seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
618407604
from PIL import Image import os,sys import shutil if(len(sys.argv)==1): print("ファイルが存在しないよ!") input("ボタンを押してね!") sys.exit() count=0 for i in sys.argv[1:]: count=count+1 print(str(count)+"枚目は「"+i+"」") file=i if(os.path.exists(os.path.dirname(file)+"\Resize")==False): os.mkdir(os.path.dirname(file)+"\Resize") img=Image.open(file) print("キロバイトになるまでリサイズしています・・・") while(1): img_resize = img.resize((int(img.width/2), int(img.height/2))) img_resize.save(file.replace(".png","")+"_1.png",quality=95) if(int(str(os.path.getsize(file))[:3]) <= 1000): break print("クオリティーを下げています・・・") image=Image.open(file.replace(".png","")+"_1.png") image.save(file.replace(".png","")+"_2.png",quality=60) print("JPEG化しています・・・") image2=Image.open(file.replace(".png","")+"_2.png") image.load() background = Image.new("RGB", image2.size, (255, 255, 255)) background.paste(image2, mask=image2.split()[3]) name=file.replace(".png","")+"_軽量化.jpg" background.save(name,"JPEG") os.remove(file.replace(".png","")+"_1.png") os.remove(file.replace(".png","")+"_2.png") print(os.path.dirname(file)+"\Resize\\"+os.path.basename(name)) if(os.path.exists(os.path.dirname(file)+"\Resize\\"+os.path.basename(name))==False): shutil.move(name,os.path.dirname(file)+"\Resize") else: os.remove(os.path.dirname(file)+"\Resize\\"+os.path.basename(name)) shutil.move(name,os.path.dirname(file)+"\Resize") print(str(count)+"枚目完了!\n") input("完了!\nボタンを押してね!\n")
null
ワンクリック軽量.py
ワンクリック軽量.py
py
1,685
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.argv", "line_number": 4, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 7, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 13, "usage_type": "call" }, { "api_name": "os.mkdir", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 15, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 15, "usage_type": "name" }, { "api_name": "os.path.getsize", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path", "line_number": 20, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 23, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 23, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 26, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 26, "usage_type": "name" }, { "api_name": "PIL.Image.new", "line_number": 28, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 28, "usage_type": "name" }, { "api_name": "os.remove", "line_number": 32, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path", "line_number": 34, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path", "line_number": 35, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 35, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path", "line_number": 38, "usage_type": "attribute" }, { "api_name": "os.path.basename", "line_number": 38, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 39, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 39, "usage_type": "call" }, { "api_name": "os.path", "line_number": 39, "usage_type": "attribute" } ]
167508745
"""empty message Revision ID: 26bec75584e5 Revises: bc5e7cba581f Create Date: 2018-04-03 13:50:26.021794 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '26bec75584e5' down_revision = 'bc5e7cba581f' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('adminlog', sa.Column('id', sa.Integer(), nullable=False), sa.Column('admin_id', sa.Integer(), nullable=True), sa.Column('ip', sa.String(length=100), nullable=True), sa.Column('addtime', sa.DateTime(), nullable=True), sa.ForeignKeyConstraint(['admin_id'], ['admin.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_adminlog_addtime'), 'adminlog', ['addtime'], unique=False) op.create_table('userlog', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('ip', sa.String(length=100), nullable=True), sa.Column('addtime', sa.DateTime(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_userlog_addtime'), 'userlog', ['addtime'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_userlog_addtime'), table_name='userlog') op.drop_table('userlog') op.drop_index(op.f('ix_adminlog_addtime'), table_name='adminlog') op.drop_table('adminlog') # ### end Alembic commands ###
null
migrations/versions/26bec75584e5_.py
26bec75584e5_.py
py
1,608
python
en
code
null
code-starcoder2
83
[ { "api_name": "alembic.op.create_table", "line_number": 21, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 21, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 27, "usage_type": "call" }, { "api_name": "alembic.op.create_index", "line_number": 29, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 29, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 29, "usage_type": "call" }, { "api_name": "alembic.op.create_table", "line_number": 30, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 30, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 32, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 32, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 33, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 33, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 35, "usage_type": "call" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 36, "usage_type": "call" }, { "api_name": "alembic.op.create_index", "line_number": 38, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 38, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 38, "usage_type": "call" }, { "api_name": "alembic.op.drop_index", "line_number": 44, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 44, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 44, "usage_type": "call" }, { "api_name": "alembic.op.drop_table", "line_number": 45, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 45, "usage_type": "name" }, { "api_name": "alembic.op.drop_index", "line_number": 46, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 46, "usage_type": "name" }, { "api_name": "alembic.op.f", "line_number": 46, "usage_type": "call" }, { "api_name": "alembic.op.drop_table", "line_number": 47, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 47, "usage_type": "name" } ]
304524391
from django.shortcuts import render from django.template.loader import get_template from django.http import HttpResponse from .models import Expentry,Expcategory import logging logger = logging.getLogger('application') # Create your views here. def expenses_index(request): entries = Expentry.objects.all() sorted_cats = get_sorted_cats() t = get_template('expenses/index.html') return HttpResponse(t.render({'expenses': entries, 'cats': sorted_cats}, request)) def create_category(entry): if entry["parent"] == "": c = Expcategory(cat_name = entry["cat_name"], cat_parent = None) c.save() else: p = Expcategory.objects.filter(cat_name = entry["parent"]) if not p == None: c = Expcategory(cat_name = entry["cat_name"], cat_parent = p) c.save() else: pc = Expcategory(cat_name = entry["parent"], cat_parent = None) pc.save() c = Expcategory(cat_name = entry["cat_name"], cat_parent = pc) c.save() def get_sorted_cats(): categories = list(Expcategory.objects.all()) sorted_cats = {} for c in categories: if c.cat_name in sorted_cats: ## it is a top level item and registered continue if c.cat_parent == None: ## it is a top level item and not registered sorted_cats[c.cat_name] = { "cname": c.cat_name, "cid": c.id, "children": [] } else: ## it is not top level item if c.cat_parent.cat_name in sorted_cats: ## its parent is registered sorted_cats[c.cat_parent.cat_name]["children"].append({ "cid": c.id, "cname": c.cat_name }) else: ## its parent is not registered sorted_cats[c.cat_parent.cat_name] = { "cname": c.cat_name, "cid": c.id, "children": [] } sorted_cats[c.cat_parent.cat_name]["children"].append({ "cid": c.id, "cname": c.cat_name }) return sorted_cats
null
expenses/views.py
views.py
py
2,365
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 8, "usage_type": "call" }, { "api_name": "models.Expentry.objects.all", "line_number": 12, "usage_type": "call" }, { "api_name": "models.Expentry.objects", "line_number": 12, "usage_type": "attribute" }, { "api_name": "models.Expentry", "line_number": 12, "usage_type": "name" }, { "api_name": "django.template.loader.get_template", "line_number": 14, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 15, "usage_type": "call" }, { "api_name": "models.Expcategory", "line_number": 21, "usage_type": "call" }, { "api_name": "models.Expcategory.objects.filter", "line_number": 25, "usage_type": "call" }, { "api_name": "models.Expcategory.objects", "line_number": 25, "usage_type": "attribute" }, { "api_name": "models.Expcategory", "line_number": 25, "usage_type": "name" }, { "api_name": "models.Expcategory", "line_number": 27, "usage_type": "call" }, { "api_name": "models.Expcategory", "line_number": 31, "usage_type": "call" }, { "api_name": "models.Expcategory", "line_number": 34, "usage_type": "call" }, { "api_name": "models.Expcategory.objects.all", "line_number": 40, "usage_type": "call" }, { "api_name": "models.Expcategory.objects", "line_number": 40, "usage_type": "attribute" }, { "api_name": "models.Expcategory", "line_number": 40, "usage_type": "name" } ]
524448802
#run the code in 虛擬環境 #在指定頁面進行爬蟲 #database import codecs import mysql.connector import time import serial #spider import requests from bs4 import BeautifulSoup import serial from time import sleep mydb = mysql.connector.connect( host = "localhost", # Database IP address user = "# Database username", passwd = "# Database password", database = "# Database name" ) no=1 data=[]#declare a list temp=""#溫度 rain_chance=""#降雨機率 humidity=""#濕度 ray=""#紫外線 air=""#空氣品質 wind_speed=""#風速 def get_web_content(): page=requests.get('https://weather.yam.com/%E6%A5%A0%E6%A2%93%E5%8D%80/%E9%AB%98%E9%9B%84%E5%B8%82')#goverment website cannot get the info. we want #print(page.status_code)#check, if output=200,then success return page.text#HTML source code def get_info_weather(): soup=BeautifulSoup(get_web_content(),'html.parser') #print(soup.text) print content we get and without HTML tags tmp=soup.find('div',class_='detail').find_all('p','')#type:bs4.element.ResultSet global data# will modify the global variable global temp global rain_chance global humidity global ray global air global wind_speed for i in tmp: data.append(str(i))#cannot write "global data.append()" #for d in data: #print(d) temp=data[0][3:7]+":"+data[0][10:-4] rain_chance=data[1][3:7]+":"+data[1][10:-4] humidity=data[2][3:7]+":"+data[2][10:-4] temp_ray=data[3][3:6]+":"+data[3][9:-10]+"-"+data[3][15:-5] air=data[4][3:7]+":"+data[4][10:-4] wind_speed=data[5][3:5]+":"+data[5][8:-4] #print(temp) 體感溫度 : 14℃ #print(rain_chance) 降雨機率 : 20% #print(humidity) 相對濕度 : 86% #print(ray) 紫外線 : 0 (低量級) #print(air) 空氣品質 : 普通 #print(wind_speed) 風速 : 5km/h ray=change_ray(temp_ray) def change_ray(tmp): r = "" for str in tmp: for uchar in str: inside_code = ord(uchar) if inside_code == 12288: inside_code = 32 elif (inside_code >= 65281 and inside_code <= 65374): inside_code -= 65248 r+=chr(inside_code) return r #database def connect_DB(): mycursor = mydb.cursor()#execute up instruction #mycursor.execute("INSERT INTO data (no,temperature,rain_chance,humidity,ray,air,wind_speed) VALUES('"+ str(no) + "','""','""','""','""','""','""')") def input_DB(): mycursor = mydb.cursor()#execute up instruction #Insert data to table mycursor.execute("UPDATE data SET temperature='"+temp+"',rain_chance='"+rain_chance+"',humidity='"+humidity+"',ray='"+ray+"',air='"+air+"',wind_speed='"+wind_speed+"'WHERE no=1") mydb.commit() # table内容有更新,必須使用此句 print("Insert data compeleted.\n") connect_DB() while True: get_info_weather() input_DB() time.sleep(60)
null
ES/Python/Crawler.py
Crawler.py
py
3,038
python
en
code
null
code-starcoder2
83
[ { "api_name": "mysql.connector.connector.connect", "line_number": 15, "usage_type": "call" }, { "api_name": "mysql.connector.connector", "line_number": 15, "usage_type": "attribute" }, { "api_name": "mysql.connector", "line_number": 15, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 32, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 37, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 100, "usage_type": "call" } ]
519058921
#!/usr/bin/python3 ''' state view module ''' from flask import jsonify, abort, request from models import storage, classes from api.v1.views import app_views @app_views.route('/states', methods=['GET']) def all_states(): ''' function returns all state objects ''' return jsonify([v.to_dict() for k, v in storage.all('State').items()]) @app_views.route('/states/<state_id>', methods=['GET']) def single_state(state_id): ''' function returns state object given its id ''' for k, v in storage.all('State').items(): if v.id == state_id: return jsonify(v.to_dict()) else: abort(404) @app_views.route('/states/<state_id>', methods=['DELETE']) def delete_state(state_id): ''' function deletes an object given its id ''' remove = storage.get("State", state_id) if remove is not None: storage.delete(remove) storage.save() return jsonify({}), 200 abort(404) @app_views.route('/states', methods=['POST']) def post_state(): ''' function creates a new state object ''' data = request.get_json() if data is None: return jsonify({'error': 'Not a JSON'}), 400 elif 'name' not in data: return jsonify({'error': 'Missing name'}), 400 else: new_inst = classes["State"]() setattr(new_inst, 'name', data['name']) new_inst.save() return jsonify(new_inst.to_dict()), 201 @app_views.route('/states/<state_id>', methods=['PUT']) def put_state(state_id): ''' function updates a state object given its id ''' data = request.get_json() state = storage.get("State", state_id) if state is None: abort(404) if data is None: return jsonify({'error': 'Not a JSON'}), 400 for k, v in data.items(): if k != 'id' and k != 'created_at' and k != 'updated_at': setattr(state, k, v) state.save() return jsonify(state.to_dict()), 200
null
AirBnB_clone_v3/api/v1/views/states.py
states.py
py
1,968
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.jsonify", "line_number": 15, "usage_type": "call" }, { "api_name": "models.storage.all", "line_number": 15, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 15, "usage_type": "name" }, { "api_name": "api.v1.views.app_views.route", "line_number": 10, "usage_type": "call" }, { "api_name": "api.v1.views.app_views", "line_number": 10, "usage_type": "name" }, { "api_name": "models.storage.all", "line_number": 23, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 23, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 25, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 27, "usage_type": "call" }, { "api_name": "api.v1.views.app_views.route", "line_number": 18, "usage_type": "call" }, { "api_name": "api.v1.views.app_views", "line_number": 18, "usage_type": "name" }, { "api_name": "models.storage.get", "line_number": 35, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 35, "usage_type": "name" }, { "api_name": "models.storage.delete", "line_number": 37, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 37, "usage_type": "name" }, { "api_name": "models.storage.save", "line_number": 38, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 38, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 39, "usage_type": "call" }, { "api_name": "flask.abort", "line_number": 40, "usage_type": "call" }, { "api_name": "api.v1.views.app_views.route", "line_number": 30, "usage_type": "call" }, { "api_name": "api.v1.views.app_views", "line_number": 30, "usage_type": "name" }, { "api_name": "flask.request.get_json", "line_number": 48, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 48, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 50, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 52, "usage_type": "call" }, { "api_name": "models.classes", "line_number": 54, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 57, "usage_type": "call" }, { "api_name": "api.v1.views.app_views.route", "line_number": 43, "usage_type": "call" }, { "api_name": "api.v1.views.app_views", "line_number": 43, "usage_type": "name" }, { "api_name": "flask.request.get_json", "line_number": 65, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 65, "usage_type": "name" }, { "api_name": "models.storage.get", "line_number": 66, "usage_type": "call" }, { "api_name": "models.storage", "line_number": 66, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 68, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 70, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 75, "usage_type": "call" }, { "api_name": "api.v1.views.app_views.route", "line_number": 60, "usage_type": "call" }, { "api_name": "api.v1.views.app_views", "line_number": 60, "usage_type": "name" } ]
323868325
import skvideo.io from skvideo.io import FFmpegWriter import cv2 import numpy as np if __name__ == '__main__': model_A = "faster_rcnn_inception_v2_coco_2017_11_08" model_B = "rc1_180k" video_names = ["bike2.mp4", "bus_motorbike.mp4", "cat_dog.mp4", "suitcase_person.mp4", "truck_car.mp4"] for video_name in video_names[1:]: cap = cv2.VideoCapture input_path_A = "/root/data/testing_videos/res/{}_{}".format(model_A, video_name) input_path_B = "/root/data/testing_videos/res/{}_{}".format(model_B, video_name) input_video_A = cv2.VideoCapture(input_path_A) input_video_B = cv2.VideoCapture(input_path_B) OUTPUT_PATH = "/root/data/testing_videos/res/{}_{}".format("compare", video_name) output_video = FFmpegWriter(OUTPUT_PATH) while True: _, input_frame_A = input_video_A.read() if input_frame_A is None: break _, input_frame_B = input_video_B.read() #for i, input_frame_A in enumerate(input_video_A): #input_frame_B = input_video_B[i] height, width, _ = input_frame_A.shape output_frame = np.zeros((height*2, width, 3), dtype=np.uint8) output_frame[:height,:,:] = cv2.cvtColor(input_frame_A, cv2.COLOR_BGR2RGB) output_frame[height:,:,:] = cv2.cvtColor(input_frame_B, cv2.COLOR_BGR2RGB) output_video.writeFrame(output_frame) output_video.close() print(OUTPUT_PATH)
null
research/object_detection/video_merger.py
video_merger.py
py
1,566
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.VideoCapture", "line_number": 14, "usage_type": "attribute" }, { "api_name": "cv2.VideoCapture", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 18, "usage_type": "call" }, { "api_name": "skvideo.io.FFmpegWriter", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 32, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 33, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 33, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 34, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 34, "usage_type": "attribute" } ]
619422657
import cv2 import serial print("Versão do OpenCV:", cv2.__version__) classificador = cv2.CascadeClassifier( "cascades/haarcascade_frontalface_default.xml") webCam = cv2.VideoCapture(1) porta = 'COM3' # linux ou mac em geral -> '/dev/ttyS0' velocidadeBaud = 115200 #ligarArduino = False ligarArduino = True if ligarArduino: SerialArduino = serial.Serial(porta,velocidadeBaud)#, timeout = 0.2) while(True): conectou, imagem = webCam.read() imagem = cv2.flip(imagem, 1) # inverte imagem (opcional) alturaImagem, larguraImagem = imagem.shape[:2] converteuCinza = cv2.cvtColor(imagem, cv2.COLOR_BGR2GRAY) encontrarFaces = classificador.detectMultiScale(converteuCinza, scaleFactor=1.5, minSize=(150,150), maxSize=(200,200)) cor = (0,0,255) for(origemX, origemY, largura, altura) in encontrarFaces: cv2.rectangle(imagem,(origemX,origemY), (origemX + largura, origemY + altura), cor,2) #print("Largura", largura, "Altura", altura) raio = 4 centroRosto = (origemX + int(largura/2),origemY + int(altura/2)) cv2.circle(imagem, centroRosto, raio, cor) # Normalizar = deixa valores entre zero até um normalizarZeroAteUm = int(larguraImagem/2) # Correção = transforma valores para 1 até 10 fatorDeCorrecao = 10 erroCentro = (((centroRosto[0] - (larguraImagem/2)) /normalizarZeroAteUm) * fatorDeCorrecao) print(erroCentro) #erroCentro = int(erroCentro) try: if ligarArduino: SerialArduino.write(('servo' + str(erroCentro) + '\n').encode()) except: print("não enviou") # desenha linha central cv2.line(imagem,(int(larguraImagem/2),0), (int(larguraImagem/2),alturaImagem), cor, 2) cv2.imshow("Rosto", imagem) teclou = cv2.waitKey(1) & 0xFF if teclou == ord('q') or teclou == 27: # se apertar q ou ESC if ligarArduino: SerialArduino.close() break webCam.release() cv2.destroyAllWindows()
null
enxergar/POCs/video3_2_arduino/assistenteMilGrauVisaoDetectarArduino.py
assistenteMilGrauVisaoDetectarArduino.py
py
2,311
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.__version__", "line_number": 4, "usage_type": "attribute" }, { "api_name": "cv2.CascadeClassifier", "line_number": 6, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 8, "usage_type": "call" }, { "api_name": "serial.Serial", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.flip", "line_number": 22, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 25, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 25, "usage_type": "attribute" }, { "api_name": "cv2.rectangle", "line_number": 33, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 40, "usage_type": "call" }, { "api_name": "cv2.line", "line_number": 58, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 62, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 64, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 71, "usage_type": "call" } ]
371462863
from discord.ext import commands, menus import utils import random , discord, os, importlib, mystbin, typing, aioimgur, functools, tweepy import traceback, textwrap from discord.ext.menus.views import ViewMenuPages class Owner(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(brief="a command to send mail") async def mail(self, ctx, *, user: utils.BetterUserconverter = None): if user is None: await ctx.reply("User not found, returning Letter") user = ctx.author if user: await ctx.reply("Please give me a message to use.") message = await self.bot.wait_for("message",check = utils.check(ctx)) embed_message = discord.Embed(title=message.content, timestamp=(message.created_at), color=random.randint(0, 16777215)) embed_message.set_author(name=f"Mail from: {ctx.author}",icon_url=(ctx.author.display_avatar.url)) embed_message.set_footer(text = f"{ctx.author.id}") embed_message.set_thumbnail(url = "https://i.imgur.com/1XvDnqC.png") if (user.dm_channel is None): await user.create_dm() try: await user.send(embed=embed_message) except: user = ctx.author await user.send(content="Message failed. sending",embed=embed_message) embed_message.add_field(name="Sent To:",value=str(user)) await self.bot.get_channel(855217084710912050).send(embed=embed_message) @commands.command() async def load(self, ctx, *, cog = None): if cog: try: self.bot.load_extension(cog) except Exception as e: await ctx.send(e) traceback.print_exc() await ctx.send("Loaded cog(see if there's any errors)") if cog is None: await ctx.send("you can't ask to load no cogs.") @commands.command() async def reload(self, ctx, *, cog = None): cog = cog or "all" if cog == "all": for x in list(self.bot.extensions): try: self.bot.reload_extension(x) except commands.errors.ExtensionError as e: await ctx.send(e) traceback.print_exc() await ctx.send("done reloading all cogs(check for any errors)") else: try: self.bot.reload_extension(cog) except commands.errors.ExtensionError as e: await ctx.send(e) traceback.print_exc() await ctx.send("Cog reloaded :D (check for any errors)") @commands.command() async def unload(self, ctx, *, cog = None): if cog: try: self.bot.unload_extension(cog) except commands.errors.ExtensionError as e: await ctx.send(e) traceback.print_exc() await ctx.send("Cog should be unloaded just fine :D.(check any errors)") if cog is None: await ctx.send("you can't ask to reload no cogs") @commands.command() async def shutdown(self, ctx): await ctx.send("shutdown/logout time happening.") await self.bot.close() async def cog_check(self, ctx): return await self.bot.is_owner(ctx.author) async def cog_command_error(self, ctx, error): if ctx.command or not ctx.command.has_error_handler(): await ctx.send(error) traceback.print_exc() #I need to fix all cog_command_error @commands.command(brief="Changes Bot Status(Owner Only)") async def status(self , ctx , * , args=None): if await self.bot.is_owner(ctx.author): if args: await self.bot.change_presence(status=discord.Status.do_not_disturb, activity= discord.Activity(type=discord.ActivityType.watching,name=args)) if args is None: await self.bot.change_presence(status=discord.Status.do_not_disturb) if await self.bot.is_owner(ctx.author) is False: await ctx.send("That's an owner only command") @commands.command(brief="Only owner command to change bot's nickname") async def change_nick(self, ctx ,*, name=None): if await self.bot.is_owner(ctx.author): if isinstance(ctx.channel, discord.TextChannel): await ctx.send("Changing Nickname") try: await ctx.guild.me.edit(nick=name) except discord.Forbidden: await ctx.send("Appears not to have valid perms") if isinstance(ctx.channel,discord.DMChannel): await ctx.send("You can't use that in Dms.") if await self.bot.is_owner(ctx.author) is False: await ctx.send("You can't use that command") class ServersEmbed(menus.ListPageSource): async def format_page(self, menu, item): embed = discord.Embed(title="Servers:",description=item,color=random.randint(0, 16777215)) return embed @commands.command(brief="a command to give a list of servers(owner only)",help="Gives a list of guilds(Bot Owners only)") async def servers(self, ctx): if await self.bot.is_owner(ctx.author): pag = commands.Paginator() for g in self.bot.guilds: pag.add_line(f"[{len(g.members)}/{g.member_count}] **{g.name}** (`{g.id}`) | {(g.system_channel or g.text_channels[0]).mention}") pages = [page.strip("`") for page in pag.pages] menu = ViewMenuPages(self.ServersEmbed(pages, per_page=1),delete_message_after=True) if (ctx.author.dm_channel is None): await ctx.author.create_dm() await menu.start(ctx, channel = ctx.author.dm_channel) if await self.bot.is_owner(ctx.author) is False: await ctx.send("You can't use that it's owner only") @commands.command(brief="only works with JDJG, but this command is meant to send updates to my webhook") async def webhook_update(self, ctx, *, args = None): if await self.bot.is_owner(ctx.author): if args: if isinstance(ctx.channel, discord.TextChannel): try: await ctx.message.delete() except: await ctx.send("It couldn't delete the message in this guils so, I kept it here.") webhook = discord.Webhook.from_url(os.environ["webhook1"], session = self.bot.session) embed=discord.Embed(title="Update",color=(35056),timestamp=(ctx.message.created_at)) embed.add_field(name="Update Info:",value=args) embed.set_author(name="JDJG's Update",icon_url='https://i.imgur.com/pdQkCBv.png') embed.set_footer(text="JDJG's Updates") await webhook.send(embed=embed) webhook=discord.Webhook.from_url(os.environ["webhook99"], session = self.bot.session) embed=discord.Embed(title="Update",color=(35056),timestamp=(ctx.message.created_at)) embed.add_field(name="Update Info:",value=args) embed.set_author(name="JDJG's Update",icon_url='https://i.imgur.com/pdQkCBv.png') embed.set_footer(text="JDJG's Updates") await webhook.send(embed=embed) if args is None: await ctx.send("You sadly can't use it like that.") if await self.bot.is_owner(ctx.author) is False: await ctx.send("You can't use that") @commands.command(brief="Commands to see what guilds a person is in.") async def mutualguilds(self, ctx, *, user: utils.BetterUserconverter = None): user = user or ctx.author pag = commands.Paginator() for g in user.mutual_guilds: pag.add_line(f"{g}") pages = [page.strip("`") for page in pag.pages] pages = pages or ["No shared servers"] menu = ViewMenuPages(utils.mutualGuildsEmbed(pages, per_page=1),delete_message_after = True) if (ctx.author.dm_channel is None): await ctx.author.create_dm() await menu.start(ctx, channel = ctx.author.dm_channel) @commands.command(brief="A command to add sus_users with a reason") async def addsus(self, ctx, *, user: utils.BetterUserconverter = None): if user is None: await ctx.send("can't have a user be none.") if user: await ctx.reply("Please give me a reason why:") reason = await self.bot.wait_for("message",check= utils.check(ctx)) cur = await self.bot.sus_users.cursor() await cur.execute("INSERT INTO sus_users VALUES (?, ?)", (user.id, reason.content)) await self.bot.sus_users.commit() await cur.close() await ctx.send("added sus users, succesfully") @commands.command(brief="a command to remove sus users.") async def removesus(self, ctx, *, user: utils.BetterUserconverter = None): if user is None: await ctx.send("You can't have a none user.") if user: cur = await self.bot.sus_users.cursor() await cur.execute("DELETE FROM sus_users WHERE user_id = ?", (user.id,)) await self.bot.sus_users.commit() await cur.close() await ctx.send("Removed sus users.") class SusUsersEmbed(menus.ListPageSource): async def format_page(self, menu, item): embed=discord.Embed(title = "Users Deemed Suspicious by JDJG Inc. Official", color = random.randint(0, 16777215)) embed.add_field(name = f"User ID : {item[0]}", value = f"**Reason :** {item[1]}", inline = False) return embed @commands.command(brief="a command to grab all in the sus_users list") async def sus_users(self, ctx): cur = await self.bot.sus_users.cursor() cursor = await cur.execute("SELECT * FROM SUS_USERS;") sus_users = tuple(await cursor.fetchall()) await cur.close() await self.bot.sus_users.commit() menu = ViewMenuPages(self.SusUsersEmbed(sus_users, per_page=1),delete_message_after=True) await menu.start(ctx) @sus_users.error async def sus_users_error(self, ctx, error): await ctx.send(error) class TestersEmbed(menus.ListPageSource): async def format_page(self, menu, item): embed = discord.Embed(title = "Testing Users:", color = random.randint(0, 16777215)) embed.add_field(name = "User ID:", value = f"{item}", inline = False) return embed @commands.command(brief = "a command listed all the commands") async def testers(self, ctx): menu = ViewMenuPages(self.TestersEmbed(self.bot.testers, per_page = 1), delete_message_after = True) await menu.start(ctx) @commands.command() async def update_sus(self, ctx): await self.bot.sus_users.commit() await ctx.send("Updated SQL boss.") @update_sus.error async def update_sus_error(self, ctx, error): await ctx.send(error) @commands.command(aliases=["bypass_command"]) async def command_bypass(self, ctx ,user: utils.BetterUserconverter = None, *, command = None): #make sure to swap to autoconverter if it gets added. user = user or ctx.author if command: command_wanted=self.bot.get_command(command) if command_wanted: await ctx.send(f"{command_wanted.name} now accessible for the {user} for one command usage!") self.bot.special_access[user.id]=command_wanted.name if command_wanted is None: await ctx.send("Please specify a valid command.") if command is None: await ctx.send("select a command :(") @commands.command(brief = "resets cooldown for you.",aliases = ["reset_cooldown"]) async def resetcooldown(self, ctx, *, command = None): if not command: return await ctx.send("please specificy a command") command_wanted = self.bot.get_command(command) if not command_wanted: return await ctx.send("please specify a command") if not command_wanted.is_on_cooldown(ctx): return await ctx.send("That doesn't have a cooldown/isn't on a cooldown.") command_wanted.reset_cooldown(ctx) await ctx.send(f"reset cooldown of {command_wanted}") @commands.command(brief = "leaves a guild only use when needed or really wanted. Otherwise no thanks.") async def leave_guild(self, ctx, *, guild: typing.Optional[discord.Guild] = None): guild = guild or ctx.guild if guild is None: return await ctx.send("Guild is None can't do anything.") await ctx.send("Bot leaving guild :(") try: await guild.leave() except Exception as e: await ctx.send(f"Somehow an error occured: {e}") traceback.print_exc() @commands.command() async def aioinput_test(self, ctx, *, args = None): args = args or "Test" result=await self.bot.loop.run_in_executor(None, input, (f"{args}:")) await ctx.send(f"Result of the input was {result}") @commands.command(brief="a powerful owner tool to reload local files that aren't reloadable.") async def reload_basic(self, ctx, *, args = None): if args is None:await ctx.send("Can't reload module named None") if args: try: module = importlib.import_module(name=args) except Exception as e: traceback.print_exc() return await ctx.send(e) try: value=importlib.reload(module) except Exception as e: traceback.print_exc() return await ctx.send(e) await ctx.send(f"Sucessfully reloaded {value.__name__} \nMain Package: {value.__package__}") @commands.command(brief="backs up a channel and then sends it into a file or mystbin") async def channel_backup(self, ctx): messages = await ctx.channel.history(limit = None, oldest_first = True).flatten() new_line = "\n" page = "\n".join(f"{msg.author} ({('Bot' if msg.author.bot else 'User')}) : {msg.content} {new_line}Attachments : {msg.attachments}" if msg.content else f"{msg.author} ({('Bot' if msg.author.bot else 'User')}) : {new_line.join(f'{e.to_dict()}' for e in msg.embeds)} {new_line}Attachments : {msg.attachments}" for msg in messages) mystbin_client = mystbin.Client(session = self.bot.session) paste = await mystbin_client.post(page) await ctx.author.send(content=f"Added text file to mystbin: \n{paste.url}") @channel_backup.error async def channel_backup_error(self, ctx, error): etype = type(error) trace = error.__traceback__ values=''.join(map(str,traceback.format_exception(etype, error, trace))) pages = textwrap.wrap(values, width = 1992) menu = ViewMenuPages(utils.ErrorEmbed(pages, per_page = 1),delete_message_after = True) if (ctx.author.dm_channel is None): await ctx.author.create_dm() await menu.start(ctx, channel = ctx.author.dm_channel) mystbin_client = mystbin.Client(session=self.bot.session) paste = await mystbin_client.post(values) await ctx.send(f"Traceback: {paste.url}") @commands.command(brief = "adds packages and urls to rtfm DB", aliases=["add_rtfm"]) async def addrtfm(self, ctx, name = None, *, url = None): if not name or not url or not name and not url: return await ctx.send("You need a name and also url.") cur = await self.bot.sus_users.cursor() await cur.execute("INSERT INTO RTFM_DICTIONARY VALUES (?, ?)", (name, url)) await self.bot.sus_users.commit() await cur.close() await ctx.send(f"added {name} and {url} to the rtfm DB") @commands.command(brief = "removes packages from the rtfm DB", aliases = ["remove_rtfm"]) async def removertfm(self, ctx, *, name = None): if name is None: return await ctx.send("You can't remove None") cur = await self.bot.sus_users.cursor() await cur.execute("DELETE FROM RTFM_DICTIONARY WHERE name = ?", (name,)) await self.bot.sus_users.commit() await cur.close() await ctx.send(f"Removed the rfm value {name}.") @commands.command(brief = "a command to save images to imgur(for owner only lol)") async def save_image(self, ctx): if not ctx.message.attachments: return await ctx.send("You need to provide some attachments.") await ctx.send("JDJG doesn't take any responbility for what you upload here :eyes: don't upload anything bad okay?") for x in ctx.message.attachments: try: discord.utils._get_mime_type_for_image(await x.read()) except Exception as e: traceback.print_exc() return await ctx.send(e) imgur_client= aioimgur.ImgurClient(os.environ["imgur_id"], os.environ["imgur_secret"]) imgur_url = await imgur_client.upload(await x.read()) await ctx.send(f"{imgur_url['link']}") @commands.command(brief="A command to remove testers") async def remove_tester(self, ctx, *, user: utils.BetterUserconverter = None): if user is None: await ctx.send("You can't have a non existent user.") if user: cur = await self.bot.sus_users.cursor() await cur.execute("DELETE FROM testers_list WHERE user_id = ?", (user.id,)) await self.bot.sus_users.commit() await cur.close() if not user.id in self.bot.testers: return await ctx.send(f"{user} isn't in the testers list.") else: self.bot.testers.remove(user.id) await ctx.send(f"Removed tester known as {user}") @commands.command(brief="A command to add testers") async def add_tester(self, ctx, *, user: utils.BetterUserconverter = None): if user is None: await ctx.send("You can't have a non existent user.") if user: cur = await self.bot.sus_users.cursor() await cur.execute("INSERT INTO testers_list VALUES (?)", (user.id,)) await self.bot.sus_users.commit() await cur.close() if not user.id in self.bot.testers: self.bot.testers.append(user.id) await ctx.send(f"added tester known as {user}") else: return await ctx.send(f"{user} is in the testers list already!") def tweepy_post(self, post_text = None): consumer_key = os.getenv('tweet_key') consumer_secret = os.getenv('tweet_secret') auth = tweepy.OAuthHandler(consumer_key, consumer_secret) access_token = os.getenv('tweet_access') access_secret = os.getenv('tweet_token') auth.set_access_token(access_token, access_secret) twitter_api = tweepy.API(auth) return twitter_api.update_status(status = post_text) @commands.command(brief = "sends tweet to JDBot Twitter") async def send_tweet(self, ctx, *, args = None): if not args: return await ctx.send("you can't send nothing to twitter.") try: tweet_time = functools.partial(self.tweepy_post, args) post = await self.bot.loop.run_in_executor(None, tweet_time) except Exception as e: traceback.print_exc() return await ctx.send(f"Exception occured at {e}") await ctx.send(f"Url of sent tweet is: https://twitter.com/twitter/statuses/{post.id}") @commands.command(brief = "chunks a guild for the purpose of testing purpose(it's owner only to be used in testing guilds only)") async def chunk_guild(self, ctx): if ctx.guild is None: return await ctx.send("You can't chunk a guild that doesn't exist or a channel that is a DM.") if ctx.guild.chunked: return await ctx.send("No need to chunk this guild, it appears to be chunked") await ctx.guild.chunk(cache = True) await ctx.send("Finished chunking..") @chunk_guild.error async def chunk_guild_error(self, ctx, error): await ctx.send(error) traceback.print_exc() @commands.command(brief = "displays the guild status and user status immediately") async def stats_status(self, ctx): await ctx.send("changing status, check now....") await self.bot.change_presence(status=discord.Status.online, activity=discord.Activity(type=discord.ActivityType.watching, name=f"{len(self.bot.guilds)} servers | {len(self.bot.users)} users")) @stats_status.error async def stats_status_error(self, ctx, error): await ctx.send(error) @commands.command(brief="a command to give a list of servers(owner only)",help="Gives a list of guilds(Bot Owners only) but with join dates updated.") async def servers2(self, ctx): if await self.bot.is_owner(ctx.author): sorted_guilds = sorted(self.bot.guilds, key=lambda guild: guild.me.joined_at) pag = commands.Paginator() for g in sorted_guilds: pag.add_line(f"{discord.utils.format_dt(g.me.joined_at, style = 'd')} {discord.utils.format_dt(g.me.joined_at, style = 'T')} \n[{len(g.members)}/{g.member_count}] **{g.name}** (`{g.id}`) | {(g.system_channel or g.text_channels[0]).mention}\n") pages = [page.strip("`") for page in pag.pages] menu = ViewMenuPages(self.ServersEmbed(pages, per_page=1),delete_message_after=True) if (ctx.author.dm_channel is None): await ctx.author.create_dm() await menu.start(ctx, channel = ctx.author.dm_channel) if await self.bot.is_owner(ctx.author) is False: await ctx.send("You can't use that it's owner only") def setup(bot): bot.add_cog(Owner(bot))
null
cogs/owner.py
owner.py
py
20,373
python
en
code
null
code-starcoder2
83
[ { "api_name": "discord.ext.commands.Cog", "line_number": 7, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 7, "usage_type": "name" }, { "api_name": "utils.BetterUserconverter", "line_number": 12, "usage_type": "attribute" }, { "api_name": "utils.check", "line_number": 18, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 19, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 19, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 11, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 11, "usage_type": "name" }, { "api_name": "traceback.print_exc", "line_number": 40, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 33, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 33, "usage_type": "name" }, { "api_name": "discord.ext.commands.errors", "line_number": 56, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 56, "usage_type": "name" }, { "api_name": "traceback.print_exc", "line_number": 58, "usage_type": "call" }, { "api_name": "discord.ext.commands.errors", "line_number": 66, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 66, "usage_type": "name" }, { "api_name": "traceback.print_exc", "line_number": 68, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 47, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 47, "usage_type": "name" }, { "api_name": "discord.ext.commands.errors", "line_number": 77, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 77, "usage_type": "name" }, { "api_name": "traceback.print_exc", "line_number": 79, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 72, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 72, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 84, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 84, "usage_type": "name" }, { "api_name": "traceback.print_exc", "line_number": 96, "usage_type": "call" }, { "api_name": "discord.Status", "line_number": 104, "usage_type": "attribute" }, { "api_name": "discord.Activity", "line_number": 104, "usage_type": "call" }, { "api_name": "discord.ActivityType", "line_number": 104, "usage_type": "attribute" }, { "api_name": "discord.Status", "line_number": 106, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 100, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 100, "usage_type": "name" }, { "api_name": "discord.TextChannel", "line_number": 113, "usage_type": "attribute" }, { "api_name": "discord.Forbidden", "line_number": 117, "usage_type": "attribute" }, { "api_name": "discord.DMChannel", "line_number": 119, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 110, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 110, "usage_type": "name" }, { "api_name": "discord.ext.menus.ListPageSource", "line_number": 125, "usage_type": "attribute" }, { "api_name": "discord.ext.menus", "line_number": 125, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 127, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 127, "usage_type": "call" }, { "api_name": "discord.ext.commands.Paginator", "line_number": 134, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 134, "usage_type": "name" }, { "api_name": "discord.ext.menus.views.ViewMenuPages", "line_number": 139, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 130, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 130, "usage_type": "name" }, { "api_name": "discord.TextChannel", "line_number": 153, "usage_type": "attribute" }, { "api_name": "discord.Webhook.from_url", "line_number": 160, "usage_type": "call" }, { "api_name": "discord.Webhook", "line_number": 160, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 160, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 161, "usage_type": "call" }, { "api_name": "discord.Webhook.from_url", "line_number": 167, "usage_type": "call" }, { "api_name": "discord.Webhook", "line_number": 167, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 167, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 168, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 149, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 149, "usage_type": "name" }, { "api_name": "utils.BetterUserconverter", "line_number": 180, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.Paginator", "line_number": 182, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 182, "usage_type": "name" }, { "api_name": "discord.ext.menus.views.ViewMenuPages", "line_number": 190, "usage_type": "call" }, { "api_name": "utils.mutualGuildsEmbed", "line_number": 190, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 179, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 179, "usage_type": "name" }, { "api_name": "utils.BetterUserconverter", "line_number": 198, "usage_type": "attribute" }, { "api_name": "utils.check", "line_number": 204, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 197, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 197, "usage_type": "name" }, { "api_name": "utils.BetterUserconverter", "line_number": 212, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 211, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 211, "usage_type": "name" }, { "api_name": "discord.ext.menus.ListPageSource", "line_number": 223, "usage_type": "attribute" }, { "api_name": "discord.ext.menus", "line_number": 223, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 225, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 225, "usage_type": "call" }, { "api_name": "discord.ext.menus.views.ViewMenuPages", "line_number": 236, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 229, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 229, "usage_type": "name" }, { "api_name": "discord.ext.menus.ListPageSource", "line_number": 244, "usage_type": "attribute" }, { "api_name": "discord.ext.menus", "line_number": 244, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 246, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 246, "usage_type": "call" }, { "api_name": "discord.ext.menus.views.ViewMenuPages", "line_number": 254, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 251, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 251, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 257, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 257, "usage_type": "name" }, { "api_name": "utils.BetterUserconverter", "line_number": 267, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 266, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 266, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 280, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 280, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 297, "usage_type": "attribute" }, { "api_name": "discord.Guild", "line_number": 297, "usage_type": "attribute" }, { "api_name": "traceback.print_exc", "line_number": 306, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 296, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 296, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 308, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 308, "usage_type": "name" }, { "api_name": "importlib.import_module", "line_number": 320, "usage_type": "call" }, { "api_name": "traceback.print_exc", "line_number": 322, "usage_type": "call" }, { "api_name": "importlib.reload", "line_number": 325, "usage_type": "call" }, { "api_name": "traceback.print_exc", "line_number": 327, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 315, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 315, "usage_type": "name" }, { "api_name": "mystbin.Client", "line_number": 342, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 333, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 333, "usage_type": "name" }, { "api_name": "traceback.format_exception", "line_number": 352, "usage_type": "call" }, { "api_name": "textwrap.wrap", "line_number": 354, "usage_type": "call" }, { "api_name": "discord.ext.menus.views.ViewMenuPages", "line_number": 356, "usage_type": "call" }, { "api_name": "utils.ErrorEmbed", "line_number": 356, "usage_type": "call" }, { "api_name": "mystbin.Client", "line_number": 363, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 368, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 368, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 380, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 380, "usage_type": "name" }, { "api_name": "discord.utils._get_mime_type_for_image", "line_number": 400, "usage_type": "call" }, { "api_name": "discord.utils", "line_number": 400, "usage_type": "attribute" }, { "api_name": "traceback.print_exc", "line_number": 403, "usage_type": "call" }, { "api_name": "aioimgur.ImgurClient", "line_number": 407, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 407, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 391, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 391, "usage_type": "name" }, { "api_name": "utils.BetterUserconverter", "line_number": 413, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 412, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 412, "usage_type": "name" }, { "api_name": "utils.BetterUserconverter", "line_number": 431, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 430, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 430, "usage_type": "name" }, { "api_name": "os.getenv", "line_number": 450, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 451, "usage_type": "call" }, { "api_name": "tweepy.OAuthHandler", "line_number": 453, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 455, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 456, "usage_type": "call" }, { "api_name": "tweepy.API", "line_number": 460, "usage_type": "call" }, { "api_name": "functools.partial", "line_number": 471, "usage_type": "call" }, { "api_name": "traceback.print_exc", "line_number": 475, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 464, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 464, "usage_type": "name" }, { "api_name": "discord.ext.commands.command", "line_number": 480, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 480, "usage_type": "name" }, { "api_name": "traceback.print_exc", "line_number": 495, "usage_type": "call" }, { "api_name": "discord.Status", "line_number": 502, "usage_type": "attribute" }, { "api_name": "discord.Activity", "line_number": 502, "usage_type": "call" }, { "api_name": "discord.ActivityType", "line_number": 502, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 498, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 498, "usage_type": "name" }, { "api_name": "discord.ext.commands.Paginator", "line_number": 515, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 515, "usage_type": "name" }, { "api_name": "discord.utils.format_dt", "line_number": 517, "usage_type": "call" }, { "api_name": "discord.utils", "line_number": 517, "usage_type": "attribute" }, { "api_name": "discord.ext.menus.views.ViewMenuPages", "line_number": 520, "usage_type": "call" }, { "api_name": "discord.ext.commands.command", "line_number": 509, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 509, "usage_type": "name" } ]
522490840
# coding: utf-8 import scrapy from urllib.parse import urlparse, parse_qs class AllStocks(scrapy.Spider): name = "allStocks" def start_requests(self): pages = 464 urls = [] for i in range(0, 464): x = i + 1 url = 'http://stock.finance.sina.com.cn/usstock/api/jsonp.php//US_CategoryService.getList?page='+str(x)+'&num=20&sort=&asc=0&market=&id=' urls.append(url) for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): num = str(parse_qs(urlparse(response.url).query)['page'][0]) filename = 'allStocks-%s.json' % num data = str(response.body, 'gbk') data = data[2:-3] open(filename, 'w').write(data) # 60k url: https://stock.finance.sina.com.cn/usstock/api/jsonp_v2.php/var%20_MSFT_60_1548714405787=/US_MinKService.getMinK?symbol=MSFT&type=60&___qn=3
null
tutorial/tutorial/spiders/allStock.py
allStock.py
py
951
python
en
code
null
code-starcoder2
83
[ { "api_name": "scrapy.Spider", "line_number": 7, "usage_type": "attribute" }, { "api_name": "scrapy.Request", "line_number": 17, "usage_type": "call" }, { "api_name": "urllib.parse.parse_qs", "line_number": 21, "usage_type": "call" }, { "api_name": "urllib.parse.urlparse", "line_number": 21, "usage_type": "call" } ]
530887272
#!/usr/bin/env python # -*- coding: utf-8 -*- import httplib import urllib import json import os tempData = { "data": [ { "TOTAL_CAL": "825", "MENU": [ { "LUNCH_MENU_NM": "뚝배기어묵탕*어묵사리", "LUNCH_MENU_ESTIMATION": 0, "LUNCH_ROOM_NM": "가마" }, { "LUNCH_MENU_NM": "현미밥/잡곡밥", "LUNCH_MENU_ESTIMATION": 4.5646, "LUNCH_ROOM_NM": "가마" }, { "LUNCH_MENU_NM": "삼색계란말이", "LUNCH_MENU_ESTIMATION": 0, "LUNCH_ROOM_NM": "가마" }, { "LUNCH_MENU_NM": "들깨버섯볶음", "LUNCH_MENU_ESTIMATION": 0, "LUNCH_ROOM_NM": "가마" }, { "LUNCH_MENU_NM": "깻잎지무침", "LUNCH_MENU_ESTIMATION": 0, "LUNCH_ROOM_NM": "가마" }, { "LUNCH_MENU_NM": "열무김치", "LUNCH_MENU_ESTIMATION": 3.5096, "LUNCH_ROOM_NM": "가마" } ], "DATE_VAL": "20161115", "LUNCH_TYPE": "1", "DIVISION_INFO": "", "DIVISION_CODE": "SEOCHO", "TOTAL_PRICE": "4500", "LUNCH_ROOM_NM": "가마", "CONTENTS_ETC": "" }, { "TOTAL_CAL": "445", "MENU": [ { "LUNCH_MENU_NM": "닭가슴살샐러드세트", "LUNCH_MENU_ESTIMATION": 6.2, "LUNCH_ROOM_NM": "건강도시락" }, { "LUNCH_MENU_NM": "닭가슴살샐러드*유자D", "LUNCH_MENU_ESTIMATION": 6.25, "LUNCH_ROOM_NM": "건강도시락" }, { "LUNCH_MENU_NM": "단호박/메추리알/컬리플라워", "LUNCH_MENU_ESTIMATION": 0, "LUNCH_ROOM_NM": "건강도시락" }, { "LUNCH_MENU_NM": "잡곡빵/모듬과일/녹차", "LUNCH_MENU_ESTIMATION": 6, "LUNCH_ROOM_NM": "건강도시락" } ], "DATE_VAL": "20161115", "LUNCH_TYPE": "1", "DIVISION_INFO": "", "DIVISION_CODE": "SEOCHO", "TOTAL_PRICE": "4500", "LUNCH_ROOM_NM": "건강도시락", "CONTENTS_ETC": "" }, { "TOTAL_CAL": "746", "MENU": [ { "LUNCH_MENU_NM": "계란볶음밥*마파소스", "LUNCH_MENU_ESTIMATION": 0, "LUNCH_ROOM_NM": "인터쉐프" }, { "LUNCH_MENU_NM": "탕파국", "LUNCH_MENU_ESTIMATION": 3.2874, "LUNCH_ROOM_NM": "인터쉐프" }, { "LUNCH_MENU_NM": "견과류깐풍기", "LUNCH_MENU_ESTIMATION": 0, "LUNCH_ROOM_NM": "인터쉐프" }, { "LUNCH_MENU_NM": "단무지무침", "LUNCH_MENU_ESTIMATION": 3.2, "LUNCH_ROOM_NM": "인터쉐프" }, { "LUNCH_MENU_NM": "열무김치", "LUNCH_MENU_ESTIMATION": 3.1667, "LUNCH_ROOM_NM": "인터쉐프" } ], "DATE_VAL": "20161115", "LUNCH_TYPE": "1", "DIVISION_INFO": "", "DIVISION_CODE": "SEOCHO", "TOTAL_PRICE": "4500", "LUNCH_ROOM_NM": "인터쉐프", "CONTENTS_ETC": "" }, { "TOTAL_CAL": "25", "MENU": [ { "LUNCH_MENU_NM": "양상추샐러드*요거트D/오리엔탈D", "LUNCH_MENU_ESTIMATION": 0, "LUNCH_ROOM_NM": "입맛코너" } ], "DATE_VAL": "20161115", "LUNCH_TYPE": "1", "DIVISION_INFO": "", "DIVISION_CODE": "SEOCHO", "TOTAL_PRICE": "4500", "LUNCH_ROOM_NM": "입맛코너", "CONTENTS_ETC": "" }, { "TOTAL_CAL": "632", "MENU": [ { "LUNCH_MENU_NM": "잔치국수", "LUNCH_MENU_ESTIMATION": 5.5, "LUNCH_ROOM_NM": "해피존" }, { "LUNCH_MENU_NM": "충무김밥", "LUNCH_MENU_ESTIMATION": 5.3333, "LUNCH_ROOM_NM": "해피존" }, { "LUNCH_MENU_NM": "골뱅이무침", "LUNCH_MENU_ESTIMATION": 0, "LUNCH_ROOM_NM": "해피존" }, { "LUNCH_MENU_NM": "단무지무침", "LUNCH_MENU_ESTIMATION": 5.6667, "LUNCH_ROOM_NM": "해피존" }, { "LUNCH_MENU_NM": "열무김치", "LUNCH_MENU_ESTIMATION": 2.3585, "LUNCH_ROOM_NM": "해피존" } ], "DATE_VAL": "20161115", "LUNCH_TYPE": "1", "DIVISION_INFO": "", "DIVISION_CODE": "SEOCHO", "TOTAL_PRICE": "4500", "LUNCH_ROOM_NM": "해피존", "CONTENTS_ETC": "" } ], "result": "00", "message": "Success" } def main(): #req = request.get_json(silent=True, force=True) #data = json.loads(tempData) res = makeWebhookResult(tempData) res = json.dumps(res, indent=4) # print(res) #r = make_response(res) #r.headers['Content-Type'] = 'application/json' return res def makeWebhookResult(data): dataList = data.get('data') if dataList is None: return {} speech = "" displayText = "" for i in range(len(dataList)): data = dataList[i] total_cal = data.get('TOTAL_CAL') menuList = data.get('MENU') lunch_room_nm = menuList[0].get('LUNCH_ROOM_NM') lunch_menu_nm = menuList[0].get('LUNCH_MENU_NM').split("\n")[0] #some menu has '\n' in it speech = speech + lunch_room_nm + "(" + total_cal + "cal)" + " : " + lunch_menu_nm displayText = displayText + lunch_room_nm + "(" + total_cal + "cal)" + " : " for menu in menuList: lunch_menu_nm = menu.get('LUNCH_MENU_NM').split("\n")[0] #some menu has '\n' in it displayText = displayText + lunch_menu_nm + " " if i < len(dataList)-1: speech += "\n" displayText += "\n" print("speech: ") print(speech) print("\n") print("displayText: ") print(displayText) return { "speech": speech, "displayText": displayText, # "data": data, # "contextOut": [], "source": "menu-at-seocho" } if __name__ == '__main__': main()
null
reply_local.py
reply_local.py
py
6,283
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.dumps", "line_number": 187, "usage_type": "call" } ]
386195789
import csv import io import json import pickle from base64 import b64decode from datetime import datetime from flask import g, make_response from crc import db, session from crc.api.common import ApiError from crc.models.approval import Approval, ApprovalModel, ApprovalSchema, ApprovalStatus from crc.models.workflow import WorkflowModel from crc.services.approval_service import ApprovalService from crc.services.ldap_service import LdapService # Returns counts of approvals in each status group assigned to the given user. # The goal is to return results as quickly as possible. def get_approval_counts(as_user=None): uid = as_user or g.user.uid db_user_approvals = db.session.query(ApprovalModel)\ .filter_by(approver_uid=uid)\ .filter(ApprovalModel.status != ApprovalStatus.CANCELED.name)\ .all() study_ids = [a.study_id for a in db_user_approvals] db_other_approvals = db.session.query(ApprovalModel)\ .filter(ApprovalModel.study_id.in_(study_ids))\ .filter(ApprovalModel.approver_uid != uid)\ .filter(ApprovalModel.status != ApprovalStatus.CANCELED.name)\ .all() # Make a dict of the other approvals where the key is the study id and the value is the approval # TODO: This won't work if there are more than 2 approvals with the same study_id other_approvals = {} for approval in db_other_approvals: other_approvals[approval.study_id] = approval counts = {} for name, value in ApprovalStatus.__members__.items(): counts[name] = 0 for approval in db_user_approvals: # Check if another approval has the same study id if approval.study_id in other_approvals: other_approval = other_approvals[approval.study_id] # Other approval takes precedence over this one if other_approval.id < approval.id: if other_approval.status == ApprovalStatus.PENDING.name: counts[ApprovalStatus.AWAITING.name] += 1 elif other_approval.status == ApprovalStatus.DECLINED.name: counts[ApprovalStatus.DECLINED.name] += 1 elif other_approval.status == ApprovalStatus.CANCELED.name: counts[ApprovalStatus.CANCELED.name] += 1 elif other_approval.status == ApprovalStatus.APPROVED.name: counts[approval.status] += 1 else: counts[approval.status] += 1 else: counts[approval.status] += 1 return counts def get_all_approvals(status=None): approvals = ApprovalService.get_all_approvals(include_cancelled=status is True) results = ApprovalSchema(many=True).dump(approvals) return results def get_approvals(status=None, as_user=None): #status = ApprovalStatus.PENDING.value user = g.user.uid if as_user: user = as_user approvals = ApprovalService.get_approvals_per_user(user, status, include_cancelled=False) results = ApprovalSchema(many=True).dump(approvals) return results def get_approvals_for_study(study_id=None): db_approvals = ApprovalService.get_approvals_for_study(study_id) approvals = [Approval.from_model(approval_model) for approval_model in db_approvals] results = ApprovalSchema(many=True).dump(approvals) return results def get_health_attesting_csv(): records = ApprovalService.get_health_attesting_records() si = io.StringIO() cw = csv.writer(si) cw.writerows(records) output = make_response(si.getvalue()) output.headers["Content-Disposition"] = "attachment; filename=health_attesting.csv" output.headers["Content-type"] = "text/csv" return output # ----- Begin descent into madness ---- # def get_csv(): """A damn lie, it's a json file. A huge bit of a one-off for RRT, but 3 weeks of midnight work can convince a man to do just about anything""" content = ApprovalService.get_not_really_csv_content() return content # ----- come back to the world of the living ---- # def update_approval(approval_id, body): if approval_id is None: raise ApiError('unknown_approval', 'Please provide a valid Approval ID.') approval_model = session.query(ApprovalModel).get(approval_id) if approval_model is None: raise ApiError('unknown_approval', 'The approval "' + str(approval_id) + '" is not recognized.') if approval_model.approver_uid != g.user.uid: raise ApiError("not_your_approval", "You may not modify this approval. It belongs to another user.") approval_model.status = body['status'] approval_model.message = body['message'] approval_model.date_approved = datetime.now() session.add(approval_model) session.commit() # Called only to send emails approver = body['approver']['uid'] ApprovalService.update_approval(approval_id, approver) result = ApprovalSchema().dump(approval_model) return result
null
crc/api/approval.py
approval.py
py
5,018
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.g.user", "line_number": 21, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 21, "usage_type": "name" }, { "api_name": "crc.db.session.query", "line_number": 23, "usage_type": "call" }, { "api_name": "crc.models.approval.ApprovalModel", "line_number": 23, "usage_type": "argument" }, { "api_name": "crc.db.session", "line_number": 23, "usage_type": "attribute" }, { "api_name": "crc.db", "line_number": 23, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalModel.status", "line_number": 25, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalModel", "line_number": 25, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.CANCELED", "line_number": 25, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 25, "usage_type": "name" }, { "api_name": "crc.db.session.query", "line_number": 30, "usage_type": "call" }, { "api_name": "crc.models.approval.ApprovalModel", "line_number": 30, "usage_type": "argument" }, { "api_name": "crc.db.session", "line_number": 30, "usage_type": "attribute" }, { "api_name": "crc.db", "line_number": 30, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalModel.study_id.in_", "line_number": 31, "usage_type": "call" }, { "api_name": "crc.models.approval.ApprovalModel.study_id", "line_number": 31, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalModel", "line_number": 31, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalModel.approver_uid", "line_number": 32, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalModel", "line_number": 32, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalModel.status", "line_number": 33, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalModel", "line_number": 33, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.CANCELED", "line_number": 33, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 33, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.__members__.items", "line_number": 43, "usage_type": "call" }, { "api_name": "crc.models.approval.ApprovalStatus.__members__", "line_number": 43, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 43, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.PENDING", "line_number": 53, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 53, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.AWAITING", "line_number": 54, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 54, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.DECLINED", "line_number": 55, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 55, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.DECLINED", "line_number": 56, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 56, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.CANCELED", "line_number": 57, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 57, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.CANCELED", "line_number": 58, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 58, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalStatus.APPROVED", "line_number": 59, "usage_type": "attribute" }, { "api_name": "crc.models.approval.ApprovalStatus", "line_number": 59, "usage_type": "name" }, { "api_name": "crc.services.approval_service.ApprovalService.get_all_approvals", "line_number": 70, "usage_type": "call" }, { "api_name": "crc.services.approval_service.ApprovalService", "line_number": 70, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalSchema", "line_number": 71, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 77, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 77, "usage_type": "name" }, { "api_name": "crc.services.approval_service.ApprovalService.get_approvals_per_user", "line_number": 80, "usage_type": "call" }, { "api_name": "crc.services.approval_service.ApprovalService", "line_number": 80, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalSchema", "line_number": 82, "usage_type": "call" }, { "api_name": "crc.services.approval_service.ApprovalService.get_approvals_for_study", "line_number": 87, "usage_type": "call" }, { "api_name": "crc.services.approval_service.ApprovalService", "line_number": 87, "usage_type": "name" }, { "api_name": "crc.models.approval.Approval.from_model", "line_number": 88, "usage_type": "call" }, { "api_name": "crc.models.approval.Approval", "line_number": 88, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalSchema", "line_number": 89, "usage_type": "call" }, { "api_name": "crc.services.approval_service.ApprovalService.get_health_attesting_records", "line_number": 94, "usage_type": "call" }, { "api_name": "crc.services.approval_service.ApprovalService", "line_number": 94, "usage_type": "name" }, { "api_name": "io.StringIO", "line_number": 95, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 96, "usage_type": "call" }, { "api_name": "flask.make_response", "line_number": 98, "usage_type": "call" }, { "api_name": "crc.services.approval_service.ApprovalService.get_not_really_csv_content", "line_number": 108, "usage_type": "call" }, { "api_name": "crc.services.approval_service.ApprovalService", "line_number": 108, "usage_type": "name" }, { "api_name": "crc.api.common.ApiError", "line_number": 117, "usage_type": "call" }, { "api_name": "crc.session.query", "line_number": 119, "usage_type": "call" }, { "api_name": "crc.models.approval.ApprovalModel", "line_number": 119, "usage_type": "argument" }, { "api_name": "crc.session", "line_number": 119, "usage_type": "name" }, { "api_name": "crc.api.common.ApiError", "line_number": 121, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 123, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 123, "usage_type": "name" }, { "api_name": "crc.api.common.ApiError", "line_number": 124, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 128, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 128, "usage_type": "name" }, { "api_name": "crc.session.add", "line_number": 129, "usage_type": "call" }, { "api_name": "crc.session", "line_number": 129, "usage_type": "name" }, { "api_name": "crc.session.commit", "line_number": 130, "usage_type": "call" }, { "api_name": "crc.session", "line_number": 130, "usage_type": "name" }, { "api_name": "crc.services.approval_service.ApprovalService.update_approval", "line_number": 134, "usage_type": "call" }, { "api_name": "crc.services.approval_service.ApprovalService", "line_number": 134, "usage_type": "name" }, { "api_name": "crc.models.approval.ApprovalSchema", "line_number": 136, "usage_type": "call" } ]
616464747
from typing import List from http import HTTPStatus from kentik_api.api_calls import custom_dimensions from kentik_api.api_resources.base_api import BaseAPI from kentik_api.public.types import ID from kentik_api.public.custom_dimension import CustomDimension, Populator from kentik_api.requests_payload import custom_dimensions_payload, populators_payload from kentik_api.api_connection.api_connector_protocol import APIConnectorProtocol from kentik_api.requests_payload.conversions import convert, permissive_enum_to_str class PopulatorsAPI(BaseAPI): """Exposes Kentik API operations related to populators (belong to custom dimensions)""" def create(self, populator: Populator) -> Populator: assert populator.value is not None assert populator.direction is not None assert populator.dimension_id is not None apicall = custom_dimensions.create_populator(populator.dimension_id) payload = populators_payload.CreateRequest( value=populator.value, direction=populator.direction.value, device_name=populator.device_name, interface_name=populator.interface_name, addr=populator.addr, port=populator.port, tcp_flags=populator.tcp_flags, protocol=populator.protocol, asn=populator.asn, nexthop_asn=populator.nexthop_asn, nexthop=populator.nexthop, bgp_aspath=populator.bgp_aspath, bgp_community=populator.bgp_community, device_type=populator.device_type, site=populator.site, lasthop_as_name=populator.lasthop_as_name, nexthop_as_name=populator.nexthop_as_name, mac=populator.mac, country=populator.country, vlans=populator.vlans, ) response = self.send(apicall, payload) return populators_payload.CreateResponse.from_json(response.text).to_populator() def update(self, populator: Populator) -> Populator: assert populator.value is not None assert populator.direction is not None assert populator.dimension_id is not None apicall = custom_dimensions.update_populator(populator.dimension_id, populator.id) payload = populators_payload.UpdateRequest( value=populator.value, direction=convert(populator.direction, permissive_enum_to_str), device_name=populator.device_name, interface_name=populator.interface_name, addr=populator.addr, port=populator.port, tcp_flags=populator.tcp_flags, protocol=populator.protocol, asn=populator.asn, nexthop_asn=populator.nexthop_asn, nexthop=populator.nexthop, bgp_aspath=populator.bgp_aspath, bgp_community=populator.bgp_community, device_type=populator.device_type, site=populator.site, lasthop_as_name=populator.lasthop_as_name, nexthop_as_name=populator.nexthop_as_name, mac=populator.mac, country=populator.country, vlans=populator.vlans, ) response = self.send(apicall, payload) return populators_payload.UpdateResponse.from_json(response.text).to_populator() def delete(self, custom_dimension_id: ID, populator_id: ID) -> bool: apicall = custom_dimensions.delete_populator(custom_dimension_id, populator_id) response = self.send(apicall) return response.http_status_code == HTTPStatus.NO_CONTENT class CustomDimensionsAPI(BaseAPI): """Exposes Kentik API operations related to custom dimensions""" def __init__(self, api_connector: APIConnectorProtocol) -> None: super(CustomDimensionsAPI, self).__init__(api_connector) self._populators = PopulatorsAPI(api_connector) def get(self, custom_dimension_id: ID) -> CustomDimension: apicall = custom_dimensions.get_custom_dimension_info(custom_dimension_id) response = self.send(apicall) return custom_dimensions_payload.GetResponse.from_json(response.text).to_custom_dimension() def get_all(self) -> List[CustomDimension]: apicall = custom_dimensions.get_custom_dimensions() response = self.send(apicall) return custom_dimensions_payload.GetAllResponse.from_json(response.text).to_custom_dimensions() def create(self, custom_dimension: CustomDimension) -> CustomDimension: assert custom_dimension.name is not None assert custom_dimension.display_name is not None assert custom_dimension.type is not None apicall = custom_dimensions.create_custom_dimension() payload = custom_dimensions_payload.CreateRequest( name=custom_dimension.name, display_name=custom_dimension.display_name, type=custom_dimension.type, ) response = self.send(apicall, payload) return custom_dimensions_payload.CreateResponse.from_json(response.text).to_custom_dimension() def update(self, custom_dimension: CustomDimension) -> CustomDimension: assert custom_dimension.display_name is not None apicall = custom_dimensions.update_custom_dimension(custom_dimension.id) payload = custom_dimensions_payload.UpdateRequest( display_name=custom_dimension.display_name, ) response = self.send(apicall, payload) return custom_dimensions_payload.UpdateResponse.from_json(response.text).to_custom_dimension() def delete(self, custom_dimension_id: ID) -> bool: apicall = custom_dimensions.delete_custom_dimension(custom_dimension_id) response = self.send(apicall) return response.http_status_code == HTTPStatus.NO_CONTENT @property def populators(self) -> PopulatorsAPI: return self._populators
null
kentik_api_library/kentik_api/api_resources/custom_dimensions_api.py
custom_dimensions_api.py
py
5,888
python
en
code
null
code-starcoder2
83
[ { "api_name": "kentik_api.api_resources.base_api.BaseAPI", "line_number": 13, "usage_type": "name" }, { "api_name": "kentik_api.public.custom_dimension.Populator", "line_number": 16, "usage_type": "name" }, { "api_name": "kentik_api.api_calls.custom_dimensions.create_populator", "line_number": 20, "usage_type": "call" }, { "api_name": "kentik_api.api_calls.custom_dimensions", "line_number": 20, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.populators_payload.CreateRequest", "line_number": 21, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.populators_payload", "line_number": 21, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.populators_payload.CreateResponse.from_json", "line_number": 44, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.populators_payload.CreateResponse", "line_number": 44, "usage_type": "attribute" }, { "api_name": "kentik_api.requests_payload.populators_payload", "line_number": 44, "usage_type": "name" }, { "api_name": "kentik_api.public.custom_dimension.Populator", "line_number": 46, "usage_type": "name" }, { "api_name": "kentik_api.api_calls.custom_dimensions.update_populator", "line_number": 50, "usage_type": "call" }, { "api_name": "kentik_api.api_calls.custom_dimensions", "line_number": 50, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.populators_payload.UpdateRequest", "line_number": 51, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.populators_payload", "line_number": 51, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.conversions.convert", "line_number": 53, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.conversions.permissive_enum_to_str", "line_number": 53, "usage_type": "argument" }, { "api_name": "kentik_api.requests_payload.populators_payload.UpdateResponse.from_json", "line_number": 74, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.populators_payload.UpdateResponse", "line_number": 74, "usage_type": "attribute" }, { "api_name": "kentik_api.requests_payload.populators_payload", "line_number": 74, "usage_type": "name" }, { "api_name": "kentik_api.public.types.ID", "line_number": 76, "usage_type": "name" }, { "api_name": "kentik_api.api_calls.custom_dimensions.delete_populator", "line_number": 77, "usage_type": "call" }, { "api_name": "kentik_api.api_calls.custom_dimensions", "line_number": 77, "usage_type": "name" }, { "api_name": "http.HTTPStatus.NO_CONTENT", "line_number": 79, "usage_type": "attribute" }, { "api_name": "http.HTTPStatus", "line_number": 79, "usage_type": "name" }, { "api_name": "kentik_api.api_resources.base_api.BaseAPI", "line_number": 82, "usage_type": "name" }, { "api_name": "kentik_api.api_connection.api_connector_protocol.APIConnectorProtocol", "line_number": 85, "usage_type": "name" }, { "api_name": "kentik_api.public.types.ID", "line_number": 89, "usage_type": "name" }, { "api_name": "kentik_api.api_calls.custom_dimensions.get_custom_dimension_info", "line_number": 90, "usage_type": "call" }, { "api_name": "kentik_api.api_calls.custom_dimensions", "line_number": 90, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.GetResponse.from_json", "line_number": 92, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.GetResponse", "line_number": 92, "usage_type": "attribute" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload", "line_number": 92, "usage_type": "name" }, { "api_name": "kentik_api.public.custom_dimension.CustomDimension", "line_number": 89, "usage_type": "name" }, { "api_name": "kentik_api.api_calls.custom_dimensions.get_custom_dimensions", "line_number": 95, "usage_type": "call" }, { "api_name": "kentik_api.api_calls.custom_dimensions", "line_number": 95, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.GetAllResponse.from_json", "line_number": 97, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.GetAllResponse", "line_number": 97, "usage_type": "attribute" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload", "line_number": 97, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 94, "usage_type": "name" }, { "api_name": "kentik_api.public.custom_dimension.CustomDimension", "line_number": 94, "usage_type": "name" }, { "api_name": "kentik_api.public.custom_dimension.CustomDimension", "line_number": 99, "usage_type": "name" }, { "api_name": "kentik_api.api_calls.custom_dimensions.create_custom_dimension", "line_number": 103, "usage_type": "call" }, { "api_name": "kentik_api.api_calls.custom_dimensions", "line_number": 103, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.CreateRequest", "line_number": 104, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload", "line_number": 104, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.CreateResponse.from_json", "line_number": 110, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.CreateResponse", "line_number": 110, "usage_type": "attribute" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload", "line_number": 110, "usage_type": "name" }, { "api_name": "kentik_api.public.custom_dimension.CustomDimension", "line_number": 112, "usage_type": "name" }, { "api_name": "kentik_api.api_calls.custom_dimensions.update_custom_dimension", "line_number": 114, "usage_type": "call" }, { "api_name": "kentik_api.api_calls.custom_dimensions", "line_number": 114, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.UpdateRequest", "line_number": 115, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload", "line_number": 115, "usage_type": "name" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.UpdateResponse.from_json", "line_number": 119, "usage_type": "call" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload.UpdateResponse", "line_number": 119, "usage_type": "attribute" }, { "api_name": "kentik_api.requests_payload.custom_dimensions_payload", "line_number": 119, "usage_type": "name" }, { "api_name": "kentik_api.public.types.ID", "line_number": 121, "usage_type": "name" }, { "api_name": "kentik_api.api_calls.custom_dimensions.delete_custom_dimension", "line_number": 122, "usage_type": "call" }, { "api_name": "kentik_api.api_calls.custom_dimensions", "line_number": 122, "usage_type": "name" }, { "api_name": "http.HTTPStatus.NO_CONTENT", "line_number": 124, "usage_type": "attribute" }, { "api_name": "http.HTTPStatus", "line_number": 124, "usage_type": "name" } ]
350127618
import os.path as osp import collections as col import numpy as np import mastic.molecule as masticmol import mastic.features as masticfeat import mastic.config.features as masticfeatconfig from rdkit import RDConfig from rdkit import Chem from rdkit.Chem import ChemicalFeatures class RDKitMoleculeWrapper(object): """Wrapper class providing convenience access and conversion of rdkit's molecule representations to mastic molecular representations. Examples -------- Load a small molecule from the test data using rdkit: >>> from rdkit import Chem >>> from mastic.interfaces.rdkit import RDKitMoleculeWrapper >>> from mastic.tests.data import BEN_path >>> sml_rdkit = Chem.MolFromPDBFile(BEN_path, remove_Hs=False) Construct the wrapper: >>> sml_wrapped = RDKitMoleculeWrapper(sml_rdkit) Now we can easily (and pythonically) access attributes. Most importantly we can convert to mastic.MoleculeType: >>> BENType = sml_wrapped.make_molecule_type() And use rdkit's chemical feature finding methods: >>> features = sml_wrapped.find_features() """ def __init__(self, rdkit_molecule, mol_name=None): self.rdkit_molecule = rdkit_molecule self.mol_name = mol_name @property def atoms(self): """The rdkit atoms in the molecule.""" return [atom for atom in self.rdkit_molecule.GetAtoms()] @property def bonds(self): """The rdkit bonds in the molecule.""" return [bond for bond in self.rdkit_molecule.GetBonds()] @property def num_atoms(self): """The number of atoms in the molecule.""" return self.rdkit_molecule.GetNumAtoms() @property def num_bonds(self): """The number of bonds in the molecule.""" return self.rdkit_molecule.GetNumBonds() @property def num_conformers(self): """The number of coordinate sets for the whole molecule.""" return self.rdkit_molecule.GetNumConformers() def atoms_data(self): """Return a list of the data for each atom in the molecule. Calls atom_data. """ atoms_data = [] for atom in self.rdkit_molecule.GetAtoms(): atom_data = self.atom_data(atom.GetIdx()) atoms_data.append(atom_data) return atoms_data def atom_data(self, atom_idx): """Extracts useful rdkit information about an atom and returns it as a dictionary. """ atom = self.atoms[atom_idx] atom_dict = {} atom_dict['atomic_num'] = atom.GetAtomicNum() atom_dict['bond_degree_no_Hs'] = atom.GetDegree() # same but want a convenience attribute atom_dict['bond_degree'] = atom.GetDegree() atom_dict['bond_degree_with_Hs'] = atom.GetTotalDegree() # same but want a convenience attribute atom_dict['total_bond_degree'] = atom.GetTotalDegree() atom_dict['explicit_valence'] = atom.GetExplicitValence() atom_dict['implicit_valence'] = atom.GetImplicitValence() atom_dict['total_valence'] = atom.GetTotalValence() atom_dict['formal_charge'] = atom.GetFormalCharge() atom_dict['hybridization'] = atom.GetHybridization() atom_dict['is_aromatic'] = atom.GetIsAromatic() atom_dict['in_ring'] = atom.IsInRing() atom_dict['isotope'] = atom.GetIsotope() atom_dict['mass'] = atom.GetMass() atom_dict['num_radical_electrons'] = atom.GetNumRadicalElectrons() atom_dict['element'] = atom.GetSymbol() atom_dict['num_Hs'] = atom.GetTotalNumHs() monomer_info = atom.GetMonomerInfo() if monomer_info: atom_dict['monomer_type'] = monomer_info.GetMonomerType() atom_dict['pdb_name'] = monomer_info.GetName().strip() # atom_dict['pdb_chain_id'] = monomer_info.GetChainID() atom_dict['pdb_insertion_code'] = monomer_info.GetInsertionCode() # atom_dict['pdb_heteroatom'] = monomer_info.IsHeteroAtom() atom_dict['pdb_occupancy'] = monomer_info.GetOccupancy() atom_dict['pdb_residue_name'] = monomer_info.GetResidueName() atom_dict['pdb_residue_number'] = monomer_info.GetResidueNumber() atom_dict['pdb_serial_number'] = monomer_info.GetSerialNumber() # atom_dict['pdb_segment_number'] = monomer_info.GetSegmentNumber() atom_dict['pdb_temp_factor'] = monomer_info.GetTempFactor() atom_dict['rdkit_mol_idx'] = atom.GetIdx() atom_dict['name'] = atom_dict['rdkit_mol_idx'] return atom_dict def bonds_data(self): """Return a list of the data for each bond in the molecule. Calls bond_data. """ bonds_data = [] for bond_idx, bond in enumerate(self.bonds): bond_data = self.bond_data(bond_idx) bonds_data.append(bond_data) return bonds_data def bond_data(self, bond_idx): """Extracts useful rdkit information about an atom and returns it as a dictionary. """ bond = self.bonds[bond_idx] bond_dict = {} bond_dict['bond_order'] = str(bond.GetBondTypeAsDouble()) bond_dict['is_aromatic'] = bond.GetIsAromatic() bond_dict['in_ring'] = bond.IsInRing() bond_dict['stereo'] = str(bond.GetStereo()) bond_dict['is_conjugated'] = bond.GetIsConjugated() bond_dict['rdkit_bond_type'] = str(bond.GetBondType()) atom1_idx = bond.GetBeginAtomIdx() atom2_idx = bond.GetEndAtomIdx() bond_dict['rdkit_atom_idxs'] = (atom1_idx, atom2_idx) bond_dict['rdkit_mol_idx'] = bond.GetIdx() bond_dict['name'] = bond_dict['rdkit_mol_idx'] return bond_dict def bonds_map(self): """Returns a dictionary mapping the indices of the bonds to the indices of their atoms. """ bond_map_dict = {} for bond_idx, bond in enumerate(self.bonds): atom1_idx = bond.GetBeginAtomIdx() atom2_idx = bond.GetEndAtomIdx() bond_map_dict[bond_idx] = (atom1_idx, atom2_idx) return bond_map_dict def molecule_data(self): """Extracts useful rdkit information about an atom and returns it as a dictionary. """ molecule_dict = {} molecule_dict['name'] = self.mol_name ring_info = self.rdkit_molecule.GetRingInfo() try: molecule_dict['num_rings'] = ring_info.NumRings() except RuntimeError: # something is wrong, just log it and move on # LOGGING molecule_dict['num_rings'] = None molecule_dict['num_atoms'] = self.rdkit_molecule.GetNumAtoms() molecule_dict['num_bonds'] = self.rdkit_molecule.GetNumBonds() molecule_dict['num_heavy_atoms'] = self.rdkit_molecule.GetNumHeavyAtoms() return molecule_dict def make_atom_type(self, atom_idx, atom_type_name): """Converts a single atom to a mastic.AtomType.""" atom_data = self.atom_data(atom_idx) return masticmol.AtomType(atom_type_name, **atom_data) def make_atom_types(self): """Converts all atoms in the molecule to mastic.AtomTypes.""" atoms_data = self.atoms_data() atom_types = [] for atom_data in atoms_data: atom_type_name = "{1}Atom{0}Type".format(atom_data['name'], self.mol_name) atom_type = masticmol.AtomType(atom_type_name, **atom_data) atom_types.append(atom_type) return atom_types def make_bond_type(self, bond_idx, bond_type_name, bond_atom_types): """Converts a single bond to a mastic.BondType.""" bond_data = self.bond_data(bond_idx) return masticmol.BondType(bond_type_name, atom_types=bond_atom_types, **bond_data) def make_bond_types(self, atom_types=None): """Converts all bonds in the molecule to mastic.BondTypes.""" # get atom types if atom_types is None: atom_types = self.make_atom_types() bonds_data = self.bonds_data() bond_types = [] for bond_data in bonds_data: bond_type_name = "{1}Bond{0}Type".format(bond_data['name'], self.mol_name) bond_atom_types = (atom_types[bond_data['rdkit_atom_idxs'][0]], atom_types[bond_data['rdkit_atom_idxs'][1]]) bond_type = masticmol.BondType(bond_type_name, atom_types=bond_atom_types, **bond_data) bond_types.append(bond_type) return bond_types def make_molecule_type(self, find_features=False): """Converts the molecule to a mastic.MoleculeType. First converts all atoms and bonds to mastic Types. Optionally the rdkit find_features function can be called with default settings using the flag. """ # get relevant data bond_map = self.bonds_map() molecule_data = self.molecule_data() # AtomTypes atom_types = self.make_atom_types() # BondTypes bond_types = self.make_bond_types(atom_types=atom_types) # MoleculeType molecule_data.update({"name" : self.mol_name}) molecule_type_name = "{}Type".format(self.mol_name) molecule_type = masticmol.MoleculeType(molecule_type_name, atom_types=atom_types, bond_types=bond_types, bond_map=bond_map, **molecule_data) if find_features: for idx, feat_dict in self.find_features().items(): atom_idxs = feat_dict['atom_ids'] feature_attrs = {} feature_classifiers = [feat_dict['family'], feat_dict['type']] feature_attrs[masticfeatconfig.FEATURE_CLASSIFIER_KEY] = feature_classifiers feature_attrs['rdkit_position'] = feat_dict['position'] feature_attrs['rdkit_family'] = feat_dict['family'] feature_attrs['rdkit_family'] = feat_dict['type'] feature_type_name = masticfeatconfig.FEATURE_TYPE_TEMPLATE.format(self.mol_name, idx) feature_type = masticfeat.FeatureType(feature_type_name, molecule_type=molecule_type, atom_idxs=atom_idxs, **feature_attrs) molecule_type.add_feature_type(idx, feature_type) return molecule_type def find_features(self, fdef="BaseFeatures.fdef"): """Uses a feature definition (fdef) database to to find chemical features in the molecule. Returns a nested dictionary mapping the feature indices to the feature dict. """ assert isinstance(fdef, str) fdef_path = osp.join(RDConfig.RDDataDir, fdef) feature_factory = ChemicalFeatures.BuildFeatureFactory(fdef_path) factory_features = feature_factory.GetFeaturesForMol(self.rdkit_molecule) features = {} for feature in factory_features: # unpack the coordinates from the rdkit object pos_obj = feature.GetPos() feature_info = {'family' : feature.GetFamily(), 'type' : feature.GetType(), 'atom_ids' : feature.GetAtomIds(), 'position' : (pos_obj.x, pos_obj.y, pos_obj.z)} features[feature.GetId()] = feature_info families = col.defaultdict(list) types = col.defaultdict(list) for idx, info in features.items(): families[info['family']].append(idx) types[info['type']].append(idx) return features def get_conformer_coords(self, conf_idx): """Returns the coordinates of the specified conformer in the molecule. """ assert self.rdkit_molecule.GetNumConformers() > 0, \ "{0} has no conformers".format(self) conformer = self.rdkit_molecule.GetConformer(conf_idx) atom_idxs = range(self.rdkit_molecule.GetNumAtoms()) # make the CoordArray coords = [] for atom_idx in atom_idxs: coord = conformer.GetAtomPosition(atom_idx) coord = np.array([coord.x, coord.y, coord.z]) coords.append(coord) coords = np.array(coords) return coords def AssignBondOrdersFromTemplate(refmol, mol): """ assigns bond orders to a molecule based on the bond orders in a template molecule Arguments - refmol: the template molecule - mol: the molecule to assign bond orders to An example, start by generating a template from a SMILES and read in the PDB structure of the molecule >>> from rdkit.Chem import AllChem >>> template = AllChem.MolFromSmiles("CN1C(=NC(C1=O)(c2ccccc2)c3ccccc3)N") >>> mol = AllChem.MolFromPDBFile(os.path.join(RDConfig.RDCodeDir, 'Chem', 'test_data', '4DJU_lig.pdb')) >>> len([1 for b in template.GetBonds() if b.GetBondTypeAsDouble() == 1.0]) 8 >>> len([1 for b in mol.GetBonds() if b.GetBondTypeAsDouble() == 1.0]) 22 Now assign the bond orders based on the template molecule >>> newMol = AllChem.AssignBondOrdersFromTemplate(template, mol) >>> len([1 for b in newMol.GetBonds() if b.GetBondTypeAsDouble() == 1.0]) 8 Note that the template molecule should have no explicit hydrogens else the algorithm will fail. It also works if there are different formal charges (this was github issue 235): >>> template=AllChem.MolFromSmiles('CN(C)C(=O)Cc1ccc2c(c1)NC(=O)c3ccc(cc3N2)c4ccc(c(c4)OC)[N+](=O)[O-]') >>> mol = AllChem.MolFromMolFile(os.path.join(RDConfig.RDCodeDir, 'Chem', 'test_data', '4FTR_lig.mol')) >>> AllChem.MolToSmiles(mol) 'COC1CC(C2CCC3C(O)NC4CC(CC(O)N(C)C)CCC4NC3C2)CCC1N(O)O' >>> newMol = AllChem.AssignBondOrdersFromTemplate(template, mol) >>> AllChem.MolToSmiles(newMol) 'COc1cc(-c2ccc3c(c2)Nc2ccc(CC(=O)N(C)C)cc2NC3=O)ccc1[N+](=O)[O-]' """ refmol2 = Chem.Mol(refmol) mol2 = Chem.Mol(mol) # do the molecules match already? matching = mol2.GetSubstructMatch(refmol2) if not matching: # no, they don't match # check if bonds of mol are SINGLE for b in mol2.GetBonds(): if b.GetBondType() != Chem.BondType.SINGLE: b.SetBondType(Chem.BondType.SINGLE) b.SetIsAromatic(False) # set the bonds of mol to SINGLE for b in refmol2.GetBonds(): b.SetBondType(Chem.BondType.SINGLE) b.SetIsAromatic(False) # set atom charges to zero; for a in refmol2.GetAtoms(): a.SetFormalCharge(0) for a in mol2.GetAtoms(): a.SetFormalCharge(0) matching = mol2.GetSubstructMatches(refmol2, uniquify=False) # do the molecules match now? if matching: if len(matching) > 1: pass # print("More than one matching pattern found - picking one") matching = matching[0] # apply matching: set bond properties for b in refmol.GetBonds(): atom1 = matching[b.GetBeginAtomIdx()] atom2 = matching[b.GetEndAtomIdx()] b2 = mol2.GetBondBetweenAtoms(atom1, atom2) b2.SetBondType(b.GetBondType()) b2.SetIsAromatic(b.GetIsAromatic()) # apply matching: set atom properties for a in refmol.GetAtoms(): a2 = mol2.GetAtomWithIdx(matching[a.GetIdx()]) a2.SetHybridization(a.GetHybridization()) a2.SetIsAromatic(a.GetIsAromatic()) a2.SetNumExplicitHs(a.GetNumExplicitHs()) a2.SetFormalCharge(a.GetFormalCharge()) # SanitizeMol(mol2) if hasattr(mol2, '__sssAtoms'): mol2.__sssAtoms = None # we don't want all bonds highlighted else: raise ValueError("No matching found") return mol2
null
mastic/interfaces/rdkit.py
rdkit.py
py
16,231
python
en
code
null
code-starcoder2
83
[ { "api_name": "mastic.molecule.AtomType", "line_number": 203, "usage_type": "call" }, { "api_name": "mastic.molecule", "line_number": 203, "usage_type": "name" }, { "api_name": "mastic.molecule.AtomType", "line_number": 211, "usage_type": "call" }, { "api_name": "mastic.molecule", "line_number": 211, "usage_type": "name" }, { "api_name": "mastic.molecule.BondType", "line_number": 218, "usage_type": "call" }, { "api_name": "mastic.molecule", "line_number": 218, "usage_type": "name" }, { "api_name": "mastic.molecule.BondType", "line_number": 233, "usage_type": "call" }, { "api_name": "mastic.molecule", "line_number": 233, "usage_type": "name" }, { "api_name": "mastic.molecule.MoleculeType", "line_number": 258, "usage_type": "call" }, { "api_name": "mastic.molecule", "line_number": 258, "usage_type": "name" }, { "api_name": "mastic.config.features.FEATURE_CLASSIFIER_KEY", "line_number": 268, "usage_type": "attribute" }, { "api_name": "mastic.config.features", "line_number": 268, "usage_type": "name" }, { "api_name": "mastic.config.features.FEATURE_TYPE_TEMPLATE.format", "line_number": 273, "usage_type": "call" }, { "api_name": "mastic.config.features.FEATURE_TYPE_TEMPLATE", "line_number": 273, "usage_type": "attribute" }, { "api_name": "mastic.config.features", "line_number": 273, "usage_type": "name" }, { "api_name": "mastic.features.FeatureType", "line_number": 274, "usage_type": "call" }, { "api_name": "mastic.features", "line_number": 274, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 292, "usage_type": "call" }, { "api_name": "os.path", "line_number": 292, "usage_type": "name" }, { "api_name": "rdkit.RDConfig.RDDataDir", "line_number": 292, "usage_type": "attribute" }, { "api_name": "rdkit.RDConfig", "line_number": 292, "usage_type": "name" }, { "api_name": "rdkit.Chem.ChemicalFeatures.BuildFeatureFactory", "line_number": 293, "usage_type": "call" }, { "api_name": "rdkit.Chem.ChemicalFeatures", "line_number": 293, "usage_type": "name" }, { "api_name": "collections.defaultdict", "line_number": 306, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 307, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 327, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 329, "usage_type": "call" }, { "api_name": "rdkit.Chem.Mol", "line_number": 369, "usage_type": "call" }, { "api_name": "rdkit.Chem", "line_number": 369, "usage_type": "name" }, { "api_name": "rdkit.Chem.Mol", "line_number": 370, "usage_type": "call" }, { "api_name": "rdkit.Chem", "line_number": 370, "usage_type": "name" }, { "api_name": "rdkit.Chem.BondType", "line_number": 376, "usage_type": "attribute" }, { "api_name": "rdkit.Chem", "line_number": 376, "usage_type": "name" }, { "api_name": "rdkit.Chem.BondType", "line_number": 377, "usage_type": "attribute" }, { "api_name": "rdkit.Chem", "line_number": 377, "usage_type": "name" }, { "api_name": "rdkit.Chem.BondType", "line_number": 381, "usage_type": "attribute" }, { "api_name": "rdkit.Chem", "line_number": 381, "usage_type": "name" } ]
236043080
"""Definition of the ImageAnnex content type """ from zope.interface import implements from Products.Archetypes import atapi from Products.ATContentTypes.content import image from Products.ATContentTypes.content import schemata from collective.book import BookMessageFactory as _ from collective.book.interfaces import IImageAnnex from collective.book.config import PROJECTNAME ImageAnnexSchema = image.ATImageSchema.copy() + atapi.Schema(( atapi.StringField('picture_type', schemata = 'default', vocabulary_factory = 'collective.book.picturetypes', widget=atapi.SelectionWidget( format = 'select', description=_(u'help_metadata_picturetypes', default=u''), label=_(u'label_metadata_picturetypes', default=u'Picture type'), ), ), )) # Set storage on fields copied from ATFolderSchema, making sure # they work well with the python bridge properties. schemata.finalizeATCTSchema( ImageAnnexSchema, moveDiscussion=False ) class ImageAnnex(image.ATImage): implements(IImageAnnex) meta_type = "ImageAnnex" schema = ImageAnnexSchema # -*- Your ATSchema to Python Property Bridges Here ... -*- atapi.registerType(ImageAnnex, PROJECTNAME)
null
packages/collective.book/tags/0.2/collective/book/content/imageannex.py
imageannex.py
py
1,316
python
en
code
null
code-starcoder2
83
[ { "api_name": "Products.ATContentTypes.content.image.ATImageSchema.copy", "line_number": 15, "usage_type": "call" }, { "api_name": "Products.ATContentTypes.content.image.ATImageSchema", "line_number": 15, "usage_type": "attribute" }, { "api_name": "Products.ATContentTypes.content.image", "line_number": 15, "usage_type": "name" }, { "api_name": "Products.Archetypes.atapi.Schema", "line_number": 15, "usage_type": "call" }, { "api_name": "Products.Archetypes.atapi", "line_number": 15, "usage_type": "name" }, { "api_name": "Products.Archetypes.atapi.StringField", "line_number": 17, "usage_type": "call" }, { "api_name": "Products.Archetypes.atapi", "line_number": 17, "usage_type": "name" }, { "api_name": "Products.Archetypes.atapi.SelectionWidget", "line_number": 20, "usage_type": "call" }, { "api_name": "Products.Archetypes.atapi", "line_number": 20, "usage_type": "name" }, { "api_name": "collective.book.BookMessageFactory", "line_number": 22, "usage_type": "call" }, { "api_name": "collective.book.BookMessageFactory", "line_number": 24, "usage_type": "call" }, { "api_name": "Products.ATContentTypes.content.schemata.finalizeATCTSchema", "line_number": 34, "usage_type": "call" }, { "api_name": "Products.ATContentTypes.content.schemata", "line_number": 34, "usage_type": "name" }, { "api_name": "Products.ATContentTypes.content.image.ATImage", "line_number": 39, "usage_type": "attribute" }, { "api_name": "Products.ATContentTypes.content.image", "line_number": 39, "usage_type": "name" }, { "api_name": "zope.interface.implements", "line_number": 40, "usage_type": "call" }, { "api_name": "collective.book.interfaces.IImageAnnex", "line_number": 40, "usage_type": "argument" }, { "api_name": "Products.Archetypes.atapi.registerType", "line_number": 46, "usage_type": "call" }, { "api_name": "collective.book.config.PROJECTNAME", "line_number": 46, "usage_type": "argument" }, { "api_name": "Products.Archetypes.atapi", "line_number": 46, "usage_type": "name" } ]
400626726
import os import sys import numpy as np from sleeplearning.lib.models.single_chan_expert import SingleChanExpert root_dir = os.path.abspath(os.path.join(os.path.dirname('__file__'), '..')) sys.path.insert(0, root_dir) import torch from torch import nn import sleeplearning.lib.base class Ensembler(nn.Module): def __init__(self, ms: dict): super(Ensembler, self).__init__() self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.experts = [] assert len(ms['expert_models']) > 0 for exp in ms['expert_models']: clf = sleeplearning.lib.base.Base() clf.restore(exp) self.expert_channels = clf.ds['channels'] for param in clf.model.parameters(): param.requires_grad = False self.experts.append(clf.model) self.experts = nn.ModuleList(self.experts) def train(self, mode=True): super(Ensembler, self).train(mode=mode) self.experts.eval() #raise NotImplementedError("The Ensembler is for aggregation of predictions only.") def forward(self, x): # Majority vote over all experts # logits: bs x seq_len x lab # print(self.experts[0](x)["logits"].shape) result = {'logits': torch.zeros_like(self.experts[0](x)['logits']).float().to(self.device)} logits_shape = result['logits'].shape for exp in self.experts: pred = torch.argmax(exp(x)['logits'], dim=-1) for i in range(logits_shape[0]): for j in range(logits_shape[1]): result['logits'][i, j, pred[i, j]] += 1 + np.random.rand() * 0.001 return result
null
sleeplearning/lib/models/ensembler.py
ensembler.py
py
1,702
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.abspath", "line_number": 5, "usage_type": "call" }, { "api_name": "os.path", "line_number": 5, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 5, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 5, "usage_type": "call" }, { "api_name": "sys.path.insert", "line_number": 6, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 6, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 12, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 12, "usage_type": "name" }, { "api_name": "torch.device", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 16, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 16, "usage_type": "attribute" }, { "api_name": "sleeplearning.lib.models.single_chan_expert.lib.base.Base", "line_number": 21, "usage_type": "call" }, { "api_name": "sleeplearning.lib.models.single_chan_expert.lib", "line_number": 21, "usage_type": "attribute" }, { "api_name": "sleeplearning.lib.models.single_chan_expert", "line_number": 21, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 28, "usage_type": "name" }, { "api_name": "torch.zeros_like", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.argmax", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 48, "usage_type": "attribute" } ]
184444072
from Bio import SeqIO import ahocorasick import logging def load_data(fasta_file, kmer_file): logging.info("Loading fasta file") fasta_list = list(SeqIO.parse(fasta_file,"fasta")) logging.info("Loading kmer list") kmer_list = [line.rstrip('\n') for line in open(kmer_file)] return fasta_list, kmer_list def find_match(line, A): found_kmers = [] for end_index, kmer in A.iter(line): found_kmers.append(kmer) return found_kmers def setup_automaton(kmer_list): logging.info("Setting up kmer lookup") auto = ahocorasick.Automaton() for seq in kmer_list: auto.add_word(seq, seq) auto.make_automaton() logging.info("Completed set-up of kmer lookup") return auto def match_kmers(fasta_list, kmer_auto): logging.info("Writing output") with open(output_file,"w") as f: for record in fasta_list: match = find_match(str(record.seq), kmer_auto) if match: line = record.id + "\n" f.write(line) logging.info("Completed") if __name__ == '__main__': fasta_file = "cdhitCoronaviridae" kmer_file = "seqSingleList.txt" output_file = "seqfileZ.txt" logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO) fasta_list, kmer_list = load_data(fasta_file, kmer_file) kmer_auto = setup_automaton(kmer_list) match_kmers(fasta_list, kmer_auto)
null
U3.1_PreQualifiedMinSet.py
U3.1_PreQualifiedMinSet.py
py
1,426
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.info", "line_number": 6, "usage_type": "call" }, { "api_name": "Bio.SeqIO.parse", "line_number": 7, "usage_type": "call" }, { "api_name": "Bio.SeqIO", "line_number": 7, "usage_type": "name" }, { "api_name": "logging.info", "line_number": 8, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 19, "usage_type": "call" }, { "api_name": "ahocorasick.Automaton", "line_number": 20, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 24, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 28, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 35, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 43, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 43, "usage_type": "attribute" } ]
128219063
from operator import itemgetter import pygame from bird import Bird from pipe import Pipe import numpy as np import random SHAPE = (500, 500) BLACK = (0, 0, 0) WHITE = (255, 255, 255) WIDTH = SHAPE[0] HEIGHT = SHAPE[1] POPULATION = 30 np.random.seed(1) random.seed(1) pygame.init() screen = pygame.display.set_mode(SHAPE) clock = pygame.time.Clock() font = pygame.font.Font(None, int(0.1*WIDTH)) def start_game(): birds = [] for _ in range(POPULATION): player = Bird(SHAPE) birds.append(player) pipes = init_pipes() return birds, pipes def init_pipes(): pipes = [Pipe(x=WIDTH, shape=SHAPE, seed=1)] return pipes def clean_and_move_pipes(pipes, pipe_speed): passed = False for pipe in pipes: if pipe.x + pipe.width < 0: pipes.remove(pipe) passed = True else: pipe.move(pipe_speed) return pipes, passed def new_pipe(when, pipes): if pipes[-1].x <= when: p = Pipe(x=WIDTH, shape=SHAPE, seed=np.random.randint(1, 9)) pipes.append(p) return pipes def bound_delta_y(dy, low, high): if dy < low: dy = low elif dy > high: dy = high return dy def normalize(x, low, high): return (x - low)/(high - low) def select_action(bird, pipes): possible_distance = (pipes[0].x + pipes[0].width) - bird.x if possible_distance >= 0: distance = possible_distance closest_pipe = pipes[0] else: distance = (pipes[1].x + pipes[1].width)- bird.x closest_pipe = pipes[1] distance = normalize(distance, 0, WIDTH - 10) bird_height = normalize(bird.y, 0, HEIGHT) pipe_top = normalize(closest_pipe.top, 0, 3*HEIGHT/4) pipe_bot = normalize(closest_pipe.bot, 100, 3*HEIGHT/4 + 150) pipe_middle = (pipe_bot - pipe_top) / 2 + pipe_top distance_from_middle = pipe_middle - bird_height input = np.asarray([bird_height, distance, distance_from_middle, (5+bird.velocity)/10]) input = np.atleast_2d(input) probability = bird.brain.predict(input, batch_size=1)[0] if probability[0] >= 0.5: return 1 return 2 def draw_bird(player): pygame.draw.circle(screen, WHITE, [player.x, player.y], player.radius) def draw_pipes(pipe): for p in pipe: pygame.draw.rect(screen, WHITE, [p.x, 0, p.width, p.top]) pygame.draw.rect(screen, WHITE, [p.x, p.bot, p.width, HEIGHT - p.bot]) # better length???? def draw_scores(score): score_text = font.render(str(score), True, WHITE) screen.blit(score_text, [10, 0]) def draw(pipe): screen.fill(BLACK) draw_pipes(pipe) def main(): birds, pipes = start_game() all_time_best = birds[0] pipe_speed = -10 generations = 400 all_birds = [] for generation in range(generations): drawing = True print('Generation {} started'.format(generation)) running = True pipes = init_pipes() scores = [0]*len(birds) while running: if drawing: draw(pipes) for player in birds: if pipes[0].collision(player): all_birds.append(player) birds.remove(player) else: player.increase_score(1) if drawing: draw_bird(player) if len(birds) < 1: running = False # for event in pygame.event.get(): # if event.type == pygame.QUIT: # pygame.display.quit() pipes, player_passed_pipe = clean_and_move_pipes(pipes, pipe_speed) counter = 0 for player in birds: action = select_action(player, pipes) player.flapping = False if action == 1: player.flapping = True # if player.flapping: # flapping_speed = flapping_max # else: # flapping_speed = 0 # # dy += gravity + flapping_speed # dy = bound_delta_y(dy, flapping_max, gravity) player.flap() if player_passed_pipe: player.increase_score(50) if player.score > all_time_best.score: all_time_best = player scores[counter] = player.score counter += 1 # if player.score > 5000: # running = False # all_time_best = player # return all_time_best #draw_scores(max(scores)) pipes = new_pipe(WIDTH/3, pipes) if drawing: pygame.display.flip() clock.tick(60) # create new population of birds total_scores = sum(scores) maximum = max(scores) for bird in all_birds: # CALCULATE ALL FITNESS bird.set_fitness(total_scores) fitnesses = [(bird.fitness, bird) for bird in all_birds] fitnesses = sorted(fitnesses, key=itemgetter(0), reverse=True) #print(fitnesses) best_birds = [bird for fitness, bird in fitnesses[:10]] parent_one = best_birds[0] parent_two = best_birds[1] new_child, new_child2 = parent_one.crossover(parent_two) best_birds[-1] = new_child best_birds[-2] = new_child2 parent_one = best_birds[2] parent_two = best_birds[3] new_child, new_child2 = parent_one.crossover(parent_two) best_birds[-3] = new_child best_birds[-4] = new_child2 birds = best_birds amount = len(birds) for index in range(POPULATION - amount): birds.append(pick_a_bird(all_birds)) all_birds = [] print('Generation {} , max score {}'.format(generation, maximum)) return all_time_best def pick_a_bird(all_birds): index = 0 r = random.uniform(0, 1) while index < len(all_birds) and r > 0: r -= all_birds[index].fitness index += 1 index -= 1 bird = all_birds[index] child = Bird(shape=SHAPE, brain=bird.brain) child.mutate(0.2) return child bird = main() #pygame.init() # def draw_bird(player): # pygame.draw.circle(screen, WHITE, [player.x, player.y], player.radius) # # # def draw_pipes(pipe): # for p in pips: # pygame.draw.rect(screen, WHITE, [p.x, 0, p.width, p.top]) # pygame.draw.rect(screen, WHITE, [p.x, p.bot, p.width, HEIGHT - p.bot]) # better length???? # # # def draw_scores(score): # score_text = font.render(str(score), True, WHITE) # screen.blit(score_text, [10, 0]) # # # def draw(pipe): # screen.fill(BLACK) # draw_pipes(pipe) pipes = init_pipes() running = True pipe_speed = -3 while running: draw(pipes) draw_bird(bird) action = select_action(bird, pipes) bird.flapping = False if action == 1: bird.set_flapping() bird.flap() pipes, passed_pipe = clean_and_move_pipes(pipes, pipe_speed) pipes = new_pipe(WIDTH/3, pipes) pygame.display.flip() clock.tick(60)
null
main.py
main.py
py
7,151
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.random.seed", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 15, "usage_type": "attribute" }, { "api_name": "random.seed", "line_number": 16, "usage_type": "call" }, { "api_name": "pygame.init", "line_number": 17, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 18, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 18, "usage_type": "attribute" }, { "api_name": "pygame.time.Clock", "line_number": 19, "usage_type": "call" }, { "api_name": "pygame.time", "line_number": 19, "usage_type": "attribute" }, { "api_name": "pygame.font.Font", "line_number": 20, "usage_type": "call" }, { "api_name": "pygame.font", "line_number": 20, "usage_type": "attribute" }, { "api_name": "bird.Bird", "line_number": 25, "usage_type": "call" }, { "api_name": "pipe.Pipe", "line_number": 32, "usage_type": "call" }, { "api_name": "pipe.x", "line_number": 38, "usage_type": "attribute" }, { "api_name": "pipe.width", "line_number": 38, "usage_type": "attribute" }, { "api_name": "pipe.move", "line_number": 42, "usage_type": "call" }, { "api_name": "pipe.Pipe", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 48, "usage_type": "attribute" }, { "api_name": "bird.x", "line_number": 66, "usage_type": "attribute" }, { "api_name": "bird.x", "line_number": 71, "usage_type": "attribute" }, { "api_name": "bird.y", "line_number": 75, "usage_type": "attribute" }, { "api_name": "numpy.asarray", "line_number": 80, "usage_type": "call" }, { "api_name": "bird.velocity", "line_number": 80, "usage_type": "attribute" }, { "api_name": "numpy.atleast_2d", "line_number": 81, "usage_type": "call" }, { "api_name": "bird.brain.predict", "line_number": 82, "usage_type": "call" }, { "api_name": "bird.brain", "line_number": 82, "usage_type": "attribute" }, { "api_name": "pygame.draw.circle", "line_number": 91, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 91, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 96, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 96, "usage_type": "attribute" }, { "api_name": "pygame.draw.rect", "line_number": 97, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 97, "usage_type": "attribute" }, { "api_name": "pygame.display.flip", "line_number": 173, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 173, "usage_type": "attribute" }, { "api_name": "bird.set_fitness", "line_number": 179, "usage_type": "call" }, { "api_name": "bird.fitness", "line_number": 181, "usage_type": "attribute" }, { "api_name": "operator.itemgetter", "line_number": 182, "usage_type": "call" }, { "api_name": "random.uniform", "line_number": 206, "usage_type": "call" }, { "api_name": "bird.Bird", "line_number": 213, "usage_type": "call" }, { "api_name": "bird.brain", "line_number": 213, "usage_type": "attribute" }, { "api_name": "bird.flapping", "line_number": 251, "usage_type": "attribute" }, { "api_name": "bird.set_flapping", "line_number": 253, "usage_type": "call" }, { "api_name": "bird.flap", "line_number": 255, "usage_type": "call" }, { "api_name": "pygame.display.flip", "line_number": 258, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 258, "usage_type": "attribute" } ]
39434165
import json U = 'UP' D = 'DOWN' L = 'LEFT' R = 'RIGHT' with open('configuration.json', 'r') as configuration: data = json.load(configuration) START = data['start'] END = data['end'] N = int(pow(len(START), 1/2)) if len(START) == len(END) else None node_goal = None class PuzzleState: def __init__(self, state, parent, move) -> None: self.state = state self.parent = parent self.move = move self.string = ' '.join(str(value) for value in state) if state else None # successor function def perform_movement(state:list, move:str) -> list: new_state = state[:] allowed = [] index = new_state.index(0) row = index // N column = index % N if row > 0: allowed.append(U) if row < N-1: allowed.append(D) if column > 0: allowed.append(L) if column < N-1: allowed.append(R) if move not in allowed: return None elif move == U: new_state[index], new_state[index-N] = new_state[index-N], new_state[index] elif move == D: new_state[index], new_state[index+N] = new_state[index+N], new_state[index] elif move == L: new_state[index], new_state[index-1] = new_state[index-1], new_state[index] elif move == R: new_state[index], new_state[index+1] = new_state[index+1], new_state[index] return new_state def child_nodes(node:PuzzleState) -> list: children = [] children.append(PuzzleState(perform_movement(node.state, U), node, U)) children.append(PuzzleState(perform_movement(node.state, D), node, D)) children.append(PuzzleState(perform_movement(node.state, L), node, L)) children.append(PuzzleState(perform_movement(node.state, R), node, R)) paths = [] for child in children: if child.state != None: paths.append(child) return paths # method def searching_algorithm() -> None: global node_goal frontier = [PuzzleState(START, None, None)] visited = set() while frontier: node = frontier.pop(0) visited.add(node.string) # goal test if node.state == END: node_goal = node return None paths = child_nodes(node) for path in paths: if path.string not in visited: frontier.append(path) visited.add(path.string) searching_algorithm() # path cost movements = [] while node_goal.state != START: movements.insert(0, node_goal.move) node_goal = node_goal.parent summary = {} summary['Method'] = 'IDS - Iterative Deepening Search' summary['Start'] = START summary['End'] = END summary['Movements'] = movements summary['Length'] = len(movements) with open('report.json', 'w') as report: json.dump(summary, report, indent=4)
null
puzzle/iterative_deepening_search.py
iterative_deepening_search.py
py
2,810
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.load", "line_number": 11, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 119, "usage_type": "call" } ]
238679679
from django.db import models from users.models import Person from ticker.models import ticker, Sector, Industry from django.db.models import Q, Sum from decimal import Decimal from resources.views import StockPriceReturner import datetime class Portfolio(models.Model): Name=models.CharField(max_length=512, blank=False) Owner=models.ForeignKey(Person, null=False) IsPublic=models.BooleanField() DateCreated=models.DateTimeField(auto_now=True) LastModifiedTimeStamp=models.DateTimeField(auto_now=True) #check if user is allowed to view the portfolio def SecurePortfolio(self, currnet_user, current_portfolio): try: owner=Person.objects.get(userid=current_user) except Exception: owner=None if current_portfolio.IsPublic==True: return True elif current_portfolio.IsPublic!=True and current_portfolio.Owner==owner: return True elif current_portfolio.IsPublic!=True and current_portfolio.Owner!=owner: return False #get all portfolios that user is allowed to view def AllowedView(self, current_user): try: owner=Person.objects.get(userid=current_user) except Exception: owner=None if owner==None: return Portfolio.objects.filter(IsPublic=True) else: return Portfolio.objects.filter(Q(Owner=owner)|Q(IsPublic=True)) #new portfolio def NewPort(self, PortfolioName, publicfield, current_user): new_portfolio=Portfolio(Name=PortfolioName, Owner=current_user, IsPublic=publicfield) new_portfolio.save() return new_portfolio #portfolio name validation def NameValidation(self, PortfolioName, current_user, mode): if mode=="new": if len(Portfolio.objects.filter(Name=PortfolioName, Owner=current_user)) >0: warning="The Portfoilio with the same name already exists for you" return warning elif mode=="update": if len(Portfolio.objects.filter(Name=PortfolioName, Owner=current_user)) >0: warning="The Portfoilio with the same name already exists for you" return warning else: return #updating portfolio information def update(self, PortfolioName, publicfield, current_portfolio): updated_port=current_portfolio updated_port.Name=PortfolioName updated_port.IsPublic=publicfield updated_port.save() return updated_port #measure portfolio's diversification def PortfolioComponents(self, PortfolioName): positions=Position.objects.filter(ComponentsOf=PortfolioName) components=ticker.objects.filter(id__in=positions.values('Ticker')).values('Industry') portfolio_industries=Industry.objects.filter(id__in=ticker.objects.filter( id__in=positions.values('Ticker')).values('Industry')).order_by('ShortName') IndustryWeight=[{'Industry':str(i.ShortName), 'IndustryValue':0, 'Weight':0} for i in portfolio_industries] TotalValue=0 for i in positions: #get valuation of position [PurchaseV, LiquidationV, RemainingShares]=Transaction().WeightedAverage(i, '') Quote=ticker().GetQuoteInfo(i.Ticker.Name) for j in IndustryWeight: if str(i.Ticker.Industry.ShortName)==j['Industry']: j['IndustryValue']+=Decimal(Quote.Price,3)*RemainingShares break TotalValue+=Decimal(Quote.Price,3)*RemainingShares for i in IndustryWeight: i['Weight']=round(100*i['IndustryValue']/TotalValue,2) return TotalValue, IndustryWeight def Performance(self, positions): BookValue=0 FaceValue=0 for i in positions: [PurchaseValue, LiquidationValue, Float]=Transaction().WeightedAverage(i, '') BookValue+=PurchaseValue if Float==0: FaceValue+=LiquidationValue else: FaceValue+=LiquidationValue+Float*i.Ticker.Price Performance=round(100*(FaceValue/BookValue-1),3) return Performance """ #measure portfolio's performance def GetPortfolioPerformance(self, port, startdate, enddate): if startdate==enddate and startdate=='historical': #get porfolio total performance #group positions by ticker information pass if enddate=='': enddate=datetime.datetime.now().today() if startdate=='': startdate=datetime.datetime.now().today()+ datetime.timedelta(years=-1) BookValue=0 CurrentValue=0 RemainingShares=0 buy=TransactionType.objects.get(Type="Buy") sell=TransactionType.objects.get(Type="Sell") for i in Transaction.objects.filter(Position__in=Position.objects.filter(ComponentsOf=port)): if i.Type==buy: BookValue+=i.Shares*i.Price RemainingShares+=i.Shares else: CurrentValue+=i.Shares*i.Price RemainingShares-=i.Shares #aggregate(TotalValue=Sum('Shares*Price')) return BookValue """ class Position(models.Model): Ticker=models.ForeignKey(ticker) ComponentsOf=models.ForeignKey(Portfolio) EnterTime=models.DateField(auto_now=False) ExitTime=models.DateField(auto_now=False, null=True, blank=True) def __unicode__(self): return self.ComponentsOf.Name + "--"+ self.Ticker.Name def PositionValidator(self, tic, port, date): #exists already if len(Position.objects.filter(Ticker=tic,ComponentsOf=port, EnterTime__lte=date, ExitTime__isnull=True )) ==1: return Position.objects.get(Ticker=tic, ComponentsOf=port) #new position else: new_position=Position(Ticker=tic, ComponentsOf=port, EnterTime=date ) new_position.save() return new_position def PositionEndChecker(self, pos): all_transactions=Transaction.objects.filter(Position=pos) ShareCount=0 for i in all_transactions: if i.Type==TransactionType.objects.get(Type="Buy"): ShareCount+=i.Shares if i.Type==TransactionType.objects.get(Type="Sell"): ShareCount-=i.Shares if ShareCount==0: pos.ExitTime=all_transactions.order_by('TransactionDate').reverse()[0].TransactionDate pos.save() return pos def PositionPerformance(self, pos, dateselected): [PurchaseValue, CurrentValue, CurrentShareCount]=Transaction().WeightedAverage(pos, dateselected) CurrentPrice=ticker().GetQuoteInfo(pos.Ticker.Name) Perf=100*round(((Decimal(CurrentValue)+ Decimal(CurrentShareCount)*Decimal(CurrentPrice.Price)) /Decimal(PurchaseValue))-1,3) current_price=Perf return current_price class TransactionType(models.Model): Type=models.CharField(max_length=10) class Transaction(models.Model): Position=models.ForeignKey(Position) Type=models.ForeignKey(TransactionType, null=False) Price=models.DecimalField(decimal_places=2, max_digits=10) Shares=models.IntegerField() TransactionDate=models.DateField(auto_now=False, null=False) Note=models.TextField(blank=True, null=True) def Latest5Trade(self, username): Last5=Transaction.objects.filter(Position__in= Position.objects.filter(ComponentsOf__in= Portfolio.objects.filter(Owner=username)) ).order_by('-TransactionDate')[:5] return Last5 def NewTransaction(self, pos, pos_type, price, shares, date, notes): new_transaction=Transaction(Position=pos, Type=pos_type, Price=price, Shares=shares, TransactionDate=date, Note=notes) new_transaction.save() return new_transaction def AllShares(self, pos): CurentPosition=(int(Transaction.objects.filter(Position=pos, Type=TransactionType.objects.get(Type="Buy")).aggregate(Sum('Shares'))) -int(Transaction.objects.filter(Position=pos, Type=TransactionType.objects.get(Type="Sell")).aggregate(Sum('Shares'))) ) return def WeightedAverage(self, pos, dateselected): ShareCount=0 PurchaseValue=0 LiquidationValue=0 if dateselected == '': for i in Transaction.objects.filter(Position=pos): if i.Type==TransactionType.objects.get(Type="Buy"): PurchaseValue+=Decimal(i.Shares)*i.Price ShareCount+=i.Shares if i.Type==TransactionType.objects.get(Type="Sell"): LiquidationValue+=Decimal(i.Shares)*i.Price ShareCount-=i.Shares else: for i in Transaction.objects.filter(Position=pos, TransactionDate__lte=dateselected): if i.Type==TransactionType.objects.get(Type="Buy"): PurchaseValue+=Decimal(i.Shares)*i.Price ShareCount+=i.Shares if i.Type==TransactionType.objects.get(Type="Sell"): LiquidationValue+=Decimal(i.Shares)*i.Price ShareCount-=i.Shares return PurchaseValue, LiquidationValue, ShareCount def RelativeValueOfTransaction(self, trade): TotalSharesOwned=Transaction.objects.filter(Position=trade.Position).aggregate(TotalShares=Sum('Shares')) trade.Shares=round(Decimal(trade.Shares)/Decimal(TotalSharesOwned['TotalShares'])*100,2) return trade
null
portfolios/models.py
models.py
py
11,274
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.db.models.Model", "line_number": 11, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 11, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 12, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 12, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 13, "usage_type": "call" }, { "api_name": "users.models.Person", "line_number": 13, "usage_type": "argument" }, { "api_name": "django.db.models", "line_number": 13, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 14, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 14, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 15, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 15, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 16, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 16, "usage_type": "name" }, { "api_name": "users.models.Person.objects.get", "line_number": 21, "usage_type": "call" }, { "api_name": "users.models.Person.objects", "line_number": 21, "usage_type": "attribute" }, { "api_name": "users.models.Person", "line_number": 21, "usage_type": "name" }, { "api_name": "users.models.Person.objects.get", "line_number": 37, "usage_type": "call" }, { "api_name": "users.models.Person.objects", "line_number": 37, "usage_type": "attribute" }, { "api_name": "users.models.Person", "line_number": 37, "usage_type": "name" }, { "api_name": "django.db.models.Q", "line_number": 44, "usage_type": "call" }, { "api_name": "ticker.models.ticker.objects.filter", "line_number": 85, "usage_type": "call" }, { "api_name": "ticker.models.ticker.objects", "line_number": 85, "usage_type": "attribute" }, { "api_name": "ticker.models.ticker", "line_number": 85, "usage_type": "name" }, { "api_name": "ticker.models.Industry.objects.filter", "line_number": 86, "usage_type": "call" }, { "api_name": "ticker.models.Industry.objects", "line_number": 86, "usage_type": "attribute" }, { "api_name": "ticker.models.Industry", "line_number": 86, "usage_type": "name" }, { "api_name": "ticker.models.ticker.objects.filter", "line_number": 86, "usage_type": "call" }, { "api_name": "ticker.models.ticker.objects", "line_number": 86, "usage_type": "attribute" }, { "api_name": "ticker.models.ticker", "line_number": 86, "usage_type": "name" }, { "api_name": "ticker.models.ticker", "line_number": 100, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 106, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 108, "usage_type": "call" }, { "api_name": "django.db.models.Model", "line_number": 187, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 187, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 188, "usage_type": "call" }, { "api_name": "ticker.models.ticker", "line_number": 188, "usage_type": "argument" }, { "api_name": "django.db.models", "line_number": 188, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 189, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 189, "usage_type": "name" }, { "api_name": "django.db.models.DateField", "line_number": 190, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 190, "usage_type": "name" }, { "api_name": "django.db.models.DateField", "line_number": 191, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 191, "usage_type": "name" }, { "api_name": "ticker.models.ticker", "line_number": 229, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 231, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 232, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 233, "usage_type": "call" }, { "api_name": "django.db.models.Model", "line_number": 242, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 242, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 243, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 243, "usage_type": "name" }, { "api_name": "django.db.models.Model", "line_number": 246, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 246, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 247, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 247, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 248, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 248, "usage_type": "name" }, { "api_name": "django.db.models.DecimalField", "line_number": 249, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 249, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 250, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 250, "usage_type": "name" }, { "api_name": "django.db.models.DateField", "line_number": 251, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 251, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 252, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 252, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 279, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 281, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 297, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 300, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 307, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 310, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 317, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 318, "usage_type": "call" } ]
120731195
from matplotlib.text import Text import matplotlib.pyplot as plt from matplotlib import transforms, lines import numpy as np import pandas as pd from scipy import stats def pvalAnnotation_text(x, pvalueThresholds): singleValue = False if type(x) is np.array: x1 = x else: x1 = np.array([x]) singleValue = True # Sort the threshold array pvalueThresholds = pd.DataFrame(pvalueThresholds).sort_values(by=0, ascending=False).values xAnnot = pd.Series(["" for _ in range(len(x1))]) for i in range(0, len(pvalueThresholds)): if (i < len(pvalueThresholds)-1): condition = (x1 <= pvalueThresholds[i][0]) & (pvalueThresholds[i+1][0] < x1) xAnnot[condition] = pvalueThresholds[i][1] else: condition = x1 < pvalueThresholds[i][0] xAnnot[condition] = pvalueThresholds[i][1] return xAnnot if not singleValue else xAnnot.iloc[0] def add_statistical_test_annotation( ax, df, catPairList, xlabel=None, ylabel=None, test='Mann-Whitney', order=None, textFormat='star', loc='inside', pvalueThresholds=[[1e9,"ns"], [0.05,"*"], [1e-2,"**"], [1e-3,"***"], [1e-4,"****"]], color='0.2', lineYOffsetAxesCoord=None, lineHeightAxesCoord=0.02, yTextOffsetPoints=1, linewidth=1.5, fontsize='medium', verbose=1): """ """ if loc not in ['inside', 'outside']: raise ValueError("loc value should be inside or outside.") if test not in ['t-test', 'Mann-Whitney']: raise ValueError("test name incorrect.") if verbose >= 1 and textFormat == 'star': print("pvalue annotation legend:") pvalueThresholds = pd.DataFrame(pvalueThresholds).sort_values(by=0, ascending=False).values for i in range(0, len(pvalueThresholds)): if (i < len(pvalueThresholds)-1): print('{}: {:.2e} < p <= {:.2e}'.format(pvalueThresholds[i][1], pvalueThresholds[i+1][0], pvalueThresholds[i][0])) else: print('{}: p <= {:.2e}'.format(pvalueThresholds[i][1], pvalueThresholds[i][0])) print() yStack = [] if xlabel is None: # Guess the xlabel based on the xaxis label text xlabel = ax.xaxis.get_label().get_text() if ylabel is None: # Guess the xlabel based on the xaxis label text ylabel = ax.yaxis.get_label().get_text() xtickslabels = [t.get_text() for t in ax.xaxis.get_ticklabels()] g = df.groupby(xlabel) catValues = df[xlabel].unique() catValues = np.array(xtickslabels) if order is not None: catValues = order ylim = ax.get_ylim() yRange = ylim[1] - ylim[0] if loc == 'inside': lineYOffsetAxesCoord = 0.05 elif loc == 'outside': lineYOffsetAxesCoord = 0.03 yOffset = lineYOffsetAxesCoord*yRange annList = [] for cat1, cat2 in catPairList: if cat1 in catValues and cat2 in catValues: # Get position of bars 1 and 2 x1 = np.where(catValues == cat1)[0][0] x2 = np.where(catValues == cat2)[0][0] cat1YMax = g[ylabel].max()[cat1] cat2YMax = g[ylabel].max()[cat2] cat1Values = g.get_group(cat1)[ylabel].values cat2Values = g.get_group(cat2)[ylabel].values testShortName = '' if test == 'Mann-Whitney': u_stat, pval = stats.mannwhitneyu(cat1Values, cat2Values, alternative='two-sided') testShortName = 'M.W.W.' if verbose >= 2: print ("{} v.s. {}: MWW RankSum P_val={:.3e} U_stat={:.3e}".format(cat1, cat2, pval, u_stat)) elif test == 't-test': stat, pval = stats.ttest_ind(a=cat1Values, b=cat2Values) testShortName = 't-test' if verbose >= 2: print ("{} v.s. {}: t-test independent samples, P_val=={:.3e} stat={:.3e}".format(cat1, cat2, pval, stat)) if textFormat == 'full': text = "{} p < {:.2e}".format(testShortName, pval) elif textFormat is None: text = '' elif textFormat is 'star': text = pvalAnnotation_text(pval, pvalueThresholds) if loc == 'inside': yRef = max(cat1YMax, cat2YMax) elif loc == 'outside': yRef = ylim[1] if len(yStack) > 0: yRef2 = max(yRef, max(yStack)) else: yRef2 = yRef y = yRef2 + yOffset h = lineHeightAxesCoord*yRange lineX, lineY = [x1, x1, x2, x2], [y, y + h, y + h, y] if loc == 'inside': ax.plot(lineX, lineY, lw=linewidth, c=color) elif loc == 'outside': line = lines.Line2D(lineX, lineY, lw=linewidth, c=color, transform=ax.transData) line.set_clip_on(False) ax.add_line(line) ann = ax.annotate(text, xy=(np.mean([x1, x2]), y + h), xytext=(0, yTextOffsetPoints), textcoords='offset points', xycoords='data', ha='center', va='bottom', fontsize=fontsize, clip_on=False, annotation_clip=False) annList.append(ann) ax.set_ylim((ylim[0], 1.1*(y + h))) plt.draw() bbox = ann.get_window_extent() bbox_data = bbox.transformed(ax.transData.inverted()) yTopAnnot = bbox_data.ymax yStack.append(yTopAnnot) yStackMax = max(yStack) if loc == 'inside': ax.set_ylim((ylim[0], 1.03*yStackMax)) elif loc == 'outside': ax.set_ylim((ylim[0], ylim[1])) return ax
null
statannot.py
statannot.py
py
5,789
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.array", "line_number": 12, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 15, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 18, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 19, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 69, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 86, "usage_type": "call" }, { "api_name": "scipy.stats.mannwhitneyu", "line_number": 94, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 94, "usage_type": "name" }, { "api_name": "scipy.stats.ttest_ind", "line_number": 98, "usage_type": "call" }, { "api_name": "scipy.stats", "line_number": 98, "usage_type": "name" }, { "api_name": "matplotlib.lines.Line2D", "line_number": 125, "usage_type": "call" }, { "api_name": "matplotlib.lines", "line_number": 125, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 129, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.draw", "line_number": 135, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 135, "usage_type": "name" } ]
546866021
# -*- coding: utf-8 -*- """Functional tests using WebTest. See: http://webtest.readthedocs.org/ """ import pytest from crime_data.resources.meta import FAMILIES class TestCodesEndpoint: @pytest.mark.parametrize('endpoint', FAMILIES) def test_meta_endpoint_exists(self, testapp, endpoint): res = testapp.get('/meta/{0}'.format(endpoint)) assert res.status_code == 200 assert 'filters' in res.json assert res.json['filters'] == FAMILIES[endpoint].filter_columns def test_meta_endpoint_handles_trailing_slash(self, testapp): res = testapp.get('/meta/incidents/') assert res.status_code == 200
null
tests/functional/test_meta.py
test_meta.py
py
655
python
en
code
null
code-starcoder2
83
[ { "api_name": "crime_data.resources.meta.FAMILIES", "line_number": 16, "usage_type": "name" }, { "api_name": "pytest.mark.parametrize", "line_number": 10, "usage_type": "call" }, { "api_name": "crime_data.resources.meta.FAMILIES", "line_number": 10, "usage_type": "argument" }, { "api_name": "pytest.mark", "line_number": 10, "usage_type": "attribute" } ]
472123909
# #!/usr/bin/env python # # -*- coding: utf-8 -*- # # ''' # Created on 26 Jul 2019 # # @author: Ajay # ''' # from pp_final import preprocessor from sklearn.naive_bayes import BernoulliNB pp = preprocessor("topic", "bnb") clf = BernoulliNB() model = clf.fit(pp.X_train, pp.y_train) predicted_y = model.predict(pp.X_test) i = pp.divider for y in predicted_y: print(pp.instance_array[i], y) i = i + 1 # i = 0 # for sentence in test_array: # test = count.transform([sentence]).toarray() # print(instance_array[i], model.predict(test)) # i = i + 1 # text_data = np.array(test_array) # bag_of_words = count.fit_transform(text_data) # X_test = bag_of_words.toarray() # predicted_y = model.predict(X_test[:5]) # for i, y in enumerate(predicted_y): # print(instance_array[i], y) ##
null
BNB_topics.py
BNB_topics.py
py
839
python
en
code
null
code-starcoder2
83
[ { "api_name": "pp_final.preprocessor", "line_number": 13, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.BernoulliNB", "line_number": 14, "usage_type": "call" } ]
338558519
# 线性回归 import tensorflow as tf import numpy as np import random import matplotlib.pyplot as plt # 获得数据 / 10 只是让数据好看一点 def getBatch(batchSize,start=None): if start==None: start = random.randint(1, 10000) n = np.linspace(start, start+batchSize, batchSize, endpoint=True).reshape((batchSize,1)) / 10 x = np.sin(n) y = np.cos(n) return x,y,n # 增加层 def add_layer(inputs, in_size, out_size, activation_function=None, norm=False): Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if norm: #归一化 fc_mean, fc_var = tf.nn.moments(Wx_plus_b, axes=[0]) scale = tf.Variable(tf.ones([out_size])) shift = tf.Variable(tf.zeros([out_size])) epsilon = 0.001 ema = tf.train.ExponentialMovingAverage(decay=0.5) def mean_var_with_update(): ema_apply_op = ema.apply([fc_mean, fc_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(fc_mean), tf.identity(fc_var) mean, var = mean_var_with_update() Wx_plus_b = tf.nn.batch_normalization(Wx_plus_b, mean, var, shift, scale, epsilon) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs # 神经网络定义 def neural_networks(): x = tf.placeholder(tf.float32, [None, 1], name='x') y = tf.placeholder(tf.float32, [None, 1], name='y') x_list=[] for i in range(1,10): x_list.append(tf.sin(x*i)) x_list.append(tf.cos(x*i)) x_list.append(tf.pow(x,i)) _x=tf.concat(x_list,axis=1) layer = add_layer(_x, len(x_list), 128, tf.nn.relu, norm=True) layer = add_layer(layer, 128, 256, tf.nn.relu, norm=True) layer = add_layer(layer, 256, 512, tf.nn.relu, norm=True) prediction = add_layer(layer, 512, 1) cost = tf.reduce_sum(tf.square(y - prediction)) optimizer = tf.train.AdamOptimizer(0.001).minimize(cost) return x, y, prediction, optimizer, cost if __name__ == '__main__': x, y, prediction, optimizer, cost = neural_networks() sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) plt.ion() plt.show() for i in range(100000): batch_x, batch_y, batch_n= getBatch(200, 0) _, loss, pred = sess.run([optimizer, cost, prediction], feed_dict={x: batch_x, y: batch_y}) if i % 50 == 0: print(i, loss) plt.clf() plt.plot(batch_n, batch_y, 'r', batch_n, pred, 'b') plt.ylim((-1.2, 1.2)) plt.draw() plt.pause(0.1)
null
Linear Regression/3.1.py
3.1.py
py
2,770
python
en
code
null
code-starcoder2
83
[ { "api_name": "random.randint", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 15, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 20, "usage_type": "call" }, { "api_name": "tensorflow.random_normal", "line_number": 20, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 21, "usage_type": "call" }, { "api_name": "tensorflow.zeros", "line_number": 21, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 22, "usage_type": "call" }, { "api_name": "tensorflow.nn.moments", "line_number": 25, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 25, "usage_type": "attribute" }, { "api_name": "tensorflow.Variable", "line_number": 26, "usage_type": "call" }, { "api_name": "tensorflow.ones", "line_number": 26, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 27, "usage_type": "call" }, { "api_name": "tensorflow.zeros", "line_number": 27, "usage_type": "call" }, { "api_name": "tensorflow.train.ExponentialMovingAverage", "line_number": 29, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 29, "usage_type": "attribute" }, { "api_name": "tensorflow.control_dependencies", "line_number": 32, "usage_type": "call" }, { "api_name": "tensorflow.identity", "line_number": 33, "usage_type": "call" }, { "api_name": "tensorflow.nn.batch_normalization", "line_number": 35, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 35, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 45, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 45, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 46, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 46, "usage_type": "attribute" }, { "api_name": "tensorflow.sin", "line_number": 50, "usage_type": "call" }, { "api_name": "tensorflow.cos", "line_number": 51, "usage_type": "call" }, { "api_name": "tensorflow.pow", "line_number": 52, "usage_type": "call" }, { "api_name": "tensorflow.concat", "line_number": 53, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 55, "usage_type": "attribute" }, { "api_name": "tensorflow.nn", "line_number": 56, "usage_type": "attribute" }, { "api_name": "tensorflow.nn", "line_number": 57, "usage_type": "attribute" }, { "api_name": "tensorflow.reduce_sum", "line_number": 60, "usage_type": "call" }, { "api_name": "tensorflow.square", "line_number": 60, "usage_type": "call" }, { "api_name": "tensorflow.train.AdamOptimizer", "line_number": 61, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 61, "usage_type": "attribute" }, { "api_name": "tensorflow.Session", "line_number": 66, "usage_type": "call" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.ion", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 69, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 76, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 76, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 77, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 77, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 78, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 78, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.draw", "line_number": 79, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 79, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pause", "line_number": 80, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 80, "usage_type": "name" } ]
583990275
#!/usr/bin/env python """ Provides functionality to configure environment variables for agent. """ __copyright__ = '(c) Webyog, Inc' __author__ = 'Vishal P.R' __email__ = '[email protected]' import os import sys import getopt import re import json import subprocess #add module lookup paths to sys.path so that import can find them #we are inserting at the begining of sys.path so that we can be sure that we are importing the right module exe_path = os.path.dirname(os.path.realpath(__file__)).rsplit('/', 1)[0] sys.path.insert(0, exe_path + '/lib') sys.path.insert(0, exe_path + '/src') import version_info from universal import Universal from constructs import unicode, read_input, JSONfig def usage(is_help = False): """ Function to show usage information Args: is_help: Whether to show the full help or just the command to show help Returns: True """ if is_help == False: sys.stdout.write('Run \'%s --help\' for more information\n' % sys.argv[0]) return True usage_info = 'Usage: %s [options]\nOptions:\n' % sys.argv[0] usage_info += ' --eENVIRONMENT_VAR <arg>, ... ENVIRONMENT_VAR to be exported\n' usage_info += ' -f, --file <arg>, ... File containing the environment variable configuration\n' usage_info += ' --restart After configuring, restart the agent\n' usage_info += ' --version Display version information\n' usage_info += ' -h, --help Display this information\n' sys.stdout.write(usage_info) return True def read_env_vars(f, env_vars): """ Function to show usage information Args: f: File descriptor containing the environment variable details to configure env_vars: dict representing the env vars to update Returns: The number of env variables parsed """ line_regex = re.compile(r'^[# \t]+(SL\_[A-Z\_0-9]+)([ \t]*:[ \t]*([^ \t\n;]+[^\n;]*)(;[ \t]*((default[ \t]+([^ \t\n]+[^\n]*))|optional))?)?[ \t]*$') env_vars_count = 0 #there can be multiple lines, so loop through all of them for line in f: match = line_regex.match(line) #extract the variable details #not a config if not match: continue match, value = match.groups(), '' required = False if match[4] == 'optional' else True default = env_vars.get(match[0], match[6].strip() if match[6] else '' ) prompt = '%s%s: ' % (match[2].strip() if match[2] else match[0], ' (%s)' % match[4] if not required else '') env_vars_count += 1 #read the value from the terminal while not value: value = read_input(prompt, default) #use the default value if nothing is read from the terminal #for a required variable continue as long as it available if not required: break if value: env_vars[match[0]] = value else: #discard any unset variables try: del env_vars[match[0]] #it could be possible the key does not even exists except: pass return env_vars_count try: #try to read the environment variables from sealion config env_vars = Universal().config.sealion.get_dict(('env', {}))['env'] except: env_vars = {} try: env_vars_count, env_vars_regex, restart_agent = 0, re.compile(r'^--(e[a-zA-Z\_][a-zA-Z0-9\_]*)=?$'), False long_options = ['file=', 'restart', 'version', 'help'] #add environment variables specified in the format --eENVIRONMENT_VAR #we identify them and add as long options for arg in sys.argv[1:]: match = env_vars_regex.match(arg) if not match: continue long_options.append(match.groups()[0] + '=') #these variables need a value; hence append = long_options = dict(zip(long_options, [True] * len(long_options))).keys() #extract out unique options only options = getopt.getopt(sys.argv[1:], 'f:h', long_options)[0] for option, arg in options: if option[:3] == '--e': #environment variable env_vars[option[3:]] = arg env_vars_count += 1 elif option in ['-f', '--file']: #environment variable description with open(arg) as f: env_vars_count += read_env_vars(f, env_vars) elif option == '--restart': restart_agent = True elif option == '--version': version_info.print_version() and sys.exit(0) elif option in ['-h', '--help']: usage(True) and sys.exit(0) if not env_vars_count: sys.stderr.write('Please specify the environment variables to configure\n') usage() and sys.exit(1) except getopt.GetoptError as e: sys.stderr.write(unicode(e).capitalize() + '\n') #missing option value usage() and sys.exit(1) except (KeyboardInterrupt, EOFError): sys.stdout.write('\n'); sys.exit(0) except Exception as e: sys.stderr.write('Error: ' + unicode(e) + '\n') #any other exception sys.exit(1) try: #perform the action JSONfig.perform(filename = exe_path + '/etc/config.json', action = 'set', keys = 'env', value = json.dumps(env_vars), pretty_print = True) except KeyError as e: sys.stderr.write('Error: unknown key ' + unicode(e) + '\n') sys.exit(1) except Exception as e: sys.stderr.write('Error: ' + unicode(e) + '\n') sys.exit(1) try: not restart_agent and sys.exit(0) #exit if we dont ask for restart subprocess.call([exe_path + '/etc/init.d/sealion', 'restart'], close_fds = True) except Exception as e: sys.stderr.write('Failed to restart agent; %s\n' % unicode(e))
null
code/bin/configenv.py
configenv.py
py
5,867
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.dirname", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.path.realpath", "line_number": 20, "usage_type": "call" }, { "api_name": "sys.path.insert", "line_number": 21, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "sys.path.insert", "line_number": 22, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 40, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 40, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 40, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 43, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 49, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 49, "usage_type": "attribute" }, { "api_name": "re.compile", "line_number": 64, "usage_type": "call" }, { "api_name": "constructs.read_input", "line_number": 83, "usage_type": "call" }, { "api_name": "universal.Universal", "line_number": 101, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 106, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 111, "usage_type": "attribute" }, { "api_name": "getopt.getopt", "line_number": 120, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 120, "usage_type": "attribute" }, { "api_name": "version_info.print_version", "line_number": 132, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 132, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 134, "usage_type": "call" }, { "api_name": "sys.stderr.write", "line_number": 137, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 137, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 138, "usage_type": "call" }, { "api_name": "getopt.GetoptError", "line_number": 139, "usage_type": "attribute" }, { "api_name": "sys.stderr.write", "line_number": 140, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 140, "usage_type": "attribute" }, { "api_name": "constructs.unicode", "line_number": 140, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 141, "usage_type": "call" }, { "api_name": "sys.stdout.write", "line_number": 143, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 143, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 144, "usage_type": "call" }, { "api_name": "sys.stderr.write", "line_number": 146, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 146, "usage_type": "attribute" }, { "api_name": "constructs.unicode", "line_number": 146, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 147, "usage_type": "call" }, { "api_name": "constructs.JSONfig.perform", "line_number": 151, "usage_type": "call" }, { "api_name": "constructs.JSONfig", "line_number": 151, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 151, "usage_type": "call" }, { "api_name": "sys.stderr.write", "line_number": 153, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 153, "usage_type": "attribute" }, { "api_name": "constructs.unicode", "line_number": 153, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 154, "usage_type": "call" }, { "api_name": "sys.stderr.write", "line_number": 156, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 156, "usage_type": "attribute" }, { "api_name": "constructs.unicode", "line_number": 156, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 157, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 160, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 161, "usage_type": "call" }, { "api_name": "sys.stderr.write", "line_number": 163, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 163, "usage_type": "attribute" }, { "api_name": "constructs.unicode", "line_number": 163, "usage_type": "call" } ]
568778118
import sqlite3 from employee import Employee def insert_emp(conn, cursor, emp): with conn: cursor.execute( "INSERT INTO employees VALUES (:first, :last, :pay)", {'first': emp.first, 'last': emp.last, 'pay': emp.pay} ) def get_emps_by_name(cursor, lastname): cursor.execute("SELECT * FROM employees WHERE last=:last", {'last': lastname}) return cursor.fetchall() def update_pay(conn, cursor, emp, pay): with conn: cursor.execute( '''UPDATE employees SET pay = :pay WHERE first = :first AND last = :last''', {'first': emp.first, 'last': emp.last, 'pay': pay} ) def remove_emp(conn, cursor, emp): with conn: cursor.execute( "DELETE from employees WHERE first = :first AND last = :last", {'first': emp.first, 'last': emp.last} ) def main(): conn = sqlite3.connect('employee.db') cursor = conn.cursor() try: cursor.execute( '''CREATE TABLE employees ( first text, last text, pay integer )''' ) conn.commit() except: pass emps = [Employee('John', 'Doe', 30000), Employee('Jane', 'Doe', 32000)] for emp in emps: insert_emp(conn, cursor, emp) if emp.last == 'Doe': update_pay(conn, cursor, emp, 50000) print(get_emps_by_name(cursor, 'Doe')) for emp in emps: remove_emp(conn, cursor, emp) conn.close() if __name__ == '__main__': main()
null
main.py
main.py
py
1,575
python
en
code
null
code-starcoder2
83
[ { "api_name": "sqlite3.connect", "line_number": 33, "usage_type": "call" }, { "api_name": "employee.Employee", "line_number": 49, "usage_type": "call" } ]
330572394
#!/usr/bin/env python # coding: utf-8 #Testing chipping part#!/usr/bin/env python # coding: utf-8 from keras.models import load_model import os import keras from keras.layers import Dense, Input, Reshape, Flatten, Dropout from keras import models import matplotlib.pyplot as plt import numpy as np from keras.layers import (Conv2D, Input, Reshape, Dropout, LeakyReLU, UpSampling2D, MaxPooling2D, Flatten, Dense, BatchNormalization, Dropout) import tensorflow as tf os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "1" from PIL import Image, ImageDraw import skimage.filters as filters import io import glob from tqdm import tqdm import logging import argparse import os import json import wv_util as wv #import tfr_util as tfr #import aug_util as aug import csv import random import six import cv2 import glob import mahotas as mh #from chainer.dataset import dataset_mixin from tqdm import tqdm import time def get_labels(fname="xView_train.geojson"): with open(fname) as f: data = json.load(f) coords = np.zeros((len(data['features']),4)) chips = np.zeros((len(data['features'])),dtype="object") classes = np.zeros((len(data['features']))) for i in range(len(data['features'])): if data['features'][i]['properties']['bounds_imcoords'] != []: b_id = data['features'][i]['properties']['image_id'] val = np.array([int(num) for num in data['features'][i]['properties']['bounds_imcoords'].split(",")]) chips[i] = b_id classes[i] = data['features'][i]['properties']['type_id'] coords[i] = val else: chips[i] = 'None' return coords, chips, classes def get_chips(): print("\nStarting to chip the xView dataset.\n") thechips = [] theclasses = [] thecoords = [] thecoords, thechips, theclasses = get_labels() per = 1 X_data = [] files2 = glob.glob ("/root/Desktop/seniordesign/chippedimages/*.tif")# Change this to ur own directory files = glob.glob ("/root/Desktop/seniordesign/testing_images/*.tif")# Change this to ur own directory for myFile in files: t = 0 print('\nChipping image at this location: ', myFile) image = cv2.imread (myFile) #X_data.append (image) # https://stackoverflow.com/questions/37747021/create-numpy-array-of-images chipped_img, chipped_box, chipped_classes = wv.chip_image(img = image, coords = thecoords, classes=theclasses, shape=(256,256)) numberOfChips = chipped_img.shape[0] print("This image created %d chips." % chipped_img.shape[0]) while t < numberOfChips: #print(t + 1) os.chdir(r"/root/Desktop/seniordesign/chippedimages") # Change this to ur own directory mh.imsave('%d.tif' % per, chipped_img[t]) os.chdir(r"/root/Desktop/seniordesign") # Change this to ur own directory t += 1 per += 1 os.chdir(r"/root/Desktop/seniordesign/chippedimages") # Change this to ur own directory for myFile in files2: chipimage = mh.imread(myFile) X_data.append(chipimage) npchipped = np.array([np.array(Image.open(myFile)) for myFile in files2]) ### This puts all of the images in to one nparray, ( i think the block of code above does the same thing) # https://stackoverflow.com/questions/39195113/how-to-load-multiple-images-in-a-numpy-array npchipped2 = np.array(X_data) # nchipped2 is the numpy array, I use it down below #npchipped and npchipped are the same return npchipped2, numberOfChips def chip_images(): print("\nStarting to chip the xView dataset.\n") thechips = [] theclasses = [] thecoords = [] thecoords, thechips, theclasses = get_labels() per = 1 X_data = [] files2 = glob.glob ("/root/Desktop/seniordesign/chippedimages/*.tif")# Change this to ur own directory files = glob.glob ("/root/Desktop/seniordesign/testing_images/*.tif")# Change this to ur own directory for myFile in files: t = 0 print('\nChipping image at this location: ', myFile) image = cv2.imread (myFile) #X_data.append (image) # https://stackoverflow.com/questions/37747021/create-numpy-array-of-images chipped_img, chipped_box, chipped_classes = wv.chip_image(img = image, coords = thecoords, classes=theclasses, shape=(256,256)) numberOfChips = chipped_img.shape[0] print("This image created %d chips." % chipped_img.shape[0]) while t < numberOfChips: #print(t + 1) os.chdir(r"/root/Desktop/seniordesign/chippedimages") # Change this to ur own directory mh.imsave('%d.tif' % per, chipped_img[t]) os.chdir(r"/root/Desktop/seniordesign") # Change this to ur own directory t += 1 per += 1 def get_numpy(): os.chdir(r"/root/Desktop/seniordesign/chippedimages") files2 = glob.glob ("/root/Desktop/seniordesign/chippedimages/*.tif")# # Change this to ur own directory image_data = [] for myFile in files2: chipimage = mh.imread(myFile) image_data.append(chipimage) npchipped = np.array([np.array(Image.open(myFile)) for myFile in files2]) ### This puts all of the images in to one nparray, ( i think the block of code above does the same thing) # https://stackoverflow.com/questions/39195113/how-to-load-multiple-images-in-a-numpy-array npchipped2 = np.array(image_data) numberOfChips = len(image_data) return npchipped2, numberOfChips def get_array(): print("Getting the numpy array...") #chip_images() #print('\n\nChipping comeplete.\n')
null
working_gan/team_gmu_chip.py
team_gmu_chip.py
py
6,064
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 17, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 51, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 68, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 69, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 73, "usage_type": "call" }, { "api_name": "wv_util.chip_image", "line_number": 75, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 80, "usage_type": "call" }, { "api_name": "mahotas.imsave", "line_number": 81, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 82, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 86, "usage_type": "call" }, { "api_name": "mahotas.imread", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 92, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 92, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 92, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 95, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 108, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 109, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 113, "usage_type": "call" }, { "api_name": "wv_util.chip_image", "line_number": 115, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 120, "usage_type": "call" }, { "api_name": "mahotas.imsave", "line_number": 121, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 122, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 130, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 131, "usage_type": "call" }, { "api_name": "mahotas.imread", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 138, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 138, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 138, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 140, "usage_type": "call" } ]
67449781
from py_komoran3.komoran3py import KomoranPy ko = KomoranPy() ko.set_user_dictionary('./py_komoran3/user_dictionary.txt') # 채팅로그 불러오는 함수 def openlog( bj_code, filename, platform = 'twitch_live_chat') : """ '../../data/{0}/{1}/{2}'.format(platform, bj_code, filename) platform : 플랫폼 폴더명 (기본 : twitch_live_chat) bj_code : bj 폴더명 filename : 로그 파일이름 """ chatlog = '../../data/{0}/{1}/{2}'.format(platform, bj_code, filename) with open(chatlog) as f : chat = f.readlines() return chat # Openlog or 직접 불러온 채팅 로그 넣으면 정규식으로 id, 날짜, 채팅 내용 구분해줌 def preprocessing_chat(chat, num = 3) : """ chat : chat에는 채팅로그 넣기 num : 그룹 선택 / 안주면 기본값 3 (0 = 전체, 1 = 시간(방송기준) 2 = ID 3 = 채팅) """ import re text = chat my = re.compile('\[([0-9:]*)\] <(\S*[ ]*\S*)> (\w.*)') word_list = [] for line in text: mytext = my.search(line) if mytext : word_list.append(mytext.group(num)) return word_list # 전처리 된 채팅 로그 넣으면 형태소 분석 돌려서 형태소 리스트로 반환 def tokenize(word_list) : """ word_list : 전처리된 리스트(prepro_chat함수의 리턴값 넣기) """ tokens_ko = [] for wd in word_list : for i in range(len(ko.pos(wd))) : tokens_ko.append(ko.pos(wd)[i][0]) return tokens_ko # 형태소 리스트 넣으면 빈도분석 가능한 형태 전환 시킴 def nltk_text(tokens_ko) : """ tokens_ko : tokenize 함수 리턴값 """ import nltk tokens_ko_nltk = nltk.Text(tokens_ko) return tokens_ko_nltk # Nltk_text 리턴값 넣으면, 상위 단어 리스트 num만큼 리턴 def top_words(tokens_ko_nltk, num = 100) : """ tokens_ko_nltk : nltk_text 함수 리턴값 num : 상위 단어 리스트 num 만큼 리턴 / 기본값 100 """ data= tokens_ko_nltk.vocab().most_common(num) return data # 형태소 분석하는데, num 값 이상의 글자 크기만 리턴해줌 def tokenize_over(tokens_ko, num = 2) : """ num : 원하는 글자 크기 / 기본값 : 2 (num보다 큰 수만 출력) """ tokens_ko2 = [] for wd in tokens_ko : if len(wd) >= num: tokens_ko2.append(wd) return tokens_ko2 # 분석된 데이터 pickle를 이용해서 파일로 저장 def pickle_data(name, bj_code, data) : """ name : 파일이름 지정 data : data는 저장할 data """ import pickle with open('./top_words/{0}/{1}.pickle'.format(bj_code, name), 'wb') as f : pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) # 폴더 내 파일을 리스트로 리턴해주는 함수 def call_file_list(path) : """ path : 파일 경로 """ from os import listdir path_dir = path file_list = listdir(path_dir) return file_list # 디렉토리 체크해서 디렉토리 없으면 디렉토리 만들어줌 def mk_dir(dirpath) : """ dirpath : 체크할 폴더의 상대경로 """ import os dirname = dirpath if not os.path.isdir(dirname): os.mkdir(dirname) if __name__ == '__main__' : try : bj_list = call_file_list('../../data/twitch_live_chat') for bj in bj_list : file_list = call_file_list('../../data/twitch_live_chat/%s'%bj) for file in file_list : log = openlog(bj, file) print('%s로그 불러오기 완료' %file) word_list = preprocessing_chat(log) print('%s로그 전처리 완료'%file) tokens_ko = tokenize(word_list) print('%s로그 토큰화 완료'%file) tokens_ko2 = tokenize_over(tokens_ko) print('2글자 이상 추출') tokens_ko_nltk = nltk_text(tokens_ko) print('%s로그 자연어처리 완료'%file) tokens_ko_nltk2 = nltk_text(tokens_ko2) print('%s로그 2글자 이상자연어처리 완료'%file) top_data = top_words(tokens_ko_nltk) print('%s상위 단어 추출 완료'%file) top_data2 = top_words(tokens_ko_nltk2) print('%s상위 2단어이상 추출 완료'%file) mk_dir('./top_words/{}'.format(bj)) pickle_data('%s기본형태소'%file[:-4],bj,top_data) print('기본형태소 파일저장') pickle_data('%s2글자이상형태소'%file[:-4],bj,top_data2) print('2글자이상형태소 파일저장') except Exception as e : print('stopped due to ', e) print('$$$$$$$$$$$ ALL DONE $$$$$$$$$$$$$$$')
null
lib/analysis/chat_wordcount.py
chat_wordcount.py
py
4,932
python
en
code
null
code-starcoder2
83
[ { "api_name": "py_komoran3.komoran3py.KomoranPy", "line_number": 2, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 26, "usage_type": "call" }, { "api_name": "nltk.Text", "line_number": 51, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 82, "usage_type": "call" }, { "api_name": "pickle.HIGHEST_PROTOCOL", "line_number": 82, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 91, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 101, "usage_type": "call" }, { "api_name": "os.path", "line_number": 101, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 102, "usage_type": "call" } ]
139187466
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys from typing import Optional from PyQt5.QtCore import QCoreApplication, pyqtSlot, Qt from PyQt5.QtWidgets import QApplication, QComboBox from window import Window, Dialog class MainWindow(Window): def __init__(self): super().__init__("../MainWindow.ui") self.dialog: Optional[MyDialog] = None mnu = self.actionOptions mnu.setShortcut("Ctrl+O") mnu.setStatusTip("Show options") mnu.triggered.connect(self.show_options) sb = self.statusBar() sb.showMessage("Hello Statusbar!") cb: QComboBox = self.comboBox cb.addItem("A", 100) cb.addItem("B", 200) cb.addItem("C", 300) self.register_widget(self.dockWidget) self.register_widget(self.lineEdit) self.register_widget(self.checkBox, changefunc=self.toggled_dockcheckbox) self.register_widget(self.comboBox) self.register_widget(self.dateTimeEdit) def toggled_dockcheckbox(self, new_state): if new_state: self.addDockWidget(Qt.LeftDockWidgetArea, self.dockWidget) self.dockWidget.show() else: self.removeDockWidget(self.dockWidget) def show_options(self): self.open_dialog() @pyqtSlot() def on_pushButton_clicked(self): self.open_dialog() @pyqtSlot() def on_pushButtonModal_clicked(self): self.open_dialog(True) def open_dialog(self, modal: bool = False): if self.dialog is None: self.dialog = MyDialog() self.dialog.show(modal) def closeEvent(self, e): super().closeEvent(e) e.accept() QCoreApplication.exit() class MyDialog(Dialog): def __init__(self): super(MyDialog, self).__init__("../Dialog.ui") def closeEvent(self, e): super().closeEvent(e) e.accept() if __name__ == "__main__": QCoreApplication.setOrganizationName("MyCompany") QCoreApplication.setApplicationName("MyApp") QCoreApplication.setOrganizationDomain("MyCompany.example.com") qapp = QApplication(sys.argv) root = MainWindow() root.show() ret = qapp.exec_() sys.exit(ret)
null
PyQt5/main.py
main.py
py
2,228
python
en
code
null
code-starcoder2
83
[ { "api_name": "window.Window", "line_number": 11, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 15, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QComboBox", "line_number": 25, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.Qt.LeftDockWidgetArea", "line_number": 38, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.Qt", "line_number": 38, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSlot", "line_number": 46, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.pyqtSlot", "line_number": 50, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QCoreApplication.exit", "line_number": 63, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QCoreApplication", "line_number": 63, "usage_type": "name" }, { "api_name": "window.Dialog", "line_number": 66, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QCoreApplication.setOrganizationName", "line_number": 76, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QCoreApplication", "line_number": 76, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QCoreApplication.setApplicationName", "line_number": 77, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QCoreApplication", "line_number": 77, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QCoreApplication.setOrganizationDomain", "line_number": 78, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QCoreApplication", "line_number": 78, "usage_type": "name" }, { "api_name": "PyQt5.QtWidgets.QApplication", "line_number": 80, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 80, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 85, "usage_type": "call" } ]
471615803
from kivy.app import App from kivy.uix.widget import Widget from kivy.properties import NumericProperty, ReferenceListProperty,\ ObjectProperty from kivy.vector import Vector from kivy.clock import Clock from kivy.uix.button import Button from kivy.core.window import Window from kivy.uix.label import Label import sys import random #declaring the pong paddle class class PongPaddle(Widget): insectLives = NumericProperty(20) #Set the lives of the insects to x number lives = NumericProperty(3) #Set the lives of the player to x number def bounce_ball(self, ball): #if the ball colides with the pong paddle then bounce back with increased speed,if it hits the top or bottom change angle of rebound. if self.collide_widget(ball): vx, vy = ball.velocity offset = (ball.center_y - self.center_y) / (self.height / 2) bounced = Vector(-1 * vx, vy) vel = bounced * 1.2 #times the ball by 1.2 when bounced ball.velocity = vel.x, vel.y + offset #declaring the pong ball class class PongBall(Widget): velocity_x = NumericProperty(0) #velocity x is horizontal speed. velocity_y = NumericProperty(0) #vlocity y is vertical speed. velocity = ReferenceListProperty(velocity_x, velocity_y) def move(self): self.pos = Vector(*self.velocity) + self.pos #declaring the pong game class class PongGame(Widget): ball = ObjectProperty(None) player2 = ObjectProperty(None) bee = ObjectProperty(None) def serve_ball(self, vel=(4, 0)): #This is how the ball resets and serves the ball after. self.ball.center = self.center #serves ball from center. self.ball.velocity = vel def update(self, dt): self.ball.move() #bounce of puppet self.player2.bounce_ball(self.ball) #bounce ball off bottom or top if (self.ball.y < self.y) or (self.ball.top > self.top): self.ball.velocity_y *= -1 #went of to a bounces back left side if (self.ball.x < self.x) or (self.ball.width > self.width): self.ball.velocity_x *= -1 self.player1.insectLives -= 1 #if the player misses the ball he will lose a life and it will serve the ball----losing lifes if self.ball.x > self.width: self.player2.lives -= 1 self.serve_ball(vel=(+4, 0)) #Ends game by putting the ball stationary when the player loses all their lives----loses all player lifes if self.player2.lives == 0 : self.serve_ball(vel=(+0, 0)) #Ends game by putting the ball stationary when the player hits the left side 20 times.----wins the game if self.player1.insectLives == 0 : self.serve_ball(vel=(+0, 0)) def on_touch_move(self, touch): if touch.x > self.width - self.width / 3: self.player2.center_y = touch.y #main class DefendApp(App): def build(self): game = PongGame() game.serve_ball() Clock.schedule_interval(game.update, 1.0 / 60.0) return game if __name__ == '__main__': DefendApp().run()
null
game.py
game.py
py
3,403
python
en
code
null
code-starcoder2
83
[ { "api_name": "kivy.uix.widget.Widget", "line_number": 18, "usage_type": "name" }, { "api_name": "kivy.properties.NumericProperty", "line_number": 20, "usage_type": "call" }, { "api_name": "kivy.properties.NumericProperty", "line_number": 21, "usage_type": "call" }, { "api_name": "kivy.vector.Vector", "line_number": 28, "usage_type": "call" }, { "api_name": "kivy.uix.widget.Widget", "line_number": 33, "usage_type": "name" }, { "api_name": "kivy.properties.NumericProperty", "line_number": 34, "usage_type": "call" }, { "api_name": "kivy.properties.NumericProperty", "line_number": 35, "usage_type": "call" }, { "api_name": "kivy.properties.ReferenceListProperty", "line_number": 36, "usage_type": "call" }, { "api_name": "kivy.vector.Vector", "line_number": 39, "usage_type": "call" }, { "api_name": "kivy.uix.widget.Widget", "line_number": 46, "usage_type": "name" }, { "api_name": "kivy.properties.ObjectProperty", "line_number": 47, "usage_type": "call" }, { "api_name": "kivy.properties.ObjectProperty", "line_number": 48, "usage_type": "call" }, { "api_name": "kivy.properties.ObjectProperty", "line_number": 49, "usage_type": "call" }, { "api_name": "kivy.app.App", "line_number": 92, "usage_type": "name" }, { "api_name": "kivy.clock.Clock.schedule_interval", "line_number": 96, "usage_type": "call" }, { "api_name": "kivy.clock.Clock", "line_number": 96, "usage_type": "name" } ]
98837974
from __future__ import absolute_import import io import pandas as pd from dask.bytes import open_files, read_bytes import dask from ..utils import insert_meta_param_description, make_meta def to_json( df, url_path, orient="records", lines=None, storage_options=None, compute=True, encoding="utf-8", errors="strict", compression=None, **kwargs ): """Write dataframe into JSON text files This utilises ``pandas.DataFrame.to_json()``, and most parameters are passed through - see its docstring. Differences: orient is 'records' by default, with lines=True; this produces the kind of JSON output that is most common in big-data applications, and which can be chunked when reading (see ``read_json()``). Parameters ---------- df: dask.DataFrame Data to save url_path: str, list of str Location to write to. If a string, and there are more than one partitions in df, should include a glob character to expand into a set of file names, or provide a ``name_function=`` parameter. Supports protocol specifications such as ``"s3://"``. encoding, errors: The text encoding to implement, e.g., "utf-8" and how to respond to errors in the conversion (see ``str.encode()``). orient, lines, kwargs passed to pandas; if not specified, lines=True when orient='records', False otherwise. storage_options: dict Passed to backend file-system implementation compute: bool If true, immediately executes. If False, returns a set of delayed objects, which can be computed at a later time. encoding, errors: Text conversion, ``see str.encode()`` compression : string or None String like 'gzip' or 'xz'. """ if lines is None: lines = orient == "records" if orient != "records" and lines: raise ValueError( "Line-delimited JSON is only available with" 'orient="records".' ) kwargs["orient"] = orient kwargs["lines"] = lines and orient == "records" outfiles = open_files( url_path, "wt", encoding=encoding, errors=errors, name_function=kwargs.pop("name_function", None), num=df.npartitions, compression=compression, **(storage_options or {}) ) parts = [ dask.delayed(write_json_partition)(d, outfile, kwargs) for outfile, d in zip(outfiles, df.to_delayed()) ] if compute: dask.compute(parts) return [f.path for f in outfiles] else: return parts def write_json_partition(df, openfile, kwargs): with openfile as f: df.to_json(f, **kwargs) @insert_meta_param_description def read_json( url_path, orient="records", lines=None, storage_options=None, blocksize=None, sample=2 ** 20, encoding="utf-8", errors="strict", compression="infer", meta=None, engine=pd.read_json, **kwargs ): """Create a dataframe from a set of JSON files This utilises ``pandas.read_json()``, and most parameters are passed through - see its docstring. Differences: orient is 'records' by default, with lines=True; this is appropriate for line-delimited "JSON-lines" data, the kind of JSON output that is most common in big-data scenarios, and which can be chunked when reading (see ``read_json()``). All other options require blocksize=None, i.e., one partition per input file. Parameters ---------- url_path: str, list of str Location to read from. If a string, can include a glob character to find a set of file names. Supports protocol specifications such as ``"s3://"``. encoding, errors: The text encoding to implement, e.g., "utf-8" and how to respond to errors in the conversion (see ``str.encode()``). orient, lines, kwargs passed to pandas; if not specified, lines=True when orient='records', False otherwise. storage_options: dict Passed to backend file-system implementation blocksize: None or int If None, files are not blocked, and you get one partition per input file. If int, which can only be used for line-delimited JSON files, each partition will be approximately this size in bytes, to the nearest newline character. sample: int Number of bytes to pre-load, to provide an empty dataframe structure to any blocks wihout data. Only relevant is using blocksize. encoding, errors: Text conversion, ``see bytes.decode()`` compression : string or None String like 'gzip' or 'xz'. engine : function object, default ``pd.read_json`` The underlying function that dask will use to read JSON files. By default, this will be the pandas JSON reader (``pd.read_json``). $META Returns ------- dask.DataFrame Examples -------- Load single file >>> dd.read_json('myfile.1.json') # doctest: +SKIP Load multiple files >>> dd.read_json('myfile.*.json') # doctest: +SKIP >>> dd.read_json(['myfile.1.json', 'myfile.2.json']) # doctest: +SKIP Load large line-delimited JSON files using partitions of approx 256MB size >> dd.read_json('data/file*.csv', blocksize=2**28) """ import dask.dataframe as dd if lines is None: lines = orient == "records" if orient != "records" and lines: raise ValueError( "Line-delimited JSON is only available with" 'orient="records".' ) if blocksize and (orient != "records" or not lines): raise ValueError( "JSON file chunking only allowed for JSON-lines" "input (orient='records', lines=True)." ) storage_options = storage_options or {} if blocksize: first, chunks = read_bytes( url_path, b"\n", blocksize=blocksize, sample=sample, compression=compression, **storage_options ) chunks = list(dask.core.flatten(chunks)) if meta is None: meta = read_json_chunk(first, encoding, errors, engine, kwargs) meta = make_meta(meta) parts = [ dask.delayed(read_json_chunk)( chunk, encoding, errors, engine, kwargs, meta=meta ) for chunk in chunks ] return dd.from_delayed(parts, meta=meta) else: files = open_files( url_path, "rt", encoding=encoding, errors=errors, compression=compression, **storage_options ) parts = [ dask.delayed(read_json_file)(f, orient, lines, engine, kwargs) for f in files ] return dd.from_delayed(parts, meta=meta) def read_json_chunk(chunk, encoding, errors, engine, kwargs, meta=None): s = io.StringIO(chunk.decode(encoding, errors)) s.seek(0) df = engine(s, orient="records", lines=True, **kwargs) if meta is not None and df.empty: return meta else: return df def read_json_file(f, orient, lines, engine, kwargs): with f as f: return engine(f, orient=orient, lines=lines, **kwargs)
null
downloadable-site-packages/dask/dataframe/io/json.py
json.py
py
7,327
python
en
code
null
code-starcoder2
83
[ { "api_name": "dask.bytes.open_files", "line_number": 64, "usage_type": "call" }, { "api_name": "dask.delayed", "line_number": 75, "usage_type": "call" }, { "api_name": "dask.compute", "line_number": 79, "usage_type": "call" }, { "api_name": "pandas.read_json", "line_number": 102, "usage_type": "attribute" }, { "api_name": "dask.bytes.read_bytes", "line_number": 183, "usage_type": "call" }, { "api_name": "dask.core.flatten", "line_number": 191, "usage_type": "call" }, { "api_name": "dask.core", "line_number": 191, "usage_type": "attribute" }, { "api_name": "utils.make_meta", "line_number": 194, "usage_type": "call" }, { "api_name": "dask.delayed", "line_number": 196, "usage_type": "call" }, { "api_name": "dask.dataframe.from_delayed", "line_number": 201, "usage_type": "call" }, { "api_name": "dask.dataframe", "line_number": 201, "usage_type": "name" }, { "api_name": "dask.bytes.open_files", "line_number": 203, "usage_type": "call" }, { "api_name": "dask.delayed", "line_number": 212, "usage_type": "call" }, { "api_name": "dask.dataframe.from_delayed", "line_number": 215, "usage_type": "call" }, { "api_name": "dask.dataframe", "line_number": 215, "usage_type": "name" }, { "api_name": "utils.insert_meta_param_description", "line_number": 90, "usage_type": "name" }, { "api_name": "io.StringIO", "line_number": 219, "usage_type": "call" } ]
395430693
import boto3 file=open(r"C:\Users\vikash.kumar67\Desktop\instance.txt","r") session =boto3.Session(profile_name='default') ec2=session.client(service_name='ec2') ssm=session.client(service_name='ssm') for each in file: #ec2.stop_instances(InstanceIds=each) print(each) #each=str(each).strip('\n') response=ssm.send_command(InstanceIds=[each], DocumentName = 'AWS-RunPowerShellScript', Parameters = {"commands": ["date;ipconfig"]} ) print(response)
null
stopping services.py
stopping services.py
py
501
python
en
code
null
code-starcoder2
83
[ { "api_name": "boto3.Session", "line_number": 5, "usage_type": "call" } ]
453090071
from django import forms from django.utils.safestring import mark_safe import re import string from stars.apps.credits.models import (CreditSet, Category, Subcategory, Credit, DocumentationField) TYPE_CHOICES = ( ("", "-------"), ('institution_type', 'Institution Type'), ('rating__name', 'STARS Rating'), ) EMPTY_CHOICES = ( ("", "-------"), ) class CharacteristicFilterForm(forms.Form): type = forms.CharField(required=False, widget=forms.widgets.Select(choices=EMPTY_CHOICES)) item = forms.CharField(required=False, widget=forms.widgets.Select(choices=EMPTY_CHOICES)) def clean(self): """ This form can be empty, but if one is filled out then both must be """ cleaned_data = self.cleaned_data type = cleaned_data.get("type") item = cleaned_data.get("item") if type and not item: self._errors["item"] = self.error_class( [u"This field is required"]) del cleaned_data["item"] return cleaned_data def __init__(self, available_filters, **kwargs): super(CharacteristicFilterForm, self).__init__(**kwargs) choices = [("", "-------")] for f in available_filters: choices.append((f.key, f.title)) self.fields['type'].widget = forms.widgets.Select( choices=choices, attrs={'onchange': 'applyLookup(this);',}) class DelCharacteristicFilterForm(forms.Form): delete = forms.BooleanField(required=False, widget=forms.HiddenInput) def __init__(self, instance, *args, **kwargs): self.instance = instance super(DelCharacteristicFilterForm, self).__init__(*args, **kwargs) class CreditSetElementField(forms.CharField): def to_python(self, value): """Normalize data to a Category, Subcategory, Credit or CreditSet.""" # Return an empty list if no input was given. if value and value != 'select_one': pattern = "(\w+)_(\d+)" m = re.match(pattern, value) if m: obj = m.groups()[0] id = m.groups()[1] if obj == "cat": return Category.objects.get(pk=id) if obj == "sub": return Subcategory.objects.get(pk=id) if obj == "crd": return Credit.objects.get(pk=id) if obj == "cs": return CreditSet.objects.get(pk=id) return None class ScoreColumnForm(forms.Form): col1 = CreditSetElementField(required=False) col2 = CreditSetElementField(required=False) col3 = CreditSetElementField(required=False) col4 = CreditSetElementField(required=False) def __init__(self, credit_set, *args, **kwargs): # self.instance = instance if 'initial' in kwargs: initial = kwargs['initial'] new_initial = {} count = 0 if initial: for k, col in initial: if isinstance(col, Category): new_initial[k] = "cat_%d" % col.id elif isinstance(col, Subcategory): new_initial[k] = "sub_%d" % col.id elif isinstance(col, Credit): new_initial[k] = "crd_%d" % col.id elif isinstance(col, CreditSet): new_initial[k] = "cs_%d" % col.id else: new_initial[k] = "select_one" count += 1 else: for i in range(1, 5): new_initial['column_%d' % i] = "select_one" kwargs['initial'] = new_initial super(ScoreColumnForm, self).__init__(*args, **kwargs) choices = [("", "Select One"), ("cs_%d" % credit_set.id, "Overall Score"), ('', '')] # disabled = [] for cat in credit_set.category_set.filter(include_in_score=True): choices.append(("cat_%d" % cat.id, string.upper(cat.title))) # spacer = ("cat_%d_spacer" % cat.id, "") choices.append(('', '')) # disabled.append(spacer) for sub in cat.subcategory_set.all(): choices.append(("sub_%d" % sub.id, mark_safe("&nbsp;%s" % sub.title))) # spacer = ("sub_%d_spacer" % sub.id, "") # choices.append(spacer) # disabled.append(spacer) choices.append(('', '')) for c in sub.get_tier1_credits(): choices.append( ("crd_%d" % c.id, mark_safe("&nbsp;&nbsp;&nbsp;%s" % c.title))) t2 = sub.get_tier2_credits() if t2: # spacer = ("sub_%d_t2spacer" % sub.id, # mark_safe("&nbsp;&nbsp;&nbsp;-------")) choices.append(('', mark_safe('&nbsp;&nbsp;&nbsp;-------'))) # choices.append(spacer) # disabled.append(spacer) for c in t2: choices.append( ("crd_%d" % c.id, mark_safe("&nbsp;&nbsp;&nbsp;%s" % c.title))) # spacer = ("sub_%d_spacer2" % sub.id, "") # choices.append(spacer) # disabled.append(spacer) choices.append(('', '')) w = forms.Select(choices=choices) self.fields['col1'].widget = w self.fields['col2'].widget = w self.fields['col3'].widget = w self.fields['col4'].widget = w self.fields['col1'].label = "Column 1" self.fields['col2'].label = "Column 2" self.fields['col3'].label = "Column 3" self.fields['col4'].label = "Column 4" class ReportingFieldSelectForm(forms.Form): reporting_field = forms.ModelChoiceField(DocumentationField, required=False) def __init__(self, *args, **kwargs): super(ReportingFieldSelectForm, self).__init__(*args, **kwargs) cs = CreditSet.objects.get(pk=2) cs_lookup = "credit__subcategory__category__creditset" self.fields['reporting_field'].queryset = ( DocumentationField.objects.filter(**{cs_lookup: cs})) self.fields['reporting_field'].widget.choices = (('', '--------'),) def clean(self): cleaned_data = self.cleaned_data return cleaned_data
null
stars/apps/institutions/data_displays/forms.py
forms.py
py
6,943
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.forms.Form", "line_number": 23, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 23, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 25, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 25, "usage_type": "name" }, { "api_name": "django.forms.widgets.Select", "line_number": 26, "usage_type": "call" }, { "api_name": "django.forms.widgets", "line_number": 26, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 26, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 27, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 27, "usage_type": "name" }, { "api_name": "django.forms.widgets.Select", "line_number": 28, "usage_type": "call" }, { "api_name": "django.forms.widgets", "line_number": 28, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 28, "usage_type": "name" }, { "api_name": "django.forms.widgets.Select", "line_number": 53, "usage_type": "call" }, { "api_name": "django.forms.widgets", "line_number": 53, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 53, "usage_type": "name" }, { "api_name": "django.forms.Form", "line_number": 57, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 57, "usage_type": "name" }, { "api_name": "django.forms.BooleanField", "line_number": 59, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 59, "usage_type": "name" }, { "api_name": "django.forms.HiddenInput", "line_number": 59, "usage_type": "attribute" }, { "api_name": "django.forms.CharField", "line_number": 67, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 67, "usage_type": "name" }, { "api_name": "re.match", "line_number": 76, "usage_type": "call" }, { "api_name": "stars.apps.credits.models.Category.objects.get", "line_number": 81, "usage_type": "call" }, { "api_name": "stars.apps.credits.models.Category.objects", "line_number": 81, "usage_type": "attribute" }, { "api_name": "stars.apps.credits.models.Category", "line_number": 81, "usage_type": "name" }, { "api_name": "stars.apps.credits.models.Subcategory.objects.get", "line_number": 83, "usage_type": "call" }, { "api_name": "stars.apps.credits.models.Subcategory.objects", "line_number": 83, "usage_type": "attribute" }, { "api_name": "stars.apps.credits.models.Subcategory", "line_number": 83, "usage_type": "name" }, { "api_name": "stars.apps.credits.models.Credit.objects.get", "line_number": 85, "usage_type": "call" }, { "api_name": "stars.apps.credits.models.Credit.objects", "line_number": 85, "usage_type": "attribute" }, { "api_name": "stars.apps.credits.models.Credit", "line_number": 85, "usage_type": "name" }, { "api_name": "stars.apps.credits.models.CreditSet.objects.get", "line_number": 87, "usage_type": "call" }, { "api_name": "stars.apps.credits.models.CreditSet.objects", "line_number": 87, "usage_type": "attribute" }, { "api_name": "stars.apps.credits.models.CreditSet", "line_number": 87, "usage_type": "name" }, { "api_name": "django.forms.Form", "line_number": 91, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 91, "usage_type": "name" }, { "api_name": "stars.apps.credits.models.Category", "line_number": 108, "usage_type": "argument" }, { "api_name": "stars.apps.credits.models.Subcategory", "line_number": 110, "usage_type": "argument" }, { "api_name": "stars.apps.credits.models.Credit", "line_number": 112, "usage_type": "argument" }, { "api_name": "stars.apps.credits.models.CreditSet", "line_number": 114, "usage_type": "argument" }, { "api_name": "string.upper", "line_number": 133, "usage_type": "call" }, { "api_name": "django.utils.safestring.mark_safe", "line_number": 140, "usage_type": "call" }, { "api_name": "django.utils.safestring.mark_safe", "line_number": 149, "usage_type": "call" }, { "api_name": "django.utils.safestring.mark_safe", "line_number": 156, "usage_type": "call" }, { "api_name": "django.utils.safestring.mark_safe", "line_number": 162, "usage_type": "call" }, { "api_name": "django.forms.Select", "line_number": 169, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 169, "usage_type": "name" }, { "api_name": "django.forms.Form", "line_number": 181, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 181, "usage_type": "name" }, { "api_name": "django.forms.ModelChoiceField", "line_number": 183, "usage_type": "call" }, { "api_name": "stars.apps.credits.models.DocumentationField", "line_number": 183, "usage_type": "argument" }, { "api_name": "django.forms", "line_number": 183, "usage_type": "name" }, { "api_name": "stars.apps.credits.models.CreditSet.objects.get", "line_number": 190, "usage_type": "call" }, { "api_name": "stars.apps.credits.models.CreditSet.objects", "line_number": 190, "usage_type": "attribute" }, { "api_name": "stars.apps.credits.models.CreditSet", "line_number": 190, "usage_type": "name" }, { "api_name": "stars.apps.credits.models.DocumentationField.objects.filter", "line_number": 193, "usage_type": "call" }, { "api_name": "stars.apps.credits.models.DocumentationField.objects", "line_number": 193, "usage_type": "attribute" }, { "api_name": "stars.apps.credits.models.DocumentationField", "line_number": 193, "usage_type": "name" } ]
165473543
# -*- coding: utf-8 -*- """ This module manages all pip processes. """ import os import logging from PyQt5.QtCore import pyqtSignal, pyqtSlot, QObject, QProcess from PyQt5.QtWidgets import QApplication logger = logging.getLogger(__name__) #]===========================================================================[# #] INSTALL SELECTED PACKAGES [#==============================================[# #]===========================================================================[# def has_bash(): """ Test if bash is available. """ process = QProcess() process.start("which bash") process.waitForStarted() process.waitForFinished() if process.exitStatus() == QProcess.NormalExit: return bool(process.readAll()) return False class PipManager(QObject): """ Manage `pip` processes. """ started = pyqtSignal() finished = pyqtSignal() failed = pyqtSignal() textChanged = pyqtSignal(str) def __init__(self, venv_dir, venv_name, parent=None): super().__init__(parent) self._venv_dir = venv_dir self._venv_name = venv_name self._process = QProcess(self) self._process.setWorkingDirectory(venv_dir) self._process.readyReadStandardOutput.connect( self.on_ready_read_stdout ) self._process.readyReadStandardError.connect( self.on_ready_read_stderr ) # started self._process.started.connect(self.started) # updated self._process.stateChanged.connect(self.on_state_changed) # finished self._process.finished.connect(self.finished) self._process.finished.connect(self.on_finished) def run_pip(self, command="", options=None): """ Activate the virtual environment and run pip commands. """ if has_bash(): if options is None: options = [] venv_path = os.path.join(self._venv_dir, self._venv_name) pip = f"pip {command} {' '.join(options)};" pipdeptree = f"pipdeptree {' '.join(options)};" task = pipdeptree if command == "pipdeptree" else pip script = ( f"source {venv_path}/bin/activate;" f"{task}" "deactivate;" ) self._process.start("bash", ["-c", script]) def process_stop(self): """Stop the process.""" self._process.close() @pyqtSlot(QProcess.ProcessState) def on_state_changed(self, state): """Show the current process state. """ if state == QProcess.Starting: #print("[PROCESS]: Started") logger.debug("Started") elif state == QProcess.Running: #print("[PROCESS]: Running") logger.debug("Running") elif state == QProcess.NotRunning: #print("[PROCESS]: Stopped") logger.info("Done.") self.textChanged.emit( "\n\nPress [ESC] to continue..." ) @pyqtSlot(int, QProcess.ExitStatus) def on_finished(self, exitCode): """Show exit code when finished. """ #print(f"[PROCESS]: Exit code: {exitCode}") logger.debug(f"Exit code: {exitCode}") self._process.kill() @pyqtSlot() def on_ready_read_stdout(self): """Read from `stdout` and send the output to `update_status()`. """ message = self._process.readAllStandardOutput().data().decode().strip() #print(f"[PIP]: {message}") logger.debug(message) self.textChanged.emit(message) @pyqtSlot() def on_ready_read_stderr(self): """Read from `stderr`, then kill the process. """ message = self._process.readAllStandardError().data().decode().strip() #print(f"[ERROR]: {message}") logger.error(message) self.textChanged.emit(message) self.failed.emit() self._process.kill() if __name__ == "__main__": import sys from wizard import ConsoleDialog app = QApplication(sys.argv) console = ConsoleDialog() current_dir = os.path.dirname(os.path.realpath(__file__)) _venv_name = "testenv" # need to have a virtual env in current_dir manager = PipManager(current_dir, _venv_name) manager.textChanged.connect(console.update_status) manager.started.connect(console.show) manager.run_pip( "freeze", [f" > {current_dir}/{_venv_name}/requirements.txt"] ) sys.exit(app.exec_())
null
venvipy/manage_pip.py
manage_pip.py
py
4,560
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 12, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QProcess", "line_number": 24, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QProcess.NormalExit", "line_number": 29, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QProcess", "line_number": 29, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QObject", "line_number": 35, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSignal", "line_number": 39, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.pyqtSignal", "line_number": 40, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.pyqtSignal", "line_number": 41, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.pyqtSignal", "line_number": 42, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QProcess", "line_number": 51, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path", "line_number": 80, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QProcess.Starting", "line_number": 102, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QProcess", "line_number": 102, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QProcess.Running", "line_number": 105, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QProcess", "line_number": 105, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.QProcess.NotRunning", "line_number": 108, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QProcess", "line_number": 108, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSlot", "line_number": 98, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QProcess.ProcessState", "line_number": 98, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QProcess", "line_number": 98, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSlot", "line_number": 116, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.QProcess.ExitStatus", "line_number": 116, "usage_type": "attribute" }, { "api_name": "PyQt5.QtCore.QProcess", "line_number": 116, "usage_type": "name" }, { "api_name": "PyQt5.QtCore.pyqtSlot", "line_number": 125, "usage_type": "call" }, { "api_name": "PyQt5.QtCore.pyqtSlot", "line_number": 135, "usage_type": "call" }, { "api_name": "PyQt5.QtWidgets.QApplication", "line_number": 152, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 152, "usage_type": "attribute" }, { "api_name": "wizard.ConsoleDialog", "line_number": 153, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 155, "usage_type": "call" }, { "api_name": "os.path", "line_number": 155, "usage_type": "attribute" }, { "api_name": "os.path.realpath", "line_number": 155, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 165, "usage_type": "call" } ]
68522467
"""eshop_grigoris URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from tools.views import set_up_database,clear_sessions from mysite.views import * from cart.views import remove_item_from_cart,add_to_cart from products.views import welcome_page urlpatterns = [ url(r'^admin/', admin.site.urls), #site urls url(r'^$', view=homepage), url(r'^product/(?P<slug>[-\w]+)/$', view=product_page, name='product_page'), url(r'^product-a/(?P<slug>[-\w]+)/(?P<dk>\d+)/$', view=product_page_with_color, name='product_page_with_color'), url(r'^ajax-search/$', view=ajax_results, name='ajax_search'), url(r'^page-results/$', view=page_results, name='page_results'), url(r'^register/$', view=register_page, name='register_page'), url(r'^costumer-page/$', view=costumer_page, name='costumer_page'), url(r'^costumer-page-ask/$', view=costumer_ask_page, name='costumer_ask_page'), url(r'^costumer-page-order/$', view=costumer_page_order, name='costumer_page_order'), url(r'^costumer-order/(?P<order_id>.*)/$', view=costumer_specific_order, name='costumer_order'), url(r'^contact/$', view=contact_page, name='contact_page'), url(r'^faq/$', view=faq_page, name='faq_page'), url(r'^info-eshop/$', view=informations_page, name='info_page'), url(r'^my-account/$', view=my_account, name='my_account'), url(r'^category/(?P<slug>[-\w]+)/$', view=category_site, name='category_site'), url(r'^brand/(?P<slug>[-\w]+)/$', view=brand_page_products, name='brand_site'), url(r'^change-show-product/(?P<dk>\d+)/$', view=change_show_product_number, name='change_show_product'), url(r'^site/clear-session/(?P<slug>[-\w]+)/$', view=my_site_clear_session, name='my_site_clear_session'), url(r'^καλάθι-αγορών/$', view=basket, name='basket'), url(r'^cart_html/$', view=cart_html,), url(r'^add-to-cart/(?P<dk>\d+)/$', view=add_to_cart, name='cart_item_add'), url(r'^cart-item-delete/(?P<dk>\d+)/$', view=remove_item_from_cart, name='cart_item_delete'), url(r'^checkout/$', view=checkout, name='checkout'), url(r'^checkout-review/$', view=checkout_review, name='checkout_review'), #url(r'^checkout/$', view=checkout, name='checkout'), #url(r'^checkout/$', view=checkout, name='checkout'), #print statements url(r'^print/(?P<dk>\d+)/$', view=print_order, name='print_order'), #warehouse urls url(r'^home/$', view=welcome_page, name='welcome_page'), url(r'^accounts/',include('account.urls')), url(r'^αποθήκη/',include('products.urls')), url(r'^πληρωμές-εισπράξεις/',include('transcations.urls')), url(r'^συνταγές/',include('recipes.urls')), url(r'^PoS/',include('PoS.urls')), url(r'^reports/',include('reports.urls')), url(r'^blog/',include('blog.urls')), url(r'^site/',include('mysite.urls')), # that url setup the database, comment it after the use url(r'^database/',view=set_up_database), url(r'^clear-sessions/',view=clear_sessions), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) ''' url(r'^inventory/',include('inventory_manager.urls')), url(r'^site/$','mysite.views.homepage',), url(r'^homepage/$','products.views.homepage',), url(r'^homepage/new_all/last_order/$','products.views.add_product_to_order',name='last_one'), url(r'^homepage/new_all/last_order/(?P<dk>\d+)/$','products.views.order_done',), url(r'^homepage/new_all/last_order/edit/(?P<dk>\d+)/$','products.views.done_order_edit_id',), url(r'^homepage/new_all/last_order/product/edit/(?P<dk>\d+)/$','products.views.done_order_product_id',), url(r'^homepage/new_all/last_order/product/add/(?P<dk>\d+)/$','products.views.done_order_add_product',), url(r'^homepage/new_all/last_order/product/delete/(?P<dk>\d+)/$','products.views.done_order_delete_id',), url(r'^homepage/edit_all/$','products.views.edit_all',), url(r'^homepage/edit_all/orders/$','products.views.edit_orders_section',), url(r'^homepage/edit_all/order/(?P<dk>\d+)/$','products.views.edit_order',), url(r'^homepage/edit_all/order_id/(?P<dk>\d+)/$','products.views.edit_order_id',), url(r'^homepage/edit_all/order_id/delete/(?P<dk>\d+)/$','products.views.delete_order_id',), url(r'^homepage/edit_all/orders/add/(?P<dk>\d+)/$','products.views.add_order_id',), url(r'^homepage/edit_all/products/(?P<dk>\d+)/$','products.views.edit_product_id',), url(r'^homepage/edit_all/products/$','products.views.products_edit_section',), url(r'^homepage/edit_all/products/vendor/(?P<dk>\d+)/$','products.views.edit_product_vendor_id'), url(r'^homepage/edit_all/vendors/$','products.views.edit_vendor_section',), url(r'^homepage/edit_all/vendors/(?P<dk>\d+)/$','products.views.edit_vendor_id',), url(r'^inventory_informations/$','products.views.informations_inventory',), url(r'^inventory_informations/προμηθευτές/$','products.views.info_vendors_section',), url(r'^inventory_informations/προμηθευτές-ανάλυση/$','products.views.info_vendor_personal_stuff',), url(r'^inventory_informations/προμηθευτές-υπόλοιπο/$','products.views.info_vendor_ipoloipo',), url(r'^inventory_informations/προμηθευτές-υπόλοιπο/(?P<dk>\d+)/$','products.views.info_vendor_ipoloipo_id',), url(r'^inventory_informations/προμηθευτές-ανά-προμηθευτή/$','products.views.info_vendor_order',), url(r'^inventory_informations/προμηθευτές-ανά-προμηθευτή/(?P<dk>\d+)/$','products.views.info_vendor_order_id',), url(r'^inventory_informations/calendar/$','products.views.inventory_info_calendar',), url(r'^inventory_informations/order/$','products.views.info_order',), url(r'^inventory_informations/πληρωμές/$','products.views.info_calendar_payments',), url(r'^inventory_informations/προιόντα/$','products.views.info_products',), url(r'^inventory_informations/κατηγορία/','products.views.info_products_category',), url(r'^inventory_informations/προμηθευτής/','products.views.info_products_vendors',), url(r'^inventory_informations/χονδρική/','products.views.info_products_xondriki',), url(r'^inventory_informations/προιόντα/(?P<dk>\d+)$','products.views.info_products_id',), '''
null
eshop_grigoris/urls.py
urls.py
py
7,184
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.conf.urls.url", "line_number": 25, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 25, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 25, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 28, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 29, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 30, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 31, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 32, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 33, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 34, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 35, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 36, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 37, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 38, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 39, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 40, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 41, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 42, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 43, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 44, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 45, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 46, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 47, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 48, "usage_type": "call" }, { "api_name": "cart.views.add_to_cart", "line_number": 48, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 49, "usage_type": "call" }, { "api_name": "cart.views.remove_item_from_cart", "line_number": 49, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 51, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 52, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 59, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 65, "usage_type": "call" }, { "api_name": "products.views.welcome_page", "line_number": 65, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 66, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 66, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 67, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 67, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 68, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 68, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 69, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 69, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 70, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 70, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 71, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 71, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 72, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 72, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 73, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 73, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 78, "usage_type": "call" }, { "api_name": "tools.views.set_up_database", "line_number": 78, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 80, "usage_type": "call" }, { "api_name": "tools.views.clear_sessions", "line_number": 80, "usage_type": "name" }, { "api_name": "django.conf.urls.static.static", "line_number": 83, "usage_type": "call" }, { "api_name": "django.conf.settings.STATIC_URL", "line_number": 83, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 83, "usage_type": "name" }, { "api_name": "django.conf.settings.STATIC_ROOT", "line_number": 83, "usage_type": "attribute" }, { "api_name": "django.conf.settings.MEDIA_URL", "line_number": 83, "usage_type": "attribute" }, { "api_name": "django.conf.settings.MEDIA_ROOT", "line_number": 83, "usage_type": "attribute" } ]
131462249
import tensorflow as tf import numpy as np import sklearn as sk from sklearn.linear_model import SGDClassifier from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split import xgboost as xgb from sklearn import svm, naive_bayes import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' np.random.seed(42) def mnist_sk(): X, y = fetch_openml('mnist_784', version=1, return_X_y=True) train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=60000, test_size=10000, random_state=42) ranker = naive_bayes.MultinomialNB() print(train_X.shape, train_y.shape) ranker.fit(train_X, train_y) predict_y = ranker.predict(test_X) print('precision:', sk.metrics.precision_score(test_y, predict_y, average='micro')) class Mnist(): def __init__(self): self.mnist = tf.keras.datasets.mnist (train_data, train_label), (test_data, test_label) = self.mnist.load_data() self.train_data = np.expand_dims(train_data.astype(np.float32) / 255.0, axis=-1) # [60000, 28, 28, 1] self.test_data = np.expand_dims(test_data.astype(np.float32) / 255.0, axis=-1) # [10000, 28, 28, 1] self.train_label = train_label self.test_label = test_label def get_batch(self, batch_size): index = np.random.randint(0, self.train_data.shape[0], batch_size) return self.train_data[index, :], self.train_label[index] def get_testset(self): return self.test_data, self.test_label class Linear(tf.keras.Model): def __init__(self): super().__init__() self.flat = tf.keras.layers.Flatten() self.dense = tf.keras.layers.Dense(units=10, kernel_initializer=tf.zeros_initializer(), bias_initializer=tf.zeros_initializer()) def __call__(self, input): x = self.flat(input) x = self.dense(x) output = tf.nn.softmax(x) return output class MLP(tf.keras.Model): def __init__(self): super().__init__() self.flat = tf.keras.layers.Flatten() self.dense1 = tf.keras.layers.Dense(units=128, activation=tf.nn.relu) self.dense2 = tf.keras.layers.Dense(units=10) def __call__(self, input): x = self.flat(input) x = self.dense1(x) x = self.dense2(x) output = tf.nn.softmax(x) return output class CNN(tf.keras.Model): def __init__(self): super().__init__() self.conv1 = tf.keras.layers.Conv2D( filters=32, # 卷积层神经元(卷积核)数目 kernel_size=[5, 5], # 感受野大小 padding='same', # padding策略(vaild 或 same) activation=tf.nn.relu # 激活函数 ) self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2) self.dropout = tf.keras.layers.Dropout(0.1) self.conv2 = tf.keras.layers.Conv2D( filters=64, kernel_size=[5, 5], padding='same', activation=tf.nn.relu ) self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2) self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,)) self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu) self.dense2 = tf.keras.layers.Dense(units=10) def call(self, inputs): x = self.conv1(inputs) # [batch_size, 28, 28, 32] x = self.dropout(x) x = self.pool1(x) # [batch_size, 14, 14, 32] x = self.conv2(x) # [batch_size, 14, 14, 64] x = self.pool2(x) # [batch_size, 7, 7, 64] x = self.flatten(x) # [batch_size, 7 * 7 * 64] x = self.dense1(x) # [batch_size, 1024] x = self.dense2(x) # [batch_size, 10] output = tf.nn.softmax(x) return output def mnist_tf_li(): model = CNN() # Linear() num_epoch = 500 optimizer = tf.keras.optimizers.Adam(learning_rate=1e-2) # train mnist = Mnist() for e in range(num_epoch): if e % 10 == 0: print(e) with tf.GradientTape() as tape: x, y = mnist.get_batch(256) y_pred = model(x) loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred) grads = tape.gradient(loss, model.variables) optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables)) test_data, test_label = mnist.get_testset() y_pred = model.predict(test_data) sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() sparse_categorical_accuracy.update_state(y_true=test_label, y_pred=y_pred) print("test accuracy: %f" % sparse_categorical_accuracy.result()) if __name__ == '__main__': # mnist_sk() mnist_tf_li()
null
tf_mnist.py
tf_mnist.py
py
4,774
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ", "line_number": 11, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 12, "usage_type": "attribute" }, { "api_name": "sklearn.datasets.fetch_openml", "line_number": 16, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 17, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.MultinomialNB", "line_number": 19, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes", "line_number": 19, "usage_type": "name" }, { "api_name": "sklearn.metrics.precision_score", "line_number": 23, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 23, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 28, "usage_type": "attribute" }, { "api_name": "numpy.expand_dims", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 31, "usage_type": "attribute" }, { "api_name": "numpy.expand_dims", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 32, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 37, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 44, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Flatten", "line_number": 47, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 47, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 48, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 48, "usage_type": "attribute" }, { "api_name": "tensorflow.zeros_initializer", "line_number": 48, "usage_type": "call" }, { "api_name": "tensorflow.zeros_initializer", "line_number": 49, "usage_type": "call" }, { "api_name": "tensorflow.nn.softmax", "line_number": 54, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 54, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 58, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Flatten", "line_number": 61, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 61, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 62, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 62, "usage_type": "attribute" }, { "api_name": "tensorflow.nn", "line_number": 62, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 63, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 63, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.softmax", "line_number": 69, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 69, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 73, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Conv2D", "line_number": 76, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 76, "usage_type": "attribute" }, { "api_name": "tensorflow.nn", "line_number": 80, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.MaxPool2D", "line_number": 82, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 82, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dropout", "line_number": 84, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 84, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Conv2D", "line_number": 85, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 85, "usage_type": "attribute" }, { "api_name": "tensorflow.nn", "line_number": 89, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.MaxPool2D", "line_number": 91, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 91, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Reshape", "line_number": 92, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 92, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 93, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 93, "usage_type": "attribute" }, { "api_name": "tensorflow.nn", "line_number": 93, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 95, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 95, "usage_type": "attribute" }, { "api_name": "tensorflow.nn.softmax", "line_number": 106, "usage_type": "call" }, { "api_name": "tensorflow.nn", "line_number": 106, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.optimizers.Adam", "line_number": 114, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 114, "usage_type": "attribute" }, { "api_name": "tensorflow.GradientTape", "line_number": 122, "usage_type": "call" }, { "api_name": "tensorflow.keras.losses.sparse_categorical_crossentropy", "line_number": 125, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 125, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.metrics.SparseCategoricalAccuracy", "line_number": 131, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 131, "usage_type": "attribute" } ]
617183754
"""Registry URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib.auth import views as auth_views from django.views.generic import TemplateView from .views import registry as registry_views from .views import setup as setup_views from .views import edit as edit_views urlpatterns = [ # The Portal home page url(r'^$', registry_views.home, name='portal'), # Static requirements url(r'^imprint/$', TemplateView.as_view(template_name="static/imprint.html"), name='imprint'), url(r'^privacy/$', TemplateView.as_view(template_name="static/privacy.html"), name='privacy'), # Login / Logout url(r'^login/$', auth_views.login, {'template_name': 'auth/login.html'}, name='login'), url('^logout/$', auth_views.logout, {'next_page': '/'}, name='logout'), # Registration url('^register/$', setup_views.register, name='register'), # Initial data Setup url(r'^setup/$', setup_views.setup, name='setup'), url(r'^setup/address/$', setup_views.address, name='setup_address'), url(r'^setup/social/$', setup_views.social, name='setup_social'), url(r'^setup/jacobs/$', setup_views.jacobs, name='setup_jacobs'), url(r'^setup/job/$', setup_views.job, name='setup_job'), url(r'^setup/skills/$', setup_views.skills, name='setup_skills'), url(r'^setup/payment/$', setup_views.SubscribeView.as_safe_view(), name='setup_payment'), # the portal for the user url(r'portal/', registry_views.portal, name='portal'), # Edit views url(r'^edit/$', edit_views.edit, name='edit'), url(r'^edit/password/$', edit_views.password, name='edit_password'), url(r'^edit/address/$', edit_views.address, name='edit_address'), url(r'^edit/social/$', edit_views.social, name='edit_social'), url(r'^edit/jacobs/$', edit_views.jacobs, name='edit_jacobs'), url(r'^edit/job/$', edit_views.job, name='edit_job'), url(r'^edit/skills/$', edit_views.skills, name='edit_skills'), ]
null
registry/urls.py
urls.py
py
2,583
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.conf.urls.url", "line_number": 27, "usage_type": "call" }, { "api_name": "views.registry.home", "line_number": 27, "usage_type": "attribute" }, { "api_name": "views.registry", "line_number": 27, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 30, "usage_type": "call" }, { "api_name": "django.views.generic.TemplateView.as_view", "line_number": 30, "usage_type": "call" }, { "api_name": "django.views.generic.TemplateView", "line_number": 30, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 31, "usage_type": "call" }, { "api_name": "django.views.generic.TemplateView.as_view", "line_number": 31, "usage_type": "call" }, { "api_name": "django.views.generic.TemplateView", "line_number": 31, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 34, "usage_type": "call" }, { "api_name": "django.contrib.auth.views.login", "line_number": 34, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.views", "line_number": 34, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 36, "usage_type": "call" }, { "api_name": "django.contrib.auth.views.logout", "line_number": 36, "usage_type": "attribute" }, { "api_name": "django.contrib.auth.views", "line_number": 36, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 39, "usage_type": "call" }, { "api_name": "views.setup.register", "line_number": 39, "usage_type": "attribute" }, { "api_name": "views.setup", "line_number": 39, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 42, "usage_type": "call" }, { "api_name": "views.setup.setup", "line_number": 42, "usage_type": "attribute" }, { "api_name": "views.setup", "line_number": 42, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 43, "usage_type": "call" }, { "api_name": "views.setup.address", "line_number": 43, "usage_type": "attribute" }, { "api_name": "views.setup", "line_number": 43, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 44, "usage_type": "call" }, { "api_name": "views.setup.social", "line_number": 44, "usage_type": "attribute" }, { "api_name": "views.setup", "line_number": 44, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 45, "usage_type": "call" }, { "api_name": "views.setup.jacobs", "line_number": 45, "usage_type": "attribute" }, { "api_name": "views.setup", "line_number": 45, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 46, "usage_type": "call" }, { "api_name": "views.setup.job", "line_number": 46, "usage_type": "attribute" }, { "api_name": "views.setup", "line_number": 46, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 47, "usage_type": "call" }, { "api_name": "views.setup.skills", "line_number": 47, "usage_type": "attribute" }, { "api_name": "views.setup", "line_number": 47, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 48, "usage_type": "call" }, { "api_name": "views.setup.SubscribeView.as_safe_view", "line_number": 48, "usage_type": "call" }, { "api_name": "views.setup.SubscribeView", "line_number": 48, "usage_type": "attribute" }, { "api_name": "views.setup", "line_number": 48, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 51, "usage_type": "call" }, { "api_name": "views.registry.portal", "line_number": 51, "usage_type": "attribute" }, { "api_name": "views.registry", "line_number": 51, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 54, "usage_type": "call" }, { "api_name": "views.edit.edit", "line_number": 54, "usage_type": "attribute" }, { "api_name": "views.edit", "line_number": 54, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 55, "usage_type": "call" }, { "api_name": "views.edit.password", "line_number": 55, "usage_type": "attribute" }, { "api_name": "views.edit", "line_number": 55, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 56, "usage_type": "call" }, { "api_name": "views.edit.address", "line_number": 56, "usage_type": "attribute" }, { "api_name": "views.edit", "line_number": 56, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 57, "usage_type": "call" }, { "api_name": "views.edit.social", "line_number": 57, "usage_type": "attribute" }, { "api_name": "views.edit", "line_number": 57, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 58, "usage_type": "call" }, { "api_name": "views.edit.jacobs", "line_number": 58, "usage_type": "attribute" }, { "api_name": "views.edit", "line_number": 58, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 59, "usage_type": "call" }, { "api_name": "views.edit.job", "line_number": 59, "usage_type": "attribute" }, { "api_name": "views.edit", "line_number": 59, "usage_type": "name" }, { "api_name": "django.conf.urls.url", "line_number": 60, "usage_type": "call" }, { "api_name": "views.edit.skills", "line_number": 60, "usage_type": "attribute" }, { "api_name": "views.edit", "line_number": 60, "usage_type": "name" } ]
300879573
import logging import re import semver import sys import reconcile.queries as queries from reconcile.status import ExitCodes from utils.aws_api import AWSApi from utils.aws.route53 import State, Account, Record, Zone from utils.aws.route53 import DuplicateException QONTRACT_INTEGRATION = 'aws-route53' QONTRACT_INTEGRATION_VERSION = semver.format_version(0, 1, 0) DEFAULT_RECORD_TTL = 300 def create_zone(dry_run, awsapi, account, zone): """ Create a DNS zone (callable action) :param dry_run: Do not execute for real :param awsapi: the AWS api object to use to call AWS :param account: the aws account to operate on :param zone: the DNS zone to create :type dry_run: bool :type awsapi: AWSApi :type account: Account :type zone: Zone """ logging.info(f'[{account.name}] Create {zone}') if not dry_run: awsapi.create_route53_zone(account.name, zone.name) def delete_zone(dry_run, awsapi, account, zone): """ Delete a DNS zone (callable action) :param dry_run: Do not execute for real :param awsapi: the AWS api object to use to call AWS :param account: the aws account to operate on :param zone: the DNS zone to delete :type dry_run: bool :type awsapi: AWSApi :type account: Account :type zone: Zone """ logging.info(f'[{account.name}] Delete {zone}') if not dry_run: awsapi.delete_route53_zone(account.name, zone.data.get('Id')) def create_record(dry_run, awsapi, account, zone, record): """ Create a DNS record (callable action) :param dry_run: Do not execute for real :param awsapi: the AWS api object to use to call AWS :param account: the aws account to operate on :param zone: the DNS zone to operate on :param record: the DNS record to delete :type dry_run: bool :type awsapi: AWSApi :type account: Account :type zone: Zone :type record: Record """ logging.info(f'[{account.name}] Create {record} in {zone}') zone_id = zone.data.get('Id') if not zone_id: logging.error( f'[{account.name}] Cannot create {record} in {zone}: ' f'missing Id key in zone data' ) return if not dry_run: awsapi.upsert_route53_record( account.name, zone_id, { 'Name': f'{record.name}.{zone.name}', 'Type': record.type, 'TTL': record.ttl, 'ResourceRecords': [{'Value': v} for v in record.values] } ) def update_record(dry_run, awsapi, account, zone, recordset): """ Update a DNS record (callable action) :param dry_run: Do not execute for real :param awsapi: the AWS api object to use to call AWS :param account: the aws account to operate on :param zone: the DNS zone to operate on :param recordset: a tuple comprised of the desired and current record :type dry_run: bool :type awsapi: AWSApi :type account: Account :type zone: Zone :type recordset: (Record, Record) """ desired_record = recordset[0] current_record = recordset[1] logging.info(f'[{account.name}] Update {current_record} in {zone}') logging.info(f' Current: {current_record.name} {current_record.type} ' f'{current_record.ttl} {current_record.values}') logging.info(f' Desired: {desired_record.name} {desired_record.type} ' f'{desired_record.ttl} {desired_record.values}') zone_id = zone.data.get('Id') if zone_id is None: logging.error( f'[{account.name}] Cannot update {current_record} in {zone}: ' f'missing Id key in zone data' ) return if not dry_run: awsapi.upsert_route53_record( account.name, zone_id, { 'Name': f'{desired_record.name}.{zone.name}', 'Type': desired_record.type, 'TTL': desired_record.ttl, 'ResourceRecords': [ {'Value': v} for v in desired_record.values ] } ) def delete_record(dry_run, awsapi, account, zone, record): """ Delete a DNS record (callable action) :param dry_run: Do not execute for real :param awsapi: the AWS api object to use to call AWS :param account: the aws account to operate on :param zone: the DNS zone to operate on :param record: the DNS record to delete :type dry_run: bool :type awsapi: AWSApi :type account: Account :type zone: Zone :type record: Record """ logging.info(f'[{account.name}] Delete {record} from {zone}') zone_id = zone.data.get('Id') if not zone_id: logging.error( f'[{account.name}] Cannot delete {record} in {zone}: ' f'missing Id key in zone data' ) return if not dry_run: awsapi.delete_route53_record( account.name, zone_id, record.awsdata ) def removesuffix(s, suffix): """ Removes suffix a string :param s: string to remove suffix from :param suffix: suffix to remove :type s: str :type suffix: str :return: a copy of the string with the suffix removed :rtype: str """ return s if not s.endswith(suffix) else s[:-len(suffix)] def build_current_state(awsapi): """ Build a State object that represents the current state :param awsapi: the aws API object to use :type awsapi: AWSApi :return: returns a tuple that contains the State object and whether there \ were any errors :rtype: (State, bool) """ state = State('aws') errors = False awsapi.map_route53_resources() aws_state = awsapi.get_route53_zones() for account_name, zones in aws_state.items(): account = Account(account_name) for zone in zones: zone_name = zone['Name'] new_zone = Zone(zone_name, zone) for record in zone['records']: # Can't manage SOA records, so ignore it if record['Type'] in ['SOA']: continue # Can't manage NS records at apex, so ignore them if record['Type'] == 'NS' and record['Name'] == zone_name: continue record_name = removesuffix(record['Name'], zone_name) new_record = Record(new_zone, record_name, { 'type': record['Type'], 'ttl': record['TTL'], 'values': [v['Value'] for v in record['ResourceRecords']], }, record) new_zone.add_record(new_record) account.add_zone(new_zone) state.add_account(account) return state, errors def build_desired_state(zones): """ Build a State object that represents the desired state :param zones: a representation of DNS zones as retrieved from app-interface :type zones: dict :return: returns a tuple that contains the State object and whether there \ were any errors :rtype: (State, bool) """ state = State('app-interface') errors = False for zone in zones: account_name = zone['account']['name'] account = state.get_account(account_name) if not account: account = Account(account_name) new_zone = Zone(zone['name'], zone) for record in zone['records']: new_record = Record(new_zone, record['name'], { 'type': record['type'], 'ttl': record['ttl'] or DEFAULT_RECORD_TTL }, record) targets = [] record_target = record.get('target') if record_target: if record['type'] == 'TXT': # TXT records values need to be enclosed in double quotes targets.append(f'"{record_target}"') else: targets.append(record_target) record_targets = record.get('targets') if record_targets: targets.extend(record_targets) record_target_cluster = record.get('target_cluster') if record_target_cluster: cluster = record_target_cluster cluster_name = cluster['name'] elb_fqdn = cluster.get('elbFQDN') if not elb_fqdn: logging.error( f'[{account}] elbFQDN not set for cluster ' f'{cluster_name}' ) errors = True continue targets.append(elb_fqdn) if not targets: logging.error( f'[{account}] no targets found for ' f'{new_record} in {new_zone}' ) errors = True continue new_record.add_targets(targets) new_zone.add_record(new_record) try: account.add_zone(new_zone) except DuplicateException as e: logging.error(e) errors = True if not state.get_account(account_name): state.add_account(account) return state, errors def diff_sets(desired, current): """ Diff two state dictionaries by key :param desired: the desired state :param current: the current state :type desired: dict :type current: dict :return: returns a tuple that contains lists of added, removed and \ changed elements from the desired dict :rtype: (list, list, list) """ added = [desired[item] for item in desired if item not in current] removed = [current[item] for item in current if item not in desired] changed = [] common = [(desired[item], current[item]) for item in current if item in desired] for item in common: if not item[0] == item[1]: # Append the desired item set to changed zones list changed.append(item) return added, removed, changed def reconcile_state(current_state, desired_state): """ Reconcile the state between current and desired State objects :param current_state: the current state :param desired_state: the desired_state state :type desired: State :type current: State :return: a list of AWS API actions to run and whether there were any errors :rtype: (list, bool) """ actions = [] errors = False for desired_account in desired_state.accounts.values(): current_account = current_state.get_account(desired_account.name) new_zones = [] add, rem, _ = diff_sets(desired_account.zones, current_account.zones) for zone in rem: # Removed zones for _, record in zone.records.items(): actions.append((delete_record, current_account, zone, record)) actions.append((delete_zone, current_account, zone)) for zone in add: # New zones new_zones.append(zone.name) actions.append((create_zone, current_account, zone)) for _, zone in desired_account.zones.items(): current_zone = current_account.get_zone(zone.name) if not zone.records: # No records defined, so we skip it (and don't manage records) continue if zone.name in new_zones and current_zone is None: # This is a new zone to be created and thus we don't have # a Route53 zone ID yet. Skip creating the records for now, # they will be created on the next run # TODO: Find a way to create the records on the same run? continue # Check if we have unmanaged_record_names (urn) and compile them # all as regular expressions urn_compiled = [] if 'unmanaged_record_names' in zone.data: for urn in zone.data['unmanaged_record_names']: urn_compiled.append(re.compile(urn)) for record in zone.records.values(): for regex in urn_compiled: if regex.fullmatch(record.name): logging.debug(f'{desired_account} excluding unmanaged ' f'record {record} because it matched ' f'unmanaged_record_names pattern ' f'\'{regex.pattern}\'') zone.remove_record(record.name) current_zone.remove_record(record.name) add, remove, update = diff_sets(zone.records, current_zone.records) for record in remove: # Removed records actions.append( (delete_record, current_account, current_zone, record)) for record in add: # New records actions.append( (create_record, current_account, current_zone, record)) for recordset in update: # Updated records actions.append( (update_record, current_account, current_zone, recordset)) return actions, errors def run(dry_run=False, thread_pool_size=10): settings = queries.get_app_interface_settings() zones = queries.get_dns_zones() desired_state, err = build_desired_state(zones) if err: sys.exit(ExitCodes.ERROR) participating_accounts = [z['account'] for z in zones] awsapi = AWSApi(thread_pool_size, participating_accounts, settings) current_state, err = build_current_state(awsapi) if err: sys.exit(ExitCodes.ERROR) actions, err = reconcile_state(current_state, desired_state) if err: sys.exit(ExitCodes.ERROR) for action in actions: err = action[0](dry_run, awsapi, *action[1:]) if err: sys.exit(ExitCodes.ERROR)
null
reconcile/aws_route53.py
aws_route53.py
py
14,031
python
en
code
null
code-starcoder2
83
[ { "api_name": "semver.format_version", "line_number": 16, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 34, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 52, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 72, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 76, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 112, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 113, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 115, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 120, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 156, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 160, "usage_type": "call" }, { "api_name": "utils.aws.route53.State", "line_number": 196, "usage_type": "call" }, { "api_name": "utils.aws.route53.Account", "line_number": 203, "usage_type": "call" }, { "api_name": "utils.aws.route53.Zone", "line_number": 206, "usage_type": "call" }, { "api_name": "utils.aws.route53.Record", "line_number": 216, "usage_type": "call" }, { "api_name": "utils.aws.route53.State", "line_number": 240, "usage_type": "call" }, { "api_name": "utils.aws.route53.Account", "line_number": 248, "usage_type": "call" }, { "api_name": "utils.aws.route53.Zone", "line_number": 250, "usage_type": "call" }, { "api_name": "utils.aws.route53.Record", "line_number": 253, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 278, "usage_type": "call" }, { "api_name": "logging.error", "line_number": 287, "usage_type": "call" }, { "api_name": "utils.aws.route53.DuplicateException", "line_number": 298, "usage_type": "name" }, { "api_name": "logging.error", "line_number": 299, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 382, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 387, "usage_type": "call" }, { "api_name": "reconcile.queries.get_app_interface_settings", "line_number": 412, "usage_type": "call" }, { "api_name": "reconcile.queries", "line_number": 412, "usage_type": "name" }, { "api_name": "reconcile.queries.get_dns_zones", "line_number": 413, "usage_type": "call" }, { "api_name": "reconcile.queries", "line_number": 413, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 417, "usage_type": "call" }, { "api_name": "reconcile.status.ExitCodes.ERROR", "line_number": 417, "usage_type": "attribute" }, { "api_name": "reconcile.status.ExitCodes", "line_number": 417, "usage_type": "name" }, { "api_name": "utils.aws_api.AWSApi", "line_number": 420, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 423, "usage_type": "call" }, { "api_name": "reconcile.status.ExitCodes.ERROR", "line_number": 423, "usage_type": "attribute" }, { "api_name": "reconcile.status.ExitCodes", "line_number": 423, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 427, "usage_type": "call" }, { "api_name": "reconcile.status.ExitCodes.ERROR", "line_number": 427, "usage_type": "attribute" }, { "api_name": "reconcile.status.ExitCodes", "line_number": 427, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 432, "usage_type": "call" }, { "api_name": "reconcile.status.ExitCodes.ERROR", "line_number": 432, "usage_type": "attribute" }, { "api_name": "reconcile.status.ExitCodes", "line_number": 432, "usage_type": "name" } ]
556760686
import numpy as np import zmes_hook_helpers.common_params as g import zmes_hook_helpers.log as log import sys import cv2 import time import datetime import re # Class to handle Yolo based detection class Yolo: # The actual CNN object detection code # opencv DNN code credit: https://github.com/arunponnusamy/cvlib def __init__(self): self.initialize = True self.net = None self.classes = None def populate_class_labels(self): if g.config['yolo_type'] == 'tiny': class_file_abs_path = g.config['tiny_labels'] else: class_file_abs_path = g.config['labels'] f = open(class_file_abs_path, 'r') self.classes = [line.strip() for line in f.readlines()] def get_classes(self): return self.classes def get_output_layers(self): layer_names = self.net.getLayerNames() output_layers = [ layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers() ] return output_layers def detect(self, image): Height, Width = image.shape[:2] modelW = 416 modelH = 416 g.logger.debug( '|---------- YOLO (input image: {}w*{}h, resized to: {}w*{}h) ----------|' .format(Width, Height, modelW, modelH)) scale = 0.00392 # 1/255, really. Normalize inputs. if g.config['yolo_type'] == 'tiny': config_file_abs_path = g.config['tiny_config'] weights_file_abs_path = g.config['tiny_weights'] else: config_file_abs_path = g.config['config'] weights_file_abs_path = g.config['weights'] if self.initialize: g.logger.debug('Initializing Yolo') g.logger.debug('config:{}, weights:{}'.format( config_file_abs_path, weights_file_abs_path),level=2) start = datetime.datetime.now() self.populate_class_labels() self.net = cv2.dnn.readNet(weights_file_abs_path, config_file_abs_path) #self.net = cv2.dnn.readNetFromDarknet(config_file_abs_path, weights_file_abs_path) if g.config['use_opencv_dnn_cuda'] == 'yes': (maj, minor, patch) = cv2.__version__.split('.') min_ver = int(maj + minor) if min_ver < 42: g.logger.error('Not setting CUDA backend for OpenCV DNN') g.logger.error( 'You are using OpenCV version {} which does not support CUDA for DNNs. A minimum of 4.2 is required. See https://www.pyimagesearch.com/2020/02/03/how-to-use-opencvs-dnn-module-with-nvidia-gpus-cuda-and-cudnn/ on how to compile and install openCV 4.2' .format(cv2.__version__)) else: g.logger.debug( 'Setting CUDA backend for OpenCV. If you did not set your CUDA_ARCH_BIN correctly during OpenCV compilation, you will get errors during detection related to invalid device/make_policy' ) self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) else: g.logger.debug("Not using CUDA backend") diff_time = (datetime.datetime.now() - start).microseconds / 1000 g.logger.debug( 'YOLO initialization (loading model from disk) took: {} milliseconds' .format(diff_time)) self.initialize = False start = datetime.datetime.now() ln = self.net.getLayerNames() ln = [ln[i[0] - 1] for i in self.net.getUnconnectedOutLayers()] blob = cv2.dnn.blobFromImage(image, scale, (modelW, modelH), (0, 0, 0), True, crop=False) self.net.setInput(blob) outs = self.net.forward(ln) diff_time = (datetime.datetime.now() - start).microseconds / 1000 g.logger.debug( 'YOLO detection took: {} milliseconds'.format(diff_time)) class_ids = [] confidences = [] boxes = [] nms_threshold = 0.4 conf_threshold = 0.2 # first nms filter out with a yolo confidence of 0.2 (or less) if g.config['yolo_min_confidence'] < conf_threshold: conf_threshold = g.config['yolo_min_confidence'] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] center_x = int(detection[0] * Width) center_y = int(detection[1] * Height) w = int(detection[2] * Width) h = int(detection[3] * Height) x = center_x - w / 2 y = center_y - h / 2 class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([x, y, w, h]) start = datetime.datetime.now() indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold) diff_time = (datetime.datetime.now() - start).microseconds / 1000 g.logger.debug( 'YOLO NMS filtering took: {} milliseconds'.format(diff_time)) bbox = [] label = [] conf = [] # now filter out with configured yolo confidence, so we can see rejections in log for i in indices: i = i[0] box = boxes[i] x = box[0] y = box[1] w = box[2] h = box[3] object_area = w * h max_object_area = object_area if g.config['max_object_size']: g.logger.debug('Max object size found to be:'.format(g.config['max_object_size']),level=3) # Let's make sure its the right size m = re.match('(\d*\.?\d*)(px|%)?$', g.config['max_object_size'], re.IGNORECASE) if m: max_object_area = float(m.group(1)) if m.group(2) == '%': max_object_area = float(m.group(1))/100.0*(modelH * modelW) g.logger.debug ('Converted {}% to {}'.format(m.group(1), max_object_area), level=2); else: g.logger.error('max_object_area misformatted: {} - ignoring'.format( g.config['max_object_area'])) if (object_area > max_object_area): g.logger.debug ('Ignoring object:{}, as its area: {}px exceeds max_object_area of {}px'.format(str(self.classes[class_ids[i]]), object_area, max_object_area)) continue if confidences[i] >= g.config['yolo_min_confidence']: bbox.append([ int(round(x)), int(round(y)), int(round(x + w)), int(round(y + h)) ]) label.append(str(self.classes[class_ids[i]])) conf.append(confidences[i]) g.logger.info( 'object:{} at {} has a acceptable confidence:{} compared to min confidence of: {}, adding' .format(label[-1], bbox[-1], conf[-1], g.config['yolo_min_confidence'])) else: g.logger.info( 'rejecting object:{} at {} because its confidence is :{} compared to min confidence of: {}' .format(str(self.classes[class_ids[i]]), [ int(round(x)), int(round(y)), int(round(x + w)), int(round(y + h)) ], confidences[i], g.config['yolo_min_confidence'])) return bbox, label, conf
null
hook/zmes_hook_helpers/yolo.py
yolo.py
py
8,038
python
en
code
null
code-starcoder2
83
[ { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 24, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 24, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 25, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 25, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 27, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 27, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 47, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 47, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 47, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 52, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 52, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 53, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 53, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 54, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 54, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 56, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 56, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 57, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 57, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 60, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 60, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 60, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 61, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 61, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 61, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 63, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 63, "usage_type": "attribute" }, { "api_name": "cv2.dnn.readNet", "line_number": 65, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 65, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 69, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 69, "usage_type": "name" }, { "api_name": "cv2.__version__.split", "line_number": 70, "usage_type": "call" }, { "api_name": "cv2.__version__", "line_number": 70, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params.logger.error", "line_number": 73, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 73, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 73, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.logger.error", "line_number": 74, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 74, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 74, "usage_type": "name" }, { "api_name": "cv2.__version__", "line_number": 76, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 78, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 78, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 78, "usage_type": "name" }, { "api_name": "cv2.dnn", "line_number": 81, "usage_type": "attribute" }, { "api_name": "cv2.dnn", "line_number": 82, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 84, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 84, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 84, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 86, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 86, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 87, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 87, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 87, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 92, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 92, "usage_type": "attribute" }, { "api_name": "cv2.dnn.blobFromImage", "line_number": 95, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 95, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 102, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 102, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 103, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 103, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 103, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 114, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 114, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 115, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 115, "usage_type": "name" }, { "api_name": "numpy.argmax", "line_number": 120, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 132, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 132, "usage_type": "attribute" }, { "api_name": "cv2.dnn.NMSBoxes", "line_number": 133, "usage_type": "call" }, { "api_name": "cv2.dnn", "line_number": 133, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 135, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 135, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 136, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 136, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 136, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 155, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 155, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 156, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 156, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 156, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 156, "usage_type": "attribute" }, { "api_name": "re.match", "line_number": 158, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 158, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 158, "usage_type": "name" }, { "api_name": "re.IGNORECASE", "line_number": 159, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 164, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 164, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 164, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.logger.error", "line_number": 166, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 166, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 166, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 167, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 167, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.logger.debug", "line_number": 170, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 170, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 170, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 173, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 173, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.logger.info", "line_number": 182, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 182, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 182, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 185, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 185, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.logger.info", "line_number": 187, "usage_type": "call" }, { "api_name": "zmes_hook_helpers.common_params.logger", "line_number": 187, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 187, "usage_type": "name" }, { "api_name": "zmes_hook_helpers.common_params.config", "line_number": 194, "usage_type": "attribute" }, { "api_name": "zmes_hook_helpers.common_params", "line_number": 194, "usage_type": "name" } ]
166514249
from collections import namedtuple import networkx as nx import matplotlib.pyplot as plt Chemin = namedtuple('Chemin', ['Trajet', 'Cout', 'Autonomie']) def creerGraphe(nomFichier): fichierTexte = open(nomFichier, "r") blocks = fichierTexte.read().rsplit('\n\n') sommets = [] for line in blocks[0].splitlines(): line = line.split(',') sommets.append(Node(int(line[0]), bool(line[1]))) for line in blocks[1].splitlines(): line = line.split(',') relierSommets(sommets[int(line[0]) - 1], sommets[int(line[1]) - 1], int(line[2])) return Graphe(sommets) def relierSommets(sommet1, sommet2, distance): sommet1.ajouterVoisin(sommet2, distance) sommet2.ajouterVoisin(sommet1, distance) def trouverCheminMinimal(listeChemins): chemin = listeChemins[0] for trajet in listeChemins: if trajet.Cout < chemin.Cout: chemin = trajet return chemin class Voiture: def __init__(self): self.clients = [] self.position = 15 self.charge = 100 self.cheminParcouru = None class Node: def __init__(self, id, station): self.id = id self.station = bool(station) self.voisins = [] def ajouterVoisin(self, node, distance): sommet = {'Node': node, 'Distance': distance} self.voisins.append(sommet) def __repr__(self): return str(self.id) def plusCourtCheminDansListe(listeChemins): cheminCourt = listeChemins[0] for chemin in listeChemins: if chemin.Cout < cheminCourt.Cout: cheminCourt = chemin return cheminCourt class Graphe: def __init__(self, sommets): self.sommets = sommets self.voiture = Voiture() def trouverSommet(self, id): return self.sommets[id - 1] def verification(self, chemin, *args): for arg in args: if self.trouverSommet(arg) not in chemin.Trajet: return False return True def cheminsDisponibles(self, debut, fin, listeChemins=None, limite=float('Inf')): sommetDepart = self.trouverSommet(debut) sommetFin = self.trouverSommet(fin) listeSommets = [sommetDepart] if listeChemins is None: chemin = Chemin(listeSommets, 0, 100) else: chemin = plusCourtCheminDansListe(listeChemins) listeCheminsConnus = [chemin] listeCheminsCourts = [] while listeCheminsConnus: dernierNode = chemin.Trajet[-1] if dernierNode not in listeSommets: listeSommets.append(dernierNode) for voisin in dernierNode.voisins: nodeVoisin = voisin['Node'] distance = voisin['Distance'] if nodeVoisin not in listeSommets and chemin.Autonomie > 15 and chemin.Cout + distance < limite: listeCheminsConnus.append(Chemin(chemin.Trajet + [nodeVoisin], chemin.Cout + distance, chemin.Autonomie - distance)) if nodeVoisin.station: listeCheminsConnus.append(Chemin(chemin.Trajet + [nodeVoisin], chemin.Cout + distance + 10, 100)) listeCheminsConnus.remove(chemin) if listeCheminsConnus: chemin = trouverCheminMinimal(listeCheminsConnus) if chemin.Trajet[-1] == sommetFin and sommetDepart in chemin.Trajet: listeCheminsCourts.append(chemin) # for trajet in listeCheminsCourts: # print(trajet) return listeCheminsCourts def detourPossible(self, debut, fin, listeChemins): sommetDepart = self.trouverSommet(debut) sommetFin = self.trouverSommet(fin) listeTriee = [] for chemin in listeChemins: if sommetFin in chemin.Trajet and sommetDepart in chemin.Trajet \ and chemin.Trajet.index(sommetDepart) < chemin.Trajet.index(sommetFin): listeTriee.append(chemin) if listeTriee: listeChemins.clear() listeChemins += listeTriee return True return False def trierListe(self, listeChemins): requetes = [[16, 7], [14, 4], [10, 12], [19, 17]] listeTriee = [] condition = True for chemin in listeChemins: for requete in requetes: sommetDepart = self.trouverSommet(requete[0]) sommetFin = self.trouverSommet(requete[1]) if sommetFin in chemin.Trajet and sommetDepart in chemin.Trajet \ and chemin.Trajet.index(sommetDepart) < chemin.Trajet.index(sommetFin): condition &= True else: condition &= False if condition: listeTriee.append(chemin) condition = True listeChemins.clear() listeChemins += listeTriee def trierChemins(self, listeChemins): requetes = {'Origines': [16, 14, 10, 19], 'Destinations': [7, 4, 12, 17]} liste = [plusCourtCheminDansListe(listeChemins)] for chemin in listeChemins: for origine in requetes['Origines']: sommet = self.trouverSommet(origine) if sommet != liste[0].Trajet[-1] and sommet in chemin.Trajet and chemin not in liste: liste.append(chemin) listeChemins.clear() listeChemins += liste def plusCourtChemin(self, debut, fin, limite=float('Inf')): listeChemins = self.cheminsDisponibles(debut, fin, limite=limite) return plusCourtCheminDansListe(listeChemins) def requetes(self): positionDepart = 15 requetes = [[16, 7], [14, 4]] listeChemins = self.cheminsDisponibles(15, 16) if self.detourPossible(16, 7, listeChemins): print(True) else: listeChemins = self.cheminsDisponibles(16, 7, listeChemins, 135) print(len(listeChemins)) if self.detourPossible(14, 7, listeChemins): print(True) listeChemins = self.cheminsDisponibles(14, 4, listeChemins, 125) self.trierListe(listeChemins) print(listeChemins) def testLotfi(self): listeChemins = self.cheminsDisponibles(19, 17, limite=100) for chemin in listeChemins: if self.trouverSommet(4) in chemin.Trajet: print(chemin) def afficherGraphe(self): arretes = [] texteArretes = {} for sommet in self.sommets: for voisin in sommet.voisins: if [voisin['Node'].id, sommet.id] not in arretes: arretes.append([sommet.id, voisin['Node'].id]) texteArretes.update({(sommet.id, voisin['Node'].id): voisin['Distance']}) G = nx.Graph() G.add_edges_from(arretes) pos = nx.spring_layout(G) plt.figure() nx.draw(G, pos, edge_color='black', width=1, linewidths=1, node_size=500, node_color='pink', alpha=0.9, labels={node: node for node in G.nodes()}) nx.draw_networkx_edge_labels(G, pos, edge_labels=texteArretes, font_color='red') plt.axis('off') plt.show() if __name__ == '__main__': graphe = creerGraphe("src/arrondissements.txt") listeChemins = graphe.cheminsDisponibles(15, 16) print(len(listeChemins)) graphe.trierChemins(listeChemins) print(len(listeChemins)) listeChemins = graphe.cheminsDisponibles(16, 7, listeChemins, 135) print(len(listeChemins)) graphe.trierChemins(listeChemins) print(len(listeChemins)) listeChemins = graphe.cheminsDisponibles(7, 14, listeChemins, 135) print(len(listeChemins)) graphe.trierChemins(listeChemins) print((listeChemins)) listeChemins = graphe.cheminsDisponibles(14, 4, listeChemins, 135) print((listeChemins)) listeChemins = graphe.cheminsDisponibles(4, 10) print((listeChemins)) # graphe.detourPossible(1, 19) # graphe.afficherGraphe() # graphe.requetes() # graphe.testLotfi()
null
perso/graphe_lotfi.py
graphe_lotfi.py
py
8,289
python
en
code
null
code-starcoder2
83
[ { "api_name": "collections.namedtuple", "line_number": 5, "usage_type": "call" }, { "api_name": "networkx.Graph", "line_number": 213, "usage_type": "call" }, { "api_name": "networkx.spring_layout", "line_number": 215, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 216, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 216, "usage_type": "name" }, { "api_name": "networkx.draw", "line_number": 217, "usage_type": "call" }, { "api_name": "networkx.draw_networkx_edge_labels", "line_number": 220, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.axis", "line_number": 221, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 221, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 222, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 222, "usage_type": "name" } ]
393485838
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import absolute_import from __future__ import division import matplotlib matplotlib.use( 'Agg' ) # use Agg backend to run on servers import matplotlib.pyplot as plt import numpy as np import scipy.io import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os, sys, itertools, argparse from vae import AE, GaussVAE, CatVAE, CgVAE def plot_zspace( vae, sess, filename, nx=25, ny=25, MAX=2.5, W=32 ): ''' a convenient method to plot the 2D latent space ''' x_values = np.linspace(-MAX, MAX, nx) y_values = np.linspace(-MAX, MAX, ny) canvas = np.empty( [W*nx, W*ny, 3] ) for i, yi in enumerate( x_values ): for j, xi in enumerate( y_values ): z_mu = np.array( [[xi, yi]] ) theta = vae.extract_decoder() x_mean = sess.run( tf.sigmoid(theta), feed_dict={ vae.decodeZ:z_mu } )[0] canvas[(nx-i-1)*W:(nx-i)*W, j*W:(j+1)*W, :] = x_mean plt.figure() plt.xticks( [0, W*nx], ['-1', '1'] ) plt.yticks( [0, W*ny], ['1', '-1'] ) plt.imshow( canvas, interpolation=None, origin="upper", cmap="gray" ) plt.savefig( '{0}.pdf'.format( filename ), bbox_inches='tight', pad_inches=0, transparent=True ) sys.exit(0) def load_data( dataset ): if dataset.lower() == 'mnist': data = input_data.read_data_sets( 'data/' ) return data.train.images, data.validation.images, data.test.images elif dataset.lower() == 'svhn': def extract( path ): data = scipy.io.loadmat( path ) data = np.array( data['X'], dtype=np.float32 ) / 255 N = data.shape[3] data = np.array( [ data[:,:,:,i] for i in range( N ) ] ) np.random.shuffle( data ) data = data.mean( -1, keepdims=True ) # convert to gray scale for simplicity return data np.random.seed( 2017 ) train = extract( 'data/train_32x32.mat' ) test = extract( 'data/test_32x32.mat' ) N_valid = int( train.shape[0] * 0.1 ) return train[:-N_valid], train[-N_valid:], test else: raise RuntimeError( 'unknown dataset: {0}'.format(name) ) def exp( model, dataset, seed, config, output_itr=100 ): ''' benchmark the specified model (can be 'gauss', 'cat', 'cg' ) with given network shape/learning rate/random seed/etc.. at the end, the training/validation/testing error will be output in config in the fields train_err (tuple), valid_err(tuple), test_err(tuple) ''' # clear everything tf.reset_default_graph() # load data data_train, data_valid, data_test = load_data( dataset ) def show_dataset( name, data ): print( name ) print( 'shape:{0} dtype:{1}'.format( data.shape, data.dtype ) ) show_dataset( 'train', data_train ) show_dataset( 'valid', data_valid ) show_dataset( 'test', data_test ) # get the dimensions D = np.prod( data_train.shape[1:] ) nn_shape = config.shape[0] mid = config.shape[1] d = nn_shape[mid] encode_shape = nn_shape[:mid] decode_shape = nn_shape[(mid+1):] conv = ( dataset.lower() == 'svhn' ) print( 'D=', D ) print( 'd=', d ) print( 'encoder (hidden layers)', encode_shape ) print( 'decoder (hidden layers)', decode_shape ) print( 'conv:', conv ) if model.startswith( 'plain' ): vae = AE( nn_shape ) elif model.startswith( 'gauss' ): vae = GaussVAE( D, d, encode_shape, decode_shape, config.L, conv ) elif model.startswith( 'cat' ): vae = CatVAE( D, d, encode_shape, decode_shape, config.L, config.ncat, conv ) elif model.startswith( 'cg' ): vae = CgVAE( D, d, encode_shape, decode_shape, config.L, config.order, config.R, conv ) else: raise RuntimeError( 'unknown model' ) loss = vae.loss() train_op = tf.train.AdamOptimizer( config.lrate ).minimize( sum(loss) ) loss_sum0 = tf.summary.scalar( "L0", loss[0] ) loss_sum1 = tf.summary.scalar( "L1", loss[1] ) summary_op = tf.summary.merge_all() # estimate the final loss, need to split data into trucks to avoid memory error def err( data, temp, test_trunk_size=1000 ): l = [] for i in range( int( np.ceil( data.shape[0]/test_trunk_size ) ) ): batch = data[i*test_trunk_size:(i+1)*test_trunk_size] if model.startswith( 'cat' ) or model.startswith( 'cg' ): l.append( sess.run( loss, feed_dict={ vae.X:batch, vae.temperature:temp } ) ) else: l.append( sess.run( loss, feed_dict={ vae.X:batch } ) ) return list( np.array(l).mean(0) ) with tf.Session() as sess: tf.set_random_seed( seed ) sess.run( tf.global_variables_initializer() ) summary_writer = tf.summary.FileWriter( 'log', graph=sess.graph ) for itr in range( 1, config.nbatch+1 ): start_idx = np.mod( (itr-1)*config.batchsize, data_train.shape[0] ) end_idx = start_idx + config.batchsize if end_idx <= data_train.shape[0]: batch = data_train[start_idx:end_idx] else: end_idx = np.mod( end_idx, data_train.shape[0] ) batch = np.vstack( [data_train[start_idx:], data_train[:end_idx]] ) if model.startswith( 'cat' ) or model.startswith( 'cg' ): progress = min( 2*(itr-1)/(config.nbatch-1), 1 ) cur_temp = np.exp( np.log( config.temp0 ) * (1-progress) + np.log( config.temp1 ) * progress ) _, cur_loss0, cur_loss1, summary_str = sess.run( [train_op, loss[0], loss[1], summary_op], feed_dict={ vae.X: batch, vae.temperature: cur_temp } ) else: cur_temp = 0 _, cur_loss0, cur_loss1, summary_str = sess.run( [train_op, loss[0], loss[1], summary_op], feed_dict={ vae.X: batch } ) summary_writer.add_summary( summary_str, itr ) if itr % output_itr == 0: print( "[{0:5d}] L={1:6.2f}+{2:6.2f}={3:6.2f}".format( itr, cur_loss0, cur_loss1, cur_loss0+cur_loss1 ) ) #if itr % 2000 == 0: # _e = err( data.validation, cur_temp ) # print( 'valid :', _e, sum(_e) ) config.train_err = err( data_train, cur_temp ) config.valid_err = err( data_valid, cur_temp ) config.test_err = err( data_test, cur_temp ) #numG = 2000 #prior = vae.generator( numG ) #print( prior.get_shape() ) #result = sess.run( prior ) #plot_zspace( vae, sess, model ) class Configuration( object ): '''a configuration object''' def __str__( self ): def report( a ): rep = '{0}={1}'.format( a, getattr(self, a) ) if a.endswith( 'err' ): rep += '={0}'.format( sum( getattr(self, a) ) ) return rep return '\n'.join( [ report( a ) for a in self.__dict__ ] ) def pack( args, subset ): ''' return a list of configurations ''' ret = [] l = [ getattr(args, key) for key in subset ] + [ range(args.repeat) ] for line in itertools.product( *l ): item = Configuration() for key, number in zip( subset, line ): setattr( item, key, number ) setattr( item, 'trial', line[-1] ) ret.append( item ) return ret def main( args ): ''' validation different hyperparameter settings ''' basic_arr = [ 'lrate', 'shape', 'nbatch', 'batchsize' ] if args.model.startswith( 'cat' ): configs = pack( args, basic_arr + ['L', 'temp0', 'temp1', 'ncat'] ) elif args.model.startswith( 'cg' ): configs = pack( args, basic_arr + ['L', 'order', 'R', 'temp0', 'temp1'] ) elif args.model.startswith( 'gauss' ): configs = pack( args, basic_arr + ['L'] ) else: configs = pack( args, basic_arr ) print( 'trying {0} configurations'.format(len(configs)) ) for seed, config in enumerate( configs ): print( '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' ) print( config ) exp( args.model, args.dataset, 2017+seed, config ) # sort the models based on validation error top = np.argsort( np.array( [ sum(c.valid_err) for c in configs ] ) ) def report( rank ): if rank >= len(top): return print( '--== rank {0} ==--'.format( rank+1 ) ) print( configs[top[rank]] ) print( '' ) # report the best 5 models print( args.model ) for rank in range( 5 ): report( rank ) if __name__ == '__main__': parser = argparse.ArgumentParser( description='run VAE on various configurations' ) # common options parser.add_argument( '--lrate', nargs='+', type=float, default=[5e-4,1e-4,5e-3,1e-3], help='learning rates' ) parser.add_argument( '--nbatch', nargs='+', type=int, default=[10000], help='number of batches' ) parser.add_argument( '--batchsize', nargs='+', type=int, default=[100], help='batch size' ) parser.add_argument( '--L', nargs='+', type=int, default=[1, 10], help='number of latent samples' ) parser.add_argument( '--repeat', type=int, default=1, help='number of random initializations' ) # options for CatVAE parser.add_argument( '--temp0', nargs='+', type=float, default=[ 1, .5 ], help='initial temperature' ) parser.add_argument( '--temp1', nargs='+', type=float, default=[ .5, ], help='final temperature' ) parser.add_argument( '--ncat', nargs='+', type=int, default=[5, 10, 15, 20], help='number of categories' ) # options for CgVAE parser.add_argument( '--order', nargs='+', type=int, default=[5, 10, 15, 20], help='polynomial order' ) parser.add_argument( '--R', nargs='+', type=int, default=[51, 101], help='resolution' ) parser.add_argument( 'model', choices=('plain', 'gauss', 'cat', 'cg') ) parser.add_argument( 'dataset', choices=('mnist', 'svhn') ) args = parser.parse_args() # the candidate network shapes are hard-coded in the following if args.dataset == 'mnist': args.shape = ( ( [400,20,400], 1 ), ( [400,50,400], 1 ), ( [400,80,400], 1 ), ( [400,400,20,400,400], 2 ), ( [400,400,50,400,400], 2 ), ( [400,400,80,400,400], 2 ), ) else: args.shape = ( ( [400,20,400], 1 ), ( [400,30,400], 1 ), ( [400,40,400], 1 ), ( [400,50,400], 1 ), ) for key, value in args.__dict__.items(): print( key, ':', value ) main( args )
null
run_vae.py
run_vae.py
py
10,994
python
en
code
null
code-starcoder2
83
[ { "api_name": "matplotlib.use", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 30, "usage_type": "call" }, { "api_name": "vae.extract_decoder", "line_number": 31, "usage_type": "call" }, { "api_name": "tensorflow.sigmoid", "line_number": 32, "usage_type": "call" }, { "api_name": "vae.decodeZ", "line_number": 32, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 37, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 37, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 38, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 38, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 40, "usage_type": "call" }, { "api_name": "tensorflow.examples.tutorials.mnist.input_data.read_data_sets", "line_number": 44, "usage_type": "call" }, { "api_name": "tensorflow.examples.tutorials.mnist.input_data", "line_number": 44, "usage_type": "name" }, { "api_name": "scipy.io.io.loadmat", "line_number": 49, "usage_type": "call" }, { "api_name": "scipy.io.io", "line_number": 49, "usage_type": "attribute" }, { "api_name": "scipy.io", "line_number": 49, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 50, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.random.shuffle", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 53, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 58, "usage_type": "attribute" }, { "api_name": "tensorflow.reset_default_graph", "line_number": 77, "usage_type": "call" }, { "api_name": "numpy.prod", "line_number": 89, "usage_type": "call" }, { "api_name": "vae.AE", "line_number": 103, "usage_type": "call" }, { "api_name": "vae.GaussVAE", "line_number": 106, "usage_type": "call" }, { "api_name": "vae.CatVAE", "line_number": 109, "usage_type": "call" }, { "api_name": "vae.CgVAE", "line_number": 112, "usage_type": "call" }, { "api_name": "vae.loss", "line_number": 117, "usage_type": "call" }, { "api_name": "tensorflow.train.AdamOptimizer", "line_number": 118, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 118, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.scalar", "line_number": 119, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 119, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.scalar", "line_number": 120, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 120, "usage_type": "attribute" }, { "api_name": "tensorflow.summary.merge_all", "line_number": 121, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 121, "usage_type": "attribute" }, { "api_name": "numpy.ceil", "line_number": 126, "usage_type": "call" }, { "api_name": "vae.X", "line_number": 129, "usage_type": "attribute" }, { "api_name": "vae.temperature", "line_number": 129, "usage_type": "attribute" }, { "api_name": "vae.X", "line_number": 131, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 133, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 135, "usage_type": "call" }, { "api_name": "tensorflow.set_random_seed", "line_number": 136, "usage_type": "call" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 137, "usage_type": "call" }, { "api_name": "tensorflow.summary.FileWriter", "line_number": 138, "usage_type": "call" }, { "api_name": "tensorflow.summary", "line_number": 138, "usage_type": "attribute" }, { "api_name": "numpy.mod", "line_number": 141, "usage_type": "call" }, { "api_name": "numpy.mod", "line_number": 146, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 147, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 151, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 152, "usage_type": "call" }, { "api_name": "vae.X", "line_number": 155, "usage_type": "attribute" }, { "api_name": "vae.temperature", "line_number": 155, "usage_type": "attribute" }, { "api_name": "vae.X", "line_number": 160, "usage_type": "attribute" }, { "api_name": "itertools.product", "line_number": 196, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 226, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 226, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 239, "usage_type": "call" } ]
214711115
import traceback from unittest import TestCase import asyncio import time from multicp.pool.TransactionPool import Transaction from multicp.query.Query import Query from injection.Boostrap import Bootstrap from injection.Facades import inject from multicp.Facades import Multicp from multicp.util.DateUtil import time_to_str class TBTest(TestCase): @inject() def set_up(self, boot: Bootstrap=None): self.loop = asyncio.get_event_loop() boot.set_common_service([ { "class": "multicp.Loader.MulticpLoader", "params": {} } ]) boot.load_service() Multicp().load_db_config([ { "type": "mysql", "name": "test1", "max_num": "10", "init_num": "0", "params": { "host": "192.168.81.60", "port": "3306", "charset": "utf8", "db": "basic", "user": "root", "password": "niceday", } }, ]) def TBTest(self): with Transaction.with_transaction() as trans: Query.add_trans(trans) query = Query("test1.admin.admin_id") query.add({ "admin_name":time_to_str() }) time.sleep(1) query.add({ "admin_name": time_to_str() }) print(trans.is_active()) print(Query._thread_transaction_dict.values()) try: with Transaction.with_transaction() as trans: Query.add_trans(trans) query = Query("test1.admin.admin_id") query.add({ "admin_name":time_to_str() }) time.sleep(1) query.add({ "admin_name": time_to_str() }) raise RuntimeError("xxx") except Exception as e: print(e) print(Query._thread_transaction_dict.values())
null
multicp/tests/TBTest.py
TBTest.py
py
2,108
python
en
code
null
code-starcoder2
83
[ { "api_name": "unittest.TestCase", "line_number": 18, "usage_type": "name" }, { "api_name": "injection.Boostrap.Bootstrap", "line_number": 20, "usage_type": "name" }, { "api_name": "asyncio.get_event_loop", "line_number": 21, "usage_type": "call" }, { "api_name": "multicp.Facades.Multicp", "line_number": 29, "usage_type": "call" }, { "api_name": "injection.Facades.inject", "line_number": 19, "usage_type": "call" }, { "api_name": "multicp.pool.TransactionPool.Transaction.with_transaction", "line_number": 46, "usage_type": "call" }, { "api_name": "multicp.pool.TransactionPool.Transaction", "line_number": 46, "usage_type": "name" }, { "api_name": "multicp.query.Query.Query.add_trans", "line_number": 47, "usage_type": "call" }, { "api_name": "multicp.query.Query.Query", "line_number": 47, "usage_type": "name" }, { "api_name": "multicp.query.Query.Query", "line_number": 48, "usage_type": "call" }, { "api_name": "multicp.util.DateUtil.time_to_str", "line_number": 50, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 52, "usage_type": "call" }, { "api_name": "multicp.util.DateUtil.time_to_str", "line_number": 54, "usage_type": "call" }, { "api_name": "multicp.query.Query.Query._thread_transaction_dict.values", "line_number": 57, "usage_type": "call" }, { "api_name": "multicp.query.Query.Query._thread_transaction_dict", "line_number": 57, "usage_type": "attribute" }, { "api_name": "multicp.query.Query.Query", "line_number": 57, "usage_type": "name" }, { "api_name": "multicp.pool.TransactionPool.Transaction.with_transaction", "line_number": 59, "usage_type": "call" }, { "api_name": "multicp.pool.TransactionPool.Transaction", "line_number": 59, "usage_type": "name" }, { "api_name": "multicp.query.Query.Query.add_trans", "line_number": 60, "usage_type": "call" }, { "api_name": "multicp.query.Query.Query", "line_number": 60, "usage_type": "name" }, { "api_name": "multicp.query.Query.Query", "line_number": 61, "usage_type": "call" }, { "api_name": "multicp.util.DateUtil.time_to_str", "line_number": 63, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 65, "usage_type": "call" }, { "api_name": "multicp.util.DateUtil.time_to_str", "line_number": 67, "usage_type": "call" }, { "api_name": "multicp.query.Query.Query._thread_transaction_dict.values", "line_number": 72, "usage_type": "call" }, { "api_name": "multicp.query.Query.Query._thread_transaction_dict", "line_number": 72, "usage_type": "attribute" }, { "api_name": "multicp.query.Query.Query", "line_number": 72, "usage_type": "name" } ]
328838796
import os import sys from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer sys.path.append(os.pardir) from Notebooks.LinkDatabases.FacebookData import FacebookDataDatabase class SentimentAnalyzer: analyser = SentimentIntensityAnalyzer() @staticmethod def GetPostSentiment(postId): def get_sentiment_scores(sentence): sentiment = SentimentAnalyzer.analyser.polarity_scores(sentence) compound = sentiment["compound"] if (sentiment["neu"] == 1) and sentiment["neg"] == 0 and sentiment["pos"] == 0 and (compound == 0): return -1 else: return compound message = facebookDb.get_message(postId) if message: sentiment = get_sentiment_scores(message) return sentiment import csv sentiments = [] facebookDb = FacebookDataDatabase() for data in facebookDb.get_post_ids(): postId = data[0] sentiment_score = SentimentAnalyzer.GetPostSentiment(postId) post_average_sentiment = facebookDb.getSentiment(postId) if sentiment_score and post_average_sentiment: if sentiment_score > -1 and post_average_sentiment > -1: sentiments.append([sentiment_score, post_average_sentiment]) # format is post_sentiment, comments_sentiment myFile = open('sentiments.csv', 'w') with myFile: writer = csv.writer(myFile) writer.writerows(sentiments)
null
graphs/qq_plots/PostVsCommentSentiment/Regression.py
Regression.py
py
1,424
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path.append", "line_number": 6, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 6, "usage_type": "attribute" }, { "api_name": "os.pardir", "line_number": 6, "usage_type": "attribute" }, { "api_name": "vaderSentiment.vaderSentiment.SentimentIntensityAnalyzer", "line_number": 11, "usage_type": "call" }, { "api_name": "Notebooks.LinkDatabases.FacebookData.FacebookDataDatabase", "line_number": 32, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 44, "usage_type": "call" } ]
179213678
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time    : 2019/9/2 23:49 # @Author  : Paulson # @File    : day3.py # @Software: PyCharm # @define : function import numpy as np import pandas as pd from sklearn.datasets import load_boston from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error, classification_report from sklearn.externals import joblib def mylinear(): """ 现行回归直接预测房屋价格 :return: None """ # 一、获取数据 lb = load_boston() # 二、分割数据集到训练集、测试集 x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25) # print(y_train, y_test) # 三、进行标准化处理(?) 目标值要不要进行标准化处理?需要 # 特征值和目标值都必须进行标准化,实例化2个标准化Api std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) # 目标值 std_y = StandardScaler() y_train = std_y.fit_transform(y_train.reshape(-1, 1)) # 二维 y_test = std_y.transform(y_test.reshape(-1, 1)) # 四、estimator预测 # 正规方程求解方式预测结果 lr = LinearRegression() lr.fit(x_train, y_train) print("回归系数", lr.coef_) # 保存训练好的模型 # joblib.dump(lr, "./temp/test.pkl") # 使用训练好的模型训练 modle = joblib.load('./temp/test.pkl') y_predict = std_y.inverse_transform(modle.predict(x_test)) print("保存的模型预测的结果", y_predict) # 预测测试集的房子价额 y_r_predict = std_y.inverse_transform(lr.predict(x_test)) # print("正规方程测试集里面每个房子的预测价格是: ", y_r_predict) print("正规方程的均方误差:", mean_squared_error(std_y.inverse_transform(y_test), y_r_predict)) # 梯度下降去进行房价预测 sgd = SGDRegressor() sgd.fit(x_train, y_train) print("回归系数", sgd.coef_) # 预测测试集的房子价额 y_sgd_predict = std_y.inverse_transform(sgd.predict(x_test)) # print("梯度下降测试集里面每个房子的预测价格是: ", y_sgd_predict) print("梯度下降的均方误差:", mean_squared_error(std_y.inverse_transform(y_test), y_sgd_predict)) # 岭回归下降去进行房价预测 rd = Ridge(alpha=1.0) rd.fit(x_train, y_train) print("回归系数", rd.coef_) # 预测测试集的房子价额 y_rd_predict = std_y.inverse_transform(rd.predict(x_test)) # print("岭回归测试集里面每个房子的预测价格是: ", y_rd_predict) print("岭回归的均方误差:", mean_squared_error(std_y.inverse_transform(y_test), y_rd_predict)) return None def logistic(): """ 逻辑回归做二分类进行癌症预测(根据细胞的属性特征) :return: None """ # 构造列标签名 column = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class'] # 读取数据 data = pd.read_csv('./data/breast-cancer-wisconsin.data', names=column) print(data) # 缺失值处理 data = data.replace(to_replace='?', value=np.nan) data = data.dropna() # 进行数据的分割 x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]], data[column[10]], test_size=0.25) # 进行标准化处理 std = StandardScaler() std.fit_transform(x_train) std.transform(x_test) # 逻辑回归预测 lg = LogisticRegression(C=1.0) lg.fit(x_train, y_train) print(lg.coef_) y_predict = lg.predict(x_test) print("准备率:", lg.score(x_test, y_test)) print('召回率:\n', classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"])) return None if __name__ == '__main__': # mylinear() logistic()
null
sklearn_base/day3.py
day3.py
py
4,290
python
en
code
null
code-starcoder2
83
[ { "api_name": "sklearn.datasets.load_boston", "line_number": 25, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 28, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 33, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 38, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LinearRegression", "line_number": 44, "usage_type": "call" }, { "api_name": "sklearn.externals.joblib.load", "line_number": 52, "usage_type": "call" }, { "api_name": "sklearn.externals.joblib", "line_number": 52, "usage_type": "name" }, { "api_name": "sklearn.metrics.mean_squared_error", "line_number": 59, "usage_type": "call" }, { "api_name": "sklearn.linear_model.SGDRegressor", "line_number": 62, "usage_type": "call" }, { "api_name": "sklearn.metrics.mean_squared_error", "line_number": 68, "usage_type": "call" }, { "api_name": "sklearn.linear_model.Ridge", "line_number": 71, "usage_type": "call" }, { "api_name": "sklearn.metrics.mean_squared_error", "line_number": 77, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 98, "usage_type": "attribute" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 102, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 105, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LogisticRegression", "line_number": 110, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 117, "usage_type": "call" } ]
413730152
import os import sys import healpy as hp import matplotlib.pyplot as plt import numpy as np import pylab import requirements as req #pylab.rc('text', usetex=True) #pylab.rc('font', family='serif') telescope = "LAT" bands = "LFL1", "LFL2", "MFL1", "MFL2", "HFL1", "HFL2" nband = len(bands) site = "chile" nside = 4096 lmax_tf = 2048 npix = 12 * nside ** 2 lmax = 2 * nside flavor = "noise_atmo_7splits" # cmb_r0 cmb_tensor_only_r3e-3 foregrounds noise_atmo_7splits #flavor = "noise" # cmb_r0 cmb_tensor_only_r3e-3 foregrounds noise_atmo_7splits split = 1 nsplits = 1 # Deep56 is 565 sq.deg (0.0137 fsky) of which 340 sq.deg (0.00824 fsky) is usable for power spectrum estimation # ell pa1(150GHz) pa2(150GHz) pa3(150GHz) pa3(98GHz) pa3(98x150GHz) act_tt = np.genfromtxt("deep56_TT_Nl_out_210317.txt", skip_header=1).T act_ee = np.genfromtxt("deep56_EE_Nl_out_210317.txt", skip_header=1).T def get_mask(fname_hits): fname_mask = "mask_" + os.path.basename(fname_hits) if os.path.isfile(fname_mask): mask = hp.read_map(fname_mask) else: hits = hp.read_map(fname_hits) good = hits > 0 ngood = np.sum(good) sorted_hits = np.sort(hits[good]) hit_lim = sorted_hits[np.int(ngood * .01)] mask = hits > hit_lim pix = np.arange(hits.size) lon, lat = hp.pix2ang(nside, pix, lonlat=True) lat_min = np.amin(lat[mask]) lat_max = np.amax(lat[mask]) mask = np.zeros(npix) tol = 10.0 # degrees mask[np.logical_and(lat_min + tol < lat, lat < lat_max - tol)] = 1 mask = hp.smoothing(mask, fwhm=np.radians(3), lmax=2048) hp.write_map(fname_mask, mask) return mask def map2cl(m, mask): m[0] = hp.remove_dipole(m[0]) m[m == hp.UNSEEN] = 0 fsky = np.sum(mask) / mask.size cl = hp.anafast(m * mask, lmax=lmax, iter=0) / fsky return cl def get_cl(fname_cl, fname_map, fname_hits): if os.path.isfile(fname_cl): cl = hp.read_cl(fname_cl) else: mask = get_mask(fname_hits) m = hp.read_map(fname_map, None) cl = map2cl(m, mask) hp.write_cl(fname_cl, cl) return cl def get_tf(fname_tf, fname_cmb_unlensed, fname_cmb_lensing, fname_output, fname_hits): if os.path.isfile(fname_tf): tf = hp.read_cl(fname_tf) else: inmap = hp.read_map(fname_cmb_unlensed, None) + hp.read_map(fname_cmb_lensing, None) inmap *= 1e-6 # into K_CMB inmap[0] = hp.remove_dipole(inmap[0]) outmap = hp.read_map(fname_output, None) mask = get_mask(fname_hits) cl_in = map2cl(inmap, mask) cl_out = map2cl(outmap, mask) tf = cl_out / cl_in hp.write_cl(fname_tf, tf) tf[:, lmax_tf:] = 1 tf[tf > 1] = 1 return tf rootdir = "/global/cscratch1/sd/zonca/cmbs4/map_based_simulations/202102_design_tool_run" nrow, ncol = nband, 3 fig1 = plt.figure(figsize=[6 * ncol, 6 * 1]) ax1 = fig1.add_subplot(1, 3, 1) ax2 = fig1.add_subplot(1, 3, 2) ax3 = fig1.add_subplot(1, 3, 3) fig2 = plt.figure(figsize=[6 * ncol, 6 * nrow]) ell = np.arange(lmax + 1) ellnorm = ell * (ell + 1) / (2 * np.pi) * 1e12 iplot = 0 for band in bands: path_hits = os.path.join( rootdir, "noise_atmo_7splits", f"{telescope}-{band}_{site}/cmbs4_hitmap_{telescope}-{band}_{site}_nside{nside}_{split}_of_{nsplits}.fits", ) # Transfer function path_tf = f"tf_{telescope}_{band}_{site}.fits" path_cmb_unlensed = os.path.join( "/global/cscratch1/sd/zonca/cmbs4/map_based_simulations/202102_design_tool_input", f"{nside}/cmb_unlensed_solardipole/0000/" f"cmbs4_cmb_unlensed_solardipole_uKCMB_{telescope}-{band}_nside{nside}_0000.fits", ) path_cmb_lensing = os.path.join( "/global/cscratch1/sd/zonca/cmbs4/map_based_simulations/202102_design_tool_input", f"{nside}/cmb_lensing_signal/0000/" f"cmbs4_cmb_lensing_signal_uKCMB_{telescope}-{band}_nside{nside}_0000.fits", ) path_cmb_output = os.path.join( rootdir, "cmb_r0", f"{telescope}-{band}_{site}/cmbs4_KCMB_{telescope}-{band}_{site}_nside{nside}_1_of_1.fits", ) tf = get_tf(path_tf, path_cmb_unlensed, path_cmb_lensing, path_cmb_output, path_hits) # N_ell path_cl = f"cl_{telescope}_{band}_{site}_{flavor}.fits" path_noise_map = os.path.join( rootdir, flavor, f"{telescope}-{band}_{site}/" f"cmbs4_KCMB_{telescope}-{band}_{site}_nside{nside}_{split}_of_{nsplits}.fits", ) cl = get_cl(path_cl, path_noise_map, path_hits) / tf ax1.plot(ell[2:], tf[0][2:], label=band) ax2.plot(ell[2:], tf[1][2:], label=band) ax3.plot(ell[2:], tf[2][2:], label=band) freq = req.band2freq[band] fwhm = req.Chile_LAT[freq][0] bl = req.get_bl(fwhm, ell) nltt = req.NlTT_Chile_LAT[freq] nlee = req.NlEE_Chile_LAT[freq] iplot += 1 ax = fig2.add_subplot(nrow, ncol, iplot) ax.set_title(f"TT {band} / {freq}GHz") ax.set_xlabel("Multipole, $\ell$") ax.set_ylabel("D$\ell$ [$\mu$K$^2$]") ax.loglog(req.fiducial_ell, req.fiducial_TT, "k", label="CMB") ax.loglog(req.ells, nltt, label="requirement") ax.loglog(ell, ellnorm * cl[0] * bl, label=f"Sim") if band == "MFL1": ax.loglog(act_tt[0], act_tt[4], label="ACT PA3") elif band == "MFL2": ax.loglog(act_tt[0], act_tt[1], label="ACT PA1") ax.loglog(act_tt[0], act_tt[2], label="ACT PA2") ax.loglog(act_tt[0], act_tt[3], label="ACT PA3") #ax.set_xscale("linear") #ax.set_yscale("log") ax.set_xlim([20, 8000]) ax.set_ylim([1e-1, 1e7]) iplot += 1 ax = fig2.add_subplot(nrow, ncol, iplot) ax.set_title(f"EE {band} / {freq}GHz") ax.set_xlabel("Multipole, $\ell$") ax.set_ylabel("D$\ell$ [$\mu$K$^2$]") ax.loglog(req.fiducial_ell, req.fiducial_EE, "k", label="CMB") ax.loglog(req.ells, nlee, label="requirement") ax.loglog(ell, ellnorm * cl[1] * bl, label=f"Sim") if band == "MFL1": ax.loglog(act_ee[0], act_ee[4], label="ACT PA3") elif band == "MFL2": ax.loglog(act_ee[0], act_ee[1], label="ACT PA1") ax.loglog(act_ee[0], act_ee[2], label="ACT PA2") ax.loglog(act_ee[0], act_ee[3], label="ACT PA3") #ax.set_xscale("linear") #ax.set_yscale("log") ax.set_xlim([20, 8000]) ax.set_ylim([1e-4, 1e5]) iplot += 1 ax = fig2.add_subplot(nrow, ncol, iplot) ax.set_title(f"BB {band} / {freq}GHz") ax.set_xlabel("Multipole, $\ell$") ax.set_ylabel("D$\ell$ [$\mu$K$^2$]") ax.loglog(req.fiducial_ell, req.fiducial_BB, "k", label="CMB") ax.loglog(req.ells, nlee, label="requirement") ax.loglog(ell, ellnorm * cl[2] * bl, label=f"Sim") if band == "MFL1": ax.loglog(act_ee[0], act_ee[4], label="ACT PA3") elif band == "MFL2": ax.loglog(act_ee[0], act_ee[1], label="ACT PA1") ax.loglog(act_ee[0], act_ee[2], label="ACT PA2") ax.loglog(act_ee[0], act_ee[3], label="ACT PA3") ax.legend(loc="best") #ax.set_xscale("linear") #ax.set_yscale("log") ax.set_xlim([20, 8000]) ax.set_ylim([1e-4, 1e5]) for ax in [ax1, ax2, ax3]: ax.set_xlabel(r"Multipole, $\ell$") ax.set_ylabel("Transfer function") ax.set_xlim([1, lmax + 1]) ax.set_ylim([-0.1, 1.1]) ax.axhline(1.0, color="k", linestyle="--") ax.set_xscale("log") ax3.legend(loc="best") fig1.savefig("chile_lat_tf.png") fig2.savefig(f"chile_lat_validation.{flavor}.png") plt.show()
null
reference_tool_round_2/validation/validate_chlat.apod.py
validate_chlat.apod.py
py
7,534
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.genfromtxt", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.genfromtxt", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path.basename", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path", "line_number": 35, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 36, "usage_type": "call" }, { "api_name": "os.path", "line_number": 36, "usage_type": "attribute" }, { "api_name": "healpy.read_map", "line_number": 37, "usage_type": "call" }, { "api_name": "healpy.read_map", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.sort", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.int", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 47, "usage_type": "call" }, { "api_name": "healpy.pix2ang", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.amin", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.logical_and", "line_number": 54, "usage_type": "call" }, { "api_name": "healpy.smoothing", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.radians", "line_number": 55, "usage_type": "call" }, { "api_name": "healpy.write_map", "line_number": 56, "usage_type": "call" }, { "api_name": "healpy.remove_dipole", "line_number": 61, "usage_type": "call" }, { "api_name": "healpy.UNSEEN", "line_number": 62, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 63, "usage_type": "call" }, { "api_name": "healpy.anafast", "line_number": 64, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 69, "usage_type": "call" }, { "api_name": "os.path", "line_number": 69, "usage_type": "attribute" }, { "api_name": "healpy.read_cl", "line_number": 70, "usage_type": "call" }, { "api_name": "healpy.read_map", "line_number": 73, "usage_type": "call" }, { "api_name": "healpy.write_cl", "line_number": 75, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path", "line_number": 80, "usage_type": "attribute" }, { "api_name": "healpy.read_cl", "line_number": 81, "usage_type": "call" }, { "api_name": "healpy.read_map", "line_number": 83, "usage_type": "call" }, { "api_name": "healpy.remove_dipole", "line_number": 85, "usage_type": "call" }, { "api_name": "healpy.read_map", "line_number": 86, "usage_type": "call" }, { "api_name": "healpy.write_cl", "line_number": 91, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 100, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 100, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 104, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 104, "usage_type": "name" }, { "api_name": "numpy.arange", "line_number": 105, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 106, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 110, "usage_type": "call" }, { "api_name": "os.path", "line_number": 110, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path", "line_number": 117, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 122, "usage_type": "call" }, { "api_name": "os.path", "line_number": 122, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 127, "usage_type": "call" }, { "api_name": "os.path", "line_number": 127, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 135, "usage_type": "call" }, { "api_name": "os.path", "line_number": 135, "usage_type": "attribute" }, { "api_name": "requirements.band2freq", "line_number": 147, "usage_type": "attribute" }, { "api_name": "requirements.Chile_LAT", "line_number": 148, "usage_type": "attribute" }, { "api_name": "requirements.get_bl", "line_number": 149, "usage_type": "call" }, { "api_name": "requirements.NlTT_Chile_LAT", "line_number": 150, "usage_type": "attribute" }, { "api_name": "requirements.NlEE_Chile_LAT", "line_number": 151, "usage_type": "attribute" }, { "api_name": "requirements.fiducial_ell", "line_number": 158, "usage_type": "attribute" }, { "api_name": "requirements.fiducial_TT", "line_number": 158, "usage_type": "attribute" }, { "api_name": "requirements.ells", "line_number": 159, "usage_type": "attribute" }, { "api_name": "requirements.fiducial_ell", "line_number": 177, "usage_type": "attribute" }, { "api_name": "requirements.fiducial_EE", "line_number": 177, "usage_type": "attribute" }, { "api_name": "requirements.ells", "line_number": 178, "usage_type": "attribute" }, { "api_name": "requirements.fiducial_ell", "line_number": 196, "usage_type": "attribute" }, { "api_name": "requirements.fiducial_BB", "line_number": 196, "usage_type": "attribute" }, { "api_name": "requirements.ells", "line_number": 197, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.show", "line_number": 222, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 222, "usage_type": "name" } ]
39051373
from django.contrib import admin from cisuba.account.models import Account, Hello from cisuba.models import PartnerProduct, Board from cisuba.models import PartnerProduct_Image, ProductTag, ProductDivsion from web.models import Anounce, Faq, Event, PartnerJoin # Register your models here. """ class PartnerbranchProductAdmin(admin.TabularInline): model = Partnerbranch_Product extra = 1 class PartnerbranchImageAdmin(admin.TabularInline): model = Partnerbranch_Image extra = 2 class PartnerbranchAdmin(admin.ModelAdmin): inlines = [ PartnerbranchProductAdmin, PartnerbranchImageAdmin ] admin.site.register(Board) admin.site.register(Partnerbranch_Product) admin.site.register(ProductDivsion) admin.site.register(Partnerbranch, PartnerbranchAdmin) admin.site.register(Partnerbranch_Image) admin.site.register(ProductTag) """ class PartnerProductImageAdmin(admin.TabularInline): model = PartnerProduct_Image extra = 2 class PartnerProductAdmin(admin.ModelAdmin): list_display = ('id','gubunAdress','detailAddress','partnerName') search_fields = ['partnerName'] fieldsets = [ (None, {'fields': ['partnerName','mainThumbnail','isFreePartner','hit']}), ('주소정보', {'fields': ['gubunAdress','highlightAddress','shortAddress','detailAddress']}), ('상품정보', {'fields': ['detailAbout','useAbout']}), ('개장 및 폐장시간', {'fields': ['startStime','startEtime']}), ('전화번호 및 할인가', {'fields': ['phone','discount']}), ('GPS 정보', {'fields': ['lat','lng']}), ('태그', {'fields': ['tag']}), ('구분', {'fields': ['divisions']}), #('조조,점심,야간 시간대 설정', {'fields': ['morningStime','morningEtime','lunchStime','lunchEtime','dinnerStime','dinnerEtime']}), ('조조,점심,야간 가격 설정', {'fields': ['morningPrice','lunchPrice','dinnerPrice']}), ('생성일', {'fields': ['createdDate','publishedDate']}), ] inlines = [ PartnerProductImageAdmin ] class PostModelAdmin(admin.ModelAdmin): pass admin.site.register(PartnerProduct, PartnerProductAdmin) admin.site.register(Board) admin.site.register(ProductTag) admin.site.register(ProductDivsion) admin.site.register(Anounce, PostModelAdmin) admin.site.register(Faq, PostModelAdmin) admin.site.register(Event, PostModelAdmin) admin.site.register(PartnerJoin) admin.site.register(Account) admin.site.register(Hello)
null
cisuba/admin.py
admin.py
py
2,503
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.contrib.admin.TabularInline", "line_number": 33, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 33, "usage_type": "name" }, { "api_name": "cisuba.models.PartnerProduct_Image", "line_number": 34, "usage_type": "name" }, { "api_name": "django.contrib.admin.ModelAdmin", "line_number": 38, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 38, "usage_type": "name" }, { "api_name": "django.contrib.admin.ModelAdmin", "line_number": 61, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 61, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 64, "usage_type": "call" }, { "api_name": "cisuba.models.PartnerProduct", "line_number": 64, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 64, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 64, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 65, "usage_type": "call" }, { "api_name": "cisuba.models.Board", "line_number": 65, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 65, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 65, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 66, "usage_type": "call" }, { "api_name": "cisuba.models.ProductTag", "line_number": 66, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 66, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 66, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 67, "usage_type": "call" }, { "api_name": "cisuba.models.ProductDivsion", "line_number": 67, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 67, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 67, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 69, "usage_type": "call" }, { "api_name": "web.models.Anounce", "line_number": 69, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 69, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 69, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 70, "usage_type": "call" }, { "api_name": "web.models.Faq", "line_number": 70, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 70, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 70, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 71, "usage_type": "call" }, { "api_name": "web.models.Event", "line_number": 71, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 71, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 71, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 72, "usage_type": "call" }, { "api_name": "web.models.PartnerJoin", "line_number": 72, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 72, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 72, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 73, "usage_type": "call" }, { "api_name": "cisuba.account.models.Account", "line_number": 73, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 73, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 73, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 74, "usage_type": "call" }, { "api_name": "cisuba.account.models.Hello", "line_number": 74, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 74, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 74, "usage_type": "name" } ]
215381946
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.chrome.options import Options from webdriver_manager.chrome import ChromeDriverManager import time from help_sheet import * URL = 'http://localhost:1667' class TestConduitapp(object): def setup(self): browser_options = Options() browser_options.headless = True self.driver = webdriver.Chrome(ChromeDriverManager().install(), options=browser_options) self.driver.get(URL) def teardown(self): self.driver.quit() ###########Test1_REGISTRATION def test_registration(self): self.driver.find_element_by_xpath('//a[@href="#/register"]').click() self.driver.find_element_by_xpath('//input[@placeholder="Username"]').send_keys("Leille") self.driver.find_element_by_xpath('//input[@placeholder="Email"]').send_keys("[email protected]") self.driver.find_element_by_xpath('//input[@placeholder="Password"]').send_keys("Progmasters2021") time.sleep(4) self.driver.find_element_by_xpath('//button').click() success = WebDriverWait( self.driver, 10).until( EC.visibility_of_element_located((By.XPATH, ('/html/body/div[2]/div/div[3]'))) ) assert success.text == "Your registration was successful!" self.driver.find_element_by_xpath('//button[@class="swal-button swal-button--confirm"]').click() time.sleep(2) ###########Test2_LOGIN def test_login(self): self.driver.find_element_by_xpath('//a[@href="#/login"]').click() self.driver.find_element_by_xpath('//input[@placeholder="Email"]').send_keys("[email protected]") self.driver.find_element_by_xpath('//input[@placeholder="Password"]').send_keys("Progmasters2021") sign_in_button = WebDriverWait( self.driver, 10).until( EC.visibility_of_element_located((By.XPATH, ('//form/button'))) ) sign_in_button.click() time.sleep(4) proof = self.driver.find_element_by_xpath("//a[@href = '#/settings']") element = WebDriverWait( self.driver, 10).until( EC.visibility_of_element_located((By.XPATH, "//a[@href = '#/settings']")) ) assert proof.text == " Settings" ###########Test3_LOGOUT def test_logout(self): login(self.driver) logout_button = WebDriverWait( self.driver, 10).until( EC.visibility_of_element_located((By.XPATH, ('//i[@class="ion-android-exit"]'))) ) logout_button.click() buttonlogin = WebDriverWait( self.driver, 10).until( EC.visibility_of_element_located((By.XPATH, ('//*[@href="#/login"]'))) ) assert buttonlogin.text == 'Sign in' ###########Test4_COOKIES def test_cookies(self): beforecookies = self.driver.get_cookies() numberofbeforecookies = (len(beforecookies)) acceptbutton = self.driver.find_element_by_xpath('//div[@id="cookie-policy-panel"]//button[2]') acceptbutton.click() time.sleep(4) aftercookies = self.driver.get_cookies() numberofaftercookies = (len(aftercookies)) assert numberofaftercookies > numberofbeforecookies ###########Test5_MULTIPLEPAGES def test_multiplepages(self): login(self.driver) yourfeed = self.driver.find_element_by_xpath("//a[@href = '#/my-feed']") yourfeed.click() firstarticle = self.driver.find_element_by_xpath('//*[@id="app"]/div/div[2]/div/div[1]/div[2]/div/div/div[1]') time.sleep(4) self.driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") time.sleep(4) secondpage = self.driver.find_element_by_xpath('//ul[@class="pagination"]/li[2]/a') secondpage.click() time.sleep(4) secondpagefirstarticle = self.driver.find_element_by_xpath( '//*[@id="app"]/div/div[2]/div/div[1]/div[2]/div/div/div') assert firstarticle != secondpagefirstarticle ###########Test6_NEWDATA def test_createnewarticle(self): login(self.driver) self.driver.find_elements_by_xpath('//a[@class="nav-link"]')[0].click() time.sleep(4) self.driver.find_element_by_xpath('//input[@placeholder="Article Title"]').send_keys( "Test article title") self.driver.find_elements_by_xpath('//form//input')[1].send_keys("About article") self.driver.find_element_by_xpath( '//form//textarea[@placeholder="Write your article (in markdown)"]').send_keys( "Content of article") self.driver.find_element_by_xpath('//button[normalize-space(text()="Publish Article")]').click() time.sleep(4) deletebutton = self.driver.find_element_by_xpath('//span[contains(text(),"Delete")]') assert deletebutton.text == " Delete Article" ###########Test7_DELETEDATA def test_deletearticle(self): login(self.driver) newarticle(self.driver) home = self.driver.find_element_by_xpath("//a[@href = '#/']") home.click() time.sleep(4) yourfeed = self.driver.find_element_by_xpath("//a[@href = '#/my-feed']") yourfeed.click() beforetitles = self.driver.find_elements_by_xpath("//a[@class = 'preview-link']/h1") numberofbefortitles = (len(beforetitles)) time.sleep(4) madearticle = self.driver.find_element_by_xpath("//a[@href = '#/articles/test-article-title']") madearticle.click() time.sleep(4) deletebutton = self.driver.find_element_by_xpath('//span[contains(text(),"Delete")]') deletebutton.click() time.sleep(4) home = self.driver.find_element_by_xpath("//a[@href = '#/']") home.click() time.sleep(4) yourfeed.click() aftertitles = self.driver.find_elements_by_xpath("//a[@class = 'preview-link']/h1") numberofaftertitles = (len(aftertitles)) assert numberofbefortitles != numberofaftertitles ###########Test8_MODIFYDATA def test_modifydata(self): login(self.driver) self.driver.find_element_by_xpath("//a[@href = '#/settings']").click() time.sleep(4) self.driver.find_element_by_xpath('//input[@placeholder="URL of profile picture"]').send_keys( "https://upload.wikimedia.org/wikipedia/commons/3/3f/Spiders_web.svg") time.sleep(4) self.driver.find_element_by_xpath('//button[@class="btn btn-lg btn-primary pull-xs-right"]').click() time.sleep(4) successfulupdate = self.driver.find_element_by_xpath('/html/body/div[2]/div/div[2]') assert successfulupdate.text == "Update successful!" ###########Test9_LISTDATA def test_listdata(self): tags = self.driver.find_elements_by_xpath("//div[@class='sidebar']/div/a") list_of_tags = [] for i in tags: list_of_tags.append(i.text) print(list_of_tags) assert len(list_of_tags) == len(tags) ###########Test10_DATAFROMSOURCE def test_datafromsource(self): login(self.driver) newarticle(self.driver) time.sleep(4) with open("datafromsource.txt", "r") as f: comments = f.readlines() for i in comments: self.driver.refresh() time.sleep(4) writecomment = self.driver.find_element_by_xpath("//textarea[@placeholder='Write a comment...']") time.sleep(4) writecomment.send_keys(i) time.sleep(4) commentbutton = self.driver.find_element_by_xpath("//button[text()='Post Comment']") time.sleep(4) commentbutton.click() time.sleep(4) cards = self.driver.find_elements_by_xpath("//div[@class='card']") assert len(cards) == 4 ###########Test11_SAVEDATA def test_savedata(self): tags = self.driver.find_elements_by_xpath("//div[@class='sidebar']/div/a") with open("text.txt", "w") as f: for i in tags: f.write(i.text + "\n") with open("text.txt", "r") as g: tagss = g.readlines() number_of_tags = 0 for i in tagss: number_of_tags = number_of_tags + 1 print(number_of_tags) print(len(tags)) assert number_of_tags == len(tags)
null
test/test_conduit.py
test_conduit.py
py
8,618
python
en
code
null
code-starcoder2
83
[ { "api_name": "selenium.webdriver.chrome.options.Options", "line_number": 15, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 17, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 17, "usage_type": "name" }, { "api_name": "webdriver_manager.chrome.ChromeDriverManager", "line_number": 17, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 32, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.wait.WebDriverWait", "line_number": 36, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 38, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 38, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 38, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 38, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 43, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.wait.WebDriverWait", "line_number": 52, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 54, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 54, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 54, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 54, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 58, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.wait.WebDriverWait", "line_number": 62, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 64, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 64, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 64, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 64, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.wait.WebDriverWait", "line_number": 72, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 74, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 74, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 74, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 74, "usage_type": "name" }, { "api_name": "selenium.webdriver.support.wait.WebDriverWait", "line_number": 78, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions.visibility_of_element_located", "line_number": 80, "usage_type": "call" }, { "api_name": "selenium.webdriver.support.expected_conditions", "line_number": 80, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.XPATH", "line_number": 80, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 80, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 95, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 111, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 114, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 118, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 129, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 139, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 152, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 160, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 165, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 170, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 175, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 191, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 196, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 200, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 223, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 229, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 231, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 234, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 238, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 241, "usage_type": "call" } ]
382472416
from django.shortcuts import render, get_object_or_404 from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from .models import Category, Product, Brand from cart.forms import CartAddProductForm from .forms import PriceForm from blog.forms import CommentForm from blog.models import Comment def base(request): categories = Category.objects.all() brands = Brand.objects.all() featured_items = Product.objects.filter(features_items=True) recommended_item = Product.objects.filter(recommended_item=True) slider_items = Product.objects.filter(slider_item=True) cart_product_form = CartAddProductForm() return render(request, "shop/base.html", {"brands": brands, "categories": categories, "featured_items": featured_items, "recommended_item": recommended_item, "cart_product_form": cart_product_form, "slider_items": slider_items}) def product_list(request, category_slug=None, brand_slug=None): category = None brand = None categories = Category.objects.all() products = Product.objects.filter(available=True) brands = Brand.objects.all() cart_product_form = CartAddProductForm() price_form = PriceForm(request.GET) featured_items = Product.objects.filter(features_items=True) recommended_item = Product.objects.filter(recommended_item=True) slider_items = Product.objects.filter(slider_item=True) if category_slug: category = get_object_or_404(Category, slug=category_slug) products = products.filter(category=category) elif brand_slug: brand = get_object_or_404(Brand, slug=brand_slug) products = products.filter(brand=brand) if price_form.is_valid(): if price_form.cleaned_data["min_price"]: products = products.filter(price__gte=price_form.cleaned_data["min_price"]) if price_form.cleaned_data["max_price"]: products = products.filter(price__lte=price_form.cleaned_data["max_price"]) paginator = Paginator(products, 6) page = request.GET.get("page") products_list = paginator.get_page(page) return render(request, "shop/product_list.html", {"category": category, "brand": brand, "brands": brands, "price_form": price_form, "categories": categories, "products": products, "featured_items": featured_items, "slider_items": slider_items, "recommended_item": recommended_item, "cart_product_form": cart_product_form, "products_list": products_list}) def product_detail(request, id, slug): product = get_object_or_404(Product, id=id, slug=slug) cart_product_form = CartAddProductForm() categories = Category.objects.all() brands = Brand.objects.all() featured_items = Product.objects.filter(features_items=True) recommended_item = Product.objects.filter(recommended_item=True) slider_items = Product.objects.filter(slider_item=True) if product.product_comment: comments = product.product_comment.filter(active=True) if request.method == "POST": comment_form = CommentForm(data=request.POST) if comment_form.is_valid(): new_comment = comment_form.save(commit=False) new_comment.comment_author = request.user new_comment.product = product new_comment.save() else: comment_form = CommentForm() return render(request, "shop/detail.html", {"product": product, "brands": brands, "categories": categories, "cart_product_form": cart_product_form, "featured_items": featured_items, "slider_items": slider_items, "recommended_item": recommended_item, "comments": comments, "comment_form": comment_form})
null
shop/views.py
views.py
py
4,117
python
en
code
null
code-starcoder2
83
[ { "api_name": "models.Category.objects.all", "line_number": 11, "usage_type": "call" }, { "api_name": "models.Category.objects", "line_number": 11, "usage_type": "attribute" }, { "api_name": "models.Category", "line_number": 11, "usage_type": "name" }, { "api_name": "models.Brand.objects.all", "line_number": 12, "usage_type": "call" }, { "api_name": "models.Brand.objects", "line_number": 12, "usage_type": "attribute" }, { "api_name": "models.Brand", "line_number": 12, "usage_type": "name" }, { "api_name": "models.Product.objects.filter", "line_number": 13, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 13, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 13, "usage_type": "name" }, { "api_name": "models.Product.objects.filter", "line_number": 14, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 14, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 14, "usage_type": "name" }, { "api_name": "models.Product.objects.filter", "line_number": 15, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 15, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 15, "usage_type": "name" }, { "api_name": "cart.forms.CartAddProductForm", "line_number": 17, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 19, "usage_type": "call" }, { "api_name": "models.Category.objects.all", "line_number": 31, "usage_type": "call" }, { "api_name": "models.Category.objects", "line_number": 31, "usage_type": "attribute" }, { "api_name": "models.Category", "line_number": 31, "usage_type": "name" }, { "api_name": "models.Product.objects.filter", "line_number": 32, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 32, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 32, "usage_type": "name" }, { "api_name": "models.Brand.objects.all", "line_number": 33, "usage_type": "call" }, { "api_name": "models.Brand.objects", "line_number": 33, "usage_type": "attribute" }, { "api_name": "models.Brand", "line_number": 33, "usage_type": "name" }, { "api_name": "cart.forms.CartAddProductForm", "line_number": 34, "usage_type": "call" }, { "api_name": "forms.PriceForm", "line_number": 35, "usage_type": "call" }, { "api_name": "models.Product.objects.filter", "line_number": 37, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 37, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 37, "usage_type": "name" }, { "api_name": "models.Product.objects.filter", "line_number": 38, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 38, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 38, "usage_type": "name" }, { "api_name": "models.Product.objects.filter", "line_number": 39, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 39, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 39, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 42, "usage_type": "call" }, { "api_name": "models.Category", "line_number": 42, "usage_type": "argument" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 45, "usage_type": "call" }, { "api_name": "models.Brand", "line_number": 45, "usage_type": "argument" }, { "api_name": "django.core.paginator.Paginator", "line_number": 54, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 58, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 71, "usage_type": "call" }, { "api_name": "models.Product", "line_number": 71, "usage_type": "argument" }, { "api_name": "cart.forms.CartAddProductForm", "line_number": 73, "usage_type": "call" }, { "api_name": "models.Category.objects.all", "line_number": 74, "usage_type": "call" }, { "api_name": "models.Category.objects", "line_number": 74, "usage_type": "attribute" }, { "api_name": "models.Category", "line_number": 74, "usage_type": "name" }, { "api_name": "models.Brand.objects.all", "line_number": 75, "usage_type": "call" }, { "api_name": "models.Brand.objects", "line_number": 75, "usage_type": "attribute" }, { "api_name": "models.Brand", "line_number": 75, "usage_type": "name" }, { "api_name": "models.Product.objects.filter", "line_number": 76, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 76, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 76, "usage_type": "name" }, { "api_name": "models.Product.objects.filter", "line_number": 77, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 77, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 77, "usage_type": "name" }, { "api_name": "models.Product.objects.filter", "line_number": 78, "usage_type": "call" }, { "api_name": "models.Product.objects", "line_number": 78, "usage_type": "attribute" }, { "api_name": "models.Product", "line_number": 78, "usage_type": "name" }, { "api_name": "blog.forms.CommentForm", "line_number": 83, "usage_type": "call" }, { "api_name": "blog.forms.CommentForm", "line_number": 90, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 92, "usage_type": "call" } ]
459568341
# -*- coding: utf-8 -*- ''' import subprocess #p = subprocess.check_output(["python", "/Users/shrey/test.py"]) #p = subprocess.check_output(["echo" "hi"]) #p = subprocess.run(["echo $(python /Users/shrey/test.py)"], shell=True, stdout=subprocess.PIPE) p1 = subprocess.run(['C:/Python27/python.exe', 'C:/Users/Amanul/Downloads/GM/Project/RNN code/story_cloze-master/skip_thought_vector.py'], stdin=None, stdout=subprocess.PIPE, stderr=subprocess.PIPE) print (p1.stdout) print(p1) ''' from stanfordcorenlp import StanfordCoreNLP import pandas as pd from nltk.tag import StanfordNERTagger from nltk.tokenize import word_tokenize import os import sys import json from skip_thought_vector import skip_thought_vector class interface: def __init__(self, host='http://localhost', port=9000): #self.file_path = 'ROCStories_winter2017 - ROCStories_winter2017.csv' self.file_path = 'process_data_final_.csv' self.nlp = StanfordCoreNLP(host, port=port, timeout=30000) self.props = { 'annotators': 'tokenize,ssplit,pos,lemma,ner,parse,depparse,dcoref,relation', 'pipelineLanguage': 'en', 'outputFormat': 'json' } def annotate(self, sentence): return json.loads(self.nlp.annotate(sentence, properties=self.props)) def get_ner_tags(self, ann_dict): person_list = dict() c = 1 for sent in ann_dict['sentences']: for line in sent['tokens']: #print("line: " , line) if(line['ner'] == 'PERSON'): #print("line : ", line) name = line['word'] if(name not in person_list): if(name == 'John' or name == 'Peter' or name == 'Jake' or name == 'David'): person_list[line['word']] ='Male' else: person_list[line['word']] ='Female' c+=1 #print("found ", line['word']) return(person_list) def sent_tokenized_dict(self, ann_dict): sent_dict = {} i_sent = 1 for sent in ann_dict['sentences']: sent_dict[i_sent] = [] #w_index = 0 #print(len(sent['tokens'])) for line in sent['tokens']: #print(line) #if(line["word"] != '.'): sent_dict[i_sent].append(line["word"]) #w_index += 1 #sent_dict[i_sent].append('.') i_sent+=1 #print(sent_dict) return sent_dict def replace_co_ref(self, ann_dict, person_list): sent_dict = self.sent_tokenized_dict(ann_dict) #for sent in ann_dict['sentences']: # print(sent["tokens"]) coref_dict = ann_dict['corefs'] j = 1 coref_flag = False for key in coref_dict: name = None #word_list = set() ref = coref_dict[key] #print("Ref [",j,"]: ", ref, "\n") if(len(ref) > 0 and (ref[0]['text'] in person_list) and ref[0]['type'] == 'PROPER'): coref_flag = True name = ref[0]['text'] #print("Name = ", name) for ref in coref_dict[key]: if(ref['type'] == 'PROPER' or ref['type'] == 'PRONOMINAL'): #print("REF word ", ref['text'], "\t", ref['sentNum'], "\t", ref['startIndex']) sent_num = ref['sentNum'] start_index = ref['startIndex']-1 #end_index = ref['endIndex']-1 #for index in range(start_index, end_index): if(ref['text'] == 'his' or ref['text'] == 'her' or ref['text'] == 'His' or ref['text'] == 'Her'): sent_dict[sent_num][start_index] = name +str("'s") else: sent_dict[sent_num][start_index] = name j+=1 if(coref_flag == False): print("sent ", sent_dict) if(coref_flag != True): return None processed_text = [] for key in sent_dict: #print("Key = ", key) #print(sent_dict[key]) processed_text.append(" ".join(sent_dict[key])) return(processed_text) def find_character_details(self, sent): ann_dict = self.annotate(sent) person_list = self.get_ner_tags(ann_dict) return person_list if __name__ == '__main__': story = [] interf_ = interface() stv = skip_thought_vector() character_name = "Mohit" first_sentence = "John thought Peter should buy a trailer and haul it with his car." character_list = interf_.find_character_details(first_sentence) story = ["John thought Peter should buy a trailer and haul it with his car.", "Peter thought a truck would be better for what he needed.", "John pointed out two vehicles were much more expensive.", "Peter was set in his ways with conventional thinking.", "He ended up buying the truck he wanted despite John's advice."] ''' for i in range(1,5): sentence = " ".join(story[0:i]) ann_dict = interf_.annotate(sentence) processed_text = interf_.replace_co_ref(ann_dict, character_list) print(processed_text, " \n") ''' system_generated_sentences = ["Mohit was a man of principal and it would violate his principals to not do it even for a day.", "It was getting close to the end of day and Tyler was nowhere in sight.", "Finally his friend Amanul came to his rescue and gave him what he wanted.", "Mohit jumped with joy and was happy as never before."] print("Welcome to the world of imagination") print("How it works? \nThis is an interactive story generating system that uses human authoring along with", "the system's expertise to generate intriguing short stories. \n The system generates the first sentence", "for the story, following which it makes suggestions for the next sentence. You can choose from the", "suggestions you see in the list by typing the corresponding digit for your choosen next sentence, ", "or you can eneter a sentence which then becomes the part of the narration.\n This procedure continues till", " we have a short 5 sentence story.\n") print("Put your author hat one and get ready to help the system generate novel and interesting stories\n") print("This is a short story about", character_name) print("The story starts with this opening sentence \n\n'",first_sentence,"'\n") print("Choose either from the following system generated suggestions for the next sentence in the story or you can enter you own sentence here\n") print("To choose you just need to enter the digit corresponding to that suggestion\n") j = 1 story = [first_sentence] character_list = interf_.find_character_details(first_sentence) system_generated_sentences = stv.generate_vector(story) for sent in system_generated_sentences: print(j, " ",sent) j += 1 inp = input() while(1): if(len(inp) == 1 and int(inp) in range(5)): inp = int(inp) next_sentence = system_generated_sentences[inp-1] story.append(next_sentence) #story = story + str(system_generated_sentences[inp-1]) else: next_sentence = str(inp) story.append(next_sentence) #story = story + " " + str(inp) j = 1 print("Story so far") for st in story: print(st) sentence = " ".join(story[0:i]) ann_dict = interf_.annotate(sentence) processed_story = interf_.replace_co_ref(ann_dict, character_list) system_generated_sentences = stv.generate_vector(processed_story) for sent in system_generated_sentences: print(j, " ",sent) j += 1 if(len(story) == 5): break inp = input() print("\nFantastic! This is an amazing story. You should definitely try your hands on writing more stories, you could be the next Shakespeare") print("\n1final story: ") print(" ".join(story))
null
CODE/.ipynb_checkpoints/interface-checkpoint.py
interface-checkpoint.py
py
8,587
python
en
code
null
code-starcoder2
83
[ { "api_name": "stanfordcorenlp.StanfordCoreNLP", "line_number": 28, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 36, "usage_type": "call" }, { "api_name": "skip_thought_vector.skip_thought_vector", "line_number": 127, "usage_type": "call" } ]
519800689
# -*_ coding:utf-8 _*- import openpyxl class DoExcel: # def __init__(self,ExcelName,SheetName): # #ExcelReadName,SheetReadName,ExcelWriteName,SheetWriteName): # self.ExcelName = ExcelName # self.SheetName = SheetName # # self.ExcelWriteName = ExcelWriteName # # self.SheetWriteName = SheetWriteName @staticmethod def get_top_row(ExcelName,SheetName): top_row = {} wb = openpyxl.load_workbook(ExcelName) sheet = wb[SheetName] for i in range(1,(sheet.max_column+1)): top_row[sheet.cell(1,i).value] = i return top_row,sheet def read_excel(self,ExcelReadName,SheetReadName): """获取excel内容并返回[{},{},{}]格式""" excel_list = [] top_row_read,sheet = DoExcel.get_top_row(ExcelReadName,SheetReadName) for i in range(2,(sheet.max_row+1)): each_dict = {} for item in top_row_read.keys(): each_dict[item] = sheet.cell(i,top_row_read[item]).value excel_list.append(each_dict) return excel_list def write_excel(self,ExcelWriteName,SheetWriteName,Excel_list=[]): top_row_write,aa = DoExcel.get_top_row(ExcelWriteName,SheetWriteName) wb = openpyxl.load_workbook(ExcelWriteName) sheet = wb.active #sheet.cell(row=2, column=1, value=1)在某行某列中写入数据 k = 2 for item in Excel_list: for i in top_row_write.keys(): sheet.cell(row=k,column=top_row_write[i],value=str(item[i])) k += 1 wb.save(ExcelWriteName) wb.close() if __name__ == "__main__": list1 = [{'TestResult': '未通过', 'res_json': {'status': 0, 'code': '20110', 'data': None, 'msg': '手机号码已被注册'}, 'real_code': '20110', 'id': 1, 'module': '注册', 'description': '正常注册'}, {'TestResult': '通过', 'res_json': {'status': 0, 'code': '20103', 'data': None, 'msg': '手机号不能为空'}, 'id': 2, 'module': '注册', 'description': '手机号为空'}, {'TestResult': '通过', 'res_json': {'status': 0, 'code': '20109', 'data': None, 'msg': '手机号码格式不正确'}, 'id': 3, 'module': '注册', 'description': '手机号位数不正确'}, {'TestResult': '通过', 'res_json': {'status': 0, 'code': '20110', 'data': None, 'msg': '手机号码已被注册'}, 'id': 4, 'module': '注册', 'description': '手机号已经被注册'}, {'TestResult': '通过', 'res_json': {'status': 0, 'code': '20103', 'data': None, 'msg': '密码不能为空'}, 'id': 5, 'module': '注册', 'description': '密码为空'}, {'TestResult': '通过', 'res_json': {'status': 0, 'code': '20108', 'data': None, 'msg': '密码长度必须为6~18'}, 'id': 6, 'module': '注册', 'description': '密码过短'}] DoExcel().write_excel("test_data/ExcelResult.xlsx","testCaseWrite",list1)
null
homework/homework_1108/DoExcel.py
DoExcel.py
py
2,888
python
en
code
null
code-starcoder2
83
[ { "api_name": "openpyxl.load_workbook", "line_number": 14, "usage_type": "call" }, { "api_name": "openpyxl.load_workbook", "line_number": 35, "usage_type": "call" } ]
353183196
__author__ = 'salamio' import configparser class RConfig(configparser.RawConfigParser): def as_dict(self): d = dict(self._sections) for k in d: d[k] = dict(self._defaults, **d[k]) d[k].pop('__name__', None) return d if __name__ == "__main__": f = RConfig() f.read("../etc/setup.cfg") d = f.as_dict() print (d) print (d['TestA']['class'])
null
aliens/PythonProjects/RedshiftDeployment/core/RConfig.py
RConfig.py
py
415
python
en
code
null
code-starcoder2
83
[ { "api_name": "configparser.RawConfigParser", "line_number": 7, "usage_type": "attribute" } ]
393366134
from collections import defaultdict, deque input = [line.strip() for line in open("../Inputs/day12", "r")] map = defaultdict(list) for line in input: left, right = line.split("-") if right != "start": map[left].append(right) if left != "start": map[right].append(left) def singleVisit(map): validPaths = 0 paths = deque([(["start"], set(), False)]) while paths: path, smallCaves, doubleVisited = paths.popleft() for cave in map[path[-1]]: if cave == 'end': validPaths += 1 elif cave.islower(): if cave not in smallCaves: s = smallCaves|{cave} paths.append((path + [cave], s, doubleVisited)) else: paths.append((path + [cave], smallCaves, doubleVisited)) return validPaths def doubleVisit(map): validPaths = 0 paths = deque([(["start"], set(), False)]) while paths: path, smallCaves, doubleVisited = paths.popleft() for cave in map[path[-1]]: if cave == 'end': validPaths += 1 elif cave.islower(): if cave not in smallCaves: s = smallCaves|{cave} paths.append((path + [cave], s, doubleVisited)) elif not doubleVisited: paths.append((path + [cave], smallCaves, True)) else: paths.append((path + [cave], smallCaves, doubleVisited)) return validPaths print("2021 Day 12, Part 1: " + str(singleVisit(map))) print("2021 Day 12, Part 2: " + str(doubleVisit(map)))
null
2021/AoC2021Day12/AoC2021Day12.py
AoC2021Day12.py
py
1,638
python
en
code
null
code-starcoder2
83
[ { "api_name": "collections.defaultdict", "line_number": 4, "usage_type": "call" }, { "api_name": "collections.deque", "line_number": 14, "usage_type": "call" }, { "api_name": "collections.deque", "line_number": 31, "usage_type": "call" } ]
328548779
# Given a set of n jobs where each job i has a deadline di >=1 and profit pi>=0. # Only one job can be scheduled at a time. Each job takes 1 unit of time to complete. # We earn the profit if and only if the job is completed by its deadline. # The task is to find the subset of jobs that maximizes profit. import itertools # from disjoint_set import DisJointSet counter = itertools.count() class DisJointSet(object): def __init__(self, n): self.parent = [i for i in range(n + 1)] def find(self, x): if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, u, v): self.parent[v] = u class Job(object): def __init__(self, id, deadline, profit): # self.id = next(counter) self.id = id self.dead_line = deadline self.profit = profit def __lt__(self, other): return self.profit > other.profit def job_sequence(self, jobs): jobs = sorted(jobs) max_time_slot = max(jobs, key=lambda x: x.dead_line) sequence = [] # print(max_time_slot.dead_line) dsu = DisJointSet(max_time_slot.dead_line) for job in jobs: available_slot = dsu.find(job.dead_line) if available_slot > 0: dsu.union(dsu.find(available_slot - 1), available_slot) sequence.append(job.id) return sequence jobs = list() jobs.append(Job('a', 3, 100)) jobs.append(Job('b', 3, 19)) jobs.append(Job('c', 3, 27)) jobs.append(Job('d', 2, 25)) jobs.append(Job('e', 3, 15)) j = Job(None, None, None) print(j.job_sequence(jobs))
null
python/disjoint_set/job_sequencing_problem.py
job_sequencing_problem.py
py
1,659
python
en
code
null
code-starcoder2
83
[ { "api_name": "itertools.count", "line_number": 9, "usage_type": "call" } ]
54741425
import sys from cx_Freeze import setup, Executable from sportorg import config base = None if sys.platform == 'win32': base = 'Win32GUI' include_files = [config.LOCALE_DIR, config.TEMPLATE_DIR, config.IMG_DIR, config.SOUND_DIR, config.base_dir('LICENSE'), config.base_dir('changelog.md'), config.base_dir('changelog_ru.md'), config.base_dir('status_comments.txt'), config.base_dir('regions.txt'), config.base_dir('names.txt'), config.base_dir('ranking.txt')] includes = ['atexit', 'codecs'] excludes = ['Tkinter'] options = { 'build_exe': { 'includes': includes, 'excludes': excludes, "packages": ['idna', 'requests', 'encodings', 'asyncio', 'pywinusb/hid'], 'include_files': include_files } } executables = [ Executable( 'SportOrg.pyw', base=base, icon=config.ICON, shortcutDir=config.NAME.lower(), copyright='MIT Licence {}'.format(config.NAME) ) ] setup( name=config.NAME, version=config.VERSION.file, description=config.NAME, options=options, executables=executables )
null
setup.py
setup.py
py
1,141
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.platform", "line_number": 6, "usage_type": "attribute" }, { "api_name": "sportorg.config.LOCALE_DIR", "line_number": 9, "usage_type": "attribute" }, { "api_name": "sportorg.config", "line_number": 9, "usage_type": "name" }, { "api_name": "sportorg.config.TEMPLATE_DIR", "line_number": 9, "usage_type": "attribute" }, { "api_name": "sportorg.config.IMG_DIR", "line_number": 9, "usage_type": "attribute" }, { "api_name": "sportorg.config.SOUND_DIR", "line_number": 9, "usage_type": "attribute" }, { "api_name": "sportorg.config.base_dir", "line_number": 9, "usage_type": "call" }, { "api_name": "sportorg.config.base_dir", "line_number": 10, "usage_type": "call" }, { "api_name": "sportorg.config", "line_number": 10, "usage_type": "name" }, { "api_name": "sportorg.config.base_dir", "line_number": 11, "usage_type": "call" }, { "api_name": "sportorg.config", "line_number": 11, "usage_type": "name" }, { "api_name": "sportorg.config.base_dir", "line_number": 12, "usage_type": "call" }, { "api_name": "sportorg.config", "line_number": 12, "usage_type": "name" }, { "api_name": "cx_Freeze.Executable", "line_number": 26, "usage_type": "call" }, { "api_name": "sportorg.config.ICON", "line_number": 29, "usage_type": "attribute" }, { "api_name": "sportorg.config", "line_number": 29, "usage_type": "name" }, { "api_name": "sportorg.config.NAME.lower", "line_number": 30, "usage_type": "call" }, { "api_name": "sportorg.config.NAME", "line_number": 30, "usage_type": "attribute" }, { "api_name": "sportorg.config", "line_number": 30, "usage_type": "name" }, { "api_name": "sportorg.config.NAME", "line_number": 31, "usage_type": "attribute" }, { "api_name": "sportorg.config", "line_number": 31, "usage_type": "name" }, { "api_name": "cx_Freeze.setup", "line_number": 35, "usage_type": "call" }, { "api_name": "sportorg.config.NAME", "line_number": 36, "usage_type": "attribute" }, { "api_name": "sportorg.config", "line_number": 36, "usage_type": "name" }, { "api_name": "sportorg.config.VERSION", "line_number": 37, "usage_type": "attribute" }, { "api_name": "sportorg.config", "line_number": 37, "usage_type": "name" }, { "api_name": "sportorg.config.NAME", "line_number": 38, "usage_type": "attribute" }, { "api_name": "sportorg.config", "line_number": 38, "usage_type": "name" } ]
295819976
import tensorflow as tf import matplotlib.pyplot as plt import numpy as np mnist = tf.keras.datasets.mnist #28*28 images of hand-written digits 0-9 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = tf.keras.utils.normalize(x_train, axis=1) #normalization x_test = tf.keras.utils.normalize(x_test, axis=1) #normalization model = tf.keras.models.Sequential() #sequential models, it's a feed-forward like the image we drew model.add(tf.keras.layers.Flatten()) #using flatten as input layer just to make our lives easier model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) #how many unit in the layer, we're gonna use 128 neurons in the layer. activation function is what is gonna make that neuron fire or sort of fire. relu is rectified linear model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax)) #output layer, if it's in the case of classification then it'll have your number of class. activation function using softmax for a probability distribution #parameter for model model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=3) #training model #neural netword doesn't actually attempt to optimize for accuracy, it's doesn't try to maximize accuracy, it's always trying to minimize loss #so the way you calculate loss can make a huge impact because it's what's losses relationship to your accuracy optimizer #plt.imshow(x_train[0], cmap = plt.cm.binary) #plt.show() #the goal: the model is actually generalizing, rather memorizing it #calculate validation loss and validation accuracy val_loss, val_acc = model.evaluate(x_test, y_test) print(val_loss, val_acc) model.save('epic_num_reader.model') #save the model new_model = tf.keras.models.load_model('epic_num_reader.model') #load existing model predictions = new_model.predict([x_test]) print(predictions) print(np.argmax(predictions[0])) #print prediction at index 0 plt.imshow(x_test[0]) plt.show()
null
sentdex tutorial/tensorflow/trying_tensorflow.py
trying_tensorflow.py
py
2,039
python
en
code
null
code-starcoder2
83
[ { "api_name": "tensorflow.keras", "line_number": 5, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.utils.normalize", "line_number": 9, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 9, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.utils.normalize", "line_number": 10, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 10, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.models.Sequential", "line_number": 12, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 12, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Flatten", "line_number": 13, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 13, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 14, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 14, "usage_type": "attribute" }, { "api_name": "tensorflow.nn", "line_number": 14, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 15, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 15, "usage_type": "attribute" }, { "api_name": "tensorflow.nn", "line_number": 15, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 16, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 16, "usage_type": "attribute" }, { "api_name": "tensorflow.nn", "line_number": 16, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.models.load_model", "line_number": 35, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 35, "usage_type": "attribute" }, { "api_name": "numpy.argmax", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 42, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 42, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 43, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 43, "usage_type": "name" } ]
636782877
#!/usr/bin/env python3 #SenseHatLogger. Author: kurtd5105 from sense_hat import SenseHat import argparse import sys import time from datetime import datetime from datetime import timedelta from itertools import product #Create a dictionary for the representation of the numbers in a pixel array numbers = { "0": [ [0, 1, 1, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 1, 1] ], "1": [ [0, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 1, 1, 1] ], "2": [ [0, 1, 1, 1], [0, 0, 0, 1], [0, 1, 1, 1], [0, 1, 0, 0], [0, 1, 1, 1] ], "3": [ [0, 1, 1, 1], [0, 0, 0, 1], [0, 1, 1, 1], [0, 0, 0, 1], [0, 1, 1, 1] ], "4": [ [0, 1, 0, 1], [0, 1, 0, 1], [0, 1, 1, 1], [0, 0, 0, 1], [0, 0, 0, 1] ], "5": [ [0, 1, 1, 1], [0, 1, 0, 0], [0, 1, 1, 1], [0, 0, 0, 1], [0, 1, 1, 1] ], "6": [ [0, 1, 1, 1], [0, 1, 0, 0], [0, 1, 1, 1], [0, 1, 0, 1], [0, 1, 1, 1] ], "7": [ [0, 1, 1, 1], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0] ], "8": [ [0, 1, 1, 1], [0, 1, 0, 1], [0, 1, 1, 1], [0, 1, 0, 1], [0, 1, 1, 1] ], "9": [ [0, 1, 1, 1], [0, 1, 0, 1], [0, 1, 1, 1], [0, 0, 0, 1], [0, 1, 1, 1] ], } """ generateNumberGroupings Generates a grid of 0 and 1 for LED off/on for each possible ordering of numbers of a given grouping length. The grid will be of size screenDimensions, [rows, cols]. Each number given will be of size numberDimensions, [rows, cols]. A dictionary is returned, with the number string as the key and the display grid as its value. """ def generateNumberGroupings(numbers, groupingLength, screenDimensions, numberDimensions): groupings = {} #For every combination of numbers that are of groupingLength for group in product(range(10), repeat=groupingLength): #Create an empty screen grouping = [[0 for col in range(screenDimensions[1])] for row in range(screenDimensions[0])] #Copy each number onto the screen in the correct position for i in range(groupingLength): for row in range(numberDimensions[0]): for col in range(numberDimensions[1]): grouping[row][col + (i * numberDimensions[1])] = numbers[str(group[i])][row][col] groupings[str(group[0]) + str(group[1])] = list(grouping) return groupings """ displayMetrics Uses the Sense Hat to display the current temperature, as well as the hourly temperature average, hourly pressure average, and hourly humidity average. currTemp is a float, metric is in the standard [time, [avgT, minT, maxT], [avgP, minP, maxP], [avgH, minH, maxH]] format, groupings have the strings of all possible number combinations of int groupingLength as their key and the display grid as the value. The time each part will be displayed on screen will be approximately gap seconds. The default is 1.5 seconds. Color is an rgb list, defaults to green. """ def displayMetrics(sense, currTemp, metric, groupings, groupingLength, rotation, gap=1, color=[0, 255, 0]): #X10 in the bottom 3 rows extraDigit = [ [128, 128, 128], [0, 0, 0], [128, 128, 128], [255, 255, 255], [0, 0, 0], [255, 255, 255], [255, 255, 255], [255, 255, 255], [0, 0, 0], [128, 128, 128], [0, 0, 0], [255, 255, 255], [0, 0, 0], [255, 255, 255], [0, 0, 0], [255, 255, 255], [128, 128, 128], [0, 0, 0], [128, 128, 128], [255, 255, 255], [0, 0, 0], [255, 255, 255], [255, 255, 255], [255, 255, 255] ] #T in the bottom 3 rows t = [ [0, 0, 0], [192, 192, 192], [192, 192, 192], [192, 192, 192], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [192, 192, 192], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [192, 192, 192], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ] #P in the bottom 3 rows p = [ [0, 0, 0], [192, 192, 192], [192, 192, 192], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [192, 192, 192], [192, 192, 192], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [192, 192, 192], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ] #H in the bottom 3 rows h = [ [0, 0, 0], [192, 192, 192], [0, 0, 0], [192, 192, 192], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [192, 192, 192], [192, 192, 192], [192, 192, 192], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [192, 192, 192], [0, 0, 0], [192, 192, 192], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ] sense.clear() sense.set_rotation(rotation) groups = [] #Append the number as the whole number and then the decimal and whether it's a decimal or not groups.append([str(int(currTemp)), False]) groups.append([str(currTemp - int(currTemp))[2:], True]) #Add each metric to the display groups for m in metric[1]: groups.append([str(int(m[0])), False]) groups.append([str(m[0] - int(m[0]))[2:], True]) #Set the pressure to ignore the most significant digit, it is probably 1 groups[4][0] = str(int(metric[1][1][0]) % 1000) overflow = [False for x in range(len(groups))] for i in range(8): if groups[i][0] == '': groups[i][0] = "00" continue #Check to see if any group overflows and set its overflow flag and shorten the group if len(groups[i][0]) > groupingLength: groups[i][0] = groups[i][0][0:groupingLength] if i % 2 == 0: overflow[i] = True #Add a 0 to the front of a non decimal, or in the back of a decimal if necessary elif i % 2 == 0: if len(groups[i][0]) == 1: groups[i][0] = '0' + groups[i][0] else: if len(groups[i][0]) == 1: groups[i][0] = groups[i][0] + '0' for i in range(8): sense.clear() #Change color accordingly here #Create a list of r, g, b values for each LED displayList = [color if groupings[groups[i][0]][row][col] else [0, 0, 0] for row in range(5) for col in range(8)] #If it's a decimal if groups[i][1]: displayList[32] = [255, 255, 255] #If there is an overflow, add the overflow signal to the screen, and move the thp indicator to the side if overflow[i]: if i < 4: displayList[0] = [255, 0, 0] elif i < 6: displayList[8] = [255, 255, 0] else: displayList[16] = [0, 0, 255] displayList.extend(extraDigit) #If there isn't an overflow, display the thp symbol on the bottom of the screen else: if i < 4: displayList.extend(t) elif i < 6: displayList.extend(p) else: displayList.extend(h) sense.set_pixels(displayList) time.sleep(gap) sense.clear() sense.set_rotation(0) """ logData Logs all the data to a data log file, given by the dataPath. """ def logData(dataPath, data): with open(dataPath, 'a') as f: for point in data: f.write("{} Temperature: {}; Pressure: {}; Humidity: {};\n".format(*point)) """ logMetric Logs the given metric to the metric log file, given by the metricPath. """ def logMetric(metricPath, metric): with open(metricPath, 'a') as f: f.write("{} ".format(metric[0])) metric1, metric2, metric3 = metric[1][0], metric[1][1], metric[1][2] f.write("Temperature avg: {}; min: {}; max: {}; ".format(*metric1)) f.write("Pressure avg: {}; min: {}; max: {}; ".format(*metric2)) f.write("Humidity avg: {}; min: {}; max: {};\n".format(*metric3)) def offHour(timerange, curr): if timerange[0] > timerange[1]: if curr.hour >= timerange[0]: return True elif curr.hour < timerange[1]: return True else: if curr.hour >= timerange[0] and curr.hour < timerange[1]: return True return False if __name__ == '__main__': parser = argparse.ArgumentParser(description="A Raspberry Pi Sense Hat sensor logger with LED and text file output.") parser.add_argument("-t", "--timerange", nargs=2, type=int, help="Optional argument to change the time range the LED matrix should be off.") parser.add_argument( "-r", "--rotation", nargs=1, type=int, help="Optional argument to change the LED matrix rotation in degrees. The screen will be rotated to the nearest 90 degree." ) parser.add_argument("-b", "--bright", action="store_true", help="Optional argument to turn the LED matrix to full brightness instead of low.") args = parser.parse_args() t = [] #Setup custom timerange if there was a valid range provided if args.timerange: t = args.timerange for i in t: if i < 0 or i > 23: print("Time out of range, setting to default.") t = [23, 8] break else: t = [23, 8] rotation = 0 #Setup the rotation if it was provided if args.rotation: rotation = int(((round(args.rotation[0]/90, 0) % 4) * 90)) sense = SenseHat() #Set the LED matrix to bright if the argument was provided if args.bright: sense.low_light = False else: sense.low_light = True groupings = generateNumberGroupings(numbers, 2, (5, 8), (5, 4)) now = datetime.now() target = datetime.now() #[time, [avgT, minT, maxT], [avgP, minP, maxP], [avgH, minH, maxH]] metric = [0, [[20, 0, 0], [1000, 0, 0], [50, 0, 0]]] while True: data = [] #From t 0 to 59 for i in range(60): start = datetime.now() #Print the current time for debug purposes print(start) #Take measurements data.append([ str(start), round(sense.get_temperature(), 2), round(sense.get_pressure(), 2), round(sense.get_humidity(), 2) ]) #Display the current temperature and the current metrics every 2 minutes if i % 2 == 0: if not offHour(t, start): displayMetrics(sense, data[-1][1], metric, groupings, 2, rotation) #Add a 60 second time delta from the start target = timedelta(seconds = 60) - (datetime.now() - start) delay = target.total_seconds() if delay < 0: delay = 0 time.sleep(delay) start = datetime.now() metrics = [str(start)] data.append([ str(start), round(sense.get_temperature(), 2), round(sense.get_pressure(), 2), round(sense.get_humidity(), 2) ]) #Calculate metrics here metric = [str(start), []] for i in range(1, 4): metricData = [d[i] for d in data] metric[1].append([round(sum(metricData) / len(metricData), 2), min(metricData), max(metricData)]) print(metric) #Log the data and metric to log files logData(start.strftime("%d-%m-%Y") + "_data.log", data) logMetric(start.strftime("%d-%m-%Y") + "_metric.log", metric) target = timedelta(seconds = 60) - (datetime.now() - start) delay = target.total_seconds() if delay < 0: delay = 0 time.sleep(delay)
null
logger.py
logger.py
py
12,544
python
en
code
null
code-starcoder2
83
[ { "api_name": "itertools.product", "line_number": 108, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 246, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 287, "usage_type": "call" }, { "api_name": "sense_hat.SenseHat", "line_number": 313, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 322, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 322, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 323, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 323, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 332, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 332, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 350, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 350, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 350, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 354, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 356, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 356, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 376, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 376, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 376, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 380, "usage_type": "call" } ]
448022421
""" Handler ------------------- Basic tfs-to-pandas io-functionality. :author: Jaime :module: handler """ import logging from collections import OrderedDict from contextlib import suppress from os.path import basename, dirname from typing import Union import numpy as np import pandas from pandas import DataFrame LOGGER = logging.getLogger(__name__) HEADER = "@" NAMES = "*" TYPES = "$" COMMENTS = "#" INDEX_ID = "INDEX&&&" FLOAT_PARENTS = (float, np.floating) INT_PARENTS = (int, np.integer, bool, np.bool_) ID_TO_TYPE = { "%s": np.str, "%bpm_s": np.str, "%le": np.float64, "%f": np.float64, "%hd": np.int, "%d": np.int, } DEFAULT_COLUMN_WIDTH = 20 MIN_COLUMN_WIDTH = 10 class TfsDataFrame(pandas.DataFrame): """ Class to hold the information of the built Pandas DataFrame, together with a way of getting the headers of the TFS file. To get a header value do: data_frame["header_name"] or data_frame.header_name. """ _metadata = ["headers", "indx"] def __init__(self, *args, **kwargs): self.headers = {} with suppress(IndexError, AttributeError): self.headers = args[0].headers self.headers = kwargs.pop("headers", self.headers) self.indx = _Indx(self) super().__init__(*args, **kwargs) def __getitem__(self, key: object) -> object: try: return super().__getitem__(key) except KeyError as e: try: return self.headers[key] except KeyError: raise KeyError(f"{key} is neither in the DataFrame nor in headers.") except TypeError: raise e def __getattr__(self, name: str) -> object: try: return super().__getattr__(name) except AttributeError: try: return self.headers[name] except KeyError: raise AttributeError(f"{name} is neither in the DataFrame nor in headers.") @property def _constructor(self): return TfsDataFrame def __str__(self): return f"{super().__str__().strip()}\nHeaders: {str(self.headers)}\n" class _Indx(object): """ Helper class to mock the metaclass twiss.indx["element_name"] behaviour. """ def __init__(self, tfs_data_frame): self._tfs_data_frame = tfs_data_frame def __getitem__(self, key): name_series = self._tfs_data_frame.NAME return name_series[name_series == key].index[0] def read_tfs(tfs_path: str, index: str = None) -> TfsDataFrame: """ Parses the TFS table present in tfs_path and returns a custom Pandas DataFrame (TfsDataFrame). Args: tfs_path: path to the input TFS file index: Name of the column to set as index. If not given looks for INDEX_ID-column Returns: TfsDataFrame object """ LOGGER.debug(f"Reading path: {tfs_path}") headers = OrderedDict() column_names = column_types = None rows_list = [] with open(tfs_path, "r") as tfs_data: for line in tfs_data: parts = line.split() if len(parts) == 0: continue if parts[0] == HEADER: name, value = _parse_header(parts[1:]) headers[name] = value elif parts[0] == NAMES: LOGGER.debug("Setting column names.") column_names = np.array(parts[1:]) elif parts[0] == TYPES: LOGGER.debug("Setting column types.") column_types = _compute_types(parts[1:]) elif parts[0] == COMMENTS: continue else: if column_names is None: raise TfsFormatError("Column names have not been set.") if column_types is None: raise TfsFormatError("Column types have not been set.") parts = [part.strip('"') for part in parts] rows_list.append(parts) data_frame = _create_data_frame(column_names, column_types, rows_list, headers) if index is not None: # Use given column as index data_frame = data_frame.set_index(index) else: # Try to find Index automatically index_column = [c for c in data_frame.columns if c.startswith(INDEX_ID)] if len(index_column) > 0: data_frame = data_frame.set_index(index_column) idx_name = index_column[0].replace(INDEX_ID, "") if idx_name == "": idx_name = None # to remove it completely (Pandas makes a difference) data_frame = data_frame.rename_axis(idx_name) _validate(data_frame, f"from file {tfs_path:s}") return data_frame def write_tfs(tfs_path: str, data_frame: DataFrame, headers_dict: dict = None, save_index: Union[str, bool] = False, colwidth: int = DEFAULT_COLUMN_WIDTH): """ Writes the DataFrame into tfs_path with the headers_dict as headers dictionary. If you want to keep the order of the headers, use collections.OrderedDict. Args: tfs_path: path to the output TFS file data_frame: TfsDataFrame or pandas.DataFrame to save headers_dict: Headers of the data_frame, if empty tries to use data_frame.headers save_index: bool or string. Default: False If True, saves the index of the data_frame to a column identifiable by INDEX_ID. If string, it saves the index of the data_frame to a column named by string. colwidth: Column width """ _validate(data_frame, f"to be written in {tfs_path:s}") if save_index: if isinstance(save_index, str): # saves index into column by name given idx_name = save_index else: # saves index into column, which can be found by INDEX_ID try: idx_name = INDEX_ID + data_frame.index.name except TypeError: idx_name = INDEX_ID data_frame.insert(0, idx_name, data_frame.index) LOGGER.debug(f"Attempting to write file: {basename(tfs_path)} in {dirname(tfs_path)}") if headers_dict is None: # Tries to get headers from TfsDataFrame try: headers_dict = data_frame.headers except AttributeError: headers_dict = {} colwidth = max(MIN_COLUMN_WIDTH, colwidth) headers_str = _get_headers_str(headers_dict) colnames_str = _get_colnames_str(data_frame.columns, colwidth) coltypes_str = _get_coltypes_str(data_frame.dtypes, colwidth) data_str = _get_data_str(data_frame, colwidth) with open(tfs_path, "w") as tfs_data: tfs_data.write("\n".join(( headers_str, colnames_str, coltypes_str, data_str ))) if save_index: # removed inserted column again data_frame.drop(data_frame.columns[0], axis=1, inplace=True) def _get_headers_str(headers_dict): return "\n".join(_get_header_line(name, headers_dict[name]) for name in headers_dict) def _get_header_line(name, value): if not isinstance(name, str): raise ValueError(f"{name} is not a string") if isinstance(value, INT_PARENTS): return f"@ {name} %d {value}" elif isinstance(value, FLOAT_PARENTS): return f"@ {name} %le {value}" elif isinstance(value, str): return f"@ {name} %s \"{value}\"" else: raise ValueError(f"{value} does not correspond to recognized types (string, float and int)") def _get_colnames_str(colnames, colwidth): fmt = _get_row_fmt_str([None] * len(colnames), colwidth) return "* " + fmt.format(*colnames) def _get_coltypes_str(types, colwidth): fmt = _get_row_fmt_str([str] * len(types), colwidth) return "$ " + fmt.format(*[_dtype_to_str(type_) for type_ in types]) def _get_data_str(data_frame, colwidth): if len(data_frame) == 0: return "\n" format_strings = " " + _get_row_fmt_str(data_frame.dtypes, colwidth) return "\n".join( data_frame.apply(lambda series: format_strings.format(*series), axis=1) ) def _get_row_fmt_str(dtypes, colwidth): return " ".join( "{" + f"{indx:d}:>{_dtype_to_format(type_, colwidth)}" + "}" for indx, type_ in enumerate(dtypes) ) class TfsFormatError(Exception): """Raised when wrong format is detected in the TFS file.""" pass def _create_data_frame(column_names, column_types, rows_list, headers): data = np.array(rows_list) if len(rows_list) else None # case of empty dataframe data_frame = TfsDataFrame(data=data, columns=column_names, headers=headers) _assign_column_types(data_frame, column_names, column_types) return data_frame def _assign_column_types(data_frame, column_names, column_types): names_to_types = dict(zip(column_names, column_types)) for name in names_to_types: data_frame[name] = data_frame[name].astype(names_to_types[name]) def _compute_types(str_list): return [_id_to_type(string) for string in str_list] def _parse_header(str_list): type_idx = next((idx for idx, part in enumerate(str_list) if part.startswith("%")), None) if type_idx is None: raise TfsFormatError("No data type found in header: '{}'".format(" ".join(str_list))) name = " ".join(str_list[0:type_idx]) value_str = " ".join(str_list[(type_idx+1):]) return name, _id_to_type(str_list[type_idx])(value_str.strip('"')) def _id_to_type(type_str): try: return ID_TO_TYPE[type_str] except KeyError: if type_str.startswith("%") and type_str.endswith("s"): return str raise TfsFormatError(f"Unknown data type: {type_str}") def _dtype_to_str(type_): if np.issubdtype(type_, np.integer) or np.issubdtype(type_, np.bool_): return "%d" elif np.issubdtype(type_, np.floating): return "%le" else: return "%s" def _dtype_to_format(type_, colsize): if type_ is None: return f"{colsize}" if np.issubdtype(type_, np.integer) or np.issubdtype(type_, np.bool_): return f"{colsize}d" if np.issubdtype(type_, np.floating): return f"{colsize}.{colsize - len('-0.e-000')}g" return f"{colsize}s" def _validate(data_frame, info_str=""): """ Check if Dataframe contains finite values only and both indices and columns are unique. """ def isnotfinite(x): try: return ~np.isfinite(x) except TypeError: # most likely string try: return np.zeros(x.shape, dtype=bool) except AttributeError: # single entry return np.zeros(1, dtype=bool) bool_df = data_frame.apply(isnotfinite) if bool_df.values.any(): LOGGER.warning(f"DataFrame {info_str:s} contains non-physical values at Index: " f"{bool_df.index[bool_df.any(axis='columns')].tolist()}") if not len(set(data_frame.index)) == len(data_frame.index): raise TfsFormatError("Indices are not Unique.") if not len(set(data_frame.columns)) == len(data_frame.columns): raise TfsFormatError("Column names not Unique.") LOGGER.debug(f"DataFrame {info_str:s} validated.")
null
tfs/handler.py
handler.py
py
11,262
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.floating", "line_number": 28, "usage_type": "attribute" }, { "api_name": "numpy.integer", "line_number": 29, "usage_type": "attribute" }, { "api_name": "numpy.bool_", "line_number": 29, "usage_type": "attribute" }, { "api_name": "numpy.str", "line_number": 31, "usage_type": "attribute" }, { "api_name": "numpy.str", "line_number": 32, "usage_type": "attribute" }, { "api_name": "numpy.float64", "line_number": 33, "usage_type": "attribute" }, { "api_name": "numpy.float64", "line_number": 34, "usage_type": "attribute" }, { "api_name": "numpy.int", "line_number": 35, "usage_type": "attribute" }, { "api_name": "numpy.int", "line_number": 36, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 42, "usage_type": "attribute" }, { "api_name": "contextlib.suppress", "line_number": 53, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 125, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 155, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 156, "usage_type": "name" }, { "api_name": "os.path.basename", "line_number": 182, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 182, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 255, "usage_type": "call" }, { "api_name": "numpy.issubdtype", "line_number": 293, "usage_type": "call" }, { "api_name": "numpy.integer", "line_number": 293, "usage_type": "attribute" }, { "api_name": "numpy.bool_", "line_number": 293, "usage_type": "attribute" }, { "api_name": "numpy.issubdtype", "line_number": 295, "usage_type": "call" }, { "api_name": "numpy.floating", "line_number": 295, "usage_type": "attribute" }, { "api_name": "numpy.issubdtype", "line_number": 304, "usage_type": "call" }, { "api_name": "numpy.integer", "line_number": 304, "usage_type": "attribute" }, { "api_name": "numpy.bool_", "line_number": 304, "usage_type": "attribute" }, { "api_name": "numpy.issubdtype", "line_number": 306, "usage_type": "call" }, { "api_name": "numpy.floating", "line_number": 306, "usage_type": "attribute" }, { "api_name": "numpy.isfinite", "line_number": 318, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 321, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 323, "usage_type": "call" } ]
510142583
'''https://www.kaggle.com/crawford/resize-and-save-images-as-hdf5-256x256 This code can be used to convert images into ONE h5 file where the Key address will be "train_img" or change it in line 49 ''' import cv2 import datetime as dt import h5py import matplotlib.pyplot as plt import matplotlib.pylab as plb import numpy as np import os import pandas as pd from glob import glob start = dt.datetime.now() # ../input/ PATH = os.path.abspath(os.path.join('/home/msaha6/Downloads/Pathology-GAN/dataset/vgh_nki/', 'he')) # ../input/sample/images/ SOURCE_IMAGES = os.path.join(PATH, "patches_h224_w224", "training_data") # ../input/sample/images/*.png images = glob(os.path.join(SOURCE_IMAGES, "*.png")) images.sort() NUM_IMAGES = len(images) HEIGHT = 224 WIDTH = 224 CHANNELS = 3 SHAPE = (HEIGHT, WIDTH, CHANNELS) #Now we will write the h5 file train_shape = (len(images), HEIGHT, WIDTH, CHANNELS) hf=h5py.File('data.h5', 'w') hf.create_dataset("train_img", shape=train_shape, maxshape=train_shape, compression='gzip', compression_opts=9) for i, img in enumerate(images): s=dt.datetime.now() img=cv2.imread(images[i]) img= cv2.resize(img, (WIDTH,HEIGHT), interpolation=cv2.INTER_CUBIC) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) hf["train_img"][i, ...] = img[None] e=dt.datetime.now() hf.close()
null
read_and_conver_images_to_h5/testing.py
testing.py
py
1,357
python
en
code
null
code-starcoder2
83
[ { "api_name": "datetime.datetime.now", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "glob.glob", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path", "line_number": 21, "usage_type": "attribute" }, { "api_name": "h5py.File", "line_number": 33, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 37, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 37, "usage_type": "attribute" }, { "api_name": "cv2.imread", "line_number": 38, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 39, "usage_type": "call" }, { "api_name": "cv2.INTER_CUBIC", "line_number": 39, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 40, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2RGB", "line_number": 40, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 42, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 42, "usage_type": "attribute" } ]
485377736
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os import logging import threading from time import sleep from datetime import datetime, timedelta import urlparse import requests import urllib from requests.exceptions import ConnectionError from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.chrome.options import Options from selenium.common.exceptions import NoSuchElementException, StaleElementReferenceException, NoSuchWindowException from selenium.webdriver.common.action_chains import ActionChains from django.core.management.base import BaseCommand, CommandError from django.db import IntegrityError, transaction from digger.models import Shop, Item, Keyword, ItemKeyword from digger.utils import UtilsMixin logger = logging.getLogger('digger.items') DZT = 'dianzhentan' DTS = 'diantoushi' class RetryException(Exception): pass class IgnoreException(Exception): pass keywords_in_process = [] class MyTask(threading.Thread, UtilsMixin): help = '获取商品ID,名称,下架时间,类别和所属店铺' def __init__(self, lock): threading.Thread.__init__(self) self.logger = logger self.lock = lock self.item_browser = self.get_item_browser(diantoushi=True) self.browser = self.get_index_browser() self.browser.get("https://www.taobao.com/") def run(self): small_times = sorted(list(set(Keyword.objects.values_list('times', flat=True))))[0] while True: with self.lock: if not Keyword.objects.filter(times=small_times).exclude(id__in=keywords_in_process).exists(): break keyword = Keyword.objects.filter(times=small_times).exclude(id__in=keywords_in_process).order_by('created').first() if keyword.page_num >= 10: keyword.page_num = 1 keyword.save() self.page_num = keyword.page_num self.keyword = keyword.name keywords_in_process.append(keyword.id) self.process_index(self.browser, keyword, 3) with self.lock: keywords_in_process.remove(keyword.id) keyword.times += 1 keyword.save() self.browser.close() def open_item(self, url): try: self.item_browser.get(url) except NoSuchWindowException: try: self.item_browser.close() except NoSuchWindowException: pass self.item_browser = self.get_item_browser(diantoushi=True) self.item_browser.get(url) @transaction.atomic def get_item(self, url, pk): if Item.objects.filter(pk=pk).exists(): logger.debug('已经有此商品的信息:<%s>', pk) return self.open_item(url) browser = self.item_browser if 'chaoshi.detail.tmall.com' in browser.current_url: return url = browser.current_url shop = self.get_or_create_shop(browser) item_id = self.get_item_id(browser) item_name = self.get_item_name(browser) category_id = self.get_category_id(browser) del_time = self.get_del_time(browser) rate = self.get_rate(browser) sell = self.get_sell(browser) Item.objects.create(id=item_id, url=url, name=item_name, shop=shop, xiajia=self.normalize_del_time(del_time), cid=category_id, rate=rate, sell=sell, ) def process_page(self): items_container = self.browser.find_element_by_css_selector('.m-itemlist') items = items_container.find_elements_by_css_selector('.item') logger.info('num of item: %s' % len(items)) for index, item in enumerate(items): self.item_index = index logger.info('%s 第 %s 页的第 %s 个项目', self.keyword, self.page_num, index) if 'activity' in item.get_attribute('class'): logger.debug('%s 第 %s 页的第 %s 个项目不是商品 ', self.keyword, self.page_num, index) continue item_id = item.find_element_by_css_selector('.title a').get_attribute('data-nid') name = item.find_element_by_css_selector('.title a').text # 不扫描天猫超市的宝贝 if '天猫超市' in name: continue shop_name = item.find_element_by_css_selector('a.shopname').text logger.info('提取出商品信息:商品 <%s>-%s; 店铺 %s', item_id, name, shop_name) item_url = item.find_element_by_css_selector('.title a').get_attribute('href') logger.info('提取出商品URL:%s', item_url) for i in range(3): try: self.get_item(item_url, item_id) break except IndexError: logger.exception('发生索引错误') break except RetryException: logger.error('重试') sleep(30) continue except IgnoreException: break except Exception: logger.exception("发生未知错误,重试") def process_page_safe(self): for i in range(10): try: self.process_page() break except StaleElementReferenceException: logger.exception("发生页面元素失效错误") continue except RetryException: continue except: logger.exception('发生其它错误,跳过') break def go_to_page(self, page_num): logger.debug("Go to page %s", page_num) for i in range(60): try: elem = self.browser.find_element_by_css_selector('#mainsrp-pager .J_Input') elem.clear() elem.send_keys(page_num) elem.send_keys(Keys.RETURN) break except NoSuchElementException: continue def process_index(self, browser, keyword, last_page=100): elem = browser.find_element_by_id('q') elem.clear() elem.send_keys(keyword.name) elem.send_keys(Keys.RETURN) self.go_to_page(self.page_num) sleep(5) # TODO use Waits self.process_page_safe() while self.page_num < last_page: self.page_num += 1 self.go_to_page(self.page_num) sleep(10) # TODO use Waits keyword.page_num = self.page_num keyword.save() self.process_page_safe() class Command(BaseCommand): help = '获取商品ID,名称,下架时间,类别和所属店铺' def add_arguments(self, parser): parser.add_argument( '-t', '--task', action='store', dest='task_num', default=1, type=int, ) def handle(self, *args, **options): lock = threading.Lock() threads = [] for i in range(options.get('task_num')): threads.append(MyTask(lock)) for thread in threads: thread.start() for thread in threads: thread.join()
null
digger/management/commands/get_items.py
get_items.py
py
7,648
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 25, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 41, "usage_type": "attribute" }, { "api_name": "digger.utils.UtilsMixin", "line_number": 41, "usage_type": "name" }, { "api_name": "threading.Thread.__init__", "line_number": 45, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 45, "usage_type": "attribute" }, { "api_name": "digger.models.Keyword.objects.values_list", "line_number": 55, "usage_type": "call" }, { "api_name": "digger.models.Keyword.objects", "line_number": 55, "usage_type": "attribute" }, { "api_name": "digger.models.Keyword", "line_number": 55, "usage_type": "name" }, { "api_name": "digger.models.Keyword.objects.filter", "line_number": 59, "usage_type": "call" }, { "api_name": "digger.models.Keyword.objects", "line_number": 59, "usage_type": "attribute" }, { "api_name": "digger.models.Keyword", "line_number": 59, "usage_type": "name" }, { "api_name": "digger.models.Keyword.objects.filter", "line_number": 62, "usage_type": "call" }, { "api_name": "digger.models.Keyword.objects", "line_number": 62, "usage_type": "attribute" }, { "api_name": "digger.models.Keyword", "line_number": 62, "usage_type": "name" }, { "api_name": "selenium.common.exceptions.NoSuchWindowException", "line_number": 84, "usage_type": "name" }, { "api_name": "selenium.common.exceptions.NoSuchWindowException", "line_number": 87, "usage_type": "name" }, { "api_name": "digger.models.Item.objects.filter", "line_number": 95, "usage_type": "call" }, { "api_name": "digger.models.Item.objects", "line_number": 95, "usage_type": "attribute" }, { "api_name": "digger.models.Item", "line_number": 95, "usage_type": "name" }, { "api_name": "digger.models.Item.objects.create", "line_number": 114, "usage_type": "call" }, { "api_name": "digger.models.Item.objects", "line_number": 114, "usage_type": "attribute" }, { "api_name": "digger.models.Item", "line_number": 114, "usage_type": "name" }, { "api_name": "django.db.transaction.atomic", "line_number": 92, "usage_type": "attribute" }, { "api_name": "django.db.transaction", "line_number": 92, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 160, "usage_type": "call" }, { "api_name": "selenium.common.exceptions.StaleElementReferenceException", "line_number": 172, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.keys.Keys.RETURN", "line_number": 188, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.keys.Keys", "line_number": 188, "usage_type": "name" }, { "api_name": "selenium.common.exceptions.NoSuchElementException", "line_number": 190, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.keys.Keys.RETURN", "line_number": 198, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.keys.Keys", "line_number": 198, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 201, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 208, "usage_type": "call" }, { "api_name": "django.core.management.base.BaseCommand", "line_number": 214, "usage_type": "name" }, { "api_name": "threading.Lock", "line_number": 228, "usage_type": "call" } ]
517218316
""" # Copyright 2020 ABHINAV RAWAT # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ This module reads and process the GGPA packet received from GPS module. It returns useful data like, lat, long, time, satellite etc """ import serial class GPS: def __init__(self, port, baud_rate): """ Initialize the serial communication port to access gps module :param port: port to be used for serial communication. Use COM1, COM2, COM3 etc in case of windows Use /dev/ttyUSB0 etc in case of linux based devices :param baud_rate: Set the appropriate baud rate. """ self.gps_serial_port = serial.Serial(port, baud_rate) def get_lat_long(self): """ This function reads and process the GPGGA packet & return lat long :return: tuple of lat & long """ s = self.gps_serial_port.read(500) s = s.decode('utf-8') data = s.splitlines() for i in range(len(data)): d = data[i].split(',') if d[0] == "$GPGGA" and len(d) == 15: if d[2] == '' or d[4] == '': return "N/A", "N/A" else: lat = float(d[2]) / 100 long = float(d[4]) / 100 return lat, long def get_time(self): """ This function reads and process the GPGGA packet & return time value as hh.mm :return: str time value as hh.mm """ s = self.gps_serial_port.read(500) s = s.decode('utf-8') data = s.splitlines() for i in range(len(data)): d = data[i].split(',') if d[0] == "$GPGGA" and len(d) == 15: if d[1] == '': return "N/A" else: time_val = int(float(d[1]) / 100) time_val = time_val / 100 return time_val def get_quality_indicator(self): """ This function reads and process the GPGGA packet & return quality indicator :return: str value of quality indicator as below: 1 = Uncorrected coordinate 2 = Differentially correct coordinate (e.g., WAAS, DGPS) 4 = RTK Fix coordinate (centimeter precision) 5 = RTK Float (decimeter precision. """ s = self.gps_serial_port.read(500) s = s.decode('utf-8') data = s.splitlines() for i in range(len(data)): d = data[i].split(',') if d[0] == "$GPGGA" and len(d) == 15: return d[6] def get_no_of_satellites(self): """ This function reads and process the GPGGA packet & return no of satellite :return: str value as no of satellite """ s = self.gps_serial_port.read(500) s = s.decode('utf-8') data = s.splitlines() for i in range(len(data)): d = data[i].split(',') if d[0] == "$GPGGA" and len(d) == 15: return d[7] def get_raw_data(self): """ :return: returns raw data of ggpa packet """ s = self.gps_serial_port.read(500) s = s.decode('utf-8') data = s.splitlines() for i in range(len(data)): d = data[i].split(',') if d[0] == "$GPGGA" and len(d) == 15: return d if __name__ == '__main__': GPS(port="COM1", baud_rate=9600)
null
pyembedded/gps_module/gps.py
gps.py
py
4,446
python
en
code
null
code-starcoder2
83
[ { "api_name": "serial.Serial", "line_number": 28, "usage_type": "call" } ]
525891851
from django.conf.urls import url, include from rest_framework import routers from apps.api.views.lessons import LessonSetViewSet, LessonViewSet, PageViewSet, FavoriteViewSet, \ LogLessonViewSet from apps.api.views.question import QuestionViewSet, AnswerViewSet, UserAnswerViewSet from apps.api.views.userprofile import UserViewSet router = routers.DefaultRouter() router.register(r'user', UserViewSet, base_name='user'), router.register(r'lesson_set', LessonSetViewSet, base_name='lesson_set') router.register(r'lesson', LessonViewSet, base_name='lesson') router.register(r'page', PageViewSet, base_name='page') router.register(r'favorite', FavoriteViewSet, base_name='favorite') router.register(r'log_lesson', LogLessonViewSet, base_name='log_lesson') router.register(r'question', QuestionViewSet, base_name='question') router.register(r'answer', AnswerViewSet, base_name='answer') router.register(r'user_answer', UserAnswerViewSet, base_name='user_answer') urlpatterns = [ url(r'^', include(router.urls)), ]
null
apps/api/urls.py
urls.py
py
1,054
python
en
code
null
code-starcoder2
83
[ { "api_name": "rest_framework.routers.DefaultRouter", "line_number": 10, "usage_type": "call" }, { "api_name": "rest_framework.routers", "line_number": 10, "usage_type": "name" }, { "api_name": "apps.api.views.userprofile.UserViewSet", "line_number": 11, "usage_type": "argument" }, { "api_name": "apps.api.views.lessons.LessonSetViewSet", "line_number": 12, "usage_type": "argument" }, { "api_name": "apps.api.views.lessons.LessonViewSet", "line_number": 13, "usage_type": "argument" }, { "api_name": "apps.api.views.lessons.PageViewSet", "line_number": 14, "usage_type": "argument" }, { "api_name": "apps.api.views.lessons.FavoriteViewSet", "line_number": 15, "usage_type": "argument" }, { "api_name": "apps.api.views.lessons.LogLessonViewSet", "line_number": 16, "usage_type": "argument" }, { "api_name": "apps.api.views.question.QuestionViewSet", "line_number": 17, "usage_type": "argument" }, { "api_name": "apps.api.views.question.AnswerViewSet", "line_number": 18, "usage_type": "argument" }, { "api_name": "apps.api.views.question.UserAnswerViewSet", "line_number": 19, "usage_type": "argument" }, { "api_name": "django.conf.urls.url", "line_number": 22, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 22, "usage_type": "call" } ]
96914998
import os import sys from PIL import Image if __name__ == '__main__': dataset_path = ['val', 'test'] input_dir_name = 'face_dataset_RGB' target_dir_name = 'face_dataset_depth_8bit' result_dir_name = 'result' for dataset in dataset_path: count = 1 input_dir_path = os.path.join(os.getcwd(), dataset, input_dir_name) target_dir_path = os.path.join(os.getcwd(), dataset, target_dir_name) if not os.path.exists(os.path.join(dataset, result_dir_name)): os.makedirs(os.path.join(dataset, result_dir_name)) for root, _, input_file_names in os.walk(input_dir_path): for input_file_name in input_file_names: if not input_file_name.endswith('.png'): continue input_file_path = os.path.join(root, input_file_name) output_file_path = input_file_path.replace('rgb', 'depth').replace(input_dir_name, target_dir_name) print(input_file_path, output_file_path) images = [Image.open(x) for x in [input_file_path, output_file_path]] widths, heights = zip(*(i.size for i in images)) total_width = sum(widths) max_height = max(heights) new_im = Image.new('RGB', (total_width, max_height)) x_offset = 0 for im in images: new_im.paste(im, (x_offset,0)) x_offset += im.size[0] new_im.save(os.path.join(dataset, result_dir_name, '%d.png' % count)) count += 1
null
datasets/preprocess_pandora_dataset.py
preprocess_pandora_dataset.py
py
1,586
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 18, "usage_type": "call" }, { "api_name": "os.makedirs", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.walk", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path", "line_number": 26, "usage_type": "attribute" }, { "api_name": "PIL.Image.open", "line_number": 31, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 31, "usage_type": "name" }, { "api_name": "PIL.Image.new", "line_number": 37, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 37, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "attribute" } ]
323761261
# -*- coding: utf-8 -*- import datetime from time import sleep import os def timer(time=25): now = datetime.datetime.now() after = now + datetime.timedelta(minutes = time) while datetime.datetime.now() < after: sleep(1) os.system('clear') now = datetime.datetime.now() delta = after - now minutes = delta.seconds//60 seconds = delta.seconds%60 timer_mod = ' <------Live time: {} ------ time left {}:{} ------>'.format(now.strftime('%H:%M:%S'),minutes,seconds) print(timer_mod) print(finished_motd) if __name__ == '__main__': timer(time = 1)
null
days/01-03-datetimes/pomodoro.py
pomodoro.py
py
648
python
en
code
null
code-starcoder2
83
[ { "api_name": "datetime.datetime.now", "line_number": 11, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 11, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 12, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 13, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 13, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 14, "usage_type": "call" }, { "api_name": "os.system", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 16, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 16, "usage_type": "attribute" } ]
85164171
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np from numpy.linalg import solve from scipy.linalg import eigvals, logm, norm def is_stable(A, domain='z'): """Determines if a linear state-space model is stable from eigenvalues of `A` Parameters ---------- A : ndarray(n,n) state matrix domain : str, optional {'z', 's'} 'z' for discrete-time, 's' for continuous-time state-space models returns ------- bool """ if domain == 'z': # discrete-time # Unstable if at least one pole outside unit circle if any(abs(eigvals(A)) > 1): return False elif domain == 's': # continuous-time # Unstable if at least one pole in right-half plane if any(np.real(eigvals(A)) > 0): return False else: raise ValueError(f"{domain} wrong. Use 's' or 'z'") return True def ss2phys(A, B, C, D=None): """Calculate state space matrices in physical domain using a similarity transform T See eq. (20.10) in Etienne Gourc, JP Noel, et.al "Obtaining Nonlinear Frequency Responses from Broadband Testing" https://orbi.uliege.be/bitstream/2268/190671/1/294_gou.pdf """ # Similarity transform T = np.vstack((C, C @ A)) C = solve(T.T, C.T).T # (C = C*T^-1) A = solve(T.T, (T @ A).T).T # (A = T*A*T^-1) B = T @ B return A, B, C, D, T def ss2frf(A, B, C, D, freq): """Compute frequency response function from state-space parameters (discrete-time) Computes the frequency response function (FRF) or matrix (FRM) Ĝ at the normalized frequencies `freq` from the state-space matrices `A`, `B`, `C`, and `D`. :math:`G(f) = C*inv(exp(2j*pi*f)*I - A)*B + D` Parameters ---------- A : ndarray(n,n) state matrix B : ndarray(n,m) input matrix C : ndarray(p,n) output matrix D : ndarray(p,m) feed-through matrix freq : ndarray(F) vector of normalized frequencies at which the FRM is computed (0 < freq < 0.5) Returns ------- Gss : ndarray(F,p,m) frequency response matrix """ # Z-transform variable z = np.exp(2j*np.pi*freq) In = np.eye(*A.shape) # Use broadcasting. Much faster than for loop. Gss = C @ solve((z*In[..., None] - A[..., None] ).transpose((2, 0, 1)), B[None]) + D return Gss def discrete2cont(ad, bd, cd, dd, dt, method='zoh', alpha=None): """Convert linear system from discrete to continuous time-domain. This is the inverse of :func:`scipy.signal.cont2discrete`. This will not work in general, for instance with the ZOH method when the system has discrete poles at ``0``. Parameters ---------- A,B,C,D : :data:`linear_system_like` Linear system representation. dt : ``float`` Time-step used to *undiscretize* ``sys``. method : ``string``, optional Method of discretization. Defaults to zero-order hold discretization (``'zoh'``), which assumes that the input signal is held constant over each discrete time-step. alpha : ``float`` or ``None``, optional Weighting parameter for use with ``method='gbt'``. Returns ------- :class:`.LinearSystem` Continuous linear system (``analog=True``). See Also -------- :func:`scipy.signal.cont2discrete` Examples -------- Converting a linear system >>> from nengolib.signal import discrete2cont, cont2discrete >>> from nengolib import DoubleExp >>> sys = DoubleExp(0.005, 0.2) >>> assert dsys == discrete2cont(cont2discrete(sys, dt=0.1), dt=0.1) """ sys = (ad, bd, cd, dd) if dt <= 0: raise ValueError("dt (%s) must be positive" % (dt,)) n = ad.shape[0] m = n + bd.shape[1] if method == 'gbt': if alpha is None or alpha < 0 or alpha > 1: raise ValueError("alpha (%s) must be in range [0, 1]" % (alpha,)) In = np.eye(n) ar = solve(alpha*dt*ad.T + (1-alpha)*dt*In, ad.T - In).T M = In - alpha*dt*ar br = np.dot(M, bd) / dt cr = np.dot(cd, M) dr = dd - alpha*np.dot(cr, bd) elif method in ('bilinear', 'tustin'): return discrete2cont(*sys, dt, method='gbt', alpha=0.5) elif method in ('euler', 'forward_diff'): return discrete2cont(*sys, dt, method='gbt', alpha=0.0) elif method == 'backward_diff': return discrete2cont(*sys, dt, method='gbt', alpha=1.0) elif method == 'zoh': # see https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models M = np.zeros((m, m)) M[:n, :n] = ad M[:n, n:] = bd M[n:, n:] = np.eye(bd.shape[1]) E = logm(M) / dt ar = E[:n, :n] br = E[:n, n:] cr = cd dr = dd else: raise ValueError("invalid method: '%s'" % (method,)) return ar, br, cr, dr
null
pyvib/lti_conversion.py
lti_conversion.py
py
4,954
python
en
code
null
code-starcoder2
83
[ { "api_name": "scipy.linalg.eigvals", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.real", "line_number": 30, "usage_type": "call" }, { "api_name": "scipy.linalg.eigvals", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.linalg.solve", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.linalg.solve", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 80, "usage_type": "attribute" }, { "api_name": "numpy.eye", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.linalg.solve", "line_number": 83, "usage_type": "call" }, { "api_name": "numpy.eye", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.linalg.solve", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 139, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 140, "usage_type": "call" }, { "api_name": "numpy.dot", "line_number": 141, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 154, "usage_type": "call" }, { "api_name": "numpy.eye", "line_number": 157, "usage_type": "call" }, { "api_name": "scipy.linalg.logm", "line_number": 158, "usage_type": "call" } ]
250976533
from ref_caradisiac.spiders.caradisiac import RefModeleSpider, RefMarqueSpider from scrapy.crawler import CrawlerProcess import re, io, json, os, time os.environ.setdefault('SCRAPY_SETTINGS_MODULE', 'ref_caradisiac.settings') #add path to scrapy settings to the project from scrapy.utils.project import get_project_settings settings = get_project_settings() def remove(filename): if os.path.exists(filename): os.remove(filename) BASE_DIR = './' f = open('modeles.json') data = json.load(f) f.close() #print(data) process = CrawlerProcess(settings) for item in data: print (item['href']) marque = re.search('(?<=\/auto--)(.*)(?=\/)', item['href']) if marque: marque= marque.group(1) else : continue marque = marque.split('/modeles')[0] if marque is not None: json_path = os.path.join(BASE_DIR, 'modeles', '%s.json'%marque) process.settings.set('FEED_URI',json_path) print(10*'*') print(marque) print(10*'*') remove('%s.json'%marque) remove(json_path) process.crawl(RefModeleSpider,marque=marque) #time.sleep(3) #process.stop() process.start() # the script will block here until the crawling is finished
null
main.py
main.py
py
1,244
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ.setdefault", "line_number": 5, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 5, "usage_type": "attribute" }, { "api_name": "scrapy.utils.project.get_project_settings", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 12, "usage_type": "call" }, { "api_name": "json.load", "line_number": 17, "usage_type": "call" }, { "api_name": "scrapy.crawler.CrawlerProcess", "line_number": 23, "usage_type": "call" }, { "api_name": "re.search", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path", "line_number": 35, "usage_type": "attribute" }, { "api_name": "ref_caradisiac.spiders.caradisiac.RefModeleSpider", "line_number": 45, "usage_type": "argument" } ]
255130111
import requests from bs4 import BeautifulSoup session = requests.Session() url = "https://en.wikipedia.org/wiki/List_of_Nobel_laureates" page = session.get(url).text nobelList = BeautifulSoup(page, "html.parser") # Print the birthdays of all the nobel laureates trows = nobelList.find('table', {'class' : ["wikitable", "sortable"]}).findAll('tr') laurs = [] for r in trows: for candidate in r.find_all('span', {'class': "vcard"}): laurs.append(candidate.a) for l in laurs: print("Name: %s" % l.contents[0]) link = "https://en.wikipedia.org" + l['href'] pg2 = session.get(link).text pg2soup = BeautifulSoup(pg2, 'html.parser') info = pg2soup.find('table', {'class' : ['infobox', 'biography', 'vcard']}).find_all('tr') for r in info: bday = r.find('span', {'class': "bday"}) if bday is not None: bday = bday.contents[0] break print("Birthday:",bday, "\n")
null
BS4/wiki_table.py
wiki_table.py
py
939
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.Session", "line_number": 4, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 8, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 23, "usage_type": "call" } ]
229058160
from flask import Flask,request app = Flask(__name__) from flask import json import sqlite3 from flask import g import urllib import requests import json from flask.ext.mysql import MySQL mysql = MySQL() # MySQL configurations app.config['MYSQL_DATABASE_USER'] = 'root' app.config['MYSQL_DATABASE_PASSWORD'] = 'ronnie2k10' app.config['MYSQL_DATABASE_DB'] = 'myquotrdb' app.config['MYSQL_DATABASE_HOST'] = 'localhost' mysql.init_app(app) @app.route('/search/<quote>/<uuid>') def search(quote,uuid): conn = mysql.connect() c = conn.cursor() googlesearch = urllib.urlencode({'q': quote}) url = 'http://ajax.googleapis.com/ajax/services/search/web?v=1.0&rsz=8&%s' % googlesearch url2= 'http://ajax.googleapis.com/ajax/services/search/web?v=1.0&rsz=8&start=9&%s' % googlesearch search_response = urllib.urlopen(url) search_results = search_response.read() results = json.loads(search_results) data = results['responseData'] hits = data['results'] spliturl=[] for h in hits: if 'imdb.com/title/' in h['url']: spliturl = h['url'].split('/') if spliturl==[]: search_response2 = urllib.urlopen(url2) search_results2 = search_response2.read() results2 = json.loads(search_results2) data2 = results2['responseData'] hits2 = data2['results'] for h in hits2: if 'imdb.com/title/' in h['url']: spliturl = h['url'].split('/') re = requests.get("http://www.omdbapi.com/?i="+spliturl[4]+"&tomatoes=true&plot=full").json() query =c.execute("SELECT * FROM show WHERE imdbID = '"+re['imdbID']+"'") returns =query.fetchall() #Check if the result is an episode if re['Type']=='episode': # try: if returns == []: c.execute("INSERT INTO show (imdbId,title,imdbRating,poster,year,type,actors,genre,count) VALUES(%s,%s,%s,%s,%s,%s,%s,1)",(re["imdbID"],re["Title"],re["imdbRating"],re["Poster"],re["Year"],re["Type"],re["Actors"],re["Genre"])) c.execute("INSERT INTO Searched (deviceId,imdbId,direct,entered_date)VALUES (%s,%s,1,datetime())",(uuid,re["imdbID"])) #If it is, increase the count else: c.execute("UPDATE show SET count = count + 1 WHERE imdbID = '"+re['imdbID']+"'") c.execute("UPDATE Show SET count = count + 1 WHERE imdbID = '"+re['seriesID']+"'") searchQuery =c.execute("SELECT * FROM Searched WHERE imdbId='"+re['imdbID']+"' AND deviceId='"+uuid+"'") searchReturns =searchQuery.fetchall() if searchReturns == []: c.execute("INSERT INTO Searched (deviceId,imdbId,direct,entered_date) VALUES (%s,%s,1,datetime())",(uuid,re["imdbID"])) c.execute("INSERT INTO Searched (deviceId,imdbId,direct,entered_date) VALUES (%s,%s,0,datetime())",(uuid,re["seriesID"])) else: c.execute("UPDATE Searched SET entered_date=datetime() WHERE imdbID = '"+re['imdbID']+"'") c.execute("UPDATE Searched SET entered_date=datetime() WHERE imdbID = '"+re['seriesID']+"'") query =c.execute("SELECT * FROM Show WHERE imdbId = '"+re['seriesID']+"'") returns =query.fetchall() if returns == []: se = requests.get("http://www.omdbapi.com/?i="+re['seriesID']+"&tomatoes=true&plot=full").json() c.execute("INSERT INTO Show (imdbId,title,imdbRating,poster,year,type,actors,genre,count) VALUES (%s,%s,%s,%s,%s,%s,%s,1)",(se["imdbID"],se["Title"],se["imdbRating"],se["Poster"],se["Year"],se["Type"],se["Actors"],se["Genre"])) c.execute("INSERT INTO Searched (deviceId,imdbId,direct,entered_date) VALUES (%s,%s,0,datetime())",(uuid,se["imdbID"])) # except: # print 'SQL Query Failed' else: # try: #Check if searched for show is already in Database query =c.execute("SELECT * FROM Show WHERE imdbID = '"+re['imdbID']+"'") returns =query.fetchall() #If not put, it in #try: if returns == []: c.execute("INSERT INTO show (imdbId,title,imdbRating,poster,year,type,actors,genre,count) VALUES(%s,%s,%s,%s,%s,%s,%s,1)",(re["imdbID"],re["Title"],re["imdbRating"],re["Poster"],re["Year"],re["Type"],re["Actors"],re["Genre"])) c.execute("INSERT INTO Searched (deviceId,imdbId,direct,entered_date)VALUES (%s,%s,1,datetime())",(uuid,re["imdbID"])) #If it is, increase the count else: c.execute("UPDATE Show SET count = count + 1 WHERE imdbId = '"+re['imdbID']+"'") searchQuery =c.execute("SELECT * FROM Searched WHERE imdbId='"+re['imdbID']+"' AND deviceId='"+uuid+"'" ) searchReturns =searchQuery.fetchall() if searchReturns == []: c.execute("INSERT INTO Searched (deviceId,imdbId,direct,entered_date) VALUES (%,%,1,datetime())",(uuid,re["imdbID"])) else: c.execute("UPDATE Searched SET entered_date=datetime() WHERE imdbId = '"+re['imdbID']+"'") # except: # print 'SQL Query Failed' conn.commit() conn.close() return json.dumps(re) @app.route('/search2') def search2(): conn = mysql.connect() c = conn.cursor() query =c.execute("SELECT * FROM Searched") returns =query.fetchall() conn.close() return str(returns) @app.route('/top20') def top20(): conn = mysql.connect() c = conn.cursor() query =c.execute("SELECT * FROM Show WHERE type != 'episode' ORDER BY count DESC LIMIT 20") returns =query.fetchall() conn.close() return json.dumps(returns) @app.route('/etop20') def etop20(): conn = mysql.connect() c = conn.cursor() query =c.execute("SELECT * FROM Show WHERE type='episode' ORDER BY count DESC LIMIT 20") returns =query.fetchall() conn.close() return json.dumps(returns) @app.route('/mtop20') def mtop20(): conn = mysql.connect() c = conn.cursor() query =c.execute("SELECT * FROM Show WHERE type='movie' ORDER BY count DESC LIMIT 20") returns =query.fetchall() conn.close() return json.dumps(returns) @app.route('/stop20') def stop20(): conn = mysql.connect() c = conn.cursor() query =c.execute("SELECT * FROM Show WHERE type='series' ORDER BY count DESC LIMIT 20") returns =query.fetchall() conn.close() return json.dumps(returns) @app.route('/history/<uuid>') def history(uuid): conn = mysql.connect() c = conn.cursor() query =c.execute("SELECT Title,imdbRating,poster,year,actors,show.imdbId FROM show JOIN Searched ON show.imdbId = searched.imdbId WHERE direct=1 AND deviceId="+uuid+" ORDER BY entered_date DESC") returns =query.fetchall() conn.close() return json.dumps(returns) @app.route('/ref/<imdbid>/<uuid>') def ref(imdbid,uuid): conn = mysql.connect() c = conn.cursor() genre= c.execute("select genre from Show WHERE show.imdbId='"+imdbid+"'") mainGenre=genre.split(',') query = c.execute("select * FROM Show WHERE type !='episode' AND genre ='"+mainGenre[0]+"' AND imdbId IN (select imdbId from Searched WHERE imdbID !='"+imdbid+"' AND deviceId IN (SELECT deviceId from Searched WHERE imdbID ='"+imdbid+"' AND deviceId !='"+uuid+"') GROUP BY imdbId ORDER BY count(imdbId))LIMIT 3;") returns = query.fetchall() return json.dumps(returns) if __name__ == '__main__': app.run() #SELECT * FROM Show WHERE imdbID IN (select imdbId, count(*) as SearchAmount from Searched WHERE imdbID !='"+imdbid+"' AND deviceId IN #(SELECT deviceId from Searched WHERE imdbID ='"+imdbid+"' AND deviceId !='"+uuid+"') GROUP BY imdbid ORDER BY SearchAmount DESC LIMIT 3);")
null
ServerApp/Quotr/home.py
home.py
py
8,045
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.Flask", "line_number": 3, "usage_type": "call" }, { "api_name": "flask.ext.mysql.MySQL", "line_number": 11, "usage_type": "call" }, { "api_name": "urllib.urlencode", "line_number": 27, "usage_type": "call" }, { "api_name": "urllib.urlopen", "line_number": 30, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 32, "usage_type": "call" }, { "api_name": "urllib.urlopen", "line_number": 41, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 43, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 51, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 84, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 125, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 145, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 155, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 165, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 175, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 186, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 196, "usage_type": "call" } ]
337202070
import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch import numpy as np from tqdm import tqdm # from torch_lr_finder import LRFinder # def __new__(self): # return self # def train(trainloader, device, model,EPOCH): # criterion = nn.CrossEntropyLoss() # optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=3, verbose=True) # train_losses = [] # train_acc = [] # # pbar = tqdm(trainloader) # for epoch in range(EPOCH): # running_loss = 0.0 # correct = 0 # total = 0 # processed = 0 # running_loss_overall = 0.0 # for i, data in enumerate(trainloader, 0): # # get the inputs # inputs, labels = data # inputs, labels = inputs.to(device), labels.to(device) # # zero the parameter gradients # optimizer.zero_grad() # # forward + backward + optimize # outputs = model(inputs) # loss = criterion(outputs, labels) # loss.backward() # optimizer.step() # pred = outputs.argmax(dim=1, keepdim=True) # get the index of the max log-probability # correct += pred.eq(labels.view_as(pred)).sum().item() # processed += len(data) # # pbar.set_description(desc= f'Loss={loss.item()} Batch_id={i} Accuracy={100*correct/processed:0.2f}') # # train_acc.append(100*correct/processed) # # print statistics # running_loss += loss.item() # if i % 2000 == 1999: # print every 2000 mini-batches # print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) # running_loss_overall += running_loss # running_loss = 0.0 # # print('Epoch {} completed'.format(epoch)) # # print('Loss: {}. Accuracy: {}'.format(loss.item(), accuracy)) # # print('-'*20) # # accuracy = 100 * correct / total # print((running_loss_overall / (i + 1))) # scheduler.step(100-(running_loss_overall / (i + 1))) # train_acc.append(100*correct/processed) # train_losses.append((100-(running_loss_overall / (i + 1)))) # lr_finder = LRFinder(model, optimizer, criterion, device="cuda") # lr_finder.range_test(trainloader, end_lr=100, num_iter=100) # lr_finder.plot() # to inspect the loss-learning rate graph # lr_finder.reset() # print('Finished Training') # return model, train_acc, train_losses # train_losses = [] # test_losses = [] def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 test_losses = 0.0 test_acc = 0.0 pred_wrong = [] true_wrong = [] image = [] with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() _, predicted = torch.max(output.data, 1) preds = predicted.cpu().numpy() tar = target.cpu().numpy() preds = np.reshape(preds,(len(preds),1)) tar = np.reshape(tar,(len(preds),1)) for i in range(len(preds)): # pred.append(preds[i]) # true.append(target[i]) if(preds[i]!=tar[i]): pred_wrong.append(preds[i]) true_wrong.append(tar[i]) image.append(data[i]) test_loss /= len(test_loader.dataset) test_losses = test_loss print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) test_acc = 100. * correct / len(test_loader.dataset) return image,true_wrong,pred_wrong,test_acc,test_losses def train( model, device, train_loader,test_loader, EPOCH): criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, nesterov=True, weight_decay= 0.0001) scheduler = optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=0.008,pct_start =5/24,epochs=24, steps_per_epoch=len(train_loader)) train_losses = [] train_acc = [] test_losses = [] test_acc = [] for epoch in range(EPOCH): correct = 0 processed = 0 pbar = tqdm(train_loader) model.train() for batch_idx, (data, target) in enumerate(pbar): # get samples data, target = data.to(device), target.to(device) # Init optimizer.zero_grad() # In PyTorch, we need to set the gradients to zero before starting to do backpropragation because PyTorch accumulates the gradients on subsequent backward passes. # Because of this, when you start your training loop, ideally you should zero out the gradients so that you do the parameter update correctly. # Predict y_pred = model(data) # Calculate loss # regularization_loss = 0 # for param in model.parameters(): # regularization_loss += torch.sum(abs(param)) # classify_loss = criterion(y_pred,target) loss = F.nll_loss(y_pred, target) #loss = classify_loss + LAMDA * regularization_loss # train_losses.append(loss) # Backpropagation loss.backward() optimizer.step() scheduler.step() # Update pbar-tqdm pred = y_pred.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() processed += len(data) pbar.set_description(desc= f'Loss={loss.item()} Batch_id={batch_idx} Accuracy={100*correct/processed:0.2f}') # train_acc.append(100*correct/processed) train_losses.append(loss.item()) train_acc.append(100*correct/processed) img,true_wrong,pred_wrong,tst_acc ,tst_loss = test(model, device, test_loader) test_losses.append(tst_loss) test_acc.append(tst_acc) # lr_finder = LRFinder(model, optimizer, criterion, device) # lr_finder.range_test(train_loader, end_lr=100, num_iter=100) # lr_finder.plot() # to inspect the loss-learning rate graph # lr_finder.reset() return train_losses, train_acc, model,img,true_wrong,pred_wrong,test_acc,test_losses def validate(testloader, device, model): pred_wrong = [] true_wrong = [] image = [] dataiter = iter(testloader) images, labels = dataiter.next() images, labels = images.to(device), labels.to(device) outputs = model(images) correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() # print(predicted) # print(labels) preds = predicted.cpu().numpy() target = labels.cpu().numpy() preds = np.reshape(preds,(len(preds),1)) target = np.reshape(target,(len(preds),1)) for i in range(len(preds)): # pred.append(preds[i]) # true.append(target[i]) if(preds[i]!=target[i]): pred_wrong.append(preds[i]) true_wrong.append(target[i]) image.append(images[i]) # if(predicted != labels): # pred_wrong.append(predicted) # true_wrong.append(labels) # image.append(data[i]) print('Accuracy of the network on the 10000 test images: %2d %%' % ((100 * correct) / total)) return image,true_wrong,pred_wrong, # def validate(testloader, device, model): # dataiter = iter(testloader) # images, labels = dataiter.next() # images, labels = images.to(device), labels.to(device) # outputs = model(images) # correct = 0 # total = 0 # with torch.no_grad(): # for data in testloader: # images, labels = data # images, labels = images.to(device), labels.to(device) # outputs = model(images) # _, predicted = torch.max(outputs.data, 1) # total += labels.size(0) # correct += (predicted == labels).sum().item() # print('Accuracy of the network on the 10000 test images: %2d %%' % ((100 * correct) / total)) def classValidation(testloader, device, model, classes): class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = model(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(4): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(10): print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
null
train_and_validate/train_and_validate.py
train_and_validate.py
py
10,102
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.no_grad", "line_number": 81, "usage_type": "call" }, { "api_name": "torch.nn.functional.nll_loss", "line_number": 85, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 85, "usage_type": "name" }, { "api_name": "torch.max", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 91, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 92, "usage_type": "call" }, { "api_name": "torch.nn.CrossEntropyLoss", "line_number": 113, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 113, "usage_type": "name" }, { "api_name": "torch.optim.SGD", "line_number": 114, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 114, "usage_type": "name" }, { "api_name": "torch.optim.lr_scheduler.OneCycleLR", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.optim.lr_scheduler", "line_number": 115, "usage_type": "attribute" }, { "api_name": "torch.optim", "line_number": 115, "usage_type": "name" }, { "api_name": "tqdm.tqdm", "line_number": 124, "usage_type": "call" }, { "api_name": "torch.nn.functional.nll_loss", "line_number": 142, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 142, "usage_type": "name" }, { "api_name": "torch.no_grad", "line_number": 182, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 187, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 194, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 195, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 231, "usage_type": "call" }, { "api_name": "torch.max", "line_number": 236, "usage_type": "call" } ]
159687290
import unittest from synthesis import PerformanceHistorySynthesizer from sklearn.model_selection import ParameterGrid import numpy as np class Test(unittest.TestCase): def setUp(self): pass #def tearDown(self): # pass def testPerformanceHistorySynthesizer(self): ''' Testing different parameter configurations, sanity check ''' pgrid = { "n_revisions": np.arange(1, 2000, 500), "n_features": np.arange(10, 1200, 500), "p_influential": np.linspace(0.001, 0.1, 5), "n_changepoints": np.arange(1, 50, 10), "p_geom": np.linspace(0.7, 0.99, 6), "noise": np.linspace(0.001, 1, 5), "seed": np.arange(0, 100, 25) } pgrid = ParameterGrid(pgrid) for i, param in enumerate(pgrid): PerformanceHistorySynthesizer( param["n_revisions"], param["n_features"], param["p_influential"], param["n_changepoints"], param["p_geom"], param["noise"], param["seed"], ) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
null
change_point_identification/synthesis_test.py
synthesis_test.py
py
1,281
python
en
code
null
code-starcoder2
83
[ { "api_name": "unittest.TestCase", "line_number": 6, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 28, "usage_type": "call" }, { "api_name": "sklearn.model_selection.ParameterGrid", "line_number": 31, "usage_type": "call" }, { "api_name": "synthesis.PerformanceHistorySynthesizer", "line_number": 33, "usage_type": "call" }, { "api_name": "unittest.main", "line_number": 45, "usage_type": "call" } ]
341546158
from django.core.management.base import BaseCommand, CommandError import csv from starcatalogue.models import Star, FoldedLightcurve class Command(BaseCommand): help = 'Imports folded lightcurve data (results_total.dat)' def add_arguments(self, parser): parser.add_argument('file', nargs=1, type=open) def handle(self, *args, **options): r = csv.reader(options['file'][0], delimiter=' ', skipinitialspace=True) imported_total = 0 for count, row in enumerate(r): try: if row[7] != '0': continue superwasp_id = "".join(row[1:3]) period_number = int(row[3]) period_length = float(row[4]) sigma = float(row[5]) chi_squared = float(row[6]) except IndexError: print('Warning: Skipping row {} due to IndexError'.format(count)) continue try: star = Star.objects.get(superwasp_id=superwasp_id) lightcurve = FoldedLightcurve.objects.get( star=star, period_number=period_number, ) except (Star.DoesNotExist, FoldedLightcurve.DoesNotExist): continue lightcurve.period_length = period_length lightcurve.sigma = sigma lightcurve.chi_squared = chi_squared lightcurve.save() imported_total += 1 self.stdout.write("Total imported: {}".format(imported_total))
null
starcatalogue/management/commands/importlightcurves.py
importlightcurves.py
py
1,572
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.core.management.base.BaseCommand", "line_number": 8, "usage_type": "name" }, { "api_name": "csv.reader", "line_number": 15, "usage_type": "call" }, { "api_name": "starcatalogue.models.Star.objects.get", "line_number": 31, "usage_type": "call" }, { "api_name": "starcatalogue.models.Star.objects", "line_number": 31, "usage_type": "attribute" }, { "api_name": "starcatalogue.models.Star", "line_number": 31, "usage_type": "name" }, { "api_name": "starcatalogue.models.FoldedLightcurve.objects.get", "line_number": 32, "usage_type": "call" }, { "api_name": "starcatalogue.models.FoldedLightcurve.objects", "line_number": 32, "usage_type": "attribute" }, { "api_name": "starcatalogue.models.FoldedLightcurve", "line_number": 32, "usage_type": "name" }, { "api_name": "starcatalogue.models.Star.DoesNotExist", "line_number": 36, "usage_type": "attribute" }, { "api_name": "starcatalogue.models.Star", "line_number": 36, "usage_type": "name" }, { "api_name": "starcatalogue.models.FoldedLightcurve.DoesNotExist", "line_number": 36, "usage_type": "attribute" }, { "api_name": "starcatalogue.models.FoldedLightcurve", "line_number": 36, "usage_type": "name" } ]
350558898
from django.urls import path from . import views app_name = "life" urlpatterns = [ path("list/", views.DiaryListView.as_view(), name="list"), path("create/", views.DiaryCreateView.as_view(), name="create"), path("list/<int:pk>/", views.DiaryDetailView.as_view(), name="detail"), path("list/<int:pk>/update/", views.DiaryUpdateView.as_view(), name="update"), path("list/<int:pk>/delete/", views.DiaryDeleteView.as_view(), name="delete"), ]
null
life/urls.py
urls.py
py
462
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" } ]
510274535
from domain.application import Application from domain.model import Model import json import os from os import listdir from os.path import isfile, join def parse_applications(app_path: str): """ Function that parse app_path file. app_path (String): Path to a json file. """ applications = {} with open(app_path) as f: data = json.load(f) args = ["short_name", "name", "path", "description", "type"] allowed_types = set(["image", "text"]) # If applications attribute doesn't exist finish immediately if "applications" not in data: return {} for app in data["applications"]: validJson = True # Check if "app" has all the requirements for arg in args: if arg not in app: print("Missing argument {} in file {}".format(arg, app_path)) validJson = False if arg == "type" and app[arg] not in allowed_types: print("The type {} is not allowed. Error found in file {}".format(app[arg], app_path)) validJson = False # Create a new "Application" with the values given if validJson: if app["short_name"] in applications: print("There is already an application with the name: {}".format(app["short_name"])) elif 'show' in app and app['show'] == False: print("The show value is set to false. Not showing this application") else: applications[app["short_name"].replace(" ", "")] = Application(app["name"], app["description"], app["path"], app['type']) return applications def parse_models(applicationList: dict): """ Given a dictionary of "Applications" instanciate the models related for each "application" applicationList (Dictionary): dictionary with the "Applications" """ for app in list(applicationList.keys()): parse_application_model(applicationList[app]) if len(applicationList[app].models) == 0: print("{} doesn't have any model associated. Removing this application...".format(applicationList[app].name)) applicationList.pop(app, None) def parse_application_model(application: Application): """ Given an "Application" instanciate the models found in "Application.models_path" application (Application): application """ files = [f for f in listdir(application.models_path) if isfile(join(application.models_path, f))] args = ["name", "description", "model_info", "file_format"] for model_path in files: with open(application.models_path + "/"+ model_path) as f: data = json.load(f) validJson = True # Check if the model fulfill all the requirements for arg in args: if arg not in data: print("Missing argument {} in file {}. The model is not going to be included".format(arg, application.models_path + "/"+ model_path)) validJson = False # Add the model to the application if validJson: application.add_model(Model(data["name"].replace(" ", ""), data["name"], data["description"], data["model_info"], data["file_format"])) def parse_config(config_path: str): """ Given the path of the configuration file returns a dictionary with all the elements. config_path(String): Path to a json file. """ with open(config_path) as f: data = json.load(f) compulsory_args = ["models_path", "random_pictures_path", "random_texts_path", "upload_folder"] non_compulsory_args = ["port", "number_of_pictures_to_show", "number_of_texts_to_show"] error_arguments = ["number_of_random_pictures"] # Compulsory arguments for arg in compulsory_args: if arg not in data: raise FileNotFoundError("Missing argument '{}' in '{}'".format(arg, config_path)) if arg == "upload_folder": if not (data[arg].startswith("/static") or data[arg].startswith("static")): raise FileNotFoundError("Argument '{}' needs to be inside 'static' folder. Actual path: {}".format(arg, data[arg])) else: if data[arg][-1] == "/": data[arg] = data[arg][:-1] # Create folder if needed if not os.path.exists(data[arg]): print("Creating folder: {}".format(data[arg])) os.makedirs(data[arg]) else: # Remove files in the folder for f in listdir(data[arg]): if isfile(join(data[arg], f)): os.remove(join(data[arg], f)) if arg == "random_pictures_path": if not (data[arg].startswith("/static") or data[arg].startswith("static")): raise FileNotFoundError("Argument '{}' needs to be inside 'static' folder. Actual path: {}".format(arg, data[arg])) else: if data[arg][-1] == "/": data[arg] = data[arg][:-1] elif arg == "random_texts_path": if not (data[arg].startswith("/static") or data[arg].startswith("static")): raise FileNotFoundError("Argument '{}' needs to be inside 'static' folder. Actual path: {}".format(arg, data[arg])) else: if data[arg][-1] == "/": data[arg] = data[arg][:-1] # Non compulsory arguments for arg in non_compulsory_args: if arg not in data: if arg == "port": data["port"] = 5000 elif arg == "number_of_pictures_to_show": data["number_of_pictures_to_show"] = 4 elif arg == "number_of_texts_to_show": data['number_of_texts_to_show'] = 5 # Error arguments for arg in error_arguments: if arg in data: raise FileNotFoundError("The argument '{}' in '{}' cannot be used".format(arg, config_path)) return data
null
util/parse_json.py
parse_json.py
py
6,019
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.load", "line_number": 19, "usage_type": "call" }, { "api_name": "domain.application.Application", "line_number": 46, "usage_type": "call" }, { "api_name": "domain.application.Application", "line_number": 64, "usage_type": "name" }, { "api_name": "os.listdir", "line_number": 71, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 71, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 71, "usage_type": "call" }, { "api_name": "json.load", "line_number": 75, "usage_type": "call" }, { "api_name": "domain.model.Model", "line_number": 85, "usage_type": "call" }, { "api_name": "json.load", "line_number": 96, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 113, "usage_type": "call" }, { "api_name": "os.path", "line_number": 113, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 115, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 118, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 119, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 119, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 120, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 120, "usage_type": "call" } ]
104746798
#!/usr/bin/env python # -*- coding: utf-8 -*- from openpyxl import Workbook import sqlserver cursor_sql = sqlserver.get_cursor() sql = " select contrato, lote.datacadastro , "\ " (SELECT nomefantasia FROM FILIAL emp WHERE emp.idfilial= lote.idfilial) as nome_filial, "\ " (SELECT TOP 1 CD.Nome "\ " FROM LOTE_ENDERECO LE "\ " INNER JOIN CIDADE CD ON CD.IDCIDADE = LE.IDCIDADE "\ " WHERE LE.IDLOTE = lote.IDLOTE AND LE.TIPOENDERECO = 1 ) AS cidade_origem, "\ " (SELECT TOP 1 CD.Nome "\ " FROM LOTE_ENDERECO LE "\ " INNER JOIN CIDADE CD ON CD.IDCIDADE = LE.IDCIDADE "\ " WHERE LE.IDLOTE = lote.IDLOTE AND LE.TIPOENDERECO = 2 ) AS cidade_destino, "\ " PROD.DESCRICAO AS produto "\ " from lote "\ " INNER JOIN PRODUTO PROD ON PROD.IDPRODUTO = lote.IDPRODUTO "\ " where lote.ativo = 1 and lote.status = 1 and ocultarloteappmobile = 1 "\ " order by lote.idfilial " print(sql) dados_sql = cursor_sql.execute(sql) wb = Workbook() ws = wb.active list_row = [] list_row.append('Contrato') list_row.append('Data cadastro') list_row.append('Filial') list_row.append('Cidade origem') list_row.append('Cidade destino') list_row.append('Produto') ws.append(list_row) for row in dados_sql: list_row = [] list_row.append(row[0]) list_row.append(str(row[1].day)+'/'+str(row[1].month)+'/'+str(row[1].year)) list_row.append(row[2]) list_row.append(row[3]) list_row.append(row[4]) list_row.append(row[5]) ws.append(list_row) wb.save("LotesOcultos.xlsx")
null
rel_lotesocultos.py
rel_lotesocultos.py
py
1,492
python
en
code
null
code-starcoder2
83
[ { "api_name": "sqlserver.get_cursor", "line_number": 6, "usage_type": "call" }, { "api_name": "openpyxl.Workbook", "line_number": 26, "usage_type": "call" } ]
55979723
## ## B8IT106 Tools for Data Analytics CA_TWO ## October 2019 ## Added to GitHub - October 8th 2019 ## October9 Branch Created ## ## Module Imports for Machine Learning in Python import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV from sklearn import metrics from sklearn.cluster import KMeans from sklearn.decomposition import PCA from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import seaborn as sns ## def MainProg_CATwo(): # Set PyCharm Display Option # This is done to improve console display # for use in documentented screen shots desired_width=320 pd.set_option('display.width', 400) np.set_printoptions(linewidth=10) pd.set_option('display.max_columns',15) # Identify file to be read into dataset filename = "Spruce.csv" # Set up file identifier for use in Console Print statements dataDescription = "Spruce Dataset" # Read CSV file and return dataset df_spruce = ReadDataframe(filename) # Display some basic initial statistics about dataset # This data will be used to inform follow up data cleansing actions DisplayBasicDataFrameInfo(df_spruce, dataDescription) df_FinalSpruce = PreSplitDataManipulation(df_spruce, dataDescription) X, Y = CreateLableAndFeatureSet(df_FinalSpruce, dataDescription) X_train, X_test, Y_train, Y_test, X_Scaled = CreateTrainingAndTestData(X, Y, dataDescription, df_FinalSpruce) #TuneRandomForestAlgorithm(X_train, Y_train) # Determined by algorithm tuning process best_estimator = 550 ImplementTunedRandomForestAlgorithm(X_train, X_test, Y_train, Y_test, best_estimator, X) X = CreateRevisedFeatureSet(X) ## --- Rinse / Repeat ## X_train, X_test, Y_train, Y_test, X_Scaled = CreateTrainingAndTestData(X, Y, dataDescription, df_FinalSpruce) ##### # ---- Call RandomForest with revised FeatureSet ImplementTunedRandomForestAlgorithm(X_train, X_test, Y_train, Y_test, best_estimator, X) ### ---- Implement PCA Visualisation and K-Means Clustering x_pca = ImplementPCAVisualisation(X_Scaled, Y, dataDescription) ImplementK_MeansClustering(X_Scaled, x_pca, dataDescription) def CreateTrainingAndTestData(X, Y, dataDescription, origDataset): X_Scaled = NormaliseTrainingData(X, dataDescription) X_train, X_test, Y_train, Y_test = SplitDatasetIntoTrainAndTestSets(X_Scaled, Y, dataDescription, origDataset) X_train, Y_train = ImplementOverSampling(X_train, Y_train) return X_train, X_test, Y_train, Y_test, X_Scaled def ReadDataframe(filename): print("\n\tReading {} file..\n".format(filename)) # Read CSV file into panda dataframe df = pd.read_csv(filename) # Return the panda dataframe read in from the CSV file return df def DisplayBasicDataFrameInfo(dataset, datasetDescription): print("\n\t{} Dataset Head Rows : \n".format(datasetDescription)) print(dataset.head()) print("\n\t{} Dataset Dimensions : \n".format(datasetDescription)) print(dataset.shape) print("\n\t{} Dataset Datatypes : \n".format(datasetDescription)) print(dataset.dtypes) print("\n\t{} Dataset 'Info()' : \n".format(datasetDescription)) print(dataset.info()) print("\n\t{} Dataset 'Describe()' : \n".format(datasetDescription)) print(dataset.describe()) def ConvertTreeType(column): # Converting Categorical features into Numerical features if column == 'Spruce': return 1 else: return 0 def PreSplitDataManipulation(dataset, datasetDescription): # Check for Null Values print("\n\tChecking for Null Values in {} Dataset - Result : {}\n".format(datasetDescription, dataset.isnull().values.any())) # Pause anykey = input("\nPress any key..") # Check for Duplicates numOfDuplicatedRows = dataset.duplicated().value_counts() print("\n\tChecking for Duplicate Rows in {} Dataset - Result : {}\n\n".format(datasetDescription, numOfDuplicatedRows)) # Pause anykey = input("\nPress any key..") # Converting Categorical features into Numerical features - most algorithms need numeric values # Just one column - the 'Tree Type' needs to be converted from a Categorical Values # This is the target variable and a 'Spruce' is assigned a value of '1', and 'Other' is assigned # a value of '0' # Display the first two rows after conversion of 'Tree Type' print("\nCategorical {} Dataset Head Rows Prior to Tree Type conversion : \n".format(datasetDescription)) print(dataset.head(2)) dataset['Tree_Type'] = dataset['Tree_Type'].apply(ConvertTreeType) final_data = dataset # Display the first two rows after conversion of 'Tree Type' print("\nConverted Categorical {} Dataset Head Rows : \n".format(datasetDescription)) print(final_data.head(2)) # Pause anykey = input("Press any key..") # Display the change in datatype for 'Tree Type' print("\nConverted Categorical {} Dataset Datatypes : \n".format(datasetDescription)) print(final_data.dtypes) # Pause anykey = input("Press any key..") # Pre-Split Data Preparation # Hidden missing values - check the zeroes - we already checked for NULL #print(final_data.head(10)) #Elevation Slope Horizontal_Distance_To_Hydrology Vertical_Distance_To_Hydrology Horizontal_Distance_To_Roadways Horizontal_Distance_To_Fire_Points SpruceFeatureCheckListForZeroValues = ['Elevation','Slope','Horizontal_Distance_To_Hydrology','Vertical_Distance_To_Hydrology','Horizontal_Distance_To_Roadways','Horizontal_Distance_To_Fire_Points'] print("\n\t# Rows in {1} dataframe {0}".format(len(final_data), datasetDescription)) # It would not seem logical that any of the first six colums in the Spruce dataset have a zero value # This loop checks if there are any zero values # If there were any zero values the user would determine the appropriate follow up action for feature in SpruceFeatureCheckListForZeroValues: print("\n\t# zero value rows in column {1}: {0}".format(len(final_data.loc[final_data[feature] == 0]),feature)) # Pause anykey = input("Press any key..") # Drop rows? # Check for Correlation after all features converted to numeric CheckDatasetForCorrelation(final_data, datasetDescription) return final_data def CheckDatasetForCorrelation(dataset, dataDescription): print("\n\tCheck {} Dataset For any Correlation between features (Categorical features converted into Numerics): \n".format(dataDescription)) # Correlation analysis - a graphical representation of possible correlation of data sns.heatmap(dataset.corr(), annot=True, fmt='.2f') # Pause anykey = input("Press any key..") def CreateLableAndFeatureSet(final_data, dataDescription): # Check distribution of survived and died in cleaned dataset # Check that the observation of any outcome is not too rare num_obs = len(final_data) num_true = len(final_data.loc[final_data['Tree_Type'] == 1]) # Spruce Tree = True num_false = len(final_data.loc[final_data['Tree_Type'] == 0]) # Spruce Tree = False print("Number of Spruce Tree Types : {0} ({1:2.2f}%)\n".format(num_true, (num_true/num_obs) * 100)) print("Number of Other Tree Types : {0} ({1:2.2f}%)\n".format(num_false, (num_false/num_obs) * 100)) # Dividing dataset into label and feature sets X = final_data.drop('Tree_Type', axis = 1) # Features Y = final_data['Tree_Type'] # Labels print("\n\tDimentions of Label and Feature Dataset for {}".format(dataDescription)) print(X.shape) print(Y.shape) print("\n\tFeatured + Labeled - {} Dataset Head Rows X + Y : \n".format(dataDescription)) print(X.head(2)) print(Y.head(2)) # Pause #anykey = input("Press any key..") return X, Y def NormaliseTrainingData(X, dataDescription): print("\n\tScaling the Feature dataset..") # Normalizing numerical features so that each feature has mean 0 and variance 1 feature_scaler = StandardScaler() X_scaled = feature_scaler.fit_transform(X) #print("\nPre-Scaled Features - {} Dataset Head Rows : \n".format(dataDescription)) #print(X.head(3)) # Pause #anykey = input("Press any key..") #print("\nPost-Scaled Features - {} Dataset Head Rows : \n".format(dataDescription)) #print(X_scaled.view()) # Pause #anykey = input("Press any key..") return X_scaled def SplitDatasetIntoTrainAndTestSets(X_Scaled, Y, dataDescription, final_data): # Dividing dataset into training and test sets X_train, X_test, Y_train, Y_test = train_test_split(X_Scaled, Y, test_size = 0.3, random_state = 100) print("\n\t{} Training Set Shape : \n".format(dataDescription)) print(X_train.shape) print("\n\t{} Test Set Shape : \n".format(dataDescription)) print(X_test.shape) # Need to check if we have the desired 70 / 30 split in Train and Test Data print("\n\t{0:0.2f}% in {1} training set".format( (len(X_train)/len(final_data.index)) * 100, dataDescription)) print("\n\t{0:0.2f}% in {1} test set".format((len(X_test)/len(final_data.index)) * 100, dataDescription)) # Verifying predicted value was split correctly - according to proportion in original dataset print("\n") print("\tOriginal True : {0} ({1:0.2f}%)".format(len(final_data.loc[final_data['Tree_Type'] == 1]), (len(final_data.loc[final_data['Tree_Type'] == 1])/len(final_data.index)) * 100.0)) print("\tOriginal False : {0} ({1:0.2f}%)".format(len(final_data.loc[final_data['Tree_Type'] == 0]), (len(final_data.loc[final_data['Tree_Type'] == 0])/len(final_data.index)) * 100.0)) print("\n") print("\tTraining True : {0} ({1:0.2f}%)".format(len(Y_train[Y_train[:] == 1]), (len(Y_train[Y_train[:] == 1])/len(Y_train) * 100.0))) print("\tTraining False : {0} ({1:0.2f}%)".format(len(Y_train[Y_train[:] == 0]), (len(Y_train[Y_train[:] == 0])/len(Y_train) * 100.0))) print("\n") print("\tTest True : {0} ({1:0.2f}%)".format(len(Y_test[Y_test[:] == 1]), (len(Y_test[Y_test[:] == 1])/len(Y_test) * 100.0))) print("\tTest False : {0} ({1:0.2f}%)".format(len(Y_test[Y_test[:] == 0]), (len(Y_test[Y_test[:] == 0])/len(Y_test) * 100.0))) print("\n") return X_train, X_test, Y_train, Y_test def ImplementOverSampling(X_train,Y_train): # Implementing Oversampling to balance the dataset; SMOTE stands for Synthetic Minority Oversampling TEchnique print("Number of observations in each class before oversampling (training data): \n", pd.Series(Y_train).value_counts()) smote = SMOTE(random_state = 101) X_train,Y_train = smote.fit_sample(X_train,Y_train) print("Number of observations in each class after oversampling (training data): \n", pd.Series(Y_train).value_counts()) # Pause # anykey = input("Press any key..") return X_train,Y_train def TuneRandomForestAlgorithm(X_train, Y_train): """ In the below GridSearchCV(), scoring parameter should be set as follows: scoring = 'accuracy' when you want to maximize prediction accuracy scoring = 'recall' when you want to minimize false negatives scoring = 'precision' when you want to minimize false positives scoring = 'f1' when you want to balance false positives and false negatives (place equal emphasis on minimizing both) """ # Tuning the random forest parameter 'n_estimators' using Grid Search rfc = RandomForestClassifier(criterion='entropy', max_features='auto', random_state=1) scoreOptions = ['accuracy','recall','precision','f1'] #grid_param = {'n_estimators': [100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700]} grid_param = {'n_estimators': [10,20]} print("\n\tRunning Grid Search Cross Validation tuning..") for score in scoreOptions: gd_sr = GridSearchCV(estimator=rfc, param_grid=grid_param, scoring=score, cv=5) print("\n\tScore paramter set to : {}".format(score)) # Execute the fit function on the Training Data gd_sr.fit(X_train, Y_train) # Determine and display the optimum hyperparameter best_parameters = gd_sr.best_params_ print("\n\tOptimum parameter is : {}".format(best_parameters)) #print(best_parameters) best_result = gd_sr.best_score_ # Mean cross-validated score of the best_estimator print("\n\tOptimum scoring result is : {}".format(best_result)) #print(best_result) # Pause anykey = input("Press any key..") def ImplementTunedRandomForestAlgorithm(X_train, X_test, Y_train, Y_test, best_estimator, X): # Building random forest using the tuned parameter #rfc = RandomForestClassifier(n_estimators=400, criterion='entropy', max_features='auto', random_state=1) rfc = RandomForestClassifier(n_estimators=best_estimator, criterion='entropy', max_features='auto', random_state=1) rfc.fit(X_train,Y_train) # Rate the importance of the features to guide the creation of a more targeted feature set for the algorithm featimp = pd.Series(rfc.feature_importances_, index=list(X)).sort_values(ascending=False) print("\n\tList of features in dataset by importance to prediction model : \n") print(featimp) # Pause # anykey = input("Press any key..") Y_pred = rfc.predict(X_test) print("\n\tPrediction Accuracy: ", metrics.accuracy_score(Y_test, Y_pred)) # Displaying a Confusion Matrix # Text on screen print("\n\tConfusion Matrix\n") print("{0}".format(metrics.confusion_matrix(Y_test, Y_pred))) print("\n") print("\n\tClassification Report\n") print(metrics.classification_report(Y_test, Y_pred)) # Pause # anykey = input("Press any key..") conf_mat = metrics.confusion_matrix(Y_test, Y_pred) plt.figure(figsize=(8,6)) sns.heatmap(conf_mat,annot=True) plt.title("Confusion_matrix") plt.xlabel("Predicted Class") plt.ylabel("Actual class") plt.show() print('Confusion matrix: \n', conf_mat) print('TP: ', conf_mat[1,1]) print('TN: ', conf_mat[0,0]) print('FP: ', conf_mat[0,1]) print('FN: ', conf_mat[1,0]) def CreateRevisedFeatureSet(dataset): # Selecting features with higher sifnificance and redefining feature set X = dataset[['Elevation', 'Horizontal_Distance_To_Roadways', 'Horizontal_Distance_To_Fire_Points', 'Vertical_Distance_To_Hydrology', 'Horizontal_Distance_To_Hydrology','Slope','Soil_Type20','Soil_Type21','Soil_Type9','Soil_Type27','Soil_Type36']] # Check for Correlation after reduced feature set created CheckDatasetForCorrelation(X, "Reduced Spruce Trees Feature Set") return X def ImplementPCAVisualisation(X_Scaled, Y, dataDescription): # Implementing PCA to visualize dataset print("\n\tThe Implementation of PCA Visualisation...\n") pca = PCA(n_components = 2) pca.fit(X_Scaled) x_pca = pca.transform(X_Scaled) print(pca.explained_variance_ratio_) print(sum(pca.explained_variance_ratio_)) # Pause # anykey = input("Press any key..") plt.figure(figsize = (8,6)) plt.scatter(x_pca[:,0], x_pca[:,1], c=Y, cmap='plasma') plt.xlabel('First Principal Component') plt.ylabel('Second Principal Component') plt.show() return x_pca def ImplementK_MeansClustering(X_Scaled, x_pca, dataDescription): # Implementing K-Means CLustering on dataset and visualizing clusters print("\n\tThe Implementation of K-Means Clustering and Visualisation...\n") # Finding the number of clusters (K) inertia = [] for i in range(1,11): kmeans = KMeans(n_clusters = i, random_state = 100) kmeans.fit(X_Scaled) inertia.append(kmeans.inertia_) plt.plot(range(1, 11), inertia) plt.title('The Elbow Plot') plt.xlabel('Number of clusters') plt.ylabel('Inertia') plt.show() kmeans = KMeans(n_clusters = 2) kmeans.fit(X_Scaled) print(kmeans.cluster_centers_) plt.figure(figsize = (8,6)) plt.scatter(x_pca[:,0], x_pca[:,1], c=kmeans.labels_, cmap='plasma') plt.xlabel('First Principal Component') plt.ylabel('Second Principal Component') plt.show() MainProg_CATwo()
null
IrisML/CA2.py
CA2.py
py
15,582
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandas.set_option", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.set_printoptions", "line_number": 41, "usage_type": "call" }, { "api_name": "pandas.set_option", "line_number": 42, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 105, "usage_type": "call" }, { "api_name": "seaborn.heatmap", "line_number": 202, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.StandardScaler", "line_number": 241, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 258, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 290, "usage_type": "call" }, { "api_name": "imblearn.over_sampling.SMOTE", "line_number": 292, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 295, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 314, "usage_type": "call" }, { "api_name": "sklearn.model_selection.GridSearchCV", "line_number": 322, "usage_type": "call" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 345, "usage_type": "call" }, { "api_name": "pandas.Series", "line_number": 349, "usage_type": "call" }, { "api_name": "sklearn.metrics.accuracy_score", "line_number": 356, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 356, "usage_type": "name" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 362, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 362, "usage_type": "name" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 365, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 365, "usage_type": "name" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 370, "usage_type": "call" }, { "api_name": "sklearn.metrics", "line_number": 370, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 371, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 371, "usage_type": "name" }, { "api_name": "seaborn.heatmap", "line_number": 372, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.title", "line_number": 373, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 373, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 374, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 374, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 375, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 375, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 376, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 376, "usage_type": "name" }, { "api_name": "sklearn.decomposition.PCA", "line_number": 402, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 411, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 411, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 412, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 412, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 413, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 413, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 414, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 414, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 415, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 415, "usage_type": "name" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 428, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 432, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 432, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 433, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 433, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 434, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 434, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 435, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 435, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 436, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 436, "usage_type": "name" }, { "api_name": "sklearn.cluster.KMeans", "line_number": 438, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 441, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 441, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 442, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 442, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 443, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 443, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 444, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 444, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 445, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 445, "usage_type": "name" } ]
312817033
import matplotlib.pyplot as plt import numpy as np indata = np.loadtxt("indata.dat") time_size = indata[0] grid_size = indata[1] end_time = indata[2] periodic_start_fig = plt.figure() plt.title("Periodic 2D-rossby wave at T = 0") periodic_start = np.loadtxt("benchmarks/2dperstart.dat") X = np.linspace(0,1,len(periodic_start)) Y = np.linspace(0,1,len(periodic_start)) plt.contourf(Y,X,periodic_start,20,cmap= "RdYlBu") plt.xlabel("X-extent - Dimensionless") plt.ylabel("Y-extent - Dimensionless") cb = plt.colorbar() cb.set_label("Wave amplitude - Dimensionless") periodic_slutt_fig = plt.figure() plt.title("Periodic 2D-rossby wave at T = 150") periodic_end = np.loadtxt("benchmarks/2dperlast.dat") plt.contourf(Y,X,periodic_end,20,cmap= "RdYlBu") plt.xlabel("X-extent - Dimensionless") plt.ylabel("Y-extent - Dimensionless") cb = plt.colorbar() cb.set_label("Wave amplitude - Dimensionless") periodic_start_fig.savefig("figures/2dstart.png") periodic_slutt_fig.savefig("figures/2dend.png")
null
project5/plot3.py
plot3.py
py
997
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.loadtxt", "line_number": 4, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 9, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 9, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 10, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 10, "usage_type": "name" }, { "api_name": "numpy.loadtxt", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 13, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.contourf", "line_number": 14, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 15, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 15, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 16, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 17, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 20, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "numpy.loadtxt", "line_number": 22, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.contourf", "line_number": 23, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 23, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 24, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 24, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 25, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.colorbar", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" } ]
623181890
from nltk.corpus import stopwords class Exhaustive: """ Exhaustive (statistical) method for text summarization """ def __init__(self, **kwargs): self.text = None self.wfreq = {} self.tokens = [] self.wstop = set(stopwords.words("english")) if "tokens" in kwargs.keys() and "text" in kwargs.keys(): raise ValueError( "Error: Both tokens and text specified. Specify only one.") if "tokens" in kwargs.keys(): self.tokens = [] for line in kwargs["tokens"]: self.tokens += [line.split(" ")] assert type(self.tokens) in [list, tuple] else: self.text = kwargs["text"] #assert type(self.text) == str self.__TokenizePara(delim="।") """ @kwargs: @term = term for which we need to calculate wt. freq. """ def __GetWeightedFreq(self, **kwargs): """ Returns the weighted frequency of the word specified. Weighted frequency is calculated as: wf = freq(wx)/max(freq(wi)) """ if len(self.wfreq) == 0: self.__PopulateFreq() word = kwargs["term"] if word.lower() in self.wstop or word.isdigit() or len(word) == 0: return 0 if word.lower() not in self.wfreq.keys() and word.lower() not in self.wstop: raise ValueError("Invalid word {0} specified".format(word)) return self.wfreq[word.lower()] / max(self.wfreq.values()) """ @kwargs: @k = k sentences to pick. """ def KTopRanks(self, **kwargs): """ Returns the top "k" sentences based on the exh. method chosen """ if "k" not in kwargs.keys(): raise ValueError("Error: Missing arg \"k\"") k = kwargs["k"] if k > len(self.tokens): raise ValueError("Error: dimm of k is greater than \"text\"") if len(self.wfreq) == 0: self.__PopulateFreq() idx=0 arr = {} for lines in self.tokens: swt = 0 line = str() for word in lines: line += "{0} ".format(word) swt += self.__GetWeightedFreq(term=word) arr[line] = (swt,idx) arr = sorted(arr.items(), key=lambda x: x[1], reverse=True) arr=arr[:k] arr=sorted(arr,key=lambda x:x[1][1]) return arr[:k] def __PopulateFreq(self): """ Builds the hashmap - words & their frequencies. """ for item in self.tokens: for word in item: if word not in self.wstop and len(word) > 0 and word.isdigit() == False: if word.lower() in self.wfreq: self.wfreq[word.lower()] += 1 else: self.wfreq[word.lower()] = 1 """ @kwargs: @delim = delimeter to split on """ def __TokenizePara(self, **kwargs): """ Tokenize the paragraph based on the specified delim. """ if len(self.tokens) != 0: raise ValueError("Error: dimm of tokens is not 0") lines = list(filter(None, self.text.split(kwargs["delim"]))) for line in lines: arr = [] for word in line.split(" "): if len(word) > 0 and word != "\n": arr.append(word.lower()) self.tokens.append(arr) self.tokens = list(filter(None, self.tokens))
null
Algorithms/weightedfreq/Hindi/first.py
first.py
py
3,478
python
en
code
null
code-starcoder2
83
[ { "api_name": "nltk.corpus.stopwords.words", "line_number": 10, "usage_type": "call" }, { "api_name": "nltk.corpus.stopwords", "line_number": 10, "usage_type": "name" } ]
491332647
import numpy as np import argparse import json import time from torch import nn from torch import optim import torch.utils.data as tdata import torch.nn.functional as F import os import cv2 import torch import torchvision WIDTH = 1920 HEIGHT = 1208 path = "/local/temporary/audi/camera/" # path_pic = "/local/temporary/audi/camera/camera/cam_front_center/" path_pic = "audi/camera/camera/cam_front_center/" path_labels = "labels/" dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") def load_data(): pics = [] labels = [] im_w = 480 im_h = 302 i = 0 st1 = time.time() for name in sorted(os.listdir(path_pic)): img = cv2.imread(os.path.join(path_pic, name)) img = cv2.resize(img, (im_w, im_h)) pics.append(img) i += 1 if i == 100: #TODO uncoment, just to speed things up break pics = np.asarray(pics) elapsed1 = time.time() - st1 print("time to get pictures: ",elapsed1, "s") i = 0 st2 = time.time() for name in sorted(os.listdir(path_labels)): f = open(path_labels + name, "rb") labels.append(json.load(f)['Angle']) f.close() i += 1 if i == 100: #TODO uncoment, just to speed things up break labels = np.asarray(labels) elapsed2 = time.time() - st2 print("time to get labels: ",elapsed2, "s") return pics, labels class My_CNN(nn.Module): def __int__(self): super().__init__() self.conv1 = nn.Conv2d(3, 3, kernel_size=3, stride=2, padding=0) self.fc1 = nn.Linear(239*3*150) def forward(self, xb): xb = F.relu(self.conv1(xb)) xb - self.fc1 return xb class Dataset(tdata.Dataset): def __init__(self, pics, labels): super().__init__() self.pics = pics self.labels = labels def __len__(self): return self.pics.shape[0] def __getitem__(self, i): return{ #mby here should be transpose 'pic':self.pics[i]/255, 'label':self.labels[i], 'key':i, } def loss_batch(model, loss_function, data, labels, opt = None): loss = loss_function(model(data), y_batch) if opt is not None: loss.backward() opt.step() opt.zero_grad() return loss.item(), len(data) def get_loader(bs = 8): data, labels = load_data() border = int(data.shape[0]*4/5) data_train, data_val = np.split(data, [border]) labels_train, labels_val = np.split(labels, [border]) dataset_tr = Dataset(data_train, labels_train) dataset_val = Dataset(data_val, labels_val) trn_loader = tdata.DataLoader(dataset_tr, batch_size = bs, shuffle = True) val_loader = tdata.DataLoader(dataset_val, batch_size = bs*2) return trn_loader, val_loader def parse_args(): parser = argparse.ArgumentParser('Simple MNIST classifier') parser.add_argument('--learning_rate', '-lr', default=0.00001, type=float) parser.add_argument('--epochs', '-e', default=30, type=int) parser.add_argument('--batch_size', '-bs', default=8, type=int) def fit(train_dl, val_dl, model, opt, loss_fun): for epoch in range(epochs): for data, label in train_dl: data = data.to(dev) label = data.to(dev) loss_batch(model, loss_function, data, label, opt) # with torch.no_grad(): #TODO evaluate loss in training def evaluate(val_dl, model, epoch, loss_function): with torch.no_grad(): acc = 0 processed = 0 for data, labels in val_dl: data = data.to(dev) labels = labels.to(dev) value, num = loss_batch(model, loss_function, data, labels) acc = (num*value + processed * acc)/(num + processed) processed += num print(acc) #just squared error averaged over the validation set def main(): args = parse_args() loss_fun = nn.MSELoss() #trn_loader, val_loader = get_loader() model = My_CNN() model = model.to(dev) # opt = torch.optim.Adam(model.parameters(), args.learning_rate) if __name__ == "__main__": main()
null
first_model.py
first_model.py
py
4,168
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.cuda.is_available", "line_number": 21, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 21, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 21, "usage_type": "call" }, { "api_name": "time.time", "line_number": 29, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 30, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 38, "usage_type": "call" }, { "api_name": "time.time", "line_number": 39, "usage_type": "call" }, { "api_name": "time.time", "line_number": 42, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 43, "usage_type": "call" }, { "api_name": "json.load", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 51, "usage_type": "call" }, { "api_name": "time.time", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 56, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 56, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 59, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 59, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 60, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 62, "usage_type": "name" }, { "api_name": "torch.utils.data.Dataset", "line_number": 66, "usage_type": "attribute" }, { "api_name": "torch.utils.data", "line_number": 66, "usage_type": "name" }, { "api_name": "numpy.split", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.split", "line_number": 95, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 98, "usage_type": "call" }, { "api_name": "torch.utils.data", "line_number": 98, "usage_type": "name" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 99, "usage_type": "call" }, { "api_name": "torch.utils.data", "line_number": 99, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 102, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 119, "usage_type": "call" }, { "api_name": "torch.nn.MSELoss", "line_number": 136, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 136, "usage_type": "name" } ]
293270471
import os import numpy as np import cv2 import random def make_data(filepath ): fo = open(os.path.join(filepath, "lables.txt"), "w", encoding="UTF-8") for i in range(0, 10): picture_names = os.listdir(os.path.join(filepath, str(i))) for name in picture_names: fo.write(name + " " + str(i) + "\n") fo.close() def make_batch(filepath ,batch_size): fi = open(os.path.join(filepath, 'lables.txt'), "r") lines = fi.readlines() indexes = np.arange(len(lines)) random.shuffle(indexes) batch_X = [] batch_y = [] for index in indexes: sp = lines[index].strip().split() assert len(sp) == 2 image = cv2.imread(os.path.join(filepath, sp[1], sp[0])) image = cv2.resize(image, dsize=(227, 227))/255 batch_X.append(image) batch_y.append(int(sp[1])) if batch_size == len(batch_X): yield np.array(batch_X), np.array(batch_y) batch_X = [] batch_y = [] if len(batch_X) > 0: yield np.array(batch_X), np.array(batch_y) # if __name__ == "__main__": # train_path = "./CIFAR-10-data/train" # test_path = "./CIFAR-10-data/test" # make_data(test_path) # 对训练数据或者测试数据生成一个label.txt的文件,该文档存储的是:图片名称+图片分类标签
null
data_process.py
data_process.py
py
1,383
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.join", "line_number": 8, "usage_type": "call" }, { "api_name": "os.path", "line_number": 8, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 18, "usage_type": "call" }, { "api_name": "random.shuffle", "line_number": 19, "usage_type": "call" }, { "api_name": "cv2.imread", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 34, "usage_type": "call" } ]
220255642
from beaker.middleware import SessionMiddleware from bottle import Bottle, request, HTTPResponse from jumpscale.packages.threebot_deployer.bottle.utils import ( list_threebot_solutions, stop_threebot_solution, delete_threebot_solution, ) from jumpscale.loader import j from jumpscale.packages.auth.bottle.auth import SESSION_OPTS, login_required, get_user_info from jumpscale.packages.marketplace.bottle.models import UserEntry from jumpscale.core.base import StoredFactory from jumpscale.core.exceptions import exceptions app = Bottle() @app.route("/api/threebots/list") @login_required def list_threebots() -> str: user_info = j.data.serializers.json.loads(get_user_info()) threebots = list_threebot_solutions(user_info["username"]) return j.data.serializers.json.dumps({"data": threebots}) @app.route("/api/threebots/stop", method="POST") @login_required def stop_threebot() -> str: data = j.data.serializers.json.loads(request.body.read()) user_info = j.data.serializers.json.loads(get_user_info()) if "password" not in data or "uuid" not in data: return HTTPResponse( j.data.serializers.json.dumps({"error": "invalid body. missing keys"}), status=400, headers={"Content-Type": "application/json"}, ) try: stop_threebot_solution(owner=user_info["username"], solution_uuid=data["uuid"], password=data["password"]) except (exceptions.Permission, exceptions.Validation): return HTTPResponse( j.data.serializers.json.dumps({"error": "invalid secret"}), status=401, headers={"Content-Type": "application/json"}, ) return j.data.serializers.json.dumps({"data": True}) @app.route("/api/threebots/destroy", method="POST") @login_required def destroy_threebot() -> str: data = j.data.serializers.json.loads(request.body.read()) user_info = j.data.serializers.json.loads(get_user_info()) if "password" not in data or "uuid" not in data: return HTTPResponse( j.data.serializers.json.dumps({"error": "invalid body. missing keys"}), status=400, headers={"Content-Type": "application/json"}, ) try: delete_threebot_solution(owner=user_info["username"], solution_uuid=data["uuid"], password=data["password"]) except (exceptions.Permission, exceptions.Validation): return HTTPResponse( j.data.serializers.json.dumps({"error": "invalid secret"}), status=401, headers={"Content-Type": "application/json"}, ) return j.data.serializers.json.dumps({"data": True}) @app.route("/api/allowed", method="GET") @login_required def allowed(): user_factory = StoredFactory(UserEntry) user_info = j.data.serializers.json.loads(get_user_info()) tname = user_info["username"] explorer_url = j.core.identity.me.explorer.url instances = user_factory.list_all() for name in instances: user_entry = user_factory.get(name) if user_entry.tname == tname and user_entry.explorer_url == explorer_url and user_entry.has_agreed: return j.data.serializers.json.dumps({"allowed": True}) return j.data.serializers.json.dumps({"allowed": False}) @app.route("/api/accept", method="GET") @login_required def accept(): user_factory = StoredFactory(UserEntry) user_info = j.data.serializers.json.loads(get_user_info()) tname = user_info["username"] explorer_url = j.core.identity.me.explorer.url if "testnet" in explorer_url: explorer_name = "testnet" elif "devnet" in explorer_url: explorer_name = "devnet" elif "explorer.grid.tf" in explorer_url: explorer_name = "mainnet" else: return HTTPResponse( j.data.serializers.json.dumps({"error": f"explorer {explorer_url} is not supported"}), status=500, headers={"Content-Type": "application/json"}, ) user_entry = user_factory.get(f"{explorer_name}_{tname.replace('.3bot', '')}") if user_entry.has_agreed: return HTTPResponse( j.data.serializers.json.dumps({"allowed": True}), status=200, headers={"Content-Type": "application/json"} ) else: user_entry.has_agreed = True user_entry.explorer_url = explorer_url user_entry.tname = tname user_entry.save() return HTTPResponse( j.data.serializers.json.dumps({"allowed": True}), status=201, headers={"Content-Type": "application/json"} ) app = SessionMiddleware(app, SESSION_OPTS)
null
jumpscale/packages/threebot_deployer/bottle/solutions.py
solutions.py
py
4,604
python
en
code
null
code-starcoder2
83
[ { "api_name": "bottle.Bottle", "line_number": 15, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data.serializers.json.loads", "line_number": 21, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 21, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 21, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.get_user_info", "line_number": 21, "usage_type": "call" }, { "api_name": "jumpscale.packages.threebot_deployer.bottle.utils.list_threebot_solutions", "line_number": 22, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 23, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 23, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 23, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.login_required", "line_number": 19, "usage_type": "name" }, { "api_name": "jumpscale.loader.j.data.serializers.json.loads", "line_number": 29, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 29, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 29, "usage_type": "name" }, { "api_name": "bottle.request.body.read", "line_number": 29, "usage_type": "call" }, { "api_name": "bottle.request.body", "line_number": 29, "usage_type": "attribute" }, { "api_name": "bottle.request", "line_number": 29, "usage_type": "name" }, { "api_name": "jumpscale.loader.j.data.serializers.json.loads", "line_number": 30, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 30, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 30, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.get_user_info", "line_number": 30, "usage_type": "call" }, { "api_name": "bottle.HTTPResponse", "line_number": 32, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 33, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 33, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 33, "usage_type": "name" }, { "api_name": "jumpscale.packages.threebot_deployer.bottle.utils.stop_threebot_solution", "line_number": 38, "usage_type": "call" }, { "api_name": "jumpscale.core.exceptions.exceptions.Permission", "line_number": 39, "usage_type": "attribute" }, { "api_name": "jumpscale.core.exceptions.exceptions", "line_number": 39, "usage_type": "name" }, { "api_name": "jumpscale.core.exceptions.exceptions.Validation", "line_number": 39, "usage_type": "attribute" }, { "api_name": "bottle.HTTPResponse", "line_number": 40, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 41, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 41, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 41, "usage_type": "name" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 45, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 45, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 45, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.login_required", "line_number": 27, "usage_type": "name" }, { "api_name": "jumpscale.loader.j.data.serializers.json.loads", "line_number": 51, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 51, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 51, "usage_type": "name" }, { "api_name": "bottle.request.body.read", "line_number": 51, "usage_type": "call" }, { "api_name": "bottle.request.body", "line_number": 51, "usage_type": "attribute" }, { "api_name": "bottle.request", "line_number": 51, "usage_type": "name" }, { "api_name": "jumpscale.loader.j.data.serializers.json.loads", "line_number": 52, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 52, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 52, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.get_user_info", "line_number": 52, "usage_type": "call" }, { "api_name": "bottle.HTTPResponse", "line_number": 54, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 55, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 55, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 55, "usage_type": "name" }, { "api_name": "jumpscale.packages.threebot_deployer.bottle.utils.delete_threebot_solution", "line_number": 60, "usage_type": "call" }, { "api_name": "jumpscale.core.exceptions.exceptions.Permission", "line_number": 61, "usage_type": "attribute" }, { "api_name": "jumpscale.core.exceptions.exceptions", "line_number": 61, "usage_type": "name" }, { "api_name": "jumpscale.core.exceptions.exceptions.Validation", "line_number": 61, "usage_type": "attribute" }, { "api_name": "bottle.HTTPResponse", "line_number": 62, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 63, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 63, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 63, "usage_type": "name" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 67, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 67, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 67, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.login_required", "line_number": 49, "usage_type": "name" }, { "api_name": "jumpscale.core.base.StoredFactory", "line_number": 73, "usage_type": "call" }, { "api_name": "jumpscale.packages.marketplace.bottle.models.UserEntry", "line_number": 73, "usage_type": "argument" }, { "api_name": "jumpscale.loader.j.data.serializers.json.loads", "line_number": 74, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 74, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 74, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.get_user_info", "line_number": 74, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.core", "line_number": 76, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 76, "usage_type": "name" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 81, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 81, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 81, "usage_type": "name" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 82, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 82, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 82, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.login_required", "line_number": 71, "usage_type": "name" }, { "api_name": "jumpscale.core.base.StoredFactory", "line_number": 88, "usage_type": "call" }, { "api_name": "jumpscale.packages.marketplace.bottle.models.UserEntry", "line_number": 88, "usage_type": "argument" }, { "api_name": "jumpscale.loader.j.data.serializers.json.loads", "line_number": 90, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 90, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 90, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.get_user_info", "line_number": 90, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.core", "line_number": 92, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 92, "usage_type": "name" }, { "api_name": "bottle.HTTPResponse", "line_number": 101, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 102, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 102, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 102, "usage_type": "name" }, { "api_name": "bottle.HTTPResponse", "line_number": 109, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 110, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 110, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 110, "usage_type": "name" }, { "api_name": "bottle.HTTPResponse", "line_number": 117, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data.serializers.json.dumps", "line_number": 118, "usage_type": "call" }, { "api_name": "jumpscale.loader.j.data", "line_number": 118, "usage_type": "attribute" }, { "api_name": "jumpscale.loader.j", "line_number": 118, "usage_type": "name" }, { "api_name": "jumpscale.packages.auth.bottle.auth.login_required", "line_number": 86, "usage_type": "name" }, { "api_name": "beaker.middleware.SessionMiddleware", "line_number": 122, "usage_type": "call" }, { "api_name": "jumpscale.packages.auth.bottle.auth.SESSION_OPTS", "line_number": 122, "usage_type": "argument" } ]
537324419
''' @author: katiepfleger ''' from __future__ import print_function import sqlite3 import webbrowser import requests from logout import check_input CONN = sqlite3.connect("bpm.db") C = CONN.cursor() CLIENT_ID = '482102fb45cb45fdb465ef73801f4665' CLIENT_SECRET = 'dc7269e0e5a84e71b9b27f857055b41f' REDIRECT_URI = 'https://localhost/' SCOPES = 'user-library-modify user-library-read user-read-playback-state \ user-read-currently-playing user-modify-playback-state user-read-recently-played \ playlist-read-private playlist-modify-public playlist-modify-private \ playlist-read-collaborative' def welcome(): ''' Performs the user authentication and login flow ''' login_result = C.execute('SELECT COUNT(*) FROM Credentials').fetchone()[0] if login_result == 1: print('Welcome back to BPM!') return True else: print('Welcome to BPM!') print('Do you have a BPM account?') print('0:\tYes') print('1:\tNo') has_account = input() check_input(has_account) if has_account == '0': user_id = get_username() if user_id: authenticate() get_code(user_id) CONN.close() return True else: return False else: print('Do you have a Spotify account?') print('0:\tYes') print('1:\tNo') has_spotify = input() check_input(has_spotify) if has_spotify == '0': user_id = create_username() authenticate() get_code(user_id) CONN.close() return True else: print('Please sign up for a Spotify account and return.\n') return False def get_username(): ''' Checks for existing BPM users. ''' username = input('Enter your BPM username: ') check_input(username) try: user_id = C.execute("SELECT U.id FROM User U WHERE U.username='%s'" \ % username).fetchone() if user_id: return user_id[0] else: print('There are no users with that username.') return create_username() except ValueError: print('There are no users with that username. \ Would you like to try again or create a new account?') print('0:\tTry Again') print('1:\tCreate New Account') if input() == '0': return get_username() else: print('Do you have a Spotify account?') print('0:\tYes') print('1:\tNo') has_spotify = input() check_input(has_spotify) if has_spotify == '0': return create_username() else: print('Please sign up for a Spotify account and return.\n') return False def create_username(): ''' Creates new BPM user. ''' username = input('Please enter a username for your new BPM account\n') check_input(username) try: C.execute('INSERT INTO User(username) VALUES (?);', (username,)) CONN.commit() user_id = C.execute('SELECT U.id FROM User U WHERE U.username=?;', \ (username,)).fetchone()[0] return user_id except ValueError: print('That username is already taken. Please enter a different username.\n') return create_username() def authenticate(): ''' Authenticates current user with the BPM app in Spotify. ''' auth_req = "https://accounts.spotify.com/authorize" + \ "?redirect_uri=" + REDIRECT_URI + \ "&scope=" + SCOPES + \ "&client_id=" + CLIENT_ID + \ "&response_type=code" auth_req.replace(":", "%3A").replace("/", "%2F").replace(" ", "+") webbrowser.open(auth_req) def get_code(user_id): ''' Prompts user to enter validation code that they are redirected to. ''' print("Please copy and paste your validation code from the browser: ") auth_code = input() check_input(auth_code) finish_auth(user_id, auth_code) def finish_auth(user_id, auth_code): ''' Adds user authentication tokens to Credentials. ''' resp = requests.post("https://accounts.spotify.com/api/token", data={"grant_type": "authorization_code", "redirect_uri": REDIRECT_URI, "code": auth_code}, auth=(CLIENT_ID, CLIENT_SECRET)) resp.raise_for_status() resp_json = resp.json() access_token = resp_json["access_token"] refresh_token = resp_json["refresh_token"] expires_in = resp_json["expires_in"] C.execute('INSERT INTO Credentials(user_id, access_token, refresh_token, expires_in) \ VALUES (?, ?, ?, ?);', (user_id, access_token, refresh_token, expires_in)) CONN.commit() def get_current_user_token(): ''' Retrieves current user's access token. ''' local_conn = sqlite3.connect("bpm.db") c = local_conn.cursor() access_token = c.execute('SELECT C.access_token FROM Credentials C').fetchone()[0] local_conn.close() return access_token
null
src/auth.py
auth.py
py
5,237
python
en
code
null
code-starcoder2
83
[ { "api_name": "sqlite3.connect", "line_number": 13, "usage_type": "call" }, { "api_name": "logout.check_input", "line_number": 38, "usage_type": "call" }, { "api_name": "logout.check_input", "line_number": 53, "usage_type": "call" }, { "api_name": "logout.check_input", "line_number": 69, "usage_type": "call" }, { "api_name": "logout.check_input", "line_number": 90, "usage_type": "call" }, { "api_name": "logout.check_input", "line_number": 102, "usage_type": "call" }, { "api_name": "webbrowser.open", "line_number": 123, "usage_type": "call" }, { "api_name": "logout.check_input", "line_number": 131, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 138, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 158, "usage_type": "call" } ]
106623030
# -*- coding: utf-8 -*- ''' @File : linkagePage.py @Time : 2018/10/23 14:18 @Author : Chenzd @Project : 联动页面类 @Software: PyCharm ''' import random import time from page.LeeBus.curtain.curtain_editPage import Curtain_editPage from page.basePage import BasePage from selenium.webdriver.common.by import By from page.LeeBus.common import Common from public.configLog import Logger logger = Logger(logger='page.LeeBus.linkage.linkagePage').getlog() class LinkagePage(BasePage): # 调色灯 tvSettingTime = (By.ID, 'com.leelen.luxdomo:id/tvSettingTime') titleAddIv = (By.ID, 'com.leelen.luxdomo:id/titleAddIv') linkage_edit_name = (By.ID, 'com.leelen.luxdomo:id/linkage_edit_name') linkage_meet_conditions_txt = (By.ID, 'com.leelen.luxdomo:id/linkage_meet_conditions_txt') # 任意条件 linkage_meet_oneCondition = (By.ID, 'com.leelen.luxdomo:id/linkage_meet_oneCondition') # 所有条件 linkage_meet_allConditions = (By.ID, 'com.leelen.luxdomo:id/linkage_meet_allConditions') # 添加条件 linkage_meet_conditions_add = (By.ID, 'com.leelen.luxdomo:id/linkage_meet_conditions_add') # 添加设备 linkage_device_add = (By.ID, 'com.leelen.luxdomo:id/linkage_device_add') # 添加场景 linkage_scene_add = (By.ID, 'com.leelen.luxdomo:id/linkage_scene_add') # 添加条件的传感器所有名 linkage_add_condition_listView_name = (By.ID, 'com.leelen.luxdomo:id/linkage_add_condition_listView_name') # 通用传感器选择的二级界面 other_device_listView_status = (By.ID, 'com.leelen.luxdomo:id/other_device_listView_status') # 指纹锁的二级界面 finger_print_lock_all_name = (By.ID, 'com.leelen.luxdomo:id/finger_print_lock_all_name') # 温度传感器二级界面 # 温度高于 linkage_temperature_highText = (By.ID, 'com.leelen.luxdomo:id/linkage_temperature_highText') # 设置温度 linkage_temperature_high_value = (By.ID, 'com.leelen.luxdomo:id/linkage_temperature_high_value') # 温度低于 linkage_temperature_lowText = (By.ID, 'com.leelen.luxdomo:id/linkage_temperature_lowText') # 设置温度 linkage_temperature_value = (By.ID, 'com.leelen.luxdomo:id/linkage_temperature_value') # 湿度传感器二级界面 # 湿度高于 linkage_humidity_high_choose = (By.ID, 'com.leelen.luxdomo:id/linkage_humidity_high_choose') # 设置湿度高于 linkage_humidity_high_value = (By.ID, 'com.leelen.luxdomo:id/linkage_humidity_high_value') # 湿度低于 linkage_humidity_low_choose = (By.ID, 'com.leelen.luxdomo:id/linkage_humidity_low_choose') # 设置湿度低于 linkage_humidity_value = (By.ID, 'com.leelen.luxdomo:id/linkage_humidity_value') # 全选设备 add_device_group_choice = (By.ID, 'com.leelen.luxdomo:id/add_device_group_choice') # 随机选择场景一个 link_add_scene_list_item_name = (By.ID, 'com.leelen.luxdomo:id/link_add_scene_list_item_name') # 联动删除按钮 linkage_add_delete = (By.ID, 'com.leelen.luxdomo:id/linkage_add_delete') # 设备删除按钮--灯 device_deleteBtn = (By.ID, 'com.leelen.luxdomo:id/btnDelete') # 设备删除按钮--中央空调 center_conditioner_delete = (By.ID, 'com.leelen.luxdomo:id/center_conditioner_delete') # 设备删除按钮--除灯以外 device_setting_delete = (By.ID, 'com.leelen.luxdomo:id/device_setting_delete') # 设备删除按钮--地暖 floorHeartDeleteBt = (By.ID, 'com.leelen.luxdomo:id/floorHeartDeleteBt') # 设备删除按钮--调试灯 tvDelete = (By.ID, 'com.leelen.luxdomo:id/tvDelete') # 垃圾桶图标 link_add_scene_list_item_delete = (By.ID, 'com.leelen.luxdomo:id/link_add_scene_list_item_delete') # 设备名称 scene_add_device_type = (By.ID, 'com.leelen.luxdomo:id/scene_add_device_type') tvMsg = (By.ID, 'com.leelen.luxdomo:id/tvMsg') tvSecond = (By.ID, 'com.leelen.luxdomo:id/tvSecond') allopenBtn = (By.ID, 'com.leelen.luxdomo:id/deviceIv') linkage_name_list = [] # 存放联动名称列表 # 进入联动页面并随机编辑名称 def enter_linkage(self): time.sleep(2) self.swipe_left() def back_top(self): while not self.is_element_exist(self.linkage_edit_name): self.swipe_down() def add_linkage(self): self.click(self.titleAddIv) self.input(self.linkage_edit_name, Common(self.driver).random_name()) self.linkage_name_list.append(self.getText(self.linkage_edit_name)) # 检测是否成功创建联动 def check_creat_linkage(self): time.sleep(3) self.swipe_up() name = self.findAU('text(\"' + self.linkage_name_list[-1] + '\")') suc = 0 if name: print('结果:联动创建成功') else: suc = 1 print('结果:联动创建失败') # self.linkage_name_list = [] # 重新置为空,不影响后面使用 return suc def back_scenePage(self): time.sleep(2) self.swipe_rigth() # 点击加号--添加联动条件 def linkage_conditions_add(self): self.click(self.linkage_meet_conditions_add) # 选择联动条件 def linkage_conditions(self): eles = self.get_elements(self.linkage_add_condition_listView_name) ran = random.randint(0, len(eles)-1) conditions_text = self.getText_element(eles[ran]) print('选择的条件传感器为:【'+conditions_text+'】') self.click_element(eles[ran]) # 温度传感器的二级界面操作方法 def temperature_sensor(self, first_id, temperature_value): text = self.getText(first_id) temper_text1 = self.getText(temperature_value) print('设置前温度显示:'+temper_text1 + '°C') self.click(temperature_value) self.swipeControl(533, 1019, 533, 692) self.click(Curtain_editPage.sureBtn) temper_text = self.getText(temperature_value) print('设置后温度显示:' + temper_text + '°C') self.click(first_id) print('选择' + text + temper_text + '°C') # 湿度传感器的二级界面操作方法 def humidity_sensor(self, first_id, temperature_value): self.click(first_id) temper_text1 = self.getText(temperature_value) print('设置前湿度显示:' + temper_text1 + '°C') self.click(temperature_value) self.swipeControl(533, 1019, 533, 692) self.click(Curtain_editPage.sureBtn) temper_text = self.getText(temperature_value) print('设置后湿度显示:' + temper_text + '°C') if first_id == self.linkage_humidity_high_choose: print('选择湿度高于' + temper_text + '°C') else: print('选择湿度低于' + temper_text + '°C') # 进入二级界面后判断 def linkage_conditions_next(self): if self.is_element_exist(self.finger_print_lock_all_name): # 如果是指纹锁二级界面则点击取消,再选择一遍 self.click(Common.cancelTv) self.linkage_conditions() self.linkage_conditions_next() elif self.is_element_exist(self.linkage_temperature_highText): # 如果温度传感器的二级界面,进行温度传感器操作 list_ele = [self.linkage_temperature_highText, self.linkage_temperature_lowText] ran = random.randint(0, len(list_ele)-1) if ran == 0: self.temperature_sensor(self.linkage_temperature_highText, self.linkage_temperature_high_value) else: self.temperature_sensor(self.linkage_temperature_lowText, self.linkage_temperature_value) elif self.is_element_exist(self.linkage_humidity_high_choose): # 如果湿度传感器的二级界面,进行湿度传感器操作 list_ele = [self.linkage_humidity_high_choose, self.linkage_humidity_low_choose] ran = random.randint(0, len(list_ele)-1) if ran == 0: self.humidity_sensor(self.linkage_humidity_high_choose, self.linkage_temperature_high_value) else: self.humidity_sensor(self.linkage_humidity_low_choose, self.linkage_temperature_value) else: # 通用二级传感器界面 eles = self.get_elements(self.other_device_listView_status) ran = random.randint(0, len(eles)-1) text = self.getText_element(eles[ran]) print('选择:'+text) self.click_element(eles[ran]) Common(self.driver).save_def() # 添加设备--点击加号 def add_device_btn(self): self.click(self.linkage_device_add) def linkage_devices_add(self): self.click(self.add_device_group_choice) print('联动控制设备为:【全选】') Common(self.driver).save_def() # 添加场景--点击加号 def linkage_scenes_add(self): while not self.is_element_exist(self.linkage_scene_add): self.swipe_up() self.click(self.linkage_scene_add) eles = self.get_elements(self.link_add_scene_list_item_name) ran = random.randint(0, len(eles)-1) text = self.getText_element(eles[ran]) print('选择联动控制的场景为:【'+text+'】') self.click_element(eles[ran]) Common(self.driver).save_def() # 编辑条件 def edit_conditions(self): text1 = self.getText(self.linkage_meet_conditions_txt) print('编辑前条件:' + text1) self.click(self.linkage_meet_conditions_txt) self.click(self.linkage_meet_oneCondition) text2 = self.getText(self.linkage_meet_conditions_txt) print('编辑后条件:'+text2) suc = 0 if text2 != text1: print('条件编辑成功') else: print('条件编辑未改变') return suc # 对比删除的弹框内容 def confirm_alert(self, msg_alert): suc = 0 if self.is_element_exist(self.tvMsg): msg = self.getText(self.tvMsg) message = msg.strip().replace('\n', '') print('弹出框内容:【%s】' % message) self.click(self.tvSecond) if msg_alert == message: print('结果:弹出框的内容正确') else: suc = 1 print('结果:弹出框的内容错误') return suc # 随机设备名,删除设备--进入二级界面 def delete_device_enter(self, msg_alert): eles = self.get_elements(self.scene_add_device_type) ran = random.randint(0, len(eles)-1) text_before = self.getText_element(eles[ran]) self.click_element(eles[ran]) time.sleep(1) if self.is_element_exist(self.device_deleteBtn): self.click(self.device_deleteBtn) elif self.is_element_exist(self.center_conditioner_delete): self.click(self.center_conditioner_delete) elif self.is_element_exist(self.device_setting_delete): self.click(self.device_setting_delete) elif self.is_element_exist(self.tvDelete): self.click(self.tvDelete) else: self.click(self.floorHeartDeleteBt) suc = self.confirm_alert(msg_alert) text_after = self.getText_element(eles[ran]) if text_before != text_after: print('结果:删除成功') else: suc = 1 print('结果:删除失败') return suc # 随机设备名,删除设备----设备列表 def delete_device_list(self, msg_alert): eles = self.get_elements(self.scene_add_device_type) ran = random.randint(0, len(eles) - 1) text_before = self.getText_element(eles[ran]) time.sleep(1) self.longPress(eles[ran]) suc = self.confirm_alert(msg_alert) text_after = self.getText_element(eles[ran]) if text_before != text_after: print('结果:删除成功') else: suc = 1 print('结果:删除失败') return suc # 删除联动中的场景 def delete_scene_list(self, msg_alert): if self.is_element_exist(self.link_add_scene_list_item_delete): self.click(self.link_add_scene_list_item_delete) suc = self.confirm_alert(msg_alert) if self.is_element_exist(self.link_add_scene_list_item_delete): suc = 1 print('结果:删除联动中的场景失败') else: print('结果:删除联动中的场景成功') return suc # 删除整个联动 def delete_linkage(self): while not self.is_element_exist(self.linkage_add_delete): self.swipe_up() self.click(self.linkage_add_delete) if __name__ == '__main__': msg = ' 删除后,联动无法控制该设备\n是否删除? ' print(msg.strip().replace('\n',''))
null
page/LeeBus/linkage/linkagePage.py
linkagePage.py
py
13,018
python
en
code
null
code-starcoder2
83
[ { "api_name": "public.configLog.Logger", "line_number": 17, "usage_type": "call" }, { "api_name": "page.basePage.BasePage", "line_number": 18, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 20, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 20, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 21, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 21, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 22, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 22, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 23, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 23, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 25, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 25, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 27, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 27, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 29, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 29, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 31, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 31, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 33, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 33, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 35, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 35, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 37, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 37, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 39, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 39, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 43, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 43, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 45, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 45, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 47, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 47, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 49, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 49, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 53, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 53, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 55, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 55, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 57, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 57, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 59, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 59, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 62, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 62, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 65, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 65, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 67, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 67, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 69, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 69, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 71, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 71, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 73, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 73, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 75, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 75, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 77, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 77, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 79, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 79, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 81, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 81, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 83, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 83, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 84, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 84, "usage_type": "name" }, { "api_name": "selenium.webdriver.common.by.By.ID", "line_number": 86, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.common.by.By", "line_number": 86, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 91, "usage_type": "call" }, { "api_name": "page.LeeBus.common.Common", "line_number": 100, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 105, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 118, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 128, "usage_type": "call" }, { "api_name": "page.LeeBus.curtain.curtain_editPage.Curtain_editPage.sureBtn", "line_number": 140, "usage_type": "attribute" }, { "api_name": "page.LeeBus.curtain.curtain_editPage.Curtain_editPage", "line_number": 140, "usage_type": "name" }, { "api_name": "page.LeeBus.curtain.curtain_editPage.Curtain_editPage.sureBtn", "line_number": 153, "usage_type": "attribute" }, { "api_name": "page.LeeBus.curtain.curtain_editPage.Curtain_editPage", "line_number": 153, "usage_type": "name" }, { "api_name": "page.LeeBus.common.Common.cancelTv", "line_number": 164, "usage_type": "attribute" }, { "api_name": "page.LeeBus.common.Common", "line_number": 164, "usage_type": "name" }, { "api_name": "random.randint", "line_number": 169, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 176, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 183, "usage_type": "call" }, { "api_name": "page.LeeBus.common.Common", "line_number": 187, "usage_type": "call" }, { "api_name": "page.LeeBus.common.Common", "line_number": 196, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 204, "usage_type": "call" }, { "api_name": "page.LeeBus.common.Common", "line_number": 208, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 243, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 246, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 269, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 271, "usage_type": "call" } ]
307872856
''' Moudle that contains the two main data types `target_extraction.data_types.TargetText` and `target_extraction.data_types.TargetTextCollection` where the later is a container for the former. classes: 1. `target_extraction.data_types.TargetText` 2. `target_extraction.data_types.TargetTextCollection` ''' from collections.abc import MutableMapping from collections import OrderedDict, Counter import copy import json from pathlib import Path from typing import Optional, List, Tuple, Iterable, NamedTuple, Any, Callable from typing import Union, Dict from target_extraction.tokenizers import is_character_preserving, token_index_alignment from target_extraction.data_types_util import Span class TargetText(MutableMapping): ''' This is a data structure that inherits from MutableMapping which is essentially a python dictionary. The following are the default keys that are in all `TargetText` objects, additional items can be added through __setitem__ but the default items cannot be deleted. 1. text - The text associated to all of the other items 2. text_id -- The unique ID associated to this object 3. targets -- List of all target words that occur in the text. A special placeholder of None (python None value) can exist where the target does not exist but a related Category does this would mean though that the related span is Span(0, 0), this type of special placeholder is in place for the SemEval 2016 Restaurant dataset where they link the categories to the targets but not all categories have related targets thus None. 4. spans -- List of Span NamedTuples where each one specifies the start and end of the respective targets within the text. 5. target_sentiments -- List sepcifying the sentiment of the respective targets within the text. 6. categories -- List of categories that exist in the data which may or may not link to the targets (this is dataset speicific). NOTE: depending on the dataset and how it is parsed the category can exist but the target does not as the category is a latent variable, in these cases the category and category sentiments will be the same size which would be a different size to the target and target sentiments size. E.g. can happen where the dataset has targets and categories but they do not map to each other in a one to one manner e.g SemEval 2014 restuarant dataset, there are some samples that contain categories but no targets. Another word for category can be aspect. 7. category_sentiments -- List of the sentiments associated to the categories. If the categories and targets map to each other then this will be empty and you will only use the target_sentiments. Methods: 1. to_json -- Returns the object as a dictionary and then encoded using json.dumps 2. tokenize -- This will add a new key `tokenized_text` to this TargetText instance that will store the tokens of the text that is associated to this TargetText instance. 3. pos_text -- This will add a new key `pos_tags` to this TargetText instance. This key will store the pos tags of the text that is associated to this Target Text instance. 4. force_targets -- Does not return anything but modifies the `spans` and `text` values as whitespace is prefixed and suffixed the target unless the prefix or suffix is whitespace. NOTE that this is the only method that currently can change the `spans` and `text` key values after they have been set. 5. sequence_labels -- Adds the `sequence_labels` key to this TargetText instance which can be used to train a machine learning algorthim to detect targets. 6. get_sequence_spans -- The span indexs from the sequence labels given assuming that the sequence labels are in BIO format. 7. one_sample_per_span -- This returns a similar TargetText instance where the new instance will only contain one target per span. Static Functions: 1. from_json -- Returns a TargetText object given a json string. For example the json string can be the return of TargetText.to_json. ''' def _check_is_list(self, item: List[Any], item_name: str) -> None: ''' This will check that the argument given is a List and if not will raise a TypeError. :param item: The argument that is going to be checked to ensure it is a list. :param item_name: Name of the item. This is used within the raised error message, if an error is raised. :raises TypeError: If any of the items are not of type List. ''' type_err = f'{item_name} should be a list not {type(item)} {item}' if not isinstance(item, list): raise TypeError(type_err) def sanitize(self) -> None: ''' This performs a check on all of the lists that can be given at object construction time to ensure that the following conditions are met: 1. The target, spans and target_sentiments lists are all of the same size if set. 2. The categories and the category_sentiments lists are all of the same size if set. Further more it checks the following: 1. If targets or spans are set then both have to exist. 2. If targets and spans are set that the spans text match the associated target words e.g. if the target is `barry davies` in `today barry davies went` then the spans should be [[6,18]] :raises ValueError: If any of the above conditions are not True. ''' def length_mis_match(lists_to_check: List[Any], text_id_msg: str) -> None: length_mismatch_msg = 'The following lists do not match '\ f'{lists_to_check}' list_lengths = [len(_list) for _list in lists_to_check if _list is not None] current_list_size = -1 for list_length in list_lengths: if current_list_size == -1: current_list_size = list_length else: if current_list_size != list_length: raise ValueError(text_id_msg + length_mismatch_msg) targets = self._storage['targets'] target_sentiments = self._storage['target_sentiments'] spans = self._storage['spans'] categories = self._storage['categories'] category_sentiments = self._storage['category_sentiments'] text_id = self._storage['text_id'] text_id_msg = f'Text id that this error refers to {text_id}\n' # Checking the length mismatches for the two different lists length_mis_match([targets, target_sentiments, spans], text_id_msg) length_mis_match([categories, category_sentiments], text_id_msg) # Checking that if targets are set than so are spans if targets is not None and spans is None: spans_none_msg = f'If the targets are a list: {targets} then spans'\ f' should also be a list and not None: {spans}' raise ValueError(text_id_msg + spans_none_msg) # Checking that the words Spans reference in the text match the # respective target words. Edge case is the case of None targets which # should have a Span value of (0, 0) if targets is not None: text = self._storage['text'] for target, span in zip(targets, spans): if target is None: target_span_msg = 'As the target value is None the span '\ 'it refers to should be of value '\ f'Span(0, 0) and not {span}' if span != Span(0, 0): raise ValueError(text_id_msg + target_span_msg) else: start, end = span.start, span.end text_target = text[start:end] target_span_msg = 'The target the spans reference in the '\ f'text: {text_target} does not match '\ f'the target in the targets list: {target}' if text_target != target: raise ValueError(text_id_msg + target_span_msg) def __init__(self, text: str, text_id: str, targets: Optional[List[str]] = None, spans: Optional[List[Span]] = None, target_sentiments: Optional[List[Union[int, str]]] = None, categories: Optional[List[str]] = None, category_sentiments: Optional[List[Union[int, str]]] = None): # Ensure that the arguments that should be lists are lists. self._list_argument_names = ['targets', 'spans', 'target_sentiments', 'categories', 'category_sentiments'] self._list_arguments = [targets, spans, target_sentiments, categories, category_sentiments] names_arguments = zip(self._list_argument_names, self._list_arguments) for argument_name, list_argument in names_arguments: if list_argument is None: continue self._check_is_list(list_argument, argument_name) temp_dict = dict(text=text, text_id=text_id, targets=targets, spans=spans, target_sentiments=target_sentiments, categories=categories, category_sentiments=category_sentiments) self._protected_keys = set(['text', 'text_id', 'targets', 'spans']) self._storage = temp_dict self.sanitize() def __getitem__(self, key: str) -> Any: ''' :returns: One of the values from the self._storage dictionary. e.g. if the key is `text` it will return the string representing the text associated to this object. ''' return self._storage[key] def __iter__(self) -> Iterable[str]: ''' Returns an interator over the keys in self._storage which are the following Strings by default additional keys can be added: 1. text 2. text_id 3. targets 4. spans 5. target_sentiments 6. categories 7. category_sentiments :returns: The keys in self._storage ''' return iter(self._storage) def __len__(self) -> int: ''' :returns: The number of items in self._storage. ''' return len(self._storage) def __repr__(self) -> str: ''' :returns: String returned is what user see when the instance is printed or printed within a interpreter. ''' return f'TargetText({self._storage})' def __eq__(self, other: 'TargetText') -> bool: ''' Two TargetText instances are equal if they both have the same `text_id` value. :param other: Another TargetText object that is being compared to this TargetText object. :returns: True if they have the same `text_id` value else False. ''' if not isinstance(other, TargetText): return False elif self['text_id'] != other['text_id']: return False return True def __delitem__(self, key: str) -> None: ''' Given a key that matches a key within self._storage or self.keys() it will delete that key and value from this object. NOTE: Currently 'text', 'text_id', 'spans', and 'targets' are keys that cannot be deleted. :param key: Key and its respective value to delete from this object. ''' if key in self._protected_keys: raise KeyError('Cannot delete a key that is protected, list of ' f' protected keys: {self._protected_keys}') del self._storage[key] def __setitem__(self, key: str, value: Any) -> None: ''' Given a key and a respected value it will either change that current keys value to the one gien here or create a new key with that value. NOTE: Currently 'text', 'text_id', 'spans', and 'targets' are keys that cannot be changed. :param key: Key to be added or changed :param value: Value associated to the given key. ''' if key in self._protected_keys: raise KeyError('Cannot change a key that is protected, list of ' f' protected keys: {self._protected_keys}') # If the key value should be a list ensure that the new value is a # list as well. if key in self._list_argument_names: self._check_is_list(value, key) self._storage[key] = value self.sanitize() def to_json(self) -> str: ''' Required as TargetText is not json serlizable due to the 'spans'. :returns: The object as a dictionary and then encoded using json.dumps ''' return json.dumps(self._storage) def _shift_spans(self, num_shifts: int, target_span: Span) -> None: ''' This only affects the current state of the TargetText attributes. The attributes this affects is the `spans` attribute. NOTE: This is only used within self.force_targets method. :param num_shifts: The number of whitespaces that the target at span_index is going to be added. 1 if it is just prefix or suffix space added, 2 if both or 0 if none. :param spans: The current target span indexs that are having extra whitespace added either prefix or suffix. ''' relevant_span_indexs: List[int] = [] target_span_end = target_span.end for span_index, other_target_span in enumerate(self['spans']): if other_target_span == target_span: continue elif other_target_span.start > target_span_end: relevant_span_indexs.append(span_index) for relevant_span_index in relevant_span_indexs: start, end = self['spans'][relevant_span_index] start += num_shifts end += num_shifts self._storage['spans'][relevant_span_index] = Span(start, end) def force_targets(self) -> None: ''' :NOTE: As this affects the following attributes `spans` and `text` it therefore has to modify these through self._storage as both of these attributes are within self._protected_keys. Does not return anything but modifies the `spans` and `text` values as whitespace is prefixed and suffixed the target unless the prefix or suffix is whitespace. Motivation: Ensure that the target tokens are not within another seperate String e.g. target = `priced` but the sentence is `the laptop;priced is high` and the tokenizer is on whitespace it will not have `priced` seperated therefore the BIO tagging is not determinstric thus force will add whitespace around the target word e.g. `the laptop; priced`. This was mainly added for the TargetText.sequence_tags method. ''' for span_index in range(len(self['spans'])): text = self['text'] last_token_index = len(text) - 1 span = self['spans'][span_index] prefix = False suffix = False start, end = span if start != 0: if text[start - 1] != ' ': prefix = True if end < last_token_index: if text[end] != ' ': suffix = True text_before = text[:start] text_after = text[end:] target = text[start:end] if prefix and suffix: self._storage['text'] = f'{text_before} {target} {text_after}' self._shift_spans(2, span) self._storage['spans'][span_index] = Span(start + 1, end + 1) elif prefix: self._storage['text'] = f'{text_before} {target}{text_after}' self._shift_spans(1, span) self._storage['spans'][span_index] = Span(start + 1, end + 1) elif suffix: self._storage['text'] = f'{text_before}{target} {text_after}' self._shift_spans(1, span) def tokenize(self, tokenizer: Callable[[str], List[str]], perform_type_checks: bool = False) -> None: ''' This will add a new key `tokenized_text` to this TargetText instance that will store the tokens of the text that is associated to this TargetText instance. For a set of tokenizers that are definetly comptable see target_extraction.tokenizers module. Ensures that the tokenization is character preserving. :param tokenizer: The tokenizer to use tokenize the text for each TargetText instance in the current collection :param perform_type_checks: Whether or not to perform type checks to ensure the tokenizer returns a List of Strings :raises TypeError: If the tokenizer given does not return a List of Strings. :raises ValueError: This is raised if the TargetText instance contains empty text. :raises ValueError: If the tokenization is not character preserving. ''' text = self['text'] tokenized_text = tokenizer(text) if perform_type_checks: if not isinstance(tokenized_text, list): raise TypeError('The return type of the tokenizer function ', f'{tokenizer} should be a list and not ' f'{type(tokenized_text)}') for token in tokenized_text: if not isinstance(token, str): raise TypeError('The return type of the tokenizer function ', f'{tokenizer} should be a list of Strings' f' and not a list of {type(token)}') if len(tokenized_text) == 0: raise ValueError('There are no tokens for this TargetText ' f'instance {self}') if not is_character_preserving(text, tokenized_text): raise ValueError('The tokenization method used is not character' f' preserving. Original text `{text}`\n' f'Tokenized text `{tokenized_text}`') self['tokenized_text'] = tokenized_text def pos_text(self, tagger: Callable[[str], Tuple[List[str], List[str]]], perform_type_checks: bool = False) -> None: ''' This will add a new key `pos_tags` to this TargetText instance. This key will store the pos tags of the text that is associated to this Target Text instance. NOTE: It will also replace the current tokens in the `tokenized_text` key with the tokens produced from the pos tagger. For a set of pos taggers that are definetly comptable see target_extraction.pos_taggers module. The pos tagger will have to produce both a list of tokens and pos tags. :param tagger: POS tagger. :param perform_type_checks: Whether or not to perform type checks to ensure the POS tagger returns a tuple containing two lists both containing Strings. :raises TypeError: If the POS tagger given does not return a Tuple :raises TypeError: If the POS tagger given does not return a List of Strings for both the tokens and the pos tags. :raises TypeError: If the POS tagger tokens or pos tags are not lists :raises ValueError: If the POS tagger return is not a tuple of length 2 :raises ValueError: This is raised if the Target Text text is empty :raises ValueError: If the number of pos tags for this instance does not have the same number of tokens that has been generated by the tokenizer function. ''' text = self['text'] tokens_pos_tags = tagger(text) if perform_type_checks: if not isinstance(tokens_pos_tags, tuple): raise TypeError('The return type for the pos tagger should be' f' a tuple not {type(tokens_pos_tags)}') if len(tokens_pos_tags) != 2: raise ValueError('The return of the POS tagger should be a ' f'tuple of length 2 not {len(tokens_pos_tags)}') if not isinstance(tokens_pos_tags[0], list): raise TypeError('The return type of the tagger function ', f'{tagger} should be a list and not ' f'{type(tokens_pos_tags[0])} for the tokens') if not isinstance(tokens_pos_tags[1], list): raise TypeError('The return type of the tagger function ', f'{tagger} should be a list and not ' f'{type(tokens_pos_tags[1])} for the POS tags') for name, tags in [('tokens', tokens_pos_tags[0]), ('pos_tags', tokens_pos_tags[1])]: for tag in tags: if not isinstance(tag, str): raise TypeError('The return type of the tagger function ', f'{tagger} should be a list of Strings' f' and not a list of {type(tag)} for ' f'the {name}') tokens, pos_tags = tokens_pos_tags num_pos_tags = len(pos_tags) if len(pos_tags) == 0: raise ValueError('There are no tags for this TargetText ' f'instance {self}') num_tokens = len(tokens) if num_tokens != num_pos_tags: raise ValueError(f'Number of POS tags {pos_tags} should be the ' f'same as the number of tokens {tokens}') self['pos_tags'] = pos_tags self['tokenized_text'] = tokens def sequence_labels(self) -> None: ''' Adds the `sequence_labels` key to this TargetText instance which can be used to train a machine learning algorthim to detect targets. The `force_targets` method might come in useful here for training and validation data to ensure that more of the targets are not affected by tokenization error as only tokens that are fully within the target span are labelled with `B` or `I` tags. Currently the only sequence labels supported is IOB-2 labels for the targets only. Future plans look into different sequence label order e.g. IOB see link below for more details of the difference between the two sequence, of which there are more sequence again. https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging) :raises KeyError: If the current TargetText has not been tokenized. :raises ValueError: If two targets overlap the same token(s) e.g `Laptop cover was great` if `Laptop` and `Laptop cover` are two seperate targets this should riase a ValueError as a token should only be associated to one target. ''' text = self['text'] if 'tokenized_text' not in self: raise KeyError(f'Expect the current TargetText {self} to have ' 'been tokenized using the self.tokenize method.') self.sanitize() tokens = self['tokenized_text'] sequence_labels = ['O' for _ in range(len(tokens))] # This is the case where there are no targets thus all sequence labels # are `O` if self['spans'] is None or self['targets'] is None: self['sequence_labels'] = sequence_labels return target_spans: List[Span] = self['spans'] tokens_index = token_index_alignment(text, tokens) for target_span in target_spans: target_span_range = list(range(*target_span)) same_target = False for sequence_index, token_index in enumerate(tokens_index): token_start, token_end = token_index token_end = token_end - 1 if (token_start in target_span_range and token_end in target_span_range): if sequence_labels[sequence_index] != 'O': err_msg = ('Cannot have two sequence labels for one ' f'token, text {text}\ntokens {tokens}\n' f'token indexs {tokens_index}\nTarget ' f'spans {target_spans}') raise ValueError(err_msg) if same_target: sequence_labels[sequence_index] = 'I' else: sequence_labels[sequence_index] = 'B' same_target = True self['sequence_labels'] = sequence_labels def _key_error(self, key: str) -> None: ''' :param key: The key to check for within this TargetText instance. :raises KeyError: If the key given does not exist within this TargetText instance. ''' if f'{key}' not in self: raise KeyError(f'Requires that this TargetText instance {self}' f'contians the key `{key}`') def get_sequence_spans(self, sequence_key: str) -> List[Span]: ''' The following sequence label tags are supported: IOB-2. These are the tags that are currently generated by `sequence_labels` :param sequence_key: Key to sequence labels such as a BIO sequence labels. Example key name would be `sequence_labels` after `sequence_labels` function has been called or more appropiately `predicted_sequence_labels` when you have predicted sequence labels. :returns: The span indexs from the sequence labels given assuming that the sequence labels are in BIO format. :raises ValueError: If the sequence labels that are contained in the sequence key value contain values other than `B`, `I`, or `O`. ''' def found_target(start_index: int, end_index: int) -> Span: if end_index == 0: raise ValueError(f'The end index {end_index} of ' f'a span cannot be 0. sequence label key used ' f'{sequence_key}\nTargetText {self}') return Span(start_span_index, end_span_index) # number of tokens, sequence labels, and token text indexs should # all be the same, it is if the `sequence_labels` function is used tokens = self['tokenized_text'] token_text_indexs = token_index_alignment(self['text'], tokens) sequence_labels = self[sequence_key] same_target = False start_span_index = 0 end_span_index = 0 sequence_spans: List[Span] = [] for text_index, sequence_label in zip(token_text_indexs, sequence_labels): if sequence_label == 'B': if same_target == True: sequence_span = found_target(start_span_index, end_span_index) sequence_spans.append(sequence_span) same_target = False start_span_index = 0 end_span_index = 0 same_target = True start_span_index = text_index[0] end_span_index = text_index[1] elif sequence_label == 'I': end_span_index = text_index[1] elif sequence_label == 'O': if same_target: sequence_span = found_target(start_span_index, end_span_index) sequence_spans.append(sequence_span) same_target = False start_span_index = 0 end_span_index = 0 else: raise ValueError('Sequence labels should be `B` `I` or `O` ' f'and not {sequence_label}. Sequence label ' f'key used {sequence_key}\nTargetText {self}') if end_span_index != 0: sequence_spans.append(Span(start_span_index, end_span_index)) return sequence_spans def one_sample_per_span(self, remove_empty: bool = False) -> 'TargetText': ''' This returns a similar TargetText instance where the new instance will only contain one target per span. This is for the cases where you can have a target e.g. `food` that has a different related category attached to it e.g. TargetText(text=`$8 and there is much nicer, food, all of it great and continually refilled.`, text_id=`1`, targets=[`food`, `food`, `food`], categories=[`style`, `quality`, `price`], target_sentiments=[`pos`,`pos`,`pos`], spans=[Span(27, 31),Span(27, 31),Span(27, 31)]) As we can see the targets and the categories are linked, this is only really the case in SemEval 2016 datasets from what I know currently. In the example case above it will transform it to the following: TargetText(text=`$8 and there is much nicer, food, all of it great and continually refilled.`, text_id=`1`, targets=[`food`],spans=[Span(27,31)]) This type of pre-processing is perfect for the Target Extraction task. :param remove_empty: If the TargetText instance contains any None targets then these will be removed along with their respective Spans. :returns: This returns a similar TargetText instance where the new instance will only contain one target per span. ''' text = self['text'] text_id = self['text_id'] targets: List[str] = [] spans: List[Span] = [] if self['spans'] is None: return TargetText(text=text, text_id=text_id) current_spans = self['spans'] unique_spans = set(current_spans) spans = sorted(unique_spans, key=lambda x: x[0]) temp_spans: List[Span] = [] for span in spans: targets_text = text[span.start: span.end] if span.start == 0 and span.end == 0 and remove_empty: continue else: temp_spans.append(span) targets.append(targets_text) spans = temp_spans return TargetText(text=text, text_id=text_id, targets=targets, spans=spans) @staticmethod def from_json(json_text: str) -> 'TargetText': ''' This is required as the 'spans' are Span objects which are not json serlizable and are required for TargetText therefore this handles that special case. This function is also required as we have had to avoid using the __set__ function and add objects via the _storage dictionary underneath so that we could add values to this object that are not within the constructor like `tokenized_text`. To ensure that it is compatable with the TargetText concept we call `TargetText.sanitize` method at the end. :param json_text: JSON representation of TargetText (can be from TargetText.to_json) :returns: A TargetText object :raises KeyError: If within the JSON representation there is no `text` or `text_id` key. ''' json_target_text = json.loads(json_text) if not 'text' in json_target_text or not 'text_id' in json_target_text: raise KeyError('The JSON text given does not contain a `text`' f' or `text_id` field: {json_target_text}') target_text = TargetText(text=json_target_text['text'], text_id=json_target_text['text_id']) for key, value in json_target_text.items(): if key == 'text' or key == 'text_id': continue if key == 'spans': if value == None: target_text._storage[key] = None else: all_spans = [] for span in value: all_spans.append(Span(*span)) target_text._storage[key] = all_spans else: target_text._storage[key] = value target_text.sanitize() return target_text class TargetTextCollection(MutableMapping): ''' This is a data structure that inherits from MutableMapping which is essentially a python dictionary, however the underlying storage is a OrderedDict therefore if you iterate over it, the iteration will always be in the same order. This structure only contains TargetText instances. Methods: 1. to_json -- Writes each TargetText instances as a dictionary using it's own to_json function on a new line within the returned String. The returned String is not json comptable but if split by new line it is and is also comptable with the from_json method of TargetText. 2. add -- Wrapper around __setitem__. Given as an argument a TargetText instance it will be added to the collection. 3. to_json_file -- Saves the current TargetTextCollection to a json file which won't be strictly json but each line in the file will be and each line in the file can be loaded in from String via TargetText.from_json. Also the file can be reloaded into a TargetTextCollection using TargetTextCollection.load_json. 4. tokenize -- This applies the TargetText.tokenize method across all of the TargetText instances within the collection. 5. pos_text -- This applies the TargetText.pos_text method across all of the TargetText instances within the collection. 6. sequence_labels -- This applies the TargetText.sequence_labels method across all of the TargetText instances within the collection. 7. force_targets -- This applies the TargetText.force_targets method across all of the TargetText instances within the collection. 8. exact_match_score -- Recall, Precision, and F1 score in a Tuple. All of these measures are based on exact span matching rather than the matching of the sequence label tags, this is due to the annotation spans not always matching tokenization therefore this removes the tokenization error that can come from the sequence label measures. 9. samples_with_targets -- Returns all of the samples that have target spans as a TargetTextCollection. 10. target_count -- A dictionary of target text as key and values as the number of times the target text occurs in this TargetTextCollection 11. one_sample_per_span -- This applies the TargetText.one_sample_per_span method across all of the TargetText instances within the collection to create a new collection with those new TargetText instances within it. 12. sanitize -- This applies the TargetText.sanitize function to all of the TargetText instances within this collection, affectively ensures that all of the instances follow the specified rules that TargetText instances should follow. Static Functions: 1. from_json -- Returns a TargetTextCollection object given the json like String from to_json. For example the json string can be the return of TargetTextCollection.to_json. 2. load_json -- Returns a TargetTextCollection based on each new line in the given json file. ''' def __init__(self, target_texts: Optional[List['TargetText']] = None, name: Optional[str] = None) -> None: ''' :param target_texts: A list of TargetText instances to add to the collection. :param name: Name to call the collection. ''' self._storage = OrderedDict() if target_texts is not None: for target_text in target_texts: self.add(target_text) if name is None: name = '' self.name = name def add(self, value: 'TargetText') -> None: ''' Wrapper around set item. Instead of having to add the value the usual way of finding the instances 'text_id' and setting this containers key to this value, it does this for you. e.g. performs self[value['text_id']] = value :param value: The TargetText instance to store in the collection ''' self[value['text_id']] = value def to_json(self) -> str: ''' Required as TargetTextCollection is not json serlizable due to the 'spans' in the TargetText instances. :returns: The object as a list of dictionarys where each the TargetText instances are dictionaries. ''' json_text = '' for index, target_text_instance in enumerate(self.values()): if index != 0: json_text += '\n' target_text_instance: TargetText json_text += target_text_instance.to_json() return json_text @staticmethod def from_json(json_text: str, **target_text_collection_kwargs ) -> 'TargetTextCollection': ''' Required as the json text is expected to be the return from the self.to_json method. This string is not passable by a standard json decoder. :param json_text: This is expected to be a dictionary like object for each new line in this text :param target_text_collection_kwargs: Key word arguments to give to the TargetTextCollection constructor. :returns: A TargetTextCollection based on each new line in the given text to be passable by TargetText.from_json method. ''' if json_text.strip() == '': return TargetTextCollection(**target_text_collection_kwargs) target_text_instances = [] for line in json_text.split('\n'): target_text_instances.append(TargetText.from_json(line)) return TargetTextCollection(target_text_instances, **target_text_collection_kwargs) @staticmethod def load_json(json_fp: Path, **target_text_collection_kwargs ) -> 'TargetTextCollection': ''' Allows loading a dataset from json. Where the json file is expected to be output from TargetTextCollection.to_json_file as the file will be a json String on each line generated from TargetText.to_json. :param json_fp: File that contains json strings generated from TargetTextCollection.to_json_file :param target_text_collection_kwargs: Key word arguments to give to the TargetTextCollection constructor. :returns: A TargetTextCollection based on each new line in the given json file. ''' target_text_instances = [] with json_fp.open('r') as json_file: for line in json_file: if line.strip(): target_text_instance = TargetText.from_json(line) target_text_instances.append(target_text_instance) return TargetTextCollection(target_text_instances, **target_text_collection_kwargs) def to_json_file(self, json_fp: Path) -> None: ''' Saves the current TargetTextCollection to a json file which won't be strictly json but each line in the file will be and each line in the file can be loaded in from String via TargetText.from_json. Also the file can be reloaded into a TargetTextCollection using TargetTextCollection.load_json. :param json_fp: File path to the json file to save the current data to. ''' with json_fp.open('w+') as json_file: for index, target_text_instance in enumerate(self.values()): target_text_instance: TargetText target_text_string = target_text_instance.to_json() if index != 0: target_text_string = f'\n{target_text_string}' json_file.write(target_text_string) def tokenize(self, tokenizer: Callable[[str], List[str]]) -> None: ''' This applies the TargetText.tokenize method across all of the TargetText instances within the collection. For a set of tokenizers that are definetly comptable see target_extraction.tokenizers module. Ensures that the tokenization is character preserving. :param tokenizer: The tokenizer to use tokenize the text for each TargetText instance in the current collection :raises TypeError: If the tokenizer given does not return a List of Strings. :raises ValueError: This is raised if any of the TargetText instances in the collection contain an empty string. :raises ValueError: If the tokenization is not character preserving. ''' for index, target_text_instance in enumerate(self.values()): if index == 0: target_text_instance.tokenize(tokenizer, True) else: target_text_instance.tokenize(tokenizer, False) def pos_text(self, tagger: Callable[[str], List[str]]) -> None: ''' This applies the TargetText.pos_text method across all of the TargetText instances within the collection. For a set of pos taggers that are definetly comptable see target_extraction.pos_taggers module. :param tagger: POS tagger. :raises TypeError: If the POS tagger given does not return a List of Strings. :raises ValueError: This is raised if any of the TargetText instances in the collection contain an empty string. :raises ValueError: If the Target Text instance has not been tokenized. :raises ValueError: If the number of pos tags for a Target Text instance does not have the same number of tokens that has been generated by the tokenizer function. ''' for index, target_text_instance in enumerate(self.values()): if index == 0: target_text_instance.pos_text(tagger, True) else: target_text_instance.pos_text(tagger, False) def force_targets(self) -> None: ''' This applies the TargetText.force_targets method across all of the TargetText instances within the collection. ''' for target_text_instance in self.values(): target_text_instance.force_targets() def sequence_labels(self) -> None: ''' This applies the TargetText.sequence_labels method across all of the TargetText instances within the collection. :raises KeyError: If the current TargetText has not been tokenized. :raises ValueError: If two targets overlap the same token(s) e.g `Laptop cover was great` if `Laptop` and `Laptop cover` are two seperate targets this should riase a ValueError as a token should only be associated to one target. ''' for target_text_instance in self.values(): target_text_instance.sequence_labels() def exact_match_score(self, predicted_sequence_key: str = 'predicted_sequence_labels' ) -> Tuple[float, float, float, Dict[str, List[Tuple[str, Span]]]]: ''' Just for clarification we use the sequence label tags to find the predicted spans. However even if you have a perfect sequence label score does not mean you will have a perfect extact span score as the tokenizer used for the sequence labelling might not align perfectly with the annotated spans. The False Positive mistakes, False Negative mistakes, and correct True Positive Dictionary keys are those names with the values neing a List of Tuples where the Tuple is made up of the TargetText instance ID and the Span that was incorrect (FP) or not tagged (FN) or correct (TP). Example of this is as follows: {`FP`: [('1', Span(0, 4))], 'FN': [], 'TP': []} :param predicted_sequence_key: Key of the predicted sequence labels within this TargetText instance. :returns: Recall, Precision, and F1 score, False Positive mistakes, False Negative mistakes, and correct True Positives in a Dict. All of these measures are based on exact span matching rather than the matching of the sequence label tags, this is due to the annotation spans not always matching tokenization therefore this removes the tokenization error that can come from the sequence label measures. :raises KeyError: If there are no predicted sequence label key within this TargetText. :raises ValueError: If the predicted or true spans contain multiple spans that have the same span e.g. [Span(4, 15), Span(4, 15)] ''' # tp = True Positive count tp = 0.0 num_pred_true = 0.0 num_actually_true = 0.0 fp_mistakes: List[Tuple[str, Span]] = [] fn_mistakes: List[Tuple[str, Span]] = [] correct_tp: List[Tuple[str, Span]] = [] for target_text_index, target_text_instance in enumerate(self.values()): if target_text_index == 0: keys_to_check = ['spans', f'{predicted_sequence_key}'] for key in keys_to_check: target_text_instance._key_error(key) predicted_spans = target_text_instance.get_sequence_spans(predicted_sequence_key) # Add to the number of predicted true and actually true predicted_spans: List[Span] num_pred_true += len(predicted_spans) true_spans: List[Span] = target_text_instance['spans'] if true_spans is None: true_spans = [] num_actually_true += len(true_spans) # This should be impossible to get to if len(predicted_spans) != len(set(predicted_spans)): raise ValueError(f'Predicted spans {predicted_spans} contain' f' multiple of the same predicted span. ' f'TargetText: {target_text_instance}') # This is possible if len(true_spans) != len(set(true_spans)): raise ValueError(f'True spans {true_spans} contain' f' multiple of the same true span. ' f'TargetText: {target_text_instance}') text_id = target_text_instance['text_id'] true_spans = set(true_spans) for predicted_span in predicted_spans: if predicted_span in true_spans: tp += 1 correct_tp.append((text_id, predicted_span)) else: fp_mistakes.append((text_id, predicted_span)) for true_span in true_spans: if true_span not in predicted_spans: fn_mistakes.append((text_id, true_span)) error_analysis_dict = {'FP': fp_mistakes, 'FN': fn_mistakes, 'TP': correct_tp} if tp == 0.0: return 0.0, 0.0, 0.0, error_analysis_dict recall = tp / num_actually_true precision = tp / num_pred_true f1 = (2 * precision * recall) / (precision + recall) return recall, precision, f1, error_analysis_dict def samples_with_targets(self) -> 'TargetTextCollection': ''' :returns: All of the samples that have targets as a TargetTextCollection for this TargetTextCollection. :raises KeyError: If either `spans` or `targets` does not exist in one or more of the TargetText instances within this collection. These key's are protected keys thus they should always exist but this is just a warning if you have got around the protected keys. ''' sub_collection = TargetTextCollection() for target_text in self.values(): if target_text['spans'] and target_text['targets']: sub_collection.add(target_text) return sub_collection def target_count(self) -> Dict[str, int]: ''' :returns: A dictionary of target text as key and values as the number of times the target text occurs in this TargetTextCollection ''' target_count: Dict[str, int] = Counter() for target_text in self.values(): if target_text['spans']: text = target_text['text'] for span in target_text['spans']: target = text[span.start: span.end] target_count.update([target]) return dict(target_count) def one_sample_per_span(self, remove_empty: bool = False ) -> 'TargetTextCollection': ''' This applies the TargetText.one_sample_per_span method across all of the TargetText instances within the collection to create a new collection with those new TargetText instances within it. :param remove_empty: If the TargetText instance contains any None targets then these will be removed along with their respective Spans. :returns: A new TargetTextCollection that has samples that come from this collection but has had the TargetText.one_sample_per_span method applied to it. ''' new_collection = TargetTextCollection() for target_text in self.values(): new_collection.add(target_text.one_sample_per_span(remove_empty=remove_empty)) return new_collection def sanitize(self) -> None: ''' This applies the TargetText.sanitize function to all of the TargetText instances within this collection, affectively ensures that all of the instances follow the specified rules that TargetText instances should follow. ''' for target_text in self.values(): target_text.sanitize() def __setitem__(self, key: str, value: 'TargetText') -> None: ''' Will add the TargetText instance to the collection where the key should be the same as the TargetText instance 'text_id'. :param key: Key to be added or changed :param value: TargetText instance associated to this key. Where the key should be the same value as the TargetText instance 'text_id' value. ''' if not isinstance(value, TargetText): raise TypeError('The value should be of type TargetText and not ' f'{type(value)}') text_id = value['text_id'] if text_id != key: raise ValueError(f'The value `text_id`: {text_id} should be the ' f'same value as the key: {key}') # We copy it to stop any mutable objects from changing outside of the # collection value_copy = copy.deepcopy(value) self._storage[key] = value_copy def __delitem__(self, key: str) -> None: ''' Given a key that matches a key within self._storage or self.keys() it will delete that key and value from this object. :param key: Key and its respective value to delete from this object. ''' del self._storage[key] def __eq__(self, other: 'TargetTextCollection') -> bool: ''' Two TargetTextCollection instances are equal if they both have the same TargetText instances within it. :param other: Another TargetTextCollection object that is being compared to this TargetTextCollection object. :returns: True if they have the same TargetText instances within it. ''' if not isinstance(other, TargetTextCollection): return False if len(self) != len(other): return False for key in self.keys(): if key not in other: return False return True def __repr__(self) -> str: ''' :returns: String returned is what user see when the instance is printed or printed within a interpreter. ''' rep_text = 'TargetTextCollection(' for key, value in self.items(): rep_text += f'key: {key}, value: {value}' break if len(self) > 1: rep_text += '...)' else: rep_text += ')' return rep_text def __len__(self) -> int: ''' :returns: The number of TargetText instances in the collection. ''' return len(self._storage) def __iter__(self) -> Iterable[str]: ''' Returns as interator over the TargetText instances 'text_id''s that are stored in this collection. This is an ordered iterator as the underlying dictionary used to store the TargetText instances is an OrderedDict in self._storage. :returns: TargetText instances 'text_id''s that are stored in this collection ''' return iter(self._storage) def __getitem__(self, key: str) -> 'TargetText': ''' :returns: A TargetText instance that is stored within this collection. ''' return self._storage[key]
null
target_extraction/data_types.py
data_types.py
py
56,357
python
en
code
null
code-starcoder2
83
[ { "api_name": "collections.abc.MutableMapping", "line_number": 23, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 88, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 88, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 124, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 124, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 167, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 179, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 179, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 180, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 180, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 180, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 181, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 181, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 181, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 182, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 182, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 183, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 183, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 183, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 203, "usage_type": "name" }, { "api_name": "typing.Iterable", "line_number": 211, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 272, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 299, "usage_type": "call" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 301, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 315, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 327, "usage_type": "call" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 370, "usage_type": "call" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 374, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 379, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 379, "usage_type": "name" }, { "api_name": "target_extraction.tokenizers.is_character_preserving", "line_number": 418, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 424, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 424, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 424, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 528, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 528, "usage_type": "name" }, { "api_name": "target_extraction.tokenizers.token_index_alignment", "line_number": 529, "usage_type": "call" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 583, "usage_type": "call" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 578, "usage_type": "name" }, { "api_name": "target_extraction.tokenizers.token_index_alignment", "line_number": 589, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 595, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 595, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 623, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 562, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 562, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 656, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 657, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 657, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 665, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 665, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 697, "usage_type": "call" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 712, "usage_type": "call" }, { "api_name": "collections.abc.MutableMapping", "line_number": 720, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 775, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 775, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 776, "usage_type": "name" }, { "api_name": "collections.OrderedDict", "line_number": 782, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 847, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 871, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 889, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 889, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 914, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 914, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 1000, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 1000, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 1000, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 1001, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 1001, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 1001, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 1002, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 1002, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 1002, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 1012, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 1012, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 1015, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 1015, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 965, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 966, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 966, "usage_type": "name" }, { "api_name": "typing.Tuple", "line_number": 966, "usage_type": "name" }, { "api_name": "target_extraction.data_types_util.Span", "line_number": 966, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 1073, "usage_type": "name" }, { "api_name": "collections.Counter", "line_number": 1073, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 1068, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 1133, "usage_type": "call" }, { "api_name": "typing.Iterable", "line_number": 1187, "usage_type": "name" } ]
426385174
""" import matplotlib.pyplot as plt x_values = [1, 2, 3, 4, 5] y_values = [1, 4, 9, 16, 25] plt.scatter(x_values, y_values, s=100) # 设置图表标题并给坐标轴加上标签 plt.title("Square Number", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', which='majar', labelsize=14) plt.show() """ import matplotlib.pyplot as plt x_values = list(range(1, 1001)) y_values = [x**2 for x in x_values] plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolor='none', s=40) # plt.show() # plt.savefig('squares_plot.png', bbox_inches='tight') plt.savefig('squares_plot2.png')
null
matplotlib_demo/scatter_squares.py
scatter_squares.py
py
692
python
en
code
null
code-starcoder2
83
[ { "api_name": "matplotlib.pyplot.scatter", "line_number": 21, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 21, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.cm", "line_number": 21, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" } ]
124439770
#import matplotlib as mpl #mpl.use('Agg') import matplotlib.pyplot as plt import pickle from operator import itemgetter __author__ = 'fuatbasik' plt.rcParams['font.size'] = 25 plt.rcParams['ytick.labelsize'] = 22 plt.rcParams['xtick.labelsize'] = 22 plt.rcParams['legend.fontsize'] = 20 #plt.rcParams['axes.titlesize'] = 23 plt.rcParams['lines.markersize'] = 16 plt.rcParams['figure.subplot.left'] = 0.1 plt.rcParams['figure.subplot.bottom'] = 0.15 markers = ['k+-', 'mo-', 'c*-', 'rx-', 'g^-', 'bd-'] results =pickle.load(open('/Users/fuatbasik/Documents/s3tm/s3tm_experiments/learningTimes/learningTimeResults.txt')) fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111) x = sorted(results[0]["time"]) for i, result in enumerate(results): y = [] for key, value in sorted(result["time"].iteritems(), key=itemgetter(0), reverse=False): y.append(value ) ax.errorbar(x, y,fmt=markers[i+1], label=result["label"], markerfacecolor='none') ax.legend(loc='best') ax.set_xlabel("number of tweets") ax.set_ylabel("seconds") ax.set_yscale("log", basey=2) ax.set_xscale("log", basex=10) ax.xaxis.set_ticks(x) plt.show() #plt.savefig("../docs/learningTimes.png")
null
code/draw/drawLearningTimes.py
drawLearningTimes.py
py
1,184
python
en
code
null
code-starcoder2
83
[ { "api_name": "matplotlib.pyplot.rcParams", "line_number": 7, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 7, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 8, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 8, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 9, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 9, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 10, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 10, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 12, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 12, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 13, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 13, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.rcParams", "line_number": 14, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 14, "usage_type": "name" }, { "api_name": "pickle.load", "line_number": 17, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 19, "usage_type": "name" }, { "api_name": "operator.itemgetter", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.show", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" } ]
297492134
import pysat.solvers import pysat.formula solvers = ['cadical', 'glucose30', 'glucose41', 'lingeling', 'maplechrono', 'maplecm', 'maplesat', 'minicard', 'minisat22', 'minisat-gh'] clauses = ([1, 2, 3], [-1, 2], [-2]) def test_solvers(): cnf = pysat.formula.CNF() for clause in clauses: cnf.append(clause) for solverName in solvers: with pysat.solvers.Solver(name=solverName) as solver: solver.append_formula(cnf) assert(solver.solve()) assert(solver.get_model() in [[-1, -2, 3]])
null
test/test_sat.py
test_sat.py
py
660
python
en
code
null
code-starcoder2
83
[ { "api_name": "pysat.solvers.formula.CNF", "line_number": 18, "usage_type": "call" }, { "api_name": "pysat.solvers.formula", "line_number": 18, "usage_type": "attribute" }, { "api_name": "pysat.solvers", "line_number": 18, "usage_type": "name" }, { "api_name": "pysat.solvers.solvers.Solver", "line_number": 25, "usage_type": "call" }, { "api_name": "pysat.solvers.solvers", "line_number": 25, "usage_type": "attribute" }, { "api_name": "pysat.solvers", "line_number": 25, "usage_type": "name" } ]
202505081
#coding: utf-8 -*- #This is just a proof of concept with probably a lot of bugs, use at your own risks! #It creates a new tab in the MS Word ribbon, with buttons calling docCleaner scripts from inside Word #To uninstall it, launch it with the --unregister argument #You can also remove it from Word (in the "Developer" tab, look for COM Addins > Remove) #Inspired by the Excel addin provided in the win32com module demos, and the "JJ Word Addin" (I don't remember where I get it, but thanks!) import os import sys #Defining Pythonpath scriptdir, script = os.path.split(__file__) pkgdir = os.path.join(scriptdir, 'pkgs') sys.path.insert(0, pkgdir) os.environ['PYTHONPATH'] = pkgdir + os.pathsep + os.environ.get('PYTHONPATH', '') os.environ['PYTHONHOME'] = "" from tkinter import * import win32com win32com.__path__ from win32com import universal from win32com.server.exception import COMException from win32com.client import gencache, DispatchWithEvents import winerror import pythoncom from win32com.client import constants, Dispatch import win32com.client import win32ui import win32con from PIL import Image import mimetypes #from guess_language import guess_language import locale import gettext import simplejson import tempfile import shutil import mimetypes import csv #import doccleaner from doccleaner import doccleaner #from doccleaner import imageConv locale.setlocale(locale.LC_ALL, '') user_locale = locale.getlocale()[0] def checkIfDocx(filepath): if mimetypes.guess_type(filepath)[0] == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": return True else: return False #TODO : localization def init_localization(): '''prepare l10n''' print(locale.setlocale(locale.LC_ALL,"")) locale.setlocale(locale.LC_ALL, '') # use user's preferred locale # take first two characters of country code loc = locale.getlocale() #filename = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), "lang", "messages_%s.mo" % locale.getlocale()[0][0:2]) filename = os.path.join("lang", "messages_{0}.mo").format(locale.getlocale()[0][0:2]) try: print("Opening message file {0} for locale {1}".format(filename, loc[0])) #If the .mo file is badly generated, this line will return an error message: "LookupError: unknown encoding: CHARSET" trans = gettext.GNUTranslations(open(filename, "rb")) except IOError: print("Locale not found. Using default messages") trans = gettext.NullTranslations() trans.install() def load_json(filename): f = open(filename, "r") data = f.read() f.close() return simplejson.loads(data) def getInterfaceTranslation(): reader = csv.reader(open(os.path.join(os.path.dirname(os.path.realpath(__file__)), "interface_translations.csv"))) translation_dict = {} headers = next(reader)[1:] for row in reader: temp_dict = {} name = row[0] values = [] for x in row[1:]: values.append(str(x).encode('windows-1252').decode('utf-8')) for i in range(len(values)): if values[i]: temp_dict[headers[i]] = values[i] translation_dict[name] = temp_dict return translation_dict class WordAddin: #wd = win32com.client.Dispatch("Word.Application") wd = win32com.client.GetActiveObject("Word.Application") wc = win32com.client.constants #Convert translations csv to nested dictionary: http://stackoverflow.com/questions/11102326/python-csv-to-nested-dictionary #TODO: nom dynamique pour le répertoire #wd = win32com.client.Dispatch("Word.Application") #see list of MS Office language codes (MsoLanguageID Enumeration): http://msdn.microsoft.com/en-us/library/aa432635%28v=office.12%29.aspx #Check if MS Word is in french if wd.Application.Language in (1036, 11276, 3084, 12300, 15372, 5132, 13324, 6156, 14348, 8204, 10252, 7180, 9228): wd_language = "fr" #in spanish elif wd.Application.Language in (2058, 1034, 11274, 16394, 13322, 9226, 5130, 7178, 12298, 17418, 4106, 18442, 3082, 19466, 6154, 15370, 10250, 20490, 14346, 8202): #wd_language = "es" wd_language = "en" #If not, we'll use buttons in english for the customized ribbon else: wd_language = "en" # def __init__(self): # self.jsonConf = load_json(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'winword_addin.json')) def docFormat(self, filePath): #check the format of the document, stock it in a variable form = { #docx ('application/vnd.openxmlformats-officedocument.wordprocessingml.document'):(".docx", 12), #doc ('application/vnd.ms-word', 'application/doc', 'application/vnd.msword', 'appl/text', 'application/winword', 'application/word', 'application/x-msw6', 'application/x-msword', 'application/msword'):(".doc", 0), #odt ('application/vnd.oasis.opendocument.text', 'application/x-vnd.oasis.opendocument.text'):(".odt", 23), #rtf ('application/rtf', 'application/x-rtf', 'text/rtf', 'text/richtext', 'application/x-soffice'):(".rtf", 6) } #mimetypes.guess_type returns a tuple or a string if type(mimetypes.guess_type(filePath, strict=True)) == tuple: #if it's a tuple, the mimetype is the first element in the tuple docMimetype = mimetypes.guess_type(filePath, strict=True)[0] elif type(mimetypes.guess_type(filePath, strict=True)) == str: docMimetype = mimetypes.guess_type(filePath, strict=True) for key in form.keys(): if docMimetype in key: documentFormat = form[key] documentExtension = documentFormat[0] documentSaveFormat = documentFormat[1] break else: try: documentExtension = mimetypes.guess_extension(docMimetype, strict=True) documentSaveFormat = self.wd.ActiveDocument.SaveFormat except: documentFormat = "other" return (docMimetype, documentExtension, documentSaveFormat) def apply_style(self,tag): try: #Applying style self.wd.Selection.Style = self.wd.ActiveDocument.Styles(tag) except: #If style does not exist -> create it, then apply it self.wd.ActiveDocument.Styles.Add(ctrl. Tag) self.wd.Selection.Style = self.wd.ActiveDocument.Styles(tag) # def ConvertImages(self, ctrl): # # #Creating a word object inside a wd variable # wd = win32com.client.Dispatch("Word.Application") # wc = win32com.client.constants # #If document is not docx, convert it # initialPath = wd.ActiveDocument.FullName # initialExtension = self.docFormat(wd.ActiveDocument.FullName)[1] # initialSaveFormat = self.docFormat(wd.ActiveDocument.FullName)[2] # if initialExtension != ".docx": # wd.ActiveDocument.SaveAs(FileName = wd.ActiveDocument.Name + '.docx', # FileFormat = wc.wdFormatXMLDocument ) # try: # #Check if the file is not a new one (unsaved) # if os.path.isfile(wd.ActiveDocument.FullName) == True: # #Before processing the doc, let's save the user's last modifications # #TODO: ne fonctionne pas correctement # wd.ActiveDocument.Save() # # originDoc = wd.ActiveDocument.FullName #:Puts the path of the current file in a variable # tmp_dir = tempfile.mkdtemp() #:Creates a temp folder, which will contain the temp docx files necessary for processing # # #Creates a temp doc, # newDoc = os.path.join(tmp_dir, "~" + wd.ActiveDocument.Name) #:Creates a temporary file (newDoc), which will be the docCleaner output # # # # # # #If there is more than one XSL sheet, we'll have to make consecutive processings # # # # img_arguments = ['--input', str(originDoc), # '--output', str(newDoc) # ] # # imageConv.main(img_arguments) # # # # #Opening the temp file # wd.Documents.Open(newDoc) # # #Copying the temp file content to the original doc # #To do this, never use the MSO Content.Copy() and Content.Paste() methods, because : # # 1) It would overwrite important data the user may have copied to the clipboard. # # 2) Other programs, like antiviruses, may use simulteanously the clipboard, which would result in a big mess for the user. # #Instead, use the Content.FormattedText function, it's simple, and takes just one line of code: # wd.Documents(originDoc).Content.FormattedText = wd.Documents(newDoc).Content.FormattedText # #Closing and removing the temp document # wd.Documents(newDoc).Close() # os.remove(newDoc) # # #Saving the changes ## if initialExtension != "docx": ## print("bla") ## else: # wd.ActiveDocument.Save() # # #Removing the whole temp folder # try: # shutil.rmtree(tmp_dir) # except: # #TODO: What kind of error would be possible when removing the temp folder? How to handle it? # pass # # else: # win32ui.MessageBox("You need to save the file before launching this script!" # ,"Error",win32con.MB_OK) # # except Exception as e: # # tb = sys.exc_info()[2] # #TODO: writing the error to a log file # win32ui.MessageBox(str(e) + "\n" + # str(tb.tb_lineno)+ "\n" + # str(newDoc) # ,"Error",win32con.MB_OKCANCEL) # # def GetLanguage(self,ctrl): # wd = win32com.client.Dispatch("Word.Application") # #tests = {} # for paragraph in self.wd.ActiveDocument.Paragraphs: # win32ui.MessageBox(str(paragraph),"Error",win32con.MB_OK) # if str(paragraph.Style) == "Normal": # tests['paraNormal'] = True # elif str(paragraph.Style) in ['Titre', 'Title']: # tests['title'] = True # elif str(paragraph.Style) in ['langue', 'Language']: # tests['lang'] = True # elif str(paragraph.Style) == "Pagination": # if re.match("([0-9]{1,})(?:[0-9]{2,})", str(paragraph) ) is not None: # win32ui.MessageBox(str("ok"),"Error",win32con.MB_OK) # else: # win32ui.MessageBox(str("no"),"Error",win32con.MB_OK) # wdStory = 6 # self.wd.Selection.HomeKey(Unit=wdStory) # self.wd.Selection.Find.Text = "" # self.wd.Selection.Find.Text # self.wd.Selection.Find.Execute() #docContent = self.wd.ActiveDocument.Content() # language = guess_language(docContent) # # #styles = ['','','',''] # wdStory = 6 # self.wd.Selection.HomeKey(Unit=wdStory) # try: #self.wd.ActiveDocument.Selection.Find(Text="liste") #1: chercher paragraphe stylé en langue, le remplacer par la valeur trouvée #2: # except: # print("bla") #win32ui.MessageBox(str(language),"Error",win32con.MB_OK) #win32ui.MessageBox(docContent,"Error",win32con.MB_OK) def removeBookmarks(self,tag): try: for bookmark in self.wd.ActiveDocument.Bookmarks: bookmark.Delete() except Exception as E: print(e) def do(self,tag): #Get the current working dir. We'll need it to get the path to interface_translations.csv, if the user switches languages after applying a processing initialWorkingDir = os.getcwd() try: #Check if the file is not a new one (unsaved) if os.path.isfile(self.wd.ActiveDocument.FullName) == True: #Before processing the doc, let's save the user's last modifications #TODO: ne fonctionne pas correctement initialPath = self.wd.ActiveDocument.FullName initialExtension = self.docFormat(initialPath)[1] initialSaveFormat = self.docFormat(initialPath)[2] if initialExtension != ".docx": self.wd.ActiveDocument.SaveAs(FileName = os.path.join(tempfile.mkdtemp(), self.wd.ActiveDocument.Name + '.docx'), FileFormat = 12) #12 = wdFormatXMLDocument = .docx -> see https://msdn.microsoft.com/en-us/library/office/ff839952.aspx else: self.wd.ActiveDocument.Save() originDoc = self.wd.ActiveDocument.FullName #:Puts the path of the current file in a variable tmp_dir = tempfile.mkdtemp() #:Creates a temp folder, which will contain the temp docx files necessary for processing #TODO: If the document is in another format than docx, convert it temporarily to docx #At the processing's end, we'll have to convert it back to its original format, so we need to store this information transitionalDoc = originDoc #:Creates a temp transitional doc, which will be used if we need to make consecutive XSLT processings. #E.g..: original doc -> xslt processing -> transitional doc -> xslt processing -> final doc -> copying to original doc newDoc = os.path.join(tmp_dir, "~" + self.wd.ActiveDocument.Name) #:Creates a temporary file (newDoc), which will be the docCleaner output jj = 0 #:This variable will be increased by one for each XSL processing defined in the json file #Then, we take the current active document as input, the temp doc as output for button in jsonConf["buttons"]: if button["tag"] == tag: for xsl in button["xsl"]: if jj > 0: #If there is more than one XSL sheet, we'll have to make consecutive processings newDocName, newDocExtension = os.path.splitext(newDoc) transitionalDoc = newDoc newDoc = newDocName + str(jj)+ newDocExtension dc_arguments = ['--input', str(transitionalDoc), '--output', str(newDoc), '--transform', os.path.join(os.path.dirname(doccleaner.__file__), "docx", xsl["XSLname"] ) ] for param in ["subfile", "XSLparameter"]: if xsl[param] != 0: if param == "subfile": str_param = os.path.join(os.path.dirname(doccleaner.__file__), "docx", xsl[param]) else: str_param = xsl[param] dc_arguments.extend( ( '--' + param, str_param)) #",".join ( str_param ) )) doccleaner.main(dc_arguments) jj += 1 #Opening the temp file self.wd.Documents.Open(newDoc) #Copying the temp file content to the original doc #To do this, never use the MSO Content.Copy() and Content.Paste() methods, because : # 1) It would overwrite important data the user may have copied to the clipboard. # 2) Other programs, like antiviruses, may use simulteanously the clipboard, which would result in a big mess for the user. #Instead, use the Content.FormattedText function, it's simple, and takes just one line of code: self.wd.Documents(originDoc).Content.FormattedText = self.wd.Documents(newDoc).Content.FormattedText #Closing and removing the temp document self.wd.Documents(newDoc).Close() os.remove(newDoc) #Saving the changes if initialExtension != ".docx": self.wd.ActiveDocument.SaveAs(FileName = initialPath, ) else: self.wd.ActiveDocument.Save() #Removing the whole temp folder try: shutil.rmtree(tmp_dir) except: #TODO: What kind of error would be possible when removing the temp folder? How to handle it? pass else: win32ui.MessageBox("You need to save the file before launching this script!" ,"Error",win32con.MB_OK) except Exception as e: tb = sys.exc_info()[2] #TODO: writing the error to a log file win32ui.MessageBox(str(e) + "\n" + str(tb.tb_lineno)+ "\n" #+ #str(newDoc) ,"Error",win32con.MB_OKCANCEL) os.chdir(initialWorkingDir) # def GetScreenTip(self,ctrl): # return self.translation_dict[ctrl. Tag][self.wd_language+"_screentip"] # # def GetLabel(self,ctrl): # try: # label_id = ctrl. Tag # except: # label_id = ctrl. Id # return self.translation_dict[str(label_id)][self.wd_language+"_label"] class Interface(Frame): def __init__(self, parent): Frame.__init__(self, parent, background="white") self.parent = parent self.initUI() def initUI(self): self.parent.title("Assistant de stylage") self.pack() #def getCurrentDoc(): def defineButton(wdobj, action, ref,txt,cmd,pos,width,imageFile): #Defining button options in a dictionary button_options = {} #If there is an image for the button, we need to define some additional arguments, and a different height and width if imageFile != None: image = PhotoImage(file=imageFile) button_options["image"] = image button_options['compound'] = LEFT button_options['height'] = 40 button_options['width'] = 40 else: button_options['height'] = 1 button_options['width'] = width button_options["text"] = txt #☻button_options["textvariable"] = #button_options["command"] = lambda: wdobj.do(tag=cmd) button_options["command"] = lambda: getattr(wdobj,action)(tag=cmd) button_options['fg'] = 'Black' button_options['bg'] = "#eff1f3" button_options['justify'] = LEFT b = Button(ref, button_options ) if imageFile != None: b.image=image b.grid(row=pos, column=1, sticky=(N+S+E+W), padx=5 ) return(b) #TODO: pour redéfinir chaque bouton, il faut stocker chaque objet "button" dans un dictionnaire def redefineButtons(ref, buttonList,lang): translation = getInterfaceTranslation() if lang == "fr": ref.title("Assistant de stylage") else: ref.title("OpenEdition's copyediting macros") for button in buttonList: #récupérer le tag lié au bouton -> placé dans un tuple, à côté de l'objet bouton button[0].configure(text=translation[button[1]][lang+"_label"]) def returnLanguage(WordObj): #see list of MS Office language codes (MsoLanguageID Enumeration): http://msdn.microsoft.com/en-us/library/aa432635%28v=office.12%29.aspx #Check if MS Word is in french if WordObj.wd.Application.Language in (1036, 11276, 3084, 12300, 15372, 5132, 13324, 6156, 14348, 8204, 10252, 7180, 9228): language = "fr" #in spanish elif WordObj.wd.Application.Language in (2058, 1034, 11274, 16394, 13322, 9226, 5130, 7178, 12298, 17418, 4106, 18442, 3082, 19466, 6154, 15370, 10250, 20490, 14346, 8202): #wd_language = "es" language = "en" #If not, we'll use buttons in english else: language = "en" return language def generateMenu(appPath, WordObj, itemsNumber,confFile): wd_language = returnLanguage(WordObj) root = Tk() scriptPath = os.path.dirname(os.path.realpath(__file__)) root.iconbitmap(default=os.path.join(scriptPath, 'favicon.ico'))#os.path.join(appPath, 'favicon.bmp')) if wd_language == "fr": root.title('Assistant de stylage') else: root.title("OpenEdition's copyediting macros") root.rowconfigure((0,1), weight=1) # make buttons stretch when root.columnconfigure((1,1), weight=1) # when window is resized #root.resizable(1,0) #root.bind("<Configure>", resize) #Appeler le dictionnaire de traduction de l'interface translation = getInterfaceTranslation() x =0 buttonList = [] for button in confFile["buttons"]: x +=1 if button["image"] != None: imagePath = os.path.join(os.path.dirname(os.path.realpath(__file__)), button["image"]) else: imagePath = button["image"] buttonList.append( (defineButton(WordObj, action=button["action"], ref=root, txt=translation[button["tag"]][wd_language+"_label"], #Get the label from the translation dictionary cmd=button["tag"], pos=x, width=70, imageFile=imagePath ), button["tag"]) ) #Boutons pour modifier l'interface sur demande. enButton = Button(root,text="English",command=lambda: redefineButtons(root, buttonList,'en')) enButton.grid(row=1,column=2) frButton = Button(root,text="French",command=lambda: redefineButtons(root, buttonList,'fr')) frButton.grid(row=2,column=2) root.mainloop() def main(): #init_localization() path = os.path.dirname(os.path.realpath(__file__)) global jsonConf jsonConf = load_json(os.path.join(path, 'winword_addin.json')) generateMenu( appPath=path, WordObj = WordAddin() , itemsNumber = len(jsonConf["buttons"]), confFile= jsonConf ) if __name__ == '__main__': main()
null
dc_winword/wordaddin.py
wordaddin.py
py
24,079
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.split", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "sys.path.insert", "line_number": 18, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.pathsep", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 19, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 20, "usage_type": "attribute" }, { "api_name": "win32com.__path__", "line_number": 24, "usage_type": "attribute" }, { "api_name": "locale.setlocale", "line_number": 55, "usage_type": "call" }, { "api_name": "locale.LC_ALL", "line_number": 55, "usage_type": "attribute" }, { "api_name": "locale.getlocale", "line_number": 56, "usage_type": "call" }, { "api_name": "mimetypes.guess_type", "line_number": 61, "usage_type": "call" }, { "api_name": "locale.setlocale", "line_number": 73, "usage_type": "call" }, { "api_name": "locale.LC_ALL", "line_number": 73, "usage_type": "attribute" }, { "api_name": "locale.setlocale", "line_number": 74, "usage_type": "call" }, { "api_name": "locale.LC_ALL", "line_number": 74, "usage_type": "attribute" }, { "api_name": "locale.getlocale", "line_number": 77, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 80, "usage_type": "call" }, { "api_name": "os.path", "line_number": 80, "usage_type": "attribute" }, { "api_name": "locale.getlocale", "line_number": 80, "usage_type": "call" }, { "api_name": "gettext.GNUTranslations", "line_number": 84, "usage_type": "call" }, { "api_name": "gettext.NullTranslations", "line_number": 88, "usage_type": "call" }, { "api_name": "simplejson.loads", "line_number": 96, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path", "line_number": 99, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 99, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 99, "usage_type": "call" }, { "api_name": "win32com.client.GetActiveObject", "line_number": 120, "usage_type": "call" }, { "api_name": "win32com.client", "line_number": 120, "usage_type": "attribute" }, { "api_name": "win32com.client", "line_number": 121, "usage_type": "attribute" }, { "api_name": "mimetypes.guess_type", "line_number": 164, "usage_type": "call" }, { "api_name": "mimetypes.guess_type", "line_number": 166, "usage_type": "call" }, { "api_name": "mimetypes.guess_type", "line_number": 168, "usage_type": "call" }, { "api_name": "mimetypes.guess_type", "line_number": 169, "usage_type": "call" }, { "api_name": "mimetypes.guess_extension", "line_number": 180, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 328, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 332, "usage_type": "call" }, { "api_name": "os.path", "line_number": 332, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 339, "usage_type": "call" }, { "api_name": "os.path", "line_number": 339, "usage_type": "attribute" }, { "api_name": "tempfile.mkdtemp", "line_number": 339, "usage_type": "call" }, { "api_name": "tempfile.mkdtemp", "line_number": 345, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 351, "usage_type": "call" }, { "api_name": "os.path", "line_number": 351, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 364, "usage_type": "call" }, { "api_name": "os.path", "line_number": 364, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 371, "usage_type": "call" }, { "api_name": "os.path", "line_number": 371, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 371, "usage_type": "call" }, { "api_name": "doccleaner.doccleaner.__file__", "line_number": 371, "usage_type": "attribute" }, { "api_name": "doccleaner.doccleaner", "line_number": 371, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 378, "usage_type": "call" }, { "api_name": "os.path", "line_number": 378, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 378, "usage_type": "call" }, { "api_name": "doccleaner.doccleaner.__file__", "line_number": 378, "usage_type": "attribute" }, { "api_name": "doccleaner.doccleaner", "line_number": 378, "usage_type": "name" }, { "api_name": "doccleaner.doccleaner.main", "line_number": 385, "usage_type": "call" }, { "api_name": "doccleaner.doccleaner", "line_number": 385, "usage_type": "name" }, { "api_name": "os.remove", "line_number": 400, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 411, "usage_type": "call" }, { "api_name": "win32ui.MessageBox", "line_number": 417, "usage_type": "call" }, { "api_name": "win32con.MB_OK", "line_number": 418, "usage_type": "attribute" }, { "api_name": "sys.exc_info", "line_number": 422, "usage_type": "call" }, { "api_name": "win32ui.MessageBox", "line_number": 424, "usage_type": "call" }, { "api_name": "win32con.MB_OKCANCEL", "line_number": 427, "usage_type": "attribute" }, { "api_name": "os.chdir", "line_number": 429, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 532, "usage_type": "call" }, { "api_name": "os.path", "line_number": 532, "usage_type": "attribute" }, { "api_name": "os.path.realpath", "line_number": 532, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 533, "usage_type": "call" }, { "api_name": "os.path", "line_number": 533, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 551, "usage_type": "call" }, { "api_name": "os.path", "line_number": 551, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 551, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 551, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 577, "usage_type": "call" }, { "api_name": "os.path", "line_number": 577, "usage_type": "attribute" }, { "api_name": "os.path.realpath", "line_number": 577, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 579, "usage_type": "call" }, { "api_name": "os.path", "line_number": 579, "usage_type": "attribute" } ]
514916179
import webbrowser from python_helper import Constant as c from python_helper import log, StringHelper from flask import Response, request import flask_restful from python_framework.api.src.annotation.MethodWrapper import Function, overrideSignatures from python_framework.api.src.helper import Serializer from python_framework.api.src.service import GlobalException from python_framework.api.src.domain import HttpStatus from python_framework.api.src.service import Security from python_framework.api.src.service.openapi import OpenApiManager KW_URL = 'url' KW_DEFAULT_URL = 'defaultUrl' KW_MODEL = 'model' KW_API = 'api' KW_METHOD = 'method' KW_RESOURCE = 'resource' KW_CONTROLLER_RESOURCE = 'Controller' KW_SERVICE_RESOURCE = 'Service' KW_REPOSITORY_RESOURCE = 'Repository' KW_VALIDATOR_RESOURCE = 'Validator' KW_MAPPER_RESOURCE = 'Mapper' KW_HELPER_RESOURCE = 'Helper' KW_CONVERTER_RESOURCE = 'Converter' KW_RESOURCE_LIST = [ KW_CONTROLLER_RESOURCE, KW_SERVICE_RESOURCE, KW_REPOSITORY_RESOURCE, KW_VALIDATOR_RESOURCE, KW_MAPPER_RESOURCE, KW_HELPER_RESOURCE, KW_CONVERTER_RESOURCE ] LOCALHOST_URL = 'http://127.0.0.1:5000' DOT_SPACE_CAUSE = f'''{c.DOT_SPACE}{c.LOG_CAUSE}''' def printMyStuff(stuff): print() print(f' type(stuff).__name__ = {type(stuff).__name__}') print(f' type(stuff).__class__.__name__ = {type(stuff).__class__.__name__}') print(f' stuff.__class__.__name__ = {stuff.__class__.__name__}') print(f' stuff.__class__.__module__ = {stuff.__class__.__module__}') print(f' stuff.__class__.__qualname__ = {stuff.__class__.__qualname__}') def printClass(Class) : print(f'{2 * c.TAB}Class.__name__ = {Class.__name__}') print(f'{2 * c.TAB}Class.__module__ = {Class.__module__}') print(f'{2 * c.TAB}Class.__qualname__ = {Class.__qualname__}') @Function def jsonifyResponse(object, contentType, status) : return Response(Serializer.jsonifyIt(object), mimetype = contentType, status = status) @Function def getClassName(instance) : return instance.__class__.__name__ @Function def getModuleName(instance) : return instance.__class__.__module__ @Function def getQualitativeName(instance) : return instance.__class__.__qualname__ def appendArgs(args, argument, isControllerMethod=False) : if isControllerMethod and Serializer.isList(argument) : return args + argument args.append(argument) return args @Function def getArgsWithSerializerReturnAppended(argument, args, isControllerMethod=False) : args = [arg for arg in args] args = appendArgs(args, argument, isControllerMethod=isControllerMethod) return tuple(arg for arg in args) @Function def getArgsWithResponseClassInstanceAppended(args, responseClass) : if responseClass : resourceInstance = args[0] objectRequest = args[1] serializerReturn = Serializer.convertFromObjectToObject(objectRequest, responseClass) args = getArgsWithSerializerReturnAppended(serializerReturn, args) return args @Function def getResourceFinalName(resourceInstance, resourceName=None) : if not resourceName : resourceName = resourceInstance.__class__.__name__ for kwAsset in KW_RESOURCE_LIST : if kwAsset in resourceName : resourceName = resourceName.replace(kwAsset, c.NOTHING) return f'{resourceName[0].lower()}{resourceName[1:]}' @Function def getResourceType(resourceInstance, resourceName = None) : if not resourceName : resourceName = resourceInstance.__class__.__name__ for kwAsset in KW_RESOURCE_LIST : if kwAsset in resourceName : return kwAsset @Function def getAttributePointerList(object) : return [ getattr(object, objectAttributeName) for objectAttributeName in dir(object) if (not objectAttributeName.startswith('__') and not objectAttributeName.startswith('_')) ] @Function def setMethod(resourceInstance, newMethod, methodName = None) : def buildNewClassMethod(resourceInstance, newMethod) : def myInnerMethod(*args, **kwargs) : return newMethod(resourceInstance,*args, **kwargs) overrideSignatures(myInnerMethod, newMethod) return myInnerMethod if not type(newMethod).__name__ == KW_METHOD : newMethod = buildNewClassMethod(resourceInstance, newMethod) if not methodName : methodName = newMethod.__name__ setattr(resourceInstance, methodName, newMethod) return resourceInstance @Function def getGlobals() : try : from app import globals except Exception as exception : raise Exception('Failed to get "globals" instance from app.py') return globals @Function def getApi() : try: api = getGlobals().api except Exception as exception : raise Exception(f'Failed to return api from "globals" instance. Cause: {str(exception)}') return api @Function def getNullableApi() : try : api = getApi() except : api = None return api @Function def raiseBadResponseImplementetion(cause): raise Exception(f'Bad response implementation. {cause}') @Function def validateFlaskApi(instance) : apiClassName = flask_restful.Api.__name__ moduleName = flask_restful.__name__ if not apiClassName == getClassName(instance) and apiClassName == getQualitativeName(instance) and moduleName == getModuleName(instance) : raise Exception(f'Globals can only be added to a "flask_restful.Api" instance. Not to {apiInstance}') @Function def validateResponseClass(responseClass, controllerResponse) : log.debug(validateResponseClass, controllerResponse) if responseClass : if not controllerResponse and not isinstance(controllerResponse, list): raiseBadResponseImplementetion(f'Response not present') if isinstance(responseClass, list) : if 0 == len(responseClass) : raiseBadResponseImplementetion(f'"responseClass" was not defined') elif len(responseClass) == 1 : if not isinstance(responseClass[0], list) : if not isinstance(controllerResponse, responseClass[0]) : raiseBadResponseImplementetion(f'Response class does not match expected class. Expected "{responseClass[0].__name__}", response "{controllerResponse.__class__.__name__}"') elif not isinstance(responseClass[0][0], list) : if not isinstance(controllerResponse, list) : raiseBadResponseImplementetion(f'Response is not a list. Expected "{responseClass[0].__class__.__name__}", but found "{controllerResponse.__class__.__name__}"') elif isinstance(controllerResponse, list) and len(controllerResponse) > 0 and not isinstance(controllerResponse[0], responseClass[0][0]): # print(f'responseClass = {responseClass}') # print(f'responseClass[0] = {responseClass[0]}') # print(f'responseClass[0][0] = {responseClass[0][0]}') raiseBadResponseImplementetion(f'Response element class does not match expected element class. Expected "{responseClass[0][0].__name__}", response "{controllerResponse[0].__class__.__name__}"') else : if not isinstance(controllerResponse, responseClass) : raiseBadResponseImplementetion(f'Response class does not match expected class. Expected "{responseClass.__name__}", response "{controllerResponse.__class__.__name__}"') @Function def setResource(apiInstance, resourceInstance, resourceName=None) : resourceName = getResourceFinalName(resourceInstance, resourceName=resourceName) setattr(apiInstance,resourceName,resourceInstance) @Function def bindResource(apiInstance,resourceInstance) : validateFlaskApi(apiInstance) setResource(getattr(apiInstance.resource, getResourceType(resourceInstance).lower()), resourceInstance) def getGlobalException(exception, resourceInstance, resourceInstanceMethod): apiInstance = getNullableApi() return GlobalException.handleLogErrorException(exception, resourceInstance, resourceInstanceMethod, apiInstance) def raiseGlobalException(exception, resourceInstance, resourceInstanceMethod) : raise getGlobalException(exception, resourceInstance, resourceInstanceMethod) @Function def getCompleteResponseByException(exception, resourceInstance, resourceInstanceMethod) : exception = getGlobalException(exception, resourceInstance, resourceInstanceMethod) completeResponse = [{'message':exception.message, 'timestamp':str(exception.timeStamp)},exception.status] log.error(resourceInstance.__class__, f'Error processing {resourceInstance.__class__.__name__}.{resourceInstanceMethod.__name__} request', exception) return completeResponse @Function def initialize(apiInstance, defaultUrl=None, openInBrowser=False) : defaultUrl = defaultUrl openInBrowser = openInBrowser url = f'{apiInstance.host}{apiInstance.baseUrl}' if defaultUrl : url = f'{url}{defaultUrl}' def inBetweenFunction(function,*argument,**keywordArgument) : log.debug(initialize,f'''{function.__name__} method''') if (openInBrowser) : log.debug(initialize,f'''Openning "{url}" url in rowser''') webbrowser.open_new(url) def innerFunction(*args,**kwargs) : try : functionReturn = function(*args,**kwargs) except Exception as exception : raise Exception(f'Failed to initialize. Cause: {str(exception)}') return functionReturn return innerFunction return inBetweenFunction @Function def Controller( url=c.SLASH, tag='Tag not defined', description='Controller not descripted' ) : controllerUrl = url controllerTag = tag controllerDescription = description def Wrapper(OuterClass,*args,**kwargs): apiInstance = getApi() log.debug(Controller,f'''wrapping {OuterClass.__name__}''') class InnerClass(OuterClass,flask_restful.Resource): url = controllerUrl tag = controllerTag description = controllerDescription def __init__(self,*args,**kwargs): log.debug(OuterClass,f'in {InnerClass.__name__}.__init__(*{args},**{kwargs})') OuterClass.__init__(self) flask_restful.Resource.__init__(self,*args,**kwargs) self.service = apiInstance.resource.service overrideSignatures(InnerClass, OuterClass) return InnerClass return Wrapper def getRequestBodyAsJson(contentType) : try : if OpenApiManager.DEFAULT_CONTENT_TYPE == contentType : requestBodyAsJson = request.get_json() else : raise Exception(f'Content type "{contentType}" not implemented') except Exception as exception : raise GlobalException.GlobalException(message='Not possible to parse the request', logMessage=str(exception), status=HttpStatus.BAD_REQUEST) return requestBodyAsJson @Security.jwtRequired def securedMethod(args, kwargs, contentType, resourceInstance, resourceInstanceMethod, requestClass, roleRequired) : if not Security.getRole() in roleRequired : raise GlobalException.GlobalException(message='Role not allowed', logMessage=f'''Role {Security.getRole()} trying to access denied resourse''', status=HttpStatus.FORBIDEN) return notSecuredMethod(args, kwargs, contentType, resourceInstance, resourceInstanceMethod, requestClass) def notSecuredMethod(args, kwargs, contentType, resourceInstance, resourceInstanceMethod, requestClass) : if resourceInstanceMethod.__name__ in OpenApiManager.ABLE_TO_RECIEVE_BODY_LIST and requestClass : requestBodyAsJson = getRequestBodyAsJson(contentType) ###- request.get_json() if requestBodyAsJson : serializerReturn = Serializer.convertFromJsonToObject(requestBodyAsJson, requestClass) args = getArgsWithSerializerReturnAppended(serializerReturn, args, isControllerMethod=True) return resourceInstanceMethod(resourceInstance,*args[1:],**kwargs) @Function def ControllerMethod( url = c.SLASH, requestClass = None, responseClass = None, roleRequired = None, consumes = OpenApiManager.DEFAULT_CONTENT_TYPE, produces = OpenApiManager.DEFAULT_CONTENT_TYPE ): controllerMethodUrl = url controllerMethodRequestClass = requestClass controllerMethodResponseClass = responseClass controllerMethodRoleRequired = roleRequired controllerMethodProduces = produces controllerMethodConsumes = consumes def innerMethodWrapper(resourceInstanceMethod,*args,**kwargs) : noException = None log.debug(ControllerMethod,f'''wrapping {resourceInstanceMethod.__name__}''') def innerResourceInstanceMethod(*args,**kwargs) : resourceInstance = args[0] try : if roleRequired and (type(list()) == type(roleRequired) and not [] == roleRequired) : completeResponse = securedMethod(args, kwargs, consumes, resourceInstance, resourceInstanceMethod, requestClass, roleRequired) else : completeResponse = notSecuredMethod(args, kwargs, consumes, resourceInstance, resourceInstanceMethod, requestClass) validateResponseClass(responseClass, completeResponse[0]) except Exception as exception : completeResponse = getCompleteResponseByException(exception, resourceInstance, resourceInstanceMethod) ###- request.method: GET ###- request.url: http://127.0.0.1:5000/alert/dingding/test?x=y ###- request.base_url: http://127.0.0.1:5000/alert/dingding/test ###- request.url_charset: utf-8 ###- request.url_root: http://127.0.0.1:5000/ ###- str(request.url_rule): /alert/dingding/test ###- request.host_url: http://127.0.0.1:5000/ ###- request.host: 127.0.0.1:5000 ###- request.script_root: ###- request.path: /alert/dingding/test ###- request.full_path: /alert/dingding/test?x=y ###- request.args: ImmutableMultiDict([('x', 'y')]) ###- request.args.get('x'): y controllerResponse = completeResponse[0] status = completeResponse[1] return jsonifyResponse(controllerResponse, produces, status) overrideSignatures(innerResourceInstanceMethod, resourceInstanceMethod) innerResourceInstanceMethod.url = controllerMethodUrl innerResourceInstanceMethod.requestClass = controllerMethodRequestClass innerResourceInstanceMethod.responseClass = controllerMethodResponseClass innerResourceInstanceMethod.roleRequired = controllerMethodRoleRequired innerResourceInstanceMethod.produces = controllerMethodProduces innerResourceInstanceMethod.consumes = controllerMethodConsumes return innerResourceInstanceMethod return innerMethodWrapper @Function def validateArgs(args, requestClass, method) : if requestClass : resourceInstance = args[0] if Serializer.isList(requestClass) : for index in range(len(requestClass)) : if Serializer.isList(args[index + 1]) and len(args[index + 1]) > 0 : expecteObjectClass = requestClass[index][0] for objectInstance in args[index + 1] : GlobalException.validateArgs(resourceInstance, method, objectInstance, expecteObjectClass) else : objectRequest = args[index + 1] expecteObjectClass = requestClass[index] GlobalException.validateArgs(resourceInstance, method, objectRequest, expecteObjectClass) else : objectRequest = args[1] expecteObjectClass = requestClass GlobalException.validateArgs(resourceInstance, method, objectRequest, expecteObjectClass) @Function def Service() : def Wrapper(OuterClass, *args, **kwargs): apiInstance = getApi() noException = None log.debug(Service,f'''wrapping {OuterClass.__name__}''') class InnerClass(OuterClass): def __init__(self,*args,**kwargs): log.debug(OuterClass,f'in {InnerClass.__name__}.__init__(*{args},**{kwargs})') OuterClass.__init__(self,*args,**kwargs) self.globals = apiInstance.globals self.service = apiInstance.resource.service self.repository = apiInstance.resource.repository self.validator = apiInstance.resource.validator self.mapper = apiInstance.resource.mapper self.helper = apiInstance.resource.helper self.converter = apiInstance.resource.converter overrideSignatures(InnerClass, OuterClass) return InnerClass return Wrapper @Function def ServiceMethod(requestClass=None): def innerMethodWrapper(resourceInstanceMethod,*args,**kwargs) : noException = None log.debug(ServiceMethod,f'''innerMethodWrapper wraped {resourceInstanceMethod.__name__}''') def innerResourceInstanceMethod(*args,**kwargs) : resourceInstance = args[0] try : validateArgs(args,requestClass,innerResourceInstanceMethod) methodReturn = resourceInstanceMethod(*args,**kwargs) except Exception as exception : raiseGlobalException(exception, resourceInstance, resourceInstanceMethod) return methodReturn overrideSignatures(innerResourceInstanceMethod, resourceInstanceMethod) return innerResourceInstanceMethod return innerMethodWrapper @Function def Repository(model = None) : repositoryModel = model def Wrapper(OuterClass, *args, **kwargs): apiInstance = getApi() noException = None log.debug(Repository,f'''wrapping {OuterClass.__name__}''') class InnerClass(OuterClass): model = repositoryModel def __init__(self,*args,**kwargs): log.debug(OuterClass,f'in {InnerClass.__name__}.__init__(*{args},**{kwargs})') OuterClass.__init__(self,*args,**kwargs) self.repository = apiInstance.repository self.globals = apiInstance.globals overrideSignatures(InnerClass, OuterClass) return InnerClass return Wrapper @Function def Validator() : def Wrapper(OuterClass, *args, **kwargs): apiInstance = getApi() noException = None log.debug(Validator,f'''wrapping {OuterClass.__name__}''') class InnerClass(OuterClass): def __init__(self,*args,**kwargs): log.debug(OuterClass,f'in {InnerClass.__name__}.__init__(*{args},**{kwargs})') OuterClass.__init__(self,*args,**kwargs) self.service = apiInstance.resource.service self.validator = apiInstance.resource.validator self.helper = apiInstance.resource.helper self.converter = apiInstance.resource.converter overrideSignatures(InnerClass, OuterClass) return InnerClass return Wrapper @Function def ValidatorMethod(requestClass=None, message=None, logMessage=None) : def innerMethodWrapper(resourceInstanceMethod,*args,**kwargs) : noException = None log.debug(ValidatorMethod,f'''wrapping {resourceInstanceMethod.__name__}''') def innerResourceInstanceMethod(*args,**kwargs) : resourceInstance = args[0] try : validateArgs(args,requestClass,innerResourceInstanceMethod) methodReturn = resourceInstanceMethod(*args,**kwargs) except Exception as exception : raiseGlobalException(exception, resourceInstance, resourceInstanceMethod) return methodReturn overrideSignatures(innerResourceInstanceMethod, resourceInstanceMethod) return innerResourceInstanceMethod return innerMethodWrapper @Function def Mapper() : def Wrapper(OuterClass, *args, **kwargs): apiInstance = getApi() noException = None log.debug(Mapper,f'''wrapping {OuterClass.__name__}''') class InnerClass(OuterClass): def __init__(self,*args,**kwargs): log.debug(OuterClass,f'in {InnerClass.__name__}.__init__(*{args},**{kwargs})') OuterClass.__init__(self,*args,**kwargs) self.service = apiInstance.resource.service self.validator = apiInstance.resource.validator self.mapper = apiInstance.resource.mapper self.helper = apiInstance.resource.helper self.converter = apiInstance.resource.converter overrideSignatures(InnerClass, OuterClass) return InnerClass return Wrapper @Function def MapperMethod(requestClass=None, responseClass=None) : def innerMethodWrapper(resourceInstanceMethod,*args,**kwargs) : noException = None log.debug(MapperMethod,f'''wrapping {resourceInstanceMethod.__name__}''') def innerResourceInstanceMethod(*args,**kwargs) : resourceInstance = args[0] try : validateArgs(args,requestClass,innerResourceInstanceMethod) args = getArgsWithResponseClassInstanceAppended(args, responseClass) methodReturn = resourceInstanceMethod(*args,**kwargs) except Exception as exception : raiseGlobalException(exception, resourceInstance, resourceInstanceMethod) return methodReturn overrideSignatures(innerResourceInstanceMethod, resourceInstanceMethod) return innerResourceInstanceMethod return innerMethodWrapper @Function def Helper() : def Wrapper(OuterClass, *args, **kwargs): apiInstance = getApi() noException = None log.debug(Helper,f'''wrapping {OuterClass.__name__}''') class InnerClass(OuterClass,flask_restful.Resource): def __init__(self,*args,**kwargs): log.debug(OuterClass,f'in {InnerClass.__name__}.__init__(*{args},**{kwargs})') OuterClass.__init__(self,*args,**kwargs) self.helper = apiInstance.resource.helper self.converter = apiInstance.resource.converter overrideSignatures(InnerClass, OuterClass) return InnerClass return Wrapper @Function def HelperMethod(requestClass=None, responseClass=None) : def innerMethodWrapper(resourceInstanceMethod,*args,**kwargs) : noException = None log.debug(HelperMethod,f'''wrapping {resourceInstanceMethod.__name__}''') def innerResourceInstanceMethod(*args,**kwargs) : resourceInstance = args[0] try : validateArgs(args,requestClass,innerResourceInstanceMethod) args = getArgsWithResponseClassInstanceAppended(args, responseClass) methodReturn = resourceInstanceMethod(*args,**kwargs) except Exception as exception : raiseGlobalException(exception, resourceInstance, resourceInstanceMethod) return methodReturn overrideSignatures(innerResourceInstanceMethod, resourceInstanceMethod) return innerResourceInstanceMethod return innerMethodWrapper @Function def Converter() : def Wrapper(OuterClass, *args, **kwargs): apiInstance = getApi() noException = None log.debug(Converter,f'''wrapping {OuterClass.__name__}''') class InnerClass(OuterClass): def __init__(self,*args,**kwargs): log.debug(OuterClass,f'in {InnerClass.__name__}.__init__(*{args},**{kwargs})') OuterClass.__init__(self,*args,**kwargs) self.helper = apiInstance.resource.helper self.converter = apiInstance.resource.converter overrideSignatures(InnerClass, OuterClass) return InnerClass return Wrapper @Function def ConverterMethod(requestClass=None, responseClass=None) : def innerMethodWrapper(resourceInstanceMethod,*args,**kwargs) : noException = None log.debug(ConverterMethod,f'''wrapping {resourceInstanceMethod.__name__}''') def innerResourceInstanceMethod(*args,**kwargs) : resourceInstance = args[0] try : validateArgs(args, requestClass, innerResourceInstanceMethod) args = getArgsWithResponseClassInstanceAppended(args, responseClass) methodReturn = resourceInstanceMethod(*args,**kwargs) except Exception as exception : raiseGlobalException(exception, resourceInstance, resourceInstanceMethod) return methodReturn overrideSignatures(innerResourceInstanceMethod, resourceInstanceMethod) return innerResourceInstanceMethod return innerMethodWrapper
null
python_framework/api/src/service/flask/FlaskManager.py
FlaskManager.py
py
25,290
python
en
code
null
code-starcoder2
83
[ { "api_name": "python_helper.Constant.DOT_SPACE", "line_number": 41, "usage_type": "attribute" }, { "api_name": "python_helper.Constant", "line_number": 41, "usage_type": "name" }, { "api_name": "python_helper.Constant.LOG_CAUSE", "line_number": 41, "usage_type": "attribute" }, { "api_name": "python_helper.Constant.TAB", "line_number": 52, "usage_type": "attribute" }, { "api_name": "python_helper.Constant", "line_number": 52, "usage_type": "name" }, { "api_name": "python_helper.Constant.TAB", "line_number": 53, "usage_type": "attribute" }, { "api_name": "python_helper.Constant", "line_number": 53, "usage_type": "name" }, { "api_name": "python_helper.Constant.TAB", "line_number": 54, "usage_type": "attribute" }, { "api_name": "python_helper.Constant", "line_number": 54, "usage_type": "name" }, { "api_name": "flask.Response", "line_number": 58, "usage_type": "call" }, { "api_name": "python_framework.api.src.helper.Serializer.jsonifyIt", "line_number": 58, "usage_type": "call" }, { "api_name": "python_framework.api.src.helper.Serializer", "line_number": 58, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 56, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 60, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 64, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 68, "usage_type": "name" }, { "api_name": "python_framework.api.src.helper.Serializer.isList", "line_number": 73, "usage_type": "call" }, { "api_name": "python_framework.api.src.helper.Serializer", "line_number": 73, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 78, "usage_type": "name" }, { "api_name": "python_framework.api.src.helper.Serializer.convertFromObjectToObject", "line_number": 89, "usage_type": "call" }, { "api_name": "python_framework.api.src.helper.Serializer", "line_number": 89, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 84, "usage_type": "name" }, { "api_name": "python_helper.Constant.NOTHING", "line_number": 99, "usage_type": "attribute" }, { "api_name": "python_helper.Constant", "line_number": 99, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 93, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 102, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 110, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 123, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 118, "usage_type": "name" }, { "api_name": "app.globals", "line_number": 138, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 132, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 140, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 148, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 156, "usage_type": "name" }, { "api_name": "flask_restful.Api", "line_number": 162, "usage_type": "attribute" }, { "api_name": "flask_restful.__name__", "line_number": 163, "usage_type": "attribute" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 160, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 169, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 169, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 167, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 193, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 198, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.GlobalException.handleLogErrorException", "line_number": 205, "usage_type": "call" }, { "api_name": "python_framework.api.src.service.GlobalException", "line_number": 205, "usage_type": "name" }, { "api_name": "python_helper.log.error", "line_number": 214, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 214, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 210, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 225, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 225, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 227, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 227, "usage_type": "name" }, { "api_name": "webbrowser.open_new", "line_number": 228, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 217, "usage_type": "name" }, { "api_name": "python_helper.Constant.SLASH", "line_number": 240, "usage_type": "attribute" }, { "api_name": "python_helper.Constant", "line_number": 240, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 249, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 249, "usage_type": "name" }, { "api_name": "flask_restful.Resource", "line_number": 250, "usage_type": "attribute" }, { "api_name": "python_helper.log.debug", "line_number": 255, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 255, "usage_type": "name" }, { "api_name": "flask_restful.Resource.__init__", "line_number": 257, "usage_type": "call" }, { "api_name": "flask_restful.Resource", "line_number": 257, "usage_type": "attribute" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 259, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 238, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.openapi.OpenApiManager.DEFAULT_CONTENT_TYPE", "line_number": 265, "usage_type": "attribute" }, { "api_name": "python_framework.api.src.service.openapi.OpenApiManager", "line_number": 265, "usage_type": "name" }, { "api_name": "flask.request.get_json", "line_number": 266, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 266, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.GlobalException.GlobalException", "line_number": 270, "usage_type": "call" }, { "api_name": "python_framework.api.src.service.GlobalException", "line_number": 270, "usage_type": "name" }, { "api_name": "python_framework.api.src.domain.HttpStatus.BAD_REQUEST", "line_number": 270, "usage_type": "attribute" }, { "api_name": "python_framework.api.src.domain.HttpStatus", "line_number": 270, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.Security.getRole", "line_number": 275, "usage_type": "call" }, { "api_name": "python_framework.api.src.service.Security", "line_number": 275, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.GlobalException.GlobalException", "line_number": 276, "usage_type": "call" }, { "api_name": "python_framework.api.src.service.GlobalException", "line_number": 276, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.Security.getRole", "line_number": 276, "usage_type": "call" }, { "api_name": "python_framework.api.src.service.Security", "line_number": 276, "usage_type": "name" }, { "api_name": "python_framework.api.src.domain.HttpStatus.FORBIDEN", "line_number": 276, "usage_type": "attribute" }, { "api_name": "python_framework.api.src.domain.HttpStatus", "line_number": 276, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.Security.jwtRequired", "line_number": 273, "usage_type": "attribute" }, { "api_name": "python_framework.api.src.service.Security", "line_number": 273, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.openapi.OpenApiManager.ABLE_TO_RECIEVE_BODY_LIST", "line_number": 280, "usage_type": "attribute" }, { "api_name": "python_framework.api.src.service.openapi.OpenApiManager", "line_number": 280, "usage_type": "name" }, { "api_name": "python_framework.api.src.helper.Serializer.convertFromJsonToObject", "line_number": 283, "usage_type": "call" }, { "api_name": "python_framework.api.src.helper.Serializer", "line_number": 283, "usage_type": "name" }, { "api_name": "python_helper.Constant.SLASH", "line_number": 289, "usage_type": "attribute" }, { "api_name": "python_helper.Constant", "line_number": 289, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.openapi.OpenApiManager.DEFAULT_CONTENT_TYPE", "line_number": 293, "usage_type": "attribute" }, { "api_name": "python_framework.api.src.service.openapi.OpenApiManager", "line_number": 293, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.openapi.OpenApiManager.DEFAULT_CONTENT_TYPE", "line_number": 294, "usage_type": "attribute" }, { "api_name": "python_framework.api.src.service.openapi.OpenApiManager", "line_number": 294, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 304, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 304, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 332, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 287, "usage_type": "name" }, { "api_name": "python_framework.api.src.helper.Serializer.isList", "line_number": 346, "usage_type": "call" }, { "api_name": "python_framework.api.src.helper.Serializer", "line_number": 346, "usage_type": "name" }, { "api_name": "python_framework.api.src.helper.Serializer.isList", "line_number": 348, "usage_type": "call" }, { "api_name": "python_framework.api.src.helper.Serializer", "line_number": 348, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.GlobalException.validateArgs", "line_number": 351, "usage_type": "call" }, { "api_name": "python_framework.api.src.service.GlobalException", "line_number": 351, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.GlobalException.validateArgs", "line_number": 355, "usage_type": "call" }, { "api_name": "python_framework.api.src.service.GlobalException", "line_number": 355, "usage_type": "name" }, { "api_name": "python_framework.api.src.service.GlobalException.validateArgs", "line_number": 359, "usage_type": "call" }, { "api_name": "python_framework.api.src.service.GlobalException", "line_number": 359, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 342, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 366, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 366, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 369, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 369, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 378, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 361, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 386, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 386, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 395, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 382, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 405, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 405, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 409, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 409, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 413, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 399, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 422, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 422, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 425, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 425, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 431, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 417, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 439, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 439, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 448, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 435, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 458, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 458, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 461, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 461, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 468, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 453, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 476, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 476, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 486, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 472, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 495, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 495, "usage_type": "name" }, { "api_name": "flask_restful.Resource", "line_number": 496, "usage_type": "attribute" }, { "api_name": "python_helper.log.debug", "line_number": 498, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 498, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 502, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 490, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 510, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 510, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 520, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 506, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 529, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 529, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 532, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 532, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 536, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 524, "usage_type": "name" }, { "api_name": "python_helper.log.debug", "line_number": 544, "usage_type": "call" }, { "api_name": "python_helper.log", "line_number": 544, "usage_type": "name" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.overrideSignatures", "line_number": 554, "usage_type": "call" }, { "api_name": "python_framework.api.src.annotation.MethodWrapper.Function", "line_number": 540, "usage_type": "name" } ]
424346879
# -*- coding: utf-8 -*- import pytest from chocolatepy import ChocolateApp, ChocolateServer, NonChocolateAppError from webtest import TestApp @pytest.fixture def app_one(): app = ChocolateApp("one") @app.route("/") def index(): return "one" return app @pytest.fixture def app_two(): app = ChocolateApp("two") @app.route("/") def index(): return "two" return app @pytest.fixture def app_three(): app = ChocolateApp("three") @app.route("/") def index(): return "three" return app @pytest.fixture def app_four(): app = ChocolateApp("four") @app.route("/<value>") def index(value): return value return app def test_register_apps(app_one, app_two, app_three, app_four): server = ChocolateServer() server.register_apps(app_one, app_two, app_three, app_four) app = TestApp(server.server) assert app.get("/one").status == "200 OK" assert app.get("/one").text == "one" assert app.get("/two").status == "200 OK" assert app.get("/two").text == "two" assert app.get("/three").status == "200 OK" assert app.get("/three").text == "three" assert app.get("/four/foo").status == "200 OK" assert app.get("/four/foo").text == "foo" assert app.get("/one").text == app.get("/").text def test_register_apps_with_default_app(app_one, app_two, app_three, app_four): server = ChocolateServer() server.register_apps(app_one, app_three, app_four, default_app=app_two) app = TestApp(server.server) assert app.get("/two").text == app.get("/").text def test_register_non_chocolate_app(app_one, app_two, app_three, app_four): server = ChocolateServer() bad_app = "app_five" try: server.register_apps(app_one, app_two, app_three, app_four, bad_app) assert False except NonChocolateAppError: assert True def test_register_non_chocolate_app_as_default(app_one, app_two, app_three, app_four): server = ChocolateServer() bad_app = 5 try: server.register_apps(app_one, app_two, app_three, app_four, default_app=bad_app) assert False except NonChocolateAppError: assert True
null
tests/test_server.py
test_server.py
py
2,216
python
en
code
null
code-starcoder2
83
[ { "api_name": "chocolatepy.ChocolateApp", "line_number": 10, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 8, "usage_type": "attribute" }, { "api_name": "chocolatepy.ChocolateApp", "line_number": 21, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 19, "usage_type": "attribute" }, { "api_name": "chocolatepy.ChocolateApp", "line_number": 32, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 30, "usage_type": "attribute" }, { "api_name": "chocolatepy.ChocolateApp", "line_number": 43, "usage_type": "call" }, { "api_name": "pytest.fixture", "line_number": 41, "usage_type": "attribute" }, { "api_name": "chocolatepy.ChocolateServer", "line_number": 53, "usage_type": "call" }, { "api_name": "webtest.TestApp", "line_number": 57, "usage_type": "call" }, { "api_name": "chocolatepy.ChocolateServer", "line_number": 75, "usage_type": "call" }, { "api_name": "webtest.TestApp", "line_number": 79, "usage_type": "call" }, { "api_name": "chocolatepy.ChocolateServer", "line_number": 85, "usage_type": "call" }, { "api_name": "chocolatepy.NonChocolateAppError", "line_number": 92, "usage_type": "name" }, { "api_name": "chocolatepy.ChocolateServer", "line_number": 97, "usage_type": "call" }, { "api_name": "chocolatepy.NonChocolateAppError", "line_number": 104, "usage_type": "name" } ]
631909505
import array as arr import re from matplotlib import pyplot as plt from matplotlib import style #creating an array with 'd' as double float time = arr.array('d',[]); #array for time value = arr.array('d',[]); #array for voltage/current #reading file filename = "rangkaian_RC.csv"; file = open(filename,'r'); #reading entire line in file eksternal with open(filename,'r') as filehandle: for line in filehandle: #cek = re.split(" |\n",line); #splitting the line with the deliminator " " or "\n" token = re.split(";",line); #splitting the line with the deliminator ";" time.append(float(token[0])); value.append(float(token[1])); #user input user_input = input(); #displaying the graphic style.use('ggplot') plt.scatter(time, value)#, align='center') if((user_input == 'v') or (user_input == 'V')) : plt.title('Voltage vs Time'); plt.ylabel('Voltage(V)'); plt.xlabel('Time(s)'); elif ((user_input == 'i') or (user_input == 'I')) : plt.title('Current vs Time'); plt.ylabel('Current(A)'); plt.xlabel('Time(s)'); else : print("Inputan user salah.\n"); plt.show()
null
plotting_math_graph.py
plotting_math_graph.py
py
1,185
python
en
code
null
code-starcoder2
83
[ { "api_name": "array.array", "line_number": 7, "usage_type": "call" }, { "api_name": "array.array", "line_number": 8, "usage_type": "call" }, { "api_name": "re.split", "line_number": 19, "usage_type": "call" }, { "api_name": "matplotlib.style.use", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.style", "line_number": 27, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 39, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 39, "usage_type": "name" } ]
185123426
from django.contrib import admin from .models import Post, Category, Tag, Product # Register your models here. class PostAdmin(admin.ModelAdmin): list_display = ['title','created_time','modified_time','category','author',] class ProductAdmin(admin.ModelAdmin): list_display = ['name','excerpt',] admin.site.register(Post,PostAdmin) admin.site.register(Category) admin.site.register(Tag) admin.site.register(Product,ProductAdmin) admin.site.site_header = '瑞新药业' admin.site.site_title = '瑞新药业'
null
blog/admin.py
admin.py
py
513
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.contrib.admin.ModelAdmin", "line_number": 5, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 5, "usage_type": "name" }, { "api_name": "django.contrib.admin.ModelAdmin", "line_number": 8, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 8, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 11, "usage_type": "call" }, { "api_name": "models.Post", "line_number": 11, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 11, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 11, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 12, "usage_type": "call" }, { "api_name": "models.Category", "line_number": 12, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 12, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 12, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 13, "usage_type": "call" }, { "api_name": "models.Tag", "line_number": 13, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 13, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 13, "usage_type": "name" }, { "api_name": "django.contrib.admin.site.register", "line_number": 14, "usage_type": "call" }, { "api_name": "models.Product", "line_number": 14, "usage_type": "argument" }, { "api_name": "django.contrib.admin.site", "line_number": 14, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 14, "usage_type": "name" }, { "api_name": "django.contrib.admin.site", "line_number": 16, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 16, "usage_type": "name" }, { "api_name": "django.contrib.admin.site", "line_number": 17, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 17, "usage_type": "name" } ]
528888459
from django.contrib.contenttypes.models import ContentType from django.core.exceptions import PermissionDenied from django.http import Http404 from django.shortcuts import get_object_or_404, redirect from django.template.response import TemplateResponse from django.urls import reverse from django.utils import timezone from django.utils.http import urlquote from django.utils.translation import gettext as _ from wagtail.admin import messages, signals from wagtail.admin.action_menu import PageActionMenu from wagtail.admin.views.pages.utils import get_valid_next_url_from_request from wagtail.core import hooks from wagtail.core.models import Page def add_subpage(request, parent_page_id): parent_page = get_object_or_404(Page, id=parent_page_id).specific if not parent_page.permissions_for_user(request.user).can_add_subpage(): raise PermissionDenied page_types = [ (model.get_verbose_name(), model._meta.app_label, model._meta.model_name) for model in type(parent_page).creatable_subpage_models() if model.can_create_at(parent_page) ] # sort by lower-cased version of verbose name page_types.sort(key=lambda page_type: page_type[0].lower()) if len(page_types) == 1: # Only one page type is available - redirect straight to the create form rather than # making the user choose verbose_name, app_label, model_name = page_types[0] return redirect('wagtailadmin_pages:add', app_label, model_name, parent_page.id) return TemplateResponse(request, 'wagtailadmin/pages/add_subpage.html', { 'parent_page': parent_page, 'page_types': page_types, 'next': get_valid_next_url_from_request(request), }) def create(request, content_type_app_name, content_type_model_name, parent_page_id): parent_page = get_object_or_404(Page, id=parent_page_id).specific parent_page_perms = parent_page.permissions_for_user(request.user) if not parent_page_perms.can_add_subpage(): raise PermissionDenied try: content_type = ContentType.objects.get_by_natural_key(content_type_app_name, content_type_model_name) except ContentType.DoesNotExist: raise Http404 # Get class page_class = content_type.model_class() # Make sure the class is a descendant of Page if not issubclass(page_class, Page): raise Http404 # page must be in the list of allowed subpage types for this parent ID if page_class not in parent_page.creatable_subpage_models(): raise PermissionDenied if not page_class.can_create_at(parent_page): raise PermissionDenied for fn in hooks.get_hooks('before_create_page'): result = fn(request, parent_page, page_class) if hasattr(result, 'status_code'): return result page = page_class(owner=request.user) edit_handler = page_class.get_edit_handler() edit_handler = edit_handler.bind_to(request=request, instance=page) form_class = edit_handler.get_form_class() next_url = get_valid_next_url_from_request(request) if request.method == 'POST': form = form_class(request.POST, request.FILES, instance=page, parent_page=parent_page) if form.is_valid(): page = form.save(commit=False) is_publishing = bool(request.POST.get('action-publish')) and parent_page_perms.can_publish_subpage() is_submitting = bool(request.POST.get('action-submit')) and parent_page.has_workflow if not is_publishing: page.live = False # Save page parent_page.add_child(instance=page) # Save revision revision = page.save_revision(user=request.user, log_action=False) # Publish if is_publishing: for fn in hooks.get_hooks('before_publish_page'): result = fn(request, page) if hasattr(result, 'status_code'): return result revision.publish(user=request.user) for fn in hooks.get_hooks('after_publish_page'): result = fn(request, page) if hasattr(result, 'status_code'): return result # Submit if is_submitting: workflow = page.get_workflow() workflow.start(page, request.user) # Notifications if is_publishing: if page.go_live_at and page.go_live_at > timezone.now(): messages.success(request, _("Page '{0}' created and scheduled for publishing.").format(page.get_admin_display_title()), buttons=[ messages.button(reverse('wagtailadmin_pages:edit', args=(page.id,)), _('Edit')) ]) else: buttons = [] if page.url is not None: buttons.append(messages.button(page.url, _('View live'), new_window=True)) buttons.append(messages.button(reverse('wagtailadmin_pages:edit', args=(page.id,)), _('Edit'))) messages.success(request, _("Page '{0}' created and published.").format(page.get_admin_display_title()), buttons=buttons) elif is_submitting: buttons = [] if page.is_previewable(): buttons.append( messages.button( reverse('wagtailadmin_pages:view_draft', args=(page.id,)), _('View draft'), new_window=True ), ) buttons.append( messages.button( reverse('wagtailadmin_pages:edit', args=(page.id,)), _('Edit') ) ) messages.success( request, _("Page '{0}' created and submitted for moderation.").format(page.get_admin_display_title()), buttons=buttons ) else: messages.success(request, _("Page '{0}' created.").format(page.get_admin_display_title())) for fn in hooks.get_hooks('after_create_page'): result = fn(request, page) if hasattr(result, 'status_code'): return result if is_publishing or is_submitting: # we're done here if next_url: # redirect back to 'next' url if present return redirect(next_url) # redirect back to the explorer return redirect('wagtailadmin_explore', page.get_parent().id) else: # Just saving - remain on edit page for further edits target_url = reverse('wagtailadmin_pages:edit', args=[page.id]) if next_url: # Ensure the 'next' url is passed through again if present target_url += '?next=%s' % urlquote(next_url) return redirect(target_url) else: messages.validation_error( request, _("The page could not be created due to validation errors"), form ) has_unsaved_changes = True else: signals.init_new_page.send(sender=create, page=page, parent=parent_page) form = form_class(instance=page, parent_page=parent_page) has_unsaved_changes = False edit_handler = edit_handler.bind_to(form=form) return TemplateResponse(request, 'wagtailadmin/pages/create.html', { 'content_type': content_type, 'page_class': page_class, 'parent_page': parent_page, 'edit_handler': edit_handler, 'action_menu': PageActionMenu(request, view='create', parent_page=parent_page), 'preview_modes': page.preview_modes, 'form': form, 'next': next_url, 'has_unsaved_changes': has_unsaved_changes, })
null
wagtail/admin/views/pages/create.py
create.py
py
8,112
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.shortcuts.get_object_or_404", "line_number": 19, "usage_type": "call" }, { "api_name": "wagtail.core.models.Page", "line_number": 19, "usage_type": "argument" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 21, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 35, "usage_type": "call" }, { "api_name": "django.template.response.TemplateResponse", "line_number": 37, "usage_type": "call" }, { "api_name": "wagtail.admin.views.pages.utils.get_valid_next_url_from_request", "line_number": 40, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 45, "usage_type": "call" }, { "api_name": "wagtail.core.models.Page", "line_number": 45, "usage_type": "argument" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 48, "usage_type": "name" }, { "api_name": "django.contrib.contenttypes.models.ContentType.objects.get_by_natural_key", "line_number": 51, "usage_type": "call" }, { "api_name": "django.contrib.contenttypes.models.ContentType.objects", "line_number": 51, "usage_type": "attribute" }, { "api_name": "django.contrib.contenttypes.models.ContentType", "line_number": 51, "usage_type": "name" }, { "api_name": "django.contrib.contenttypes.models.ContentType.DoesNotExist", "line_number": 52, "usage_type": "attribute" }, { "api_name": "django.contrib.contenttypes.models.ContentType", "line_number": 52, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 53, "usage_type": "name" }, { "api_name": "wagtail.core.models.Page", "line_number": 59, "usage_type": "argument" }, { "api_name": "django.http.Http404", "line_number": 60, "usage_type": "name" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 64, "usage_type": "name" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 67, "usage_type": "name" }, { "api_name": "wagtail.core.hooks.get_hooks", "line_number": 69, "usage_type": "call" }, { "api_name": "wagtail.core.hooks", "line_number": 69, "usage_type": "name" }, { "api_name": "wagtail.admin.views.pages.utils.get_valid_next_url_from_request", "line_number": 79, "usage_type": "call" }, { "api_name": "wagtail.core.hooks.get_hooks", "line_number": 102, "usage_type": "call" }, { "api_name": "wagtail.core.hooks", "line_number": 102, "usage_type": "name" }, { "api_name": "wagtail.core.hooks.get_hooks", "line_number": 109, "usage_type": "call" }, { "api_name": "wagtail.core.hooks", "line_number": 109, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 121, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 121, "usage_type": "name" }, { "api_name": "wagtail.admin.messages.success", "line_number": 122, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 122, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 122, "usage_type": "call" }, { "api_name": "wagtail.admin.messages.button", "line_number": 123, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 123, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 123, "usage_type": "call" }, { "api_name": "django.utils.translation.gettext", "line_number": 123, "usage_type": "call" }, { "api_name": "wagtail.admin.messages.button", "line_number": 128, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 128, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 128, "usage_type": "call" }, { "api_name": "wagtail.admin.messages.button", "line_number": 129, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 129, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 129, "usage_type": "call" }, { "api_name": "django.utils.translation.gettext", "line_number": 129, "usage_type": "call" }, { "api_name": "wagtail.admin.messages.success", "line_number": 130, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 130, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 130, "usage_type": "call" }, { "api_name": "wagtail.admin.messages.button", "line_number": 136, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 136, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 137, "usage_type": "call" }, { "api_name": "django.utils.translation.gettext", "line_number": 138, "usage_type": "call" }, { "api_name": "wagtail.admin.messages.button", "line_number": 144, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 144, "usage_type": "name" }, { "api_name": "django.urls.reverse", "line_number": 145, "usage_type": "call" }, { "api_name": "django.utils.translation.gettext", "line_number": 146, "usage_type": "call" }, { "api_name": "wagtail.admin.messages.success", "line_number": 150, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 150, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 152, "usage_type": "call" }, { "api_name": "wagtail.admin.messages.success", "line_number": 156, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 156, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 156, "usage_type": "call" }, { "api_name": "wagtail.core.hooks.get_hooks", "line_number": 158, "usage_type": "call" }, { "api_name": "wagtail.core.hooks", "line_number": 158, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 167, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 169, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 172, "usage_type": "call" }, { "api_name": "django.utils.http.urlquote", "line_number": 175, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 176, "usage_type": "call" }, { "api_name": "wagtail.admin.messages.validation_error", "line_number": 178, "usage_type": "call" }, { "api_name": "wagtail.admin.messages", "line_number": 178, "usage_type": "name" }, { "api_name": "django.utils.translation.gettext", "line_number": 179, "usage_type": "call" }, { "api_name": "wagtail.admin.signals.init_new_page.send", "line_number": 183, "usage_type": "call" }, { "api_name": "wagtail.admin.signals.init_new_page", "line_number": 183, "usage_type": "attribute" }, { "api_name": "wagtail.admin.signals", "line_number": 183, "usage_type": "name" }, { "api_name": "django.template.response.TemplateResponse", "line_number": 189, "usage_type": "call" }, { "api_name": "wagtail.admin.action_menu.PageActionMenu", "line_number": 194, "usage_type": "call" } ]
624926750
from tqdm import tqdm import textdistance as tt import pandas as pd import concurrent.futures import math def AdjustYear(x): if 100 > x > 20: x = 1900 + x elif x < 20: 2000 + x return x def sim_chooserController(sim_chooser, simple,dif_sim_per_column=False): if sim_chooser is None and not dif_sim_per_column: if not simple: sim_chooser = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] else: sim_chooser = [1, 2, 3, 4, 5, 6] if sim_chooser is not None and dif_sim_per_column: try: for n,col in enumerate(sim_chooser): if type(col) is not list: sim_chooser[n] = list(col) sim_chooser[n].sort() except: sim_chooser = [[]] print("invalid sim_chooser") if type(sim_chooser) is not list: try: sim_chooser = [sim_chooser] except: print("wrong sim_chooser declaration, should be in list type") sim_chooser = [] if not dif_sim_per_column: sim_chooser.sort() return sim_chooser def getFeaturesNames(columns, simple=False, sim_chooser=None,dif_sim_per_column=False): ''' Have in input the collum names of the database and return an array with all the names of the features who will be used in the matching. The textdistance library have a function to each of this similarities simple: 1-Hamming 2-Levenshtein 3-Damerau levenshtein 4-Needleman-Wunsch 5-Gotoh 6-Smith-Waterman Not simples: 7-Jaccard 8-Tversky index 9-Overlap coefficient 10-Cosine 11-Monge-Elkan 12-Bag distance 13-Arithmetic coding 14 numerical distance ''' sim_chooser = sim_chooserController(sim_chooser, simple,dif_sim_per_column) col_names = ['id_l', 'id_r'] if not dif_sim_per_column: for a in columns: # Edit basedh if 1 in sim_chooser: col_names.append(a + featureMapper(1)) # Hamming # col_names.append(a+'_mli') # Mlipns if 2 in sim_chooser: col_names.append(a + featureMapper(2)) # Levenshtein # col_names.append(a+'_S95') # Strcmp95 # col_names.append(a+'_jW') # Jaro-Winkler if 3 in sim_chooser: col_names.append(a + featureMapper(3)) # damerau levenshtein if 4 in sim_chooser: col_names.append(a + featureMapper(4)) # Needleman-Wunsch if 5 in sim_chooser: col_names.append(a + featureMapper(5)) # Gotoh if 6 in sim_chooser: col_names.append(a + featureMapper(6)) # Smith-Waterman if not simple: # Token based if 7 in sim_chooser: col_names.append(a + featureMapper(7)) # jaccard # col_names.append(a+'_sD') # Sørensen–Dice coefficient if 8 in sim_chooser: col_names.append(a + featureMapper(8)) # Tversky index if 9 in sim_chooser: col_names.append(a + featureMapper(9)) # Overlap coefficient # col_names.append(a+'_td') #Tanimoto distance if 10 in sim_chooser: col_names.append(a + featureMapper(10)) # cosine if 11 in sim_chooser: col_names.append(a + featureMapper(11)) # Monge-Elkan if 12 in sim_chooser: col_names.append(a + featureMapper(12)) # Bag distance # Compression based if 13 in sim_chooser: col_names.append(a + featureMapper(13)) # Arithmetic coding # col_names.append(a+'_RLE') #RLE # col_names.append(a+'_BRLE') #BWT RLE # col_names.append(a+'_sqrt') #Square Root # if sim_chooser == 14 or sim_chooser == 0: # col_names.append(a + '_ent') # Entropy # Phonetic # col_names.append(a+'_MRA') #MRA # col_names.append(a+'_edi') #Editex # Numerical only if 14 in sim_chooser: col_names.append(a + featureMapper(14)) # MaxMin division else: for n,a in enumerate(columns): # Edit basedh if 1 in sim_chooser[n]: col_names.append(a + featureMapper(1)) # Hamming if 2 in sim_chooser[n]: col_names.append(a + featureMapper(2)) # Levenshtein if 3 in sim_chooser[n]: col_names.append(a + featureMapper(3)) # damerau levenshtein if 4 in sim_chooser[n]: col_names.append(a + featureMapper(4)) # Needleman-Wunsch if 5 in sim_chooser[n]: col_names.append(a + featureMapper(5)) # Gotoh if 6 in sim_chooser[n]: col_names.append(a + featureMapper(6)) # Smith-Waterman if not simple: # Token based if 7 in sim_chooser[n]: col_names.append(a + featureMapper(7)) # jaccard if 8 in sim_chooser[n]: col_names.append(a + featureMapper(8)) # Tversky index if 9 in sim_chooser[n]: col_names.append(a + featureMapper(9)) # Overlap coefficient if 10 in sim_chooser[n]: col_names.append(a + featureMapper(10)) # cosine if 11 in sim_chooser[n]: col_names.append(a + featureMapper(11)) # Monge-Elkan if 12 in sim_chooser[n]: col_names.append(a + featureMapper(12)) # Bag distance # Compression based if 13 in sim_chooser[n]: col_names.append(a + featureMapper(13)) # Arithmetic coding # Numerical division if 14 in sim_chooser[n]: col_names.append(a + featureMapper(14)) # MaxMin division return col_names def getColSim(df1: pd.DataFrame, df2: pd.DataFrame, pairs, simple=False, sim_chooser=None, dif_sim_per_column=False): ''' Calculate the similarity between a pair of rows of 2 different dataframes, if simple variable is set to true then some similarities will not be calculated simple: 1-Hamming 2-Levenshtein 3-Damerau levenshtein 4-Needleman-Wunsch 5-Gotoh 6-Smith-Waterman Not simples: 7-Jaccard 8-Tversky index 9-Overlap coefficient 10-Cosine 11-Monge-Elkan 12-Bag distance 13-Arithmetic coding 14-minMax Calculator * dif_sim_per_colum if True have sim_chooser as a list of lists if false (default) have a sim chooser as a list or a number ''' sim_chooser = sim_chooserController(sim_chooser, simple, dif_sim_per_column) all_pairs_sim = [] for p in tqdm(pairs): r0 = df1.loc[p[0]] r1 = df2.loc[p[1]] similarities = [p[0], p[1]] for n,a in enumerate(df1.columns): s0 = str(r0[a]).lower() s1 = str(r1[a]).lower() if(dif_sim_per_column): sim=simCalculator(sim_chooser[n], s0, s1) else: sim = simCalculator(sim_chooser, s0, s1) for s in sim: similarities.append(s) all_pairs_sim.append(similarities) return all_pairs_sim def simCalculator(sim_chooser, s0, s1): similarities = [] if 1 in sim_chooser: # Hamming sim = tt.hamming.normalized_similarity(s0, s1) similarities.append(sim) if 2 in sim_chooser: # Levenshtein sim = tt.levenshtein.normalized_similarity(s0, s1) similarities.append(sim) if 3 in sim_chooser: # Damerau levenshtein # this is slow sim = tt.damerau_levenshtein.normalized_similarity(s0, s1) ##sim = pylev.damerau_levenshtein(s0,s1) similarities.append(sim) if 4 in sim_chooser: # Needleman-Wunsch sim = tt.needleman_wunsch.normalized_similarity(s0, s1) similarities.append(sim) if 5 in sim_chooser: # Gotoh sim = tt.gotoh.normalized_similarity(s0, s1) similarities.append(sim) if 6 in sim_chooser: # Smith-Waterman sim = tt.smith_waterman.normalized_similarity(s0, s1) similarities.append(sim) ###Token Based if 7 in sim_chooser: # Jaccard sim = tt.jaccard.normalized_similarity(s0, s1) similarities.append(sim) ##Sørensen–Dice coefficient # sim = tt.Sorensen.normalized_similarity(s0,s1) # similarities.append(sim) if 8 in sim_chooser: # Tversky index sim = tt.tversky.normalized_similarity(s0, s1) similarities.append(sim) if 9 in sim_chooser: # Overlap coefficient sim = tt.overlap.normalized_similarity(s0, s1) similarities.append(sim) ##Tanimoto distance # sim = tt.Tanimoto.normalized_similarity(s0,s1) # similarities.append(sim) if 10 in sim_chooser: # Cosine sim = tt.cosine.normalized_similarity(s0, s1) similarities.append(sim) if 11 in sim_chooser: # Monge-Elkan sim = tt.monge_elkan.normalized_similarity(s0, s1) similarities.append(sim) if 12 in sim_chooser: # Bag distance sim = tt.bag.normalized_similarity(s0, s1) similarities.append(sim) ###Compression Based if 13 in sim_chooser: # Arithmetic coding sim = tt.arith_ncd.normalized_similarity(s0, s1) similarities.append(sim) ##RLE # sim = tt.RLENCD.normalized_similarity(s0,s1) # similarities.append(sim) ##BWT RLE # sim = tt.BWTRLENCD.normalized_similarity(s0,s1) # similarities.append(sim) ##Square Root # sim = tt.sqrt_ncd.normalized_similarity(s0,s1) # similarities.append(sim) # if sim_chooser == 14 or sim_chooser == 0: # Entropy # sim = tt.entropy_ncd.normalized_similarity(s0, s1) # similarities.append(sim) if 14 in sim_chooser: # minMax division (only for numbers) try: sim = min(float(s0),float(s1))/max(float(s0),float(s1)) if math.isnan(sim): sim = 0 except: sim = 0 similarities.append(sim) return similarities def parallelGetColSim(df1: pd.DataFrame, df2: pd.DataFrame, pairs, simple=False, sim_chooser=None , dif_sim_per_column=False, process=4): """ Parallelized GetColSim Calculate the similarity between a pair of rows of 2 different dataframes, if simple variable is set to true then some similarities will not be calculated simple: 1-Hamming 2-Levenshtein 3-Damerau levenshtein 4-Needleman-Wunsch 5-Gotoh 6-Smith-Waterman Not simples: 7-Jaccard 8-Tversky index 9-Overlap coefficient 10-Cosine 11-Monge-Elkan 12-Bag distance 13-Arithmetic coding 14-MinMax division * dif_sim_per_colum if True have sim_chooser as a list of lists if false (default) have a sim chooser as a list or a number """ all_pairs_sim = [] list_of_pairs=list(pairs) aux = round(len(list_of_pairs) / process) with concurrent.futures.ProcessPoolExecutor() as executor: results = [] for p in range(process): if p == process-1: results.append(executor.submit(getColSim, df1, df2, list_of_pairs[p * aux:], simple, sim_chooser , dif_sim_per_column)) else: results.append(executor.submit(getColSim, df1, df2, list_of_pairs[p * aux: (p + 1) * aux], simple, sim_chooser, dif_sim_per_column)) for f in concurrent.futures.as_completed(results): all_pairs_sim += f.result() return all_pairs_sim def featureMapper(n): mapper = { 1: '_ham', 2: '_ls', 3: '_dLs', 4: '_NW', 5: '_go', 6: '_sW', 7: '_js', 8: '_tv', 9: '_oc', 10: '_cs', 11: '_mE', 12: '_bag', 13: '_ath', 14: '_div' } return mapper.get(n)
null
Prep/features_utills.py
features_utills.py
py
12,223
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandas.DataFrame", "line_number": 145, "usage_type": "attribute" }, { "api_name": "tqdm.tqdm", "line_number": 159, "usage_type": "call" }, { "api_name": "textdistance.hamming.normalized_similarity", "line_number": 182, "usage_type": "call" }, { "api_name": "textdistance.hamming", "line_number": 182, "usage_type": "attribute" }, { "api_name": "textdistance.levenshtein.normalized_similarity", "line_number": 186, "usage_type": "call" }, { "api_name": "textdistance.levenshtein", "line_number": 186, "usage_type": "attribute" }, { "api_name": "textdistance.damerau_levenshtein.normalized_similarity", "line_number": 190, "usage_type": "call" }, { "api_name": "textdistance.damerau_levenshtein", "line_number": 190, "usage_type": "attribute" }, { "api_name": "textdistance.needleman_wunsch.normalized_similarity", "line_number": 195, "usage_type": "call" }, { "api_name": "textdistance.needleman_wunsch", "line_number": 195, "usage_type": "attribute" }, { "api_name": "textdistance.gotoh.normalized_similarity", "line_number": 199, "usage_type": "call" }, { "api_name": "textdistance.gotoh", "line_number": 199, "usage_type": "attribute" }, { "api_name": "textdistance.smith_waterman.normalized_similarity", "line_number": 203, "usage_type": "call" }, { "api_name": "textdistance.smith_waterman", "line_number": 203, "usage_type": "attribute" }, { "api_name": "textdistance.jaccard.normalized_similarity", "line_number": 208, "usage_type": "call" }, { "api_name": "textdistance.jaccard", "line_number": 208, "usage_type": "attribute" }, { "api_name": "textdistance.tversky.normalized_similarity", "line_number": 215, "usage_type": "call" }, { "api_name": "textdistance.tversky", "line_number": 215, "usage_type": "attribute" }, { "api_name": "textdistance.overlap.normalized_similarity", "line_number": 219, "usage_type": "call" }, { "api_name": "textdistance.overlap", "line_number": 219, "usage_type": "attribute" }, { "api_name": "textdistance.cosine.normalized_similarity", "line_number": 226, "usage_type": "call" }, { "api_name": "textdistance.cosine", "line_number": 226, "usage_type": "attribute" }, { "api_name": "textdistance.monge_elkan.normalized_similarity", "line_number": 230, "usage_type": "call" }, { "api_name": "textdistance.monge_elkan", "line_number": 230, "usage_type": "attribute" }, { "api_name": "textdistance.bag.normalized_similarity", "line_number": 234, "usage_type": "call" }, { "api_name": "textdistance.bag", "line_number": 234, "usage_type": "attribute" }, { "api_name": "textdistance.arith_ncd.normalized_similarity", "line_number": 240, "usage_type": "call" }, { "api_name": "textdistance.arith_ncd", "line_number": 240, "usage_type": "attribute" }, { "api_name": "math.isnan", "line_number": 259, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 268, "usage_type": "attribute" }, { "api_name": "concurrent.futures.futures.ProcessPoolExecutor", "line_number": 285, "usage_type": "call" }, { "api_name": "concurrent.futures.futures", "line_number": 285, "usage_type": "attribute" }, { "api_name": "concurrent.futures", "line_number": 285, "usage_type": "name" }, { "api_name": "concurrent.futures.futures.as_completed", "line_number": 294, "usage_type": "call" }, { "api_name": "concurrent.futures.futures", "line_number": 294, "usage_type": "attribute" }, { "api_name": "concurrent.futures", "line_number": 294, "usage_type": "name" } ]
103334059
# encoding: utf-8 from __future__ import unicode_literals import os import tempfile import unittest from mock import Mock from pdefc import CompilerException from pdefc.lang.packages import PackageInfo from pdefc.sources import UrlPackageSource, FilePackageSource, InMemoryPackageSource, PackageSources, UTF8, \ PackageSource class TestPackageSources(unittest.TestCase): def setUp(self): self.tempfiles = [] def tearDown(self): for path in self.tempfiles: os.remove(path) def test_add_source(self): info = PackageInfo('test') source = InMemoryPackageSource(info) sources = PackageSources() sources.add_source(source) assert sources.get('test') is source def test_add_path__file(self): source = Mock() source.package_name = 'test' _, filename = tempfile.mkstemp('pdef-tests') sources = PackageSources() sources._create_file_source = lambda filename: source sources.add_path(filename) os.remove(filename) assert sources.get('test') is source def test_add_path__url(self): source = Mock() source.package_name = 'test' sources = PackageSources() sources._create_url_source = lambda url: source sources.add_path('http://localhost:8080/test/api.yaml') assert sources.get('test') is source def test_get__not_found(self): sources = PackageSources() self.assertRaises(CompilerException, sources.get, 'absent') class TestFilePackageSource(unittest.TestCase): def test(self): # Given a fixture package info and files. info = PackageInfo('project_api', modules=['users', 'users.events']) files = { '../../test.yaml': info.to_yaml(), '../../users.pdef': 'users module', '../../users/events.pdef': 'events module' } # Create a package source. source = FilePackageSource('../../test.yaml') source._read_file = lambda filepath: files[filepath] source._read() # The source should read the info and the modules. assert source.package_name == 'project_api' assert source.package_info.to_dict() == info.to_dict() assert source.module_sources[0].name == 'users' assert source.module_sources[1].name == 'users.events' assert source.module_sources[0].data == 'users module' assert source.module_sources[1].data == 'events module' class TestUrlPackageSource(unittest.TestCase): def test_module(self): # Given a fixture package info and urls. info = PackageInfo('project_api', modules=['users', 'users.events']) urls = { 'http://localhost/project/api/api.yaml': info.to_yaml(), 'http://localhost/project/api/users.pdef': 'users module', 'http://localhost/project/api/users/events.pdef': 'events module' } # Create a package source. source = UrlPackageSource('http://localhost/project/api/api.yaml') source._fetch_url = lambda url: urls[url] # The source should read the info and the modules. assert source.package_name == 'project_api' assert source.package_info.to_dict() == info.to_dict() assert source.module_sources[0].name == 'users' assert source.module_sources[1].name == 'users.events' assert source.module_sources[0].data == 'users module' assert source.module_sources[1].data == 'events module' def test_module_url(self): source = UrlPackageSource('http://localhost:8080/project/api/api.yaml') path = source._module_url('users.internal.events') assert path == 'http://localhost:8080/project/api/users/internal/events.pdef' def test_fetch_unicode(self): # Given a UTF-8 encoded URL source. class File(object): def read(self): return 'Привет, как дела?'.encode(UTF8) # Download the source. source = UrlPackageSource('http://localhost/test.yaml') source._download = lambda url: File() # The data should be decoded as UTF8 data = source._fetch_url('http://localhost/') assert data == 'Привет, как дела?'
null
src/pdefc/tests/test_sources.py
test_sources.py
py
4,299
python
en
code
null
code-starcoder2
83
[ { "api_name": "unittest.TestCase", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 19, "usage_type": "call" }, { "api_name": "pdefc.lang.packages.PackageInfo", "line_number": 22, "usage_type": "call" }, { "api_name": "pdefc.sources.InMemoryPackageSource", "line_number": 23, "usage_type": "call" }, { "api_name": "pdefc.sources.PackageSources", "line_number": 24, "usage_type": "call" }, { "api_name": "mock.Mock", "line_number": 30, "usage_type": "call" }, { "api_name": "tempfile.mkstemp", "line_number": 32, "usage_type": "call" }, { "api_name": "pdefc.sources.PackageSources", "line_number": 34, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 37, "usage_type": "call" }, { "api_name": "mock.Mock", "line_number": 42, "usage_type": "call" }, { "api_name": "pdefc.sources.PackageSources", "line_number": 45, "usage_type": "call" }, { "api_name": "pdefc.sources.PackageSources", "line_number": 52, "usage_type": "call" }, { "api_name": "pdefc.CompilerException", "line_number": 53, "usage_type": "argument" }, { "api_name": "unittest.TestCase", "line_number": 56, "usage_type": "attribute" }, { "api_name": "pdefc.lang.packages.PackageInfo", "line_number": 59, "usage_type": "call" }, { "api_name": "pdefc.sources.FilePackageSource", "line_number": 67, "usage_type": "call" }, { "api_name": "unittest.TestCase", "line_number": 82, "usage_type": "attribute" }, { "api_name": "pdefc.lang.packages.PackageInfo", "line_number": 85, "usage_type": "call" }, { "api_name": "pdefc.sources.UrlPackageSource", "line_number": 93, "usage_type": "call" }, { "api_name": "pdefc.sources.UrlPackageSource", "line_number": 107, "usage_type": "call" }, { "api_name": "pdefc.sources.UTF8", "line_number": 115, "usage_type": "argument" }, { "api_name": "pdefc.sources.UrlPackageSource", "line_number": 118, "usage_type": "call" } ]
336246661
import json import os import datetime import argparse from duplocli.terraform.aws.common.tf_utils import TfUtils from duplocli.terraform.aws.step1.aws_create_tfstate_step1 import AwsCreateTfstateStep1 from duplocli.terraform.aws.step1.get_aws_object_list import GetAwsObjectList from duplocli.terraform.aws.step2.aws_tf_import_step2 import AwsTfImportStep2 from duplocli.terraform.aws.common.tf_file_utils import TfFileUtils import psutil class ImportParameters: tenant_name = None def __init__(self, parameters): self.tenant_name = self.get_key(parameters, 'tenant_name') self.aws_region = self.get_key(parameters, 'aws_region') self.zip_folder = self.get_key(parameters, 'zip_folder') self.zip_file_path = self.get_key(parameters, 'zip_file_path') self.import_name = self.get_key(parameters, 'import_name') self.download_aws_keys = self.get_key(parameters, 'download_aws_keys') self.url = self.get_key(parameters, 'url') self.tenant_id = self.get_key(parameters, 'tenant_id') self.api_token = self.get_key(parameters, 'api_token') self.params_json_file_path = self.get_key(parameters, 'params_json_file_path') self.temp_folder = self.get_key(parameters, 'temp_folder') self.tenant_with_prefix = self.get_key(parameters, 'tenant_with_prefix') self.state_file = self.get_key(parameters, 'state_file') def get_key(self, parameters, key): if key in parameters: return parameters[key] return None class AwsParseParams: def __init__(self): self.file_utils = TfFileUtils(self.get_default_params(), step="step1") ######## #### def check_required_fields(self,parameters, required_fields): for required_field in required_fields: if parameters[required_field] is None: fields=",".join(required_fields) print("missing required_fields = " + parameters) print(self.get_help()) raise Exception("missing required_fields = " +fields) def resolve_parameters(self, parsed_args): parameters = self.app_defaults(parsed_args) # validate params required_fields = ["tenant_name", "aws_region"] self.check_required_fields(parameters, required_fields) if parameters["download_aws_keys"] == "yes": required_fields=["url","tenant_id","api_token"] self.check_required_fields(parameters, required_fields) params = ImportParameters(parameters) # if params.zip_file_path is None: if params.import_name is None: now = datetime.datetime.now() now_str = now.strftime("%m-%d-%Y--%H-%M-%S") params.import_name = now_str if self.parameters_default["temp_folder"] == params.temp_folder: #append import_name to zip_file_path, zip_folder, temp_folder params.temp_folder = os.path.join(params.temp_folder, params.tenant_name, params.import_name) params.zip_folder = os.path.join(params.temp_folder, "zip") if params.zip_file_path is None: params.zip_file_path = os.path.join(params.zip_folder, params.import_name) print("temp_folder ***** ", params.temp_folder) print("zip_folder ***** ", params.zip_folder) print("zip_file_path ***** ", os.path.abspath(params.zip_file_path+".zip") ) return params ######## #### def get_default_params(self): file_utils = TfFileUtils(None, step=None, set_temp_and_zip_folders=False) parameters = file_utils.load_json_file("import_tf_parameters_default.json") self.parameters_default = parameters params = ImportParameters(parameters) return params def get_help(self): return """ argument to python file [-t / --tenant_id TENANTID] -- TenantId e.g. 97a833a4-2662-4e9c-9867-222565ec5cb6 [-n / --tenant_name TENANTNAME] -- TenantName e.g. webdev [-r / --aws_region AWSREGION] -- AWSREGION e.g. us-west2 [-a / --api_token APITOKEN] -- Duplo API Token [-u / --url URL] -- Duplo URL e.g. https://msp.duplocloud.net [-k / --download_aws_keys DOWNLOADKEYS] -- Aws keypair=yes/no, private key used for ssh into EC2 servers [-z / --zip_folder ZIPFOLDER] -- folder to save imported files in zip format self.import_name = self.get_key(parameters, 'import_name') [-i / --import_name IMPORTNAME] -- import name and zip file path are mutually exclusive. import name will create sub folders and zip file with same name. [-o / --zip_file_path ZIPFILEPATH] -- zip file path to save imported terraform files in zip format [-j / --params_json_file_path PARAMSJSONFILE] -- All params passed in single JSON file [-h / --help HELP] -- help OR alternately pass the above parameters in single json file [-j/--params_json_file_path PARAMSJSONFILE] = FOLDER/terraform_import_json.json terraform_import_json.json { "tenant_name": "xxxxxx", "aws_region": "xxxxxx", "zip_folder": "zip", "download_aws_keys": "yes", "url": "https://xxx.duplocloud.net", "tenant_id": "xxx-2662-4e9c-9867-9a4565ec5cb6", "api_token": "xxxxxx", "import_name":"UNIQUE_NAME" } OR alternately pass the above parameters in ENV variables export tenant_name="xxxxxx" export aws_region="xxxxxx" export zip_folder="zip", export download_aws_keys="yes", export url="https://xxx.duplocloud.net", export tenant_id="xxx-2662-4e9c-9867-9a4565ec5cb6", export api_token="xxxxxx" export zip_file_path="/tmp/NAMe.zip" or export import_name="UNIQUE_NAME" Sequence of parameters evaluation is: default -> ENV -> JSON_FILE -> arguments parameters in argument -> override parameters in terraform_import_json AND parameters in terraform_import_json -> override parameters in ENV variables AND parameters in ENV variables -> override default values (import_tf_parameters_default.json) """ ######## #### def get_parser(self): help_str = self.get_help() # parser = argparse.ArgumentParser(prog='AwsTfImport',add_help=False) # parser = argparse.ArgumentParser(description="Download Terraform state files.", argument_default=argparse.SUPPRESS, # allow_abbrev=False, add_help=False) parser = argparse.ArgumentParser(description="Download Terraform state files.", usage=self.get_help()) parser.add_argument('-t', '--tenant_id', action='store', dest='tenant_id') parser.add_argument('-n', '--tenant_name', action='store', dest='tenant_name') parser.add_argument('-r', '--aws_region', action='store', dest='aws_region') parser.add_argument('-a', '--api_token', action='store', dest='api_token') parser.add_argument('-u', '--url', action='store', dest='url') parser.add_argument('-k', '--download_aws_keys', action='store', dest='download_keys') parser.add_argument('-z', '--zip_folder', action='store', dest='zip_folder') parser.add_argument('-i', '--import_name', action='store', dest='import_name') parser.add_argument('-o', '--zip_file_path', action='store', dest='zip_file_path') parser.add_argument('-j', '--params_json_file_path', action='store', dest='params_json_file_path') # parser.add_argument('-h', '--help', action='help' , help=" params usage") return parser ######## #### def app_defaults(self, parsed_args): parameters = self.file_utils.load_json_file("import_tf_parameters_default.json") print("########## default parameters ########## ") for key in parameters: print(" default parameter values", key, parameters[key]) print("########## passed as environ variables ########## ") for key in parameters: if key in os.environ: print(" override parameter by passed as environ variable ", key, os.environ[key]) val = os.environ[key] parameters[key] = val print("########## params_json_file_path parameters ########## ") if parsed_args.params_json_file_path is not None: print("params_json_file_path ", parsed_args.params_json_file_path) parameters_json = self.file_utils.load_json_file(parsed_args.params_json_file_path) for key in parameters_json: print(" params_json_file_path parameter values", key, parameters_json[key]) parameters[key] = parameters_json[key] print("########## passed as arguments parameters ########## ") for key, val in vars(parsed_args).items(): if val is not None: print(" override parameter by passed in arguments ", key, val) parameters[key] = val print("########## final parameters ########## ") for key in parameters: print("final", key, parameters[key]) return parameters
null
duplocli/terraform/aws/aws_parse_params.py
aws_parse_params.py
py
9,444
python
en
code
null
code-starcoder2
83
[ { "api_name": "duplocli.terraform.aws.common.tf_file_utils.TfFileUtils", "line_number": 44, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 66, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 66, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 71, "usage_type": "call" }, { "api_name": "os.path", "line_number": 71, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 72, "usage_type": "call" }, { "api_name": "os.path", "line_number": 72, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 74, "usage_type": "call" }, { "api_name": "os.path", "line_number": 74, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 77, "usage_type": "call" }, { "api_name": "os.path", "line_number": 77, "usage_type": "attribute" }, { "api_name": "duplocli.terraform.aws.common.tf_file_utils.TfFileUtils", "line_number": 85, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 157, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 184, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 185, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 186, "usage_type": "attribute" } ]
392625329
""" Holds handling functions for user operations. Uses a floating instance of the database client that is instanciated in the `config.db` module like all other `util` modules. """ from config.db import get_database, get_database_client_name from models import exceptions import models.users as user_models # instanciate the main collection to use for this util file for convenience def users_collection(): return get_database()[get_database_client_name()]["users"] async def register_user( form: user_models.UserRegistrationForm) -> user_models.UserId: """ Register a user registration form to the database and return it's user ID. """ # cast input form (python class) -> dictionary (become JSON eventually) form_dict = form.dict() # insert id into column users_collection().insert_one(form_dict) # return user_id if success return form_dict["_id"] async def get_user_info_by_identifier( identifier: user_models.UserIdentifier) -> user_models.User: """ Returns a User object by it's given identifier. """ query = identifier.get_database_query() #query to database user_document = users_collection().find_one(query) if not user_document: raise exceptions.UserNotFoundException # cast the database response into a User object return user_models.User(**user_document) async def delete_user(identifier: user_models.UserIdentifier) -> None: """ Deletes a user by it's identifier """ query = identifier.get_database_query() response = users_collection().delete_one(query) if response.deleted_count == 0: detail = "User not found and could not be deleted" raise exceptions.UserNotFoundException(detail=detail)
null
util/users.py
users.py
py
1,757
python
en
code
null
code-starcoder2
83
[ { "api_name": "config.db.get_database", "line_number": 14, "usage_type": "call" }, { "api_name": "config.db.get_database_client_name", "line_number": 14, "usage_type": "call" }, { "api_name": "models.users.UserRegistrationForm", "line_number": 18, "usage_type": "attribute" }, { "api_name": "models.users", "line_number": 18, "usage_type": "name" }, { "api_name": "models.users.UserId", "line_number": 18, "usage_type": "attribute" }, { "api_name": "models.users.UserIdentifier", "line_number": 33, "usage_type": "attribute" }, { "api_name": "models.users", "line_number": 33, "usage_type": "name" }, { "api_name": "models.exceptions.UserNotFoundException", "line_number": 43, "usage_type": "attribute" }, { "api_name": "models.exceptions", "line_number": 43, "usage_type": "name" }, { "api_name": "models.users.User", "line_number": 46, "usage_type": "call" }, { "api_name": "models.users", "line_number": 46, "usage_type": "name" }, { "api_name": "models.users.User", "line_number": 33, "usage_type": "attribute" }, { "api_name": "models.users.UserIdentifier", "line_number": 49, "usage_type": "attribute" }, { "api_name": "models.users", "line_number": 49, "usage_type": "name" }, { "api_name": "models.exceptions.UserNotFoundException", "line_number": 57, "usage_type": "call" }, { "api_name": "models.exceptions", "line_number": 57, "usage_type": "name" } ]
367157607
from sklearn import neighbors import pickle import ProcessImage as image from matplotlib.colors import ListedColormap import numpy as np import matplotlib.pyplot as plt #k-legkozelebbi szomszed modszere class train(object): def __init__(self, neigh_numbers, first_two=False, features=[]): self.neigh_numbers=neigh_numbers self.first_two=first_two self.features=features def train(self, X, y): if self.first_two: X=X[:, :2] for weight in ['uniform', 'distance']: self.neigh=neighbors.KNeighborsClassifier(self.neigh_numbers, weights=weight) self.neigh.fit(X, y) name='out/kneigh_'+str(weight)+'_'+str(self.neigh_numbers)+'.pkl' #with open(name, 'wb') as f: # f.flush() # pickle.dump(self.neigh, f) def predict(self, X): if self.first_two: X=X[:, :2] #list=[X] return self.neigh.predict(X) def test(self): im=image.ProcessImages('test', two_value=self.first_two, list_=self.features) X,Y=im.make_all() if self.first_two: X=X[:, :2] return self.neigh.score(X, Y) def valid(self): im=image.ProcessImages('validation', two_value=self.first_two, list_=self.features) X, Y = im.make_all() if self.first_two: X=X[:, :2] return self.neigh.score(X, Y) def load(self, neigh_numbers, type='distance'): filename= name='out/kneigh_'+type+'_'+str(self.neigh_numbers)+'.pkl' with open(filename, 'rb') as f: self.neigh=pickle.load(f) #resource: def train_first_two_features(self, X, y, weight='uniform'): X=X[:, :2] self.neigh=neighbors.KNeighborsClassifier(self.neigh_numbers, weights=weight) self.neigh.fit(X, y) x_min, x_max= X[:, 0].min()-1, X[:, 0].max()+1 y_min, y_max= X[:, 1].min()-1, X[:, 1].max()+1 x_, y_ = np.meshgrid(np.arange(x_min, x_max, 0.005), np.arange(y_min, y_max, 0.005)) Z = self.neigh.predict(np.c_[x_.ravel(), y_.ravel()]) Z=Z.reshape(x_.shape) plt.figure() cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) plt.pcolormesh(x_, y_, Z, cmap=cmap_light) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20) plt.xlim(x_.min(), x_.max()) plt.ylim(y_.min(), y_.max()) plt.show() def test_train_two_features(self, testX, testY, trainX, trainY, weight='uniform'): trainX=trainX[:, :2] testX=testX[:, :2] self.neigh = neighbors.KNeighborsClassifier(self.neigh_numbers, weights=weight) self.neigh.fit(trainX, trainY) x_min, x_max = trainX[:, 0].min() - 1, trainX[:, 0].max() + 1 y_min, y_max = trainX[:, 1].min() - 1, trainX[:, 1].max() + 1 x_, y_ = np.meshgrid(np.arange(x_min, x_max, 0.004), np.arange(y_min, y_max, 0.004)) Z = self.neigh.predict(np.c_[x_.ravel(), y_.ravel()]) Z = Z.reshape(x_.shape) plt.figure() cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) plt.pcolormesh(x_, y_, Z, cmap=cmap_light) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) plt.scatter(testX[:, 0], testX[:, 1], c=testY, cmap=cmap_bold, edgecolor='k', s=20) plt.xlim(x_.min(), x_.max()) plt.ylim(y_.min(), y_.max()) plt.show()
null
beadando-tovabbi-modszerekkel/train_k_neighbours.py
train_k_neighbours.py
py
3,621
python
en
code
null
code-starcoder2
83
[ { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 21, "usage_type": "call" }, { "api_name": "sklearn.neighbors", "line_number": 21, "usage_type": "name" }, { "api_name": "ProcessImage.ProcessImages", "line_number": 35, "usage_type": "call" }, { "api_name": "ProcessImage.ProcessImages", "line_number": 41, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 50, "usage_type": "call" }, { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 55, "usage_type": "call" }, { "api_name": "sklearn.neighbors", "line_number": 55, "usage_type": "name" }, { "api_name": "numpy.meshgrid", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 60, "usage_type": "call" }, { "api_name": "numpy.c_", "line_number": 61, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 63, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 63, "usage_type": "name" }, { "api_name": "matplotlib.colors.ListedColormap", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pcolormesh", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.colors.ListedColormap", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 67, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 69, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 71, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 71, "usage_type": "name" }, { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 76, "usage_type": "call" }, { "api_name": "sklearn.neighbors", "line_number": 76, "usage_type": "name" }, { "api_name": "numpy.meshgrid", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 81, "usage_type": "call" }, { "api_name": "numpy.c_", "line_number": 82, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 84, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 84, "usage_type": "name" }, { "api_name": "matplotlib.colors.ListedColormap", "line_number": 85, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pcolormesh", "line_number": 86, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 86, "usage_type": "name" }, { "api_name": "matplotlib.colors.ListedColormap", "line_number": 87, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 88, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 88, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xlim", "line_number": 90, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 90, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylim", "line_number": 91, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 91, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 92, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 92, "usage_type": "name" } ]
243717432
# coding: utf-8 # Author: F. Alex Wolf (http://falexwolf.de) """tSNE Notes ----- This module automatically choose from three t-SNE versions from - sklearn.manifold.TSNE - Dmitry Ulyanov (multicore, fastest) https://github.com/DmitryUlyanov/Multicore-TSNE install via 'pip install psutil cffi', get code from github """ import numpy as np from ..tools.pca import pca from .. import settings as sett from .. import logging as logg def tsne(adata, random_state=0, n_pcs=50, perplexity=30, n_jobs=None, copy=False): u"""tSNE Reference --------- L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008. Parameters ---------- adata : AnnData Annotated data matrix, optionally with adata.smp['X_pca'], which is written when running sc.pca(adata). Is directly used for tSNE. random_state : unsigned int or -1, optional (default: 0) Change to use different intial states for the optimization, if -1, use default behavior of implementation (sklearn uses np.random.seed, Multicore-TSNE produces a new plot at every call). n_pcs : int, optional (default: 50) Number of principal components in preprocessing PCA. perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. n_jobs : int or None (default: None) Use the multicore implementation, if it is installed. Defaults to sett.n_jobs. Notes ----- X_tsne : np.ndarray of shape n_samples x 2 Array that stores the tSNE representation of the data. Analogous to X_pca, X_diffmap and X_spring. is added to adata.smp. """ logg.m('compute tSNE', r=True) adata = adata.copy() if copy else adata # preprocessing by PCA if 'X_pca' in adata.smp and adata.smp['X_pca'].shape[1] >= n_pcs: X = adata.smp['X_pca'][:, :n_pcs] logg.m('... using X_pca for tSNE') else: if n_pcs > 0 and adata.X.shape[1] > n_pcs: logg.m('... preprocess using PCA with', n_pcs, 'PCs') logg.m('avoid this by setting n_pcs = 0', v='hint') X = pca(adata.X, random_state=random_state, n_comps=n_pcs) adata.smp['X_pca'] = X else: X = adata.X logg.m('... using', n_pcs, 'principal components') # params for sklearn params_sklearn = {'perplexity': perplexity, 'random_state': None if random_state == -1 else random_state, 'verbose': sett.verbosity, 'learning_rate': 200, 'early_exaggeration': 12, # 'method': 'exact' } n_jobs = sett.n_jobs if n_jobs is None else n_jobs # deal with different tSNE implementations multicore_failed = False if n_jobs > 1: try: from MulticoreTSNE import MulticoreTSNE as TSNE tsne = TSNE(n_jobs=n_jobs, **params_sklearn) logg.m('... using MulticoreTSNE') X_tsne = tsne.fit_transform(X.astype(np.float64)) except ImportError: multicore_failed = True sett.m(0, '--> did not find package MulticoreTSNE: to speed up the computation install it from\n' ' https://github.com/DmitryUlyanov/Multicore-TSNE') if n_jobs == 1 or multicore_failed: from sklearn.manifold import TSNE tsne = TSNE(**params_sklearn) logg.m('consider installing the package MulticoreTSNE from\n' ' https://github.com/DmitryUlyanov/Multicore-TSNE\n' ' Even for `n_jobs=1` this speeds up the computation considerably.', v='hint') logg.m('... using sklearn.manifold.TSNE') X_tsne = tsne.fit_transform(X) # update AnnData instance adata.smp['X_tsne'] = X_tsne logg.m('finished', t=True, end=' ') logg.m('and added\n' ' "X_tsne" coordinates, the tSNE representation of X (adata.smp)') return adata if copy else None
null
scanpy/tools/tsne.py
tsne.py
py
4,394
python
en
code
null
code-starcoder2
83
[ { "api_name": "tools.pca.pca", "line_number": 67, "usage_type": "call" }, { "api_name": "MulticoreTSNE.MulticoreTSNE", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 88, "usage_type": "attribute" }, { "api_name": "sklearn.manifold.TSNE", "line_number": 95, "usage_type": "call" } ]
80493053
from collections import Counter from decimal import Decimal from ouretf.accounts.brokerage_account import BrokerageAccount from ouretf.accounts.exceptions import NotEnoughFundsException, NotEnoughHoldingsException, OrderAlreadyCanceled, \ OrderDoesNotExist from ouretf.accounts.mock.orders import MockBuyOrder, MockSellOrder from ouretf.accounts.mock.ticker import MockTicker class MockAccount(BrokerageAccount): """ A mock brokerage account. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.buy_orders = [] self.open_buy_orders = [] self.sell_orders = [] self.open_sell_orders = [] self.orders = {} self.holdings = Counter() self.cash = 0 self.unsettled_cash = 0 self.reserved_cash = 0 # used for unfilled orders self.reserved_shares = Counter() self.cash_settlements = [] self.tickers = {} def buy_logic(self, symbol, limit, amount): order = MockBuyOrder(symbol, limit, amount) self.buy_orders.append(order) self.open_buy_orders.append(order) self.reserved_cash += limit * amount self.cash -= limit * amount self.orders[order.order_number] = order return order.order_number def sell_logic(self, symbol, limit, amount): order = MockSellOrder(symbol, limit, amount) self.sell_orders.append(order) self.open_sell_orders.append(order) self.reserved_shares[symbol] += amount self.orders[order.order_number] = order return order.order_number def check_buy_preconditions(self, symbol, limit, amount): needed_cash = limit * amount if needed_cash > self.cash: raise NotEnoughFundsException(needed_cash, self.cash) def check_sell_preconditions(self, symbol, limit, amount): num_have = self.holdings.get(symbol, 0) reserved_amount = self.reserved_shares.get(symbol, 0) if amount > num_have - reserved_amount: raise NotEnoughHoldingsException(symbol, amount, num_have, reserved_amount) def set_ticker_info(self, symbol, **kwargs): symbol = symbol.upper() ticker_info = self.tickers.get(symbol) if not ticker_info: ticker_info = MockTicker(symbol, **kwargs) else: ticker_info.set_info(**kwargs) self.tickers[symbol] = ticker_info self._execute_orders() def _execute_orders(self): for order in self.open_buy_orders: ask_price = self.tickers[order.symbol].ask if ask_price <= order.limit: self._execute_purchase(order, ask_price) for order in self.open_sell_orders: bid_price = self.tickers[order.symbol].bid if bid_price >= order.limit: self._execute_sale(order, bid_price) def _execute_purchase(self, order, ask_price): if not isinstance(ask_price, Decimal): ask_price = Decimal(ask_price) cost = order.execute(ask_price) symbol = order.symbol self.reserved_cash -= order.reserved_cash self.cash += order.reserved_cash - cost self.holdings[symbol] += order.amount self.open_buy_orders.remove(order) def _execute_sale(self, order, bid_price): if not isinstance(bid_price, Decimal): bid_price = Decimal(bid_price) order.execute(bid_price) symbol = order.symbol self.unsettled_cash += order.amount * bid_price self.holdings[symbol] -= order.amount self.reserved_shares[symbol] -= order.amount self.open_sell_orders.remove(order) def cancel_order_logic(self, order_number): for order in self.open_buy_orders: if order.order_number == order_number: self.reserved_cash -= order.reserved_cash self.cash += order.reserved_cash self.open_buy_orders.remove(order) order.cancel() return for order in self.open_sell_orders: if order.order_number == order_number: self.reserved_shares[order.symbol] -= order.amount self.open_sell_orders.remove(order) order.cancel() return existing_order = self.orders.get(order_number) if existing_order: assert existing_order.canceled raise OrderAlreadyCanceled(order_number) raise OrderDoesNotExist(order_number)
null
ouretf/accounts/mock/account.py
account.py
py
4,536
python
en
code
null
code-starcoder2
83
[ { "api_name": "ouretf.accounts.brokerage_account.BrokerageAccount", "line_number": 12, "usage_type": "name" }, { "api_name": "collections.Counter", "line_number": 24, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 28, "usage_type": "call" }, { "api_name": "ouretf.accounts.mock.orders.MockBuyOrder", "line_number": 33, "usage_type": "call" }, { "api_name": "ouretf.accounts.mock.orders.MockSellOrder", "line_number": 42, "usage_type": "call" }, { "api_name": "ouretf.accounts.exceptions.NotEnoughFundsException", "line_number": 52, "usage_type": "call" }, { "api_name": "ouretf.accounts.exceptions.NotEnoughHoldingsException", "line_number": 58, "usage_type": "call" }, { "api_name": "ouretf.accounts.mock.ticker.MockTicker", "line_number": 64, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 82, "usage_type": "argument" }, { "api_name": "decimal.Decimal", "line_number": 83, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 92, "usage_type": "argument" }, { "api_name": "decimal.Decimal", "line_number": 93, "usage_type": "call" }, { "api_name": "ouretf.accounts.exceptions.OrderAlreadyCanceled", "line_number": 118, "usage_type": "call" }, { "api_name": "ouretf.accounts.exceptions.OrderDoesNotExist", "line_number": 119, "usage_type": "call" } ]
261816346
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import json import logging import click import requests import yamale import yaml from betterboto import client as betterboto_client from servicecatalog_puppet import asset_helpers from servicecatalog_puppet import config from servicecatalog_puppet import constants from servicecatalog_puppet import manifest_utils logger = logging.getLogger(__name__) def expand(f, puppet_account_id, single_account, subset=None): click.echo("Expanding") manifest = manifest_utils.load(f, puppet_account_id) org_iam_role_arn = config.get_org_iam_role_arn(puppet_account_id) if org_iam_role_arn is None: click.echo("No org role set - not expanding") new_manifest = manifest else: click.echo("Expanding using role: {}".format(org_iam_role_arn)) with betterboto_client.CrossAccountClientContextManager( "organizations", org_iam_role_arn, "org-iam-role" ) as client: new_manifest = manifest_utils.expand_manifest(manifest, client) click.echo("Expanded") if single_account: click.echo(f"Filtering for single account: {single_account}") for account in new_manifest.get("accounts", []): if str(account.get("account_id")) == str(single_account): click.echo(f"Found single account: {single_account}") new_manifest["accounts"] = [account] break click.echo("Filtered") new_manifest = manifest_utils.rewrite_depends_on(new_manifest) new_manifest = manifest_utils.rewrite_ssm_parameters(new_manifest) new_manifest = manifest_utils.rewrite_stacks(new_manifest, puppet_account_id) if subset: click.echo(f"Filtering for subset: {subset}") new_manifest = manifest_utils.isolate( manifest_utils.Manifest(new_manifest), subset ) manifest_accounts_all = [ {"account_id": a.get("account_id"), "email": a.get("email")} for a in new_manifest.get("accounts", []) ] manifest_accounts_excluding = [ a for a in manifest_accounts_all if a.get("account_id") != puppet_account_id ] dumped = json.dumps(new_manifest) dumped = dumped.replace( "${AWS::ManifestAccountsAll}", json.dumps(manifest_accounts_all).replace('"', '\\"') ) dumped = dumped.replace( "${AWS::ManifestAccountsSpokes}", json.dumps(manifest_accounts_excluding).replace('"', '\\"') ) new_manifest = json.loads(dumped) if new_manifest.get(constants.LAMBDA_INVOCATIONS) is None: new_manifest[constants.LAMBDA_INVOCATIONS] = dict() home_region = config.get_home_region(puppet_account_id) with betterboto_client.ClientContextManager("ssm") as ssm: response = ssm.get_parameter(Name="service-catalog-puppet-version") version = response.get("Parameter").get("Value") new_manifest["config_cache"] = dict( home_region=home_region, regions=config.get_regions(puppet_account_id, home_region), should_collect_cloudformation_events=config.get_should_use_sns( puppet_account_id, home_region ), should_forward_events_to_eventbridge=config.get_should_use_eventbridge( puppet_account_id, home_region ), should_forward_failures_to_opscenter=config.get_should_forward_failures_to_opscenter( puppet_account_id, home_region ), puppet_version=version, ) new_name = f.name.replace(".yaml", "-expanded.yaml") logger.info("Writing new manifest: {}".format(new_name)) with open(new_name, "w") as output: output.write(yaml.safe_dump(new_manifest, default_flow_style=False)) def explode(f): logger.info("Exploding") puppet_account_id = config.get_puppet_account_id() original_name = f.name expanded_output = f.name.replace(".yaml", "-expanded.yaml") expanded_manifest = manifest_utils.load( open(expanded_output, "r"), puppet_account_id ) expanded_manifest = manifest_utils.Manifest(expanded_manifest) exploded = manifest_utils.explode(expanded_manifest) logger.info(f"found {len(exploded)} graphs") count = 0 for mani in exploded: with open(original_name.replace(".yaml", f"-exploded-{count}.yaml"), "w") as f: f.write(yaml.safe_dump(json.loads(json.dumps(mani)))) count += 1 def validate(f): logger.info("Validating {}".format(f.name)) manifest = manifest_utils.load(f, config.get_puppet_account_id()) schema = yamale.make_schema(asset_helpers.resolve_from_site_packages("schema.yaml")) data = yamale.make_data(content=yaml.safe_dump(manifest)) yamale.validate(schema, data, strict=False) tags_defined_by_accounts = {} for account in manifest.get("accounts"): for tag in account.get("tags", []): tags_defined_by_accounts[tag] = True for collection_type in constants.ALL_SECTION_NAMES: collection_to_check = manifest.get(collection_type, {}) for collection_name, collection_item in collection_to_check.items(): for deploy_to in collection_item.get("deploy_to", {}).get("tags", []): tag_to_check = deploy_to.get("tag") if tags_defined_by_accounts.get(tag_to_check) is None: print( f"{collection_type}.{collection_name} uses tag {tag_to_check} in deploy_to that does not exist" ) for depends_on in collection_item.get("depends_on", []): if isinstance(depends_on, str): if manifest.get(constants.LAUNCHES).get(depends_on) is None: print( f"{collection_type}.{collection_name} uses {depends_on} in depends_on that does not exist" ) else: tt = constants.SECTION_SINGULAR_TO_PLURAL.get( depends_on.get("type", constants.LAUNCH) ) dd = depends_on.get("name") if manifest.get(tt).get(dd) is None: print( f"{collection_type}.{collection_name} uses {depends_on} in depends_on that does not exist" ) click.echo("Finished validating: {}".format(f.name)) click.echo("Finished validating: OK") def import_product_set(f, name, portfolio_name): url = f"https://raw.githubusercontent.com/awslabs/aws-service-catalog-products/master/{name}/manifest.yaml" response = requests.get(url) logger.info(f"Getting {url}") manifest = yaml.safe_load(f.read()) if manifest.get("launches") is None: manifest["launches"] = {} manifest_segment = yaml.safe_load(response.text) for launch_name, details in manifest_segment.get("launches").items(): details["portfolio"] = portfolio_name manifest["launches"][launch_name] = details with open(f.name, "w") as f: f.write(yaml.safe_dump(manifest)) def get_manifest(): with betterboto_client.ClientContextManager("codecommit") as codecommit: content = codecommit.get_file( repositoryName=constants.SERVICE_CATALOG_PUPPET_REPO_NAME, filePath="manifest.yaml", ).get("fileContent") return yaml.safe_load(content) def save_manifest(manifest): with betterboto_client.ClientContextManager("codecommit") as codecommit: parent_commit_id = ( codecommit.get_branch( repositoryName=constants.SERVICE_CATALOG_PUPPET_REPO_NAME, branchName="master", ) .get("branch") .get("commitId") ) codecommit.put_file( repositoryName=constants.SERVICE_CATALOG_PUPPET_REPO_NAME, branchName="master", fileContent=yaml.safe_dump(manifest), parentCommitId=parent_commit_id, commitMessage="Auto generated commit", filePath=f"manifest.yaml", ) def add_to_accounts(account_or_ou): manifest = get_manifest() manifest.get("accounts").append(account_or_ou) save_manifest(manifest) def remove_from_accounts(account_id_or_ou_id_or_ou_path): manifest = get_manifest() for account in manifest.get("accounts", []): if account.get("account_id", "") == account_id_or_ou_id_or_ou_path: manifest.get("accounts").remove(account) return save_manifest(manifest) elif account.get("ou", "") == account_id_or_ou_id_or_ou_path: manifest.get("accounts").remove(account) return save_manifest(manifest) raise Exception(f"Did not remove {account_id_or_ou_id_or_ou_path}") def add_to_launches(launch_name, launch): manifest = get_manifest() launches = manifest.get("launches", {}) launches[launch_name] = launch manifest["launches"] = launches save_manifest(manifest) def remove_from_launches(launch_name): manifest = get_manifest() del manifest.get("launches")[launch_name] save_manifest(manifest)
null
servicecatalog_puppet/commands/manifest.py
manifest.py
py
9,189
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 18, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 22, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils.load", "line_number": 23, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 23, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.config.get_org_iam_role_arn", "line_number": 24, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.config", "line_number": 24, "usage_type": "name" }, { "api_name": "click.echo", "line_number": 26, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 29, "usage_type": "call" }, { "api_name": "betterboto.client.CrossAccountClientContextManager", "line_number": 30, "usage_type": "call" }, { "api_name": "betterboto.client", "line_number": 30, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.manifest_utils.expand_manifest", "line_number": 33, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 33, "usage_type": "name" }, { "api_name": "click.echo", "line_number": 34, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 36, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 40, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 44, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils.rewrite_depends_on", "line_number": 46, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 46, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.manifest_utils.rewrite_ssm_parameters", "line_number": 47, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 47, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.manifest_utils.rewrite_stacks", "line_number": 48, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 48, "usage_type": "name" }, { "api_name": "click.echo", "line_number": 51, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils.isolate", "line_number": 52, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 52, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.manifest_utils.Manifest", "line_number": 53, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 53, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 64, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 66, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 69, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 71, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.constants.LAMBDA_INVOCATIONS", "line_number": 73, "usage_type": "attribute" }, { "api_name": "servicecatalog_puppet.constants", "line_number": 73, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.constants.LAMBDA_INVOCATIONS", "line_number": 74, "usage_type": "attribute" }, { "api_name": "servicecatalog_puppet.constants", "line_number": 74, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.config.get_home_region", "line_number": 76, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.config", "line_number": 76, "usage_type": "name" }, { "api_name": "betterboto.client.ClientContextManager", "line_number": 77, "usage_type": "call" }, { "api_name": "betterboto.client", "line_number": 77, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.config.get_regions", "line_number": 83, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.config", "line_number": 83, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.config.get_should_use_sns", "line_number": 84, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.config", "line_number": 84, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.config.get_should_use_eventbridge", "line_number": 87, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.config", "line_number": 87, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.config.get_should_forward_failures_to_opscenter", "line_number": 90, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.config", "line_number": 90, "usage_type": "name" }, { "api_name": "yaml.safe_dump", "line_number": 99, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.config.get_puppet_account_id", "line_number": 104, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.config", "line_number": 104, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.manifest_utils.load", "line_number": 107, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 107, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.manifest_utils.Manifest", "line_number": 110, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 110, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.manifest_utils.explode", "line_number": 112, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 112, "usage_type": "name" }, { "api_name": "yaml.safe_dump", "line_number": 117, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 117, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 117, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils.load", "line_number": 124, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.manifest_utils", "line_number": 124, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.config.get_puppet_account_id", "line_number": 124, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.config", "line_number": 124, "usage_type": "name" }, { "api_name": "yamale.make_schema", "line_number": 126, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.asset_helpers.resolve_from_site_packages", "line_number": 126, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.asset_helpers", "line_number": 126, "usage_type": "name" }, { "api_name": "yamale.make_data", "line_number": 127, "usage_type": "call" }, { "api_name": "yaml.safe_dump", "line_number": 127, "usage_type": "call" }, { "api_name": "yamale.validate", "line_number": 129, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.constants.ALL_SECTION_NAMES", "line_number": 136, "usage_type": "attribute" }, { "api_name": "servicecatalog_puppet.constants", "line_number": 136, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.constants.LAUNCHES", "line_number": 148, "usage_type": "attribute" }, { "api_name": "servicecatalog_puppet.constants", "line_number": 148, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.constants.SECTION_SINGULAR_TO_PLURAL.get", "line_number": 153, "usage_type": "call" }, { "api_name": "servicecatalog_puppet.constants.SECTION_SINGULAR_TO_PLURAL", "line_number": 153, "usage_type": "attribute" }, { "api_name": "servicecatalog_puppet.constants", "line_number": 153, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.constants.LAUNCH", "line_number": 154, "usage_type": "attribute" }, { "api_name": "servicecatalog_puppet.constants", "line_number": 154, "usage_type": "name" }, { "api_name": "click.echo", "line_number": 162, "usage_type": "call" }, { "api_name": "click.echo", "line_number": 163, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 168, "usage_type": "call" }, { "api_name": "yaml.safe_load", "line_number": 170, "usage_type": "call" }, { "api_name": "yaml.safe_load", "line_number": 173, "usage_type": "call" }, { "api_name": "yaml.safe_dump", "line_number": 178, "usage_type": "call" }, { "api_name": "betterboto.client.ClientContextManager", "line_number": 182, "usage_type": "call" }, { "api_name": "betterboto.client", "line_number": 182, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.constants.SERVICE_CATALOG_PUPPET_REPO_NAME", "line_number": 184, "usage_type": "attribute" }, { "api_name": "servicecatalog_puppet.constants", "line_number": 184, "usage_type": "name" }, { "api_name": "yaml.safe_load", "line_number": 187, "usage_type": "call" }, { "api_name": "betterboto.client.ClientContextManager", "line_number": 191, "usage_type": "call" }, { "api_name": "betterboto.client", "line_number": 191, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.constants.SERVICE_CATALOG_PUPPET_REPO_NAME", "line_number": 194, "usage_type": "attribute" }, { "api_name": "servicecatalog_puppet.constants", "line_number": 194, "usage_type": "name" }, { "api_name": "servicecatalog_puppet.constants.SERVICE_CATALOG_PUPPET_REPO_NAME", "line_number": 201, "usage_type": "attribute" }, { "api_name": "servicecatalog_puppet.constants", "line_number": 201, "usage_type": "name" }, { "api_name": "yaml.safe_dump", "line_number": 203, "usage_type": "call" } ]
557626240
from flask import jsonify, request, url_for from models import User from urlparse import urlparse, urljoin # USER AUTHENTICATION FUNCTIONS # Response handler for user info retrieved from Google OAuth # Declare local user based on authorized user data # Register new user if this user has never logged in to my site # Send my app's token back to logged-in user def auth_user(user_info): user = session.query(User).filter_by(email=user_info.email).first() if not user: user = User(email = user_info.email, name = user_info.name) session.add(user) session.commit() token = user.generate_auth_token(600) return jsonify({'token': token.decode('ascii'), 'duration': 600}) # Handle OAuth response depending on response from Google # "remote.name" is currently presumed to be Google - no other OAuth at this time def handle_authorize(remote, token, user_info): if token: g.token = token if user_info: auth_user(user_info) return redirect(url_for('viewItems')) # raise some_error # CRUD AUTHORIZATION FUNCTIONS # Ensure that users attempting to U or D another user's item are redirected to the correct page def is_safe_url(target): ref_url = urlparse(request.host_url) test_url = urlparse(urljoin(request.host_url, target)) return test_url.scheme in ('http', 'https') and \ ref_url.netloc == test_url.netloc # Users can only update and delete their own items def verify_user_permission(item): return current_user.id == item.user_id # NEW ITEM FUNCTIONS def is_existing_category(category): return session.query(Category).filter_by(name=category).one() def check_category_needed(category): if not is_existing_category(category): new_cat = Category(name=category) session.add(new_cat) session.commit() return
null
helpers.py
helpers.py
py
1,826
python
en
code
null
code-starcoder2
83
[ { "api_name": "models.User", "line_number": 12, "usage_type": "argument" }, { "api_name": "models.User", "line_number": 14, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 18, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 28, "usage_type": "call" }, { "api_name": "urlparse.urlparse", "line_number": 36, "usage_type": "call" }, { "api_name": "flask.request.host_url", "line_number": 36, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 36, "usage_type": "name" }, { "api_name": "urlparse.urlparse", "line_number": 37, "usage_type": "call" }, { "api_name": "urlparse.urljoin", "line_number": 37, "usage_type": "call" }, { "api_name": "flask.request.host_url", "line_number": 37, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 37, "usage_type": "name" } ]
30676078
import discord import datetime from database.entities.User import User from commands.utils import Status, get_emoji, mention_author async def run(db_config, ctx): author = str(ctx.message.author) content = ctx.message.content print("\nReceived message from '"+author+"' with content '"+content+"'") user = User.get_user(db_config, author) now = datetime.datetime.now(datetime.timezone.utc) previous_bento = user.last_bento_date if previous_bento is not None: next_bracket = previous_bento.replace(microsecond=0, second=0, minute=0) if previous_bento.hour % 2 == 0: next_bracket += datetime.timedelta(hours=1) else: next_bracket += datetime.timedelta(hours=2) print("previous_bento:",previous_bento) print("next_bracket:",next_bracket) next_bracket = next_bracket.replace(tzinfo=datetime.timezone.utc) print("next_bracket aware:",next_bracket) difference = (next_bracket - now).total_seconds() print("now:",now) print("difference:",difference) if difference > 0: await no_bento(user, ctx, difference) return currency_number = user.crepes if currency_number is None: currency_number = 0 currency_number += 1 user.crepes = currency_number user.last_bento_date = now user.update_user(db_config,now,content) emoji = get_emoji("crepe") emoji_str = emoji.toString(ctx) title = "Wait! Are you going to the dungeon today? Please take this with you! >///<" description = mention_author(ctx) + " has received a " + emoji_str + "!" if currency_number == 1: footer = "There is " + str(currency_number) + " " + emoji.name + " left in their bento box!" else: footer = "There are " + str(currency_number) + " " + emoji.plural + " left in their bento box!" embed = discord.Embed() embed.color = Status.OK.value embed.title = title embed.description = description embed.set_footer(text=footer) embed.set_image(url="attachment://yes.png") await ctx.send(embed=embed, file=discord.File("./images/bento/yes.png")) async def no_bento(user, ctx, difference): currency_number = user.crepes if currency_number is None: currency_number = 0 emoji = get_emoji("crepe") title = "You are back already?" minutes_left = int(difference / 60) description = "Sorry, I don't have anything ready for you, " + mention_author(ctx) + "..." #description += " Please come back again later!" description += " Please come back again in **" + str(minutes_left) + "** min!" if currency_number > 1: footer = "There are " + str(currency_number) + " " + emoji.plural + " left in your bento box!" else: footer = "There is " + str(currency_number) + " " + emoji.name + " left in your bento box!" embed = discord.Embed() embed.color = Status.KO.value embed.title = title embed.description = description embed.set_footer(text=footer) embed.set_image(url="attachment://nope.png") await ctx.send(embed=embed, file=discord.File("./images/bento/nope.png"))
null
DanMemoDiscordBot/commands/bento.py
bento.py
py
3,196
python
en
code
null
code-starcoder2
83
[ { "api_name": "database.entities.User.User.get_user", "line_number": 13, "usage_type": "call" }, { "api_name": "database.entities.User.User", "line_number": 13, "usage_type": "name" }, { "api_name": "datetime.datetime.now", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 15, "usage_type": "attribute" }, { "api_name": "datetime.timezone", "line_number": 15, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 21, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 23, "usage_type": "call" }, { "api_name": "datetime.timezone", "line_number": 27, "usage_type": "attribute" }, { "api_name": "commands.utils.get_emoji", "line_number": 47, "usage_type": "call" }, { "api_name": "commands.utils.mention_author", "line_number": 52, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 59, "usage_type": "call" }, { "api_name": "commands.utils.Status.OK", "line_number": 60, "usage_type": "attribute" }, { "api_name": "commands.utils.Status", "line_number": 60, "usage_type": "name" }, { "api_name": "discord.File", "line_number": 65, "usage_type": "call" }, { "api_name": "commands.utils.get_emoji", "line_number": 73, "usage_type": "call" }, { "api_name": "commands.utils.mention_author", "line_number": 79, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 88, "usage_type": "call" }, { "api_name": "commands.utils.Status.KO", "line_number": 89, "usage_type": "attribute" }, { "api_name": "commands.utils.Status", "line_number": 89, "usage_type": "name" }, { "api_name": "discord.File", "line_number": 94, "usage_type": "call" } ]