, GPIO.LOW) def cerrarElectrovalvula(): GPIO.output(electrovalve1, GPIO.LOW) GPIO.output(electrovalve2, GPIO.LOW) GPIO.output(electrovalve3, GPIO.LOW) GPIO.output(electrovalve4, GPIO.LOW) # Arranque motor. def motor_start(succion): PWM.start(motorPin,succion) # Funcion de medida de temperatura y humedad def measure_tyh(tiempo): j=0 time.sleep(9) #Lectura humedad y temperatura while (tiempo == True): tick_HT = time.time() humidity, temperature = Adafruit_DHT.read_retry(sensorTemp22, Temp22) instante = datetime.now() tack_HT=time.time() t_HT=tack_HT-tick_HT #Cuanto duerme en funcion de lo que tarde en H y T if t_HT > SLEEP_tyh: print ("Tiempo medicion H y T > SLEEP:", t_HT) else: print ("Tiempo medicion H y T:", t_HT) if humidity is not None and temperature is not None: print('\nSensor DHT22: ' +str(sensorTemp22)) print('>>> '+str(instante)+' Temp = ' +str(temperature)+ ' Humidity = ' +str(humidity)+'\n') h = open(ruta_fichero_tyh, "a") wline_h=str(instante)+' '+str(temperature)+' '+str(humidity)+'\n' h.writelines(wline_h) h.flush() else : print ('Failed to get reading, Try again!') h = open(ruta_fichero_tyh, "a") wline_h=str(instante)+' '+str(temperature)+' '+str(humidity)+'\n' h.writelines(wline_h) h.flush() tack=time.time() time.sleep(SLEEP_tyh-(tack-tick_HT)) j+=1 # Samplesinicio Martinelli 2600 def samplesinicio_martinelli_TGS2600(): count = 0 value_down = GPIO.wait_for_edge(sensorPin555, GPIO.FALLING) #Espera pulso de caida #print '0\n' ini_pulso = time.time() while count <= 7 : temperature_TGS2600=60 PWM.set_duty_cycle(heatPin2600, temperature_TGS2600) value_up = GPIO.wait_for_edge(sensorPin555, GPIO.RISING) #Espera pulso de subida ini_up = time.time() time_down = ini_up - ini_pulso #Duracion del pulso en estado bajo #print '1\n' value_down = GPIO.wait_for_edge(sensorPin555, GPIO.FALLING) #Espera pulso de bajada fin_pulso = time.time() instante_captura=datetime.now() time_up = fin_pulso - ini_up #Duracion del pulso en estado alto time_pulso = fin_pulso-ini_pulso #Duracion del pulso completo ini_pulso = time.time() #print '0\n' x.append(count) up.append(time_up) down.append(time_down) duracion.append(time_pulso) #Escritura por pantalla de la lectura print ('Muestra Martinelli_ini['+str(count)+']\n>> t_up='+str(time_up)+' >> t_down: '+str(time_down)+ ' >> Durancion pulso: '+str(time_pulso)) print ('>> Heat: '+str(temperature_TGS2600)+' >> '+str(instante_captura)+'\n') #Se escriben los datos en el fichero f=open(ruta_fichero, "a") g = open(ruta_fichero_data1, "a") wline_g=str(count)+' '+str(time_up)+' '+str(time_down)+' '+str(time_pulso)+' '+str(temperature_TGS2600)+' '+str(instante_captura)+'\n' wline_f='Muestra_ini['+str(count)+'] t_up='+str(time_up)+' t_down: '+str(time_down)+ ' Durancion pulso: '+str(time_pulso)+' Heat: '+str(temperature_TGS2600)+'>> '+str(instante_captura)+'\n' g.writelines(wline_g) g.flush() f.writelines(wline_f) f.flush() count+=1 while count > 7 and count <= 15 : temperature_TGS2600=100 PWM.set_duty_cycle(heatPin2600, temperature_TGS2600) value_up = GPIO.wait_for_edge(sensorPin555, GPIO.RISING) #Espera pulso de subida ini_up = time.time() time_down = ini_up - ini_pulso #Duracion del pulso en estado bajo #print '1\n' value_down = GPIO.wait_for_edge(sensorPin555, GPIO.FALLING) #Espera pulso de bajada fin_pulso = time.time() instante_captura=datetime.now() time_up = fin_pulso - ini_up #Duracion del pulso en estado alto time_pulso = fin_pulso-ini_pulso #Duracion del pulso completo ini_pulso = time.time() #print '0\n' x.append(count) up.append(time_up) down.append(time_down) duracion.append(time_pulso) #Escritura por pantalla de la lectura print ('Muestra Martinelli_ini['+str(count)+']\n>> t_up='+str(time_up)+' >> t_down: '+str(time_down)+ ' >> Durancion pulso: '+str(time_pulso)) print ('>> Heat: '+str(temperature_TGS2600)+' >> '+str(instante_captura)+'\n') #Se escriben los datos en el fichero f=open(ruta_fichero, "a") g = open(ruta_fichero_data1, "a") wline_g=str(count)+'\t'+str(time_up)+'\t'+str(time_down)+'\t'+str(time_pulso)+'\t'+str(temperature_TGS2600)+'\t'+str(instante_captura)+'\n' wline_f='Muestra_ini['+str(count)+'] t_up='+str(time_up)+' t_down: '+str(time_down)+ ' Durancion pulso: '+str(time_pulso)+' Heat: '+str(temperature_TGS2600)+'>> '+str(instante_captura)+'\n' g.writelines(wline_g) g.flush() f.writelines(wline_f) f.flush() count+=1 # Martinelli TGS2600 def martinelli_TGS2600(): count = 0 value_down = GPIO.wait_for_edge(sensorPin555, GPIO.FALLING) #Espera pulso de bajada #print '0\n' ini_pulso = time.time() while count <= 7 : temperature_TGS2600=60 PWM.set_duty_cycle(heatPin2600, temperature_TGS2600) value_up = GPIO.wait_for_edge(sensorPin555, GPIO.RISING) #Espera pulso de subida ini_up = time.time() time_down = ini_up - ini_pulso #Duracion del pulso en estado bajo #print '1\n' value_down = GPIO.wait_for_edge(sensorPin555, GPIO.FALLING) #Espera pulso de bajada fin_pulso = time.time() instante_captura=datetime.now() time_up = fin_pulso - ini_up #Duracion del pulso en estado alto time_pulso = fin_pulso-ini_pulso #Duracion del pulso completo ini_pulso = time.time() #print '0\n' x.append(count) up.append(time_up) down.append(time_down) duracion.append(time_pulso) #Escritura por pantalla de la lectura print ('Muestra Martinelli['+str(count)+']\n>> t_up='+str(time_up)+' >> t_down: '+str(time_down)+ ' >> Durancion pulso: '+str(time_pulso)) print ('>> Heat: '+str(temperature_TGS2600)+' >> '+str(instante_captura)+'\n') #Se escriben los datos en el fichero f=open(ruta_fichero, "a") g = open(ruta_fichero_data1, "a") wline_g=str(count)+'\t'+str(time_up)+'\t'+str(time_down)+'\t'+str(time_pulso)+'\t'+str(temperature_TGS2600)+'\t'+str(instante_captura)+'\n' wline_f='Muestra['+str(count)+'] t_up='+str(time_up)+' t_down: '+str(time_down)+ ' Durancion pulso: '+str(time_pulso)+' Heat: '+str(temperature_TGS2600)+'>> '+str(instante_captura)+'\n' g.writelines(wline_g) g.flush() f.writelines(wline_f) f.flush() count+=1 while count > 7 and count <= 15 : temperature_TGS2600=100 PWM.set_duty_cycle(heatPin2600, temperature_TGS2600) value_up = GPIO.wait_for_edge(sensorPin555, GPIO.RISING) #Espera pulso de subida ini_up = time.time() time_down = ini_up - ini_pulso #Duracion del pulso en estado bajo #print '1\n' value_down = GPIO.wait_for_edge(sensorPin555, GPIO.FALLING) #Espera pulso de bajada fin_pulso = time.time() instante_captura=datetime.now() time_up = fin_pulso - ini_up #Duracion del pulso de subida time_pulso = fin_pulso-ini_pulso #Duracion del pulso completo ini_pulso = time.time() #print '0\n' x.append(count) up.append(time_up) down.append(time_down) duracion.append(time_pulso) #Escritura por pantalla de la lectura print ('Muestra Martinelli['+str(count)+']\n>> t_up='+str(time_up)+' >> t_down: '+str(time_down)+ ' >> Durancion pulso: '+str(time_pulso)) print ('>> Heat: '+str(temperature_TGS2600)+' >> '+str(instante_captura)+'\n') #Se escriben los datos en el fichero f=open(ruta_fichero, "a") g = open(ruta_fichero_data1, "a") wline_g=str(count)+'\t'+str(time_up)+'\t'+str(time_down)+'\t'+str(time_pulso)+'\t'+str(temperature_TGS2600)+'\t'+str(instante_captura)+'\n' wline_f='Muestra['+str(count)+'] t_up='+str(time_up)+' t_down: '+str(time_down)+ ' Durancion pulso: '+str(time_pulso)+' Heat: '+str(temperature_TGS2600)+'>> '+str(instante_captura)+'\n' g.writelines(wline_g) g.flush() f.writelines(wline_f) f.flush() count+=1 # Cierre def cierre(): PWM.stop(heatPin2600) PWM.stop(motorPin) PWM.cleanup() _thread.exit() cerrarElectrovalvula() fecha_fin=datetime.now() print('\nEXPERIMENTO FINALIZADO CON EXITO') print ('Experimento terminado: '+str(fecha_fin)) f = open(ruta_fichero, "a") f.write('\n\XPERIMENTO FINALIZADO CON EXITO\n') f.write('Fecha y hora de fin de experimentacion: ' +str(fecha_fin)) f.flush() f.close() g.close() h.close() k.close() ## CUERPO DEL CODIGO. def main(): if(len(sys.argv)<3): print ('\n\nPARAMETROS INCORRECTOS. \n' \ 'Los parametros deben ser:\n' \ 'Succion motor (50-100) \n' \ 'Duracion de la experimentacion (en muestras)\n'\ 'Tiempo de apertura de cada válvula (en segundos)') return 0 #SUCCION MOTOR: 1-100% succion = float(sys.argv[1]) if succion > 100 or succion < 50: print ('\n\nPARAMETRO MOTOR INCORRECTO.\n' \ 'Los parametros deben ser:\n' \ 'Succion motor (50-100) \n' \ 'Duracion de la experimentacion (en muestras)\n'\ 'Tiempo de apertura de cada válvula (en segundos)') return 0 else : print ('Succion motor al ' +str(succion)+ '% Motor Pin PWM : ' +motorPin) #DURACION DEL EXPERIMENTO SAMPLES = float(sys.argv[2]) if SAMPLES < 1: print ('\n\nPARAMETRO TIEMPO EXPERIMENTACION.\n' \ 'Los parametros deben ser:\n' \ 'Succion motor (50-100) \n' \ 'Duracion de la experimentacion (en muestras)\n'\ 'Tiempo de apertura de cada válvula (en segundos)') return 0 else : print ('Duracion de la experimentacion ' +str(SAMPLES)+ ' muestras') #TIEMPO DE APERTURA DE CADA VÁLVULA conmutacion = float(sys.argv[3]) if conmutacion < SAMPLES: print ('\n\nPARAMETRO TIEMPO EXPERIMENTACION.\n' \ 'Los parametros deben ser:\n' \ 'Succion motor (50-100) \n' \ 'Duracion de la experimentacion (en muestras)\n') return 0 else : print ('Tiempo de apertura de cada electrovalvula ' +str(conmutacion)+ ' segundos\n') #Se calcula de forma aleatoria la conmutacion de electrovalvulas vec_open_valve = numpy.random.randint(4,5,SAMPLES) print ('Conmutacion entre electrovalvulas: ' +str(vec_open_valve)+ '\n') #Llamada al thread de medida de temperatura y humedad _thread.start_new_thread(measure_tyh, (True,)) #Se realiza el Setup de los puertos ADC, PWM, GPIO motor_start(succion) ADC.setup() PWM.start(heatPin2600,heat2600,20000,0) #Se crea el fichero de informacion de la experimentacion file_TGS2600(vec_open_valve,succion,heat2600,SAMPLES) print ('\nComienza la adquisicion. Muestras inciales: ' +str(SAMPLESINICIO)+ '\n\n') f = open(ruta_fichero, "a") f.write('\n\nComienza la adquisicion. Muestras inciales: ' +str(SAMPLESINICIO)+ '\n\n') f.flush() #Calentamiento del sensor, se toman SAMPLESINICIO medidas antes de comenzar la experimentacion i=1 while i <= SAMPLESINICIO: time_martinelli_ini = time.time() samplesinicio_martinelli_TGS2600() time_martinelli_fin = time.time() instante_captura=datetime.now() time_martinelli = time_martinelli_fin-time_martinelli_ini #Duracion de los k=16 pulsos duracion_k.append(time_martinelli) print ('\nSamplesinicio_Iteracion['+str(i)+'] Duracion de los k=16 pulsos: '+str(time_martinelli)+' >> '+str(instante_captura)+'\n') wline_f = 'Samplesinicio_Iteracion['+str(i)+'] Duracion de los k=16 pulsos: '+str(time_martinelli)+' >> '+str(instante_captura)+'\n' wline_k = str(i)+' '+str(time_martinelli)+' '+str(instante_captura)+'\n' f = open(ruta_fichero, "a") k = open(ruta_fichero_data2, "a") f.writelines(wline_f) k.writelines(wline_k) f.flush() k.flush() i+=1 #Comienza la experimentacion print ('\n\nSE VAN A CAPTURAR: ' +str(SAMPLES)+' muestras\n\n') f.write('\n\nSE VAN A CAPTURAR: ' +str(SAMPLES)+' muestras\n\n') f.flush() iteracion = 0 while iteracion <= SAMPLES-1: electrovalvula = vec_open_valve[iteracion] if electrovalvula == 1: print ('ELECTROVALVULA: '+str(electrovalvula)+' METANOL\n') f.write ('ELECTROVALVULA: '+str(electrovalvula)+' METANOL\n') f.flush() apertura(electrovalvula) elif electrovalvula == 2: print ('ELECTROVALVULA: '+str(electrovalvula)+' ETANOL\n') f.write ('ELECTROVALVULA: '+str(electrovalvula)+' ETANOL\n') f.flush() apertura(electrovalvula) elif electrovalvula == 3: print ('ELECTROVALVULA: '+str(electrovalvula)+' BUTANOL\n') f.write ('ELECTROVALVULA: '+str(electrovalvula)+' BUTANOL\n') f.flush() apertura(electrovalvula) tiempo_valve = 0 while tiempo_valve <= conmutacion: time_martinelli_ini = time.time() martinelli_TGS2600() time_martinelli_fin = time.time() instante_captura=datetime.now() time_martinelli = time_martinelli_fin-time_martinelli_ini #Duracion de los k=16 pulsos duracion_k.append(time_martinelli) print ('\nIteracion['+str(iteracion)+'] Duracion de los k=16 pulsos: '+str(time_martinelli)+' >> '+str(instante_captura)+'\n') wline_f = 'Iteracion['+str(iteracion)+'] Duracion de los k=16 pulsos: '+str(time_martinelli)+' >> '+str(instante_captura)+'\n' wline_k = str(iteracion)+' '+str(time_martinelli)+' '+str(instante_captura)+'\n' f = open(ruta_fichero, "a") k = open(ruta_fichero_data2, "a") f.writelines(wline_f) k.writelines(wline_k) f.flush() k.flush() tiempo_valve += time_martinelli print ('Tiempo acumulado = '+str(tiempo_valve)) iteracion +=1 #Terminar cierre() return 0 if __name__ == '__main__': try: main() except KeyboardInterrupt: print ('Interrupted') cierre() sys.exit(0)
null
Ficheros Carlos/tgs2600martinelli.py
tgs2600martinelli.py
py
19,579
python
en
code
null
code-starcoder2
83
[ { "api_name": "Adafruit_DHT.DHT22", "line_number": 50, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.setup", "line_number": 56, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 56, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.OUT", "line_number": 56, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.setup", "line_number": 57, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 57, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.OUT", "line_number": 57, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.setup", "line_number": 58, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 58, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.OUT", "line_number": 58, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.setup", "line_number": 59, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 59, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.OUT", "line_number": 59, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.setup", "line_number": 60, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 60, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.IN", "line_number": 60, "usage_type": "attribute" }, { "api_name": "time.strftime", "line_number": 98, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 98, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 99, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 99, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 100, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 100, "usage_type": "call" }, { "api_name": "time.strftime", "line_number": 101, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 101, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 102, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 102, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path", "line_number": 104, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 104, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 126, "usage_type": "name" }, { "api_name": "time.strftime", "line_number": 126, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 126, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 127, "usage_type": "argument" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 151, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 151, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.LOW", "line_number": 151, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 152, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 152, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 152, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 153, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 153, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 153, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 154, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 154, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 154, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 157, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 157, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 157, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 158, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 158, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.LOW", "line_number": 158, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 159, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 159, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 159, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 160, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 160, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 160, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 163, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 163, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 163, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 164, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 164, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 164, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 165, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 165, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.LOW", "line_number": 165, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 166, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 166, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 166, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 169, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 169, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 169, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 170, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 170, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 170, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 171, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 171, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.HIGH", "line_number": 171, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 172, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 172, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.LOW", "line_number": 172, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 175, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 175, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.LOW", "line_number": 175, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 176, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 176, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.LOW", "line_number": 176, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 177, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 177, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.LOW", "line_number": 177, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.GPIO.output", "line_number": 178, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 178, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.LOW", "line_number": 178, "usage_type": "attribute" }, { "api_name": "Adafruit_BBIO.PWM.start", "line_number": 184, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM", "line_number": 184, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 192, "usage_type": "call" }, { "api_name": "time.time", "line_number": 195, "usage_type": "call" }, { "api_name": "Adafruit_DHT.read_retry", "line_number": 196, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 197, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 197, "usage_type": "name" }, { "api_name": "time.time", "line_number": 198, "usage_type": "call" }, { "api_name": "time.time", "line_number": 224, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 225, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 235, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 235, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.FALLING", "line_number": 235, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 237, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM.set_duty_cycle", "line_number": 241, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM", "line_number": 241, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 243, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 243, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.RISING", "line_number": 243, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 244, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 248, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 248, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.FALLING", "line_number": 248, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 249, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 250, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 250, "usage_type": "name" }, { "api_name": "time.time", "line_number": 253, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM.set_duty_cycle", "line_number": 280, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM", "line_number": 280, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 282, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 282, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.RISING", "line_number": 282, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 283, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 287, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 287, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.FALLING", "line_number": 287, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 288, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 289, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 289, "usage_type": "name" }, { "api_name": "time.time", "line_number": 292, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 322, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 322, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.FALLING", "line_number": 322, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 324, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM.set_duty_cycle", "line_number": 328, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM", "line_number": 328, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 330, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 330, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.RISING", "line_number": 330, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 331, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 335, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 335, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.FALLING", "line_number": 335, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 336, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 337, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 337, "usage_type": "name" }, { "api_name": "time.time", "line_number": 340, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM.set_duty_cycle", "line_number": 367, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM", "line_number": 367, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 369, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 369, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.RISING", "line_number": 369, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 370, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO.wait_for_edge", "line_number": 374, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.GPIO", "line_number": 374, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.GPIO.FALLING", "line_number": 374, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 375, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 376, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 376, "usage_type": "name" }, { "api_name": "time.time", "line_number": 379, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM.stop", "line_number": 408, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM", "line_number": 408, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.PWM.stop", "line_number": 409, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM", "line_number": 409, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.PWM.cleanup", "line_number": 410, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM", "line_number": 410, "usage_type": "name" }, { "api_name": "_thread.exit", "line_number": 411, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 413, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 413, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 431, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 442, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 455, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 468, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 480, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 480, "usage_type": "attribute" }, { "api_name": "_thread.start_new_thread", "line_number": 484, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.ADC.setup", "line_number": 488, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.ADC", "line_number": 488, "usage_type": "name" }, { "api_name": "Adafruit_BBIO.PWM.start", "line_number": 489, "usage_type": "call" }, { "api_name": "Adafruit_BBIO.PWM", "line_number": 489, "usage_type": "name" }, { "api_name": "time.time", "line_number": 502, "usage_type": "call" }, { "api_name": "time.time", "line_number": 504, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 505, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 505, "usage_type": "name" }, { "api_name": "time.time", "line_number": 546, "usage_type": "call" }, { "api_name": "time.time", "line_number": 548, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 549, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 549, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 582, "usage_type": "call" } ]
350662447
from __future__ import absolute_import from __future__ import print_function from keras import objectives from keras.models import model_from_json from keras.optimizers import SGD, RMSprop, Adam, Adamax , Nadam from keras.callbacks import * from keras.utils.generic_utils import slice_arrays from .callbacks import * from .constraints import Clip from .layers.core import * from .layers.masking import * from .layers.sampling import * from .layers.cov import * from .layers.pooling import * from .layers.scoring import * from .layers.tensor_manipulation import * from .layers.feats import * def get_keras_custom_obj(): custom_obj = { 'Bias': Bias, 'Constant': Constant, 'TiledConstant': TiledConstant, 'ConstTriu': ConstTriu, 'TiledConstTriu': TiledConstTriu, 'Invert': Invert, 'Exp': Exp, 'ExpTaylor': ExpTaylor, 'Log': Log, 'NegLog': NegLog, 'NegSoftplus': NegSoftplus, 'Add1': Add1, 'Add01': Add01, 'Log1': Log1, 'NegLog1': NegLog1, 'Repeat': Repeat, 'CreateMask': CreateMask, 'GlobalMaskedMaxPooling1D': GlobalMaskedMaxPooling1D, 'GlobalMaskedAveragePooling1D': GlobalMaskedAveragePooling1D, 'GlobalWeightedAveragePooling1D': GlobalWeightedAveragePooling1D, 'GlobalWeightedSumPooling1D': GlobalWeightedSumPooling1D, 'GlobalWeightedMeanStdPooling1D': GlobalWeightedMeanStdPooling1D, 'GlobalWeightedMeanLogVarPooling1D': GlobalWeightedMeanLogVarPooling1D, 'GlobalSumPooling1D': GlobalSumPooling1D, 'GlobalSumWeights': GlobalSumWeights, 'LDE1D': LDE1D, 'GlobalNormalDiagCovPostStdPriorPooling1D': GlobalNormalDiagCovPostStdPriorPooling1D, 'GlobalDiagNormalPostStdPriorPooling1D': GlobalDiagNormalPostStdPriorPooling1D, 'GlobalProdRenormDiagNormalStdPrior': GlobalProdRenormDiagNormalStdPrior, 'GlobalProdRenormDiagNormalStdPrior2': GlobalProdRenormDiagNormalStdPrior2, 'GlobalProdRenormDiagNormalStdPrior3': GlobalProdRenormDiagNormalStdPrior3, 'GlobalProdRenormDiagNormalCommonCovStdPrior': GlobalProdRenormDiagNormalCommonCovStdPrior, 'GlobalProdRenormDiagNormalConstCovStdPrior': GlobalProdRenormDiagNormalConstCovStdPrior, 'GlobalProdRenormDiagNormalConstCovStdPrior2': GlobalProdRenormDiagNormalConstCovStdPrior2, 'GlobalProdRenormDiagNormalConstCovStdPrior3': GlobalProdRenormDiagNormalConstCovStdPrior3, 'GlobalProdRenormDiagNormalConstCovStdPrior4': GlobalProdRenormDiagNormalConstCovStdPrior4, 'GlobalProdRenormNormalConstCovStdPrior': GlobalProdRenormNormalConstCovStdPrior, 'MultConstDiagCov': MultConstDiagCov, 'MultConstDiagCovStdPrior': MultConstDiagCovStdPrior, 'MultConstCovStdPrior': MultConstCovStdPrior, 'BernoulliSampler': BernoulliSampler, 'NormalDiagCovSampler': NormalDiagCovSampler, 'DiagNormalSampler': DiagNormalSampler, 'DiagNormalSamplerFromSeqLevel': DiagNormalSamplerFromSeqLevel, 'CatQScoringDiagNormalPostStdPrior': CatQScoringDiagNormalPostStdPrior, 'CatQScoringDiagNormalHomoPostStdPrior': CatQScoringDiagNormalHomoPostStdPrior, 'Repeat': Repeat, 'ExpandAndTile': ExpandAndTile, 'Clip': Clip, 'DCT': DCT, 'MelFB': MelFB, 'Liftering': Liftering} return custom_obj def load_model_arch(file_path): return model_from_json(open(file_path,'r').read(), get_keras_custom_obj()) def save_model_arch(file_path, model): open(file_path,'w').write(model.to_json()) # def filter_optimizer_args(**kwargs): # return dict((k, kwargs[k]) # for k in ('opt_type', 'lr', 'momentum', 'decay', # 'rho', 'epsilon', 'beta_1', 'beta_2', # 'clipnorm', 'clipvalue') if k in kwargs) # def create_optimizer(opt_type, lr, momentum=0, decay=0., # rho=0.9, epsilon=0., beta_1=0.9, beta_2=0.999, # clipnorm=10, clipvalue=100): # if opt_type == 'sgd': # return SGD(lr=lr, momentum=momentum, decay=decay, nesterov=False, # clipnorm=clipnorm, clipvalue=clipvalue) # if opt_type == 'nsgd': # return SGD(lr=lr, momentum=momentum, decay=decay, nesterov=True, # clipnorm=clipnorm, clipvalue=clipvalue) # if opt_type == 'rmsprop': # return RMSprop(lr=lr, rho=rho, epsilon=epsilon, decay=decay, # clipnorm=clipnorm, clipvalue=clipvalue) # if opt_type == 'adam': # return Adam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, # decay=decay, # clipnorm=clipnorm, clipvalue=clipvalue) # if opt_type == 'nadam': # return Nadam(lr=lr, beta_1=beta_1, beta_2=beta_2, # epsilon=epsilon, schedule_decay=decay, # clipnorm=clipnorm, clipvalue=clipvalue) # if opt_type == 'adamax': # return Adamax(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, # decay=decay, # clipnorm=clipnorm, clipvalue=clipvalue) # def filter_callbacks_args(**kwargs): # return dict((k, kwargs[k]) # for k in ('save_best_only', 'mode', # 'monitor', 'patience', 'min_delta', # 'lr_steps', 'lr_patience', 'lr_factor', # 'min_lr', 'log_append') if k in kwargs) # def create_basic_callbacks(model, file_path, save_best_only=True, mode='min', # monitor = 'val_loss', patience=None, min_delta=1e-4, # lr_steps = None, # lr_patience = None, lr_factor=0.1, min_lr=1e-5, # log_append=False): # if save_best_only == True: # file_path_model = file_path + '/model.best' # else: # file_path_model = file_path + '/model.{epoch:04d}' # cb = HypModelCheckpoint(model, file_path_model, monitor=monitor, verbose=1, # save_best_only=save_best_only, # save_weights_only=False, mode=mode) # cbs = [cb] # file_path_csv = file_path + '/train.log' # cb = CSVLogger(file_path_csv, separator=',', append=log_append) # cbs.append(cb) # if patience is not None: # cb = EarlyStopping(monitor=monitor, patience=patience, # min_delta=min_delta, verbose=1, mode=mode) # cbs.append(cb) # if lr_steps is not None: # cb = LearningRateSteps(lr_steps) # cbs.append(cb) # if lr_patience is not None: # cb = ReduceLROnPlateau(monitor=monitor, # factor=lr_factor, patience=lr_patience, # verbose=1, mode=mode, epsilon=min_delta, # cooldown=0, min_lr=min_lr) # cbs.append(cb) # return cbs def weighted_objective_per_sample(fn): '''Transforms an objective function `fn(y_true, y_pred)` into a sample-weighted, cost-masked objective function `fn(y_true, y_pred, weights, mask)`. ''' def weighted(y_true, y_pred, weights): # score_array has ndim >= 2 score_array = fn(y_true, y_pred) # reduce score_array to same ndim as weight array ndim = K.ndim(score_array) weight_ndim = K.ndim(weights) score_array = K.mean(score_array, axis=list(range(weight_ndim, ndim))) axis=list(range(1, weight_ndim)) # apply sample weighting if weights is not None: score_array *= weights score_array /= K.mean(weights, axis=axis, keepdims=True) return K.mean(score_array, axis=axis) return weighted def make_eval_function(model, loss, loss_weights=None, **kwargs): # prepare loss weights if loss_weights is None: loss_weights_list = [1. for _ in range(len(model.outputs))] elif isinstance(loss_weights, dict): for name in loss_weights: if name not in model.output_names: raise ValueError('Unknown entry in loss_weights ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(model.output_names)) loss_weights_list = [] for name in model.output_names: loss_weights_list.append(loss_weights.get(name, 1.)) elif isinstance(loss_weights, list): if len(loss_weights) != len(model.outputs): raise ValueError('When passing a list as loss_weights, ' 'it should have one entry per model outputs. ' 'The model has ' + str(len(model.outputs)) + ' outputs, but you passed loss_weights=' + str(loss_weights)) loss_weights_list = loss_weights else: raise TypeError('Could not interpret loss_weights argument: ' + str(loss_weights) + ' - expected a list of dicts.') # prepare loss functions if isinstance(loss, dict): for name in loss: if name not in model.output_names: raise ValueError('Unknown entry in loss ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(model.output_names)) loss_functions = [] for name in model.output_names: if name not in loss: raise ValueError('Output "' + name + '" missing from loss dictionary.') loss_functions.append(objectives.get(loss[name])) elif isinstance(loss, list): if len(loss) != len(model.outputs): raise ValueError('When passing a list as loss, ' 'it should have one entry per model outputs. ' 'The model has ' + str(len(model.outputs)) + ' outputs, but you passed loss=' + str(loss)) loss_functions = [objectives.get(l) for l in loss] else: loss_function = objectives.get(loss) loss_functions = [loss_function for _ in range(len(model.outputs))] weighted_losses = [weighted_objective_per_sample(fn) for fn in loss_functions] # compute total loss total_loss = None for i in range(len(model.outputs)): y_true = model.targets[i] y_pred = model.outputs[i] weighted_loss = weighted_losses[i] sample_weight = model.sample_weights[i] loss_weight = loss_weights_list[i] output_loss = weighted_loss(y_true, y_pred, sample_weight) if total_loss is None: total_loss = loss_weight * output_loss else: total_loss += loss_weight * output_loss if model.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs = model.inputs + model.targets + model.sample_weights + [K.learning_phase()] else: inputs = model.inputs + model.targets + model.sample_weights # return loss and metrics, no gradient updates. # Does update the network states. eval_function = K.function(inputs, [total_loss], updates=model.state_updates, **kwargs) return eval_function def make_batches(size, batch_size): '''Returns a list of batch indices (tuples of indices). ''' num_batch = int(np.ceil(size / float(batch_size))) return [(i * batch_size, min(size, (i + 1) * batch_size)) for i in range(0, num_batch)] def _eval_loop(f, ins, batch_size=32): '''Abstract method to loop over some data in batches. # Arguments f: Keras function returning a list of tensors. ins: list of tensors to be fed to `f`. batch_size: integer batch size. verbose: verbosity mode. # Returns Scalar loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. ''' num_sample = ins[0].shape[0] outs = [] batches = make_batches(num_sample, batch_size) index_array = np.arange(num_sample) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if isinstance(ins[-1], float): # do not slice the training phase flag ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) batch_outs = f(ins_batch) if isinstance(batch_outs, list): if batch_index == 0: for batch_out in enumerate(batch_outs): outs.append(np.zeros((num_sample,))) for i, batch_out in enumerate(batch_outs): outs[i][batch_ids] = batch_out else: if batch_index == 0: outs.append(np.zeros((num_sample,))) outs[i][batch_ids] = batch_out if len(outs) == 1: return outs[0] return outs def eval_loss(model, loss_function, x, y, batch_size=32, sample_weight=None): x, y, sample_weights = model._standardize_user_data( x, y, sample_weight=sample_weight, check_batch_axis=False, batch_size=batch_size) # prepare inputs, delegate logic to _test_loop if model.uses_learning_phase and not isinstance(K.learning_phase, int): ins = x + y + sample_weights + [0.] else: ins = x + y + sample_weights return _eval_loop(loss_function, ins, batch_size=batch_size)
null
hyperion/keras/keras_utils.py
keras_utils.py
py
14,051
python
en
code
null
code-starcoder2
83
[ { "api_name": "constraints.Clip", "line_number": 73, "usage_type": "name" }, { "api_name": "keras.models.model_from_json", "line_number": 82, "usage_type": "call" }, { "api_name": "keras.objectives.get", "line_number": 240, "usage_type": "call" }, { "api_name": "keras.objectives", "line_number": 240, "usage_type": "name" }, { "api_name": "keras.objectives.get", "line_number": 248, "usage_type": "call" }, { "api_name": "keras.objectives", "line_number": 248, "usage_type": "name" }, { "api_name": "keras.objectives.get", "line_number": 250, "usage_type": "call" }, { "api_name": "keras.objectives", "line_number": 250, "usage_type": "name" }, { "api_name": "keras.utils.generic_utils.slice_arrays", "line_number": 316, "usage_type": "call" }, { "api_name": "keras.utils.generic_utils.slice_arrays", "line_number": 318, "usage_type": "call" } ]
329688417
import sys import pyric.pyw as pyw from colorama import Fore, Style def interface_command(interface, verbose): faces = pyw.winterfaces() if interface == "all" else [interface] for face in faces: if face not in pyw.winterfaces(): sys.exit(f"{face} is not an interface") print(f"{Fore.GREEN}Interfaces:{Fore.YELLOW}") for interface in faces: face = pyw.getcard(interface) up = Fore.YELLOW if pyw.isup(face) else Fore.RED print(f" {up}{interface:<10} {Style.RESET_ALL}") if verbose >= 1: iinfo = pyw.ifinfo(face) for i in iinfo: print( f"\t{i.title():<15} {Fore.CYAN}{iinfo[i]}{Style.RESET_ALL}" ) if verbose >= 2: dinfo = pyw.devinfo(face) for d in dinfo: print( f"\t{d.title():<15} {Fore.CYAN}{dinfo[d]}{Style.RESET_ALL}" ) if verbose >= 3: pinfo = pyw.phyinfo(face) for p in pinfo: if type(pinfo[p]) == list: print( f"\t{p.title():<15} {Fore.CYAN}{', '.join(pinfo[p])}{Style.RESET_ALL}" ) elif p == "bands": print( f"\t{p.title():<15} {Fore.CYAN}{', '.join(pinfo[p].keys())}{Style.RESET_ALL}" )
null
boop/tools/interfaces.py
interfaces.py
py
1,422
python
en
code
null
code-starcoder2
83
[ { "api_name": "pyric.pyw.winterfaces", "line_number": 8, "usage_type": "call" }, { "api_name": "pyric.pyw", "line_number": 8, "usage_type": "name" }, { "api_name": "pyric.pyw.winterfaces", "line_number": 10, "usage_type": "call" }, { "api_name": "pyric.pyw", "line_number": 10, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 11, "usage_type": "call" }, { "api_name": "colorama.Fore.GREEN", "line_number": 13, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 13, "usage_type": "name" }, { "api_name": "colorama.Fore.YELLOW", "line_number": 13, "usage_type": "attribute" }, { "api_name": "pyric.pyw.getcard", "line_number": 15, "usage_type": "call" }, { "api_name": "pyric.pyw", "line_number": 15, "usage_type": "name" }, { "api_name": "pyric.pyw.isup", "line_number": 16, "usage_type": "call" }, { "api_name": "pyric.pyw", "line_number": 16, "usage_type": "name" }, { "api_name": "colorama.Fore.YELLOW", "line_number": 16, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 16, "usage_type": "name" }, { "api_name": "colorama.Fore.RED", "line_number": 16, "usage_type": "attribute" }, { "api_name": "colorama.Style.RESET_ALL", "line_number": 18, "usage_type": "attribute" }, { "api_name": "colorama.Style", "line_number": 18, "usage_type": "name" }, { "api_name": "pyric.pyw.ifinfo", "line_number": 20, "usage_type": "call" }, { "api_name": "pyric.pyw", "line_number": 20, "usage_type": "name" }, { "api_name": "colorama.Fore.CYAN", "line_number": 23, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 23, "usage_type": "name" }, { "api_name": "colorama.Style.RESET_ALL", "line_number": 23, "usage_type": "attribute" }, { "api_name": "colorama.Style", "line_number": 23, "usage_type": "name" }, { "api_name": "pyric.pyw.devinfo", "line_number": 26, "usage_type": "call" }, { "api_name": "pyric.pyw", "line_number": 26, "usage_type": "name" }, { "api_name": "colorama.Fore.CYAN", "line_number": 29, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 29, "usage_type": "name" }, { "api_name": "colorama.Style.RESET_ALL", "line_number": 29, "usage_type": "attribute" }, { "api_name": "colorama.Style", "line_number": 29, "usage_type": "name" }, { "api_name": "pyric.pyw.phyinfo", "line_number": 33, "usage_type": "call" }, { "api_name": "pyric.pyw", "line_number": 33, "usage_type": "name" }, { "api_name": "colorama.Fore.CYAN", "line_number": 37, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 37, "usage_type": "name" }, { "api_name": "colorama.Style.RESET_ALL", "line_number": 37, "usage_type": "attribute" }, { "api_name": "colorama.Style", "line_number": 37, "usage_type": "name" }, { "api_name": "colorama.Fore.CYAN", "line_number": 41, "usage_type": "attribute" }, { "api_name": "colorama.Fore", "line_number": 41, "usage_type": "name" }, { "api_name": "colorama.Style.RESET_ALL", "line_number": 41, "usage_type": "attribute" }, { "api_name": "colorama.Style", "line_number": 41, "usage_type": "name" } ]
45950816
from sklearn.model_selection import train_test_split import datetime class Timer: def __init__(self): self.start_time = datetime.datetime.now() def start(self): self.start_time = datetime.datetime.now() def stop(self): interval = datetime.datetime.now() - self.start_time return interval def getClassificationErrorRate(result, y_test): lines = len(result) wrong = 0 index = [] for i in range(lines): if(result[i] != y_test[i]): wrong += 1 index.append(i) error_rate = wrong / lines return error_rate, index def getRegressionErrorRate(result, y_test): lines = len(result) gap = [] for i in range(lines): gap.append(abs(result[i] - y_test[i])) return sum(gap) / sum(result) def crossValidation(model, data, target, times=1, test_size=0.3, random_state=1): rate_list = [] for i in range(times): X_train, X_test, y_train, y_test = train_test_split( data, target, test_size=test_size, random_state=random_state + i) model.train(X_train, y_train) result = model.test(X_test) rate = getClassificationErrorRate(result,y_test) rate_list.append(rate[0]) return sum(rate_list)/len(rate_list), rate_list
null
TestTools.py
TestTools.py
py
1,298
python
en
code
null
code-starcoder2
83
[ { "api_name": "datetime.datetime.now", "line_number": 7, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 7, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 10, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 10, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 13, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 13, "usage_type": "attribute" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 43, "usage_type": "call" } ]
633101333
# applying all functions to solve integrals import numpy as np import matplotlib.pyplot as plt import time import copy from data import aero_data, grid, f100, transpose, nodes_z, nodes_x, times_z from integrator import def_integral, indef_integral from interpolator import spline_coefficient, spline_interpolator from interpolator import cubic_interpolator, cubic_coefficients import matplotlib.cm as cm """ This calculates the n'th integral (with minimum of n=1). It is structured so that the program first calculates the definite integral from z=0 till z=C_a= -0.505. Then, it calculates the indefinite integral along dx. The n'th integral (if n>=2) will than be the definite integral for x=0 till x=l_a=1.611 res is the resolution. Higher value = more accurate, but longer runtime """ def integral_z(n, x_final=1.611, z_sc=None, res=1000): # --------------------- input data -------------------------------- newgrid = copy.deepcopy(grid) """ boundaries of the integration """ x1, x2 = 0, 1.611 z1, z2 = 0, 0.505 if z_sc != None: aero_data_z = times_z(aero_data, nodes_z, z_sc) newgrid = transpose(aero_data_z) coord_sys=(1.611,0,-0.505,0) plt.imshow(transpose(newgrid), extent=coord_sys,interpolation='nearest', cmap=cm.gist_rainbow) plt.colorbar() plt.show() # ------------------ main program --------------------------- start_time = time.time() # to calculate runtime of the program """ The program can only calculate integrals of functions, not matrixes or wathever. This function can only have one variable as input: x-value. It also outputs only one value: y-value (=interpolated aero_data) The following defenitinion makes such a function that can later be used in the integral""" def cubic_function(x): y = cubic_interpolator(matrix, nodes,row, x) return y """ the function 'spline_coefficient(nodes,row)' converts an array of x-values (=nodes) and an array of y-values (=column of the aero_data) into a matrix. This matrix is necessary to use the function 'spline_interpolator'. (see interpolation file for explenation) """ nodes = nodes_z solution = [] for row in newgrid: matrix = cubic_coefficients(nodes, row) """ This calculates the definite integral from z1 to z2 of 'function' """ a = def_integral(cubic_function, z1, z2, res) solution.append(a) """ The result is a 1D array of data corresponding to the values of the definite integrals of interpolated columns of the aero_data """ """ This can be used to check the results for when n=1 """ if n == 1: x = np.linspace(0, 1.611, len(solution)) plt.xlabel('x-axis') plt.plot(x, solution) plt.show() return solution nodes = nodes_x if n == 2: row = solution matrix = cubic_coefficients(nodes, solution) solution = def_integral(cubic_function, x1, x_final, res) else: for i in range(n - 2): row = solution matrix = cubic_coefficients(nodes, solution) solution = indef_integral(cubic_function, x1, x2, res) nodes = np.linspace(x1, x2, len(solution)) row = solution matrix = cubic_coefficients(nodes, solution) solution = def_integral(cubic_function, x1, x_final, res) end_time = time.time() run_time = end_time - start_time # print run_time to see the time it took the program to compute return solution def integral_x(n, res=1000): newgrid = copy.deepcopy(aero_data) x1, x2 = 0, 1.611 z1, z2 = 0, 0.505 def cubic_function(x): y = cubic_interpolator(matrix, nodes, row, x) return y nodes = nodes_x solution = [] for row in newgrid: matrix = cubic_coefficients(nodes, row) a = def_integral(cubic_function, x1, x2, res) solution.append(a) if n == 1: x = np.linspace(0, 1.611, len(solution)) plt.xlabel('z-axis') plt.plot(x, solution) plt.show() return solution nodes = nodes_z if n == 2: row = solution matrix = cubic_coefficients(nodes, solution) solution = def_integral(cubic_function, z1, z2, res) else: for i in range(n - 2): row = solution matrix = cubic_coefficients(nodes, solution) solution = indef_integral(cubic_function, z1, z2, res) nodes = np.linspace(z1, z2, len(solution)) row = solution matrix = cubic_coefficients(nodes, solution) solution = def_integral(cubic_function, z1, z2, res) return solution
null
Code/Verification integration/COMBINED.py
COMBINED.py
py
4,813
python
en
code
null
code-starcoder2
83
[ { "api_name": "copy.deepcopy", "line_number": 21, "usage_type": "call" }, { "api_name": "data.grid", "line_number": 21, "usage_type": "argument" }, { "api_name": "data.times_z", "line_number": 27, "usage_type": "call" }, { "api_name": "data.aero_data", "line_number": 27, "usage_type": "argument" }, { "api_name": "data.nodes_z", "line_number": 27, "usage_type": "argument" }, { "api_name": "data.transpose", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "data.transpose", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.cm.gist_rainbow", "line_number": 31, "usage_type": "attribute" }, { "api_name": "matplotlib.cm", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 33, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 33, "usage_type": "name" }, { "api_name": "time.time", "line_number": 36, "usage_type": "call" }, { "api_name": "interpolator.cubic_interpolator", "line_number": 43, "usage_type": "call" }, { "api_name": "data.nodes_z", "line_number": 47, "usage_type": "name" }, { "api_name": "interpolator.cubic_coefficients", "line_number": 50, "usage_type": "call" }, { "api_name": "integrator.def_integral", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name" }, { "api_name": "data.nodes_x", "line_number": 64, "usage_type": "name" }, { "api_name": "interpolator.cubic_coefficients", "line_number": 67, "usage_type": "call" }, { "api_name": "integrator.def_integral", "line_number": 68, "usage_type": "call" }, { "api_name": "interpolator.cubic_coefficients", "line_number": 73, "usage_type": "call" }, { "api_name": "integrator.indef_integral", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 75, "usage_type": "call" }, { "api_name": "interpolator.cubic_coefficients", "line_number": 78, "usage_type": "call" }, { "api_name": "integrator.def_integral", "line_number": 79, "usage_type": "call" }, { "api_name": "time.time", "line_number": 81, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 88, "usage_type": "call" }, { "api_name": "data.aero_data", "line_number": 88, "usage_type": "argument" }, { "api_name": "interpolator.cubic_interpolator", "line_number": 93, "usage_type": "call" }, { "api_name": "data.nodes_x", "line_number": 96, "usage_type": "name" }, { "api_name": "interpolator.cubic_coefficients", "line_number": 99, "usage_type": "call" }, { "api_name": "integrator.def_integral", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 104, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 105, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 105, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 106, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 106, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 107, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 107, "usage_type": "name" }, { "api_name": "data.nodes_z", "line_number": 110, "usage_type": "name" }, { "api_name": "interpolator.cubic_coefficients", "line_number": 113, "usage_type": "call" }, { "api_name": "integrator.def_integral", "line_number": 114, "usage_type": "call" }, { "api_name": "interpolator.cubic_coefficients", "line_number": 119, "usage_type": "call" }, { "api_name": "integrator.indef_integral", "line_number": 120, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 121, "usage_type": "call" }, { "api_name": "interpolator.cubic_coefficients", "line_number": 124, "usage_type": "call" }, { "api_name": "integrator.def_integral", "line_number": 125, "usage_type": "call" } ]
553081879
# code your activity here # or replace this file with your python activity file # import statements """ class exampleActivity(activity.Activity): """ # Sugar Imports from sugar3.activity.activity import Activity from sugar3.activity.widgets import StopButton from sugar3.activity.widgets import ActivityButton from PIL import Image # Gtk Import from gi.repository import Gtk from gettext import gettext as _ class Example(Activity): def __init__(self, sugar_handle): Activity.__init__(self, sugar_handle) # Create a Toolbar toolbar = Gtk.Toolbar() # Add toolbar to Sugar Activity Toolbar Space self.set_toolbar_box(toolbar) # Add Activity Button toolbar.insert(ActivityButton(self), -1) # Create & Add Separator separator = Gtk.SeparatorToolItem(draw=False) separator.set_expand(True) toolbar.insert(separator, -1) # Add Stop Button toolbar.insert(StopButton(self), -1) # Create Container grid = Gtk.Grid() # Add grid to Sugar Activity GtkWindow self.set_canvas(grid) # Create & Add Label label = Gtk.Label(label=_("Weather: ")) grid.attach(label, 0, 0, 1, 1) # Add Output Label output = Gtk.Label() grid.attach(output, 0, 6, 1, 1) # Create & Add Text Entry x2 entry = Gtk.Entry() grid.attach(entry, 0, 1, 1, 1) entry2 = Gtk.Entry() grid.attach(entry2, 0, 2, 1, 1) # Empty output on keypress in entry entry.connect('key-release-event', self.emptyout, output) entry2.connect('key-release-event', self.emptyout, output) # Add buttons sunnyButton = Gtk.Button(label=_("Sunny")) grid.attach(sunnyButton, 0, 3, 1, 1) cloudyButton = Gtk.Button(label=_("Cloudy")) grid.attach(cloudyButton, 1, 3, 1, 1) rainyButton = Gtk.Button(label=_("Rainy")) grid.attach(rainyButton, 2, 3, 1, 1) snowyButton = Gtk.Button(label=_("Snowy")) grid.attach(snowyButton, 3, 3, 1, 1) # Tell the buttons to run a class method sunnyButton.connect('clicked', self.showWeather, "Sunny", entry, entry2, output) cloudyButton.connect('clicked', self.showWeather, "Cloudy", entry, entry2, output) rainyButton.connect('clicked', self.showWeather, "Rainy", entry, entry2, output) snowyButton.connect('clicked', self.showWeather, "Snowy", entry, entry2, output) # Show all components (otherwise none will be displayed) self.show_all() def greeter(self, button, entry, entry2, output): if len(entry.get_text()) > 0: output.set_text("WEATHER TODAY IS: \n" + entry.get_text() + "\n" + entry2.get_text()) else: output.set_text("Enter the weather.") def showWeather(self, button, state, entry, entry2, output): image = Image.open("activity/art/HotSun.png") output.set_text("Weather State is: " + state + ". " + "Temperature is " + entry.get_text() + ". Humidity is " + entry2.get_text()) def emptyout(self, entry, entry2, event, output): output.set_text("")
null
activity.py
activity.py
py
3,237
python
en
code
null
code-starcoder2
83
[ { "api_name": "sugar3.activity.activity.Activity", "line_number": 20, "usage_type": "name" }, { "api_name": "sugar3.activity.activity.Activity.__init__", "line_number": 22, "usage_type": "call" }, { "api_name": "sugar3.activity.activity.Activity", "line_number": 22, "usage_type": "name" }, { "api_name": "gi.repository.Gtk.Toolbar", "line_number": 25, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 25, "usage_type": "name" }, { "api_name": "sugar3.activity.widgets.ActivityButton", "line_number": 31, "usage_type": "call" }, { "api_name": "gi.repository.Gtk.SeparatorToolItem", "line_number": 34, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 34, "usage_type": "name" }, { "api_name": "sugar3.activity.widgets.StopButton", "line_number": 39, "usage_type": "call" }, { "api_name": "gi.repository.Gtk.Grid", "line_number": 42, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 42, "usage_type": "name" }, { "api_name": "gi.repository.Gtk.Label", "line_number": 48, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 48, "usage_type": "name" }, { "api_name": "gettext.gettext", "line_number": 48, "usage_type": "call" }, { "api_name": "gi.repository.Gtk.Label", "line_number": 52, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 52, "usage_type": "name" }, { "api_name": "gi.repository.Gtk.Entry", "line_number": 56, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 56, "usage_type": "name" }, { "api_name": "gi.repository.Gtk.Entry", "line_number": 58, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 58, "usage_type": "name" }, { "api_name": "gi.repository.Gtk.Button", "line_number": 66, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 66, "usage_type": "name" }, { "api_name": "gettext.gettext", "line_number": 66, "usage_type": "call" }, { "api_name": "gi.repository.Gtk.Button", "line_number": 69, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 69, "usage_type": "name" }, { "api_name": "gettext.gettext", "line_number": 69, "usage_type": "call" }, { "api_name": "gi.repository.Gtk.Button", "line_number": 72, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 72, "usage_type": "name" }, { "api_name": "gettext.gettext", "line_number": 72, "usage_type": "call" }, { "api_name": "gi.repository.Gtk.Button", "line_number": 75, "usage_type": "call" }, { "api_name": "gi.repository.Gtk", "line_number": 75, "usage_type": "name" }, { "api_name": "gettext.gettext", "line_number": 75, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 96, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 96, "usage_type": "name" } ]
14500492
# URL Handler for the website from django.conf.urls import url,include from django.contrib import admin from . import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^', include('Personal.urls')), url(r'^home/', include('Personal.urls')), url(r'^learn/', include('Learn.urls')), url(r'^questions/', include('Questions.urls')), #url(r'^interviews/', include('Interviews.urls')), url(r'^qa/', include('qa.urls')), url(r'^ckeditor/', include('ckeditor_uploader.urls')), ]
null
codesquest/urls.py
urls.py
py
524
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.conf.urls.url", "line_number": 8, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 8, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 8, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 11, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 12, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 15, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 15, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 16, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 16, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 19, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 19, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 22, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 22, "usage_type": "call" } ]
558537848
from django.test import TestCase from django.core.urlresolvers import reverse from .models import Category # Create your tests here. class CategoryMethodTests(TestCase): def test_ensure_views_are_positive(self): cat = Category(name='test', views=-1, likes=0) cat.save() self.assertEqual((cat.views >= 0), True) def test_slug_line_creation(self): cat = Category(name='Random Category String') cat.save() self.assertEqual(cat.slug, 'random-category-string') class IndexViewTests(TestCase): def test_index_view_with_no_category(self): response = self.client.get(reverse('rango:rango_default')) self.assertEqual(response.status_code, 200) # self.assertContains(response, "There are no categories present.") # self.assertQuerySetEqual(response.context['categories'], []) # def test_index_view_with_category(self): # add_cat('test1', 1, 1) # add_cat('test2', 2, 2) # add_cat('test3', 3, 3) # add_cat('test4', 4, 4) # response = self.client.get(reverse('rango:rango_default')) # self.assertEqual(response.status_code, 200) # self.assertContains(response, "test")
null
project_rango/apps/rango/tests.py
tests.py
py
1,223
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.test.TestCase", "line_number": 7, "usage_type": "name" }, { "api_name": "models.Category", "line_number": 9, "usage_type": "call" }, { "api_name": "models.Category", "line_number": 14, "usage_type": "call" }, { "api_name": "django.test.TestCase", "line_number": 19, "usage_type": "name" }, { "api_name": "django.core.urlresolvers.reverse", "line_number": 21, "usage_type": "call" } ]
547973984
# Authors: Hagen Blix # Script for generating sentences with collective predicates # import pattern.en # from pattern.en import conjugate as pconj from utils.conjugate2 import * from utils.string_utils import remove_extra_whitespace from random import choice import numpy as np import os # initialize output file rel_output_path = "outputs/plurals/environment=collectivepredicates.tsv" project_root = "/".join(os.path.join(os.path.dirname(os.path.abspath(__file__))).split("/")[:-2]) output = open(os.path.join(project_root, rel_output_path), "w") # set total number of paradigms to generate number_to_generate = 2000 sentences = set() # gather word classes that will be accessed frequently all_irregular_nouns = get_all_conjunctive([("category", "N"), ("irrpl", "1")]) # all_irregular_nouns_pl = get_all("pl", "1", all_irregular_nouns) all_regular_nouns = get_all_conjunctive([("category", "N"), ("irrpl", "")]) all_regular_nouns_sg = get_all("sg", "1", all_regular_nouns) all_regular_nouns_animate = get_all("animate", "1", all_regular_nouns_sg) all_regular_nouns_inanimate = get_all("animate", "0", all_regular_nouns_sg) # all_regular_nouns_pl = get_all("pl", "1", all_regular_nouns) all_coll_pred = get_all("category_2", "IV_ag_pl") all_ncoll_pred = get_all("category_2", "IV_ag") while len(sentences) < number_to_generate/3: Nirr_sg = choice(all_irregular_nouns) while Nirr_sg["sgequalspl"] == "1": # Exclude sg=pl nouns Nirr_sg = choice(all_irregular_nouns) Nirr_pl = Nirr_sg.copy() Nirr_pl[0] = Nirr_pl["pluralform"] Nirr_pl["sg"] = 0 Nirr_pl["pl"] = 1 if Nirr_sg["animate"] == "1": Nreg_sg = choice(all_regular_nouns_animate) while " " in Nreg_sg: Nreg_sg = choice(all_regular_nouns_animate) else: Nreg_sg = choice(all_regular_nouns_inanimate) while " " in Nreg_sg: Nreg_sg = choice(all_regular_nouns_inanimate) Nreg_pl = Nreg_sg.copy() Nreg_pl[0] = pattern.en.pluralize(Nreg_pl[0]) Nreg_pl["sg"] = 0 Nreg_pl["pl"] = 1 # Apparently this isn't coded? # coll_pred = choice(get_matched_by(Nirr_sg, "arg_1", all_coll_pred)) # ncoll_pred = choice(get_matched_by(Nirr_sg, "arg_1", all_ncoll_pred)) coll_pred = choice(all_coll_pred) ncoll_pred = choice(all_ncoll_pred) while " " in ncoll_pred[0]: ncoll_pred = choice(all_ncoll_pred) # Avoid things I can't inflect # TODO Doesn't match the noun and the verb for animacy etc? # TODO: You might want to exhaust the list of irregular nouns? # Determiners (just strings): definiteness = np.random.choice([True, False]) if definiteness: # Definites: det_def_abstract = np.random.choice([1, 2, 3], p=[0.9, 0.05, 0.05]) if det_def_abstract == 1: Dreg_sg = "the" Dirr_sg = "the" Dreg_pl = "the" Dirr_pl = "the" elif det_def_abstract == 2: Dreg_sg = "this" Dirr_sg = "this" Dreg_pl = "these" Dirr_pl = "these" elif det_def_abstract == 3: Dreg_sg = "that" Dirr_sg = "that" Dreg_pl = "those" Dirr_pl = "those" else: # Indefinites: det_indef_abstract = np.random.choice([True, False], p=[0.85, 0.15]) # True = indef article, False = some if det_indef_abstract: Dreg_pl = "" try: if Nreg_sg["start_with_vowel"] == 1: Dreg_sg = "an" else: Dreg_sg = "a" except: if Nreg_sg[0][0] in ["a", "e", "i", "o"]: Dreg_sg = "an" else: Dreg_sg = "a" if Nirr_sg[0][0] in ["a", "e", "i", "o"]: Dirr_sg = "an" else: Dirr_sg = "a" Dirr_pl = "" else: Dreg_sg = "some" Dirr_sg = "some" Dreg_pl = "some" Dirr_pl = "some" # Build Paradigms # Step 1: Generate conjugation pattern: the_aux = np.random.choice([0,1]) the_tense = np.random.choice([0,1]) the_neg = np.random.choice([0,1], p=[0.8, 0.2]) if the_tense == 0: tensestring = "true" else: tensestring = "false" copy_verb = coll_pred.copy() conjugate2(copy_verb,Nreg_sg,the_aux,the_tense,the_neg) sentence_1 = remove_extra_whitespace(Dreg_sg + " " + Nreg_sg[0] + " " + copy_verb[0]) sentence_1_meta = "experiment=plurals_env=collective_predicates_reg=1_sg=1_coll=1" + "_present=" + tensestring sentence_1_grammaticality = 0 copy_verb = ncoll_pred.copy() conjugate2(copy_verb,Nreg_sg,the_aux,the_tense,the_neg) sentence_2 = remove_extra_whitespace(Dreg_sg + " " + Nreg_sg[0] + " " + copy_verb[0]) sentence_2_meta = "experiment=plurals_env=collective_predicates_reg=1_sg=1_coll=0" + "_present=" + tensestring sentence_2_grammaticality = 1 copy_verb = coll_pred.copy() conjugate2(copy_verb, Nreg_pl, the_aux, the_tense, the_neg) sentence_3 = remove_extra_whitespace(Dreg_pl + " " + Nreg_pl[0] + " " + copy_verb[0]) sentence_3_meta = "experiment=plurals_env=collective_predicates_reg=1_sg=0_coll=1" + "_present=" + tensestring sentence_3_grammaticality = 1 copy_verb = ncoll_pred.copy() conjugate2(copy_verb, Nreg_pl, the_aux, the_tense, the_neg) sentence_4 = remove_extra_whitespace(Dreg_pl + " " + Nreg_pl[0] + " " + copy_verb[0]) sentence_4_meta = "experiment=plurals_env=collective_predicates_reg=1_sg=0_coll=0" + "_present=" + tensestring sentence_4_grammaticality = 1 copy_verb = coll_pred.copy() conjugate2(copy_verb, Nirr_sg, the_aux, the_tense, the_neg) sentence_5 = remove_extra_whitespace(Dirr_sg + " " + Nirr_sg[0] + " " + copy_verb[0]) sentence_5_meta = "experiment=plurals_env=collective_predicates_reg=0_sg=1_coll=1" + "_present=" + tensestring sentence_5_grammaticality = 0 copy_verb = ncoll_pred.copy() conjugate2(copy_verb, Nirr_sg, the_aux, the_tense, the_neg) sentence_6 = remove_extra_whitespace(Dirr_sg + " " + Nirr_sg[0] + " " + copy_verb[0]) sentence_6_meta = "experiment=plurals_env=collective_predicates_reg=0_sg=1_coll=0" + "_present=" + tensestring sentence_6_grammaticality = 1 copy_verb = coll_pred.copy() conjugate2(copy_verb, Nirr_pl, the_aux, the_tense, the_neg) sentence_7 = remove_extra_whitespace(Dirr_pl + " " + Nirr_pl[0] + " " + copy_verb[0]) sentence_7_meta = "experiment=plurals_env=collective_predicates_reg=0_sg=0_coll=1" + "_present=" + tensestring sentence_7_grammaticality = 1 copy_verb = ncoll_pred.copy() conjugate2(copy_verb, Nirr_pl, the_aux, the_tense, the_neg) sentence_8 = remove_extra_whitespace(Dirr_pl + " " + Nirr_pl[0] + " " + copy_verb[0]) sentence_8_meta = "experiment=plurals_env=collective_predicates_reg=0_sg=0_coll=0" + "_present=" + tensestring sentence_8_grammaticality = 1 if sentence_1 not in sentences and sentence_2 not in sentences and sentence_5 not in sentences: # sentences 1-4 have quantifiers with UE restrictor output.write("%s\t%d\t\t%s\n" % (sentence_1_meta, sentence_1_grammaticality, sentence_1)) output.write("%s\t%d\t\t%s\n" % (sentence_2_meta, sentence_2_grammaticality, sentence_2)) output.write("%s\t%d\t\t%s\n" % (sentence_3_meta, sentence_3_grammaticality, sentence_3)) output.write("%s\t%d\t\t%s\n" % (sentence_4_meta, sentence_4_grammaticality, sentence_4)) output.write("%s\t%d\t\t%s\n" % (sentence_5_meta, sentence_5_grammaticality, sentence_5)) output.write("%s\t%d\t\t%s\n" % (sentence_6_meta, sentence_6_grammaticality, sentence_6)) output.write("%s\t%d\t\t%s\n" % (sentence_7_meta, sentence_7_grammaticality, sentence_7)) output.write("%s\t%d\t\t%s\n" % (sentence_8_meta, sentence_8_grammaticality, sentence_8)) # keep track of which sentences have already been generated sentences.add(sentence_1) sentences.add(sentence_2) sentences.add(sentence_5) output.close()
null
generation_projects/plurality/collective_predicates.py
collective_predicates.py
py
8,130
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "random.choice", "line_number": 37, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 39, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 47, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 49, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 51, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 53, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 63, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 64, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.random.choice", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 72, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 76, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 94, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 123, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 123, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 124, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 124, "usage_type": "attribute" }, { "api_name": "numpy.random.choice", "line_number": 125, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 125, "usage_type": "attribute" }, { "api_name": "utils.string_utils.remove_extra_whitespace", "line_number": 133, "usage_type": "call" }, { "api_name": "utils.string_utils.remove_extra_whitespace", "line_number": 139, "usage_type": "call" }, { "api_name": "utils.string_utils.remove_extra_whitespace", "line_number": 145, "usage_type": "call" }, { "api_name": "utils.string_utils.remove_extra_whitespace", "line_number": 151, "usage_type": "call" }, { "api_name": "utils.string_utils.remove_extra_whitespace", "line_number": 157, "usage_type": "call" }, { "api_name": "utils.string_utils.remove_extra_whitespace", "line_number": 163, "usage_type": "call" }, { "api_name": "utils.string_utils.remove_extra_whitespace", "line_number": 169, "usage_type": "call" }, { "api_name": "utils.string_utils.remove_extra_whitespace", "line_number": 175, "usage_type": "call" } ]
490386672
from django.http import HttpResponse from django.shortcuts import render, redirect from .forms import UserForm from error_pages.http import Http400 def home(request, name, number_games): if number_games > 10 or number_games < 1: raise Http400 number_games = number_games - 1 variables = { "winner": "je suis un winner", "ia_choise": "Pierre", "number_games": number_games } return render(request, "shifumi/shifumi.html", variables) def user(request): form = UserForm(request.POST or None) if form.is_valid(): name = form.cleaned_data['name'] number_games = form.cleaned_data['number_games'] return redirect(home, name, number_games) return render(request, "shifumi/user.html", locals()) def player_bord(request): return HttpResponse(''' <h1>Liste des parties</h1> ''')
null
testunitaire/shifumi/views.py
views.py
py
891
python
en
code
null
code-starcoder2
83
[ { "api_name": "error_pages.http.Http400", "line_number": 10, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 18, "usage_type": "call" }, { "api_name": "forms.UserForm", "line_number": 22, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 26, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 28, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 32, "usage_type": "call" } ]
397437664
''' start a thread capture frames save frames to redis server ''' import sys import traceback from queue import Queue from threading import Thread import threading import cv2 as cv import logging import datetime import time # sys.path.append('../') from utils_ken.log.getlog import get_logger log_cam = get_logger(logname="cam", logfile='./logs/cam.log') class VideoStream(): ''' Instance used to capture video's frames ''' def __init__(self, cam_url, step=3): ''' Initialize new object for capturing Args: cam_cfg -> dict: information of camera (camera id, camera address, process fps, ...) Return: None ''' self.__cam_addr = cam_url self.__step = step self.__frame_queue = Queue(maxsize=4) self.__stopped = False self.__stopped_lock = threading.Lock() def start(self): ''' Get the object started and create new thread to run Args: None Return: None ''' self.thread_c = Thread(target=self.__update, args=()) self.thread_c.daemon = True self.thread_c.start() # return self def __update(self): ''' Repeated grab new frame from Camera IP and run on another thread created before Args: None Return: None ''' while not self.get_stopped(): try: cnt = 0 # capture or recapture log_cam.info("Start capture video") capturer = cv.VideoCapture(self.__cam_addr) while not self.get_stopped() : success, frame = capturer.read() cnt +=1 if not success : log_cam.info("break to recapture ") time.sleep(10) break if cnt >= self.__step: # print(cnt) if self.__frame_queue.full(): self.__frame_queue.get() log_cam.info("queue full and waiting ") time.sleep(0.1) cnt = 0 log_cam.info("queue put ") self.__frame_queue.put(frame) # log_cam.info('Cam : {} break Reconnection '.format(self.__cam_id)) while not self.__frame_queue.empty() : self.__frame_queue.get() except Exception as ex: traceback.print_exc() traceback.print_tb(ex.__traceback__) log_cam.info("Cam lose connection") # capturer.release() finally: capturer.release() log_cam.info('Cam release Reconnection ') while not self.__frame_queue.empty(): self.__frame_queue.get() log_cam.info('Cam is Stoped') def stop(self): ''' stop the camera thread ''' self.__stopped_lock.acquire() self.__stopped = True self.__stopped_lock.release() while not self.__frame_queue.empty(): self.__frame_queue.get() time_close = datetime.datetime.now() # log_cam.info("Join Thread capture at at {}:{}".format(time_close.hour,time_close.minute)) # self.thread_c.join() log_cam.info("Cam terminateed ") def get_stopped(self): ''' return true if thread need to stop, false if vice versa ''' self.__stopped_lock.acquire() stopped = self.__stopped self.__stopped_lock.release() return stopped def read(self): ''' Read a frame from Queue and return Args: None Return: frame -> np.array((H, W, 3) ): frame from Camera if available otherwise None ''' log_cam.info("queue get ") return self.__frame_queue.get()
null
utils_ken/video/video_stream.py
video_stream.py
py
4,226
python
en
code
null
code-starcoder2
83
[ { "api_name": "utils_ken.log.getlog.get_logger", "line_number": 17, "usage_type": "call" }, { "api_name": "queue.Queue", "line_number": 37, "usage_type": "call" }, { "api_name": "threading.Lock", "line_number": 39, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 52, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 72, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 80, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 88, "usage_type": "call" }, { "api_name": "traceback.print_exc", "line_number": 99, "usage_type": "call" }, { "api_name": "traceback.print_tb", "line_number": 100, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 120, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 120, "usage_type": "attribute" } ]
247946889
import matplotlib import gzip import pandas as pd # import seaborn as sns from mnist import MNIST from sklearn.decomposition import PCA from sklearn.cluster import KMeans filenames = 'train-images-idx3-ubyte t10k-images-idx3-ubyte train-labels-idx1-ubyte t10k-labels-idx1-ubyte'.split() # noqa for i, filename in enumerate(filenames): pathin = 'lessons/shared-resources/mnist/' + filename + '.gz' pathout = pathin[:-3] with gzip.open(pathin) as fin: print("Reading file #{}: {}".format(i, pathin)) with open('lessons/shared-resources/mnist/' + filename, 'wb') as fout: print("Writing file #{}: {}".format(i, pathout)) fout.write(fin.read()) mnistdb = MNIST('lessons/shared-resources/mnist/') x_train, y_train = mnistdb.load_training() x_test, y_test = mnistdb.load_testing() df_train = pd.DataFrame(list(zip(x_train, y_train)), columns=['X', 'y']) df_test = pd.DataFrame(list(zip(x_test, y_test)), columns=['X', 'y']) df_train_image = pd.DataFrame(list(df_train.X.values)) pca = PCA(n_components=15).fit(df_train_image) df_pca = pca.transform(df_train_image) kmeans = KMeans(n_clusters=10).fit(df_pca) df_pca['cluster_id'] = kmeans.predict(df_pca[:, :15]) df_pca['digit_id'] = df_train.y
null
mnist_solver.py
mnist_solver.py
py
1,252
python
en
code
null
code-starcoder2
83
[ { "api_name": "gzip.open", "line_number": 15, "usage_type": "call" }, { "api_name": "mnist.MNIST", "line_number": 22, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 27, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 28, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 30, "usage_type": "call" }, { "api_name": "sklearn.decomposition.PCA", "line_number": 32, "usage_type": "call" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 35, "usage_type": "call" } ]
458135955
""" dariah.topics.modeling ~~~~~~~~~~~~~~~~~~~~~~ This module implements low-level LDA modeling functions. """ from pathlib import Path import tempfile import os import logging import multiprocessing import shutil from typing import Optional, Union import cophi import lda import numpy as np import pandas as pd from dariah.mallet import MALLET from dariah.core import utils logging.getLogger("lda").setLevel(logging.WARNING) class LDA: """Latent Dirichlet allocation. Args: num_topics: The number of topics. num_iterations: The number of iterations. alpha: eta: random_state: mallet: """ def __init__( self, num_topics: int, num_iterations: int = 1000, alpha: float = 0.1, eta: float = 0.01, random_state: int = None, mallet: Optional[Union[str, Path]] = None, ) -> None: self.num_topics = num_topics self.num_iterations = num_iterations self.alpha = alpha self.eta = eta self.random_state = random_state self.mallet = mallet if mallet: if not Path(self.mallet).exists(): # Check if MALLET is in environment variable: if not os.environ.get(self.mallet): raise OSError( "MALLET executable was not found. " "'{}' does not exist".format(self.mallet) ) self.mallet = os.environ.get(self.mallet) if not Path(self.mallet).is_file(): raise OSError( "'{}' is not a file. " "Point to the 'mallet/bin/mallet' file.".format(self.mallet) ) else: self._model = lda.LDA( n_topics=self.num_topics, n_iter=self.num_iterations, alpha=self.alpha, eta=self.eta, random_state=self.random_state, ) def fit(self, dtm: pd.DataFrame) -> None: """Fit the model. Args: dtm: The document-term matrix. """ self._vocabulary = list(dtm.columns) self._documents = list(dtm.index) dtm = dtm.fillna(0).astype(int) if self.mallet: self._mallet_lda(dtm) else: self._riddell_lda(dtm.values) @property def topics(self): """Topics with 200 top words. """ if self.mallet: return self._mallet_topics else: return self._riddell_topics @property def topic_word(self): """Topic-word distributions. """ if self.mallet: return self._mallet_topic_word else: return self._riddell_topic_word @property def topic_document(self): """Topic-document distributions. """ if self.mallet: return self._mallet_topic_document else: return self._riddell_topic_document @property def topic_similarities(self): """Topic similarity matrix. """ data = self.topic_document.T.copy() return self._similarities(data) @property def document_similarities(self): """Document similarity matrix. """ data = self.topic_document.copy() return self._similarities(data) @staticmethod def _similarities(data: pd.DataFrame) -> pd.DataFrame: """Calculate cosine simliarity matrix. Args: data: A matrix to calculate similarities for. Returns: A similarity matrix. """ descriptors = data.columns d = data.T @ data norm = (data * data).sum(0) ** 0.5 similarities = d / norm / norm.T return pd.DataFrame(similarities, index=descriptors, columns=descriptors) def _riddell_lda(self, dtm: pd.DataFrame) -> None: """Fit the Riddell LDA model. Args: dtm: The document-term matrix. """ self._model.fit(dtm) @property def _riddell_topics(self): """Topics of the Riddell LDA model. """ maximum = len(self._vocabulary) num_words = 200 if maximum > 200 else maximum index = [f"topic{n}" for n in range(self.num_topics)] columns = [f"word{n}" for n in range(num_words)] topics = [ np.array(self._vocabulary)[np.argsort(dist)][: -num_words - 1 : -1] for dist in self._model.topic_word_ ] return pd.DataFrame(topics, index=index, columns=columns) @property def _riddell_topic_word(self): """Topic-word distributions for Riddell LDA model. """ index = [f"topic{n}" for n in range(self.num_topics)] return pd.DataFrame( self._model.topic_word_, index=index, columns=self._vocabulary ) @property def _riddell_topic_document(self): """Topic-document distributions for Riddell LDA model. """ index = [f"topic{n}" for n in range(self.num_topics)] return pd.DataFrame( self._model.doc_topic_, index=self._documents, columns=index ).T def _mallet_lda(self, dtm: pd.DataFrame) -> None: """Fit the MALLET LDA model. Args: dtm: The documen-term matrix. """ # Get number of CPUs for threaded processing: cpu = multiprocessing.cpu_count() - 1 # Get temporary directory to dump corpus files: self._tempdir = Path(tempfile.gettempdir(), "dariah-topics") if self._tempdir.exists(): shutil.rmtree(str(self._tempdir)) self._tempdir.mkdir() # Export document-term matrix to plaintext files: corpus_sequence = Path(self._tempdir, "corpus.sequence") cophi.text.utils.export(dtm, corpus_sequence, "plaintext") # Construct MALLET object: mallet = MALLET(self.mallet) # Create a MALLET corpus file: corpus_mallet = Path(self._tempdir, "corpus.mallet") mallet.import_file( input=str(corpus_sequence), output=str(corpus_mallet), keep_sequence=True ) # Construct paths to MALLET output files: self._topic_document_file = Path(self._tempdir, "topic-document.txt") self._topic_word_file = Path(self._tempdir, "topic-word.txt") self._topics_file = Path(self._tempdir, "topics.txt") self._word_topic_counts_file = Path(self._tempdir, "word-topic-counts-file.txt") # Train topics: mallet.train_topics( input=str(corpus_mallet), num_topics=self.num_topics, num_iterations=self.num_iterations, output_doc_topics=self._topic_document_file, output_topic_keys=self._topics_file, topic_word_weights_file=self._topic_word_file, word_topic_counts_file=self._word_topic_counts_file, alpha=self.alpha, beta=self.eta, num_top_words=200, num_threads=cpu, random_seed=self.random_state, ) @property def _mallet_topics(self): """Topics of MALLET LDA model. """ maximum = len(self._vocabulary) num_words = 200 if maximum > 200 else maximum index = [f"topic{n}" for n in range(self.num_topics)] columns = [f"word{n}" for n in range(num_words)] topics = utils.read_mallet_topics(self._topics_file, num_words) return pd.DataFrame(topics, index=index, columns=columns) @property def _mallet_topic_word(self): """Topic-word distributions of MALLET LDA model. """ index = [f"topic{n}" for n in range(self.num_topics)] data = pd.read_csv(self._topic_word_file, sep="\t", header=None).dropna() data = data.pivot(index=0, columns=1, values=2) data.columns.name = None data.index.name = None data.index = index return data @property def _mallet_topic_document(self): """Topic-document distributions of MALLET LDA model. """ data = pd.read_csv(self._topic_document_file, sep="\t", header=None) columns = [f"topic{n}" for n in range(self.num_topics)] index = data[1] data = data.drop([0, 1], axis=1) data.columns = list(columns) data.index = index return data.T def __repr__(self): return ( f"<Model: LDA, " f"{self.num_topics} topics, " f"{self.num_iterations} iterations, " f"alpha={self.alpha}, " f"eta={self.eta}>" )
null
dariah/core/modeling.py
modeling.py
py
8,684
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 25, "usage_type": "call" }, { "api_name": "logging.WARNING", "line_number": 25, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 47, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 47, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 47, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 56, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 58, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 58, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 63, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 63, "usage_type": "attribute" }, { "api_name": "pathlib.Path", "line_number": 64, "usage_type": "call" }, { "api_name": "lda.LDA", "line_number": 70, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 78, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 134, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 147, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 149, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 166, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 166, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 169, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 176, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 185, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 189, "usage_type": "attribute" }, { "api_name": "multiprocessing.cpu_count", "line_number": 196, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 199, "usage_type": "call" }, { "api_name": "tempfile.gettempdir", "line_number": 199, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 201, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 205, "usage_type": "call" }, { "api_name": "cophi.text.utils.export", "line_number": 206, "usage_type": "call" }, { "api_name": "cophi.text", "line_number": 206, "usage_type": "attribute" }, { "api_name": "dariah.mallet.MALLET", "line_number": 209, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 212, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 218, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 219, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 220, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 221, "usage_type": "call" }, { "api_name": "dariah.core.utils.read_mallet_topics", "line_number": 247, "usage_type": "call" }, { "api_name": "dariah.core.utils", "line_number": 247, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 248, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 255, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 266, "usage_type": "call" } ]
624178742
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Sorry, but the key map assignments please do manually. # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #ユーザー設定のアドオンリストに表示される色々 bl_info = {'name':'Silent Key Del', 'author':'bookyakuno', 'version':(0,1), 'category':'Animation', 'location':'" object.delete_xxx " key map assignments please do manually >> 3D View > Object Mode , 3D View > Pose , Timeline', 'description':'When you delete a key frame, the message is not displayed. '} # Blender内部のデータ構造にアクセスするために必要 import bpy # 実際の内容 class DeleteUnmassage_xxx(bpy.types.Operator): bl_idname = "object.delete_xxx" bl_label = "Silent_Key_Del" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): if (context.active_object): self.report(type={"INFO"}, message="Silent_Key_Del") # Message bpy.ops.anim.keyframe_delete_v3d() #これが実際に削除するやつ。普通にAlt + Iから実行する方は、『警告 + この文』を実行しているので、この文だけを実行させる return {'FINISHED'} # 実際の内容 class DeleteUnmassage_graph_silent_del(bpy.types.Operator): bl_idname = "graph.silent_del" bl_label = "silent_graph_Key_Del" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): if (context.active_object): self.report(type={"INFO"}, message="Silent_Key_Del") # Message bpy.ops.graph.delete() #これが実際に削除するやつ。普通にAlt + Iから実行する方は、『警告 + この文』を実行しているので、この文だけを実行させる return {'FINISHED'} # #def menu_func(self, context): # self.layout.operator(DeleteUnmassage_xxx.bl_idname) # #def register(): # bpy.utils.register_class(DeleteUnmassage_xxx) # # bpy.types.TIMELINE_MT_frame.append(menu_func) # # # #def unregister(): # bpy.utils.register_class(DeleteUnmassage_xxx) ## bpy.types.TIMELINE_MT_frame.remove(menu_func) # # プラグインをインストールしたときの処理 #def register(): # bpy.utils.register_class(DeleteUnmassage_xxx) # プラグインをアンインストールしたときの処理 #def unregister(): # bpy.utils.unregister_class(DeleteUnmassage_xxx) # メイン関数 #if __name__ == "__main__": # register() # =============================================================== # def register(): #登録 bpy.utils.register_class(DeleteUnmassage_xxx) bpy.utils.register_class(DeleteUnmassage_graph_silent_del) # bpy.utils.register_class(DeleteUnmassage_xxx) # kc = bpy.context.window_manager.keyconfigs.addon # if kc: # km = kc.keymaps.new(name='WINDOW', space_type='VIEW_3D' , region_type='WINDOW') # ショートカットキー登録 # kmi = km.keymap_items.new('object.delete_xxx', 'BACK_SPACE', 'PRESS', alt=True) def unregister(): #登録解除 bpy.utils.unregister_class(DeleteUnmassage_xxx) bpy.utils.unregister_class(DeleteUnmassage_graph_silent_del) # bpy.utils.unregister_class(DeleteUnmassage_xxx) # kc = bpy.context.window_manager.keyconfigs.addon # if kc: # km = kc.keymaps["WINDOW"] # for kmi in km.keymap_items: # if kmi.idname == 'object.delete_xxx': # km.keymap_items.remove(kmi) # break if __name__ == "__main__": register() # object.delete_xxx
null
SilentKeyDel.py
SilentKeyDel.py
py
3,740
python
en
code
null
code-starcoder2
83
[ { "api_name": "bpy.types", "line_number": 23, "usage_type": "attribute" }, { "api_name": "bpy.ops.anim.keyframe_delete_v3d", "line_number": 35, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 35, "usage_type": "attribute" }, { "api_name": "bpy.types", "line_number": 42, "usage_type": "attribute" }, { "api_name": "bpy.ops.graph.delete", "line_number": 55, "usage_type": "call" }, { "api_name": "bpy.ops", "line_number": 55, "usage_type": "attribute" }, { "api_name": "bpy.utils.register_class", "line_number": 110, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 110, "usage_type": "attribute" }, { "api_name": "bpy.utils.register_class", "line_number": 111, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 111, "usage_type": "attribute" }, { "api_name": "bpy.utils.unregister_class", "line_number": 124, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 124, "usage_type": "attribute" }, { "api_name": "bpy.utils.unregister_class", "line_number": 125, "usage_type": "call" }, { "api_name": "bpy.utils", "line_number": 125, "usage_type": "attribute" } ]
587699170
#!/usr/bin/python # -*- coding:utf-8 -*- # This Python file uses the following encoding: utf-8 from setuptools import setup, find_packages import sys from easy_contact_setup import version import os # Read the version from a project file VERSION = version.VERSION_str # Get description from README file long_description = open( os.path.join(os.path.dirname(__file__), 'README.rst')).read() # Build a list with requirements of the app REQUIRES = ['django-easy-contact'] # Because of the strange update behavior of "pip --upgrade package_name" # set requierment only if packages not avallible. try: import django except ImportError: REQUIRES.append('django == 1.3.7') try: import django_fields except ImportError: REQUIRES.append('django-fields') if sys.version_info < (2, 4): REQUIRES.append('python >= 2.4') setup(name='django-easy-contact-setup', version=VERSION, description='Admin set up for django-easy-contact', long_description=long_description, author='Andreas Fritz, digital.elements.li', author_email='[email protected]', url='http://www.digital.elements.li', download_url='https://pypi.python.org/pypi/django-easy-contact-setup', license='BSD', packages=find_packages(), include_package_data=True, keywords='django admin setup configuration django-easy-contact-setup', classifiers=[ 'Development Status :: 4 - Beta', 'Framework :: Django', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Environment :: Console', 'Natural Language :: English', 'Natural Language :: German', 'Intended Audience :: Developers', 'Intended Audience :: Information Technology', 'Topic :: Internet', 'Topic :: Utilities', ], install_requires=REQUIRES, zip_safe=False, )
null
pypi_install_script/django-easy-contact-setup-0.3.9.tar/setup.py
setup.py
py
2,062
python
en
code
null
code-starcoder2
83
[ { "api_name": "easy_contact_setup.version.VERSION_str", "line_number": 11, "usage_type": "attribute" }, { "api_name": "easy_contact_setup.version", "line_number": 11, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 15, "usage_type": "call" }, { "api_name": "sys.version_info", "line_number": 31, "usage_type": "attribute" }, { "api_name": "setuptools.setup", "line_number": 35, "usage_type": "call" }, { "api_name": "setuptools.find_packages", "line_number": 44, "usage_type": "call" } ]
456710609
import os import json import requests import yaml def connected_to_internet(url='http://www.google.com/', timeout=5): """ Check that there is an internet connection :param url: url to use for testing (Default value = 'http://www.google.com/') :param timeout: timeout to wait for [in seconds] (Default value = 5) """ try: _ = requests.get(url, timeout=timeout) return True except requests.ConnectionError: print("No internet connection available.") return False def send_query(query_string, clean=False): """ Send a query/request to a website :param query_string: string with query content :param clean: (Default value = False) """ response = requests.get(query_string) if response.ok: if not clean: return response.json()['msg'] else: return response.json() else: raise ValueError("Invalide query string: {}".format(query_string)) def listdir(fld): """ List the files into a folder with the coplete file path instead of the relative file path like os.listdir. :param fld: string, folder path """ if not os.path.isdir(fld): raise FileNotFoundError("Could not find directory: {}".format(fld)) return [os.path.join(fld, f) for f in os.listdir(fld)] def save_json(filepath, content, append=False): """ Saves content to a JSON file :param filepath: path to a file (must include .json) :param content: dictionary of stuff to save """ if not 'json' in filepath: raise ValueError("filepath is invalid") if not append: with open(filepath, 'w') as json_file: json.dump(content, json_file, indent=4) else: with open(filepath, 'w+') as json_file: json.dump(content, json_file, indent=4) def save_yaml(filepath, content, append=False, topcomment=None): """ Saves content to a yaml file :param filepath: path to a file (must include .yaml) :param content: dictionary of stuff to save """ if not 'yaml' in filepath: raise ValueError("filepath is invalid") if not append: method = 'w' else: method = 'w+' with open(filepath, method) as yaml_file: if topcomment is not None: yaml_file.write(topcomment) yaml.dump(content,yaml_file, default_flow_style=False, indent=4) def load_json(filepath): """ Load a JSON file :param filepath: path to a file """ if not os.path.isfile(filepath) or not ".json" in filepath.lower(): raise ValueError("unrecognized file path: {}".format(filepath)) with open(filepath) as f: data = json.load(f) return data def load_yaml(filepath): """ Load a YAML file :param filepath: path to yaml file """ if filepath is None or not os.path.isfile(filepath): raise ValueError("unrecognized file path: {}".format(filepath)) if not "yml" in filepath and not "yaml" in filepath: raise ValueError("unrecognized file path: {}".format(filepath)) return yaml.load(open(filepath), Loader=yaml.FullLoader) def load_volume_file(filepath, **kwargs): """ Load a volume file (e.g., .nii) and return vtk actor :param filepath: path to file :param **kwargs: """ from vtkplotter import Volume, load if not os.path.isfile(filepath): raise FileNotFoundError(filepath) if ".x3d" in filepath.lower(): raise ValueError("brainrender cannot use .x3d data as they are not supported by vtkplotter") elif "nii" in filepath.lower() or ".label" in filepath.lower(): import nibabel as nb data = nb.load(filepath) d = data.get_fdata() act = Volume(d, **kwargs) else: act = load(filepath, **kwargs) if act is None: raise ValueError("Could not load {}".format(filepath)) return act
null
brainrender/Utils/data_io.py
data_io.py
py
3,521
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.get", "line_number": 15, "usage_type": "call" }, { "api_name": "requests.ConnectionError", "line_number": 17, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 48, "usage_type": "call" }, { "api_name": "os.path", "line_number": 48, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 48, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 63, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 66, "usage_type": "call" }, { "api_name": "yaml.dump", "line_number": 88, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 97, "usage_type": "call" }, { "api_name": "os.path", "line_number": 97, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 109, "usage_type": "call" }, { "api_name": "os.path", "line_number": 109, "usage_type": "attribute" }, { "api_name": "yaml.load", "line_number": 111, "usage_type": "call" }, { "api_name": "yaml.FullLoader", "line_number": 111, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 123, "usage_type": "call" }, { "api_name": "os.path", "line_number": 123, "usage_type": "attribute" }, { "api_name": "nibabel.load", "line_number": 129, "usage_type": "call" }, { "api_name": "vtkplotter.Volume", "line_number": 132, "usage_type": "call" }, { "api_name": "vtkplotter.load", "line_number": 135, "usage_type": "call" } ]
167764124
# 라이브러리 불러오기 from config import TELEGRAM_TOKEN, CHAT_ID from noti import news import requests from bs4 import BeautifulSoup import telegram bot = telegram.Bot(token=TELEGRAM_TOKEN) # 서치 키워드 search_word = '코로나' # 기존에 보냈던 링크를 담아둘 리스트 naver_old_links = [] naver_old_titles = [] daum_old_links = [] daum_old_title = [] # 스크래핑 함수 def naver_extract_links(old_links=[]): naver_url = f'http://search.naver.com/search.naver?where=news&sm=tab_jum&query={search_word}&nso=p%3Aall%2Cso%3Add' naver_req = requests.get(naver_url) naver_html = naver_req.text naver_soup = BeautifulSoup(naver_html, 'html.parser') naver_search_result = naver_soup.select_one('.type01') naver_news_list = naver_search_result.select('li a') naver_links = [] for naver_news in naver_news_list[:10]: naver_link = naver_news['href'] naver_links.append(naver_link) naver_new_links = [] for naver_link in naver_links: if naver_link not in naver_old_links: naver_new_links.append(naver_link) # naver_titles = [] # for naver_news_title in naver_news_list[:10]: # naver_title = naver_news_title['title'] # naver_titles.append(naver_title) # naver_new_titles=[] # for naver_title in naver_titles: # if naver_title not in naver_old_links: # naver_new_titles.append(naver_title) return naver_new_links # return naver_new_titles # 스크래핑 함수 def daum_extract_links(old_links=[]): daum_url = f'http://search.daum.net/search?w=news&sort=recency&q={search_word}&cluster=n&DA=STC&dc=STC&pg=1&r=1&p=1&rc=1&at=more&sd=20200326210541&ed=20200327210541&period=d' daum_req = requests.get(daum_url) daum_html = daum_req.text daum_soup = BeautifulSoup(daum_html, 'html.parser') daum_search_result = daum_soup.select_one('#newsResultUL') daum_news_list = daum_search_result.select('li a') daum_links = [] for daum_news in daum_news_list[:10]: daum_link = daum_news['href'] daum_links.append(daum_link) daum_new_links = [] for daum_link in daum_links: if daum_link not in daum_old_links: daum_new_links.append(daum_link) # daum_titles = [] # for daum_news_title in daum_news_list[:10]: # daum_title = daum_news_title['title'] # daum_titles.append(daum_title) # daum_new_titles=[] # for daum_title in daum_titles: # if daum_title not in daum_old_links: # daum_new_titles.append(daum_title) return daum_new_links # return daum_new_titles # 이전 링크를 매개변수로 받아서, 비교 후 새로운 링크만 출력 # 차후 이 부분을 메시지 전송 코드로 변경하고 매시간 동작하도록 설정 # 새로운 링크가 없다면 빈 리스트 반환 for i in range(10): naver_new_links = naver_extract_links(naver_old_links) naver_old_links += naver_new_links.copy() naver_old_links = list(set(naver_old_links)) # naver_new_titles = naver_extract_links(naver_old_links) # naver_old_titles += naver_new_titles.copy() # naver_old_titles = list(set(naver_old_links)) # naver_news = naver_new_titles[i] + '\n\n' + naver_new_links[i] bot.sendMessage(CHAT_ID, i[i]) for i in range(10): daum_new_links = daum_extract_links(daum_old_links) daum_new_links += daum_new_links.copy() daum_new_links = list(set(daum_old_links)) # daum_new_titles = naver_extract_links(daum_old_links) # daum_old_titles += daum_new_titles.copy() # daum_old_titles = list(set(daum_old_links)) # daum_news = daum_new_titles[i] + '\n\n' + daum_new_links[i] bot.sendMessage(CHAT_ID, i[i]) """ ===보낼 링크=== ['https://m.news.naver.com/read.nhn?mode=LSD&mid=sec&sid1=101&oid=008&aid=0004349743', 'http://it.chosun.com/site/data/html_dir/2020/01/31/2020013103216.html', 'https://m.news.naver.com/read.nhn?mode=LSD&mid=sec&sid1=101&oid=031&aid=0000523810', 'https://m.news.naver.com/read.nhn?mode=LSD&mid=sec&sid1=102&oid=001&aid=0011371561', 'http://www.fintechpost.co.kr/news/articleView.html?idxno=100097'] ===보낼 링크=== [] ===보낼 링크=== [] """
null
news.py
news.py
py
4,230
python
en
code
null
code-starcoder2
83
[ { "api_name": "telegram.Bot", "line_number": 8, "usage_type": "call" }, { "api_name": "config.TELEGRAM_TOKEN", "line_number": 8, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 21, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 23, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 54, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 56, "usage_type": "call" }, { "api_name": "config.CHAT_ID", "line_number": 99, "usage_type": "argument" }, { "api_name": "config.CHAT_ID", "line_number": 113, "usage_type": "argument" } ]
46832701
import json import os from django.core.management import BaseCommand from authapp.models import ShopUser from mainapp.models import ClassForMainGallery, MainGallery, MainSlider, AboutUs from servicesapp.models import ServicesCategories, Services JSON_PATH = 'mainapp/jsons' def load_from_json(file_name): with open(os.path.join(JSON_PATH, file_name + '.json'), mode='r', encoding='UTF-8') as infile: return json.load(infile) class Command(BaseCommand): def handle(self, *args, **options): class_for_gallery = load_from_json('class_for_gallery') ClassForMainGallery.objects.all().delete() for _class in class_for_gallery: new_class = ClassForMainGallery(**_class) new_class.save() gallery = load_from_json('gallery') MainGallery.objects.all().delete() for gal in gallery: gal_class = gal['class_obj'] class_obj = ClassForMainGallery.objects.get(name=gal_class) gal['class_obj'] = class_obj new_gal = MainGallery(**gal) new_gal.save() slider = load_from_json('slider') MainSlider.objects.all().delete() for slide in slider: new_slide = MainSlider(**slide) new_slide.save() about = load_from_json('about') AboutUs.objects.all().delete() new_about = AboutUs(**about) new_about.save() # Создаём категории для услуг services_categories = load_from_json('services_categories') ServicesCategories.objects.all().delete() for category in services_categories: new_category = ServicesCategories(**category) new_category.save() # Создаем услуги services = load_from_json('services') Services.objects.all().delete() for service in services: service_cat = service['category'] cat_obj = ServicesCategories.objects.get(name=service_cat) service['category'] = cat_obj Services.objects.create(**service) super_user = ShopUser.objects.create_superuser('admin', '[email protected]', '123', age=42)
null
mainapp/management/commands/fill_db.py
fill_db.py
py
2,198
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.join", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 15, "usage_type": "call" }, { "api_name": "django.core.management.BaseCommand", "line_number": 18, "usage_type": "name" }, { "api_name": "mainapp.models.ClassForMainGallery.objects.all", "line_number": 22, "usage_type": "call" }, { "api_name": "mainapp.models.ClassForMainGallery.objects", "line_number": 22, "usage_type": "attribute" }, { "api_name": "mainapp.models.ClassForMainGallery", "line_number": 22, "usage_type": "name" }, { "api_name": "mainapp.models.ClassForMainGallery", "line_number": 24, "usage_type": "call" }, { "api_name": "mainapp.models.MainGallery.objects.all", "line_number": 29, "usage_type": "call" }, { "api_name": "mainapp.models.MainGallery.objects", "line_number": 29, "usage_type": "attribute" }, { "api_name": "mainapp.models.MainGallery", "line_number": 29, "usage_type": "name" }, { "api_name": "mainapp.models.ClassForMainGallery.objects.get", "line_number": 32, "usage_type": "call" }, { "api_name": "mainapp.models.ClassForMainGallery.objects", "line_number": 32, "usage_type": "attribute" }, { "api_name": "mainapp.models.ClassForMainGallery", "line_number": 32, "usage_type": "name" }, { "api_name": "mainapp.models.MainGallery", "line_number": 34, "usage_type": "call" }, { "api_name": "mainapp.models.MainSlider.objects.all", "line_number": 39, "usage_type": "call" }, { "api_name": "mainapp.models.MainSlider.objects", "line_number": 39, "usage_type": "attribute" }, { "api_name": "mainapp.models.MainSlider", "line_number": 39, "usage_type": "name" }, { "api_name": "mainapp.models.MainSlider", "line_number": 41, "usage_type": "call" }, { "api_name": "mainapp.models.AboutUs.objects.all", "line_number": 45, "usage_type": "call" }, { "api_name": "mainapp.models.AboutUs.objects", "line_number": 45, "usage_type": "attribute" }, { "api_name": "mainapp.models.AboutUs", "line_number": 45, "usage_type": "name" }, { "api_name": "mainapp.models.AboutUs", "line_number": 46, "usage_type": "call" }, { "api_name": "servicesapp.models.ServicesCategories.objects.all", "line_number": 51, "usage_type": "call" }, { "api_name": "servicesapp.models.ServicesCategories.objects", "line_number": 51, "usage_type": "attribute" }, { "api_name": "servicesapp.models.ServicesCategories", "line_number": 51, "usage_type": "name" }, { "api_name": "servicesapp.models.ServicesCategories", "line_number": 53, "usage_type": "call" }, { "api_name": "servicesapp.models.Services.objects.all", "line_number": 58, "usage_type": "call" }, { "api_name": "servicesapp.models.Services.objects", "line_number": 58, "usage_type": "attribute" }, { "api_name": "servicesapp.models.Services", "line_number": 58, "usage_type": "name" }, { "api_name": "servicesapp.models.ServicesCategories.objects.get", "line_number": 61, "usage_type": "call" }, { "api_name": "servicesapp.models.ServicesCategories.objects", "line_number": 61, "usage_type": "attribute" }, { "api_name": "servicesapp.models.ServicesCategories", "line_number": 61, "usage_type": "name" }, { "api_name": "servicesapp.models.Services.objects.create", "line_number": 63, "usage_type": "call" }, { "api_name": "servicesapp.models.Services.objects", "line_number": 63, "usage_type": "attribute" }, { "api_name": "servicesapp.models.Services", "line_number": 63, "usage_type": "name" }, { "api_name": "authapp.models.ShopUser.objects.create_superuser", "line_number": 65, "usage_type": "call" }, { "api_name": "authapp.models.ShopUser.objects", "line_number": 65, "usage_type": "attribute" }, { "api_name": "authapp.models.ShopUser", "line_number": 65, "usage_type": "name" } ]
2606318
from django.conf.urls import include, url from django.conf import settings from django.contrib import admin from django.views.generic import RedirectView from django.conf.urls.static import static from accounts.views import CustomLoginView, DisclaimerCreateView, \ data_protection, subscribe_view urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^studioadmin/', include('studioadmin.urls', namespace='studioadmin')), url(r'^', include('booking.urls', namespace='booking')), url( r'^data-protection-statement/$', data_protection, name='data_protection' ), url(r'^accounts/profile/', include('accounts.urls', namespace='profile')), url(r'^accounts/login/$', CustomLoginView.as_view(), name='login'), url( r'^accounts/disclaimer/$', DisclaimerCreateView.as_view(), name='disclaimer_form' ), url(r'^accounts/mailing-list/$', subscribe_view, name='subscribe'), url(r'^accounts/', include('allauth.urls')), url(r'^ckeditor/', include('ckeditor_uploader.urls')), url(r'^payments/ipn-paypal-notify/', include('paypal.standard.ipn.urls')), url(r'payments/', include('payments.urls', namespace='payments')), url(r'^favicon.ico/$', RedirectView.as_view(url=settings.STATIC_URL+'favicon.ico', permanent=False)), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: # pragma: no cover import debug_toolbar urlpatterns.append(url(r'^__debug__/', include(debug_toolbar.urls)))
null
pipsevents/urls.py
urls.py
py
1,564
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 11, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 11, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 11, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 13, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 14, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 15, "usage_type": "call" }, { "api_name": "accounts.views.data_protection", "line_number": 16, "usage_type": "argument" }, { "api_name": "django.conf.urls.url", "line_number": 19, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 19, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 20, "usage_type": "call" }, { "api_name": "accounts.views.CustomLoginView.as_view", "line_number": 20, "usage_type": "call" }, { "api_name": "accounts.views.CustomLoginView", "line_number": 20, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 21, "usage_type": "call" }, { "api_name": "accounts.views.DisclaimerCreateView.as_view", "line_number": 22, "usage_type": "call" }, { "api_name": "accounts.views.DisclaimerCreateView", "line_number": 22, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 25, "usage_type": "call" }, { "api_name": "accounts.views.subscribe_view", "line_number": 25, "usage_type": "argument" }, { "api_name": "django.conf.urls.url", "line_number": 26, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 26, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 27, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 27, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 28, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 28, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 29, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 29, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 30, "usage_type": "call" }, { "api_name": "django.views.generic.RedirectView.as_view", "line_number": 31, "usage_type": "call" }, { "api_name": "django.views.generic.RedirectView", "line_number": 31, "usage_type": "name" }, { "api_name": "django.conf.settings.STATIC_URL", "line_number": 31, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 31, "usage_type": "name" }, { "api_name": "django.conf.urls.static.static", "line_number": 33, "usage_type": "call" }, { "api_name": "django.conf.settings.MEDIA_URL", "line_number": 33, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 33, "usage_type": "name" }, { "api_name": "django.conf.settings.MEDIA_ROOT", "line_number": 33, "usage_type": "attribute" }, { "api_name": "django.conf.settings.DEBUG", "line_number": 35, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 35, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 37, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 37, "usage_type": "call" }, { "api_name": "debug_toolbar.urls", "line_number": 37, "usage_type": "attribute" } ]